

THIRD AND FOURTH QUARTER 2022 GROUNDWATER MONITORING AND TREATMENT SYSTEM OPERATION AND MAINTENANCE REPORT

CHS AUBURN SITE AUBURN, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaguah, Washington 98027

Farallon PN: 301-004

For: CHS Inc. 763 Willoughby Lane Stevensville, Montana 59870

February 8, 2023

Prepared by:

Javan Ruark, L.G. Associate Geologist

Reviewed by:

Jeff Kaspar, L.G., L.H.G. **Principal Geologist**

TABLE OF CONTENTS

1.0	INTRO	DUCTION	1-1
2.0		MENT SYSTEM OPERATION, MAINTENANCE, AND OPTIMIZATION	
3.0	3.1	NDWATER MONITORING METHODS	3-1
4.0	4.1 4.2	ADWATER MONITORING RESULTS 2 GROUNDWATER ELEVATIONS 2 SITE-WIDE MONITORING ANALYTICAL RESULTS 2 4.2.1 Diesel-Range Organics 2 4.2.2 Oil-Range Organics 2 4.2.3 Gasoline-Range Organics 2 4.2.4 Benzene, Toluene, Ethylbenzene, and Xylenes 2 4.2.5 Groundwater Geochemical Parameters 2 DATA VALIDATION 2	4-1 4-1 4-2 4-2 4-2 4-2 4-3
5.0	DISCUS	SSION	5-1
6.0	ONGOI	NG AND PLANNED ACTIVITIES	5-1
7.0	REFER	ENCES	7-1

FIGURES

Figure 1	Site Vicinity Map
----------	-------------------

- Figure 2 Site Plan
- Figure 3 Site Plan Showing Detail of the Central Area of the Site
- Figure 4 Groundwater Elevation Contour Map, November 2022
- Figure 5 November 2022 Groundwater Analytical Results for DRO, ORO, GRO, and BTEX
- Figure 6 November 2022 Groundwater Analytical Results for DRO and ORO With and Without Silica Gel Cleanup Procedure

TABLES

- Table 1Soil Vapor Extraction System and Well Data
- Table 2Air Sparge System and Well Data
- Table 3SVE System Air Analytical Data
- Table 4Summary of Groundwater Elevation Data January 2018 through November2022
- Table 5Summary of Groundwater Geochemical Data January 2018 through
November 2022
- Table 6Summary of Laboratory Analytical Results for TPH and BTEX in Groundwater –
January 2018 through November 2022
- Table 7Summary of Laboratory Analytical Results for DRO and ORO in Groundwater –
November 2021 through November 2022

CHARTS

- Chart 1 DRO and ORO Concentration Data Trends for Monitoring Well CMW-2
- Chart 2 DRO and ORO Concentration Data Trends for Monitoring Well CMW-10
- Chart 3 DRO, ORO, and GRO Concentration Data Trends for Monitoring Well CMW-12
- Chart 4 DRO Concentration Data Trend for Monitoring Well CMW-13
- Chart 5 DRO, ORO, and GRO Concentration Data Trends for Monitoring Well CMW-27
- Chart 6 DRO and ORO Concentration Data Trends for Monitoring Well CMW-28
- Chart 7 DRO Concentration Data Trend for Monitoring Well HMW-10
- Chart 8 DRO, ORO, and GRO Concentration Data Trends for Monitoring Well HMW-11

APPENDIX

Appendix A Laboratory Analytical Reports

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this report on behalf of CHS Inc. (CHS) to document air sparge (AS) and soil vapor extraction (SVE) system routine operation and maintenance (0&M) and optimization activities for the period from July 9, 2022 through December 16, 2022 (herein referred to as the reporting period) for the central portion of the CHS Auburn site in Auburn, Washington (herein referred to as the Site), and groundwater monitoring activities conducted on November 29 and 30, 2022 at the Site. For the purpose of this report, the groundwater monitoring and sampling activities conducted on November 29 and 30, 2022 are referred to herein as the November 2022 monitoring event. A Site vicinity map is provided on Figure 1, and a Site plan is provided on Figure 2. The Site is listed in the Washington State Department of Ecology (Ecology) Confirmed and Suspected Contaminated Sites List database as Cenex Valley Supply Coop, and has been assigned Site Identification No. 2487.

A Remedial Investigation/Feasibility Study for the Site was conducted in accordance with the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), as established in Chapter 173-340 of the Washington Administrative Code, and pursuant to the requirements of Agreed Order No. 4033 entered into between CHS and Ecology on June 12, 2007. The Remedial Investigation Report was submitted to Ecology on July 20, 2011 (Farallon 2011). A Feasibility Study for the Site was submitted to Ecology (Farallon 2014). A working draft of the Draft Cleanup Action Plan was submitted for Ecology review on May 28, 2015 (Farallon 2015). The public review and comment period for the Draft Cleanup Action Plan and for Draft Consent Decree No. 18-2-15430-8 issued by Ecology was completed on May 7, 2018. The *Final Cleanup Action Plan, CHS Auburn Site, 238 8th Street Southeast and Contiguous Areas, Auburn, Washington, Agreed Order No. 4033, Facility Site No. 2487 dated May 8, 2018* issued by Ecology (Ecology 2018) (Final Cleanup Action Plan) was included as Exhibit B of Consent Decree No. 18-2-15430-8 between Ecology and CHS, with an effective date of June 20, 2018.

The scope of work for the November 2022 monitoring event and the AS/SVE system 0&M and optimization activities was conducted in accordance with the *Performance Monitoring Plan, CHS Auburn Site, Auburn, Washington, Facility Site No. 2487, Consent Decree No. 18-2-15430-8* dated February 15, 2019 prepared by Farallon (2019) (Performance Monitoring Plan) that was approved by Ecology (2019).

This report is organized into the following sections:

- Section 2, Treatment System Operation, Maintenance, and Optimization, provides details on the operation, maintenance, and optimization of the AS/SVE system.
- Section 3, Groundwater Monitoring Methods, describes the sampling protocols and the selected monitoring wells and analyses for the November 2022 monitoring event.

- Section 4, Groundwater Monitoring Results, presents groundwater elevations and Sitewide analytical results from the November 2022 monitoring event, and the data validation conducted.
- Section 5, Discussion, presents a summary of contaminant distribution in groundwater at the Site prior to and after start-up of the reconfigured AS/SVE system in June 2019.
- Section 6, Ongoing and Planned Activities, discusses planned activities for the first semiannual 2023 groundwater monitoring event scheduled for May 2023, and routine O&M of the AS/SVE system at the Site.
- Section 7, References, provides a list of the documents cited in this report.

2.0 TREATMENT SYSTEM OPERATION, MAINTENANCE, AND OPTIMIZATION

This section provides details regarding the 0&M and optimization of the AS/SVE system in the central area of the Site during the reporting period (Figure 3). A summary of AS/SVE system operational parameters from November 17, 2021 through July 8, 2022 was included in the First and Second Quarter 2022 Groundwater Monitoring, and Treatment System Operation and Maintenance Report (Farallon 2022).

As detailed in the Final Cleanup Action Plan, the purpose of the AS/SVE system is to reduce concentrations of total petroleum hydrocarbons as diesel-range organics (DRO), as oil-range organics (ORO), and as gasoline-range organics (GRO); and benzene, toluene, ethylbenzene, and xylenes (BTEX) (collectively referred to herein as the constituents of concern [COCs]) in groundwater that is down-gradient and beyond the area of influence of the AS wells in the central area of the Site to less than MTCA Method A cleanup levels within a reasonable restoration time frame.

2.1 AS/SVE SYSTEM OPERATION, MAINTENANCE, AND OPTIMIZATION

Routine O&M of the AS/SVE system was conducted bimonthly or in response to AS/SVE system shut-downs to measure and record operational parameter readings, which typically consisted of the following:

- AS compressor motor frequency, amperage, and total run time;
- SVE blower motor frequency, amperage, and total run time;
- SVE system total vacuum and flow rate;
- SVE system exhaust temperature;
- SVE well air flow, vacuum, and vapor volatile organic compound concentration measured by a photoionization detector;
- AS system pressure and temperature from the pre- and post-cooling piping array; and
- AS well airflow and pressure.

A summary of AS/SVE system operational parameters is provided in Tables 1 and 2. Based on the flow rates from or to individual AS and SVE wells and the pressure to individual AS wells, AS/SVE system operational settings were adjusted periodically to optimize flow and pressure to treat COCs in the subsurface more efficiently. AS/SVE system operational parameters for the reporting period are summarized as follows:

• Operating time (run time) totaled approximately 4,243 hours for the AS compressor and the SVE blower (May 26, 2022 to December 16, 2022);

2 - 1

• Total vacuum for the SVE system ranged from 8.0 to 15.5 inches of water;

- The total flow rate for the SVE system ranged from 83 to 94 standard cubic feet per minute;
- Total AS system pressure ranged from 17.9 to 19.5 pounds per square inch; and
- The total AS system flow rate ranged from 35.4 to 37.4 standard cubic feet per minute.

Automatic shut-down of the AS/SVE system occurred periodically during the reporting period, which was attributed to power outages and high-temperature alarms inside the treatment building. Each time the AS/SVE system shut down, Farallon personnel were alerted via the telemetry system, and if the AS/SVE system could not be restarted remotely, trained personnel mobilized to the Site in a reasonable time frame to inspect the system, diagnose the alarm condition, and restart the system, when appropriate.

SVE system effluent air samples were collected during the August 10, October 10, and December 16, 2022 0&M site visits. The air samples were collected from the SVE system exhaust stack for each event using a 1-liter Summa canister and were delivered under standard chain-of-custody protocols to Friedman and Bruya, Inc. of Seattle, Washington for analysis for COCs by U.S. Environmental Protection Agency Method TO-15. Analytical results from the SVE system effluent air sampling are provided in Table 3. The laboratory analytical reports are provided in Appendix A. SVE system effluent air sampling data and the amount of benzene removed by the SVE system during the reporting period are summarized as follows:

- GRO was detected at concentrations ranging from 3.8 to 8.3 nanoliters per microliter in the effluent air samples collected on August 10, October 10, and December 16, 2022.
- Total xylenes were detected at a concentration of 0.0093 nanoliters per microliter in the effluent air sample collected on October 10, 2022. Total xylenes were not detected at concentrations exceeding laboratory reporting limits in the remaining effluent air samples.
- Ethylbenzene was detected at a concentration of 0.0012 nanoliters per microliter in the effluent air sample collected on October 10, 2022. Ethylbenzene was not detected at concentrations exceeding laboratory reporting limits in the remaining effluent air samples.
- Benzene and toluene were not detected at a concentration exceeding laboratory reporting limits.
- The calculated amount of benzene removed during this period is estimated at 0.004 pound for an estimate total benzene removal of 2.84 pounds since starting up the AS/SVE system on May 29, 2019 (Table 1).

3.0 GROUNDWATER MONITORING METHODS

This section summarizes the sampling protocols and the selected monitoring wells and analyses for the November 2022 monitoring event conducted at the Site.

3.1 SAMPLING PROTOCOLS

Groundwater samples were collected on November 29 and 30, 2022 using low-flow sampling methods as described in the Performance Monitoring Plan. Before sampling was initiated, groundwater elevations and dissolved-oxygen content in groundwater were measured at select well locations on November 29 and 30, 2022. The groundwater elevation at each monitoring well also was measured during sampling. The depth to groundwater in each monitoring well was measured to the nearest 0.01 foot using an electronic water-level measuring device from the surveyed location on the top of the well casing. Measurements of dissolved-oxygen analyzer and optical fluorescence down-hole probe. Depth-to-groundwater measurements and the water-level elevations obtained prior to sampling for the groundwater monitoring events conducted from January 2018 through November 2022 are presented in Table 4 and the November 2022 elevations are shown on Figure 4.

Before the monitoring wells were purged, the intake of the dedicated polyethylene tubing was placed in the approximate middle of the saturated portion of the well screen. Before sampling was initiated, groundwater was purged from each monitoring well at flow rates ranging from 120 to 160 milliliters per minute. Field measurements for pH, temperature, specific conductivity, dissolved oxygen, and oxidation-reduction potential (ORP) were recorded during purging using a YSI Model ProDSS water-quality analyzer equipped with a flow-through cell. Water-quality parameter geochemical measurements are summarized in Table 5. Groundwater samples were collected after the pH, temperature, and specific conductivity measurements stabilized. Stabilization was determined for pH as a change of +/-0.1 pH unit between readings for three consecutive measurements, and for temperature and specific conductivity as a relative percent difference of less than 3 percent between readings for three consecutive measurements.

Following stabilization of the water-quality parameters, samples were collected by pumping groundwater directly from each monitoring well through dedicated polyethylene tubing into laboratory-prepared containers, with care taken to minimize turbulence. Care was taken to not handle the container seal or lid when the samples were placed into the containers. The containers were filled to eliminate headspace, and the seal and the lid were secured. The samples were placed on ice in a cooler under standard chain-of-custody protocols, and delivered to OnSite Environmental Inc. of Redmond, Washington (OnSite) for laboratory analysis. Wastewater generated during purging of the monitoring wells is temporarily stored in a labeled 55-gallon drum in a secure area of the Site.

3.2 SELECTED MONITORING WELLS AND ANALYSES

Groundwater samples were collected from monitoring wells CMW-2, CMW-8, CMW-10, CMW-12, CMW-13, CMW-25 through CMW-31, HMW-9 through HMW-11, and HMW-13, and were analyzed for the following:

- DRO and ORO by Northwest Method NWTPH-Dx with and without silica gel cleanup procedure. Sulfuric acid was not used as part of the silica gel cleanup procedure.
- GRO by Northwest Method NWTPH-Gx.
- BTEX constituents by U.S. Environmental Protection Agency Method 8021B.

Field duplicate groundwater samples were collected from monitoring wells CMW-12 and CMW-27 for quality assurance/quality control (QA/QC) purposes.

4.0 GROUNDWATER MONITORING RESULTS

This section presents groundwater elevations, geochemical parameters, and analytical results from the November 2022 monitoring event, and the data validation conducted.

4.1 GROUNDWATER ELEVATIONS

Groundwater elevations measured in the Site monitoring wells on November 29 and 30, 2022, ranged from 64.39 feet above mean sea level in monitoring well CMW-8 to 72.12 feet above mean sea level in monitoring well HMW-13 (Figure 4; Table 4). The groundwater elevation for monitoring well HMW-13 based on the November 29, 2022 depth to groundwater measurement was anomalously higher than the groundwater elevations at cross-gradient monitoring wells CMW-26 and CMW-29 and therefore was not used to construct the groundwater elevation contour map provided on Figure 4. The cause of the erroneous depth to groundwater measurement on November 29, 2022 in monitoring well HMW-13 is unknown. The depth to water measured in HMW-13 the following day at the start of sampling was 6.58 feet lower than when measured on November 29, 2022 and the resulting groundwater elevation in the well is consistent with adjacent cross-gradient monitoring wells.¹ The groundwater flow direction was to the northeast, with an average gradient of 0.002 foot per foot. Groundwater elevations measured on November 29 and 30, 2022 were approximately 4.34 foot lower on average than those measured during the previous monitoring event, conducted on May 25, 2022 (Table 4).

4.2 SITE-WIDE MONITORING ANALYTICAL RESULTS

The analytical results from the November 2022 monitoring event are discussed in the following sections. Comparison of analytical results for DRO, ORO, GRO, and BTEX constituents to MTCA Method A groundwater cleanup levels is shown in Table 6. Comparison of analytical results for DRO with and without the silica gel cleanup procedure to MTCA Method A groundwater cleanup levels is shown in Table 7. Analytical results for DRO, ORO, GRO, GRO, and BTEX constituents for the November 2022 monitoring event are presented on Figure 5. Analytical results for DRO and ORO with and without the silica gel cleanup procedure for the November 2022 monitoring event are presented on Figure 5. Analytical results for DRO and ORO with and without the silica gel cleanup procedure for the November 2022 monitoring event are presented on Figure 6. The laboratory analytical report is provided in Appendix A.

4.2.1 Diesel-Range Organics

For the samples analyzed without the silica gel cleanup procedure, DRO was detected at concentrations exceeding the MTCA Method A cleanup level of 0.5 milligrams per liter (mg/l) in groundwater samples collected from five of the 16 monitoring wells sampled (Tables 6 and 7) and in the QA/QC sample collected from monitoring well CMW-27. Concentrations of DRO

¹ The groundwater elevation measured in monitoring well HMW-13 on November 30, 2022 prior to sampling was 65.54 feet above mean sea level.

exceeding the MTCA Method A cleanup level ranged from 0.52 mg/l in the groundwater sample collected from monitoring well HMW-10 to 2.1 mg/l in the groundwater sample collected from monitoring well CMW-27.

For the samples analyzed using the silica gel cleanup procedure, DRO was only detected at a concentration exceeding the MTCA Method A cleanup level in a single sample; DRO was detected at a concentration of 0.75 mg/l from monitoring well CMW-27 (Table 7). For all remaining samples analyzed using the silica gel cleanup procedure, DRO was not detected at a concentration exceeding the MTCA Method A cleanup level of 0.5 mg/l during the November 2022 monitoring event (Table 7).

The results for the groundwater samples collected from monitoring wells CMW-27 and HMW-11 and the QA/QC sample collected from monitoring well CMW-27, which exceeded the MTCA Method A cleanup level, were flagged in the laboratory analytical report due to interferences from hydrocarbons in the gasoline range impacting DRO analytical results.

4.2.2 Oil-Range Organics

For the samples analyzed without the silica gel cleanup procedure, ORO was detected at concentrations exceeding the MTCA Method A cleanup level of 0.5 mg/l in groundwater samples collected from four of the 16 monitoring wells sampled (Tables 6 and 7) and in the QA/QC sample collected from monitoring well CMW-27. Concentrations of ORO exceeding the MTCA Method A cleanup level ranged from 0.51 mg/l in the groundwater sample collected from monitoring well CMW-11 to 0.77 mg/l in the groundwater sample collected from monitoring well CMW-10.

For the samples analyzed using the silica gel cleanup procedure, ORO was not detected at or exceeding the laboratory reporting limit in all groundwater samples collected during the November 2022 sampling event (Table 7).

4.2.3 Gasoline-Range Organics

GRO was detected at a concentration exceeding the MTCA Method A cleanup level of 800 micrograms per liter (μ g/l) in the groundwater sample collected from one of the 16 monitoring wells sampled (Table 6). GRO was detected at a concentration of 1,300 μ g/l in the groundwater sample and in the QA/QC field duplicate sample collected from monitoring well MW-27.

4.2.4 Benzene, Toluene, Ethylbenzene, and Xylenes

The BTEX constituents were not detected at concentrations exceeding MTCA Method A cleanup levels (Table 6).

4.2.5 Groundwater Geochemical Parameters

The groundwater geochemical parameters measured in the field were pH, ORP, and dissolved oxygen content. The results for these geochemical parameters are presented in Table 5 and summarized in the following sections.

4.2.5.1 pH

The pH measurements for groundwater samples ranged from 5.35 pH units at monitoring well HMW-9 to 7.99 pH units at monitoring well CMW-26.

4.2.5.2 Oxidation-Reduction Potential

ORP readings in groundwater ranged from 16.7 millivolts at monitoring well CMW-27 to 292.7 millivolts at monitoring well CMW-2.

4.2.5.3 Dissolved Oxygen

The dissolved oxygen readings ranged from 0.73 mg/l at monitoring well CMW-12 to 6.26 mg/l at monitoring well CMW-28. Dissolved-oxygen measurements obtained using the InsiteIG Model 3100 dissolved-oxygen analyzer probe on November 29, 2022 were abnormally high; therefore, dissolved oxygen readings included in Table 5 were obtained using the YSI Model ProDSS water-quality analyzer at the time of sampling.

4.3 DATA VALIDATION

Farallon reviewed the analytical data package provided by OnSite for sample delivery 2212-015. The groundwater samples from this group were analyzed for DRO, ORO, GRO, and BTEX constituents by the methods cited in Section 3.2, Selected Monitoring Wells and Analyses, within the prescribed method holding times. The QA/QC testing performed by OnSite included evaluation of surrogate recoveries and matrix spike/matrix spike duplicates. Results from the QA/QC testing were within established laboratory control limits. Based on Farallon's review of the QA/QC data generated during the November 2022 monitoring event, the groundwater analytical results are acceptable for use in characterizing groundwater quality at the Site relative to the groundwater quality cleanup levels used for comparative purposes in this report. The laboratory analytical report for the samples analyzed by OnSite is provided in Appendix A.

5.0 DISCUSSION

This section provides a summary of the distribution of DRO, ORO, GRO, and BTEX constituents detected in groundwater at the Site during the November 2022 monitoring event relative to the monitoring event in May 2022 and the pre-AS/SVE system start-up monitoring event conducted in January 2019. Trends in COC concentrations relative to groundwater elevation changes since 2018 also are discussed where trends appear evident. Data trends of select COC concentrations in groundwater for key monitoring wells are shown on Charts 1 through 8. Note that the DRO and ORO results provided in the discussion and used to construct the charts are for samples analyzed without the silica gel cleanup procedure.

Concentrations of DRO, ORO, GRO, and BTEX constituents detected in groundwater samples collected from Site monitoring wells during the November 2022 monitoring event varied from those detected during the 2018 through May 2022 monitoring events as follows:

• Monitoring Well CMW-2: DRO and ORO concentrations increased between May and November 2022. DRO and ORO were the only constituents detected at concentrations exceeding the MTCA Method A cleanup level at this location during the November 2022 monitoring event.

Following start-up of the reconfigured AS/SVE system in June 2019, concentrations of DRO and ORO have fluctuated during the groundwater monitoring events conducted from August 2019 through November 2022, with the highest concentrations detected during the November 2019 monitoring event. An evident correlation between COC concentrations and groundwater elevations in monitoring well CMW-2 is not apparent (Chart 1).

• Monitoring Well CMW-8: DRO and ORO concentrations decreased between May and November 2022. None of the constituents analyzed for at this location were detected at a concentration exceeding MTCA Method A cleanup levels during the November 2022 monitoring event.

A concentration trend chart was not prepared for monitoring well CMW-8, because it is located 376 feet down-gradient of the active AS/SVE system; therefore, it likely is beyond the area of influence of the system.

 Monitoring Well CMW-10: DRO and ORO concentrations increased between May and November 2022. DRO and ORO were the only constituents detected at concentrations exceeding the MTCA Method A cleanup level at this location during the November 2022 monitoring event.

Following start-up of the reconfigured AS/SVE system in June 2019, concentrations of DRO and ORO have fluctuated during the groundwater monitoring events conducted from August 2019 through November 2022, with the highest concentrations detected during the May 2020 monitoring event (Chart 2).

Monitoring Well CMW-12: DRO and ORO concentrations decreased slightly between May and November 2022 monitoring events. None of the constituents analyzed for at this location were detected at a concentration exceeding MTCA Method A cleanup levels during the November 2022 monitoring event.

Following start-up of the reconfigured AS/SVE system in June 2019, concentrations of DRO, ORO, and GRO have shown an overall decreasing trend during the monitoring events conducted from February 2020 to November 2022. Elevated concentrations of DRO, ORO, and GRO detected in monitoring well CMW-12 generally have correlated with seasonally higher groundwater elevations over the past 3.5 years (Chart 3).

Monitoring Well CMW-13: Between May and November 2022, DRO and ORO concentrations decreased, whereas GRO and benzene concentrations increased. None of the constituents analyzed for at this location were detected at a concentration exceeding MTCA Method A cleanup levels during the November 2022 monitoring event.

Following start-up of the reconfigured AS/SVE system in June 2019, concentrations of DRO and ORO have fluctuated during the groundwater monitoring events conducted from August 2019 through November 2022. Elevated concentrations of DRO and ORO detected in monitoring well CMW-13 generally have correlated with seasonally higher groundwater elevations over the past 3.5 years (Chart 4).

• Monitoring Well CMW-25: None of the constituents analyzed for at this location was detected at a concentration exceeding MTCA Method A cleanup levels during the November 2022 monitoring event.

A concentration trend chart was not prepared for monitoring well CMW-25, because concentrations detected from January 2018 to August 2019 and from February 2020 to November 2022 did not exceed laboratory reporting limits (Table 6).

 Monitoring Well CMW-26: None of the constituents analyzed for at this location was detected at a concentration exceeding MTCA Method A cleanup levels during the November 2022 monitoring event.

A concentration trend chart was not prepared for monitoring well CMW-26, because concentrations detected from January 2018 to November 2022 did not exceed laboratory reporting limits (Table 6).

 Monitoring Well CMW-27: Between May and November 2022, DRO, GRO, benzene, ethylbenzene, and total xylene concentrations increased, whereas ORO concentrations decreased. DRO, ORO, and GRO were the only constituents detected at concentrations exceeding the MTCA Method A cleanup level at this location during the November 2022 monitoring event.

Following start-up of the reconfigured AS/SVE system in June 2019, concentrations of DRO and ORO have shown an overall increasing trend during the monitoring events

conducted from August 2019 to November 2021, followed by decreases in May 2022. However, concentrations of DRO increased during the November 2022 groundwater monitoring event. GRO concentrations have fluctuated during the groundwater monitoring events conducted from August 2018 through November 2022 (Chart 5). Concentrations of DRO, ORO, and GRO in monitoring well CMW-27 have not appeared to correlate with fluctuations in groundwater elevations over the past 3.5 years.

 Monitoring Well CMW-28: DRO and ORO concentrations decreased between May and November 2022 monitoring events. None of the constituents analyzed for at this location was detected at a concentration exceeding MTCA Method A cleanup levels during the November 2022 monitoring event.

Following start-up of the reconfigured AS/SVE system in June 2019, concentrations of DRO and ORO have shown an overall increasing trend during the monitoring events conducted from August 2019 to November 2019, followed by an overall decreasing trend to November 2021. However, concentrations of DRO and ORO increased during the May 2022 monitoring event followed by a decrease in concentrations of DRO and ORO during the November 2022 monitoring event. An evident correlation between DRO and ORO concentrations and groundwater elevations in monitoring well CMW-28 is not apparent over the past 3.5 years (Chart 6).

 Monitoring Well CMW-29: DRO and ORO concentrations decreased between May and November 2022 monitoring events. None of the constituents analyzed for at this location was detected at a concentration exceeding MTCA Method A cleanup levels during the November 2022 monitoring event.

A concentration trend chart was not prepared for monitoring well CMW-29, because it is located 120 feet up-gradient of the active AS/SVE system and most likely is not affected by the system operation.

 Monitoring Well CMW-30: Between May and November 2022, DRO concentrations increased, whereas ORO concentrations decreased. None of the constituents analyzed for was detected at a concentration exceeding MTCA Method A cleanup levels during the November 2022 monitoring event.

A concentration trend chart was not prepared for monitoring well CMW-30, because it is located 220 feet up-gradient of the active AS/SVE system and likely is not affected by system operation.

 Monitoring Well CMW-31: DRO concentrations increased between May and November 2022 monitoring events. None of the constituents analyzed for was detected at a concentration exceeding MTCA Method A cleanup levels during the November 2022 monitoring event.

A concentration trend chart was not prepared for monitoring well CMW-31, because it is located 420 feet down-gradient of the active AS/SVE system and likely is beyond the area of influence of the system.

• Monitoring Well HMW-9: DRO and ORO concentrations decreased between May and November 2022. None of the constituents analyzed for was detected at a concentration exceeding MTCA Method A cleanup levels during the November 2022 monitoring event.

A concentration trend chart was not prepared for monitoring well HMW-9, because it is located 250 feet down-gradient of the active AS/SVE system and likely is beyond the area of influence of the system.

 Monitoring Well HMW-10: DRO and ORO concentrations decreased between May and November 2022. DRO was the only constituent detected at concentrations exceeding the MTCA Method A cleanup level at this location during the November 2022 monitoring event.

Following start-up of the reconfigured AS/SVE system in June 2019, concentrations of DRO and ORO have fluctuated during the groundwater monitoring events conducted from August 2019 through November 2022, with the highest concentrations detected during the November 2019 monitoring event. Elevated concentrations of DRO and ORO in monitoring well HMW-10 generally have not appeared to correlate with seasonally lower groundwater elevations since reconfigured system start-up (Chart 7).

• Monitoring Well HMW-11: Between May and November 2022, GRO and benzene concentrations increased, whereas DRO and ORO concentrations decreased. DRO and ORO were the only constituents detected at concentrations exceeding the MTCA Method A cleanup level at this location during the November 2022 monitoring event.

Following start-up of the reconfigured AS/SVE system in June 2019, concentrations of DRO and ORO fluctuated through November 2022, with the highest concentrations detected during the February 2020 monitoring event followed by overall decreasing trends (Chart 8). Concentrations of GRO have shown an overall decreasing trend since the start-up of the reconfigured AS/SVE system in June 2019 (Chart 8).

• Monitoring Well HMW-13: None of the constituents analyzed for at this location were detected at a concentration exceeding MTCA Method A cleanup levels during the November 2022 monitoring event.

A concentration trend chart was not prepared for monitoring well HMW-13, because concentrations detected since January 2018 have not exceeded MTCA Method A cleanup levels and have remained near or below laboratory reporting limits (Table 6).

In summary, BTEX constituents were not detected at concentrations exceeding MTCA Method A cleanup levels in any of the monitoring wells sampled during the November 2022 monitoring event. GRO was detected at a concentration exceeding the MTCA Method A cleanup level only in monitoring well CMW-27 during the November 2022 monitoring event. The expanded area of influence of the reconfigured AS/SVE system appears to continue to mobilize some dissolved-phase DRO and ORO from the smear zone soil as shown by increases in several monitoring wells, most notably CMW-2, CMW-10, CMW-27, HMW-10, and HMW-11.

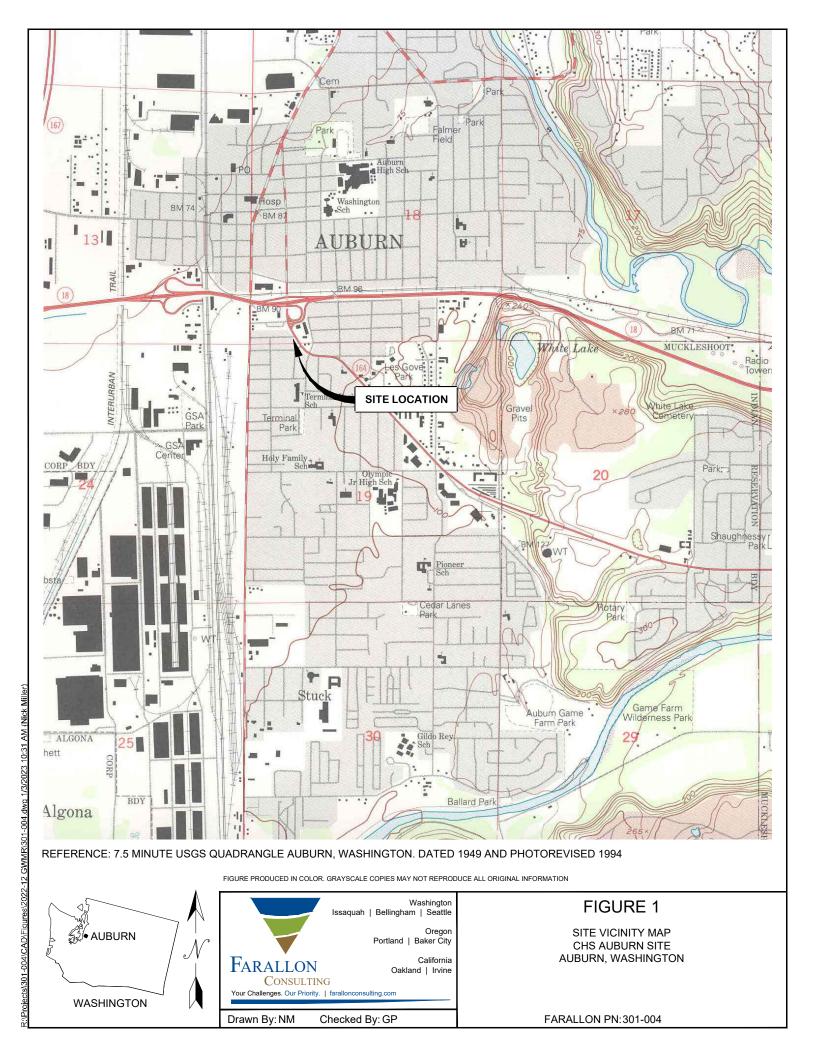
Except for intermittent shut-downs, the current configuration of the AS/SVE system has operated continuously from start-up in June 2019 through November 2022 and has removed a total of 2.84 pounds of benzene from the vadose zone at the Site. The removal rate of benzene has decreased to asymptotic levels since June 2019 and demonstrates that the AS/SVE system no longer is removing significant benzene mass from the vadose zone at the Site (Table 1). Based on the concentration trends for GRO and BTEX constituents observed in groundwater at the Site, Farallon recommends discontinuing operation of the AS/SVE system in conjunction with implementation of a monitored natural attenuation study to assess the viability of natural attenuation as a feasible step to achieve the cleanup objectives for the Site.

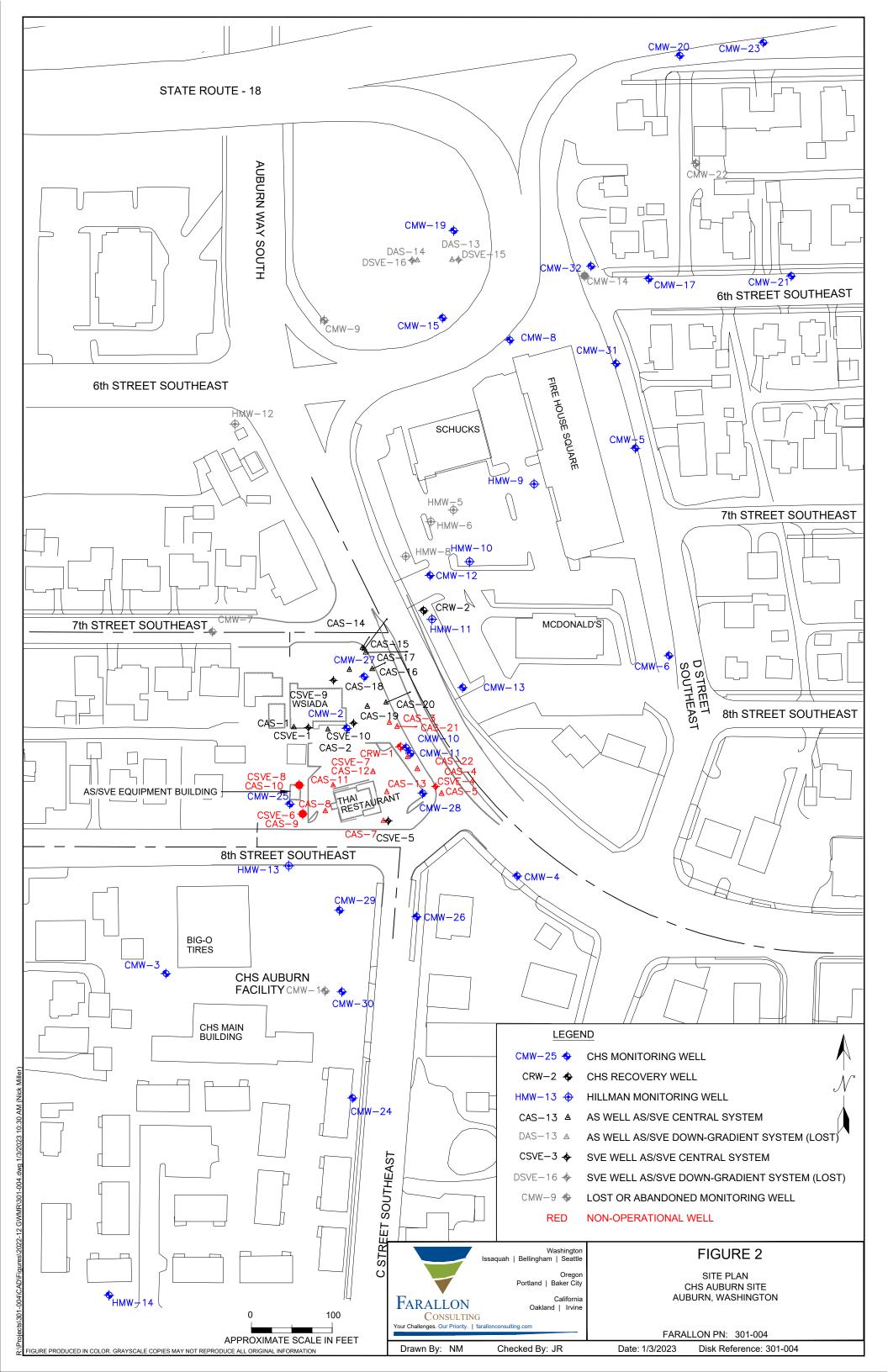
On October 20, 2021, Ecology suggested that DRO and ORO groundwater samples collected during future monitoring events could be analyzed both with and without using the silica gel cleanup procedure in accordance with recent Ecology guidance (2021). Details of the Ecology request were provided in the email regarding CHS Quarterly Progress Report 7/1 through 9/30/2021 dated October 20, 2021 from Jerome Cruz of Ecology to Javan Ruark of Farallon (Ecology 2021). The purpose of the additional analysis was to evaluate whether comparison of the DRO results with and without the silica gel cleanup procedure suggest that the residual DRO concentrations in groundwater may be attributed to polar metabolites resulting from biodegradation of the dissolved DRO plume. Groundwater samples collected for DRO and ORO during the November 2022 monitoring event also were analyzed both with and without using the silica gel cleanup procedure was run during the November 2022 monitoring event without using sulfuric acid.

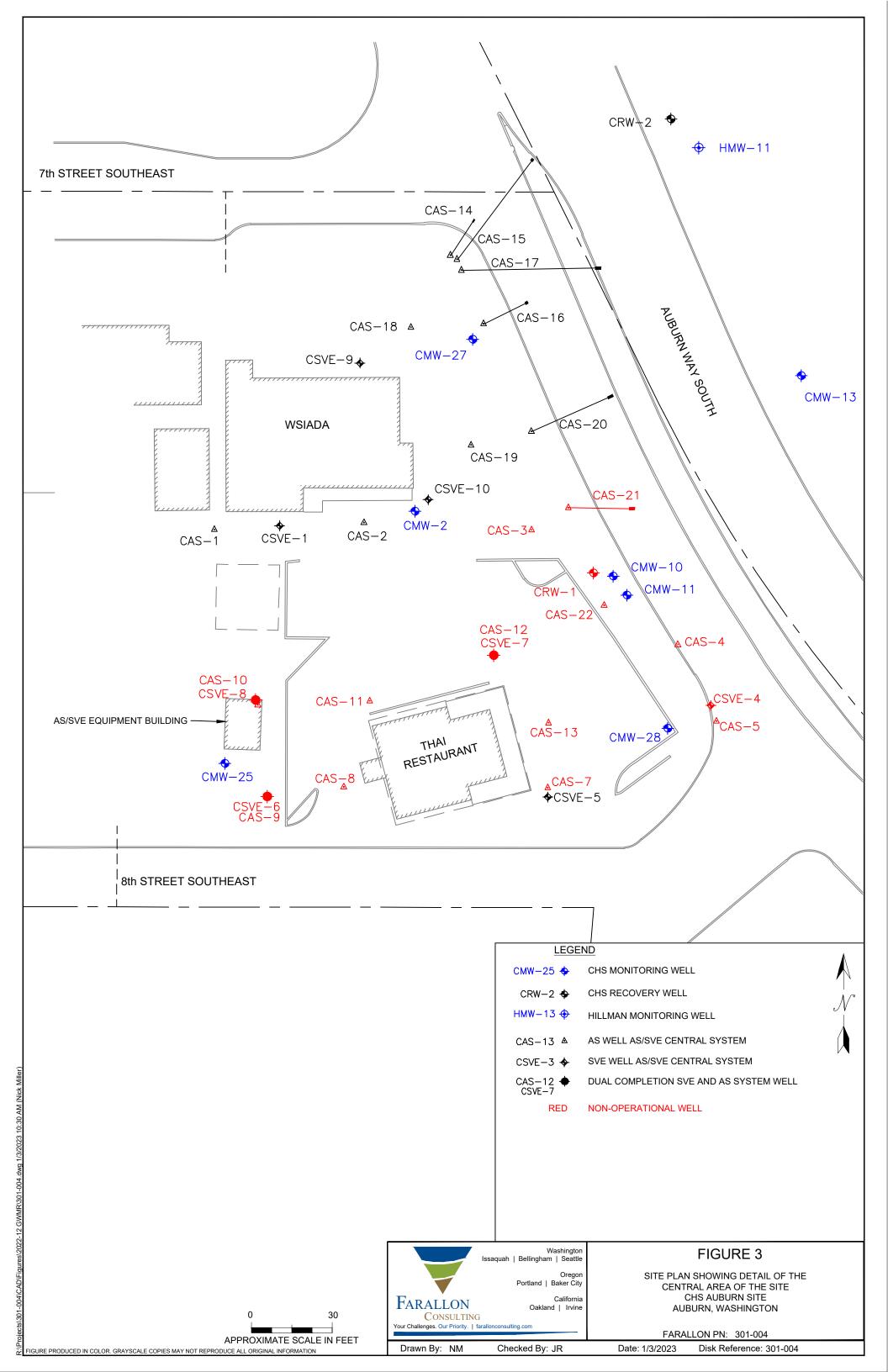
The DRO analytical results from the November 2022 monitoring event further suggest a highly weathered DRO footprint in groundwater at the Site. In the samples analyzed using the silica gel cleanup procedure, DRO was detected at a concentration slightly exceeding the MTCA Method A cleanup level in the groundwater sample collected from monitoring well CMW-27 using the silica gel cleanup procedure. DRO and/or ORO were detected at concentrations slightly exceeding the laboratory reporting limits but less than the MTCA Method A cleanup levels in the groundwater samples analyzed from monitoring wells HMW-9 and/or HMW-11 using the silica gel cleanup procedure. DRO and ORO were not detected at concentrations exceeding the laboratory reporting limits in any of the remaining groundwater samples analyzed using the silica gel cleanup procedure. Further discussion with Ecology is warranted to achieve the cleanup objectives for the Site based on historical groundwater analyses. Farallon recommends continued analysis of DRO and ORO samples both with and without the silica gel cleanup procedure as part of the proposed monitored natural attenuation study to be conducted following shut-down of the AS/SVE system.

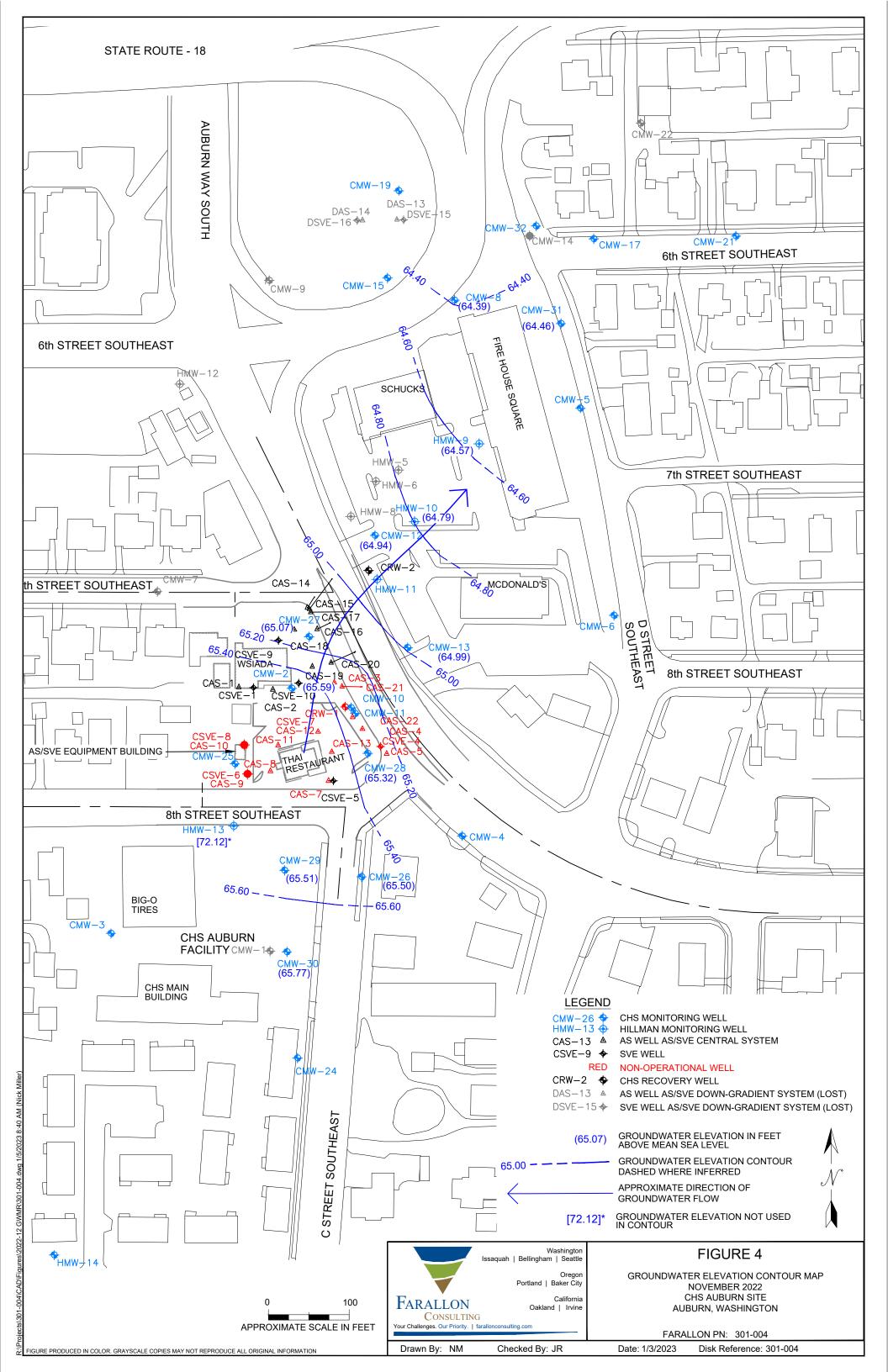
6.0 ONGOING AND PLANNED ACTIVITIES

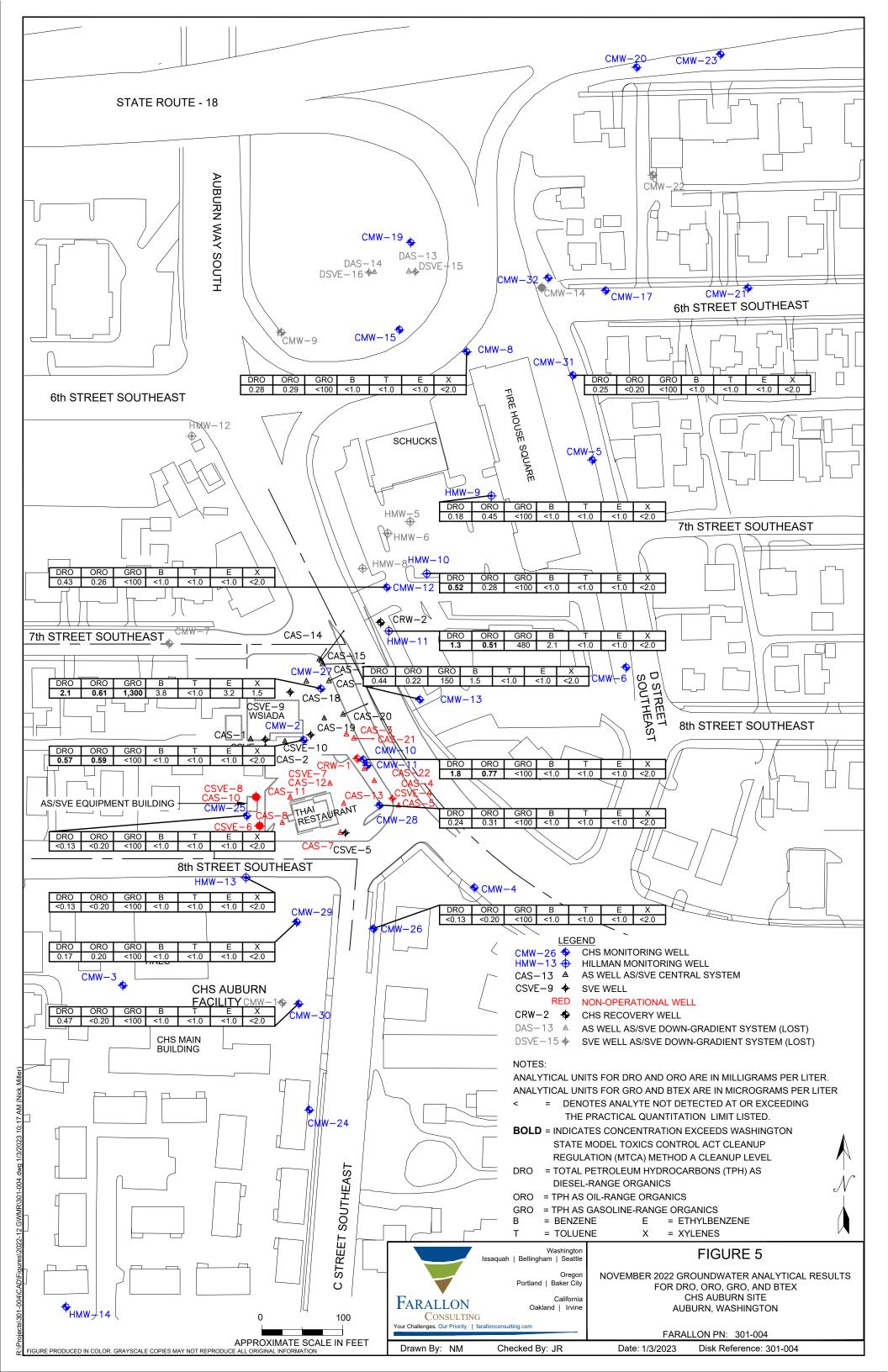
As detailed in Table 3 in the Final Cleanup Action Plan, quarterly performance groundwater monitoring and routine O&M of the AS/SVE system was conducted for the first four quarters following start-up of the AS/SVE system and is to be conducted semiannually thereafter. The November 2022 monitoring event was the fifth semiannual groundwater monitoring event; the sixth is scheduled for May 2023. Conducting routine O&M of the AS/SVE system will continue on a bimonthly basis. Farallon recommends a meeting with Ecology to further discuss the path forward for closure of the Site, including potential shut-down of the AS/SVE system in conjunction with a monitored natural attenuation study.

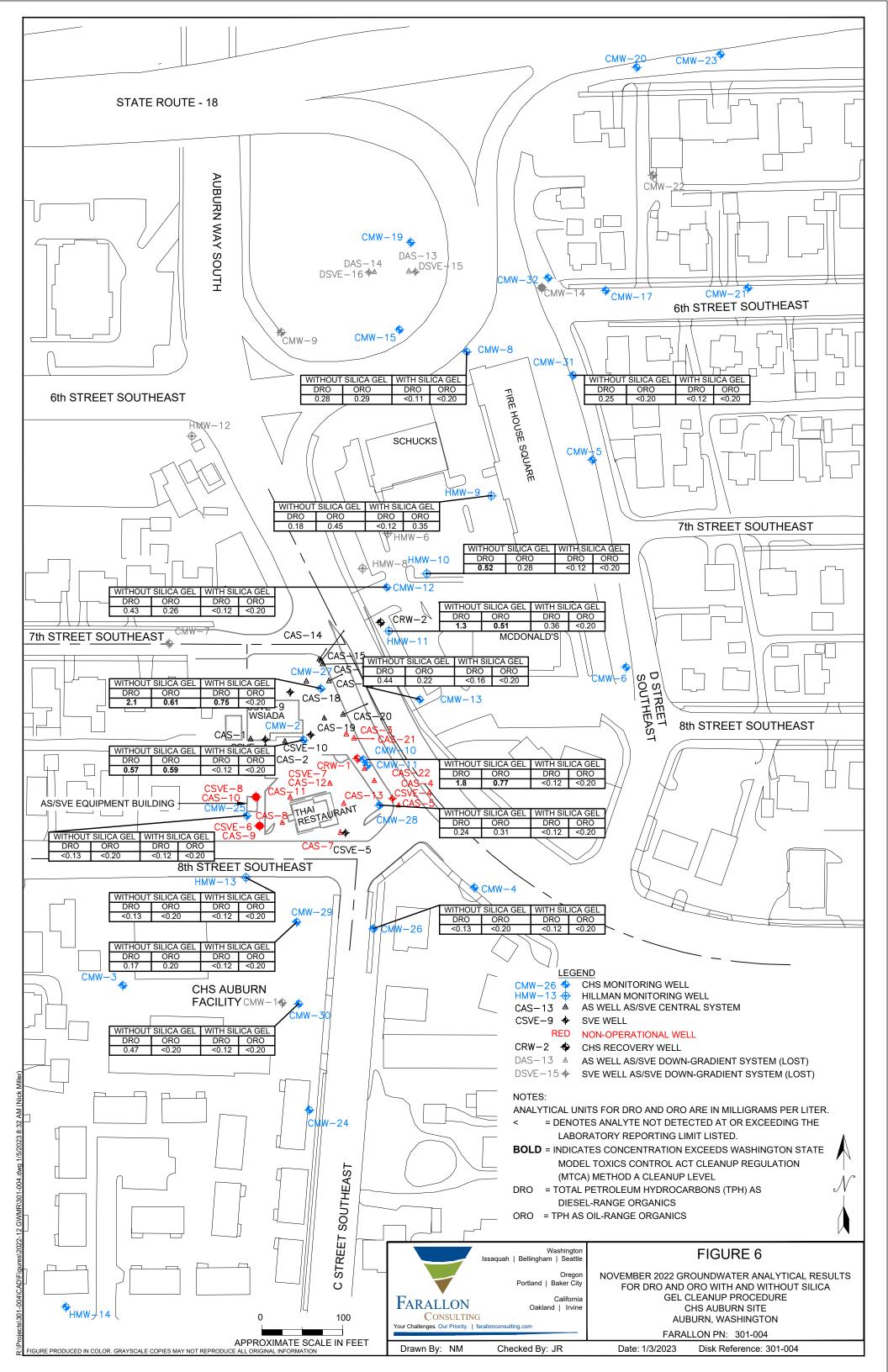

7.0 REFERENCES


- Farallon Consulting, L.L.C. (Farallon). 2011. *Remedial Investigation Report, CHS Auburn Site, Auburn, Washington*. Prepared for CHS Inc. July 20.
- -----. 2014. Feasibility Study, CHS Auburn Site, Auburn, Washington. Prepared for CHS Inc. August 6.
- ——. 2015. Draft Cleanup Action Plan, CHS Auburn Site, Auburn Washington (Working Draft Version). Prepared for CHS Inc. May 28.
- ------. 2019. Performance Monitoring Plan, CHS Auburn Site, Auburn, Washington, Facility Site No. 2487, Consent Decree No. 18-2-15430-8. Prepared for CHS Inc. February 15.
- ——. 2022. First and Second Quarter 2022 Groundwater Monitoring and Treatment System Operation and Maintenance Report, CHS Auburn Site, Auburn, Washington. Prepared for CHS Inc. August 1.
- Washington State Department of Ecology (Ecology). 2018. Final Cleanup Action Plan, CHS Auburn Site, 238 8th Street Southeast and Contiguous Areas, Auburn, Washington, Agreed Order No. 4033, Facility Site No. 2487. May 8.
- -----. 2019. Email Regarding CHS Auburn Performance Monitoring Plan. From Jerome Cruz. To Javan Ruark, Farallon Consulting, L.L.C. January 18.
- -----. 2021. Email Regarding CHS Quarterly Progress Report 7/1 through 9/30/2021. From Jerome B. Cruz. To Javan Ruark, Farallon Consulting, L.L.C. October 20.


FIGURES


THIRD AND FOURTH QUARTER 2022 GROUNDWATER MONITORING AND TREATMENT SYSTEM OPERATION AND MAINTENANCE REPORT CHS Auburn Site Auburn, Washington


Farallon PN: 301-004



TABLES

THIRD AND FOURTH QUARTER 2022 GROUNDWATER MONITORING AND TREATMENT SYSTEM OPERATION AND MAINTENANCE REPORT CHS Auburn Site Auburn, Washington

Farallon PN: 301-004

Table 1 SVE System and Well Data Cenex Auburn Site Auburn, Washington Farallon PN: 301-004

										•		CSV	VE-1			CSV	/E-5			CSV	VE-7			CSV	/E-9			CSV	E-10						-	
Date	Time	System Vacuum, pre-KO (10W)	System Vacuum, post-KO (IOW)	System Flow Rate, Stack (dp)	System Flow Rate, Stack (SCFM)	Total Blower Run Time (hours)	Blower Running (Amps)	Blower Frequency (Hz)	Blower Effluent Temperature (F)	VOC Concentration, Vent Stack (ppm)	Well Vacuum (IOW)	Flow Rate (dp)	Flow Rate (SCFM)	PID Reading (ppm)	Well Vacuum (IOW)	Flow Rate (dp)	Flow Rate (SCFM)	PID Reading (ppm)	Well Vacuum (IOW)	Flow Rate (dp)	Flow Rate (SCFM)	PID Reading (ppm)	Well Vacuum (IOW)	Flow Rate (dp)	Flow Rate (SCFM)	PID Reading (ppm)	Well Vacuum (IOW)	Flow Rate (dp)	Flow Rate (SCFM)	PID Reading (ppm)	Benzene Analytical Results (ug/m3)	Benzene Analytical Results (nl/ml)	Benzene Concentration ¹ (mg/m3)	Benzene Removal Rate ² (lbs/day)	Amount of Benzene Removed Between Testing ³ (lbs)	Total Amount of Benzene Removed to Date ⁴ (lbs)
	1210	6.0		0.32	133					130	6.0	0.157	23.46	62	6.0	0.355	35.28	50	6.0	0.015	7.25	250	6.0	0.204	26.75	35	5.6	0.315	33.23	1.2	-	I	-	-	I	-
5/29/2019	1240	6.0		0.32	133					32	5.8	0.21	27.14	42	5.6	0.33	34.02	17.9	6.0	0.023	8.98	110	6.0	0.210	27.14	24	6.0	0.340	34.53	1.0	-	-	-	-	-	-
5/29/2019	1400	5.8		0.306	130					18.5	5.8	0.21	27.14	30.2	5.9	0.41	37.92	4.8	6.0	0.032	10.6	44	6.0	0.190	25.81	19.5	5.2	0.320	33.50	1.3	-	-	-	-	-	-
	1500	5.9		0.32	133					23	5.2	0.21	27.14	21	5.5	0.37	36.02	4	5.4	0.020	8.37	16	5.7	0.200	26.48	95	6.0	0.330	34.02	1.4	-	< 0.31	0.49	0.006	-	-
6/13/2019	1415		0.1			87	2.7	50		14	8.5	0.21	27.1	3.2	5.0	0.32	33.5	1.8	4.1	0.050	13.24	0.1	4.7	0.200	26.50	56	5.0	0.320	33.50	1.4	-	-	-	-	-	-
6/24/2019					130 ¹	351																									-	0.72	2.30	0.269	2.01	2.01
7/16/2019						440																									-	-	-	-	-	-
7/18/2019	1540	3.8		0.31	131	498	2.7	50	95	44	3.4	0.10	18.73	0.3	3.2	0.38	36.5	5.8	3.3	0.160	23.69	34.4	3.5	0.110	19.64	165	3.4	0.160	23.69	48.1	0.578	-	0.0006	0.0000	0.821	2.8297
8/23/2019	1130	4.4		0.32	128	643	2.8	50	95	21	4.0	0.16	23.12	87.7	3.8	0.53	42.3	6.1	4.1	0.020	8.20	7.3	4.2	0.143	21.92	12.5	4.0	0.239	28.35	0.0	0.372	-	0.0004	0.0000	0.000	2.8297
9/18/2019	945	4.2		0.25	114	769	2.7	50		3.7	3.8	0.16	23.35	19.2	3.6	0.44	39.11	0.9	3.9	0.025	9.32	1.0	3.9	0.145	22.44	1.2	3.8	0.246	29.23	0.0	-	-	-	-	-	-
9/23/2019	930	4.8		0.26	117	887	2.7	50	90	71.9	4.3	0.18	24.78	32.2	4.1	0.58	45.02	2.8	4.5	0.032	10.53	181	4.5	0.166	23.99	235.2	4.5	0.165	23.92	33.9	< 0.286	-	0.0001	0.0000	0.000	2.8298
10/22/2019	1120	13.1		0.29	122	1585	2.9	50	90	23.8	13.0	0.22	27.27	12.8	11.9	1.48	71.03	2.8	12.3	0.129	20.94	121	12.5	0.039	11.51	20.7	13.1	0.004	3.68	0.4	<2.86	-	0.0014	0.0000	0.000	2.8300
11/27/2019	1045	17.4		0.18	97	2237	3.0	50	80	1.3	14.5	0.25	29.13	2.7	14.3	2.17	85.59	0.4	14.2	0.123	20.40	1.1	17.3	0.004	3.66	0.8	16.7	0.022	8.60	0.4	-	-	-	-	-	-
12/18/2019	1010	10.2		0.17	95	2280	2.3	40		0.6	10.3	0.03	10.46	0.1	9.8	1.5	71.65	0.1	10.4	0.018	7.84	0.1	10.9	0.003	3.20	0.1	10.2	0.005	4.13	0.1	< 0.286	-	0.0001	0.0000	0.000	2.8303
2/4/2020	1000	16.8		0.12	82	3432	2.4	40			16.2	0.41	37.15		15.7	0.7	47.53		17.2	0.003	3.17		16.4	0.000	0.00		17.1	0.003	3.17		< 0.286	-	0.0001	0.0000	0.000	2.8303
2/21/2020	1200					3842	2.7	40																							-	-	-	-	-	-
2/26/2020	930	28.8		0.06	57	3842	2.7	40	80	0.1	24.8	0.27	29.84	0.0	27.3	0.021	8.29	0.0	27.5	0.070	15.14	0.0	27.2	0.101	18.18	0.3	27.4	0.010	5.72	0.2	-	-	-	-	-	-
4/1/2020	910	11.9		0.14	85	4680	2.3	40	75	0.2	11.4	2.46	91.64	0.1	10.4	0.612	45.73	0.2	11.5	0.067	15.11	0.1	11.5	0.832	53.24	0.1	11.7	0.081	16.61	0.1	< 0.286	-	0.0001	0.0000	0.000	2.8304
5/7/2020	820	7.8		0.19	101	5450	2.2	40	80.5	0.0	7.2	0.26	29.93	0.3	7.1	1.03	59.57	0.2	7.0	0.003	3.22	0.3	7.7	0.007	4.91	0.2	7.4	0.000	0.00	0.3	< 0.286	-	0.0001	0.0000	0.000	2.8304
6/2/2020	852	5.9		0.20	102	6011	2.2	40		0.0	5.6	0.22	27.52	0.0	5.2	0.75	50.89	0.0	6.5	0.013	6.70	0.0	5.8	0.113	19.76	0.2	6.0	0.003	3.22	0.0	< 0.286	-	0.0001	0.0000	0.000	2.8304
7/31/2020	1200	5.0		0.20	102	7175	2.2	40		0.0	4.6	0.19	25.46	0.0	4.3	0.70	49.32	0.0	4.8	0.000	0.00	0.0	4.7	0.182	25.12	0.0	4.8	0.000	0.00	0.0	-	-	-	-	-	-
8/5/2020	1100	4.8		0.20	103	7179	2.2	40			4.5	0.19	25.31		4.1	0.70	48.61		4.7	0.000	5.01		4.6	0.19	25.30		4.7	0.000	4.78		-	-	-	-	-	- 1
10/2/2020	1245	5.1		0.21	105	8293	2.2	40	85	1.9	4.8	0.19	25.46	8.4	4.5	0.75	51.10	0.2	5.0	0.000	6.41	0.0	4.9	0.17	24.41	0.1	5.0	0.000	6.06	0.1	-	-	-	-	-	-
11/6/2020	900	11.7		0.17	94	9129	2.3	40	78	0.9	10.9	0.09	16.95	2.5	9.7	1.44	69.87	0.0	10.9	0.000	12.98	0.0	11.5	0.03	9.72	0.0	10.9	0.000	13.34	0.0	-	-	0.0001	0.0000	0.000	2.8306
12/9/2020	1309	13.5		0.15	90	9775	2.4	40	77.9	0.7	13.9	0.06	14.38	0.1	12.3	1.66	76.28	0.5	12.8	0.000	14.61	0.1	13.8	0.00	15.03	0.2	12.9	0.000	14.19	0.1	-	-	-	-	-	-
1/7/2021	1049	14.9		0.185	99	10314	2.4	40		0.1	13.8	0.14	21.78	1.1	13.2	1.66	75.05	0.0	14.4	0.000		0.0	14.2	0.0		0.0	14.6	0.000		0.0	-	-	-	-	-	-

Table 1 SVE System and Well Data Cenex Auburn Site Auburn, Washington Farallon PN: 301-004

										(1		CSV	Æ-1			CSV	/E-5			CSV	VE-7			CSV	VE-9			CSV	E-10						e	
Date	Time	System Vacuum, pre-KO (10W)	System Vacuum, post-KO (IOW)	System Flow Rate, Stack (dp)	System Flow Rate, Stack (SCFM)	Total Blower Run Time (hours)	Blower Running (Amps)	Blower Frequency (Hz)	Blower Effluent Temperature (F)	VOC Concentration, Vent Stack (ppm)	Well Vacuum (IOW)	Flow Rate (dp)	Flow Rate (SCFM)	PID Reading (ppm)	Well Vacuum (IOW)	Flow Rate (dp)	Flow Rate (SCFM)	PID Reading (ppm)	Well Vacuum (IOW)	Flow Rate (dp)	Flow Rate (SCFM)	PID Reading (ppm)	Well Vacuum (IOW)	Flow Rate (dp)	Flow Rate (SCFM)	PID Reading (ppm)	Well Vacuum (IOW)	Flow Rate (dp)	Flow Rate (SCFM)	PID Reading (ppm)	Benzene Analytical Results (ug/m3)	Benzene Analytical Results (nl/ml)	Benzene Concentration ¹ (mg/m3)	Benzene Removal Rate ² (lbs/day)	Amount of Benzene Removed Between Testing ³ (lbs)	Total Amount of Benzene Removed to Date ⁴ (lbs)
3/2/2021	1400	18.9		0.077	64	11602	2.5	40		0.0	17.8	0.22	26.91	0.0	17.0	0.611	45.31	0.0	18.3	0.000	18.53	0.0	17.8	0.000	18.04	0.1	18.2	0.000	18.78	0.2	< 0.319	-	0.0002	0.0000	0.000	2.8307
4/7/2021	930	10.1	1	0.112	80	12460	2.3	40	63.4	0.0	9.8	0.20	26.36	0.0	9.1	1.216	64.56	0.1	10.0	0.000	5.80	0.0	10.2	0.0	6.2	0.0	10.2	0.000	5.92	0.0	-	-	-	-	-	-
5/17/2021	930	8.1		0.115	78	13393	2.2	40	69	0.0	7.5	0.32	33.19	0.0	7.1	1.02	59.28	0.0	7.8	0.000	4.78	0.0	8.1	0.0	4.85	0.0	8.0	0.000	4.68	0.0	<2.6	-	0.0013	0.0000	0.000	2.8311
6/15/2021	1100	7.9	1	0.111	77	13834	2.2	40	75.1	0.1	7.4	0.32	32.93	0.0	7.0	1.015	59.14	0.0	7.7	0.000	4.66	0.0	7.8	0.0	4.57	0.0	7.8	0.007	4.91	0.0	<5.8	-	0.0029	0.0000	0.000	2.8314
8/25/2021	1240	7.9	1	0.133	85	14237	2.2	40		1.3	7.3	0.33	33.86	3.2	6.9	1.074	60.85	0.2	7.7	0.000		0.0	7.8	0.0		0.0	7.8	0.000		0.0		-	0.0010	0.0000	0.000	2.8316
10/13/2021	1205	11.4		0.135	85	15268	2.3	40	80.9	2.0	10.9	0.12	20.07	3.9	10.1	1.411	69.46	0.0	11.1	0.000	17.00	0.0	11.2	0.0	21.09	0.0	11.2	0.000	35.2	0.0	-	-	-	-	-	-
1/3/2022	1330	16.5		0.119	79	16682	2.4	40	77.1	0.0	16.2	0.05	12.71	0.2	14.7	1.553	72.45	0.2	15.5	0.000	16.22	0.2	15.9	0.0	15.96	0.2	16.0	0.000	17.52	0.1	-	-	-	-	-	-
2/23/2022	1135	12.6		0.157	97	17904	2.3	40	72	0.0	12.6	0.25	29.20	0.1	11.7	0.894	55.18	0.0	12.9	0.000	11.65	0.0	12.8	0.0	6.06	0.0	12.8	0.000	6.76	0.0	<1.9	-	0.0010	0.0000	0.001	2.8328
5/12/2022	915	9.2		0.167	94	19747	2.2	40	81.5	0.1	8.7	0.29	31.33	0.0	8.2	1.025	59.34	0.1	8.9	0.000	10.88	0.0	9.1	0.0	11.23	0.0	9.0	0.000	11.42	0.0	<1.5	-	0.0008	0.0000	0.001	2.8340
5/26/2022	1404	8.2		0.18	98	19943	2.3	40	83		7.8	0.29	31.36		7.7	1.07	60.67		8.5	0.000	1.40		8.6	0.0	1.28		8.6	0.000	1.35		-	-	-	-	-	-
8/10/2022	1020	8.0		0.172	94	21485	2.2	40	94.8	0.0	7.7	0.30	31.68	0.0	7.2	0.993	57.39	0.0	7.9	0.000	10.86	0.0	8.0	0.0	11.23	0.0	8.0	0.000	11.21	0.0	<3.5	-	0.0018	0.0000	0.001	2.8347
10/10/2022	1420	8.1		0.133	83	22868	2.2	40	93.5	0.5	7.7	0.30	32.02	1.2	7.2	0.995	58.54	0.2	7.9	0.000	9.34	0.0	8.0	0.0	9.46	0.0	8.0	0.000	9.65	0.0	<2.8	-	0.0014	0.0000	0.001	2.8352
12/16/2022	1200	15.5		0.126	88	24186	2.4	40	77	16.3	15.3	0.00	17.83	0.0	13.6	2.18	85.96	9.5	15.3	0.000	18.11	0.0	15.5	0.0	18.02	0.0	15.5	0.000	18.48	0.0	<5.1	-	0.0026	0.0000	0.002	2.8367

NOTES:

¹flow rate not measured, assumed value for performance calculation.

-- denotes not collected

CALCULATIONS:

¹ Benzene concentration (mg/m^3) = either $ug/l = mg/m^3$ or (ppmv)*3.19

² Benzene removal rate (lbs/day) = (Flow rate scfm)*(Benzene concentration mg/m³)*(1/35.3 m3/tt³)*(1440 minutes/day)*(1/453592.4 lbs/mg)

³ Benzene removed (lbs) = average (Benzene removal rate lbs/day)*(operating hours between sampling events)(1 day/24 hours)

⁴ Total Amount Removed to Date (lbs) = Previous Total Amount Removed + Amount Removed Between Sampling Events

dp = differential pressure F = degrees Fahrenheit $ft^3 = cubic feet$ Hz = hertz IOW = inches of water 1 = liter lbs = poundsKO = knockout $m^3 = cubic meters$ µg = microgram mg = milligrams ml - milliliter nl = nonoliter ppm = parts per million measured by photoionization detector (PID) calibrated using isobutylene span gas ppmv = parts per million volume psi = pounds per square inch SCFM = standard cubic feet per minute SVE = soil vapor extraction VOC = volatile organic compound

.

Table 2 AS System and Well Data Cenex Auburn Site Auburn, Washington Farallon PN: 301-004

		(s						CA	S-1	CA	S-2	CA	S-3	CA	.S-4	СА	.S-5	CA	S-7	CAS	S-12	CAS	S-14	CA	S-15	CAS	5-16	CAS	5-17	CAS	S-18	CAS	S-19	CA	S-20	CAS	5-21	CAS	-22	
		Total Run Time (hrs)	sdmps	ncy (Hz)	rature (F)	erature (F)	(ii																																	(SCFM)
Date	Time	Compressor Total F	Compressor Running	Compressor Frequency (Hz)	Pre-Cooling Temperature (F)	Post-Cooling Temperature (F)	System Pressure (psi)	Well Pressure (psi)	Flow Rate (SCFM)	TOTAL Flow Rate																														
	1415				152	105	9.2	0.0	2.8	9.9	0.8	8.3	0.9	9.8	0.0	8.9	0.0	3.0	3.1	10.3	0.0	9.1	6.2	8.2	2.9	8.9	3.2	9.9	0.0	9.0	3.7	6.7	3.2	5.9	2.9	6.8	3.1	8.1	3.0	35.8
5/29/2019	1600							8.9	0.6	9.1	0.8	7.7	2.8	9.3	0.7	8.0	3.1	3.0	3.0	10.2	0.6	6.0	3	7.0	2.9	7.7	3.3	9.1	0.8	6.2	3.1	5.5	3.2	4.0	3.1	5.5	3.0	7.0	3.4	37.4
6/13/2019	1415	70.0	8.3	60			9.0	9.2	0.0	9.2	0.0	5.3	3.3	9	3	7.5	3	9.5	1.7	0.0	0.0	5.2	2.9	6.8	2.5	7.1	2.9	9.2	1.2	5.9	3.2	5	3	4.3	2.9	5.3	2.4	6.9	3.0	35.0
7/18/2019	1540	496.0	8.3	60	160	120	10.0	8.9	0.0	9.0	0.0	7.1	3.1	9.0	3.3	7.5	2.9	9.1	2.3	0.0	0.0	5.0	2.5	6.8	2.7	7.0	2.9	9.7	1.7	5.0	2.9	4.5	3.0	4.2	3.0	5.0	2.4	7.0	2.5	35.2
7/19/2019	1230	517.8	8.3	60	155	110	10.9	9.8	0.0	9.0	0.0	8.0	3.1	9.0	3.7	8.0	2.9	10.9	2.8	0.0	0.0	5.5	2.6	7.0	2.7	7.2	3.0	9.7	1.7	5.9	3.0	5.0	3.0	5.0	3.1	5.4	2.4	7.0	2.5	36.5
8/23/2019	1130	641.0	8.5	60	155	114	10.2	9.6	0.0	9.0	0.0	7.8	2.9	9.0	2.3	7.9	3.0	10.1	3.4	10.0	0.0	5.1	2.5	7.0	2.8	7.1	2.9	9.1	1.7	5.7	3.0	4.9	3.0	5.0	3.1	5.2	2.4	7.0	2.7	35.7
9/18/2019	1005	766.8	8.3	60	145	105	11.2	10.0	0.0	9.0	0.0	8.1	3.4	9.0	2.6	8.3	3.5	10.1	3.7	10.0	0.0	5.7	2.6	7.1	2.9	7.5	3.1	9.6	2.2	6.1	3.1	5.2	3.1	5.3	2.9	5.8	2.2	7.8	0.0	35.3
9/23/2019	1030	885.1	8.3	60	147	104	11.4	10.0	0.0	9.0	0.0	8.4	3.5	9.1	3.0	8.6	2.9	10.1	3.2	10.0	0.0	5.9	2.7	7.2	2.8	7.7	3.2	9.9	2.3	6.0	3.1	5.2	3.1	5.5	2.9	5.9	2.3	7.4	0.0	35.0
10/22/2019	1205	1583	8.3	60	147	105	12.2	10.5	0.0	9.1	0.0	9.1	3.5	9.8	3.2	9.0	3.4	10.2	3.2	10.0	0.0	6.2	2.6	8.0	2.9	8.2	3.1	10.1	2.4	7.0	3.0	6.0	3.1	6.2	2.8	6.0	2.2	8.0	2.6	38.0
10/22/2019	1355						-	Clo	osed	9.1	2.9	9.0	2.9	9.7	2.8	9.0	3.4	10.2	2.4	10.2	1.6	6.2	2.5	8.0	2.9	8.1	3.0	10.0	2.4	7.0	3.0	6.0	3.0	6.1	2.8	6.0	2.2	8.0	2.6	40.4
11/27/2019	1045	2235	8.6	60	95	55	14.7	Clo	osed	10.8	3.3	11.0	3.2	11.0	2.7	11.1	3.1	10.8	1.9	10.6	1.9	8.0	2.6	9.7	2.7	9.8	3.0	11.2	1.6	9.0	3.0	8.0	2.8	8.9	2.8	7.5	1.9	9.9	2.7	39.2
12/18/2019	1010	2278	8.3	60	135	92	12.0	Clo	osed	9.9	3.5	10.0	3.5	10.5	2.8	10.1	3.1	11.0	1.2	10.6	1.9	7.1	2.7	9.0	2.8	9.0	3.2	11.0	1.9	8.0	3.1	7.0	2.8	7.1	2.8	6.9	1.9	8.9	2.7	39.9
2/4/2020	1030	3430	8.5	60	150	98	14.0	Clo	osed	12.4	3.5	12.2	2.9	13.0	2.6	12.3	3.0	13.1	1.2	13.0	1.9	9.4	2.5	11.0	2.6	11.2	3.0	13.0	2.0	9.9	2.9	9.0	2.6	9.2	2.7	9.1	1.8	11.0	2.7	37.9
2/21/2020	1200	3840	8.6	60	160	110		-																																
2/26/2020	930	3840	8.8	60	150	100	15.0	Clo	osed	14.5	3.5	14.6	3.2	14.5	2.6	15.0	3.5	13.5	2.4	13.5	1.7	11.0	1.5	13.0	2.1	13.0	3.0	15.0	1.6	12.5	2.7	11.5	2.6	12.2	2.8	10.5	1.7	13.3	2.6	37.5
4/1/2020	910	4679	8.5	60	150	106	14.0	Clo	osed	12.2	3.3	12.0	3.2	12.6	2.5	12.0	3.5	12.9	2.3	12.9	1.7	9.0	1.7	10.9	2.2	11.0	3.0	12.9	1.7	9.5	2.9	8.8	2.6	9.0	2.8	8.9	1.7	10.9	2.6	37.7
5/7/2020	910	5448	8.4	60	150	111	13.6	Clo	osed	11.9	3.5	11.3	3.2	12.1	2.5	11.3	3.5	12.3	2.3	12.2	1.7	8.3	1.1	10.1	2.1	10.4	3.0	12.1	1.9	8.8	2.7	8.0	2.6	8.1	2.9	8.1	1.7	10.1	2.6	37.3
6/2/2020	852	6009	8.4	60	155	110	13.2	Clo	osed	11.5	3.4	11.1	3.1	11.9	2.5	11.1	3.5	12.0	2.3	11.9	1.9	7.9	1.2	9.7	2.2	10.0	3.0	12.0	2.0	8.4	2.7	7.8	2.5	8.0	2.8	7.8	1.7	9.9	2.6	37.4
7/31/2020	1200	7173	8.4	60	155	113	13.2	Clo	osed	10.2	4.6	10.2	3.3	10.9	2.6	10.4	3.5	11.3	1.9	11.1	1.8	6.8	1.2	8.3	2.2	9.1	2.9	11.9	2.0	7.0	2.7	6.2	2.5	7.1	2.8	7.0	1.7	9.0	2.0	37.7
8/5/2020	1100	7177	8.6	60	148	110	13.8	Clo	osed	7.3	3.0	11.1	2.9	11.3	2.5	11.4	2.8	11.2	2.6	11.0	2.2	7.2	1.0	9.1	2.2	10.0	2.9	11.5	2.5	8.9	2.7	7.6	2.5	8.8	2.7	7.7	1.7	9.8	2.0	36.2
10/2/2020	1245	8291	8.3	60	155	110	12.2	Clo	osed	4.9	2.9	10.2	2.8	10.8	2.5	10.0	3.2	10.8	3.2	10.5	2.7	6.2	1.2	8.7	2.2	9.2	2.9	11.1	2.6	7.9	2.7	6.8	2.5	7.8	2.9	6.4	1.8	8.9	1.9	38.0
11/6/2020	900	9128	8.3	60	145	95	12.5	Clo	osed	5.6	3.0	11.4	3.1	11.3	2.5	11.1	3.2	11.0	3.0	10.8	2.7	7.1	1.1	9.7	2.2	10.0	3.0	11.9	2.6	9.0	2.7	8.0	2.4	9.1	3.0	7.2	1.7	9.8	1.8	38.0
12/9/2020	1309	9768	8.4	60	150	100	13.5	Clo	osed	Clo	sed	11.7	3.3	11.5	2.3	11.5	3.7	11.6	4.0	11.1	2.7	8.9	1.1	10.0	2.1	10.2	3.0	12.3	3.1	8.9	2.7	7.9	2.4	8.8	3.0	7.9	1.9	9.9	1.8	37.1
1/7/2021	1049	10307	8.6	60	135	81	14.1	Clo	osed	Clo	sed	13.8	3.1	13.1	2.4	13.9	3.4	14.0	3.1	14.0	2.7	9.9	2.1	12.0	2.3	12.1	3.0	14.1	3.0	11.5	2.6	10.1	2.4	11.1	3.0	9.5	1.6	11.7	1.7	36.4
2/1/2021	1400				160	105	15.1	12.8	0.6	13.1	0.6	13.2	3.0	13.1	2.4	13.3	3.2	14.0	3.4	14.0	2.8	9.4	1.9	11.4	2.3	12.0	3.0	13.9	3.0	10.3	2.6	9.7	2.3	10.6	2.9	9.6	1.8	11.7	1.7	37.5
3/2/2021	1400	11595	8.6	60	160	107	15.1	12.9	0.6	13.1	0.6	13.2	3.0	13.2	2.4	13.3	3.2	14.2	3.5	14.2	2.8	9.5	1.9	11.5	2.2	12.0	3.0	14.0	3.0	10.2	2.7	9.7	2.3	10.3	2.9	9.6	1.7	11.8	1.7	37.5
4/7/2021	930	12454	8.5	60	155	100	15.0	12.2	0.0	13.0	0.0	12.7	3.3	12.9	2.3	13.1	3.0	14.1	2.2	14.0	2.2	9.0	2.0	11.9	2.4	11.1	3.0	13.4	3.4	9.8	2.7	8.9	2.3	9.9	3.1	8.9	1.9	11.0	1.7	35.5
5/17/2021	930	13386	8.4	60	159	110	14.0	11.1	0.0	11.9	0.8	11.7	3.3	12.0	2.1	12.0	3.0	13.2	2.3	13.0	2.7	8.0	1.9	9.9	2.3	10.2	3.0	12.5	3.3	8.6	2.7	8.9	2.3	8.9	3.1	9.0	1.9	9.9	1.7	36.4
6/15/2021	1100	13827	8.4	60	165	120	14.0	11.1	0.0	11.5	0.9	11.5	3.1	11.9	2.2	11.2	3.1	12.9	2.4	12.1	2.7	7.9	1.9	9.9	2.3	10.4	2.9	12.6	3.0	8.9	2.7	7.9	2.3	8.4	3.0	7.8	1.9	9.6	1.7	36.1

Table 2 AS System and Well Data **Cenex Auburn Site** Auburn, Washington Farallon PN: 301-004

		ne (hrs)	S	(z	(F)	(F)		CA	S-1	CAS-	-2	CAS-3	CAS-4	CAS-5	CAS-7	CAS-12	CA	S-14	CAS	8-15	CAS	5-16	CAS	5-17	CAS	5-18	CAS-	-19	CAS-20	CAS-21	CAS-22	
Date	Time	Compressor Total Run Tir	Compressor Running Amps	Compressor Frequency (Hz)	Pre-Cooling Temperature	Post-Cooling Temperature	System Pressure (psi)	Well Pressure (psi)	Flow Rate (SCFM)		Flow Rate (SCFM)	Well Pressure (psi) Flow Rate (SCFM)	Well Pressure (psi) Elow Data (SCEM)		Flow Rate (SCFM)	Well Pressure (psi)	Flow Rate (SCFM)	Well Pressure (psi) Flow Rate (SCFM)	Well Pressure (psi) Flow Rate (SCFM)	Well Pressure (psì) Flow Rate (SCFM)												
8/17/2021	1402	14181	9.0	60	183	115	18.5	15.8	0.5	10.1	1.0	Closed	Closed	Closed	Closed	Closed	6.9	3.2	8.9	4.0	10.0	6.0	11.2	4.0	9.1	7.0	7.0	5.1	7.5 4.7	Closed	Closed	35.5
8/25/2021	1240	14230	8.8	60	190	130	17.8	14.2	0.5	9.5	1.4	Closed	Closed	Closed	Closed	Closed	5.9	3.3	7.9	3.8	9.1	5.9	10.4	3.5	8.0	7.5	6.0	5.0	6.1 4.4	Closed	Closed	35.3
10/13/2021	1205	15261	7.9	60	132	96	18.0	Clo	osed	11.0	1.4	Closed	Closed	Closed	Closed	Closed	8.0	3.4	10.1	4.0	11.2	5.9	12.3	3.7	12.5	7.0	9.0	5.0	10.2 4.5	Closed	Closed	34.9
1/3/2022	1330	16676	8.9	60	175	105	19.5	15.6	2.3	13.0	1.3	Closed	Closed	Closed	Closed	Closed	9.9	3.1	12.0	3.7	13.0	5.2	14.1	3.3	12.9	7.1	10.6	4.1	10.8 4.1	Closed	Closed	34.2
2/23/2022	1135	17897	9.1	60	170	110	20.0	18.0	1.9	13.9	1.2	Closed	Closed	Closed	Closed	Closed	10.9	3.1	12.9	3.9	13.5	5.3	14.9	3.6	13.5	7.3	11.1	4.6	11.3 4.2	Closed	Closed	35.1
5/12/2022	915	19740	9.0	60	185	110	20.0	17.5	2.1	13.0	1.3	Closed	Closed	Closed	Closed	Closed	9.5	2.7	11.5	3.9	12.5	5.5	14.0	3.5	12.8	7.2	10.0	4.7	10.6 4.2	Closed	Closed	35.1
5/26/2022	1404	19936	9.1	60	145	86	19.5	16.8	1.0	12.1	2.0	Closed	Closed	Closed	Closed	Closed	10.0	3.4	12.1	3.8	12.8	5.1	14.1	3.2	13.9	6.4	10.2	4.4	10.1 3.9	Closed	Closed	33.2
8/10/2022	1020	21479	8.8	60	185	124	17.9	15.0	1.0	0.0	3.4	Closed	Closed	Closed	Closed	Closed	7.9	3.5	10.0	4.0	10.8	5.3	12.1	3.2	10.2	7.2	8.0	4.5	8.3 4.1	Closed	Closed	36.2
8/10/2022	1200	21491	8.8	60	185	124		15.9	1.5	Close	d	Closed	Closed	Closed	Closed	Closed	7.9	3.7	10.0	4.3	11.0	5.7	12.0	3.5	10.1	7.6	8.0	4.8	8.4 4.3	Closed	Closed	35.4
10/10/2022	1420	22861	8.7	60	195	124	18.1	15.3	1.0	Close	d	Closed	Closed	Closed	Closed	Closed	7.9	3.9	9.8	4.3	10.8	5.9	12.0	3.8	10.5	7.7	7.9	4.8	7.9 4.3	Closed	Closed	35.7
12/16/2022	1200	24179	8.9	60	195	106	19.5	16.9	2.5	Close	d	Closed	Closed	Closed	Closed	Closed	9.5	4.0	11.9	4.3	12.1	5.9	13.6	3.8	12.1	7.7	10.1	4.9	8.9 4.3	Closed	Closed	37.4

NOTES:

-- denotes not collected

AS = air sparge dp = differential pressure hrs = hours Hz - hertz

F = degrees Fahrenheit

SCFM = standard cubic feet per minute

IOW = inches of water

psi = pounds per square inch

Table 3Air Analytical DataCenex Auburn SiteAuburn, WashingtonFarallon PN: 301-004

				А	nalytical Result	s (nanoliter per 1	nicroliter [ppmv]	
Sample Location	Sample Identification	Sample Methodology	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	GRO
		EPA 2021B	5/29/2019	< 0.31	< 0.26	< 0.23	< 0.46	< 21
		EPA 2021B	6/24/2019	0.72	< 0.26	<0.23	< 0.46	< 21
		EPA TO-15	7/18/2019	0.000181	0.000623	0.00171	0.0031	8.030 ^{E*}
		EPA TO-15	8/23/2019	0.000116	0.000610	0.00287	0.0126	0.647
		EPA TO-15	9/23/2019	< 0.0000895	< 0.0004	0.00294	0.0075	36.9 ^E
		EPA TO-15	10/22/2019	< 0.000895	< 0.0040	< 0.0040	< 0.016	27.0 ^E
		EPA TO-15	12/18/2019	< 0.0000895	< 0.00040	< 0.00040	< 0.0016	0.205
		EPA TO-15	2/4/2020	< 0.0000895	< 0.00040	< 0.00040	< 0.0016	0.026
		EPA TO-15	4/1/2020	< 0.0000895	< 0.00040	< 0.00040	< 0.0016	0.011
		EPA TO-15	5/7/2020	< 0.0000895	< 0.00040	< 0.00040	< 0.0016	0.007
SVE System	EFFLUENT	EPA TO-15	6/2/2020	< 0.0000895	< 0.00040	< 0.00040	< 0.0016	0.057
		EPA TO-15	11/6/2020	< 0.0000895	< 0.00040	< 0.00040	< 0.0016	0.385
		EPA TO-15	3/2/2021	< 0.000100	< 0.00100	< 0.00400	< 0.0060	< 0.040
		EPA TO-15	5/17/2021	< 0.0008	< 0.04	< 0.0008	0.00323	14
		EPA TO-15	6/15/2021	< 0.0018	<0.09	< 0.0018	< 0.0054	21
		EPA TO-15	8/25/2021	<0.00061	< 0.03	< 0.00061	<0.00181	0.87
		EPA TO-15	2/23/2022	< 0.0006	< 0.03	< 0.0006	0.00210	1.70
		EPA TO-15	5/12/2022	< 0.00046	< 0.023	< 0.00046	< 0.00138	< 0.370
		EPA TO-15	8/10/2022	< 0.0011	< 0.055	< 0.0011	< 0.0033	3.80
		EPA TO-15	10/10/2022	< 0.00087	< 0.043	0.0012	0.0093	8.30
		EPA TO-15	12/16/2022	< 0.0016	< 0.080	< 0.0016	< 0.0048	4.40

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

E denotes estimated analytical value, result exceeds the linear working range of the laboratory equipment

* denotes result not within established laboratory control limits

EPA = U.S. Environmental Protection Agency

GRO = total petroleum hydrocarbons as gasoline-range organics

ppmv = parts per million volume

SVE = soil vapor extraction

Well	Elevation Top of		Depth to Water	Elevation
Identification	Well Casing (feet) ¹	Measurement Date	(feet) ²	(feet) ¹
		1/17/2018	18.52	70.38
		7/31/2018	23.24	65.66
		1/22/2019	20.92	67.98
		8/21/2019	24.51	64.39
		11/25/2019	23.92	64.98
CMW-2	88.0	2/25/2020	16.80	72.10
CIVI W-2	88.9	5/27/2020	20.77	68.13
		11/11/2020	23.52	65.38
		5/24/2021	21.05	67.85
		11/29/2021	20.07	68.83
		5/26/2022	19.17	69.73
		11/30/2022	23.31	65.59
CMW 4	00.69	1/17/2018	20.08	70.60
CMW-4	90.68	7/31/2018	25.60	65.08
	00.00	1/17/2018	20.94	69.72
CMW-6	90.66	7/31/2018	dry	dry
		1/17/2018	20.55	69.39
		7/31/2018	25.31	64.63
		1/22/2019	22.95	66.99
		8/21/2019	26.52	63.42
		11/25/2019	25.90	64.04
CMW-8	80.04	2/24/2020	18.88	71.06
CIVI W-8	89.94	5/27/2020	22.86	67.08
		11/11/2020	25.45	64.49
		5/24/2021	23.12	66.82
		11/29/2021	22.23	67.71
		5/25/2022	21.25	68.69
		11/29/2022	25.55	64.39
		1/17/2018	18.80	NS
		7/31/2018	23.71	NS
		1/22/2019	21.32	NS
		8/21/2019	24.96	NS
		11/25/2019	24.40	NS
CMW-10	NS	2/25/2020	17.20	NS
	2ND	5/27/2020	21.23	NS
		11/11/2020	24.00	NS
		5/24/2021	21.48	NS
		11/29/2021	20.61	NS
		5/25/2022	19.57	NS
		11/29/2022	24.00	NS

Well	Elevation Top of		Depth to Water	Elevation
Identification	Well Casing (feet) ¹	Measurement Date	(feet) ²	(feet) ¹
		1/17/2018	20.12	69.90
		7/31/2018	25.84	64.18
		1/22/2019	22.45	67.57
		8/21/2019	26.07	63.95
		11/25/2019	25.47	64.55
CMW-12	90.02	2/25/2020	18.43	71.59
CIVI W-12	90.02	5/27/2020	22.35	67.67
		11/11/2020	25.04	64.98
		5/24/2021	22.60	67.42
		11/29/2021	21.77	68.25
		5/25/2022	20.68	69.34
		11/29/2022	25.08	64.94
		1/17/2018	19.63	70.04
		7/31/2018	22.48 ³	67.19 ³
		1/22/2019	22.03	67.64
		8/21/2019	25.71	63.96
		11/25/2019	25.06	64.61
CMW-13	89.67	2/25/2020	17.89	71.78
CIVI W-15	89.07	5/27/2020	21.91	67.76
		11/11/2020	24.65	65.02
		5/24/2021	22.16	67.51
		11/29/2021	21.32	68.35
		5/25/2022	20.33	69.34
		11/29/2022	24.68	64.99
CMW-15	87.22	1/17/2018	17.78	69.44
CIVIW-15	07.22	7/31/2018	22.53	64.69
		1/17/2018	18.96	NS
		7/31/2018	23.64	NS
		1/22/2019	21.35	NS
		8/21/2019	24.91	NS
		11/25/2019	24.40	NS
CMW 25	NS	2/24/2020	17.25	NS
CMW-25	IND	5/27/2020	21.16	NS
		11/11/2020	23.98	NS
		5/24/2021	21.44	NS
		11/29/2021	20.63	NS
		5/25/2022	19.57	NS
		11/29/2022	23.96	NS

Well	Elevation Top of		Depth to Water	Elevation
Identification	Well Casing (feet) ¹	Measurement Date	(feet) ²	(feet) ¹
Tuchtineution	(itel)	1/17/2018	17.31	70.49
		7/31/2018	21.97	65.83
		1/22/2019	19.64	68.16
		8/21/2019	23.24	64.56
		11/25/2019	22.67	65.13
		2/25/2020	15.56	72.24
CMW-26	87.80	5/27/2020	19.50	68.30
		11/11/2020	22.30	65.50
		5/24/2021	19.74	68.06
		11/29/2021	18.93	68.87
		5/25/2022	17.90	69.90
		11/29/2022	22.30	65.50
		1/17/2018	18.79	70.31
		7/31/2018	23.70	65.40
		1/22/2019	21.35	67.75
		8/21/2019	24.96	64.14
		11/25/2019	24.37	64.73
		2/25/2020	17.17	71.93
CMW-27	89.10	5/27/2020	21.22	67.88
		11/11/2020	23.97	65.13
		5/24/2021	21.47	67.63
			20.68	
		11/29/2021		68.42
		5/25/2022	19.56	69.54
		11/29/2022	24.03	65.07
		1/17/2018	19.13	70.35
		7/31/2018	23.89	65.59
		1/22/2019	21.55	67.93
		8/21/2019	25.14	64.34
		11/25/2019	24.56	64.92
CMW-28	89.48	2/24/2020	17.39	72.09
		5/27/2020	21.39	68.09
		11/11/2020	24.15	65.33
		5/24/2021	21.64	67.84
		11/29/2021	20.80	68.68
		5/25/2022	19.77	69.71
		11/29/2022	24.16	65.32
		1/17/2018	17.48	70.55
		7/31/2018	22.19	65.84
		1/22/2019	19.85	68.18
		8/21/2019	23.47	64.56
		11/25/2019	22.91	65.12
CMW-29	88.03	2/24/2020	15.76	72.27
CIVI VV - 2.9	00.05	5/27/2020	19.66	68.37
		11/11/2020	22.51	65.52
		5/24/2021	19.93	68.10
		11/29/2021	19.13	68.90
		5/25/2022	18.10	69.93
		11/29/2022	22.52	65.51

Well	Elevation Top of		Depth to Water	Elevation
Identification	Well Casing (feet) ¹	Measurement Date	(feet) ²	(feet) ¹
1401001010	(iter)	1/17/2018	16.82	70.76
		7/31/2018	21.52	66.06
		1/22/2019	19.19	68.39
		8/21/2019	22.84	64.74
		11/25/2019	22.28	65.30
		2/25/2020	15.16	72.42
CMW-30	87.58	5/27/2020	19.02	68.56
		11/11/2020	21.88	65.70
		5/24/2021	19.28	68.30
		11/29/2021	18.53	69.05
		5/25/2022	17.45	70.13
		11/29/2022	21.81	65.77
		1/17/2018	19.49	69.53
		7/31/2018	24.32	64.70
		1/22/2019	21.90	67.12
		8/21/2019	25.54	63.48
		11/25/2019	24.91	64.11
	00.00	2/24/2020	17.80	71.22
CMW-31	89.02	5/27/2020	21.81	67.21
		11/11/2020	24.43	64.59
		5/24/2021	22.06	66.96
		11/29/2021	21.18	67.84
		5/25/2022	20.22	68.80
		11/29/2022	24.56	64.46
		1/17/2018	19.47	69.60
		7/31/2018	24.25	64.82
		1/22/2019	21.85	67.22
		8/21/2019	25.45	63.62
		11/25/2019	24.84	64.23
HMW-9	89.07	2/25/2020	17.84	71.23
HIMW-9	89.07	5/27/2020	21.76	67.31
		11/11/2020	24.40	64.67
		5/24/2021	22.00	67.07
		11/29/2021	21.18	67.89
		5/25/2022	20.18	68.89
		11/29/2022	24.50	64.57
		1/17/2018	19.40	69.78
		7/31/2018	24.13	65.05
		1/22/2019	21.77	67.41
		8/21/2019	23.35	65.83
		11/25/2019	24.78	64.40
HMW-10	89.18	2/24/2020	17.70	71.48
F1WI W -10	07.10	5/27/2020	21.66	67.52
		11/11/2020	24.34	64.84
		5/24/2021	21.91	67.27
		11/29/2021	21.08	68.10
		5/25/2022	20.04	69.14
		11/29/2022	24.39	64.79

Table 4Summary of Groundwater Elevation Data – January 2018 through November 2022CHS Auburn SiteAuburn, WashingtonFarallon PN: 301-004

Well	Elevation Top of		Depth to Water	Elevation
Identification	Well Casing (feet) ¹	Measurement Date	(feet) ²	(feet) ¹
		1/17/2018	17.51	NS
		7/31/2018	22.27	NS
		1/22/2019	19.89	NS
		8/21/2019	23.30	NS
		11/25/2019	22.87	NS
HMW-11	NS	2/25/2020	15.82	NS
	IND	5/27/2020	19.76	NS
		11/11/2020	22.46	NS
		5/24/2021	20.03	NS
		11/29/2021	19.25	NS
		5/25/2022	18.21	NS
		11/29/2022	22.52	NS
		1/17/2018	17.82	70.50
		7/31/2018	22.51	65.81
		1/22/2019	20.21	68.11
		8/21/2019	23.80	64.52
		11/25/2019	23.24	65.08
HMW-13	88.32	2/24/2020	16.13	72.19
ПIVI W -15	00.32	5/27/2020	20.02	68.30
		11/11/2020	22.85	65.47
		5/24/2021	16.00	72.32
		11/29/2021	19.50	68.82
		5/25/2022	16.32	72.00
NOTES		11/29/2022	16.20	72.12

NOTES:

¹Elevation in feet above mean sea level.

²Depth to water in feet below the top of the well casing.

³Depth to water measurement appears to be erroneous;

depth to water measured during sampling on July 31, 2018 was 24.45 feet below the top of the well casing.

NS = well not surveyed; groundwater elevation could not be determined

Sample	_	Temperature ²		ORP ²	Dissolved Oxygen ¹
Location	Date ¹	(°Celsius)	рН ²	(millivolts)	(milligrams per liter)
	1/18/2018	13.5	6.03	252.3	1.15
	7/31/2018	15.5	6.14	164.0	0.47
	1/22/2019	12.9	5.99	214.1	1.20
	8/22/2019	14.7	6.16	175.1	2.09
	11/26/2019	13.8	6.20	44.5	3.29
CMW-2	2/25/2020	12.2	6.60	143.6	6.76
CIVI W -2	5/28/2020	14.8	7.32	201.4	8.58
	11/12/2020	13.4	6.23	17.5	0.95
	5/25/2021	13.7	6.49	354.9	7.03
	11/30/2021	14.6	6.48	238.3	4.52
	5/26/2022	14.9	6.12	505.8	3.76
	11/30/2022	12.5	6.72	292.7	2.00
CMW-4	1/17/2018	_		—	4.52
CMW-6	1/17/2018	_		—	4.09
	1/18/2018	12.0	6.66	-14.3	0.29
	8/1/2018	14.5	6.33	-32.3	0.52
	1/22/2019	12.2	6.29	8.8	0.64
	8/21/2019	13.9	6.21	8.4	1.71
	11/25/2019	12.6	6.37	21.8	1.05
CMW-8	2/25/2020	12.5	6.27	-1.3	0.99
	5/28/2020	13.3	6.52	-9.9	0.60
	11/11/2020	12.3	6.31	-31.9	6.67
	5/24/2021	13.3	6.08	41.2	0.75
	11/30/2021	12.9	6.51	-12.5	1.17
	5/25/2022	15.7	6.09	328.8	0.93
	11/30/2022	11.5	6.47	127.3	0.76
	1/18/2018	13.4	6.12	194.4	0.70
	8/1/2018	14.9	6.12	-40.1	0.26
	1/23/2019	13.0	5.76	176.7	0.75
	8/22/2019	14.3	6.00	-37.4	0.76
	11/25/2019	14.6	4.87	87.3	1.18
CMW-10	2/25/2020	13.3	6.08	158	5.58
	5/28/2020	15.2	6.52	120.8	2.27
	11/12/2020	13.1	5.75	36.6	1.20
	5/25/2021	14.1	6.13	319.2	1.36
	11/30/2021	15.1	6.25	174.8	1.56
	5/26/2022	15.1	6.12	463.7	1.58
	11/30/2022	12.9	6.55	42.5	0.95
	1/18/2018	12.8	6.46	-47.0	0.18
	8/1/2018	15.8	6.19	-22.5	0.41
	1/23/2019	12.5	6.36	-25.7	0.60
	8/22/2019	15.1	6.25	-61.5	1.71
	11/26/2019	12.4	6.36	-6.5	0.97
CMW-12	2/25/2020	12.8	6.12	-13.9	1.01
C1V1 VV -12	5/28/2020	18.3	6.50	-35.5	0.59
	11/12/2020	13.6	6.29	-93.6	0.73
	5/25/2021	14.6	6.13	86.8	0.86
	11/30/2021	13.9	6.38	93.4	2.17
	5/26/2022	15.8	6.21	-121.8	0.84
	11/30/2022	12.6	6.14	189.4	0.73

Sample	Date ¹	Temperature ²	H ²	ORP ²	Dissolved Oxygen ¹
Location	1/18/2018	(°Celsius) 13.1	pH² 6.30	(millivolts) 107.2	(milligrams per liter) 1.25
-	7/31/2018	15.1	6.18	-40.3	0.26
-	1/23/2019	13.9	5.91	78.6	1.28
-	8/22/2019	12.5	6.34	-31.7	1.28
-	11/26/2019	13.1	6.41	-0.9	1.85
-	2/25/2020	12.8	6.13	155.9	1.51
CMW-13	5/28/2020	16.5	6.17	77.5	0.71
	11/12/2020	13.3	6.44	-80.0	2.30
	5/24/2021	14.5	5.79	116.3	1.15
-	11/30/2021	14.3	6.27	60.3	4.52
-	5/25/2022	16.4	6.08	526.1	0.66
	11/30/2022	11.8	6.67	31.9	1.27
CMW-15	1/17/2018	-	0.07		0.37
CIVI W-15	1/18/2018	12.7	6.14	269.4	4.68
ŀ	7/31/2018	16.3	6.03	88.5	0.75
-	1/22/2019	12.4	6.03	315.1	4.59
	8/21/2019	15.6	6.03	117.8	1.03
-	11/25/2019	12.8	6.13	63.5	1.03
-	2/24/2020	12.0	6.00	114.2	8.05
CMW-25	5/27/2020	15.1	6.18	251.5	4.24
-	11/12/2020	12.5	5.97	12.4	1.32
-	5/24/2021	12.3	5.77	345.6	4.00
-	11/29/2021	15.0	6.19	279.6	6.85
-	5/25/2022	13.0	6.02	519.7	6.48
-	11/30/2022	12.3	6.10	224.8	1.12
	1/18/2018	12.5	6.44	233.6	4.04
-		16.0	6.22	160.6	4.04
	8/1/2018 1/22/2019	11.9	6.07	98.6	4.08
-	8/21/2019	16.0	6.07	206.1	4.08
-	11/26/2019	11.6	6.03	200.1	2.98
-	2/25/2020	11.0	6.33	155.2	4.61
CMW-26	5/27/2020	11.4	6.35	266.0	4.01
-	11/11/2020	12.5	6.05	49.6	0.77
-	5/25/2021	12.3	6.05	338.3	4.53
-	11/29/2021	13.0	6.36	273.5	4.53
-	5/25/2022	16.2	6.24	503.0	4.01
-	11/30/2022	10.2	7.99	228.0	4.40
	1/18/2018	11.5	6.12	155.5	0.44
F	8/1/2018	14.0	6.05	-26.7	0.44
-	1/23/2019	12.7	6.27	-20.7	0.73
	8/22/2019	12.7	6.27	-106.1 -53.7	0.73
	11/26/2019	16.7	6.45	-53.7	0.69
	2/25/2020	14.0	6.14	-136.8 276.2	1.95
CMW-27	5/28/2020	15.9	6.14	-31.0	0.76
	<u> </u>	16.1	6.49	-31.0 -73.2	0.76
ŀ				-73.2 29.2	
	5/25/2021	14.5	6.11		0.63
ŀ	11/30/2021	15.2	6.18	50.9	0.99
	5/26/2022	14.7	6.37	87.2	0.77
	11/30/2022	11.2	6.66	16.7	0.91

Sample Location	Date ¹	Temperature ² (°Celsius)	рН ²	ORP ² (millivolts)	Dissolved Oxygen ¹ (milligrams per liter)
	1/18/2018	9.3	6.17	204.4	2.04
	8/1/2018	15.2	5.98	44.9	0.52
	1/23/2019	12.0	5.56	184.9	1.87
	8/21/2019	15.2	5.65	161.3	1.55
	11/26/2019	14.8	5.66	245.0	1.93
CMU 29	2/24/2020	11.1	5.54	146.7	7.51
CMW-28	5/27/2020	15.5	6.03	292.3	7.44
	11/12/2020	14.2	5.90	52.1	3.91
	5/25/2021	13.6	5.63	296.5	3.08
	11/30/2021	14.1	6.04	286.6	1.15
	5/25/2022	15.8	5.86	520.4	3.54
	11/29/2022	12.3	6.10	201.9	6.26
	1/17/2018	11.9	6.15	109.6	0.55
	7/31/2018	16.7	6.07	43.2	0.41
	1/22/2019	13.1	5.90	180.3	1.28
	8/22/2019	14.1	5.59	103.4	0.87
	11/25/2019	13.6	5.94	112.3	0.85
	2/24/2020	13.1	6.03	90.0	1.49
CMW-29	5/27/2020	17.4	6.05	243.7	1.66
	11/11/2020	13.1	5.72	24.2	5.06
	5/24/2021	14.0	5.60	267.0	7.19
	11/29/2021	15.3	5.96	294.7	1.53
	5/25/2022	15.2	5.98	492.8	0.88
	11/30/2022	11.9	6.17	281.8	2.07
	1/17/2018	_			1.11
	1/22/2019	13.4	6.19	179.1	0.91
	8/21/2019	15.1	5.90	163.9	0.90
	11/25/2019	14.5	6.09	124.4	0.56
	2/25/2020	12.0	6.20	148.2	2.26
CMW-30	5/27/2020	15.6	6.29	193.3	0.71
	11/11/2020	14.3	6.03	15.0	0.89
	5/24/2021	13.9	5.80	241.9	0.40
	11/29/2021	15.1	6.24	210.2	0.93
	5/25/2022	13.9	6.08	505.5	1.08
	11/29/2022	12.2	6.16	202.6	0.89
	1/18/2018	12.0	6.34	153.3	2.90
	7/31/2018	14.6	6.03	97.6	0.71
	1/22/2019	12.7	5.95	161.2	3.34
	8/22/2019	13.5	6.11	143.8	2.07
	11/25/2019	12.3	6.20	143.8	1.60
	2/24/2020	12.5	5.88	277.9	3.91
CMW-31	5/28/2020	13.9	6.21	163.2	1.17
	11/11/2020	13.9	6.08	53.4	1.17
	5/24/2021	13.7	6.15	270.8	1.09
	11/29/2021	13.7	6.15	297.5	1.09
	5/25/2022	15.5	6.13	321.7	1.28
	11/29/2022		6.42		1.07
	11/29/2022	11.6	0.42	200.6	1.13

3 of 5

Sample Location	Date ¹	Temperature ² (°Celsius)	рН ²	ORP ² (millivolts)	Dissolved Oxygen ¹ (milligrams per liter)
	1/18/2018	12.6	6.51	-13.0	0.51
	8/1/2018	14.8	6.23	-20.0	0.25
	1/22/2019	13.3	6.16	28.8	0.59
	8/21/2019	16.7	6.23	-5.1	1.89
	11/25/2019	14.0	6.25	25.3	0.33
HMW-9	2/25/2020	13.0	6.18	35.7	2.84
	5/28/2020	14.0	6.38	-18.7	0.88
	11/11/2020	13.9	6.23	-67.3	3.82
	5/25/2021	14.9	5.99	36.6	2.66
	11/30/2021	14.1	6.44	13	1.1
	5/26/2022	14.6	6.00	-202.6	0.62
	11/30/2022	9.2	5.35	217.5	4.76
	1/17/2018	12.3	6.49	-38.1	0.47
	7/31/2018	14.8	6.22	-43.1	0.26
	1/22/2019	13.0	6.14	30.5	0.53
	8/21/2019	14.6	6.25	-26.0	2.02
	11/25/2019	13.3	6.18	27.3	2.76
HMW-10	2/24/2020	13.5	6.07	7.8	7.1
11101 00 -10	5/28/2020	14.1	6.43	-9.0	0.59
	11/12/2020	13.1	6.26	-57.4	2.70
	5/24/2021	14.6	5.85	26.7	0.80
	11/30/2021	13.5	6.48	-7.8	0.85
	5/26/2022	15.0	6.32	-162.1	0.64
	11/30/2022	11.5	7.96	184.0	0.89
	1/18/2018	13.7	6.07	176.6	0.46
	8/1/2018	15.3	6.20	-27.6	0.29
	1/23/2019	12.9	6.30	-30.4	0.96
	8/22/2019	14.6	6.20	-40.1	1.70
	11/26/2019	13.3	6.35	-3.9	0.78
111 (117 1 1	2/25/2020	14.1	6.00	188.7	0.63
HMW-11	5/28/2020	16.2	6.38	-16.6	0.70
	11/12/2020	13.8	6.37	-108.8	0.67
	5/25/2021	14.6	6.22	1.6	1.10
	11/30/2021	15.3	6.23	255.3	4.12
	5/26/2022	15.3	6.07	-62.7	0.98
	11/30/2022	6.7	6.57	54.1	1.60

4 of 5

Table 5 Summary of Groundwater Geochemical Data – January 2018 through November 2022 **CHS Auburn Site** Auburn, Washington Farallon PN: 301-004

Sample Location	Date ¹	Temperature ² (°Celsius)	рН ²	ORP ² (millivolts)	Dissolved Oxygen ¹ (milligrams per liter)
	1/18/2018	12.2	6.18	233.4	0.55
	8/1/2018	14.7	5.95	157.5	0.85
	1/23/2019	12.5	5.64	196.8	1.23
	8/21/2019	15.9	5.97	211.9	2.72
	11/26/2019	12.1	6.06	235.3	1.51
HMW-13	2/24/2020	11.7	5.89	140.1	2.92
HIVI W -13	5/27/2020	16.8	6.16	233.0	1.10
	11/11/2020	12.6	5.77	59.2	2.70
	5/25/2021	14.7	5.96	250.9	1.93
	11/30/2021	13.6	6.19	281.1	1.86
	5/26/2022	16.1	6.10	-36.1	1.89
	11/30/2022	12.5	6.05	233.7	3.22

NOTES:

-- = not measured

ORP = oxidation-reduction potential

¹Date shown represents date of groundwater sample collection. Dissolved-oxygen measurements typically were collected 1 to 2 days prior using a dissolved-oxygen analyzer with a down-hole probe.

²Temperature, pH, and ORP were measured using a YSI or Horiba multiparameter waterquality analyzer.

³Not measured due to malfunctioning pH meter.

⁴pH readings did not stabilize.

Well Identification	Sample Identification	Sample Date	•	al Results is per liter)		Analytical F	Results (microgr	ams per liter)	
	~ r	~~~- F	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
	CMW-2-011818	1/18/2018	0.93	<0.62 ⁴	<100	<1.0	<1.0	<1.0	<2.0
	CMW-2-073118	7/31/2018	0.63	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-2-012219	1/22/2019	2.2	1.1 ⁵	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-2-082219	8/22/2019	1.0	0.69 ⁵	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-2-112619	11/26/2019	5.2	3.3 ⁵	<100	<1.0	<1.0	<1.0	<2.0
CMW-2	CMW-2-022520	2/25/2020	0.63	1.0	<100	<1.0	<1.0	<1.0	<2.0
CIVI W-2	CMW-2-052820	5/28/2020	0.76	0.94	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-2-111220	11/12/2020	1.9	1.1 ⁵	<100	<1.0	<1.0	<1.0	<2.0
	CMW-2-052521	5/25/2021	0.34	0.63	<100	<1.0	<1.0	<1.0	<2.0
	CMW-2-113021	11/30/2021	1.4	1.2	<100	<1.0	<1.0	<1.0	<2.0
	CMW-2-052622	5/26/2022	0.20	0.25	<100	<1.0	<1.0	<1.0	<2.0
	CMW-2-113022	11/30/2022	0.57	0.59	<100	<1.0	<1.0	<1.0	<2.0
	CMW-8-011818	1/18/2018	0.38	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-8-080118	8/1/2018	0.31	< 0.42	<100	<1.0	<1.0	<1.0	<2.0
_	CMW-8-012219	1/22/2019	0.50	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-8-082119	8/21/2019	0.51	< 0.40	<100	<1.0	<1.0	<1.0	<2.0
	CMW-8-112519	11/25/2019	0.53	0.36	<100	<1.0	<1.0	<1.0	<2.0
C) (IVI 0	CMW-8-022420	2/24/2020	0.60	0.25	<100	<1.0	<1.0	<1.0	<2.0
CMW-8	CMW-8-052820	5/28/2020	0.97	0.56	<100	<1.0	<1.0	<1.0	<2.0
	CMW-8-111120	11/11/2020	0.47	0.225	<100	<1.0	<1.0	<1.0	<2.0
	CMW-8-052421	5/24/2021	0.53	0.26	<100	<1.0	<1.0	<1.0	<2.0
	CMW-8-113021	11/30/2021	0.58	0.35	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-8-052522	5/25/2022	0.79	0.60	<100	<1.0	<1.0	<1.0	<2.0
	CMW-8-113022	11/30/2022	0.28	0.29	<100	<1.0	<1.0	<1.0	<2.0
	CMW-10-011818	1/18/2018	1.4	< 0.89 ⁴	<100	<1.0	<1.0	<1.0	<2.0
	CMW-10-080118	8/1/2018	1.5	0.67 ⁵	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-10-012319	1/23/2019	2.1	1.4 ⁵	<100	<1.0	<1.0	<1.0	<2.0
	CMW-10-082219	8/22/2019	2.9	0.80 ⁵	<400	<4.0	<4.0	<4.0	<8.0
	CMW-10-112519	11/25/2019	0.73	0.37	<100	<1.0	<1.0	<1.0	<2.0
C) (IV 10	CMW-10-022520	2/25/2020	2.3	1.4	<100	<1.0	<1.0	<1.0	<2.0
CMW-10	CMW-10-052820	5/28/2020	3.4	2.9	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-10-111220	11/12/2020	1.6	0.70 ⁵	<100	<1.0	<1.0	<1.0	<2.0
ľ	CMW-10-052521	5/25/2021	2.1	3.1	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-10-113021	11/30/2021	2.8	2.9	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-10-052622	5/26/2022	0.62	0.51	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-10-113022	11/30/2022	1.8	0.77	<100	<1.0	<1.0	<1.0	<2.0
MTCA Method A C	leanup Levels for Ground		0.5	0.5	800	5	1,000	700	1,000

Well Identification	Sample Identification	Sample Date	•	al Results is per liter)		Analytical F	Results (microgra	ams per liter)	
	1	F	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
	CMW-12-011818	1/18/2018	2.1 ¹¹	< 0.55 ⁴	1,300	3.0	<1.0	<1.0	<2.0
	QA/QC-1-011818 ⁹	1/18/2018	2.2^{11}	<0.70 ⁴	1,200	2.6	<1.0	<1.0	<2.0
	CMW-12-080118	8/1/2018	1.5 ¹¹	0.77 ⁵	1,500	1.2	<1.0	<1.0	1.6
	QA/QC-1-080118 ⁹	8/1/2018	1.4 ¹¹	0.56 ⁵	1,500	1.1	<1.0	<1.0	1.9
	CMW-12-012319	1/23/2019	1.6 ¹¹	0.435	1,500 ⁸	1.7	<1.0	<1.0	<2.0
	QA/QC-1-012319 ⁹	1/23/2019	1.6 ¹¹	< 0.42	1,500 ⁸	1.6	<1.0	<1.0	<2.0
	CMW-12-082219	8/22/2019	2.5 ¹¹	0.51 ⁵	920	<4.0	<4.0	<4.0	<8.0
	QA/QC-1-082219 ⁹	8/22/2019	2.1 ¹¹	< 0.41	950	<4.0	<4.0	<4.0	<8.0
	CMW-12-112619	11/26/2019	2.3 ¹¹	0.51 ⁵	620 ⁸	<1.0	<1.0	<1.0	<2.0
	QA/QC-1-112619 ⁹	11/26/2019	2.3 ¹¹	0.465	620 ⁸	<1.0	<1.0	<1.0	<2.0
	CMW-12-022520	2/25/2020	4.2	1.4	1,000	2.0	1.8	<1.0	<2.0
CMW-12	QAQC-1-022520 ⁹	2/25/2020	4.2	1.5	950	2.0	1.8	<1.0	<2.0
CIVI VV-12	CMW-12-052820	5/28/2020	2.4 ¹¹	1.1	510 ⁸	<1.0	<1.0	<1.0	<2.0
	QA/QC-2-052820 ⁹	5/28/2020	2.3 ¹¹	1.1	490 ⁸	<1.0	<1.0	<1.0	<2.0
	CMW-12-111220	11/12/2020	0.85 ¹¹	0.345	200^{8}	<1.0	<1.0	<1.0	<2.0
	QA/QC-1-111220 ⁹	11/12/2020	0.90 ¹¹	0.37^{5}	200^{8}	<1.0	<1.0	<1.0	<2.0
	CMW-12-052521	5/25/2021	1.1	0.95	<130 ⁴	<1.0	<1.0	<1.0	<2.0
	QA/QC-1-052521 ⁹	5/25/2021	1.0	0.98	<120 ⁴	<1.0	<1.0	<1.0	<2.0
	CMW-12-113021	11/30/2021	0.64	0.33	<100	<1.0	<1.0	<1.0	<2.0
	QA/QC-1-113021 ⁹	11/30/2021	0.65	0.32	<100	<1.0	<1.0	<1.0	<2.0
	CMW-12-052622	5/26/2022	0.80	0.44	<100	<1.0	<1.0	<1.0	<2.0
	QA/QC-2-052622 ⁹	5/26/2022	0.84	0.49	<100	<1.0	<1.0	<1.0	<2.0
	CMW-12-113022	11/30/2022	0.43	0.26	<100	<1.0	<1.0	<1.0	<2.0
	OA/OC-1-113022 ⁹	11/30/2022	0.39	0.30	<100	<1.0	<1.0	<1.0	<2.0
	CMW-13-011818	1/18/2018	0.29	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
	CMW-13-073118	7/31/2018	0.62 ¹¹	< 0.41	240	1.1	<1.0	<1.0	<2.0
	CMW-13-012319	1/23/2019	0.57	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
	CMW-13-082219	8/22/2019	0.38	< 0.41	<400	<4.0	<4.0	<4.0	<8.0
	CMW-13-112619	11/26/2019	0.70	0.355	<100	<1.0	<1.0	<1.0	<2.0
CMW-13	CMW-13-022520	2/25/2020	3.3	2.0	<100	<1.0	<1.0	<1.0	<2.0
CIVI VV -1.5	CMW-13-052820	5/28/2020	1.7	1.1	<100	<1.0	<1.0	<1.0	<2.0
	CMW-13-111220	11/12/2020	0.48	0.255	<100	<1.0	<1.0	<1.0	<2.0
	CMW-13-052421	5/24/2021	1.4	0.72	<100	<1.0	<1.0	<1.0	<2.0
	CMW-13-113021	11/30/2021	0.57	0.34	<100	<1.0	<1.0	<1.0	<2.0
	CMW-13-052522	5/25/2022	1.4	0.67	<100	<1.0	<1.0	<1.0	<2.0
	CMW-13-113022	11/30/2022	0.44^{11}	0.22	150	1.5	<1.0	<1.0	<2.0
MTCA Method A C	leanup Levels for Ground	water ^o	0.5	0.5	800	5	1,000	700	1,000

Well Identification	Sample Identification	Sample Date	-	al Results is per liter)	Analytical Results (micrograms per liter)					
	I I I I I I I I I I	1	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³	
	CMW-25-011818	1/18/2018	< 0.26	< 0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-073118	7/31/2018	< 0.26	< 0.42	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-012219	1/22/2019	< 0.26	< 0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-082119	8/21/2019	< 0.25	< 0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-112519	11/25/2019	0.14	0.22	<100	<1.0	<1.0	<1.0	<2.0	
CMW-25	CMW-25-022420	2/24/2020	< 0.21	< 0.21	<100	<1.0	<1.0	<1.0	<2.0	
CIVI W -23	CMW-25-052720	5/27/2020	< 0.21	< 0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-111220	11/12/2020	< 0.21	< 0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-052421	5/24/2021	< 0.20	< 0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-112921	11/29/2021	< 0.20	< 0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-052522	5/25/2022	< 0.11	< 0.22	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-113022	11/30/2022	< 0.13	< 0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-011818	1/18/2018	< 0.26	< 0.42	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-080118	8/1/2018	< 0.26	< 0.42	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-012219	1/22/2019	< 0.26	< 0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-082119	8/21/2019	< 0.25	< 0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-112619	11/26/2019	< 0.21	< 0.21	<100	<1.0	<1.0	<1.0	<2.0	
CMW-26	CMW-26-022520	2/25/2020	< 0.21	< 0.21	<100	<1.0	<1.0	<1.0	<2.0	
CIVI W -20	CMW-26-052720	5/27/2020	< 0.21	< 0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-111120	11/11/2020	< 0.21	< 0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-052521	5/25/2021	< 0.20	< 0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-112921	11/29/2021	< 0.20	< 0.20	<100	<1.0	<1.0	<1.0	<2.0	
E	CMW-26-052522	5/25/2022	< 0.11	< 0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-113022	11/30/2022	< 0.13	< 0.20	<100	<1.0	<1.0	<1.0	<2.0	
MTCA Method A C	leanup Levels for Ground	water ⁶	0.5	0.5	800	5	1,000	700	1,000	

Well Identification	Sample Identification	Sample Date	•	al Results is per liter)		Analytical F	Results (microgr	ams per liter)	
	I Contraction	1	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
	CMW-27-011818	1/18/2018	1.7	<1.0 ⁴	<100	<1.0	<1.0	<1.0	<2.0
	QA/QC-2-0118189	1/18/2018	1.6	<0.96 ⁴	<100	<1.0	<1.0	<1.0	<2.0
	CMW-27-080118	8/1/2018	2.7 ¹¹	1.0 ⁵	1,000	<1.0	1.3	5.9	7.4
	QA/QC-2-080118 ⁹	8/1/2018	2.6 ¹¹	0.89 ⁵	1,100	<1.0	1.3	5.8	7.8
	CMW-27-012319	1/23/2019	6.9 ¹¹	1.6 ⁵	900 ⁸	1.5	3.4	19	17
	QA/QC-2-012319 ⁹	1/23/2019	6.9 ¹¹	1.55	940 ⁸	1.3	3.3	20	17
	CMW-27-082219	8/22/2019	2.7 ¹¹	0.56 ⁵	1,500	1.2	<1.0	5.2	7.9
	QA/QC-2-082219 ⁹	8/22/2019	3.4 ¹¹	0.82 ⁵	1,300	<4.0	<4.0	4.9	5.9
	CMW-27-112619	11/26/2019	3.3 ¹¹	0.94 ⁵	860 ⁸	<1.0	1.2	<1.0	2.0
	QA/QC-2-112619 ⁹	11/26/2019	3.9 ¹¹	1.1 ⁵	940 ⁸	<1.0	1.6	1.3	2.5
	CMW-27-022520	2/25/2020	1.2	1.2	<100	<1.0	<1.0	<1.0	<2.0
CMW-27	QAQC-2-022520 ⁹	2/25/2020	1.0	1.1	<100	<1.0	<1.0	<1.0	<2.0
CIMW-27	CMW-27-052820	5/28/2020	3.5 ¹¹	2.0	1,300 ⁸	<1.0	3.4	16	4.1
	QA/QC-1-052820 ⁹	5/28/2020	4.5 ¹¹	2.4	1,000 ⁸	<1.0	2.6	13	3.6
-	CMW-27-111220	11/12/2020	2.1 ¹¹	0.70 ⁵	1.700 ⁸	<1.0	<1.0	1.8	3.9
	QA/QC-2-111220 ⁹	11/12/2020	2.4 ¹¹	0.76 ⁵	1,800 ⁸	<1.0	<1.0	1.8	4.0
	CMW-27-052521	5/25/2021	3.1 ¹¹	1.4	1,100 ⁸	<1.0	<1.0	15	3.5
-	QA/QC-2-052521 ⁹	5/25/2021	3.1 ¹¹	2.3	1,200 ⁸	3.9	<1.0	15	3.4
	CMW-27-113021	11/30/2021	8.9 ¹¹	4.8	770	<1.0	<1.0	5.0	1.7
-	QA/QC-2-113021 ⁹	11/30/2021	6.7 ¹¹	2.8	960	1.2	<1.0	6.5	2.1
-	CMW-27-052622	5/26/2022	1.6	1.0	<100	<1.0	<1.0	<1.0	<2.0
-	QA/QC-1-052622 ⁹	5/26/2022	1.6	1.1	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-27-113022	11/30/2022	2.1 ¹¹	0.61	1,300	3.8	<1.0	3.2	1.5
-	QA/QC-2-113022 ⁹	11/30/2022	1.7 ¹¹	0.61	1,300	4.0	<1.0	3.3	1.5
	CMW-28-011818	1/18/2018	< 0.26	< 0.42	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-28-080118	8/1/2018	0.81	0.52 ⁵	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-28-012319	1/23/2019	< 0.26	<0.41	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-28-082119	8/21/2019	0.63	< 0.44	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-28-112619	11/26/2019	2.8	1.9 ⁵	<100	<1.0	<1.0	<1.0	<2.0
C) (IV 20	CMW-28-022420	2/24/2020	0.45	0.32	<100	<1.0	<1.0	<1.0	<2.0
CMW-28	CMW-28-052720	5/27/2020	<0.21	0.23	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-28-111220	11/12/2020	0.70	0.425	<100	<1.0	<1.0	<1.0	<2.0
ľ	CMW-28-052521	5/25/2021	0.49	0.43	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-28-113021	11/30/2021	< 0.20	< 0.20	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-28-052522	5/25/2022	1.1	0.68	<100	<1.0	<1.0	<1.0	<2.0
-	CMW-28-112922	11/29/2022	0.24	0.31	<100	<1.0	<1.0	<1.0	<2.0
MTCA Method A C	leanup Levels for Ground		0.5	0.5	800	5	1,000	700	1.000

Well Identification	Sample Identification	Sample Date	•	al Results s per liter)		Analytical F	Results (microgr	ams per liter)	
	-	•	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
	CMW-29-011718	1/17/2018	0.70	< 0.54 ⁴	<100	<1.0	<1.0	<1.0	<2.0
	CMW-29-073118	7/31/2018	0.33	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
	CMW-29-012219	1/22/2019	1.0	0.50^{5}	<100	<1.0	<1.0	<1.0	<2.0
	CMW-29-082219	8/22/2019	< 0.25	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
	CMW-29-112519	11/25/2019	0.55	0.38	<100	<1.0	<1.0	<1.0	<2.0
CMW-29	CMW-29-022420	2/24/2020	0.67	0.28	<100	<1.0	<1.0	<1.0	<2.0
CIVI VV - 2.9	CMW-29-052720	5/27/2020	0.97	0.71	<100	<1.0	<1.0	<1.0	<2.0
	CMW-29-111120	11/11/2020	0.25	< 0.20	<100	<1.0	<1.0	<1.0	<2.0
	CMW-29-052421	5/24/2021	0.71	0.43	<100	<1.0	<1.0	<1.0	<2.0
	CMW-29-112921	11/29/2021	0.74	0.87	<100	<1.0	<1.0	<1.0	<2.0
	CMW-29-052522	5/25/2022	0.74	0.56	<100	<1.0	<1.0	<1.0	<2.0
	CMW-29-113022	11/30/2022	0.17	0.20	<100	<1.0	<1.0	<1.0	<2.0
	CMW-30-012219	1/22/2019	0.26	< 0.42	<100	<1.0	<1.0	<1.0	<2.0
	CMW-30-082119	8/21/2019	< 0.25	< 0.40	<100	<1.0	<1.0	<1.0	<2.0
	CMW-30-112519	11/25/2019	0.19	0.22	<100	<1.0	<1.0	<1.0	<2.0
	CMW-30-022520	2/25/2020	< 0.20	< 0.20	<100	<1.0	<1.0	<1.0	<2.0
CMW-30	CMW-30-052720	5/27/2020	0.36	0.30	<100	<1.0	<1.0	<1.0	<2.0
CIVI W-50	CMW-30-111120	11/11/2020	0.22	< 0.20	<100	<1.0	<1.0	<1.0	<2.0
	CMW-30-052421	5/24/2021	0.29	< 0.21	<100	<1.0	<1.0	<1.0	<2.0
	CMW-30-112921	11/29/2021	0.23	< 0.20	<100	<1.0	<1.0	<1.0	<2.0
	CMW-30-052522	5/25/2022	0.40	0.29	<100	<1.0	<1.0	<1.0	<2.0
	CMW-30-112922	11/29/2022	0.47	< 0.20	<100	<1.0	<1.0	<1.0	<2.0
	CMW-31-011818	1/18/2018	< 0.26	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
	CMW-31-073118	7/31/2018	< 0.26	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
	CMW-31-012219	1/22/2019	< 0.26	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
	CMW-31-082219	8/22/2019	0.34	< 0.45	<100	<1.0	<1.0	<1.0	<2.0
	CMW-31-112519	11/25/2019	0.22	0.27	<100	<1.0	<1.0	<1.0	<2.0
CMW-31	CMW-31-022420	2/24/2020	< 0.21	< 0.21	<100	<1.0	<1.0	<1.0	<2.0
CIVI VV - 5 I	CMW-31-052820	5/28/2020	< 0.21	0.32	<100	<1.0	<1.0	<1.0	<2.0
	CMW-31-111120	11/11/2020	0.29	< 0.20	<100	<1.0	<1.0	<1.0	<2.0
ŀ	CMW-31-052421	5/24/2021	< 0.20	0.27	<100	<1.0	<1.0	<1.0	<2.0
	CMW-31-112921	11/29/2021	< 0.20	< 0.20	<100	<1.0	<1.0	<1.0	<2.0
	CMW-31-052522	5/25/2022	< 0.10	< 0.20	<100	<1.0	<1.0	<1.0	<2.0
	CMW-31-112922	11/29/2022	0.25	< 0.20	<100	<1.0	<1.0	<1.0	<2.0
MTCA Method A C	leanup Levels for Ground	water ⁶	0.5	0.5	800	5	1,000	700	1,000

Well Identification	Sample Identification	Sample Date		al Results is per liter)		Analytical F	Results (microgr	ams per liter)	
	1		DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
	HMW-9-011818	1/18/2018	0.35	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
	HMW-9-080118	8/1/2018	0.46	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
	HMW-9-012219	1/22/2019	0.26	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
	HMW-9-082119	8/21/2019	0.34	< 0.44	<100	<1.0	<1.0	<1.0	<2.0
	HMW-9-112519	11/25/2019	0.40	0.42	<100	<1.0	<1.0	<1.0	<2.0
HMW-9	HMW-9-022520	2/25/2020	0.39	1.2	<100	<1.0	<1.0	<1.0	<2.0
ПIVI W -9	HMW-9-052820	5/28/2020	0.98	2.1	<100	<1.0	<1.0	<1.0	<2.0
	HMW-9-111120	11/11/2020	0.47	0.69	<100	<1.0	<1.0	<1.0	<2.0
	HMW-9-052521	5/25/2021	0.55	1.2	<100	<1.0	<1.0	<1.0	<2.0
	HMW-9-113021	11/30/2021	0.30	0.32	<100	<1.0	<1.0	<1.0	<2.0
	HMW-9-052622	5/26/2022	0.77	0.65	<100	<1.0	<1.0	<1.0	<2.0
	HMW-9-113022	11/30/2022	0.18	0.45	<100	<1.0	<1.0	<1.0	<2.0
	HMW-10-011718	1/17/2018	0.72	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
	HMW-10-073118	7/31/2018	0.60 ¹¹	< 0.40	<100	<1.0	<1.0	<1.0	<2.0
	HMW-10-012219	1/22/2019	0.38	< 0.41	<100	<1.0	<1.0	<1.0	<2.0
	HMW-10-082119	8/21/2019	0.51	< 0.41	<400	<4.0	<4.0	<4.0	<8.0
	HMW-10-112519	11/25/2019	5.0	1.7 ⁵	<100	<1.0	<1.0	<1.0	<2.0
HMW-10	HMW-10-022420	2/24/2020	0.71	0.34	<100	<1.0	<1.0	<1.0	<2.0
HMW-10	HMW-10-052820	5/28/2020	1.2	0.77	<100	<1.0	<1.0	<1.0	<2.0
	HMW-10-111220	11/12/2020	0.50	< 0.21	<100	<1.0	<1.0	<1.0	<2.0
	HMW-10-052421	5/24/2021	0.95	0.51	<100	<1.0	<1.0	<1.0	<2.0
	HMW-10-113021	11/30/2021	0.50	0.23	<100	<1.0	<1.0	<1.0	<2.0
	HMW-10-052622	5/26/2022	1.5	0.75	<100	<1.0	<1.0	<1.0	<2.0
	HMW-10-113022	11/30/2022	0.52	0.28	<100	<1.0	<1.0	<1.0	<2.0
	HMW-11-011818	1/18/2018	2.5	<1.3 ⁴	<100	<1.0	<1.0	<1.0	<2.0
	HMW-11-080118	8/1/2018	1.6 ¹¹	0.485	1,600	1.0	<1.0	<1.0	<2.0
	HMW-11-012319	1/23/2019	1.9 ¹¹	< 0.41	1,900 ⁸	1.4	<1.0	1.2	<2.0
	HMW-11-082219	8/22/2019	3.3 ¹¹	0.495	1,400	<4.0	<4.0	<4.0	<8.0
	HMW-11-112619	11/26/2019	3.2 ¹¹	0.63 ⁵	1,200 ⁸	1.0	1.0	<1.0	<2.0
111/03/11	HMW-11-022520	2/25/2020	4.9	2.1	<100	<1.0	<1.0	<1.0	<2.0
HMW-11	HMW-11-052820	5/28/2020	4.1 ¹¹	2.1	920 ⁸	<1.0	1.5	<1.0	<2.0
	HMW-11-111220	11/12/2020	1.4 ¹¹	0.51 ⁵	4108	<1.0	<1.0	<1.0	<2.0
	HMW-11-052521	5/25/2021	3.5 ¹¹	1.1	730 ⁸	<1.0	<1.0	<1.0	<2.0
	HMW-11-113021	11/30/2021	0.36	0.38	<100	<1.0	<1.0	<1.0	<2.0
	HMW-11-052622	5/26/2022	2.5	1.4	<100	<1.0	<1.0	<1.0	<2.0
	HMW-11-113022	11/30/2022	1.3 ¹¹	0.51	480	2.1	<1.0	<1.0	<2.0
MTCA Method A C	leanup Levels for Ground		0.5	0.5	800	5	1,000	700	1,000

Well Identification	Sample Identification	Sample Date		al Results is per liter)	Analytical Results (micrograms per liter)					
			DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³	
	HMW-13-011818	1/18/2018	< 0.26	< 0.41	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-080118	8/1/2018	< 0.26	< 0.41	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-012319	1/23/2019	< 0.26	< 0.41	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-082119	8/21/2019	< 0.30	< 0.48	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-112619	11/26/2019	0.27	< 0.21	<100	<1.0	<1.0	<1.0	<2.0	
HMW-13	HMW-13-022420	2/24/2020	< 0.21	0.22	<100	<1.0	<1.0	<1.0	<2.0	
11101 00 - 1.5	HMW-13-052720	5/27/2020	< 0.21	0.24	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-111120	11/11/2020	< 0.20	< 0.20	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-052521	5/25/2021	< 0.20	0.24	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-113021	11/30/2021	< 0.20	< 0.20	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-052622	5/26/2022	< 0.11	< 0.22	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-113022	11/30/2022	< 0.13	< 0.20	<100	<1.0	<1.0	<1.0	<2.0	
MTCA Method A C	Cleanup Levels for Ground	water ⁶	0.5	0.5	800	5	1,000	700	1,000	

NOTES:

<denotes analyte not detected at or exceeding the laboratory reporting limit listed.

Results in **bold** denote sample result or reporting limit exceeds applicable MTCA Method A cleanup levels for groundwater.

¹Analyzed by Northwest Method NWTPH-Dx. Samples analyzed by OnSite Environmental Inc. between June 2008 and November

2016 were analyzed using acid silica gel cleanup procedure.

²Analyzed by Northwest Method NWTPH-Gx.

³Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁴The practical quantitation limit is elevated due to interferences in the sample.

⁵Hydrocarbons in the diesel range are impacting the oil-range result.

⁶MTCA Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁷Sample collected using a disposable bailer.

⁸Hydrocarbons indicative of heavier fuels present in the sample are impacting the gasoline result.

⁹Quality assurance/quality control field duplicate sample.

¹⁰Duplicate sample analyzed at TestAmerica Laboratories Inc.

¹¹Hydrocarbons in the gasoline-range are impacting the diesel-range result.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = TPH as diesel-range organics

GRO = TPH as gasoline-range organics

MTCA = Washington State Model Toxics Control Act Cleanup Regu

ORO = TPH as oil-range organics TPH = total petroleum hydrocarbons

				Analytical Results (mil	ligrams per liter)	
			NWTPH-Dx without Sulf		NWTPH-Dx with Sulf or Silic	
Well Identification	Sample Identification	Sample Date	DRO	ORO	DRO	ORO
	CMW-2-113021	11/30/2021	1.4	1.2	$< 0.20^{2}$	$< 0.20^{2}$
CMW-2	CMW-2-052622	5/26/2022	0.20	0.25	< 0.24 ³	< 0.24 ³
-	CMW-2-113022	11/30/2022	0.57	0.59	< 0.12 ³	$< 0.20^{3}$
	CMW-8-113021	11/30/2021	0.58	0.35	$< 0.20^{2}$	$< 0.20^{2}$
CMW-8	CMW-8-052522	5/25/2022	0.79	0.60	< 0.20 ³	$< 0.20^{3}$
	CMW-8-113022	11/30/2022	0.28	0.29	< 0.11 ³	$< 0.20^{3}$
	CMW-10-113021	11/30/2021	2.8	2.9	$< 0.20^{2}$	$< 0.20^{2}$
CMW-10	CMW-10-052622	5/26/2022	0.62	0.51	< 0.23 ³	< 0.23 ³
	CMW-10-113022	11/30/2022	1.8	0.77	< 0.12 ³	$< 0.20^{3}$
	CMW-12-113021	11/30/2021	0.64	0.33	$< 0.20^{2}$	$< 0.20^{2}$
	QA/QC-1-113021 ⁴	11/30/2021	0.65	0.32	< 0.21 ²	< 0.21 ²
CMW-12	CMW-12-052622	5/26/2022	0.80	0.44	< 0.22 ³	$< 0.22^{3}$
CIVI W-12	QA/QC-2-052622 ⁴	5/26/2022	0.84	0.49	< 0.20 ³	$< 0.20^{3}$
	CMW-12-113022	11/30/2022	0.43	0.26	< 0.12 ³	$< 0.20^{3}$
	QA/QC-1-113022 ⁴	11/30/2022	0.39	0.30	< 0.12 ³	$< 0.20^{3}$
	CMW-13-113021	11/30/2021	0.57	0.34	< 0.21 ²	< 0.21 ²
CMW-13	CMW-13-052522	5/25/2022	1.4	0.67	< 0.22 ³	$< 0.22^{3}$
	CMW-13-113022	11/30/2022	0.44 ⁵	0.22	< 0.16 ³	$< 0.20^{3}$
	CMW-25-112921	11/29/2021	< 0.20	< 0.20	$< 0.20^{2}$	$< 0.20^{2}$
CMW-25	CMW-25-052522	5/25/2022	< 0.11	< 0.22	< 0.22 ³	< 0.22 ³
	CMW-25-113022	11/30/2022	< 0.13	< 0.20	< 0.12 ³	$< 0.20^{3}$
	CMW-26-112921	11/29/2021	< 0.20	< 0.20	$< 0.20^{2}$	$< 0.20^{2}$
CMW-26	CMW-26-052522	5/25/2022	<0.11	< 0.21	< 0.21 ³	< 0.21 ³
	CMW-26-113022	11/30/2022	< 0.13	< 0.20	< 0.12 ³	$< 0.20^{3}$
	CMW-27-113021	11/30/2021	8.9 ⁵	4.8	0.88 ^{5,2}	< 0.21 ²
	QA/QC-2-113021 ⁴	11/30/2021	6.7 ⁵	2.8	0.93 ^{5,2}	< 0.21 ²
CMW-27	CMW-27-052622	5/26/2022	1.6	1.0	0.28 ³	$< 0.22^{3}$
CIVI VV -2 /	QA/QC-1-052622 ⁴	5/26/2022	1.6	1.1	0.32^{3}	< 0.23 ³
	CMW-27-113022	11/30/2022	2.1 ⁵	0.61	0.75 ^{3,5}	< 0.20 ³
F	QA/QC-2-113022 ⁴	11/30/2022	1.7 ⁵	0.61	0.64 ^{3,5}	< 0.20 ³
ATCA Method A C	leanup Levels for Ground		0.5	0.5	0.5	0.5

				Analytical Results (milligrams per liter)					
			NWTPH-Dx without Sulf		NWTPH-Dx with Sulfuric Acid Silica or Silica Gel				
Well Identification	Sample Identification	Sample Date	DRO	ORO	DRO	ORO			
	CMW-28-113021	11/30/2021	<0.20	< 0.20	$< 0.20^{2}$	< 0.20 ²			
CMW-28	CMW-28-052522	5/25/2022	1.1	0.68	< 0.23 ³	< 0.23 ³			
	CMW-28-112922	11/29/2022	0.24	0.31	< 0.12 ³	< 0.20 ³			
	CMW-29-112921	11/29/2021	0.74	0.87	$< 0.20^{2}$	$< 0.20^{2}$			
CMW-29	CMW-29-052522	5/25/2022	0.74	0.56	< 0.23 ³	< 0.23 ³			
	CMW-29-113022	11/30/2022	0.17	0.20	< 0.12 ³	< 0.20 ³			
	CMW-30-112921	11/29/2021	0.23	< 0.20	$< 0.20^{2}$	$< 0.20^{2}$			
CMW-30	CMW-30-052522	5/25/2022	0.40	0.29	< 0.21 ³	< 0.21 ³			
	CMW-30-112922	11/29/2022	0.47	< 0.20	< 0.12 ³	$< 0.20^{3}$			
	CMW-31-112921	11/29/2021	<0.20	< 0.20	$< 0.20^{2}$	$< 0.20^{2}$			
CMW-31	CMW-31-052522	5/25/2022	<0.10	< 0.20	< 0.20 ³	< 0.20 ³			
-	CMW-31-112922	11/29/2022	0.25	< 0.20	< 0.12 ³	< 0.20 ³			
	HMW-9-113021	11/30/2021	0.30	0.32	< 0.21 ²	< 0.21 ²			
HMW-9	HMW-9-052622	5/26/2022	0.77	0.65	< 0.21 ³	< 0.21 ³			
	HMW-9-113022	11/30/2022	0.18	0.45	< 0.12 ³	0.35^{3}			
	HMW-10-113021	11/30/2021	0.50	0.23	$< 0.20^{2}$	$< 0.20^{2}$			
HMW-10	HMW-10-052622	5/26/2022	1.5	0.75	$< 0.20^{3}$	$< 0.20^{3}$			
-	HMW-10-113022	11/30/2022	0.52	0.28	< 0.12 ³	< 0.20 ³			
	HMW-11-113021	11/30/2021	0.36	0.38	$< 0.20^{2}$	$< 0.20^{2}$			
HMW-11	HMW-11-052622	5/26/2022	2.5	1.4	$< 0.20^{3}$	$< 0.20^{3}$			
	HMW-11-113022	11/30/2022	1.3 ⁵	0.51	$0.36^{3,5}$	< 0.20 ³			
	HMW-13-113021	11/30/2021	<0.20	<0.20	$< 0.20^{2}$	$< 0.20^{2}$			
HMW-13	HMW-13-052622	5/26/2022	<0.11	<0.22	< 0.22 ³	< 0.22 ³			
	HMW-13-113022	11/30/2022	<0.13	< 0.20	< 0.12 ³	< 0.20 ³			
ATCA Method A C	Cleanup Levels for Ground	water ⁶	0.5	0.5	0.5	0.5			

NOTES:

<denotes analyte not detected at or exceeding the laboratory reporting limit listed.</pre>

Results in **bold** denote sample result or reporting limit exceeds applicable MTCA Method A cleanup levels for groundwater.

¹Analyzed by Northwest Method NWTPH-Dx without a sulfuric acid/silica gel or silica gel cleanup procedure.

²Analyzed by Northwest Method NWTPH-Dx with a sulfuric acid/silica gel cleanup procedure.

³Analyzed by Northwest Method NWTPH-Dx with a silica gel cleanup procedure.

⁴Quality assurance/quality control field duplicate sample.

⁵Hydrocarbons in the gasoline-range are impacting the diesel-range result.

⁶MTCA Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

DRO = TPH as diesel-range organics MTCA = Washington State Model Toxics Control Act Cleanup Regulation ORO = TPH as oil-range organics TPH = total petroleum hydrocarbons

CHARTS

THIRD AND FOURTH QUARTER 2022 GROUNDWATER MONITORING AND TREATMENT SYSTEM OPERATION AND MAINTENANCE REPORT CHS Auburn Site Auburn, Washington

Farallon PN: 301-004

Chart 1 DRO and ORO Concentration Data Trends for Monitoring Well CMW-2 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

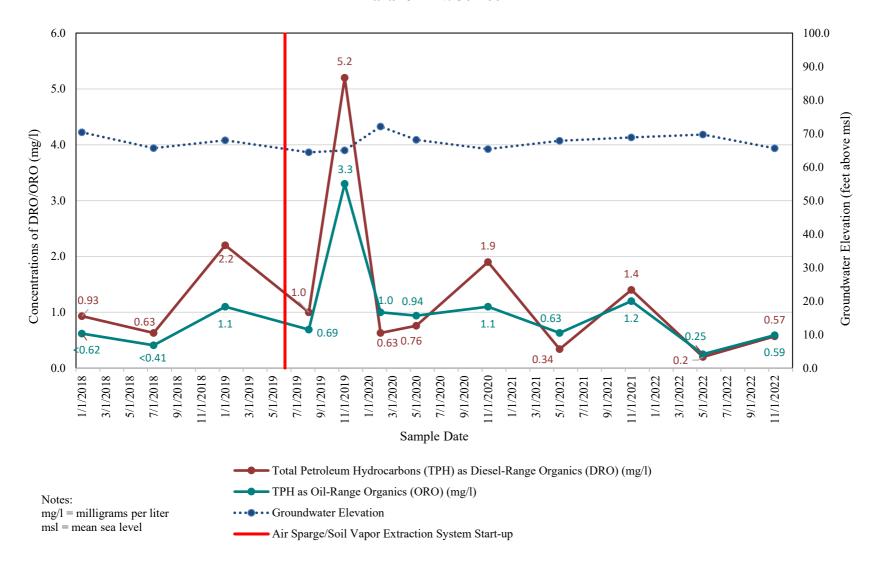


Chart 2 DRO and ORO Concentration Data Trends for Monitoring Well CMW-10 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

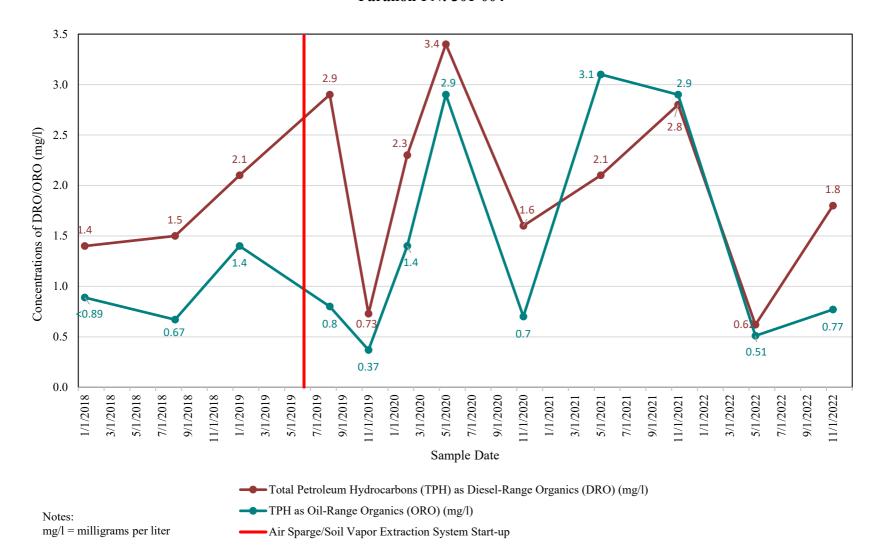


Chart 3 DRO, ORO, and GRO Concentration Data Trends for Monitoring Well CMW-12 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

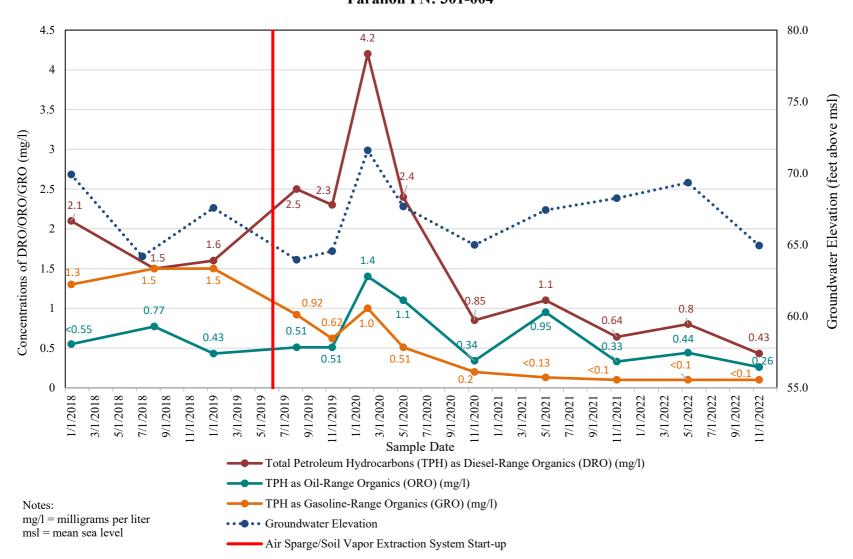
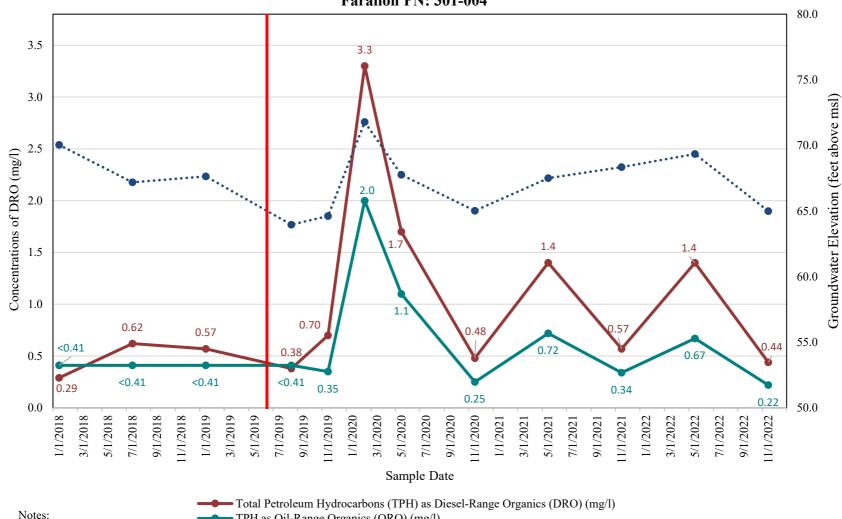



Chart 4 DRO Concentration Data Trend for Monitoring Well CMW-13 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

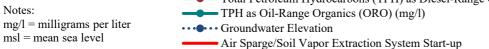


Chart 5 DRO, ORO, and GRO Concentration Data Trends for Monitoring Well CMW-27 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

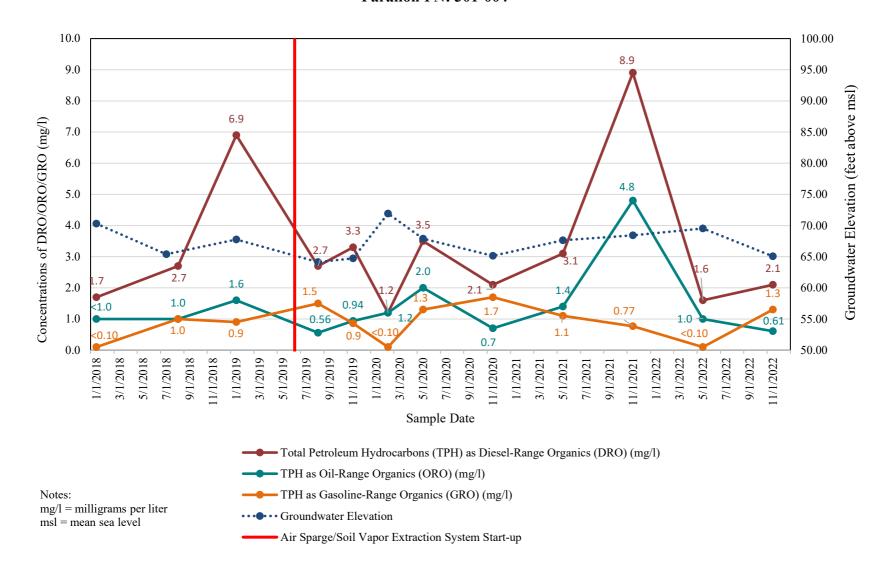


Chart 6 DRO and ORO Concentration Data Trends for Monitoring Well CMW-28 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

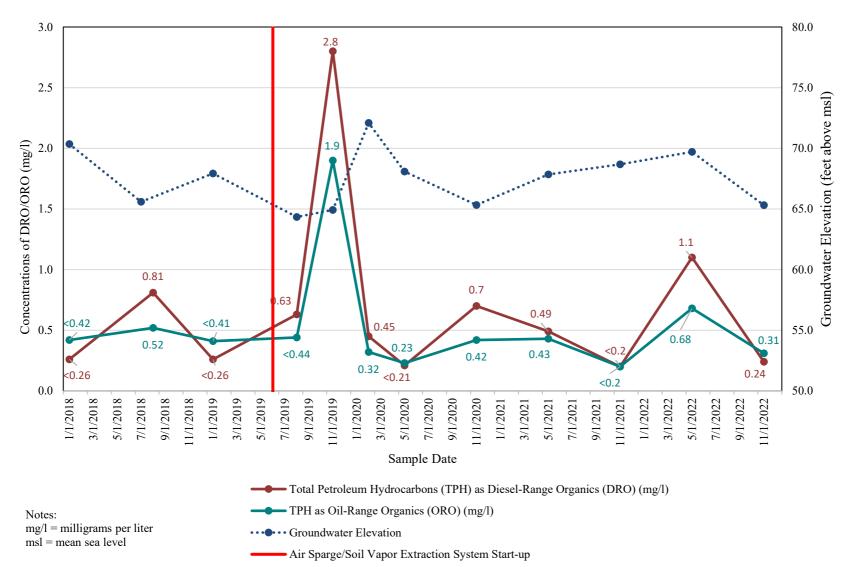


Chart 7 DRO Concentration Data Trend for Monitoring Well HMW-10 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

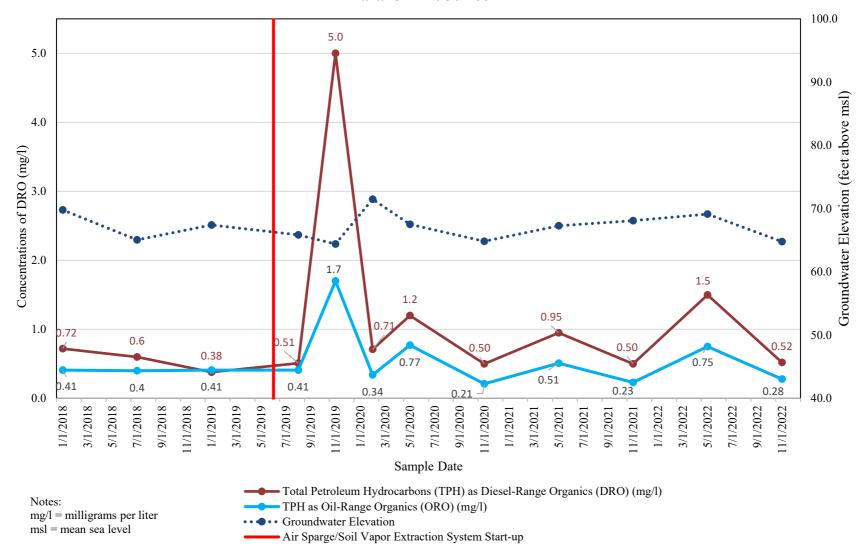
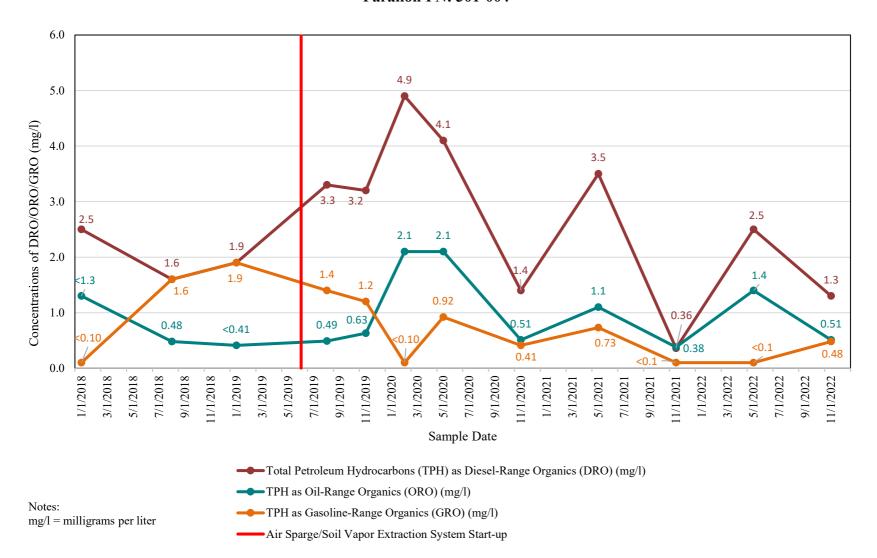



Chart 8 DRO, ORO, and GRO Concentration Data Trends for Monitoring Well HMW-11 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

APPENDIX A LABORATORY ANALYTICAL REPORTS

THIRD AND FOURTH QUARTER 2022 GROUNDWATER MONITORING AND TREATMENT SYSTEM OPERATION AND MAINTENANCE REPORT CHS Auburn Site Auburn, Washington

Farallon PN: 301-004

December 14, 2022

Javan Ruark Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 301-004 Laboratory Reference No. 2212-015

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on December 1, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: December 14, 2022 Samples Submitted: December 1, 2022 Laboratory Reference: 2212-015 Project: 301-004

Case Narrative

Samples were collected on November 29 and 30, 2022 and received by the laboratory on December 1, 2022. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-28-112922					
Laboratory ID:	12-015-01					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	65-122				
Client ID:	CMW-30-112922					
Laboratory ID:	12-015-02					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	65-122				
Client ID:	CMW-31-112922					
Laboratory ID:	12-015-03					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	65-122				

Matrix: Water Units: ug/L (ppb)

•				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HMW-9-113022					
Laboratory ID:	12-015-04					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	65-122				
Client ID:	HMW-11-113022					
Laboratory ID:	12-015-05					
Benzene	2.1	1.0	EPA 8021B	12-7-22	12-7-22	
Toluene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
o-Xylene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
Gasoline	480	100	NWTPH-Gx	12-7-22	12-7-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	65-122				
Client ID:	CMW-13-113022					
Laboratory ID:	12-015-06					
Benzene	1.5	1.0	EPA 8021B	12-7-22	12-7-22	
Toluene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
o-Xylene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
Gasoline	150	100	NWTPH-Gx	12-7-22	12-7-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	65-122				

4

,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-27-113022					
Laboratory ID:	12-015-07					
Benzene	3.8	1.0	EPA 8021B	12-7-22	12-7-22	
Toluene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
Ethylbenzene	3.2	1.0	EPA 8021B	12-7-22	12-7-22	
m,p-Xylene	1.5	1.0	EPA 8021B	12-7-22	12-7-22	
o-Xylene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
Gasoline	1300	100	NWTPH-Gx	12-7-22	12-7-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	65-122				
Client ID:	QA/QC-2-113022					
Laboratory ID:	12-015-08					
Benzene	4.0	1.0	EPA 8021B	12-7-22	12-7-22	
Toluene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
Ethylbenzene	3.3	1.0	EPA 8021B	12-7-22	12-7-22	
m,p-Xylene	1.5	1.0	EPA 8021B	12-7-22	12-7-22	
o-Xylene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
Gasoline	1300	100	NWTPH-Gx	12-7-22	12-7-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	65-122				
Client ID:	CMW-10-113022					
Laboratory ID:	12-015-09					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	65-122				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-29-113022					
Laboratory ID:	12-015-10					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	65-122				
Client ID:	CMW-2-113022					
Laboratory ID:	12-015-11					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	65-122				
Client ID:	CMW-8-113022					
Laboratory ID:	12-015-12					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits		-		
Fluorobenzene						

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HMW-10-113022					
Laboratory ID:	12-015-13					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	65-122				
Client ID:	HMW-13-113022					
Laboratory ID:	12-015-14					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	65-122				
Client ID:	CMW-25-113022					
Laboratory ID:	12-015-15					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	65-122				
Gasoline Surrogate: Fluorobenzene	Percent Recovery	Control Limits	NWTPH-Gx	12-5-22	12-5-22	

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-26-113022					
Laboratory ID:	12-015-16					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	65-122				
Client ID:	CMW-12-113022					
Laboratory ID:	12-015-17					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	65-122				
Client ID:	QA/QC-1-113022					
Laboratory ID:	12-015-18					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	65-122				

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1205W1					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	65-122				
Laboratory ID:	MB1205W2					
Benzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Toluene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
o-Xylene	ND	1.0	EPA 8021B	12-5-22	12-5-22	
Gasoline	ND	100	NWTPH-Gx	12-5-22	12-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	65-122				
Laboratory ID:	MB1207W1					
Benzene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
Toluene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
Ethylbenzene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
m,p-Xylene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
o-Xylene	ND	1.0	EPA 8021B	12-7-22	12-7-22	
Gasoline	ND	100	NWTPH-Gx	12-7-22	12-7-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	65-122				

9

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-01	15-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		N	IA	NA	NA	30	
Ethylbenzene	ND	ND	NA	NA		N	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						89	86	65-122			
Laboratory ID:	12-01	15-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		N	IA	NA	NA	30	
Ethylbenzene	ND	ND	NA	NA		N	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						85	84	65-122			
SPIKE BLANKS											
Laboratory ID:	SB12	05W1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	52.9	51.1	50.0	50.0		106	102	80-116	3	12	
Toluene	53.1	51.6	50.0	50.0		106	103	82-118	3	12	
Ethylbenzene	51.1	49.7	50.0	50.0		102	99	82-118	3	12	
m,p-Xylene	50.8	48.9	50.0	50.0		102	98	81-118	4	12	
o-Xylene	51.4	49.5	50.0	50.0		103	99	81-116	4	11	
Surrogate:											
Fluorobenzene						87	89	65-122			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CMW-28-112922			-		
Laboratory ID:	12-015-01					
Diesel Range Organics	ND	0.12	NWTPH-Dx	12-8-22	12-8-22	X2
ube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				
Client ID:	CMW-30-112922					
Laboratory ID:	12-015-02					
Diesel Range Organics	ND	0.12	NWTPH-Dx	12-8-22	12-8-22	X2
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				
Client ID:	CMW-31-112922					
Laboratory ID:	12-015-03					
Diesel Range Organics	ND	0.12	NWTPH-Dx	12-8-22	12-8-22	X2
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	HMW-9-113022					
Laboratory ID:	12-015-04					
Diesel Range Organics	ND	0.12	NWTPH-Dx	12-8-22	12-8-22	X2
Lube Oil	0.35	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Client ID:	HMW-11-113022					
Laboratory ID:	12-015-05					
Diesel Range Organics	0.36	0.11	NWTPH-Dx	12-8-22	12-8-22	M,X2
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
Surrogate:	Percent Recovery	Control Limits		12 0 22	12 0 22	,,,
o-Terphenyl	109	50-150				
Client ID:	CMW-13-113022					
Laboratory ID:	12-015-06					
Diesel Range Organics	ND	0.16	NWTPH-Dx	12-8-22	12-8-22	M1,U1,X2
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
~ ~						
Surrogate:	Percent Recovery	Control Limits				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CMW-27-113022			•		•
Laboratory ID:	12-015-07					
Diesel Range Organics	0.75	0.12	NWTPH-Dx	12-8-22	12-8-22	M,X2
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				
Client ID:	QA/QC-2-113022					
_aboratory ID:	12-015-08					
Diesel Range Organics	0.64	0.12	NWTPH-Dx	12-8-22	12-8-22	M,X2
ube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	91	50-150				
Client ID:	CMW-10-113022					
Laboratory ID:	12-015-09					
Diesel Range Organics	ND	0.12	NWTPH-Dx	12-8-22	12-8-22	X2
ube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
Surrogate:	Percent Recovery	Control Limits		12 0 22		, KL
p-Terphenyl	100	50-150				
Client ID:	CMW-29-113022					
_aboratory ID:	12-015-10			10.0.00	10.0.00	
Diesel Range Organics	ND	0.12	NWTPH-Dx	12-8-22	12-8-22	X2
ube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	CMW-2-113022					
_aboratory ID:	12-015-11					
Diesel Range Organics	ND	0.12	NWTPH-Dx	12-8-22	12-8-22	X2
ube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	106	50-150				
Client ID:	CMW-8-113022					
_aboratory ID:	12-015-12					
Diesel Range Organics	ND	0.11	NWTPH-Dx	12-8-22	12-8-22	X2
ube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	99	50-150				
, ,						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

12

Matrix: Water Units: mg/L (ppm)

Result	PQL	Method	Date Prepared	Date Analvzed	Flags
HMW-10-113022			•		
12-015-13					
ND	0.12	NWTPH-Dx	12-8-22	12-8-22	X2
ND	0.20				X2
Percent Recoverv	Control Limits				
120	50-150				
HMW-13-113022					
12-015-14					
ND	0.12	NWTPH-Dx	12-8-22	12-8-22	X2
ND	0.20	NWTPH-Dx	12-8-22	12-8-22	X2
Percent Recovery	Control Limits				
94	50-150				
CMW-25-113022					
12-015-15					
ND	0.12	NWTPH-Dx	12-8-22	12-9-22	X2
ND	0.20	NWTPH-Dx		12-9-22	X2
Percent Recovery	Control Limits				
110	50-150				
CMW-26-113022					
	0.12		12-8-22	12-9-22	X2
					X2
			12 0 22	12 0 22	7.2
95	50-150				
CMW-12-113022					
12-015-17					
ND	0.12	NWTPH-Dx	12-8-22	12-9-22	X2
ND	0.20	NWTPH-Dx	12-8-22	12-9-22	X2
	Control Limits				
105	50-150				
QA/QC-1-113022					
12-015-18					
	0.12	NWTPH-Dx	12-8-22	12-9-22	X2
ND	0.12				
ND ND	0.20	NWTPH-Dx	12-8-22	12-9-22	X2
					X2
	12-015-13 ND ND Percent Recovery 120 HMW-13-113022 12-015-14 ND ND Percent Recovery 94 CMW-25-113022 12-015-15 ND ND Percent Recovery 110 CMW-26-113022 12-015-16 ND ND Percent Recovery 95 CMW-12-113022 12-015-17 ND ND Percent Recovery 95 CMW-12-113022 12-015-17 ND ND Percent Recovery 105	HMW-10-113022 12-015-13 ND 0.12 0.20 Percent Recovery 120 Control Limits 50-150 HMW-13-113022 12-015-14 0.12 0.20 Percent Recovery 94 0.12 0.20 Percent Recovery 94 Control Limits 50-150 CMW-25-113022 12-015-15 Control Limits 50-150 ND 0.12 ND 0.20 Percent Recovery 12-015-15 Control Limits 50-150 CMW-26-113022 12-015-16 Control Limits 50-150 ND 0.12 ND 0.20 Percent Recovery 12-015-16 Control Limits 50-150 CMW-26-113022 12-015-17 Control Limits 50-150 Percent Recovery 95 Control Limits 50-150 Percent Recovery 105 Control Limits 50-150 QA/QC-1-113022 Control Limits 50-150	HMW-10-113022 12-015-13 ND 0.12 0.20 NWTPH-Dx NWTPH-Dx Percent Recovery 120 Control Limits 50-150 NWTPH-Dx HMW-13-113022 12-015-14 NU NWTPH-Dx ND 0.12 0.20 NWTPH-Dx Percent Recovery 94 Control Limits 50-150 NWTPH-Dx Percent Recovery 94 Control Limits 50-150 NWTPH-Dx Percent Recovery 12-015-15 NU NWTPH-Dx Percent Recovery 12-015-16 NWTPH-Dx NWTPH-Dx Percent Recovery 12-015-16 Control Limits 50-150 NWTPH-Dx Percent Recovery 12-015-16 Control Limits 50-150 NWTPH-Dx Percent Recovery 95 Control Limits 50-150 NWTPH-Dx Percent Recovery 95 Control Limits 50-150 NWTPH-Dx Percent Recovery ND 0.12 NWTPH-Dx NWTPH-Dx Percent Recovery 12-015-17 NWTPH-Dx NWTPH-Dx ND 0.12 NWTPH-Dx NWTPH-Dx Percent Recovery 105 Control Limits 50-150 NWTPH-Dx	Result PQL Method Prepared HMW-10-113022 12-015-13 12-8-22 ND 12-8-22 ND 0.12 NWTPH-Dx 12-8-22 Percent Recovery Control Limits 12-8-22 120 50-150 12-8-22 Percent Recovery Control Limits 12-8-22 120 50-150 12-8-22 MD 0.12 NWTPH-Dx 12-8-22 ND 0.20 NWTPH-Dx 12-8-22 Percent Recovery Control Limits 12-8-22 Percent Recovery Control Limits 12-8-22 Percent Recovery Control Limits 12-8-22 ND 0.12 NWTPH-Dx 12-8-22 Percent Recovery Control Limits 12-8-22 ND 0.20 NWTPH-Dx 12-8-22 ND 0.20 NWTPH-Dx 12-8-22 ND 0.20 NWTPH-Dx 12-8-22 Percent Recovery Control Limits 50-150 95 50-150	Result PQL Method Prepared Analyzed HMW-10-113022 12-015-13

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

13

Date of Report: December 14, 2022 Samples Submitted: December 1, 2022 Laboratory Reference: 2212-015 Project: 301-004

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB1208W1					
ND	0.10	NWTPH-Dx	12-8-22	12-8-22	X2
ND	0.16	NWTPH-Dx	12-8-22	12-8-22	X2
Percent Recovery	Control Limits				
99	50-150				
	MB1208W1 ND ND Percent Recovery	MB1208W1 ND 0.10 ND 0.16 Percent Recovery Control Limits	MB1208W1ND0.10ND0.16ND0.16Percent RecoveryControl Limits	Result PQL Method Prepared MB1208W1	Result PQL Method Prepared Analyzed MB1208W1

					Source	Perc		Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-0 ⁻	15-02									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N/	A	NA	NA	NA	X2
Lube Oil Range	ND	ND	NA	NA		N	A	NA	NA	NA	X2
Surrogate:											
o-Terphenyl						120	118	50-150			
Laboratory ID:	SB12	08W1									
	ORIG	DUP									
Diesel Fuel #2	0.423	0.398	NA	NA		N/	A	NA	6	NA	X2
Surrogate:											
o-Terphenyl						124	113	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: mg/L (ppm)

Result	PQL	Method	Date Prepared	Date Analyzed	Flags
CMW-28-112922			-		
12-015-01					
0.24	0.13	NWTPH-Dx	12-8-22	12-13-22	
0.31	0.20	NWTPH-Dx	12-8-22	12-13-22	
Percent Recovery	Control Limits				
114	50-150				
CMW-30-112922					
12-015-02					
0.47	0.13	NWTPH-Dx	12-8-22	12-13-22	
ND					
Percent Recoverv					
111	50-150				
CMW-31 443033					
	0.40		10.0.00	10 10 00	
				-	
		NVVIPH-DX	12-0-22	12-13-22	
90	50-750				
HMW-9-113022					
12-015-04					
0.18	0.13	NWTPH-Dx	12-8-22	12-13-22	
0.45	0.20	NWTPH-Dx	12-8-22	12-13-22	
Percent Recovery	Control Limits				
83	50-150				
HMW-11-113022					
	0.12		12_8_22	12_13_22	М
					IVI
			12-0-22	12-10-22	
,					
00	00 100				
CMW-13-113022					
12-015-06					
12-015-00					
0.44	0.13	NWTPH-Dx	12-8-22	12-13-22	Μ
	0.13 0.20	NWTPH-Dx NWTPH-Dx	12-8-22 12-8-22	12-13-22 12-13-22	M
0.44					М
	CMW-28-112922 12-015-01 0.24 0.31 Percent Recovery 114 CMW-30-112922 12-015-02 0.47 ND Percent Recovery 111 CMW-31-112922 12-015-03 0.25 ND Percent Recovery 96 HMW-9-113022 12-015-04 0.18 0.45 Percent Recovery 83 HMW-11-113022 12-015-05 1.3 0.51 Percent Recovery 89	CMW-28-112922 12-015-01 0.24 0.13 0.31 0.20 Percent Recovery Control Limits 114 50-150 CMW-30-112922 12-015-02 12-015-02 0.13 0.47 0.13 ND 0.20 Percent Recovery Control Limits 111 50-150 CMW-31-112922 20 12-015-03 0.13 0.25 0.13 ND 0.20 Percent Recovery Control Limits 96 50-150 HMW-9-113022 20 12-015-04 0.13 0.18 0.13 0.45 0.20 Percent Recovery Control Limits 83 50-150 HMW-11-113022 12-015-05 1.3 0.12 0.51 0.20 Percent Recovery Control Limits 89 50-150	CMW-28-112922 12-015-01 NWTPH-Dx 0.24 0.13 NWTPH-Dx 0.31 0.20 NWTPH-Dx Percent Recovery Control Limits 114 50-150 CMW-30-112922 12-015-02 0.13 NWTPH-Dx ND 0.20 NWTPH-Dx Percent Recovery Control Limits 111 S0-150 Percent Recovery Control Limits 111 S0-150 CMW-31-112922 12-015-03 NWTPH-Dx ND 0.20 NWTPH-Dx Percent Recovery Control Limits 50-150 NWTPH-Dx Percent Recovery Control Limits 96 S0-150 HMW-9-113022 12-015-04 0.20 NWTPH-Dx Percent Recovery Control Limits 83 S0-150 HMW-11-113022 12-015-05 NWTPH-Dx Percent Recovery Control Limits 89 S0-150 Percent Recovery Control Limits 50-150 NWTPH-Dx	Result PQL Method Prepared CMW-28-112922 12-015-01 12-8-22 12-8-22 0.24 0.13 NWTPH-Dx 12-8-22 0.31 0.20 NWTPH-Dx 12-8-22 Percent Recovery Control Limits 114 50-150 CMW-30-112922 - - 12-8-22 12-015-02 - NWTPH-Dx 12-8-22 ND 0.20 NWTPH-Dx 12-8-22 Percent Recovery Control Limits 111 50-150 CMW-31-112922 Control Limits 111 50-150 12-8-22 Percent Recovery Control Limits 50-150 12-8-22 ND 0.20 NWTPH-Dx 12-8-22 ND 0.20 NWTPH-Dx 12-8-22 Percent Recovery Control Limits 50-150 12-8-22 Percent Recovery Control Limits 12-8-22 12-8-22 0.18 0.13 NWTPH-Dx 12-8-22 Percent Recovery Control Limits	Result PQL Method Prepared Analyzed CMW-28-112922 12-015-01 12-015-01 12-015-02 12-13-22 12-13-22 0.24 0.13 NWTPH-Dx 12-8-22 12-13-22 0.31 0.20 NWTPH-Dx 12-8-22 12-13-22 Percent Recovery Control Limits 12-8-22 12-13-22 114 50-150 V 12-8-22 12-13-22 Percent Recovery Control Limits 12-8-22 12-13-22 12-015-02 NWTPH-Dx 12-8-22 12-13-22 Percent Recovery Control Limits 12-8-22 12-13-22 12-015-03 NWTPH-Dx 12-8-22 12-13-22 Percent Recovery Control Limits 12-8-22 12-13-22

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

15

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CMW-27-113022					•
Laboratory ID:	12-015-07					
Diesel Range Organics	2.1	0.13	NWTPH-Dx	12-8-22	12-13-22	М
Lube Oil Range Organics	0.61	0.20	NWTPH-Dx	12-8-22	12-13-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	QA/QC-2-113022					
Laboratory ID:	12-015-08					
Diesel Range Organics	1.7	0.13	NWTPH-Dx	12-8-22	12-13-22	М
ube Oil Range Organics	0.61	0.20	NWTPH-Dx	12-8-22	12-13-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				
Client ID:	CMW-10-113022					
Laboratory ID:	12-015-09					
Diesel Range Organics	1.8	0.13	NWTPH-Dx	12-8-22	12-13-22	
_ube Oil Range Organics	0.77	0.20	NWTPH-Dx	12-8-22	12-13-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	CMW-29-113022					
Laboratory ID:	12-015-10					
Diesel Range Organics	0.17	0.13	NWTPH-Dx	12-8-22	12-13-22	
Lube Oil Range Organics	0.20	0.20	NWTPH-Dx	12-8-22	12-13-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	CMW-2-113022					
Laboratory ID:	12-015-11					
Diesel Range Organics	0.57	0.13	NWTPH-Dx	12-8-22	12-13-22	
Lube Oil Range Organics	0.59	0.20	NWTPH-Dx	12-8-22	12-13-22	
Surrogate:	Percent Recovery	Control Limits		12-0-22	12-10-22	
o-Terphenyl	102	50-150				
	, 02					
Client ID:	CMW-8-113022					
Laboratory ID:	12-015-12	-				
Diesel Range Organics	0.28	0.12	NWTPH-Dx	12-8-22	12-13-22	
	.			40 0 00	40 40 00	
	0.29	0.20	NWTPH-Dx	12-8-22	12-13-22	
Lube Oil Range Organics Surrogate: o-Terphenyl	0.29 Percent Recovery 84	0.20 Control Limits 50-150	NWTPH-DX	12-8-22	12-13-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

16

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	HMW-10-113022					•
Laboratory ID:	12-015-13					
Diesel Range Organics	0.52	0.13	NWTPH-Dx	12-8-22	12-13-22	
Lube Oil Range Organics	0.28	0.20	NWTPH-Dx	12-8-22	12-13-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	HMW-13-113022					
Laboratory ID:	12-015-14					
Diesel Range Organics	ND	0.13	NWTPH-Dx	12-8-22	12-13-22	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-13-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	CMW-25-113022					
Laboratory ID:	12-015-15					
Diesel Range Organics	ND	0.13	NWTPH-Dx	12-8-22	12-13-22	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-13-22	
Surrogate:	Percent Recovery	Control Limits			0	
o-Terphenyl	93	50-150				
Client ID:	CMW-26-113022					
Laboratory ID:	12-015-16					
Diesel Range Organics	ND	0.13	NWTPH-Dx	12-8-22	12-13-22	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	12-8-22	12-13-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
Client ID:	CMW-12-113022					
Laboratory ID:	12-015-17					
Diesel Range Organics	0.43	0.13	NWTPH-Dx	12-8-22	12-13-22	
Lube Oil Range Organics	0.43	0.13	NWTPH-DX NWTPH-Dx	12-8-22	12-13-22	
Surrogate:	Percent Recovery	Control Limits		12-0-22	12-10-22	
o-Terphenyl	105	50-150				
	100					
Client ID:	QA/QC-1-113022					
Laboratory ID:	12-015-18					
Diesel Range Organics	0.39	0.13	NWTPH-Dx	12-8-22	12-13-22	
Lube Oil Range Organics	0.30	0.20	NWTPH-Dx	12-8-22	12-13-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

17

Date of Report: December 14, 2022 Samples Submitted: December 1, 2022 Laboratory Reference: 2212-015 Project: 301-004

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1208W1					
Diesel Range Organics	ND	0.10	NWTPH-Dx	12-8-22	12-13-22	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	12-8-22	12-13-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				

• • •	_				Source	Perce		Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recov	ery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-0 ⁻	15-02									
	ORIG	DUP									
Diesel Range Organics	0.465	0.420	NA	NA		NA		NA	10	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						111	100	50-150			
Laboratory ID:	SB12	08W1									
	ORIG	DUP									
Diesel Fuel #2	0.495	0.446	NA	NA		NA		NA	10	NA	
Surrogate:											
o-Terphenyl						122	110	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Revi	Rece	Relir	Rece	Relir	Received	Relin		01	5	∞	7	5	5	2	w	2	1	Lab ID	Samp	Projec	Projec	P .	Comp			
Reviewed/Date	Received	Relinquished	Received	Relinquished	lived	Relinquished		cmw-29-	CMM- 10 -	QA/QC-2-	CMW-27-113022	CMW-13-113022	Hmw-11-113022	Hmw-9	cmw- 31-	cmw- 30	Cmw-28-112922		Angie Os	Project Manager:			allon	14648 NE 9 Phone: (425	Analytical Lab	M OnSite
				ry.	NIN	No.	Signature	- 113022	- 113022	- 113022	- 113022	113022	113022	- 113022	- 112922)-112922	- 112922	Sample Identification	Osman / Michael Ysaguire	Ruark	Auburn	+0	Consulting	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	
				X		2		٢						11/30/22	F		11/29/22	Date Sampled	Saguira		Sta	2 Days	San		I	
Reviewed/Date			À	Q V	61	Farall	Company	1132	1255	1415	1408	1540	1645	1806	1630	1526	1359	Time Sampled	(other)		Standard (7 Days)	ays	Same Day	(In working days) (Check One)	Turnaround Request	Ch
ate			ME	Au	Dha	llon	Constraint of the	F								_	GW	Matrix)	3 Days	1 Day	ays)	quest	Chain of
								t								-	UI	12	1000	Contain	ers					f
			12	N	12	12	Date	X	×	X	X	X	X	×	X	×	×		PH-HCI PH-Gx/I	D BTEX (8	021 🗙 8	260])		Laboratory N	-	Custody
			117		112	11/2	Ð		1									NWTF						orato		loc
			n	22	22	2	T	×	X	×	X	X	X	×	×	X	Х		PH-Dx (Acid / S	G Clear	n-up[])		_ VIV		V
			6	4:1	2:2	135	Time													Volatile	s 8260					
			er,	30	S.	6	1992											EDB E	EPA 801	11 (Wate	ers Only)		umber:		
Chro	Data		\bigcirc	U	00	· Da	Con											0 00000C		8270/S el PAHs						
matog	l Package:		SAN	lica	cleanup.	DRO/ORO	Iments													IM (low	-level)			N	C	
grams			ded	9	P	RO	s/Spec											PCBs Organ		ne Pest	icides 8	081			>	
Chromatograms with final report	Standard		SALLED 12/12/22. DB (ST/M)	P	Do	-	Comments/Special Instructions													ohorus I			/SIM	5	2	
inal re	ard		2/2	lear	0	NW	tructio											Chlori	nated A	Acid Hei	rbicides	8151			1	
port	Level			hup	97	TPH	SUI											Total F	RCRAN	/letals					њ.,-	
	≡		N	pro	not use	NWTPH - Dx													MTCA N							Page
tronic			19	scec	2		No.												Metals		1001					ge
Data E	Level IV		X	Silica gel cleanup procesure	acid	by s												HEM	oii and	grease)	1664			_		-
Electronic Data Deliverables (E					as part	0		Ø	Ð	C	Ø	X	S	S	B	Q	B	NW	TPH	1- Dx	w 10	NT	CZÉA	N-UF		of 2
(EDDs)					9	-												0/ 14	-							
						*												% Moi	sture							

Revie	Received	Relin	Received	Relin	Received	Relin			8	17	16	5	4	13	12	-	Lab ID	Sampled by:	Projec	Projec	Projec	Company:			
Reviewed/Date	lived	Relinquished	sived	Relinquished	ived	Relinquished			QA/QL-	CMW- 12	CMW-26-113022	Cmw-25	HMW-13-113022	HMW-10-	CMM-8-	cmw-2-113022	Sam	Angie Osman/	Project Manager: Javan	Project Name: Cenex	301-004	rallon		Analytical Labor	M OnSite
				"Mu	RUA	m ne	Signature		1-113022	- 113022	-113022	- 11302.2	113022	113022	113022	113022	Sample Identification	an/Michael Ysaguirre	Ruark	Auburn	404	Consulting	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	OnSite Environmental Inc.
			1						H							11/30/22	Date Sampled			X Sta	2 Days	Sa		L	
Reviewed/Date				(V)	016	Farallon	Company		1330	1327	0912	1020	1122	1437	1610	2 1005	Time Sampled	(other)		Standard (7 Days)	ays	Same Day	(Check One)	Turnaround Request	Ct
/Date			S S	ony	Re	NG			1-	1					_	5 60	d Matrix	er)		ys)	3 Days	1 Day	ne)	Request	Chain of Custody
			M					 	+						_	S		er of C	ontaine	ers					of
																		PH-HCII						5	G
			121	12/1	2	12/1	Date	 	×	X	X	×	×	×	×	×	NWTF NWTF		3TEX (8)	021 X 82	260 🗌)			bor	Sto
			lln	172	12	12/1/22		 	×	×	×	×	×	×	×	×			Acid / S	G Clear	n-up[])		_	Laboratory Nu	bdy
			1	4	S	5	Time			-		~	~				Volatil	es 8260	D				_	Nu	
			63	ij	Ś	1356													Volatiles)			Imber:	
Ch	Data		C	0	12122		Co										Semiv	olatiles	8270/S	IM			_		
Chromatograms with final report	ta Pac						Comments/Special Instructions												el PAHs) IM (low-				1	วิ	
ograms	Package:				See		ts/Spe										PCBs		ne Pesti	oidae 9	0.94			5	
with 1	Standard						cial Ins	 											phorus F)/SIM	-	-	
inal re	lard				page		structio	 									Chlori	nated A	Acid Her	bicides	8151		-۲		
port	Level				H		SUIC										Total F	RCRAN	/letals				_		
	′el III □																								Page
ronic D								 -						a.				Metals (oil and	grease)	1664			_		Pe
ata Del	Level IV																								of
Electronic Data Deliverables (E									Ø	\otimes	Ø	Ø	S	Ø	Ø	\otimes	NW	TPY	1 - Ds	z wle	sut i	CLEA	N-U	P	2
(EDDs)																									
																	% Mo	sture							

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 11, 2023

Javan Ruark, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Ruark:

Included is the amended report from the testing of material submitted on October 10, 2022 from the CHS Auburn 301-004, F&BI 210130 project. The report has been corrected to the BTEX and GRO as originally requested on the chain of custody.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

× Colu

Michael Erdahl Project Manager

Enclosures c: Farallon Data, Braeden Lukkari FLN1021R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 21, 2022

Javan Ruark, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Ruark:

Included are the results from the testing of material submitted on October 10, 2022 from the CHS Auburn 301-004, F&BI 210130 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

× Color

Michael Erdahl Project Manager

Enclosures c: Farallon Data, Braeden Lukkari FLN1021R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 10, 2022 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC CHS Auburn 301-004, F&BI 210130 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
210130 -01	INFLUENT-101022

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	INFLUENT-1010 10/10/22 10/10/22 10/14/22 Air ug/m3	Proj Lab Data Inst	ect:	Farallon Consulting, LLC CHS Auburn 301-004 210130-01 1/8.7 101325.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 100	70	130	
	Concer	ntration		
Compounds:	ug/m3	ppbv		
Benzene	<2.8	< 0.87		
Toluene	<160	<43		
Ethylbenzene	5.4	1.2		
m,p-Xylene	26	6.1		
o-Xylene	14	3.2		
Gasoline Range Or	ganics 34,000	8,300		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 10/13/22 Air ug/m3	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	Farallon Consulting, LLC CHS Auburn 301-004 02-2481 mb 101311.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 96	70	130	
	Concen	tration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Gasoline Range Or	ganics <330	<80		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/21/22 Date Received: 10/10/22 Project: CHS Auburn 301-004, F&BI 210130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 210130-01 1/8.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<2.8	<2.8	nm
Toluene	ug/m3	<160	<160	nm
Ethylbenzene	ug/m3	5.4	5.5	2
m,p-Xylene	ug/m3	26	27	4
o-Xylene	ug/m3	14	14	0

Laboratory Code: Laboratory Control Sample

hasofatory coue. hasofatory	control campio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	98	70-130
Toluene	ug/m3	51	105	70-130
Ethylbenzene	ug/m3	59	102	70-130
m,p-Xylene	ug/m3	120	99	70-130
o-Xylene	ug/m3	59	100	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

 ${\rm j}$ - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 3, 2023

Javan Ruark, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Ruark:

Included are the results from the testing of material submitted on December 16, 2022 from the 301-004 CHS Auburn 301-004, F&BI 212300 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0103R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 16, 2022 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC 301-001-CHS Auburn 301-004 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
212300 -01	OVERALL-121622

The TO-15 gasoline range concentrations were quantified using a single point calibration at 80 ppbv.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	OVERALL-121622 12/16/22 12/16/22 12/29/22 Air ug/m3	Proje Lab I Data Instr	ect:	Farallon Consulting, LLC 301-004 CHS Auburn 301-004 212300-01 1/16 122832.D GCMS7 bat
Surrogates:	% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenz		70	130	
	Conce	ntration		
Compounds:	ug/m3	ppbv		
Benzene	<5.1	<1.6		
Toluene	<300	<80		
Ethylbenzene	< 6.9	<1.6		
m,p-Xylene	<14	<3.2		
o-Xylene	<6.9	<1.6		
Gasoline Range Or	ganics 18,000	4,400		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 12/28/22 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC 301-004 CHS Auburn 301-004 02-2987 MB 122812.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: 85	Lower Limit: 70	Upper Limit: 130	
	Conce	ntration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Gasoline Range Or	ganics <330	<80		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/16/22 Project: 301-004 CHS Auburn 301-004, F&BI 212300

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory C	ontroi bampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	98	70-130
Toluene	ug/m3	51	100	70-130
Ethylbenzene	ug/m3	59	98	70-130
m,p-Xylene	ug/m3	120	98	70-130
o-Xylene	ug/m3	59	100	70-130
Gasoline Range Organics	ug/m3	330	100	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedman & Bruya, Inc. 5500 4 th Avenue South Seattle, WA 98108 Ph. (206) 285-8282 Fax (206) 283-5044 FORMS\COC\COCTO-15.DOC		OVERALL - 121622	SAMPLE INFORMATION Sample Name	212.300 Report TO Juvan Company Furallum Address City, State, ZIP Phone Em
c. <u>SIGNATURE</u> <u>PRINT NAME</u> <u>COMPANY</u> <u>DATE</u> <u>TIME</u> <u>Relinquished by:</u> <u>Ruh</u> <u>Nuh</u> <u>BRELON</u> <u>LUHKAN</u> , <u>Favallon</u> <u>19/4/22</u> 1725 <u>Received by:</u> <u>P</u> <u>BISNAT</u> <u>TANESSE</u> <u>FUI</u> <u>UIb/24</u> 1725 <u>Received by:</u>	IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG IA / SG	C1 3287 221 IA 1 5G 14/11/22 50 174	Lab Canister Cont. SG=Soil Gas Date Vac. Initial Field Final ID ID ID ID ID Circle One) Sampled ("Hg) Time ("Hg) Time	$\begin{array}{c} \text{SAMPLE CHAIN OF CUSTODY} \\ \text{Sumple CHAIN OF CUSTON} \\ \text{Sumple CHAIN OF CUSTON} \\ \text{Sumple CHAIN OF CUSTON} \\ Sumple CHA$

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 26, 2022

Javan Ruark, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Ruark:

Included are the results from the testing of material submitted on August 10, 2022 from the CHS Auburn 301-004, F&BI 208152 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data, Braeden Lukkari FLN0826R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 10, 2022 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC CHS Auburn 301-004, F&BI 208152 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
208152 -01	INFLUENT-081022

The TO-15 gasoline range concentrations were quantified using a single point calibration at 80 ppbv.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	INFLUENT-08102 08/10/22 08/10/22 08/24/22 Air ug/m3	Proj Lab Datz Inst	ect:	Farallon Consulting, LLC CHS Auburn 301-004 208152-01 1/11 082324.D GCMS8 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 95	70	130	
	Concen	tration		
Compounds:	ug/m3	ppbv		
Benzene	<3.5	<1.1		
Toluene	<210	<55		
Ethylbenzene	<4.8	<1.1		
m,p-Xylene	<9.6	<2.2		
o-Xylene	<4.8	<1.1		
Gasoline Range Or	ganics 15,000	3,800		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 08/23/22 Air ug/m3	Clien Proje Lab I Data Instr Oper	ect: D: File: ument:	Farallon Consulting, LLC CHS Auburn 301-004 02-1934 mb 082314.D GCMS8 bat
Surrogates:	% Recovery:	Lower Limit:	Upper Limit:	
4-Bromofluorobenz	ene 93	70	130	
	Concent	cration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Gasoline Range Or	ganics <330	<80		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/26/22 Date Received: 08/10/22 Project: CHS Auburn 301-004, F&BI 208152

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 208227-02 1/5.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.8	<1.8	nm
Toluene	ug/m3	<110	<110	nm
Ethylbenzene	ug/m3	<2.4	<2.4	nm
m,p-Xylene	ug/m3	<4.9	<4.9	nm
o-Xylene	ug/m3	<2.4	<2.4	nm

Laboratory Code: Laboratory Control Sample

hasofatory code. hasofatory	control Sample					
	Reporting	Spike	Acceptance			
Analyte	Units	Level	LCS	Criteria		
Benzene	ug/m3	43	87	70-130		
Toluene	ug/m3	51	101	70-130		
Ethylbenzene	ug/m3	59	92	70-130		
m,p-Xylene	ug/m3	120	94	70-130		
o-Xylene	ug/m3	59	96	70-130		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COCTO-15.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	Soll 16th Avenue West									INFLYENT-081022	Sample Name		F. INFORMA	Phone JR4	City, State, ZIP	Address	Company Furglion	Report of Javan Rink, Braklen Wither	
	Received by:	Relinquished by:	Received by:	Relinquish			.*						0 2	Lab (ID		man alt	J RAYER, BLARGE				c, Bally	
	y:	ed by:	y In the	SIGNATURE						f .			21453	, Canister ID		dentrotters					in Lutate	
		y. Maddin	- Max	ATURE									تع	Flow Cont. ID		whyte					1	
		din	ally	1 111		IA / SG	LA / SG	IA / SG	IA /SG	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)		15			£	PROJ	- SAMP	SAMPI				
		W. Madden	Braeden Lytran							L.			2/10/22	Date Sampled				NOTES: * 6RD + BIEX	CHS Auburn	PROJECT NAME & ADDRESS	SAMPLERS (signature) Hul	SAMPLE CHAIN OF CUSTO
		lado	n Lyk	PRIN									Spe	Initial Vac. ("Hg)				1 + 6		E & AD	nature)	NOF
		1cm	Fart	PRINT NAME									1210	Field Initial Time				SIEX		DRESS	That	CUST
													101	Final Vac. ("Hg)			8	n		¢	n Lu	ODY
			- long			2						1	hsel	Field Final Time			h	IN	g		l.	
	Samj	FIST	forallon	CC									X	TO15 Full Scan * TO15 BTEXN	ANALY		400	INVOICE TO	301-004	PO#		8/1/8
	oles re	F4	2	COMPANY	ļ									TO15 cVOCs	SIS RE			TO	4			10/22
	Samples received			Y										APH Helium	ANALYSIS REQUESTED	DHold	Defa		Rush	VSta		1
	Lat 2	11/8	8/10/22	DATE	ŀ										CEU	□Hold (Fee may apply):	Default:Clean following	SAMPI	LI KUSH Rush charges authorized by:	VStandard	Page # of	.
	Do h	10/22 1	122 1	TE										Z		ay apply	un follow	SAMPLE DISPOSAL	authoriz	×	ROUND	→.
		225	SS7	TIME										Notes			ing	DSAL	ted by:		of /	