

March 2, 2023 Project No. M0747.01.014

Michael R. Warfel, LG, LHG, RG Washington State Department of Ecology 15700 Dayton Avenue N Shoreline, Washington 98133

Re: Compliance Groundwater Monitoring Event North Cascade Ford Property, Sedro-Woolley, Washington VCP Number: NW3031; CSID: 12075; FSID: 58313566

Dear Michael Warfel:

In November 2022, on behalf of VSF Properties, LLC, Maul Foster & Alongi, Inc. (MFA), conducted monitoring well sampling activities at the North Cascade Ford property, located at 116 W Ferry Street in Sedro-Woolley, Washington (the Property) (see Figure 1). The North Cascade Ford Site (the Site) includes the Property and a portion of the adjacent property to the north, owned by the BNSF Railway (see Figures 1 and 2).

Activities were conducted consistent with the Confirmation Groundwater Monitoring Plan (CGMP) described in environmental covenant no. 202210190027 recorded in Skagit County (Environmental Covenant), the groundwater compliance monitoring plan (CMP) (MFA 2020a), the addendum to the groundwater CMP (MFA 2020c), and the Washington State Model Toxics Control Act (MTCA; Washington Administrative Code 173-340-410(b)) requirements for performance monitoring.

BACKGROUND

Previous investigations identified environmental impacts in three areas of the Site, referred to as areas of concern (AOCs) 1 through 3 (MFA 2020b). In March 2020, a remedial action was completed in AOCs 1 through 3 (MFA 2020b). Following completion of the remedial action, the groundwater CMP and an associated addendum were developed in coordination with the Washington State Department of Ecology (Ecology) to guide performance groundwater monitoring at the Site (MFA 2020a,c). Per Washington Administrative Code 173-340(b), the purpose of performance monitoring is to confirm that a remedial action has attained cleanup levels (CULs). Eight previous quarterly compliance groundwater monitoring events related to the March 2020 remedial action were conducted between September 2020 and June 2022 (MFA 2020d; 2021a,b,c,d; 2022a,b,c).

Chemicals of concern in AOCs 1 through 3 include diesel-range organics (DRO), lube-oil-range organics (ORO), gasoline-range organics, BTEX constituents (benzene, toluene,

ethylbenzene, and total xylenes), and/or total naphthalenes. Groundwater compliance monitoring is limited to DRO and ORO following Ecology approval on September 9, 2021 and the CGMP (Ecology 2021a). Table 1 shows historical groundwater analytical results associated with monitoring wells in AOCs 1 and 2 and reconnaissance groundwater samples collected in AOC 3 prior to initiating compliance monitoring in September 2020.

On September 9, 2021, Ecology approved the reduction of monitoring for constituents at the Site (i.e., limiting monitoring to DRO and ORO), as well as the removal of monitoring wells MW06 and MW12 from the compliance monitoring network (Ecology 2021a).

On December 10, 2021, Ecology requested additional analysis for two monitoring wells—1,4dichlorobenzene for MW09 and naphthalenes for MW10—due to previous detections in those areas of the Site above the vapor intrusion screening level (Ecology 2021b). These additional constituents were not detected in groundwater analyses conducted during the December 2021 monitoring event at MW09 and MW10. On March 15, 2022, Ecology concurred with eliminating sampling for naphthalenes and 1,4-dichlorobenzene for future groundwater monitoring events (Ecology 2022a).

On April 6, 2022, Ecology approved the removal of monitoring well MW11 from the compliance monitoring network (Ecology 2022b).

On January 4, 2023, Ecology presented its No Further Action (NFA) opinion for the Property contingent upon the continued performance and effectiveness of the post-cleanup controls and monitoring specified in the NFA letter and the environmental covenant no. 202210190027 for institutional controls (Ecology 2023).

FIELD AND ANALYTICAL METHODS

All November 2022 groundwater monitoring activities were conducted consistent with the CGMP; the groundwater CMP (MFA 2020a), the addendum to the groundwater CMP (MFA 2020c), and Ecology-approved modifications to the CMP provided via email (Ecology 2021a,b; 2022a,b). Compliance monitoring well locations are shown on Figure 2.

Potentiometric Surface Evaluation

On November 16, 2022, MFA measured static water levels in the compliance monitoring wells (see Table 2). A potentiometric surface map is provided as Figure 3. The estimated potentiometric surface contours indicate that shallow groundwater at the Site is variable and show groundwater migration to the south and southwest with some localized variations, consistent with previous observations. Water levels measured during this event were generally 2.2 feet lower than levels in the June 2022 monitoring event. The average height of the water table in November 2022 was approximately 1.6 feet higher than in September 2021 and 3.1 feet lower than in December 2021.

Monitoring Well Sampling

On November 16, 2022, MFA collected seven groundwater samples from six compliance monitoring wells on the Property (MW01R, MW02R, MW04, MW07, MW09, and MW10), including a field duplicate sample from monitoring well MW10. Water quality field parameters (temperature, specific conductance, pH, dissolved oxygen, oxygen reduction potential, and turbidity) were stabilized before sample collection. During purging, the flow rates, water levels, and water quality parameters were recorded on field sampling data sheets (see Attachment A). Under standard chain-of-custody procedures, groundwater samples were submitted to Friedman & Bruya, Inc., of Seattle, Washington, for laboratory analysis.

RESULTS

The laboratory analytical report is provided as Attachment B, and analytical data are presented in Table 3. Exceedances of the MTCA Method A CUL for DRO and heavy oils (the sum of DRO and ORO) are shown on Figure 4, and site trends for DRO, ORO, and heavy oils are presented in Figures 5, 6, and 7, respectively. Figure 8 shows the site trends for heavy oils from 2019 to 2022 to more clearly depict concentration trends that have occurred since the 2020 remedial action. Analytical data and the laboratory's internal quality assurance and quality control data were reviewed to assess whether they met project-specific data quality objectives. A data validation memorandum summarizing data evaluation procedures, data usability, and deviations from specific field and/or laboratory methods is included as Attachment C. The data, with the appropriate data qualifiers assigned, are considered acceptable for their intended use.

All groundwater samples were analyzed for DRO and ORO, and heavy oils were calculated by summing DRO and ORO concentrations (one-half the method reporting limit is used for non-detect values) for comparison to the DRO MTCA Method A CUL.

AOC 1: Former Auto Repair Shop

Three groundwater samples were collected from AOC 1 monitoring wells: one each from MW01R, MW07, and MW09.

All detections of DRO and ORO, as well as the sum of heavy oils in AOC 1, were below their respective MTCA Method A CULs.

AOC 2: Former Underground Storage Tanks

Four groundwater samples, including one field duplicate at MW10, were collected from AOC 2 monitoring wells MW02R, MW04, and MW10.

Detections of DRO and ORO in groundwater samples as well as the sum of heavy oils at MW04, and MW10 were below their respective MTCA Method A CULs. ORO was not

detected at MW02R; however, DRO and the sum of heavy oils exceeded the MTCA Method A CUL for DRO at 930 ug/L and 1,055 ug/L, respectively, assuming an ORO detection of half the reporting limit to calculate the heavy oils.

Variable, localized components of flow have been observed at monitoring wells within AOC 2 (MW10, MW02R, and MW04) since monitoring began in September 2020. This is likely due to the different hydraulic conductivity of the coarser grained backfill material used during the 2016 interim remedial action relative to the finer grained surrounding native material. The elevated detection of DRO at MW02R observed during this event is likely the result of a rising water table mobilizing residual localized petroleum product present in the vadose zone as precipitation events increase in the region through the coarser grained material surrounding MW02R, consistent with similar concentrations observed during early winter events (e.g., December 2020 and 2021).

AOC 3: Former Coal Storage Sheds/Possible Buried Object

Ecology approved the removal of MW11 from the compliance monitoring network (Ecology 2022b). Therefore, no groundwater samples were collected from AOC 3.

SUMMARY

Results from the groundwater monitoring indicate the following:

- AOC 1
 - No detections of DRO, ORO, or heavy oils exceeded their respective MTCA Method A CULs.
 - MW01R has had nine consecutive monitoring events of DRO, ORO, and heavy oils concentrations below their respective MTCA Method A CULs.
 - MW07 has had five consecutive monitoring events of DRO, ORO, and heavy oils concentrations below their respective MTCA Method A CULs.
 - MW09 has had four consecutive monitoring events of DRO, ORO, and heavy oils concentrations below their respective MTCA Method A CULs.
- AOC 2
 - No detections of DRO or ORO or heavy oils exceeded their respective MTCA Method A CULs at MW04 and MW10.
 - DRO as well as the sum of heavy oils (DRO and ORO) exceeded the MTCA Method A CUL for DRO in MW02R.

- MW04 has had ten consecutive monitoring events of DRO, ORO, and heavy oils concentrations below their respective MTCA Method A CULs.
- MW10 has had two consecutive monitoring events of DRO, ORO, and heavy oils concentrations below their respective MTCA Method A CULs.
- AOC 3
 - Compliance monitoring has been discontinued in this AOC.

Recommendations

Nine monitoring events have been completed at the Property since the remedial action completed in spring 2020 in accordance with the CGMP, CMP, and subsequent revisions approved by Ecology (MFA 2020a,b; Ecology 2021a,b, 2022a,b). Trend plots show heavy oil concentrations are generally decreasing and/or stabilizing below the Method A CUL for DRO in monitoring wells during the compliance monitoring period (see Figures 5 through 8). Additionally, free product has not been observed since quarterly compliance groundwater monitoring began in September 2020. CULs have been met at all monitoring network wells for more than four consecutive events except at MW02R and MW10; however consistent with the monitoring frequency and requirements outlined in the environmental covenant no. 202210190027, the next monitoring event is planned in 15-months in February 2024.

This sampling frequency will continue to allow assessment of seasonal trends at the Property and monitor concentrations until compliance with CULs at all monitoring wells is achieved. It is anticipated that additional modifications to the groundwater CMP would be assessed during the first periodic review in 2027.

If you have any questions, please feel free to contact us.

Sincerely,

Maul Foster & Alongi, Inc.

03.02.2023

Carolyn R. Wise, LHG Project Hydrogeologist

Christian Sifford, GIT Staff Geologist

- Attachments: Limitations References Tables Figures A—Water Field Sampling Data Sheets B—Analytical Laboratory Report C—Data Validation Memorandum
- cc: Larry Setchell, Setchell NW Legal Services, P.S. Holly Stafford, Chmelik, Sitkin & Davis, P.S.

Project No. M0747.01.014

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report. Ecology. 2021a. M. Warfel, Washington State Department of Ecology. VCP NW3031 North Cascade Ford, Sedro-Woolley, WA. Email to C. Wise, Maul Foster & Alongi, Inc. September 9.

Ecology. 2021b. M. Warfel, Washington State Department of Ecology. VSF Sedro-Woolleyfifth quarterly GW Report (VCP: NW3031). Email to C. Wise, Maul Foster & Alongi, Inc. December 10.

Ecology. 2022a. M. Warfel, Washington State Department of Ecology. VCP NW3031 North Cascade Ford, Sedro-Woolley, WA. Email to C. Wise, Maul Foster & Alongi, Inc. March 15.

Ecology. 2022b. M. Warfel, Washington State Department of Ecology. VSF Sedro-Woolley – Seventh Quarterly GW Report (VCP: NW3031). Email to C. Wise, Maul Foster & Alongi, Inc. April 6.

Ecology. 2023. M. Warfel, Washington State Department of Ecology. No Further Action opinion for the following Property associated with a contaminated site; Site Name: North Cascade Ford; Property Address: 116 W. Ferry Street, Sedro Woolley, Washington, 98284; Facility/Site No.: 58313566; Cleanup Site No.: 12075; VCP Project No.: NW3031. Letter to D. Sims, VSF Properties, LLC. January 4.

MFA. 2016. Interim remedial action completion report, North Cascade Ford property, Sedro- Woolley, Washington. Maul Foster & Alongi, Inc., Bellingham, Washington. November 8.

MFA. 2020a. Groundwater Compliance Monitoring Plan, North Cascade Ford Property, Sedro-Woolley, Washington. Prepared for VSF Properties, LLC. Maul Foster & Alongi, Inc., Bellingham, Washington. July 8.

MFA. 2020b. Remedial Action Completion Report, North Cascade Ford Property, Sedro-Woolley, Washington. Prepared for VSF Properties, LLC. Maul Foster & Alongi, Inc., Bellingham, Washington. July 13.

MFA. 2020c. J. Maul, Maul Foster & Alongi, Inc. Addendum to Groundwater Compliance Monitoring Plan, North Cascade Ford Property, 116 W. Ferry Street, Sedro-Woolley, Washington, Facility Site ID: 58313566; Cleanup Site ID: 12075. Memorandum to M. Warfel, Washington State Department of Ecology. August 10.

MFA. 2020d. J. Maul and C. Wise, Maul Foster & Alongi, Inc. *Monitoring Well Installation and First Quarterly Compliance Groundwater Monitoring Event, North Cascade Ford Property, Sedro-Woolley, Washington, VCP Number: NW3031, CSID: 12075, FSID: 58313566.* Letter to M. Warfel, Washington State Department of Ecology. November 24.

MFA. 2021a. J. Maul and C. Wise, Maul Foster & Alongi, Inc. Second Quarterly Compliance Groundwater Monitoring Event, North Cascade Ford Property, Sedro-Woolley, Washington, VCP Number: NW3031, CSID: 12075, FSID: 58313566. Letter to M. Warfel, Washington State Department of Ecology. January 26. MFA. 2021b. M. Murray and C. Wise, Maul Foster & Alongi, Inc. *Third Quarterly Compliance Groundwater Monitoring Event, North Cascade Ford Property, Sedro-Woolley, Washington, VCP Number: NW3031, CSID: 12075, FSID: 58313566.* Letter to M. Warfel, Washington State Department of Ecology. April 8.

MFA. 2021c. M. Murray and C. Wise, Maul Foster & Alongi, Inc. Fourth Quarterly Compliance Groundwater Monitoring Event, North Cascade Ford Property, Sedro-Woolley, Washington, VCP Number: NW3031, CSID: 12075, FSID: 58313566. Letter to M. Warfel, Washington State Department of Ecology. August 9.

MFA. 2021d. C. Wise and A. Bixby, Maul Foster & Alongi, Inc. Fifth Quarterly Compliance Groundwater Monitoring Event, North Cascade Ford Property, Sedro-Woolley, Washington, VCP Number: NW3031, CSID: 12075, FSID: 58313566. Letter to M. Warfel, Washington State Department of Ecology. November 11.

MFA. 2022a. C. Wise and A. Bixby, Maul Foster & Alongi, Inc. Sixth Quarterly Compliance Groundwater Monitoring Event, North Cascade Ford Property, Sedro-Woolley, Washington, VCP Number: NW3031, CSID: 12075, FSID: 58313566. Letter to M. Warfel, Washington State Department of Ecology. January 25.

MFA. 2022b. C. Wise and C. Sifford, Maul Foster & Alongi, Inc. Seventh Quarterly Compliance Groundwater Monitoring Event, North Cascade Ford Property, Sedro-Woolley, Washington, VCP Number: NW3031, CSID: 12075, FSID: 58313566. Letter to M. Warfel, Washington State Department of Ecology. April 4.

MFA. 2022c. C. Wise and C. Sifford, Maul Foster & Alongi, Inc. Eighth Quarterly Compliance Groundwater Monitoring Event, North Cascade Ford Property, Sedro-Woolley, Washington, VCP Number: NW3031, CSID: 12075, FSID: 58313566. Letter to M. Warfel, Washington State Department of Ecology. September 8.

ZGA. 2017. Draft remedial action report, North Cascade Ford, 116 West Ferry Street, Sedro-Woolley, Skagit County, Washington. Prepared for 116 West Ferry Street, LLC, and Lane Properties. Zipper Geo Associates, LLC, Lynnwood, Washington. September 1.

TABLES

AOC	Location	Sample Name	Collection Date	Collection Depth (ft bgs) ^(a)	Benzene	Ethylbenzene	Toluene	Xylenes ^(b)	Gasoline- Range Organics	Diesel-Range Organics	Lube-Oil- Range Organics	Total Naphthalenes
			٨	ATCA Method A CUL:	5	700	1,000	1,000	800	500	500	160
		MW1-W-8.5	05/15/0010	5 (1 12 44	0.3	0.2 U	0.2 U	0.4 U	400	1,300	240	10.53
		FIELD DUPLICATE	05/15/2012	5.61-13.44	0.3	0.2 U	0.2 U	0.4 U	380	1,200	220	11.36
		MW01-GW-20121019	10/09/2012	9.87-13.44						1,800	490	11.18
		MW01	0.4/10/001.4	NI 4	0.2 U	0.2 U	0.2 U	0.4 U	250 U	1,700	870	
		MWDUP	04/10/2014	NM	0.2 U	0.2 U	0.2 U	0.4 U	250 U	1,600	930	
		MW01-GW-140618	0.4.410.4001.4	(00, 10, 45						1,400	310	
		FD-GW-140618	06/18/2014	6.09-13.45						1,700	350	
		MW01-GW-091014	00/10/001/	7 7 4 10 4 4						1,300	300	
	MW01	FD-091014	09/10/2014	7.74-13.44						1,400	390	
		MW01-GW-121014	10/10/001/	(00 10 //						2,400	1,400	
		FD-121014	12/10/2014	6.08-13.46						1,900	1,200	
		MW01-GW-112816	11/00/001/	(10 10 (0						1,300	610 U	
		MWDUP-GW-112816	11/28/2016	6.12-13.43						1,300	590 U	
1		MW01-GW-042617	0.1/0/10017	5 05 10 10					100 U	620	510 J	
		MWDUP-GW-042617	04/26/2017	5.35-13.40					100 U	560	410 U	
		MW01-GW-101718	10/17/2018	9.70-13.40					500 U	900	1,500	
		MW01-GW-032819	03/28/2019	6.82-13.41					370 J	2,400	2,200	
	111/0E	MW05-GW-042617	04/26/2017	5.76-10.60					490	1,300	1,100	
	MW05	MW05-GW-032819	03/28/2019	6.93-10.63					600 J	1,500	460	
		MW07-GW-042617	04/26/2017	7.85-19.74					100 U	260 U	410 U	
	MW07	MW07-GW-101718	10/17/2018	9.25-19.74					100 U	250 U	400 U	
		MW07-GW-032819	03/28/2019	7.95-19.74					100 U	250 U	410 U	
		MW08-GW-042617	04/26/2017	7.38-15.80					400 U	1,000	690	
		MW08-GW-101718	10/17/0010	10.05.15.00					100 U	700	580	
	MW08	MWDUP-GW-101718	10/17/2018	10.05-15.80					500 U	780	970	
		MW08-GW-032819	02/02/0210	(05 15 00					100 U	950	460	
		MWDUP-GW-032819	03/28/2019	6.85-15.82					100 U	1,000	510	
		MW2-W-9	05/16/2012	6.65-13.85	0.2 U	0.2 U	0.2 U	0.4 U	250 U	1,900	240	ND
		MW02-GW-20121019	10/09/2012	9.29-13.84						690	200 U	
	MW02	MW02	04/10/2014	6.12-13.81						11,000	1,300	
	(decommissioned in September 2016)	MW02-GW-140618	06/18/2014	6.98-13.80						3,800	410	
2		MW02-GW-091014	09/10/2014	8.37-13.84						770	200 U	
		MW02-GW-121014	12/10/2014	7.11-13.85						1,300	410	
	MW02R	MW02R-GW-042617	04/26/2017	6.60-14.80						750	410 U	
	(replacement well	MW02R-GW-101718	10/17/2018	9.90-14.80						480	450	
	for MW02)	MW02R-GW-032819	03/28/2019	7.60-14.79						680	470	

Historical Groundwater Analytical Results VSF Properties, LLC, North Cascade Ford Property Sedro-Woolley, Washington

AOC	Location	Sample Name	Collection Date	Collection Depth (ft bgs) ^(a)	Benzene	Ethylbenzene	Toluene	Xylenes ^(b)	Gasoline- Range Organics	Diesel-Range Organics	Lube-Oil- Range Organics	Total Naphthalenes
MTCA Method A CUL:						700	1,000	1,000	800	500	500	160
		MW04-GW-042617	04/26/2017	6.39-13.60						260	450	
	MW04	MW04-GW-101718	10/17/2018	10.23-13.60						250 U	420 U	
2		MW04-GW-032819	03/28/2019	7.40-13.58						260 U	410 U	
2		MW06-GW-042617	04/26/2017	7.66-19.74						260 U	410 U	
	MW06	MW06-GW-101718	10/17/2018	10.6-19.74					100 U	250 U	400 U	
		MW06-GW-032819	03/28/2019	5.73-13.88					100 U	260 U	410 U	
2	GP51	GP51-W-11.0	11/16/2016	8.85-12.0	15 J	480 J	6.1 J	1000 J	7,400 J			
5	GP76	GP76-W-10.0	04/25/2017	6.0-15.0	5.8	230	10 U	8.4	6,900	2,800 J	420 U	428

Notes

Analytical results are shown in micrograms per liter (parts per billion).

Bolding indicates a detection.

Shading indicates a MTCA Method A CUL exceedance; non-detect results ("U") were not compared with screening criteria.

-- = not analyzed.

AOC = area of concern.

CUL = cleanup level.

ft bgs = feet below ground surface.

J = result is estimated.

MTCA = Model Toxics Control Act.

MW = monitoring well.

ND = not detected.

NM = water level not measured because of unanticipated presence of free product.

U = analyte not detected at or above method reporting limit.

^(a)Sample collection depths are from top of water table or top of screened interval, whichever is deeper, to bottom of screened interval.

^(b)Total xylenes are sum of m,p-xylene and o-xylene. When both results are non-detect, the higher reporting limit is used.

Table 1 Historical Groundwater Analytical Results VSF Properties, LLC, North Cascade Ford Property Sedro-Woolley, Washington

Location	MP Elevation (feet, NAVD 88)	Measurement Date	NAPL Thickness (feet)	Depth to Water (feet bgs)	NAPL-Corrected Depth to Water (feet bgs) ^(a)	Groundwater Elevation (feet, NAVD 88)
		05/15/2012		5.61	NA	50.48
		10/09/2012		9.87	NA	46.22
		12/03/2012		6.96	NA	49.13
		04/10/2014	NM ^(b)	NM ^(b)	NA	NM ^(b)
		06/17/2014	NM ^(c)	6.01	NA	50.16
MW01		06/18/2014		6.09	NA	50.00
(decommissioned in	56.09	09/10/2014	NM ^(c)	7.74	NA	48.43
February 2020)		12/10/2014	0.01 ^(d)	6.09	6.08	50.09
		04/26/2017		5.35	5.35 NA	
		05/31/2017		5.96	NA	50.13
		10/17/2018	0.02	9.70	9.69	46.40
		12/06/2018	NM ^(e)	NA ^(e)	NA ^(e)	NA ^(e)
		03/28/2019	NM ^(e)	NA ^(e)	NA ^(e)	NA ^(e)
		09/22/2020		9.94	NA	46.38
		10/14/2020		7.82	NA	48.50
		12/16/2020		5.84	NA	50.48
		03/17/2021		5.39	NA	50.93
MW01R	56.32	06/22/2021		7.27	NA	49.05
	J0.JZ	09/27/2021		7.79	NA	48.53
		12/16/2021		4.19	NA	52.13
		03/15/2022		4.92	NA	51.40
		06/06/2022		5.20	NA	51.12
		11/16/2022		6.53	NA	49.79

Location	MP Elevation (feet, NAVD 88)	Measurement Date	NAPL Thickness (feet)	Depth to Water (feet bgs)	Depin to water	Groundwater Elevation (feet, NAVD 88)	
		05/15/2012		6.65	NA	50.08	
		10/09/2012		9.29	NA	47.44	
		12/03/2012		8.45	NA	48.28	
MW02 (decommissioned in	56.73	04/10/2014		6.12	NA	50.61	
September 2016)	56.75	06/17/2014		6.96	NA	49.77	
		06/18/2014		6.98	NA	49.75	
		09/10/2014		8.37	NA	48.36	
		12/10/2014		7.11	NA	49.62	
		04/26/2017		6.60	NA	49.99	
		05/31/2017		7.07	NA	49.52	
		10/17/2018		9.90	NA	46.69	
		12/06/2018		8.80	NA	47.79	
		03/28/2019		7.60	NA	48.99	
		09/22/2020		9.28	NA	47.31	
		10/14/2020		9.41	NA	47.18	
MW02R	56.59	12/16/2020		7.79	NA	48.80	
		03/17/2021		6.23	NA	50.36	
		06/22/2021		8.12	NA	48.47	
		09/27/2021		10.04	NA	46.55	
		12/16/2021		5.31	NA	51.28	
		03/15/2022		5.88	NA	50.71	
		06/06/2022		6.24	NA	50.35	
		11/16/2022		8.74	NA	47.85	

Location	MP Elevation (feet, NAVD 88)	Measurement Date	NAPL Thickness (feet)	Depth to Water (feet bgs)	NAPL-Corrected Depth to Water (feet bgs) ^(a)	Groundwater Elevation (feet, NAVD 88)
		05/15/2012		5.40	NA	49.68
		10/09/2012		8.11	NA	46.97
		12/03/2012		5.28	NA	49.80
		04/10/2014		5.00	NA	50.08
		06/17/2014		5.66	NA	49.42
MW03	55.08	06/18/2014		5.87	NA	49.21
1010000	55.06	09/10/2014		6.94	NA	48.14
		12/10/2014		5.10	NA	49.98
		05/31/2017		5.75	NA	49.33
		10/17/2018		7.72	NA	47.36
		12/06/2018		5.92	49.16	
		03/28/2019		5.73	NA	49.35
		04/26/2017		6.39	NA	49.93
		05/31/2017		6.88	NA	49.44
		10/17/2018		10.23	NA	46.09
		12/06/2018		8.62	NA	47.70
		03/28/2019		7.40	NA	48.92
		09/22/2020		9.06	NA	47.26
MW04	56.32	12/16/2020		7.71	NA	48.61
//////04	30.32	03/17/2021		6.04	NA	50.28
		06/22/2021		7.96	NA	48.36
		09/27/2021		10.31	NA	46.01
		12/16/2021		5.12	NA	51.20
		03/15/2022		5.69	NA	50.63
		06/06/2022		6.35	NA	49.97
		11/16/2022		8.65	NA	47.67

Location	MP Elevation (feet, NAVD 88)	Measurement Date	NAPL Thickness (feet)	Depth to Water (feet bgs)	NAPL-Corrected Depth to Water (feet bgs) ^(a)	Groundwater Elevation (feet, NAVD 88)
		04/26/2017		5.76	NA	50.49
MW05		05/31/2017		6.35	NA	49.90
(decommissioned in	56.25	10/17/2018		NA ^(f)	NA ^(f)	NA ^(f)
February 2020)		12/06/2018		8.05	NA	48.20
		03/28/2019		6.93	NA	49.32
		04/26/2017		7.66	NA	48.92
		05/31/2017		8.06	NA	48.52
		10/17/2018		10.60	NA	45.98
		12/06/2018		9.10	NA	47.48
		03/28/2019		5.73	NA	50.85
		09/22/2020		10.84	NA	45.74
MW06	56.58	12/16/2020		8.25	NA	48.33
1010000	30.30	03/17/2021		7.11	NA	49.47
		06/22/2021		8.72	NA	47.86
		09/27/2021		10.83	NA	45.75
		12/16/2021		5.60	NA	50.98
		03/15/2022		6.12	NA	50.46
		06/06/2022		6.40	NA	50.18
		11/16/2022		8.56	NA	48.02

Location	MP Elevation (feet, NAVD 88)	Measurement Date	NAPL Thickness (feet)	Depth to Water (feet bgs)	NAPL-Corrected Depth to Water (feet bgs) ^(a)	Groundwater Elevation (feet, NAVD 88)
		04/26/2017		7.85	NA	48.61
		05/31/2017		8.02	NA	48.44
	56.46	10/17/2018		9.25	NA	47.21
		12/06/2018		9.15	NA	47.31
		03/28/2019		7.95	NA	48.51
	NA ^(g)	09/22/2020		10.42 ^(g)	NA ^(g)	NA ^(g)
MW07		12/16/2020		8.24	NA	48.06
101007		03/17/2021		6.92	NA	49.38
		06/22/2021		8.80	NA	47.50
	54.20	09/27/2021		10.21	NA	46.09
	56.30	12/16/2021		5.17	NA	51.13
		03/05/2022		4.51	NA	51.79
		06/06/2022		5.13	NA	51.17
		11/16/2022		8.25	NA	48.05
		04/26/2017		7.38	NA	49.10
MW08		05/31/2017		8.01	NA	48.47
(decommissioned in	56.48	10/17/2018		10.05	NA	46.43
February 2020)		12/06/2018		9.02	NA	47.46
		03/28/2019		6.85	NA	49.63

Location	MP Elevation (feet, NAVD 88)	Measurement Date	NAPL Thickness (feet)	Depth to Water (feet bgs)	NAPL-Corrected Depth to Water (feet bgs) ^(a)	Groundwater Elevation (feet, NAVD 88)
		09/22/2020		9.26	NA	47.40
		10/14/2020		8.46	NA	48.20
		12/16/2020		6.17	NA	50.49
		03/17/2021		5.70	NA	50.96
MW09	56.66	06/22/2021		7.57	NA	49.09
1010009	30.00	09/27/2021		8.74	NA	47.92
		12/16/2021		4.51	NA	52.15
		03/15/2022		5.23	NA	51.43
		06/06/2022		5.53	NA	51.13
		11/16/2022		6.88	NA	49.78
		09/22/2020		9.71	NA	46.55
		10/14/2020		9.21	NA	47.05
		12/16/2020		7.13	NA	49.13
		03/17/2021		5.80	NA	50.46
MW10	56.26	06/22/2021		7.62	NA	48.64
1010	50.20	09/27/2021		9.42	NA	46.84
		12/16/2021		4.78	NA	51.48
		03/15/2022		5.44	NA	50.82
		06/06/2022		5.99	NA	50.27
		11/16/2022		8.01	NA	48.25

Location	MP Elevation (feet, NAVD 88)	Measurement Date	NAPL Thickness (feet)	Depth to Water (feet bgs)	Vater (feet bgs)Depth to Water (feet bgs)NA	Groundwater Elevation (feet, NAVD 88)
		09/22/2020		10.48	NA	45.72
		12/16/2020		6.51	NA	49.69
		03/17/2021		5.46	NA	50.74
		06/22/2021		7.72	NA	48.48
MW11	56.2	09/27/2021		9.21	NA	46.99
		12/16/2021		4.28	NA	51.92
		03/15/2022		5.03	NA	51.17
		06/06/2022		5.45	NA	50.75
		11/16/2022		7.67	NA	48.53
		09/22/2020		10.24	NA	46.15
		12/16/2020		7.85	NA	48.54
		03/17/2021		6.67	NA	49.72
		06/22/2021		8.69	NA	47.70
MW12	56.39	09/27/2021		10.59	NA	45.80
		12/16/2021		5.79	NA	50.60
		03/15/2022		6.33	NA	50.06
		06/06/2022		6.93	NA	49.46
		11/16/2022		9.03	NA	47.36

Table 2Water LevelsVSF Properties, LLC, North Cascade Ford Property
Sedro-Woolley, Washington

Notes

= NAPL not observed.
bgs = below ground surface.
MP = measuring point.
MW = monitoring well.
NA = not applicable.
NAPL = nonaqueous-phase liquid.
NAVD 88 = North American Vertical Datum of 1988.
NM = not measured.
^(a) Water level corrected for presence of NAPL, using assumed product density of 0.8 grams per cubic centimeter.
^(b) NAPL was observed, but interface probe was not available to measure NAPL thickness and water level.
^(c) NAPL was observed on probe and tubing, but measurable and extractable quantity was not present.
^(d) NAPL thickness was measured, but extractable quantity was not present.
^(e) NAPL was present, coating entire probe tip and tubing; coated probe tip prevented measurement of thickness or water level.
^(f) Water level may not be representative of groundwater elevation because screened interval was above low water table.
^(g) Well monument was compressed during implementation of remedial action, and casing had to be cut down to properly secure monument. Water level measurement not collected. New well monument installed on 10/01/2020.

AOC	Location	Collection Date	Benzene	Ethyl- benzene	Toluene	Total Xylenes	GRO	DRO	ORO	Heavy Oils ^(a)	1,4-Dichloro- benzene	Total Naphth. ^(b)
		Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	MTCA M	ethod A CUL: ⁽¹⁾	5	700	1,000	1,000	1,000 ^(c)	500	500	500	NV	160
		09/22/2020	1 U	1 U	1 U	3.7	160	1,900	610	2,510		
		10/14/2020	20 U	20 U	20 U	60 U	100 U	200	260 U	330		20 U
		12/16/2020	1 U	1 U	1 U	3 U	100 U	250	250 U	375		
		03/17/2021	1 U	1 U	1 U	3 U	100 U	120	250 U	245		
	MW01R	06/22/2021	1 U	1 U	1 U	3 U	100 U	370	250 U	495		
	MWOTR	09/27/2021						93	250 U	218		
		12/16/2021						70	250 U	195		
		03/15/2022						79	250 U	204		
		06/06/2022						50 U	250 U	250 U		
1		11/16/2022						240	250 U	365		
		09/22/2020	1 U	1 U	1 U	3 U	100 U	130	250 U	255		
		12/16/2020	1 U	1 U	1 U	3 U	100 U	89	250 U	214		
		03/17/2021	1 U	1 U	1 U	3 U	100 U	96	250 U	221		
		06/22/2021	1 U	1 U	1 U	3 U	100 U	360	290	650		
	MW07	09/27/2021						160	250 U	285		
		12/16/2021						59	250 U	184		
		03/15/2022						50 U	250 U	250 U		
		06/06/2022						50 U	250 U	250 U		
		11/16/2022						140	250 U	265		

AOC	Location	Collection Date	Benzene	Ethyl- benzene	Toluene	Total Xylenes	GRO	DRO	ORO	Heavy Oils ^(a)	1,4-Dichloro- benzene	Total Naphth. ^(b)
		Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	MTCA M	ethod A CUL: ⁽¹⁾	5	700	1,000	1,000	1,000 ^(c)	500	500	500	NV	160
		09/22/2020	1 U	1 U	1 U	3 U	100 U	640	620	1,260		
		12/16/2020	1 U	1 U	1 U	3 U	100 U	230	300	530		
		12/16/2020	1 U	1 U	1 U	3 U	100 U	210	390	600		
		03/17/2021	1 U	1 U	1 U	3 U	100 U	120	250 U	245		
1	MW09	06/22/2021	1 U	1 U	1 U	3 U	100 U	150	250 U	275		
1	1010007	09/27/2021						270	290	560		
		12/16/2021						91	300 U	241	1 U	
		03/15/2022						69	250 U	194		
		06/06/2022						50 U	250 U	250 U		
		11/16/2022						190	250 U	315		
		09/22/2020	1 U	1 U	1 U	3 U	100 U	780	450	1,230		
		12/16/2020	1 U	1 U	1 U	3 U	100 U	600	390	990		
		03/17/2021	1 U	1 U	1 U	3 U	100 U	680	310	990		
		03/17/2021	1 U	1 U	1 U	3 U	100 U	580	270	850		
		06/22/2021	1 U	1 U	1 U	3 U	100 U	560	250 U	685		
		06/22/2021	1 U	1 U	1 U	3 U	100 U	530	250 U	655		
2	MW02R	09/27/2021						440	250 U	565		
		12/16/2021						580	330	910		
		12/16/2021						390	250 U	515		
		03/15/2022						400	250 U	525		
		06/06/2022						340	250 U	465		
		06/06/2022						400	250 U	525		
		11/16/2022						930	250 U	1,055		

AOC	Location	Collection Date	Benzene	Ethyl- benzene	Toluene	Total Xylenes	GRO	DRO	ORO	Heavy Oils ^(a)	1,4-Dichloro- benzene	Total Naphth. ^(b)
		Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	MTCA M	ethod A CUL: ⁽¹⁾	5	700	1,000	1,000	1,000 ^(c)	500	500	500	NV	160
		09/22/2020	1 U	1 U	1 U	3 U	100 U	260	250 U	385		
		12/16/2020	1 U	1 U	1 U	3 U	100 U	220	280	500		
		03/17/2021	1 U	1 U	1 U	3 U	100 U	220	250 U	345		
		06/22/2021	1 U	1 U	1 U	3 U	100 U	300	250 U	425		
	MW04	09/27/2021						290	250 U	415		
	MW04	09/27/2021						180	250 U	305		
		12/16/2021						150	250 U	275		
		03/15/2022						190	250 U 300 U	315		
		06/06/2022						260	300 U	410		
		11/16/2022						210	250 U	335		
	MW06	09/22/2020	1 U	1 U	1 U	3 U	100 U	50 U	250 U	250 U		
		12/16/2020	1 U	1 U	1 U	3 U	100 U	50 U	250 U	250 U		
2		03/17/2021	1 U	1 U	1 U	3 U	100 U	50 U	250 U	250 U		
-		06/22/2021	1 U	1 U	1 U	3 U	100 U	50 U	250 U	250 U		
		09/22/2020	1 U	1 U	1 U	3 U	370	1,900	250 U	2,025		
		10/14/2020	20 U	20 U	20 U	60 U	550	2,000	400	2,400		65.1
		12/16/2020	1 U	1 U	1 U	3 U	100 U	160	250 U	285		
		03/17/2021	1 U	1 U	1 U	3 U	100 U	140	250 U	265		
		06/22/2021	1 U	1 U	1 U	3 U	100 U	100	250 U	225		
	MW10	09/27/2021						2,200	280	2,480		
	1010010	12/16/2021						110	250 U	235		0.4 U
		03/15/2022						200	250 U	325		
		03/15/2022						230	280	510		
		06/06/2022						260	470	730		
		11/16/2022						240	250 U	365		
		11/16/2022						250	250 U	375		

AOC	Location	Collection Date	Benzene	Ethyl- benzene	Toluene	Total Xylenes	GRO	DRO	ORO	Heavy Oils ^(a)	1,4-Dichloro- benzene	Total Naphth. ^(b)
		Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	MTCA M	ethod A CUL: ⁽¹⁾	5	700	1,000	1,000	1,000 ^(c)	500	500	500	NV	160
		09/22/2020	1 U	1 U	1 U	3 U	100 U	50 U	250 U	250 U		
2	MW12	12/16/2020	1 U	1 U	1 U	3 U	100 U	50 U	250 U	250 U		
2	1010012	03/17/2021	1 U	1 U	1 U	3 U	100 U	50 U	250 U	U 250 U U 250 U U 250 U U 250 U U 500 U 325		
	1010012	06/22/2021	1 U	1 U	1 U	3 U	100 U	50 U	250 U	250 U		
		09/22/2020	1 U	30	1 U	16	390	350	300 U	500		18.8
		09/22/2020	1 U	30	1 U	17	380	200	250 U	325		21.7
		12/16/2020	1 U	1 U	1 U	3 U	100 U	50 U	250 U	250 U		0.4 U
3	MW11	03/17/2021	1 U	1 U	1 U	3 U	100 U	50 U	250 U	250 U		0.4 U
3	//////11	06/22/2021	1 U	1 U	1 U	3 U	100 U	50 U	250 U	250 U		0.4 U
		09/27/2021						230	250 U	355		
		12/16/2021						50 U	250 U	250 U		
		03/16/2022						50 U	250 U	250 U		

Notes

Detected values are shown in bold font.

Shading indicates a MTCA Method A CUL exceedance; non-detect results (U) were not compared with screening criteria.

-- = not analyzed.

AOC = area of concern.

CUL = cleanup level.

DRO = diesel-range organics.

GRO = gasoline-range organics.

MTCA = Model Toxics Control Act.

Naphth. = naphthalenes.

NV = no value.

ORO = lube-oil-range organics.

U = result is non-detect at the reporting limit.

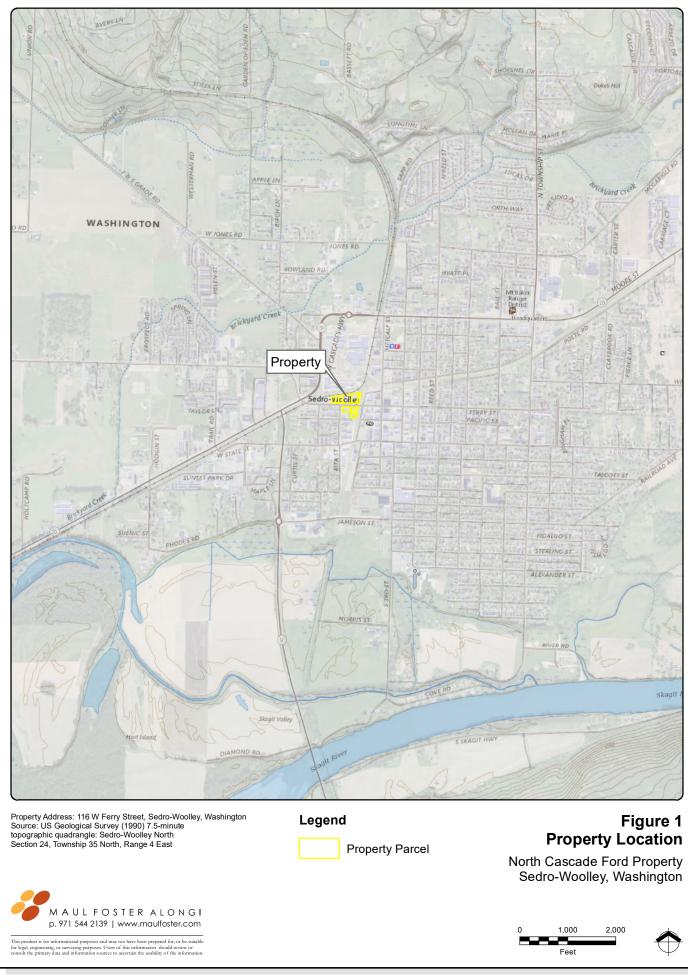
ug/L = micrograms per liter (parts per billion).

^(a)Heavy oils are the sum of DRO and ORO. When results are non-detect, half the reporting limit is used. When all results are non-detect, the highest reporting limit is shown. ^(b)Total naphthalenes are the sum of 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene. Where 1- and 2-methylnaphthalene are not analyzed, total naphthalene is represented by the naphthalene result. When all results are non-detect, the highest reporting limit is shown.

^(c)MTCA Method A CUL with no detectable benzene.

Reference

⁽¹⁾Washington State Department of Ecology. 2021. Cleanup Levels and Risk Calculation (CLARC) table. Washington State Department of Ecology - Toxics Cleanup Program. July.


FIGURES

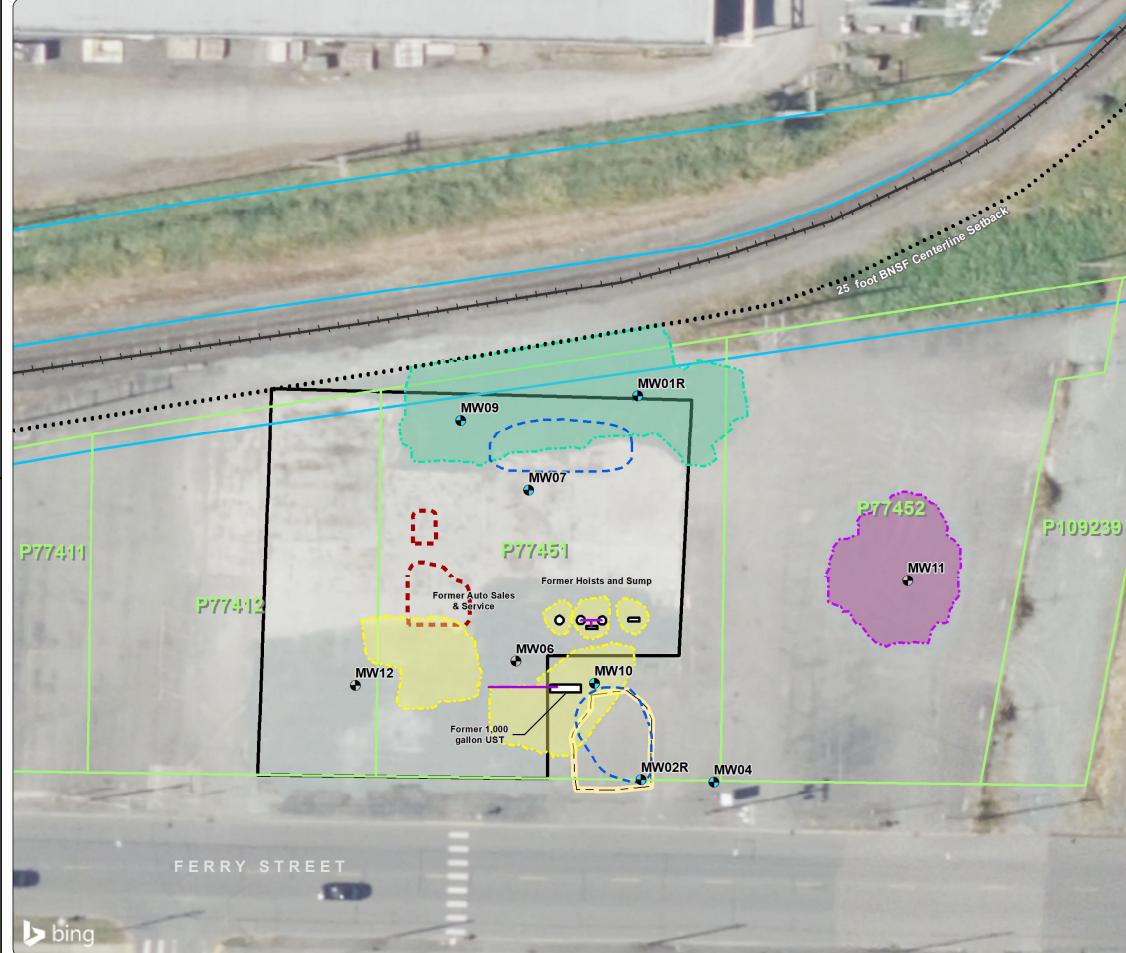


Figure 2 **Compliance Monitoring** Well Network

North Cascade Ford Property Sedro-Woolley, Washington

Legend

Compliance N	Monitoring Well
--------------	-----------------

Other Monitoring Well

Product Line

- AOC 1 Excavation (MFA 2020b)
- AOC 2 Excavation (MFA 2020b)
- AOC 3 Excavation (MFA 2020b)
- Estimated Extent of Petroleum Impacts in Groundwater
- UST Interim Action (MFA, 2016)

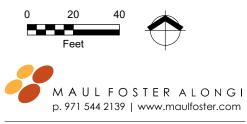
Hoist Removal Excavation (ZGA, 2017)

- Former Building Footprint
 - Property Parcel
 - **BNSF-Owned Parcel**

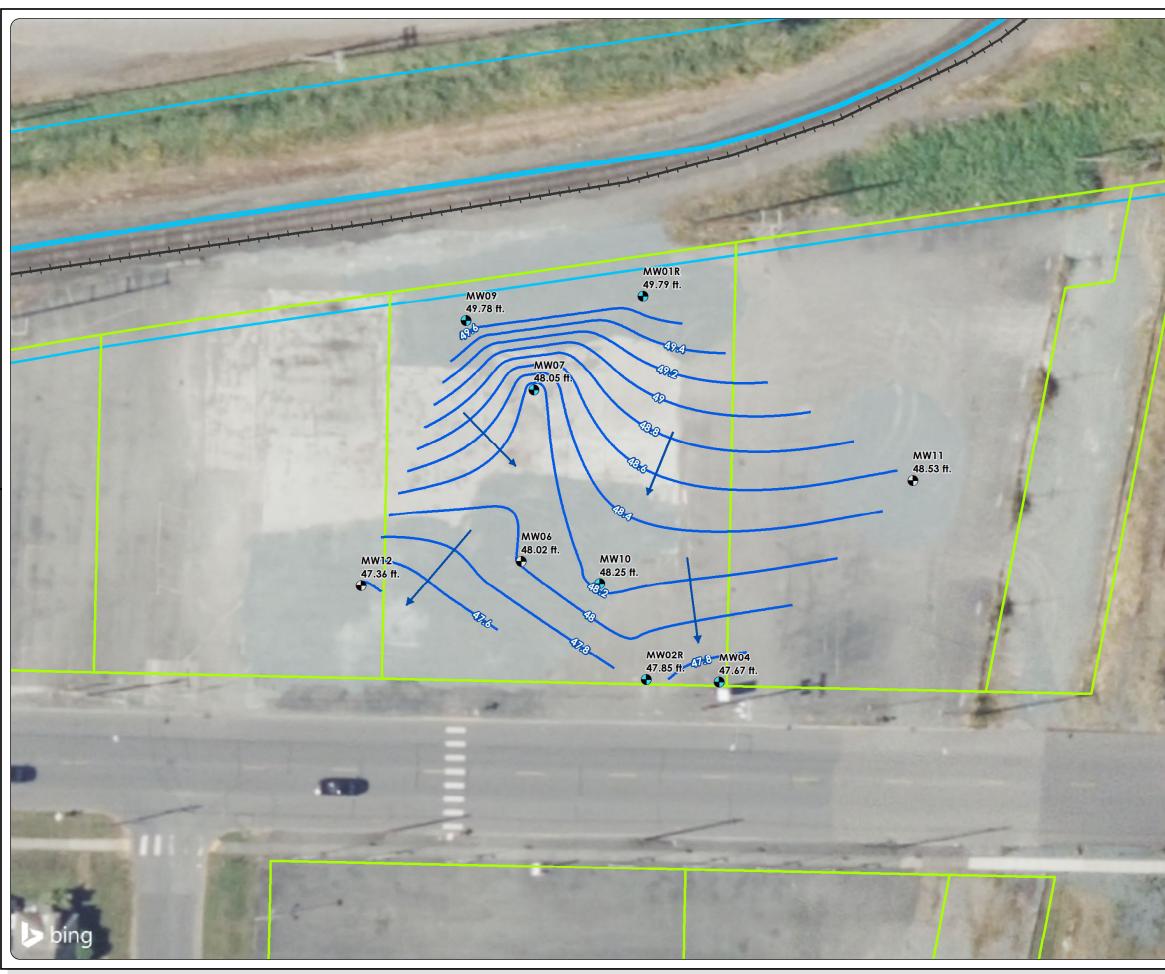
Notes:

- All features are approximate.
- All structures on the property were removed prior to remedial action.
- The excavations areas are set back from the BNSF railroad centerline by 25 feet.
- The surveyed Property parcel boundaries do not coincide with the adjacent parcel boundaries obtained from Skagit County; therefore, there is an overlap between the Property and BNSF parcels.
- AOC = area of concern.

BNSF = BNSF Railway.


- Property = North Cascade Ford Property.
- UST = underground storage tank. ZGA = Zipper Geo Associates.

Sources:


Adjacent parcel boundaries obtained from Skagit County. Aerial photograph obtained from Microsoft Bing. Excavation extents surveyed by Pacific Geomatic

Services, Inc. in March 2020.

Property parcel boundaries surveyed by Wilson Engineering, LLC.

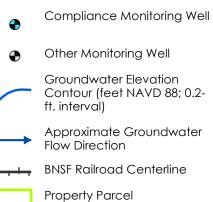
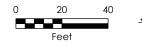

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or rtain the usability of the in

Figure 3 Groundwater Elevation Contours: November 2022

North Cascade Ford Property Sedro-Woolley, Washington

Legend

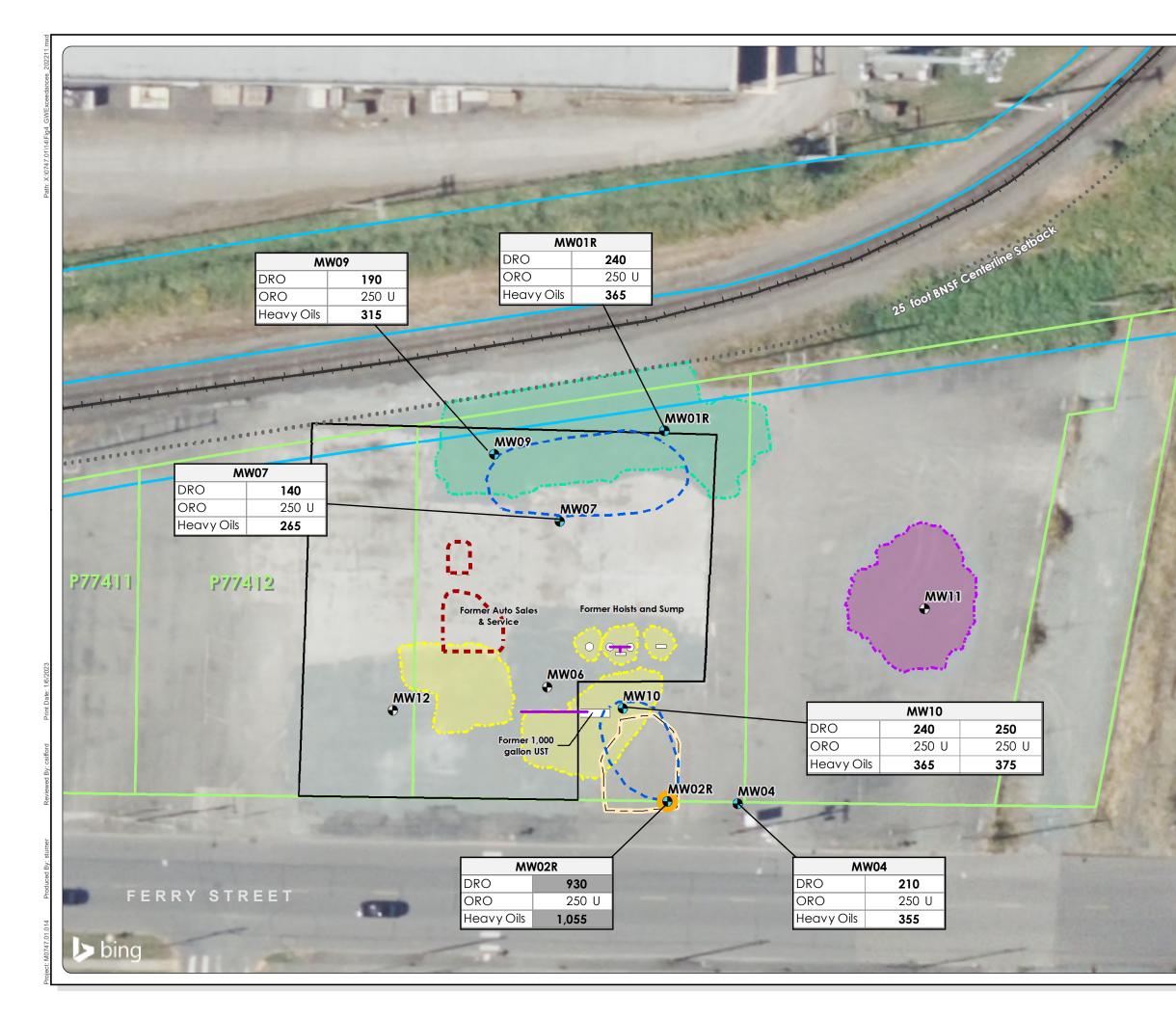

BNSF-Owned Parcel

Notes

The surveyed Property parcel boundaries do not coincide with the adjacent parcel boundaries obtained from Skagit County; therefore, there is an overlap between the Property and BNSF parcels. Water levels measured on November 16, 2022. BNSF = BNSF Railway.

ft. = feet.

NAVD 88 = North American Vertical Datum of 1988.



Data Sources

Adjacent parcel boundaries obtained from Skagit County. Aerial photograph obtained from Microsoft Bing. Property parcel boundaries surveyed by Wilson Engineering, LLC.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Figure 4 Groundwater Exceedances: November 2022

North Cascade Ford Property Sedro-Woolley, Washington

Legend

Carlos and	Legend
Sec.	Compliance Monitoring Well
24	Other Monitoring Well
2	 Diesel and Heavy Oils Exceedance
	Product Line
1	AOC 1 Excavation (MFA 2020b)
	AOC 2 Excavation (MFA 2020b)
2	AOC 3 Excavation (MFA 2020b)
28	 Estimated Extent of Petroleum Impacts in Groundwater
SA !	Hoist Removal Excavation (ZGA 2017)
10.15	Former Building
原用	UST Interim Action (MFA 2016)
245	Property Parcel
	BNSF-Owned Parcel
	Notes All features are approximate. All results were compared to the MTCA Method A DRC cleanup level of 500 ug/L. Analytical results are shown in ug/L. Bolding indicates a detection. Shading indicates a cleanup level exceedance. The surveyed Property parcel boundaries do not coincide with the adjacent parcel boundaries obtained from Skagit County; therefore, there is an overlap between the Property and BNSF parcels. AOC = area of concern. BNSF = BNSF Railway. DRO = diesel-range organics. heavy oils = sum of DRO and ORO. MTCA = Model Toxics Control Act. ORO = oil-range organics. Property = North Cascade Ford Property. U = result is not detected. ug/L = micrograms per liter. UST = underground storage tank. ZGA = Zipper Geo Associates.
N Col	0 20 40 Feet Data Sources Adjacent parcel boundaries obtained from Skagit County. Aerial photograph obtained from Microsoft Bing. Excavation extents surveyed by Pacific Geomatic Services, Inc. in March 2020. Property parcel boundaries surveyed by Wilson Engineering, LLC.
	MAULFOSTERALONGI p. 971 544 2139 www.maulfoster.com

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Figure 5 Diesel-Range Organics Concentrations North Cascade Ford Property Sedro-Woolley, Washington

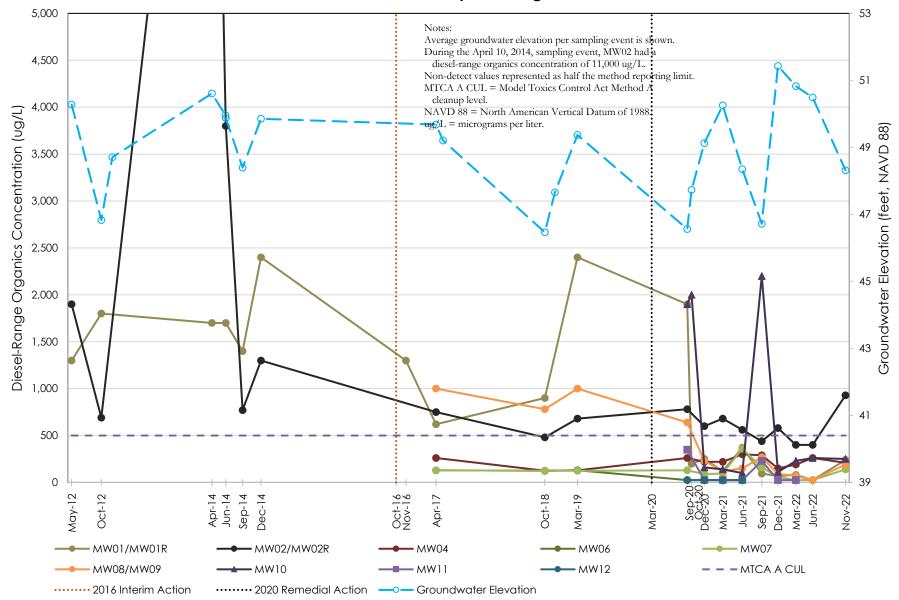


Figure 6 Lube-Oil-Range Organics Concentrations North Cascade Ford Property Sedro-Woolley, Washington

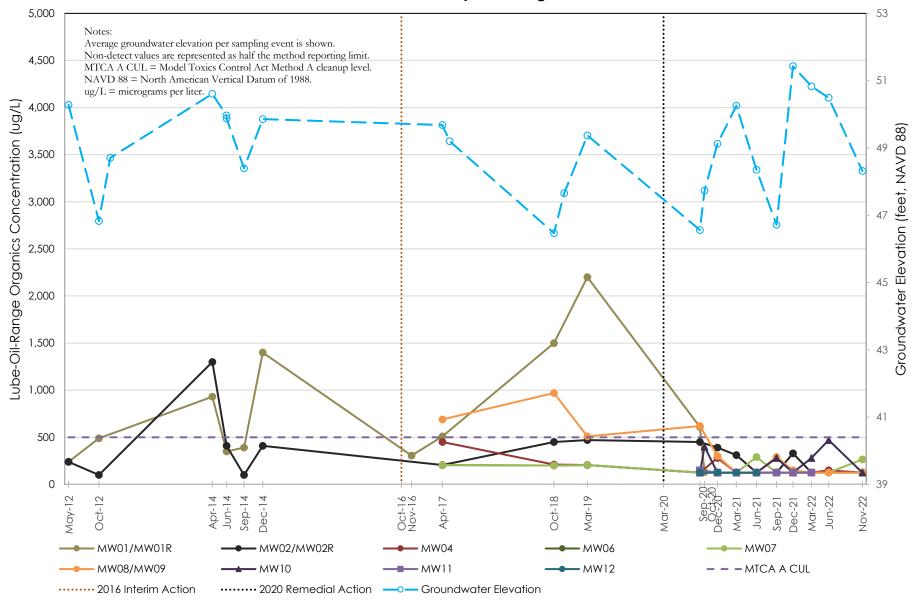


Figure 7 Heavy Oil Concentrations North Cascade Ford Property Sedro-Woolley, Washington

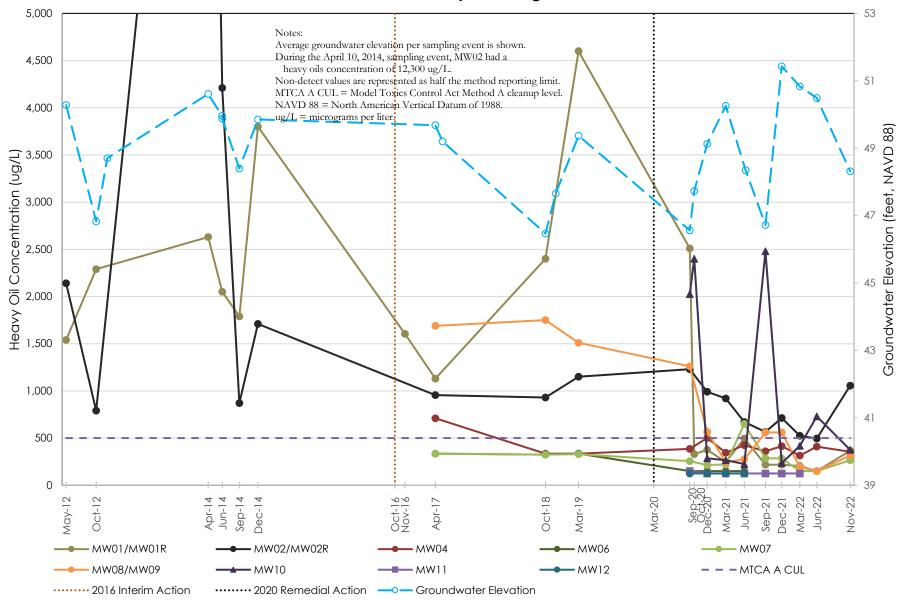
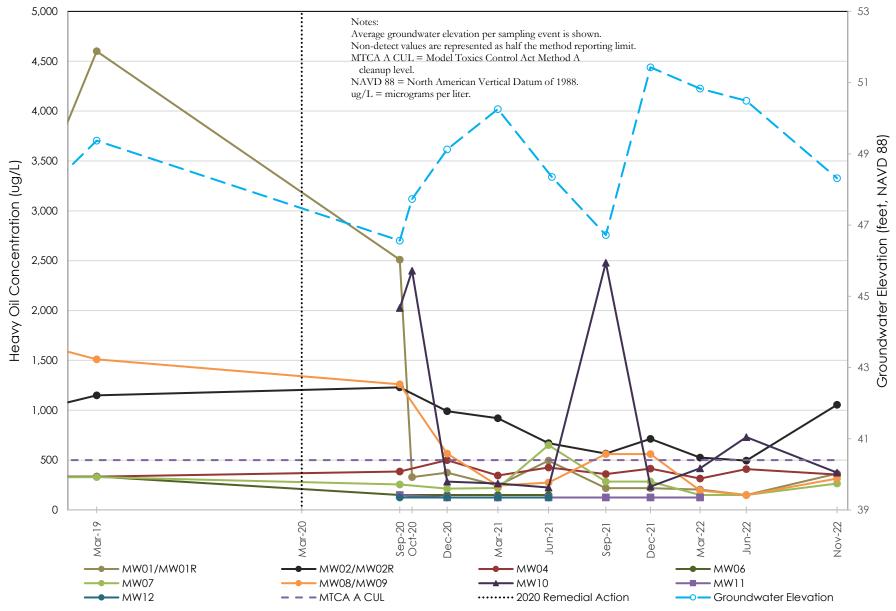



Figure 8 Heavy Oil Concentrations 2019 to 2022 North Cascade Ford Property Sedro-Woolley, Washington

ATTACHMENT A WATER FIELD SAMPLING DATA SHEETS

Maul Foster & Alongi, Inc.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW01R
Project #	M0747.01.014	Sampler	C. Sifford
Project Name	North Cascade Ford	Sampling Date	11/16/2022
Sampling Event	November 2022	Sample Name	MW01R-GW-111622
Sub Area	AOC 1	Sample Depth	10.5
FSDS QA:	J. Wetmore 11/30/22	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
11/16/2022	10:18	14.52		6.53		7.99	1.3

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	11:40:00 AM	6	0.28	7.47	13.5	727	2.2	136.3	12.2
	11:43:00 AM	6.2	0.28	7.39	13.7	701	2.1	127.6	10.9
	11:46:00 AM	6.4	0.28	7.41	13.5	699	1.99	119	11.2
	11:49:00 AM	6.6	0.28	7.46	13.5	695	2.01	112.8	11.1
Final Field Parameters	11:52:00 AM	6.8	0.28	7.46	13.5	701	1.88	110.6	11.7

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Clear; colorless; no odor; no sheen.
-----------------------------	--------------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	12:00:00 PM	VOA-Glass		
			Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	1	

General Sampling Comments

Began purge at 10:24.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW02R
Project #	M0747.01.014	Sampler	C. Sifford
Project Name	North Cascade Ford	Sampling Date	11/16/2022
Sampling Event	November 2022	Sample Name	MW02R-GW-111622
Sub Area	AOC 2	Sample Depth	11.5
FSDS QA:	J. Wetmore 11/30/22	Easting	Northing TOC

Hydrology/Level Measurements

	Water Column	(Gallons/ft x Water	(Water Column)	(Product Thickness)					
	Volume	Pore Volu	DTB-DTW	DTP-DTW	DT-Water	DT-Product	DT-Bottom	Time	Date
11/16/2022 10:50 14.8 8.74 6.06 0.9	.99	0.99	6.06		X /4		14.8	10:50	11/16/2022

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	2:20:00 PM	2.3	0.18	6.95	16.4	679	1.15	54	1.09
	2:23:00 PM	2.5	0.18	6.95	16.3	680	1.23	52.9	1.07
	2:26:00 PM	2.6	0.18	6.96	16.3	681	1.24	52.1	0.98
Final Field Parameters	2:29:00 PM	2.7	0.18	6.95	16.3	679	1.15	51.1	0.96

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Clear; colorless; no odor; no sheen.
-----------------------------	--------------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	2:30:00 PM	VOA-Glass		
			Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	1	

General Sampling Comments

Began purge at 13:30.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW04	
Project #	M0747.01.014	Sampler	C. Sifford	
Project Name	North Cascade Ford	Sampling Date	11/16/2022	
Sampling Event	November 2022	Sample Name	MW04-GW-111622	
Sub Area	AOC 2	Sample Depth	11	
FSDS QA:	J. Wetmore 11/30/22	Easting	Northing TOC	

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
11/16/2022	10:53	13.55		8.65		4.9	0.8

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	2:44:00 PM	2	0.19	6.87	16.1	642	4.41	59	0.88
	2:47:00 PM	2.2	0.19	6.78	16.2	641	4.04	60.2	0.84
	2:50:00 PM	2.3	0.19	6.77	16.1	641	4.07	60.7	0.71
Final Field Parameters	2:53:00 PM	2.4	0.19	6.75	16.2	641	3.95	61.3	0.86

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Clear; colorless; no odor; no sheen.
-----------------------------	--------------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	3:00:00 PM	VOA-Glass		
			Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	1	

General Sampling Comments

Began purge at 14:01.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW07	
Project #	M0747.01.014	Sampler	C. Sifford	
Project Name	North Cascade Ford	Sampling Date	11/16/2022	
Sampling Event	November 2022	Sample Name	MW07-GW-111622	
Sub Area	AOC 1	Sample Depth	15	
FSDS QA:	J. Wetmore 11/30/22	Easting	Northing TOC	

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
11/16/2022	10:35	19.59		8.25		11.34	1.85

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	12:59:00 PM	2.1	0.16	7.63	13.5	246.1	3.27	57.4	12.5
	1:02:00 PM	2.2	0.16	7.3	13.6	243	2.51	59.5	18.1
	1:05:00 PM	2.3	0.16	7.03	13.6	223.3	2.06	60	9.87
	1:08:00 PM	2.4	0.16	6.93	13.7	222.2	1.96	60.4	10.5
	1:11:00 PM	2.5	0.16	6.78	13.7	219.7	1.83	60.6	9.26
	1:14:00 PM	2.6	0.16	6.74	13.7	219.8	1.77	61	8.58
Final Field Parameters	1:17:00 PM	2.7	0.16	6.69	13.6	220	1.94	61	8.74

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations: Cloudy, then clear;

Cloudy, then clear; reddish orange tint; no odor; no sheen.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	1:20:00 PM	VOA-Glass		
			Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	1	

General Sampling Comments

Began purge at 12:07

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW09
Project #	M0747.01.014	Sampler C. Sifford	
Project Name	North Cascade Ford	Sampling Date 11/16/2022	
Sampling Event	November 2022	Sample Name MW09-GW-111622	
Sub Area	AOC 1	Sample Depth	15
FSDS QA:	J. Wetmore 11/30/22	Easting	Northing TOC

Hydrology/Level Measurements

				(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)	
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
11/16/2022	10:30	19.92		6.88		13.04	2.13

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	12:11:00 PM	4.8	0.2	7.43	14.2	731	1.92	83.4	1.2
	12:14:00 PM	5	0.2	7.44	14.2	731	1.83	82.1	0.95
	12:17:00 PM	5.4	0.2	7.43	14.2	732	1.71	79.2	0.99
Final Field Parameters	12:21:00 PM	5.6	0.2	7.43	14.2	732	1.63	75.7	0.84

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Clear; colorless; no odor; no sheen.
-----------------------------	--------------------------------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	12:30:00 PM	VOA-Glass		
			Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	1	

General Sampling Comments

Began purge at 10:33.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	VSF Properties, LLC	Sample Location	MW10
Project #	M0747.01.014	Sampler	C. Sifford
Project Name	North Cascade Ford	Sampling Date 11/16/2022	
Sampling Event	November 2022	Sample Name	MW10-GW-111622
Sub Area	AOC 2	Sample Depth	15
FSDS QA:	J. Wetmore 11/30/22	Easting	Northing TOC

Hydrology/Level Measurements

				(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)	
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
11/16/2022	10:47	19.75		8.01		11.74	1.91

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	1:37:00 PM	2.5	0.15	7.06	13.9	576.2	5.81	67.2	1.34
	1:40:00 PM	2.6	0.15	7.08	14	577	5.71	66.5	1
	1:43:00 PM	2.7	0.15	7.11	13.9	578.2	5.59	65.4	0.83
Final Field Parameters	1:46:00 PM	2.8	0.15	7.11	14	578.4	5.51	65.1	0.8

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Obser	vations: Clear	r; colorless; no oc	lor; no sheen.
---------------------	----------------	---------------------	----------------

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	2:00:00 PM	VOA-Glass		
L I			Amber Glass	1	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	1	

General Sampling Comments

Began purge at 12:33. Duplicate sample MWDUP-GW-111622 collected here.

ATTACHMENT B ANALYTICAL LABORATORY REPORTS

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 22, 2022

Carolyn Wise, Project Manager Maul Foster Alongi 1329 N State St, Suite 301 Bellingham, WA 98225

Dear Ms Wise:

Included are the results from the testing of material submitted on November 17, 2022 from the North Cascade Ford M0747.01.014, F&BI 211261 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures MFA1122R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 17, 2022 by Friedman & Bruya, Inc. from the Maul Foster Alongi North Cascade Ford M0747.01.014, F&BI 211261 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
211261 -01	MW01R-GW-111622
211261 -02	MW02R-GW-111622
211261 -03	MW04-GW-111622
211261 -04	MW07-GW-111622
211261 -05	MW09-GW-111622
211261 -06	MW10-GW-111622
211261 -07	MWDUP-GW-111622

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/22/22 Date Received: 11/17/22 Project: North Cascade Ford M0747.01.014, F&BI 211261 Date Extracted: 11/18/22 Date Analyzed: 11/18/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL10 AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
MW01R-GW-111622 211261-01 1/0.4	240 x	<250	100
MW02R-GW-111622 211261-02 1/0.4	930 x	<250	120
MW04-GW-111622 211261-03 1/0.48	210 x	<250	100
MW07-GW-111622 211261-04 1/0.4	140 x	<250	110
MW09-GW-111622 211261-05 1/0.4	190 x	<250	100
MW10-GW-111622 211261-06 1/0.4	240 x	<250	110
MWDUP-GW-111622 211261-07 1/0.4	250 x	<250	120
Method Blank 02-2806 MB	<50	<250	100

ENVIRONMENTAL CHEMISTS

Date of Report: 11/22/22 Date Received: 11/17/22 Project: North Cascade Ford M0747.01.014, F&BI 211261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	103	70-130	3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

			SAMPLE	E CHAIN	J OF	CUS	STC	DY	r	11/,	171	122	,	C_{2})			
2112601AP	r .		SAMPL	ERS (signe	atare)						_	in in service	and a state of the]			# of	
Report To Carolyn 4	-	· · ·	- PROJEC	CT NAME						p	0#						NAROUND T d turnaround	
Company Maul Foster	& Alongi							40							RUS	SH		
Address 1329 N State	St, Suite	301	_ /vorth	Cascade	ford			10	747	.01,	СIЧ				Rush	charg	ges authorize	d by:
City, State, ZIP_Belling	ham WA .	18225	REMAR	2KS				-			ICE						PLE DISPO samples	SAL
Phone 360-690-5982 En	2			· // DI	0 17	,		Co	role	j٣	ω	ise		1	🗆 Oth	er		
		LITOSIEI . LOFF	Project :	specific RL	<u>is? - Y</u>	es /	No									ult: D)ispose after	r <u>30 days</u>
		1			1								EQU	ESTI 1	ED T	r	1	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	CR0 + DR0 NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082					Not	tes
MWOIR-GW-11162	2 01	11/16/22	12:00	water	1	Х												
MW02R-GW-111622	02	11/16/22	14:30	water	1	Х												
MWO4-GW-111622	03	11/16/22	15:00	water	1	Х									1			
MW07-GW-111622	04	11/16/22	13:20	water	1	X			h.									
MW09-GW-111622	05	11/16/22	12:30	water	1	X												· · · · · · · · · · · · · · · · · · ·
MW10-GW-111622	06	11/16/22	14:00	water	1	Х												
19WDUP-GW-111622	07	11/16/22	14:00	water	1	Х												
																		12 00
														San	plea	rec	eived at	<u>4 °C</u>
		GNATURE_	2		PRIN	JT N	AMI	 E					COM	PAN	Y		DATE	TIME
Friedman & Bruya, Inc. Ph. (206) 285-8282	Relinquished by:	Ŵ		Chris							۲	1FA					11/16/22	· · · · · ·
1 n. (200) 200-0202	Received by:	Mul			VH I								8 B	,			11/17/22	13:46
	Relinquished by:					- <u>-</u>		•										40g:
	Received by:																	

ATTACHMENT C DATA VALIDATION MEMORANDUM

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. M0747.01.014 | NOVEMBER 29, 2022 | VSF PROPERTIES, LLC

Maul Foster & Alongi, Inc., conducted an independent stage 2A review of the quality of analytical results for groundwater samples collected at the North Cascade Ford site at 116 W Ferry Street, Sedro-Woolley, Washington, on November 16, 2022.

Friedman & Bruya, Inc. (FBI), performed the analyses. FBI report number 211261 was reviewed. The analyses performed and samples analyzed are listed below.

Analysis	Reference
Diesel- and motor-oil-range hydrocarbons	NWTPH-Dx
Note NWTPH = Northwest Total Petroleum Hydrocarbons.	

Samples Analyzed					
Report 211261					
MW01R-GW-111622					
MW02R-GW-111622					
MW04-GW-111622					
MW07-GW-111622					
MW09-GW-111622					
MW10-GW-111622					
MWDUP-GW-111622					

DATA QUALIFICATION

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2020) and appropriate laboratoryand method-specific guidelines (EPA 1986, FBI 2019).

Data validation procedures were modified, as appropriate, to accommodate quality control requirements for methods that EPA data review procedures do not specifically address (e.g., Northwest Total Petroleum Hydrocarbons [NWTPH]-Dx).

Based on the results of the data quality review procedures described below, the data are considered acceptable for their intended use, with the appropriate final data qualifiers assigned. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, as well as data qualifiers assigned by the reviewer during validation.

- Final data qualifier:
 - U = result is non-detect at the method reporting limit (MRL).

According to report 211261, FBI flagged all detected NWTPH-Dx diesel-range hydrocarbon results for having chromatographic patterns that did not resemble the fuel standards used for quantitation. These results were reported as diesel-range hydrocarbons instead of specific fuel products; thus, qualification was not required.

SAMPLE CONDITIONS

Sample Custody

Sample custody was appropriately documented on the chain-of-custody form accompanying the report.

Holding Times

Extractions and analyses were performed within the recommended holding times.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

REPORTING LIMITS

The laboratory evaluated results to MRLs.

BLANKS

Method Blanks

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch.

All laboratory method blank results were non-detect to MRLs.

Equipment Rinsate Blanks

Equipment rinsate blanks are used to evaluate field equipment decontamination. These blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage and during shipment between the sampling location and the laboratory.

Trip blank samples were not required for this sampling event because samples were not analyzed for volatile organic compounds.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy. The LCS and the LCSD were prepared and analyzed at the required frequency.

All LCS and LCSD results were within acceptance limits for percent recovery and relative percent difference (RPD).

LABORATORY DUPLICATE RESULTS

Laboratory duplicate results are used to evaluate laboratory precision.

FBI did not report laboratory duplicate results for method NWTPH-Dx. Laboratory precision was evaluated using LCS and LCSD RPD results.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike (MS) and matrix spike duplicate (MSD) results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and analysis.

FBI did not report MS or MSD results for NWTPH-Dx, in accordance with the method.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance for individual samples for organic analyses.

All surrogate results were within percent recovery acceptance limits.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. The following field duplicate and parent sample pair was submitted for analysis:

Report	Parent Sample	Field Duplicate Sample
211261	MW10-GW-111622	MWDUP-GW-111622

MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL, or 50 percent RPD for results that are greater than five times the MRL. Non-detect data are not used in the evaluation of field duplicate results.

All field duplicate results met the RPD acceptance criteria.

DATA PACKAGE

The data package was reviewed for transcription errors, omissions, and anomalies. None were found.

EPA. 1986. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.* EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase III (2019), VII phase I (2019), and VII phase II (2020).

EPA. 2020. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

FBI. 2019. Quality Assurance Manual. Rev. 17. Friedman & Bruya, Inc.: Seattle, WA. November 6.