Dalton, Olmsted & Fuglevand, Inc. Environmental Consultants

10827 NE 68th St., Suite B • Kirkland, Washington 98033 Telephone (425) 827-4588 (FAX 739-9885)

NW0/61

July 31, 2004

Frank Frankini
Equity Office
Two North Riverside Plaza
Suite 2200
Chicago, IL 60606

Re: Summary of Ground-Water Sampling Events
Through May 2004
Buildings N (Aspenwood) & O (Magnolia) Properties
Bellevue, Washington

Dear Frank:

This report presents the results of our ground-water monitoring conducted in May 2003 and May 2004 at the Building N (Aspenwood) & Building O (Magnolia) Properties, Bellevue, Washington (Figure 1). Well locations are shown on Figure 2. Information on the general hydrogeology of the sites is presented in DOF (1998).

The ground-water monitoring was completed consistent with the Washington State Department of Ecology (Ecology) "No Further Action" (NFA) letter dated May 21, 1999. As stated in the letter:

"Confirmational monitoring of the permanent on-site wells BA-MW-1 and MW-K1 should be added to the on-going sampling schedule specified in the Ecology letter to Mr. Donald S. Jefferson of Spieker Properties, Inc. dated November 1, 1996, for the Bellefield Office Park at 11201 SE Eighth Street, Bellevue, Washington. The same set of analytical parameters specified in the 1996 letter is requested for the two additional wells."

The pertinent portion of the Ecology 1996 letter concerning monitoring at the Bellefield Office Park is presented below:

"Confirmational monitoring of the permanent on-site wells should therefore occur semi-annually for an additional three year period, then annually for another two years, at which time Ecology will review the information to ensure continued protection of human health and the environment. All monitoring wells should be tested for TPH and total arsenic, lead and zinc.

Frank Frankini – Equity Office Page 2 July 31, 2004

In addition, monitoring wells DW-2 and DW-5 should be analyzed for PAHs, while DW-3, DW-4, DW-5 and DW-6 should be tested for PCBs."

The results of the characterization ground-water sampling are presented in DOF (1998). The first monitoring event specified in the Building N and Building O NFA letter was completed in November 1999 (DOF 2000). Data collected through May 2004 are summarized in DOF(2002). The May 2004 sampling was the last sampling round required by the Ecology May 21, 1999 NFA letter.

SAMPLING PROCEDURES AND FIELD MEASUREMENTS

Ground-water samples were collected on May 15, 2003 and May 5, 2004. Low flow/low turbidity sampling procedures were used to collect the ground-water samples. Purging and sampling were completed using a peristaltic pump with a discharge rate of approximately 0.5 liters per minute. During purging, field measurements were made for depth to water, temperature, pH, specific conductivity and turbidity. Ground-water samples were collected after at least three casing volumes had been removed from the wells and the field parameters stabilized to within 10%.

Samples were collected directly into containers provided by the receiving laboratory (North Creek Analytical Inc.) that, in turn, were placed into chilled coolers for transport to the laboratory. Samples were delivered to the laboratory on the same day or the day following collection. Standard chain-of-custody procedures were used to document sampling handling.

GROUND-WATER QUALITY

In accordance with the requirements of the NFA letter, analyses were made for petroleum hydrocarbons (using Method WTPH-D-extended); total arsenic, lead and zinc; polycyclic aromatic hydrocarbons (PAHs); and PCBs. The results of the ground-water quality analyses required by the NFA letter are summarized in attached Table 1 along with the results of the previous analyses. Laboratory data sheets for the May 2003 and 2004 sampling rounds are presented in Attachment 1.

Total Petroleum Hydrocarbons. Diesel-range (C12 to C24) and heavy-oil (>C24) range hydrocarbons were not detected in any of the samples collected in May 2003 and May 2004.

Polychlorinated Biphenyls (PCBs). PCBs were not detected during any sampling round in any of the water samples from the wells.

Polynuclear Aromatic Hydrocarbons (PAHs). The PAH analytes detected are listed in Table 1. The 2003 and 2004 PAH concentrations are similar to concentrations detected in previous samples collected/analyzed between 1997 and 2002.

Frank Frankini – Equity Office Page 3 July 31, 2004

Total Metals. Analyses were made for total arsenic, lead and zinc. The results are summarized in Table 1.

- Total arsenic concentrations, when detected, were below 0.005 mg/l. The highest reported detection in the period 2003 to 2004 was 0.003 mg/l, measured in a sample from well MW-K1 in May 2003. The May 2003 and 2004 sample concentrations ranged between less than 0.001 mg/l and 0.003 mg/l.
- Total lead concentrations were measured at concentrations generally below 0.010 mg/l. In 2003 and 2004, the highest lead concentration (0.007 mg/l) was measured in the May 2003 sample from well BA-MW-1(R). The May 2003 and 2004 sample concentrations ranged between approximately 0.003 mg/l and 0.007 mg/l.
- Total zinc was not detected in any of the samples collected in 2003 and 2004.

COMPARISON WITH GROUND-WATER CLEANUP LEVELS

To provide perspective on the water quality data, the detected sample concentrations listed in Table 1 were compared to drinking water cleanup levels under the Model Toxics Control Act (Chapter 173-340 WAC). The maximum detected concentrations are summarized in Table 2 along with the cleanup levels. As shown in Table 2, all the maximum concentrations are below their respective cleanup levels except for diesel range hydrocarbon concentrations.

Samples collected in 2000 had diesel range hydrocarbon concentrations that ranged between 0.34 mg/l and 0.97 mg/l (Table 1). Three of the four samples exceeded the current cleanup level of 0.5 mg/l. However, diesel range hydrocarbons were not detected (reporting limit of 0.25 mg/l) in two samples collected before or five samples collected after year 2000. The results of the samples collected in the period between 2001 and 2004 indicate that the diesel range organics concentrations are below cleanup levels in the well samples.

SCHEDULED SAMPLING ROUNDS

The required monitoring rounds specified in Ecology's May 21, 1999 NFA letter have been completed and, with submittal of this report, reported to Ecology. The requirements of the NFA letter have been met and no additional sampling rounds are scheduled or anticipated.

REFERENCES

DOF (Dalton, Olmsted & Fuglevand, Inc.), 1998, Independent Remedial Action Report, Building N (Aspenwood) and Building O (Magnolia) Sites, Bellefield Office Park, Bellevue, Washington, October 1998.

Frank Frankini – Equity Office Page 4 July 31, 2004

DOF, 2000, Summary of 1999 Ground-Water Sampling Event, Building N (Aspenwood) & O (Magnolia) Properties, Bellevue, Washington, February 23, 2000.

DOF, 2002, Summary of Ground-Water Sampling Events Through January 2002, Building N (Aspenwood) & O (Magnolia) Properties, Bellevue, Washington, February 4, 2002.

DOF, 2003, Summayr of Ground-Water Sampling Events Through May 2002, Building N (Aspenwood) & O (Magnolia) Properties, Bellevue, Washington, April 23, 2003.

CLOSING

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of Spieker Properties, Inc. unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for our client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Please call if you have any questions.

Sincerely

Dalton, Olmsted & Fuglevand, Inc.

Matthew G. Dalton

Attachments

Sr. Consulting Hydrogeologist

Warter 6 //l

Table 1 - Summary of Water Quality Data

Table 2 – Summary of Detected Ground-Water Quality Concentrations

Matthew G. Dalton

Figure 1 - Site Vicinity Map Figure 2 - Well Location Map

Attachment 1. Laboratory Data Sheets - May 2003 and May 2004

Cc: Mark Furse – Piper Rudnick

Frank Frankini – Equity Office Page 5 July 31, 2004

ref: BldgN_Omonrpt04

TABLE 1 - Summary of Ground-Water Quality Data

Well No.	MW-K1	- MW-K1	MW-K1	MW-K1	MW-K1	MW-K1	- MW-K1	- MW-K1	- MW-K1
Screen Depth(ft)	3-13	3-13	3-13	3-13	3-13	3-13	* ±3-13 ±	3-13	3-13
Sample Date	12/18/1997	11/16/1999	5/4/2000	11/17/2000	6/7/2001	1/8/2002	5/30/2002	5/15/2003	5/5/2004
Field Parameters		The state of the s							
Water Level (feet)			+0.1	1.62	+0.1	1.8	0.1	0.05	0
ρH			5.9	6.2	5.8	5.9	6.1	6	6.3
Electrical Conductivity (uS)	-		983	812	1012	668	989	935	830
Temperature (C)			10	13	11.2	11	11	11	10.9
Turbidity (NTU)			7.1	2.2	3.2	15	4.8	2.1	3.2
Total Petroleum Hydrocarbons		<u> </u>			I			<u> </u>	
TPH as Diesel (mg/l)	<0.25	<0.25	0.34	0.8	<0.25	<0.25	<0.25	<0.25	<0.25
TPH as Oil (mg/l)	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75
PCBs (ug/l)			<u> </u>			-			
Aroclor 1016	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1221	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<1.0	<0.5	<0.5
Aroclor 1232	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1242	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1248	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1254	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1260	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1262	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	****	<0.5	<0.5
Aroclor 1268	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5		<0.5	<0.5
Polynuclear Aromatic Hydrocarbons (ug/l)	56726								
Acenaphthene	1,3	2.0	2.4	1.7	<5	<5	<5	1.7	1.8
Acenaphthylene	<1.0	<0.1	<0.1	<0.1	<5	<5	<5	<0.1	<0.1
Anthracene	<1.0	0.49	0.40	0.34	<5	<5	<5	0.42	0.33
Benzo(a)anthracene	<0,10	<0.1	<0.1	<0.1	<0.1	<0.3	<0.3	<0.1	<0.1
Benzo(a)pyrene	<0.10	<0.1	<0.1	<0.1	<0.1	<0.3	<0.3	<0.1	<0.1
Benzo(b)fluoranthene	<0,10	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.1
Benzo(ghi)perylene	<0,10	<0.1	<0.1	<0.1	<0.1	<0.3	<0.3	<0.1	<0.1
Benzo(k)fluoranthene	<0.10	<0.1	<0.1	<0.1	<0.1	<0.3	<0.3	<0.1	<0.1
Chrysene	<0.10	<0.1	<0.1	<0.1	<0.1	0.34	<0.2	<0.1	<0.1
Dibenzo(a,h)anthracene	<0,10	<0.1	<0.1	<0.1	<0.2	<0.3	<0.4	<0.1	<0.1
Fluoranthene	0.28	0.49	0.40	0.32	0.25	0.93	0.23	0.89	0.33
Fluorene	1,5	1.7	2.0	1.6	1.0	1.4	0.79	1.6	1.7
Indeno(1,2,3-cd)pyrene	<0,10	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1
Naphthalene	6,6	7.7	7.1	6.0	<5	5.6	<5	6.2	6.8
Phenanthrene	1,5	2.6	2.9	2.1	1.7	2.5	1	1.9	2.0
Pyrene	<1.0	0.44	0.32	0.28	0.21	0.92	<0.2	0.30	0.27
Total Metals (mg/l)	<u> </u>					·	·	,	
Arsenic	<0.001	0.0024	0.0021	0.0024	0.0026	0.0024	0.0025	0.0033	0.0022
Lead	0.0089	0.0094	0.0077	0.0035	0.0013	0.0129	0.0014	0.0023	0.0022
Zinc	<0.020	<0.010	<0.010	<0.010	<0.010	0.0194	<0.01	<0.01	<0.01

< = Not detected at indicated reporting limit

---- = Not analyzed

Well No.	BA-MW-1	BA-MW-1(R)	BA-MW-(R)	BA-MW-1(R)	EA-MW-1(R)	BA-MW-1(R) ₩	⊛BA-MW-1(R)	BA-MW-1(R)	BA-MW-1(R)
Screen Depth(ft)	2.5412.5	#.2.5-12:51b	2.5-12.5	··· 2.5-12.5	* 2.5-12.5	2.5-12.537 %		2.5-12.5	2.5-12.5
Sample Date	11/25/1996	11/16/1999	5/4/2000	11/17/2000	6/7/2001	A SECRETARIO CONTRACTOR DE LA CONTRACTOR D	5/30/2002	5/15/2003	5/5/2004
Field Parameters			en construir de la construir de	I excession of the control of the co					
Water Level (feet)			3.0	4.63	2.83	4.1	2.91	2.95	2.67
рН			6.3	6.5	6	6.5	6.5	6.3	6.6
Electrical Conductivity (uS)			1072	1193	1140	683	858	885	933
Temperature (C)			13.0	16.0	16.0	11.0	12.9	13.5	13.8
Turbidity (NTU)			2.2	0.9	1.4	5.0	2.1	1	3.2
Total Petroleum Hydrocarbons		I							
TPH as Diesel (mg/l)	<0.25	<0.50	0.96	0.57	<0.25	<0.25	<0.25	<0.25	<0.25
TPH as Oil (mg/l)	<0.75	<1.50	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75
PCBs (ug/l)				***********	· · · · · · · · · · · · · · · · · · ·				
Aroclor 1016	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1221	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<1.0	<0.5	<0.5
Aroclor 1232	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1242	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1248	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1254	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1260	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5
Aroclor 1262		<0.1	<0.1	<0.1	<0.5	<0.5		<0.5	<0.5
Aroclor 1268		<0.1	<0.1	<0.1	<0.5	<0.5	***	<0.5	<0.5
Polynuclear Aromatic Hydrocarbons (ug/l)									
Acenaphthene	<u> </u>	0.57	0.58	0.88	<5	<5	<5	1.2	0.58
Acenaphthylene		<0.20	<0.1	<0.1	< 5	<5	<5	<0.1	<0.1
Anthracene		<0.20	<0.1	<0.1	<5	<5	<5	0.12	<0.1
Benzo(a)anthracene		<0.20	<0.1	<0.1	<0.1	<0.3	<0.30	<0.1	<0.1
Benzo(a)pyrene		<0.20	<0.1	<0.1	<0.1	<0.3	<0.30	<0.1	<0.1
Benzo(b)fluoranthene	49344	<0.20	<0.1	<0.1	<0.1	<0.2	<0.20	<0.1	<0.1
Benzo(ghi)perylene		<0.20	<0.1	<0.1	<0.1	<0.3	<0.30	<0.1	<0.1
Benzo(k)fluoranthene		<0.20 <0.20	<0.1	<0.1	<0.1	<0.3	<0.30	<0.1	<0.1
Chrysene	-	I	<0.1	<0.1	<0.1	<0.2	<0.20	<0.1	<0.1
Dibenzo(a,h)anthracene Fluoranthene		<0.20 <0.20	<0.1 <0.1	<0.1 <0.1	<0.2 <0.1	<0.3 <0.2	<0.40	<0.1	<0.1
Fluoranthene		0.38	0.32	0.71	<0.1	0.62	<0.20 0.66	0.12 0.85	<0.1
Indeno(1,2,3-cd)pyrene		<0.20	<0.1	<0.1	<0.5	<0.2	<0.20	0.85	0.40 <0.1
Naphthalene		0.30	0.40	0.46	<5.2	<5.0	<0.20 <5	<0.1 <0.1	<0.1 <0.1
Phenanthrene		<0.20	<0.1	0.44	<0.5	<0.5	<0.50	0.44	0.19
Pyrene		<0.20	<0.1	<0.1	<0.5 <0.1	<0.3	<0.20	0.48	<0.19
Total Metals (mg/l)				1 3.1	-0.1	-7.2	-0.20	J	70.1
Arsenic	<0.004	0.0019	0.0028	<0.001	0.0012	<0.001	0.0011	<0.001	<0.001
Lead	0.0070	0.0078	0.0060	0.0016	0.0026	0.0063	0.0030	0.0074	0.0042
Zinc	<0.020	0.012	0.010	<0.010	0.013	0.014	0.010	<0.010	<0.010

< = Not detected at indicated reporting limit

---- = Not analyzed

Detected Constituent	Units	Highest Cor	ncentration	MTCA CUL			
		MW-K1	BA-MW-1®	Drinking Water	Method		
Diesel Range Organics	mg/l	0.8	0.96	0.5	A(1)		
Acenaphthene	ug/l	2.4	1.2	960	B(2)		
Anthracene	ug/l	0.49	0.12	2400	B(2)		
Chrysene	ug/l	0.0003(3)	<0.2	0.1	A(1)		
Fluroanthene	ug/l	0.89	0.12	640	B(2)		
Fluorene	ug/l	2.0	0.85	640	B(2)		
Naphthalene	ug/l	7.7	0.46	160	A(1)		
Phenanthene	ug/l	2.9	0.44	na			
Pyrene	ug/l	0.92	0.48	480	B(2)		
Arsenic	mg/l	0.003	0.003	0.005	A(1)		
Lead	mg/l	0.013	0.008	0.015	A(1)		
Zinc	mg/l	0.019	0.014	4800	B(2)		

Notes:

CUL - Cleanup Level

- na Not available
- (1) WAC 173-340-720
- (2) WAC 173-340-720 (CLARC 3.1)
- (3) The maximum (only) detected chrysene concentration (0.34 ug/l) was converted to benzo(a)pyrene equivalents consistent with WAC 173-340-708(8). A toxicity equivalency factor of 0.001 was used to make the conversion based on Preliminary Remediation Goals published by U.S. EPA Region 9.

Bellefield Office Park Bellevue Washington

VICINITY MAP

SPK-002 FIGURE 1 January 1998
Dalton, Olmsted & Fuglevand, Inc.

iMAP

The information included on this map has been compiled by King County staff from a variety of sources and is subject to change without notice. King County makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a survey product. King County shall not be liable for any general, special, indirect, incidental, or consequential damages including, but not limited to, lost revenues or lost profits resulting from the use or misuse of the information contained on this map. Any sale of this map or information on this map is prohibited except by written permission of King County.

ATTACHMENT 1 LABORATORY DATA SHEETS

BUILDING N & O PROPERTIES MAY 2003 and May 2004 GROUND-WATER SAMPLING

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

02 June 2003

Matthew Dalton Dalton, Olmsted and Fuglevand 10827 NE 68th St, Suite B Kirkland, WA/USA 98033

RE: Bellfield Office Park

Enclosed are the results of analyses for samples received by the laboratory on 05/16/03 10:05. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kortland Orr

PM

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

509.924.9200 tax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 **Bend** 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Project Number: SPK-004
Project Manager: Matthew Dalton

Reported:

06/02/03 19:34

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-K1	B3E0393-01	Water	05/15/03 13:00	05/16/03 10:05
BA-MW-1 (R)	B3E0393-02	Water	05/15/03 14:00	05/16/03 10:05

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. Environmental Laboratory Network

Page 1 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Project Number: SPK-004
Project Manager: Matthew Dalton

Reported: 06/02/03 19:34

Diesel Hydrocarbons (C12-C24) and Heavy Oil (C24-C36 by WTPH-D (extended) with Silica Gel Clean-up North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-K1 (B3E0393-01) Water Sam	pled: 05/15/03	13:00 Recei	ived: 05/16/	03 10:05					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	3E19005	05/19/03	05/20/03	WTPH-D	
Heavy Oil Range Hydrocarbons	ND	0.750	"	ıı	н .	"	91	**	
Surrogate: 2-FBP	85.0 %	50-150			,,	"	"	"	
Surrogate: Octacosane	58.0 %	50-150			"	"		"	
BA-MW-1 (R) (B3E0393-02) Water	Sampled: 05/2	15/03 14:00	Received:	05/16/03 10	:05				
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	3E19005	05/19/03	05/21/03	WTPH-D	
Heavy Oil Range Hydrocarbons	ND	0.750	"	н	**	"	ti	н	
Surrogate: 2-FBP	87.6 %	50-150			"	"	"	"	_
Surrogate: Octacosane	53.9 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. Environmental Laboratory Network

Page 2 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Project Number: SPK-004
Project Manager: Matthew Dalton

Reported:

06/02/03 19:34

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-K1 (B3E0393-01) Water Sampled:	05/15/03 1	3:00 Recei	ved: 05/16/	03 10:05					
Arsenic	0.00332	0.00100	mg/l	1	3E21026	05/21/03	05/22/03	EPA 6020	
Lead	0.00225	0.00100	н	"	11	**	11	**	
MW-K1 (B3E0393-01RE1) Water Samp	oled: 05/15/	03 13:00 R	Received: 0	5/16/03 10:0	5				
Zinc	ND	0.0100	mg/l	1	3E24011	05/21/03	05/28/03	EPA 6020	
BA-MW-1 (R) (B3E0393-02) Water San	pled: 05/1	5/03 14:00	Received:	05/16/03 10	:05				
Arsenic	ND	0.00100	mg/l	1	3E21026	05/21/03	05/22/03	EPA 6020	
Lead	0.00742	0.00100	**	"	**	н	Ħ	n	
BA-MW-1 (R) (B3E0393-02RE1) Water	Sampled:	05/15/03 14	:00 Recei	ved: 05/16/0	3 10:05				
Zinc	ND	0.0100	mg/l	1	3E24011	05/21/03	05/28/03	EPA 6020	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. Environmental Laboratory Network

Page 3 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Project Number: SPK-004
Project Manager: Matthew Dalton

Reported: 06/02/03 19:34

Polychlorinated Biphenyls by EPA Method 8082 North Creek Analytical - Bothell

		Reporting					·		
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-K1 (B3E0393-01) Water	Sampled: 05/15/03	13:00 Recei	ived: 05/16/	03 10:05					
Aroclor 1016	ND	0.500	ug/l	1	3E22007	05/22/03	05/23/03	EPA 8082	
Aroclor 1221	ND	0.500	**	Ħ	**	"	11	н	
Aroclor 1232	ND	0.500	n	11	11	n	"	**	
Aroclor 1242	ND	0.500	н	n	"	ni ni	"	н	
Aroclor 1248	ND	0.500	n	ır	**	**		п	
Aroclor 1254	ND	0.500	tt	ıı				н н	
Aroclor 1260	ND	0.500	н	#1	iı		u ·	ts	
Aroclor 1262	ND	0.500	11	tt	11	**	er	H.	
Aroclor 1268	ND	0.500	· .	11	15	"	11	.11	
Surrogate: TCX	78.6 %	29-130			"	"	"	"	
Surrogate: Decachlorobiphenyl	18.9 %	22-112			"	"	"	"	S-03
BA-MW-1 (R) (B3E0393-02) Wa	ter Sampled: 05/	15/03 14:00	Received:	05/16/03 10	:05				
Aroclor 1016	ND	0.500	ug/l	1	3E22007	05/22/03	05/23/03	EPA 8082	
Aroclor 1221	ND	0.500	п	**	n	**	"	11	
Aroclor 1232	ND	0.500	**	n	**	"	**	**	
Aroclor 1242	ND	0.500	**	Ħ	н	n	"	#	
Aroclor 1248	ND	0.500	"	۳.	11	11	"	#	
Aroclor 1254	ND	0.500	н.	**	"	n	"	н	
Aroclor 1260	ND	0.500	11	11	п	н	R	н	
Aroclor 1262	ND	0.500	n	tr.	п	u	"	11	
Aroclor 1268	ND	0.500	**	n	"	n	**	н	
Surrogate: TCX	81.4 %	29-130			"	"	"	и	
Surrogate: Decachlorobiphenyl	24.1 %	22-112			*	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. Environmental Laboratory Network

Page 4 of 13

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

425.420.9200 Tax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210

Section 1

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Project Number: SPK-004 Project Manager: Matthew Dalton

Reported: 06/02/03 19:34

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-K1 (B3E0393-01) Water	Sampled: 05/15/03	13:00 Recei	ved: 05/16/	03 10:05					
Acenaphthene	1.72	0.100	ug/l	1	3E21004	05/21/03	05/23/03	8270C-SIM	
Acenaphthylene	ND	0.100		"		"	Ħ		
Anthracene	0.415	0.100	**	11	"	. "	**	"	
Benzo (a) anthracene	ND	0.100	11	m m	**	"	**	π.	
Benzo (a) pyrene	ND	0.100		11	#	11	. 11	u,	
Benzo (b) fluoranthene	ND	0.100	. 11	11	. "	*11	Ħ	24	
Benzo (ghi) perylene	ND	0.100		"	н	**	**	41	
Benzo (k) fluoranthene	ND	0.100	*	11	"	n	**	**	
Chrysene	ND	0.100	"		и.	"	Ħ	11	
Dibenz (a,h) anthracene	ND	0.100	#	***	"	"	"	er e	
Fluoranthene	0.887	0.100	"	u	**	"	"	er	
Fluorene	1.55	0.100		¥	#	**	"	**	
Indeno (1,2,3-cd) pyrene	ND	0.100	. 11		**	**	11	**	
Naphthalene	6.15	0.100	**		**	**	n	tt	
Phenanthrene	1.87	0.100	**	m .	**	n	**	11	
Pyrene	0.302	0.100	"	"	**	′ "	***	"	
Surrogate: p-Terphenyl-d14	39.8 %	20-117	-		"	"	"	"	
BA-MW-1 (R) (B3E0393-02) V	Vater Sampled: 05/	15/03 14:00	Received:	05/16/03 10	:05				
Acenaphthene	1.17	0.100	ug/l	1	3E21004	05/21/03	05/23/03	8270C-SIM	
Acenaphthylene	ND	0.100	11	**	**	11	11	n	
Anthracene	0.115	0.100	"	"	19	u	π,	tt	
Benzo (a) anthracene	ND	0.100	**	. "	#	11	U .	**	
Benzo (a) pyrene	ND	0.100	**	. "	**	n	n	tt	
Benzo (b) fluoranthene	ND	0.100	. H	u	£Ę.	ij	n	Ħ	
Benzo (ghi) perylene	ND	0.100	tt	**	11	n	n	**	
Benzo (k) fluoranthene	ND	0.100	er e	n	н	n	п	**	
Chrysene	ND	0.100	er .	н	er e	н	Ħ	**	
Dibenz (a,h) anthracene	ND	0.100	11	##	***************************************	11	41	п	
Fluoranthene	0.115	0.100	11	н	п	н	**	**	
Fluorene	0.846	0.100	"	n	**	41	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.100	11	**	**	#1	11	**	
Naphthalene	ND	0.100	**	н	п	11	n	. "	
Phenanthrene	0.442	0.100	**	**	•	**	**	n	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 5 of 13

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Project Number: SPK-004

Reported: 06/02/03 19:34

Project Manager: Matthew Dalton

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring **North Creek Analytical - Bothell**

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DA MAN 1 (D) (D2E0202 02) Weter	Complete 05/15/	(02.14.00	Danimada	05/1//02 10.	05				

BA-MW-1 (R) (B3E0393-02) Water Sampled: 05/15/03 14:00 Received: 05/16/03 10:05

Surrogate: p-Terphenyl-d14

20-117 60.1 %

3E21004 05/21/03 05/23/03

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 6 of 13

425.420.9200 fax 425.420.9210

okane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906:9200 fax 503.906.9210

d 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Project Number: SPK-004
Project Manager: Matthew Dalton

Reported:

06/02/03 19:34

Diesel Hydrocarbons (C12-C24) and Heavy Oil (C24-C36 by WTPH-D (extended) with Silica Gel Clean-up - Quality Control

North Creek Analytical - Bothell

Reporting			Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Using EI	PA 3520C								
* .						. 1			
ND	0.250	mg/l							
ND	0.750	Ħ							
0.301		"	0.320		94.1	50-150			
0.134		"	0.160		83.8	50-150			
			-						
1.58	0.250	mg/l	2.00		79.0	50-150			
0.286		"	0.320		89.4	50-150			
1.63	0.250	mg/l	2.00		81.5	50-150	3.12	50	
0.291		"	0.320		90.9	50-150			
	ND ND 0.301 0.134 1.58 0.286	Result Limit Using EPA 3520C ND 0.250 ND 0.750 0.301 0.134 1.58 0.250 0.286 1.63 0.250	Result Limit Units Using EPA 3520C ND 0.250 mg/l ND 0.750 " 0.301 " " 0.134 " " 1.58 0.250 mg/l 0.286 " "	Result Limit Units Level Using EPA 3520C ND 0.250 mg/l ND 0.750 " 0.301 " 0.320 0.134 " 0.160 1.58 0.250 mg/l 2.00 0.286 " 0.320 1.63 0.250 mg/l 2.00	Result Limit Units Level Result Using EPA 3520C ND 0.250 mg/l nmg/l nmg/l	Result Limit Units Level Result %REC Using EPA 3520C ND 0.250 mg/l 0.301 " 0.320 94.1 94.1	Result Limit Units Level Result %REC Limits Using EPA 3520C Image: Control of the c	Result Limit Units Level Result %REC Limits RPD Using EPA 3520C ND 0.250 mg/l	Result Limit Units Level Result %REC Limits RPD Limit Using EPA 3520C Image: Control of the co

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. Environmental Laboratory Network

Page 7 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Project Number: SPK-004 Project Manager: Matthew Dalton

Reported: 06/02/03 19:34

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3E21026:	Prepared 05/21/03	Using E	PA 3020A								
Blank (3E21026-BI	.K1)										•
Arsenic		ND	0.00100	mg/l							
Lead		ND	0.00100	н							
LCS (3E21026-BS1)				•						
Arsenic		0.0821	0.00100	mg/l	0.0800		103	80-120			
Lead		0.0821	0.00100	**	0.0800		103	80-120			
LCS Dup (3E21026	-BSD1)										
Arsenic		0.0829	0.00100	mg/l	0.0800		104	80-120	0.970	20	
Lead		0.0833	0.00100	**	0.0800		104	80-120	1.45	20	
Matrix Spike (3E21	026-MS1)					Source: B	3E0407-0)2			
Arsenic		0.0860	0.00100	mg/l	0.0800	0.00216	105	75-125			
Lead		0.0965	0.00100	п	0.0800	0.0105	108	75-125			
Matrix Spike Dup (3E21026-MSD1)					Source: B	3E0407-0	02			
Arsenic		0.0855	0.00100	mg/l	0.0800	0.00216	104	75-125	0.583	20	
Lead		0.0954	0.00100	11	0.0800	0.0105	106	75-125	1.15	20	
Post Spike (3E2102	6-PS1)					Source: B	3E0407-0)2			
Arsenic		0.104	0.00100	mg/l	0.100	0.00216	102	75-125			
Lead		0.114	0.00100	**	0.100	0.0105	104	75-125			
Batch 3E24011:	Prepared 05/24/03	Using E	PA 3020A								
Blank (3E24011-BI	.K1)								•		
Zinc		ND	0.0100	mg/l							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 8 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 **Bend** 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Project Number: SPK-004
Project Manager: Matthew Dalton

Reported: 06/02/03 19:34

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3E24011:	Prepared 05/24/03	Using E	PA 3020A								
LCS (3E24011-BS1)										
Zinc		0.0794	0.0100	mg/l	0.0800		99.3	80-120			
LCS Dup (3E24011	-BSD1)										
Zinc		0.0828	0.0100	mg/l	0.0800		104	80-120	4.19	20	
Matrix Spike (3E24	1011-MS1)					Source: B	3E0550-0)1			
Zinc		0.0834	0.0100	mg/l	0.0800	0.00289	101	75-131			
Matrix Spike Dup ((3E24011-MSD1)					Source: B	3E0550-)1			
Zinc		0.0803	0.0100	mg/l	0.0800	0.00289	96.8	75-131	3.79	20	
Post Spike (3E2401	1-PS1)					Source: B	3E0550-0	01			
Zinc		0.0971	0.0100	mg/l	0.100	0.00289	94.2	75-125			
,											

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. Environmental Laboratory Network

Page 9 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Project Number: SPK-004
Project Manager: Matthew Dalton

Reported: 06/02/03 19:34

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control North Creek Analytical - Bothell

·			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3E22007:	Prepared 05/22/03	Using EP	A 3520C								
Blank (3E22007-BL	K1)					•					
Aroclor 1016	· · · · · · · · · · · · · · · · · · ·	ND	0.500	ug/l							
Aroclor 1221		ND	0.500	**							
Aroclor 1232		ND	0.500	**			•				
Aroclor 1242		ND	0.500	**							
Aroclor 1248		ND	0.500	"							
Aroclor 1254		ND	0.500	**							
Aroclor 1260		ND	0.500	**							
Aroclor 1262		ND	0.500	*1							
Aroclor 1268		ND	0.500	**				•			
Surrogate: TCX		0.188		"	0.200		94.0	29-130			
Surrogate: Decachloro	biphenyl	0.104		"	0.200		52.0	22-112			
LCS (3E22007-BS2))										
Aroclor 1016		2.44	0.500	ug/l	2.50		97.6	58-124			
Aroclor 1260		2.39	0.500	**	2.50		95.6	64-136			
Surrogate: TCX		0.200		"	0.200		100	29-130			
Surrogate: Decachloro	biphenyl	0.173		"	0.200		86.5	22-112			
LCS Dup (3E22007-	·BSD2)										
Aroclor 1016		2.48	0.500	ug/l	2.50		99.2	58-124	1.63	30	
Aroclor 1260		2.48	0.500	**	2.50		99.2	64-136	3.70	30	
Surrogate: TCX		0.206	***	"	0.200		103	29-130			· · ·
Surrogate: Decachloro	biphenyl	0.188		"	0.200		94.0	22-112			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. Environmental Laboratory Network

Page 10 of 13

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

%REC

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Spike

Project Number: SPK-004 Project Manager: Matthew Dalton

Reported: 06/02/03 19:34

RPD

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring - Quality Control North Creek Analytical - Bothell

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3E21004: Prepared 05/21/03	Using E	PA 3520C								
Blank (3E21004-BLK1)							-			
Acenaphthene	ND	0.100	ug/l							
Acenaphthylene	ND	0.100	#							
Anthracene	ND	0.100	**							
Benzo (a) anthracene	ND	0.100	**							
Benzo (a) pyrene	ND	0.100	н		•	-				
Benzo (b) fluoranthene	ND	0.100	Ħ							
Benzo (ghi) perylene	ND	0.100	ti							
Benzo (k) fluoranthene	ND	0.100	n							
Chrysene	ND	0.100	**							
Dibenz (a,h) anthracene	ND	0.100	11							
Fluoranthene	ND	0.100	"							
Fluorene	ND	0.100	н							
Indeno (1,2,3-cd) pyrene	ND	0.100	11							
Naphthalene	ND	0.100	tr.							
Phenanthrene	ND	0.100	11							
Pyrene	ND	0.100	IT							
Surrogate: p-Terphenyl-d14	49.9		"	50.0		99.8	20-117			
LCS (3E21004-BS1)										
Acenaphthene	6.26	0.100	ug/l	10.0		62.6	60-140			
Acenaphthylene	6.08	0.100	11	10.0		60.8	60-140			
Anthracene	8.44	0.100	11	10.0		84.4	60-140			
Benzo (a) anthracene	8.28	0.100	**	10.0		82.8	60-140			
Benzo (a) pyrene	8.46	0.100	tt .	10.0		84.6	60-140			
Benzo (b) fluoranthene	8.56	0.100	**	10.0		85.6	60-140			
Benzo (ghi) perylene	7.42	0.100	Ħ	10.0		74.2	60-140			
Benzo (k) fluoranthene	8.66	0.100		10.0		86.6	60-140			
Chrysene	7.30	0.100	**	10.0		73.0	54-105			
Dibenz (a,h) anthracene	6.42	0.100	n	10.0		64.2	60-140			
Fluoranthene	8.86	0.100	11	10.0		88.6	60-140			
Fluorene	5.90	0.100	11	10.0		59.0	50-120			
Indeno (1,2,3-cd) pyrene	7.74	0.100	"	10.0		77.4	34-110			
Naphthalene	9.10	0.100	**	10.0		91.0	60-140			
Phenanthrene	8.58	0.100	11	10.0		85.8	60-140			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 11 of 13

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 **Portland** 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Project Number: SPK-004
Project Manager: Matthew Dalton

Reported: 06/02/03 19:34

Polynuclear Aromatic Compounds by GC/MS with Selected Ion Monitoring - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3E21004:	Prepared 05/21/03	Using EF	PA 3520C								
LCS (3E21004-BS1)											
Pyrene		8.78	0.100	ug/I	10.0		87.8	60-140			
Surrogate: p-Terphenyl-	d14	47.9			50.0		95.8	20-117			
LCS Dup (3E21004-1	BSD1)										
Acenaphthene		6.14	0.100	ug/l	10.0		61.4	60-140	1.94	30	
Acenaphthylene		6.06	0.100	n .	10.0		60.6	60-140	0.329	30	
Anthracene		7.86	0.100	н	10.0		78.6	60-140	7.12	30	
Benzo (a) anthracene		8.76	0.100	n	10.0		87.6	60-140	5.63	30	
Benzo (a) pyrene		8.64	0.100	11	10.0		86.4	60-140	2.11	30	
Benzo (b) fluoranthene		8.82	0.100	**	10.0		88.2	60-140	2.99	30	
Benzo (ghi) perylene		7.80	0.100	** .	10.0		78.0	60-140	4.99	30	
Benzo (k) fluoranthene		8.92	0.100	11	10.0		89.2	60-140	2.96	30	
Chrysene		7.38	0.100	. "	10.0		73.8	54-105	1.09	27	
Dibenz (a,h) anthracene		6.66	0.100	11	10.0		66.6	60-140	3.67	30	
Fluoranthene		8.70	0.100	n	10.0		87.0	60-140	1.82	30	
Fluorene		6.02	0.100	**	10.0		60.2	50-120	2.01	36	
Indeno (1,2,3-cd) pyrene		8.06	0.100	**	10.0		80.6	34-110	4.05	31	
Naphthalene		8.96	0.100	**	10.0		89.6	60-140	1.55	30	
Phenanthrene		9.74	0.100	н	10.0		97.4	60-140	12.7	30	
Pyrene		9.12	0.100	**	10.0		91.2	60-140	3.80	30	
Surrogate: p-Terphenyl-	d14	46.9		"	50.0		93.8	20-117			<u> </u>

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. Environmental Laboratory Network

Page 12 of 13

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland WA/USA, 98033 Project: Bellfield Office Park

Project Number: SPK-004 Project Manager: Matthew Dalton Reported:

06/02/03 19:34

Notes and Definitions

The surrogate recovery for this sample is outside of established control limits. Review of associated QC indicates the recovery for S-03

this surrogate does not represent an out-of-control condition.

DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit ND

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 13 of 13

11/20 NOTH Creek PKWy IN, Suite 400, Bother, WA 98011-8244 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

(443) 420-9200 FAA 420-9210 (509) 924-9200 FAX 924-9290 (503) 906-9200

FAX 906-9210 (541) 383-9310 FAX 382-7588

Work Order # B25 1202

www.ncalabs.com		CHA	IN (OF (CUS	STO	DY	RE	PO	RT			Wo	rk O	rde	er#: 🖟	53	E 0307	>
CLIENT: MITON	ansies	e fuci	LEUP	aus		INVO	ICE TO:									TURN	IAROUNE	REQUEST in Busines	s Days*
REPORT TO: MATT Q									DOF	Kin	KLA	N)				STD.	5	c & Inorganic Analyses 4 3 2 [m Hydrocarbon Analyses	1 <1
PHONE:		FAX:				P.O. N	UMBER	₹:					***************************************			کا	4	3 2 1	<1
PROJECT NAME: CELLERY PROJECT NUMBER: SAC- SAMPLED BY: Was COX	EW OFFICE , 904 967	PANK	**	2,0			REQ	UESTI	ED AN	ALYSES						ST. *Turnan	ОТНІ	Please Specify less than standard may incur Ru.	sh Charges.
CLIENT SAMPLE IDENTIFICATION	SAMPLI DATE/TI	į.	WITH-4X	form A P	25.8 20.8	PATHS									:	MATRIX (W, S, O)	# OF CONT.	COMMENTS	NCA WO
1. MW-KI	5/15/03	1300	X	X	X	X										\forall	7		01
2. BA-MW-1(R)	1	1400	X	X	X	X											1		02
3.																•	•		
4.																			
5.																			
6.																			
7.																			
8.																·			
9.			<u> </u>													***			
10.																			
11.			ļ		-	ļ				ļ									
12.									<u> </u>								-		
13.																			
14.										ļ									
15.											L.		7	11					
PRINT NAME: W. CONSTI	<u> </u>	FIRM: 4	00F			TIME:		03	PRIN	T NAME	a Ca	ath	wax y M	ple mbli	2	FIRM:	NGA	Т	ATE: 5 / 14/0. IME: 10; 05
RELINQUISHED BY: PRINT NAME:		FIRM:				DATE: TIME:				EIVED BY	/:	/				FIRM:			ATE: IME:
ADDITIONAL REMARKS:	* WIA+-	DX WI	177+ .	SILICA	- હદા	- Clí	ANUA	<i>ɔ</i>										TEMP: 5.2°	PAGE OF

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

907.563.9200 fax 907.563.9210

20 May 2004

Matthew Dalton Dalton, Olmsted and Fuglevand 10827 NE 68th St, Suite B Kirkland, WA/USA 98033

RE: Bellfield Office Park

Enclosed are the results of analyses for samples received by the laboratory on 05/06/04 10:55. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Robert Greer For Kortland Orr

PM

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 509.906.9200
 fax 509.906.920

 Portland
 94033 Femin Avenue, Suite E 1, Bood, OR 97701 F711

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland, WA/USA 98033 Project: Bellfield Office Park

Project Number: SPK-004

Project Manager: Matthew Dalton

Reported:

05/20/04 09:06

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BA-MW-1(R)	B4E0218-01	Water	05/05/04 11:30	05/06/04 10:55
MW-K1	B4E0218-02	Water	05/05/04 13:30	05/06/04 10:55

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer For Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 1 of 12

425.420.9200 fax 425.420.9210 Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland, WA/USA 98033

Project: Bellfield Office Park

Project Number: SPK-004 Project Manager: Matthew Dalton

Reported: 05/20/04 09:06

Diesel Hydrocarbons (C12-C24) and Heavy Oil (C24-C36) by WTPH-D (extended) with Silica Gel Clean-up North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BA-MW-1(R) (B4E0218-01) Water	Sampled: 05/0	5/04 11:30	Received:	05/06/04 10:	:55				
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4E10015	05/10/04	05/11/04	WTPH-D	
Heavy Oil Range Hydrocarbons	ND	0.750	#	Ħ	*	#	n	Ħ	
Surrogate: 2-FBP	83.9 %	50-150			"	"	#	rr rr	
Surrogate: Octacosane	91.1 %	50-150			"	#	"	"	
MW-K1 (B4E0218-02) Water Sam	pled: 05/05/04	13:30 Rece	ived: 05/06/	04 10:55					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	4E10015	05/10/04	05/11/04	WTPH-D	
Heavy Oil Range Hydrocarbons	ND	0.750	**	Ħ	#	11	n	n .	
Surrogate: 2-FBP	73.3 %	50-150			"	"	"	"	
Surrogate: Octacosane	82.6 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer For Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 2 of 12

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 **Bend** 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

007 563 0200 for 007 563 0210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland, WA/USA 98033 Project: Bellfield Office Park

Project Number: SPK-004
Project Manager: Matthew Dalton

Reported:

05/20/04 09:06

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BA-MW-1(R) (B4E0218-01) Water	Sampled: 05/05	5/04 11:30	Received: ()5/06/04 10:	55				
1-Methylnaphthalene	0.154	0.100	ug/l	1	4E10014	05/10/04	05/13/04	EPA 8270C-SIM	
2-Methylnaphthalene	ND	0.100	н	н	#	н .	π	"	
Acenaphthene	0.577	0.100	Ħ	"	Ħ	11	π	Ħ	
Acenaphthylene	ND	0.100	Ħ	**	Ħ	tt	11	ti	
Anthracene	ND	0.100	77		#	11	Ħ	н	
Benzo (a) anthracene	ND	0.100	Ħ	п	"	Ħ	Ħ	Ħ	
Benzo (a) pyrene	ND	0.100		n	. 44	11	" .	11	
Benzo (b) fluoranthene	ND	0.100	"	#	**	я	**	Ħ	
Benzo (ghi) perylene	ND	0.100	Ħ	n	**	Ħ	**	Ħ	
Benzo (k) fluoranthene	ND	0.100	**	#	**	Ħ	11	Ħ	
Chrysene	ND	0.100	n	**	**	**	**	17	
Dibenz (a,h) anthracene	ND	0.100	**	"	11	π	"	11	
Fluoranthene	ND	0.100	11	**	87	п	Ħ	П	
Fluorene	0.404	0.100	н	er er	ντ	u	, 4	Ħ	
Indeno (1,2,3-cd) pyrene	ND	0.100	#	п	Ħ	u	Ħ	н	
Naphthalene	ND	0.100	"	п	11	n	17	Ħ	
Phenanthrene	0.192	0.100	u	п	n	п	π	Ħ	
Pyrene	ND	0.100	Ħ	"	n	"	TT .	п	
Surrogate: p-Terphenyl-d14	38.7 %	20-127			"	#	н	"	
MW-K1 (B4E0218-02) Water Sam	pled: 05/05/04 1.	3:30 Rece	ived: 05/06/	04 10:55					
1-Methylnaphthalene	1.86	0.100	ug/l	1	4E10014	05/10/04	05/13/04	EPA 8270C-SIM	
2-Methylnaphthalene	2.00	0.100	Ħ	**	#	**	"	n .	
Acenaphthene	1.84	0.100	. 4	11	ŧ	11	"	11	
Acenaphthylene	ND	0.100	н	**	n	**	**	ŧ	
Anthracene	0.330	0.100	H	**	Ħ	#	Ħ	tt	
Benzo (a) anthracene	ND	0.100	**	11	Ħ	ч	Ħ	**	
Benzo (a) pyrene	ND	0.100	н	"	11	"	n	**	
Benzo (b) fluoranthene	ND	0.100	erenen erene erene erene erene erene. H	e e conserva e e e e e e e e e e e e e e e e e e e	######################################		n en	n	
Benzo (ghi) perylene	ND	0.100	tt	11	п	"	Ħ	ii.	
Benzo (k) fluoranthene	ND	0.100	#	Ħ		11	11	T T	
Chrysene	ND	0.100	11	u	n	17	и	· п	
Dibenz (a,h) anthracene	ND	0.100	**	Ħ	п	**	11	11	
Fluoranthene	0.330	0.100	Ħ	п		u	"	н	
Fluorene	1.73	0.100		,,					

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer For Kortland Orr, PM

North Creek Analytical, Inc. Environmental Laboratory Network Page 3 of 12

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

007 562 0200 for 007 562 0210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland, WA/USA 98033 Project: Bellfield Office Park

Project Number: SPK-004
Project Manager: Matthew Dalton

Reported: 05/20/04 09:06

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM

North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-K1 (B4E0218-02) Water	Sampled: 05/05/04 1	3:30 Receiv	ed: 05/06/	04 10:55					
Indeno (1,2,3-cd) pyrene	ND	0.100	ug/l	1	4E10014	05/10/04	05/13/04	п	
Naphthalene	6.83	0.100	Ħ	#	H	tt	Ħ	u .	
Phenanthrene	1.98	0.100	tt	н	н	tf	11	tt	
Pyrene	0.272	0.100	#	Ħ	n	Ħ	*		
Surrogate: p-Terphenyl-d14	40.4 %	20-127			#	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer For Kortland Orr, PM

North Creek Analytical, Inc. Environmental Laboratory Network Page 4 of 12

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland, WA/USA 98033 Project: Bellfield Office Park

Project Number: SPK-004

Project Manager: Matthew Dalton

Reported:

05/20/04 09:06

Total Metals by EPA 6000/7000 Series Methods

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BA-MW-1(R) (B4E0218-01) Water	Sampled: 05/0	5/04 11:30	Received: (05/06/04 10:	:55				
Arsenic	ND	0.00100	mg/l	1	4E11035	05/11/04	05/12/04	EPA 6020	
Lead	0.00418	0.00100	n	tt tt	**	11	11	11	
Zinc	ND	0.0100	"	#	**	п	а	ŧi	
MW-K1 (B4E0218-02) Water San	pled: 05/05/04 1	3:30 Rece	ived: 05/06/	04 10:55					
Arsenic	0.00217	0.00100	mg/l	1	4E11035	05/11/04	05/12/04	EPA 6020	
Lead	0.00223	0.00100	11	. 11	#	**	н	π	
Zinc	ND	0.0100	ч	Ħ	#	"	4	tt	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer For Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 5 of 12

425.420.9200 fax 425.420.9210 **Spokane** East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland, WA/USA 98033

Project: Bellfield Office Park

Project Number: SPK-004

Project Manager: Matthew Dalton

Reported: 05/20/04 09:06

Polychlorinated Biphenyls by EPA Method 8082 North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BA-MW-1(R) (B4E0218-01) Water	Sampled: 05/0	5/04 11:30	Received: 0	5/06/04 10:	:55				
Aroclor 1016	ND	0.500	ug/l	1	4E10011	05/10/04	05/17/04	EPA 8082	
Aroclor 1221	ND	0.500	"	**	**	Ħ	"	ŧŧ	
Aroclor 1232	ND	0.500	"	•	#	tt	n .	#	
Aroclor 1242	ND	0.500	п	Ħ	**	Ħ	11	11	
Aroclor 1248	ND	0.500	n.	Ħ	**	π	Ħ	11	
Aroclor 1254	ND	0.500	"	H	4	11	н	н.	
Aroclor 1260	ND	0.500	**	•	"	u	u	и	
Aroclor 1262	ND	0.500	#	#	**	u	11	Ħ	
Aroclor 1268	ND	0.500	•	Ħ	n	Ħ	**	**	
Surrogate: TCX	45.7 %	25-129			n	"	"	"	
Surrogate: Decachlorobiphenyl	31.8 %	22-125		•	#	"	"	"	
MW-K1 (B4E0218-02) Water Sam	pled: 05/05/04	13:30 Rece	ived: 05/06/0	04 10:55					
Aroclor 1016	ND	0.500	ug/l	1	4E10011	05/10/04	05/17/04	EPA 8082	
Aroclor 1221	ND	0.500	#	"	н.	Ħ	n	**	
Aroclor 1232	ND	0.500	**	"	**	11	11	**	
Aroclor 1242	ND	0.500	"		**	#	"	**	
Aroclor 1248	ND	0.500	"		**	n	"	tt.	
Aroclor 1254	ND	0.500	"	11	**	n	"	#	
Aroclor 1260	ND	0.500	#	tt	44	n	"	n	
Aroclor 1262	ND	0.500	tt	. "	11	**	"	n	
Aroclor 1268	ND	0.500	н	**	Ħ	u	**	н	
Surrogate: TCX	47.9 %	25-129			"	"	"	"	
Surrogate: Decachlorobiphenyl	24.0 %	22-125			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer For Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 6 of 12

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland, WA/USA 98033

Project: Bellfield Office Park

Project Number: SPK-004 Project Manager: Matthew Dalton

Reported: 05/20/04 09:06

Diesel Hydrocarbons (C12-C24) and Heavy Oil (C24-C36) by WTPH-D (extended) with Silica Gel Clean-up -**Quality Control**

North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4E10015: Prepared 05/10/04	Using El	PA 3520C								
Blank (4E10015-BLK1)										
Diesel Range Hydrocarbons	ND	0.250	mg/l							
Heavy Oil Range Hydrocarbons	ND	0.750	11							
Surrogate: 2-FBP	0.297		"	0.320		92.8	50-150			
Surrogate: Octacosane	0.150		"	0.160		93.8	50-150			
LCS (4E10015-BS1)										
Diesel Range Hydrocarbons	1.67	0.250	mg/l	2.00		83.5	50-150			
Surrogate: 2-FBP	0.321		"	0.320		100	50-150		·	
LCS Dup (4E10015-BSD1)										
Diesel Range Hydrocarbons	1.65	0.250	mg/l	2.00		82.5	50-150	1.20	50	
Surrogate: 2-FBP	0.325		n	0.320		102	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer For Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 7 of 12

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

007 FC2 0200 for 007 FC2 0210

Dalton, Olmsted and Fuglevand 10827 NE 68th St, Suite B

Kirkland, WA/USA 98033

Project: Bellfield Office Park

Project Number: SPK-004

Reported:

Project Manager: Matthew Dalton

05/20/04 09:06

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM - Quality Control North Creek Analytical - Bothell

		_	Reporting		Spike	Source	ACRES	%REC	nnn	RPD	3.7
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 4E10014:	Prepared 05/10/04	Using E	PA 3520C								
Blank (4E10014-BL	K1)			-							
I-Methylnaphthalene		ND	0.100	ug/l							
2-Methylnaphthalene		ND	0.100	"							
Acenaphthene	,	ND	0.100	41							
Acenaphthylene		ND	0.100	n							
Anthracene		ND	0.100	11							
Benzo (a) anthracene		ND	0.100	88							
Benzo (a) pyrene		ND	0.100	#							
Benzo (b) fluoranthene		ND	0.100	**							
Benzo (ghi) perylene		ND	0.100	**							
Benzo (k) fluoranthene		ND	0.100	**							
Chrysene		ND	0.100	. #							
Dibenz (a,h) anthracene		ND	0.100	"							
Fluoranthene		ND	0.100	"							
Fluorene		ND	0.100	#							
Indeno (1,2,3-cd) pyren	e	ND	0.100	et							
Naphthalene		ND	0.100	er .							
Phenanthrene		ND	0.100	Ħ							
Pyrene		ND	0.100	tt							
Surrogate: p-Terphenyl	-d14	39.5		"	50.0		79.0	20-127			
LCS (4E10014-BS2))										
Acenaphthene		8.40	0.100	ug/l	10.0		84.0	34-120			
Acenaphthylene		9.30	0.100	**	10.0		93.0	36-120			
Anthracene		9.68	0.100	m	10.0		96.8	35-138			
Benzo (a) anthracene		8.72	0.100	Ħ	10.0		87.2	41-121			
Benzo (a) pyrene		8.50	0.100	**	10.0		85.0	33-125			
Benzo (b) fluoranthene		9.56	0.100	11	10.0		95.6	35-133			
Benzo (ghi) perylene		8.62	0.100	11	10.0		86.2	25-121			
Benzo (k) fluoranthene		7.56	0.100	tt	10.0		75.6	28-127			
Chrysene		8.48	0.100	Ħ	10.0		84.8	41-120			
Dibenz (a,h) anthracene		8.80	0.100	u	10.0		88.0	24-120			
Fluoranthene		9.32	0.100	Ħ	10.0		93.2	33-137			
Fluorene		9.48	0.100	Ħ	10.0		94.8	42-120			
Indeno (1,2,3-cd) pyren		9.06	0.100	11	10.0		90.6	26-122			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer For Kortland Orr, PM

North Creek Analytical, Inc. Environmental Laboratory Network Page 8 of 12

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland, WA/USA 98033

Project: Bellfield Office Park

Project Number: SPK-004 Project Manager: Matthew Dalton

Reported: 05/20/04 09:06

Polynuclear Aromatic Hydrocarbons by GC/MS-SIM - Quality Control North Creek Analytical - Bothell

		Reporting	٠.	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4E10014: Prepared 05/10/04	Using El	PA 3520C								
LCS (4E10014-BS2)										
Naphthalene	8.70	0.100	ug/l	10.0		87.0	38-120			
Phenanthrene	8.92	0.100	tt	10.0		89.2	31-127			
Pyrene	8.74	0.100	H	10.0		87.4	42-125			
Surrogate: p-Terphenyl-d14	43.1		"	50.0		86.2	20-127			
LCS Dup (4E10014-BSD2)										
Acenaphthene	7.38	0.100	ug/l	10.0		73.8	34-120	12.9	30	
Acenaphthylene	7.92	0.100	11	10.0		79.2	36-120	16.0	30	
Anthracene	9.00	0.100	Ħ	10.0		90.0	35-138	7.28	30	
Benzo (a) anthracene	8.40	0.100	п	10.0		84.0	41-121	3.74	30	
Benzo (a) pyrene	7.92	0.100	п	10.0		79.2	33-125	7.06	30	
Benzo (b) fluoranthene	7.58	0.100	п	10.0		75.8	35-133	23.1	30	
Benzo (ghi) perylene	8.02	0.100	п	10.0		80.2	25-121	7.21	30	
Benzo (k) fluoranthene	9.26	0.100	11	10.0		92.6	28-127	20.2	30	
Chrysene	8.06	0.100	tt	10.0		80.6	41-120	5.08	30	
Dibenz (a,h) anthracene	8.12	0.100	u	10.0		81.2	24-120	8.04	30	
Fluoranthene	8.90	0.100	**	10.0		89.0	33-137	4.61	30	
Fluorene	8.48	0.100	**	10.0		84.8	42-120	11.1	30	
Indeno (1,2,3-cd) pyrene	8.40	0.100	71	10.0		84.0	26-122	7.56	30	
Naphthalene	7.40	0.100	11	10.0		74.0	38-120	16.1	30	
Phenanthrene	8.40	0.100	Ħ	10.0		84.0	31-127	6.00	30	
Pyrene	8.46	0.100	Ħ	10.0		84.6	42-125	3.26	30	
Surrogate: p-Terphenyl-d14	41.2		"	50.0		82.4	20-127			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer For Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 9 of 12

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907-563-9200 fax 997-563-9210

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland, WA/USA 98033

Project: Bellfield Office Park

Project Number: SPK-004 Project Manager: Matthew Dalton Reported:

05/20/04 09:06

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

		Reporting			Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4E11035: Prepared 05/11/04		Using E	Using EPA 3020A								
Blank (4E11035-BL)	K1)										
Arsenic		ND	0.00100	mg/l							
Lead		ND	0.00100	ff							
Zinc		ND	0.0100	и .							
LCS (4E11035-BS1)											
Arsenic		0.0745	0.00100	mg/l	0.0800		93.1	80-120			
Lead		0.0794	0.00100	**	0.0800		99.3	80-120			
Zinc		0.0800	0.0100	**	0.0800		100	80-120			
LCS Dup (4E11035-)	BSD1)										
Arsenic		0.0758	0.00100	mg/l	0.0800		94.8	80-120	1.73	20	
Lead		0.0799	0.00100	**	0.0800		99.9	80-120	0.628	20	
Zinc		0.0822	0.0100	tt	0.0800		103	80-120	2.71	20	
Matrix Spike (4E110	35-MS1)					Source: B	4E0192-0	1			
Arsenic		0.0769	0.00100	mg/l	0.0800	0.000340	95.7	75-125			
Lead		0.0795	0.00100	**	0.0800	0.000760	98.4	75-125			
Zinc		0.0869	0.0100	11	0.0800	0.00779	98.9	75-131			
Matrix Spike Dup (4E11035-MSD1)					Source: B4E0192-01						
Arsenic		0.0770	0.00100	mg/l	0.0800	0.000340	95.8	75-125	0.130	20	
ead		0.0801	0.00100	**	0.0800	0.000760	99.2	75-125	0.752	20	
Zinc		0.0831	0.0100	Ħ	0.0800	0.00779	94.1	75-131	4.47	20	
Post Spike (4E11035-	PS1)					Source: B	4E0192-0	1			
Arsenic		0.0943		ug/ml	0.100	0.000340	94.0	75-125			
ead		0.0992		n	0.100	0.000760	98.4	75-125			
Zinc		0.104		11	0.100	0.00779	96.2	75-125			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer For Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 10 of 12

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588 Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland, WA/USA 98033

Project: Bellfield Office Park

Project Number: SPK-004 Project Manager: Matthew Dalton Reported:

05/20/04 09:06

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4E10011: Prepared 05/10/04		4 Using E	Using EPA 3520C								
Blank (4E10011-BI	.K1)										
Aroclor 1016		ND	0.500	ug/l							
Aroclor 1221		ND	0.500	11							
Aroclor 1232		ND	0.500	"							
Aroclor 1242		ND	0.500	#							
Aroclor 1248		ND	0.500	**							
Aroclor 1254		ND	0.500	n							
Aroclor 1260		ND	0.500	н .							
Aroclor 1262		ND	0.500	rt .							
Aroclor 1268		ND	0.500	"							
Surrogate: TCX		0.166		п	0.200		83.0	25-129			
Surrogate: Decachloro	biphenyl	0.195		"	0.200		97.5	22-125			
LCS (4E10011-BS2)										
Aroclor 1016		1.78	0.500	ug/l	2.50		71.2	57-123			
Aroclor 1260		1.99	0.500	**	2.50		79.6	56-125			
Surrogate: TCX		0.167		"	0.200		83.5	25-129			
Surrogate: Decachloro	biphenyl	0.180		#	0.200		90.0	22-125			
LCS Dup (4E10011	-BSD2)										
Aroclor 1016		1.77	0.500	ug/l	2.50		70.8	57-123	0.563	30	
Aroclor 1260		2.04	0.500	"	2.50		81.6	56-125	2.48	30	
Surrogate: TCX		0.164		n	0.200		82.0	25-129			
Surrogate: Decachloro	biphenyl	0.174		"	0.200		87.0	22-125			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer For Kortland Orr, PM

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 11 of 12

425.420.9200 fax 425.420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119

Dalton, Olmsted and Fuglevand

10827 NE 68th St, Suite B Kirkland, WA/USA 98033 Project: Bellfield Office Park

Project Number: SPK-004
Project Manager: Matthew Dalton

Reported:

05/20/04 09:06

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer For Kortland Orr, PM

North Creek Analytical, Inc. Environmental Laboratory Network

Page 12 of 12

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508
11115 E Montgomery Suite B, Spokane, WA 99206-4776
9405 SW Nimbus Ave, Beaverton, OR 97008-7132
20332 Empire Ave Suite F-1, Bend, OR 99701-5711
3209 Denali St, Anchorage, AK 99503-4030
97-334-9200
FAX 420-9210
509-924-9200
FAX 924-9290
503-906-9200
FAX 382-7588
907-334-9200
FAX 334-9210

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: DITTON OLMUTEN + FUGLEYAND TURNAROUND REQUEST CLIENT: in Business Days * REPORT TO: MATT DALTON DOF KINKLAND Organic & Inorganic Analyses ADDRESS: DOF WINKLAWD PHONE: FAX:
PROJECT NAME: BELIEFIELD OFFICE FANG P.O. NUMBER: Petroleum Hydrocarbon Analyses PRESERVATIVE PROJECT NUMBER: SPIC-OCA-REQUESTED ANALYSES OTHER Specify: SAMPLED BY: R. LOOPE * Turnaround Requests less than standard may incur Rush Charges. #OF SAMPLING MATRIX LOCATION / NCA CLIENT SAMPLE CONT. (W, S, O)COMMENTS WO ID **IDENTIFICATION** DATE/TIME 01 BA-MW-1 (R) 5/5/04 1130 6 02 1330 MW-KI DATE: 56604 RECEIVED BY: COLUMN WEAVER DATE: 5/6/04 PRINT NAME: COLCHE WEAVER FIRM: NCA PRINT NAME: TIME: 1055 FIRM: TIME: IO. RELEASED BY: RECEIVED BY: DATE: DATE: TIME: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM: ADDITIONAL REMARKS: TEMP: WITH- DX WITH JILICA GEL CHAND 3.70 PAGE OF COC REV 1/03