QM-96 Compliance Monitoring 2021 Annual Summary WWP Central Steam Plant Oil Spill Remediation Spokane, Washington

February 24, 2023

Prepared for

Avista Corporation Spokane, Washington

10 N Post Street, Suite 218 Spokane, WA 99201 (509) 327-9737

QM-96 Compliance Monitoring, 2021 Annual Summary WWP Central Steam Plant Oil Spill Remediation Spokane, Washington

This document was prepared by, or under the direct supervision of, the undersigned, whose seal is affixed below.

Name:

Washington State/No. 19110619

Date: February 24, 2023

Shane Kostka

Senior Staff GIT

Weston Boardman, GIT

, 2/24/2023

Wasi

Shane Kostka

Document reviewed by:

Document prepared by:

Senior Geologist

Shane Kostka, LG

 Date:
 February 24, 2023

 Project No.:
 0236040.150

 File path:
 I:\236-Avista\040-Oil Spill\WIP\PROG-RPT\QM-96

 Project Coordinator:
 tac

This page intentionally left blank.

TABLE OF CONTENTS

1 0				<u>age</u> 1_1
1.0	1 1		Background	1_1 1_1
	1.1	<u>-</u>)	Compliance Manitoring and the Purpose of This Penart	1_1 1_1
20	1.2			J_J
2.0				2-5
3.0 1 0				J-J
4.0	/ 1	I LINI O	Groundwater Performance Monitoring	4-1 //_1
	4.1	- / 1 1	Groundwater Sampling	4-1 /_1
		4.1.1	Groundwater Elevation Monitoring	4-1 1_1
	1 3	4.1.Z	Stormwater Deformance Monitoring	4-1 1 1
	4.2	-)	Stoffwater Performance Monitoring	4-1 1 2
	4.3	, 121	Groundwater Elevation Monitoring	4-2 1 2
		4.5.1	Stouldwater Elevation Monitoring	4-2 4-2
	<u> </u>	4.5.2	Product Recovery Manitoring	4-Z
	4.4	н лл1	Product Recovery Monitoring	4-5
		4.4.1	Well System	4-5
	1 F	4.4.Z	Disconting Defermence Menitering	4-5
	4.3) / E 1	Bioventing Performance Wolls	4-5
		4.5.1	Bioventing Extraction Wells	4-4
г о		4.5.Z		4-4 г 1
5.0		ACTIVI		5-1 C 1
0.0				0-1 7 1
7.0	7 1	ANNU	AL SOMMART — 2021 COMPLIANCE MONITORING	7-1
	/.1	711	Groundwater Performance Monitoring	7-1 7 1
		7.1.1	Groundwater Quality Monitoring	/-1 7 0
	7 7	/.1.2	Stormuster Defermance Manitaring	7-2
	7.2	<u>'</u>	Stormwater Performance Monitoring	7-2
	7.5) 7 7 1	Aydraulic Control Monitoring	7-3
		7.3.1	Groundwater Elevation Monitoring	7-3
		/.3.2	Extracted Groundwater Monitoring	7-4
	7.4	+	Product-Recovery Monitoring	7-4
		7.4.1	Well System	7-4 7 F
	7 6	7.4.Z	Nell Extraction	/-5 7 F
	7.5) 7 F 1	Bioventing Extraction Wells	7-5 7 F
		7.5.1	Dioventing Extraction Wells	7-5
0 0		7.5.2		/-b
ð.U		SOININ	IAKT AND CONCLUSIONS—2021 COMPLIANCE MONTOKING	ŏ-⊺

8.1	1 Conclusions	8-1
9.0	USE OF THIS REPORT	9-1
10.0	REFERENCES	

FIGURES

<u>Figure</u>	Title
1	Site Location Map
2	Site Plan and Monitoring Well Locations
3	Hydraulic Control System
4	Free Product Gauging and Recovery Locations
5	Bioventing Well Locations

TABLES

<u>Table</u>	Title
1	QM-96 Hydraulic Control Monitoring
2	QM-96 Free Product Recovery Data
3	QM-96 Bioventing System Data—Extraction Well Monitoring
4	QM-96 Bioventing System Data—Injection Well Monitoring
5	2021 Groundwater Sampling Results
6	2021 Groundwater Elevation Monitoring
7	2021 Hydraulic Control Monitoring
8	2021 Free Product Recovery Data
9	2021 Bioventing System Data—Extraction Well Monitoring
10	2021 Bioventing System Data—Injection Well Monitoring

APPENDIX

A QM-96 Quarterly Operation and Maintenance Report

LIST OF ABBREVIATIONS AND ACRONYMS

лрсх	Apex Laboratories, LLC
ARI	Analytical Resources, Inc.
Avista	Avista Corporation
CAP	cleanup action plan
cfm	cubic feet per minute
City	City of Spokane
CO ₂	carbon dioxide
СР	condensate pump
CSO	combined sewer overflow
Ecology	Washington State Department of Ecology
EPA	US Environmental Protection Agency
FOG	fats, oil, and grease
ft	feet
HEM	N-Hexane Extractable Material
in-H ₂ O	inches of water
Landau	Landau Associates, Inc.
mg/L	milligrams per liter
MTCA	Model Toxics Control Act
NWTPH-DxNorthwest gasoline-r	range total petroleum hydrocarbon extended
0&M	operation and maintenance
O ₂	oxygen
RL	reporting limit
QM	quarter of monitoring
QM-96	
SCADA	Supervisory Control and Data Acquisition
SCAPCASp	okane County Air Pollution Control Authority
SGT-HEM Silic	a Gel-Treated N-Hexane Extractable Material
site	Central Steam Plant site
SMC	Spokane Municipal Code
SRCAA	Spokane Regional Clean Air Agency
	total netroleum hydrocarbons
ТРН	
TPH UST	underground storage tank
TPH UST VOC	underground storage tank volatile organic compound
TPH UST VOC WWP	underground storage tank volatile organic compound Washington Water Power Company

This page intentionally left blank.

1.0 INTRODUCTION

Landau Associates, Inc. (Landau) prepared this quarterly compliance monitoring and annual data summary report for Avista Corporation (Avista), formerly the Washington Water Power Company (WWP), to support cleanup action activities at the Central Steam Plant site in Spokane, Washington (site, Figure 1). This report presents the results of quarterly compliance monitoring conducted during the 96th quarter (QM-96), October through December 2021, as well as a summary of the results of compliance monitoring conducted during calendar year 2021.

1.1 Background

The Central Steam Plant was constructed in 1915 and provided steam heat and electrical power to downtown Spokane until operations ceased in 1986. Seven concrete underground storage tanks (USTs) were used to store Bunker C fuel oil for steam plant operations. In June of 1982, WWP reported a release of Bunker C from one of the USTs to the Washington State Department of Ecology (Ecology).

Site cleanup activities are being performed in accordance with the cleanup action plan (CAP) developed by Ecology (Ecology 1996a), per the terms presented in the WWP/Ecology Amended Consent Decree (Ecology 1996b). By November 21, 1997, construction of the mechanical systems related to cleanup action remediation were substantially completed, and startup of the hydraulic control, free product recovery, bioventing, and stormwater control systems had been initiated. A Supervisory Control and Data Acquisition (SCADA) system continuously monitors mechanical remediation-system parameters, including groundwater extraction rates and elevations, free product recovery, and bioventing system parameters including airflow, pressures, and oxygen (O₂₎ and carbon dioxide (CO₂) concentrations. Demonstration, validation, and calibration of the systems were performed during October–December 1997, and the cleanup action construction was summarized in the Final Cleanup Action Report (AGI 1998).

Since 1997, the remediation systems have operated per the CAP, and quarterly compliance monitoring activities have been performed in accordance with the final compliance monitoring plan (AGI 1998).

1.2 Compliance Monitoring and the Purpose of This Report

This compliance monitoring report presents the results of site compliance monitoring and mechanical system operation and maintenance (O&M) conducted during QM-96, as well as a summary of the results of compliance monitoring conducted during calendar year 2021, in accordance with the final compliance monitoring plan (AGI 1998) and Model Toxics Control Act (MTCA) Cleanup Regulations, Washington Administrative Code (WAC) 173-340-410 (Ecology 1996c). The two types of compliance monitoring addressed in this report are described as follows:

- **Protection monitoring** ensures that human health and the environment are adequately protected during construction and operation of the cleanup action. Protection monitoring includes conducting semiannual groundwater monitoring and previously included conducting quarterly air monitoring.
- **Performance monitoring** is conducted to demonstrate when cleanup standards have been met. In accordance with the final compliance monitoring plan, performance monitoring includes groundwater, stormwater, hydraulic control, and bioventing-system monitoring.

Further discussion of protection and performance monitoring conducted during QM-96 is included in Sections 3 and 4, respectively. A summary of performance monitoring is included in Section 6. Although groundwater monitoring can be categorized as both protection and performance monitoring, it is discussed only in Section 4.1.

After the first 3 years of system operation (QM-1 through QM-12), the performance monitoring program was reevaluated, and changes to the groundwater monitoring schedule were proposed in the QM-12 annual data summary report (Landau 2001a). Currently, groundwater sampling and elevation monitoring are conducted semiannually in accordance with the revised monitoring schedule accepted by Ecology (Ecology 2001) and presented in the QM-13 report (Landau 2001b).

2.0 OPERATION AND MAINTENANCE ACTIVITIES COMPLETED DURING QM-96

To ensure effective operation of the four remediation mechanical systems (hydraulic control, free product recovery, bioventing, and stormwater control), scheduled and unscheduled operation and maintenance site visits are periodically conducted. GeoEngineers completed the following operation and maintenance activities during QM-96 (GeoEngineers 2021; Appendix A):

October 7, 2021

- Groundwater level transducer PZ2 continued to indicate a groundwater elevation of approximately 10 feet (ft) lower than PZ1 and PZ3. Replacement of the PZ2 transducer is recommended by GeoEngineers.
- The stormwater detention tank's pump had remained off since the previous O&M event. The detention tank's pump control was switched to manual operation but remained off. GeoEngineers states that the detention tank's pump relay requires troubleshooting. According to the SCADA system, the tank level read 32 inches. Avista and GeoEngineers plan to continue monitoring detention tank levels and pump operation.
- One stormwater sample was collected, using a disposable bailer, from the stormwater detention tank located in the Avista substation yard. The sample was analyzed for fats, oils, and greases (FOG) as N-Hexane Extractable Material (HEM) and Silica Gel N-Hexane Extractable Material (SGT-HEM) by US Environmental Protection Agency (EPA) Method 1664A. Stormwater performance monitoring and the analytical results for this sample are discussed in Section 4.2.
- One groundwater sample was collected from extraction well EW-1 (Figure 3) using the sampling port in the EW1 vault. The sample was analyzed for FOG as HEM and SGT-HEM by EPA Method 1664A. Extracted groundwater performance monitoring and the analytical results for this sample are discussed in Section 4.3.2.
- The EW1 belt skimmer was adjusted because the belt was loose and slipping on the head pulley. A thick layer of free product was removed from the skimmer via hand spinning the skimmer belt after adjustment. The EW1 belt skimmer was operating properly after adjustment. All other belt skimmers were operating properly.
- The EW2 and EW3 product-recovery tank-level transmitters were reading inaccurate reservoir levels upon arrival. Both tank-level transmitters were cleaned and continued to read inaccurate levels in the SCADA system. All other vault product-recovery tank-level transmitters were operating within normal limits.
- The bioventing system condensate pump (CP) removed during the August 26, 2021 maintenance event during QM-95 was not replaced. A replacement CP was installed during the subsequent O&M event.

November 24, 2021

 Groundwater level transducer PZ2 continued to indicate the groundwater elevation inaccurately and was turned off. Replacement of transducer PZ2 is recommended by GeoEngineers.

- Maintenance was performed on the stormwater detention tank's pump. The propeller was found to be binding inside the pump, and so the propeller nut was adjusted. The pump appeared to be functioning properly following the adjustment. According to the SCADA system, the detention tank level was 58 inches. Avista and Geoengineers plan to continue monitoring detention tank levels and pump operation.
- The OR3 belt skimmer was on upon GeoEngineers' arrival, but the skimmer belt was torn. The OR3 belt skimmer was turned off and will remain off until the broken belt can be removed and replaced. The EW1 belt skimmer was adjusted because the belt was loose and slipping on the head pulley. A thick layer of free product was removed from the skimmer via hand spinning the skimmer belt after adjustment. The EW1 belt skimmer was operating properly after adjustment. All other belt skimmers were operating properly.
- The EW3 product-recovery tank-level transmitter was reading inaccurate reservoir levels upon arrival. It was removed and cleaned but continued to report inaccurate readings in the SCADA system. All other product-recovery tank-level transmitters were operating within normal limits.
- A new bioventing system CP was installed in the knockout tank. The pump will be tested in the future when sufficient moisture is present, because the pump is not recommended to be operated under dry conditions.

3.0 PROTECTION MONITORING

From 1997 to 2016, air protection monitoring was performed quarterly to ensure that discharge from the bioventing system complied with the requirements of the Spokane Regional Clean Air Agency (SRCAA; formerly the Spokane County Air Pollution Control Authority [SCAPCA]). As reported in the QM-74 report (Landau 2016), a letter from the SRCAA to Avista, dated April 13, 2016, stated that registration of the bioventing system would no longer be necessary because volatile organic compound (VOC) concentrations had decreased to less than 1 pound per year (SRCAA 2016).

4.0 **PERFORMANCE MONITORING**

This section includes a description of the various types of performance monitoring completed during QM-96. Figures 2, 3, and 4 show the approximate locations of the monitoring wells, the hydraulic control system, and the free product-recovery wells, respectively. The figures have been updated to reflect changes in property ownership and development.

4.1 Groundwater Performance Monitoring

As defined in the Amended Consent Decree (Ecology 1996b), the site consists of the area affected by petroleum hydrocarbons in soil above MTCA Method A cleanup levels. Because hazardous substances are contained on the site, the groundwater point of compliance was established as close as practicable to the edge of the contained hazardous substances, not to exceed the northern boundary of Steam Plant Square (Ecology 1996a). Groundwater performance monitoring is conducted to evaluate whether groundwater performance standards have been met. Groundwater performance monitoring includes groundwater sampling and laboratory analysis, and measurement of groundwater elevations. When free product is encountered in monitoring wells upgradient of the barrier wall, the thickness of free product is measured in conjunction with groundwater elevation measurements. Groundwater monitoring is conducted semiannually in accordance with the revised schedule specified by Ecology (Ecology 2001).

4.1.1 Groundwater Sampling

Semiannual groundwater sampling was not conducted during QM-96. The next groundwater sampling event is scheduled to occur in QM-97.

4.1.2 Groundwater Elevation Monitoring

Groundwater elevations in site monitoring wells were not measured during QM-96. Groundwater elevations in site monitoring wells will be measured in QM-97 in conjunction with semiannual groundwater sampling.

4.2 Stormwater Performance Monitoring

Stormwater monitoring is conducted to ensure that stormwater discharged to the combined sewer overflow (CSO) system is in compliance with City of Spokane (City) discharge criteria per Spokane Municipal Code (SMC) 13.03A.0201(B)(19). In accordance with the final compliance monitoring plan, during operation of the cleanup action, one stormwater sample per year is collected from the site stormwater detention tank for FOG analysis and compared to the City discharge limit of 100 milligrams per liter (mg/L). A stormwater sample was collected from the stormwater detention tank on October 7, 2021 for analysis of FOG as HEM and SGT-HEM by EPA Method 1664A. FOG was not reported above the laboratory reporting limit (RL) of 5.5 mg/L, which is less than the discharge limit. A copy of the laboratory analytical report is included in Appendix C of the Geoengineers 4th quarter 2021 O&M report in (Appendix A).

4.3 Hydraulic Control Monitoring

Groundwater pumps in extraction wells EW1, EW2, and EW3 convey groundwater upgradient of the subsurface barrier wall to the CSO. Hydraulic monitoring is conducted to ensure that an inward gradient with respect to shallow groundwater is maintained across the barrier wall. Extracted groundwater from the hydraulic control system is sampled annually and analyzed for FOG as HEM and SGT-HEM using EPA Method 1664A.

4.3.1 Groundwater Elevation Monitoring

The groundwater elevations in extraction wells EW1, EW2, and EW3 and piezometer wells PZ1, PZ2, and PZ3 located upgradient of the barrier wall are continuously logged by groundwater level transducers, and the data is recorded by the SCADA system to monitor performance of the hydraulic control system. During semiannual groundwater sampling, the groundwater elevation in monitoring wells MW-012, MW-027, and MW-030 is also manually measured to verify that the groundwater elevation north of the barrier wall is above the groundwater elevation south of the wall, indicating an inward hydraulic gradient is present. Monitoring well locations are shown on Figure 2, and hydraulic control piezometer and extraction well locations are shown on Figure 3. Table 1 summarizes groundwater elevation data collected by the SCADA system. As discussed in Section 2.0, water levels recorded by the SCADA system in piezometer PZ2 were inaccurate and groundwater elevations at PZ2 during QM-95 are not presented. This transducer will be replaced during QM-97 (GeoEngineers 2021).

Water levels recorded for extraction wells EW1, EW2, and EW3 and for piezometer well PZ1 during QM-96 show that average groundwater levels upgradient of the barrier wall at these points were consistent with historical levels and below historical groundwater elevation readings recorded at MW-012, MW-027, and MW-030. Water levels recorded for piezometer well PZ3 were above historical levels but below historical levels measured at MW-030 (the nearest monitoring well). This suggests that an inward hydraulic gradient was maintained across the barrier wall during QM-96.

4.3.2 Extracted Groundwater Monitoring

Sampling and analysis of extracted groundwater is performed to ensure FOG in groundwater discharged to the City's CSO system does not exceed the 100 mg/L discharge limit. A sample of extracted groundwater was collected from extraction well EW1 on October 7, 2021 and analyzed for FOG as HEM and SGT-HEM by EPA Method 1664A. FOG was not reported above the RL of 5.5 mg/L, which is less than the discharge limit. A copy of the laboratory analytical report is included in Appendix C of the Geoengineers 4th quarter 2021 O&M report (Appendix A).

4.4 **Product Recovery Monitoring**

The SCADA system monitors free product recovery at groundwater extraction wells EW1, EW2, and EW3 and at oil recovery wells OR1 and OR3 to confirm performance of the belt skimmers and to track free product-recovery trends. When necessary, free product is removed by pumping directly from an individual well (well extraction).

4.4.1 Belt Skimmer Monitoring

Free product-recovery well locations are shown on Figure 4. Table 2 summarizes free product recovery data for QM-96. The product recovered by the belt skimmers includes water but is reported as total free product recovery because of the difficulty in quantifying the amount of recovered liquid that is free product. The SCADA system did not record free product recovery for the EW2 belt skimmer from October 11 through December 5, 2021 or for the EW3 belt skimmer from October 11 through December 5, 2021 or for the OR3 belt skimmer was turned off during the November 24, 2021 0&M event because of a broken belt and remained off for the rest of QM-96. No free product recovery was recorded by the SCADA system from the EW2 or EW3 belt skimmers during those periods. Therefore, the actual volume of free product recovered by the belt skimmers during QM-96 is likely greater than the amount reported by the SCADA system.

As reported by the SCADA system, approximately 112.2 gallons of free product were recovered by the belt skimmers during QM-96. Note that free product recovery at OR3 has been historically less than product recovery at other free product-recovery wells. The volume of fluid removed from oil recovery well reservoir tanks is listed in GeoEngineers' 4th quarter 2021 operation and maintenance report.

In accordance with the CAP (Ecology 1996b), product recovery is considered impracticable if less than 1 gallon of product is recovered per well during 2 consecutive quarters. However, groundwater from the extraction wells is sent to the City's CSO system, and product recovery from these wells, however small, is intended to be maintained throughout operation of the hydraulic control system.

4.4.2 Well Extraction

Well extraction was not conducted during QM-96.

4.5 **Bioventing Performance Monitoring**

Concentrations of CO_2 and O_2 are monitored in bioventing extraction wells to evaluate the performance of the bioventing system. O_2 is injected into the subsurface to enhance the activity of indigenous microorganisms and promote biodegradation of petroleum hydrocarbons. The optimal range of O_2 concentration (10 percent to 15 percent by volume; AGI 1998) should promote biodegradation. CO_2 is a byproduct of aerobic respiration from hydrocarbon-degrading bacteria, and a concentration of 0.20 percent by volume in the extraction wells indicates that biodegradation of petroleum hydrocarbons is occurring at the designed rate, assuming all other performance standards are met (AGI 1998).

4.5.1 Bioventing Extraction Wells

Air extracted from the 10 bioventing extraction wells (BE1 through BE10; Figure 5) is monitored by the SCADA system to evaluate performance of the bioventing system and to measure biodegradation of free product. Table 3 summarizes bioventing system extraction well data for QM-96.

During QM-96, the quarterly average O_2 concentration for the 10 bioventing wells was 3.48 percent (Table 3), which is below the performance standard of 10 percent to 15 percent by volume, as well as below historical levels of approximately 13.5 percent by volume. During the same reporting period, the quarterly average CO_2 concentration for the 10 bioventing wells was 3.77 percent by volume, which is greater than the estimated optimal concentration of 0.20 percent by volume as well as greater than historical levels of 0.46 to 0.95 percent by volume.

The estimated total volume of free product biodegraded by the bioventing system as reported by the SCADA system is calculated using the relative percentages of O_2 and CO_2 and total airflow, with CO_2 having the greatest influence on the SCADA calculation for free product volume biodegraded. Because of the elevated recorded CO_2 levels, the estimated total volume of Bunker C biodegraded for QM-96 was above the historical average of approximately 80 to 100 gallons per month. The estimated total volume of free product biodegraded as reported by the SCADA system during QM-96 was approximately 2,540.14 gallons (Table 3).

4.5.2 **Bioventing Injection Wells**

Air injected into the subsurface through the seven bioventing injection wells (BI1 through BI7; Figure 5) is monitored to ensure satisfactory performance of the bioventing system. Bioventing injection data collected by the SCADA system during QM-96 are presented in Table 4.

Average monthly bioventing injection well pressures for QM-96 ranged between 0.23 (at bioventing injection well Bl1 in November and December) and 6.49 (at bioventing injection well Bl4 in November) inches of water (in-H₂O). Although the range extended outside the anticipated operating range of 3-10 in-H₂O (AGI 1998), the average pressure of all bioventing injection wells was 5.45 in-H₂O, which was within the anticipated operating range. Note that pressures in bioventing injection well Bl1 have historically been lower than the bioventing injection pressures in the other injection wells. The average reported total air flow rate for QM-96 was 141.94 cubic feet per minute (cfm).

5.0 ACTIVITIES PLANNED FOR QM-97

Planned monitoring and maintenance activities for QM-97 include the following:

- Monitor extraction well operation and SCADA information to confirm extraction wells are functioning properly and accurate groundwater elevation and flow readings are being accurately displayed.
- Monitor detention tank level and pump operation.
- Perform corrective maintenance to belt skimmer components, as necessary.
- Perform scheduled system operation and maintenance.
- Replacement of the transducer in piezometer PZ2.
- Replacement of the OR3 belt skimmer belt.
- Troubleshooting of the EW3 product-recovery tank-level transmitter with a SCADA technician.
- Perform system component operational and calibration checks.
- Conduct scheduled semiannual groundwater sampling and elevation and product thickness monitoring at site monitoring wells.

6.0 SUMMARY AND CONCLUSIONS—QM-96

The following is a summary of the compliance monitoring data collected during QM-96 based on available SCADA system data:

- Groundwater elevation data collected by the SCADA system during QM-96 indicate that containment of groundwater was preserved, and inward gradient was maintained across the barrier wall.
- Active belt skimmers recovered approximately 112.2 gallons of liquid, including free product and entrained water, from extraction and oil recovery wells, as reported by the SCADA system, during QM-96.
- The SCADA system recorded an average O₂ level of 3.48 percent in bioventing extraction wells. The SCADA system recorded an average CO₂ level of 3.77 percent in bioventing extraction wells. The bioventing monitoring system will be monitored during subsequent quarters to evaluate the accuracy of the data recorded by the SCADA system.
- The estimated total volume of free product degraded by the bioventing system as reported by the SCADA system during QM-96 was approximately 2,540.14 gallons.
- Bioventing injection well pressures ranged between 0.23 and 6.49 in-H₂O. The average pressure of all bioventing injection wells was 5.45 in-H₂O, which is within the anticipated operating range of 3-10 in-H₂O. The average total airflow rate for the reporting period was 141.94 cfm.
- Laboratory results for the annual extracted groundwater sample did not exceed the discharge limit of 100 mg/L for FOG as HEM and SGT-HEM by EPA Method 1664A.
- Laboratory results for the annual stormwater sample collected from the detention basin did not exceed the discharge limit of 100 mg/L for FOG as HEM and SGT-HEM by EPA Method 1664A.

Results of compliance monitoring performed during QM-96 indicate that the Central Steam Plant Oil Spill remediation system is operating in accordance with regulatory criteria and permit levels.

7.0 ANNUAL SUMMARY—2021 COMPLIANCE MONITORING

This section summarizes the results of groundwater performance monitoring, stormwater management, hydraulic control, product recovery, and bioventing system operation during QM-93 through QM-96. Performance data from hydraulic control monitoring, free product recovery, and bioventing system parameters are recorded continuously by the SCADA system. The SCADA system was upgraded during 2021 to maintain the longevity of the system. A temporary malfunction during the system upgrade resulted in the SCADA system recording but not generating data, which could be downloaded from January 20 through January 31 of QM-93. All data in this report is based on available SCADA data provided by Avista.

7.1 Groundwater Performance Monitoring

Groundwater performance monitoring is conducted semiannually to ensure that hazardous substances at concentrations greater than cleanup levels are not migrating off-site. Groundwater performance monitoring includes groundwater quality monitoring and groundwater elevation monitoring and free product gauging.

7.1.1 Groundwater Quality Monitoring

2021 semiannual groundwater quality monitoring was performed by Landau in March (QM-93) and October (QM-95). Note that although QM-92 is prior to this annual reporting period, QM-92 groundwater monitoring analytical results affected the QM-93 and QM-95 sampling events. Therefore, QM-92 groundwater monitoring results are included in the discussion below. In accordance with the revised schedule specified by Ecology (2001), groundwater samples were collected from monitoring wells MW-006, MW-007, MW-012, MW-016, MW-017, MW-018, MW-020, MW-021, MW-023, MW-025, MW-027, MW-028, and MW-030 during both semiannual events. Monitoring wells MW-016, MW-017, and MW-018 are sampled annually during the first semiannual monitoring event if sufficient groundwater thickness is present to accommodate sampling. Groundwater samples were collected from monitoring wells MW-016 and MW-017 during the first semiannual monitoring event (QM-93). The monitoring well locations are shown on Figure 2.

Historically, groundwater samples have been submitted to Analytical Resources, Inc. (ARI), where they have been analyzed for diesel-, motor oil-, and Bunker C-range petroleum hydrocarbons using Ecology-approved Method Northwest gasoline-range total petroleum hydrocarbon extended (NWTPH-Dx) with acid wash and silica gel cleanup. Detections of motor oil-range petroleum hydrocarbons and/or Bunker C were reported above the laboratory RL during QM-92 (in monitoring wells MW-006, MW-007, and MW-025) and QM-93 (in monitoring wells MW-006, MW-007, MW-021, MW-023, MW-025, MW-028, and MW-030), and Bunker C-range petroleum hydrocarbons were reported above the site groundwater performance standard in monitoring well MW-025 during QM-92 and in MW-021, MW-025, and MW-028 during QM-93. The hydrocarbon detections were characterized by ARI as a response of unknown alkanes in the C24-C32 range and were not identified

as a petroleum fuel product but were reported in the Bunker C- and motor-oil ranges because the responses occurred within those hydrocarbon ranges. The detections were not considered to be associated with the Bunker C release.

Following receipt of the QM-92 and QM-93 laboratory data packages from ARI, the sample chromatograms were reviewed by Apex Laboratories, LLC's (Apex's) forensic services to further investigate the source of the detections. Apex identified the detection as a wax-dominant laboratory contaminant. Because these detections were identified as a wax-dominant laboratory contaminant, the motor-oil range and Bunker-C range total petroleum hydrocarbons (TPH) detected in QM-92 and QM-93 were not considered to be associated with the Bunker C release. However, additional laboratory analysis was conducted in QM-95 to verify this conclusion.

Split samples were collected from select monitoring wells during QM-95 groundwater sampling and sent to Apex for diesel-, motor oil-, and Bunker C-range petroleum hydrocarbons analysis using Ecology-approved Method NWTPH-Dx with and without acid wash and silica gel cleanup. A detection of motor oil-range organics was reported in a split sample collected from MW-028 during QM-95, analyzed by Apex without silica gel and acid wash cleanup, which was less than the site performance standard of 1.0 mg/L. No other detections in groundwater samples were reported during 2021.

The laboratory reports are included as appendices in the respective quarterly compliance monitoring reports, and the data from both groundwater sampling events completed in 2021 are presented in Table 5.

7.1.2 Groundwater Elevation Monitoring

Groundwater elevation monitoring and free product gauging during 2021 were conducted by Landau in conjunction with semiannual groundwater sampling. Groundwater elevation monitoring and free product gauging were performed at the monitoring wells shown on Figure 2. Data from all groundwater elevation measurements collected in 2021 are presented in the QM-93 and QM-95 quarterly reports and are presented in Table 6.

7.2 Stormwater Performance Monitoring

Stormwater performance monitoring is conducted to ensure stormwater discharged to the CSO system is in compliance with City discharge criteria. In accordance with the compliance monitoring plan, one sample per year is collected from the site stormwater detention basin during operation of the cleanup action. The annual sample of extracted groundwater was collected during QM-96 on October 7, 2021, analyzed for FOG as HEM and SGT-HEM by EPA Method 1664A, and compared to the discharge limit (100 mg/L) listed in SMC 13.03A.0201(B)(19). FOG was not detected above the laboratory RL, which is below the discharge limit.

7.3 Hydraulic Control Monitoring

Hydraulic monitoring is conducted to ensure that an inward gradient with respect to shallow groundwater is maintained across the barrier wall. Groundwater pumps in extraction wells EW1, EW2, and EW3 convey groundwater upgradient of the subsurface barrier wall to the CSO. Extracted groundwater from the hydraulic control system is sampled annually and analyzed for FOG using EPA Method 1664A HEM and SGT-HEM.

7.3.1 Groundwater Elevation Monitoring

Groundwater elevation data in extraction wells EW1, EW2, and EW3 and piezometer wells PZ1, PZ2, and PZ3 is recorded continuously by the SCADA system to monitor performance of the hydraulic control system and water levels upgradient of the barrier wall. Extraction and piezometer well locations are shown on Figure 3. Groundwater elevations presented in this section are based on available and downloadable SCADA data. The transducer in piezometer well PZ2 was not functioning during 2021, so groundwater elevations at PZ2 during 2021 are not presented. Groundwater elevation is measured semiannually by hand in MW-012, MW-027, and MW-030 to verify that that the groundwater elevation north of the barrier wall is above the groundwater elevation south of the wall, indicating an inward hydraulic gradient is present.

Groundwater level measurements recorded by the SCADA system indicate that groundwater upgradient of the barrier wall was below the elevation of the weir in the barrier wall (1,860 ft) throughout 2021, indicating containment of groundwater was maintained. During QM-95, extraction wells EW1, EW2, and EW3 were not functioning, as indicated by no flow recorded in the SCADA system, and groundwater rose above historical levels in extraction wells EW1, EW2, and EW3 and piezometers PZ1 and PZ3 during three distinct periods in August and September.

According to the hourly data generated by the SCADA system, the groundwater elevations in PZ1 and PZ3 were above the groundwater elevations measured on September 15, 2021 during QM-95 at monitoring wells MW-012, MW-027, and MW-030 (located north of the barrier wall). These measurements were collected during one of the periods when the extraction wells were not functioning, as indicated by the SCADA system. Because a single groundwater elevation measurement was collected from the monitoring wells north of the barrier wall during QM-95, it is unclear whether an inward hydraulic gradient was maintained when the extraction wells were not functioning. However, the highest water level recorded by the SCADA system during QM-95 remained below the elevation of the weir in the barrier wall, indicating containment of groundwater upgradient of the barrier wall was maintained. Groundwater elevations recorded by the SCADA system during QM-95 for the extraction wells and piezometers were consistent with historical levels and below historical levels measured in MW-012, MW-027, and MW-030 when one or more extraction wells were functioning, indicating an inward hydraulic gradient was maintained across the barrier wall.

During QM-96 water levels in piezometer PZ3, as recorded by SCADA, were above historical levels and above historical groundwater elevation measurements taken at MW-012 and MW-027. However, water levels in PZ3 as recorded by SCADA were below historical levels measured in MW-030 (the nearest monitoring well), suggesting that an inward hydraulic gradient was maintained across the barrier wall.

Groundwater elevation data for the remainder of 2021 indicates groundwater levels are consistent with historical levels and an inward hydraulic gradient was maintained across the barrier wall. Table 7 summarizes the 2021 groundwater elevation data for the hydraulic control monitored by the SCADA system.

7.3.2 Extracted Groundwater Monitoring

Extracted groundwater from the hydraulic control system is monitored in accordance with criteria established by the City for discharge to the CSO system. One sample of extracted groundwater is collected annually and analyzed for FOG as HEM and SGT-HEM by EPA Method 1664A and compared to the cleanup standard of 100 mg/L. The annual sample for 2021 was collected from extraction well EW1 on October 7, 2021 (QM-96). FOG was not detected above the laboratory RL which is less than the discharge limit.

7.4 **Product-Recovery Monitoring**

The SCADA system monitors free product recovery at groundwater extraction wells EW1, EW2, and EW3 and at oil recovery wells OR1 and OR3 to confirm performance of the belt skimmers and to track free product-recovery trends. When necessary, free product is removed by pumping directly from an individual well (well extraction).

7.4.1 Belt Skimmer Monitoring

Free product-recovery well locations are shown on Figure 4. Table 8 summarizes free productrecovery data for 2021. Free product recovered from extraction wells (EW1, EW2, and EW3) and two oil recovery wells (OR1 and OR3) is monitored by the SCADA system to monitor performance of the respective belt skimmers and to monitor free product-recovery trends. Product levels in the EW2 and EW3 product-recovery tanks were not recorded by the SCADA system due to the EW2 productrecovery tank-level transmitter not functioning during QM-95 and from October 11 through December 5, 2021 during QM-96 and the EW3 product-recovery tank-level transmitter not functioning during QM-96 from October 11 through December 31, 2021 (end of QM-96). Therefore, the actual volume of free product recovered by the belt skimmers during 2021 is likely greater than the amount reported by the SCADA system. The SCADA system recorded approximately 607.3 gallons of free product recovered by the belt skimmers during 2021.

7.4.2 Well Extraction

Free product is removed directly from select wells when sufficient thickness has accumulated. No well extraction was performed during 2021.

7.5 **Bioventing Performance Monitoring**

Concentrations of CO₂ and O₂ were monitored in bioventing extraction wells during 2021 to evaluate the performance of the bioventing system. O₂ is injected into the subsurface to enhance the activity of indigenous microorganisms and promote biodegradation of petroleum hydrocarbons. Bioventing performance data presented below during QM-93 through QM-96 are based on available and downloadable SCADA data.

7.5.1 Bioventing Extraction Wells

Air extracted from the 10 bioventing wells (BE1 through BE10) is monitored by the SCADA system to evaluate the performance of the bioventing system. The gas analyzer, which reports O₂ and CO₂ percent by volume concentrations, was removed for calibration and preventative maintenance and reinstalled on May 11, 2021 of QM-94 by Avista personnel (Robbert 2023). The bioventing system piping was drained of approximately 5 gallons of moisture during the analyzer calibration event. As a result of the gas analyzer calibration event, the SCADA system did not report O₂ and CO₂ percent by volume concentrations for bioventing wells BE1 through BE10 from February 13 of QM-93 through May 11 of QM-94 (both O₂ and CO₂ were recorded as 0.00 percent by volume). This data was presented in quarterly monitoring reports QM-93 and QM-94.

As reported in quarterly monitoring report QM-94, beginning on May 12, 2021, CO₂ concentrations were reported by the SCADA system above historical levels and O₂ concentrations were reported by the SCADA system below historical levels. On August 26, 2021, corresponding with an O&M site visit during QM-95, an increase in both O₂ and CO₂ concentrations was recorded by the SCADA system in all bioventing wells. During QM-96, O₂ concentrations recorded by the SCADA system decreased in all bioventing wells, but the quarterly average recorded O₂ concentration for QM-96 was higher than the quarterly average recorded O₂ for QM-95 because of the decreased concentrations recorded July 1 through August 25, 2021 of QM-95.

The monthly average CO_2 concentrations combined for all wells during QM-93 through QM-96 ranged from 0.46 to 3.79 percent by volume, and the average recorded CO_2 concentration in 2021 was 1.69 percent by volume, which is above the optimal concentration of 0.20 percent by volume. The monthly average O_2 concentration for all wells during 2021 ranged from 1.27 to 13.49 percent by volume, with an annual 2021 average of 4.24 percent by volume, which is below the performance standard of 10-15 percent by volume.

Because of the elevated recorded CO₂ levels from August of QM-95 through the end of QM-96, the estimated total volume of Bunker C biodegraded was above historical levels and is likely not

representative of the actual volume of Bunker C degraded by the system. The SCADA system did not generate data for a portion of QM-93 and QM-94 due to the gas analyzer having been removed for calibration and preventative maintenance; therefore, the SCADA system did not calculate total free product volume biodegraded during these periods. The estimated volume of Bunker C biodegraded during 2021 was reported at approximately 4,361.85 gallons. Table 9 summarizes biodegradation and bioventing extraction well monitoring data for 2021.

7.5.2 Bioventing Injection Wells

Air injected into the subsurface through the seven bioventing injection wells (BI1 through BI7) is monitored to evaluate satisfactory performance of the bioventing system. Data collected by the SCADA system during 2021 are presented in Table 10. Average monthly injection well pressures for the entire bioventing injection system during 2021 ranged from 4.72 to 5.49 in-H₂O, with an annual 2021 system average of 5.15 in-H₂O, which is within the anticipated operating range of 3-10 in-H₂O (AGI 1998). Reported average airflow for 2021 was 137.62 cfm.

8.0 SUMMARY AND CONCLUSIONS—2021 COMPLIANCE MONITORING

The following is a summary of the compliance monitoring data collected during 2021 (QM-93 through QM-96).

- Groundwater quality monitoring for 2021 was performed by Landau during March (QM-93) and September (QM-95). The hydrocarbon detections reported in QM-93 were characterized by ARI as a response of unknown alkanes in the C24-C32 range and were not identified as a petroleum fuel product, and Apex forensic services identified the detections as a wax-dominant laboratory contaminant. Therefore, the detections reported in QM-93 are not considered to be associated with the Bunker C release. A detection of motor oil-range organics was reported in a split sample collected from MW-028 during QM-95, analyzed by Apex without silica gel and acid wash cleanup, which was below the site performance standard of 1.0 mg/L. No groundwater sampling analytical results considered to be associated with the Bunker C release than the site performance standard of 1.0 mg/L during 2021.
- Groundwater elevations recorded during QM-93 and QM-94 were consistent with historical levels and indicate that an inward hydraulic gradient was maintained across the barrier wall. During periods of QM-95 the extraction wells were not functioning, and groundwater rose above historical levels but remained below the elevation of the weir in the barrier wall, indicating containment of groundwater was maintained. During QM-96, water levels recorded in PZ3 were above the historical average but below historical groundwater elevations measured at MW-030, indicating that an inward hydraulic gradient was maintained across the barrier wall.
- The annual sample for FOG as HEM and SGT-HEM in the site stormwater detention basin was collected on October 7, 2021 (QM-96). HEM and SGT-HEM was not detected above the RL, which is below the discharge limit of 100 mg/L.
- The annual sample for FOG as HEM and SGT-HEM in extracted groundwater was collected from EW1 on October 7, 2021 (QM-96). HEM and SGT-HEM was not detected above the RL, which is below the cleanup standard of 100 mg/L.
- Free product (including entrained water) recovered from extraction wells and oil recovery wells through active belt skimmers totaled approximately 607.3 gallons during 2021.
- The estimated volume of Bunker C biodegraded during 2021 was reported at approximately 4,361.85 gallons.
- The SCADA system was upgraded during 2021 to maintain the longevity of the system.

8.1 Conclusions

Results of compliance monitoring conducted for 2021 indicate that the Central Steam Plant Oil Spill remediation system is operating in accordance with permit levels. The detections of residual-range organics in the Bunker C range at MW-021, MW-025, and MW-028 during QM-93 were greater than the site performance standard of 1.0 mg/L but were characterized by ARI as a response of unknown alkanes in the C24-C32 range and were not identified as a petroleum fuel product. Apex forensic

services identified the detections as a wax-dominant laboratory contaminant. Therefore, the detections reported for QM-93 are not considered to be associated with the Bunker C release. Results of compliance monitoring conducted for 2021 demonstrate that the Central Steam Plant Oil Spill remediation system is operating in accordance with permit levels.

9.0 USE OF THIS REPORT

This report has been prepared for the exclusive use of Avista for specific application to the Central Steam Plant site. The reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Landau, shall be at the user's sole risk. Landau warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

10.0 REFERENCES

- AGI. 1998. Final Cleanup Action Report, Central Steam Plant Oil Spill Remediation, Spokane, Washington. AGI Technologies. June 5.
- Ecology. 1996a. Amended Consent Decree No. 94-2-05788-4, State of Washington, Department of Ecology, Plaintiff, v. The Washington Water Power Company, Defendant. Washington State Department of Ecology. December 2.
- Ecology. 1996b. Final Cleanup Action Plan, WWP Central Steam Plant Site, Spokane, WA. Washington Department of Ecology, Eastern Regional Office, Toxics Cleanup Program. November 22.
- Ecology. 1996c. The Model Toxics Control Act Cleanup Regulations. Chapter 173-340 WAC. Publication No. 94-06. Toxics Cleanup Program, Washington State Department of Ecology. January.
- Ecology. 2001. Revised Sampling Frequency for the WWP Central Steam Plant Site in Spokane, Washington. May 9.
- GeoEngineers. 2021. Quarterly Operation and Maintenance Report Fourth Quarter 2021 (October through December 2021). Central Steam Plant Oil Spill Remediation, Spokane, Washington. December 23.
- Landau. 2001a. Quarterly Compliance Monitoring QM-12 and Annual Summary WWP Central Steam Plant Oil Spill Remediation, Spokane, Washington. Landau Associates, Inc.
- Landau. 2001b. Quarterly Compliance Monitoring QM-13 WWP Central Steam Plant Oil Spill Remediation, Spokane, Washington. Landau Associates, Inc.
- Landau. 2016. Report: Quarterly Compliance Monitoring QM-74, WWP Central Steam Plant, Oil Spill Remediation, Spokane, Washington. Landau Associates, Inc. October 18.
- Robbert, B. 2023. "Re: [External] 635000520 Avista RMA 1400 SN 350 / WO 4384." From Bryce Robbert, Avista Corporation, to Shane Kostka, Landau Associates, Inc. February 1.
- SRCAA. 2016. NOC#844-approved for soil bioventing operation at Avista Central Steam Plant Site, located at 1st Avenue and Lincoln Street, Spokane, WA. Central Steam Plant Oil Spill Remediation, Spokane, Washington. Spokane Regional Clean Air Agency. April 13.

QM13 Rpt. I:\cad\plt-file\236040\12\biov (A)

4/2003

Table 1 QM-96 Hydraulic Control Monitoring WWP Central Steam Plant Oil Spill Remediation Spokane, Washington

	QM-96 Groundwater Elevation (Feet)				
Well	October	November	December		
EW1	1848.80	1848.79	1848.88		
EW2	1849.04	1849.07	1848.90		
EW3	1851.06	1850.98	1851.41		
PZ1	1852.43	1852.45	1852.48		
PZ2	-	-	-		
PZ3	1855.10	1855.16	1855.22		
MW-012	NM	NM	NM		
MW-027	NM	NM	NM		
MW-030	NM	NM	NM		

Notes:

Data from extraction wells EW1, EW2, and EW3 and piezometer wells.

PZ1, PZ2, and PZ3 recorded by SCADA system.

WEIR elevation = 1,860 feet

Elevation datum is North American Vertical Datum of 1988 (NAVD88).

Values are average monthly water elevations for EW1–EW3 and PZ1–PZ3.

-- = not recorded due to transducer malfunction

MW-027 groundwater elevation hand measured September 19, 2021. MW-027 is located north of the barrier wall.

Abbreviations and Acronyms:

EW = extraction well

MW = monitoring well

NM = not measured

PZ = piezometer

QM = quarterly monitoring

SCADA = Supervisory Control and Data Acquisition

Table 2 QM-96 Free Product Recovery Data WWP Central Steam Plant Oil Spill Remediation Spokane, Washington

	Monthly I			
				QM-96 Total
Location	October	November (a)(c)	December (b)	(gal)
Belt Skimmer				
EW1	1.0	1.0	2.0	4.0
EW2	15.6	0.0	52.6	68.2
EW3	38.4	0.0	0.0	38.4
OR1	0.9	0.3	0.3	1.5
OR3 (d)	0.0	0.0	0.0	0.1
Total	56.0	1.4	54.9	112.2

Notes:

Data recorded by SCADA system.

(a) EW2 and EW3 product-recovery tank-level transmitter was not functioning from 10/11 -12/5.

(b) EW3 product-recovery tank-level transmitter was not functioning during December of QM-96.

(c) Belt skimmer OR3 turned off because of a broken belt on 11/24.

(d) Free product recovery at OR3 historically lower than at other belt skimmers.

Values are rounded to tenth of a gallon.

Recovery measurements are for total liquids (including water entrained within the free product).

Accuracy for belt skimmer volumes is 0.1 gallons. Production data are based on physical recovery rates from measurement of free product level in reservoir tanks.

Volume of fluid removed from reservoir tanks is listed in GeoEngineers Fourth Quarter 2021 operation and maintenance report.

Abbreviations and Acronyms:

EW = extraction well gal = gallons OR = oil recovery well QM = quarterly monitoring SCADA = Supervisory Control and Data Acquisition

Table 3 QM-96 Bioventing System Data - Extraction Well Monitoring WWP Central Steam Plant Oil Spill Remediation Spokane, Washington

		QM-96 Extraction Well Monitoring				
		October November December Average Tota			Total	
Free Product Volume Biodegraded (gal)		831.30	839.42	869.42	846.71	2540.14
Average Total Flow (cfm)		112.57	113.03	111.05	112.22	NA
BE1	Avg. pressure (in-H ₂ 0)	-4.35	-4.53	-4.92	-4.60	NA
	O ₂ (%)	3.52	3.32	3.20	3.35	NA
	CO ₂ (%)	3.76	3.80	3.77	3.78	NA
BE2	Avg. pressure (in-H ₂ 0)	-1.97	-2.35	-2.93	-2.42	NA
	O ₂ (%)	3.29	3.14	3.06	3.17	NA
	CO ₂ (%)	3.76	3.79	3.76	3.77	NA
BE3	Avg. pressure (in-H ₂ 0)	-1.82	-2.03	-2.39	-2.08	NA
	O ₂ (%)	3.42	3.27	3.17	3.29	NA
	CO ₂ (%)	3.77	3.79	3.76	3.77	NA
BE4	Avg. pressure (in-H ₂ 0)	-0.79	-0.87	-1.07	-0.91	NA
	O ₂ (%)	4.04	3.81	3.62	3.82	NA
	CO ₂ (%)	3.75	3.78	3.75	3.76	NA
BE5	Avg. pressure (in-H ₂ 0)	-7.99	-8.55	-9.37	-8.64	NA
	O ₂ (%)	3.72	3.50	3.35	3.52	NA
	CO ₂ (%)	3.76	3.79	3.75	3.77	NA
BE6	Avg. pressure (in-H ₂ 0)	-0.89	-0.97	-1.90	-1.25	NA
	O ₂ (%)	4.19	3.90	3.71	3.93	NA
	CO ₂ (%)	3.75	3.79	3.75	3.76	NA
BE7	Avg. pressure (in-H ₂ 0)	-1.23	-1.21	-1.38	-1.27	NA
	O ₂ (%)	3.91	3.62	3.43	3.65	NA
	CO ₂ (%)	3.76	3.79	3.76	3.77	NA
BE8	Avg. pressure (in-H ₂ 0)	-6.58	-7.26	-8.15	-7.33	NA
	O ₂ (%)	3.21	3.11	3.05	3.12	NA
	CO ₂ (%)	3.77	3.80	3.76	3.78	NA
BE9	Avg. pressure (in-H ₂ 0)	-2.86	-3.23	-4.54	-3.55	NA
	O ₂ (%)	3.29	3.14	3.07	3.17	NA
	CO ₂ (%)	3.77	3.80	3.76	3.78	NA
BE10	Avg. pressure (in-H ₂ 0)	-0.94	-2.21	-5.10	-2.75	NA
	O ₂ (%)	4.03	3.70	3.50	3.75	NA
	CO ₂ (%)	3.75	3.79	3.76	3.76	NA
Average	Avg. pressure (in-H ₂ 0)	-2.94	-3.32	-4.17	-3.48	NA
	O ₂ (%)	3.66	3.45	3.32	3.48	NA
	CO ₂ (%)	3.76	3.79	3.76	3.77	NA
1						

Notes:

Data recorded by SCADA system.

Total flow, pressure, O_2 , and CO_2 values represent monthly averages

On 8/26 of QM-95 an increase in both O_2 and CO_2 was recorded by the SCADA system in all bioventing wells. Increased values were recorded during QM-96, which resulted in higher than historical average of free product volume biodegraded.

Abbreviations and Acronyms:

% = percent of total air volume Avg = average BE = bioventing extraction well cfm = cubic feet per minute CO₂ = carbon dioxide gal = gallon in-H2O = inches of water NA = not applicable O₂ = oxygen QM = quarterly monitoring SCADA = Supervisory Control and Data Acquisition
Page 1 of 1

Table 4 QM-96 Bioventing System Data - Injection Well Monitoring WWP Central Steam Plant Oil Spill Remediation Spokane, Washington

	QI	M-96 Injection V	Vell Monitoring	
	October	November	December	Average
Average Total Flow (cfm)	140.82	142.49	142.52	141.94
Average Well Pressure (in-H ₂ O)				
Injection Well				
BI1	0.26	0.23	0.23	0.24
BI2	6.30	6.44	6.42	6.39
BI3	6.07	6.30	6.28	6.22
BI4	6.32	6.49	6.47	6.43
BI5	6.32	6.38	6.34	6.34
BI6	6.13	6.26	6.25	6.22
BI7	6.24	6.33	6.31	6.29

Notes:

Data recorded by SCADA system.

Total flow and pressure values represent monthly averages

Abbreviations and Acronyms:

 $BI = bioventing injection well \\ cfm = cubic feet per minute \\ in-H_2O = inches of water \\ QM = quarterly monitoring \\ SCADA = Supervisory Control and Data Acquisition$

Table 5 2021 Groundwater Sampling Results WWP Central Steam Plant Oil Spill Remediation Spokane, Washington

		Total Petroleum Hydrocarbons (a)												
			QM-93			QM-95								
		Diesel	Bunker C	Motor Oil										
Sample Location	Laboratory	Range	Range	Range	Diesel Range	Bunker C Range	Motor Oil Range							
			mg/L			mg/L								
MW-006	ARI	0.100 U	0.954 (c)	0.283	0.100 U	0.500 U	0.200 U							
MW-007	ARI	0.100 U	0.698 (c)	0.205	0.100 U	0.500 U	0.200 U							
MW-012	ARI	0.100 U	0.500 U	0.200 U	0.100 U	0.500 U	0.200 U							
MW-016	ARI	0.100 U	0.500 U	0.200 U	-	-	-							
MW-017	ARI	0.100 U	0.500 U	0.200 U	-	-	-							
MW-020	ARI	0.100 U	0.500 U	0.200 U	0.100 U	0.500 U	0.200 U							
MM 021 (d)	ARI	0.100 U	1.39 (c)	0.397	0.100 U/0.100 U	0.500 U/0.500 U	0.200 U/0.200 U							
10100-021 (u)	Apex				0.076 U/0.076 U	(e)	0.152 U/0.152 U							
MW-023	ARI	0.100 U	0.567 (c)	0.200 U	0.100 U	0.500 U	0.200 U							
Duplicate (b)	ARI	0.100 U	0.500 U	0.200 U	0.100 U	0.500 U	0.200 U							
	ARI	0.100 U	1.89 (c)	0.555	0.100 U/0.100 U	0.500 U/0.500 U	0.200 U/0.200 U							
10100-023 (u)	Apex			-	0.076 U/0.076 U	(e)	0.152 U/0.152 U							
MW-027	ARI	0.100 U	0.500 U	0.200 U	0.100 U	0.500 U	0.200 U							
	ARI	0.100 U	1.06 (c)	0.288	0.100 U	0.500 U	0.200 U							
WW-028 (d)	Apex			•	0.076 U/0.076 U	(e)	0.243 J/0.151 U							
MW-030	ARI	0.100 U	0.760 (c)	0.226	0.100 U	0.500 U	0.200 U							
							·							
Performance Standard		1.0	1.0	1.0	1.0	1.0	1.0							

Notes:

(a) Total petroleum hydrocarbons analyzed using method NWTPH-Dx with silica gel cleanup.

(b) Field duplicate sample of MW-023 for QM-93 and of MW-021 for QM-95

(c) The laboratory case narrative indicates the result includes a response of unknown alkanes in the C24-C32 range and is not identified as a petroleum fuel product. The response must be included in the reported result for motor oil and Bunker C because it falls within the designated hydrocarbon ranges, but it is designated as residual range organics, which indicates it is not an identified petroleum fuel product, only an unknown response in the characteristic carbon range.

(d) Sample analysis reported without and with silica gel wash and acid cleanup, respectively. Only applicable to QM-95.

(e) Because no Bunker C was identified in samples analyzed by Apex, a calibration curve using the free product sample collected from OR-1 to quantify Bunker C in the samples was not performed. Apex included a statement in the case narrative of their analytical report stating that the reporting limit of Bunker C would have been approximately 0.300 mg/L with no detections in samples collected from monitoring wells MW-021, MW-025, and MW-028.

Bold = detected compound

Boxed value with shading = exceedance of site performance standard

A free product sample standard collected from extraction well EW-3 on October 24, 2018, is used by the laboratory to curve instrument analysis and compare results to detections of bunker C in associated groundwater samples.

Abbreviations and Acronyms:

--- = not analyzed ARI = Analytical Resources, Incorporated Apex = Apex Laboratories, LLC EW = extraction well J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. mg/L = milligrams per liter MW = monitoring well NWTPH-Dx = Northwest total petroleum hydrocarbon diesel-range extended OR = oil recovery well QM = quarterly monitoring U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

Table 6

2021 Groundwater Elevation Monitoring WWP Central Steam Plant Oil Spill Remediation Spokane, Washington

Groundwater Elevation Monitoring									
Well	QM-93 Measurement Date	QM-93 Elevation	QM-93 Product Presence	QM-93 Measurement Date	QM-95 Elevation	QM-95 Product			
MW-001	3/25/2021	1879.83	No	9/16/2021	Dry	No			
MW-002	3/25/2021	Dry	No	9/16/2021	Dry	No			
MW-003	3/25/2021	1879.43	Trace	9/16/2021	1879.19	No			
MW-004 (a)	3/25/2021	Dry	No	9/16/2021	Dry	No			
MW-006	3/25/2021	1880.05	No	9/15/2021	1879.75	No			
MW-007	3/25/2021	1867.39	No	9/15/2021	1869.78	No			
MW-008	3/26/2021	1865.36	No	NM	NM	No			
MW-009	3/26/2021	1854.92	No	NM	NM	No			
MW-010	3/26/2021	1854.63	Sig	9/16/2021	1854.88	Sig			
MW-011	3/26/2021	1860.57	No	NM	NM	No			
MW-012	3/25/2021	1854.98	No	9/15/2021	1854.89	No			
MW-013	3/25/2021	Dry	No	9/16/2021	Dry	No			
MW-015	3/26/2021	1870.76	No	9/16/2021	1871.93	No			
MW-016	3/25/2021	1872.17	No	9/16/2021	1871.80	No			
MW-017	3/25/2021	1869.68	No	9/16/2021	1869.46	No			
MW-018	3/25/2021	1863.77	No	9/15/2021	1863.86	No			
MW-019	3/26/2021	1868.87	Sig	9/16/2021	1866.42	Sig			
MW-020	3/25/2021	1855.06	No	9/15/2021	1854.96	No			
MW-021	3/25/2021	1855.01	No	9/15/2021	1854.90	No			
MW-022	3/26/2021	1852.21	Trace	NM	NM	Trace			
MW-023	3/25/2021	1870.49	No	9/15/2021	1870.25	No			
MW-025	3/25/2021	1863.99	No	9/15/2021	1865.49	No			
MW-026	3/26/2021	1866.58	Trace	9/16/2021	1866.48	Trace			
MW-027	3/25/2021	1855.00	No	9/15/2021	1854.88	No			
MW-028	3/25/2021	1889.38	No	9/15/2021	1889.49	No			
MW-029	3/26/2021	1859.48	Sig	9/16/2021	NA	Sig			
MW-030	3/25/2021	1855.49	No	9/15/2021	1855.42	No			

Notes:

(a) Well partially filled with soil during construction of remediation system.

Sounded well depth is above water table

NA = no water present

NM = not measured. Automobile parked over well location.

No = no visual evidence of free product.

QM = quarterly monitoring

Sig = significant amount of free product present.

Trace = trace of free product visible in water column.

Table 72021 Hydraulic Control MonitoringWWP Central Steam Plant Oil Spill RemediationSpokane, Washington

	Groundwater Elevation (Feet)														
	QM-	QM-93 Elevation QM-94 Elevation QM-95 Elevation									QM-96 Elevation				
Well	January (a)	February	March	April	May	June	July	August (b)		September (b)		October	November	December	
EW1	1849.02	1849.02	1849.03	1849.02	1848.93	1848.96	1849.06	1849.38	1854.83	1849.08	1855.14	1848.80	1848.79	1848.88	
EW2	1848.67	1848.75	1848.76	1850.46	1849.45	1848.86	1852.44	1850.02	1855.02	1850.21	1855.31	1849.04	1849.07	1848.90	
EW3	1851.79	1851.28	1852.73	1851.13	1852.09	1851.76	1852.94	1852.14	1855.21	1851.60	1855.54	1851.06	1850.98	1851.41	
PZ1	1852.71	1852.50	1852.53	1852.65	1852.59	1852.36	1853.04	1852.85	1855.57	1852.74	1855.89	1852.43	1852.45	1852.48	
PZ2									-			-	-	-	
PZ3	1855.03	1854.93	1854.96	1854.97	1854.98	1855.00	1855.03	1855.11	1855.86	1855.14	1856.14	1855.10	1855.16	1855.22	
MW-012	NM	NM	1854.98	NM	NM	NM	NM	Ν	М	185	4.89	NM	NM	NM	
MW-027	NM	NM	1855.00	NM	NM	NM	NM	N	М	185	4.88	NM	NM	NM	
MW-030	NM	NM	1855.49	NM	NM	NM	NM	NM		1855.42		NM	NM	NM	

Notes:

Data from extraction wells EW1, EW2, and EW3 and piezometer wells PZ1, PZ2, and PZ3 recorded by SCADA system.

-- = not recorded due to PLC or transducer malfunction

Extraction wells EW1, EW2, and EW3 were not functioning 8/3, 8/4, 8/14 - 8/23 and 9/13 - 9/29 during QM-95

WEIR elevation = 1,860 feet

Elevation datum is North American Vertical Datum of 1988 (NAVD88).

Values are average monthly water elevations for EW1–EW3 and PZ1–PZ3.

Monitoring well MW-027 groundwater elevation hand measured in conjunction with semi-annual monitoring. MW-027 is located north of the barrier wall.

Transducer PZ2 not functional during 2021

(a) SCADA system not generating data 1/20 - 1/31. Janauary monthly averages based on SCADA system data from 1/1 - 1/19

(b) Average groundwater elevation with and without extraction wells functioning, respectively.

Abbreviations and Acronyms:

EW = extraction well MW = monitoring well NM = not measured PZ = piezometer QM = quarterly monitoring SCADA = Supervisory Control and Data Acquisition

Table 8 2021 Free Product Recovery Data WWP Central Steam Plant Oil Spill Remediation Spokane, Washington

	Free Product Recovered (gal)																
		(QM-93				QM-94		QM-95 (b)						QM-96		
	lan (a) Eeb Mar OM-93 T(
Location	Jan (a)	Feb	Mar	QM-93 Total	Apr	May	June	QM-94 Total	Jul	Aug	Sep	QM-95 Total	Oct	Nov (c)	Dec (d)	QM-96 Total	2021 Total
Belt Skimmer																	
EW1	30.7	2.2	1.6	34.5	0.1	4.3	5.2	9.6	4.8	1.3	3.6	9.7	1.0	1.0	2.0	4.0	57.9
EW2	17.2	16.9	22.9	57.0	0.8	23.0	9.9	33.7	0.0	0.0	0.0	0.0	15.6	0.0	52.6	68.2	158.9
EW3	15.7	16.6	41.5	73.8	17.9	38.5	38.5	94.8	63.7	36.0	76.8	176.5	38.4	0.0	0.0	38.4	383.5
OR1	0.3	0.3	0.5	1.1	0.5	0.6	0.5	1.6	0.9	0.4	0.8	2.1	0.9	0.3	0.3	1.5	6.4
OR3	0.0	0.0	0.1	0.1	0.0	0.1	0.1	0.2	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.5
Total	64.0	36.1	66.5	166.6	19.2	66.5	54.2	139.9	69.5	37.8	81.2	188.5	56.0	1.4	54.9	112.2	607.3

Notes:

Data recorded by SCADA system.

-- = not recorded due to PLC or transducer malfunction

Final totals are rounded.

Recovery measurements are for total liquids (including water entrained within the product).

Accuracy for belt skimmer volumes is 0.1 gallons. Production data are based on physical recovery rates from measurement of oil level in reservoir tanks.

Volume of fluid removed from reservoir tanks listed in GeoEngineers quarterly 2021 operation and maintenance reports.

(a) SCADA system not generating data 1/20 - 1/31. January product recovery based on SCADA system data from 1/1 - 1/19.

(b) EW2 product-recovery tank-level transmitter was not functioning during QM-95

(c) EW2 and EW3 product-recovery tank-level transmitter was not functioning from 10/11 -12/5

(d) EW3 product-recovery tank-level transmitter was not functioning during December of QM-96

Abbreviations and Acronyms:

EW = extraction well gal = gallon. QM = quarterly monitoring OR = oil recovery well SCADA = Supervisory Control and Data Acquisition

Table 9 2021 Bioventing System Data - Extraction Well Monitoring WWP Central Steam Plant Oil Spill Remediation Spokane, Washington

		Extraction Well Monitoring													
			QM-93			QM-94 (e)			QM-95			QM-96		2021	2021
		January (a)	February (b)	March (c)	April (c)	May (d)	June	July	August (f)	September	October	November	December	Average	Total
Free Produ	ict Volume Biodegraded (gal)	61.39	72.51	0.00	0.00	130.95	204.67	208.79	302.80	840.60	831.30	839.42	869.42	363.49	4361.85
Average To	otal Flow (cfm)	105.23	106.67	107.89	106.46	108.17	109.21	109.69	109.04	111.60	112.57	113.03	111.05	109.22	NA
BE1	Avg. pressure (in-H ₂ 0)	-3.75	-4.10	-3.98	-3.72	-3.69	-3.58	-3.58	-5.39	-7.79	-4.35	-4.53	-4.92	-4.45	NA
	O ₂ (%)	13.52	13.38	0.00	0.00	1.16	2.21	2.76	3.01	3.53	3.52	3.32	3.20	4.13	NA
	CO ₂ (%)	0.46	0.46	0.00	0.00	0.95	0.96	0.95	1.38	3.77	3.76	3.80	3.77	1.69	NA
BE2	Avg. pressure (in-H ₂ 0)	-0.11	-0.08	-0.10	-0.11	-0.13	-0.16	-0.18	-0.46	-2.01	-1.97	-2.35	-2.93	-0.88	NA
	O ₂ (%)	13.50	13.36	0.00	0.00	1.09	2.13	2.66	2.86	3.38	3.29	3.14	3.06	4.04	NA
	CO ₂ (%)	0.46	0.46	0.00	0.00	0.95	0.96	0.95	1.38	3.77	3.76	3.79	3.76	1.69	NA
BE3	Avg. pressure (in-H ₂ 0)	-3.16	-3.10	-3.12	-2.96	-2.67	-2.42	-2.34	-2.34	-1.92	-1.82	-2.03	-2.39	-2.52	NA
	O ₂ (%)	13.51	13.36	0.00	0.00	1.09	2.13	2.72	2.97	3.52	3.42	3.27	3.17	4.10	NA
	CO ₂ (%)	0.46	0.46	0.00	0.00	0.95	0.96	0.95	1.39	3.78	3.77	3.79	3.76	1.69	NA
BE4	Avg. pressure (in-H ₂ 0)	-1.76	-1.92	-1.97	-1.81	-1.60	-1.45	-1.38	-1.30	-0.82	-0.79	-0.87	-1.07	-1.40	NA
	O ₂ (%)	13.47	13.33	0.00	0.00	1.45	2.59	3.24	3.53	4.13	4.04	3.81	3.62	4.43	NA
	CO ₂ (%)	0.46	0.46	0.00	0.00	0.94	0.96	0.95	1.38	3.76	3.75	3.78	3.75	1.68	NA
BE5	Avg. pressure (in-H ₂ 0)	0.09	0.10	0.10	0.10	0.09	0.07	0.05	-1.22	-8.64	-7.99	-8.55	-9.37	-2.93	NA
	O ₂ (%)	13.48	13.33	0.00	0.00	1.31	2.43	3.05	3.31	3.85	3.72	3.50	3.35	4.28	NA
	CO ₂ (%)	0.46	0.46	0.00	0.00	0.94	0.96	0.95	1.38	3.76	3.76	3.79	3.75	1.69	NA
BE6	Avg. pressure (in-H ₂ 0)	-2.51	-7.07	-8.10	-8.02	-6.58	-2.05	-0.50	-0.57	-0.90	-0.89	-0.97	-1.90	-3.34	NA
	O ₂ (%)	13.46	13.34	0.00	0.00	1.50	2.69	3.23	3.61	4.37	4.19	3.90	3.71	4.50	NA
	CO ₂ (%)	0.46	0.46	0.00	0.00	0.94	0.95	0.95	1.38	3.75	3.75	3.79	3.75	1.68	NA
BE7	Avg. pressure (in-H ₂ 0)	-0.90	-1.43	-3.37	-4.62	-3.62	-1.66	-0.84	-0.78	-1.24	-1.23	-1.21	-1.38	-1.86	NA
	O ₂ (%)	13.53	13.39	0.00	0.00	1.33	2.47	3.17	3.49	4.11	3.91	3.62	3.43	4.37	NA
	CO ₂ (%)	0.46	0.46	0.00	0.00	0.94	0.95	0.95	1.38	3.76	3.76	3.79	3.76	1.69	NA
BE8	Avg. pressure (in-H ₂ 0)	0.00	0.05	0.00	-0.05	-0.08	-0.09	-0.16	-1.01	-6.59	-6.58	-7.26	-8.15	-2.49	NA
	O ₂ (%)	13.50	13.36	0.00	0.00	1.18	2.28	2.89	3.08	3.24	3.21	3.11	3.05	4.08	NA
	CO ₂ (%)	0.46	0.46	0.00	0.00	0.95	0.96	0.95	1.39	3.79	3.77	3.80	3.76	1.69	NA
BE9	Avg. pressure (in-H ₂ 0)	-5.18	-5.41	-5.44	-5.13	-4.19	-3.64	-3.48	-3.45	-3.01	-2.86	-3.23	-4.54	-4.13	NA
	O ₂ (%)	13.49	13.36	0.00	0.00	1.05	2.08	2.59	2.82	3.35	3.29	3.14	3.07	4.02	NA
	CO ₂ (%)	0.46	0.46	0.00	0.00	0.95	0.96	0.96	1.39	3.78	3.77	3.80	3.76	1.69	NA
BE10	Avg. pressure (in-H ₂ 0)	-4.77	-4.68	-4.85	-4.65	-2.51	-1.15	-1.20	-1.21	-1.00	-0.94	-2.21	-5.10	-2.86	NA
	O ₂ (%)	13.49	13.35	0.00	0.00	1.50	2.69	3.40	3.63	4.25	4.03	3.70	3.50	4.46	NA
	CO ₂ (%)	0.46	0.46	0.00	0.00	0.94	0.96	0.95	1.37	3.75	3.75	3.79	3.76	1.68	NA
Monthly	Avg. pressure (in-H ₂ 0)	-2.21	-2.76	-3.08	-3.10	-2.50	-1.61	-1.36	-1.77	-3.39	-2.94	-3.32	-4.17	-2.69	NA
	O ₂ (%)	13.49	13.36	0.00	0.00	1.27	2.37	2.97	3.23	3.77	3.66	3.45	3.32	4.24	NA
	CO ₂ (%)	0.46	0.46	0.00	0.00	0.95	0.96	0.95	1.38	3.77	3.76	3.79	3.76	1.69	NA

Notes:

Data recorded by SCADA system.

SCADA system not generating data 1/20 - 1/31,

(a) January free product volume biodegraded and extraction well monthly averages based on SCADA system data from 1/1-1/19. (b) The gas analyzer which reports O₂ (%) and CO₂ (%) was removed for calibration and preventative maintenance. O2 (%) and CO2 (%) values BE = bioventing extraction well

were not reported by the SCADA system for extraction wells BE1 - BE10 from 2/13 - 5/11. The O₂ (%) and CO₂ (%) averages presented for February are from 2/1 - 2/12.

(c) O2 (%) and CO2 (%) not read by SCADA system for extraction wells BE1 - BE10 from 2/13 - 5/11.

(d) The O₂ (%) and CO₂ (%) averages presented for May are from 5/12 - 5/31.

(e) Free Product volume biodegraded based on SCADA system from 5/12 - 6/30.

(f) On 8/26 an increase in both O2 and CO2 was recorded by the SCADA system in all bioventing wells. Increased values were recorded for

the remainder of QM-95 and through QM-96 which resulted in higher than historical average of oil volume biodegraded.

Abbreviations and Acronyms:

Avg = average cfm = cubic feet per minute gal = gallon in-H2O = inches of water BE = bioventing extraction well QM = quarterly monitoring NA = not applicable Q₂ = oxygen % = percent of total air volume NM = not measured - = not recorded due to PLC or transducer malfunction

Table 10 2021 Bioventing System Data - Injection Well Monitoring Central Steam Plant Oil Spill Remediation Spokane, Washington

		Injection Well Monitoring												
		QM-93			QM-94			QM-95			QM-96		2021	
	January (a)	February	March	April	May	June	July	August	September	October	November	December	Average	
Average Total Flow (cfm)	137.15	136.94	138.42	135.19	135.08	131.70	132.83	137.78	140.49	140.82	142.49	142.52	137.62	
Average Well Pressure (in-H ₂ O)														
Injection Well														
BI1	0.21	0.20	0.21	0.22	0.22	0.24	0.27	0.27	0.26	0.26	0.23	0.23	0.24	
BI2	6.16	6.04	6.07	5.81	5.79	5.53	5.62	6.06	6.26	6.30	6.44	6.42	6.04	
BI3	5.99	5.90	5.90	5.60	5.56	5.30	5.34	5.79	6.02	6.07	6.30	6.28	5.84	
BI4	6.22	6.12	6.14	5.86	5.84	5.56	5.62	6.04	6.27	6.32	6.49	6.47	6.08	
BI5	6.14	6.00	6.05	5.82	5.81	5.55	5.66	6.10	6.27	6.32	6.38	6.34	6.04	
BI6	6.01	5.90	5.92	5.67	5.64	5.37	5.45	5.89	6.08	6.13	6.26	6.25	5.88	
BI7	6.06	5.93	5.97	5.72	5.71	5.47	5.57	6.02	6.19	6.24	6.33	6.31	5.96	
Monthly Average Pressure (in-H ₂ O)	5.26	5.16	5.18	4.96	4.94	4.72	4.79	5.17	5.33	5.38	5.49	5.47	5.15	

Notes:

Data recorded by SCADA system.

SCADA system not generating data 1/20 - 1/31.

(a) January injection well monitoring based on SCADA system data from 1/1 - 1/19.

Abbreviations and Acronyms:

 $\begin{array}{l} BI = bioventing injection well \\ cfm = cubic feet per minute \\ in-H_2O = inches of water \\ SCADA = Supervisory Control and Data Acquisition \\ QM = quarterly monitoring \\ \end{array}$

APPENDIX A

QM-96 Quarterly Operation and Maintenance Report

Quarterly Operation and Maintenance Report

Fourth Quarter 2021 (October through December 2021) Central Steamplant Oil Spill Remediation Spokane, Washington

for

Avista Corporation

December 23, 2021

Quarterly Operation and Maintenance Report

Fourth Quarter 2021 (October through December 2021) Central Steamplant Oil Spill Remediation Spokane, Washington

for Avista Corporation

December 23, 2021

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Quarterly Operation and Maintenance Report

Fourth Quarter 2021 (October through December 2021) Central Steamplant Oil Spill Remediation Spokane, Washington

File No. 2522-013-05

December 23, 2021

Prepared for:

Avista Corporation 1411 East Mission Avenue Spokane, Washington 99202

Attention: Bryce Robbert

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Joshua M. Lee, EIT Staff Environmental Engineer

Bruce D. Williams Senior Principal

JML:BDW:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0 INTRODUCTION	1
2.0 0&M EVENT - OCTOBER 7, 2021	1
2.1. Personnel	1
2.2. Subcontractors	1
2.3. Activities	1
2.4. Hydraulic Control System	1
2.4.1. Groundwater Pumps	1
2.4.2. Surfactant Pumps	2
2.4.3. Piezometer Water Level Transducers	2
2.4.4. Detention Tank	2
2.5. Fats, Oils and Grease (FOG) Sampling	2
2.6. Free Product Recovery System	2
2.6.1. Belt Skimmers	2
2.6.2. Product Recovery Reservoirs	2
2.7. Quarterly Air Monitoring	3
3.0 0&M EVENT - NOVEMBER 24, 2021	3
3.1. Personnel	3
3.2. Subcontractors	3
3.3. Activities	3
3.3.1. Detention Tank Maintenance	3
3.4. Hydraulic Control System	4
3.4.1. Groundwater Pumps	4
3.4.2. Surfactant Pumps.	4
3.4.3. Piezometer Water Level Transducers	4
3.4.4. Detention Tank	4
3.5. Free Product Recovery System	4
3.5.1. Belt Skimmers	4
3.5.2. Product Recovery Reservoirs	4
3.6. Quarterly Air Monitoring	5
4.0 ACTION ITEMS – FIRST QUARTER 2022	5
APPENDICES	

Appendix A. Maintenance and Calibration/Adjustment Logs Appendix B. Product Vacuum Extraction Appendix C. Chemical Analytical Laboratory Report

1.0 INTRODUCTION

GeoEngineers, Inc. (GeoEngineers) is pleased to present the operation and maintenance (O&M) results for the remedial system operating at the Avista Steamplant Oil Remediation Site (Site) during the fourth quarter of 2021 (October through December). Two O&M events were conducted occurring on October 7 and November 24, 2021. In general, O&M activities for the quarter included:

- 1. Removing liquids from product recovery reservoirs and vaults using a drum-mounted vacuum pump;
- 2. Adjusting and monitoring belt skimmer operation;
- 3. Replacing belt skimmer components;
- 4. Monitoring oil recovery reservoir components;
- 5. Monitoring detention tank levels and components;
- 6. Collecting fats, oils, and grease (FOG) samples;
- 7. Troubleshooting and replacing SVE system components; and
- 8. Completing remedial system component operational and calibration checks.

2.0 0&M EVENT - OCTOBER 7, 2021

2.1. Personnel

Joshua M. Lee, GeoEngineers Inc. (GeoEngineers)

2.2. Subcontractors

- Spokane Environmental Services (SES) (liquid removal and equipment maintenance)
- Spokane Traffic (traffic control)

2.3. Activities

GeoEngineers visited the Site on October 7, 2021 to document 0&M activities. SES removed oil and water from the vault floors and product recovery reservoirs in vaults OR1, OR3, EW1, EW2 and EW3 using a 3-foot-long polyvinyl chloride (PVC) stinger connected to a drum-mounted vacuum. Liquid removed from the vault floors was a mix of infiltrated precipitation and overflow from product recovery tanks; liquid removed from the recovery tanks was a mixture of oil and water. The liquid from the product recovery tanks and vaults was pumped into 55-gallon drums and transported to Avista's storage yard for disposal. SES removed approximately 5 gallons of liquid (about 4 gallons of oil) from OR1, 15 gallons of liquid (about 5 gallons of oil) from OR3, 5 gallons of liquid (0.5 gallon of oil) from EW1, 15 gallons of liquid (about 22 gallons of oil) from EW2 and 45 gallons of liquid (about 5 gallons of oil) from EW3, as seen in Appendix B.

2.4. Hydraulic Control System

2.4.1. Groundwater Pumps

On arrival, the groundwater pumps in EW1, EW2 and EW3 were on and functioning properly displaying realtime pressure and flow rates on the supervisory control and data acquisition (SCADA) system. Avista requested periodic monitoring of extraction well groundwater pump operation.

The groundwater pump flow rate in extraction well EW1 was about 16.2 to 17.4 gallons per minute (gpm) with a pressure reading of 9.0 pounds per square inch (psi) on the SCADA control system. The groundwater pump flow rate in extraction well EW2 was 26.9 to 27.0 gpm with a pressure of 9.1 psi. The groundwater pump flow rate in extraction well EW3 was 10.2 to 10.4 gpm with a pressure of 100.9 psi.

2.4.2. Surfactant Pumps

Surfactant pumps in EW1, EW2 and EW3 were on and functioning upon arrival. The surfactant pumps remained on.

2.4.3. Piezometer Water Level Transducers

Water level transducers PZ1 and PZ3 were functioning properly, displaying real-time groundwater elevations on the SCADA system. Water level transducer PZ2 continued to read a groundwater elevation of approximately 10 feet lower than PZ1 and PZ3; SES recommends replacement of the PZ2 water level transducer.

2.4.4. Detention Tank

On arrival, the detention tank pump remained off from the previous maintenance event. The detention tank pump was switched to "hand" but remained off; the detention tank pump relay requires troubleshooting. The detention tank level read 32 inches (approximately 64,000 gallons) on SCADA. Avista and GeoEngineers plan to continue to monitor detention tank levels and pump operation.

2.5. Fats, Oils and Grease (FOG) Sampling

On October 7, 2021, John Wehr (Avista) provided access to the stormwater detention tank located in the sub-station yard. One water sample (DT:100721) was obtained from the stormwater detention tank using a disposable bailer. SES collected one water sample from EW1 (EW1:100721) using the sampling port in the EW1 vault. The water samples were submitted to Eurofins TestAmerica located in Spokane Valley, Washington for FOG analysis using Method 1664A N-Hexane Extractable Material (HEM) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM). Analytical results are attached in Appendix C, Chemical Analytical Laboratory Reports and summarized below.

Results for HEM and SGT-HEM methods were non-detect for FOG in the two samples (EW1:100721 and DT:100721) collected.

2.6. Free Product Recovery System

2.6.1. Belt Skimmers

SES inspected belts and belt skimmer components as described in Appendix A. The belt skimmers in OR1, OR3, EW2 and EW3 were on and operating properly. The EW1 belt skimmer was on upon arrival, but the skimmer belt was loose and slipping on the head pulley. SES adjusted the EW1 belt skimmer knife and belt tension. SES hand spun the skimmer belt, removing a thick layer of oil, until the EW1 belt skimmer was functioning properly.

2.6.2. Product Recovery Reservoirs

The accuracy of the product-recovery tank-level transmitters was checked by measuring the level of Light Nonaqueous Phase Liquid (LNAPL), or free product, accumulated in each oil recovery tank with respect to

the tank's bottom both before and after liquid was removed by SES. These measurements were compared to tank-level transmitter readings. The sensors in vaults OR1, OR3 and EW1 were operating within normal limits. The sensor in vault EW2 displayed an initial product reservoir level of 33.1 inches on the SCADA system, although the product recovery reservoir was about 12 inches. The sensor in vault EW3 displayed an initial product reservoir level of 0.0 inches on the SCADA system, although the product recovery reservoir was overflowing (approximately 35 inches). SES removed and cleaned the EW2 and EW3 reservoir sensors. After cleaning, the EW2 and EW3 reservoir sensors continued to read inaccurate reservoir levels on the SCADA system (EW2 at 33.1 inches and EW3 at 0.0 inches).

2.7. Quarterly Air Monitoring

The notice of construction (NOC) for the oil spill remediation (OSR) was voided by Spokane Regional Clean Air Authority (SRCAA) on April 13, 2016, so checks on the bioventing system and letters to SRCAA are no longer necessary. GeoEngineers recorded bioventing data from the SCADA system but did not perform field measurements on the bioventing system.

The bioventing system condensate pump (CP) removed during the previous maintenance event and remains out of service until a new condensate pump can be installed.

3.0 0&M EVENT - NOVEMBER 24, 2021

3.1. Personnel

■ Justin D. Orr, GeoEngineers

3.2. Subcontractors

- SES (liquid removal and equipment maintenance)
- Spokane Traffic (traffic control)

3.3. Activities

3.3.1. Detention Tank Maintenance

GeoEngineers visited the Site on November 24, 2021, to document 0&M activities. SES removed oil and water from the vault floors and product recovery reservoirs in vaults OR3, EW1, EW2 and EW3 using a 3-foot-long PVC stinger connected to a drum-mounted vacuum. Vault OR1 had a miniscule amount of oil and water and did not warrant liquid removal. Liquid removed from the vault floors was a mix of infiltrated precipitation and overflow from product recovery tanks; liquid removed from the recovery tanks was a mixture of oil and water. The liquid from the product recovery tanks and vaults was pumped into 55-gallon drums and transported to Avista's storage yard for disposal. SES removed approximately 30 gallons of liquid (1.5 gallons of oil) from OR3, 5 gallons of liquid (0.0 gallons of oil) from EW1, 70 gallons of liquid (about 4.5 gallons of oil) from EW2 and 70 gallons of liquid (about 7 gallons of oil) from EW3, as seen in Appendix B.

3.4. Hydraulic Control System

3.4.1. Groundwater Pumps

On arrival, the groundwater pumps in EW1, EW2 and EW2 were on and functioning properly displaying realtime pressure and flow rates on the SCADA system. The groundwater pump flow rate in extraction well EW1 was about 16.6 to 17.5 gpm with a pressure reading of 9.7 psi on the SCADA control system. The groundwater pump flow rate in extraction well EW2 was 22.7 to 25.4 gpm with a pressure of 7.5 psi. The groundwater pump flow rate in extraction well EW3 was 10.2 to 10.4 gpm with a pressure of 100.7 psi.

3.4.2. Surfactant Pumps

Surfactant pumps in EW1, EW2 and EW3 were on and functioning upon arrival. The surfactant pumps remained on.

3.4.3. Piezometer Water Level Transducers

Water level transducers PZ1 and PZ3 were functioning properly, displaying real-time groundwater elevations on the SCADA system. Water level transducer PZ2 continued to read inaccurate groundwater elevations on the SCADA system. SES turned off the PZ2 water level transducer and recommends replacement of the transducer.

3.4.4. Detention Tank

Upon arrival, the detention tank pump remained off from the previous maintenance event. SES diagnosed the detention tank pump and found that the pump had power, but the pump propeller was binding inside the pump. SES adjusted the propeller nut and the pump appeared to be functioning properly. The detention tank level read 58 inches (approximately 114,000 gallons) on SCADA. Avista and GeoEngineers plan to continue to monitor detention tank levels and pump operation.

3.5. Free Product Recovery System

3.5.1. Belt Skimmers

SES inspected belts and belt skimmer components, as described in Appendix A. The belt skimmers in OR1, EW2 and EW3 were on and operating properly. The OR3 belt skimmer was on upon arrival but the belt skimmer belt was torn. SES turned the OR3 belt skimmer off until the broken belt can be removed and replaced. The EW1 belt skimmer was on upon arrival, but the skimmer belt was loose and slipping on the head pulley. SES adjusted the EW1 belt skimmer knife and belt tension. SES hand spun the skimmer belt, removing a thick layer of oil, until the EW1 belt skimmer was functioning properly.

3.5.2. Product Recovery Reservoirs

The accuracy of the product-recovery tank-level transmitters was checked by measuring the level of LNAPL, or free product, accumulated in each oil recovery tank with respect to the tank's bottom both before and after liquid was removed by SES. These measurements were compared to tank-level transmitter readings. The sensors in vaults OR1, OR3, EW1 and EW2 were operating within normal limits. The sensor in vault EW3 displayed an initial product reservoir level of 0.0 inches on the SCADA system, although the product recovery reservoir was overflowing (approximately 35 inches). SES removed and cleaned the EW3 reservoir sensor, but the sensor continued to read inaccurate reservoir levels on the SCADA system (EW3 at 0.0 inches).

3.6. Quarterly Air Monitoring

The NOC for the OSR was voided by SRCAA on April 13, 2016, so checks on the bioventing system and letters to SRCAA are no longer necessary. GeoEngineers recorded bioventing data from the SCADA system but did not perform field measurements on the bioventing system.

SES installed a new Hayward R-Series Model RCO3 1-horsepower condensate pump for the bioventing system knockout tank. The new condensate pump will be tested when the knockout pot has sufficient liquid, The condensate pump is not recommended to operate dry.

4.0 ACTION ITEMS - FIRST QUARTER 2022

- 1. The next O&M event will be scheduled for January 18, 2022.
- 2. Monitor extraction well (EW1, EW2 and EW3) operation and SCADA information.
- 3. Replace OR3 belt.
- 4. Replace PZ2 transducer.
- 5. Troubleshoot EW3 level sensor with SCADA technician.
- 6. Monitor detention tank level and pump operation.
- 7. Perform corrective maintenance to belt skimmer components, as necessary.

This report has been prepared on behalf of the Avista Corporation. Should you have any questions regarding the monitoring results or other aspects of this project, please do not hesitate to call us at your earliest convenience.

APPENDIX A Maintenance and Calibration/Adjustment Logs

Maintenance Log WWP Central Steam Plant/Oil Spill Remediation Spokane, WA

Sched	luled ?				Equipment	Action Taken	Action Required
Yes	No	Date	Time	System	Description	(brief description)	(leave blank if none required)
		10/7/2021	730	EW1	Surf Pump		
					Heater		
					Light		
					Vault	Pumped out product reservoir and storm water from vault	
					Belt Skimmer	Adjusted belt tension	
					GW Pump		Monitor pump and SCADA
				EW2	Surf Pump		
					Heater		
					Light		
						Pumped out product reservoir and storm water from vault; cleaned level	
					Vault	sensor and checked connections	Diagnose reservoir level sensor reading on SCADA
					Belt Skimmer		
					GW Pump		Monitor pump and SCADA
				EW3	Surf Pump		
					Heater		
					Light		
					Vault	Pumped out product reservoir and storm water from vault	Diagnose reservoir level sensor reading on SCADA
					Belt Skimmer		
					GW Pump		Monitor pump and SCADA
				OR3	Vault	Pumped out product reservoir and storm water from vault	
					Belt Skimmer		
					Light		
					Heater		
				OR2	Vault		
				OR1	Vault	Pumped out product reservoir	
					Belt Skimmer		
					Light		
					Heater		
				PZ1	piezometer		
				PZ2	piezometer		Replace transducer and recalibrate with SCADA technician.
				PZ3	piezometer		
					Lift Station-P5		
					Lift Station-P6		
					Detention Tank-P7		Diagnose DT Pump operation
					Passive Skimmer-CB1		
					Passive Skimmer-CB2		
					Passive Skimmer-CB3		
				BV	Condensate Pump		Rebuild pump and reinstall

Calibration/Adjustment Log WWP Central Steam Plant/Oil Spill Remediation Spokane, Washington

			Equipment	Water level	R	leading		Action Taken
Date	Time	System	Description	Solinst	Actual	PLC/SCADA	Error	(brief description)
11/24/2021	655	EW1	DTW (feet)	-	-	1849.07		Removed oil and water from vault and
			Oil Tank-before (inches)	N/A	0	1.6		reservoir.
			Oil Tank-after (inches)	N/A	0	0.4		
			Surf Tank (inches)	N/A	-	0.7		
			Flow (gpm)	N/A	-	16.6-17.5		
			Pressure (psi)	N/A	-	9.7		
		EW2	DTW (feet)	-	-	1849.33		Removed oil and water from vault and
			Oil Tank-before (inches)	N/A	34.3	35.0		reservoir
			Oil Tank-after (inches)	N/A	0	0.0		
			Surf Tank (inches)	N/A	-	8.8		
			Flow (gpm)	N/A	-	22.7-25.4		
			Pressure (psi)	N/A	-	7.5		
		EW3	DTW (feet)	-	-	1851.15		Removed oil and water from vault and
			Oil Tank-before (inches)	N/A	35/full	0.0		reservoir; cleaned reservoir level sensor
			Oil Tank-after (inches)	N/A	0	0.0		and checked connections.
			Surf Tank (inches)	N/A	-	23.0		
			Flow (gpm)	N/A	-	10.2-10.4		-
			Pressure (psi)	N/A	-	100.7		-
		PZ1	DTW (feet)	N/A	-	1852.44		Pumped water from PZ2 vault and
		PZ2	DTW (feet)	-	-	-		repaired corroded connections; SCADA
		PZ3	DTW (feet)	-	-	1855.19		reported incorrect level.
		SW	Det Tank-level		-	58		Diagnosed and repaired pump
			Det Tank-flow	N/A	-	-		
			lift station-level		-	-		
		OR1	Oil Tank-before (inches)	N/A	2	0.0		
			Oil Tank-after (inches)	N/A	0	2.1		
		OR3	Oil Tank-before (inches)	N/A	3	3.5		Removed oil and water from vault and
			Oil Tank-after (inches)	N/A	0	3.3		reservoir.

Calibration/Adjustment Log WWP Central Steam Plant/Oil Spill Remediation Spokane, Washington

Inter Nom Annal PLCNADA (mH20) Version (mH20) Number of (mH20)				Equipment	Pre	essure	Flow					Action Taken	Action Required	
Inter System Description Actual PLCS CADA Velocity Actual Flow (CFM) (CB)										1				(leave blank if none
Image Image <th< td=""><td>Date</td><td>Time</td><td>System</td><td>Description</td><td>Actual</td><td>PLC/SCADA</td><td>Velocity</td><td>Actual Flow</td><td>PLC/SCADA</td><td>O2</td><td>CO2</td><td>RH</td><td>(brief description)</td><td>required)</td></th<>	Date	Time	System	Description	Actual	PLC/SCADA	Velocity	Actual Flow	PLC/SCADA	O2	CO2	RH	(brief description)	required)
11/24200 653 V Luranison-Bi-lo - - 8, 5 32.8 32.9 - - 1 0 0 0.81 0.23 - - 0.85 0.0 0.0 0.83 0.23 - - - 1 0 0.86 0.81 0.23 0.23 0.01 0.14 0.83 0.41 - - 1 0 0.86 0.14 0.10 0.14 0.84 0.83 0.41 - - 1 0 0.81 0.10 0.10 0.11 0.84 0.84 0.14 0.14 0.84 0.14					(in H2O)	(in H2O)	(FPM)	(CFM)	(CFM)	(%)	(ppm)	(%)		
Image: Section of the section of t	11/24/2021	655	BV	Extraction-BE-1	-	-4.87	-	-	8.5	3.28	3.83	34.2		
Image: Section of the section of t				-BE-2	-	-2.85	-	-	8.6	3.08	3.83	42.8		
Image: Section of the section of t				-BE-3	-	-2.27	-	-	16.7	3.24	3.83	42.6		
Image: book of the set of t				-BE-4	-	-0.95	-	-	14.7	3.74	3.83	36.8		
Image: black state				-BE-5	-	-8.92	-	-	0.0	3.44	3.83	39.4		
Image: Probability of the sector of the s				-BE-6	-	-1.01		-	11.3	3.81	3.83	33.2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-BE-7	-	-1.28	-	-	11.1	3.55	3.83	35.9		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-BE-8	-	-7.39	-	-	0.0	3.09	3.83	36.7		
Image: book of the set of the s				-BE-9	-	-3.46	-	-	13.9	3.11	3.83	39.5		
Image: Image				-BE-10	-	-2.42	-	-	10.4	3.69	3.82	34.4		
Image: second secon				Injection-BI-1		0.23								
Image: space of the system				-BI-2		6.74								
Image: second secon				-BI-3		6.60								
Image: Second secon				-BI-4		6.81		1						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-BI-5		6.67								
Image: Self of the self o				-BI-6		6.56		1						
Image: state of the state o				-BI-7		6.61								
Image: section of the section of th				Manifold	-	FPM								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Manifold Temp	-	deg F								
Image: Marking Sender (B) 39.5 46.1 Image: Marking Sender (C) Imad				Vacuum - MS										
Image: series of the series				Total Flow SCADA (BI)	39.5	46.1		1						
BV SCAPCA monitoring Calibration-tech of OVM Image: Calibration of tech of tech of OVM Image: Calibration of tech of tech of OVM Image: Calibration of tech o								1						
Image: series of the series			BV	SCAPCA monitoring	Calibration c	heck of OVM		1						
Image: solution of the solutio														
Image: Normal and the state of the state				Cal gas =	none	isobutylene								
Image: Sente to result to				Background=	none	ppm								
Total Flow SCADA (BE)=115.3 CFM M				Result=	none	ppm								
Image: Nurze in the second state of				Total Flow SCADA (BE)=	115.3	CFM								
Image: Second state of the second s				Kurz=										
Image: Second state of the second s														
Image: Second														
								1 1						
					1			1 1			1			

"-" = not measured.

APPENDIX B Product Vacuum Extraction

Product Vacuum Extraction (Extraction and Recovery Wells) WWP Central Steam Plant/Oil Spill Remediation Spokane, Washington Fourth Quarter 2021 (October to December)

		Estimated Rem	oved (Gallons)	Total Liquid Removed
Date	System	Product	Water	(Gallons)
	OR1	4.0	1.0	5.0
	OR3	5.0	10.0	15.0
10/7/2021	EW1	0.5	4.5	5.0
	EW2	2.0	13.0	15.0
	EW3	5.0	40.0	45.0
	OR1	0.0	0.0	0.0
	OR3	1.5	28.5	30.0
11/24/2021	EW1	0.0	5.0	5.0
	EW2	4.5	65.5	70.0
	EW3	7.0	63.0	70.0
Totals		29.5	230.5	260

APPENDIX C Chemical Analytical Laboratory Report

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-16077-1

Client Project/Site: Avista Steam Plant/02522-013-05

For:

.....Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: Scott Lathen

Candue Amington

Authorized for release by: 10/18/2021 10:12:42 AM

Randee Arrington, Lab Director (509)924-9200 Randee.Arrington@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	7
Chronicle	8
Certification Summary	9
Method Summary	10
Chain of Custody	11
Receipt Checklists	13

Job ID: 590-16077-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 10/7/2021 11:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 16.7° C.

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: DT:100721 (590-16077-1) and EW1:100721 (590-16077-2). The samples are considered acceptable since they were collected and submitted to the laboratory on the same day and there is evidence that the chilling process has begun.

General Chemistry

Method 1664A: The reference method requires samples to be preserved to a pH of 2 or less or analyzed within 4 hours of the collection time. The following samples were received at the laboratory with a pH of greater than 2: DT:100721 (590-16077-1) and EW1:100721 (590-16077-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Collected

Received

10/07/21 09:10 10/07/21 11:49

10/07/21 09:30 10/07/21 11:49

Matrix

Water

Water

Client Sample ID

DT:100721

EW1:100721

Lab Sample ID

590-16077-1

590-16077-2

4
5
8
9

Eurofins TestAmerica₁ Spoke021

Definitions/Glossary

Client: GeoEngineers Inc Project/Site: Avista Steam Plant/02522-013-05

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

DLC EDL LOD LOQ MCL MDA MDC MDL ML MPN MQL NC ND NEG POS PQL PRES QC RER

RL RPD

TEF

TEQ TNTC Job ID: 590-16077-1

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	5
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	

Client Sample Results

		Client S	Sample R	lesul	ts						
Client: GeoEngineers Inc Project/Site: Avista Steam Plant/02	Client: GeoEngineers Inc Project/Site: Avista Steam Plant/02522-013-05									2	
Client Sample ID: DT:10072 Date Collected: 10/07/21 09:10	21			Lab Sample ID: 590-16077-1 Matrix: Water							
Date Received: 10/07/21 11:49											
General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	5	
HEM (Oil & Grease)	ND		4.8		mg/L		10/16/21 14:17	10/16/21 16:42	1		
SGT-HEM (TPH)	ND		4.8		mg/L		10/16/21 14:17	10/16/21 16:42	1	6	
Client Sample ID: EW1:100 Date Collected: 10/07/21 09:30	721					L	ab Sample.	D: 590-16 Matrix	3077-2 : Water		
Date Received: 10/07/21 11:49										8	
General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac	9	
HEM (OII & Grease)			4.7		mg/L		10/16/21 14:17	10/16/21 16:42	1		
	ΝD		4.7		mg/∟		10/16/21 14:17	10/10/21 16:42	I		

Eurofins TestAmerica, Spokane

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 580-3707 Matrix: Water Analysis Batch: 370807	<mark>98/1-А</mark> мв	МВ								Clie	nt Samp	ole ID: Mo Prep Tyj Prep Ba	ethod be: To tch: 3	Blank tal/NA 70798
Analyte	Result	Qualifier		RL		RL I	Unit		D	Рг	repared	Analyz	ed	Dil Fac
HEM (Oil & Grease)	ND			5.5			mg/L		_	10/1	6/21 22:17	10/16/21	16:42	1
SGT-HEM (TPH)	ND			5.5		I	mg/L			10/1	6/21 22:17	10/16/21	16:42	1
Lab Sample ID: LCS 580-370 Matrix: Water Analysis Batch: 370807	798/2-A		Spike		LCS	LCS		Clie	ent	Sar	nple ID:	Lab Con Prep Tyj Prep Ba %Rec.	trol S be: To tch: 3	ample tal/NA 70798
Analyte			Added		Result	Quali	ifier	Unit		D	%Rec	Limits		
HEM (Oil & Grease)			44.3		37.9			mg/L			86	78 - 114		
SGT-HEM (TPH)			22.1		15.4			mg/L			70	64 - 132		
Lab Sample ID: LCSD 580-37 Matrix: Water Analysis Batch: 370807	0798/3-A		Queilles		1000	1.005	C	lient S	am	ple	ID: Lab	Control S Prep Tyj Prep Ba	Sampl be: To itch: 3	e Dup tal/NA 70798
Amelyte			Spike		LUSD	LUSL) :6:~~	l lució		_	9/ D aa	%Rec.	חחח	RPD
			Added		27.1	Qual	mer					79 11/	2	18
			-++.+ 		1/ 9			mg/L			67	64 122	2	24
			22.2		14.0			mg/∟			07	04 - 132	4	54

Matrix: Water

Matrix: Water

Lab Sample ID: 590-16077-1

Lab Sample ID: 590-16077-2

Client Sample ID: DT:100721 Date Collected: 10/07/21 09:10 Date Received: 10/07/21 11:49

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	1664A			1032 mL	1000 mL	370798	10/16/21 14:17	FCG	FGS SEA
Total/NA	Analysis	1664A		1			370807	10/16/21 16:42	FCG	FGS SEA

Lab Chronicle

Client Sample ID: EW1:100721 Date Collected: 10/07/21 09:30 Date Received: 10/07/21 11:49

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	1664A			1071 mL	1000 mL	370798	10/16/21 14:17	FCG	FGS SEA
Total/NA	Analysis	1664A		1			370807	10/16/21 16:42	FCG	FGS SEA

Laboratory References:

FGS SEA = Eurofins FGS, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Eurofins TestAmerica, Spokane

Accreditation/Certification Summary

Client: GeoEngineers Inc Project/Site: Avista Steam Plant/02522-013-05

Job ID: 590-16077-1

Laboratory: Eurofins FGS, Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

- Authority	Brogrom	Identification Number	Expiration Data		
Authority Alaska (LIST)	Flogram		. <u>Capitation Date</u> 02_10_22		
ANAB	Dept. of Defense FLAP	1 2236	01-19-22		
ANAB	Dept of Energy	1 2236	01-19-22		
ANAB	ISO/IEC 17025	L2236	01-19-22		
California	State	2954	06-30-21 *		
Florida	NELAP	E87575	06-30-22		
Kentucky (WW)	State	KY98042	12-31-21		
Louisiana	NELAP	03073	06-30-22		
Maine	State	2020012	05-02-22		
Montana (UST)	State	NA	04-14-27		
New Jersey	NELAP	WA014	06-30-22		
New York	NELAP	11662	04-01-22		
Oregon	NELAP	4167	07-07-22		
US Fish & Wildlife	US Federal Programs	058448	05-31-22		
USDA	US Federal Programs	P330-20-00031	02-10-23		
Washington	State	C788	07-13-22		
Wisconsin	State	399133460	08-31-22		

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Client: GeoEngineers Inc Project/Site: Avista Steam Plant/02522-013-05

Job ID: 590-16077-1

	5
	8
	9
1	0
	1

Method	Method Description	Protocol	Laboratory
1664A	HEM and SGT-HEM	1664A	FGS SEA
1664A	HEM and SGT-HEM (SPE)	1664A	FGS SEA

Protocol References:

1664A = EPA-821-98-002

Laboratory References:

FGS SEA = Eurofins FGS, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Chain of Custody Record 575314 seurofins

Address:

Environment Testing TestAmerica

11

	Regu	latory Pro	gram:	DW	NPDES	; [RCF	RA Other:					TAL	-8210
Client Contact	Project M	anager:	Jush	Lu		Site	Con	tact:	Da	ate:			COC No:	
Company Name: Geolevour, In	Tel/Email	406	239-73	10		Lab	Con	tact:	Ca	arrier:			of COCs	
Address: 523 E Sund for		Analysis T	urnaround	I Time		ГГ	X						Sampler:	
City/State/Zip: Section WA 992/2	CALEN	DAR DAYS	_, wo	RKING DAY	/S		S						For Lab Use Only:	
Phone: 507-363-3125	TA	T if different fr	om Below) <u>2</u>	215						Walk-in Client:	
Fax:		2	weeks	tol		22							Lab Sampling:	
Project Name: Avsh - Steamidant		1	week			513	- U							
Site: 2522-013-05		2	days			e l							Job / SDG No.:	
PO#		1	day				0							
			Sample	T		N Sa	5							
	Sample	Sample	Туре		# 05	Pare C	2							
Sample Identification	Date	Time	(C=Comp, G=Grab)	Matrix	Cont.	Filt Par							Sample Specific Notes:	
DT:100721	10/7/21	0910	G	W	2	Π	X							
FLITINDF21	10/2/21	1930	C-	W	,	П								
	1917-1	0150	0.	-	V	++				+				
						Ш								
							1							
	1					+	+			+ + + - 1			1	
				-		\vdash	+			+				_
						\vdash	+			+ ∥				
										590	0.16077	Chain of Cu	stody	
											1 1			
						\vdash	+							-
						Ц								
							1							
						\vdash	+							-
						4								_
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH;	6= Other _					0000		maybaas		framely		and longer than 1 menth)	
Are any samples from a listed EPA Hazardous Waste? Plea	se List anv f	EPA Waste	Codes for	the same	ole in the	e	amp	ie Disposal (A lee	may De as	Sesseu i	sampi	s are retain	led longer than 1 month)	
Comments Section if the lab is to dispose of the sample.														- 1
Non-Hazard Flammable Skin Irritant	Poison	В	Unkn	own				Return to Client	Dispo	sai by Lab		Archive for	Months	
Special Instructions/QC Requirements & Comments:														
Custedy Scole letest	Custody S	aal No :				_	-	/ Cooler Temp. (°C) Obs'd	11. 10	Corric	16.2	Therm ID No. 18 AAS	
Relinquished by:	Company			Date/Ti	me:	R	ecei	ed by / //	2, 3000.	Con	npany		Date/Time:	-
and the second s	Company.	GE	1	10/2/	21 11	30	11	AV_//	1	E	TA	Can	10/7/21 11:30	
Relinguished by:	Company	90	-	Date/Ti	me:	R	eceiv	ved by:		Con	npany:	PIU	Date/Time:	-
· · · · · · · · · · · · · · · · · · ·	Company.							/						
Relinguished by:	Company:			Date/Ti	me:	R	eceiv	ved in Laboratory by	r:	Con	npany:		Date/Time:	-
	1			1.		_								
Eurofins TestAmerica, Spokane

Chain of Custody Record

eurofins Environment Testing America

Spokane, WA 99206 Phone: 509-924-9200 Fax: 509-924-9290

11922 East 1st Ave

Client Information (Sub Contract Lab)	Sampler:	Sampler:				ab PM:						Carrier Tracking No(s):						COC No: 590-635	COC No: 590-6358 1		
Client Contact:	Phone:	Phone: E-M									State	State of Origin:					Page:				
Shipping/Receiving	I	Ran				Idee.Arrington@Eurofinset.com Wash					shington					Job #:	Page 1 of 1				
Eurofins Frontier Global Sciences LLC					State Program - Washington										590-160	590-16077-1					
Address: 5755 8th Street Fast	Due Date Reques 10/20/2021	Due Date Requested:				Analysis Requeste						sted	-				Preserva	Preservation Codes:			
City:	TAT Requested (o	TAT Requested (days):													1	A - HCL B - NaOH	M - Hexane N - None				
Tacoma																		C - Zn Ace	etate Acid	0 - AsNaO2 P - Na2O4S	
State, Zip: WA, 98424						N N			Ì									E - NaHS	24	Q - Na2SO3	
Phone:	PO #:				11	11-TS												G - Amchi	or	R - Na25203 S - H2SO4	
253-922-2310(Tel) 425-420-9210(Fax)	WO#-				- ĝ	P S P				i								H - Ascort	sic Acid	T - TSP Dodecahydrate U - Acetone	
an a n.					20	M ar							i					J - DI Wat	er	V - MCAA	
Yoject Name:	Project #:	Project #:			Ne.	B H (alne	L - EDA	L - EDA Other:	W - pH 4-5 Z - other (specify)	
Avista Steam Plant/02522-013-05	SSOW#:	SSOW#:			- Die	NOL											10.05	Other:			
					Lag of	DE E															
			Sample	Matrix	pere	44											a lu				
			Type	(₩≂water, S≃solid,	BIH	V166											N.				
Samala Mantification Client (D./Lah (D)	Sample Date	Sample	(C≍comp, G≂orab)	O=waste/oil.		664/											0.00	Sn	ecial Ir	structions/Note:	
sample identification - client to (cabito)		\sim	Preserva	ation Code:	۲XN	Ż		t									「「「「「」	1			
DT:100721 (590-18077-1)	10/7/21	09:10		Water	ΠŤ	X	in hereite				<u></u>	iji inigalijana	- and the second		1999/100 115		ſ,				
	10/7/21	Pacific 09:30	<u> </u>	Trator	╂╂╴	- <u> </u>		┝──┼			_	-									
EW1:100721 (590-16077-2)	10/7/21	Pacific	L	Water		X	ļ									_					
		1					-	tt													
					+		+	$ \vdash $											·		
												_			_						
						1	1				1									· · · · · · · · · · · · · · · · · · ·	
					╉╋╌						-										
				l		_	ļ								_						
											-										
lote: Since laboratory accreditations are subject to chappe. Eurofins TestAme	rica places the ownersh	ip of method, a	naivte & accre	ditation complia	ince up	on out :	subcon	tract la	boratori	ies. Thi	s samp	ole ship	ment	is forwa	arded i	inder i	chain-c	f-custody. If	the labor	atory does not currently	
naintain accreditation in the State of Origin listed above for analysis/tests/mat	ix being analyzed, the s	amples must be	e shipped bacl	k to the Eurofin	s TestA	merica Eurofin	aborat	ory or o	other in:	struction	ns will t	be prov	ided.	Any ch	anges	to acc	reditat	ion status sho	uld be b	rought to Eurofins	
estamenca attention inimiculately. In an requested accreditations are current	to date, return the aight		ooy allesing	to agita complici										6	- 1				44.000 4		
ossible Hazard Identification					S.								rsam	amples are retained longer than				than 1	month)		
Jnconfirmed	Primary Deliver	able Rank: 2	,		- 5	r pecial	Insta	uction	s/OC	Requi	remer	<i>Jispo</i> nts:	sai B	y Lab			Arc	nive For		MONINS	
Serverable Requested. 1, 11, 11, 17, Onior (Specify)	Thindry Beinter		-		Ĩ	p															
mpty Kit Relinquished by:		Date:			Time	:							Metho	d of Sh	ipmen	t:					
seliphuished by	Date Time	207.1	14.27	Company	Fru	Red	eived b	γ	1					D	ate/Tir		21	na	uc	Company	
elinguished by	Date/Time:	<i>au</i>	,	Company	/ 1 #	Rec	aived b	/	\	••••••••				D	ate/Tri	ne:			-12_	Company	
<i>V</i>																				ļ	
inquished by: Date/Time:			Company		Received by:							D	Date/Time:					Company			
Custody Seals Intact: Custody Seal No -		an airtean		l Charles an an	ana a	Cool	er Tem	peratu	e(s) °C	and Of	her Re	marks						Heritae		Anishi Anishin	
		94446.00						0	N		M	2	10	eneriji Lieter	538). S	<u> </u>	avys.		22(3) 		
				Page	120	f 14	,	1 10		7 -	<u> </u>	1								Ver: 06/08/20211 0/1	

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 16077 List Number: 1 Creator: Vaughan, Madison 1

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	False	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-16077-1

List Source: Eurofins TestAmerica, Spokane

Login Sample Receipt Checklist

Client: GeoEngineers Inc

Login Number: 16077 List Number: 2 Creator: Greene, Ashton R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	IR8 -0.3 / 0.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 590-16077-1

List Source: Eurofins FGS, Seattle

List Creation: 10/08/21 01:26 PM

