Remedial Investigation and Feasibility Study

Gas Works Park Site Seattle, Washington

for Puget Sound Energy and the City of Seattle

January 2023

Table 2-1

Upland Investigations Gas Works Park Site Seattle, Washington

Year	Survey Name	Investigation Description	Surface Soil	Subsurface Soil	Groundwater	NAPL/ Tar	Storm Drain Solids	Air
1971-1973	Not named	Pre-park development. Collected hand augers/dug test pits. Observations only; reported on construction drawings.	х	х				
1984	1984 Soil Characterization	EPA investigated surface and subsurface soil quality. Surface sampling focused on northeast corner, Play Barn area and Prow. Borings were site-wide.	х	х				
1984	1984 Risk Evaluation	University of Washington collected surface soil samples for a human health evaluation for park users.	х					
1985	1985 Soil Characterization	Tetra Tech collected surface soil samples for analysis of PAHs (all samples) and cyanide (selected samples).	х					
1986-1987	1987 Hydrogeology Evaluation	Tetra Tech collected subsurface soil and groundwater to characterize groundwater quality and hydrogeology.		х	х			
1988	1988 Monitoring	HDR continued ongoing monitoring of the park soil and groundwater and performed a focused field study to assess plans for an irrigation system.	x		x			
1989	1989 GW CSM	HDR installed permanent monitoring wells to evaluate groundwater migration.			Х			
1997-1998	1998 Fate and Transport Evaluation	PSE partnered with EPRI to evaluate the fate and transport of MGP-related contaminants, including NAPL and tar, at Harbor Patrol, central and western park areas.		x	х	х		
1997-1998	1998 FFS	Parametrix conducted a focused feasibility study to determine cleanup options for upland soil and groundwater.		x	х	Х		
1997-1998	1998_AVS-SVE	Parametrix and RETEC sampled soil and groundwater to evaluate the feasibility of an air sparging system near the former light oil plant in the southeast area of the park.		х	х	х		
1999	1999 UST Decommissioning	Gary Struthers Associates collected confirmation soil samples from a 2,000-gallon diesel fuel UST being decommissioned at Harbor Patrol.		x				
2000-2010	2000-2010 Quarterly GW Sampling	RETEC and later AMEC conducted quarterly (2000 to 2007) and annual (2008 to 2010) groundwater sampling in accordance with a 2000 groundwater compliance monitoring plan.			x			
2002	2002 Cracking Tower Geotechnical Investigation	GeoEngineers drilled two borings within the fenced Cracking Towers area for a geotechnical evaluation of their foundations; no chemical data were collected.		x				
2002-2003	2003 Supplemental Source	NAPL and tar samples were collected and used for supplemental source characterization by Battelle.				x		
2004	2004 NW Park Investigation	Parametrix collected surface and subsurface soil samples from the northwest corner of Gas Works Park for planning public access.	х	x				
2005	2005 Cracking Tower Soil Investigation	Corvus collected subsurface soil samples within the fenced Cracking Towers area for a soil quality study.		x				
2006	2006 Metro Site Preliminary Investigation	SAIC completed several borings to evaluate the Metro site as a potential source of hydrocarbons.		x				
2007	2007 NE Soil-Gas Survey	Floyd Snider conducted a soil gas survey in the northeast corner of the GWPS to determine where soil gas was associated with the presence of shallow subsurface tar and/or DNAPL.						x
2007	2007 NE Park Investigation	Floyd Snider and AECOM collected subsurface soil in the northeastern meadow and eastern shoreline area to the extent and mobility of NAPL.		x		x		

Year	Survey Name	Investigation Description	Surface Soil	Subsurface Soil	Groundwater	NAPL/ Tar	Storm Drain Solids	Air
2007	2007	Floyd Snider collected and Battelle analyzed a subsurface soil sample and several tar and NAPL						
	Supplemental	samples for supplemental source characterization.		x		x		
	Source			Λ		~		
	Characterization							
2007	2007 Western	Floyd Snider drilled soil borings and installed temporary monitoring wells along western shoreline to						
	Shoreline	evaluate NAPL presence, geology and groundwater flow in this area.		Х	Х	Х		
	Investigation							
2007-2008	2007-2008	Floyd Snider conducted quarterly air quality monitoring within the park (Cracking Towers, Prow Upwind,						
	Quarterly Air Quality	Weather Station Location, East Shore, and Play Barn Basement) and the Harbor Patrol facility.						х
	Monitoring							
2008	2008 Catch Basin	Floyd Snider collected and analyzed catch basin solids and conducted a video inspection of storm						
	Sampling	drain lines as part of their Phase 1 source control evaluation.					Х	
0000 0010	0040 Ostala Dasia							
2009 - 2010	2010 Catch Basin	Storm drain solids from selected catch basins and surrounding soil were collected for Floyd Shider's						
	Sampling	Phase 3 source control evaluation. Surface soil samples were also collected from the Waterway 19	Х				х	
		storm drain ditch.						
2010	2010 3-D Model	GeoEngineers and Aspect conducted a hydrogeologic investigation (well levels, borings, slug and pump						
	Sampling	tests) to support development of a site-wide, three-dimensional numerical groundwater flow model.		Х				
2010	2010 Agency Split	Ecology analyzed split soil samples from the 2010 hydrogeologic investigation (GeoEngineers 2010).		Y				
	Samples			~				
2011	2011 Agency	Ecology collected and analyzed surface soil from Kite Hill.	x					
	Evaluation of Kite							
2011	2011 Sink Hole	Seattle Structural collected subsurface soil samples and a grab sample from a sinkhole and analyzed	x	x				
	Sampling	as part of a bulkhead structural review and assessment at Harbor Patrol.	~	~				
2012	2012 Play Area	AMEC sampled soil as part of a preliminary investigation for a proposed Children's Play Area near the	v	v				
	Investigation	Play Barn structures.	^	^				
2013	2013	GeoEngineers conducted an upland supplemental investigation that included a geophysical survey,						
	Supplemental	existing monitoring well elevation survey, TarGOST [®] laser-induced fluorescence testing, soil sampling,						
	Investigation	geotechnical investigation of Kite Hill, monitoring well installation, NAPL testing, slug testing, NAPL	Х	Х	Х	Х		
		physical properties evaluation and groundwater monitoring.						
2014	2014 Play Area	GeoEngineers conducted soil and groundwater sampling in and around the Play Area.						
-	Investigation			Х	Х			
2015	2015 Arsenic	Anchor conducted a bench scale study of various injection agents for treatment of arsenic in						
	Treatment Bench	groundwater			Х			
	Scale Testing							
2016	2016 Play Area	GeoEngineers collected additional groundwater samples to define arsenic extent in Play Area. Also		V	V			
	Investigation	collected soil XRF and conventional data.		X	X			
2017	2017 Play Area	GeoEngineers collected additional soil XRF data and installed monitoring wells during installation of		V	V			
	Investigation	groundwater injection infrastructure		X	~			
2017	2017 Play Area	GeoEngineers collected baseline groundwater samples for arsenic analysis from Play Area prior to			v			
	Baseline	reagent injection.			^			
2017	2017 Catch Basin	SPU continued catch basin sampling as part of source control evaluation. Samples collected in 2017,					Y	
	Sampling	processed in 2018.					^	
2017-2019	Play Area Post-	GeoEngineers collected additional rounds of groundwater samples following reagent injection for						
	Treatment	arsenic analyses.			Х			
	Sampling							

Table 2-2

Sediment Investigations Gas Works Park Site Seattle, Washington

Year	Study Name	Investigation Description	Surface Sediment	Subsurface Sediment	Physical	Biological	Offshore Groundwater/ Porewater
1981-1986	King County Lake Monitoring Program	Multi-year Lake Union surface sediment monitoring study conducted by King County.	Х				
1984	1984 EPA Sediment	EPA investigation of surface sediment quality in the vicinity of Gas Works Park.	х				
1984	1984 King County Human Health Risk Evaluation	King County collected crayfish tissue samples for human health and ecological risk evaluations.				х	
1985	1985 Lake-wide Sediment Investigation	Ecology conducted a lake-wide evaluation of surface sediment quality based on chemistry, bioassays and infaunal community structure. Only one sample was located within the AOI.	х			x	
1987	1987 PCB Risk Evaluation	The City collected crayfish tissue samples for human health and ecological risk evaluations.				Х	
1990	1990 Lake-wide Sediment Investigation	Ecology conducted a lake-wide survey of surface sediment quality based on chemistry and biological samples.	Х			х	
1991	1991 King County Human Health Risk Evaluation	King County collected fish and crayfish tissue for a human health risk assessment based on seafood ingestion.				x	
1991	1991 Northlake Shipyard Investigation	GeoEngineers conducted a surface and subsurface sediment investigation for the shipyard adjacent to the GWPS.	х	х			
1995	1995 EPA Sediment Investigation	EPA investigated shoreline and surface sediment quality in the vicinity of Gas Works Park.	х				
1995-2000	King County Lake Monitoring Program	King County conducted a multi-year monitoring program of Lake Union surface sediment quality.	х				
1996-1997	King County University Regulator Studies	King County collected surface sediment samples.	х				
1997, 1999	King-County Post- Separation Risk Evaluation	King County collected fish and crayfish tissue samples for human health and ecological risk evaluations.				х	
1999	1999 RETEC Phase 1 Investigation	RETEC's Phase 1 study investigated surface and subsurface sediment quality in the nearshore and surface sediment quality in offshore areas of the AOI. Physical surveys including an underwater diver- assisted towed video survey and a side-scan sonar survey were conducted.	х	х	х		
1999	Phase 1 Split Sample Analysis	Split grab and core samples from RETEC's Phase 1 study were analyzed for supplemental characterization.	х	Х			
2000	2000 King County Post- Separation Sediment Investigation	King County collected sediment grab and biological samples in northeast Lake Union.	x			x	
2001	King County Lake Monitoring Program	Additional surface sediment samples across Lake Union were discovered from studies conducted by King County. Data were provided by R. Jack through electronic communication.	х				
2002	2002 Agency Sediment Investigation	Biological and surface sediment samples were collected across the sediment portion of the AOI by Ecology and Texas A&M University in March and repeated in July due to sampling handling/ laboratory quality control issues; samples collected in March were split with RETEC.	х			x	

Year	Study Name	Investigation Description	Surface Sediment	Subsurface Sediment	Physical	Biological	Offshore Groundwater/ Porewater
2002	2002 Bathymetric and	A side-scan sonar survey (City) and a detailed multibeam bathymetric survey (Parametrix) were					
	Side-Scan Sonar	performed.			Х		
	Surveys						
2002	2002 RETEC Phase 2	RETEC's Phase 2 investigation included collecting surface and subsurface sediment for chemical and					
	Investigation	biological testing (surface only). Geotechnical and radioisotope data were also collected; a nearshore	Х	Х	Х	Х	
		bathymetric survey was performed.					
2002-2003	Phase 2 Split Sample	Split sediment, NAPL and tar samples from RETEC's Phase 2 study were collected and used for	x	x			
	Analysis	supplemental source characterization.	Λ	~			
2004-2005	2004-2005 RETEC	RETEC's collected surface and subsurface sediment to complete the eastern sediment RI/FS. Samples					
	Phase 3 Investigation	collected were used to refine the horizontal and vertical extent of chemical concentrations and					
		investigate potential contaminant sources, sediment physical properties and transport pathways. Data	Y	Y	Y		Y
		regarding offshore groundwater/porewater, geotechnical properties, bathymetry, soft sediment, seeps	~	^	~		^
		and DNAPL, debris extent, storm drains, currents and wave forces, organic carbon, and PAH partitioning					
		were also collected.					
2005	2005 RETEC Biological	RETEC collected surface sediment for chemical and bioassay testing to address bioassay data gaps	Y			Y	
	Evaluation	and to establish cleanup levels.	^			^	
2005	2005 Western Area	Floyd Snider collected surface and subsurface sediment to complete the western area RI/FS.	v	v	v		
	RI/FS	Geotechnical properties of the sediment were also evaluated.	^	^	^		
2006	2006 Bathymetric	Floyd Snider performed a multibeam bathymetry survey to delineate bathymetry and debris.			v		
	Survey				^		
2009	2009 Northlake	Ecology and Environment, Inc. collected subsurface sediment at Northlake Shipyard to investigate the		v	v		
	Shipyard Investigation	extent of sandblast grit. Additional bathymetric data were also collected.		^	^		
2014	2014 Northlake	Hart Crowser collected post-dredging surface sediment at Northlake Shipyard to document post-					
	Shipyard Post-Dredging	dredging sediment conditions.					
	Confirmational		Х				
	Sampling						

Table 2-3Previous Upland Cleanup and Remedial ActionsGas Works Park SiteSeattle, Washington

	Cleanup/Remedial		Performing			
Year	Action Technology	Cleanup/Remedial Action Description	Party	Location	Type/Status ^a	Reference
1971/1972	Soil cover	Washington Natural Gas covered soil impacted by a spill with a thin layer of fill. Test holes 7, 8 and 10 were located within the spill and cover area.	WNG	South Central Area	Independent Remedial Action	Cole and Machno 1971 EPA 1995
1973	Excavation	Targeted areas were identified for removal to depths ranging from 1.5- to 8-feet below grade or to water level during plant demolition and initial regrading for park development. An estimated 5,000 truck yards of impacted fill material were removed from the GWPS for off-site disposal. Additionally, an estimated 500 truck yards of rubble were removed.	City	South Central; Central; Southeast; East; Northeast Area	Independent Remedial Action	Richard Haag Associates 1973a Richard Haag Associates 1973b
1973-1974	Multiple actions including institutional controls	MGP structures were wholly removed for off-site disposal, partially removed and buried or cleaned and left in place as part of the landscape for the planned industrial-themed park. Some structures left in place were fenced.		Northern Third and Eastern Two Thirds of the Park	Independent Remedial Action	See Appendix 1B
1976	Soil cover	The City regraded the majority of the park with net removal near the shoreline and net fill away from the shoreline. A cover layer of biosolids mixed with sawdust and other organic materials was placed over the GWP. This material was mixed with imported fill and/or excavated GWP soil and graded and/or tilled into the upper surface soil layer. Kite Hill was created by mounding 20,000 cy of excavated GWP materials and covering the mound with thousands of yards of imported fill. The remaining 15,000 cy of excavated GWP materials were removed from the GWP. Excavated material and debris were covered with as much as 6 feet of clean soil during the construction of Kite Hill.	City	Park-wide	Independent Remedial Action	Richard Haag Associates 1973c HDR 1988b Sabol et al. 1988 Ongerth and Pane 1985 Parametrix and Key 1998
1984	Soil cover	Approximately 1 foot of clean soil was placed over the most impacted areas of the park.	City	Various	Independent Remedial Action	HDR 1988a Sabol et al. 1988
1985	Сар	In 1985, tar was observed seeping up through the asphalt sidewalk in the northwest section of the park, south of the railroad right-of-way. This area is in the general vicinity of the old tar refinery originally located on the GWP. The City attempted to pave (seal) some of the larger seeps (5 or 6 inches in diameter). However, the seeps continued to penetrate the asphalt, particularly during the warmer months.	City	West Central Area	Independent Remedial Action	Tetra Tech 1985
1997	Removal and disposal; clean backfill	Characterization of known and suspected tar seeps was conducted in October 1997 using backhoe test pits. With concurrence from Ecology, the City and PSE defined the extent of the shallow tar with the backhoe, removed as much tar as practicable, and backfilled the excavations with clean fill. Tar and tar-impacted soil were removed from the GWP. Twenty-two drums of semi-solid tar were removed in October 1997: one drum from TP-6 and 21 drums from TP-10, TP-11, and TP-12. Also, approximately 24 cy of tar-contaminated soil were removed from the TP-10 excavation.	City/PSE	North of Kite Hill; Southeast Corner	1999 CD/CAP Cleanup Action	Parametrix 1999 Parametrix and Key 1998
1998	Product removal and disposal	As part of an assessment of soil quality within the Cracking Tower area, HWA Geosciences discovered a partially buried tank beneath the two relief-holder scrubbers. Approximately 2,500 gallons of viscous tarry liquid was present in the tank. Most of the product was removed. The remaining non-pumpable product was left in the tank. The tank access covers were replaced and secured.	Seattle Parks Department	Cracking Tower Area	Interim Action (under 1997 AO)	Parametrix and Key 1998
1998	Institutional controls	Fencing around the Cracking Towers was improved; barriers to public access were placed in the northwest corner; and signs were erected warning park users not to eat dirt or to drink from, wade in, or swim in Lake Union. Fencing is inspected weekly.	City	Cracking Towers; Northwest Corner	1999 CD/CAP Cleanup Action	Parametrix 1999
1998-1999	Removal and disposal	Prior to installation of the AS/SVE treatment system, an Interim Remedial Action was conducted from 1998 to 1999. This action included installation of a network of recovery wells in the southeastern corner of the park. A vacuum truck was used to recover oil and groundwater from the wells.	City/PSE	Southeast Corner	1999 CD/CAP Cleanup Action	Parametrix 1999
1999	Removal and disposal	In 1999, Harbor Patrol decommissioned the 2,000-gallon diesel fuel UST (UST Site #12408). Soil samples collected below and around the UST indicated elevated diesel fuel and PAH concentrations; a groundwater sample also exceeded diesel and cPAHs cleanup levels. The UST and some affected soil were removed, but because Harbor Patrol is within the GWPS and it is an ongoing MTCA cleanup site, further soil removal was not attempted.	City	Harbor Patrol	Independent Remedial Action	Garry Struthers Associates 1999

Need	Cleanup/Remedial		Performing		Type /Status ^a	D iference
Year	Action reciniology	Cleanup/ Remedial Action Description	Faily	Location	Type/ Status	Reference
1999-Present	Removal and disposal and clean backfill	Seattle Parks Department does periodic inspections for upwelling tar. Recent communications with Seattle Parks Department personnel indicate that surface seepage of tar is infrequent and generally involves covering "button-sized" or "thread-like" occurrences with clean soil. Residual upwelling tar is removed when discovered.	Seattle Parks Department	Site-wide	1999 CD/CAP Cleanup Action	Floyd Snider 2008a
2000-2001	Soil cap	A 12- to 18-inch-thick vegetated soil cap was placed on approximately 5.7 acres of the upland in the north-central and southeastern portions of the park. These areas were scarified and rough-graded to a depth of 4-6 inches below ground surface. The soil cap consists of grass turf layer, 12 to 18 inches of sandy loam soil and a geogrid identifier layer. The soil cap is inspected regularly. Approximately 15 tons of soil excavated during grading activities was removed from the GWPS and treated at a low temperature thermal desorption recycling facility in Lakewood, Washington.	City/PSE	North Central; Southeast Area	1999 CD/CAP Cleanup Action	ThermoRETEC 2001
2001-2006	Air sparging/soil vapor extraction	An in situ groundwater AS/SVE treatment system was installed in the southeastern corner of the park. The AS/SVE system included various air injection wells, horizontal air collection pipes, and a geomembrane liner system consisting of a geonet drainage layer and HDPE liner to prevent uncontrolled emission of vapors containing VOCs. The AS/SVE treatment system operated in the southeast corner of the park from 2001 until December 2006, when it was turned off. Approximately 4 pounds of benzene were extracted via the SVE system, additional contamination was bioremediated.	City/PSE	Southeast Corner	1999 CD/CAP Cleanup Action	EcoCompliance 2007-2009
2001-2011	Monitored natural attenuation	Monitored natural attenuation was selected as the remedy for the area of impacted groundwater downgradient from the former ATCO plant. Monitoring results show that naphthalene concentrations in groundwater at wells closest to the shoreline in this area have either declined (MLS- 6-1, a performance monitoring well) or stayed stable (CMP-1, a compliance monitoring well) over time, and have not exceeded the upland groundwater screening level.	City/PSE	Harbor Patrol; Southwest Corner	1999 CD/CAP Cleanup Action	Parametrix 1999 ThermoRETEC 2001
2005	Institutional controls	A restrictive covenant was recorded to prevent actions that disturb contaminated soil or groundwater.	Seattle Parks Department	Site-wide	1999 CD/CAP Cleanup Action	Appendix 2E
2005	Soil cap	The northwestern corner of the GWPS was recontoured and geotextile fabric and 1 to 4 feet of topsoil were added following the installation of an irrigation system.	City	Northwest Corner	1999 CD, Amendment 1 Cleanup Action	City of Seattle Parks and Recreation 2005
2007	Removal, disposal and clean backfill	Two tar occurrences were removed by the Seattle Parks Department from the seasonally submerged areas along the eastern shoreline in January 2007. An additional occurrence observed in May 2007 in the northeastern area of the upland was partially removed, and covered with geotextile fabric and clean fill.	Seattle Parks Department	Eastern Shoreline; Northeast Corner.	1999 CD, Amendment 1 Cleanup action; Interim action (under 2005 AO)	Floyd Snider 2008a
2008	Removal, disposal and clean backfill	In August 2008, Seattle Parks Department partially removed tar seeps observed in the eastern shoreline and in the valley west of the Cracking Towers. A total of four seeps were identified. Excavated areas were backfilled.	Seattle Parks Department	Eastern Shoreline; Cracking Tower	1999 CD, Amendment 1 Cleanup Action	Floyd Snider 2008a
2012	Soil cap	In November 2012, the northeast corner was capped with clean soil by Ecology. A geotextile fabric was placed between the clean soil and the former ground surface below.	Ecology	Northeast Corner	1999 CD, Amendment 1 Cleanup Action; Ecology Remedial Action	Hart Crowser 2012b
2014	Soil cap	In fall 2014, Kite Hill underwent drainage improvements and was capped. Work included removal and placement of a cap consisting of a gravel drainage layer, geotextile and clean soil.	PSE/City	Kite Hill	1999 CD, Amendment 1 Cleanup Action	GeoEngineers 2015
2017-2020	In situ chemical fixation	In 2017, an interim action to address arsenic in groundwater beneath the Play Area was approved by Ecology and initiated by installing a network of injection wells within the footprint of the Play Area to allow in situ remediation of dissolved arsenic by chemical fixation. Following installation of the injection infrastructure, multiple rounds of injection of an iron-based reagent were completed in 2017 through 2019, with groundwater performance monitoring conducted throughout the interim action to evaluate effectiveness of the remediation. Significant reduction of dissolved arsenic was observed throughout the footprint of the Play Area.	PSE/City	Play Barn	Interim Action (under 2005 AO and Amendments 1, 2, 3)	GeoEngineers 2017

Notes:

See text for full acronym list.

^aRemedial action types/status:

Independent remedial action (WAC 173-340-515). Action performed by PLPs without Ecology oversight or approval.

Interim Action – 1997 A0 (WAC 173-340-430 and -530). Interim action performed under the 1997 Agreed Order with Ecology oversight/approval.

1999 CD/CAP (WAC 173-340-400 and -520). Cleanup action performed under the 1999 Consent Decree and Cleanup Action Plan.

1999 CD, Amendment 1 and 2005 CAP (WAC 173-340-400 and -520). Cleanup action performed under 1999 Consent Decree, Amendment No. 1 and 2005 Cleanup Action Plan.

Interim Action - 2005 A0 (WAC 173-340-430 and -530). Interim action performed under the 2005 Agreed Order with Ecology oversight/approval.

Department Remedial Action (WAC 173-340-510(4)). Remedial action performed by Ecology.

Interim Action – 2005 A0 & Amendments 1, 2, 3 (WAC 173-340-430 and -530). Interim action performed under the 2005 Agreed Order and Amendments 1 (2013), 2 (2017), and 2 (2017) with Ecology oversight/approval.

Table 3-1

Ambient Lake Union Sediment Concentrations

Gas Works Park Site

Seattle, Washington

				Co	oncentration (mg/l	(g)
	No. of	No. of	%		Minimum	Maximum
Parameter	Samples	Non-Detects	Non-Detects	Mean ^a	Detected Value	Detected Value
Conventionals		•		•		
Sulfide	21	1	5%	1,330	140	3,600
PAHs	•	•		•		
Total PAH	62	2	3%	47	1.4	316
cPAH TEQ	61	2	3%	5.4	0.186	31.1
трн		-		-	•	
Diesel Range Hydrocarbons	8	6	75%	357	934	1,010
SVOCs		-		-	•	
4-Methylphenol	45	25	56%	0.19	0.05	1
Benzoic Acid	42	19	45%	1.3	0.5	2.7
Bis(2-ethylhexyl)phthalate	48	6	13%	6.8	0.2	190
Carbazole	20	9	45%	0.18	0.03	0.6
Dibenzofuran	47	24	51%	0.11	0.04	1
Di-n-butylphthalate	48	22	46%	0.22	0.03	1
Di-n-octylphthalate	42	39	93%	0.11	0.01	3.8
Hexachlorobenzene	37	34	92%	0.003	0.001	0.05
Pentachlorophenol	41	23	56%	56% 0.11		0.55
Phenol	47	33	70%	0.21	0.03	1.9
Pesticides						
Chlordane	5	2	40%	62	5.0	290
4,4'-DDE	15	4	27%	13	5.0	34
PCBs						
Total PCBs (Aroclors)	23	3	13%	0.69	0.04	6.4
Butyltins						
Tributyltin	17	0	0%	1.5	0.02	4.1
Metals						
Arsenic	50	8	16%	53	10	270
Cadmium	47	5	11%	1.9	0.6	6.5
Chromium	47	4	9%	73	24	411
Copper	47	0	0%	358	69	2,140
Lead	47	0	0%	504	157	3,930
Mercury	53	3	6%	1.7	0.4	27
Methylmercury			Not ar	nalyzed		
Nickel	33	0	0%	58	5.4	597
Silver	33	12	36%	2.2	0.15	25

Notes:

^a The arithmetic mean is used when all values are detected; otherwise the Kaplan-Meier mean is used.

Table 3-2

Species Occurrence Gas Works Park Site Seattle, Washington

			Habit	at Use
Common Name	Scientific Name	Occurrence	Upland	Aquatic
Pixda				_
American Crow	Corvus brachyrhynchos	Year-round	X	
American Coot	Fulica americana	Seasonal		Х
American Goldfinch	Carduelis tristis	Year-round	Х	
American Robin	Turdus migratorious	Year-round	Х	
American Wigeon	Anas americana	Seasonal		Х
Bald Fagle	Haliaeetus leucocephalus	Year-round	Х	
Barn Swallow	Hirundo rustica	Seasonal	Y	
Balli Swallow	Hirundo rustica	Seasonal	^ X	
Beited Kingtisner	Megaceryle alcyon	Year-round	X	
Bewick's Wren	Thryomanes bewickii	Seasonal	X	
Black-capped Chickadee	Poecile atricapillus	Year-round	Х	
Bufflehead	Bucephala albeola	Seasonal		Х
Bushtit	Psaltriparus minimus	Year-round	Х	
Canada Goose	Branta canadensis	Year-round	Х	Х
		Seasonal	~	× ×
		Seasonai		^
Caspian Tern	Hydroprogne caspia	Seasonal		X
Cliff Swallow	Petrochelidon pyrrhonota	Seasonal	Х	
Common Goldeneye	Bucephala clangula	Seasonal		Х
Common Loon	Gavia immer	Seasonal		Х
Common Merganser	Mergus merganser	Seasonal		Х
Cooper's Hawk	Accinitor cooporii	Seasonal	×	~
		Seasonal	^ X	
Dark-eyed Junco	Junco hyemalis	Seasonal	X	
Double-crested Cormorant	Phalacrocorax auritus	Year-round	Х	Х
European Starling	Sturnus vulgaris	Year-round	Х	
Gadwall	Anas strepera	Year-round		Х
Glaucous-winged Gull	l arus glaucescens	Year-round	x	x
Great Plue Horon	Ardoa baradias	Voar round	~	×
	Ardea herodias	Teal-Iouliu		^
Herring Gull	Larus argentatus	Seasonal	X	X
House Finch	Carpodacus mexicanus	Year-round	Х	
House Sparrow	Passer domesticus	Year-round	Х	
Killdeer	Charadrius vociferus	Year-round	Х	
Lesser Scaup	Avthva affinis	Seasonal		Х
Mallard	Anas platvohynohos	Vear round	Y	Y
Neithern Flieker		Veerround	×	Λ
Northern Flicker	Colaptes auratus	Year-round	X	
Northern Shoveler	Anas clypeata	Seasonal		Х
Pied-billed Grebe	Podilymbus podiceps	Year-round		Х
Red-necked Grebe	Podiceps grisegena	Seasonal		Х
Red-tailed Hawk	Buteo jamaicensis	Year-round	Х	
Red-winged Blackbird	Agelaius phoeniceus	Year-round	Х	
Ping billed Gull		Voar round		v
		Teal-Iounu		^
Rock Pigeon	Columba livia	Year-round	X	
Ruby-crowned Kinglet	Regulus calendula	Year-round	Х	
Song Sparrow	Melospiza melodia	Year-round	Х	
Western Osprey	Pandion haliaetus	Seasonal	Х	
Yellow-rumped Warbler	Dendroica coronata	Year-round	Х	
Mammals				
Beaver ^a	Caster equadensis	Voor round		v
		Veenneurd	v	~
Eastern gray squirrei	Sciurus carolinensis	Year-round	X	
Muskrat	Undatra zibethicus	Year-round		Х
Nutria	Myocastor coypus	Year-round		Х
Raccoon	Procyon lotor	Year-round	Х	
Rat	Rattus spp.	Year-round	Х	
River otter	Lontra canadensis	Year-round		Х
Vole	Microtus spp.	Year-round	X	
Fish ^b		round	A	
				X
White crappie	Pomoxis annularis	Year-round		X
Bluegill sunfish	Lepomis macrochirus	Year-round		Х
Bull trout	Salvelinus confluentus	Unknown ^c		Х
Brown bullhead	Ameiurus nebulosus	Year-round		Х
Chinook salmon	Onchorhynchus tshawytscha	Seasonal		Х
Coho salmon	Onchorhvnchus kisutch	Seasonal		Х
l argescale sucker	Catosomus macrochollus	Voar round		v
				^
Largemouth bass	iviicropterus saimoides	Year-round		X
Northern squawfish	Ptychocheilus oregonensis	Year-round		Х
Peamouth chub	Mylocheilus caurinus	Year-round		Х
Pumpkinseed	Lepomis gibbosus	Year-round		Х
Sculpin	Cottus spp.	Year-round		Х
Smallmouth bass	Micropterus dolomieui	Year-round		x
				~
		Seasonal		X
Starry flounder	Platichthys stellatus	Seasonal		Х
Steelhead (rainbow trout)	Onchorhynchus mykiss	Seasonal		Х
Three-spine stickleback	Gasterosteus aculeatus	Year-round		Х
Yellow perch	Perca flavescens	Year-round		Х

			Habit	at Use
Common Name	Scientific Name	Occurrence	Upland	Aquatic
Invertebrates ^e	-			
Amphipods	Various	Year-round		Х
Clams	Pisidium spp.	Year-round		Х
Crayfish	Pacifastacus leniusculus	Year-round		Х
	Lumbriculus spp., Aporrectodea spp.,			
Earthworms	Octolasion sp.	Year-round	х	
European crane fly	Tipula paludosa	Year-round	Х	
Insects	Chironomidae	Year-round	Х	Х
Nemertean worms	Prostoma spp.	Year-round		Х
Oligochaete worms	Tubificidae, Naididae	Year-round		Х
Snails	Physella spp., Gyraulus spp.	Year-round		Х
Plants ^f		-		
American waterweed	Elodea canadensis	Seasonal		Х
Benthic algae, diatoms	Various	Seasonal		Х
Birch	Betula spp.	Year-round	Х	
Butterfly bush	Buddleja davidii	Year-round	Х	
English ivy	Hedera helix	Year-round	Х	
Eurasian milfoil	Myriophyllum spicatum	Seasonal		Х
Himalayan blackberry	Rubrus armeniacus	Year-round	Х	
Iris	Iris spp.	Year-round	Х	Х
Katsura tree	Cercidiphyllum japonicum	Year-round	Х	
London plane tree	Platanus acerifolia	Year-round	Х	
Plum	Prunus domestica	Year-round	Х	
Pricky current	Ribes lacustre	Year-round	Х	
Purple loosestrife	Lythrum salicaria	Seasonal	Х	Х
Red alder	Alnus rubra	Year-round	Х	
Red maple	Acer rubrum	Year-round	Х	
Red osier dogwood	Cornus stolonifera	Year-round	Х	
Reed canarygrass	Phalaris arundinacea	Seasonal	Х	Х
Rushes	Juncus effuses, J. acuminatus	Seasonal	Х	Х
Rye grass	Lolium perenne	Year-round	Х	
Scot's broom	Cytisus scoparius	Year-round	Х	
Sedge	Carex stipata	Seasonal	Х	Х
Shore sedge	Carex lenticularis lasiocarpa	Seasonal	Х	
Slough sedge	Carex obnupta	Seasonal	Х	
Smooth labrador-tea	Rhododendron neogladulosum	Year-round	Х	
Snowberry	Symphoricarpos albus	Year-round	Х	
Spirea	Spirea douglasii	Year-round	Х	
Western red cedar	Thuja plicata	Year-round	Х	
Trailing blackberry	Rubus ursinus macropetalus	Seasonal	Х	
Willow	Salix spp.	Year-round	X	

Notes:

^a Evidence of beaver activity was noted along the eastern shoreline in December 2013.

^b Fish assemblage information from Landolt and Busch (1991).

^c Bull trout have not been recorded in Lake Union; however, the lake is listed as foraging, migratory, and overwintering habitat for this species.

^d Starry flounder were collected in September 1990 in Lake Union (Landolt and Busch 1991). This is a marine species with a high tolerance to low salinity conditions; their presence is likely due to saltwater intrusion during the summer months.

^e Invertebrate information from Yake et al. (1986).

^f Plants identified from Construction Completion Report (ThermoRetec 2001) and Richard Haag Associates (1975) planting plan for the park and site observations.

File No. 0186-846-03 Table 3-2 | January 2023

Table 3-3

Overwater Structures Gas Works Park Site Seattle, Washington

Overwater Structure	Description
Gas Works Park	
None	
Harbor Patrol	
Log boom	Along the eastern edge of the shoreline, extending approximately 125 feet into the lake. Used to control wave action within the boat moorage area at Harbor Patrol.
Timber-supported pier	West of the log boom, extending approximately 150 feet from the shoreline into Lake Union. Used for Harbor Patrol vessel moorage. Outer portion of the pier runs parallel to the shoreline and includes several mooring dolphins for docking large vessels.
Concrete wharf	Northwest of timber pier is a 100-foot-long pier supported by concrete piling. Rebuilt in the 1980s; supports aboveground fuel tanks for Harbor Patrol emergency response vessels.
Floating docks	One 75-foot-long floating dock northwest of concrete fueling wharf is used for emergency response vessel moorage. A second floating dock (50 feet long) runs along eastern edge of the boathouse.
Boathouse	A boathouse is northwest of the 75-foot floating dock. Extends approximately 50 feet into Lake Union. Rests on lake bottom.
Waterway 20	
Miscellaneous structures	Harbor Patrol uses approximately 125 feet of WDNR-owned shoreline within waterway for storage of floating debris and navigation hazards removed from Lake Union. Recovered material within the storage area is surrounded by a log boom.
King County Metro	
Timber-supported piers	Three timber pile-supported piers are located offshore of the Center for Wooden Boats facility. One pier runs parallel to the shoreline; the others extend out into Lake Union. The latter two piers offer approximately 200 feet of moorage space.
Gas Works Park Marina	
Pile-supported dock	Marina is composed of two pile-supported wooden docks with 70 slips. Utilities are present beneath the dock at various depths.
Floating homes	Majority of slips are occupied by floating homes or live-aboard vessels.

Summary of Site-Specific Screening Levels for Contaminants of Concern

Gas Works Park Site Seattle, Washington

					Medium				
						Sedi	ment		
					Offshore	Sediment Cleanup	Cleanup Screening		
			Soil ^a	Upland Groundwater ^b	Groundwater ^c	Objective	Level		
Analyte Group	Cont	taminants of Concern	mg/kg	µg/L	µg/L	mg/kg	mg/kg		
Conventionals	Sulfide					39	61		
	Benzene			43	0.44	-	-		
BTEX	Ethylbenzen	ne		6,910	29		-		
	Toluene			48,500	-				
	Total PAH					17	30		
	Fluoranthen	ne	3,200		6		-		
	Naphthalen	е	3,200	9,880	160		-		
PAHs	Pyrene		2,400		8		-		
		Benzo(a)anthracene	0.137	0.0296	0.01				
DALla	c	Benzo(a)pyrene	0.137	0.0296	0.01				
ГАП5	P Benzo(b)fluoranthene		0.137	0.0296	0.01				
	А	Benzo(k)fluoranthene	0.137	0.0296	0.01	- Inclu	ded in Sereening Level		
	Н	Chrysene	0.137	0.0296	0.016		2 Screening Lever		
	S	Indeno(1,2,3-cd)pyrene	0.137	0.0296	0.01				
		Dibenzo(a,h)anthracene	0.137	0.0296					
	Total cPAHs	TEQ			0.02	0.021	0.21		
TPH	Diesel Range Hyrdocarbons					340	510		
4 E C SVOCs	4-Methylphe	enol				0.26	2.0		
	Benzoic Acio	d				2.9	3.8		
	Bis(2-ethylh	exyl)phthalate			3.0	0.50	22		
	Carbazole				2.0	0.90	1.1		
	Dibenzofura	in		-	16	0.20	0.68		
SVUCS	Di-n-Butyl pl	hthalate	-	-	-	0.38	1.0		
	Di-n-Octyl pł	nthalate				0.039	>1.1		
	Hexachlorob	penzene				0.005	0.005		
	Pentachloro	phenol				0.02	0.02		
	Phenol			-		0.12	0.21		
Dootlaidas	Chlordane			-		0.001	0.001		
Pesticides	4,4'-DDE					0.021	0.033		
PCBs	Total PCBs ((Aroclor)		-		0.02	0.02		
Butyltins	Tributyltin					0.047	0.32		
	Arsenic		20	n/a ^d	8	11	24		
	Cadmium		-		0.72	2.1	5.4		
	Chromium		-			62	62		
	Copper				11	400	1,200		
Metals Le	Lead				2.5	360	>1,300		
	Mercury				0.10	0.66	0.8		
	Methylmerc	ury				0.000058	0.000058		
	Nickel				52	50	110		
	Silver				3.2	0.57	1.7		

Notes:

^a 1999 Consent Decree Soil Cleanup Level.

^b 1999 Consent Decree Groundwater Cleanup Level. See Section 4.1.2 for description of Upland groundwater.

^c Applies 10 centimeters below the mudline, at the base of the biologically active zone. See Sections 4.1.3 for descriptions of Offshore groundwater.

^d Arsenic, which is not a 1999 Consent Decree COC in upland groundwater, is evaluated in offshore groundwater.

-- = Chemical not identified as a COC

See text for full acronym and abbreviation list.

File No. 0186-846-03 Table 4-1 | January 2023

Offshore Groundwater Screening Levels Gas Works Park Site Seattle, Washington

			Risk-Based Criteria																	
						Surfac	e Water Crit	eria				Drii	nking Water C	riteria - Surface	Water	Sedimen	t Criteria			
			(Chapter 17	'3-201A WAC ^a	40 CFR 131.45 ^b	Section	n 304 of the	Clean Water Act ^c	WAC 173	-340-730 ^d									
			Protection Orga	n of Aquation Inisms	Protection	Protection	Protection Orga	of Aquatic nisms	Protection	Protection of Based on Fisl	Human Health n Consumption			MTCA Metho Levels fo	d B Screening r Potable	Groundwa Protection o	nter SL for of Sediment ^h			Offshore
					of Human Health	of Human Health			of Human Health			Federal		Groundwat	er Standard	Sediment	Cleanup			Groundwater
			I		Based on	Based on	E	M/-4	Based on	MTCA N	lethod B	Federal		Formu		Cleanup	Screening	Lowest Risk-	- Davi	Screening
			Fresh	water	Consumption of:	Consumption of:	Fresh	water	Consumption of:	(formu	a value) Non-	MCL	State MCL	(WAC 1	73-340)° Non-	Objective	Level	Based Criterion	PQL	Level
	Contaminants of Potontial		Acute	Chronic	Water and Organism	Water and Organism	Acute	Chronic	Water and Organism	Carcinogen	Carcinogen			Carcinogen	Carcinogen					
Analyte Group	Concern	CASRN	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ug/L)	(µg/L)	(µg/L)
Conventionals	Sulfide	TS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.05	-
	Benzene	71-43-2		-	0.44	-		-	0.58	6.3	550	5	5	0.8	32		-	0.44	0.20	0.44
BTEX	Ethylbenzene	100-41-4		-	200	29			68	-	1,900	700	700		800		-	29	0.20	29
	Toluene	108-88-3		-	180	72			57	-	5,400	1,000	1,000		640		-	57	0.20	57
	Benzo(a)anthracene	56-55-3	-	-	0.014	0.00016	-	-	0.0012	-	-	-	-		-	cPAH	I TEQ	0.00016	0.01	0.01
	Benzo(a)pyrene	50-32-8		-	0.0014	0.000016		-	0.00012	0.060	7.2	0.2	0.2	0.023	4.8	cPAH	I TEQ	0.000016	0.01	0.01
	Benzo(b)fluoranthene	205-99-2	-	-	0.014	0.00016	-	-	0.0012	-	-	-			-	cPAH	I TEQ	0.00016	0.01	0.01
	Benzo(k)fluoranthene	207-08-9		-	0.014	0.0016	-	-	0.012		-	-				cPAH	I TEQ	0.0016	0.01	0.01
	Chrysene	218-01-9	-	-	1.4	0.016	-	-	0.12	-	-	-		-	-	cPAH	I TEQ	0.016	0.01	0.016
PAHs	Dibenzo(a,h)anthracene	53-70-3		-	0.0014	0.000016	-	-	0.00012	-	1	-	-	-	-	cPAH	I TEQ	0.000016	0.01	0.01
	Fluoranthene	206-44-0		-	16	6	-		20	-	25			-	640	-		6.0	0.01	6
	Indeno(1,2,3-cd)pyrene	193-39-5		-	0.014	0.00016	-	-	0.0012	-	-	-	-		-	cPAH	I TEQ	0.00016	0.01	0.01
	Pyrene	129-00-0		-	310	8		-	20	-	720		-	-	480	-		8	0.01	8
	Naphthalene	91-20-3	-	-	-		-				1,400			-	160	-		160	0.01	160
	Total PAH			-	-	-			-	-	-	-		-		-	-	-		-
	Total cPAHs TEQ	-	-	-	-		-	-		0.060	-	-		0.023	-	0.00017	0.0017	0.00017	0.02	0.02
	4-Methylphenol	106-44-5	-	-		-	-	-	-		-		-		800	- 11,000	- 15.000	11 000	2.0	800
	bic/2 Ethylboxyl)phthalato	117 81 7	-	-	- 0.23	- 0.045	-	-	- 0.32	-	- 110	-	-	- 63	320	0.035	15,000	0.035	20	3.0
	Carbazole	86-74-8				-		_		-	-				-	2.0	2.5	2.0	1.0	2.0
	Dibenzofuran	132-64-9	-	-		-		-		-	-			-	16		-	16	1.0	16
SVOCs	Di-n-Butyl phthalate	84-74-2			450	8	-	-	20		810	-	-		1,600	1.9	4.9	1.9	1.0	1.9
	Di-n-Octyl phthalate	117-84-0	-				-			-			-	-	160	0.0000036	0.00010	0.000036	1.0	1.0
	Hexachlorobenzene	118-74-1			0.000051	0.000005		-	0.000079	0.00013	0.066	1	1	0.055	13	0.00048	0.00	0.000005	1.0	1.0
	Pentachlorophenol ^k	87-86-5	14	8.6	0.046	0.002	19	15	0.03	0.41	330	1	1	0.22	80	0.26	0.26	0.002	10	10
	Phenol	108-95-2			18,000	9,000	-	-	4,000		150,000	-	-		2,400	31	54	31	1.0	31
Butyltins	Tributyl Tin	688-73-3	-	-	-		0.46	0.072	-	-	-	-	-	-	-	-	-	0.072	0.193	0.193
	Arsenic	7440-38-2	360	190	10	0.018	340	150	0.018	0.027	4.9	10	10	0.058	4.8	380	820	0.018	0.05	8 ^j
	Cadmium	7440-43-9	3.7	1	-	-	1.8	0.72	-	-	11	5	5	-	8	310	790	0.72	0.002	0.72
	Chromium	7440-47-3	550	180	-		570	74	-	-	67,000	100	100	-	24,000	62	62	62	0.005	62
Metals	Copper	7440-50-8	17	11	1300	-	-	-	1300	-	800	1,300	1,300	-	640	18,000	54,000	11	0.002	11
	Lead	7439-92-1	65	2.5		-	65	2.5	-	-	-	15	15		-	36	130	2.5	0.02	2.5
	Nickol	7439-97-6	2.1	0.012	- 150	- 80	1.4	0.77	- 610	-	-	2	100	-	- 220	13	15	52	0.10	0.10
	Silver	7440-02-0	3.4	100		00	470	52	010	-	7 200		100	-	320	400 67	200	3.2	0.003	32
	Silver	1440-22-4	5.4				5.2	-			1,200	-	TOO		00	01	200	0.2	0.000	3.2

Notes:

^a Water Quality Standards for Surface Waters of the State of Washington, Chapter 173-201A WAC, adopted August 1, 2016. Based on protection of aquatic organisms and human health.

^b Revision of certain Federal water quality criteria applicable to Washington, 40 CFR 131.45, effective date December 28, 2016. Based on protection of human health.

^c National recommended water quality criteria for the protection of aquatic organisms and human health, Section 304 of the Clean Water Act; https://www.epa.gov/wqc/national-recommended-water-quality-criteria (accessed Oct 2019).

^d MTCA Method B surface water screening levels calculated according to WAC 173-340-730(3)(b)(iii)(a) (equation 730-1) and WAC 173-340-730(3)(b)(iii)(b) (equation 730-2).

e National Primary Drinking Water Regulation; https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed Oct 2019).

^f Washington Primary Drinking Water Standards, WAC 246-290-130.

g MTCA Method B groundwater screening levels calculated according to WAC 173-340-720(3)(b)(iii)(A) (equation 720-1) and WAC 173-340-720(4)(b)(iii)(B) (equation 720-2).

^h Groundwater value protective of sediment using sediment cleanup objectives and cleanup screening levels in Table 4-3 and Table 4-4, respectively; calculation details in Table 4F-1.

¹ PQL is lowest practical value from Analytical Resources, Inc. The PQL for total cPAHs TEQ is derived by applying TEFs to individual cPAH PQLs and summing.

¹ Arsenic screening level is based on arsenic natural background groundwater concentration of 8 µg/L in the Puget Sound Basin (Ecology 2022).

^k Washington State (Chapter 173-201A) freshwater aquatic life criteria for pentachlorophenol are pH dependent. The values presented correspond to a pH of 7.8 based on the average pH in offshore groundwater samples using the formula provided in WAC 173-201A-240).

Gray shading identifies the basis for the Lowest Risk-Based Criterion.

Blue shading identifies the basis for the offshore groundwater screening level (after PQL adjustment, if applicable).

Sediment Screening Levels - Sediment Cleanup Objectives Gas Works Park Site Seattle, Washington

			Risk-Based Criteria		Modifying (Criteria		
				Bioaccumulation - People/Higher				
		Direct Contact - Benthic Organisms	Direct Contact - People	Trophic Level Organisms ^c				
					1	Natural		Sodimont Cloanup
A		Freshwater Sediment Criteria ^a	Sediment Ingestion and Dermal Contact ^b	Ingestion of Fish /Shellfish	Lowest Risk-Based Criterion	Background ^d		Objective
Analyte	Contaminants of Potential	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ng mg/kg	mg/kg
Group	Concern		1116/ mg	111 <u>6</u> / rg		1116/ Kg	0.40	220
Conventionals	Ammonia	230			230		0.40	230
		39			39		1.0	17
PAHs		17	\sim 0.90 (beach play)/0.68 (net fishing)		Natural Background or POL	- 0.021	0.008	0.021
трн	Diesel Range Hydrocarbons	340			340	0.021	50	340
	4-Methylphenol	0.26			0.26		0.02	0.26
	Benzoic Acid	29			29		0.1	29
	Bis(2-ethylhexyl)phthalate	0.50			0.50	-	0.02	0.50
	Carbozole	0.90			0.90	-	0.02	0.90
	Dibenzofuran	0.20			0.20		0.02	0.20
SVOCs	DI-n-Butylphthalate	0.38			0.38	-	0.02	0.38
	DI-n-Octylphthalate	0.039	-		0.039		0.02	0.039
	Hexachlorobenzene	-	3.9 (beach play)/2.5 (net fishing)	Natural Background or PQL	Natural Background or PQL		0.005	0.005
	Pentachlorophenol	1.2	_	Natural Background or PQL	Natural Background or PQL		0.02	0.02
	Phenol	0.12			0.12		0.02	0.12
	Chlordane			Natural Background or PQL	Natural Background or PQL		0.001	0.001
	Dieldrin	0.0049			0.0049	-	0.001	0.0049
Pesticides	4,4'-DDD	0.31			0.31	-	0.001	0.31
	4,4'-DDE	0.21			0.021		0.001	0.021
	4,4'-DDT	0.10	-		0.1	-	0.001	0.1
PCBs	Total PCBs (Aroclor)	0.11	-	Natural Background or PQL	Natural Background or PQL		0.02	0.02
	Monobutytin	0.54	-		0.54	-	0.004	0.54
Butyltine	Dibutyltin	0.91	-		0.91	-	0.006	0.91
Butylins	Tributyltin	0.047			0.047		0.004	0.047
	Tetrabutyltin	0.097			0.097		0.005	0.097
	Arsenic	14	4.8 (beach play)/3.0 (net fishing)	Natural Background or PQL	Natural Background or PQL	11	0.1	11
	Cadmium	2.1			2.1	0.8	0.2	2.1
	Chromium	72		Natural Background or PQL	Natural Background or PQL	62	0.5	62
	Copper	400			400	45	0.2	400
	Lead	360			360	21	2	360
Metals	Mercury	0.66			0.66	0.2	0.025	0.66
	Methylmercury			Natural Background or PQL	Natural Background or PQL		0.000058	0.000058
	Nickel	26	-		26	50	1	50
	Selenium	11	-		11		0.5	11
	Silver	0.57	-		0.57	0.24	0.2	0.57
	ZINC	3,200	-		3,200	93	1	3,200

Notes:

^a Sediment Management Standards (Chapter 173-204 WAC); Table VI.

^b Ingestion and dermal contact screening levels calculated using exposure scenarios (beach play child and tribal netfishing adult) and parameters from Ecology's SCUM Guidance (Ecology 2019b). SCO values based on a cancer risk of 1 x 10⁶ or a hazard quotient of 1; calculation details in Table 4F-2 and Table 4F-3.

^c Bioaccumulation SCO and CSL values developed per Section 9, Option 1 from Ecology's SCUM guidance (Ecology 2019b).

^d Natural background values from Ecology's SCUM guidance (Ecology 2019b).

^e PQL is lowest practical value from Analytical Resources, Inc. The PQL for total cPAHs TEQ is derived by applying TEFs to individual cPAH PQLs and summing.

-- = no value available

Gray shading identifies the basis for the Lowest Risk-Based Criterion.

Blue shading identifies the basis for the screening level (after PQL adjustment, if applicable).

Sediment Screening Levels - Cleanup Screening Levels Gas Works Park Site Seattle, Washington

			Risk-Based Criteria			Modifyin	g Criteria	
				Bioaccumulation - People/Higher Trophic				
		Direct Contact - Benthic Organisms	Direct Contact - People	Level Organisms ^c		Regional		Cleanup Screening
Analyte	Contaminants of Potential	Freshwater Sediment Criteria ^a	Sediment Ingestion and Dermal Contact ^b	Ingestion of Fish/Shellfish	Lowest Risk-Based Criterion	Background ^d	PQL ^e	Level
Group	Concern	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Conventionals	Ammonia	300	-	-	300	-	0.40	300
Conventionals	Sulfide	61	L	'	61	-	1.0	61
PAHs	Total PAH	30	<u> </u>	-	30	-	-	30
17410	Total cPAHs TEQ	n/a	9.0 (beach play)/6.8 (net fishing)	Regional Background or PQL	Regional Background or PQL	0.21	0.008	0.21
ТРН	Diesel Range Hydrocarbons	510	-	-	510	-	50	510
	4-Methylphenol	2.0		-	2.0	-	0.02	2.0
	Benzoic Acid	3.8		-	3.8	-	0.1	3.8
	Bis(2-ethylhexyl)phthalate	22	-	-	22	-	0.02	22
	Carbozole	1.1		-	1.1	-	0.02	1.1
SVOCs	Dibenzofuran	0.68		-	0.68	-	0.02	0.68
0,0003	DI-n-Butylphthalate	1.0	-	-	1.0	-	0.02	1.0
	DI-n-Octylphthalate	>1.1		-	>1.1	-	0.02	>1.1
	Hexachlorobenzene	_	39 (beach play)/25 (net fishing)	Regional Background or PQL	Regional Background or PQL	-	0.005	0.005
	Pentachlorophenol	1.2		Regional Background or PQL	Regional Background or PQL	-	0.02	0.02
	Phenol	0.21			0.21	-	0.02	0.21
	Chlordane	_		Regional Background or PQL	Regional Background or PQL		0.001	0.001
	Dieldrin	0.0093	-		0.0093		0.001	0.0093
Pesticides	4,4'-DDD	0.86			0.86	-	0.001	0.86
	4,4'-DDE	0.033			0.033		0.001	0.033
	4,4'-DDT	8.1		-	8.1	-	0.001	8.1
PCBs	Total PCBs (Aroclor)	2.5		Regional Background or PQL	Regional Background or PQL	-	0.02	0.02
	Monobutytin	4.8		-	4.8	-	0.004	4.8
Butyltine	Dibutyltin	130	-	-	130	-	0.006	130
Butyltins	Tributyltin	0.32		-	0.32	-	0.004	0.32
	Tetrabutyltin	0.097		_	0.097	-	0.005	0.097
	Arsenic	120	48 (beach play)/30 (net fishing)	Regional Background or PQL	Regional Background or PQL	24	0.1	24
	Cadmium	5.4		-	5.4	-	0.2	5.4
	Chromium	88		Regional Background or PQL	Regional Background or PQL	62	0.5	62
	Copper	1,200			1,200	-	0.2	1,200
	Lead	>1,300	-		>1,300	-	2	>1,300
Metals	Mercury	0.8			0.8	-	0.025	0.8
	Methylmercury	_		Regional Background or PQL	Regional Background or PQL		0.000058	0.000058
	Nickel	110	-		110		1	110
	Selenium	20			20		0.5	20
	Silver	1.7	-		1.7		0.2	1.7
	Zinc	4,200	-		4,200	-	1	4,200

Notes:

^a Sediment Management Standards (Chapter 173-204 WAC); Table VI.

^b Ingestion and dermal contact screening levels calculated using exposure scenarios (beach play child and tribal netfishing adult) and parameters from Ecology's SCUM Guidance (Ecology 2019b). CSL values based on a cancer risk of 1 x 10-5 or a hazard quotient of 1; calculation details in Table 4F-2 and Table 4F-3.

^c Bioaccumulation SCO and CSL values developed per Section 9, Option 1 from Ecology's SCUM guidance (Ecology 2019b).

^d cPAH regional background value is from Ecology's SCUM guidance (Ecology 2019b). The arsenic regional background value is preliminary; calculation details in Appendix 4A. The chromium value is the natural background value from Ecology's SCUM guidance; no regional background value is available for chromium. ^e PQL is lowest practical value from Analytical Resources, Inc. The PQL for total cPAHs TEQ is derived by applying TEFs to individual cPAH PQLs and summing.

-- = no value available

Gray shading identifies the basis for the Lowest Risk-Based Criterion.

Blue shading identifies the basis for the screening level (after PQL adjustment, if applicable).

Summary of Contaminants of Concern

Gas Works Park Site Seattle, Washington

			Medium								
Analyte Group	Contamin	ants of Concern (COCs)	Soil ^a	Upland Groundwater ^a	Offshore Groundwater ^b	Sediment ^c					
Conventionals	Sulfide		_	-	-	Х					
	Benzene		-	Х	Х						
BTEX	Ethylbenzene		-	Х	Х						
	Toluene		-	Х	-						
	Total PAH		-	-	-	Х					
	Fluoranthene		Х	-	Х						
	Naphthalene		х	Х	Х						
	Pyrene		х	-	Х						
		Benzo(a)anthracene	Х	Х	Х						
DAUL		Benzo(a)pyrene	Х	Х	Х						
PAHS	C P	Benzo(b)fluoranthene	Х	Х	Х						
	A Benzo(k)fluoranthene		Х	Х	Х						
	н	Chrysene	Х	Х	Х						
	S	Indeno(1,2,3-cd)pyrene	Х	Х	Х						
		Dibenzo(a,h)anthracene	Х	Х	d						
	Total cPAHs T	EQ	-	-	Х	Х					
ТРН	Diesel Range	Hyrdocarbons	-	-	-	Х					
	4-Methylphen	ol	-	-	-	х					
	Benzoic Acid		-	-	-	х					
	Bis(2-ethylhe)	xyl)phthalate	-	-	Х	х					
	Carbazole		-	-	Х	х					
0100-	Dibenzofuran		-	-	Х	Х					
SVOCS	Di-n-Butyl pht	halate	-	-	-	Х					
	Di-n-Octyl pht	halate	-	-	-	Х					
	Hexachlorobe	enzene	-	-	-	Х					
	Pentachlorop	henol	-	-	-	Х					
	Phenol		-	-	-	Х					
Destisides	Chlordane		-	-	-	Х					
Pesticides	4,4'-DDE		-	-	-	Х					
PCBs	Total PCBs (A	roclor)	-	-	-	Х					
Butyltins	Tributyltin		-	-	-	Х					
	Arsenic		х	-	Х	Х					
	Cadmium		-	-	Х	Х					
	Chromium		-	-	-	Х					
	Copper		-	-	Х	Х					
Metals	Lead		-	-	Х	Х					
	Mercury		-	-	Х	Х					
	Methylmercur	ŷ	-	-	-	Х					
	Nickel		-	-	Х	Х					
	Silver		-	-	Х	Х					

Notes:

^a Identified as COC in the upland Consent Decree (Ecology 1999).

 $^{\rm b}$ Identified as a COC based on offshore groundwater data; see Section 4.2.2.

^c Identified as a COC based on the Sediment Management Standards (WAC 173-204) and Gas Works Sediment Area SCSD (Appendix 4C); see Section 4.2.3.

^d Not identified as a COC. However, dibenzo(a,h)anthracene will be evaluated as part of Total cPAHs TEQ.

x = Chemical identified as a COC

- Chemical not identified as a COC

Identification of Offshore Groundwater Contaminants of Concern

Gas Works Park Site

Seattle, Washington

				Sample Information	Screening Results			
	Contaminants of Potential		Total Number of	Frequency of	Maximum Detected		COC?	
Analyte Group	Concern	Unit	Samples	Detection (%)	Concentration	Screening Level	(Maximum > SL)	
Conventionals	Sulfide	µg/L	5	60	38		NO	
	Benzene	µg/L	7	86	640	0.44	YES	
BTEX	Ethylbenzene	µg/L	7	86	180	29	YES	
	Toluene	µg/L	7	43	5.5	57	NO	
	Benzo(a)anthracene	µg/L	7	43	7.7	0.01	YES	
	Benzo(a)pyrene	µg/L	7	43	9	0.01	YES	
	Benzo(b)fluoranthene	µg/L	7	43	4.4	0.01	YES	
	Benzo(k)fluoranthene	µg/L	7	43	5.9	0.01	YES	
	Chrysene	µg/L	7	43	11	0.016	YES	
DAHe	Dibenzo(a,h)anthracene ^a	µg/L	7	0	All ND	0.01	NO	
FAI 15	Fluoranthene	µg/L	7	100	45	6	YES	
	Indeno(1,2,3-cd)pyrene	µg/L	7	43	4.6	0.01	YES	
	Pyrene	µg/L	7	100	58	8	YES	
	Naphthalene	µg/L	7	100	7,400	160	YES	
	Total PAH	µg/L	7	100	8,200		NO	
	Total cPAH TEQ	µg/L	7	43	11	0.02	YES	
	4-Methylphenol	µg/L	2	0	All ND	800	NO	
	Benzoic Acid	µg/L	2	0	All ND	11,000	NO	
	bis(2-Ethylhexyl)phthalate	µg/L	2	100	3.2	3.0	YES	
	Carbazole	µg/L	7	86	95	2.0	YES	
SVOCs	Dibenzofuran	µg/L	7	86	34	16	YES	
01003	Di-n-Butyl phthalate	µg/L	2	100	1.3	1.9	NO	
	Di-n-Octyl phthalate	µg/L	2	0	All ND	1.0	NO	
	Hexachlorobenzene	µg/L	2	0	All ND	1.0	NO	
	Pentachlorophenol	µg/L	2	0	All ND	10	NO	
	Phenol	µg/L	7	14	4.0	31	NO	
Butyltins	Tributyl Tin	µg/L	5	80	0.116	0.193	NO	
	Arsenic	µg/L	7	57	580	8	YES	
	Cadmium	µg/L	2	50	1.7	0.72	YES	
	Chromium	µg/L	2	100	22	62	NO	
	Copper	µg/L	2	100	130	11	YES	
metals	Lead	µg/L	2	100	222	2.5	YES	
	Mercury	µg/L	2	50	1.1	0.10	YES	
	Nickel	µg/L	2	100	47	52	NO	
	Silver	µg/L	2	50	1.9	3.2	NO	

Notes:

^a Not identified as a COC. However, dibenzo(a,h)anthracene will be evaluated as part of Total cPAHs TEQ.

ND = not detected

-- = not available

Shading indicates chemical is an offshore groundwater COC.

Sediment Contaminants of Concern by Pathway

Gas Works Park Site

Seattle, Washington

Analyte Group	Analyte	Benthic COC [*]	Human Health Direct Contact COC ^o	Bioaccumulation COC ^c
Conventionals	Sulfide	Х		
DAHe	Total cPAH TEQ		Х	Х
PARS	Total PAH	Х		
ТРН	Diesel Range Hydrocarbons	Х		
	4-Methylphenol	Х		
	Benzoic Acid	Х		
	bis(2-Ethylhexyl)phthalate	Х		
	Carbazole	Х		
SVOCe	Dibenzofuran	Х		
37003	Di-n-Butyl phthalate	Х		
	Di-n-Octyl phthalate	Х		
	Hexachlorobenzene		Х	Х
	Pentachlorophenol			Х
	Phenol	Х		
Posticidos	Chlordane			Х
resticides	4,4'-DDE	Х		
PCBs	Total PCBs (Aroclor)	Х		Х
Butyltins	Tributyl Tin	Х		
	Arsenic	Х	Х	Х
	Cadmium	Х		
	Chromium	Х		Х
	Copper	Х		
Metals	Lead	Х		
	Mercury	Х		
	Methylmercury			X
	Nickel	X		
	Silver	Х		

Notes:

^a Benthic COCs selected in Section 4.2.3.1.

^b Human health direct contact COCs selected in Section 4.2.3.2.

^c Bioaccumulation COCs selected in Section 4.2.3.3.

File No. 0186-846-03

Identification of Sediment Contaminants of Concern - Protection of Benthic Organisms

Gas Works Park Site

Seattle, Washington

				Screening Results			
Analyte Group	Contaminants of Potential Concern	Unit	Total Number of Samples	Frequency of Detection (%)	Maximum Detected Concentration	Sediment Cleanup Objective	COC? (Maximum > SL)
Conventionals	Ammonia (Total as N)	mg/kg	2	100	67.8	230	NO
Conventionals	Sulfide	mg/kg	83	98	13,000	39	YES
PAHs	Total PAH	mg/kg	111	100	11,200	17	YES
ТРН	Diesel Range Hydrocarbons	mg/kg	1	100	2,420	340	YES
	4-Methylphenol	mg/kg	80	27.5	1.5	0.26	YES
	Benzoic Acid	mg/kg	80	21.3	4.3	2.9	YES
	Beta-Hexachlorocyclohexane	mg/kg	2	0	Only ND Values	0.0072	NO
	bis(2-Ethylhexyl)phthalate	mg/kg	80	87.5	10	0.5	YES
SV0Co	Carbazole	mg/kg	67	50.7	6.1	0.9	YES
30005	Dibenzofuran	mg/kg	110	50.9	14	0.2	YES
	Di-n-Butyl phthalate	mg/kg	80	11	0.66	0.38	YES
	Di-n-Octyl phthalate	mg/kg	80	1.3	0.48	0.039	YES
	Pentachlorophenol	mg/kg	80	10	0.62	1	NO
	Phenol	mg/kg	103	8.7	1.9	0.12	YES
	Dieldrin	µg/kg	2	0	Only ND Values	4.9	NO
Posticidos	4,4'-DDD	µg/kg	29	72.4	89	310	NO
resucides	4,4'-DDE	µg/kg	29	3.4	35.3	21	YES
	4,4'-DDT	µg/kg	29	0	Only ND Values	100	NO
PCBs	Total PCBs (Aroclor)	mg/kg	55	78.2	1.62	0.11	YES
	Monobutyltin	mg/kg	1	100	0.088	0.54	NO
Butulting	Dibutyltin	mg/kg	1	100	0.174	0.91	NO
Bulyilins	Tributyl Tin	mg/kg	53	96.2	8.46	0.047	YES
	Tetrabutyl Tin	mg/kg	1	0	Only ND Values	0.097	NO
	Arsenic	mg/kg	95	61.1	2,390	14	YES
	Cadmium	mg/kg	81	77.8	4	2.1	YES
	Chromium	mg/kg	55	100	121	72	YES
	Copper	mg/kg	84	100	1,890	400	YES
Matala	Lead	mg/kg	84	100	1,150	360	YES
wietais	Mercury	mg/kg	83	83.1	3.3	0.66	YES
	Nickel	mg/kg	55	100	268	26	YES
	Selenium	mg/kg	2	50	0.67	11	NO
	Silver	mg/kg	56	33.9	8	0.57	YES
	Zinc	mg/kg	84	100	1,490	3,200	NO

Notes:

ND = not detected

Shading indicates chemical is a benthic COC.

Analytical Data Summary - Soil Gas Works Park Site Seattle, Washington

			Reporting Limit for	Nondetected Values		Detected Co	oncentrations		Frequency o	f Exceedance	Maximum	
											Exceedance	
	Total No	Frequency of							Excluding	Including	Factor of	
Analyte	Samples	Detection	Minimum	Maximum	Minimum	Mean	Median	Maximum	Nondetected Values	Nondetected Values	Concentrations	Screening Level
Depth Interval 0 to 1 foot bgs ^a												
VOCs		%	μg	/kg		μg	/kg			%		
Benzene	5	0	5.5	50			-	-	-			Not a COC
Ethylbenzene	5	60	50	50	5.5	6.0	6.0	6.4	-	-		Not a COC
Toluene	2	100	-		6.3	6.4	6.3	6.4	-			Not a COC
PAHs		%	mg	/kg		mg	/kg			%		
cPAH TEQ (Calculated) using 1/2 the RL	32	100	-		0.19	16	4.5	170	100	100	1,200	0.137 mg/kg ^b
ТРАН	37	100	-		0.034	100	22	710	-			Not a COC
Benzo(a)anthracene	32	100	-		0.078	6.3	2.6	51	91	91	370	0.137 mg/kg
Benzo(a)pyrene	37	100	-		0.034	12	2.9	150	95	95	1,100	0.137 mg/kg
Benzo(b)fluoranthene	25	100	-		0.14	4.7	1.4	35	100	100	260	0.137 mg/kg
Benzo(k)fluoranthene	25	100	-		0.057	2.8	1.3	15	96	96	110	0.137 mg/kg
Chrysene	32	100	1		0.11	9.4	3.7	59	97	97	430	0.137 mg/kg
Dibenzo(a,h)anthracene	32	63	0.058	4.0	0.028	6.0	1.7	37	56	88	270	0.137 mg/kg
Fluoranthene	32	100	-		0.13	14	5.6	93	No Exceedance	No Exceedance	No Exceedance	3,200 mg/kg
Indeno(1,2,3-cd)pyrene	32	100	-		0.12	8.7	3.6	47	97	97	340	0.137 mg/kg
Pyrene	32	100	-		0.21	20	8.9	100	No Exceedance	No Exceedance	No Exceedance	2,400 mg/kg
Total benzofluoranthenes (b+k (+j))	32	100	-		0.23	10	3.8	47	100	100	350	0.137 mg/kg
Naphthalene	32	66	0.058	10	0.033	6.0	1.4	33	No Exceedance	No Exceedance	No Exceedance	3,200 mg/kg
Metals		%	mg	/kg		mg	/kg			%		
Arsenic	13	77	10	10	3.7	12	10	27	7.7	7.7	1.3	20 mg/kg
Depth Interval 1 to 15 feet bgs												-
VOCs		%	μg	/kg		μg	/kg			%		
Benzene	97	42	0.50	12,000	0.50	4,200	170	38,000	-			Not a COC
Ethylbenzene	76	46	0.50	12,000	0.70	14,000	650	170,000	-	-	-	Not a COC
Toluene	69	48	0.50	12,000	0.60	6,500	450	51,000	-			Not a COC
PAHs		%	mg	/kg		mg	/kg	1		%		
cPAH TEQ (Calculated) using 1/2 the RL	209	94	0.014	1.2	0.019	48	6.7	1,000	83	85	7,500	0.137 mg/kg ^b
ТРАН	228	97	0.040	4.0	0.015	1,800	55	130,000	-	-	-	Not a COC
Benzo(a)anthracene	213	92	0.0030	1.5	0.0090	29	4.4	720	80	83	5,300	0.137 mg/kg
Benzo(a)pyrene	227	86	0.021	1.9	0.014	40	7.2	810	79	85	5,900	0.137 mg/kg
Benzo(b)fluoranthene	168	85	0.021	1.9	0.0090	25	4.2	480	73	79	3,500	0.137 mg/kg
Benzo(k)fluoranthene	169	79	0.0070	2.1	0.0050	19	3.3	380	69	78	2,800	0.137 mg/kg
Chrysene	213	93	0.0030	1.5	0.012	34	5.0	760	80	83	5,500	0.137 mg/kg
Dibenzo(a,h)anthracene	209	65	0.0050	4.0	0.0030	9.1	1.7	110	56	77	800	0.137 mg/kg
Fluoranthene	205	98	0.027	0.73	0.0090	87	6.2	3,300	0.5	0.5	1.0	3,200 mg/kg
Indeno(1,2,3-cd)pyrene	209	80	0.021	4.0	0.0060	34	5.7	490	71	82	3,600	0.137 mg/kg
Pyrene	205	97	0.026	0.73	0.0050	110	11	4,000	1.0	1.0	1.7	2,400 mg/kg
Total benzofluoranthenes (b+k (+j))	210	88	0.021	1.9	0.018	46	7.6	910	80	85	6,600	0.137 mg/kg
Naphthalene	214	81	0.0020	68	0.0070	1,500	2.2	110,000	3.3	3.3	34	3,200 mg/kg
Metals		%	mg	/kg		mg	/kg	1		%		
Arsenic	121	86	2.0	13	1.3	340	7.9	20,000	26	26	1,000	20 mg/kg

			Reporting Limit for	Nondetected Values		Detected Co	oncentrations		Frequency o	f Exceedance	Maximum	
Analyte	Total No. Samples	Frequency of Detection	Minimum	Maximum	Minimum	Mean	Median	Maximum	Excluding Nondetected Values	Including Nondetected Values	Exceedance Factor of Detected Concentrations	Screening Level
Depth Interval >15 feet bgs	<u>.</u>							Į.		Į.	ł	
VOCs		%	hã∕	/kg		μg	i/kg			%		
Benzene	47	72	0.90	1,100	1.4	14,000	1,100	110,000	-	_	-	Not a COC
Ethylbenzene	45	69	0.90	560	1.2	22,000	2,600	310,000	-	-	_	Not a COC
Toluene	45	69	1.1	3,100	0.60	11,000	540	180,000	-	-	-	Not a COC
PAHs		%	mg,	/kg		mg	ç∕kg		0	%		
cPAH TEQ (Calculated) using $1/2$ the RL	56	84	0.0050	0.071	0.0030	25	1.2	430	52	52	3,200	0.137 mg/kg ^b
ТРАН	59	93	0.028	0.10	0.029	860	40	12,000	-	-		Not a COC
Benzo(a)anthracene	59	78	0.0050	0.49	0.0020	26	2.2	400	51	53	2,900	0.137 mg/kg
Benzo(a)pyrene	59	78	0.0050	0.49	0.0050	24	1.6	340	53	54	2,500	0.137 mg/kg
Benzo(b)fluoranthene	50	70	0.0050	0.49	0.0060	12	0.5	140	40	42	1,000	0.137 mg/kg
Benzo(k)fluoranthene	50	64	0.0050	0.49	0.0030	7.5	0.38	96	36	38	700	0.137 mg/kg
Chrysene	59	81	0.0050	0.10	0.0030	26	2.0	380	58	58	2,800	0.137 mg/kg
Dibenzo(a,h)anthracene	56	63	0.0050	0.49	0.0030	2.9	0.30	35	38	41	260	0.137 mg/kg
Fluoranthene	57	91	0.0080	0.030	0.0060	58	2.7	760	No Exceedance	No Exceedance	No Exceedance	3,200 mg/kg
Indeno(1,2,3-cd)pyrene	56	70	0.0050	0.49	0.0080	10	0.5	120	45	46	880	0.137 mg/kg
Pyrene	57	88	0.0080	0.030	0.0080	81	5.6	1,200	No Exceedance	No Exceedance	No Exceedance	2,400 mg/kg
Total benzofluoranthenes (b+k (+j))	56	73	0.0050	0.49	0.011	24	1.4	350	54	55	2,600	0.137 mg/kg
Naphthalene	59	92	0.014	0.10	0.0050	350	14	6,700	1.7	1.7	2.1	3,200 mg/kg
Metals		%	mg,	/kg		mg	{/kg			%		
Arsenic	34	91	11	12	1.1	220	13	4,100	32	32	210	20 mg/kg
All Depth Intervals, Combined	Т	^		<i>0.4</i>					1	~		
Panana	110	%	µg∕	/Kg	0.50	pg	/кg	440.000		%		N 1 000
Ethylhonzono	149	50	0.50	12,000	0.50	8,700	670	110,000	-	-	-	Not a COC
Toluono	126	55	0.50	12,000	0.70	17,000	1,200	310,000	-	-	-	Not a COC
	116	57	0.50	12,000	0.60	8,400	370	180,000	-		-	Not a COC
cPAH TEO (Calculated) using 1/2 the RI	207		0.0050	1.0	0.0020	40	5/ Kg	1 000	70	0	7 500	0 137 mg/kg ^b
	297	93	0.0050	1.2	0.0030	40	5.5	130,000	19	81	7,500	Not a COC
Benzo(a)anthracene	304	90	0.028	4.0	0.013	26	36	720	- 75	- 78	5 300	0.137 mg/kg
Benzo(a)pyrene	304	90	0.0050	1.0	0.0020	34	5.0	810	76	81	5,300	0.137 mg/kg
Benzo(b)fluoranthene	243	84	0.0050	1.0	0.0060	20	3.0	480	69	73	3,500	0.137 mg/kg
Benzo(k)fluoranthene	244	78	0.0050	2.1	0.0030	15	2.3	380	65	71	2,800	0.137 mg/kg
Chrysene	304	91	0.0030	1.5	0.0030	29	4.0	760	77	79	5,500	0.137 mg/kg
Dibenzo(a,h)anthracene	297	64	0.0050	4.0	0.0030	7.7	1.4	110	52	71	800	0.137 mg/kg
Fluoranthene	294	97	0.0080	0.73	0.0060	73	5.6	3.300	0.3	0.3	1.0	3.200 mg/kg
Indeno(1,2,3-cd)pyrene	297	80	0.0050	4.0	0.0060	27	4.4	490	69	77	3,600	0.137 mg/kg
Pyrene	294	96	0.0080	0.73	0.0050	97	9.0	4,000	0.7	0.7	1.7	2,400 mg/kg
Total benzofluoranthenes (b+k (+j))	298	86	0.0050	1.9	0.011	38	6.4	910	77	81	6,600	0.137 mg/kg
Naphthalene	305	81	0.0020	68	0.0050	1,100	2.3	110,000	2.6	2.6	34	3,200 mg/kg
Metals		%	mg,	/kg		mg	ç∕kg			%		
Arsenic	168	86	2.0	13	1.1	291	8.6	20,000	26	26	1,000	20 mg/kg

Notes:

^a Soil samples in this depth interval were obtained in areas that have not been capped.

^b cPAH TEQ is not a COC for soil, but is screened for consistency with the MTCA approach for evaluating mixtures of cPAHs (WAC 173-340-708[8][e]).

-- = not applicable

Analytical Data Summary – Upland Groundwater Gas Works Park Site Seattle, Washington

				Reporting Limit for	Nondetected Values		Detected C	oncentrations		Frequency of Exceedance		Maximum Exceedance	
		Total Samples	Frequency of							Excluding Nondetected	Including Nondetected	Factor of Detected	Screening
Analyte ^a	Fraction	in All tables	Detection	Minimum	Maximum	Minimum	Mean	Median	Maximum	Values	Values	Concentrations	Level
Water Table	<u>P</u>			Ł	L	L						Ł	<u>,</u>
VOCs			%	μ	g/L		μ	g/L			%		
Benzene	Total	36	66.7	0.20	0.20	0.15	480	20	6,700	31	31	160	43 µg/L
Ethylbenzene	Total	36	61.1	0.20	0.20	0.15	150	14	1,400	No Exceedance	No Exceedance		6910 µg/L
Toluene	Total	36	55.6	0.20	4.0	0.10	270	0.56	4,500	No Exceedance	No Exceedance		48500 µg/L
PAHs			%	μ	g/L		μ	g/L			%		
cPAH (Calculated) using 1/2 the RL	Total	36	36.1	0.0080	0.76	0.0080	0.30	0.088	1.1	25	67	38	0.0296 µg/L ^⁰
ТРАН	Total	36	97.2	0.055	0.055	0.035	470	8.2	7,300	-			Not a COC
Benzo(a)anthracene	Total	36	22.2	0.010	1.0	0.0060	0.30	0.14	1.2	19	64	40	0.0296 µg/L
Benzo(a)pyrene	Total	36	30.6	0.010	1.0	0.0060	0.30	0.12	0.84	25	67	28	0.0296 µg/L
Benzo(b)fluoranthene	Total	36	16.7	0.010	1.0	0.028	0.20	0.12	0.47	14	64	16	0.0296 µg/L
Benzo(k)fluoranthene	Total	36	16.7	0.010	1.0	0.014	0.10	0.060	0.22	11	61	7.4	0.0296 µg/L
Chrysene	Total	36	33.3	0.010	1.0	0.0060	0.30	0.12	1.2	22	64	40	0.0296 µg/L
Dibenzo(a,h)anthracene	Total	36	11.1	0.010	1.0	0.0060	0.00	0.017	0.080	2.8	56	2.7	0.0296 µg/L
Fluoranthene	Total	36	80.6	0.010	0.20	0.0080	1.4	0.60	11	No Exceedance	No Exceedance		90 µg/L
Indeno(1,2,3-cd)pyrene	Total	36	19.4	0.010	1.0	0.011	0.20	0.062	0.54	17	67	18	0.0296 µg/L
Pyrene	Total	36	83.3	0.010	1.0	0.0050	1.3	0.58	11	No Exceedance	No Exceedance	-	2590 µg/L
Naphthalene	Total	36	86.1	0.055	0.21	0.013	840	3.4	10,000	2.8	2.8	1.0	9880 µg/L
Metals			%	μ	g/L		μ	g/L			%		
Arsenic (Preserved)	Dissolved	19	100	-		0.50	19	3.4	140	32	32	18	8 μg/L ^c
Arsenic (Unpreserved)	Dissolved	9	100	-		16	3,800	300	26,000	100	100	3,300	8 μg/L ^c
Deep Wells	•	•	•	•		•				•		•	
VOCs			%	ht	g/L		μ	g/L			%		
Benzene	Total	34	85.3	0.20	0.20	0.16	2,000	470	9,100	68	68	210	43 µg/L
Ethylbenzene	Total	34	79.4	0.20	0.20	0.11	640	460	2,200	No Exceedance	No Exceedance		6910 µg/L
Toluene	Total	34	73.5	0.20	10	0.11	1,300	19	5,800	No Exceedance	No Exceedance		48500 µg/L
PAHs			%	μį	g/L		μ	g/L			%		1
cPAH (Calculated) using 1/2 the RL	Total	34	29.4	0.0080	7.0	0.011	0.30	0.10	1.4	24	85	47	0.0296 µg/L⁵
ТРАН	Total	34	100			0.12	450	76	7,000		-		Not a COC
Benzo(a)anthracene	Total	34	23.5	0.010	10	0.010	0.30	0.090	1.3	21	85	44	0.0296 µg/L
Benzo(a)pyrene	Total	34	26.5	0.010	10	0.0080	0.20	0.090	1.1	21	85	37	0.0296 µg/L
Benzo(b)fluoranthene	Total	34	23.5	0.010	10	0.0050	0.10	0.066	0.56	15	79	19	0.0296 µg/L
Benzo(k)fluoranthene	Total	34	8.8	0.010	10	0.015	0.00	0.017	0.045	2.9	79	1.5	0.0296 µg/L
Chrysene	Total	34	29.4	0.010	10	0.012	0.20	0.087	1.2	24	85	40	0.0296 µg/L
Dibenzo(a,h)anthracene	Total	34	2.9	0.010	10	0.017	0.00	0.017	0.017	No Exceedance	76	0.60	0.0296 µg/L
Fluoranthene	Total	34	85.3	0.010	10	0.021	1.5	0.91	6.7	No Exceedance	No Exceedance		90 µg/L
Indeno(1,2,3-cd)pyrene	Total	34	17.6	0.010	10	0.010	0.10	0.072	0.21	12	79	7.1	0.0296 µg/L
Pyrene	Total	34	82.4	0.010	10	0.032	1.3	1.0	6.2	No Exceedance	No Exceedance		2590 µg/L
Naphthalene	Total	34	100			0.084	4,000	54	13,000	26	26	1.3	9880 µg/L
Metals			%	μį	g/L		μ	g/L			%		
Arsenic (Preserved)	Dissolved	17	100		-	0.40	5,100	9.9	82,000	53	53	10,000	8 μg/L ^c
Arsenic (Unpreserved)	Dissolved	8	87.5			21	82,000	14,000	310,000	88	100	39,000	8 µg/L°

				Reporting Limit for Nondetected Values			Detected Co	oncentrations		Frequency of	f Exceedance	Maximum Exceedance	
Analyte ^ª	Fraction	Total Samples in All tables	Frequency of Detection	Minimum	Maximum	Minimum	Mean	Median	Maximum	Excluding Nondetected Values	Including Nondetected Values	Factor of Detected Concentrations	Screening Level
All Wells													
VOCs			%	μ	g/L		h	g/L		9	%		
Benzene	Total	70	75.7	0.20	0.20	0.15	1,300	160	9,100	49	49	210	43 µg/L
Ethylbenzene	Total	70	70	0.20	0.20	0.11	420	37	2,200	No Exceedance	No Exceedance		6910 µg/L
Toluene	Total	70	64.3	0.20	10	0.10	830	5.3	5,800	No Exceedance	No Exceedance		48500 µg/L
PAHs			%	μ	g/L		h	g/L		(%		
cPAH (Calculated) using 1/2 the RL	Total	70	32.9	0.0080	7.0	0.0080	0.30	0.088	1.4	24	76	47	0.0296 µg/L ^b
ТРАН	Total	70	98.6	0.055	0.055	0.035	460	32	7,300				Not a COC
Benzo(a)anthracene	Total	70	22.9	0.010	10	0.0060	0.30	0.11	1.3	20	74	44	0.0296 µg/L
Benzo(a)pyrene	Total	70	28.6	0.010	10	0.0060	0.30	0.10	1.1	23	76	37	0.0296 µg/L
Benzo(b)fluoranthene	Total	70	20	0.010	10	0.0050	0.20	0.068	0.56	14	71	19	0.0296 µg/L
Benzo(k)fluoranthene	Total	70	12.9	0.010	10	0.014	0.10	0.045	0.22	7.1	70	7.4	0.0296 µg/L
Chrysene	Total	70	31.4	0.010	10	0.0060	0.20	0.097	1.2	23	74	40	0.0296 µg/L
Dibenzo(a,h)anthracene	Total	70	7.1	0.010	10	0.0060	0.00	0.017	0.080	1.4	66	2.7	0.0296 µg/L
Fluoranthene	Total	70	82.9	0.010	10	0.0080	1.4	0.82	11	No Exceedance	No Exceedance		90 µg/L
Indeno(1,2,3-cd)pyrene	Total	70	18.6	0.010	10	0.010	0.10	0.070	0.54	14	73	18	0.0296 µg/L
Pyrene	Total	70	82.9	0.010	10	0.0050	1.3	0.64	11	No Exceedance	No Exceedance		2590 µg/L
Naphthalene	Total	70	92.9	0.055	0.21	0.013	2,500	15	13,000	14	14	1.3	9880 µg/L
Metals			%	μ	g/L		h	g/L		(%		
Arsenic (Preserved)	Dissolved	36	100		-	0.40	2,400	6.0	82,000	42	42	10,000	8 μg/L ^c
Arsenic (Unpreserved)	Dissolved	17	94.1			16	38,000	1,200	310,000	94	100	39,000	8 µg/L°

Notes:

^a The data set for non-arsenic COCs was derived from groundwater sampling events conducted in April 2013 and December 2014.

^b cPAH TEQ is not a COC for upland groundwater, but is screened for consistency with the MTCA approach for evaluating mixtures of cPAHs (WAC 173-340-708[8][e]).

^c Arsenic is not a COC for upland groundwater, but is screened for the evaluation of cross-media impacts.

^d The data set for arsenic was derived from groundwater sampling events conducted in October 2013, December 2014, September/October 2016 and December 2020. 2020 samples analyzed by method SW6010C lab filtered non-preserved. Previous samples analyzed by method SW6010C lab filtered non-preserved. Previous samples analyzed by method SW6010C field filtered preserved with HN03. Reference Section 5 for a discussion of why these data sets were selected.

-- = not applicable

Analytical Data Summary – Offshore Groundwater Gas Works Park Site Seattle, Washington

			Reporting Limit for Nondetected			Detected Co	ncentrations		Frequency o	f Exceedance		
Analyte	Total No. Samples	Frequency of Detection	Minimum	Maximum	Minimum	Mean	Median	Maximum	Excluding Nondetected Values	Including Nondetected Values	Maximum Exceedance Factor of Detected Concentration	Screening Level
VOCs			μg	(/L		μg	:/L	-		%		
Benzene	7	86	1.0	1.0	1.2	130	36	640	86	100	1,500	0.44 µg/L
Ethylbenzene	7	86	1.0	1.0	1.0	76	71	180	57	57	6.2	29 µg/L
Toluene	7	43	1.0	30	1.6	3.0	2.0	5.5		-	-	Not a COC
PAHs			hā	;/L		hā	:/L		0	%		
Carcinogenic PAH (Calculated) using 1/2 the RL	7	43	0.70	1.4	5.3	8.3	8.3	11	43	100	570	0.02 µg/L
Total PAH	7	100	All Detected	All Detected	67	1,600	290	8,200			-	Not a COC
Benzo(a)anthracene	7	43	1.0	2.0	4.3	5.9	5.7	7.7	43	100	770	0.01 µg/L
Benzo(a)pyrene	7	43	1.0	2.0	4.0	6.5	6.6	9.0	43	100	900	0.01 µg/L
Benzo(b)fluoranthene	7	43	1.0	2.0	2.2	3.4	3.5	4.4	43	100	440	0.01 µg/L
Benzo(k)fluoranthene	7	43	1.0	2.0	2.8	4.0	3.4	5.9	43	100	590	0.01 µg/L
Chrysene	7	43	1.0	2.0	5.1	8.0	8.0	11	43	100	690	0.016 µg/L
Dibenzo(a,h)anthracene	7	0	1.0	2.0	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	100	Not Calculated	0.01 µg/L
Fluoranthene	7	100	All Detected	All Detected	1.8	17	8.8	45	57	57	7.5	6 µg/L
Indeno(1,2,3-cd)pyrene	7	43	1.0	2.0	2.5	3.5	3.3	4.6	43	100	460	0.01 µg/L
Pyrene	7	100	All Detected	All Detected	1.7	20	8.6	58	57	57	7.3	8 µg/L
Naphthalene	7	100	All Detected	All Detected	1.6	1,300	76	7,400	29	29	46	160 µg/L
SVOCs			βų	;/L		ha	:/L		(%		
bis(2-Ethylhexyl)phthalate	2	100	All Detected	All Detected	1.8	2.5	2.5	3.2	50	50	1.1	3 µg/L
Carbazole	7	86	1.0	1.0	1.2	18	3.2	95	57	57	48	2 µg/L
Dibenzofuran	7	86	1.0	1.0	1.0	7.6	2.9	34	14	14	2.1	16 µg/L
Metals			ha	ç/L		ha	:/L		(%		
Arsenic	7	57	50	50	22	200	110	580	57	100	73	8 µg/L
Cadmium	2	50	0.20	0.20	1.7	1.7	1.7	1.7	50	50	2.4	0.72 µg/L
Copper	2	100	All Detected	All Detected	14	72	72	130	100	100	12	11 µg/L
Lead	2	100	All Detected	All Detected	11	120	120	220	100	100	89	2.5 µg/L
Mercury	2	50	0.20	0.20	1.1	1.1	1.1	1.1	50	100	11	0.1 µg/L
Nickel	2	100	All Detected	All Detected	11	29	29	47	No Exceedance	No Exceedance	No Exceedance	52 µg/L
Silver	2	50	0.20	0.20	1.9	1.9	1.9	1.9	No Exceedance	No Exceedance	No Exceedance	3.2 µg/L

Notes:

-- = not applicable

See text for full acronym and abbreviation list.

Offshore groundwater considered >0.5 feet bml.

73

Analytical Data Summary – Sediment, Sediment Cleanup Objectives Gas Works Park Site Seattle, Washington

			Reporting Limit for Nondetected		Detected Concentrations				Frequency of	f Exceedance		
									Excluding	Including	Maximum Exceedance	Screening Level
	Total No.	Frequency of							Nondetected	Nondetected	Factor of Detected	(Sediment Cleanup
Analyte	Samples	Detection	Minimum	Maximum	Minimum	Mean	Median	Maximum	Values	Values	Concentrations	Objectives)
Surface (0-0.5 feet bml)			-						-			-
VOCs		%	mg	{/kg		m	g/kg		(%		
Benzene	56	8.9	0.0010	1.9	0.0030	7.4	1.2	34			-	Not a COC
Ethylbenzene	56	13	0.0010	0.036	0.0020	2.3	2.2	5.8			-	Not a COC
Toluene	56	11	0.0010	0.43	0.0070	1.2	1.1	2.4			-	Not a COC
PAHs		%	mg	{/kg		m	g/kg		0	%		
Carcinogenic PAH (Calculated) using 1/2 the RL	112	100			0.47	54	11	1,400	100	100	67,000	0.021 mg/kg
Total PAH	111	100		-	3.37	470	76	11,200	78	78	660	17 mg/kg
Fluoranthene	110	100			0.63	82	12	1,900			-	Not a COC
Pyrene	110	100			0.62	97	14	2,200			-	Not a COC
Naphthalene	110	90	0.079	0.39	0.04	7.2	1.4	120	-		-	Not a COC
SVOCs		%	mg	(/kg		m	g/kg		(%		
Carbazole	67	51	0.027	0.37	0.03	1.2	0.54	6.1	15	15	6.8	0.9 mg/kg
Dibenzofuran	110	51	0.027	0.90	0.03	1.8	0.65	14	40	55	70	0.2 mg/kg
Metals		%	mg	{/kg		m	g/kg			%		
Arsenic	95	61	6.0	60	6.0	110	58	2,400	59	94	220	11 mg/kg
Nickel	55	100			10	64	55	270	67	67	5.4	50 mg/kg
Subsurface (>0.5 feet bml)	•				•		-		•		•	
VOCs		%	mg	{/kg		m	g/kg		(%		
Benzene	183	38	0.0010	61	0.0010	97	3.6	3,500			-	Not a COC
Ethylbenzene	183	37	0.0010	28	0.0010	45	9.3	940			-	Not a COC
Toluene	183	29	0.0010	61	0.0020	21	0.62	630			-	Not a COC
PAHs		%	mg	{/kg		m	g/kg		(%		
Carcinogenic PAH (Calculated) using 1/2 the RL	281	66	0.012	1.2	0.015	79	11	2,900	65	90	140,000	0.021 mg/kg
Total PAH	282	82	0.019	0.53	0.015	1,500	110	69,000	53	53	4,100	17 mg/kg
Fluoranthene	266	72	0.018	1.5	0.016	150	15	5,600			-	Not a COC
Pyrene	262	71	0.018	1.7	0.016	160	14	5,700			-	Not a COC
Naphthalene	281	74	0.017	0.53	0.010	430	7.7	20,000				Not a COC
SVOCs		%	mg	{/kg		m	g/kg		0	%		
Carbazole	178	45	0.019	0.54	0.024	13	1.3	150	25	25	170	0.9 mg/kg
Dibenzofuran	282	53	0.010	1.5	0.012	30	2.5	830	44	52	4,200	0.2 mg/kg
Metals		%	mg	(/kg		m	g/kg		(%		
Arsenic	265	42	3.0	50	3.0	70	20	1,200	30	70	110	11 mg/kg
Nickel	139	100			18	46	42	160	24	24	3.3	50 mg/kg
Zone 1 (0.5-3 feet bml)												
VOCs		%	mg	{/kg		m	g/kg			%		
Benzene	36	42	0.0010	61	0.0050	67	3.1	700			-	Not a COC
Ethylbenzene	36	50	0.0010	0.042	0.025	71	3.4	940			-	Not a COC
Toluene	36	31	0.0010	61	0.0030	58	0.046	630	-			Not a COC
PAHs		%	mg	{/kg		m	g/kg		(%		
Carcinogenic PAH (Calculated) using 1/2 the RL	74	96	0.014	0.13	0.19	150	31	2,900	96	99	140,000	0.021 mg/kg
Total PAH	74	99	0.19	0.19	0.037	2,900	490	69,000	80	80	4,000	17 mg/kg
Fluoranthene	71	99	0.19	0.19	0.016	280	61	5,600	-		-	Not a COC
Pyrene	65	99	0.19	0.19	0.021	320	70	5,700	-		-	Not a COC
Naphthalene	74	96	0.020	0.19	0.075	680	12	20,000				Not a COC

			Reporting Limi	t for Nondetected		Detected C	oncentrations		Frequency of	Exceedance		
									Excluding	Including	Maximum Exceedance	Screening Level
	Total No.	Frequency of							Nondetected	Nondetected	Factor of Detected	(Sediment Cleanup
Analyte	Samples	Detection	Minimum	Maximum	Minimum	Mean	Median	Maximum	Values	Values	Concentrations	Objectives)
SVOCs		%	m	g/kg		m	g/kg		(%		
Carbazole	34	68	0.020	0.54	0.024	7.3	1.7	75	44	44	83	0.9 mg/kg
Dibenzofuran	74	69	0.020	0.88	0.028	49	6.0	830	64	76	4,200	0.2 mg/kg
Metals		%	m	g/kg		m	g/kg	1	(%		
Arsenic	63	75	3.0	50	6.0	100	33	1,200	67	86	110	11 mg/kg
Nickel	22	100			21	66	60	160	68	68	3.3	50 mg/kg
Zone 2 (3-6 feet bml)		1					1	1		L		
VOCs		%	m	g/kg		m	g/kg		(%		
Benzene	49	47	0.0010	28	0.0010	81	1.5	1.400				Not a COC
Ethylbenzene	49	43	0.0010	28	0.0010	26	12	170				Not a COC
Toluene	49	33	0.0010	28	0.0020	2.3	0.32	14				Not a COC
PAHs		%	m	g/kg		m	g/kg	1	(%		
Carcinogenic PAH (Calculated) using 1/2 the RL	78	72	0.013	0.85	0.051	53	12	600	72	96.2	29.000	0.021 mg/kg
Total PAH	78	86	0.048	0.18	0.054	1,100	130	16.000	58	57.7	940	17 mg/kg
Fluoranthene	73	78	0.018	0.36	0.041	100	15	1.300	-			Not a COC
Pyrene	74	77	0.018	1.2	0.036	100	18	970				Not a COC
Naphthalene	78	81	0.048	0.18	0.027	340	7.3	6,400			-	Not a COC
SVOCs		%	m	g/kg		m	g/kg		(%		
Carbazole	50	56	0.019	0.36	0.025	17	1.1	96	30	30	110	0.9 mg/kg
Dibenzofuran	78	63	0.018	0.37	0.023	20	1.2	330	50	54	1700	0.2 mg/kg
Metals		%	m	g/kg		m	g/kg		(%		
Arsenic	77	43	3.0	50	3.0	48	20	410	34	65	37	11 mg/kg
Nickel	44	100			21	44	39	110	23	23	2.1	50 mg/kg
Zone 3 (6-9 feet bml)							4	4		L		
VOCs		%	m	g/kg		m	g/kg		(%		
Benzene	36	42	0.0010	61	0.0010	240	0.051	3,500	-			Not a COC
Ethylbenzene	36	31	0.0010	12	0.020	22	5.6	120	-			Not a COC
Toluene	36	28	0.0010	12	0.0020	15	0.14	85	-			Not a COC
PAHs		%	m	g/kg		m	g/kg		(%		
Carcinogenic PAH (Calculated) using 1/2 the RL	57	54	0.012	0.29	0.015	13	1.1	240	53	77	11,000	0.021 mg/kg
Total PAH	57	81	0.019	0.36	0.039	280	4.9	7,900	32	32	470	17 mg/kg
Fluoranthene	53	72	0.019	0.38	0.018	22	0.50	550	-			Not a COC
Pyrene	54	69	0.019	0.41	0.016	25	0.60	600	-			Not a COC
Naphthalene	57	60	0.017	0.36	0.010	92	1.6	1,700				Not a COC
SVOCs		%	m	g/kg		m	g/kg		(%		
Carbazole	33	30	0.019	0.38	0.028	3.4	0.75	19	12.1	12	21	0.9 mg/kg
Dibenzofuran	57	37	0.010	1.4	0.023	9.9	1.5	120	26	35	600	0.2 mg/kg
Metals		%	m	g/kg		m	g/kg		(%		
Arsenic	55	33	3.0	40	3.0	11	9.5	30	15	60	3.6	11 mg/kg
Nickel	30	100	-		18	38	39	50	3.3	3.3	1	50 mg/kg
Zone 4 (>9 feet bml)												
VOCs		%	m	g/kg		m	g/kg		(%		
Benzene	62	27	0.0010	15	0.0020	22	6.6	140				Not a COC
Ethylbenzene	62	27	0.0010	15	0.00300	55	9.3	730			-	Not a COC
Toluene	62	26	0.0010	15	0.01	19	2.1	180				Not a COC
PAHs		%	m	g/kg		m	g/kg		(%		
Carcinogenic PAH (Calculated) using 1/2 the RL	72	36	0.013	1.2	0.018	32	2.4	250	35	83	12,000	0.021 mg/kg
Total PAH	73	60	0.020	0.53	0.015	920	34	12,000	36	36	730	17 mg/kg
Fluoranthene	69	39	0.019	1.5	0.052	79	3.0	820	-		-	Not a COC
Pyrene	69	41	0.019	1.7	0.022	82	2.8	760	-		-	Not a COC
Naphthalene	72	54	0.020	0.53	0.015	400	14	5,700	-		-	Not a COC

GeoEngineers

			Reporting Limit	for Nondetected		Detected Co	ncentrations		Frequency of	f Exceedance		
Analyte	Total No. Samples	Frequency of Detection	Minimum	Maximum	Minimum	Mean	Median	Maximum	Excluding Nondetected Values	Including Nondetected Values	Maximum Exceedance Factor of Detected Concentrations	Screening Level (Sediment Cleanup Objectives)
SVOCs		%	mg	g∕kg		mg	/kg		0	%		
Carbazole	61	31	0.019	0.53	0.027	20	1.0	150	16	16	170	0.9 mg/kg
Dibenzofuran	73	37	0.019	1.5	0.012	25	1.5	190	33	40	940	0.2 mg/kg
Metals		%	mg	g/kg		mg	/kg		(%		
Arsenic	70	17	3.0	40	4.0	91	9.0	840	5.7	69	76	11 mg/kg
Nickel	43	100			22	43	43	57	16	16	1.1	50 mg/kg
All Depths												
VOCs		%	mg	g/kg		mg	/kg		(%		
Benzene	239	31	0.0010	61	0.0010	91	3.1	3,500				Not a COC
Ethylbenzene	239	31	0.0010	28	0.0010	41	4.9	940			-	Not a COC
Toluene	239	25	0.0010	61	0.0020	19	0.82	630	1			Not a COC
PAHs		%	mg	g/kg		mg	/kg		Ű	%		
Carcinogenic PAH (Calculated) using 1/2 the RL	393	75	0.012	1.2	0.015	69	11	2,920	75	93	140,000	0.021 mg/kg
Total PAH	393	87	0.019	0.53	0.015	1,200	88	69,000	60	60	4,000	17 mg/kg
Fluoranthene	376	80	0.018	1.5	0.016	130	14	5,600	1			Not a COC
Pyrene	372	80	0.018	1.7	0.016	140	14	5,700			-	Not a COC
Naphthalene	391	78	0.017	0.53	0.010	290	3.4	20,000	-	-	-	Not a COC
SVOCs		%	mg	g/kg		mg	/kg		Ű	%		
Carbazole	245	47	0.019	0.54	0.024	9.6	0.81	150	22	22	170	0.9 mg/kg
Dibenzofuran	392	52	0.010	1.5	0.012	22	1.6	830	43	53	4,150	0.2 mg/kg
Metals		%	mg	g/kg		mg	/kg		(%		
Arsenic	360	47	3.0	60	3.0	85	30	2,400	38	76	220	11 mg/kg
Nickel	194	100		-	10	51	44	268	36	36	5.4	50 mg/kg

Notes:

-- = not applicable

Analytical Data Summary – Sediment, Cleanup Screening Levels Gas Works Park Site Seattle, Washington

			Reporting Limit fo	r Nondetected Values		Detected Co	oncentrations		Frequency of	of Exceedance		
									Excluding	Including	Maximum Exceedance	Screening Level
	Total No.	Frequency of							Nondetected	Nondetected	Factor of Detected	(Cleanup Screening
Analyte	Samples	Detection	Minimum	Maximum	Minimum	Mean	Median	Maximum	Values	Values	Concentrations	Levels)
Surface (0-0.5 feet bml)			•	•				4				•
VOCs		%	m	g/kg		mį	g/kg			%		
Benzene	56	8.9	0.0010	1.9	0.0030	7.4	1.2	34			-	Not a COC
Ethylbenzene	56	13	0.0010	0.036	0.0020	2.3	2.2	5.8				Not a COC
Toluene	56	11	0.0010	0.43	0.0070	1.2	1.1	2.4			-	Not a COC
PAHs		%	m	g/kg		m	g/kg			%		
Carcinogenic PAH (Calculated) using 1/2 the RL	112	100			0.47	54	11	1,400	100	100	6,700	0.21 mg/kg
Total PAH	111	100			3.4	470	76	11,200	71	71	370	30 mg/kg
Fluoranthene	110	100			0.63	82	12	1.900			-	Not a COC
Pyrene	110	100			0.62	97	14	2,200			-	Not a COC
Naphthalene	110	90	0.079	0.39	0.042	7.2	1.4	120				Not a COC
SVOCs		%	m	g/kg		m	g/kg			%		
Carbazole	67	51	0.027	0.37	0.034	1.2	0.54	6.1	15	15	5.5	1.1 mg/kg
Dibenzofuran	110	51	0.027	0.90	0.033	1.8	0.65	14	25	26	21	0.68 mg/kg
Metals		%	m	g/kg		m	g/kg			%		a/a
Arsenic	95	61	6.0	6 0	6.0	110	58	2.400	52	84	100	24 mg/kg
Nickel	55	100		-	10	64	55	270	9.1	9.1	2.4	110 mg/kg
Subsurface (>0.5 feet bml)					20	0.			012	0.12		
VOCs	1	%	m	g/kg		m	e/kg			%		
Benzene	183	38	0.0010	61 61	0.0010	97	36	3 500				Not a COC
Ethylhenzene	183	37	0.0010	28	0.0010	45	93	940				Not a COC
Toluene	183	29	0.0010	61	0.0020	21	0.62	630				Not a COC
PAHs	100	%	0.0010	d /kd	0.0020	m	0.02 g/kg	000		0/		1000 000
Carcinogenic RAH (Calculated) using 1/2 the Pl	281	66	0.012	5/ ^5	0.015	70	5/ N 5	2 900	50	63	14.000	0.21 mg/kg
	201	82	0.012	0.52	0.015	1 500	110	2,900	19	49	2 300	30 mg/kg
Fluoranthono	262	72	0.019	1.5	0.015	150	15	5,000	45	+5	2,300	Not a COC
Pyropo	200	71	0.018	1.5	0.016	160	14	5,000		-	-	Not a COC
Nanhthalana	202	71	0.010	0.53	0.010	430	77	20,000				Not a COC
SVOCe	201	0/	0.017	0.00	0.010	+30	۲.1 م/kđ	20,000	_	0/	_	1001 0 000
Corbozolo	170	76	0.010	g/ ng	0.024	12	5/ ng	150	24	70	140	1.1 mg/kg
Dibonzofuron	170	40 52	0.019	0.54	0.024	13	1.5	150	24	24	1 200	1.1 mg/ kg
	202	03 0/	0.010	C.L	0.012	30	2.0	830	54	0/	1,200	0.00 mg/ kg
Arconio	265	/0	2.0	5 / ng	2.0	70	5/ ng	1 200	10	<i>7</i> 0 52	51	24 mg/kg
Nickol	130	42	3.0	50	18	10	20	1,200	10	0.7	1.5	24 ilig/ kg
Zone 1 (0 5-3 feet hml)	139	100			10	40	42	100	0.1	0.1	1.5	IIO IIIg/ kg
	1	0/	m	a /ka			a /ka			0/		
Persona	20	%	0.0010	g/ kg	0.0050		g/ ng	700		70		Natio 000
Sthulbergene	30	42	0.0010	61	0.0050	71	3.1	700				Not a COC
Ethylbenzene	36	50	0.0010	0.042	0.025	71	3.4	940				Not a COC
Dalla	30	31	0100.0	01 a (lua	0.0030	58	0.046	630			-	NOL A COC
	7 4	%	m	g/ ng	0.40	150 mg	s/ Kg	0.000	05	70	14.000	0.01
Carcinogenic PAH (Carculated) using 1/2 the RL	(4	96	0.014	0.13	0.19	150	31	2,900	95	95	14,000	0.21 mg/kg
	(4	99	0.19	0.19	0.037	2,900	490	69,000	/6	/6	2,300	30 mg/kg
Filloranthene	/1	99	0.19	0.19	0.016	280	61	5,600	-	-	-	Not a COC
Pyrene Nachthelene	05	99	0.19	0.19	0.021	320	/0	5,700	-	-	-	Not a COC
ivaphthalene	(4	96	0.020	0.19	0.075	680	12	20,000		-	-	NOT A COC

			Reporting Limit for	Nondetected Values		Detected C	Concentrations		Frequency of	Exceedance		
									Excluding	Including	Maximum Exceedance	Screening Level
	Total No.	Frequency of							Nondetected	Nondetected	Factor of Detected	(Cleanup Screening
Analyte	Samples	Detection	Minimum	Maximum	Minimum	Mean	Median	Maximum	Values	Values	Concentrations	Levels)
SVOCs		%	mį	g/kg		m	lg∕kg		Q	%		
Carbazole	34	68	0.020	0.54	0.024	7.3	1.7	75	44	44	68	1.1 mg/kg
Dibenzofuran	74	69	0.020	0.88	0.028	49	6.0	830	53	54	1,200	0.68 mg/kg
Metals		%	mį	g/kg		m	lg∕kg		Q	%		
Arsenic	63	75	3.0	50	6.0	100	33	1,200	49	60	51	24 mg/kg
Nickel	22	100			21	66	60	160	4.5	4.5	1.5	110 mg/kg
Zone 2 (3-6 feet bml)	•	-									-	•
VOCs		%	mį	g/kg		m	lg∕kg		Q	%		
Benzene	49	47	0.0010	28	0.0010	81	1.5	1,400		-	-	Not a COC
Ethylbenzene	49	43	0.0010	28	0.0010	26	12	170	-	-	-	Not a COC
Toluene	49	33	0.0010	28	0.0020	2.3	0.32	14	-	-	-	Not a COC
PAHs		%	mį	g/kg		m	lg∕kg		Q	%		
Carcinogenic PAH (Calculated) using 1/2 the RL	78	72	0.013	0.85	0.051	53	12	600	64	68	2,900	0.21 mg/kg
Total PAH	78	86	0.048	0.18	0.054	1,100	130	16,000	55	55	530	30 mg/kg
Fluoranthene	73	78	0.018	0.36	0.041	100	15	1,300	-	-	-	Not a COC
Pyrene	74	77	0.018	1.2	0.036	100	18	970	-	-		Not a COC
Naphthalene	78	81	0.048	0.18	0.027	340	7.3	6,400	-	-	-	Not a COC
SVOCs		%	mį	g/kg		m	lg∕kg		Q	%		
Carbazole	50	56	0.019	0.36	0.025	17	1.1	96	28	28	87	1.1 mg/kg
Dibenzofuran	78	63	0.018	0.37	0.023	20	1.2	330	35	35	490	0.68 mg/kg
Metals		%	mį	g/kg		m	lg∕kg		q	%		
Arsenic	77	43	3.0	50	3.0	48	20	410	17	44	17	24 mg/kg
Nickel	44	100			21	44	39	110	0	0	1	110 mg/kg
Zone 3 (6-9 feet bml)	•										•	•
VOCs		%	mį	g/kg		m	ıg∕kg		Q	%		
Benzene	36	42	0.0010	61	0.0010	240	0.051	3,500				Not a COC
Ethylbenzene	36	31	0.0010	12	0.020	22	5.6	120	-	-		Not a COC
Toluene	36	28	0.0010	12	0.0020	15	0.14	85	-	-	-	Not a COC
PAHs		%	mį	g/kg		m	lg∕kg		Q	%		
Carcinogenic PAH (Calculated) using 1/2 the RL	57	54	0.012	0.29	0.015	13	1.1	240	39	44	1,100	0.21 mg/kg
Total PAH	57	81	0.019	0.36	0.039	280	4.9	7,900	28	28	260	30 mg/kg
Fluoranthene	53	72	0.019	0.38	0.018	22	0.50	550	-	-	-	Not a COC
Pyrene	54	69	0.019	0.41	0.016	25	0.60	600	-	-	-	Not a COC
Naphthalene	57	60	0.017	0.36	0.010	92	1.6	1,700	-	-	-	Not a COC
SVOCs		%	mį	g/kg		m	lg∕kg		g	%		
Carbazole	33	30	0.019	0.38	0.028	3.4	0.75	19	12	12	17	1.1 mg/kg
Dibenzofuran	57	37	0.010	1.4	0.023	9.9	1.5	120	21	23	180	0.68 mg/kg
Metals		%	mį	g/kg		m	lg/kg		<u> </u>	%		
Arsenic	55	33	3.0	40	3.0	11	9.5	30	1.8	42	1.7	24 mg/kg
Nickel	30	100			18	38	39	50	0	0	No Exceedance	110 mg/kg
Zone 4 (>9 feet bml)											-	
VOCs		%	mį	g/kg		m	lg/kg		<u> </u>	%		
Benzene	62	27	0.0010	15	0.0020	22	6.6	140			-	Not a COC
Ethylbenzene	62	27	0.0010	15	0.0030	55	9.3	730		-	-	Not a COC
Toluene	62	26	0.0010	15	0.014	19	2.1	180		-	-	Not a COC
PAHs		%	mį	g/kg		m	lg/kg		9	%		
Carcinogenic PAH (Calculated) using 1/2 the RL	72	36	0.013	1.2	0.018	32	2.4	250	32	40	1,200	0.21 mg/kg
Total PAH	73	60	0.020	0.53	0.015	920	34	12,000	32	32	410	30 mg/kg
Fluoranthene	69	39	0.019	1.5	0.052	79	3.0	820		-	-	Not a COC
Pyrene	69	41	0.019	1.7	0.022	82	2.8	760	-	-	-	Not a COC
Naphthalene	72	54	0.020	0.53	0.015	400	14	5,700	-	-	-	Not a COC

GEOENGINEERS

			Reporting Limit for	Nondetected Values		Detected Co	oncentrations		Frequency o	f Exceedance		
Analyte	Total No. Samples	Frequency of Detection	Minimum	Maximum	Minimum	Mean	Median	Maximum	Excluding Nondetected Values	Including Nondetected Values	Maximum Exceedance Factor of Detected Concentrations	Screening Level (Cleanup Screening Levels)
SVOCs		%	៣រួ	g/kg		mg	g/kg			%		
Carbazole	61	31	0.019	0.53	0.027	20	1.0	150	15	15	140	1.1 mg/kg
Dibenzofuran	73	37	0.019	1.5	0.012	25	1.5	190	26	27	280	0.68 mg/kg
Metals		%	mį	g/kg		mg	g/kg			%		
Arsenic	70	17	3.0	40	4.0	91	9.0	840	2.9	63	35	24 mg/kg
Nickel	43	100			22	43	43	57	0	0	No Exceedance	110 mg/kg
All Depths	-	-	-								-	-
VOCs		%	mį	g/kg		mg	(/kg			%		
Benzene	239	31	0.0010	61	0.0010	91	3.1	3,500			-	Not a COC
Ethylbenzene	239	31	0.0010	28	0.0010	41	4.9	940			-	Not a COC
Toluene	239	25	0.0010	61	0.0020	19	0.82	630			-	Not a COC
PAHs		%	mį	g/kg		mg	g/kg			%		
Carcinogenic PAH (Calculated) using 1/2 the RL	393	75	0.012	1.2	0.015	69	11	2,900	71	74	14,000	0.21 mg/kg
Total PAH	393	87	0.019	0.53	0.015	1,200	88	69,000	55	55	2,300	30 mg/kg
Fluoranthene	376	80	0.018	1.5	0.016	130	14	5,600			-	Not a COC
Pyrene	372	80	0.018	1.7	0.016	140	14	5,700			-	Not a COC
Naphthalene	391	78	0.017	0.53	0.010	290	3.4	20,000			-	Not a COC
SVOCs		%	mį	g/kg		mg	(/kg			%		
Carbazole	245	47	0.019	0.54	0.024	9.6	0.81	150	21	21	140	1.1 mg/kg
Dibenzofuran	392	52	0.010	1.5	0.012	22	1.6	830	32	33	1,200	0.68 mg/kg
Metals		%	m	g/kg		mg	g/kg			%		
Arsenic	360	47	3.0	60	3.0	85	30	2,400	27	61	100	24 mg/kg
Nickel	194	100			10	51	44	270	3.1	3.1	2.4	110 mg/kg

Notes:

-- = not applicable

Biological Testing Results in Surface Sediment

Gas Works Park Site Seattle, Washington

			Hyalella azteca		Chironom	us tentans	Chironomus tentans	
			10-	day	10-	day	20-	day
Survey Name	Investigation	Sample ID	Survival [®]	Growth	Survival ^ª	Growth	Survival [®]	Growth
TAMU02	RETEC Split Samples (March 2002)	LU-1°	92		80	1.74		
TAMU02	RETEC Split Samples (March 2002)	LU-2 ^c	94		70	2.09		
TAMU02	RETEC Split Samples (March 2002)	LU-3	99		84	1.86		
TAMU02	RETEC Split Samples (March 2002)	LU-4	98		78	2.25		
TAMU02	RETEC Split Samples (March 2002)	LU-5	100		90	2.36		
TAMU02	RETEC Split Samples (March 2002)	LU-6	98		68	2.49		
TAMU02	RETEC Split Samples (March 2002)	LU-7	99		82	2.92		
TAMU02	RETEC Split Samples (March 2002)	LU-8	99		84	2.45		
TAMU02	RETEC Split Samples (March 2002)	LU-9	100		72	2.92		
TAMU02	RETEC Split Samples (March 2002)	LU-10	98		78	2.75		
TAMU02	RETEC Split Samples (March 2002)	Ref-1	93		82	2.57		
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU01	81	0.045	52	0.24	32	2.01
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU02	92	0.074	58	0.98	86	2.69
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU04	96	0.092	78	1.23	96	2.79
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU05	87	0.044	72	0.82	84	1.74
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU06	91	0.079	82	1.10	90	2.94
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU07	94	0.075	78	0.84	88	2.78
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU08	95	0.083	82	1.20	94	2.68
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU10	96	0.089	76	1.00	92	2.84
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU12	92	0.11	80	0.83	90	3.40
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU13	84	0.055	74	0.52	66	2.29
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU14	95	0.076	74	0.71	96	2.72
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU15	97	0.079	80	0.92	92	2.43
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU16	92	0.068	66	0.45	60	1.86
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU17	83	0.042	62	0.30	44	1.66
RETEC02-Grabs	RETEC Phase 2 (October 2002)	Ref-NLU21	81	0.058	78	0.93	80	2.32
RETEC02-Grabs	RETEC Phase 2 (October 2002)	Ref-NLU22	70	0.039	76	0.83	64	2.02
RETEC02-Grabs	RETEC Phase 2 (October 2002)	Control	90	0.039	72	1.28	82	2.50
NLUBio05	RETEC Phase3 (April 2005)	NLU13	84				54	1.18
NLUBio05	RETEC Phase3 (April 2005)	NLU51	0				0	N/A
NLUBio05	RETEC Phase3 (April 2005)	NLU55	51				54	0.77
NLUBio05	RETEC Phase3 (April 2005)	NLU55-diluted	74				48	1.82
NLUBio05	RETEC Phase3 (April 2005)	NLU64	89				86	2.34
NLUBio05	RETEC Phase3 (April 2005)	NLU66	92				72	2.57
NLUBio05	RETEC Phase3 (April 2005)	NLU69	87				96	2.30
NLUBio05	RETEC Phase3 (April 2005)	NLU73	89				92	1.94
NLUBio05	RETEC Phase3 (April 2005)	NLU76	82				94	1.71
NLUBio05	RETEC Phase3 (April 2005)	NLU81	90				82	2.64
NLUBio05	RETEC Phase3 (April 2005)	NLU82	79				76	2.25
NLUBio05	RETEC Phase3 (April 2005)	NLU83	94				84	2.33
NLUBio05	RETEC Phase3 (April 2005)	NLU84	98				88	2.18
NLUBio05	RETEC Phase3 (April 2005)	NLU85	95				82	2.36
NLUBio05	RETEC Phase3 (April 2005)	NLU86	87				62	1.25
NLUBio05	RETEC Phase3 (April 2005)	NLU87	94				88	2.25
NLUBio05	RETEC Phase3 (April 2005)	NLU117	0				34	1.62
NLUBio05	RETEC Phase3 (April 2005)	NLU117-diluted	30				40	1.90
NLUBio05	RETEC Phase3 (April 2005)	NLUEPA5	88				88	2.17
NLUBio05	RETEC Phase3 (April 2005)	NLUEPA19	97				82	2.14
NLUBio05	RETEC Phase3 (April 2005)	Ref-1	84				92	1.97
NLUBio05	RETEC Phase3 (April 2005)	Ref-2	86				80	2.46
NLUBio05	RETEC Phase3 (April 2005)	Control	98				82	1.54

Notes:

^a survival = mean % ^b growth = mean weight/larva, mg dw

^c sample location highly uncertain

N/A = not applicable; high mortality precludes meaningful interpretation of growth

File No. 0186-846-03 Table 5-6 | January 2023

Biological Criteria Exceedances in Surface Sediment Gas Works Park Site Seattle, Washington

			Hyalella 10-	a azteca day	Chironomus tentans 10-day		Chironomus tentans 20-day		
Survey Name	Investigation	Sample ID	Survival	Growth	Survival	Growth	Survival	Growth	Final SMS Classification
TAMU02	RETEC Split Samples (March 2002)	LU-1 ^a	Pass		Pass	CSL			CSL
TAMU02	RETEC Split Samples (March 2002)	LU-2 ^a	Pass		Pass	Pass			Pass
TAMU02	RETEC Split Samples (March 2002)	LU-3	Pass		Pass	SC0			SCO
TAMU02	RETEC Split Samples (March 2002)	LU-4	Pass		Pass	Pass			Pass
TAMU02	RETEC Split Samples (March 2002)	LU-5	Pass		Pass	Pass			Pass
TAMU02	RETEC Split Samples (March 2002)	LU-6	Pass		Pass	Pass			Pass
TAMU02	RETEC Split Samples (March 2002)	LU-7	Pass		Pass	Pass			Pass
TAMU02	RETEC Split Samples (March 2002)	LU-8	Pass		Pass	Pass			Pass
TAMU02	RETEC Split Samples (March 2002)	LU-9	Pass		Pass	Pass			Pass
TAMU02	RETEC Split Samples (March 2002)	LU-10	Pass		Pass	Pass			Pass
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU01	Pass	Pass	CSL	CSL	CSL	Pass	CSL
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU02	Pass	Pass	Pass	Pass	Pass	Pass	Pass
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU04	Pass	Pass	Pass	Pass	Pass	Pass	Pass
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU05	Pass	Pass	Pass	Pass	Pass	Pass	Pass
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU06	Pass	Pass	Pass	Pass	Pass	Pass	Pass
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU07	Pass	Pass	Pass	Pass	Pass	Pass	Pass
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU08	Pass	Pass	Pass	Pass	Pass	Pass	Pass
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU10	Pass	Pass	Pass	Pass	Pass	Pass	Pass
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU12	Pass	Pass	Pass	Pass	Pass	Pass	Pass
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU13	Pass	Pass	Pass	CSL	Pass	Pass	CSL
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU14	Pass	Pass	Pass	Pass	Pass	Pass	Pass
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU15	Pass	Pass	Pass	Pass	Pass	Pass	Pass
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU16	Pass	Pass	Pass	CSL	SC0	Pass	CSL
RETEC02-Grabs	RETEC Phase 2 (October 2002)	NLU17	Pass	Pass	Pass	CSL	CSL	SC0	CSL
NLUBio05	RETEC Phase3 (April 2005)	NLU13	Pass				CSL	CSL	CSL
NLUBio05	RETEC Phase3 (April 2005)	NLU51	CSL				CSL	CSL	CSL
NLUBio05	RETEC Phase3 (April 2005)	NLU55	CSL				CSL	CSL	CSL
NLUBio05	RETEC Phase3 (April 2005)	NLU64	Pass				Pass	Pass	Pass
NLUBio05	RETEC Phase3 (April 2005)	NLU66	Pass				Pass	Pass	Pass
NLUBio05	RETEC Phase3 (April 2005)	NLU69	Pass				Pass	Pass	Pass
NLUBio05	RETEC Phase3 (April 2005)	NLU73	Pass				Pass	Pass	Pass
NLUBio05	RETEC Phase3 (April 2005)	NLU76	Pass				Pass	Pass	Pass
NLUBio05	RETEC Phase3 (April 2005)	NLU81	Pass				Pass	Pass	Pass
NLUBio05	RETEC Phase3 (April 2005)	NLU82	Pass				Pass	Pass	Pass
NLUBio05	RETEC Phase3 (April 2005)	NLU83	Pass				Pass	Pass	Pass
NLUBio05	RETEC Phase3 (April 2005)	NLU84	Pass				Pass	Pass	Pass
NLUBio05	RETEC Phase3 (April 2005)	NLU85	Pass				Pass	Pass	Pass
NLUBio05	RETEC Phase3 (April 2005)	NLU86	Pass				Pass	CSL	CSL
NLUBio05	RETEC Phase3 (April 2005)	NLU87	Pass				Pass	Pass	Pass
NLUBio05	RETEC Phase3 (April 2005)	NLU117	CSL				CSL	Pass	CSL
NLUBio05	RETEC Phase3 (April 2005)	NLUEPA5	Pass				Pass	Pass	Pass
NLUBio05	RETEC Phase3 (April 2005)	NLUEPA19	Pass				Pass	Pass	Pass

Notes:

^a sample location highly uncertain.

Shading = failure of SCO numeric criteria

Shading = failure of CSL numeric criteria

File No. 0186-846-03 Table 5-7 | January 2023

Statistical Results for Pair-wise Comparisons of ALU versus AOI Sediment

Gas Works Park Site

Seattle, Washington

			ult		
Analyte Group	Analyte	AOI > ALU	ALU > AOI	No Detectable Difference	Too Few Detects to Test
Conventionals	Sulfide			X	
PΔHe	Total cPAH TEQ	Х	-	-	
T Alla	Total PAH	X	-	-	
TPH	Diesel Range Hydrocarbons		-	-	x
	4-Methylphenol			x	
	Benzoic Acid		-	x	
	bis(2-Ethylhexyl)phthalate		x	-	
	Carbazole			x	
SVOCa	Dibenzofuran	х			
34003	Di-n-Butyl phthalate		x	-	
	Di-n-Octyl phthalate				X
	Hexachlorobenzene			-	X
	Pentachlorophenol			x	
	Phenol		х	-	
Destisidas	Chlordane	-		-	x
Pesticides	4,4'-DDE	-	х	-	
PCBs	Total PCBs (Aroclor)		х	-	
Butyltins	Tributyl Tin	-	-	х	
	Arsenic			X	
	Cadmium			Х	
	Chromium			X	
	Copper			X	
Metals	Lead		х	-	
	Mercury		х	-	
	Methylmercury			-	x
	Nickel	-	-	x	
	Silver		-	x	

AOI Sediment COC

ALU Sediment COC

Identification of Concentration Gradients in Sediment

Gas Works Park Site

Seattle, Washington

Analyte Group	Analyte	Apparent Gradient from Nearshore
Conventionals	Sulfide	No
ТРН	Diesel Range Hydrocarbons	No
	4-Methylphenol	No
	Benzoic Acid	No
	Carbazole	Yes
SVOCs	Di-n-Octyl phthalate	No
	Hexachlorobenzene	Evaluate sources
	Pentachlorophenol	No
	Phenol	No
Pesticides	Chlordane	No
	Cadmium	No
	Chromium	No
Motolo	Copper	No
wetais	Methylmercury	No
	Nickel	Evaluate sources
	Silver	No

AOI COC ALU COC

NAPL and NAPL-Related Terminology Gas Works Park Site Seattle, Washington

Term and Graphic	Definition	Gas Works Park Site (GWPS) Presence and Terminology Used in the Reme
	NAPL And Types Of NAPI	
Non-Aqueous Phase Liquid	NAPLs are organic compounds or mixtures of compounds that are immiscible (resistant to mixing) with water. The term NAPL refers to the undissolved liquid phase of a compound and not to the aqueous phase constituents that may be dissolved in water (modified from EPA 1992).	NAPL is a general term used in the RI/FS to re NAPL (LNAPL) and/or dense NAPL (DNAPL), or
Edublogs.org 2017	Light NADLe are ergenic compounde (or mixtures of	In the DI/ES, the term INADI refere to three tur
LNAPL Light Non-Aqueous Phase Liquid	compounds) such as petroleum oil, gasoline, and diesel fuel that float. LNAPLs have densities less than water (density < 1.0 g/cm ³) and are immiscible (resistant to mixing) with water (modified from ITRC 2009).	 Fuel oil, petroleum-based LNAPL. Fuel oil, petroleum-based LNAPL. Benzol, monoaromatic-rich LNAPL (also r references). Naphthalene-rich LNAPL. Properties of on-site LNAPL: Low viscosity compared with DNAPLs at the Specific gravity: 0.92 at 70 degrees measu 1.0). LNAPL saturation in soil (%Pv), where measured is the second secon
Modified from Eberhard-Karls-University of Tuebingen 2012		sample was more than 20 percent LNAPL s
DNAPL Dense Non-Aqueous Phase Liquid	Dense NAPLs are organic compounds (or mixtures of compounds) such as coal tar, creosote, and other organic compounds that don't mix well with water (are immiscible) and tend to sink (density > 1.0 g/cm ²). (modified from ITRC 2003).	 In the RI/FS, the term DNAPL refers to three typ Naphthalene-rich DNAPL previously referred to as creating of the end of the
Groundwater Flow		 Specific gravity: ranges from 1.02 to 1.11 1.0). DNAPL saturation in soil (%Pv), where mean

dial Investigation/Feasibility Study Report

efer to nonaqueous phase liquids. NAPL can refer to light combinations and mixtures of both.

pes of LNAPL encountered at the GWPS:

referred to as "light oil" in the RI/FS report and other

e Site. Sured in MW-09 (that of water at the same temperature is

asured, ranges from 4.8 percent to 46.6 percent; only one saturated.

rpes of DNAPL encountered at the GWPS: rred to as "middle oil" and infrequently referred to as

coal tar or creosote (a coal-tar-based product that may also

centistokes (measured at 70 degrees). . at 70 degrees (that of water at the same temperature is

sured, ranges from 2.1 percent to 14.5 percent.

GEOENGINEERS
Term and Graphic	Definition	Gas Works Park Site Presence and Terminology Used in the Reme
	NAPL Stability Terminology for	GWPS
<section-header><section-header><section-header><section-header><section-header><section-header><image/><image/><image/></section-header></section-header></section-header></section-header></section-header></section-header>	The term "residual NAPL" refers to NAPL that is trapped in the pore spaces between soil particles or sediment particles and cannot be easily moved hydraulically (modified from API 2006). Residual NAPL refers to NAPL at the range of saturations greater than zero up to the NAPL saturation, at which NAPL capillary pressure equals pore entry pressure. Includes NAPL that is discontinuous and immobile under the applied gradient (modified from ITRC 2009).	 Almost all NAPL at the GWPS is in residual form Residual NAPL is used to refer to LNAPL and RI/FS report to communicate the specific nature Residual NAPL (LNAPL and DNAPL that is residual saturation Stable Immobile Smear (typically associated with LNAPL) Slight to moderate sheen Heavy sheen and/or trace NAPL Blobs, droplets, coating grains Note: The term "Residual NAPL" as used in the MTCA (WAC 173-340-747(10)) "the concentration"
Mobile NAPL	NAPL that exceeds residual NAPL saturation and is	Mobile NAPL refers to NAPL that exceeds resid
UV Light Standard Light Mobile LNAPL Mobile LNAPL in Soil INAPL in Well UNAPL in Well Water Water Well ENSR AECOM 2007	hydraulically connected in the pore space. Has the potential to be mobile in the environment. Mobile NAPL is measurable in wells because the well creates a void space for mobile NAPL to move into. Mobile NAPL includes migrating NAPL, but not all mobile NAPL is migrating NAPL. Mobile NAPL can also be referred to as non-residual NAPL (modified from ITRC 2009).	 following areas: East area near the Play Area in monitoring MW-45S (LNAPL Area 13). West area near Harbor Patrol (DNAPL Area Other terms used to describe mobile NAPL incl Pooling (DNAPL in till depressions), Non-residual, and Measurable thickness or measurable NAPL
Migrating NAPL LNAPL saturation > residual Image: mail of the saturation is resaturation is residual <tr< th=""><th>A non-residual NAPL body that is observed to spread or expand laterally, vertically, or otherwise result in an increased volume of NAPL-impacted media. NAPL migration is typically documented by time-series data (modified from ITRC 2009).</th><th>No evidence of migrating NAPL has been docu more than 60 years ago and NAPL is expected rare observations of ebullition.</th></tr<>	A non-residual NAPL body that is observed to spread or expand laterally, vertically, or otherwise result in an increased volume of NAPL-impacted media. NAPL migration is typically documented by time-series data (modified from ITRC 2009).	No evidence of migrating NAPL has been docu more than 60 years ago and NAPL is expected rare observations of ebullition.

edial Investigation/Feasibility Study Report

m.

DNAPL. Residual NAPL is described in many ways in the ure and occurrence of residual NAPL: not mobile)

e RI/FS is not the same as residual saturation defined in ation of hazardous substances in the soil at equilibrium

idual saturation. Evidence of mobile NAPL is limited to the

wells MW-09 (NAPL Areas 10 and 11), and MW-44S and

a 4).

lude:

L (in wells).

umented with time-series data. Industrial activities ended to be in equilibrium at the GWPS. A possible exception are

Term and Graphic	Definition	Gas Works Park Site Presence and Terminology Used in the Remedia
	NAPL Field Screening Te	erms
<section-header><section-header></section-header></section-header>	 Sheen testing involves placing a small amount of soil in a pan of water and observing the water surface for signs of sheen. A black plastic gold pan typically is used for sheen testing. NS (no sheen)—No visible sheen on the water surface. SS (slight sheen)—Light, colorless, dull sheen; spread is irregular, not rapid. Natural organic oils or iron bacteria in the soil may produce a slight sheen. MS (moderate sheen)—Pronounced sheen over limited area; probably has some color/iridescence; spread is irregular, may be rapid; sheen does not spread over entire water surface. HS (heavy sheen)—Heavy sheen with pronounced color/iridescence; spread is rapid; the entire surface is covered with sheen. (modified from Ecology 2016). 	 Sheens were considered in categorization of NAP NAPL categories were used to map NAPL areas. GWPS RI/FS NAPL Impacts Categories and Descill No Impacts – No visual or olfactory evidence Staining and/or Odor – Presence of hydrocart soil or sediment matrix, or both. Slight to Moderate Sheen – Observations moderate or medium sheens that may be deated at the structure of the structure of
Free Product	General term used to refer to NAPL. Typically used to refer to NAPL observed during drilling (residual or mobile) and NAPL that has accumulated in wells.	 Free Product is generally not used to refer to N/RI/FS to refer to free product mobility testing. NAR evidence of migration at centrifugal forces represed). Free Product was occasionally used in historical
	Tar	
Tar Image: State of the state o	Heavy, viscous product obtained when distilling organic materials such as wood, coal, or peat. Although a tar-like product can be obtained from petroleum, the term tar does not properly apply to a product obtained from petroleum (modified from Tver and Barry 1980).	Tar, when used to describe conditions at the GW NAPL. The term tar is included here for complete In the RI/FS, tar is the term used to refer to sen dark in color and consists mostly of high molecu occurs as small discrete masses, layers, or dep sediment surface. Small tar masses are intersp deposits identified (Figure 5C-2). The nature and and DNAPL. Changes in viscosity resulting fro historically resulted in mobilization and surfacir observed in areas with a protective soil cap.

al Investigation/Feasibility Study Report

PL. Heavy Sheen and/or trace NAPL and Heavy sheen with

riptions:

- of hydrocarbons present.
- bon or naphthalene-like odor, hydrocarbon staining of the
- of hydrocarbon sheen ranging from trace to slight to escribed as spotty, white, colored or rainbow sheens.
- ations of heavy, oily or strong hydrocarbon sheens; minor L; small, scattered or occasional oil blobs (< 1/8 inch in nulsions.
- sheens plus NAPL where NAPL is described as present, ons of oil/NAPL drops or blobs (> 1/8 inch in size), oil or r in lenses, layers, fractures, seams or veins. NAPL implies oves through the interstitial pore space or voids in the soil

APLs in the RI/FS. The term 'free product' is used in the PLs subjected to free product mobility testing did not show esentative of 1,000 times gravitational forces (Appendix

boring logs to refer to NAPL observed during drilling.

PS, refers to a solid or semi-solid and is not considered a eness.

misolid, pliable solid or solid material. Tar at the GWPS is ular weight PAHs with low aqueous solubility. Tar typically posits within the Fill unit at or near the uncapped soil or persed sporadically within the Fill unit, with some larger extent of tar has been interpreted separately from LNAPL om higher temperatures during hot summer days have ng of tar in limited areas. Surfacing of tar has not been

Citations:

API 2006. "API Interactive LNAPL Guide" Version 2.0.4. www.api.org/oil-and-natural-gas/environment/clean-water/ground-water/Inapl/interactive-guide. Accessed October 2, 2017. February 2006. Edublogs.org, Accessed 2017. http://oliver2014.global2.vlc.edu.au/category/science/.

ENSR/AECOM 2007. "Using Gauging Data to Improve Site Conceptual Models at LNAPL-Impacted Remediation Sites, Mobile Interval of LNAPL for Unconfined Hydrostatic Conditions." Modified. 2007.

Environment Agency 2003. "An Illustrated Handbook of DNAPL Transport and Fate in the Subsurface", R&D Publication 133. www.environment-agency.gov.uk. 2003. https://clu-in.org/conf/itrc/dnaplpa/dnapl_handbook_final.pdf.

Environmental Protection Agency (EPA) 1992. United States Environmental Protection Agency, Directive No. 9283.1-06, "Considerations in Ground-Water Remediation at Superfund Sites and RCRA Facilities – Update. May 27, 1992." https://semspub.epa.gov/work/HQ/174509.pdf. Floyd | Snyder 2008. August 2008 Tar Seep Investigation. Letter to Mr. Pete Rude, Seattle Public Utilities. Prepared by Floyd |Snider. October 13, 2008.

ITRC 2003. "An Introduction to Characterizing Sites Contaminated with DNAPLs." Prepared by The Interstate Technology & Regulatory Council Dense Nonaqueous Phase Liquids Team. September 2003.

ITRC 2009. "Evaluating LNAPL Remedial Technologies for Achieving Project Goals." Prepared by The Interstate Technology & Regulatory Council LNAPLs Team. December 2009. http://www.itrcweb.org/GuidanceDocuments/LNAPL-2.pdf. Eberhard-Karls-University of Tuebingen 2012. Center for Applied Geoscience (ZAG), Sigwartstr, 10, D-72076 Tuebingen, Germany.

Tver, David F. and Richard W. Barry. "The Petroleum Dictionary." Van Nostrand Reinhold Company. 1980.

Washington State Department of Ecology (Ecology) 2016. "Washington State Department of Ecology, Guidance for Remediation of Petroleum Contaminated Sites, Toxics Cleanup Program" Publication No. 10-09-057. Revised June 2016. "Wilson, et al. 1990. "Laboratory Investigation of Residual from Spills, Leaks, and Disposal of Hazardous Waste in Groundwater." EPA, April 1990.

Table 6-1

Physical and Chemical Parameters for COCs and Impacted Media

Gas Works Park Site

Seattle, Washington

Chemical	Molecular Weight ^a (g/mol)	K _d (L/kg)	Aqueous Solubility (mg/L)	Vapor Pressure (mm Hg)	Henry's Law Constant (atm-m ³ /mol)	K _{oc} (L/kg)	Log K _{ow}	Soil Half-life (yrs)	Groundwater Half-life (yrs)
Benzene	78.11	22 to 97 ^b	1,790 ^e	95 [°]	0.0056 ^e	100 to 449 ^g	2.13 ^e	0.03 ^h	1.0 ^h
Naphthalene	128.18	500 to 1,820 ^b	31 ^e	0.085 ^e	0.00044 ^e	2,000 to 8,430 ^g	3.30 ^e	0.09 ^h	0.37 ^h
Benzo(a)pyrene	252.32	761,000 to 2,180,000 ^b	0.0016 ^e	Negligible	0.0000046 ^e	3,520,000 to 10,100,000 ^g	6.13 ^e	0.79 ^h	3.2 ^h
Chrysene	228.29	112,000 to 338,000 ^b	0.002 to 0.00345 ^e	Negligible	0.0000052 ^e	519,000 to 1,560,000 ^g	5.81 ^e	1.9 ^h	7.5 ^h
Carbazole	167.21	732 ^f	1.8 ^e	0.00000075 ^e	0.00000012 ^e	3,390 ⁱ	3.72 ^e	_ ^h	_h
Dibenzofuran	168.19	501 ^f	3.1 ^e	0.0025 ^e	0.00021 ^e	2,320 ^k	4.12 ^e	0.048 ^h	0.059 ^h
Arsenic	74.92	464 to 2,820 ^c	Variable ^d	Negligible	Negligible	n/a	n/a	n/a	n/a
Nickel	58.69	65	Variable ⁱ	Negligible	Negligible	n/a	n/a	n/a	n/a

Notes:

^a Lide 1992 (CRC Handbook of Chemistry and Physics) (assumed arsenic acid for arsenic molecular weight).

^b For site-specific values per geologic unit see Table 6A-2 (PAHs) and Table 6A-3 (benzene).

^c Site-specific arsenic Kd values for fill (2,821 L/kg) and outwash (464 L/kg) geologic units are described in Appendix 2B-2. The site-specific arsenic Kd value for recent deposits (1,654 L/kg) is the mean value of calculated Kd values from co-located sediment and porewater sample results for arsenic.

^d Arsenic chemical and physical information - http://www.atsdr.cdc.gov/toxprofiles/tp2-c4.pdf. Aqueous solubility values include: Arsenic (insoluble) arsenic acid (302,000 mg/L at 12.5 deg C), arsenic pentoxice (2,300,000 mg/L at 20 deg C), and arsenic trioxide (17,000 mg/L at 16 deg C).

^e EPI Suite - Estimation Program Interface Version 4.00. U.S. EPA and Syracuse Research Corporation.

^f Calculated Kd values based on published Koc value and average fraction organic carbon (foc) of 0.216 reported in PAH Partitioning in Black Carbon-Impacted Sediments from Lake Union (Appendix 2D). Kd = foc*Koc

^g Back-calculated Koc values are based on site-specific K_d values and average foc of 0.216 reported in PAH Partitioning in Black Carbon-Impacted Sediments from Lake Union (Appendix 2D). Koc = Kd/foc ^h Howard et al. 1991 (Handbook of Environmental Degradation Rates). Assumes anaerobic conditions for groundwater half-lives for benzo(a)pyrene and chrysene.

¹Nickel chemical and physical information - http://www.atsdr.cdc.gov/toxprofiles/tp15.pdf. Aqueous solubility values include: Nickel (1.13 mg/L at 37 deg C), nickel acetate (170,000 mg/L at 68 deg C), nickel ammonium sulfate (104,000 mg/L at 20 deg C), and nickel carbonate (93 mg/L at 25 deg C).

^j CLARC Master Data Table (Ecology 2019a)

^k PubChem Database (https://pubchem.ncbi.nlm.nih.gov).

https://semspub.epa.gov/work/HQ/175235.pdf

-- = not available

n/a = not applicable

Table 6-2

Analytical Data Summary – Porewater Gas Works Park Site Seattle, Washington

			Reporting Limit	for Nondetected		Detected Co	ncentrations		Frequency of	f Exceedance		
Analyte	Total No. Samples	Frequency of Detection	Minimum	Maximum	Minimum	Mean	Median	Maximum	Excluding Nondetected Values	Including Nondetected Values	Maximum Exceedance Factor of Detected Concentration	Screening Level
VOCs		%	Bd	<u>د/۲</u>		μg	/L		(%		
Benzene	6	0	1.0	1.0	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	100	Not Calculated	0.44 µg/L
Ethylbenzene	6	0	1.0	1.0	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	No Exceedance	Not Calculated	29 µg/L
Toluene	6	0	1.0	1.0	Not Detected	Not Detected	Not Detected	Not Detected				Not a COC
PAHs			ha	ç∕L		μg	/L		0	%		
Carcinogenic PAH (Calculated) using 1/2 the RL	6	0	0.70	0.92	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	100	Not Calculated	0.02 µg/L
Total PAH	6	50	1.0	1.0	4.5	5.9	5.6	7.7	-		-	Not a COC
Benzo(a)anthracene	6	0	1.0	1.3	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	100	Not Calculated	0.01 µg/L
Benzo(a)pyrene	6	0	1.0	1.3	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	100	Not Calculated	0.01 µg/L
Benzo(b)fluoranthene	6	0	1.0	1.3	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	100	Not Calculated	0.01 µg/L
Benzo(k)fluoranthene	6	0	1.0	1.3	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	100	Not Calculated	0.01 µg/L
Chrysene	6	0	1.0	1.3	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	100	Not Calculated	0.016 µg/L
Dibenzo(a,h)anthracene	6	0	1.0	1.3	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	100	Not Calculated	0.01 µg/L
Fluoranthene	6	17	1.0	1.3	1.0	1.0	1.0	1.0	No Exceedance	No Exceedance	No Exceedance	6 µg/L
Indeno(1,2,3-cd)pyrene	6	0	1.0	1.3	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	100	Not Calculated	0.01 µg/L
Pyrene	6	17	1.0	1.3	1.3	1.3	1.3	1.3	No Exceedance	No Exceedance	No Exceedance	8 µg/L
Naphthalene	6	33	1.0	1.0	1.2	3.4	3.4	5.6	No Exceedance	No Exceedance	No Exceedance	160 µg/L
SVOCs			Bd	ξ/L		μg	/L		(%		
Carbazole	6	0	1.0	1.3	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	No Exceedance	Not Calculated	2 µg/L
Dibenzofuran	6	0	1.0	1.3	Not Detected	Not Detected	Not Detected	Not Detected	Not Calculated	No Exceedance	Not Calculated	16 µg/L
Metals			ha	<u>ز</u> /۲		μg	/L		C	%		
Arsenic	6	17	50	50	70	70	70	70	17	100	8.8	8. μg/L

Notes:

-- = not applicable

See text for full acronym and abbreviation list.

Porewater inlcudes samples collected to 0.5 feet bml.

Exceedance statistics based on offshore groundwater screening levels.

Table 6-3

Analytical Data Summary – Catch Basin Solids Gas Works Park Site Seattle, Washington

			Reporting	g Limit for								
			Nondetec	ted Values		Detected Concentrations			Frequency of Exceedance			
									Excluding	Including	Maximum Exceedance	
	Total No.	Frequency of							Nondetected	Nondetected	Factor of Detected	
Analyte	Samples	Detection	Minimum	Maximum	Minimum	Median	Mean	Maximum	Values	Values	Concentrations	Screening Level
PAHs		%	mg	/kg		mg	(/kg			%		
Carcinogenic PAH (Calculated) using 1/2 the RL	24	100			0.12	1.9	0.92	6.5	92	92	31	0.21 mg/kg
Total PAH	24	100			1.0	18	9.1	73	25	25	2.4	30 mg/kg
SVOCs		%	mg	/kg		mg	ç∕kg		9	%		
Carbazole	23	22	0.064	0.95	0.21	0.30	0.27	0.52	0	0	No Exceedance	1.1 mg/kg
Dibenzofuran	24	25	0.063	0.64	0.062	0.20	0.19	0.34	0.0	0.0	No Exceedance	0.68 mg/kg
Metals ^a		%	mg	/kg		mg	(/kg			%		
Arsenic	23	48	9.0	30	10	22	19	53	13	17	2.2	24 mg/kg

Notes:

^a Nickel was not analyzed in catch basin solids

-- = not applicable

Table 9-1 Potential Applicable Laws Governing Cleanup Gas Works Park Site

Seattle, Washington

	State or Local Statutes and		
Subject Regulated	Implementing Regulations	Federal Statutes and Implementing Regulations	Notes
Cleanup Levels			
Soil	MTCA (WAC 173-340 Sections 740 and 745)		Site specific soil cleanup levels established in 1999 Consent Decree.
Groundwater	MTCA (WAC 173-340 Section 720)		State cleanup levels for groundwater.
Sediment	SMS (WAC 173-204)	•	Criteria used to identify sediments that have no adverse effects on biological resources and correspo
			Site-specific cleanup levels developed per WAC 173-204-340(3) and in consultation with Ecology.
Surface Water	MTCA (WAC 173-340 Sections 720 and 730)		Requirements for establishing numeric or risk-based goals and selecting cleanup actions. Anticipate
		CWA Section 304	National recommended water quality criteria for the protection of aquatic organisms and protection
	Washington Water Pollution Control Act - State	CWA (33 USC 1251-1376; 40 CFR 100-149; 40 CFR 131)	Ambient water quality criteria for the protection of aquatic organisms and human health. MTCA requ
	Water Quality Standards for Surface Water		circumstances of the release. State water quality standards, conventional water quality parameters
	(RCW 90.48; WAC 173-201A-130)		water protection. Permitting for sediment cleanup action will define required measures for compliant
		Safe Drinking Water Act (40 CFR 141)	Safe Drinking Water Act National Primary Drinking Water Standards: maximum contaminant levels, r
			levels and proposed maximum contaminant level goals. Anticipated to be relevant and appropriate to
			measures to be taken to comply with standards during implementation.
Protection of Species and Hab	litats		
Habitat Impacts and	Washington Department of Fisheries Habitat	Memorandum of Agreement between EPA and USACE (mitigation	Policies and procedures have been established by state and federal agencies to evaluate and mitiga
Mitigation	Management Policy (POL 410), Compensatory	under CWA Section 404(b)(1); US Fish and Wildlife Mitigation Policy	project permitting and vary with the type of work conducted. The project alternatives evaluated in the
	(PCW 75 20 and 90 48)	(46 Federal Register 7644); Fish and Wildlife Coordination Act (16	nabitals. The need for significant mitigation over and above that already included in the FS alternative part of the Biological Ascessment to be performed during project permitting) will include evaluation of
	(RGW 75.20 and 90.48)	USC ODT et seq.)	part of the Biological Assessment to be performed during project permitting, will include evaluation to
Protection of Essential Fish	No state equivalent	Magnuson-Stevens Fishery Conservation and Management Act	Essential fish habitat has a specific definition under the Magnuson-Stevens Act. In practice, the stat
Habitat		(50 CFR 600.920)	for protection of essential fish habitat will be part of the USACE permit.
Protection of Migratory Birds	No state equivalent	Migratory Bird Treaty Act (16 USC 703; 50 CFR 10.12)	Species protected by the Migratory Bird Treaty Act use Lake Union on a seasonal basis; potential imp
Protection of Fish and Fish	Hydraulic Code Rules (WAC 77.55.100;	No federal equivalent	Rules designed to protect fish; substantive requirements apply to sediment remedy.
Critical Areas	SMC Critical Areas Requirements (SMC 25.09)	No federal equivalent	This chapter implements the City of Seattle Comprehensive Plan to promote safe stable and compare
	Growth Management Act (RCW 36.70A)		potential harm on the parcel and to adjacent property, the surrounding neighborhood and the draina
			requirements of this law, but must comply with the substantive requirements. May affect habitat goa
			area" exemption would likely be required.
Protection and Restoration of	Fish and Wildlife or Natural Resource Conservation	Endangered Species Act of 1973 (16 USC 1531 et seq.;	State rules primarily address salmon and their recovery along with general conservation strategies for
Endangered or Threatened	Areas (various RCW Titles 77	50 CFR 200; 50 CFR 216; 50 CFR 402; 16 USC 1361 et seq.)	under the ESA. Consultation with natural resource trustees will take place as part of the USACE perm
Species and Critical Habitats	and 79; WAC 232-12)		threatened species, including consultation with the U.S. Department of Interior. Chinook salmon fed
			with National Oceanic and Atmospheric Administration Fisheries on any action that may impact listed
			requirements, as necessary, including consultation with state and federal permitting agencies, comp
Activitics Within or Adiacont		Evenutive Order 11000 Dretection of Watlands	avoid adverse impacts to endangered or threatened species.
to Wotlands		(40 CEP 6, Appendix A); EPA (1989) Wotland Actions Plan	Actions must be performed so as to minimize the destruction, loss of degradation of weitands as def
			fringe.
Water Quality			•
General	Water Pollution Control Act (RCW 90.48);	CWA (33 USC 26 §1251 et seq.; 40 CFR 1, Subchapter D)	State implements most components of the CWA. Water quality is considered in the development of c
	Water Quality Standards for Surface Waters of		long-term performance of the remedy.
	Washington (WAC 173-201A)		
Discharge of Dredge,	No state equivalent	CWA Section 404	Applies to waters of the U.S.; affects sediment remedies that have a removal or capping component.
Excavated or Fill Materials			which will be part of the Joint Aquatic Resources Permit Application permit.
Discharge of Return Water	Water Pollution Control Act (RCW 90.48);	CWA Section 401	State certifies consistency with CWA. Applies to sediment remedies; any requirements are typically s
nom Dreuged Material	Washington (WAC 173-201A)		

ond to no significant health risk to humans.

ed to be relevant and appropriate to Site remediation.

of human health based on consumption of organisms.

uires the attainment of water quality criteria where relevant to the and toxic criteria. Narrative and quantitative limitations for surface nce with surface water standards during cleanup implementation.

maximum contaminant level goals, proposed maximum contaminant to Site remediation. Permitting for sediment cleanup action will define

ate habitat impacts. Mitigation requirements for projects are defined in ne FS have been designed to avoid net loss of sensitive or critical ives is considered unlikely. Project final design and permitting (e.g., as of project impacts and definition of any mitigation required or

te's hydraulic project approval addresses similar issues. Requirements

pacts will be addressed as part of the USACE permit.

tible development that avoids adverse environmental impacts and age basin. MTCA remedial actions are exempt from the procedural als in relation to portions of final remedy. An "environmentally critical

for state lands and state resources. GWPS is used by species protected mit. Actions must be performed so as to conserve endangered or derally listed as a threatened species. Federal agencies must confer ed species. Project permitting will include compliance with ESA upletion of a Biological Assessment, and incorporation of measures to

fined by Executive Order 11990 Section 7. Requirement for no net loss alternatives are not anticipated to negatively impact this wetland

cleanup objectives, short-term performance during construction and

. Requires a USACE Nationwide 38 or Section 404 individual permit,

pecified in a Consent Decree or Cleanup Action Plan.

Subject Regulated	State or Local Statutes and Implementing Regulations	Federal Statutes and Implementing Regulations	Notes
Discharge of Stormwater	Water Pollution Control Act (RCW 90.48); National Pollutant Discharge Elimination System Program (WAC 173-220)	CWA Section 402	Applies to both sediment and upland remedies. Dewatering of sediment may, and upland construct
Hazardous Waste Cleanup	MTCA Cleanup Regulation (RCW 70.105D; WAC 173-340)	Comprehensive Environmental Response, Compensation and Liability Act (42 USC 103; 40 CFR I, Subchapter J)	State law has precedence; primary regulations governing upland cleanup actions at the Site. Althou conducted under a Consent Decree, MTCA requires compliance with substantive permit requirement
Sediment Quality, Investigation and Cleanup	SMS (RCW 90.48 and 70.105D; WAC 173-204)	No federal equivalent	Primary regulations governing sediment cleanup actions at the Site. MTCA is one of the authorities sediment cleanups.
Evaluation of Environmental	State Environmental Policy Act (RCW 43.21C;	National Environmental Policy Act (42 USC 55 § 4321 et seq.;	Evaluation of project environmental impacts and definition of appropriate measures for impact miti
Impacts	WAC 197-11; WAC 173-802)	40 CFR V, Parts 1500-1508)	
Impacts to Navigation	Hydraulic Code Rules	Rivers and Harbors Act Section 10	Rules designed to protect navigation. No navigation channel designated in Lake Union. To be addre
Shoreline Construction or Development within 200 Feet	(WAC 77:55:100, WAC 220-110) Shoreline Management Act (RCW 90.48; RCW 90.58; WAC 173-16; WAC 173-14)	Coastal Zone Management Act (Public Law 92-583; 16 USC Chapter 33; 16 USC 1451 et seq.)	The state Shoreline Management Act is authorized under the federal Coastal Zone Management Ac within the waters of the State of Washington or within 200 feet of a shoreline. MTCA remedial actio
of Shoreline	Shoreline Master Use Program (SMC 23.60)		comply with the substantive requirements. Among the goals of the Shoreline Master Use Plan are to protect the ecosystems of the shoreline and use and enjoyment of the shorelines of the City; and preserve, enhance and increase views of the v the procedural requirements of this law, but must comply with the substantive requirements. A Sea development (i.e., grading near Lake Union).
Treatment and Disposal	l.		
Management, Transport and Disposal of Hazardous Wastes	Solid and Hazardous Waste Management Act (RCW 70.105); Dangerous Waste Regulations WAC 173-303)	Resource Conservation and Recovery Act (40 CFR 260 and 261; 49 USC 51, Transportation of Hazardous Material; 49 CFR 171-180)	Federal regulations are implemented by the state. Pertains to soil, sediment, water, and debris was administered by the state and all substantive requirements must be met. Transportation is regulate 261.24(a) states that the disposal of soil/sediments that contain manufactured gas plant wastes ti regulated under RCRA Subtitle C at federally regulated sites, so no toxicity tests are required for dis landfills. Furthermore, the universal treatment standards required by RCRA's Land Ban Regulations be triggered.
Management, Transport and	Solid and Hazardous Waste Management Act	RCRA (40 CFR 257 Subpart A)	Affects land disposal and transportation of dredged or excavated material and debris from the Site;
Disposal of Solid Wastes	(RCW 70.95; WAC 173-305, 173-350 and others)		must be met.
In-water Sediment Disposal or	-	USACE permitting requirements (CWA Sections 401 and 404)	Permitting requirements for discharges into waters of the U.S.
Capping		(40 CFR 230; 33 CFR 320, 323, 325 and 328)	Permitting requirements for dredging or dispession pavigable waters of the US Project implementation
	-	(33 CFR 320 and 322)	
	State HPA Permitting (Washington Hydraulics Code) (WAC 220-110)		Permitting for work that would use, divert, obstruct or change the natural flow or bed of any salt or t coordination with WDFW staff. This coordination will address all substantive requirements of the HF requirements and definition of work procedures and timing. Dredging, capping and other in-water w comply with fisheries protection requirements.
	State Aquatic Lands Management Laws (RCW 79.90 through 79.96; WAC 332-30)	-	Sediment capping on state-owned lands, if performed as part of the remedy, will comply with rules t
	Trust Doctrine		
Upland Disposal of Dredged	Washington Dangerous Waste Regulations	Federal hazardous waste criteria are less broad than state criteria	State and federal laws prohibit land disposal of certain hazardous or dangerous wastes. Sediments
Sediments	Designation Procedures (WAC 173-303-070)	for dangerous waste.	need for additional waste profiling will be addressed as part of the engineering design for the project
	Minimum Functional Standards for Solid Waste Handling (WAC 173-304); Solid Waste Handling Standards (WAC 173-350)	Solid Waste Disposal Act (42 USC Sec. 325103259, 6901-6991), as administered under 40 CFR 257, 258	Applicable to nonhazardous waste generated during remedial activities and disposed of off-site unlu- disposal will comply with disposal site criteria. FS alternatives are based on existing permitted facili impacted dredged materials. Upland beneficial reuse of sediments, which would be regulated unde
Wastewater	State Discharge Permit Program; NPDES Program (WAC 173-216, -220)	NPDES (40 CFR 122, 125)	Permitting and treatment requirements for direct discharges into surface water. Anticipated to be re Discharges must comply with substantive requirements of the NPDES permit. Applicable for off-site contemplate discharge of collected waters to on-site water body. Construction stormwater requirem development of a Storm Water Pollution Prevention Plan and implementation of best management project final design. A Construction Stormwater General Permit will need to be issued by Ecology for
	City of Seattle Wastewater Treatment Requirements (Metro District Wastewater Discharge Ordinance), King County Industrial Waste Program	National Pretreatment Standards (40 CFR 403)	Permitting and pretreatment requirements for discharges to a POTW. Discharges to POTWs are con- would be applicable. Alternatives include water pretreatment and POTW discharge. Such work woul design and implementation must incorporate waste characterization, pretreatment and permitting. A City of Seattle DPD Side Sewer Permit will be needed for use of the sewer for construction dewater Discharge Authorization will be needed for discharge of construction dewatering to the sewer syster
Underground Injection	UIC Program (WAC 173-218)		The Washington UIC Program manages the injection of materials below ground for waste disposal, remediation of groundwater. Permanent and temporary Injection wells used to inject solutions of re as defined in WAC 173-218-040(5)(a)(x). Existing injection wells at the GWPS installed for remediat Additional injection wells or temporary injection points installed for the cleanup action will require re the cleanup action, all injection wells will require decomissioning in accordance with UIC guidelines

tion would, require a state-issued NPDES permit.

igh most state and local permits are waived because the work will be nts. All federal permits governing the remedial action are still required.

defining the SMS; thus, waivers of state and local permits also apply to

igation.

essed as part of the JARPA process.

and establishes requirements for substantial development occurring ons are exempt from the procedural requirements of this law, but must

reas; encourage water-dependent uses; provide for maximum public water and access to the water. MTCA remedial actions are exempt from ittle DPD Land Use Permit will be needed for shoreline substantial

ste handling and landfill disposal. Management and disposal process is ed by the US Department of Transportation. Federal regulation 40 CFR hat fail the Toxicity Characteristic Leaching Procedure test are not sposal of manufactured gas plant wastes in nonhazardous waste of or all regulated constituents that are contained in the waste will not

; process is administered by the state and all substantive requirements

tion will include USACE permitting.

fresh waters. Project implementation and permitting will include PA permitting process, including evaluation of potential mitigation vork activities will be performed at appropriate times of the year to

for management of state-owned aquatic lands.

managed by upland disposal will comply with disposal site criteria. The ct.

ess wastes meet recycling exemptions. Sediments managed by upland ities in compliance with these regulations and permitted to accept er WAC 173-350, is not contemplated under any FS alternative.

elevant only if collected waters are discharged to on-site water body. e discharges; a permit would be required. RI/FS alternatives do not nents will be satisfied for upland handling of sediment, including practices. NPDES program requirements will be reviewed as part of r discharge of stormwater as part of construction activity.

nsidered off-site activities; pretreatment and permitting requirements Id be subject to POTW permitting and pretreatment standards. Project . Permitting requirements will be reviewed as part of project final design. ering (stormwater collected). A King County Industrial Waste Program m.

remediation, etc. The UIC program is applicable to the GWPS for in situ emediation reagents are managed under UIC as Class V injection wells tion of arsenic in the Play Area are registered under the UIC program. egistration with the UIC Program as Class V injection wells. Following

Subject Regulated	State or Local Statutes and Implementing Regulations	Federal Statutes and Implementing Regulations	Notes
Air Quality			
Ambient Air Quality and Emissions	Washington State Clean Air Act (70.94 RCW); Ambient Air Quality Standards (WAC 173-746); Northwest Air Pollution Agency ambient and emission standards; General Requirements for Air Pollution Sources (WAC 173-400); Regional Emission Standards for Toxic Air Pollutants	Clean Air Act (42 USC 85, Air Pollution, Prevention and Control)	Administered by the state and local authorities; substantive requirements apply to construction acti- alternatives involving sediment treatment or upland handling. On-site treatment of dredged materia contemplated in the FS alternatives. Off-site sediment handling and treatment and disposal facilitie applicable air regulations and maintain appropriate permits. Permitting requirements and compliant as part of project final design.
Toxic Air Contaminants	Source of toxic air contaminant requires a notice of construction (Puget Sound Air Pollution Control Agency Regulation III)		-
Fugitive Dust	Regional Emission Standards for fugitive dust; Best Available Control Technology to control dust (Puget Sound Air Pollution Control Agency Regulation I); Puget Sound Clean Air Agency regulations for fugitive dust emissions (Section 9.15 of Regulation I)	-	
Other			
Health and Safety	Washington Industrial Safety and Health Act (RCW 49.17; WAC 296-62, 296-843 and others)	OSHA (29 USC 15; 29 CFR 1910, 1926)	Applicable to investigation and construction phases of a cleanup. Development of a Health and Safe Relevant requirement for environmental remediation operations. All work activities performed at the design will include definition of contractor safety requirements, including preparation and compliant keeping requirements and other applicable measures.
Objects, Landscapes or Structures of Historical or Archaeological Significance	Regulations regarding these resources are part of SEPA, the Governor's Executive Order 05-05, and Shoreline Management Act (i.e., no one single regulation or authority); RCW 27.53; WAC 365-196- 450 and others also apply.	National Historic Preservation Act (16 USC 470 et seq. Section 106)	State laws govern local projects; federal law governs those requiring federal permits or funds. Protect sites from damage or loss during development. Gas Works Park was listed in the National Register of Department of Archaeological and Historic Preservation (State Historic Preservation Office), and incl
Historical Character of Park and Aboveground Installations	Landmarks Preservation Board (SMC 22.901T)	-	Ensures that changes to protected characteristics of Gas Works Park are minimal and that the histor Approval before changes are made to landmark sites. Applicable only to permanent above-ground in permanent above-ground installations will be designed to maintain protected characteristics.
Construction in State Waters	Construction in State Waters, Hydraulic Code Rules (RCW 75.20; WAC 220-1101)	Rivers and Harbors Appropriation Act (33 USC 401; 40 CFR 230; 33 CFR 320, 322, 323, 325)	Requirements for construction and development projects for the protection of fish and shellfish in si under MTCA Consent Decree or Order. Under Consent Decree, substantive requirements would still coordination with WDFW staff. This coordination will address all substantive requirements of the HP potential mitigation requirements, and definition of work procedures and timing. Dredging, capping times of the year to comply with fisheries protection requirements. USACE Section 404 permit or Na
Impacts to Tribal Treaty Rights	-	Treaty of Point Elliott (12 Stat. 927); Treaty of Medicine Creek (10 Stat. 1132)	U.S. treaties protect certain rights of recognized Tribes of Native Americans, including property rights rights are typically addressed during project permitting. Project alternatives evaluated in the FS protect changes to Site features. Consultation with area Tribal nations will be conducted during project permising rights.
Noise Control	Noise Control Act of 1974 (WAC 173-60); SMC Title 25.800	Noise Control Act of 1974 (RCW 70.107)	Maximum noise levels. Potentially relevant depending on remedial activities and equipment selected extent possible, to minimize noise impacts.
Activities within 100-Year Floodplain		40 CFR 257; 40 CFR 264.18(b); 40 CFR 761.75	Not applicable; water levels are managed by USACE.
Earthwork and Grading Activities	SMC Title 22.804	-	For any upland grading activity that may need to be performed, a City of Seattle DPD Grading Permit
Electrical Installations	Seattle Electric Code Supplement for Class 1 Division 2 Environments	National Electric Code (National Fire Protection Association 70)	Electrical installations to support remedial activities at the site. Potentially applicable to the site to s per National Electrical Manufacturers Association 4 standards.
Overall Remedial Design	Seattle Design Commission	-	Ensures that City investment enhances livability through design excellence. Potentially applicable if Project design will be reviewed by the Design Commission, if necessary.
Investigation, Use and Modification of Park Property	Seattle Municipal Code 18.30	-	A Seattle Department of Parks and Recreation Revocable Use Permit will be needed to use, occupy
Traffic Control and Truck Haul Routes	Seattle Municipal Code (SMC Title 15)	-	A City of Seattle Department of Transportation Street Use Permit will be needed for traffic control an

ivities during implementation of the remedy. Potentially applicable to als using methods that may require an air pollution control permit is not as contemplated for use under the FS alternatives comply with nee of facilities used for dredged material management will be reviewed

fety Plan with appropriate controls, worker certifications and monitoring. e site will comply with OSHA and WISHA requirements. Project final nce with a project Health and Safety Plan, worker training, record-

ection of significant historical, archaeological and traditional cultural of Historical Places in 2013. Will require coordination with the state's clude evaluating compliance with Section 106 of the federal law.

orical character of the property is preserved. Requires a Certificate of nstallations that may be included in remedial activities. Any changes to

state waters. State HPA permit required unless project implemented be addressed. Project implementation and permitting will include PA permitting process, including information submittals, evaluation of and other in-water work activities will be performed at appropriate ationwide 38 permit required.

ts, water rights and fish/shellfish gathering rights. Impacts to treaty tect environmental quality at the Site and result in no significant mitting to ensure that there are no adverse impacts to Tribal treaty

ed. Construction activities will be limited to normal working hours, to the

t will be needed.

support remedial activities. All electrical installations to be weatherized

the cleanup is considered to be a City capital improvement project.

and modify park property.

nd truck haul routes.

ADA = Americans with Disabilities Act CFR = Code of Federal Regulations CWA = Clean Water Act DPD = Seattle Department of Planning and Development EPA = U.S. Environmental Protection Agency ESA = Endangered Species Act FR = Federal Register FS = feasibility study HPA = hydraulic project approval MTCA = Model Toxics Control Act NPDES = National Pollutant Discharge Elimination System OSHA = Occupational Safety and Health Administration POTW = publicly owned treatment works RCW = Revised Code of Washington SDWA = Safe Drinking Water Act SEPA = State Environmental Policy Act SMA = Shoreline Management Act SMC = Seattle Municipal Code SMS = Sediment Management Standards USACE = U.S. Army Corps of Engineers USC = U.S. Code WAC = Washington Administrative Code WISHA = Washington Industrial Safety and Health Act

Table 9-2

Preliminary Sediment Cleanup Levels for GWPS Contaminants of Concern

Gas Works Park Site

Seattle, Washington

		GWPS		Sediment ^{a,t}						
Analyte Group	p Contaminants of Concern		mg/kg	Basis	Exposure Pathways and Receptors					
	Total PAH		30	CSL (risk-based concentration)	Benthic					
		Benzo(a)anthracene								
	с	Benzo(a)pyrene								
	P	Benzo(b)fluoranthene		le chude d'an						
PAHs	A	Benzo(k)fluoranthene		Included in Total cPAHs TEQ Screening Level						
	н	Chrysene								
	S	Indeno(1,2,3-cd)pyrene								
		Dibenzo(a,h)anthracene								
	Total cPAHs	TEQ	0.21	CSL (regional background concentration)	Human health direct contact, bioaccumulation					
SVOCs	Carbazole		0.90	Benthic						
57003	Dibenzofuran		0.20	SCO (risk-based concentration) Benthic						
Metals	Arsenic		24	CSL (preliminary regional background concentration)	Benthic, human health direct contact, bioaccumulation					
inicials	Nickel		50	SCO (risk-based concentration)	Benthic					

Notes:

^a Preliminary sediment cleanup levels included for analytes identified as GWPS COCs only. Sediment screening levels for ALU COCs are presented in Table 9-3.

^b Preliminary points of compliance are discussed in detail in Section 9.3.1. Benthic COCs = upper 10 cm in the Benthic Toxicity Area. Direct Contact COCs = upper 45 cm in the Direct Contact Beach Play and Wading Exposure Area and upper 10 cm in the Direct Contact Wading Exposure Area. Bioaccumulation COCs - upper 10 cm in the Bioaccumulation Exposure Area. Sediment point of compliance areas are shown on Figure 9-1.

Table 9-3

Summary of Sediment Screening Levels for ALU Contaminants of Concern

Gas Works Park Site

Seattle, Washington

		Sedi	ment ^a	
	ALU	Sediment Cleanup Objective	Cleanup Screening Level	
Analyte Group	Contaminants of Concern	mg/kg	mg/kg	
Conventionals	Sulfide	39	61	
ТРН	Diesel Range Hyrdocarbons	340	510	
	4-Methylphenol	0.26	2.0	
	Benzoic Acid	2.9	3.8	
	Bis(2-ethylhexyl)phthalate	0.50	22	
SVOCe	Di-n-Butyl phthalate	0.38	1.0	
31003	Di-n-Octyl phthalate	0.039	>1.1	
	Hexachlorobenzene	0.005	0.005	
	Pentachlorophenol	0.02	0.02	
	Phenol	0.12	0.21	
Pesticides	Chlordane	0.001	0.001	
I Caliciaca	4,4'-DDE	0.021	0.033	
PCBs	Total PCBs (Aroclor)	0.02	0.02	
Butyltins	Tributyltin	0.047	0.32	
	Cadmium	2.1	5.4	
	Chromium	62	62	
	Copper	400	1,200	
	Lead	360	>1,300	
	Mercury	0.66	0.8	
	Methylmercury	0.000058	0.000058	
	Silver	0.57	1.7	

Notes:

^a Sediment screening levels for analytes identified as ALU COCs. Preliminary sediment cleanup levels for GWPS COCs are presented in Table 9-2.

Table 9-4 Summary of Preliminary Groundwater Cleanup Levels Gas Works Park Site

Seattle, Washington

				Preliminary Groundwater Cleanup Levels ^{a,b}
			µg/L	Basis ^c
BTEY	Benzene		0.44	Protection of surface water (based on ingestion of water and organisms)
BIEA	Ethylbenzer	ne	29 (68)	Protection of surface water (based on ingestion of water and organisms)
	Fluoranthe	ne	6 (16)	Protection of surface water (based on ingestion of water and organisms)
	Naphthaler	ie	160	Protection of surface water (based on ingestion of water and organisms)
	Pyrene		8 (20)	Protection of surface water (based on ingestion of water and organisms)
		Benzo(a)anthracene	0.01	Protection of surface water (based on ingestion of water and organisms), adjusted to PQL
	С	Benzo(a)pyrene	0.01	Protection of surface water (based on ingestion of water and organisms), adjusted to PQL
	P	Benzo(b)fluoranthene	0.01	Protection of surface water (based on ingestion of water and organisms), adjusted to PQL
	н	Benzo(k)fluoranthene	Protection of surface water (based on ingestion of water and organisms), adjusted to PQL	
	S	Chrysene	0.016 (0.12)	Protection of surface water (based on ingestion of water and organisms)
		Indeno(1,2,3-cd)pyrene	0.01	Protection of surface water (based on ingestion of water and organisms), adjusted to PQL
	Total cPAHs	s TEQ	0.02	Protection of sediment, adjusted to PQL
	Bis(2-ethylh	nexyl)phthalate	3.0	Protection of sediment, adjusted to PQL
	Carbazole		2.0	Protection of sediment
	Dibenzofur	an	16	Protection of surface water (based on drinking water ingestion)
	Arsenic		8	Protection of surface water (based on ingestion of water and organisms), adjusted to background
	Cadmium		0.72	Protection of surface water (based on toxicity to aquatic organisms)
	Copper		11	Protection of surface water (based on toxicity to aquatic organisms)
Metals	Lead		2.5	Protection of surface water (based on toxicity to aquatic organisms)
	Mercury		0.10	Protection of surface water (based on toxicity to aquatic organisms), adjusted to PQL
	Nickel		52	Protection of surface water (based on toxicity to aquatic organisms)
	Silver		3.2	Protection of surface water (based on toxicity to aquatic organisms)

Notes:

^a Cleanup levels are only applicable to offshore groundwater. Values in parenetheses will be the preliminary cleanup levels if surface water criteria in 40 CFR 131.45 are not reinstated.

^b Groundwater conditional point of compliance is generally set at 10 centimeters below the mudline, at the base of the biologically active zone. For arsenic, the conditional point of compliance may be set farther upgradient, closer to the source, if conditions allow.

^c Preliminary groundwater cleanup levels are based on protection of surface water and sediment (see Table 4-2). The basis refers to the media and pathways associated with the selected cleanup level. See text for full acronym and abbreviation list.

TABLE 10-1 CLEANUP MANAGEMENT AREAS

Management Area	Description	Environmental Condition Driving Cleanup	Management Area Cleanup Objectives
GWMA-1	Deep groundwater in the uplands between the Play Area and Lake Union. The groundwater is below the park facility and is not subject to use.	• Arsenic in deep groundwater immediately upland of the Lake Union shoreline is present at concentrations greater than the preliminary cleanup level.	• Treat arsenic in upland groundwater to the extent feasible using AKART.
SMA-1	Approximately 0.54 acre uncapped bank soil area along approximately 1,000 linear feet of the eastern park shoreline. Includes the upland portion of the tar mound in the northeast corner of the park. This shoreline area can be accessed by park users for recreation.	 Uncapped bank soil containing tar and PAHs at concentrations greater than preliminary cleanup levels is a potential direct contact exposure for park users. Contaminants can be transported to the adjacent sediment area by erosion. 	 Remove tar mass to the extent feasible. Prevent direct contact exposure to remaining soil. Prevent erosion of soil to lakeshore sediment. Accommodate future park uses
SMA-2	Approximately 0.16 acre uncapped bank soil area along approximately 400 linear feet of the shoreline adjacent to Kite Hill in the southwestern area of the park. This shoreline area can be accessed by park users for recreation.	 Uncapped bank soil containing tar and PAHs at concentrations greater than preliminary cleanup levels is a potential direct contact exposure for park users. Contaminants can be transported to the adjacent sediment area by erosion. 	 Prevent direct contact exposure to soil. Prevent erosion of soil to lakeshore sediment
SMA-3	Approximately 1.0 acre nearshore sediment area along the eastern shoreline north of the Till Ridge generally between elevations OHWM and +10' (USACE). This area can be accessed by park users for recreation (beach play and wading) and for net fishing and is used for shallow draft vessel navigation.	 PAH and arsenic concentrations in sediment are greater than preliminary cleanup levels. Sediments demonstrate benthic toxicity. Offshore groundwater VOCs, PAHs, and arsenic can be transported to surface water. 	 Achieve preliminary cleanup levels for sediment within the biologically active zone and/or the top 45 cm in the beach play and wading exposure area. Prevent discharge of groundwater containing contaminants that are at concentration greater than preliminary cleanup levels Accommodate future park uses
SMA-4	Approximately 0.28 acre nearshore sediment area between the Prow and Harbor Patrol generally between elevations OHWM and +10' (USACE). This area can be accessed by park users for recreation (wading) and for net fishing and is used for shallow draft vessel navigation.	 PAH concentrations in sediment are greater than preliminary cleanup levels. Sediments demonstrate benthic toxicity. Offshore groundwater VOCs and PAHs can be transported to surface water. 	 Achieve preliminary cleanup levels for sediment within the biologically active zone. Prevent discharge of groundwater containing mobile contaminants that are at concentration above the preliminary cleanup levels.

Management Area	Description	Environmental Condition Driving Cleanup	Management Area Cleanup Objectives
SMA-5	Approximately 0.60 acre nearshore sediment area between Harbor Patrol and the northwest corner of the AOI generally between OHWM and +5' (USACE). Includes areas adjacent to Metro Lake Union South Yard and Harbor Patrol, as well as Waterway 20. Waterway 20 is used as a public boat ramp (wading access) and can be accessed for net fishing. Other uses include vessel navigation and moorage, including Harbor Patrol and Center for Wooden Boats activities.	 PAH concentrations in sediment are greater than preliminary cleanup levels Sediments demonstrate benthic toxicity. Offshore groundwater VOCs and PAHs can be transported to surface water. 	 Achieve preliminary cleanup levels for sediment within the biologically active zone. Prevent discharge of groundwater containing contaminants that are at concentration above the preliminary cleanup levels
SMA-6	Approximately 2.3 acre shallow sediment area offshore of the Prow extending to approximately elevation -5' (USACE). This area is used for shallow draft vessel navigation and can be accessed for net fishing. A portion of this area east of the prow can be accessed by park users for recreation (beach play and wading).	 PAH concentrations in sediment are greater than preliminary cleanup levels Sediments demonstrate benthic toxicity. 	 Achieve preliminary cleanup levels for sediment within the biologically active zone and/or the top 45 cm in the beach play and wading exposure area.
SMA-7	Approximately 2.0 acre sediment area in the eastern offshore portion of the GWPS. Approximate elevations are between +10' and -17' (USACE). This area can be accessed for net fishing and is used for vessel navigation and moorage and includes a portion of the Gas Works Park Marina.	 PAH and arsenic concentrations in sediment are greater than preliminary cleanup levels. Sediments demonstrate benthic toxicity. Shallow subsurface NAPL in sediments can be released to the water column. Offshore groundwater VOCs, PAHs and arsenic can be transported to surface water. 	 Achieve preliminary cleanup levels for sediment within the biologically active zone. Prevent emergence or disturbance of shallow NAPL in sediments. Prevent discharge of groundwater containing contaminants that are at concentration greater than preliminary cleanup levels.
SMA-8	Approximately 0.59 acre sediment area associated with NAPL Area 8 offshore of the Prow generally between between +5' and -15' (USACE). This area can be accessed for net fishing and is used for vessel navigation.	 PAH concentrations in sediment are greater than preliminary cleanup levels Sediments demonstrate benthic toxicity. Shallow subsurface NAPL in sediments can be released to the water column. 	 Achieve preliminary cleanup levels for sediment within the biologically active zone Prevent emergence or disturbance of shallow NAPL in sediments.

Management Area	Description	Environmental Condition Driving Cleanup	Management Area Cleanup Objectives
SMA-9	Approximately 2.8 acre sediment area offshore of the western park shoreline including the area adjacent to the Harbor Patrol bulkhead. Approximate elevations are between +10' and -18' (USACE) where offshore of SMA 4 and between +5' and -18' (USACE) where offshore of SMA 5. This area can be accessed for net fishing and is used for vessel navigation, and moorage, including Harbor Patrol activites and part of a shipyard facility.	 PAH concentrations in sediment are greater than preliminary cleanup levels Sediments demonstrate benthic toxicity. Shallow subsurface NAPL in sediments can be released to the water column. Offshore groundwater VOCs, PAHs and arsenic can be transported to surface water. 	 Achieve preliminary cleanup levels for sediment within the biologically active zone. Prevent emergence or disturbance of shallow NAPL in sediments. Prevent discharge of groundwater containing contaminants that are at concentration greater than preliminary cleanup levels.
SMA-10	Approximately 0.55 acre sediment area in the northeastern area of the AOI generally at +10' on the nearshore side and between +0' and - 16' (USACE) offshore. This area is used for vessel navigation and moorage and includes part of the Gasworks Park Marina.	PAH concentrations in sediment are greater than preliminary cleanup levels	Achieve preliminary cleanup levels for sediment within the biologically active zone.
SMA-11	Approximately 6.2 acre sediment area in the south and eastern parts of the AOI generally between -5' and -20' (USACE) where offshore of SMA-6 and between the OHWM and elevation -23' (USACE) where offshore of the till ridge shoreline. This area can be accessed by park users for recreation (beach play and wading) and for net fishing and is used for vessel navigation.	PAH concentrations in sediment are greater than preliminary cleanup levels	 Achieve preliminary cleanup levels for sediment within the biologically active zone and/or the top 45 cm in the beach play and wading exposure area.

Management Area	Description	Environmental Condition Driving Cleanup	Management Area Cleanup Objectives
SMA-12	Approximately 7.2 acre sediment area along the western park shoreline between SMA-9 and SMA-13 and the western AOI boundary generally between elevations between -18' and -20' (USACE). This area can be accessed for net fishing and is used for vessel navigation, and moorage, including part of a shipyard facility.	 PAH and arsenic concentrations in sediment are greater than preliminary cleanup levels, and co-located shipyard-related metals concentrations are also elevated. Sediments demonstrate benthic toxicity. Shallow subsurface NAPL in sediments can be released to the water column. Lake bottom depositional area with contaminant concentrations not expected to achieve preliminary cleanup levels or ambient conditions naturally within a reasonable restoration timeframe. 	 Achieve preliminary cleanup levels for sediment within the biologically active zone. Prevent emergence or disturbance of shallow NAPL in sediments.
SMA-13	Approximately 10 acre sediment area at the western limits of the AOI. This area can be accessed for net fishing and is used for vessel navigation.	 PAH and arsenic concentrations in sediment are greater than preliminary cleanup levels, and co-located shipyard-related metals concentrations are also elevated. Sediments demonstrate benthic toxicity. Lake bottom depositional area with thick soft sediment. Contaminant concentrations not expected to achieve preliminary cleanup levels or ambient conditions naturally within a reasonable restoration timeframe. 	Achieve preliminary cleanup levels for sediment within the biologically active zone.
SMA-14	Approximately 23 acre sediment area at the southern limits of the AOI. This area can be accessed for net fishing and is used for vessel navigation.	 PAH concentrations in sediment are greater than preliminary cleanup levels. Lake bottom depositional area with thick soft sediment. Contaminant concentrations already at or below ambient conditions due to natural recovery. 	Achieve sediment preliminary cleanup levels within the biologically active zone.

Technology Category	Remediation Technology	Description	Effectiveness	Implementability	Relative Cost	Screening Results
In-situ Groundwater Treatment	Groundwater Natural Attenuation	Reduction of dissolved concentrations through naturally occurring attenuation processes. Involves groundwater monitoring to demonstrate effectiveness. Primarily applicable to lower concentration contaminants downgradient from or following treatment of source areas.	Attenuation by precipitation and adsorption can be applicable for inorganic contaminants such as arsenic. Natural attenuation of dissolved arsenic by precipitation and adsorption has been demonstrated at the GWPS and would be expected to effectively attenuate lower concentrations of arsenic, particularly in fill unit groundwater.	Technically implementable. Significant monitoring well network already established at the GWPS. Monitoring conditions downgradient of current shoreline wells would require offshore monitoring.	Negligible capital cost. Moderate O&M cost. Low overall cost relative to active remediation options.	Retained. Natural attenuation of dissolved arsenic has been demonstrated at the GWPS. Applicable for areas of lower arsenic concentrations downgradient of the Play Area source area, particularly fill unit groundwater.
	Fixation	Direct injection or mixing of chemical reagents with groundwater to modify geochemical conditions and promote precipitation of inorganic contaminants. In-situ fixation of arsenic has been demonstrated at the GWPS during the Play Area Interim Action.	Demonstrated by treatability testing to be effective for precipitation of arsenic in the target shoreline area (groundwater from well MW-36D was used for testing). Effectiveness of arsenic fixation was further confirmed by the interim action during which a ferrous sulfate reagent was used to precipitate arsenic at the Play Area resulting in over 95-percent reduction of dissolved arsenic in outwash groundwater.	Readily implementable using common reagent injection methods and equipment. Demonstrated implementable during interim action.	Moderate capital and O&M cost.	Retained. Proven technology at the GWPS for treating arsenic in groundwater.
	Chemical Oxidation	Injection of a dilute oxidant solution (i.e., hydrogen peroxide, ozone, potassium permanganate, sodium persulfate, ferric chloride, etc.) into the contaminated zone to convert hazardous compounds to nonhazardous or less toxic forms that are more stable, less mobile, or inert.	Chemical oxidation has been demonstrated at a lab scale during treatability testing to effectively break down thioarsenates in Play Area groundwater. However, the oxidation was used as a precursor to fixation. Oxidation on its own would not be expected to effectively attenuate arsenic. In addition, the organics present in soil and groundwater would present a high oxidant demand, reducing the effectiveness of injected oxidant.	Generally implementable for dissolved contaminants using standard reagent injection processes.	Moderate capital and 0&M costs. High-cost uncertainty with respect to oxidant demand of treatment zone and presence of NAPL and presence of other organics in site soil.	Not retained. In-situ chemical oxidation is not expected to be as effective as other in-situ treatment methods.
	Enhanced Bioremediation	Injection of an electron acceptor (oxygen) or an electron donor (i.e., hydrogen, or hydrogen-releasing material) into the contaminated zone to enhance aerobic or anaerobic conditions suitable to promote transformation of contaminants.	Limited effectiveness at generating conditions conducive to precipitating arsenic. pH and arsenic concentrations in the targeted shoreline outwash groundwater would be expected to inhibit microbial growth and limit the effectiveness of bioremediation.	Generally implementable, using common injection methods.	Moderate capital cost. Moderate O&M cost.	Not retained. Low anticipated effectiveness under conditions present.

TABLE 11-1. ARSENIC IN UPLAND GROUNDWATER AKART EVALUATION

Technology Category	Remediation Technology	Description	Effectiveness	Implementability	Relative Cost	Screening Results
In-situ Groundwater Treatment (continued)	Permeable Reactive Barrier Wall	PRB walls utilize in-situ treatment methods in a passive configuration, treating groundwater as it passes through the reactive material. PRBs are effective at preventing groundwater contaminants from migrating to on-site or off-site receptors. A PRB for dissolved arsenic would focus on adsorption or precipitation, rather than destruction, using materials such as zero-valent iron or organoclay materials capable of arsenic adsorption. PRBs are typically constructed downgradient of source areas to provide treatment of groundwater flowing away from source areas. PRBs are not typically used within plumes unless the treatment method affects downgradient contaminant concentrations.	PRBs have been used at numerous sites for treatment of inorganic contaminants, including arsenic, in contaminated groundwater. Effectiveness relies on selecting a contaminant-specific reactive treatment component. Ineffective at treating source area contamination. Ineffective or reduced effectiveness where treated groundwater subsequently flows through contaminated media (e.g., contaminated sediment) downgradient of the PRB.	Technically implementable using a variety of PRB installation methods. However, the depth of treatment required (deep outwash groundwater), subsurface structures and debris along shoreline, and limited space for construction between the shoreline and Play Area reduces implementability. Reactive component can be placed between impermeable barriers to form a funnel and gate configuration.	Moderate to high capital costs. Moderate to high O&M cost. O&M costs increase for treatment methods that require frequent replenishment. Higher capital and O&M costs for deep outwash arsenic applications due to depth.	Not retained. Does not treat groundwater across a large footprint, including within upgradient source areas, only within PRB. Limited ability to treat groundwater downgradient of limited shoreline area where PRB installation is feasible. Other in-situ application methods would more effectively treat a larger contaminant using the same general chemical treatment method as a PRB. Downgradient conditions would likely re-contaminate groundwater prior to reaching Lake Union sediment, limiting overall effectiveness.
Groundwater Extraction and Treatment	Vertical Extraction Wells	Groundwater extraction using vertical extraction wells to achieve contaminant mass removal. Objectives of groundwater extraction include removal of dissolved contaminants below ground.	May be effective for partial removal of high-concentration dissolved phase contaminants as a mass removal element. Effectiveness relies on treatment and disposal of extracted groundwater.	Groundwater extraction is technically implementable using standard methods. The need for treatment infrastructure to treat extracted groundwater to meet discharge requirements will reduce the implementability for long-term implementation.	Moderate capital cost. High O&M cost assuming long-term operation and water treatment.	Not retained in favor of treatment technologies. Groundwater extraction for mass removal would be applied in cooperation with MNA to address conditions following partial mass removal. Treatment and disposal of extracted groundwater would have a high cost.
Physical Groundwater Barrier	Low Permeability Barrier Wall	Placement of a low-permeability vertical barrier to restrict the migration of deep outwash groundwater toward Lake Union and direct groundwater flow above the zone of highest arsenic concentrations. Use of sheet pile or slurry wall methods would depend on subsurface conditions and anticipated wall depth. Containment of deeper outwash groundwater with the highest arsenic concentrations may require alternative installation methods.	Can be effective for containing contaminated groundwater or redirecting groundwater away from a source or receptor. Overall effectiveness would require addressing groundwater redirected above low-permeability wall.	Technically implementable. Installation of a deep barrier with an overlying permeable zone would be difficult with traditional sheet pile. Sheet pile installation may be difficult in some areas near the shoreline due to anticipated subsurface obstructions. Barrier sheets may require trenching for installation due to obstructions. Some slurry wall construction methods involve in-situ mixing, which may spread contaminants vertically.	Moderate to high capital cost. Low to moderate O&M cost.	Not retained in favor of treatment technologies. Prevents contaminant migration through a specific path but does not involve treatment. Implementation issues associated with barrier wall installation along the shoreline.
Hydraulic Barrier	Groundwater Extraction Wells	Groundwater pumping to establish a hydraulic capture zone and restrict groundwater flow and contaminant migration in the downgradient direction.	Potentially effective for hydraulic control of impacted groundwater. Requires continuous long-term operation to maintain containment and maintenance of treatment components to prevent discharge of contaminated groundwater.	Technically implementable using standard groundwater extraction methods. The need for treatment infrastructure and long-term operation to treat extracted groundwater to meet discharge requirements will reduce the implementability.	Moderate capital cost and high O&M cost. High O&M costs associated with long-term pumping and treatment of extracted groundwater.	Not Retained. High cost and intrusive infrastructure for a long period.

Bold indicates that the Remediation Technology was retained. See text for full acronym and abbreviation list.

Technology Category	Remediation Technology	Description	Effectiveness	Implementability	Relative Cost	Screening Results
In-Situ Sediment Treatment	Electro-Chemical Reduction Technology (ECRT)	Treatment is accomplished by the mineralization of organic contaminants through the electro-chemical geo-oxidation process.	Reaction rates are inversely proportional to grain size, such that ECRTs remediate faster in finer-grained materials typically found at contaminated sediment sites, including the GWPS. Innovative technology with minimal proven effectiveness for GWPS contaminants. Treatability testing would be required.	Demonstrated implementable on pilot scale. Implementability of electro-chemical methods for full- scale in-water use is uncertain A pilot study at the Georgia Pacific Log Pond indicated multiple operational problems following installation of anodic and cathodic electrodes in the sediment ¹ .	High capital and O&M costs.	Not retained. High uncertainties associated with this innovative process and unproven effectiveness for most GWPS and ALU contaminants.
	<i>In situ</i> Amendment Mixing	Materials commonly used for amended sediment caps such as organoclay, granular activated carbon, and zero-valent iron are mixed <i>in situ</i> with contaminated sediment rather than being placed as a cap.	Can be effective if mixing does not exacerbate contaminant mobility or release. Some AOI sediment conditions (high-water content soft sediment, shallow NAPL-impacted sediment) suggest mixing an amendment into surface sediment will have limited applicability due to high risk of contaminant mobilization.	Difficult to implement due to uncertainties about contaminant mobility/release. Not expected to be acceptable to regulators, reducing administrative implementability.	Moderate capital cost. Low O&M cost.	Not retained. AOI sediment conditions would make this process difficult to perform without releasing contaminants.
	Activated Carbon	Activated carbon (AC) is capable of adsorbing a wide range of hydrocarbons, including GWPS contaminants PAHs, benzene, and certain species of arsenic. AC can be mixed or implemented in series with other amendments to bind additional contaminants in the sediments, such as NAPL. The sorption capacity of AC is utilized quickly in the presence of NAPL. The lightweight nature of the material can be difficult to effectively place as a uniform sand/AC mixture, but AC is commonly used in mats to ensure effective placements.	Effective and commonly used for adsorbing more mobile dissolved organic compounds. Adsorption of organic contaminants to AC is often 10 to 100 times greater than absorption to natural organic matter. Limited sorption effectiveness for arsenic.	AC is very commonly used for removal of organic contaminants in process water treatment and has more recently been applied to sediment capping, having been implemented on a wide range of sites. Placement of AC can be difficult due to the near neutral buoyancy of AC, but proprietary AC products (mats, heavy AC granules) have addressed this issue.	Moderate to high capital cost. Moderate O&M cost.	Retained. Effective, implementable and commonly used as a cap element to prevent migration of mobile contaminants through the cap.
	Organophilic Clay (Organoclay)	Organoclay is a bentonite clay that is chemically modified from hydrophilic to organophilic and is used to target hydrocarbon free product for control of NAPL through absorption. Some organophilic clay products can also adsorb arsenic.	Effective for removing NAPL and adsorbing dissolved PAHs and metals. Commonly used for sediment capping applications with NAPL. Some organoclay products are available that can adsorb arsenic and can be mixed with other organoclays to address multiple chemicals with a layered barrier.	Technically implementable using standard cap placement methods. Organoclays have been used in several full-scale applications. Applicable in bulk placement or incorporated in reactive mats.	Moderate to high capital cost. Moderate O&M cost.	Retained. Effective, implementable and has been successfully used at many full-scale sites.

TABLE 11-2. SEDIMENT REMEDIATION TECHNOLOGY SCREENING

¹ EPA 2007. Electrochemical Remediation Technologies (ECRTs) – In situ Remediation of Contaminated Marine Sediments, Innovative Technology Evaluation Report. EPA/540/R-04/507. June 2007

Technology Category	Remediation Technology	Description	Effectiveness	Implementability	Relative Cost	Screening Results
<i>In-Situ</i> Sediment Treatment (continued)	Zero-Valent Iron (ZVI)	ZVI targets metals and certain chlorinated volatile organic compounds. Zero-valent iron particles have a reactive surface that chemically reduces (transforms) and subsequently immobilizes a variety of arsenic species.	One of the most effective metal oxides for fixing As(III) and As(V) in appropriate geochemical conditions. Data from Play Area Interim Action treatability testing showed positive results for ZVI performance.	Technically implementable using readily available materials and standard cap placement methods.	High capital cost. Moderate O&M	Retained for dissolved arsenic in offshore groundwater. Demonstrated effectiveness for arsenic treatment at other sites and during Play Area treatability testing.
Sediment and Debris Removal	Land-Based Excavation	Removal of bank soil and nearshore sediment using common land-based earthwork equipment such as a backhoe during low-water periods. This technology may be used in conjunction with shoring/sheet pile walls, coffer dams, and dewatering techniques to conduct excavation in the dry.	Commonly used and effective for removing contaminated soil and sediment from shoreline areas that can be reached by land- based equipment. When combined with coffer-dam methods, can effectively remove sediment with limited potential for release of contaminants to surface water. If conducted under wet conditions, higher potential to generate contaminated residuals that require management.	Technically implementable for bank and nearshore shallow sediment areas. Permit and monitoring requirements can result in relatively higher costs and duration.	Moderate to high capital cost, depending on disposal requirements. Negligible O&M cost.	Retained. Effective and implementable for removal of bank soil, debris and/or sediment along the shoreline.
	Mechanical Dredging	Removal of sediment using conventional barge-mounted dredging techniques and equipment. Barge-mounted dredging is most often performed off-shore beyond the reach of land-based equipment and in water depths that allow access for the equipment. Contaminated sediment is removed through the water column. Mechanical dredging for remediation uses specialized dredging equipment and water quality controls specific for the project. Mechanical dredging would be reserved primarily for consolidated sediment that can be efficiently removed using environmental dredging methods.	Commonly used and effective at removing contaminated sediment. Removal effectiveness is dependent on sediment density, bottom slope and depth, presence of NAPL, equipment type and skill of the dredge operator. Almost all dredging generates contaminated residuals that must be managed. Pollution controls are necessary to reduce release of contaminants during dredging. Low removal productivity effectiveness in lake bottom area of AOI due to soft sediment/fluid mud. Low effectiveness for NAPL-impacted sediment due to the high risk of contaminant releases.	Mechanical dredging is commonly performed using readily available equipment to remove contaminated sediments. Technically implementable in some areas of the AOI. Mechanical dredging methods have lower implementability potential for the soft sediment conditions present in lake bottom area of the AOI. The reduced implementability results from the inability to completely capture sediment and contaminants released from the sediment during removal due to limits associated with environmental dredging methods and equipment that would be required (i.e., tight- closing environmental buckets).	High to very high capital cost, depending on disposal requirements. Negligible O&M cost.	Retained. Effective and implementable for removal of sediment and debris in areas that do not contain soft sediment or NAPL.

Technology Category	Remediation Technology	Description	Effectiveness	Implementability	Relative Cost	Screening Results
Sediment and Debris Removal (continued)	Hydraulic Dredging	Pumps are used to remove a mixture of water and sediment. Cutter heads are commonly added to enhance entrainment of more consolidated sediment but are expected to exacerbate mobilization of contaminants. Small scale operations conducted with the assistance of divers are capable of dredging near structures. Dredged sediment is processed on-site by dewatering prior to transport off-site for disposal.	Effective at removing solid- phase contaminants in sediment including areas inaccessible to excavation or mechanical dredging methods. Best suited for low density, high-water solids in areas generally less than 20 ft. of water. Not effective when debris is present. Slow removal process limits effectiveness to small-scale applications for contaminated sediment. Methods to increase removal rate, such as cutter heads, can increase potential to release contaminants and are more suited to clean dredging projects.	Potentially implementable, but large-scale implementation would require significant land area, equipment, and cost to dewater and handle dredged sediment. Hydraulic dredging produces a large volume of water that must be treated and discharged or disposed. Small scale, diver-assisted hydraulic dredging to remove sediment around existing structures would be implementable.	Moderate to high capital cost. Negligible O&M cost.	Retained for diver-assisted removal in limited areas (e.g., below over-water structures) that are inaccessible to excavation or mechanical dredging methods. Not retained for large scale due to the need for extensive dewatering facilities and large volume of water that must be treated and discharged or disposed.
Sediment Capping	Low Permeability (Enhanced) Cap - Clay / AquaBlok®	Installation of a low-permeability cap over contaminated sediment areas to prevent exposure, isolate contaminants, and prevent localized groundwater transport through impacted sediment. Clay cap installation would involve placement of low-permeability clay soil or bentonite aggregate (i.e., AquaBlok®) forming a low-permeability layer in conjunction with other cap components. Granular clay cap materials such as AquaBlok® can be used as thin isolation cap, for post- dredging residual management, or for directing groundwater discharge away from contaminated surface sediment.	Effective at isolating human and ecological receptors from potential direct exposure to contaminated sediment. Effective at directing groundwater away from impacted areas. Can be implemented in deep waters due to high particle density. Overall effectiveness requires addressing redirected groundwater.	Technically implementable using standard cap placement methods. Localized increased discharge at perimeter of low- permeability surface would need to be addressed.	Moderate to high capital cost compared to other capping technologies. Moderate O&M.	Retained. Effective, in conjunction with other capping methods, for directing groundwater discharge away from targeted impacted sediment.
	Low Permeability (Enhanced) Cap - Geomembrane / Composite	Installation of a low-permeability cap consisting of a thin composite or geomembrane placed over contaminated sediment to prevent exposure, isolate contaminants, and prevent localized groundwater discharge through impacted sediment. Cap would require placement of a bedding layer and layers of armor and habitat material to stabilize the cap.	Effective at isolating human and ecological receptors from potential direct exposure to contaminated sediment. Effective at directing groundwater away from impacted areas. Overall effectiveness requires addressing redirected groundwater.	Technically implementable using standard cap placement methods. Localized increased discharge at perimeter of low- permeability surface would need to be addressed.	Moderate capital cost. Moderate O&M cost due to the need to monitor and maintain cap surfaces within zone of high wave energy.	Retained. Effective, in conjunction with other capping methods, for directing groundwater discharge away from targeted impacted sediment.

Technology Category	Remediation Technology	Description	Effectiveness	Implementability	Relative Cost	Screening Results
	Low Permeability (Enhanced) Cap - Grout Mats	Geotextile form or 'pillow' filled with cement to form a rigid, low permeability surface, typically 3 to 8 inches thick. Prevents direct discharge of groundwater in area covered by mat. Typically restricted to use on slopes or surfaces not susceptible to settlement. Able to provide a thin cap profile that is also resistant to erosion for areas where a granular habitat-friendly surface is not necessary.	Effective at isolating human and ecological receptors from potential direct exposure to contaminated sediment using a robust cap profile that is resistant to erosion. Effective at directing groundwater away from impacted areas. Can be implemented in deep water. Overall effectiveness requires addressing redirected groundwater.	Technically implementable. Placement can be limited by the presence of structures or large debris. Grout mat surface may need to incorporate elements such as geogrids that allows placement of habitat substrate material over the grout mat where appropriate. Localized increased discharge at perimeter of low-permeability surface would need to be addressed.	Moderate capital cost. Low to moderate O&M costs.	Retained. Effective for directing groundwater discharge away from targeted impacted sediment. Implementable in limited areas where a thin, but robust, cap profile is needed.
Sediment Capping (continued)	Amended Sand (Enhanced) Cap	Amended capping involves incorporating a layer, or a mixture, of a retained in situ treatment amendment (activated carbon, organoclay, and/or ZVI) with a conventional sand cap to achieve contaminant treatment within the cap. Armoring is placed over the chemical isolation layer, where necessary to prevent erosion and ensure cap longevity.	Effective for treating and containing contaminants within the cap, particularly in high flux conditions. Commonly used for sediment capping applications with mobile contaminants and NAPL. Multiple chemicals can be addressed with a layered application of multiple treatment amendments.	Technically implementable using standard cap placement methods. Amendments are applicable mixed in bulk with sand cap material or incorporated into reactive mats.	Moderate to high capital cost. Moderate O&M cost.	Retained. Effective, implementable and has been successfully used at many full-scale sites.
	Conventional Sand Cap	Installation of a 2- or 3-foot chemical isolation layer comprised of clean sand isolates contaminants. Attenuation of impacted groundwater within the cap can consist of adsorption, biodegradation, and abiotic transformation. Armoring is placed over the chemical isolation layer, where necessary to prevent erosion and ensure cap longevity.	Commonly used technology and is effective for isolating and preventing exposure to contaminated sediment by human and environmental receptors. Guidance and design standards are readily available (i.e., US Army Corps of Engineers) to ensure effective cap design.	Technically implementable using standard cap placement methods. Sediment caps have been successfully constructed in multiple Puget Sound locations, and at aquatic sites across the country.	Low to moderate capital cost depending on the design of the cap to resist wave erosion, or the installation of other features to minimize wave energy on the cap. Low to moderate O&M cost	Retained. Effective, implementable common method to contain contaminated sediment.
Natural Recovery Processes	Monitored Natural Recovery (MNR)	Reduction of chemical concentrations of contaminants through natural processes such as deposition of clean sediment, mixing and biodegradation. Monitoring is performed to verify natural recovery within a reasonable time frame.	Effective in areas with relatively low contaminant concentrations/risk where sedimentation rates and incoming sediment quality are adequate to meet restoration goals. Risk reduction occurs incrementally over the restoration period.	Technically implementable. Monitoring would be required to confirm recovery rate.	Negligible capital cost. Moderate O&M cost.	Retained. Effective, implementable common method for low-level sediment contamination.

Technology Category	Remediation Technology	Description	Effectiveness	Implementability	Relative Cost	Screening Results
	Enhanced Natural Recovery	Natural recovery is enhanced by placement of a thin layer of sand. Technology relies on natural mixing processes (e.g., bioturbation) and deposition of clean sediment, and/or biodegradation to reduce contaminant levels. Like MNR, monitoring is performed to confirm performance and rate of recovery.	Effective in areas with relatively low contaminant concentrations/risk where sedimentation rates and incoming sediment quality are adequate to meet restoration goals. Initial placement of material typically equivalent to the thickness of biologically active zone, supplements natural sedimentation, reducing risks in the short-term. Long- term risk reduction continues incrementally over the restoration period following the initial enhancement.	Feasibility depends on the specific physical environment and constituent concentrations. Allows sensitive habitats such as those with significant vegetation to be preserved; however, may require several thin-layer placements to minimize impacts. Has been used throughout Puget Sound.	Low to moderate capital and O&M costs.	Retained. Effective, implementable common method for low-level sediment contamination.

Bold indicates that the Remediation Technology was retained. AC = activated carbon ALU = ambient Lake Union AOI = area of investigation As = arsenic As (III) = arsenite species As (V)= arsenate species ENR = enhanced natural recovery

ECRT = Electro-Chemical Reduction Technology GWPS = Gas Works Park Site MNR = monitored natural recovery NAPL = nonaqueous phase liquid 0&M = operation and maintenance PAHs = polycyclic aromatic hydrocarbons

TABLE 11-3. APPLICATION OF RETAINED TECHNOLOGIES TO SCU CONDITIONS

Retained Remediation Technology	Remediation Technology Description	Specific Conditions where Remediation Technology Applies ¹					
ARSENIC IN UPLAND G	ROUNDWATER REMEDIATION TECHNOLOGIES						
Groundwater Natural Attenuation	Reduction of dissolved arsenic by natural adsorption and precipitation processes. Monitoring groundwater to evaluate performance of natural attenuation.	 Upland groundwater where arsenic is present at concentrations greater than preliminary cleanup levels, to a lower degree, at the shoreline and in downgradient limits of the arsenic plume. 					
Fixation	In-situ treatment of arsenic-impacted upland groundwater with chemical reagents to modify geochemical conditions and promote precipitation of arsenic.	• Upland groundwater where arsenic in the outwash is present at concentrations greater than preliminary cleanup levels, to a higher degree, immediately upland of the shoreline.					
SEDIMENT REMEDIAT	SEDIMENT REMEDIATION TECHNOLOGIES						
In Situ Sediment Trea	tment (see Amended Sand (Enhanced) Cap below)						
Activated Carbon	Use of activated carbon as a sediment cap component to adsorb organic contaminants migrating into the cap. Activated carbon is blended with a sand cap material or incorporated into geotextile mats to facilitate installation.	• Sediment areas where advective transport of mobile contaminants (benzene, naphthalene) to surface sediment and surface water is occurring.					
Organophilic Clay	Use of organoclay as a sediment cap component to absorb NAPL and/or to adsorb dissolved organic contaminants, primarily PAHs, migrating into the cap. Granular or powdered organoclay can be blended with a sand cap material or incorporated into geotextile mats to facilitate installation.	 Isolated lakeshore and lake slope sediment areas where tar is exposed at the surface. Lake slope and lake bottom sediment areas containing shallow subsurface NAPL. Sediment areas where advective transport of PAHs to surface sediment and surface water is occurring. 					
Zero-valent Iron	Use of ZVI as a sediment cap component to promote the adsorption and precipitation of arsenic in sediment and porewater. Granular ZVI can be mixed with sand cap material or placed in layers isolated from other cap materials.	 Sediment areas where advective transport of arsenic to surface sediment and surface water is occurring. 					

¹ The sediment remediation technologies are protective of benthic toxicity from and direct contact and bioaccumulation exposures to GWPS and ALU COC contaminated sediment. The site-specific conditions noted for each technology are the unique conditions applicable to each technology.

Retained Remediation Technology	Remediation Technology Description	Specific Conditions where Remediation Technology Applies ¹
Sediment and Debris	Removal	
Land-Based Excavation	Excavation of contaminated bank soil and shallow nearshore sediment using land-based equipment for mass removal and/or to prepare the sediment surface to achieve the desired finished grade for capping.	 Shoreline bank soil areas that are exposed at the surface and have the potential to be eroded and transported to sediment. Shoreline bank soil and lakeshore sediment areas where tar is exposed at the surface. Lakeshore and lake slope sediment areas that are within reach of land-based excavation equipment. Sediment areas where excavation will not expose NAPL. Sediment areas where the water depth is appropriate for installation of a cofferdam to manage water and residuals during excavation.
Mechanical Dredging	Removal of offshore contaminated sediment through the water column using barge-mounted mechanical dredging methods. Limited to areas without NAPL-impacted sediment and without a significant thickness of soft sedment.	 Sediment areas where removal of arsenic and PAH contaminated material through the water column while managing loss of contaminants is feasible. Sediment areas where dredging will not encounter or expose NAPL and potentially release contamination to the water column. Lakeshore sediment areas and shallow areas of the lake slope where accumulation of soft sediment is less than 2-feet thick, and maximum water depths range from 20 to 30 feet.
Hydraulic Dredging	Removal of sediment using diver-assisted hydraulic dredging method in limited areas around shoreline structures that are inaccessible by land-based excavation or mechanical dredging methods.	 Lakeshore and lake slope sediment areas where arsenic and PAH contaminated sediment is not accessible by land-based excavation or mechanical dredging methods due to access or obstructions.
Sediment Capping		
Low-permeability (Enhanced) Cap - Clay/ AquaBlok®	Placement of low-permeability cap consisting of a clay material such as bentonite or a proprietary product like AquaBlok® in areas of contaminated sediment affected by groundwater discharge. The low permeability cap will prevent direct discharge of groundwater flowing through contaminated sediment. Low-permeability capping would be implemented in conjunction with amended capping in adjacent areas where groundwater is redirected to provide treatment prior to discharge.	 Lakeshore and lake slope sediment areas where tar is exposed at the surface. Groundwater discharge areas in sediment resulting in transport of mobile contaminants to surface sediment and surface water. Lakeshore and lake slope sediment areas with shallow subsurface NAPL.
Low-permeability (Enhanced) Cap - Geomembrane/ Composite	Placement of a low-permeability geomembrane or grout mat in nearshore areas of contaminated sediment affected by groundwater discharge. Similar to a clay low-permeability cap, these low-permeabiliy cap methods will prevent the	 Lakeshore and lake slope sediment areas where tar is exposed at the surface. Groundwater discharge areas in sediment resulting in transport of mobile contaminants to surface sediment and surface water.

Retained Remediation Technology	Remediation Technology Description	Specific Conditions where Remediation Technology Applies ¹
Low-permeability (Enhanced) Cap - Grout Mat	direct discharge of groundwater that is flowing through contaminated sediment. Low-permeability capping would be implemented in conjunction with amended capping in adjacent areas where groundwater is redirected to provide treatment prior to discharge.	 Lakeshore and lake slope sediment areas with shallow subsurface NAPL. Nearshore, shallow sediment areas where placement of large sheets or mats is feasible.
Amended Sand (Enhanced) Cap	Amended sand capping involves incorporating a layer, or a mixture, of a retained in situ treatment amendment (activated carbon, organoclay, and/or ZVI) with a conventional sand cap to achieve contaminant treatment within the cap. Armoring is placed over the chemical isolation layer, where necessary to prevent erosion and ensure cap longevity.	 Sediment areas where advective transport of mobile contaminants (benzene, naphthalene, PAHs, arsenic) to surface sediment and surface water is occurring. Isolated lakeshore and lake slope sediment areas where tar is exposed at the surface. Lake slope and lake bottom sediment areas containing shallow subsurface NAPL.
Conventional Sand Cap	Placement of a clean sand cap at least 2-feet-thick in areas of contaminated sediment that primarily require isolation, with limited attenuation needed within the cap material. Sand cap thickened for some areas to increase degree of isolation and attenuation.	 Lakeshore and lake slope sediment areas where tar is exposed at the surface. Sediment areas where advective transport of mobile contaminants to surface sediment and surface water is occurring. Sediment areas containing shallow subsurface NAPL.
Sediment Natural Rec	covery	
Monitored Natural Recovery	Natural sedimentation to achieve preliminary cleanup levels within the restoration timeframe through burial and mixing.	 Lake bottom sediment areas that are depositional. Lake bottom sediment areas where PAHs and arsenic are at concentrations low enough to recover to preliminary cleanup levels within the restoration timeframe.
Enhanced Natural Recovery	Placement of small quantities of sand to augment ongoing natural sedimentation, burial and mixing to achieve preliminary cleanup levels within the restoration timeframe.	 Lake bottom sediment areas that are depositional. Lake bottom sediment areas that are depositional and PAHs and arsenic are at concentrations moderately higher than background. These areas would be capable of recovery to preliminary cleanup levels within a reasonable restoration timeframe following placement of a thin mixing layer of clean sand to accelerate recovery.

TABLE 11-4 APPLICATION OF RETAINED TECHNOLOGIES TO MANAGEMENT AREA
--

Management Area	Environmental and Use Conditions Informing Cleanup	Technologies Applicable to Management Area
GWMA-1	 Arsenic in deep groundwater immediately upland of the Lake Union shoreline at concentrations greater than preliminary cleanup levels 	 In situ chemical fixation of arsenic using proven ferrous sulfate treatment Monitored natural attenuation
SMA-1	 Uncapped bank soil impacted by tar and PAHs above preliminary levels Uncapped bank soil that can be eroded and transported to sediment Used by the public for recreation 	 Land-based excavation of exposed tar, including the tar mound Land-based excavation and capping as needed to integrate upland surface with adjacent sediment remedy
SMA-2	 Uncapped bank soil impacted by tar and PAHs above preliminary cleanup levels Uncapped bank soil that can be eroded and transported to sediment Used by the public for recreation 	 Land-based excavation and capping as needed to integrate upland surface with adjacent sediment remedy
SMA-3	 PAH and arsenic concentrations in sediment greater than preliminary cleanup levels Advective transport of VOCs, PAHs, and arsenic Area of sediment benthic toxicity Used for vessel navigation and used by the public for recreation. 	 Land-based excavation Conventional sand capping Amended (enhanced) sand capping (ZVI, AC, OC) Low permeability (enhanced) capping
SMA-4	 PAH concentrations in sediment greater than preliminary cleanup levels Advective transport of VOCs and PAHs Area of sediment benthic toxicity Used for vessel navigation and used by the public for recreation. 	 Land-based excavation Conventional sand capping Amended (enhanced) sand capping (AC, OC) Low permeability (enhanced) capping
SMA-5	 PAH concentrations in sediment greater than preliminary cleanup levels Advective transport of VOCs and PAHs Area of sediment benthic toxicity Used for vessel navigation and mooring including the Harbor Patrol. Waterway 20 is used as a public boat ramp and is expected to be used by the public for recreation in the future 	 Land-based excavation Small-scale hydraulic dredging in access restricted areas Mechanical dredging Conventional sand capping Amended (enhanced) sand capping (AC, OC) Low permeability (enhanced) capping
SMA-6	 PAH concentrations in sediment greater than preliminary cleanup levels Area of sediment benthic toxicity Used for vessel navigation and used by the public for recreation. 	 Land-based excavation (part) Mechanical dredging Conventional sand capping

Management Area	Environmental and Use Conditions Informing Cleanup	Technologies Applicable to Management Area
SMA-7	 PAH and arsenic concentrations in sediment greater than preliminary cleanup levels Advective transport of VOCs, PAHs, and arsenic Area of sediment benthic toxicity Shallow subsurface NAPL Used for vessel navigation and mooring including the Gasworks Park Marina. 	 Conventional sand capping Amended (enhanced) sand capping (ZVI, AC, OC) Low permeability (enhanced) capping
SMA-8	 PAH concentrations in sediment greater than preliminary cleanup levels Area of sediment benthic toxicity Shallow subsurface NAPL Used for vessel navigation. 	 Conventional sand capping Amended (enhanced) sand capping (OC)
SMA-9	 Shallow subsurface NAPL PAH concentrations in sediment greater than preliminary cleanup levels Advective transport of VOCs and PAHs Areas of sediment benthic toxicity Used for vessel navigation and mooring including the Harbor Patrol and part of a shipyard facility. 	 Conventional sand capping Amended (enhanced) sand capping (AC, OC) Low permeability (enhanced) capping Small-scale hydraulic dredging around structures
SMA-10	 PAH concentrations in sediment greater than preliminary cleanup levels Used for vessel navigation and mooring including the Gasworks Park Marina. 	 Conventional sand capping Small-scale hydraulic dredging around structures Mechanical dredging
SMA-11	 PAH concentrations in sediment greater than preliminary cleanup levels Used for vessel navigation and used by the public for recreation. 	 Conventional sand capping
SMA-12	 Shallow subsurface NAPL PAH and arsenic concentrations in sediment greater than preliminary cleanup levels Co-located shipyard metals contamination Areas of sediment benthic toxicity Used for vessel navigation and mooring including part of a shipyard facility. 	 Conventional sand capping Amended (enhanced) sand capping (ZVI, OC)
SMA-13	 PAH and arsenic concentrations in sediment greater than preliminary cleanup levels Co-located shipyard metals contamination Areas of sediment benthic toxicity Lake Bottom soft sediment Used for vessel navigation. 	Conventional sand cappingEnhanced natural recovery

Management Area	Environmental and Use Conditions Informing Cleanup	Technologies Applicable to Management Area
SMA-14	 PAH concentrations in sediment greater than preliminary cleanup levels, but levels are lower than SMA-13. Lake Bottom soft sediment Used for vessel navigation. 	Monitored natural recoveryEnhanced natural recovery

GWMA = Groundwater management area

SMA = Sediment management area

PAH = polycyclic aromatic hydrocarbon

NAPL = nonaqueous phase liquid

AC = activated carbon

OC = organoclay

VOCs = volatile organic compounds

ZVI = zero-valent iron

TABLE 12-1. SUMMARY OF CLEANUP ACTION ALTERNATIVES

Management Areas	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6	Alternative 7	Alternative 8
 Description of Alternative • • 	Nearshore dredging using land-based methods where feasible to prevent loss of aquatic lands due to capping (1.3 acres, 6,300 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Conventional sand capping in nearshore and offshore areas, thickened in nearshore areas with higher potential for advective transport and offshore areas with shallow NAPL (23.5 acres). ENR and MNR in depositional offshore areas with lower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (2,450 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre). Institutional controls.	 Nearshore dredging using land-based methods where feasible to prevent loss of aquatic lands due to capping (1.3 acres, 6,300 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Enhanced capping, consisting of amended capping technologies in select nearshore areas with higher potential for advective transport (1.5 acres). Conventional sand capping in areas nearshore and offshore areas with lower potential for advective transport, thickened in offshore areas with shallow NAPL (22.0 acres). ENR and MNR in depositional offshore areas with lower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (2,450 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre). Institutional controls. 	 Nearshore dredging using land-based methods where feasible to prevent loss of aquatic lands due to capping (1.3 acres, 6,300 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Enhanced capping, consisting of enhanced (low- permeability) cap and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL (9.1 acres). Conventional sand capping in nearshore and offshore areas with lower potential for advective transport (14.4 acres). ENR and MNR in depositional offshore areas with lower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (2,450 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre). Institutional controls. 	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping (1.3 acres, 12,600 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Enhanced capping, consisting of enhanced (low- permeability) cap and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL (1.8 acres). Conventional sand capping in nearshore and offshore areas, thickened in offshore areas, thickened in offshore areas with shallow NAPL (21.7 acres). ENR and MNR in depositional offshore areas with lower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (4,780 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre). Institutional controls. 	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping (1.3 acres, 12,600 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Enhanced capping, consisting of enhanced (low- permeability) cap and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL (4.0 acres). Conventional sand capping in nearshore and offshore areas, thickened in offshore areas, thickened in offshore areas with shallow NAPL (19.4 acres). ENR and MNR in depositional offshore areas with lower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (4,780 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre). Institutional controls. 	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping (1.3 acres, 12,600 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Enhanced capping, consisting of enhanced (low- permeability) cap and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL (5.1 acres). Conventional sand capping in nearshore and offshore areas, thickened in offshore areas, thickened in offshore areas, thickened in offshore areas, thickened in offshore areas with shallow NAPL (18.3 acres). ENR and MNR in depositional offshore areas with lower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (4,780 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre). Institutional controls. 	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping (1.3 acres, 12,600 cy). Offshore dredging to the maximum extent practicable in areas with a limited risk of mobilizing contaminants because of the dredging (1 acre, 8,100 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Enhanced capping, consisting of enhanced (low-permeability) cap and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL (9.1 acres). Conventional sand capping in nearshore and offshore areas (13.1 acres). ENR in depositional offshore areas with lower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (4,780 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre). 	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping (1.3 acres, 12,600 cy) Offshore dredging to the maximum extent practicable in areas with a limited risk of mobilizing contaminants because of the dredging (1 acre, 8,100 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Enhanced capping, consisting of enhanced (low-permeability) cap and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL (9.1 acres). Conventional sand capping in nearshore and offshore areas (23.3 acres). ENR in depositional offshore areas with lower contaminant concentrations (22.7 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (4,780 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre).
				Page 1 of 5				Table 12-1 January 2023

Management Areas	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6	Alternative 7	Alternative 8
GWMA-1	• In-situ treatment of arsenic-	 In-situ treatment of arsenic-	 In-situ treatment of arsenic-	 In-situ treatment of arsenic-	 In-situ treatment of arsenic-	 In-situ treatment of arsenic-	 In-situ treatment of arsenic-	 In-situ treatment of arsenic-
	impacted groundwater	impacted groundwater	impacted groundwater	impacted groundwater	impacted groundwater	impacted groundwater	impacted groundwater	impacted groundwater
	within a footprint of	within a footprint of	within a footprint of	within a footprint of	within a footprint of	within a footprint of	within a footprint of	within a footprint of
	approximately 0.20 acres by	approximately 0.20 acres by	approximately 0.20 acres by	approximately 0.20 acres by	approximately 0.20 acres by	approximately 0.20 acres by	approximately 0.20 acres by	approximately 0.20 acres by
	combined application of	combined application of	combined application of	combined application of	combined application of	combined application of	combined application of	combined application of
	fixation and monitored	fixation and monitored	fixation and monitored	fixation and monitored	fixation and monitored	fixation and monitored	fixation and monitored	fixation and monitored
	natural attenuation.	natural attenuation.	natural attenuation.	natural attenuation.	natural attenuation.	natural attenuation.	natural attenuation.	natural attenuation.
SMA-1	 Remove tar mound	 Remove tar mound	 Remove tar mound	 Remove tar mound	 Remove tar mound	 Remove tar mound	 Remove tar mound	 Remove tar mound
	(approximately 190 cy) with	(approximately 190 cy) with	(approximately 190 cy) with	(approximately 190 cy) with	(approximately 190 cy) with	(approximately 190 cy) with	(approximately 190 cy) with	(approximately 190 cy) with
	off-site disposal. Excavate shallow bank soil	off-site disposal. Excavate shallow bank soil	off-site disposal. Excavate shallow bank soil	off-site disposal. Excavate shallow bank soil	off-site disposal. Excavate shallow bank soil	off-site disposal. Excavate shallow bank soil	off-site disposal. Excavate shallow bank soil	off-site disposal. Excavate shallow bank soil
	(approximately 2,120 cy)	(approximately 2,120 cy)	(approximately 2,120 cy)	(approximately 4,310 cy)	(approximately 4,310 cy)	(approximately 4,310 cy)	(approximately 4,310 cy)	(approximately 4,310 cy)
	where feasible prior to	where feasible prior to	where feasible prior to	where feasible prior to	where feasible prior to	where feasible prior to	where feasible prior to	where feasible prior to
	capping to accommodate	capping to accommodate	capping to accommodate	capping to accommodate	capping to accommodate	capping to accommodate	capping to accommodate	capping to accommodate
	cap placement and match	cap placement and match	cap placement and match	cap placement and match	cap placement and match	cap placement and match	cap placement and match	cap placement and match
	pre- and post-cap grades	pre- and post-cap grades	pre- and post-cap grades	pre- and post-cap grades	pre- and post-cap grades	pre- and post-cap grades	pre- and post-cap grades	pre- and post-cap grades
	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated
	cap on bank area over a	cap on bank area over a	cap on bank area over a	cap on bank area over a	cap on bank area over a	cap on bank area over a	cap on bank area over a	cap on bank area over a
	footprint of approximately	footprint of approximately	footprint of approximately	footprint of approximately	footprint of approximately	footprint of approximately	footprint of approximately	footprint of approximately
	0.70 acres.	0.70 acres.	0.70 acres.	0.70 acres.	0.70 acres.	0.70 acres.	0.70 acres.	0.70 acres.
SMA-2	 Excavate shallow bank soil	 Excavate shallow bank soil	 Excavate shallow bank soil	 Excavate shallow bank soil	 Excavate shallow bank soil	 Excavate shallow bank soil	 Excavate shallow bank soil	 Excavate shallow bank soil
	(approximately 140 cy)	(approximately 140 cy)	(approximately 140 cy)	(approximately 280 cy)	(approximately 280 cy)	(approximately 280 cy)	(approximately 280 cy)	(approximately 280 cy)
	where feasible prior to	where feasible prior to	where feasible prior to	where feasible prior to	where feasible prior to	where feasible prior to	where feasible prior to	where feasible prior to
	capping to accommodate	capping to accommodate	capping to accommodate	capping to accommodate	capping to accommodate	capping to accommodate	capping to accommodate	capping to accommodate
	cap placement and match	cap placement and match	cap placement and match	cap placement and match	cap placement and match	cap placement and match	cap placement and match	cap placement and match
	pre- and post-cap grades	pre- and post-cap grades	pre- and post-cap grades	pre- and post-cap grades	pre- and post-cap grades	pre- and post-cap grades	pre- and post-cap grades	pre- and post-cap grades
	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated	immediately below the OHW. Place permeable vegetated
	cap on bank area over a	cap on bank area over a	cap on bank area over a	cap on bank area over a	cap on bank area over a	cap on bank area over a	cap on bank area over a	cap on bank area over a
	footprint of approximately	footprint of approximately	footprint of approximately	footprint of approximately	footprint of approximately	footprint of approximately	footprint of approximately	footprint of approximately
	0.05 acres.	0.05 acres.	0.05 acres.	0.05 acres.	0.05 acres.	0.05 acres.	0.05 acres.	0.05 acres.
SMA-3	 Dredge nearshore (approximately 4,900 cy) using land-based methods where feasible to mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.35 acres). Place conventional sand cap of 3-foot or greater thickness (approximately 0.65 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 4,900 cy) using land-based methods where feasible to mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.35 acres). Place enhanced (amended sand) cap (approximately 0.65 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 4,900 cy) using land-based methods where feasible to mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.35 acres). Place enhanced (low- permeability) cap (approximately 0.65 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 9,800 cy) using land-based methods where feasible to reduce mass of contaminants from within the cap limits and mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.35 acres). Place enhanced (amended sand) cap (approximately 0.65 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 9,800 cy) using land-based methods where feasible to reduce mass of contaminants from within the cap limits and mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.35 acres). Place enhanced (low- permeability) cap (approximately 0.65 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 9,800 cy) using land-based methods where feasible to reduce mass of contaminants from within the cap limits and mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.35 acres). Place enhanced (low- permeability) cap (approximately 0.65 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 9,800 cy) using land-based methods where feasible to reduce mass of contaminants from within the cap limits and mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.35 acres). Place enhanced (low- permeability) cap (approximately 0.65 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 9,800 cy) using land-based methods where feasible to reduce mass of contaminants from within the cap limits and mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.35 acres). Place enhanced (low- permeability) cap (approximately 0.65 acres) in areas of potential advective transport and shallow NAPL.

Management Areas	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6	Alternative 7	Alternative 8
SMA-4	 Dredge nearshore (approximately 1,400 cy) using land-based methods where feasible to mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.20 acres). Place conventional sand cap of 3-foot or greater thickness (approximately 0.08 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 1,400 cy) using land-based methods where feasible to mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.07 acres). Place enhanced (amended sand) cap (approximately 0.21 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 1,400 cy) using land-based methods where feasible to mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.07 acres). Place enhanced (low- permeability) cap (approximately 0.21 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 2,800 cy) using land-based methods where feasible to reduce mass of contaminants from within the cap limits and mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.20 acres). Place enhanced (low- permeability) cap (approximately 0.08 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 2,800 cy) using land-based methods where feasible to reduce mass of contaminants from within the cap limits and mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.20 acres). Place enhanced (low- permeability) cap (approximately 0.08 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 2,800 cy) using land-based methods where feasible to reduce mass of contaminants from within the cap limits and mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.07 acres). Place enhanced (low-permeability) cap (approximately 0.21 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 2,800 cy) using land-based methods where feasible to reduce mass of contaminants from within the cap limits and mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.07 acres). Place enhanced (low- permeability) cap (approximately 0.21 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge nearshore (approximately 2,800 cy) using land-based methods where feasible to reduce mass of contaminants from within the cap limits and mitigate for the elevation effect of cap placement on surface water footprint. Place conventional 2-foot sand cap (approximately 0.07 acres). Place enhanced (low- permeability) cap (approximately 0.21 acres) in areas of potential advective transport and shallow NAPL.
SMA-5	 Dredge using mechanical or hydraulic methods (approximately 2,900 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary Place conventional 2-foot sand cap (approximately 0.42 acres). Place conventional sand cap of 3-foot or greater thickness (approximately 0.18 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge using mechanical or hydraulic methods (approximately 2,900 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary. Place enhanced (amended sand) cap (approximately 0.60 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge using mechanical or hydraulic methods (approximately 2,900 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary Place enhanced (low- permeability) cap (approximately 0.60 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge using mechanical or hydraulic methods (approximately 2,900 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary. Place conventional 2-foot sand cap (approximately 0.42 acres). Place enhanced (low- permeability) cap (approximately 0.18 acres) in areas of potential advective transport and shallow NAPL. 	 Dredge using mechanical or hydraulic methods (approximately 2,900 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary Place conventional 2-foot sand cap (approximately 0.42 acres). Place enhanced (low- permeability) cap (approximately 0.18 acres) to address potential advective transport and shallow NAPL. 	 Dredge using mechanical or hydraulic methods (approximately 2,900 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary Place enhanced (low- permeability) cap (approximately 0.60 acres) to address potential advective transport and shallow NAPL. 	 Dredge using mechanical or hydraulic methods (approximately 2,900 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary Place enhanced (low- permeability) cap (approximately 0.60 acres) to address potential advective transport and shallow NAPL. 	 Dredge using mechanical or hydraulic methods (approximately 2,900 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary Place enhanced (low- permeability) cap (approximately 0.60 acres) to address potential advective transport and shallow NAPL.
SMA-6	 Place conventional 2-foot sand cap (approximately 2.3 acres). 	 Place conventional 2-foot sand cap (approximately 2.3 acres). 	 Place conventional 2-foot sand cap (approximately 2.3 acres). 	 Place conventional 2-foot sand cap (approximately 2.3 acres). 	Place conventional 2-foot sand cap (approximately 2.3 acres).	 Place conventional 2-foot sand cap (approximately 2.3 acres). 	 Dredging (approximately 8,100 cy) to the maximum extent practicable to reduce contaminant mass. Place conventional 2-foot sand cap (approximately 2.3 acres). 	 Dredging (approximately 8,100 cy) to the maximum extent practicable to reduce contaminant mass. Place conventional 2-foot sand cap (approximately 2.3 acres).
SMA-7	 Place conventional 2-foot sand cap (approximately 0.85 acres). Place conventional sand cap of 3-foot or greater thickness (approximately 1.10 acres) to address potential advective transport and shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 0.85 acres). Place conventional sand cap of 3-foot or greater thickness (approximately 1.10 acres) to address potential advective transport and shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 0.30 acres). Place enhanced (amended sand) cap (approximately 1.65 acres) to address potential advective transport and shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 0.85 acres). Place conventional sand cap of 3-foot or greater thickness (approximately 1.10 acres) to address potential advective transport and shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 0.30 acres). Place enhanced (amended sand) cap (approximately 1.65 acres to address potential advective transport and shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 0.30 acres). Place enhanced (amended sand) cap (approximately 1.65 acres) to address potential advective transport and shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 0.30 acres). Place enhanced (amended sand) cap (approximately 1.65 acres) to address potential advective transport and shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 0.30 acres). Place enhanced (amended sand) cap (approximately 1.65 acres) to address potential advective transport and shallow NAPL.

Management Areas	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6	Alternative 7	Alternative 8
SMA-8	 Place conventional sand cap of 3-foot or greater thickness (approximately 0.59 acres) to address shallow NAPL. 	 Place conventional sand cap of 3-foot or greater thickness (approximately 0.59 acres) to address shallow NAPL. 	 Place enhanced (amended sand) cap (approximately 0.59 acres) to address shallow NAPL. 	 Place conventional sand cap of 3-foot or greater thickness (approximately 0.59 acres) to address shallow NAPL. 	 Place enhanced (amended sand) cap (approximately 0.59 acres) to address shallow NAPL. 	 Place conventional sand cap of 3-foot or greater thickness (approximately 0.59 acres) to address shallow NAPL. 	 Place enhanced (amended sand) cap (approximately 0.59 acres) to address shallow NAPL. 	 Place enhanced (amended sand) cap (approximately 0.59 acres) to address shallow NAPL.
SMA-9	 Place conventional sand cap of 3-foot or greater thickness (approximately 2.85 acres) to address potential advective transport and shallow NAPL. 	 Place conventional sand cap of 3-foot or greater thickness (approximately 2.85 acres) to address potential advective transport and shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 0.85 acres). Place enhanced (amended sand) cap (approximately 2 acres) in areas of potential advective transport and shallow NAPL. 	 Place conventional sand cap of 3-foot or greater thickness (approximately 2 acres) in areas containing shallow NAPL. Place enhanced (amended sand) cap (approximately 0.85 acres) in areas of potential advective transport. 	 Place conventional sand cap of 3-foot or greater thickness (approximately 2 acres) in areas containing shallow NAPL. Place enhanced (amended sand) cap (approximately 0.85 acres) to address potential advective transport and shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 0.85 acres). Place enhanced (amended sand) cap (approximately 2 acres) to address potential advective transport and shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 0.85 acres). Place enhanced (amended sand) cap (approximately 2 acres) to address potential advective transport and shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 0.85 acres). Place enhanced (amended sand) cap (approximately 2 acres) to address potential advective transport and shallow NAPL.
SMA-10	 Dredge using mechanical or hydraulic methods (approximately 700 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary. Place conventional 2-foot sand cap (approximately 0.55 acres). 	 Dredge using mechanical or hydraulic methods (approximately 700 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary. Place conventional 2-foot sand cap (approximately 0.55 acres). 	 Dredge using mechanical or hydraulic methods (approximately 700 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary. Place conventional 2-foot sand cap (approximately 0.55 acres). 	 Dredge using mechanical or hydraulic methods (approximately 700 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary. Place conventional 2-foot sand cap (approximately 0.55 acres). 	 Dredge using mechanical or hydraulic methods (approximately 700 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary. Place conventional 2-foot sand cap (approximately 0.55 acres). 	 Dredge using mechanical or hydraulic methods (approximately 700 cy) to prevent shallowing water depths to less than 15 feet in the vicinity of structures and in navigation areas, where necessary. Place conventional 2-foot sand cap (approximately 0.55 acres). 	 Dredge (approximately 900 cy) to the maximum extent practicable to reduce contaminant mass. Place conventional 2-foot sand cap (approximately 0.55 acres). 	 Dredge (approximately 900 cy) to the maximum extent practicable to reduce contaminant mass. Place conventional 2-foot sand cap (approximately 0.55 acres).
SMA-11	 Place conventional 2-foot sand cap (approximately 6.15 acres). 	 Place conventional 2-foot sand cap (approximately 6.15 acres). 	 Place conventional 2-foot sand cap (approximately 6.15 acres). 	 Place conventional 2-foot sand cap (approximately 6.15 acres). 	 Place conventional 2-foot sand cap (approximately 6.15 acres). 	 Place conventional 2-foot sand cap (approximately 6.15 acres). 	 Place conventional 2-foot sand cap (approximately 6.15 acres). 	 Place conventional 2-foot sand cap (approximately 6.15 acres).
SMA-12	 Place conventional 2-foot sand cap (approximately 3.78 acres). Place conventional sand cap of 3-foot or greater thickness (approximately 3.40 acres) to address shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 3.78 acres). Place conventional sand cap of 3-foot or greater thickness (approximately 3.40 acres) to address shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 3.78 acres). Place enhanced (amended sand) cap (approximately 3.40 acres) to address shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 3.78 acres). Place conventional sand cap of 3-foot or greater thickness (approximately 3.40 acres) to address shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 3.78 acres). Place conventional sand cap of 3-foot or greater thickness (approximately 3.40 acres) to address shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 3.78 acres). Place conventional sand cap of 3-foot or greater thickness (approximately 3.40 acres) to address shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 3.78 acres). Place enhanced (amended sand) cap (approximately 3.40 acres) to address shallow NAPL. 	 Place conventional 2-foot sand cap (approximately 3.78 acres). Place enhanced (amended sand) cap (approximately 3.40 acres) to address shallow NAPL.
SMA-13	 Place sand to accelerate natural recovery processes and monitor(approximately 10.2 acres). 	 Place sand to accelerate natural recovery processes and monitor (approximately 10.2 acres). 	 Place sand to accelerate natural recovery processes and monitor (approximately 10.2 acres). 	 Place sand to accelerate natural recovery processes and monitor (approximately 10.2 acres). 	 Place sand to accelerate natural recovery processes and monitor (approximately 10.2 acres). 	 Place sand to accelerate natural recovery processes and monitor(approximately 10.2 acres). 	 Place sand to accelerate natural recovery processes and monitor (approximately 10.2 acres). 	 Place conventional 2-foot sand cap (approximately 10.2 acres).
SMA-14	 Monitor natural recovery processes (approximately 22.7 acres). 	 Monitor natural recovery processes(approximately 22.7 acres). 	 Monitor natural recovery processes (approximately 23 acres). 	 Monitor natural recovery processes (approximately 22.7 acres). 	 Monitor natural recovery processes (approximately 22.7 acres). 	 Monitor natural recovery processes (approximately 22.7acres). 	 Monitor natural recovery processes (approximately 22.7 acres). 	 Place sand to accelerate natural recovery processes and monitor (approximately 22.7 acres).

Notes:

Amendments for the sand cap to be determined based on results of cap modeling.

cy = cubic yards	ENR = enhanced natural recovery
MNR = monitored natural recovery	NAPL = nonaqueous phase liquid
SMA = Sediment Management Area	

GWMA = Groundwater Management Area OHW = ordinary high water

TABLE 13-1. : SMS MINIMUM REQUIREMENTS FOR SEDIMENT CLEANUP ACTIONS: EVALUATION OF ALTERNATIVES

	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Description of Alternative Minimum Requirements for Sediment Cleanup Actions	 Nearshore dredging using land-based methods where feasible to prevent loss of aquatic lands due to capping Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses. Conventional sand capping in nearshore and offshore areas, thickened in nearshore areas with higher potential for advective transport and offshore areas with shallow NAPL. ENR and MNR in depositional offshore areas with lower contaminant concentrations. Permeable vegetated capping on shoreline bank area. Shallow tar removal on shoreline. In situ treatment of upland groundwater arsenic. 	 Nearshore dredging using land-based methods where feasible to prevent loss of aquatic lands due to capping. Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses. Enhanced capping, consisting of low-permeability and/or amended capping technologies in select nearshore areas with higher potential for advective transport. Conventional sand capping in areas nearshore and offshore areas with lower potential for advective transport, thickened in offshore areas with shallow NAPL. ENR and MNR in depositional offshore areas with lower contaminant concentrations. Permeable vegetated capping on shoreline bank area. Shallow tar removal on shoreline. In situ treatment of upland groundwater arsenic. Institutional controls. 	 Nearshore dredging using land-based methods where feasible to prevent loss of aquatic lands due to capping. Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses. Enhanced capping, consisting of low-permeability and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL. Conventional sand capping in nearshore and offshore areas with lower potential for advective transport. ENR and MNR in depositional offshore areas with lower contaminant concentrations. Permeable vegetated capping on shoreline bank area. Shallow tar removal on shoreline. In situ treatment of upland groundwater arsenic. Institutional controls. 	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping. Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses. Enhanced capping, consisting of low-permeability and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL. Conventional sand capping in nearshore and offshore areas, thickened in offshore areas with shallow NAPL. ENR and MNR in depositional offshore areas with lower contaminant concentrations. Permeable vegetated capping on shoreline bank area. Shallow tar removal on shoreline. In situ treatment of upland groundwater arsenic.
(WAC 173-204-570[3])				
Protect human health and the environment	Nearshore shallow dredging will remove contaminant mass and prevent loss of lake habitat as a result of cap placement. Conventional sand cap technologies will prevent human and ecological receptors from being exposed to contaminants in underlying sediment. ENR and MNR technologies will reduce risks where contaminant concentrations are lower. Institutional controls, compliance monitoring, and Ecology periodic review will ensure long-term protectiveness of the remedy. In situ treatment in upland groundwater will treat dissolved arsenic in groundwater to the extent feasible near the original source, the Thylox process area.	Nearshore shallow dredging will remove contaminant mass and prevent loss of lake habitat as a result of cap placement. Enhanced capping methods (low-permeability and/or amended sand cap) will effectively isolate and treat sediment contaminants. Conventional sand cap technologies will prevent human and ecological receptors from being exposed to contaminants in underlying sediment. ENR and MNR technologies will reduce risks where contaminant concentrations are lower. Institutional controls, compliance monitoring and Ecology periodic review will ensure long-term protectiveness of the remedy. In situ treatment in upland groundwater will treat dissolved arsenic in groundwater to the extent feasible near the original source, the Thylox process area.	Nearshore shallow dredging will remove contaminant mass and prevent loss of lake habitat as a result of cap placement. Enhanced capping methods (low-permeability and/or amended sand cap) will effectively isolate and treat sediment contaminants. Conventional sand cap technologies will prevent human and ecological receptors from being exposed to contaminants in underlying sediment. ENR and MNR technologies will reduce risks where contaminant concentrations are lower. Institutional controls, compliance monitoring and Ecology periodic review will ensure long-term protectiveness of the remedy. In situ treatment in upland groundwater will treat dissolved arsenic in groundwater to the extent feasible near the original source, the Thylox process area.	Nearshore dredging will remove contaminant mass and prevent loss of lake habitat as a result of cap placement. Enhanced capping methods (low-permeability and/or amended sand cap) will effectively isolate and treat sediment contaminants. Conventional sand cap technologies will prevent human and ecological receptors from being exposed to contaminants in underlying sediment. ENR and MNR technologies will reduce risks where contaminant concentrations are lower. Institutional controls, compliance monitoring and Ecology periodic review will ensure long-term protectiveness of the remedy. In situ treatment in upland groundwater will treat dissolved arsenic in groundwater to the extent feasible near the original source, the Thylox process area.
Comply with all applicable laws	Compliance with applicable laws will be ensured through obtaining required permits and meeting the substantive requirements of exempt State and local permits.	Compliance with applicable laws will be ensured through obtaining required permits and meeting the substantive requirements of exempt State and local permits.	Compliance with applicable laws will be ensured through obtaining required permits and meeting the substantive requirements of exempt State and local permits.	Compliance with applicable laws will be ensured through obtaining required permits and meeting the substantive requirements of exempt State and local permits.
Comply with sediment cleanup standards	Alternative will comply with preliminary cleanup standards for GWPS contaminants and, subject to verification during remedial design, it is assumed that it will comply with screening levels for co-located ALU contaminants.	Alternative will comply with preliminary cleanup standards for GWPS contaminants and, subject to verification during remedial design, it is assumed that it will comply with screening levels for co-located ALU contaminants.	Alternative will comply with preliminary cleanup standards for GWPS contaminants and, subject to verification during remedial design, it is assumed that it will comply with screening levels for co-located ALU contaminants.	Alternative will comply with preliminary cleanup standards for GWPS contaminants and, subject to verification during remedial design, it is assumed that it will comply with screening levels for co-located ALU contaminants.
Use permanent solutions to the maximum extent practicable	The alternative that uses permanent solutions to the maxim	um extent practicable is determined through a Disproportionate (Cost Analysis (DCA) (WAC 173-340-360(3)(e)). The DCA is preser	nted in Section 13.

	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Provide for a reasonable restoration timeframe	Alternative has a reasonable restoration timeframe. Alternative will achieve preliminary cleanup levels for GWPS contaminants immediately following completion of construction and, subject to verification during remedial design, it is assumed that it will achieve screening levels for co-located ALU contaminants within 10 years following completion of construction. See Appendix 11D for restoration timeframe evaluations.	Alternative has a reasonable restoration timeframe. Alternative will achieve preliminary cleanup levels for GWPS contaminants immediately following completion of construction and, subject to verification during remedial design, it is assumed that it will achieve screening levels for co-located ALU contaminants within 10 years following completion of construction. See Appendix 11D for restoration timeframe evaluations.	Alternative has a reasonable restoration timeframe. Alternative will achieve preliminary cleanup levels for GWPS contaminants immediately following completion of construction and, subject to verification during remedial design, it is assumed that it will achieve screening levels for co-located ALU contaminants within 10 years following completion of construction. See Appendix 11D for restoration timeframe evaluations.	Alternative has a reasonable restoration timeframe. Alternative will achieve preliminary cleanup levels for GWPS contaminants immediately following completion of construction and, subject to verification during remedial design, it is assumed that it will achieve screening levels for co-located ALU contaminants within 10 years following completion of construction. See Appendix 11D for restoration timeframe evaluations.
Source Control Measures	Alternative includes source control measures in the form of: storm drain modifications (see Appendix 12A; implementation of a City stormwater management program (see Appendix 12B); in situ treatment of arsenic in shoreline groundwater; removal in the tar mound area; grading and capping exposed upland bank soil; nearshore sediment removal; and, the use of thick sand capping for enhanced containment of NAPL.	Alternative includes source control measures in the form of: storm drain modifications (see Appendix 12A; implementation of a City stormwater management program (see Appendix 12B); in situ treatment of arsenic in shoreline groundwater; removal in the tar mound area; grading and capping exposed upland bank soil; nearshore sediment removal; and, the use of enhanced and thick sand capping for enhanced containment of NAPL.	Alternative includes source control measures in the form of: storm drain modifications (see Appendix 12A; implementation of a City stormwater management program (see Appendix 12B); in situ treatment of arsenic in shoreline groundwater; removal in the tar mound area; grading and capping exposed upland bank soil; nearshore sediment removal; and, the use of enhanced capping for enhanced containment of NAPL.	Alternative includes source control measures in the form of: storm drain modifications (see Appendix 12A; implementation of a City stormwater management program (see Appendix 12B); in situ treatment of arsenic in shoreline groundwater; removal in the tar mound area; grading and capping exposed upland bank soil; nearshore sediment removal; and, the use of enhanced and thick sand capping for enhanced containment of NAPL.
Sediment Recovery Zone	Alternative does not include a sediment recovery zone.	Alternative does not include a sediment recovery zone.	Alternative does not include a sediment recovery zone.	Alternative does not include a sediment recovery zone
Institutional Controls	Alternative leaves contamination in place. Therefore institutional controls are required Institutional controls will be defined during future steps in the cleanup process and will likely include use restrictions, maintenance requirements, and financial assurances.	Alternative leaves contamination in place. Therefore institutional controls are required. Institutional controls will be defined during future steps in the cleanup process and will likely include use restrictions, maintenance requirements, and financial assurances.	Alternative leaves contamination in place. Therefore institutional controls are required. Institutional controls will be defined during future steps in the cleanup process and will likely include use restrictions, maintenance requirements, and financial assurances.	Alternative leaves contamination in place. Therefore institutional controls are required. Institutional controls will be defined during future steps in the cleanup process and will likely include use restrictions, maintenance requirements, and financial assurances.
Provide for public and affected landowner review and comment	Alternative is subject to public and affected landowner review and comment as part of this RI/FS report.	Alternative is subject to public and affected landowner review and comment as part of this RI/FS report.	Alternative is subject to public and affected landowner review and comment as part of this RI/FS report.	Alternative is subject to public and affected landowner review and comment as part of this RI/FS report.
Compliance Monitoring to Ensure Remedy Effectiveness	Alternative includes provisions for compliance monitoring. Monitoring requirements and contingency plans will be developed during future steps in the cleanup process. to ensure the protectiveness of the capped, ENR and MNR areas.	Alternative includes provisions for compliance monitoring. Monitoring requirements and contingency plans will be developed during future steps in the cleanup process. To ensure the protectiveness of the capped, ENR and MNR areas.	Alternative includes provisions for compliance monitoring. Monitoring requirements and contingency plans will be developed during future steps in the cleanup process. To ensure the protectiveness of the capped, ENR and MNR areas.	Alternative includes provisions for compliance monitoring. Monitoring requirements and contingency plans will be developed during future steps in the cleanup process. To ensure the protectiveness of the capped, ENR and MNR areas.
Provide for Periodic Review	Alternative includes institutional controls. Therefore, Ecology will conduct a review every five years after the controls are in place to assure that human health and the environment continue to be protected.	Alternative includes institutional controls. Therefore, Ecology will conduct a review every five years after the controls are in place to assure that human health and the environment continue to be protected.	Alternative includes institutional controls. Therefore, Ecology will conduct a review every five years after the controls are in place to assure that human health and the environment continue to be protected.	Alternative includes institutional controls. Therefore, Ecology will conduct a review every five years after the controls are in place to assure that human health and the environment continue to be protected.

	Alternative 5	Alternative 6	Alternative 7	Alternative 8
Description of Alternative	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping. Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 where necessary to prevent impacts to existing uses. Enhanced capping, consisting of low-permeability and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL. Conventional sand capping in nearshore and offshore areas, thickened in offshore areas with shallow NAPL. ENR and MNR in depositional offshore areas with lower contaminant concentrations. Permeable vegetated capping on shoreline bank area. Shallow tar removal on shoreline. In situ treatment of upland groundwater arsenic. Institutional controls. 	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping. Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses. Enhanced capping, consisting of low-permeability and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL. Conventional sand capping in nearshore and offshore areas, thickened in offshore areas with shallow NAPL. ENR and MNR in depositional offshore areas with lower contaminant concentrations. Permeable vegetated capping on shoreline bank area. Shallow tar removal on shoreline. In situ treatment of upland groundwater arsenic. Institutional controls. 	 Nearshore and offshore dredging to the maximum extent practicable in areas with a limited risk of mobilizing contaminants because of the dredging. Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses. Enhanced capping, consisting of low-permeability and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL. Conventional sand capping in nearshore and offshore areas. ENR in depositional offshore areas with lower contaminant concentrations. Permeable vegetated capping on shoreline bank area. Shallow tar removal on shoreline. In situ treatment of upland groundwater arsenic. Institutional controls. 	 Nearshore and offshore dredging to the maximum extent practicable in areas with a limited risk of mobilizing contaminants because of the dredging. Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses. Enhanced capping, consisting of low-permeability and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL. Conventional sand capping in nearshore and offshore areas. ENR in depositional offshore areas with lower contaminant concentrations. Permeable vegetated capping on shoreline bank area. Shallow tar removal on shoreline. In situ treatment of upland groundwater arsenic. Institutional controls.
Minimum Requirements for Sediment Cleanup Actions (WAC 173-204-570[3])		Evaluation	n of Alternatives	
Protect human health and the environment	Nearshore dredging will remove contaminant mass and prevent loss of lake habitat as a result of cap placement. Nhanced capping methods (low-permeability and/or amended sand cap) will effectively isolate and treat sediment contaminants. Conventional sand cap technologies will prevent human and ecological receptors from being exposed to contaminants in underlying sediment. ENR and MNR technologies will reduce risks where contaminant concentrations are lower. Institutional controls, compliance monitoring and Ecology periodic review will ensure long-term protectiveness of the remedy. In situ treatment in upland groundwater will treat dissolved arsenic in groundwater to the extent feasible near the original source, the Thylox process area.	Nearshore dredging will remove contaminant mass and prevent loss of lake habitat as a result of cap placement. Enhanced capping methods (low-permeability and/or amended sand cap) will isolate and treat sediment contaminants. Conventional sand cap technologies will prevent human and ecological receptors from being exposed to contaminants in underlying sediment. ENR and MNR technologies will reduce risks where contaminant concentrations are lower. Institutional controls, compliance monitoring and Ecology periodic review will ensure long-term protectiveness of the remedy. In situ treatment in upland groundwater will treat dissolved arsenic in groundwater to the extent feasible near the original source, the Thylox process area.	Nearshore and off-shore dredging will remove contaminant mass and prevent loss of lake habitat as a result of cap placement. Enhanced capping methods (low-permeability and/or amended sand cap) will isolate and treat sediment contaminants. Conventional sand cap technologies will prevent human and ecological receptors from being exposed to contaminants in underlying sediment. ENR technologies will reduce risks where contaminant concentrations are lower. Institutional controls, compliance monitoring and Ecology periodic review will ensure long-term protectiveness of the remedy. In situ treatment in upland groundwater will treat dissolved arsenic in groundwater to the extent feasible near the original source, the Thylox process area.	Nearshore and off-shore dredging will remove contaminant mass and prevent loss of lake habitat as a result of cap placement. Enhanced capping methods (low-permeability and/or amended sand cap) will isolate and treat sediment contaminants. Conventional sand cap technologies will prevent human and ecological receptors from being exposed to contaminants in underlying sediment. ENR technologies will reduce risks where contaminant concentrations are lower. Institutional controls, compliance monitoring and Ecology periodic review will ensure long-term protectiveness of the remedy. In situ treatment in upland groundwater will treat dissolved arsenic in groundwater to the extent feasible near the original source, the Thylox process area.
Comply with all applicable laws	Compliance with applicable laws will be ensured through obtaining required permits and meeting the substantive requirements of exempt State and local permits.	Compliance with applicable laws will be ensured through obtaining required permits and meeting the substantive requirements of exempt State and local permits.	Compliance with applicable laws will be ensured through obtaining required permits and meeting the substantive requirements of exempt State and local permits.	Compliance with applicable laws will be ensured through obtaining required permits and meeting the substantive requirements of exempt State and local permits.
Comply with sediment cleanup standards	Alternative will comply with preliminary cleanup standards for GWPS contaminants and, subject to verification during remedial design, it is assumed that it will comply with screening levels for co-located ALU contaminants.	Alternative will comply with preliminary cleanup standards for GWPS contaminants and, subject to verification during remedial design, it is assumed that it will comply with screening levels for co-located ALU contaminants.	Alternative will comply with preliminary cleanup standards for GWPS contaminants and, subject to verification during remedial design, it is assumed that it will comply with screening levels for co-located ALU contaminants.	Alternative will comply with preliminary cleanup standards for GWPS contaminants and, subject to verification during remedial design, it is assumed that it will comply with screening levels for co-located ALU contaminants.
Use permanent solutions to the maximum extent practicable	The alternative that uses permanent solutions to the maxir	num extent practicable is determinedthrough a Disproportionate	e Cost Analysis (DCA) (WAC 173-340-360(3)€). The DCA is present	ed in Section 13.

	Alternative 5	Alternative 6	Alternative 7	Alternative 8
Provide for a reasonable restoration timeframe	Alternative has a reasonable restoration timeframe. Alternative will achieve preliminary cleanup levels for GWPS contaminants immediately following completion of construction and, subject to verification during remedial design, it is assumed that it will achieve screening levels for co-located ALU contaminants within 10 years following completion of construction. See Appendix 11D for restoration timeframe evaluations.	Alternative has a reasonable restoration timeframe. Alternative will achieve preliminary cleanup levels for GWPS contaminants immediately following completion of construction and, subject to verification during remedial design, it is assumed that it will achieve screening levels for co-located ALU contaminants within 10 years following completion of construction. See Appendix 11D for restoration timeframe evaluations.	Alternative has a reasonable restoration timeframe. Alternative will achieve preliminary cleanup levels for GWPS contaminants immediately following completion of construction and, subject to verification during remedial design, it is assumed that it will achieve screening levels for co-located ALU contaminants within 10 years following completion of construction. See Appendix 11D for restoration timeframe evaluations.	Alternative has a reasonable restoration timeframe. Alternative will achieve preliminary cleanup levels for GWPS contaminants immediately following completion of construction and, subject to verification during remedial design, it is assumed that it will achieve screening levels for co-located ALU contaminants within 10 years following completion of construction. See Appendix 11D for restoration timeframe evaluations.
Source Control Measures	Alternative includes source control measures in the form of: storm drain modifications (see Appendix 12A; implementation of a City stormwater management program (see Appendix 12B); in situ treatment of arsenic in shoreline groundwater; removal in the tar mound area; grading and capping exposed upland bank soil; nearshore sediment removal; and, the use of enhanced and thick sand capping for enhanced containment of NAPL.	Alternative includes source control measures in the form of: storm drain modifications (see Appendix 12A; implementation of a City stormwater management program (see Appendix 12B); in situ treatment of arsenic in shoreline groundwater; removal in the tar mound area; grading and capping exposed upland bank soil; nearshore sediment removal; and, the use of enhanced and thick sand capping for enhanced containment of NAPL.	Alternative includes source control measures in the form of: storm drain modifications (see Appendix 12A; implementation of a City stormwater management program (see Appendix 12B); in situ treatment of arsenic in shoreline groundwater; removal in the tar mound area; grading and capping exposed upland bank soil; nearshore sediment removal; and, the use of enhanced capping for enhanced containment of NAPL.	Alternative includes source control measures in the form of: storm drain modifications (see Appendix 12A; implementation of a City stormwater management program (see Appendix 12B); in situ treatment of arsenic in shoreline groundwater; removal in the tar mound area; grading and capping exposed upland bank soil; nearshore sediment removal; and, the use of enhanced capping for enhanced containment of NAPL.
Sediment Recovery Zone	Alternative does not include a sediment recovery zone	Alternative does not include a sediment recovery zone.	Alternative does not include a sediment recovery zone.	Alternative does not include a sediment recovery zone.
Institutional Controls	Alternative leaves contamination in place. Therefore institutional controls are required. Institutional controls will be defined during future steps in the cleanup process and will likely include use restrictions, maintenance requirements, and financial assurances.	Alternative leaves contamination in place. Therefore institutional controls are required. Institutional controls will be defined during future steps in the cleanup process and will likely include use restrictions, maintenance requirements, and financial assurances.	Alternative leaves contamination in place. Therefore institutional controls are required. Institutional controls will be defined during future steps in the cleanup process and will likely include use restrictions, maintenance requirements, and financial assurances.	Alternative leaves contamination in place. Therefore institutional controls are required. Institutional controls will be defined during future steps in the cleanup process and will likely include use restrictions, maintenance requirements, and financial assurances.
Provide for public and affected landowner review and comment	Alternative is subject to public and affected landowner review and comment as part of this RI/FS report.	Alternative is subject to public and affected landowner review and comment as part of this RI/FS report.	Alternative is subject to public and affected landowner review and comment as part of this RI/FS report.	Alternative is subject to public and affected landowner review and comment as part of this RI/FS report.
Compliance Monitoring to Ensure Remedy Effectiveness	Alternative includes provisions for compliance monitoring. Monitoring requirements and contingency plans will be developed during future steps in the cleanup process. to ensure the protectiveness of the capped, ENR and MNR areas.	Alternative includes provisions for compliance monitoring. Monitoring requirements and contingency plans will be developed during future steps in the cleanup process. to ensure the protectiveness of the capped, ENR and MNR areas.	Alternative includes provisions for compliance monitoring. Monitoring requirements and contingency plans will be developed during future steps in the cleanup process. to ensure the protectiveness of the capped, ENR and MNR areas.	Alternative includes provisions for compliance monitoring. Monitoring requirements and contingency plans will be developed during future steps in the cleanup process. to ensure the protectiveness of the capped and ENR areas.
Provide for Periodic Review	Alternative includes institutional controls. Therefore, Ecology will conduct a review every five years after the controls are in place to assure that human health and the environment continue to be protected.	Alternative includes institutional controls. Therefore, Ecology will conduct a review every five years after the controls are in place to assure that human health and the environment continue to be protected.	Alternative includes institutional controls. Therefore, Ecology will conduct a review every five years after the controls are in place to assure that human health and the environment continue to be protected.	Alternative includes institutional controls. Therefore, Ecology will conduct a review every five years after the controls are in place to assure that human health and the environment continue to be protected.

Notes: ENR = enhanced natural recovery

MNR = monitored natural recovery

SCU = Sediment Cleanup Unit

NAPL = nonaqueous phase liquid GWPS = Gas Works Park Site SMS = Sediment Management Standards

TABLE 13-2. DISPROPORTIONATE COST ANALYSIS: CLEANUP ACTION ALTERNATIVES RELATIVE BENEFIT SCORING

 Alternative Description Nearshore dredging using land-based methods where feasible to prevent loss of aquatic lands due to capping (1.3 acres, 6,270 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Conventional sand capping in nearshore and offshore areas with higher potential for advective transport (1.5 acres). ENR and MNR in depositional offshore areas with hower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (2,450 cy). Permeable vegetated capping on shoreline offshore areas with isper potential for advective transport, thickene and infoshore areas with isper potential for atvective transport, thickene and infoshore areas with isper potential for atvective transport, thickene hole and the acresis. Shoreline soil excavation, including shallow tar incoval, prior to capping (2,450 cy). Permeable vegetated capping on shoreline in assitutional controls. Shoreline soil excavation, including shallow area (0.75 acre).<th></th><th>Alternative 1</th><th>Alternative 2</th><th>Alternative 3</th>		Alternative 1	Alternative 2	Alternative 3
	Alternative Description	 Nearshore dredging using land-based methods where feasible to prevent loss of aquatic lands due to capping (1.3 acres, 6,270 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Conventional sand capping in nearshore and offshore areas, thickened in nearshore areas with higher potential for advective transport and offshore areas with shallow NAPL (23.5 acres). ENR and MNR in depositional offshore areas with lower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (2,450 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre). Institutional controls. 	 Nearshore dredging using land-based methods where feasible to prevent loss of aquatic lands due to capping (1.3 acres, 6,270 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Enhanced capping, consisting of low-permeability and/or amended capping technologies in select nearshore areas with higher potential for advective transport (1.5 acres). Conventional sand capping in areas nearshore and offshore areas with lower potential for advective transport, thickened in offshore areas with shallow NAPL (22.0 acres). ENR and MNR in depositional offshore areas with lower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (2,450 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre). Institutional controls. 	 Nearshore dredging using land-based mewhere feasible to prevent loss of aquatic due to capping (1.3 acres, 6,270 cy). Dredging using mechanical or hydraulic r to avoid shallowing water depths to less feet where necessary to prevent impacts existing uses (0.7 acre, 3,600 cy). Enhanced capping, consisting of low-pern and/or amended capping technologies in nearshore and offshore areas with highe potential for advective transport and sha (9.1 acres). Conventional sand capping in nearshore offshore areas with lower potential for advective transport (14.4 acres). ENR and MNR in depositional offshore areas lower contaminant concentrations (32.9) Shoreline soil excavation, including shall removal, prior to capping (2,450 cy). Permeable vegetated capping on shorelinarea (0.75 acre). In-situ treatment of upland groundwater (0.2 acre). Institutional controls.

	Alternative 4
ethods c lands	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping (1.2 apros. 12.600)
methods than 15	cy).
s to	• Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15
rmeability in select	feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy).
er allow NAPL	 Enhanced capping, consisting of low-permeability and/or amended capping technologies in select pearshore and offshore areas with higher
e and dvective	potential for advective transport and shallow NAPL (1.8 acres).
areas with acres).	 Conventional sand capping in nearshore and offshore areas with lower potential for advective transport, thickened in offshore areas with shallow NAPL (21.7 acres)
low tar	 ENR and MNR in depositional offshore areas with
ine bank	Iower contaminant concentrations (32.9 acres).Shoreline soil excavation, including shallow tar
arsenic	removal, prior to capping (4,780 cy).
	 Permeable vegetated capping on shoreline bank area (0.75 acre).
	 In-situ treatment of upland groundwater arsenic (0.2 acre).
	Institutional controls.

Alternative 1

Score = 4.0

Alternative 2

Score = 5.0

Alternative 3

Score = 6.0

Relative Benefit Evaluation (Scored from 1 = Low to 10 = High)

Disproportionate Cost Analysis Benefit Criteria, [173-340-360(3)(f) and SMS 173-204-570(4)]

Protectiveness

"The extent to which human health and the environment are protected and the degree to which overall risk at a site is reduced by eliminating, reducing, or otherwise controlling risks posed through each exposure pathway and migration route. This also includes evaluating the degree of improvement in overall environmental quality and potential risks to the integrity of the remedy from climate change impacts." Achieves a moderate level of protectiveness (lowest score among all alternatives) as a result of extensive use of conventional sand capping (14.6 acres of 2-ft sand cap and 8.8 acres of thick sand cap) of sediment contaminants to permanently reduce risk of exposure across SMAs 1 through 12, including strategic application of thick sand cap construction over nearshore areas of potential advective contaminant transport and offshore areas with shallow NAPL.

Nearshore dredging (9,800 cy) to accommodate cap thickness contributes to protectiveness through contaminant mass reduction within the zone of highest groundwater discharge. This is equivalent to Alternatives 2 and 3, but is lower relative to alternatives that include increased nearshore dredging for contaminant mass reduction (Alternatives 4 through 7)

The lack of enhanced capping for sediment treatment reduces the overall protectiveness score for Alternative 1 by a point compared to Alternative 2.

Preliminary cleanup standards for GWPS contaminants will be achieved immediately following completion of construction and, subject to verification during remedial design, it is assumed that screening levels will be achieved for co-located ALU contaminants within 10 years following completion of construction.

The primary local effect of climate change, sea level rise, is not expected to affect the cleanup action because the lake level of Lake Union is controlled by the Ballard Locks. Achieves a moderate level of protectiveness as a result of the extensive capping (14 acres of 2-ft sand cap and 7.9 acres of thick sand cap) of contaminated sediment, including strategic application of thick sand caps over offshore areas with shallow NAPL and enhanced capping (1.5 acres) in an expanded area of nearshore sediment with potential for advective contaminant transport. Use of enhanced capping in areas of highest potential for contaminant migration more reliably prevents exposure in the long term.

Nearshore dredging (9,800 cy) to accommodate cap thickness contributes to protectiveness through contaminant mass reduction within the zone of highest groundwater discharge. This is equivalent to Alternatives 1 and 3, but is lower relative to alternatives that include increased nearshore dredging for contaminant mass reduction (Alternatives 4 to 7).

Greater protectiveness relative to Alternative 1 results from use of enhanced capping for sediment treatment relative to the use of a conventional sand cap. Relative to Alternative 3, reduced enhanced capping areas results in a lower protectiveness score (reduced by one point).

Preliminary cleanup standards for GWPS contaminants will be achieved immediately following completion of construction and, subject to verification during remedial design, it is assumed that screening levels will be achieved for co-located ALU contaminants within 10 years following completion of construction.

The primary local effect of climate change, sea level rise, is not expected to affect the cleanup action because the lake level of Lake Union is controlled by the Ballard Locks. Achieves a moderate level of protectivenest result of the extensive capping (14.4 acress sand cap) of contaminated sediment and it the greatest use of enhanced capping (9.1 treat nearshore areas of potential advective contaminant transport and offshore areas shallow NAPL. Expansive use of enhanced further increases reliability of preventing erelative to other alternatives.

Nearshore dredging (9,800 cy) to accomm thickness contributes to protectiveness the contaminant mass reduction within the zo highest groundwater discharge. This is eq to Alternatives 1 and 2, but is lower relative alternatives that include increased nearsh dredging for contaminant mass reduction (Alternatives 4 to 7).

Greater protectiveness relative to Alternat results from expanded use of enhanced ca Protectiveness score is comparable to Alter as the contribution of expanded nearshore in Alternative 4 is offset by the expanded e capping in Alternative 3.

Preliminary cleanup standards for GWPS contaminants will be achieved immediatel completion of construction and, subject to verification during remedial design, it is as that screening levels will be achieved for c ALU contaminants within 10 years followin completion of construction.

The primary local effect of climate change rise, is not expected to affect the cleanup because the lake level of Lake Union is co the Ballard Locks.

	Alternative 4
	Score = 6.0
ss as a s of 2-ft including L acres) to ve with capping exposure nodate cap rough ne of uvalent ve to nore	Achieves a moderate level of overall protectiveness as a result of extensive capping (14.6 acres of 2-ft sand cap and 7 acres of thick sand cap) of contaminated sediment, including strategic application of thick sand caps over offshore areas with shallow NAPL and enhanced capping (1.8 acres) in isolated nearshore areas of potential advective contaminant transport and an isolated offshore area with shallow NAPL. Use of enhanced capping in areas of highest potential for contaminant migration and select offshore areas with shallow NAPL more reliably prevents exposure in the long term. Expanded nearshore dredging (16,000 cy) for greater contaminant mass reduction results in
	higher protectiveness (higher than Alternatives 1 t 3, same as Alternatives 5 to 7).
ive 2 apping. ernative 4 e dredging enhanced	Protectiveness score similar to Alternative 3 as the contribution of expanded nearshore dredging in Alternative 4 is offset by the expanded enhanced capping in Alternative 3. Relative to Alternative 5, reduced enhanced capping areas results in a lower protectiveness score (reduced by one point).
y following ssumed co-located ng	Preliminary cleanup standards for GWPS contaminants will be achieved immediately followin completion of construction and, subject to verification during remedial design, it is assumed that screening levels will be achieved co-located AL contaminants within 10 years following completion of construction.
, sea level action ntrolled by	The primary local effect of climate change, sea lever rise, is not expected to affect the cleanup action because the lake level of Lake Union is controlled to the Ballard Locks.

	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Permanence	Score = 4.0	Score = 5.0	Score = 6.0	Score = 6.0
"The degree to which the alternative permanently reduces the toxicity, mobility or volume of hazardous substances, including the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of waste treatment process, and the characteristics and quantity of treatment residuals generated."	Achieves a moderate level of permanence (lowest score among all alternatives) relative to other alternatives as a result of extensive use of conventional sand capping (14.6 acres of 2-ft sand cap and 8.8 acres of thick sand cap) to contain sediment contaminants on site while permanently reduce risk of exposure across SMAs 1 through 12, including strategic application of thick sand caps in offshore areas with shallow NAPL. Arsenic in upland groundwater is expected to be successfully treated by in situ methods to reduce the potential for migration. Limited nearshore dredging (9,800 cy) removes contaminant mass within the zone of highest advective transport increases the degree of permanence (same as Alternatives 2 and 3, but less than Alternatives 4 to 7). The lack of enhanced capping for sediment treatment reduces the permanence score for Alternative 1 by a point compared to Alternative 2.	 Achieves a moderate level of permanence resulting from the use capping, including strategic application of thick sand caps in offshore areas with shallow NAPL (14 acres of 2-ft sand cap and 7.9 acres of thick sand cap) and enhanced capping (1.5 acres) in an expanded area of nearshore sediment with potential for advective contaminant transport. Addition of enhanced capping, including in situ treatment using cap amendments will increase attenuation of mobile contaminants. Arsenic in upland groundwater is expected to be successfully treated by in situ methods to reduce the potential for migration. Limited nearshore dredging (9.800 cy) removes contaminant mass within the zone of highest advective transport increases the degree of permanence (same as Alternatives 1 and 3, but less than Alternatives 4 to 7). Greater permanence relative to Alternative 1 results from use of enhanced capping for sediment treatment relative to the use of a conventional sand cap. Relative to Alternative 3, reduced enhanced capping areas results in a lower permanence score (reduced by one point). 	 Achieves a moderate level of permanence as a result of the greatest use of enhanced capping (9.1 acres) to provide more reliable containment and treat contaminants that may migrate to the sediment/cap surface or surface water. Addition of enhanced capping, including in situ treatment using cap amendments will increase attenuation of mobile contaminants. Arsenic in upland groundwater is expected to be successfully treated by in situ methods to reduce the potential for migration. Limited nearshore dredging (9.800 cy) removes contaminant mass within the zone of highest advective transport increases the degree of permanence (same as Alternatives 1 and 2, but less than Alternatives 4 to 7). Greater permanence relative to Alternative 2 results from expanded use of enhanced capping. Permanence score is comparable to Alternative 4 as the contribution of expanded nearshore dredging in Alternative 3. 	Achieves a moderate level of permanence through conventional sand capping, including strategic application of thick sand caps in offshore areas with shallow NAPL (14.6 acres of 2-ft sand cap and 7 acres of thick sand cap) and the addition of enhanced capping (1.8 acres) in isolated nearshore areas of potential advective contaminant transport and an isolated offshore area with shallow NAPL. Arsenic in upland groundwater is expected to be successfully treated by in situ methods to reduce the potential for migration. Expanded nearshore dredging (16.000 cy) to increase contaminant mass removal within the zone of highest groundwater discharge increases the degree of permanence relative to Alternatives 1 to 3 (same as Alternatives 5 to 7). Permanence score similar to Alternative 3 as the contribution of expanded nearshore dredging in Alternative 4 is offset by the expanded enhanced capping in Alternative 3. Relative to Alternative 5, reduced enhanced capping areas results in a lower permanence score (reduced by a half point).

	Alternative 1	Alternative 2	Alternative 3
Long-term Effectiveness	Score = 3.5	Score = 4.5	Score = 6.0

"Includes the degree of certainty that the alternative will be successful, the reliability of the alternative during the period of time hazardous substances are expected to remain on-site at concentrations that exceed cleanup levels, the magnitude of residual risk with the alternative in place, and the effectiveness of controls required to manage treatment residues or remaining wastes." Achieves a moderately low level of long-term effectiveness (lowest score among all alternatives) as a result of extensive use of conventional sand capping (14.6 acres of 2-ft sand cap and 8.8 acres of thick sand cap) of sediment contaminants to permanently reduce risk of exposure across SMAs 1 through 12, including strategic application of thick sand caps in offshore areas with shallow NAPL. Conventional sand capping is an effective containment method over a long timeframe due to its simplicity. However, long-term effectiveness of sand capping is expected to be lower than that of enhanced capping for preventing advective transport of mobile contaminants.

Nearshore dredging (9,800 cy) and subsequent contaminant mass reduction contributes to longterm effectiveness (same as Alternatives 2 and 3), but to a lesser degree than Alternatives 4 to 7.

Preliminary cleanup standards for GWPS contaminants will be achieved immediately following completion of construction and, subject to verification during remedial design, it is assumed that screening levels will be achieved for co-located ALU contaminants within 10 years following completion of construction.

The lack of enhanced capping for sediment treatment reduces the overall long-term effectiveness score for Alternative 1 by a point compared to Alternative 2. Achieves a moderate level of long-term effectiveness through use of conventional sand capping, including strategic application of thick sand caps in offshore areas with shallow NAPL (14 acres of 2-ft sand cap and 7.9 acres of thick sand cap) and enhanced capping (1.5 acres) in an expanded area of nearshore sediment with potential for advective contaminant transport. The use of enhanced capping methods will increase the reliability of contaminant containment, particularly where applied to areas of groundwater flux.

Nearshore dredging (9,800 cy) and subsequent contaminant mass reduction contributes to longterm effectiveness (same as Alternatives 1 and 3), but to a lesser degree than Alternatives 4 to 7.

Preliminary cleanup standards for GWPS contaminants will be achieved immediately following completion of construction and, subject to verification during remedial design, it is assumed that screening levels will be achieved for co-located ALU contaminants within 10 years following completion of construction.

Greater long-term effectiveness relative to Alternative 1 results from use of enhanced capping for sediment treatment relative to the use of a conventional sand cap. Relative to Alternative 3, reduced enhanced capping areas results in a lower long-term effectiveness score (reduced by one and a half point). Achieves a moderate level of long-term effectiveness through use of conventional capping (14.4 acres of 2-ft sand cap) and greatest use of enhanced capping (9.1 ac increase reliability of containment and/or contaminants that may migrate to the sed surface or surface water. Extensive use of capping will increase the predictability of performance of the remedy.

Nearshore dredging (9,800 cy) and subset contaminant mass reduction contributes t term effectiveness (same as Alternatives 2 but to a lesser degree than Alternatives 4

Preliminary cleanup standards for GWPS contaminants will be achieved immediately completion of construction and, subject to verification during remedial design, it is as that screening levels will be achieved for c ALU contaminants within 10 years followin completion of construction.

Greater long-term effectiveness score rela Alternatives 2 and 4 results from expande enhanced capping.

	Alternative 4
	Score = 5.5
I sand the cres) to to treat liment/cap f enhanced quent to long- 1 and 2),	Achieves a moderate level of long-term effectiveness through use of conventional sand capping including strategic application of thick sand caps in offshore areas with shallow NAPL (14.6 acres of 2-ft sand cap and 7 acres of thick sand cap) and enhanced capping (1.8 acres) in isolated nearshore areas of potential advective contaminant transport and an isolated offshore area with shallow NAPL. The use of enhanced capping methods will increase the reliability of contaminant containment, particularly where applied to areas of groundwater flux.
to 7. ly following	Expanded nearshore dredging (16,000 cy) for greater contaminant mass reduction increases long- term effectiveness relative to Alternatives 1 through 3 (same as Alternatives 5 to 7).
ssumed co-located ng ative to ed use of	Preliminary cleanup standards for GWPS contaminants will be achieved immediately following completion of construction and, subject to verification during remedial design, it is assumed that screening levels will be achieved for co-located ALU contaminants within 10 years following completion of construction.
	Relative to Alternatives 3 and 5, reduced enhanced capping areas results in a lower overall long-term effectiveness score for Alternative 4.

	Alternative 1	Alternative 2	Alternative 3
Management of Short-term Risks	Score = 6.0	Score = 6.5	Score = 7.5
"The risk to human health and the environment associated with the alternative during construction and implementation, and the effectiveness of measures that will be taken to manage such risks."	Manages short-term risks to a moderate degree through use of common construction methods for sediment remediation. Moderate risks can be mitigated by isolating the work zone and notifying the public, including commercial and recreational boat traffic. The large volume of sand for capping (approximately 145,000 cy) may result in short-term impacts during transport and placement. Impacts associated with transport, likely by barge, can be mitigated by	Manages short-term risks to a moderate degree through use of common construction methods for sediment remediation. Moderate risks can be mitigated by isolating the work zone and notifying the public, including commercial and recreational boat traffic. Similar to Alternative 1, the large volume of sand (approximately 135,000 cy) for capping may result in short-term impacts during transport and placement. Impacts associated with transport, likely	Manages short-term risks to a moderate de through use of common construction meth- sediment remediation. Moderate risks can mitigated by isolating the work zone and no the public, including commercial and recrea- boat traffic. The large volume of sand (approximately 1- cy) for capping may result in short-term imp during transport and placement. Impacts associated with transport, likely by barge, o
	developing a marine traffic plan to coordinate efficient movement of barges to and from GWPS, but impacts to vessel traffic in the area are expected during construction. Impacts associated with cap placement, particularly in lake bottom areas with soft sediment, can be prevented by using thin layer placement methods that will gradually stabilize underlying sediment. Nearshore dredging (9,800 cy) and bank excavation using cofferdams and other BMPs will have moderate short-term risks associated with removal, handling, and disposal of contaminated materials and associated water quality management. These risks are less than for alternatives that include expanded dredging for contaminant mass removal (Alternatives 4 to 8). The large volume of sand for capping may result in short-term impacts from transport and placement of material and reduces the management of short- term risks score for Alternative 1 by a half point compared to Alternative 2.	by barge, can be mitigated by developing a marine traffic plan to coordinate efficient movement of barges to and from GWPS, but impacts to vessel traffic in the area is expected during construction. Impacts associated with cap placement, particularly in lake bottom areas with soft sediment, can be prevented by using thin layer placement methods that will gradually stabilize underlying sediment. Volume of sand reduced by use of enhanced capping (1.5 acres), slightly reducing the volume of material transported to and placed at GWPS. Nearshore dredging (9,800 cy) and bank excavation using cofferdams and other BMPs will have moderate short-term risks associated with removal, handling, and disposal of contaminated materials and associated water quality management. These risks are less than for alternatives that include expanded dredging for contaminant mass removal (Alternatives 4 to 8). Higher score (increased by a half point) relative to Alternative 1 results from use of enhanced capping and associated reduction of short-term risk due to reduced volume of sand to transport and place.	mitigated by developing a marine traffic pla coordinate efficient movement of barges to from GWPS, but impacts to vessel traffic in is expected during construction. Impacts as with cap placement, particularly in lake bot areas with soft sediment, can be prevented thin layer placement methods that will grad stabilize underlying sediment. Volume of sa associated impacts associated with transpo- placement, is significantly reduced relative Alternatives 1 and 2 through expanded use enhanced capping (9.1 acres). Nearshore dredging (9,800 cy) and bank ex- using cofferdams and other BMPs will have moderate short-term risks associated with handling, and disposal of contaminated ma and associated water quality management, risks are less than for alternatives that incl expanded dredging for contaminant mass r (Alternatives 4 to 8). Higher score (increased by a half point) rela Alternative 2 results from expanded use of enhanced capping and associated reduction short-term risk due to reduced volume of sa transport and place.

GEOENGINEERS

Alternative 4

Score = 6.0

egree nods for be otifying ational

.05.000 pacts

can be an to and the area ssociated ttom dually and, and ort and to e of

xcavation removal, aterials These ude removal

ative to on of and to

Manages short-term risks to a moderate degree through common construction methods frequently used for sediment remediation, with moderate risks that can be mitigated by isolating the work zone and notifying the public, including commercial and recreational boat traffic.

The large volume of cap material (approximately 130,000 cy) for capping results in short-term impacts during transport and placement. Volume of sand reduced by use of enhanced capping (1.8 acres), similar in scale to Alternative 2, but to a greater degree than Alternative 3. Impacts associated with transport, likely by barge, can be mitigated by developing a marine traffic plan to coordinate efficient movement of barges to and d by using from GWPS, but impacts to vessel traffic in the area is expected during construction. Impacts associated with cap placement, particularly in lake bottom areas with soft sediment, can be prevented by using thin layer placement methods that will gradually stabilize underlying sediment.

> Expanded nearshore dredging (16,100 cy) and bank excavation using cofferdams and other BMPs will have moderate short-term risks associated with removal, handling, and disposal of contaminated materials.

Lower score (reduced by a point) relative to Alternative 3 results from reduced use of enhanced capping and increased dredging, and associated increase in short-term risk due to increased volume of sand to transport and place and increased volume of contaminated sediment to remove, handle and dispose.

	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Technical and Administrative Implementability	Score = 7.0	Score = 6.5	Score = 7.0	Score = 6.5
"Ability to be implemented including consideration of whether the alternative is technically possible, availability of necessary off-site facilities, services and materials, administrative and regulatory requirements, scheduling, size, complexity, monitoring requirements, access for construction operations and monitoring, and integration with existing facility operations and other current or potential remedial actions."	 Achieves a moderately high level of technical implementability through the use of common capping and material removal methods. Administrative implementability challenges are addressed by inclusion of nearshore dredging to allow cap placement without loss of in-water habitat and to prevent shallowing of lake depth at adjacent facilities. Extensive capping poses challenges associated with availability and transportation of suitable cap material. However, the simplicity of conventional sand capping increases technical implementability. Scores half a point higher relative to Alternative 2 as specialized services associated with enhanced capping do not apply. 	Achieves a moderately high level of technical implementability through the use of common capping and material removal methods. Administrative implementability challenges are addressed by inclusion of nearshore dredging to allow cap placement without loss of in-water habitat and to prevent shallowing of lake depth at adjacent facilities. The use of enhanced capping methods (1.5 acres) reduces the volume of overall cap material but is also affected by the use of more specialized, and potentially less readily available services. Enhanced capping methods are relatively innovative but have been proven for similar conditions. Scores lower (reduced by a half point) relative to Alternative 1, as the need for less volume of suitable sand material for conventional sand capping is offset by more innovative, specialized and potentially less readily available services associated	Achieves a moderately high level of technical implementability through the use of common capping and material removal methods. Administrative implementability challenges are addressed by inclusion of nearshore dredging to allow cap placement without loss of in-water habitat and to prevent shallowing of lake depth at adjacent facilities. The greatest use of enhanced capping methods (9.1 acres) significantly reduces the volume of overall cap material but is also affected by the use of more specialized, and potentially less readily available services. Enhanced capping methods are relatively innovative but have been proven for similar conditions. Scores higher (increased by a half point) relative to Alternatives 2 due to reduction in the volume of sand cap material required and the use of the lowest degree of dredging	 Achieves a moderately high level of technical implementability through the use of common capping and material removal methods. Administrative implementability challenges are addressed by inclusion of nearshore dredging to allow cap placement without loss of in-water habitat and to prevent shallowing of lake depth at adjacent facilities. The use of enhanced capping methods (1.8 acres) reduces the volume of overall cap material. The expanded nearshore dredging (16,100 cy) is not expected to significantly reduce implementability. Scores lower (reduced by a half point) relative to Alternative 3 due to increased volume of sand cap material and expanded nearshore dredging.
Consideration of Public Concerns	Score = 4.0	Score = 5.0	Score = 6.0	Score = 6.0
"Whether the community has concerns regarding the alternative and, if so, the extent to which the alternative addresses those concerns. This process includes concerns from individuals, community groups, local governments, tribes, federal and state agencies, or any other organization that may have an interest in or knowledge of the site."	Public concerns are not yet known. It is assumed that protectiveness is the greatest public concern, therefore the score for this alternative is the same as the score under the protectiveness criterion. The score will be reviewed and revised as necessary after receiving public comments on the RI/FS.	Public concerns are not yet known. It is assumed that protectiveness is the greatest public concern, therefore the score for this alternative is the same as the score under the protectiveness criterion. The score will be reviewed and revised as necessary after receiving public comments on the RI/FS.	Public concerns are not yet known. It is assumed that protectiveness is the greatest public concern, therefore the score for this alternative is the same as the score under the protectiveness criterion. The score will be reviewed and revised as necessary after receiving public comments on the RI/FS.	Public concerns are not yet known. It is assumed that protectiveness is the greatest public concern, therefore the score for this alternative is the same as the score under the protectiveness criterion. The score will be reviewed and revised as necessary after receiving public comments on the RI/FS.

	Alternative 5	Alternative 6	Alternative 7	Alternative 8
Alternative Description	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping (1.3 acres, 12,600 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Enhanced capping, consisting of low-permeability and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL (4.0 acres). Conventional sand capping in nearshore and offshore areas with lower potential for advective transport, thickened in offshore areas with shallow NAPL (19.4 acres). ENR and MNR in depositional offshore areas with lower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (4,780 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre). Institutional controls. 	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping (1.3 acres, 12,600 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses (0.7 acre, 3,600 cy). Enhanced capping, consisting of low-permeability and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL (5.1 acres). Conventional sand capping in nearshore and offshore areas with lower potential for advective transport, thickened in offshore areas with shallow NAPL. (18.3 acres) ENR and MNR in depositional offshore areas with lower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (4,780 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre). Institutional controls. 	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping (1.3 acres, 12,600 cy). Offshore dredging to the maximum extent practicable in areas with a limited risk of mobilizing contaminants because of the dredging (1 acre, 8,100 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses and (0.7 acre, 3,580 cy). Enhanced capping, consisting of low-permeability and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL (9.1 acres). Conventional sand capping in nearshore and offshore areas with lower potential for advective transport (13.1 acres). ENR and MNR in depositional offshore areas with lower contaminant concentrations (32.9 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (4,780 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre). 	 Nearshore dredging using land-based methods where feasible to reduce mass of contaminants from within the cap limits and prevent loss of aquatic lands due to capping (1.3 acres, 12,600 cy). Offshore dredging to the maximum extent practicable in areas with a limited risk of mobilizing contaminants because of the dredging (1 acre, 8,100 cy). Dredging using mechanical or hydraulic methods to avoid shallowing water depths to less than 15 feet where necessary to prevent impacts to existing uses and (0.7 acre, 3,580 cy). Enhanced capping, consisting of low-permeability and/or amended capping technologies in select nearshore and offshore areas with higher potential for advective transport and shallow NAPL (9.1 acres). Conventional sand capping in nearshore and offshore areas with lower potential for advective transport (23.3 acres). ENR in depositional offshore area with lower contaminant concentrations (22.7 acres). Shoreline soil excavation, including shallow tar removal, prior to capping (4,780 cy). Permeable vegetated capping on shoreline bank area (0.75 acre). In-situ treatment of upland groundwater arsenic (0.2 acre).

Alternative 5

Alternative 6

Score = 8.0

Alternative 7

Score = 8.5

Relative Benefit Evaluation (Scored from 1 = Low to 10 = High)

Disproportionate Cost Analysis – Criteria in MTCA 173-340-360(3)(f) and SMS 173-204-570(4)

Protectiveness

"The extent to which human health and the environment are protected and the degree to which overall risk at a Site is reduced by eliminating, reducing, or otherwise controlling risks posed through each exposure pathway and migration route. This also includes evaluating the degree of improvement in overall environmental quality and potential risks to the integrity of the remedy from climate change impacts."

Score = 7.0

Achieves a moderately high level of overall protectiveness as a result of the extensive capping (14.1 acres of 2-ft sand cap and 5.4 acres of thick sand cap) of contaminated sediment, including strategic application of thick sand caps over offshore areas with shallow NAPL and enhanced capping (4 acres) in isolated nearshore areas of potential advective contaminant transport and expanded offshore areas with shallow NAPL. Use of enhanced capping in areas of highest potential for contaminant migration and select offshore areas with shallow NAPL more reliably prevents exposure in the long term.

The expanded nearshore dredging (16,100 cy) for greater contaminant mass reduction contributes to protectiveness the same as Alternatives 4, 6 and 7.

Greater protectiveness relative to Alternative 4 results from expanded use of enhanced capping. Protectiveness score is reduced by a point compared to Alternative 6 due to a smaller enhanced capping area.

Preliminary cleanup standards for GWPS contaminants will be achieved immediately following completion of construction and, subject to verification during remedial design, it is assumed that screening levels will be achieved for co-located ALU contaminants within 10 years following completion of construction.

The primary local effect of climate change, sea level rise, is not expected to affect the cleanup action because the lake level of Lake Union is controlled by the Ballard Locks. Achieves a high level of overall protectiveness as a result of the extensive capping (14.4 acres of 2-ft sand cap and 4 acres of thick sand cap) of contaminated sediment, including strategic application of thick sand caps in offshore areas with shallow NAPL and enhanced capping (5.1 acres) in expanded nearshore and offshore areas to address potential advective contaminant transport and expanded offshore areas with shallow NAPL.

The expanded nearshore dredging (16,100 cy) for greater contaminant mass reduction contributes to protectiveness the same as Alternatives 4, 5 and 7...

Greater protectiveness relative to Alternative 5 results from expanded use of enhanced capping. Protectiveness score is reduced compared to Alternative 7 due to reduced capping and enhanced capping areas in addition to the lack of offshore dredging for additional mass removal.

Preliminary cleanup standards for GWPS contaminants will be achieved immediately following completion of construction and, subject to verification during remedial design, it is assumed that screening levels will be achieved for co-located ALU contaminants within 10 years following completion of construction.

The primary local effect of climate change, sea level rise, is not expected to affect the cleanup action because the lake level of Lake Union is controlled by the Ballard Locks.

Achieves a high level of overall protectiver result of the extensive capping (13.1 acres sand cap) of contaminated sediment, incluenhanced capping (9.1 acres) in expanded nearshore and offshore areas to address p advective contaminant transport and expaoffshore areas with shallow NAPL.

The expanded nearshore dredging (16,100 greater contaminant mass reduction contriprotectiveness the same as Alternatives 4

Expanded use of enhanced capping (9.1 a offshore dredging (8,150 cy at SMA-6) for a contaminant mass reduction, increase protectiveness relative to Alternative 6. Protectiveness score is reduced relative to Alternative 8 due to reduced use of cappin ENR..

Preliminary cleanup standards for GWPS contaminants will be achieved immediatel completion of construction and, subject to verification during remedial design, it is as that screening levels will be achieved for of ALU contaminants within 10 years followin completion of construction.

The primary local effect of climate change, rise, is not expected to affect the cleanup because the lake level of Lake Union is co the Ballard Locks.

	Alternative 8
	Score = 9.0
ess as a s of 2-ft uding t potential nded D cy) for ibutes to , 5 and 6.	Achieves the highest level of overall protectiveness as a result of extensive capping (23.3 acres of 2-ft sand cap) of contaminated sediment, including enhanced capping (9.1 acres) in nearshore and offshore areas to address potential advective contaminant transport and offshore areas with shallow NAPL and ENR in SMA-14 (23 acres). Expanded use of capping and replacing MNR with ENR in SMA-14 increases protectiveness relative to Alternative 7.
cres) and additional	The expanded nearshore dredging (16,100 cy) and offshore dredging (8,150 cy) for greater contaminant mass reduction contributes to protectiveness the same as Alternative 7.
ng and y following sumed	Preliminary cleanup standards for GWPS contaminants will be achieved immediately following completion of construction and, subject to verification during remedial design, it is assumed that screening levels will be achieved for co-located ALU contaminants within 10 years following completion of construction.
o-located g sea level action ntrolled by	The primary local effect of climate change, sea level rise, is not expected to affect the cleanup action because the lake level of Lake Union is controlled by the Ballard Locks.

	Alternative 5	Alternative 6	Alternative 7	Alternative 8				
Permanence	Score = 6.5	Score = 7.5	Score = 8.0	Score = 8.5				
"The degree to which the alternative permanently reduces the toxicity, mobility or volume of hazardous substances, including the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of waste treatment process, and the characteristics and quantity of treatment residuals generated."	Achieves a moderately high level of permanence through conventional sand capping, including strategic application of thick sand caps in offshore areas with shallow NAPL (14.1 acres of 2-ft sand cap and 5.4 acres of thick sand cap), and the addition of enhanced capping (4 acres) in isolated nearshore areas of potential advective contaminant transport and expanded offshore areas with shallow NAPL. Arsenic in upland groundwater is expected to be successfully treated by in situ methods to reduce the potential for migration. The expanded nearshore dredging (16,100 cy) for greater contaminant mass reduction contributes to permanence the same as Alternatives 4, 6 and 7). Greater permanence relative to Alternative 4 results from expanded use of enhanced capping. Permanence score is reduced by a point compared to Alternative 6 due to a smaller enhanced capping area.	 Achieves a moderately high level of permanence through conventional capping, including strategic application of thick sand caps in offshore areas with shallow NAPL (14.4 acres of 2-ft sand cap and 4 acres of thick sand cap), and the use of enhanced capping (5.1 acres) in expanded nearshore and offshore areas to address potential advective contaminant transport and expanded offshore areas with shallow NAPL. Arsenic in upland groundwater is expected to be successfully treated by in situ methods to reduce the potential for migration. The expanded nearshore dredging (16,100 cy) for greater contaminant mass reduction contributes to permanence the (same as Alternatives 4, 5, 7 and 8). Greater permanence relative to Alternative 5 results from expanded use of enhanced capping. Permanence score is reduced by a half point compared to Alternative 7 due to reduced enhanced capping areas in addition to the lack of offshore dredging for additional contaminant mass reduction. 	 Achieves a high level of permanence as a result of extensive capping and material removal. Extensive capping includes conventional capping (13.1 acres of 2-ft sand cap) and the greatest use of enhanced capping (9.1 acres) in nearshore areas of potential advective contaminant transport and offshore areas with shallow NAPL. Arsenic in upland groundwater is expected to be successfully treated by in situ methods to reduce the potential for migration. Expanded nearshore dredging (16,100 cy) for greater contaminant mass reduction contributes to permanence the same as Alternatives 4, 5, 6 and 8). Greater permanence relative to Alternative 6 results from expanded use of enhanced capping and offshore dredging (8,150 cy) for additional mass removal. 	Achieves the highest level of permanence among all alternatives, as a result of extensive conventional capping (23.3 acres of 2-ft sand cap) the use of enhanced capping (9.1 acres), and ENR in SMA-14 (23 acres). Expanded use of capping and replacing MNR with ENR in SMA-14 increases permanence relative to Alternative 7. Arsenic in upland groundwater is expected to be successfully treated by in situ methods to reduce the potential for migration. Expanded nearshore dredging (16,100 cy) for greater contaminant mass reduction contributes to permanence the same as Alternatives 4 through 7). Offshore dredging (8,150 cy) contributes to permanence through additional mass removal similar to Alternative 7.				

	Alternative 5	Alternative 6	Alternative 7	Alternative 8					
Long-term Effectiveness	Score = 6.5	Score = 7.0	Score = 7.5	Score = 8					
"Includes the degree of certainty that the alternative will be successful, the reliability of the alternative during the period of time hazardous substances are expected to remain on-site at concentrations that exceed cleanup levels, the magnitude of residual risk with the alternative in place, and the effectiveness of controls required to manage treatment residues or remaining wastes."	Score = 6.5Score = 7.0that the alternative of the alternative ous substances are ncentrations that itude of residual risk.Achieves a moderately high level of long-term effectiveneess through use of conventional sand caps in offshore areas with shallow NAPL (14.1 acres of 2-ft sand cap and 5.4 acres of thick sand cap), and enhanced capping (4 acres) in isolated nearshore areas of potential advective contaminant transport and expanded offshore areas with shallow NAPL. The use of enhanced capping methods will increase the reliability of contaminant containment, particularly where applied to areas of groundwater flux.The expanded nearshore dredging (16,100 cy) for greater contaminant mass reduction contributes to long-term effectiveness the same as Alternatives 4, 6 and 7).The expanded nearshore dredging (16,100 cy) for greater contaminant swill be achieved immediately following completion of construction and, subject to verification during remedial design, it is assumed that screening levels will be achieved of co-located 		Achieves a moderately high level of long-term effectiveness through use of conventional sand capping (13.1 acres of 2-ft sand cap) and enhanced capping (9.1 acres) to increase reliability of containment and/or to treat contaminants that may migrate to the sediment/cap surface or surface water. The expanded nearshore dredging (16,100 cy) for greater contaminant mass reduction contributes to long-term effectiveness the same as Alternatives 4, 5, 6 and 8. Expanded use of enhanced capping (9.1 acres) and offshore dredging (8,150 cy at SMA-6) for additional contaminant mass reduction, increase long-term effectiveness relative to Alternative 6. Long-term effectiveness score is reduced relative to Alternative 8 due to reduced use of capping and ENR. Preliminary cleanup standards for GWPS contaminants will be achieved immediately following completion of construction and, subject to verification during remedial design, it is assumed that screening levels will be achieved for co-located ALU contaminants within 10 years following completion of construction.	Achieves the highest level of long-term effectiveness among all alternatives, through use of conventional sand capping (23.3 acres of 2-ft sand cap) and enhanced capping (9.1 acres) to increase reliability of containment and/or to treat contaminants that may migrate to the sediment/cap surface or surface water Expanded capping and use of ENR rather than MNR in SMA-14 (23 acres) increases long-term effectiveness relative to Alternative 7. The expanded nearshore dredging (16,100 cy) and offshore dredging (8,150 cy) for greater contaminant mass reduction contributes to long- term effectiveness the same as Alternative 7. Preliminary cleanup standards for GWPS contaminants will be achieved immediately following completion of construction and, subject to verification during remedial design, it is assumed that screening levels will be achieved for co-located ALU contaminants within 10 years following completion of construction.					
Management of Short-term Risks	Score = 6.5	Score = 7.0	Score = 5.0	Score = 4.5					
"The risk to human health and the environment associated with the alternative during construction and implementation, and the effectiveness of measures that will be taken to manage such risks."	Manages short-term risks to a moderate degree through common construction methods frequently used for sediment remediation. The large volume of cap material (approximately 125,000 cy) from conventional sand capping methods results in short- term impacts from transport of material to the GWPS. Impacts associated with transport, likely by barge, can be mitigated by developing a marine traffic plan to coordinate efficient movement of barges to and from GWPS, but impacts to vessel traffic in the area are expected during construction. Impacts associated with cap placement, particularly in lake bottom areas with soft sediment, can be prevented by using thin layer placement methods that will gradually stabilize underlying sediment. The expanded area of enhanced capping (4 acres) reduces the transport and placement of cap material and associated risks. Expanded nearshore dredging (16,100 cy) (same as Alternatives 4, 6 and 7) and bank excavation using	Manages short-term risks to a moderate degree (highest score among all alternatives) through common construction methods frequently used for sediment remediation. The large volume of cap material (approximately 120,000 cy) from conventional sand capping methods results in short- term impacts from transport of material to the GWPS. Impacts associated with transport, likely by barge, can be mitigated by developing a marine traffic plan to coordinate efficient movement of barges to and from GWPS, but impacts to vessel traffic in the area are expected during construction. Impacts associated with cap placement, particularly in lake bottom areas with soft sediment, can be prevented by using thin layer placement methods that will gradually stabilize underlying sediment. The expanded area of enhanced capping (5.1 acres) reduces capping volume and short-term risks associated with material handling and transport.	Manages short-term risks to a moderate degree relative to other alternatives due to the inclusion of offshore dredging (8,150 cy at SMA-6) increasing the potential to suspend sediment and mobilize contaminants to the water column. Larger dredging scope increases the risk of contaminant mobilization during construction. The offshore dredging will need to be offset from the shoreline to avoid undermining and damaging the shoreline structures in the vicinity of the Prow, and also has the potential to uncover deeper, more highly contaminated sediment. The large volume of cap material (approximately 99,000 cy) from conventional sand capping methods results in short-term impacts from transport of material to the GWPS. Impacts associated with transport, likely by barge, can be mitigated by developing a marine traffic plan to coordinate efficient movement of barges to and from GWPS, but impacts to vessel traffic in the area	Manages short-term risks to a moderately low degree (lowest score among all alternatives) relative to other alternatives due to the inclusion of offshore dredging (8,150 cy at SMA-6) and extensive capping (23.3 acres of 2-ft sand cap, 9.1 acres of enhanced cap) and ENR in SMA-14 (23 acres). Inclusion of offshore dredging increases the potential to suspend sediment and mobilize contaminants to the water column. Larger dredging scope increases the risk of contaminant mobilization during construction. The offshore dredging will need to be offset from the shoreline to avoid undermining and damaging the shoreline structures in the vicinity of the Prow, and also has the potential to uncover deeper, more highly contaminated sediment. Significantly increased volume of material placed in SMAs 13 and 14 and conventional sand capping methods (155,000 cy), increasing short-term risks associated with handling and transport of material. Impacts associated with transport, likely by barge,					

	Alternative 5	Alternative 6	Alternative 7	Alternative 8					
	cofferdams and other BMPs will have moderate short-term risks associated with removal, handling, and disposal of contaminated materials. Higher score (increased by a half point) relative to Alternative 4 results from use of expanded enhanced capping and reduction of short-term risk associated with reduced volume of sand cap material handling and transport.	The elimination of offshore dredging and associated risks increases the degree that short term risks are managed relative to Alternative 7. Expanded nearshore dredging (16,100 cy) (same as Alternatives 4, 5 and 7) and bank excavation using cofferdams and other BMPs will have moderate short-term risks associated with removal, handling, and disposal of contaminated materials. Higher score (increased by a half point) relative to Alternative 5 results from use of expanded enhanced capping and reduction of short-term risk associated with reduced volume of sand cap material handling and transport.	are expected during construction. Impacts associated with cap placement, particularly in lake bottom areas with soft sediment, can be prevented by using thin layer placement methods that will gradually stabilize underlying sediment. Lower score relative to Alternative 6 results from offshore dredging and associated short-term risks during construction. Higher score compared to Alternative 8 due to reduced use of capping and ENR and reduction of short-term risk associated with reduced volume of sand cap material handling and transport.	can be mitigated by developing a marine traffic plan to coordinate efficient movement of barges to and from GWPS, but impacts to vessel traffic in the area are expected during construction. Impacts associated with cap placement, particularly in lake bottom areas with soft sediment, can be prevented by using thin layer placement methods that will gradually stabilize underlying sediment. Expanded capping and use of ENR rather than MNR in SMA-14 (23 acres) increases short-term risk relative to Alternative 7.					
Technical and Administrative Implementability	Score = 6.5	Score = 7.5	Score = 6.5	Score = 6.0					
"Ability to be implemented including consideration of whether the alternative is technically possible, availability of necessary off-site facilities, services and materials, administrative and regulatory requirements, scheduling, size, complexity, monitoring requirements, access for construction operations and monitoring, and integration with existing facility operations and other current or potential remedial actions."	Achieves a moderately high level of technical implementability through the use of common capping and material removal methods. Administrative implementability challenges are addressed by inclusion of nearshore dredging to allow cap placement without loss of in-water habitat and to prevent shallowing of lake depth at adjacent facilities. The use of enhanced capping methods (4 acres) reduces the volume of overall cap material. The expanded nearshore dredging (16,100 cy) is not expected to significantly reduce implementability. Score is comparable to the Alternative 4 as comparable volumes of cap material would be imported and placed.	Achieves a moderately high level of technical implementability (highest among all alternatives) through the use of common capping and material removal methods. Administrative implementability challenges are addressed by inclusion of nearshore dredging to allow cap placement without loss of in-water habitat and to prevent shallowing of lake depth at adjacent facilities. The use of enhanced capping methods (5.1 acres) reduces the volume of overall cap material. Expanded nearshore dredging (16,100 cy) is not expected to significantly reduce implementability. Scores higher (increased by one point) relative to Alternative 5 due to reduction in the volume of sand cap material required.	Achieves a moderately high level of technical implementability through the use of common capping and material removal methods. Administrative implementability challenges are addressed by inclusion of nearshore dredging to allow cap placement without loss of in-water habitat and to prevent shallowing of lake depth at adjacent facilities. The use of extensive enhanced capping methods (9.1 acres) results in the lowest overall volume of cap material of all alternatives. Expanded nearshore dredging (16,100 cy) is not expected to significantly reduce implementability. Scores lower (decreased by one point) relative to Alternative 6 as a result of the addition of dredging, transport, and disposal of a significant volume of offshore lake sediment. The offshore dredging (8,150 cy at SMA-6) and the safeguards required to prevent distribution of dredge residuals and address associated water quality issues adds a level of complication that reduces implementability. Higher implementability score compared to Alternative 8 due to reduction in the volume of sand cap material required.	 Achieves a moderate level of technical implementability (lowest among all alternatives) through the use of common capping and material removal methods. Administrative implementability challenges are addressed by inclusion of nearshore dredging to allow cap placement without loss of in-water habitat and to prevent shallowing of lake depth at adjacent facilities. The use of extensive enhanced capping methods (9.1 acres) reduces the volume of cap material. However, the expanded use of capping and ENR across large areas of the lake bottom portion of the SCU (SMAs 13 and 14) results in the largest volume of cap material of all alternatives. Expanded nearshore dredging (16,100) is not expected to significantly reduce implementability, and offshore dredging (8,150 cy) contributes to the same level of implementability as Alternative 7. Lower implementability score relative to Alternative 7 due to significantly increased volume of cap material from extensive capping (23.3 acres of 2-ft sand cap and 9.1 acres of enhanced cap) and use of ENR 					
Consideration of Public Concerns	Score = 7.0	Score = 8.0	Score = 8.5	Score = 9.0					
"Whether the community has concerns regarding the alternative and, if so, the extent to which the alternative addresses those concerns. This process includes concerns from individuals, community groups, local governments, tribes, federal and state agencies, or any other organization that may have an interest in or knowledge of the site."	Public concerns are not yet known. It is assumed that protectiveness is the greatest public concern, therefore the score for this alternative is the same as the score under the protectiveness criterion. The score will be reviewed and revised as necessary after receiving public comments on the RI/FS.	Public concerns are not yet known. It is assumed that protectiveness is the greatest public concern, therefore the score for this alternative is the same as the score under the protectiveness criterion. The score will be reviewed and revised as necessary after receiving public comments on the RI/FS.	Public concerns are not yet known. It is assumed that protectiveness is the greatest public concern, therefore the score for this alternative is the same as the score under the protectiveness criterion. The score will be reviewed and revised as necessary after receiving public comments on the RI/FS.	Public concerns are not yet known. It is assumed that protectiveness is the greatest public concern, therefore the score for this alternative is the same as the score under the protectiveness criterion. The score will be reviewed and revised as necessary after receiving public comments on the RI/FS.					

Notes:

Criteria in MTCA 173-340-360(3)(f) and SMS 173-204-570(4) (Scored from 1 =Low to 10 = High).

ARAR = applicable or relevant and appropriate requirement

CAP = cleanup action plan

CUL = cleanup level

CY = cubic yard

ENR = enhanced natural recovery

MNR = monitored natural recovery

MTCA = Model Toxics Control Act

NAPL = nonaqueous phase liquid

SMS = Sediment Management Standards

WAC = Washington Administrative Code

Scoring Range:

1 to 3.5 = Moderately Low 4 to 6 = Moderate 6.5 to 7.5 = Moderately High 8 to 10 = High.

Table 13-2 | May 23, 2022 File No. 0186-846-03

Table 13-3

Disproportionate Cost Analysis Summary

Gas Works Park Site

Seattle, Washington

Cleanup Action Alternative		1		2		3		4		5		6		7		8	
Relative Benefit Score																	
Benefit Criteria (weighting factor)	Score	Weighted	Score	Weighted	Score	Weighted	Score	Weighted	Score	Weighted	Score	Weighted	Score	Weighted	Score	Weighted	
Protectiveness (30%)	4	1.2	5	1.5	6	1.8	6	1.8	7	2.1	8	2.4	8.5	2.55	9	2.7	
Permanence (20%)	4	0.8	5	1	6	1.2	6	1.2	6.5	1.3	7.5	1.5	8	1.6	8.5	1.7	
Long-term Effectiveness (20%)		0.7	4.5	0.9	6	1.2	5.5	1.1	6.5	1.3	7	1.4	7.5	1.5	8	1.6	
Management of Short-term Risks (10%)		0.6	6.5	0.65	7.5	0.75	6	0.6	6.5	0.65	7	0.7	5	0.5	4.5	0.45	
Technical and Administrative Implementability (10%)	7	0.7	6.5	0.65	7	0.7	6.5	0.65	6.5	0.65	7.5	0.75	6.5	0.65	6	0.6	
Consideration of Public Concern ^a (10%)	4	0.4	5	0.5	6	0.6	6	0.6	7	0.7	8	0.8	8.5	0.85	9	0.9	
Total Weighted Relative Benefit Score		4.4		5.2		6.3		6.0		6.7		7.6		7.7		8.0	
Cost ^b		\$60,160,000 \$64,400,000		\$73,940,000		\$70,100,000		\$73,080,000		\$72,970,000		\$82,290,000		\$93,930,000			
Benefit/Cost Ratio = Total Weighted Relative Benefit Score ÷ (Cost ÷ \$50,000,000)		3.7 4.0		4.2		4.2		4.6		5.2			4.6		4.2		

Notes

^a Score for "Consideration of Public Concerns" assumed to be the same as the score for "Protectiveness". Score will be revised as necessary after public review of the RI/FS.

 $^{\rm b}$ Estimated costs are at FS level, with a range of +50% and -30%. See Appendix 13A.

