

Washington Issaquah | Bellingham | Seattle

> Oregon Portland | Baker City

California Oakland | Irvine

ENVIRONMENTAL CONDITIONS SUMMARY REPORT

MONROE AUTO SALVAGE 500 EAST FREMONT STREET MONROE, WASHINGTON

> VCP Project No. NW3251 526 Simons Road Monroe, Washington

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 2747-001

For: River's Edge WA LLLP 909 5th Avenue, Suite 2401 Seattle, Washington 98164

December 8, 2022

Prepared by:

amanda M. Mengriot

Amanda Meugniot, L.G. Associate Geologist

Reviewed by:

Pete Kingston, L.G. Principal Geologist

TABLE OF CONTENTS

1.0	0 INTRODUCTION		
	1.1	PURPOSE	
	1.2	DOCUMENT ORGANIZATION1-2	
2.0	DEADEDTV DESCRIPTION AND DACKCROUND 2		
2.0	21	GEOLOGY AND HYDROGEOLOGY 21	
	2.1	GEOLOGI AND ITTDROGEOLOGI	
3.0	SUM	MARY OF PREVIOUS INVESTIGATIONS AND	
REM	EDIAL	ACTIONS	
	3.1	1990 SUBSURFACE INVESTIGATION	
	3.2	1994 SITE HAZARD ASSESSMENT AND INVESTIGATION	
	3.3	1996 SITE INVESTIGATION AND GROUNDWATER	
		MONITORING	
	3.4	1996 FOCUSED PCB INVESTIGATION	
	3.5	1997 GROUNDWATER SAMPLING	
	3.6	1997 SOIL EXCAVATION	
	3.7	1999 REMEDIAL INVESTIGATION AND FEASIBILITY STUDY 3-4	
	3.8	2000 CLEANUP ACTION	
	3.9	2001 AND 2008 REGULATORY INTERACTIONS	
	3.10	2017 PHASE I AND PHASE II ENVIRONMENTAL SITE	
		ASSESSMENTS	
	3.11	2018 SUPPLEMENTAL PHASE II ENVIRONMENTAL SITE	
		ASSESSMENT	
	3.12	2018 SUPPLEMENTAL SOIL SAMPLING	
	3.13	2019 REMEDIAL ACTION	
	3.14	2019 TO 2020 GROUNDWATER MONITORING	
10		TED CONCEPTIAL SITE MODEL 4.1	
4.0		CONSTITUENTS OF DOTENTIAL CONCEDN 4-1	
	4.1	MEDIA OF DOTENTIAL CONCERN	
	4.2	MEDIA OF FOTENTIAL CONCERN	
	4.5	PRELIMINAR I SCREENING LEVELS	
	4.4	FOTENTIAL RECEPTORS AND EAROSURE FAITWATS	
		4.4.1 Soli Leaching to Groundwater	
		4.4.2 Groundwater Discharge to Surface water	
		4.4.5 Terrestrial Ecological Evaluation	
	4.5	4.4.4 Soil and Groundwater Direct Contact (Human Health)	
	4.5	NATURE AND EXTENT OF CONTAMINATION	
		4.5.1 Nietais	
		4.5.2 I otal Petroleum Hydrocarbons	
		4.5.3 Polychlorinated Biphenyls	
		4.5.4 Polycyclic Aromatic Hydrocarbons	

in the

5.0	CONCLUSIONS		
6.0			
7.0	LIM	ITATIONS	
	7.1	GENERAL LIMITATIONS	
	7.2	LIMITATION ON RELIANCE BY THIRD PARTIES	

FIGURES

- Figure 1 Property Vicinity Map
- Figure 2 Property Plan with Historical Features
- Figure 3 Property Plan with Sample Locations and Cross Section Lines
- Figure 4 Cross Section A-A'
- Figure 5 Cross Section B-B'
- Figure 6 Cross Section C-C'
- Figure 7 Cross Section D-D'
- Figure 8 Cross Section E-E'
- Figure 9Groundwater Elevation Contour Map
- Figure 10 Remedial Excavation Areas (1997-2019)
- Figure 11A Excavation Detail, Western Portion of the Property
- Figure 11B Excavation Detail, Central Portion of the Property
- Figure 11C Excavation Detail, Northwestern Portion of the Property
- Figure 11D Excavation Detail, Eastern Portion of the Property
- Figure 12 Groundwater Analytical Results for Dissolved Metals
- Figure 13 Groundwater Analytical Results for Oil-Range Organics
- Figure 14 Estimated Extents of Contamination

TABLES

- Table 1Groundwater Elevations
- Table 2Soil Analytical Results for TPH and BTEX
- Table 3Soil Analytical Results for Metals
- Table 4Soil Analytical Results for PCBs
- Table 5Soil Analytical Results for PAHs
- Table 6Groundwater and Surface Water Analytical Results for TPH and BTEX
- Table 7
 Groundwater and Surface Water Analytical Results for Metals
- Table 8Groundwater and Surface Water Analytical Results for PCBs

Table 9	Groundwater and Surface Water Analytical Results for PAHs
Table 10	Sediment Sample Analytical Results
Table 11	Constituents of Concern and Preliminary Screening Levels

APPENDICES

- Appendix A Boring, Test Pit, and Monitoring Well Construction Logs
- Appendix B Terrestrial Ecological Evaluation Supporting Documents

ACRONYMS AND ABBREVIATIONS

AST	aboveground storage tank
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
COCs	constituents of concern
COPCs	constituents of potential concern
сРАН	carcinogenic polycyclic aromatic hydrocarbon
DRO	total petroleum hydrocarbons as diesel-range organics
Ecology	Washington State Department of Ecology
Farallon	Farallon Consulting, L.L.C.
GRO	total petroleum hydrocarbons as gasoline-range organics
mg/kg	milligrams per kilogram
μg/l	micrograms per liter
MTCA	Washington State Model Toxics Control Act Cleanup Regulation
NAVD88	North American Vertical Datum of 1988
ORO	total petroleum hydrocarbons as oil-range organics
РАН	polycyclic aromatic hydrocarbons
PCBs	polychlorinated biphenyls
PQL	practical quantitation limit
Property	the property at 500 East Fremont Street in Monroe, Washington
SHD	Snohomish Health District
Site	the area where hazardous substances have come to be located at concentrations exceeding applicable cleanup levels

i.

TEE	Terrestrial Ecological Evaluation
ТРН	total petroleum hydrocarbons
UST	underground storage tank
VCP	Voluntary Cleanup Program
VOCs	volatile organic compounds
WAC	Washington Administrative Code

È

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this report to summarize the current environmental conditions for the property at 500 East Fremont Street in Monroe, Washington (herein referred to as the Property) (Figure 1). Former operations on the Property included a lumber mill and automobile salvage yard. The Property currently is developed with five affordable housing apartment buildings.

A "Site," as defined under the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Chapter 173-340 of the Washington Administrative Code (WAC 173-340), comprises all areas where hazardous substances have come to be located at concentrations exceeding applicable cleanup levels. The Site is identified by the Washington State Department of Ecology (Ecology) as Monroe Auto Salvage located at 526 Simons Road in Monroe, Washington. The Site is enrolled in the Ecology Voluntary Cleanup Program (VCP) as VCP Project No. NW3251.

Multiple subsurface investigations and remedial actions were conducted at the Property between 1990 and 2020 to 1) evaluate soil, groundwater, surface water, and sediment for the presence of hazardous substances; 2) remediate hazardous substances identified at the Site; and 3) evaluate the long-term effectiveness of the completed remedial actions.

In 2001, the Site received a determination of No Further Action from Ecology for the cleanup of total petroleum hydrocarbons (TPH), cadmium, and lead in soil. In 2008, Ecology re-evaluated the Site and determined that the remedial action was not sufficient to meet the substantive requirements of MTCA and the No Further Action determination was rescinded. In December 2019, the Site was re-enrolled in Ecology's VCP.

Ecology issued a Further Action letter for the Site in 2021 (Ecology 2021). According to the Further Action letter, the Site is impacted by the following constituents of concern (COCs): TPH as diesel-range organics and as oil-range organics (DRO and ORO, respectively), total polychlorinated biphenyls (PCBs), carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and the metals arsenic, cadmium, lead, and zinc.

Ecology determined that characterization of the Site to-date is not sufficient to establish cleanup standards and select a cleanup action, and that remedial actions conducted at the Site did not meet the substantive requirements of MTCA because 1) the extent of COC-impacted groundwater has not been fully characterized; 2) concentrations of COCs exceed the MTCA Method A cleanup levels in soil and groundwater; and 3) surface water, sediment, and ecological exposure pathways are potentially complete for the Site.

1.1 PURPOSE

The purpose of this report is to provide a description of the work previously performed at the Property and present an updated conceptual site model based on the current data for the Site following the most recent remedial action completed in 2019. This report also includes specific

1 - 1

information that was requested by Ecology in their 2021 Further Action letter, including tables summarizing all soil, groundwater, and surface water data collected; cross sections depicting lithology, hydrogeological conditions, and COCs remaining at the Site; and figures depicting the extent of COCs in soil and groundwater.

1.2 DOCUMENT ORGANIZATION

This report has been organized into the following sections:

- Section 2, Property Description and Background, provides the Property description, the Property history, and summaries of the Property geology and hydrogeology.
- Section 3, Summary of Previous Investigations and Remedial Actions, provides a summary of previous investigations and interim actions performed at the Property.
- Section 4, Updated Conceptual Site Model, discusses the constituents of potential concern (COPCs), media of concern, screening levels for the Site, confirmed and suspected source areas, and nature and extent of contamination.
- Section 5, Conclusions, provides conclusions based on the groundwater monitoring results.
- Section 6, References, lists the documents cited in this report.
- Section 7, Limitations, provides Farallon's standard limitations applicable to this report.

2.0 PROPERTY DESCRIPTION AND BACKGROUND

The Property consists of Snohomish County Parcel No. 27070600300500, which totals 8.76 acres of land developed with multi-family affordable housing. The Property is developed with four three-story 10,094-square-foot apartment buildings and one three-story 7,167-square-foot apartment building constructed in 2020. The Property is bordered to the north by East Fremont Street, Simons Road, and residential properties; to the east by Al Borlin Park; to the south by Woods Creek; and to the west by South Ann Street and residential properties (Figure 2).

The topography is relatively flat with a steep slope along the southern portion of the Property toward Woods Creek. The approximate surface elevation of the developed portion of the Property is 77 feet North American Vertical Datum of 1988 (NAVD88). The southern portion of the Property slopes down to an approximate elevation of 52 feet NAVD88 where it adjoins Woods Creek (Figure 2).

Prior to redevelopment for affordable housing, the Property had three predominant historical uses. The historical operations areas are summarized below.

- Shingle Mill, Electrical Light Plant, and Pump Station. From approximately 1905 until the 1940s, the Property was occupied by a shingle mill, an electric light plant, and a pump station. During this time period, the southeastern portion of the Property was developed with an electric light plant, a city pump station, and a shingle mill, which used several accessory structures including two steam dry kilns, shingle sheds, a blacksmith shop, a buggy shed, and an engine room. A rail spur extended across the western portion of the Property from the north.
- Lumber Mill. From the mid-1940s to early 1990s, a lumber mill operated on the northeastern portion of the Property (Figure 2). The former lumber mill area was historically developed with three buildings: a sawmill with an attached electrical building, a storage building, and a small mechanics shop (Figure 2).
- Automobile Salvage Yard. Between the mid-1950s to 1998, an automobile salvage yard, known as Monroe Auto Salvage, operated on the western and southern portions of the Property (Figure 2). Salvage operations consisted of dismantling and storing wrecked automobiles and recycling scrap metal. The former lumber mill area was used also for storage of automobiles and other salvage materials from the early-1990s until salvage operations were discontinued in 1998. The Property was cleared of remaining automobiles and debris between 1998 and 2000. The former automobile salvage facility was historically developed with wood-frame sheds and a wood-frame office with concrete and dirt floors.

2.1 GEOLOGY AND HYDROGEOLOGY

The Property is located within the Puget Sound Basin, which consists of nearly level and rolling, bench-like glaciated plains covered by alluvial deposits in the Property vicinity. The geology of

the Property vicinity consists of unconsolidated or semi-consolidated alluvial clay, silt, sand, gravel, and cobble deposits.

The general stratigraphy at the Property consists of a fill layer comprising silt, sand, gravel, and debris of variable thickness of 0.5 to 15 feet thick. Generally, the thicker areas of fill are located along the southern side of the Property, which is situated on top of a steep slope. Wood, including saw dust and larger debris, has been observed to depths of up to 23 feet below ground surface (bgs) in the southeastern portion of the Property proximate to the former lumber yard. Debris, including metal and glass, has been observed on the southern portion of the Property to depths of up to 25.5 feet bgs. The fill is underlain primarily by sand and silty sand with gravel and cobbles to depths ranging from approximately 15 to 30 feet bgs and gravelly sandy silt to the maximum depth explored of approximately 35 feet bgs. Previous reports indicated that debris had been encountered to a maximum depth of 35 feet bgs in borings advanced on the southern portion of the Property adjacent to the steep slope. However, Farallon reviewed the references in the previous reports and was unable to corroborate the information.

The locations of the geologic cross sections are shown on Figure 3. Cross sections depicting the general lithology of the Property are presented on Figures 4 through 8, which are based on field observations made during subsurface investigations conducted by Farallon and others. Available boring, test pit, and well construction logs are included in Appendix A.

Groundwater monitoring events were conducted at the Property from 1990 to 1999 and 2018 to 2020. However, the groundwater monitoring events from 2018 through 2020 did not include collection of depth-to-water measurements. Depth to groundwater as measured in monitoring wells at the Property ranges from approximately 18 to 26 feet bgs. The groundwater-bearing zone was present at an average elevation of 55.17 feet NAVD88 during groundwater monitoring events conducted between 1990 and 1999 (Table 1). Based on groundwater contours developed using the synoptic measurements, the interpreted groundwater flow direction of the groundwater-bearing zone recorded in August 1999 is to the southwest along the direction of flow for Woods Creek (Figure 9).

3.0 SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

Multiple subsurface investigations and remedial actions were conducted at the Site between 1990 and 2020 to 1) evaluate soil, groundwater, and surface water for the presence of hazardous substances; 2) remediate hazardous substances identified at the Site; and 3) evaluate the long-term effectiveness of the remedial actions completed at the Site.

Sample locations associated with the previous investigations are shown on Figure 3. Figure 10 shows the remedial action areas completed in 1997, 2000, and 2019. Figures 11A through 11D show the remedial excavation areas and the locations of soil samples collected at the extents of the excavations. Soil, groundwater, surface water, and sediment data are presented in Tables 1 through 10. Groundwater analytical results for dissolved metals and ORO are shown on Figures 12 and 13, respectively.

3.1 1990 SUBSURFACE INVESTIGATION

In June 1990, Hart Crowser and Associates conducted a subsurface investigation on the southwestern portion of the Property to evaluate subsurface conditions proximate to the former automobile salvage yard (Farallon 2000a). The subsurface investigation included the collection of two surface soil samples (SS-1 and SS-2), advancement of two borings for the installation of monitoring wells (HC-4 and HC-5), and collection of groundwater samples from monitoring wells HC-4 and HC-5 (Figure 3). Detailed information from this subsurface investigation, including boring logs and laboratory reports, was not available for review by Farallon.

DRO, lead, and cadmium were detected at concentrations exceeding the MTCA Method A cleanup levels in surface soil sample SS-2 at a depth of 0 to 0.5 foot bgs (Tables 2 and 3). DRO, cadmium, chromium, and lead were either detected at concentrations less than the MTCA Method A cleanup levels or were not detected at or exceeding the laboratory practical quantitation limits (PQLs) in the remaining soil samples analyzed. Concentrations of DRO; TPH as gasoline-range organics (GRO); and benzene, toluene, ethylbenzene, and xylenes (BTEX); and dissolved lead were not detected at or exceeding the laboratory PQLs in the groundwater samples analyzed from monitoring wells HC-4 and HC-5 (Tables 6 and 7).

3.2 1994 SITE HAZARD ASSESSMENT AND INVESTIGATION

Snohomish Health District (SHD) conducted a site hazard assessment of the former automobile salvage yard in May 1994 (SHD 1994a). The site hazard assessment included the collection of four surface soil samples (M-1 through M-4). Surface soil samples M-1 and M-2 were collected proximate to the former office building on the southwestern portion of the Property, M-3 was collected proximate to surface staining and a pole-mounted transformer on the northeastern portion of the Property, and M-4 was collected proximate to Woods Creek (Figure 3). DRO exceeded the MTCA cleanup levels in surface soil samples M-1 and M-3. Lead and/or cadmium exceeded the MTCA Method A cleanup level in surface soil samples M-1 through M-3 and M-4 (Tables 2 through 4).

3-1

SHD conducted a second investigation at the former automobile salvage yard in July 1994 (SHD 1994b). The investigation included the collection of two sediment samples (M-11 and M-12) from Woods Creek and a composite surface soil sample (M-13) from an access road on the northeastern portion of the Property (Figure 3). PCBs were not detected at or exceeding the laboratory PQL in sediment samples M-11 and M-12 (Table 10). Chromium and lead were detected at concentrations less than the MTCA Method A cleanup levels, and cadmium was not detected at a concentration exceeding the MTCA Method A cleanup level in composite surface soil sample M-13 (Table 3). PCBs and the remaining metals were either detected at concentrations less than the MTCA Method A cleanup level in composite surface soil sample M-13 (Table 3).

3.3 1996 SITE INVESTIGATION AND GROUNDWATER MONITORING

In April and May 1996, EMCON conducted an investigation at the Property to evaluate: 1) surface drainage at the Site; 2) soil conditions proximate to surface staining and a pole-mounted transformer with known impacts to surface soil; 3) the nature and extent of COCs identified during previous investigations; and 4) groundwater conditions (EMCON 1996a,b).

EMCON conducted the following activities during the investigation (Figure 3):

- Visual observations during a storm event to evaluate surface drainage pathways at the Property.
- Collection and analysis of four surface soil samples (MAS-01 through MAS-04) to characterize the nature and extent of PCB-contaminated soil proximate to surface staining and a pole-mounted transformer on the northeastern portion of the Property. In addition, a composite soil sample (MAS-SAS) was analyzed for disposal purposes.
- Collection and analysis of fourteen surface soil samples (MAS-01-Grid, MAS-04-Grid, MAS-05-Grid, MAS-07-Grid through MAS-09-Grid, MAS-13-Grid through MAS-15-Grid, MAS-17-Grid, MAS-19-Grid through MAS-21-Grid, and MAS-CCS) across the Property. The locations of surface soil samples MAS-20-Grid and MAS-21-Grid were not provided in the available environmental reports. However, samples from those locations were provided in laboratory analytical reports.
- Collection and analysis of three surface soil samples (MAS-05 through MAS-07). EMCON described these samples as sediment samples. However, the samples were not collected from Woods Creek, but from banks of the drainage area leading to Woods Creek proximate to surface soil sample M-4 and sediment sample M-11. In addition, sample MAS-07 was collected immediately down-gradient of two partially buried drums.
- Advancement of four borings to a maximum depth of 29 feet bgs for the collection of soil samples and installation of monitoring wells (MW-1 through MW-4) for the collection of soil and groundwater samples.

Visual observations were conducted during a storm event to evaluate surface drainage pathways at the Property. EMCON indicated that stormwater runoff generally infiltrates to the subsurface in a series of naturally occurring low areas that collect stormwater. Three surface discharge pathways were observed on the steep slope on the southwestern portion of the Property adjacent to Woods Creek.

ORO, and/or PCBs were detected at concentrations exceeding the MTCA Method A cleanup levels in surface soil samples MAS-04, MAS-04-Grid, and MAS-05-Grid collected proximate to surface staining and a pole-mounted transformer on the northeastern portion of the Property (Tables 2 and 4). Cadmium, lead, DRO, ORO, and/or GRO were detected at concentrations exceeding the MTCA Method A cleanup levels in surface soil samples MAS-07-Grid, MAS-13-Grid through MAS-15-Grid, MAS-19-Grid, and MAS-CCS collected in the southwestern portion of the Property in the vicinity of the former automobile salvage yard (Tables 2 and 3). DRO and ORO were detected at concentrations exceeding the MTCA Method A cleanup levels in the soil sample collected from MW-2 at a depth of 5 feet bgs. GRO, DRO, ORO, and metals were either detected at concentrations less than the MTCA Method A cleanup levels or were not detected at or exceeding the laboratory PQLs in the remaining soil samples analyzed from MW-1 through MW-4 (Tables 2 and 3).

EMCON conducted groundwater monitoring events at the Property in May and August 1996. The groundwater monitoring events included measuring depth to water and collecting groundwater samples from monitoring wells HC-5 and MW-2 through MW-4 for analysis of total and dissolved metals (cadmium, chromium, and lead), GRO, DRO, ORO, and PCBs. Groundwater was determined to flow toward the southwest during both groundwater monitoring events. Total chromium was detected at a concentration that exceeded the MTCA Method A cleanup level in the groundwater sample collected from monitoring well HC-5 during the August 1996 groundwater monitoring event. However, dissolved chromium was detected at a concentration less than the MTCA Method A cleanup level in the same groundwater sample (Table 7). All other analytes were either detected at concentrations less than their respective MTCA cleanup levels or not detected at or exceeding the laboratory PQLs in the groundwater samples analyzed (Tables 6 through 8).

3.4 1996 FOCUSED PCB INVESTIGATION

In September 1996, EMCON (1996c) conducted an additional investigation to 1) characterize the nature and extent of PCB-contaminated soil proximate to surface staining and a pole-mounted transformer on the northeastern portion of the Property; and 2) evaluate whether PCB-contaminated soil extended under the foundation of the electrical room (Figure 2). The subsurface investigation included the collection of three soil samples (ER-E, ER-S, and ER-W) from locations beneath the concrete slab in the electrical room, four surface soil samples (MAS-05N, MAS-05E, MAS-05S, and MAS-05W) from a 2-foot radius surrounding previous sample location MAS-05-Grid, and one surface soil sample from an area of stained soil at the southeast corner of the electrical room (ER-SE) (Figure 3).

PCBs were detected at concentrations exceeding the MTCA Method A cleanup level in soil samples MAS-05N, MAS-05S, MAS-05W, and ER-SE (Table 4). PCBs were not detected at or exceeding the laboratory PQL in soil samples collected from beneath the electrical room concrete slab (Table 4).

3.5 1997 GROUNDWATER SAMPLING

PBS Environmental conducted a groundwater monitoring event at the Property in March 1997. The groundwater monitoring event included measuring depth to water and collecting groundwater samples from monitoring wells HC-5, MW-2, MW-3, and MW-4 for analysis of total and dissolved metals (cadmium, chromium, and lead), GRO, DRO, ORO, and PCBs (Farallon 2000a). Detailed information from this groundwater monitoring event, including laboratory reports, was not available for review by Farallon.

Total chromium and lead were detected at concentrations exceeding the MTCA Method A cleanup levels in the groundwater sample collected from monitoring well MW-4. However, dissolved chromium and lead were not detected in the same groundwater sample (Table 7). The remaining analytes were not detected (Tables 6 through 8).

3.6 1997 SOIL EXCAVATION

In March 1997, Glacier Environmental Services, Incorporated (1997) conducted a remedial action to excavate PCB-contaminated soil in two areas proximate to surface staining and a pole-mounted transformer on the northeastern portion of the Property (Figures 10 and 11D). Both areas were excavated to approximate depths ranging from 1 to 1.5 feet bgs. Approximately 18.25 tons of PCB-contaminated soil was excavated and disposed of off the Property at Chemical Waste Management of the Northwest, Inc. in Arlington, Oregon.

Confirmation soil samples were collected from both excavation areas. Sidewall samples (G-MAS-01N, G-MAS-01E, G-MAS-01S, G-MAS-01W, G-MAS-02-SW-N, G-MAS-02-SW-E, G-MAS-02-SW-S, and G-MAS-02-SW-W) and bottom samples (G-MAS-01-BT-01, G-MAS-01-BT-02, and G-MAS-02-BT-01) were analyzed for PCBs (Figure 11D). PCBs were either detected at concentrations less than their respective MTCA cleanup levels or not detected at or exceeding the laboratory PQLs in all confirmation soil samples (Table 4).

3.7 1999 REMEDIAL INVESTIGATION AND FEASIBILITY STUDY

In July and August 1999, Farallon (2000a) conducted a remedial investigation at the Property. The remedial investigation included excavation of twenty-two test pits to a maximum depth of approximately 15 feet bgs in the former lumber mill area (FLM-TP1 through FLM-TP5, FLM-TP7, and FLM-TP8) and former automobile salvage yard (FSY-TP1 through FSY-TP16), advancement of one soil boring to a depth of approximately 23 feet bgs (FLM-SB1) in the former lumber mill area, and advancement of two soil borings to a maximum depth of 30 feet for the installation of monitoring wells (MW-8 and MW-9) (Figure 3). The location of surface soil sample

FSY-TP13 was not provided in the available environmental reports. However, the sample from this location was provided in laboratory analytical reports.

Soil samples were analyzed for DRO, ORO, GRO, BTEX, lead, cadmium, chromium, PCBs, naphthalene, and cPAHs. Farallon calculated a Site-specific Method B cleanup level for TPH of 2,050 milligrams per kilogram (mg/kg). ORO was detected at a concentration equal to the Site-specific MTCA Method B cleanup level in a single soil sample collected from FLM-TP8 at a depth of 15 feet bgs (Table 2). ORO was either detected at concentrations less than both the Site-specific MTCA Method B and MTCA Method A cleanup levels or not detected at or exceeding the laboratory PQLs in the remaining soil samples analyzed (Table 2).

DRO, GRO, BTEX, naphthalene, cPAHs, PCBs, lead, cadmium, and chromium were either detected at concentrations less than the MTCA cleanup level or not detected at or exceeding the laboratory PQLs in the remaining soil samples analyzed (Table 3 through 5).

Farallon conducted a groundwater monitoring event at the Property, which included measuring depth to water and collecting groundwater samples from monitoring wells HC-4, HC-5, MW-2 through MW-4, MW-8, and MW-9 for analysis of total and dissolved metals (cadmium, chromium, and lead), GRO, DRO, ORO, VOCs, and PCBs. Reportedly, groundwater samples were collected using disposable bailers.

Groundwater was determined to flow toward the west-southwest. Total cadmium, chromium, and/or lead were detected at concentrations exceeding the MTCA cleanup levels in groundwater samples collected from monitoring wells HC-4, HC-5, MW-2, MW-3, MW-4, MW-8, and MW-9. However, dissolved cadmium, chromium, and lead were either detected at concentrations less than the MTCA cleanup levels or not detected at or exceeding on laboratory PQLs in groundwater samples collected from all monitoring wells with the exception of MW-2 (Table 7). The remaining analytes were either detected at concentrations less than the MTCA cleanup levels or not detected at or exceeding of MW-2 (Table 7). The remaining analytes were either detected at concentrations less than the MTCA cleanup levels or not detected at or exceeding the laboratory PQLs (Tables 6, 8, and 9).

3.8 2000 CLEANUP ACTION

In July and August 2000, Farallon (2000b) conducted a cleanup action to excavate contaminated soil to the maximum extent practicable. The excavations were conducted in eight areas (EX1 through EX7 and EX-WH), which were completed to depths ranging from approximately 0.5 to 4 feet bgs. The locations of the excavation areas are shown on Figure 10. The excavation extents and confirmation soil sample locations are shown in more detail on Figures 11A through 11D. The locations of confirmation soil samples for excavation area EX02 were not provided in the available environmental reports. However, the samples from this excavation area were provided in tables and laboratory analytical reports.

Approximately 2,139.48 tons of contaminated soil was excavated and disposed of off the Property at CSR Associated in Everett, Washington for thermal desorption. Performance and confirmation soil samples were collected from the sidewalls and bottom of each excavation area. If performance

soil samples exceeded the applicable MTCA cleanup levels, the excavation was expanded to the maximum extent practicable and additional soil samples were collected. Following excavation to the maximum extent practicable, DRO, cadmium, and lead were detected at concentrations that exceeded the applicable MTCA cleanup levels in soil samples collected from excavation areas EX1 and EX2 in the southwestern portion of the Property (Tables 2 and 3). Additional excavation of contaminated soil was not feasible due to the proximity of an existing structure and nearby large trees and vegetation.

3.9 2001 AND 2008 REGULATORY INTERACTIONS

In 2001, the Site received a determination of No Further Action from Ecology for the cleanup of TPH, cadmium, and lead in soil. In 2008, Ecology re-evaluated the Site and determined that the remedial action was not sufficient to meet the substantive requirements of MTCA and the No Further Action determination was rescinded.

3.10 2017 PHASE I AND PHASE II ENVIRONMENTAL SITE ASSESSMENTS

Landau Associates, Inc (LAI) prepared a Phase I Environmental Site Assessment (ESA) for the Property in April 2017, which identified the following recognized environmental conditions (LAI 2017a):

- Subsurface contamination associated with the historical use of the Property;
- The recission of Ecology's 2001 No Further Action determination due to cadmium, lead, and TPH remaining in soil after completion of remedial excavations in 2000;
- The presence of an aboveground storage tank (AST) with no secondary containment and observation of staining and cracks in the floor at the location of the AST; and
- The removal of a 500-gallon AST and associated excavation of approximately 20 yards of impacted soil without the collection of confirmation soil samples.

In June 2017, LAI conducted a Phase II ESA at the Property (LAI 2017b). The Phase II ESA included advancement of a geotechnical boring (LAI-B1) to approximately 41.5 feet bgs near the center of the Property and collection of a reconnaissance groundwater sample at a depth of 21.5 bgs; excavation of four test pits (TP-4 through TP-7) to a maximum depth of 2 feet bgs to collect soil samples from within or proximate to areas excavated in 2000; excavation of one test pit (F.AST-TP) to a depth of 2 feet bgs to collect soil samples proximate to stained soil observed near a former AST; advancement of a hand auger boring (HA-1) to a depth of 1.5 feet bgs to collect a composite soil sample proximate to the former pole-mounted transformer and PCB-contaminated soil excavation completed in 1997; and collection of a groundwater sample from monitoring well MW-4 (Figure 3).

The results of the Phase II ESA identified cPAHs at concentrations exceeding the MTCA Method A cleanup level in soil samples collected from hand auger boring HA-1 at a depth of 1.5 feet bgs and test pit TP-7 at a depth of 1 foot bgs (Table 5). DRO, ORO, arsenic, cadmium, lead, chromium,

mercury, PCBs, and naphthalene were either detected at concentrations less than the MTCA cleanup levels or not detected at or exceeding the laboratory PQLs (Tables 2 through 5).

Arsenic was detected at a concentration of 8.7 micrograms per liter (μ g/l) in the reconnaissance groundwater sample collected from boring LAI-B1, which exceeded the previous MTCA Method A cleanup level of 5 μ g/l. DRO, ORO, GRO, cadmium, chromium, lead, mercury, naphthalene, semivolatile organic compounds, and volatile organic compounds, were either detected at concentrations less than the MTCA cleanup levels or not detected at or exceeding the laboratory PQLs (Tables 6, 7, and 9).

3.11 2018 SUPPLEMENTAL PHASE II ENVIRONMENTAL SITE ASSESSMENT

LAI conducted a Supplemental Phase II ESA to evaluate potential data gaps from previous investigations (LAI 2018). LAI identified the following potential data gaps:

- Concentrations of DRO and ORO reported in soil at a depth of 15 ft bgs in test pit FLM-TP8 were at or less than the Site-Specific MTCA Method B cleanup level of 2,050 mg/kg calculated by Farallon in 1999. However, insufficient data were collected to demonstrate that the detections represented two distinct products, therefore the summed concentration of 2,470 mg/kg which exceeds the calculated Site-specific MTCA Method B cleanup level should be used;
- Cadmium was detected at concentrations exceeding the MTCA Method A cleanup level in the south and east sidewall samples collected from excavation area EX-1 and the extent of cadmium in soil exceeding the MTCA Method A cleanup level has not been determined;
- Cadmium, lead, and DRO were detected at concentrations exceeding their respective MTCA Method A cleanup levels in the south sidewall and southeast excavation bottom samples collected from excavation area EX-2 and the extent of cadmium, lead, and DRO in soil exceeding the MTCA Method A cleanup level has not been determined;
- The extent of the debris in the slope to Woods Creek had not been characterized; and
- Potential impacts to groundwater and the surface water of Woods Creek have not been characterized.

In June and August 2018, LAI conducted the following activities during the Supplemental Phase II ESA (Figure 2):

- Advancement of three borings (B-1 through B-3) to an approximate depth of 20 feet bgs proximate to former test pit FLM-TP8 for the collection of soil samples for analysis of DRO and ORO.
- Advancement of four borings (P-2 through P-5) to approximate depths ranging from 24 to 29 feet bgs at the top of the vegetated slope adjacent to Woods Creek for the collection of reconnaissance groundwater samples for analysis of DRO, ORO, polycyclic aromatic hydrocarbons (PAHs), PCBs, and dissolved metals (arsenic, cadmium, chromium, lead, mercury, and zinc).

• Collection of two surface water samples from Woods Creek at a location upstream (SWU) and downstream (SWD) of the Property for analysis of DRO, ORO, PAHs, PCBs, and dissolved metals (arsenic, cadmium, chromium, lead, mercury, and zinc).

DRO and ORO were not detected at or exceeding the laboratory PQLs in the soil samples collected from borings B-1 through B-3 (Table 3). Based on this information, LAI concluded that the previously-detected concentrations of DRO and ORO in soil sample FLM-TP8 may have naturally degraded and no additional investigation in this area is necessary.

DRO, ORO, PAHs, PCBs, and dissolved metals (arsenic, cadmium, chromium, lead, mercury, and zinc) were either detected at concentrations less that the MTCA Method A cleanup levels or were not detected at or exceeding the laboratory PQLs in the reconnaissance groundwater samples analyzed from borings P-2 through P-5 (Tables 6 through 9).

LAI compared the analytical results for the reconnaissance groundwater samples to surface water screening levels. Dissolved arsenic and zinc exceeded the most stringent surface water screening levels. Subsequently, LAI installed three 1-inch diameter monitoring wells (DP3-MW through DP5-MW) to depths of 30 feet bgs proximate to borings P-3 through P-5 to further evaluate the reported concentrations of metals in reconnaissance groundwater samples. According to LAI, total and dissolved arsenic were detected at concentrations exceeding the most stringent surface water screening levels in the groundwater sample collected from monitoring well DP-4-MW on August 22, 2018. In addition, ORO was detected a concentration that exceeded the MTCA Method A cleanup level in the groundwater sample collected from monitoring well DP-4-MW (Tables 6 and 7).

Dissolved arsenic was detected at concentrations exceeding the most stringent surface water screening level for freshwater in surface water samples SWU and SWD (Table 7). The remaining metals (cadmium, chromium, lead, mercury), DRO, ORO, PCBs, naphthalene, and cPAHs were either detected at concentrations less than the surface water screening levels for freshwater or were not detected at or exceeding the laboratory PQLs (Tables 6 through 9).

3.12 2018 SUPPLEMENTAL SOIL SAMPLING

In November 2018, LAI (2019a) conducted a supplemental soil sampling to evaluate potential data gaps from previous investigations. LAI identified the following potential data gaps:

- Confirmation samples collected from excavation areas EX-3, EX-4, and EX-6 were not analyzed for PCBs; however, PCBs were detected in soil samples collected from those areas prior to excavation at concentrations exceeding the MTCA Method A cleanup level; therefore, the removal of PCB-impacted soils at those locations has not been confirmed; and
- PAHs were detected at concentrations exceeding the MTCA Method A cleanup level in areas adjacent to the mill building, however, the extent of PAHs in soil exceeding the MTCA Method A cleanup level has not been determined.

Supplemental soil sampling included excavation of 36 test pits to a maximum depth of 3 feet bgs in the areas identified for the data gaps above. The locations of the test pits were not shown on a figure. The soil samples were submitted for laboratory analysis for PCBs, DRO, ORO, and/or PAHs.

PCBs were detected at a concentration less than the MTCA Method A cleanup level in a soil sample collected from a single soil sample (AOC2-SSW) collected from former excavation EX-4 (Table 4). PCBs were reported not detected at or exceeding the laboratory PQL in remaining soil samples analyzed from the test pits (Table 4). cPAHs were detected at a concentration that exceeded the MTCA Method A cleanup level in a single soil sample (AOC3-ESW) collected adjacent to the former lumber mill building (Table 5). PAHs were either detected at concentrations less that the MTCA Method A cleanup levels or were not detected at or exceeding the laboratory PQLs in the remaining soil samples analyzed (Table 5). DRO and ORO were not detected at or exceeding the laboratory PQLs in the soil sample collected from former excavation EX-6 (Table 2).

Based on these results, LAI concluded that the 2000 excavations completed by Farallon in excavation areas EX-3, EX-4, and EX-6 were successful in removing soil with COC concentrations exceeding MTCA Method A cleanup levels. Excavation would be required adjacent to the 1997 excavation completed by Glacier Environmental Services, Incorporated to remove additional cPAH-contaminated soil.

3.13 2019 REMEDIAL ACTION

In 2019, LAI (2019b) conducted a cleanup action in conjunction with Property redevelopment to excavate contaminated soil to the maximum extent practicable. The excavations were conducted in two areas with confirmed soil contamination (AOC1 and AOC3). AOC1 was proximate to excavations EX01 and EX02 completed by Farallon in 2000. In 2000, contaminated soil was not accessible and left in place on the southern portions of EX01 and EX02. Excavation in AOC1 removed the contaminated soil left in place in 2000. AOC3 was proximate to the excavation completed by Glacier Environmental Services, Incorporated in 1997.

In addition, LAI encountered unforeseen conditions during redevelopment, including a rinse tank, a 500-gallon underground storage tank (UST), and petroleum-contaminated soil. The 500-gallon UST was decommissioned in accordance with WAC 173-360A. The rinse tank and petroleum-contaminated soil were excavated and removed from the Property during the cleanup action. The locations of the excavation areas are shown on Figure 10. The excavation extents and sample locations are shown in more detail on Figures 11A through 11D.

A total of 3,608 tons of contaminated soil was excavated and disposed of off the Site at Waste Management Columbia Ridge Landfill and the Iron Mountain Quarry in Granite Falls, Washington. Performance and confirmation soil samples were collected from the sidewalls and bottom of each excavation area. If COC concentrations exceeded the applicable MTCA cleanup levels in performance soil samples, the excavation was expanded to the maximum extent

practicable and additional soil samples were collected. Based on the results of the cleanup action, soil with concentrations of COCs exceeding MTCA Method A cleanup levels was removed from the Property with the following exceptions:

- Lead and cadmium were detected at concentrations that exceeded the MTCA Method A cleanup levels in soil sample AOC1-SW17(12-13) collected at a depth ranging from 12 to 13 feet bgs in the southeastern portion of excavation area AOC1 (Table 3);
- Lead was detected at a concentration that exceeded the MTCA Method A cleanup level in soil sample AOC1-B(15) collected at a depth 15 feet bgs in the central portion of excavation area AOC1 (Table 3); and
- Lead was detected at a concentration that exceeded the MTCA Method A cleanup level in soil sample AOC1-B(17) collected at a depth 17 feet bgs in the southern portion of excavation area AOC1 (Table 3);

LAI advanced a boring (AOC1-DP) approximately 9 feet south of excavation sidewall sample AOC1-SW17(12-13) to evaluate the extent of contaminated soil that would be left in place following excavation activities (Figure 11A). ORO, cadmium, and lead were detected at concentrations less than the MTCA Method A cleanup levels; DRO was not detected at or exceeding the laboratory PQL (Tables 2 and 3). Based on these data, LAI concluded that the elevated metals concentrations in the excavation sidewall were limited to a localized area.

3.14 2019 TO 2020 GROUNDWATER MONITORING

In June and July 2019, LAI (2020) installed a 1-inch-diameter monitoring well (DP6-MW) and a temporary drive point well (DPW-1) (Figure 3). Monitoring well DP6-MW was installed in the northern portion of the Property. Temporary drive point well DPW-1 was installed on an exposed sandbar on the west bank of Woods Creek in a downgradient position relative to monitoring well DP4-MW. On June 28, 2019, groundwater samples were collected from DPW-1 using a peristaltic pump and DP4-MW using an inertial pump. Groundwater samples were analyzed for total metals (arsenic, cadmium, lead, and zinc), DRO, and ORO. Total arsenic was detected at a concentration that exceeded the MTCA Method A cleanup level in the reconnaissance groundwater sample collected from temporary drive point well DPW-1. The remaining metals were either detected at concentrations less than the MTCA Method A cleanup levels or were not detected at or exceeding the laboratory PQLs (Table 7). Total arsenic, cadmium, lead, and ORO were detected at concentrations that exceeded the MTCA Method A cleanup levels in the groundwater sample collected from monitoring well DP4-MW (Tables 6 and 7).

LAI conducted quarterly groundwater and surface water monitoring events between August 2019 and June 2020. Groundwater samples were collected from monitoring wells DP3-MW through DP6-MW and surface water samples were collected from Woods Creek at a location upstream (SWU) and downstream (SWD) of the Property for analysis of metals, DRO, and ORO.

DRO was detected at a concentration that exceeded the MTCA Method A cleanup level in the groundwater sample collected from DP4-MW in February 2020. DRO was detected at a

3-10

concentration less than the MTCA Method A cleanup level in groundwater samples collected from DP4-MW in August and November 2019 and June 2020 (Table 6).

ORO was detected at concentrations that exceeded the MTCA Method A cleanup level in groundwater samples collected from monitoring well DP3-MW in February 2020 and monitoring well DP4-MW in multiple groundwater samples analyzed between August 2019 and June 2000. (Table 6). LAI attributed the exceedances to elevated turbidity and potential interferences from biogenic material in the groundwater samples.

Total arsenic, lead, and cadmium were detected at concentrations exceeding their MTCA Method A cleanup level in groundwater samples collected from monitoring well DP4-MW (Table 7). However, dissolved arsenic, lead, cadmium, and zinc were either at concentrations less than the MTCA Method A cleanup levels or were not detected at or exceeding the laboratory PQLs in all groundwater samples analyzed between August 2019 and June 2020 (Table 7).

Total arsenic was detected at concentrations exceeding the surface water screening level in the surface water samples collected from Woods Creek at locations upstream (SWU) and downstream (SWD) (Table 7).

4.0 UPDATED CONCEPTUAL SITE MODEL

This section provides a summary of the updated conceptual site model based on the current data for the Site following the most recent remedial action completed in 2019. Ecology's 2021 Further Action Letter determined that characterization of the Site to-date is not sufficient to establish cleanup standards and select a cleanup action, and that remedial actions conducted at the Site did not meet the substantive requirements of MTCA because 1) the extent of COC-impacted groundwater has not been fully characterized; 2) concentrations of COCs exceed the MTCA Method A cleanup levels in soil and groundwater; and 3) surface water, sediment, and ecological exposure pathways are potentially complete for the Site. The updated conceptual site model considers the applicable potential receptors and exposure pathways and compares COPCs to preliminary screening levels to determine if the exposure pathway is complete for each COPC.

Included in this section is a discussion of the COPCs, media of potential concern, the confirmed and suspected sources, potential receptors and exposure pathways, the preliminary screening levels, COCs, and the nature and extent of contamination.

4.1 CONSTITUENTS OF POTENTIAL CONCERN

The COPCs are defined as the chemicals that have been detected at concentrations exceeding the preliminary screening levels (identified in Section 4.4). Based on the analytical results that are representative of current conditions at the Site, the COPCs for the Site are DRO, ORO, GRO, arsenic, cadmium, chromium, lead, zinc, PCBs, and cPAHs.

4.2 MEDIA OF POTENTIAL CONCERN

The confirmed media of concern at the Site are soil and groundwater.

Surface water (via leaching of soil contaminants to groundwater followed by transport to surface water and/or sediments) was evaluated during previous investigations conducted at the Site. Based on these data, and described in Sections 4.4.1 and 4.4.2, the transport pathways to surface water are incomplete and surface water is not a medium concern.

Sediment samples were collected from Woods Creek in 1994. PCBs and metals were detected at concentrations less than the Sediment Management Standards freshwater Sediment Cleanup Objectives and Cleanup Screening Levels. In addition, based on the findings in Section 4.4, the transport pathways to sediment are incomplete. Based on these data, sediment is not considered a medium of concern.

4.3 **PRELIMINARY SCREENING LEVELS**

Preliminary screening levels are established based on the potential exposure pathways and receptors to identify a conservative basis for defining the extent of contamination for each

hazardous substance and medium at the Site. Preliminary screening levels have been developed that are protective of both human health and ecological receptors for soil and groundwater.

Preliminary screening levels consider a variety of environmental transport and exposure pathways. These pathways require that the contaminant migrates from one medium (or location) to another and that an exposure occurs between a receptor and the medium that is being protected. The following have been identified as potential transport and exposure pathways for the Site:

- Direct contact with soil and/or groundwater contaminants;
- Leaching of soil contaminants to potable groundwater from the vadose zone or the saturated zone;
- Leaching of soil contaminants to the vadose zone or the saturated zone to groundwater followed by transport to surface water; and
- Exposure to terrestrial ecological receptors from soil contaminants.

Preliminary screening levels were developed to be conservative and address the full range of potentially applicable exposure pathways and receptors under current and foreseeable future uses of the Property. In accordance with MTCA, preliminary screening levels were not set below natural background concentrations or below the laboratory PQLs for the analyses. An exceedance of a preliminary screening level does not indicate that cleanup is required but may indicate that additional assessment is warranted. Additional information may be collected in subsequent steps of the MTCA cleanup process.

Table 11 provides a summary of potential exposure pathways and applicable preliminary screening levels for COPCs detected in soil and/or groundwater. In addition, Table 11 provides the proposed cleanup level for the Site based on the assessment and conclusions pertaining to possible exposure pathways and receptors presented in Section 4.4.

4.4 POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS

This section presents the assessment and conclusions pertaining to possible exposure pathways at the Site. The two types of possible exposure risk associated with the presence of COPCs at the Site are human health risk and terrestrial ecological risk. A potentially complete exposure pathway consists of an identified source of hazardous substances, a transport pathway to locations (exposure points) where potential receptors might come in contact with the hazardous substance, and an exposure route through which potential receptors might be exposed to a hazardous substance.

4.4.1 Soil Leaching to Groundwater

Following multiple remedial excavations at the Property, the remaining COPCs in soil are located in the vadose zone. Therefore, concentrations of COPCs were compared to the screening levels protective of groundwater for soil in the vadose zone. COPCs exceeding the applicable screening levels include arsenic, cadmium, DRO, ORO, and PCBs. Concentrations for the remaining COPCs were less than the applicable screening level.

Based on subsurface results, the soil to groundwater pathway is potentially complete for arsenic, cadmium, DRO, ORO, and PCBs. However, in accordance with WAC 173-340-747(9), groundwater data were used to demonstrate empirically, where applicable, that soil concentrations are not causing an exceedance of the applicable groundwater screening level. Groundwater analytical results indicate that the soil to groundwater pathway is potentially complete for DRO, ORO, and arsenic. This pathway is discussed further in Section 4.5.

4.4.2 Groundwater Discharge to Surface Water

Arsenic, cadmium, lead, mercury, cPAHs, and PCBs exceeded the preliminary screening levels for protection of surface water (via leaching of soil contaminants to groundwater followed by transport to surface water and/or sediments). Of these COPCs, arsenic and mercury were the only constituents that exceeded the preliminary screening levels for groundwater and arsenic was the only constituent that exceeded the screening level for surface water. According to Ecology's Natural Background Groundwater Arsenic Concentrations in Washington State dated January 2022, the natural background concentration for arsenic in groundwater is 13.8 μ g/l for the Snohomish Basin. Arsenic does not exceed the natural background concentration for groundwater and is in compliance with the groundwater cleanup standards. Therefore, the groundwater discharge to surface water pathway is incomplete.

4.4.3 Terrestrial Ecological Evaluation

A Terrestrial Ecological Evaluation (TEE) is required by WAC 173-340-7490 at any site where there has been a release of hazardous substances to soil. The Property is within 500 feet of undeveloped land totaling more than 1.5 acres and the recently redeveloped Property is not completely covered by physical barriers (i.e., the steep slope on the southern portion of the Property); therefore, the Property may not qualify for an exclusion from a TEE. A site plan showing undeveloped land in the vicinity of the Property is included as Appendix D.

Concentrations of COPCs in soil samples collected from the Property were compared to Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals to determine if COPCs exceed the preliminary screening levels for the protection of terrestrial receptors in unpaved areas of the Property. The standard point of compliance for the exposure pathway for terrestrial receptors is 6 feet bgs (WAC 173-340-7490[4][b]). Distribution of COPCs within 6 feet of the ground surface indicates that arsenic, cadmium, chromium, lead, mercury, and DRO exceed the Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals. However, the exceedances are either deeper than 6 feet bgs or completely covered by the newly constructed apartment buildings and associated paved parking lots.

PCBs were detected at concentrations exceeding Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals in two soil samples (M-4 and FLM-TP8) analyzed at the Property. PCBs were detected at a concentration of 5.8 mg/kg, which exceeds the preliminary screening level of 0.65 mg/kg, in the surface soil sample collected from location M-4 in 1994. Additional surface samples were collected locations MAS-05 through MAS-07, which were located proximate to location M-4, to confirm the PCB results. PCBs were not detected at or

exceeding the laboratory PQL in the soil samples collected from MAS-05 through MAS-07, which would indicate that PCBs are not present proximate to M-4 at concentrations exceeding the laboratory PQL.

Based on these data, the Site is excluded from a terrestrial ecological evaluation. However, an environmental covenant will likely be required because COPCs will remain in soil at concentrations exceeding the preliminary screening levels for the protection of terrestrial receptors. The environmental covenant will provide restrictions and obligations to ensure that the soil exceeding the preliminary screening levels beneath buildings and paved parking will not be disturbed.

4.4.4 Soil and Groundwater Direct Contact (Human Health)

COPCs were detected in soil and groundwater at concentrations exceeding preliminary screening levels protective of the direct contact pathway for human health. This presents a risk of direct contact with soil for human receptors, which comprises both the dermal contact and ingestion pathways.

The standard point of compliance for the direct contact exposure pathway for soil is a depth of 15 feet bgs for human health (WAC 173-340-740[6][d]). The recently constructed buildings and parking lots provide a physical barrier preventing direct contact with soil for human receptors. Receptors to potential contaminants in soil primarily consist of construction and maintenance workers through the ingestion and dermal exposure pathways.

COPCs have exceeded the preliminary screening levels protective of the direct contact pathway for human health in groundwater in a localized area on the southwestern portion of the Property. However, data demonstrate that concentrations of DRO and ORO are naturally attenuating following completion of the remedial action in 2019.

As discussed in Section 4.4.3, an environmental covenant will likely be required because COPCs will remain in soil and groundwater at concentrations exceeding the preliminary screening levels protective of the direct contact pathway for human health. The environmental covenant will provide restrictions and obligations to ensure that groundwater from beneath the Property is used and that the soil exceeding the preliminary screening levels beneath buildings and paved parking will not be disturbed.

4.5 NATURE AND EXTENT OF CONTAMINATION

Based on the results of the subsurface investigations and remedial actions conducted at the Property between 1990 and 2020, the nature and extent of contamination has been defined. This section describes the nature and extent of contamination for the COPCs based on the evaluation of potential receptors and exposure pathways described in Section 4.4.

4.5.1 Metals

The metals arsenic, cadmium, chromium, lead, and mercury exceed the preliminary screening levels based on protection of groundwater, surface water (via leaching of soil contaminants to groundwater followed by transport to surface water and/or sediments), terrestrial ecological receptors, direct contact for human health, and/or the natural background concentrations.

In accordance with WAC 173-340-747(9), groundwater data were used to demonstrate empirically that soil concentrations are not causing an exceedance of the applicable groundwater screening level. Groundwater analytical results indicate that total metals (arsenic, cadmium, chromium, and lead) have exceeded the applicable screening levels in groundwater samples collected from multiple monitoring wells. Generally, samples collected by EMCON in 1996 were less than the screening levels and the samples collected by Farallon in in 1999 exceeded the screening levels. According to available reports, EMCON used low-flow sampling procedures, which included measuring groundwater parameters, including turbidity, to ensure stabilization prior to sampling. In 1999, Farallon collected groundwater samples with a disposable bailer and did not measure groundwater parameters, including turbidity. Groundwater samples collected with a bailer typically have increased turbidity, which can bias detected chemical concentrations high. Furthermore, dissolved metals concentrations were generally less than the screening levels. Concentrations of dissolved metals were less than the screening levels in the groundwater samples collected by Landau following the 2019 remedial excavations with the exception of monitoring well DP4-MW, in which dissolved metals only exceeded the screening level in the first groundwater sample collected following completion of the 2019 remedial excavation. Subsequent groundwater samples from DP4-MW were less than the applicable groundwater screening levels. These data indicate that the soil to groundwater and surface water (via leaching of soil contaminants to groundwater followed by transport to surface water and/or sediments) pathways are incomplete for metals.

Concentrations of lead, arsenic, and mercury exceeded the Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals. The exceedances are either deeper than 6 feet bgs or completely covered by the newly constructed apartment buildings and associated paved parking lots.

Lead exceeded the preliminary screening levels for direct contact for human health in two soil samples collected from the extent of excavation AOC-1 completed by LAI in 2019. Lead exceeded the screening levels at depths ranging from 14 to 17 feet bgs. The area was bound with additional samples and the total volume of lead-contaminated soil was estimated to be 3 cubic yards.

4.5.2 Total Petroleum Hydrocarbons

DRO and ORO exceed the preliminary screening levels based on protection of groundwater, terrestrial ecological receptors, and direct contact for human health.

Following excavation of contaminated soil in 2019, DRO and/or ORO exceeded the preliminary screening levels in a single location at the Property. DRO and ORO were detected at concentrations

of 2,060 and 4,120 mg/kg, respectively, in a soil sample collected from boring MW-2 at a depth of 5 feet bgs. The soil sample collected from boring MW-2 is covered by the newly constructed apartment building. In addition, DRO and ORO were either detected at concentrations less than the preliminary screening levels or were not detected at or exceeding the laboratory PQLs in all groundwater samples collected from monitoring well MW-2, which would indicate that soil is not leaching to groundwater in this area.

ORO equaled the Site-specific Method B cleanup level in a soil sample collected from boring FLM-TP8 at a depth of 15 feet bgs. Additional sampling was conducted in this area in 2019. DRO and ORO were not detected at or exceeding the laboratory PQLs in the soil samples collected from this area, which would indicate that DRO and ORO have naturally degraded.

DRO was detected at concentrations that exceeded the Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals in several locations at the Property. The exceedances are either deeper than 6 feet bgs or completely covered by the newly constructed apartment buildings and associated paved parking lots.

DRO and ORO were detected at concentrations that exceeded the groundwater screening levels in groundwater samples collected from two monitoring wells, DP3-MW and DP4-MW, during recent quarterly groundwater monitoring events. Concentrations were generally trending downward which would indicate that DRO and ORO are naturally attenuating following completion of the remedial excavation in 2019. DRO and ORO have not been detected in the reconnaissance groundwater sample collected from down-gradient boring DPW-1 or surface water samples collected from Woods Creek. Based on these data, the soil to groundwater pathway is potentially complete for DRO and ORO.

4.5.3 Polychlorinated Biphenyls

PCBs were detected at concentrations exceeding the preliminary screening levels protective of groundwater, surface water (via leaching of soil contaminants to groundwater followed by transport to surface water and/or sediments), and/or terrestrial ecological receptors in two soil samples (M-4 and FLM-TP8) analyzed at the Property. PCB was detected at a concentration of 5.8 mg/kg in the surface soil sample collected at M-4. Additional sampling (MAS-05 through MAS-07) was conducted proximate to M-4 to confirm the results from M-4. PCBs were not detected at or exceeding the laboratory PQL in the soil samples collected from MAS-05 through MAS-07, which would indicate that PCBs are not present proximate to M-4 at concentrations exceeding the laboratory PQL. In accordance with WAC 173-340-747(9), groundwater data were used to demonstrate empirically that soil concentrations are not causing an exceedance of the applicable groundwater screening level. PCBs have not been detected at concentrations exceeding the laboratory PQLs in groundwater and surface water samples analyzed. Based on these data, the soil to groundwater pathway is not complete and PCBs are not considered to be a COC for the Site.

4.5.4 Polycyclic Aromatic Hydrocarbons

cPAHs were detected at a concentration exceeding the preliminary screening level protective of surface water (via leaching of soil contaminants to groundwater followed by transport to surface water and/or sediments) in multiple soil samples analyzed at the Property. In accordance with WAC 173-340-747(9), groundwater data were used to demonstrate empirically that soil concentrations are not causing an exceedance of the applicable groundwater screening level. cPAHs have not been detected at concentrations exceeding the preliminary screening levels for groundwater and surface water in samples analyzed. Based on these data, the surface water (via leaching of soil contaminants to groundwater followed by transport to surface water and/or sediments) pathway is not complete and cPAHs are not considered to be a COC for the Site.

5.0 CONCLUSIONS

Between 1997 and 2019, multiple remedial actions were conducted at the Property to protect human health and the environment and facilitate redevelopment of the Property with affordable housing. Approximately 5,765 tons of contaminated soil was excavated to the maximum extent practicable. These remedial actions were documented in multiple reports that were submitted to Ecology.

The conceptual site model was updated based on the current data for the Site following the most recent remedial action completed in 2019. Preliminary screening levels were established based on the potential exposure pathways and receptors to identify a conservative basis for defining the extent of contamination for each hazardous substance and medium at the Site.

Based on the comparison of current data for the Site against the preliminary screening levels, the confirmed media of concern at the Site are soil and groundwater. Surface water and sediments were evaluated; however, the current Site data demonstrated that the transport pathways are incomplete.

Soil and groundwater analytical results following the 2019 remedial excavations indicate that contaminated soil and/or groundwater remains in four localized areas on the southwestern portion of the Property (Figure 14). Contaminated soil is present in three areas and is not accessible due to recently constructed buildings and protected environmentally critical areas.

Contaminated groundwater is present in two areas. However, data demonstrate that concentrations of DRO and ORO are naturally attenuating following completion of the remedial action in 2019, and dissolved arsenic has been less than the natural background concentration for the Snohomish Basin in all groundwater samples collected following the 2019 remedial action. Available groundwater monitoring data supports that remedial activities have improved conditions and not further impacted groundwater, although additional monitoring may be necessary to demonstrate the long-term effectiveness of the completed cleanup action.

COPCs exceeded the preliminary screening levels for the protection of terrestrial receptors in multiple areas of the Property following the completed remedial actions. However, the screening level exceedances are either deeper than 6 feet bgs or completely covered by the newly constructed apartment buildings and associated paved parking lots. Based on these data, an environmental covenant will be required because COPCs will remain in soil at concentrations exceeding the preliminary screening levels for the protection of terrestrial receptors.

Based on the successful completion of multiple remedial actions conducted at the Property between 1997 and 2019, and the updated conceptual site model, it is concluded that additional characterization and cleanup is not warranted at the Site. Farallon, on behalf of River's Edge WA LLLP, requests that Ecology issue a Site-wide No Further Action determination with an environmental covenant recorded on the relevant portion of the Property. The environmental

covenant will include use restrictions and requirements for continued compliance groundwater monitoring to ensure the long-term effectiveness of the completed remedial actions.

6.0 REFERENCES

- Debose, Alfonso and Michael W. Klungland. 1983. Soil Survey of Snohomish County Area, Washington. U.S. Department of Agriculture, Soil Conservation Service. July.
- Dragovich, Joe D., Robert L. Logan, Henry W. Schasse, Timothy J. Walsh, William S. Linley Jr., David K. Norman, Wendy J. Gerstel, Thomas J. Lapen, J. Eric Schuster, and Karen D. Meyers. 2002. *Geologic Map of Washington – Northwest Quadrant*. Washington Division of Geology and Earth Resources Geologic Map GM-50.
- EMCON. 1996a. Letter from John Virgin / Linda Dawson to Reta Jensen, Re: Monroe Auto Salvage Monroe Auto Salvage Site Investigation. July 26.
- . 1996b. Letter from John Virgin / Linda Dawson to Reta Jensen, Monroe Auto Salvage, Re: Monroe Auto Salvage Groundwater Monitoring – August 1996 Sampling. September 30.
- . 1996c. Letter from John Virgin / Linda Dawson to Reta Jensen, Monroe Auto Salvage, Re: Monroe Auto Salvage Site Investigation – Additional PCBs Sampling. October 25.
- Farallon Consulting, L.L.C. (Farallon). 2000a. Remedial Investigation and Feasibility Study, Former Salvage Yard and Former Lumber Mill Subareas (East Subareas), Monroe Auto Salvage Site, 426 Fremont Street, Monroe, Washington. February 2.
- ———. 2000b. Final Cleanup Action Summary Report, Monroe Auto Salvage, 426 Fremont Street, Monroe, Washington. November 9.
- Glacier Environmental Services, Inc. April 18, 1997. *Independent Remedial Action*, Monroe Auto Salvage, 426 Fremont Street, Monroe, Washington.
- Landau Associates, Inc. (LAI). 2017a. Draft Phase I Environmental Site Assessment, Monroe-Woods Creek Site C, Snohomish County, Washington. Landau Associates, Inc. April 20.
 - ———. 2017b. Draft Phase II Environmental Site Assessment Monroe-Woods Creek Site D Ring Bus, Monroe, Washington. July 31.
 - —. 2018. Supplemental Phase II Environmental Site Assessment, Former Monroe Auto Wrecking Site, Monroe, Washington. November 12.
 - ———. 2019a. Technical Memorandum: Supplemental Soil Sampling Results, Former Monroe Auto Wrecking Site/River's Edge Site, Monroe, Washington. November 14.
 - ———. 2019b. Underground Storage Tank Decommissioning and Site Assessment Report, River's Edge Property, Monroe, Washington. October 15.

-. 2020. Groundwater Monitoring Report Former Monroe Auto Wrecking Site/River's Edge Site, Monroe, Washington. September 18.

- Snohomish Health District (SHD). 1994a. Notification of Site Hazard Assessment at Monroe Auto Salvage. May 13.
- -. 1994b. Sampling Results from Monroe Auto Salvage. July 13.
- Washington State Department of Ecology (Ecology). 2021. Letter Regarding Further Action at the following Site: Site Name: Monroe Auto Salvage; Site Address: 526 Simons Road, Monroe, Washington. From J.G. Cook. To Rebecca Ralston, River's Edge WA LLP. February 2021.
 - -. 2021. Natural Background Groundwater Arsenic Concentrations in Washington State, Study Results. Publication No. 14-09-044. Revised Jan 2022. July.

7.0 LIMITATIONS

7.1 GENERAL LIMITATIONS

The conclusions contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:

- Accuracy of Information. Farallon obtained, reviewed, and evaluated certain information used in this report/assessment from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy or authenticity. Should the information upon which Farallon relied prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.
- **Reconnaissance and/or Characterization**. Farallon performed a reconnaissance and/or characterization of the Site that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions. Contamination may exist in other areas of the Site that were not investigated or were inaccessible. Site activities beyond Farallon's control could change at any time after the completion of this report/assessment.

For the foregoing reasons, Farallon cannot and does not warrant or guarantee that the Site is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions can be considered valid only as of the date of the report.

This report/assessment has been prepared in accordance with the contract for services between Farallon and River's Edge WA LLLP, and currently accepted industry standards. No other warranties, representations, or certifications are made.

7.2 LIMITATION ON RELIANCE BY THIRD PARTIES

Reliance by third parties is prohibited. This report/assessment has been prepared for the exclusive use of River's Edge WA LLLP to address the unique needs of River's Edge WA LLLP at the Monroe Auto Salvage, 526 Simons Road, Monroe, Washington at a specific point in time.

This is not a general grant of reliance. No one other than River's Edge WA LLLP may rely on this report unless Farallon agrees in advance to such reliance in writing. Any unauthorized use, interpretation, or reliance on this report/assessment is at the sole risk of that party and Farallon will have no liability for such unauthorized use, interpretation, or reliance.

FIGURES

ENVIRONMENTAL CONDITIONS SUMMARY REPORT Monroe Auto Salvage 500 East Fremont Street Monroe, Washington

VCP Project No. NW3251 526 Simons Road Monroe, Washington

Farallon PN: 2747-001

LEGEND

- APPROXIMATE EXTENT OF FORMER LUMBER
- APPROXIMATE EXTENT OF FORMER AUTO SALVAGE YARD <u>, e e e</u> HISTORICAL FEATURE
- 2----
- PROPERTY BOUNDARY
 - SNOHOMISH COUNTY PARCEL BOUNDARY
 - WOODS CREEK
- ----- APPROXIMATE TOP OF SLOPE
- → SLOPE DIRECTION

ID	HISTORICAL FEATURE
1	STORAGE BUILDING
2	OFFICE AND STORAGE BUILDING
3	STORAGE SHED
4	STORAGE BUILDING
5	STORAGE BUILDING
6	SAWMILL/STORAGE BUILDING
7	ELECTRICAL ROOM
8	MECHANICS SHOP
9	POLE-MOUNTED TRANSFORMER
10	FORMER DIESEL ABOVEGROUND
10	STORAGE TANK
11	FORMER GASOLINE
11	UNDERGROUND STORAGE TANK

FIGURE 2

PROPERTY PLAN WITH HISTORICAL FEATURES 526 SIMONS ROAD MONROE, WASHINGTON

FARALLON PN: 2747-001

Washington Issaquah | Bellingham | Seattle

Oregon Portland | Baker City

California Oakland | Irvine

Your Challenges. Our Priority. | farall

CONSULTING

Farallon

Date: 8/11/2022

Checked By: AM

- SOIL SAMPLE LOCATION (HART CROWSER, 1990)
- SOIL SAMPLE LOCATION (EMCON, 1994)
- SOIL SAMPLE LOCATION (SHD, 1994)
- SEDIMENT SAMPLE (SHD, 1994)
- SOIL SAMPLE LOCATION (EMCON, 1996)
- SOIL SAMPLE LOCATION (GLACIER ENVIRONMENTAL, 1997)
- TEST PIT LOCATION (FARALLON, 1999)
- BORING (FARALLON, 1999)
- HAND AUGER BORING (LANDAU,
- TEST PIT LOCATION (LANDAU, 2017)
- GEOTECHNICAL BORING (LANDAU, 2017)
- O BORING (LANDAU, 2018)
- TEMPORARY DRIVE POINT WELL (LANDAU, 2019)
- SURFACE WATER SAMPLE (LANDAU, 2019)
- MONITORING WELL
- CROSS SECTION LINE
 - EXCAVATION AREA (GLACIER ENVIRONMENTAL, 1997)
- EXCAVATION AREA (FARALLON, 2000)
- EXCAVATION AREA (LANDAU, 2019)
- PROPERTY BOUNDARY
- ----- APPROXIMATE TOP OF SLOPE
 - → SLOPE DIRECTION
 - WOODS CREEK
- * = INDICATES MONITORING WELL HAS BEEN DECOMISSIONED

SCALE IN FEET

FIGURE 3

PROPERTY PLAN WITH SAMPLE LOCATIONS AND CROSS SECTION LINES 526 SIMONS ROAD MONROE, WASHINGTON

FARALLON PN: 2747-001

Washington Issaquah | Bellingham | Seattle

> Oregon Portland | Baker City

> > California Oakland | Irvine

Your Challenges. Our Priority. | farallonconsulting.co

CONSULTING

Drawn By: vbachmann Checked By: AM

Farallon

Date: 8/11/2022

O 'Projects/2747 River's Edge WA LLLP/001 Former Monroe Auto Wrecking/Manfiles/002/Ejoure-03 PropertyPlan myd

<u>LEGEND</u>

	BORING OR MONITORING WELL LOCATION		SOIL ANALYTICAL RESULT:
	TRANSPOSED (TP) IN FEET, SOUTHEAST	[1.0 78 303 <5 <0.05]	[DEPTH DRO ORO GRO CPAHS PCBS]
	(SE), OR NORTHWEST (NW) TO THE	[0.0 -2.0] <1 92 14]	[DEPTH AS CD CR PB]
	CROSS-SECTION LINE		IN MILLIGRAMS PER KILOGRAM
<u> </u>	GROUNDWATER ELEVATION (AUGUST 1999)	BOLD	= DENOTE CONCENTRATIONS EXCEEDING APPLICABLE CLEANUP LEVELS
		< :	= INDICATES CONCENTRATIONS NOT DETECTED AT OR EXCEEDING THE REPORTING LIMIT LISTED
	SOIL SAMPLE		= SAMPLE NOT ANALYZED
		(NAVD88)	= NORTH AMERICAN VERTICAL DATUM OF 1988
<u> </u>	STRATIGRAPHIC CONTACT	DEPTH	= IN FEET BELOW GROUND SURFACE
	(DASHED WHERE INFERRED)	DRO	= TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL-RANGE
			ORGANICS
	GROUNDWATER LEVEL (AUGUST 1999)	ORO	= TPH AS OIL-RANGE ORGANICS
	(DASHED WHERE INFERRED)	GRO	= TPH AS GASOLINE-RANGE ORGANICS
		CPAHS	= CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS
		PCBS	= POLYCHLORINATED BIPHENYL
		DEPTH	= IN FEET BELOW GROUND SURFACE
		AS	= ARSENIC
		CD	= CADMIUM
	BLANK CASING OR BORING	CR	= CHROMIUM
		PB	= LEAD
			= EXCAVATION AREA
			= APPROXIMATE EXTENT OF TPH IMPACTED SOIL

------ WELL SCREEN

BORING OR MONITORING WELL LOCATION TRANSPOSED (TP) IN FEET, SOUTHEAST (SE), OR NORTHWEST (NW) TO THE CROSS-SECTION LINE	[5.0 <25 <100 < 5 [5.0 <1 42 <20] BOLD	-] =	SOIL ANALYTICAL RESULT: [DEPTH DRO ORO GRO CPAHS PCBS] [DEPTH AS CD CR PB] IN MILLIGRAMS PER KILOGRAM DENOTE CONCENTRATIONS EXCEEDING APPLICABLE CLEANUP
GROUNDWATER ELEVATION (AUGUST 1999)		_	LEVELS
		-	THE REPORTING LIMIT LISTED
		=	SAMPLE NOT ANALYZED
	(NAVD88)	=	NORTH AMERICAN VERTICAL DATUM OF 1988
	DEPTH	=	IN FEET BELOW GROUND SURFACE
	DRO	=	TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL-RANGE
(DASHED WHERE INFERRED)			ORGANICS
(ORO	=	TPH AS OIL-RANGE ORGANICS
GROUNDWATER LEVEL (AUGUST 1999)	GRO	=	TPH AS GASOLINE-RANGE ORGANICS
(DASHED WHERE INFERRED)	CPAHS	=	CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS
	PCBS	=	POLYCHLORINATED BIPHENYL
	DEPTH	=	IN FEET BELOW GROUND SURFACE
	AS	=	ARSENIC
	CD	=	CADMIUM
	CR	=	CHROMIUM
	PB	=	LEAD
BLANK CASING OR BURING			

WELL SCREEN

<u>LEGEND</u>

	BORING OR MONITORING WELL LOCATION – TRANSPOSED (TP) IN FEET, NORTHEAST (NE), OR SOUTHWEST (SW) TO THE CROSS-SECTION LINE	[1.0 78 303 <5 <0.05 [0.0 -2.0 <1 92 14]	5]	SOIL ANALYTICAL RESULT: [DEPTH DRO ORO GRO CPAHS PCBS] [DEPTH AS CD CR PB] IN MILLIGRAMS PER KILOGRAM
	- GROUNDWATER ELEVATION (AUGUST 1999)	BOLD	=	DENOTE CONCENTRATIONS EXCEEDING APPLICABLE CLEANUP LEVELS
		<	=	INDICATES CONCENTRATIONS NOT DETECTED AT OR EXCEEDING THE REPORTING LIMIT LISTED
	- SOIL SAMPLE		=	SAMPLE NOT ANALYZED
		(NAVD88)	=	NORTH AMERICAN VERTICAL DATUM OF 1988
<u> </u>	- STRATIGRAPHIC CONTACT	DEPTH	=	IN FEET BELOW GROUND SURFACE
	(DASHED WHERE INFERRED)	DRO	=	TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL-RANGE
	 GROUNDWATER LEVEL (AUGUST 1999) 	ORO	-	
	(DASHED WHERE INFERRED)	GRO	2	
		CDAHS	2	
		DCRS	Ξ.	
			2	
			2	
			2	
	- BLANK CASING OR BORING	CD	2	
			2	
			_	EXCAVATION AREA
			=	APPROXIMATE EXTENT OF TPH IMPACTED SOIL
		$\langle - \rangle$	=	APPROXIMATE EXTENT OF METALS IMPACTED SOIL
	- WELL SCREEN			

<u>LEGEND</u>

BORING OR MONITORING WELL LOCATION TRANSPOSED (TP) IN FEET, NORTHEAST (NE), OR SOUTHWEST (SW) TO THE CROSS-SECTION LINE	[1.0 78 303 <5 <0.0 [0.0 -2.0 <1 92 14]	5]	SOIL ANALYTICAL RESULT: [DEPTH DR0 OR0 GR0 CPAHS PCBS] [DEPTH AS CD CR PB] IN MILLIGRAMS PER KILOGRAM
	BOLD	_	LEVELS
	<	=	INDICATES CONCENTRATIONS NOT DETECTED AT OR EXCEEDING THE REPORTING LIMIT LISTED
		=	SAMPLE NOT ANALYZED
	(NAVD88)	=	NORTH AMERICAN VERTICAL DATUM OF 1988
	DEPTH	=	IN FEET BELOW GROUND SURFACE
(DASHED WHERE INFERRED)	DRO	=	TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL-RANGE ORGANICS
	ORO	=	TPH AS OIL-RANGE ORGANICS
	GRO	=	TPH AS GASOLINE-RANGE ORGANICS
	CPAHS	=	CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS
	PCBS	=	POLYCHLORINATED BIPHENYL
	DEPTH	=	IN FEET BELOW GROUND SURFACE
	AS	=	ARSENIC
	CD	=	CADMIUM
BLANK CASING OR BORING	CR	=	CHROMIUM
	PB	=	LEAD
		=	EXCAVATION AREA

WELL SCREEN

-

BORING OR MONITORING WELL LOCATION		
(NE) OR SOLITHWEST (SW) TO THE		
CROSS-SECTION LINE	[0.0 -2.0][< 1[92] 14]	
	BOLD -	
	BOED -	I EVELS
	< =	INDICATES CONCENTRATIONS NOT DETECTED AT OR EXCEEDING
	· -	
	=	SAMPLE NOT ANALYZED
SOIL SAMPLE	(NA\/D88) =	NORTH AMERICAN VERTICAL DATUM OF 1988
	DEPTH =	IN FEET BELOW GROUND SURFACE
(DASHED WHERE INFERRED)	DRO =	TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL-RANGE
()	Dire	ORGANICS
	ORO =	TPH AS OIL-RANGE ORGANICS
	GRO =	TPH AS GASOLINE-RANGE ORGANICS
	CPAHS =	CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS
	PCBS =	POLYCHLORINATED BIPHENYL
	DEPTH =	IN FEET BELOW GROUND SURFACE
	AS =	ARSENIC
	CD =	CADMIUM
BLANK CASING OR BORING	CR =	CHROMIUM
	PB =	LEAD
	=	EXCAVATION AREA

WELL SCREEN

Q:\Projects\2747 River's Edge WA LLLP\00 Figure-9_GW_

EXCAVATION AREA (GLACIER ENVIRONMENTAL, 1997)

- EXCAVATION AREA (FARALLON, 2000)
- EXCAVATION AREA (LANDAU ASSOCIATES, 2019)

APPROXIMATE FIGURE EXTENTS

SCALE IN FEET

FIGURE 10

REMEDIAL EXCAVATION AREAS (1997 - 2019) 526 SIMONS ROAD MONROE, WASHINGTON

FARALLON PN: 2747-001

Washington Issaquah | Bellingham | Seattle

Oregon Portland | Baker City

California Oakland | Irvine

ur Challenges. Our Priority. | farallo

CONSULTING

Farallon

Date: 8/11/2022

- ← MONITORING WELL (HART CROWSER, 1990)
- SOIL SAMPLE LOCATION (HART CROWSER, 1990)
- SOIL SAMPLE LOCATION (SCH, 1994)
- SOIL SAMPLE LOCATION (EMCON, 1996)
- MONITORING WELL (EMCON, 1996)
- TEST PIT LOCATION (FARALLON, 1999)
- BOTTOM CONFIRMATION SOIL SAMPLE (FARALLON, 2000)
- SIDEWALL CONFIRMATION SOIL SAMPLE (FARALLON, 2000)
- BOTTOM CONFIRMATION SOIL SAMPLE (LANDAU, 2019)
- BORING (LANDAU ASSOCIATES,
- SIDEWALL CONFIRMATION SOIL SAMPLE (LANDAU, 2019)
- MONITORING WELL (LANDAU, 2019)
- STIMATED EXTENT OF CADMIUM AND LEAD-
- ESTIMATED EXTENT OF LEAD-IMPACTED SOIL
 - ESTIMATED EXTENT OF TPH-IMPACTED SOIL

EXCAVATION AREA IN FEET BELOW GROUND SURFACE (FARALLON, 2000)

1.0
2.0
4.0

EXCAVATION AREA IN FEET BELOW GROUND SURFACE (LANDAU ASSOCIATES, 2019)

4.0
9.5
15.0
16.0
17.0

- MONITORING WELL (EMCON, 1996)
- TEST PIT LOCATION (FARALLON, 1999)
- BOTTOM CONFIRMATION SOIL SAMPLE (LANDAU, 2019)
- SIDEWALL CONFIRMATION SOIL SAMPLE (LANDAU, 2019)

EXCAVATION AREA IN FEET BELOW GROUND SURFACE (FARALLON, 2000)

EXCAVATION AREA IN FEET BELOW GROUND SURFACE (LANDAU ASSOCIATES, 2019)

SCALE IN FEET

FIGURE 11B

EXCAVATION DETAIL CENTRAL PORTION OF PROPERTY 526 SIMONS ROAD MONROE, WASHINGTON

FARALLON PN: 2747-001

Washington Issaquah | Bellingham | Seattle

> Oregon Portland | Baker City

> > California Oakland | Irvine

Your Challenges. Our Priority. | farallonconsulting.co

CONSULTING

Drawn By: vbachmann Checked By: AM

Farallon

Date: 8/11/2022

Q:\Projects\2747 River's Edge WA LLLP\001 Former Monroe Auto Wrecking\Mapfiles\002\Figure-11B_ExcavationCentral.mxd

- SOIL SAMPLE LOCATION (EMCON, 1996)
- MONITORING WELL (EMCON, 1996) \bullet
- TEST PIT LOCATION (FARALLON, 1999) •
- ۲ BORING (FARALLON, 1999)
- SIDEWALL CONFIRMATION SOIL SAMPLE \odot (FARALLON, 2000)
- BOTTOM CONFIRMATION SOIL SAMPLE ۲ (FARALLON, 2000)
- SIDEWALL CONFIRMATION SOIL SAMPLE . (LANDAU, 2019)
- BOTTOM CONFIRMATION SOIL SAMPLE (LANDAU, . 2019)
- CONFIRMATION SOIL SAMPLE (LANDAU, 2019) \bigcirc
- MONITORING WELL (LANDAU, 2019)

EXCAVATION AREA IN FEET BELOW GROUND SURFACE (FARALLON, 2000)

1.0
20

EXCAVATION AREA IN FEET BELOW GROUND SURFACE (LANDAU ASSOCIATES, 2019)

Drawn By: vbachmann

California Oakland | Irvine

Washingtor

Oregor

ges. Our Priority. | faral

Date: 8/11/2022

Checked By: AM

- SOIL SAMPLE LOCATION (EMCON, 1994)
- SOIL SAMPLE LOCATION (EMCON, 1996)
- SOIL SAMPLE LOCATION (GLACIER ENVIRONMENTAL, 1997)
- TEST PIT LOCATION (FARALLON, 1999)
- SIDEWALL CONFIRMATION SOIL SAMPLE (FARALLON, 2000)
- BOTTOM CONFIRMATION SOIL SAMPLE (FARALLON, 2000)
- BORING (LANDAU ASSOCIATES, 2019)
- SIDEWALL CONFIRMATION SOIL SAMPLE (LANDAU, 2019)
- BOTTOM CONFIRMATION SOIL SAMPLE (LANDAU, 2019)
- EXCAVATION AREA (GLACIER ENVIRONMENTAL, 1997) 1.0 - 1.5 FEET BGS

EXCAVATION AREA IN FEET BELOW GROUND SURFACE (FARALLON, 2000)

0.5

1.0

EXCAVATION AREA (LANDAU ASSOCIATES, 2019) 2.5 FEET BGS

SCALE IN FEET

FIGURE 11D

EXCAVATION DETAIL EASTERN PORTION OF PROPERTY 526 SIMONS ROAD MONROE, WASHINGTON

FARALLON PN: 2747-001

Washington Issaquah | Bellingham | Seattle

> Oregon Portland | Baker City

> > California Oakland | Irvine

Your Challenges. Our Priority. | farallonconsulting.com

CONSULTING

Farallon

Drawn By: vbachmann

Date: 8/11/2022

Q:\Projects\2747 River's Edge WA LLLP\001 Former Monroe Auto Wrecking\Mapfles\002\Figure-11D ExcavationEast.mxd

Checked By: AM

- MONITORING WELL (HART CROWSER, \oplus
- MONITORING WELL (EMCON, \bullet
- BORING (LANDAU ASSOCIATES, 0
- SURFACE WATER SAMPLE (LANDAU ASSOCIATES, 2019)
- MONITORING WELL (LANDAU ASSOCIATES,
- PROPERTY
 - ESTIMATED EXTENT OF ARSENIC-IMPACTED GROUNDWATER
 - WOODS CREEK

SCALE IN FEET

FIGURE 12

GROUNDWATER ANALYTICAL RESULTS FOR DISSOLVED METALS 526 SIMONS ROAD MONROE, WASHINGTON

FARALLON PN: 2747-001

Washingtor ssaguah | Bellingham | Seattle

> Oregon Portland | Baker City

> > California Oakland | Irvine

> > > Date: 8/11/2022

es. Our Priority. | fara

Farallon

Drawn By: vbachmann

CONSULTING

BORLIN PARK TRAIL

Checked By: AM

- MONITORING WELL (HART CROWSER, 1990)
- MONITORING WELL (EMCON, 1996)
- O BORING (LANDAU, 2019)
- TEMPORARY DRIVE POINT WELL (LANDAU, 2019)
- SURFACE WATER SAMPLE (LANDAU, 2019)
- MONITORING WELL (LANDAU, 2019)
- PROPERTY BOUNDARY

ESTIMATED EXTENT OF ORO-IMPACTED GROUNDWATER WOODS CREEK

SCALE IN FEET

FIGURE 13

GROUNDWATER ANALYTICAL RESULTS FOR OIL-RANGE ORGANICS 526 SIMONS ROAD MONROE, WASHINGTON

FARALLON PN: 2747-001

Washington Issaquah | Bellingham | Seattle

> Oregon Portland | Baker City

> > California Oakland | Irvine

Your Challenges. Our Priority. | farallonconsulting.con

CONSULTING

Drawn By: vbachmann Checked By: AM

Farallon

Date: 8/11/2022

Q:\Projects\2747 River's Edge WA LLLP\001 Former Monroe Auto Wrecking\Mapfiles\002\Figure-13_GW_TPH.mxc

TABLES

ENVIRONMENTAL CONDITIONS SUMMARY REPORT Monroe Auto Salvage 500 East Fremont Street Monroe, Washington

VCP Project No. NW3251 526 Simons Road Monroe, Washington

Farallon PN: 2747-001

Table 1Groundwater ElevationsMonroe Auto SalvageMonroe, WashingtonFarallon PN: 2747-001

Location	Measured By	Well Diameter (inches)	Screen Slot Size (inches)	Screened Interval (feet bgs)	Top of Casing Elevation (feet MSL) ¹	Monitoring Date	Depth to Water (feet) ²	Water Level Elevation (feet NAVD88) ³
нс л	Hart Crowser	2.0	0.02	17.27	77 57	6/20/1990	23.40	54.17
110-4	Farallon	2.0	0.02	17-27	11.51	8/12/1999	24.50	53.07
	Hart Crowser					6/20/1990	25.21	51.83
	Emcon					5/23/1996	21.44	55.60
HC-5	Emcon	2.0	0.02	22-31	77.04	8/21/1996	23.31	53.73
	PBS					8/26/1997	21.29	55.75
	Farallon					8/12/1999	26.10	50.94
	Emcon		0.02			5/23/1996	22.66	56.16
MW-2	Emcon	2.0		17-27	78.82	8/21/1996	23.65	55.17
	PBS					8/26/1997	21.96	56.86
	Farallon					8/12/1999	23.20	55.62
	Emcon					5/23/1996	22.15	56.36
MW 2	Emcon	2.0	0.02	17.5-27.5	79 51	8/21/1996	23.53	54.98
IVI VV - 3	PBS	2.0	0.02		/0.31	8/26/1997	20.92	57.59
	Farallon					8/12/1999	23.10	55.41
	Emcon					5/23/1996	20.14	57.66
M337 4	Emcon	2.0	0.02	17.07	77.80	8/21/1996	21.96	55.84
101 00 -4	PBS	2.0	0.02	17-27	77.80	8/26/1997	18.36	59.44
	Farallon					8/12/1999	26.40	51.40
MW-8	Farallon	2.0	0.01	15-30	NS	8/12/1999	23.30	
MW-9	Farallon	2.0	0.01	15-25	76.76	8/12/1999	20.90	55.86

Notes:

--- denotes data not available

¹In feet referenced to mean sea level (MSL)⁻

²In feet below top of well casing.

³In feet referenced to North American Vertical Datum of 1988 (NAVD88).

Emcon = Emcon Services, Inc. Hart Crowser = Hart Crowser and Associates Farallon = Farallon Consulting, LLC NS = not surveyed due to restricted access PBS = PBS Environmental and Engineering

								Analytical Re	sults (milligrams	s per kilogram)			
					NWTI	PH-Dx ²	NWTPH	I-Dx-SG ³	NWTPH-Gx ⁴		EPA Met	hod 8021B ⁵	
			Sample Depth			0.2.0		0.2.0	GD 0				
Sample Location	Sampled By	Sample Identification	(feet) ¹	Sample Date		ORO	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
	H . C		0.0 5.0	1990 S	ubsurface Inves	tigation	-					Г — П	
HC-4	Hart Crowser	HC-4 S-1	0.0 - 5.0	6/11/1990	< 5				< 5				
SS- 2	Hart Crowser	SS-2	0.0 - 0.5	6/11/1990	5,100				< 50				
			0 0 0 7	1994 Site Hazar	rd Assessment a	nd Investigation	1						
M-1	SHD	M1-0-0.5	0.0 - 0.5	5/17/1994	5,500								
M-2	SHD	M2-0-0.5	0.0 - 0.5	5/17/1994	840								
M-3	SHD	M3-0-0.5	0.0 - 0.5	5/17/1994	5,800								
	F		0.0.05	199	96 Site Investiga	tion						<u>г т</u>	
MAS-01-Grid	Emcon	MAS-01-Grid	0.0 - 0.5	4/12/1996	39	129			< 5				
MAS-04-Grid	Emcon	MAS-04-Grid	0.0 - 0.5	4/12/1996	1,670	9,100			< 5				
MAS-05-Grid	Emcon	MAS-05-Grid	0.0 - 0.5	4/12/1996	790	4,400			< 5				
MAS-07-Grid	Emcon	MAS-0/-Grid	0.0 - 0.5	4/12/1996	2,500	7,000			9				
MAS-08-Grid	Emcon	MAS-08-Grid	0.0 - 0.5	4/12/1996	36	130			< 5				
MAS-09-Grid	Emcon	MAS-09-Grid	0.0 - 0.5	4/12/1996	55	190			< 5				
MAS-13-Grid	Emcon	MAS-13-Grid	0.0 - 0.5	4/12/1996	654	2,240			385				
MAS-14-Grid	Emcon	MAS-14-Grid	0.0 - 0.5	4/12/1996	7,600	22,000			29				
MAS-15-Grid	Emcon	MAS-15-Grid	0.0 - 0.5	4/12/1996	2,800	12,000			< 5				
MAS-17-Grid	Emcon	MAS-17-Grid	0.0 - 0.5	4/12/1996	27	< 100			< 5				
MAS-19-Grid	Emcon	MAS-19-Grid	0.0 - 0.5	4/12/1996	4,700	14,000			< 5				
MAS-20-Grid	Emcon	MAS-20-Grid	0.0 - 0.5	4/12/1996	42	160			< 5				
MAS-21-Grid	Emcon	MAS-21-Grid	0.0 - 0.5	4/12/1996	< 25	< 100			< 5				
MAS-07	Emcon	MAS-07	0.0 - 0.5	4/12/1996	53	171			< 5				
MAS-CCS	Emcon	MAS-CCS	0.0 - 0.5	4/2/1996	5,500	24,000			< 5	< 0.05	< 0.1	< 0.1	< 0.1
MW-1	Emcon	MW-1-5	5.0	5/1/1996	68	290			< 5				
MW-1	Emcon	MW-1-15	15.0	5/1/1996	< 25	< 100			< 5				
MW-2	Emcon	MW-2-5	5.0	5/1/1996	2,060	4,120			23				
MW-2	Emcon	MW-2-20	20.0	5/1/1996	< 25	< 100			< 5				
MW-3	Emcon	MW-3-5	5.0	5/1/1996	< 25	< 100			< 5				
MW-3	Emcon	MW-3-20	20.0	5/1/1996	< 25	< 100			< 5				
MW-4	Emcon	MW-4-5	5.0	5/1/1996	< 25	< 100			< 5				
MW-4	Emcon	MW-4-20	20.0	5/1/1996	< 25	< 100			< 5				
				1999 Remedial	Investigation/F	easibility Study		•			•		
FLM-TP1	Farallon	FLM-TP1 @ 10.0'	10.0	7/22/1999	1,430	< 25							
FLM-TP1	Farallon	FLM-TP1 @ 12.5	12.5	7/22/1999	49.3	42.4				< 0.05	< 0.05	< 0.05	< 0.1
FLM-TP2	Farallon	FLM-TP2 @ 1.0	1.0	7/22/1999						< 0.05	< 0.05	< 0.05	< 0.1
FLM-TP8	Farallon	FLM-TP8-1	1.0	7/22/1999	36	148							
FLM-TP8	Farallon	FLM-TP8 @ 15.0'	15.0	7/22/1999	420	2,050							
FLM-SR2	Farallon	FLM-SB2-16	16.0	8/6/1999	19.6	46.2							
1 2.01 002	Farallon	FLM-SB2-21	21.0	8/6/1999	< 10	< 25							
MTCA Method A Cleanu	1p Levels for Soil ⁶				2,000	2,000	2,000	2,000	30/100 ⁷	0.03	7	6	9

						Analytical Results (milligrams per kilogram)							
					NWT	PH-Dx ²	NWTPH	I-Dx-SG ³	NWTPH-Gx ⁴		EPA Me	thod 8021B ⁵	
	<i>a</i>		Sample Depth		DRO	0.00	DDO	0.00	CIDO	P			X 7 1
Sample Location	Sampled By	Sample Identification	(feet)	Sample Date				ORO	GRO	Benzene	loiuene	Etnylbenzene	Aylenes
	F 11		19	7/20/1000	sugation/Feasib		(Inued)						
FSY-1P1	Faralion	FSY-IPI-0.5	0.5	7/20/1999	33	95.2							
FSY-TP2	Farallon	FSY-1P2@ 1.0	1.0	7/20/1999	/8	303			< 5	< 0.05	< 0.05	< 0.05	< 0.1
	Farallon	FSY-1P2@ 3.0	3.0	7/20/1999	< 10.0	< 25.0			< 5	< 0.05	< 0.05	< 0.05	< 0.1
	Farallon	FSY-1P3@ 1.0	1.0	7/20/1999	51.3	132			< 5	< 0.05	< 0.05	< 0.05	< 0.1
FSY-TP3	Farallon	FSY-1P3@ 3.0	3.0	7/20/1999	20.7	35.3			< 5	< 0.05	< 0.05	< 0.05	< 0.1
	Farallon	FSY-TP3-10	10.0	7/20/1999	171	332							
FSY-TP4	Farallon	FSY-TP4 @ 1.0	1.0	7/22/1999	19.8	38.4			< 5	< 0.05	< 0.05	< 0.05	< 0.1
	Farallon	FSY-1P4 @ 3.0	3.0	7/22/1999	< 10.0	< 25.0			< 5	< 0.05	< 0.05	< 0.05	< 0.1
FSY-TP5	Farallon	FSY-TP5 @ 1.0'	1.0	7/20/1999	88.8	198			10.8	< 0.05	0.0598	0.0978	0.587
	Farallon	FSY-TP5 @ 3.0'	3.0	7/20/1999	< 10.0	< 25.0			< 5	< 0.05	< 0.05	< 0.05	< 0.1
FSY-TP6	Farallon	FSY-TP6 @ 1.0	1.0	7/21/1999	11.3	42.8			< 5	< 0.05	< 0.05	< 0.05	0.304
FSY-TP9	Farallon	FSY-TP9 @ 1.0	1.0	7/21/1999	115	456			< 5	< 0.05	< 0.05	< 0.05	< 0.1
/	Farallon	FSY-TP9 @ 3.0	3.0	7/21/1999	12.3	49.0			< 5	< 0.05	0.0916	< 0.05	0.283
ESY-TP10	Farallon	FSY-TP10@ 1.0'	1.0	7/20/1999	93.0	181			< 5	< 0.05	< 0.05	< 0.05	< 0.1
101 1110	Farallon	FSY-TP10@ 3.0'	3.0	7/20/1999	< 10.0	< 25.0			< 5	< 0.05	< 0.05	< 0.05	< 0.1
	Farallon	FSY-TP11@ 1.0'	1.0	7/20/1999	12.9	< 25.0			< 5	< 0.05	< 0.05	< 0.05	< 0.1
FSY-TP11	Farallon	FSY-TP11@ 3.0'	3.0	7/20/1999	< 10.0	< 25.0			< 5	< 0.05	< 0.05	< 0.05	< 0.1
	Farallon	FSY-TP11-5	5.0	7/20/1999	30.5	131							
FSY-TP14	Farallon	FSY-TP14-1	1.0	7/21/1999	136	489							
				20	000 Soil Excavat	tion							
					Area EX-1						1	•	
	Farallon	EX1-B1-NEQ-BOTT COMP e1.0'	1.0	7/25/2000	23.1	25.4							
EX1-B1-NEQ	Farallon	EX1-B1-NEQ-NSW COMP e1.0'	1.0	7/25/2000	35	59.7							
	Farallon	EX1-B1-NEQ-WSW COMP e1.0'	1.0	7/25/2000	83.3	220							
EX1-B1-SEQ	Farallon	EX1-B1-SEQ-BOTT COMP e2.0'	2.0	7/25/2000	65.2	101							
	Farallon	EX1-B1-SWQ-B0TT COMP e1.0'	1.0	7/27/2000	11.1	< 25.0							
EX1 B1 SWO	Farallon	EX1-B1-SWQ-NSW COMP e1.0'	1.0	7/27/2000	30.4	87.3							
FSY-TP1 FSY-TP2 FSY-TP3 FSY-TP4 FSY-TP5 FSY-TP6 FSY-TP9 FSY-TP10 FSY-TP11 FSY-TP14 EX1-B1-NEQ EX1-B1-SEQ	Farallon	EX1-B1-SWQ-SSW COMP e1.0'	1.0	7/27/2000	14.0	30.1							
Sample LocationSampleFSY-TP1FarallFSY-TP2FarallFSY-TP2FarallFSY-TP3FarallFSY-TP4FarallFSY-TP5FarallFSY-TP6FarallFSY-TP9FarallFSY-TP10FarallFSY-TP11FarallFSY-TP14FarallFSY-TP14FarallFSY-TP14FarallFSY-TP14FarallFarallFarallFSY-TP14FarallFarallFarallFSY-TP14Farall </td <td>Farallon</td> <td>EX1-B1-SWQ-WSW COMP e1.0'</td> <td>1.0</td> <td>7/27/2000</td> <td>123 N</td> <td>337</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Farallon	EX1-B1-SWQ-WSW COMP e1.0'	1.0	7/27/2000	123 N	337							
	Farallon	EX1-B2-NEQ-BOTT COMP e1.0'	1.0	7/27/2000	40.2	75.4							
EV1 D2 NEO	Farallon	EX1-B2-NEQ-ESW COMP e1.0'	1.0	7/27/2000	80.8	250							
EAT-D2-NEQ	Farallon	EX1-B2-NEQ-SSW COMP e1.0'	1.0	7/27/2000	14.1	< 25.0							
	Farallon	EX1-B2-NEQ-WSW COMP e1.0'	1.0	7/27/2000	64.8	191							
	Farallon	EX1-C0-SWQ(5.0N)-BOTT COMP e 1.0'	1.0	7/26/2000	13.7	< 25.0							
EVI CO OWO	Farallon	EX1-C0-SWQ(5.0N)-ESW COMP e 1.0'	1.0	7/26/2000	100	299							
EAT-CU-SWQ	Farallon	EX1-C0-SWQ(5.0N)-NSW COMP e 1.0'	1.0	7/26/2000	45.2	118							
FSY-TP1 FSY-TP2 FSY-TP3 FSY-TP4 FSY-TP5 FSY-TP6 FSY-TP9 FSY-TP10 FSY-TP11 FSY-TP14 EX1-B1-NEQ EX1-B1-SEQ EX1-B1-SEQ EX1-B1-SWQ EX1-B1-SWQ MTCA Method A Cleanu	Farallon	EX1-C0-SWQ(5.0N)-WSW COMP e 1.0'	1.0	7/26/2000	24.5	76.9							
MTCA Method A Clean	up Levels for Soil ⁶	•	•	•	2,000	2,000	2,000	2,000	30/100⁷	0.03	7	6	9

					Analytical Results (milligrams per kilogram)								
					NWTI	NWTPH-Dx ² NWTPH-Dx-SG ³			NWTPH-Gx ⁴		EPA Met	hod 8021B ⁵	
			Sample Depth $(f_{1}, f_{2})^{1}$	General Defe	DBO	OBO	DBO	OBO	CRO	Dongono	Talwana	Ethylhongono	Velonos
Sample Location	Sampled By	Sample Identification	(feet)	Sample Date	DRO	ORO	DRO	UKU	GKO	Benzene	l'oluene	Etnyibenzene	Aylenes
				2000 SU	es FX-1 (contin	ued)							
	Farallon	EX1-C1-NWO-ESW COMP e1 0'	1.0	7/25/2000	24.8	/19 7			I				
EX1-C1-NWQ	Farallon	EXT-C1-NWO-BOTT COMP e1.0'	1.0	7/25/2000	<10.0	<25.0							
	Farallon	EXT C1 SEO NSW COMP at 0'	1.0	7/25/2000	11.3	<25.0							
FX1-C1-SEO	Farallon	EXT-CI-SEQ-NSW COMP CI.0	1.0	7/25/2000	26.0	60.1							
LAI-CI-SLQ	Farallon	EXT-CT-SEC-BOTT COMILCT.0	1.0	7/25/2000	30.5	50.7							
	Farallon	EXT-CT-SEQ-55W COMP c1.0	1.0	7/25/2000	21.8	50.1							
EX1-C1-SWQ	Farallon	EXT-C1-SWQ-BOTT COMP e1.0	1.0	7/25/2000	21.0	476							
	Farallon	EXT-CT-SWQ-SSW COMI CT.0 EX1 D1 SWO(1 0E) BOTT COMP $= 1.0'$	1.0	7/26/2000	200 217 N	802							
EX1-D1-SWQ	Farallon	EX1 D1-SWQ(1.0E)-BOTT COMI c 1.0	1.0	7/26/2000	18.0	33.0							
	1 dranon	EAT-DT-5 WQ(1.0E)-E5 W COMI C 1.0	1.0	1/20/2000	Area EX-2	55.7			<u> </u>				
	Farallon	EX2-A1-SWO-SSW COMP e2.0'	2.0	7/27/2000	ND	ND							
EX2-A1-SWO	Farallon	EX2-A1-SWO-WSW COMP e2.0'	2.0	7/27/2000	24.3	49.0							
2	Farallon	EX2-A1-SWO-BOTT COMP e2.0'	2.0	7/27/2000	61.4	98.7							
	Farallon	EX2-A1-NWO-WSW COMP e2.0'	2.0	7/27/2000	28.6	34.6							
EX2-A1-NWO	Farallon	EX2-A1-NWO-NSW COMP e2.0'	2.0	7/27/2000	46.6 N	139							
EX2-A1-NWQ	Farallon	EX2-A1-NWO-BOTT COMP e2.0'	2.0	7/27/2000	114	250							
	Farallon	EX2-A1-NEO-NSW COMP e2.0'	2.0	7/27/2000	33.7 N	120							
EX2-A1-NEQ	Farallon	EX2-A1-NEO-ESW COMP e2.0'	2.0	7/27/2000	58.5 N	118							
(Farallon	EX2-A1-NEO-BOTT COMP e2.0'	2.0	7/27/2000	84.9 N	163							
	Farallon	EX2-A1-SEO-ESW COMP e2.0'	2.0	7/27/2000	302	411							
EX2-A1-SWQ EX2-A1-NWQ EX2-A1-NEQ EX2-A1-SEQ EX2-A1-SEQ	Farallon	EX2-A1-SEO-SSW COMP e2.0'	2.0	7/27/2000	ND	ND							
	Farallon	EX2-A1-SEQ-BOTT COMP e2.0'	2.0	7/27/2000	107	225							
	Farallon	EX2-A2-NEQ-ESW Comp @2.0'	2.0	7/28/2000	28.9	87.2							
EX2-A2-NEQ	Farallon	EX2-A2-NEQ-SSW Comp @2.0'	2.0	7/28/2000	ND	ND							
	Farallon	EX2-A2-NEQ Bott comp.@2.0'	2.0	7/28/2000	254	412							
	Farallon	EX2-A2-NWQ-ESW comp@2.0	2.0	7/31/2000	ND	ND							
	Farallon	EX2-A2-NWQ-WSW Comp @2.0'	2.0	7/28/2000	129	258							
	Farallon	EX2-A2-NWQ-WSW comp@2.0	2.0	7/31/2000	ND	ND							
EX2-A2-NWQ	Farallon	EX2-A2-NWQ-SSW Comp @2.0'	2.0	7/28/2000	ND	ND							
	Farallon	EX2-A2-NWQ-SSW comp@2.0	2.0	7/31/2000	ND	ND							
	Farallon	EX2-A2-NWQ-Bott Comp @1.0'	1.0	7/28/2000	51.1	69.6							
	Farallon	EX2-A2-NWQ-Bott comp@2.0	2.0	7/31/2000	153	393							
	Farallon	EX2-A2-SWQ-SSW Comp @1.0'	1.0	8/1/2000	ND	ND							
EX2-A2-SWQ	Farallon	EX2-A2-SWQ-WSW Comp @1.0'	1.0	8/1/2000	ND	ND							
	Farallon	EX2-A2-SWQ-Bott Comp @1.0'	1.0	8/1/2000	180 N	433							
MTCA Method A Clean	up Levels for Soil ⁶				2,000	2,000	2,000	2,000	30/100 ⁷	0.03	7	6	9

					Analytical Results (milligrams per kilogram) NWTPH-Dx ² NWTPH-Dx-SG ³ NWTPH-Gx ⁴ EPA Method 8021B ⁵								
					NWT	PH-Dx ²	NWTPH	I-Dx-SG ³	NWTPH-Gx ⁴		EPA Met	thod 8021B ⁵	
			Sample Depth		DDO	0.00	DBO	0.00	CIRC	D			V. La san
Sample Location	Sampled By	Sample Identification	(feet)	Sample Date	DRO	ORU (DRO	ORO	GRU	Benzene	l'oluene	Etnyidenzene	Aylenes
				2000 50	II Excavation (c	und)							
	Forallon	EX2 A'2 SEO NSW COMP 22 0'	2.0	AT	60.3 N	106							
	Farallon	EX2-A2-SEQ-INSW COMP 62.0	2.0	8/2/2000	< 10.0	27.0							
	Farallon	A'2 SEO SSW 1.0	1.0	8/1/2000	< 10.0	27.9 ND							
	Farallon	EX2 A'2 SEQ SSW COMP 22 0'	2.0	8/1/2000	820	1.520							
	Farallon	EX2-A2-SEQ-SSW COMP c2.0	2.0	8/2/2000	124	548							
	Farallon	A' 2 SE WSW 2.0	2.0	8/2/2000	77.7	372							
	Farallon	FX2-A2-SEQ-Bott Comp @1.0'	1.0	8/1/2000	100 N	471							
EX2-A'2-SEQ	Farallon	EX2-A'2-SEQ-BOTT COMP e2 0'	2.0	8/3/2000	ND	ND							
	Farallon	A'-2 SE BOTT 2.0	2.0	8/3/2000	281	1.070							
	Farallon	A'-2 SE' FSW 2.0	2.0	8/2/2000	ND	ND							
	Farallon	A'-2 SE' ESW 2.0	2.0	8/2/2000	2.280	796							
	Farallon	A'-2 SE' SSW 2.0	2.0	8/2/2000	ND	ND							
	Farallon	A'-2 SE' SSW 2.0	2.0	8/2/2000	ND	ND							
	Farallon	A'-2 SE' BOTT 2.0	2.0	8/3/2000	660	873							
	Farallon	EX2-A2-SWO'-SSW COMP e2.0'	2.0	8/2/2000	318 N	482							
EX2-A'2-SWQ	Farallon	A'-2 SW' BOTT 2.0	2.0	8/3/2000	323	660							
	Farallon	EX2-A2-SEO"-SSW COMP e2.0'	2.0	8/3/2000	301 N	660							
EX2-A'2-SEO"	Farallon	EX2-A2-SEO"-BOTT COMP e2.0'	2.0	8/3/2000	ND	ND							
	Farallon	EX2-A2-SEO"-BOTTCOMP@4.0'	4.0	8/4/2000	125	296							
			I	•	Area EX-3	•	•	•					
	Farallon	EX3-A1-NEQ-BOTT COMP e1.0'	1.0	7/27/2000	155	81.3							
EX3-A1-NEQ	Farallon	EX3-A1-NEQ-ESW COMP e1.0'	1.0	7/27/2000	80.1	35.7							
_	Farallon	EX3-A1-NEQ-NSW COMP e1.0'	1.0	7/27/2000	34.6	< 25.0							
	Farallon	EX3-A1-NWQ-Bott Comp @2.0'	2.0	7/28/2000	169	403							
EX3-A1-NWQ	Farallon	EX3-A1-NWQ-NSW Comp @2.0'	2.0	7/28/2000	88.4	148							
	Farallon	EX3-A1-NWQ-WSW Comp @2.0'	2.0	7/28/2000	17.0	33.7							
	Farallon	EX3-A1-SEQ-Bott Comp @2.0'	2.0	7/28/2000	30.4	57.1							
EX3-A1-SEQ	Farallon	EX3-A1-SEQ-ESW Comp @2.0'	2.0	7/28/2000	21.2	< 25.0							
	Farallon	EX3-A1-SEQ-SSW Comp @2.0'	2.0	7/28/2000	39.5	103							
	Farallon	EX3-A1-SWQ-Bott comp @2.0'	2.0	7/28/2000	68.0	102							
EX3-A1-SWQ	Farallon	EX3-A1-SWQ-SSW Comp @2.0'	2.0	7/28/2000	21.2	36.3							
	Farallon	EX3-A1-SWQ-WSW Comp @2.0'	2.0	7/28/2000	94.4	185							
MTCA Method A Clean	up Levels for Soil ⁶				2,000	2,000	2,000	2,000	30/100 ⁷	0.03	7	6	9

					Analytical Results (milligrams per kilogram) NW/TPH Dr. ² NW/TPH Cr. ⁴ FPA Method 8021P ⁵								
					NWTI	PH-Dx ²	NWTPH	I-Dx-SG ³	NWTPH-Gx ⁴		EPA Met	hod 8021B ⁵	
			Sample Depth	Coursels Dorfo	DRO	ORO	DRO	OBO	CRO	Dongono	Taluana	Ethylhongono	Vulonos
Sample Location	Sampled By	Sample Identification	(feet)	Sample Date	DKU	ORO	DKO	OKO	GRU	Denzene	Toluelle	Ethyldenzene	Aylenes
				2000 50	Area FX-4	ontinueu)							
	Farallon	FX4-A1-NEO-BOTT COMP e1 0'	1.0	7/25/2000	ND	ND							
	Farallon	EX4-A1-NEQ-BOTT COMP e2 0'	2.0	7/26/2000	45.8	27.4							
EX4-A1-NEQ	Farallon	FX4-A1-NEQ-FSW COMP e1 0'	1.0	7/25/2000	-45.0 ND	ND							
	Farallon	FX4-A1-NEQ-NSW COMP e1.0'	1.0	7/25/2000	ND	ND							
	Farallon	EX4-A1-NWO-BOTT COMP e1 0'	1.0	7/25/2000	10.2	< 25.0							
	Farallon	EX4-A1-NWO-BOTT COMP e2.0'	2.0	7/26/2000	289	863							
	Farallon	EX4-A1-NWO-ESW COMP e1.0'	1.0	7/26/2000	12.1	33.3							
EX4-A1-NWQ	Farallon	EX4-A1-NWO-NSW COMP e1.0'	1.0	7/25/2000	18.2	ND							
	Farallon	EX4-A1-NWO-SSW COMP e1.0'	1.0	7/26/2000	17.3	40.3							
	Farallon	EX4-A1-NWO-WSW COMP e1.0'	1.0	7/26/2000	28.2	44.9							
	Farallon	EX4-A1-SEQ-BOTT COMP e1.0'	1.0	7/25/2000	ND	ND							
EX4-A1-SEQ	Farallon	EX4-A1-SEQ-ESW COMP e1.0'	1.0	7/25/2000	12.1	41.2							
	Farallon	EX4-A1-SWQ-BOTT COMP e 1.0'	1.0	7/26/2000	86.7	212							
EX4-A1-SWQ	Farallon	EX4-A1-SWQ-SSW COMP e 1.0'	1.0	7/26/2000	< 10.0	< 25.0							
_	Farallon	EX4-A1-SWQ-WSW COMP e 1.0'	1.0	7/26/2000	256 N	738							
	Farallon	EX4-A2-NEQ-BOTT COMP e1.0'	1.0	7/27/2000	128	30.6							
EX4-A2-NEQ	Farallon	EX4-A2-NEQ-ESW COMP e1.0'	1.0	7/27/2000	< 10.0	41.7							
	Farallon	EX4-A2-NEQ-SSW COMP e1.0'	1.0	7/27/2000	10.9	< 25.0							
	Farallon	EX4-A2-NWQ-ESW COMP e 1.0'	1.0	7/26/2000	12.1	33.3							
EV4 A2 NWO	Farallon	EX4-A2-NWQ-WSW COMP e 1.0'	1.0	7/26/2000	28.2	44.9							
EA4-A2-INWQ	Farallon	EX4-A2-NWQ-SSW COMP e 1.0'	1.0	7/26/2000	17.3	40.3							
	Farallon	EX4-A2-NWQ-BOTT COMP e 1.0'	1.0	7/26/2000	10.2	ND							
	Farallon	EX4-B1-NEQ-BOTT COMP e1.0'	1.0	7/26/2000	518 N	668							
EX4-B1-NEO	Farallon	EX4-B1-NEQ-NSW COMP e1.0'	1.0	7/26/2000	2,470 N	9,470							
LATURINEQ	Farallon	EX4-B1-NEQ-SSW COMP e1.0'	1.0	7/26/2000	27.4	81.9							
	Farallon	EX4-B1-NEQ-WSW COMP e1.0'	1.0	7/26/2000	32.0	39.8							
	Farallon	EX4-BO-SEQ-Bott comp@1.0	1.0	7/31/2000	60.5 N	199							
EX4-B0-SEO	Farallon	EX4-BO-SEQ-ESW comp@1.0	1.0	7/31/2000	25.5	71.1							
LAT DO SEQ	Farallon	EX4-BO-SEQ-NSW comp@1.0	1.0	7/31/2000	2,100 N	8,310							
	Farallon	EX4-BO-SEQ-WSW comp@1.0	1.0	7/31/2000	27.2	85.3							
	Farallon	EX4-BO-SEQ'-ESW Comp @1.0'	1.0	8/1/2000	10.6	< 25.0							
EX4-B0-SEO'	Farallon	EX4-BO-SEQ'-WSW Comp @1.0'	1.0	8/1/2000	13.1	< 25.0							
LAT DO DEQ	Farallon	EX4-BO-SEQ'-NSW Comp @1.0'	1.0	8/1/2000	< 10.0	< 25.0							
	Farallon	EX4-BO-SEQ'-BOTT COMP e1.0'	1.0	8/2/2000	< 10.0	< 25.0							
MTCA Method A Cleanu	up Levels for Soil ⁶				2,000	2,000	2,000	2,000	30/100⁷	0.03	7	6	9

					Analytical Results (milligrams per kilogram) NWTPH-Dx ² NWTPH-Dx-SG ³ NWTPH-Gx ⁴ EPA Method 8021B ⁵								
					NWTI	PH-Dx ²	NWTPH	I-Dx-SG ³	NWTPH-Gx ⁴		EPA Met	hod 8021B ⁵	
			Sample Depth	Coursels Do to	DBO	OPO	DRO	0.00	CRO	Dongono	Taluana	Ethylhongono	Velonog
Sample Location	Sampled By	Sample Identification	(feet)	Sample Date			DRO	UKU	GRO	Benzene	Toluene	Etnyldenzene	Aylenes
				2000 50	A rea EX 5	ontinuea)							
	Forallon	EX5 A1 NEO Bott comp@10	1.0	7/31/2000	Area EA-5	67.1	1	[1	[[
	Farallan	EX5-A1-NEQ-Bott comp@1.0	1.0	7/31/2000	12.5	(25.0							
EV5 A1 NEO	Farallon	EX5 A1 NEO NSW comp@1.0	1.0	7/31/2000	15.5 61.5 N	< 23.0							
EAJ-AI-NEQ	Farallon	EX5-A1 NEO SSW comp@1.0	1.0	7/31/2000	01.3 N 91.4 N	153							
	Farallan	EX5-A1-NEQ-S5W comp@1.0	1.0	7/31/2000	01.4 IN	132							
	Faranon	EX3-A1-NEQ-wSw comp@1.0	1.0	//31/2000	22.3	30.0							
	Forallon	EV6 A1 NEO Bott comp@10	1.0	7/31/2000	42.7 N	177	1	[1	[[
	Farallan	EX6 A1 NEO ESW comp@1.0	1.0	7/31/2000	43.7 IN	26.7							
EV6 A1 NEO	Farallon	EX6 A1 NEO NSW comp@1.0	1.0	7/31/2000	720	520							
EX0-AI-NEQ	Farallon	EX6.41 NEO SSW comp@1.0	1.0	7/31/2000	730	1.480							
	Farallon	EX6 A1 NEO WSW comp@1.0	1.0	7/31/2000	525 N	1,400							
	Farallon	EX6 A1 NWO POTT COMP at 0'	1.0	8/2/2000	26.2 N	1,530							
-	Farallon	EX6 A1 NWO NSW COMP at 0'	1.0	8/2/2000	30.3 IN	131							
EX6-A1-NWQ	Farallon	EX6-A1-NWQ-NSW COMP e1.0	1.0	8/2/2000	123	25.0							
	Farallon	EXO-AT-NWQ-SSW COMP e1.0	1.0	8/2/2000	< 10.0	< 23.0							
	Farallon	EX6-A1-NWQ-WSW COMP e1.0	1.0	8/2/2000	10.3 N	02.3							
	Farallon	EXC-A1-SEQ-BOTT COMP e1.0	1.0	8/2/2000	< 10.0	< 23.0							
EX6-A1-SEQ	Farallon	EX6-A1-SEQ-ESW COMP e1.0	1.0	8/2/2000	12.1	30.0							
	Farallon	EX6-A1-SEQ-SSW COMP e1.0	1.0	8/2/2000	< 10.0	< 23.0							
	Faranon	EX0-A1-SEQ-WSW COMP e1.0	1.0	8/2/2000	15.7 N	30.3							
EV7 A1 NEO	Forallon	EX7 A1 NEO Pott comp@0.5	0.5	7/21/2000	Area EA-7	840	1		1				
EA/-AI-NEQ	Faranon	EA7-A1-NEQ-Bott comp@0.5	0.5	7/31/2000	J41	840							
	Forallon	EX WH' NO POTT COMP 22 0'	2.0	8/3/2000	10.0	51.6	1	(1	[[
	Farallan	EX-WIT-NQ-BOTT COMP 62.0	2.0	8/3/2000	19.9 256 N	1 200							
EX-WH-NQ	Farallon	EX-WH-NQ-ESW Comp @1.0	1.0	8/1/2000	107 N	1,390							
	Farallon	EX-WH-NQ-NSW COMP e2.0	2.0	8/3/2000	241 N	780							
	Farallon	EX-WII-NQ-WSW COMP 62.0	2.0	8/3/2000	241 N 22.2 N	120							
	Farallon	EX-WH SO ESW Comp @1.0	1.0	8/1/2000	172 N	745							
EX-WH-SQ	Farallon		1.0	0/1/2000 8/2/2000	220 N	670							
	Farallon	EX-WEI-SQ-SSW COMP e1.0	1.0	8/3/2000	50 0 N	205							
		EV-MU-26-M2M COMP 61.0	1.0	8/3/2000	30.0 IN	203							
MTCA Method A Clean	up Levels for Soil [®]				2,000	2,000	2,000	2,000	30/100	0.03	7	6	9

					Analytical Results (milligrams per kilogram)								
					NWT	PH-Dx ²	NWTPH	-Dx-SG ³	NWTPH-Gx ⁴		EPA Me	thod 8021B ⁵	
Samula Landian	Samalad D-	Comple Identification	Sample Depth $(f_{a,a})^1$	Comple Date	DRO	ORO	DRO	OPO	CRO	Donzono	Toluono	Ethylhonzono	Vylopog
Sample Location	Sampled By	Sample Identification	(leet)	2017 Phase II	Environmental	Site Assessment	DRO	OKO	GRO	Delizelle	Toluelle	Euryidenzene	Aylenes
LAI-B1	Landau	LAI-B1 (5)	5.0	6/7/2017	28 J	71			< 0.003	< 0.005	< 0.01	< 0.01	< 0.03
F AST-TP	Landau	F AST-TP (2)	2.0	6/13/2017	<25	<50			<0.003	<0.005	<0.01	<0.01	<0.03
HA-1	Landau	HA-1 (1.5)	1.5	6/13/2017	<25	<50			< 0.003	< 0.005	< 0.01	< 0.01	< 0.03
TP-4	Landau	TP-4 (2)	2.0	6/13/2017	<25	<50			< 0.003	< 0.005	< 0.01	< 0.01	< 0.03
TP-5	Landau	TP-5 (1.5)	1.5	6/13/2017	<50	1.000			< 0.003	< 0.005	< 0.01	< 0.01	< 0.03
TP-6	Landau	TP-6 (1.5)	1.5	6/13/2017	<25	250			< 0.003	< 0.005	< 0.01	<0.01	< 0.03
TP-7	Landau	TP-7 (1)	1.0	6/13/2017	<25	430			< 0.003	< 0.005	< 0.01	< 0.01	< 0.03
			201	8 Supplemental Pl	hase II Environ	mental Site Asse	ssment		•		•		
P 1	Landau	B-1(12')180629	12.0	6/29/2018	< 25	< 50							
D-1	Landau	B-1(15-20')180629	15.0 - 20.0	6/29/2018	< 25	< 50							
B-2	Landau	B-2(12')180629	12.0	6/29/2018	< 25	< 50							
D-2	Landau	B-2(15-20')180629	15.0 - 20.0	6/29/2018	< 25	< 50							
B-3	Landau	B-3(12')180629	12.0	6/29/2018	< 25	< 50							
D 5	Landau	B-3(15-20')180629	15.0 - 20.0	6/29/2018	< 25	< 50							
	-		1	2018 Suj	pplemental Soil	Sampling					T		
AOC4-NSW	Landau	AOC4-NSW-112718	1.0	11/27/2018	< 25	< 50							
				20	19 Remedial Ac	tion							
			4.0	AOC 1 Initial E	xcavation Conf	irmation Sample	S				1		
TP1-1	Landau	TP1-1-060619	4.0	6/6/2019	< 25	< 50							
TP1-2	Landau	TP1-2-060619	UNK	6/6/2019	< 25	< 50							
TP2-1	Landau	TP2-1-060619	6.0	6/6/2019	< 50	500							
TP2-2	Landau	TP2-2-060619	UNK	6/6/2019	6/	140							
TP3-1	Landau	TP3-1-060619	6.0	6/6/2019	690	2,300							
TP3-2	Landau	TP3-2-060619	UNK	6/6/2019	< 25	< 50							
1P4-1 TD4-2	Landau	TP4-1-000019		6/6/2019	< 25	< 50							
TP4-2 TP5_1	Landau	TP5 1 060610		6/6/2019	< 25	< 30							
TP5 2	Landau	TP5 2 060619	9.0 LINK	6/6/2019	< 25	430							
AOC1 B (6)	Landau	AOC1 B (6)	6.0	6/24/2019	< 25	210							
AOC1-B(8)	Landau	AOC1-B (8)	8.0	6/24/2019	< 25	190							
AOC1-B(0)	Landau	AOC1-B (0)	9.0	6/24/2019	< 25	220							
AOC1-SW1	Landau	AOC1-SW1 (0-4)	0.0-4.0	6/24/2019	< 25	180							
AOC1-SW2	Landau	AOC1-SW2 (0-4)	0.0 - 4.0	6/24/2019	79	220							
AOC1-SW3	Landau	AOC1-SW3 (0-6)	0.0 - 6.0	6/24/2019	71	270							
AOC1-SW4	Landau	AOC1-SW4 (0-9)	0.0 - 9.0	6/24/2019	< 50	600							
AOC1-SW5	Landau	AOC1-SW5 (0-9)	0.0 - 9.0	6/24/2019	< 25	< 50							
AOC1-SW6	Landau	AOC1-SW6 (0-6)	0.0 - 6.0	6/24/2019	< 25	< 50							
AOC1-SW7	Landau	AOC1-SW7 (0-6)	0.0 - 6.0	6/24/2019	< 50	620							
AOC1-SW8	Landau	AOC1-SW8 (0-6)	0.0 - 6.0	6/24/2019	130	600							
AOC1-SW9	Landau	AOC1-SW9 (0-4)	0.0 - 4.0	6/24/2019	< 25	< 50							
AOC1-SW10	Landau	AOC1-SW10 (4-6)	4.0 - 6.0	6/24/2019	< 25	< 50							
AOC1-SW11	Landau	AOC1-SW11 (6-9)	6.0 - 9.0	6/24/2019	< 25	400							
MTCA Method A Clean	up Levels for Soil ⁶			2,000	2,000	2,000	2,000	30/100 ⁷	0.03	7	6	9	

					Analytical Results (milligrams per kilogram)								
					NWT	PH-Dx ²	NWTPH	I-Dx-SG ³	NWTPH-Gx ⁴		EPA Met	hod 8021B ⁵	
			Sample Depth										
Sample Location	Sampled By	Sample Identification	(feet) ¹	Sample Date		ORO	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
			40014	2019 Ke	ion Characteriz	continued)	tion Samples						
AOC1-B (14)	Landau	AOC1-B (14)	14.0	6/26/2019		280							
AOC1-B (15)-062619	Landau	AOC1-B (15)-062619	15.0	6/26/2019	< 25	84							
AOC1-B (15)-070319	Landau	AOC1-B (15)-070319	15.0	7/3/2019	< 25	99							
AOC1-B (16)	Landau	AOC1-B (16)	16.0	6/28/2019	< 25	140							
AOC1-B (17)	Landau	AOC1-B (17)	17.0	6/26/2019	< 25	320							
AOC1-DP	Landau	AOC1-DP (14-15)	14.0 - 15.0	7/29/2019	< 25	68							
	Landau	AOC1-SW12 (0-12)	0.0 - 12.0	6/26/2019	< 120	1,200							
AOC1-SW12	Landau	AOC1-SW12 (12-17)	12.0 - 17.0	6/26/2019	< 25	290							
AOC1-SW13	Landau	AOC1-SW13 (0-17)	0.0 - 17.0	6/26/2019	< 25	410							
AOC1-SW14	Landau	AOC1-SW14 (0-6)	0.0 - 6.0	6/26/2019	95	420							
AOC1-SW15	Landau	AOC1-SW15 (0-6)	0.0 - 6.0	6/26/2019	< 25	310							
AOC1-SW16	Landau	AOC1-SW16 (0-15)	0.0 - 15.0	6/26/2019	71	390							
AOC1 SW17	Landau	AOC1-SW17 (5.5-11)	5.5 - 11.0	6/28/2019	< 25	< 50							
AUCI-SW17	Landau	AOC1-SW17 (12-13)	12.0 - 13.0	6/28/2019	< 50	660							
	Landau	AOC1-SW18 (7-10)	7.0 - 10.0	6/28/2019	< 25	100							
AOC1-SW18	Landau	AOC1-SW18 (10-11)	10.0 - 11.0	6/28/2019	< 50	470							
	Landau	AOC1-SW18 (11-15)	11.0 - 15.0	6/28/2019	< 25	75							
	Landau	AOC1-SW19 (7-10)	7.0 - 10.0	6/28/2019	< 25	140							
AOC1 SW10	Landau	AOC1-SW19 (10-11.5)	10.0 - 11.5	6/28/2019	250	1,000							
AUCI-SW19	Landau	AOC1-SW19 (11.5-14.5)	11.5 - 14.5	6/28/2019	64	92							
	Landau	AOC1-SW19 (14.5-15)	14.5 - 15.0	6/28/2019	100	270							
AOC1-SW20	Landau	AOC1-SW20 (9.5 071119)	9.5	7/11/2019	63	330							
AOC1-SW21	Landau	AOC1-SW21 (9.5 071119)	9.5	7/11/2019	55	440							
AOC1-SW22	Landau	AOC1-SW22 (9.5 071119)	9.5	7/11/2019	< 25	140							
					Building C Are	a							
BC-B1	Landau	BC-B1 (3.5)	3.5	7/3/2019	< 25	< 50							
BC-B2	Landau	BC-B2 (2.7)	2.7	7/3/2019	94	130							
BC-B3	Landau	BC-B3 (2.5)	2.5	7/3/2019	37	130							
BC-SW1	Landau	BC-SW1 (0-3)	0.0 - 3.0	7/3/2019	< 25	310							
BC-SW2	Landau	BC-SW2 (0-2.5)	0.0 - 2.5	7/3/2019	75	290							
BC-SW3	Landau	BC-SW3 (0-1.5)	0.0 - 1.5	7/3/2019	660	2,200							
BC-SW4	Landau	BC-SW4 (1.8-3.1)	1.8 - 3.1	7/3/2019	38	130							
BC-SW5	Landau	BC-SW5 (0-2.8)	0.0 - 2.8	7/3/2019	240	760							
BC-SW6	Landau	BC-SW6 (4.0)	4.0	7/11/2019	< 25	< 50							
BC-SW7	Landau	BC-SW7 (4.0)	4.0	7/11/2019	< 25	< 50							
					Rinse Tank	•	•						
В	Landau	B (5.5)	5.5	7/2/2019	< 100 ^	DET ^			< 40 ^				
SW1	Landau	SW1 (2.5-5.5)	2.5 - 5.5	7/2/2019	< 50 ^	DET ^			< 20 ^				
SW2	Landau	SW2 (2.5-5.5)	2.5 - 5.5	7/2/2019	< 50 ^	< 100 ^			< 20 ^				
RT-B	Landau	RT-B (7.5)	7.5	7/11/2019	< 25	< 50			7				
MTCA Method A Cleanu	1p Levels for Soil ⁶				2,000	2,000	2,000	2,000	30/100'	0.03	7	6	9

					Analytical Results (milligrams per kilogram)								
					NWTI	PH-Dx ²	NWTPH	I-Dx-SG ³	NWTPH-Gx ⁴		EPA Met	hod 8021B ⁵	
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Sample Date	te DRO ORO DRO ORO GRO Benzene Toluene					Toluene	Ethylbenzene	Xylenes	
				2019 Rer	nedial Action (c	continued)							
	UST Removal												
UST-B	Landau	B (6-7')-091619	6.0 - 7.0	9/16/2019	< 25*	< 50*	< 25	< 50	< 3.0	< 0.030	< 0.050	< 0.050	< 0.20
UST-SW-E	Landau	SW-E (5-6')-091619	5.0 - 6.0	9/16/2019	< 25*	< 50*	< 25	< 50	< 3.0	< 0.030	< 0.050	< 0.050	< 0.20
UST-SW-W	UST-SW-W Landau SW-W (5-6')-091619 5.0 - 6.0 9/16/20						< 25	< 50	< 3.0	< 0.030	< 0.050	< 0.050	< 0.20
MTCA Method A Clean	up Levels for Soil ⁶		2,000	2,000	2,000	2,000	30/100⁷	0.03	7	6	9		

NOTES:

Shading indicates that sample was over excavated during remedial excavations.

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

- denotes sample not analyzed.

^ denotes sample analyzed by Northwest Method NWTPH-HCID.

* denotes sample was analyzed following silica gel cleanup.

Depth in feet below ground surface. For Farallon samples from 2000, depths are below grade at time of sampling.

²Analyzed by Northwest Method NWTPH-Dx.

Analyzed by Northwest Method NWTPH-Dx using sample extract treated with sulfuric acid/silica gel cleanup procedure.

*Analyzed by Northwest Method NWTPH-Gx.

'Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁶Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

'Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected.

BTEX = benzene, toluene, ethylbenzene and xylenes DET = analyte detected above reporting limit DRO = total petroleum hydrocarbons (TPH) as diesel-range organics Emcon = Emcon Services, Inc. Farallon = Farallon Consulting, LLC GRO = TPH as gasoline-range organics Hart Crowser = Hart Crowser and Associates JL = result may be lower than the reported estimate due to oil range overlap. Landau = Landau Associates, Inc. $N=\mbox{results}$ in the diesel range are primarily due to overlap from a heavy oil range product. NA = not applicable ORO = TPH as oil-range organics SHD = Snohomish Health District UNK = unknown

			Sample Depth		A	Analytical Resu	ults (milligram	s per kilogram	$)^{2}$
Sample Location	Sampled By	Sample Identification	(feet) ¹	Sample Date	Arsenic	Cadmium	Chromium	Lead	Mercury
			0 Subsurface Inv	estigation	1	ļ			
HC-4	Hart Crowser	HC-4 S-1	0.0 - 5.0	6/11/1990		<1	33	13	
HC-5	Hart Crowser	HC-5 S-1	0.0 -2.0	6/6/1990		<1	92	14	
HC-5	Hart Crowser	HC-5 S-2	2.5 - 4.0	6/6/1990		<1	56	<10	
SS-1	Hart Crowser	SS-1	0.0 - 0.5	6/11/1990		1	24	36	
SS-2	Hart Crowser	SS-2	0.0 - 0.5	6/11/1990		7	35	880	
		1994 Site Ha	azard Assessment	and Investigation					
M-1	SHD	M1-0-0.5	0.0 - 0.5	5/17/1994		8.2	42	920	
M-2	SHD	M2-0-0.5	0.0 - 0.5	5/17/1994		7.5	52	990	
M-3	SHD	M3-0-0.5	0.0 - 0.5	5/17/1994		1.3	240	7,700	
M-4	SHD	M-4-0-0.5	0.0 - 0.5	5/17/1994		1	65	39	
M-13	SHD	M-13-0-0.5	0.0 - 0.5	7/14/1994		2.2	43	140	
			1996 Site Investig	gation	-	-			
MAS-01-Grid	Emcon	MAS-01-Grid	0.0 - 0.5	4/12/1996		<1	33	31	
MAS-04-Grid	Emcon	MAS-04-Grid	0.0 - 0.5	4/12/1996		<1	16	24	
MAS-05-Grid	Emcon	MAS-05-Grid	0.0 - 0.5	4/12/1996		<1	28	49	
MAS-07-Grid	Emcon	MAS-07-Grid	0.0 - 0.5	4/12/1996		6	37	567	
MAS-08-Grid	Emcon	MAS-08-Grid	0.0 - 0.5	4/12/1996		<1	30	44	
MAS-09-Grid	Emcon	MAS-09-Grid	0.0 - 0.5	4/12/1996		<1	19	21	
MAS-13-Grid	Emcon	MAS-13-Grid	0.0 - 0.5	4/12/1996		4	35	232	
MAS-14-Grid	Emcon	MAS-14-Grid	0.0 - 0.5	4/12/1996		6	46	566	
MAS-15-Grid	Emcon	MAS-15-Grid	0.0 - 0.5	4/12/1996		12	52	964	
MAS-17-Grid	Emcon	MAS-17-Grid	0.0 - 0.5	4/12/1996		<1	48	<20	
MAS-19-Grid	Emcon	MAS-19-Grid	0.0 - 0.5	4/12/1996		10	52	867	
MAS-20-Grid	Emcon	MAS-20-Grid	0.0 - 0.5	4/12/1996		<1	32	51	
MAS-21-Grid	Emcon	MAS-21-Grid	0.0 - 0.5	4/12/1996		<1	45	<20	
MAS-07	Emcon	MAS-07	0.0 - 0.5	4/12/1996		<1	46	<20	
MAS-CCS	Emcon	MAS-CCS	0.0 - 0.5	4/2/1996		17	44	554	
MW-1	Emcon	MW-1-5	5.0	5/1/1996		<1	38	37	
MW-1	Emcon	MW-1-15	15.0	5/1/1996		<1	42	<20	
MW-2	Emcon	MW-2-5	5.0	5/1/1996		1	37	64	
MW-2	Emcon	MW-2-20	20.0	5/1/1996		<1	120	<20	
MW-3	Emcon	MW-3-5	5.0	5/1/1996		<1	42	<20	
MW-3	Emcon	MW-3-20	20.0	5/1/1996		<1	25	<20	
MW-4	Emcon	MW-4-5	5.0	5/1/1996		<1	49	<20	
MW-4	Emcon	MW-4-20	20.0	5/1/1996		<1	40	<20	
MTCA Cleanup Levels f	or Soil ³				20	2	2,000	250	2

			Sample Depth		A	Analytical Resu	ılts (milligrams	s per kilogram	1) ²		
Sample Location	Sampled By	Sample Identification	(feet) ¹	Sample Date	Arsenic	Cadmium	Chromium	Lead	Mercury		
^		1999 Reme	dial Investigation	/Feasibility Study	1	I					
FLM-TP1	Farallon	FLM-TP1 @ 12.5	12.5	7/22/1999				3.66			
FLM-TP2	Farallon	FLM-TP2 @ 5.0	5.0	7/22/1999				2.95			
FLM-TP3	Farallon	FLM-TP3 @ 1.0	1.0	7/22/1999				5.36			
FLM-TP4	Farallon	FLM-TP4 @ 1.0	1.0	7/21/1999				4.87			
FLM-TP5	Farallon	FLM-TP5 @ 3.0	3.0	7/22/1999				2.90			
FLM-TP7	Farallon	FLM-TP7 @0.5	0.5	7/22/1999				37.8			
FLM-TP8	Farallon	FLM-TP8-1	1.0	7/22/1999				27.6			
FSV TP2	Farallon	FSY-TP2@ 1.0'	1.0	7/20/1999				230			
131-112	Farallon	FSY-TP2@ 3.0'	3.0	7/20/1999				11.1			
FSV TP3	Farallon	FSY-TP3@ 1.0'	1.0	7/20/1999				11.1			
131-115	Farallon	FSY-TP3@ 3.0'	3.0	7/20/1999				3.65			
ESV TD4	Farallon	FSY-TP4 @ 1.0	1.0	7/22/1999				36.2			
151-114	Farallon	FSY-TP4 @ 3.0	3.0	7/22/1999				5.08			
FSV_TP5	Farallon	FSY-TP5 @ 1.0'	1.0	7/20/1999				131			
151-115	Farallon	FSY-TP5 @ 3.0'	3.0	7/20/1999				5.08			
FSY-TP6	Farallon	FSY-TP6 @ 1.0	1.0	7/21/1999				146			
FSY-TP8	Farallon	FSY-TP8 @ 1.0	1.0	7/21/1999				5.97			
ESV TPO	Farallon	FSY-TP9 @ 1.0	1.0	7/21/1999		0.56	28.0	89.0			
151-119	Farallon	FSY-TP9 @ 3.0	3.0	7/21/1999				5.27			
FSV-TP10	Farallon	FSY-TP10@ 1.0'	1.0	7/20/1999				93.3			
151-1110	Farallon	FSY-TP10@ 3.0'	3.0	7/20/1999				2.79			
FSV TP11	Farallon	FSY-TP11@ 1.0'	1.0	7/20/1999		< 0.50	28.9	34.1			
151-1111	Farallon	FSY-TP11@ 3.0'	3.0	7/20/1999				3.71			
FSY-TP13	Farallon	FSY-TP13 @ 1.0	1.0	7/21/1999				16.7			
			2000 Soil Excava	ation							
	•		Area EX-1	-	1	1			1		
	Farallon	EX1-B1-NEQ-BOTT COMP e1.0'	1.0	7/25/2000		1.81		42.2			
EX1-B1-NEQ	Farallon	EX1-B1-NEQ-NSW COMP e1.0'	1.0	7/25/2000		1.75		52.2			
	Farallon	EX1-B1-NEQ-WSW COMP e1.0'	1.0	7/25/2000		ND		45.8			
	Farallon	EX1-B1-SEQ-BOTT COMP e1.0'	1.0	7/25/2000		2.45		133			
EX1-B1-SEO	Farallon	EX1-B1-SEQ-BOTT COMP e2.0'	2.0	7/25/2000		< 1.72		13.4			
	Farallon	EX1-B1-SEQ-SSW COMP e1.0'	1.0	7/25/2000		2.36		43.9			
	Farallon	EX1-B1-SEQ-WSW COMP e1.0'	1.0	7/25/2000		2.45	15.6				
MTCA Cleanup Levels for Soil ³ 20 2 2,000 20 2 2,000 2									2		

			Sample Depth		I	Analytical Resu	ults (milligram	s per kilogram	ı) ²
Sample Location	Sampled By	Sample Identification	(feet) ¹	Sample Date	Arsenic	Cadmium	Chromium	Lead	Mercury
		2000	Soil Excavation ((continued)	1	1	1		
			Area EX-1 (conti	nued)					
	Farallon	EX1-B1-SWQ-B0TT COMP e1.0'	1.0	7/27/2000		< 1.53		5.18	
EVI DI CWO	Farallon	EX1-B1-SWQ-NSW COMP e1.0'	1.0	7/27/2000		< 1.62		45.8	
EXI-BI-SWQ	Farallon	EX1-B1-SWQ-SSW COMP e1.0'	1.0	7/27/2000		< 1.71		18.5	
	Farallon	EX1-B1-SWQ-WSW COMP e1.0'	1.0	7/27/2000		< 1.76		78.6	
	Farallon	EX1-B2-NEQ-BOTT COMP e1.0'	1.0	7/27/2000		< 2.08		13.0	
EV1 D2 NEO	Farallon	EX1-B2-NEQ-ESW COMP e1.0'	1.0	7/27/2000		< 1.72		15.4	
EAI-D2-NEQ	Farallon	EX1-B2-NEQ-SSW COMP e1.0'	1.0	7/27/2000		< 1.81		7.38	
	Farallon	EX1-B2-NEQ-WSW COMP e1.0'	1.0	7/27/2000		< 1.62		52.3	
	Farallon	EX1-C0-SWQ(5.0N)-BOTT COMP e 1.0'	1.0	7/26/2000		< 0.796		6.15	
EV1 CO SWO	Farallon	EX1-C0-SWQ(5.0N)-ESW COMP e 1.0'	1.0	7/26/2000		0.837		29.4	
EAT-CO-SWQ	Farallon	EX1-C0-SWQ(5.0N)-NSW COMP e 1.0'	1.0	7/26/2000		< 0.786		36.2	
	Farallon	EX1-C0-SWQ(5.0N)-WSW COMP e 1.0'	1.0	7/26/2000		0.815		15.0	
	Farallon	EX1-C1-NWQ-ESW COMP e1.0'	1.0	7/25/2000		ND		16.5	
EX1-C1-NWQ	Farallon	EX1-C1-NWQ-NSW COMP e1.0'	1.0	7/25/2000		4.29		372	
	Farallon	EX1-C1-NWQ-BOTT COMP e1.0'	1.0	7/25/2000		<1.55		24.7	
	Farallon	EX1-C1-SEQ-ESW COMP e1.0'	1.0	7/25/2000		ND		230	
EV1 C1 SEO	Farallon	EX1-C1-SEQ-NSW COMP e1.0'	1.0	7/25/2000		ND		11.2	
EAI-CI-SEQ	Farallon	EX1-C1-SEQ-BOTT COMP e1.0'	1.0	7/25/2000		ND		12.2	
	Farallon	EX1-C1-SEQ-SSW COMP e1.0'	1.0	7/25/2000		ND		5.22	
EX1 C1 SWO	Farallon	EX1-C1-SWQ-BOTT COMP e1.0'	1.0	7/25/2000		ND		54.6	
EXI-CI-SWQ	Farallon	EX1-C1-SWQ-SSW COMP e1.0'	1.0	7/25/2000		2.04		176	
FX1 D1 SWO	Farallon	EX1-D1-SWQ(1.0E)-BOTT COMP e 1.0'	1.0	7/26/2000		2.65		151	
EAT-DT-SWQ	Farallon	EX1-D1-SWQ(1.0E)-ESW COMP e 1.0'	1.0	7/26/2000		1.81		18.5	
			Area EX-2						
	Farallon	EX2-A1-SWQ-SSW COMP e2.0'	2.0	7/27/2000		< 1.56		441	
EX2-A1-SWQ	Farallon	EX2-A1-SWQ-WSW COMP e2.0'	2.0	7/27/2000		< 1.52		7.52	
	Farallon	EX2-A1-SWQ-BOTT COMP e2.0'	2.0	7/27/2000		< 1.56		127	
	Farallon	EX2-A1-NWQ-WSW COMP e2.0'	2.0	7/27/2000		< 1.52		6.71	
EX2-A1-NWQ	Farallon	EX2-A1-NWQ-NSW COMP e2.0'	2.0	7/27/2000		< 1.54		138	
	Farallon	EX2-A1-NWQ-BOTT COMP e2.0'	2.0	7/27/2000		< 1.52		151	
	Farallon	EX2-A1-NEQ-NSW COMP e2.0'	2.0	7/27/2000		< 1.50		26.4	
EX2-A1-NEQ	Farallon	EX2-A1-NEQ-ESW COMP e2.0'	2.0	7/27/2000		< 1.56		31.5	
	Farallon	EX2-A1-NEQ-BOTT COMP e2.0'	2.0	7/27/2000		< 1.52		60.8	
MTCA Cleanup Levels for	or Soil ³				20	2	2,000	250	2

			Sample Depth		A	Analytical Resu	ılts (milligram	s per kilogram	$\left(1\right)^{2}$
Sample Location	Sampled By	Sample Identification	(feet) ¹	Sample Date	Arsenic	Cadmium	Chromium	Lead	Mercury
-	1	2000	Soil Excavation ((continued)	ı	-			· · ·
			Area EX-2 (conti	inued)					
	Farallon	EX2-A1-SEQ-ESW COMP e2.0'	2.0	7/27/2000		< 1.55		58.1	
EX2-A1-SEQ	Farallon	EX2-A1-SEQ-SSW COMP e2.0'	2.0	7/27/2000		2.71		130	
	Farallon	EX2-A1-SEQ-BOTT COMP e2.0'	2.0	7/27/2000		< 1.50		26.4	
	Farallon	EX2-A2-NEQ-ESW Comp @2.0'	2.0	7/28/2000		< 0.801		9.11	
EX2-A2-NEQ	Farallon	EX2-A2-NEQ-SSW Comp @2.0'	2.0	7/28/2000		1.52		307	
	Farallon	EX2-A2-NEQ Bott comp.@2.0'	2.0	7/28/2000		< 0.833		90.8	
	Farallon	EX2-A2-NWQ-ESW comp@2.0	2.0	7/31/2000		< 0.781		326	
	Farallon	EX2-A2-NWQ-WSW Comp @2.0'	2.0	7/28/2000		0.964		80.8	
	Farallon	EX2-A2-NWQ-WSW comp@2.0	2.0	7/31/2000		< 0.781		18.1	
EX2-A2-NWQ	Farallon	EX2-A2-NWQ-SSW Comp @2.0'	2.0	7/28/2000		1.47		283	
	Farallon	EX2-A2-NWQ-SSW comp@2.0	2.0	7/31/2000		3.30		264	
	Farallon	EX2-A2-NWQ-Bott Comp @1.0'	1.0	7/28/2000		< 0.776		52.4	
	Farallon	EX2-A2-NWQ-Bott comp@2.0	2.0	7/31/2000		< 0.781		66.1	
	Farallon	EX2-A2-SWQ-SSW Comp @1.0'	1.0	8/1/2000		4.49		365	
EX2-A2-SWQ	Farallon	EX2-A2-SWQ-WSW Comp @1.0'	1.0	8/1/2000		< 1.57		522	
	Farallon	EX2-A2-SWQ-Bott Comp @1.0'	1.0	8/1/2000		< 1.57		147	
	Farallon	EX2-A'2-SEQ-NSW COMP e2.0'	2.0	8/2/2000		< 1.67		65.9	
	Farallon	EX2-A2-SEQ-ESW Comp @1.0'	1.0	8/1/2000		< 1.57		9.21	
	Farallon	EX2-A2-SEQ-SSW Comp @1.0'	1.0	8/1/2000		3.46		527	
	Farallon	EX2-A'2-SEQ-SSW COMP e2.0'	2.0	8/2/2000		3.17		236	
	Farallon	EX2-A'2-SEQ-WSW COMP e2.0'	2.0	8/2/2000		2.25		202	
EX2 A'2 SEO	Farallon	EX2-A2-SEQ-Bott Comp @1.0'	1.0	8/1/2000		< 1.57		191	
EA2-A 2-SEQ	Farallon	EX2-A'2-SEQ-BOTT COMP e2.0'	2.0	8/3/2000		2.72		348	
	Farallon	A'-2 SE BOTT 2.0	2.0	8/3/2000		ND		ND	
	Farallon	EX2-A2-SEQ'-ESW COMP e2.0'	2.0	8/2/2000		2.47		233	
	Farallon	EX2-A2-SEQ'-SSW COMP e2.0'	2.0	8/2/2000		9.1		810	
	Farallon	A'-2 SE' SSW 2.0	2.0	8/2/2000		ND		ND	
	Farallon	EX2-A2-SEQ'-BOTT COMP e2.0'	2.0	8/3/2000		2.06		370	
EX2 A'2 SWO	Farallon	EX2-A2-SWQ'-SSW COMP e2.0'	2.0	8/2/2000		< 1.67		57.1	
EA2-A 2-5 WQ	Farallon	EX2-A2-SWQ'-BOTT COMP e2.0'	2.0	8/3/2000		2.38		125	
	Farallon	EX2-A2-SEQ"-SSW COMP e2.0'	2.0	8/3/2000		1.96		71.8	
EX2-A'2-SEQ"	Farallon	EX2-A2-SEQ"-BOTT COMP e2.0'	2.0	8/3/2000		2.07		2,770	
	Farallon	EX2-A2-SEQ"-BOTTCOMP@4.0'	4.0	8/4/2000		3.9		352	
Farallon EX2-A2-SEQ"-BOTTCOMP@4.0' 4.0 8/4/2000 3.9 352 MTCA Cleanup Levels for Soil ³ 20 2 2,000 250 2								2	

			Sample Depth		A	Analytical Resu	ılts (milligram	s per kilogram	ı) ²		
Sample Location	Sampled By	Sample Identification	(feet) ¹	Sample Date	Arsenic	Cadmium	Chromium	Lead	Mercury		
1	1 0	2000	Soil Excavation ((continued)							
			Area EX-3								
	Farallon	EX3-A1-NEQ-BOTT COMP e1.0'	1.0	7/27/2000		< 1.54		13.0			
EX3-A1-NEQ	Farallon	EX3-A1-NEQ-ESW COMP e1.0'	1.0	7/27/2000		< 1.51		6.80			
	Farallon	EX3-A1-NEQ-NSW COMP e1.0'	1.0	7/27/2000		< 1.50		26.9			
	Farallon	EX3-A1-NWQ-Bott Comp @2.0'	2.0	7/28/2000		< 0.817		62.6			
EX3-A1-NWQ	Farallon	EX3-A1-NWQ-NSW Comp @2.0'	2.0	7/28/2000		< 0.850		28.4			
	Farallon	EX3-A1-NWQ-WSW Comp @2.0'	2.0	7/28/2000		< 0.850		10.4			
	Farallon	EX3-A1-SEQ-Bott Comp @2.0'	2.0	7/28/2000		0.188		10.1			
EX3-A1-SEQ	Farallon	EX3-A1-SEQ-ESW Comp @2.0'	2.0	7/28/2000		< 0.839		5.82			
	Farallon	EX3-A1-SEQ-SSW Comp @2.0'	2.0	7/28/2000		< 0.822		12.9			
	Farallon	EX3-A1-SWQ-Bott comp @2.0'	2.0	7/28/2000		< 0.822		23.7			
EX3-A1-SWQ	Farallon	EX3-A1-SWQ-SSW Comp @2.0'	2.0	7/28/2000		< 0.822		34.8			
	Farallon	EX3-A1-SWQ-WSW Comp @2.0'	2.0	7/28/2000		< 0.839		24.7			
	-	-	Area EX-4			-					
	Farallon	EX4-A1-NEQ-BOTT COMP e1.0'	1.0	7/25/2000		2.8		24.8			
FX4-A1-NFO	Farallon	EX4-A1-NEQ-BOTT COMP e2.0'	2.0	7/26/2000		< 1.45		4.51			
	Farallon	EX4-A1-NEQ-ESW COMP e1.0'	1.0	7/25/2000		ND		5.76			
	Farallon	EX4-A1-NEQ-NSW COMP e1.0'	1.0	7/25/2000		ND		5.41			
	Farallon	EX4-A1-NWQ-BOTT COMP e1.0'	1.0	7/25/2000		2.41		15			
	Farallon	EX4-A1-NWQ-BOTT COMP e2.0'	2.0	7/26/2000		< 2.12		5.54			
	Farallon	EX4-A1-NWQ-ESW COMP e1.0'	1.0	7/26/2000		< 1.75		8.77			
EX4-A1-NWQ	Farallon	EX4-A1-NWQ-NSW COMP e1.0'	1.0	7/25/2000		ND		14.4			
	Farallon	EX4-A1-NWQ-SSW COMP e1.0'	1.0	7/26/2000		< 2.12		10.1			
	Farallon	EX4-A1-NWQ-WSW COMP e1.0'	1.0	7/25/2000		2.79		7.21			
	Farallon	EX4-A1-NWQ-WSW COMP e1.0'	1.0	7/26/2000		< 1.97		22.1			
	Farallon	EX4-A1-SEQ-BOTT COMP e1.0'	1.0	7/25/2000		ND		17.6			
EX4-A1-SEQ	Farallon	EX4-A1-SEQ-ESW COMP e1.0'	1.0	7/25/2000		ND		44.4			
	Farallon	EX4-A1-SEQ-SSW COMP e1.0'	1.0	7/25/2000		3.44		90.2			
	Farallon	EX4-A1-SWQ-BOTT COMP e 1.0'	1.0	7/26/2000		0.969		24.7			
EX4-A1-SWQ	Farallon	EX4-A1-SWQ-SSW COMP e 1.0'	1.0	7/26/2000		< 0.817		6.85			
	Farallon	EX4-A1-SWQ-WSW COMP e 1.0'	1.0	7/26/2000		0.866		38.5			
	Farallon	EX4-A2-NEQ-BOTT COMP e1.0'	1.0	7/27/2000		< 1.56		7.18			
EX4-A2-NEQ	Farallon	EX4-A2-NEQ-ESW COMP e1.0'	1.0	7/27/2000		< 1.52		11.6			
	Farallon	EX4-A2-NEQ-SSW COMP e1.0'	1.0	7/27/2000		< 1.52	< 1.52 7.05				
MTCA Cleanup Levels f	for Soil ³				20	2	2,000	250	2		

									.2
			Sample Depth		A	Analytical Resu	ilts (milligrams	s per kilogram)²
Sample Location	Sampled By	Sample Identification	(feet) ¹	Sample Date	Arsenic	Cadmium	Chromium	Lead	Mercury
		2000	Soil Excavation ((continued)					
			Area EX-4 (conti	nued)					
	Farallon	EX4-A2-NWQ-ESW COMP e 1.0'	1.0	7/26/2000		ND		8.77	
	Farallon	EX4-A2-NWQ-WSW COMP e 1.0'	1.0	7/26/2000		ND		22.1	
EA4-A2-NWQ	Farallon	EX4-A2-NWQ-SSW COMP e 1.0'	1.0	7/26/2000		ND		10.1	
	Farallon	EX4-A2-NWQ-BOTT COMP e 1.0'	1.0	7/26/2000		ND		6.14	
	Farallon	EX4-B1-NEQ-BOTT COMP e1.0'	1.0	7/26/2000		< 2.05		29.3	
EVA D1 NEO	Farallon	EX4-B1-NEQ-NSW COMP e1.0'	1.0	7/26/2000		< 1.89		5.63	
EX4-B1-NEQ	Farallon	EX4-B1-NEQ-SSW COMP e1.0'	1.0	7/26/2000		< 2.27		15.5	
	Farallon	EX4-B1-NEQ-WSW COMP e1.0'	1.0	7/26/2000		< 1.89		6.61	
	•	•	Area EX-W	H	•	•			
	Farallon	EX-WH-NQ-Bott Comp @1.0'	1.0	8/1/2000		3.01		300	
	Farallon	EX-WH'-NQ-BOTT COMP e2.0'	2.0	8/3/2000		< 0.806		13.1	
	Farallon	EX-WH-NQ-ESW Comp @1.0'	1.0	8/1/2000		< 1.57		168	
EX-WH-NQ	Farallon	EX-WH-NQ-NSW Comp @1.0'	1.0	8/1/2000		2.65		318	
	Farallon	EX-WH'-NQ-NSW COMP e2.0'	2.0	8/3/2000		1.08		169	
	Farallon	EX-WH-NQ-WSW Comp @1.0'	1.0	8/1/2000		2.01		402	
	Farallon	EX-WH'-NQ-WSW COMP e2.0'	2.0	8/3/2000		0.902		118	
	Farallon	EX-WH-SQ-Bott Comp @1.0'	1.0	8/1/2000		< 1.57		68.6	
	Farallon	EX-WH-SQ-ESW Comp @1.0'	1.0	8/1/2000		< 1.57		96.3	
	Farallon	EX-WH-SQ-SSW Comp @1.0'	1.0	8/1/2000		3.87		1,120	
EX-WH-SQ	Farallon	EX-WH'-SQ-SSW COMP e1.0'	1.0	8/3/2000		< 0.806		64.2	
	Farallon	EX-WH-SQ-WSW Comp @1.0'	1.0	8/1/2000		2.23		680	
	Farallon	EX-WH'-SQ-WSW COMP e1.0'	1.0	8/3/2000		< 0.806		58.3	
	•	2017 Phase	e II Environmenta	l Site Assessment		•			
LAI-B1	Landau	LAI-B1 (5)	5.0	6/7/2017	6.0	< 0.50	62	8.3	0.059
F.AST-TP	Landau	F.AST-TP (2)	2.0	6/13/2017	3.9	< 0.50	32	6.7	0.059
HA-1	Landau	HA-1 (1.5)	1.5	6/13/2017	4.9	< 0.50	31	28	0.11
TP-4	Landau	TP-4 (2)	2.0	6/13/2017	2.1	< 0.50	35	4.8	0.021
TP-5	Landau	TP-5 (1.5)	1.5	6/13/2017	1.8	< 0.50	16	9.6	0.041
TP-6	Landau	TP-6 (1.5)	1.5	6/13/2017	3.1	< 0.50	29	8.6	0.037
TP-7	Landau	TP-7 (1)	1.0	6/13/2017	4.5	< 0.50	32	18	0.068
MTCA Cleanup Levels f	or Soil ³				20 2 2,000 250 2				

			Sample Depth		Analytical Results (milligrams per kilogram) ²						
Sample Location	Sampled By	Sample Identification	(feet) ¹	Sample Date	Arsenic	Cadmium	Chromium	Lead	Mercury		
			2019 Remedial A	•	•						
		AOC 1 Initia									
TP1-1	Landau	TP1-1-060619	4.0	6/6/2019	5.1	0.21		8.7			
TP1-2	Landau	TP1-2-060619	UNK	6/6/2019	4.2	< 0.10	33	30	0.22		
TP2-1	Landau	TP2-1-060619	6.0	6/6/2019	6.1	2.4		290			
TP2-2	Landau	TP2-2-060619	UNK	6/6/2019	5.8	0.96	35	120	0.12		
TP3-1	Landau	TP3-1-060619	6.0	6/6/2019	13	9.0		1,100			
TP3-2	Landau	TP3-2-060619	UNK	6/6/2019	2.5	< 0.10	29	4.2	0.026		
TP4-1	Landau	TP4-1-060619	6.0	6/6/2019	1.8	0.10		2.7			
TP4-2	Landau	TP4-2-060619	UNK	6/6/2019	1.9	0.15	24	7.3	< 0.020		
TP5-1	Landau	TP5-1-060619	9.0	6/6/2019	6.5	3.2		420			
TP5-2	Landau	TP5-2-060619	UNK	6/6/2019	2.0	0.18	25	16	0.20		
AOC1-B (6)	Landau	AOC1-B (6)	6.0	6/24/2019	5.5	1.8	39	160			
AOC1-B (8)	Landau	AOC1-B (8)	8.0	6/24/2019	10	0.94	33	470			
AOC1-B (9)	Landau	AOC1-B (9)	9.0	6/24/2019	5.1	1.0	38	280			
AOC1-SW1	Landau	AOC1-SW1 (0-4)	0.0 - 4.0	6/24/2019	5.4	0.59	29	65			
AOC1-SW2	Landau	AOC1-SW2 (0-4)	0.0 - 4.0	6/24/2019	5.3	1.0	33	98			
AOC1-SW3	Landau	AOC1-SW3 (0-6)	0.0 - 6.0	6/24/2019	4.0	0.87	36	140			
AOC1-SW4	Landau	AOC1-SW4 (0-9)	0.0 - 9.0	6/24/2019	3.5	0.58	34	79			
AOC1-SW5	Landau	AOC1-SW5 (0-9)	0.0 - 9.0	6/24/2019	2.4	0.14	35	10			
AOC1-SW6	Landau	AOC1-SW6 (0-6)	0.0 - 6.0	6/24/2019	4.0	0.11	34	6.4			
AOC1-SW7	Landau	AOC1-SW7 (0-6)	0.0 - 6.0	6/24/2019	9.8	2.7	46	370			
AOC1-SW8	Landau	AOC1-SW8 (0-6)	0.0 - 6.0	6/24/2019	9.4	3.6	53	330			
AOC1-SW9	Landau	AOC1-SW9 (0-4)	0.0 - 4.0	6/24/2019	3.7	1.4	40	3.7			
AOC1-SW10	Landau	AOC1-SW10 (4-6)	4.0 - 6.0	6/24/2019	3.7	< 0.10	29	3.4			
AOC1-SW11	Landau	AOC1-SW11 (6-9)	6.0 - 9.0	6/24/2019	10	3.8	42	1,400			
	-	AOC 1 Additional Exca	vation Character	ization/Confirmati	on Samples	-					
AOC1-B (15)-062619	Landau	AOC1-B (15)-062619	15.0	6/26/2019	5.0	0.37	32	40			
AOC1-B (15)-070319	Landau	AOC1-B (15)-070319	15.0	7/3/2019	5.4	0.24	35	280			
AOC1-B (16)	Landau	AOC1-B (16)	16.0	6/28/2019	5.6	0.55	41	67			
AOC1-B (17)	Landau	AOC1-B (17)	17.0	6/26/2019	9.4	0.73	39	500			
AOC1-DP	Landau	AOC1-DP (14-15)	14.0 - 15.0	7/29/2019	11	1.3	38	180			
MTCA Cleanup Levels fo	or Soil ³		20	2	2,000	250	2				

			Sample Depth		Analytical Results (milligrams per kilogram) ²							
Sample Location	Sampled By	Sample Identification	(feet) ¹	Sample Date	Arsenic	Mercury						
-		2019	Remedial Action	(continued)								
		AOC 1 Additional Excavation	mples (continu	ed)								
AOC1-SW12	Landau	AOC1-SW12 (0-12)	0.0 - 12.0	6/26/2019	6.9	1.1	36	150				
AOC1-SW12	Landau	AOC1-SW12 (12-17)	12.0 - 17.0	6/26/2019	8.3	0.65	32	110				
AOC1-SW13	Landau	AOC1-SW13 (0-17)	0.0 - 17.0	6/26/2019	6.5	0.16	35	40				
AOC1-SW14	Landau	AOC1-SW14 (0-6)	0.0 - 6.0	6/26/2019	8.3	1.2	35	210				
AOC1-SW15	Landau	AOC1-SW15 (0-6)	0.0 - 6.0	6/26/2019	5.6	2.0	32	70				
AOC1-SW16	Landau	AOC1-SW16 (0-15)	0.0 - 15.0	6/26/2019	6.7	0.96	31	280				
AOC1-SW17	Landau	AOC1-SW17 (5.5-11)	5.5 - 11.0	6/28/2019	1.9	0.14	28	5.2				
AOC1-SW17	Landau	AOC1-SW17 (12-13)	12.0 - 13.0	6/28/2019	17	4.0	43	720				
	Landau	AOC1-SW18 (7-10)	7.0 - 10.0	6/28/2019	6.6	0.71	54	140				
AOC1-SW18	Landau	AOC1-SW18 (10-11)	10.0 - 11.0	6/28/2019	11	6.2	50	2,200				
	Landau	AOC1-SW18 (11-15)	11.0 - 15.0	6/28/2019	9.7	0.89	32	260				
AOC1-SW19	Landau	AOC1-SW19 (10-11.5)	10.0 - 11.5	6/28/2019	9.6	1.5	48	140				
	Landau	AOC1-SW19 (11.5-14.5)	11.5 - 14.5	6/28/2019	8.1	0.50	34	74				
	Landau	AOC1-SW19 (14.5-15)	14.5 - 15.0	6/28/2019	7.4	1.9	35	140				
	Landau	AOC1-SW19 (7-10)	7.0 - 10.0	6/28/2019	5.6	0.62	39	110				
AOC1-SW20	Landau	AOC1-SW20 (9.5 071119)	9.5	7/11/2019	6.7	1.8	35	110				
AOC1-SW21	Landau	AOC1-SW21 (9.5 071119)	9.5	7/11/2019	5.2	0.25	32	52				
AOC1-SW22	Landau	AOC1-SW22 (9.5 071119)	9.5	7/11/2019	5.5	0.63	37	57				
	-		Building C Ar	rea	-		-		-			
BC-B1	Landau	BC-B1 (3.5)	3.5	7/3/2019	13	0.15	35	9.5				
BC-B2	Landau	BC-B2 (2.7)	2.7	7/3/2019	6.9	0.30	32	46				
BC-B3	Landau	BC-B3 (2.5)	2.5	7/3/2019	8.0	0.38	33	40				
BC-SW1	Landau	BC-SW1 (0-3)	0.0 - 3.0	7/3/2019	6.3	0.68	34	120				
BC-SW2	Landau	BC-SW2 (0-2.5)	0.0 - 2.5	7/3/2019	7.2	0.91	33	87				
BC-SW3	Landau	BC-SW3 (0-1.5)	0.0 - 1.5	7/3/2019	5.7	0.48	34	39				
BC-SW4	Landau	BC-SW4 (1.8-3.1)	1.8 - 3.1	7/3/2019	6.8	0.41	32	46				
BC-SW5	Landau	BC-SW5 (0-2.8)	0.0 - 2.8	7/3/2019	4.4	0.67	28	79				
BC-SW6	Landau	BC-SW6 (4.0)	4.0	7/11/2019	4.7	< 0.10	57	2.9				
BC-SW7	Landau	BC-SW7 (4.0)	4.0	7/11/2019	4.5	< 0.10	32	4.8				
MTCA Cleanup Levels fo	or Soil ³		20	2	2,000	250	2					

			Sample Depth		Analytical Results (milligrams per Kilogram)							
Sample Location	Sampled By	Sample Identification	(feet) ¹	Sample Date	Arsenic	Cadmium	Chromium	Lead	Mercury			
			Rinse Tank									
В	Landau	B (5.5)	5.5	7/2/2019	5.4	0.73	37	53	0.12			
SW1	Landau	SW1 (2.5-5.5)	2.5 - 5.5	7/2/2019	5.5	0.19	37	18	0.079			
SW2	Landau	SW2 (2.5-5.5)	2.5 - 5.5	7/2/2019	4.8	0.12	33	11	0.046			
RT-B	Landau	RT-B (7.5)	7.5	7/11/2019	3.5	< 0.10	44	3.5	0.062			
			al									
USB-B	Landau	B (6-7')-091619	6.0 - 7.0	9/16/2019				3.4				
UST-SW-E	Landau	SW-E (5-6')-091619	5.0 - 6.0	9/16/2019				11				
MTCA Cleanup Levels fo	or Soil ³		20	2	2,000	250	2					

NOTES:

Shading indicates that sample was over excavated during remedial excavations.

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

--- denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Methods 6010D/7471B.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013, unless otherwise noted.

Emcon = Emcon Services, Inc.

Landau = Landau Associates, Inc.

NA = not applicable

NE = not established

SHD = Snohomish Health District

UNK = sample depth unknown

Farallon = Farallon Consulting, LLC

Hart Crowser = Hart Crowser and Associates

	Analytical Results (milligrams per kilogram) ²													
Sample Location	Sampled By	Sample Identification	Depth (feet) ¹	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Total PCBs
1994 Site Hazard Assessment and Investigation														•
M-2	SHD	M2-0-0.5	0.0 - 0.5	5/17/1994	< 0.2	< 0.8	< 0.2	< 0.2	< 0.2	0.31	< 0.2			< 0.2
M-3	SHD	M3-0-0.5	0.0 - 0.5	5/17/1994	< 800	< 3,200	< 800	< 800	< 800	1,800	< 800			1,800
M-4	SHD	M-4-0-0.5	0.0 - 0.5	5/17/1994	< 0.58	< 2.3	< 0.58	< 0.58	< 0.58	5.8	< 0.58			5.8
M-13	SHD	M-13-0-0.5	0.0 - 0.5	7/14/1994	< 0.099	< 0.39	< 0.099	< 0.099	< 0.099	0.35	< 0.099			0.35
1996 Site Investigation														
MAS-01	Emcon	MAS-01	0.0 - 0.5	4/2/1996	< 1	< 1	< 1	< 1	< 1	1	< 1			1
MAS-02	Emcon	MAS-02	0.0 - 0.5	4/2/1996	< 1	< 1	< 1	< 1	< 1	1	< 1			1
MAS-03	Emcon	MAS-03	0.0 - 0.5	4/2/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-04	Emcon	MAS-04	0.0 - 0.5	4/2/1996	< 1	< 1	< 1	< 1	< 1	2	< 1			2
MAS-05	Emcon	MAS-05	0.0 - 0.5	4/2/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-06	Emcon	MAS-06	0.0 - 0.5	4/2/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-07	Emcon	MAS-07	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-SAS3	Emcon	MAS-SAS3	0.0 - 0.5	4/2/1996	< 1	< 1	< 1	< 1	< 1	260	< 1			260
MAS-01-Grid	Emcon	MAS-01-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-04-Grid	Emcon	MAS-04-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-05-Grid	Emcon	MAS-05-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	5	< 1			5
MAS-07-Grid	Emcon	MAS-07-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	1	< 1			1
MAS-08-Grid	Emcon	MAS-08-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-09-Grid	Emcon	MAS-09-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-13-Grid	Emcon	MAS-13-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-14-Grid	Emcon	MAS-14-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-15-Grid	Emcon	MAS-15-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-17-Grid	Emcon	MAS-17-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-19-Grid	Emcon	MAS-19-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-20-Grid	Emcon	MAS-20-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-21-Grid	Emcon	MAS-21-Grid	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-07	Emcon	MAS-07	0.0 - 0.5	4/12/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-CCS	Emcon	MAS-CCS	0.0 - 0.5	4/2/1996	< 5	< 5	< 5	< 5	< 5	< 5	< 5			< 5
1996 Additional PCB Sampling														
ER-E	Emcon	ER-E	0.0 - 0.5	9/5/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
	Emcon	$ER-SE^4$	0.0 - 0.5	9/5/1996	< 1	< 1	< 1	< 1	< 1	22,000	< 1			22,000
ER-SE	Emcon	ER-SE (Split) ⁵	0.0 - 0.5	9/5/1996	< 1	< 1	< 1	< 1	< 1	18,000	< 1			18,000
	Emcon	ER-SE (Dup) ⁵	0.0 - 0.5	9/5/1996	< 1	< 1	< 1	< 1	< 1	37,000	< 1			37,000
ER-S	Emcon	ER-S	0.0 - 0.5	9/5/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
ER-W	Emcon	ER-W	0.0 - 0.5	9/5/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MTCA Method A C	leanup Level for S	Soil ³												1.0
Table 4Soil Analytical Results for PCBsMonroe Auto SalvageMonroe, WashingtonFarallon PN: 2747-001

			Sampla					Analytica	l Results (mi	lligrams per l	kilogram) ²			
Sample Location	Sampled By	Sample Identification	Depth (feet) ¹	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Total PCBs
			•	19	96 Additiona	al PCB Samp	ling (continue	ed)	•	•		•	•	·
MAS-05N	Emcon	MAS-05N-Grid	0.0 - 0.5	9/5/1996	< 1	< 1	< 1	< 1	< 1	1.1	< 1			1.1
MAS-05S	Emcon	MAS-05S-Grid	0.0 - 0.5	9/5/1996	< 1	< 1	< 1	< 1	< 1	2.0	< 1			2.0
MAS-05E	Emcon	MAS-05E-Grid	0.0 - 0.5	9/5/1996	< 1	< 1	< 1	< 1	< 1	< 1	< 1			< 1
MAS-05W	Emcon	MAS-05W-Grid	0.0 - 0.5	9/5/1996	< 1	< 1	< 1	< 1	< 1	2.6	< 1			2.6
					199	7 Soil Excava	tion						-	
G-MAS-01-N	Glacier	G-MAS-01-N	0.0 - 0.5	3/20/1997	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			< 0.05
G-MAS-01-S	Glacier	G-MAS-01-S	0.0 - 0.5	3/20/1997	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			< 0.05
G-MAS-01-W	Glacier	G-MAS-01-W	0.0 - 0.5	3/20/1997	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			< 0.05
G-MAS-01-BT-01	Glacier	G-MAS-01-BT-01	0.0 - 0.5	3/20/1997	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			< 0.05
G-MAS-01-BT-02	Glacier	G-MAS-01-BT-02	0.0 - 0.5	3/20/1997	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.109	< 0.05			0.109
G-MAS-01-E	Glacier	G-MAS-01-E	0.0 - 0.5	3/20/1997	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.104	< 0.05			0.104
G-MAS-02-BT-01	Glacier	G-MAS-02-BT-01	0.0 - 0.5	4/8/1997	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			< 0.05
G-MAS-02-SW-S	Glacier	G-MAS-02-SW-S	0.0 - 0.5	4/8/1997	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			< 0.05
G-MAS-02-SW-N	Glacier	G-MAS-02-SW-N	0.0 - 0.5	4/8/1997	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			< 0.05
G-MAS-02-SW-E	Glacier	G-MAS-02-SW-E	0.0 - 0.5	4/8/1997	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			< 0.05
G-MAS-02-SW-W	Glacier	G-MAS-02-SW-W	0.0 - 0.5	4/8/1997	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			< 0.05
				199	9 Remedial I	nvestigation/	Feasibility St	udy						
FLM-TP8	Farallon	FLM-TP8-1	1.0	7/22/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
FLM-TP8	Farallon	FLM-TP8 @ 15.0'	15.0	7/22/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.36	< 0.05	< 0.05	< 0.05	0.36
FSY-TP1	Farallon	FSY-TP1-0.5	0.5	7/20/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.0695	< 0.05	< 0.05	0.0695
FSY-TP2	Farallon	FSY-TP2@ 1.0'	1.0	7/20/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Farallon	FSY-TP3@ 1.0'	1.0	7/20/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
FSY-TP3	Farallon	FSY-TP3@ 3.0'	3.0	7/20/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Farallon	FSY-TP3-10	10.0	7/20/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
FSY-TP4	Farallon	FSY-TP4 @ 1.0	1.0	7/22/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
FSY-TP5	Farallon	FSY-TP5 @ 1.0'	1.0	7/20/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
FSY-TP6	Farallon	FSY-TP6 @ 1.0	1.0	7/21/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
FSV TPO	Farallon	FSY-TP9 @ 1.0	1.0	7/21/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
151-117	Farallon	FSY-TP9 @ 3.0	3.0	7/21/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
				1999 Rer	nedial Invest	igation/Feasi	bility Study C	Continued						
FSY-TP10	Farallon	FSY-TP10@ 1.0'	1.0	7/20/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.0554	< 0.05	< 0.05	0.0554
FSY-TP11	Farallon	FSY-TP11-5	5.0	7/20/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
FSY-TP14	Farallon	FSY-TP14-1	1.0	7/21/1999	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MTCA Method A C	Cleanup Level for S	Soil ³												1.0

Table 4 Soil Analytical Results for PCBs Monroe Auto Salvage Monroe, Washington Farallon PN: 2747-001

			Somulo					Analytica	l Results (mi	lligrams per l	kilogram) ²				
Sample Location	Sampled By	Sample Identification	Depth (feet) ¹	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Total PCBs	
	1 7		. ,	201	7 Phase II Ei	nvironmental	Site Assessm	ent	<u> </u>					1	
LAI-B1	Landau	LAI-B1 (5)	5.0	6/7/2017	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
F.AST-TP	Landau	F.AST-TP(2)	2.0	6/13/2017	< 0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	< 0.10		< 0.10	<0.10	
HA-1	Landau	HA-1 (1.5)	1.5	6/13/2017	< 0.10	< 0.10	< 0.10	<0.10	<0.10	< 0.10	< 0.10		< 0.10	< 0.10	
TP-4	Landau	TP-4 (2)	2.0	6/13/2017	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10	<0.10		< 0.10	< 0.10	
TP-5	Landau	TP-5 (1.5)	1.5	6/13/2017	< 0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10		< 0.10	<0.10	
TP-6	Landau	TP-6 (1.5)	1.5	6/13/2017	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10		< 0.10	< 0.10	
TP-7	Landau	TP-7 (1)	1.0	6/13/2017	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
					2018 Supp	lemental Soi	Sampling		• •						
AOC2-BOT1	AOC2-BOT1 Landau AOC2-BOT1-112718 2.0 11/27/2018 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10														
AOC2-BOT2	Landau	AOC2-BOT2-112718	2.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
AOC2-BOT3	Landau	AOC2-BOT3-112718	2.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
AOC2-BOT4	Landau	AOC2-BOT4-112718	2.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
AOC2-BOT5	Landau	AOC2-BOT5-112718	2.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
AOC2-BOT6	Landau	AOC2-BOT6-112718	2.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
AOC2-ESW	Landau	AOC2-ESW-112718	1.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
AOC2-NSW	Landau	AOC2-NSW-112718	1.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
AOC2-SSW	Landau	AOC2-SSW-112718	1.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	0.19	< 0.10	< 0.10		< 0.10	0.19	
AOC2-WSW	Landau	AOC2-WSW-112718	1.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
AOC4-BOT	Landau	AOC4-BOT-112718	2.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
AOC4-ESW	Landau	AOC4-ESW-112718	1.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
AOC4-NSW	Landau	AOC4-NSW-112718	1.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
AOC4-WSW	Landau	AOC4-WSW-112718	1.0	11/27/2018	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
MTCA Method A C	Cleanup Level for S	Soil ³		-										1.0	
					2019	Remedial A	ction								
						Rinse Tank									
В	Landau	B (5.5)	5.5	7/2/2019	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
RT-B	Landau	RT-B (7.5)	7.5	7/11/2019	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
SW1	Landau	SW1 (2.5-5.5)	2.5	7/2/2019	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
SW2	Landau	SW2 (2.5-5.5)	2.5	7/2/2019	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	
MTCA Method A C	Cleanup Level for S	Soil ³												1.0	
NOTES															

					2019	Remedial A	ction								
						Rinse Tank									
В	B Landau B (5.5) 5.5 7/2/2019 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10														
RT-B	Landau	RT-B (7.5)	7.5	7/11/2019	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
SW1	Landau	SW1 (2.5-5.5)	2.5	7/2/2019	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				
SW2	Landau	SW2 (2.5-5.5)	2.5	7/2/2019	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10				

NOTES:

Shading indicates that sample was over excavated during remedial excavations.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8082A.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁴Initial analysis results from Columbia Analytical Services.

⁵A split sample and a duplicate sample were analyzed by Analytical Resources, Inc. for confirmation purposes.

Emcon = Emcon Services, Inc. Farallon = Farallon Consulting, LLC Glacier = Glacier Environmental Services Landau = Landau Associates, Inc.

PCB = polychlorinated biphenyl SHD = Snohomish Health District

Table 5 Soil Analytical Results for PAHs **Monroe Auto Salvage** Monroe, Washington Farallon PN: 2747-001

					Analytical Results (milligrams per kilogram) ²																			
						-			1	Non-Carcin	ogenic PAH	s								Carcinoge	enic PAHs			
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Sample Date	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ³	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{4,5}
									1999 Rem	edial Invest	igation/Fea	sibility Stud	ły											
FLM-TP1	Farallon	FLM-TP1 @ 10.0'	10.0	7/22/1999	0.0489		0.483	0.5319	0.0201	< 0.0200	< 0.0201	< 0.0100	< 0.0100	0.0957	0.173	0.0173	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0076
FLM-TP8	Farallon	FLM-TP8 @ 15.0'	15.0	7/22/1999	< 0.0100		< 0.0100	< 0.0200	< 0.0101	< 0.0102	< 0.0103	0.0158	0.100	< 0.0100	0.0198	0.127	0.0158	0.0158	0.0250		0.0211	< 0.0100	0.0132	0.022 J
			1	1			1		2017 Pha	se II Enviro	nmental Sit	e Assessme	nt	[
LAI-B1	Landau	LAI-B1 (5)	5.0	6/7/2017	<0.1	< 0.33	<0.28	< 0.71	<0.10	< 0.10	<0.10	< 0.10	<0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10	< 0.076
F.AST-TP	Landau	F.AST-TP (2)	2.0	6/13/2017	<0.1	<0.30	<0.26	<0.66	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.076
HA-I	Landau	HA-1 (1.5)	1.5	6/13/2017	<0.1	<0.32	<0.27	<0.69	380	<0.13	1.2	I.I	6.0	0.73	6.6	6.8	2.0	0.26	2.1	0.55	2.1	0.26	0.92	2.4
TP-4	Landau	TP-4 (2)	2.0	6/13/2017	<0.1	<0.25	<0.25	<0.60	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.076
TP-5	Landau	TP-5 (1.5)	1.5	6/13/2017	<0.1	<0.30	<0.26	<0.66	<0.10	<0.10	<0.10	<0.10	0.18	<0.10	<0.10	0.11	<0.10	<0.10	0.11	<0.10	<0.10	<0.10	<0.10	0.082
TP-0	Landau	TP-0 (1.5)	1.5	6/13/2017	<0.1	<0.20	<0.25	< 0.61	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.076
11-7	Lanuau	11-7 (1)	1.0	0/13/2017	<0.1	<0.29	<0.23	<0.04	201	<0.10 8 Sunnleme	ntal Soil Sa	0.14	0.34	<0.10	0.15	0.23	0.20	<0.10	0.20	<0.10	0.22	<0.10	0.11	0.23
AOC3-ESW	Landau	AOC3-FSW-112718	1.0	11/27/2018	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	< 0.020	< 0.020	0.23	0.55	< 0.020	0.19	0.42	0.30	0.28	0.51	0.15	0.26	< 0.020	0.15	0.41
AOC3-NBOT	Landau	AOC3-NBOT-112718	2.0	11/27/2018	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
AOC3-NSW	Landau	AOC3-NSW-112718	1.0	11/27/2018	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
AOC3-SBOT	Landau	AOC3-SBOT-112718	2.0	11/27/2018	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
AOC3-SSW	Landau	AOC3-SSW-112718	1.0	11/27/2018	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
AOC3-WSW	Landau	AOC3-WSW-112718	1.0	11/27/2018	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	< 0.020	< 0.020	0.049	0.12	< 0.020	0.039	0.13	0.048	0.047	0.063	0.029	0.048	< 0.020	0.032	0.067
			•		•	•			•	2019 Ren	nedial Actio	n	•											
						-	-			A	OC 3		-											
AOC3-B	Landau	AOC3-B (2.5)	2.5	6/28/2019	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
AOC3-SW	Landau	AOC3-SW (7-8)	7.0 - 8.0	6/24/2019	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
AOC3-SW1	Landau	AOC3-SW1 (0-2)	0.0 - 2.0	6/28/2019	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	< 0.020	< 0.020	0.021	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.021	< 0.020	< 0.020	< 0.020	< 0.020	0.016
AOC3-SW2	Landau	AOC3-SW2 (0-2)	0.0 - 2.0	6/28/2019	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
AOC3-SW3	Landau	AOC3-SW3 (0-2)	0.0 - 2.0	6/28/2019	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	0.033	0.096	0.32	0.70	< 0.020	0.36	0.70	0.36	0.34	0.40	0.15	0.36	0.062	0.24	0.48
AOC3-SW5	Landau	AOC3-SW5 (0-0.5)	0.0 - 0.5	6/28/2019	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	< 0.020	< 0.020	0.11	0.17	< 0.020	0.087	0.20	0.081	0.074	0.12	0.040	0.086	< 0.020	0.059	0.11
AOC3-SW6	Landau	AOC3-SW6 (0-0.5)	0.0 - 0.5	6/28/2019	< 0.020	< 0.020	< 0.020	< 0.060	< 0.020	0.029	0.064	0.24	0.45	< 0.020	0.28	0.49	0.29	0.22	0.33	0.11	0.28	0.047	0.17	0.38
		-			0.000	0.000	0.000	0.0.0		Rins	se Tank						0.000	0.0-5	0.15	0.63-	0.675	0.0-1	0.0	0.15
B	Landau	B (5.5)	5.5	7/2/2019	< 0.020	< 0.020	< 0.020	< 0.060									0.089	0.050	0.19	0.037	0.072	0.051	0.064	0.13
KT-B	Landau	КТ-В (7.5)	7.5	7/11/2019	< 0.020	< 0.020	< 0.020	< 0.060									< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
SW1	Landau	SW1 (2.5-5.5)	2.5 - 5.5	7/2/2019	< 0.020	< 0.020	< 0.020	< 0.060									0.052	0.036	0.062	0.023	0.044	< 0.020	0.036	0.069
SW2	Landau	SW2 (2.5-5.5)	2.5 - 5.5	7/2/2019	< 0.020	< 0.020	< 0.020	< 0.060	4 0007					2 2007			0.023	< 0.020	0.034	< 0.020	0.024	< 0.020	< 0.020	0.031
MTCA Method A C	leanup Level for	r Soil *						5	4,800	NE	24,000	NE	3,200	3,200	NE	2,400								0.1

NOTES:

Shading indicates that sample was over excavated during remedial excavations.

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

--- denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM.

³Sum of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene.

⁴Total cPAHs derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁵For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁶Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses,

Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁷Washington State Cleanup Levels and Risk Calculations (CLARC) under MTCA, Standard Method B Formula Values for Soil from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technicalassistance/Contamination-clean-up-tools/CLARC.

P:\2747 River's Edge WA LLLP\2747001 Former Monroe Auto Wrecking\Deliverables\2022 Env Cond Summary Rpt\Tables\2747-001_Tables_2022-08-09

J = result is an estimate

Landau = Landau Associates, Inc. PAHs = polycyclic aromatic hydrocarbons

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

Farallon = Farallon Consulting, LLC

TEC = toxic equivalent concentration

NE = not established

Table 6 Groundwater and Surface Water Analytical Results for TPH and BTEX Monroe Auto Salvage Monroe, Washington Farallon PN: 2747-001

						Analytical F	Results (microgra	ams per liter)		
				NWT	PH-Dx ¹		Ε	PA Method 802	$1B^2$	
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
			Reco	onnaissance Borir	g Groundwater S	amples				
LAI-B1	Landau	6/7/2017	B-1 @ 25'	< 130	< 250	<50	<2.0	<2.0	<2.0	<4.0
DPW-1	Landau	6/28/2019	DPW-1	< 130	< 250					
P-2	Landau	6/29/2018	P-2-180629	< 130	< 250					
P-3	Landau	6/29/2018	P-3-180629	< 130	< 250					
P-4	Landau	6/29/2018	P-4-180629	230 JL	450					
P-5	Landau	6/29/2018	P-5-180629	< 130	< 250					
			Ν	Ionitoring Well (Froundwater Sam	ples				
HC //**	Hart Crowser	6/18/1990	HC-4-061890	ND		ND	ND	ND	ND	ND
110-4	Farallon	8/12/1999	HC-4-081299	471	< 500	< 50	< 0.5	8.66	< 0.5	< 1.0
	Hart Crowser	6/18/1990	HC-5-061890	ND		ND	ND	ND	ND	ND
	Emcon	5/23/1996	HC-5-052396	470	< 750	< 50				
HC-5	Emcon	8/21/1996	HC-5-082196	< 250	< 750	< 50				
	PBS	3/26/1997	HC-5-032697	ND	ND	ND				
	Farallon	8/12/1999	HC-5-081299	< 250	< 500	< 50	< 0.5	< 0.5	< 0.5	< 1.0
	Emcon	5/23/1996	MW-2-052396	460	< 750	< 50				
MW 2	Emcon	8/21/1996	MW-2-082196	346	< 750	< 50				
101 00 -2	PBS	3/26/1997	MW-2-032697	ND	ND	ND				
	Farallon	8/12/1999	MW-2-081299	< 250	< 500	< 50	< 0.5	< 0.5	< 0.5	< 1.0
	Emcon	5/23/1996	MW-3-052396	< 250	< 750	< 50				
MW 3	Emcon	8/21/1996	MW-3-082196	< 250	< 750	< 50				
101 00 -5	PBS	3/26/1997	MW-3-032697	ND	ND	ND				
	Farallon	8/12/1999	MW-3-081299	< 250	< 500	< 50	< 0.5	< 0.5	< 0.5	< 1.0
	Emcon	5/23/1996	MW-4-052396	< 250	< 750	< 50				
	Emcon	8/21/1996	MW-4-082196	< 250	< 750	< 50				
MW-4	PBS	3/26/1997	MW-4-032697	ND	ND	ND				
	Farallon	8/12/1999	MW-4-081299	< 250	< 500	< 50	< 0.5	< 0.5	< 0.5	< 1.0
	Landau	6/7/2017	MW-4	<130	<250	<50	<2.0	<2.0	<2.0	<4.0
MTCA Method A Clea	anup Level for G	roundwater ³		500	500	800/1,000 ⁴	5	1,000	700	1,000

Table 6 Groundwater and Surface Water Analytical Results for TPH and BTEX Monroe Auto Salvage Monroe, Washington Farallon PN: 2747-001

						Analytical R	Results (microgr	ams per liter)		
				NWT	PH-Dx ¹		E	PA Method 802	21B ²	
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
			Monito	oring Well Groun	dwater Samples (c	ontinued)				
MW-8	Farallon	8/12/1999	MW-8-081299	< 250	< 500	< 50	< 0.5	< 0.5	< 0.5	< 1.0
MW-9	Farallon	8/12/1999	MW-9-081299	< 250	< 500	< 50	< 0.65	0.614	< 0.5	1.22
	Landau	8/5/2019	DP3-MW-080519	< 130	< 250					
	Landau	11/21/2019	DP3-MW-112119	< 130	290					
DP3-MW	Landau	2/24/2020	DP3-MW-022420	260 180*	1,500 1,200*					
	Landau	6/2/2020	DP3-MW-200602	150	< 250					
	Landau	8/22/2018	P-4-180822	< 130	3,700					
	Landau	6/28/2019	P4-MW	420 JL	800					
	Landau	8/5/2019	DP4-MW-080519	< 130	< 250					
	Landau	11/21/2019	DP4-MW-112119	<130 <130*	1800 <250*					
DP4-MW	Landau	2/24/2020	DP4-MW-022420	470 <130*	940 440*					
	Landau	2/24/2020^	DUP1-200224	670 280*	2,100 1,400*					
	Landau	6/2/2020	DP4-MW-200602	400 <130	760 <250*					
	Landau	8/5/2019	DP5-MW-080519	< 130	< 250					
	Landau	11/21/2019	DP5-MW-112119	< 130	< 250					
DP5-MW	Landau	2/24/2020	DP5-MW-022420	< 130	< 250					
	Landau	6/2/2020	DP5-MW-200602	< 130	< 250					
	Landau	6/2/2020^	DUP1-200602	< 130	< 250					
	Landau	8/5/2019	DP6-MW-080519	< 130	< 250					
DDC MW	Landau	11/21/2019	DP6-MW-112119	190	260					
DF0-IVI VV	Landau	11/21/2019^	DUP1-191121	130	< 250					
	Landau	6/2/2020	DP6-MW-200602	< 130	< 250					
MTCA Method A Clea	anup Level for G	roundwater ³		500	500	800/1,000 ⁴	5	1,000	700	1,000

Table 6 Groundwater and Surface Water Analytical Results for TPH and BTEX Monroe Auto Salvage Monroe, Washington **Farallon PN: 2747-001**

						Analytical I	Results (microgra	ams per liter)		
				NWTI	PH-Dx ¹		E	PA Method 802	$1B^2$	
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
				Surface W	ater Samples					
	Landau	6/29/2018	SWD-180629	< 130	< 250					
	Landau	8/5/2019	SWD-080519	< 130	< 250					
SWD	Landau	11/21/2019	SWD-112119	< 130	< 250					
	Landau	2/24/2020	SWD-022420	< 130	< 250					
	Landau	6/2/2020	SWD-200602	< 130	< 250					
SWUP	Landau	6/29/2018	SWUP-180629	< 130	< 250					
	Landau	8/5/2019	SWU-080519	< 130	< 250					
SWIT	Landau	11/21/2019	SWU-112119	< 130	< 250					
300	Landau	2/24/2020	SWU-022420	< 130	< 250					
	Landau	6/2/2020	SWU-200602	< 130	< 250					
MTCA Method B Clea	nup Level for Su	urface Water ⁵		1,000/	3,000 ⁶	1,000	10	53	12	57

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

--- denotes sample not analyzed.

* denotes sample was analyzed follwing silica gel cleanup

^ denotes sample is a field duplicate.

** Well HC-4 did not have a sealed well head or cap. All groundwater analytical results from this well are suspect.

¹Analyzed by Northwest Method NWTPH-Dx.

²Analyzed by Northwest Method NWTPH-Dx using sample extract treated with sulfuric acid/silica gel cleanup procedure.

³Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013.

⁴Cleanup level is 800 micrograms per liter if benzene is dectected and 1,000 micrograms per liter if benzene is not detected.

⁵Washington State Department of Ecology Toxics Cleanup Program Implementation Memo #23: Concentrations of Gasoline and Diesel Range Organics Predicted to be Protective of Aquatic Receptors in Surface Waters. August 25, 2021. Values for fresh water. https://apps.ecology.wa.gov/publications/documents/1909043.pdf.

⁶Cleanup level is 1,000 micrograms per liter for fresh diesel releases and 3,000 micrograms per liter if benzene is not detected.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics Emcon = Emcon Services, Inc. Farallon = Farallon Consulting, LLC Hart Crowser = Hart Crowser and Associates JL = result may be lower than the reported estimate due to oil range overlap Landau = Landau Associates, Inc. ND = not detected at or exceeding and unknown reporting limit ORO = TPH as oil-range organics PBS = PBS Environmental and Engineering

Table 7 Groundwater and Surface Water Analytical Results for Metals Monroe Auto Salvage Monroe, Washington Farallon PN: 2747-001

								Anal	ytical Results (n	nicrograms per	liter) ¹				
Sample Location	Sampled By	Sample Date	Sample Identification	Total Arsenic	Dissolved Arsenic	Total Cadmium	Dissolved Cadmium	Total Chromium	Dissolved Chromium	Total Lead	Dissolved Lead	Total Mercury	Dissolved Mercury	Total Zinc	Dissolved Zinc
	-			-		Reconnais	sance Boring G	roundwater Sar	nples			<u> </u>			
LAI-B1	Landau	6/7/2017	B-1 @ 25'	8.7		<1.0		9.0		5.1		<0.2			
DPW-1	Landau	6/28/2019	DPW-1	120		< 1.0				6.5				57	
P-2	Landau	6/29/2018	P-2-180629		< 1.0		< 1.0		< 2.0		< 1.0		< 0.20		9.3
P-3	Landau	6/29/2018	P-3-180629		1.6		< 1.0		< 2.0		< 1.0		< 0.20		50
P-4	Landau	6/29/2018	P-4-180629		2.5		< 1.0		< 2.0		< 1.0		< 0.20		38
P-5	Landau	6/29/2018	P-5-180629		1.1		< 1.0		< 2.0		< 1.0		< 0.20		200
				-		Monito	oring Well Grou	ndwater Sample	es						
HC-4*	Hart Crowser	6/18/1990	HC-4-061890								ND				
	Farallon	8/12/1999	HC-4-081299			9.14	< 1	1,270	< 1	636	< 1				
	Hart Crowser	6/18/1990	HC-5-061890								ND				
	Emcon	5/23/1996	HC-5-052396			< 4	< 4	13	< 5	< 2	< 2				
HC-5	Emcon	8/21/1996	HC-5-082196			< 4	< 4	103	6	10	< 2				
	PBS	3/26/1997	HC-5-032697			ND	ND	14.2	ND	2.39	ND				
	Farallon	8/12/1999	HC-5-081299			< 1	< 1	176	3.19	20	2.55				
	Emcon	5/23/1996	MW-2-052396			< 4	< 4	< 5	< 5	< 2	< 2				
MW-2	Emcon	8/21/1996	MW-2-082196			< 4	< 4	< 5	< 5	< 2	< 2				
	PBS	3/26/1997	MW-2-032697			ND	ND	5.1	ND	1.06	ND				
	Farallon	8/12/1999	MW-2-081299			1.36	1.41	379	99.5	67.6	40.4				
	Emcon	5/23/1996	MW-3-052396			< 4	< 4	21	< 5	3	< 2				
MW-3	Emcon	8/21/1996	MW-3-082196			< 4	< 4	< 5	< 5	< 2	< 2				
	PBS	3/26/1997	MW-3-032697			ND	ND	1.9	ND	ND	ND				
	Farallon	8/12/1999	MW-3-081299			2.43	< 1	726	1.72	98.2	1.23				
	Emcon	5/23/1996	MW-4-052396			< 4	< 4	35	< 5	7	< 2				
	Emcon	8/21/1996	MW-4-082196			< 4	< 4	50	< 5	5	< 2				
MW-4	PBS	3/26/1997	MW-4-032697			ND	ND	156	ND	32.7	ND				
	Farallon	8/12/1999	MW-4-081299			1.36	< 1	437	1.18	55.1	< 1				
	Landau	6/7/2017	MW-4	<1.0		<1.0		<2.0		<1.0		<0.2			
MW-8	Farallon	8/12/1999	MW-8-081299			1.84	< 1	393	9.41	62	9.62				
MW-9	Farallon	8/12/1999	MW-9-081299			4.3	< 1	1,780	< 1	207	< 1				
MTCA Cleanu	p Levels for Gro	oundwater ²		1	3.8		5	50/	100°	1	15	2		4,8	300 ⁴

Table 7 Groundwater and Surface Water Analytical Results for Metals Monroe Auto Salvage Monroe, Washington Farallon PN: 2747-001

								Anal	ytical Results (m	nicrograms per	liter) ¹				
Sample			Sample	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved		Dissolved	Total	Dissolved
Location	Sampled By	Sample Date	Identification	Arsenic	Arsenic	Cadmium	Cadmium	Chromium	Chromium	Lead	Lead	Total Mercury	Mercury	Zinc	Zinc
	• •	-	• •	•		Monitoring V	Vell Groundwat	ter Samples (con	tinued)		•	-			
	Landau	8/22/2018	P-3-180822	< 1.0	< 1.0									52	37
	Landau	8/5/2019	DP3-MW-080519	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0			21	22
DP3-MW	Landau	11/21/2019	DP3-MW-112119	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0			72	72
	Landau	2/24/2020	DP3-MW-022420	2.5		< 1.0				4.4				32	
	Landau	6/2/2020	DP3-MW-200602	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0			23	22
	Landau	8/22/2018	P-4-180822	15	14									39	8.2
	Landau	6/28/2019	P4-MW	49		6.0				100				2,800	
	Landau	8/5/2019	DP4-MW-080519	1.7	1.5	< 1.0	< 1.0			< 1.0	< 1.0			140	120
DP4-MW	Landau	11/21/2019	DP4-MW-112119	2.0	1.7	< 1.0	< 1.0			1.1	< 1.0			130	100
	Landau	2/24/2020	DP4-MW-022420	9.7	< 1.0	2.7	< 1.0			43	< 1.0			1,900	1,100
	Landau	2/24/2020^	DUP1-200224	21	< 1.0	5.2	< 1.0			57	< 1.0			2,600	1,100
	Landau	6/2/2020	DP4-MW-200602	1.2	< 1.0	< 1.0	< 1.0			1.4	< 1.0			830	550
	Landau	8/17/2018	P-5-180817	1.6	< 1.0									69	20
	Landau	8/5/2019	DP5-MW-080519	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0			5.7	6.1
DD5 MW	Landau	11/21/2019	DP5-MW-112119	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0			7.7	5.9
DF 5-IVI VV	Landau	2/24/2020	DP5-MW-022420	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0			8.2	4.7
	Landau	6/2/2020	DP5-MW-200602	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0			6.1	4.2
	Landau	6/2/2020^	DUP1-200602	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0			7.0	4.5
	Landau	8/5/2019	DP6-MW-080519	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0			5.5	6.0
DP6 MW	Landau	11/21/2019	DP6-MW-112119	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0			7.0	< 2.5
Dr 0-tvi vv	Landau	11/21/2019^	DUP1-191121	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0			< 2.5	< 2.5
	Landau	6/2/2020	DP6-MW-200602	1.1	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0			12	7.7
MTCA Cleanu	p Levels for Gro	oundwater ²		1.	3.8		5	50/1	100 ³	1	5	2	2	4,8	300 ⁴

Table 7 Groundwater and Surface Water Analytical Results for Metals Monroe Auto Salvage Monroe, Washington Farallon PN: 2747-001

								Anal	ytical Results (n	nicrograms per	liter) ¹				
Sample Location	Sampled By	Sample Date	Sample Identification	Total Arsenic	Dissolved Arsenic	Total Cadmium	Dissolved Cadmium	Total Chromium	Dissolved Chromium	Total Lead	Dissolved Lead	Total Mercury	Dissolved Mercury	Total Zinc	Dissolved Zinc
							Surface Water	Samples							
	Landau	6/29/2018	SWD-180629		1.6		< 1.0		< 2.0		< 1.0		< 0.20		2.7
	Landau	8/5/2019	SWD-080519	1.3		< 1.0				< 1.0				< 5.0	
SWD	Landau	11/21/2019	SWD-112119	< 1.0		< 1.0				< 1.0				8.2	
	Landau	2/24/2020	SWD-022420	< 1.0		< 1.0				< 1.0				< 2.5	
	Landau	6/2/2020	SWD-200602	1.2		< 1.0				< 1.0				< 4.0	
	Landau	6/29/2018	SWUP-180629		1.6		< 1.0		< 2.0		< 1.0		< 0.20		< 2.5
	Landau	8/5/2019	SWU-080519	1.2		< 1.0				< 1.0				< 5.0	
SWU	Landau	11/21/2019	SWU-112119	< 1.0		< 1.0				< 1.0				2.7	
	Landau	2/24/2020	SWU-022420	< 1.0		< 1.0				< 1.0				< 2.5	
	Landau	6/2/2020	SWU-200602	< 1.0		< 1.0				< 1.0				< 4.0	
MTCA Cleanu	p Levels for Sur	face Water ⁵		0.0)18	1.	0 ⁶	240,00	0/0.13 ⁷	2	.56	2.1	1 ⁶	10)0 ⁶

NOTES:

 $Results \ in \ {\bf bold} \ denote \ concentrations \ exceeding \ applicable \ cleanup \ levels.$

< denotes analyte not detected at or exceeding the reporting limit listed.

--- denotes sample not analyzed.

^ denotes sample is a field duplicate.

* Well HC-4 did not have a sealed well head or cap. All groundwater analytical results from this well are suspect.

¹Analyzed by U.S. Environmental Protection Agency Method 200.8/7470A.

²Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

³MTCA Cleanup Levels and Risk Calculations (CLARC), Standard Method A Values for Groundwater, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC; CLARC Chemical-Specific Considerations - July 2021: if hexavalent chromium is present the Method A cleanup level is 50 micrograms per liter, if all of the chromium is trivalent, then the Method A cleanup level is 100 micrograms per liter. ⁴MTCA CLARC, Standard Method B Values for Groundwater, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC⁻

⁵MTCA CLARC, Standard Method B Values for Surface Water, unless otherwise noted. https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC[.]

⁶MTCA CLARC, Surface Water Cleanup Level for protection of Aquatic Life for Freshwater/Chronic Exposure WAC 173-021A. https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC.

Emcon = Emcon Services, Inc.

Farallon = Farallon Consulting, LLC

Hart Crowser = Hart Crowser and Associates

Landau = Landau Associates, Inc.

ND = not detected at or exceeding and unknown reporting limit

PBS = PBS Environmental and Engineering

Table 8 Groundwater and Surface Water Analytical Results for PCBs Monroe Auto Salvage Monroe, Washington Farallon PN: 2747-001

							Analy	tical Results (n	nicrograms per	liter) ¹			
				Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor			
Sample Location	Sampled By	Sample Date	Sample Identification	1016	1221	1232	1242	1248	1254	1260	Aroclor 1262	Aroclor 1268	Total PCBs
				M	lonitoring Well	Groundwater	Samples			-	-	-	
HC-4*	Hart Crowser	6/18/1990	HC-4-061890	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Farallon	8/12/1999	HC-4-081299	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Hart Crowser	6/18/1990	HC-5-061890	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Emcon	5/23/1996	HC-5-052396	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
HC-5	Emcon	8/21/1996	HC-5-082196	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	PBS	3/26/1997	HC-5-032697	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Farallon	8/12/1999	HC-5-081299	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Emcon	5/23/1996	MW-2-052396	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
MW 2	Emcon	8/21/1996	MW-2-082196	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
101 00 -2	PBS	3/26/1997	MW-2-032697	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Farallon	8/12/1999	MW-2-081299	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Emcon	5/23/1996	MW-3-052396	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
MW 2	Emcon	8/21/1996	MW-3-082196	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
IVI VV - 5	PBS	3/26/1997	MW-3-032697	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Farallon	8/12/1999	MW-3-081299	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Emcon	5/23/1996	MW-4-052396	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
MAXY A	Emcon	8/21/1996	MW-4-082196	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
IVI VV -4	PBS	3/26/1997	MW-4-032697	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Farallon	8/12/1999	MW-4-081299	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-8	Farallon	8/12/1999	MW-8-081299	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-9	Farallon	8/12/1999	MW-9-081299	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
		-		Reco	nnaissance Bor	ing Groundwa	ter Samples			-		-	
P-2	Landau	6/29/2018	P-2-180629	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10
P-3	Landau	6/29/2018	P-3-180629	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10
P-4	Landau	6/29/2018	P-4-180629	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10
P-5	Landau	6/29/2018	P-5-180629	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10
MTCA Method A	Cleanup Level for G	Groundwater ³											0.1
					Surface	Water Samples	5						
SWD	Landau	6/29/2018	SWD-180629	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10
SWUP	Landau	6/29/2018	SWUP-180629	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10
MTCA Method B (Cleanup Level for S	urface Water ⁴											0.0001

					Surface	Water Sample	S			
SWD	Landau	6/29/2018	SWD-180629	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
SWUP	Landau	6/29/2018	SWUP-180629	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
MTCA Mathed D										

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

* Well HC-4 did not have a sealed well head or cap. All groundwater analytical results from this well are suspect.

¹Analyzed by U.S. Environmental Protection Agency Method 8082A.

³Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁴Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B Values for Surface Water, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC.

Emcon = Emcon Services, Inc. Farallon = Farallon Consulting, LLC Hart Crowser = Hart Crowser and Associates Landau = Landau Associates, Inc. ND = not detected at or exceeding a reporting limit not available for review PBS = PBS Environmental and Engineering PCB = polychlorinated biphenyl

Table 9 Groundwater and Surface Water Analytical Results for PAHs Monroe Auto Salvage Monroe, Washington Farallon PN: 2747-001

															n , 1								
				Analytical Results (micrograms per liter) [*]																			
					Non-Carcinogenic PAHs										Carcinogenic PAHs								
Sample Location	Sampled By	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ²	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
	Reconnaissance Boring Groundwater Samples																						
LAI-B1	Landau	6/7/2017	B-1 @ 25'	2.7	<2.0	<2.0	2.7	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.16
P-2	Landau	6/29/2018	P-2-180629	0.27	0.039	0.069	0.378	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
P-3	Landau	6/29/2018	P-3-180629	0.26	0.035	0.063	0.358	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.022	0.022	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
P-4	Landau	6/29/2018	P-4-180629	0.27	0.041	0.063	0.374	< 0.020	< 0.020	< 0.020	0.048	0.056	< 0.020	< 0.020	0.079	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.028	0.017
P-5	Landau	6/29/2018	P-5-180629	0.23	0.035	0.063	0.328	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
								Moni	toring Well	Groundwa	ter Sample	6											
MW-4	Landau	6/7/2017	MW-4	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.16
MTCA Method A Cleanup Level for Groundwater ⁵							160	960 ⁶	NE	4,800 ⁶	NE	640 ⁶	640 ⁶	NE	480 ⁶								0.1
									Surface	Water Sam	ples												
SWD	Landau	6/29/2018	SWD-180629	< 0.020	< 0.020	< 0.020	< 0.06	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
SWUP	Landau	6/29/2018	SWUP-180629	< 0.020	< 0.020	< 0.020	< 0.06	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.015
MTCA Method B Cleanup Level for Surface Water ⁷						4,900	640	NE	26,000	NE	90	3,500	NE	2,600								0.04	
NOTES:	•	antina limit listad																					

Confident and the concerning and reporting mining mining mining and the concerning and th	cPAHs = carcino
¹ Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM.	Landau = Landa
² Sum of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene.	NE = not establi
³ Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.	PAHs = polycyc
⁴ For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.	TEC = toxic equ

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁶MTCA Cleanup Levels and Risk Calculations (CLARC), Standard Method B Values for Groundwater, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

⁷MTCA CLARC, Standard Method B Values for Surface Water, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

nogenic polycyclic aromatic hydrocarbons

au Associates, Inc.

ished

clic aromatic hydrocarbons

uivalent concentration

Table 10 Sediment Sample Analytical Results Monroe Auto Salvage Monroe, Washington Farallon PN: 2747-001

					Analytical Results (milligrams per kilogram)											
						Metals ²		PCBs ³								
Sample		Sample	Sample Depth													
Location	Sampled By	Identification	(feet) ¹	Sample Date	Cadmium	Chromium	Lead	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	
	1994 Site Hazard Assessment and Investigation															
M-11	SHD	M-11-0-0.5	0.0 - 0.5	7/14/1994				< 0.046	< 0.18	< 0.046	< 0.046	< 0.046	< 0.046	< 0.046	< 0.18	
M-12	SHD	M-12-0-0.5	0.0 - 0.5	7/14/1994	< 0.16	68	12	< 0.053	< 0.21	< 0.053	< 0.053	< 0.053	< 0.053	< 0.053	< 0.21	
Freshwater Sed	5.4	88	> 1,300								2.5					
NOTES																

NOTES:

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

--- denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Methods 6010.

³Analyzed by U.S. Environmental Protection Agency Method 8082.

⁴Washington State Sediment Cleanup Objectives and Cleanup Screening Levels Chemical Criteria, Table VI of Section 563 of Chapter 173-204 of the Washington Administrative Code, as revised February 2013.

PCB = polychlorinated biphenyl

SHD = Snohomish Health District

Table 11 Constituents of Concern and Preliminary Cleanup Levels Monroe Auto Salvage 526 Simons Road, Monroe, Washington Farallon PN: 2747-001

				Groundwater Screening Levels											
Constituent of Potential Concern				Soil		Soil Mathed R	6-1	Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals (mg/kg) ³ (mg/	Adjustment Factors	Maximum Concentration Detected at Site (mg/kg)	Protection of Grov		vater	Adjustment Factors	
	Soil Method A Unrestricted Land Use (mg/kg) ¹	Soil Method B Non-Cancer (mg/kg) ²	Soil Method B Direct Contact Cancer (mg/kg) ²	Method B Protective of Groundwater Vadose Zone @ 13 degrees C (mg/kg) ²	Soil Method B Protection of Groundwater Saturated Zone (mg/kg) ²	Protective of Groundwater to Surface Water Vadose Zone @ 13 degrees C (mg/kg) ²	Method B Protection of Groundwater to Surface Water Saturated Zone (mg/kg) ²		Natural Background (mg/kg) ⁵		Groundwater Method A (µg/l) ¹	Groundwater Method B Non- Cancer (µg/l) ²	Groundwater Method B Cancer (μg/l) ²	Natural Background (µg/l) ⁶	Maximum Concentration Detected at Site (ug/l)
							Metals								
Arsenic	20	24	0.67	2.90	0.15	2.90	0.15	7	7.3	17	5	4.8	0.058	13.6	14
Cadmium	2	80	NA	0.69	0.035	0.099	0.005	4	0.8	4.0	5	8	NA	NA	ND
Chromium	2,000	120,000	NA	480,000	24,000	1,500	74	42	48.2	57	50	24,000	NA	NA	99.5
Lead	250	NA	NA	3,000	150	500	25	50	16.8	720	15	NA	NA	NA	40.4
Mercury	2	NA	NA	2.10	0.10	0.013	0.00063	0.1	0.07	0.22	2.0	NA	NA	NA	ND
Zinc	NA	24,000	NA	6,000	300	120	6.2	86	85.1	NA	NA	4,800	NA	NA	1,100
							Petroleum Hydroca	rbons				•			
DRO	2,000	NA	NA	NA	NA	NA	NA	200	NA	4,120	500	NA	NA	NA	670
ORO	2,000	NA	NA	NA	NA	NA	NA	NA	NA	2,060	500	NA	NA	NA	3700
GRO	100	NA	NA	NA	NA	NA	NA	100	NA	23	800	NA	NA	NA	ND
Benzene	0.03	320	18	0.027	0.0017	0.0024	0.00015	NA	NA	ND	5	32	0.08	NA	ND
Toluene	7	6,400	NA	4.5	0.27	0.37	0.0230	200	NA	0.0916	1000	640	NA	NA	8.66
Ethylbenzene	6	8,000	NA	5.9	0.34	0.1	0.0059	NA	NA	ND	700	800	NA	NA	ND
Xylenes	9	16,000	NA	14	0.83	0.51	0.03	NA	NA	0.304	1000	1,600	NA	NA	1.22
						-	Carcinogenic PA	Hs							
cPAHs (TEC)	0.10	24	0.19	3.9	0.19	0.00031	0.000016	12	NA	0.082	0.1	4.8	0.023	NA	0.017
			1				PCBs		1			1			1
Total PCBs	1.00	NA	0.5	0.34	0.017	0.000011	0.00000055	0.65	NA	5.8	0.1	NA	0.022	NA	ND

NOTES:

Shading represents cleanup level selected for soil.

Shading represents cleanup level selected for groundwater.

¹Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Soil and Groundwater, Table 740-1 and Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

²Cleanup level is based on standard MTCA Method B (unrestricted land use) from the Cleanup and Risk Calculations tables (https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC).

³Cleanup level is based on MTCA Table 749-3, Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals (most conservative of plant, soil biota, and wildlife values).

⁵Natural background concentrations from *Natural Background Soil Metals Concentrations in Washington State* dated October 1994 prepared by Washington State Department of Ecology (Ecology), Publication No. 94-115. ⁶Snohomish background threshold value from *Natural Background Groundwater Arsenic Concentrations in Washington State, Study Results* dated July 2021, revised January 2022, prepared by Ecology, Publication No. 14-09-044.

"Not Applicable" (NA) is used where the constituent of concern will not affect the media of potential concern due to an incomplete pathway, or no pertinent standard exists.

µg/l = micrograms per liter

C = Celsius

COC = contaminant of concern

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

DRO = total petroleum hydrocarbons as diesel-range organics

mg/kg = milligrams per kilogram

ND = not detected in any samples

ORO = total petroleum hydrocarbons as oil-range organics

PCBs = polychlorinated biphenyls

TEC = toxicity equivalent concentration

APPENDIX A BORING, TEST PIT, AND MONITORING WELL CONSTRUCTION LOGS

ENVIRONMENTAL CONDITIONS SUMMARY REPORT Monroe Auto Salvage 500 East Fremont Street Monroe, Washington

VCP Project No. NW3251 526 Simons Road Monroe, Washington

Farallon PN: 2747-001

AQUANTUMICLIENTS/FARALLONIPROJECTS(601°WG\BLOGS/FLM-TP1.BOR

C. C. QUANTUMICLIENTSIFARALLONIPROJECTSI601 "WGIBLOGSIFLM-TP2.BOR

12-09-195~

LIQUANTUMICLIENTSIFARALLONIPROJECTSI601 "WGIBLOGSIFLM-TP5.BOR

2-09-16___

QUANTUMICLIENTSIFARALLONIPROJECTSI601°WG\BLOGSIFLM-TP7.BOR

01QUANTUMICLIENTS/FARALLON/PROJECTS/601°WG\BLOGS/FLM-TP8.BOR

D:\QUANTUMICLIENTSIFARALLONIPROJECTS\601 °WG\BLOGS\FSY-TP2.BOR 000

.IQUANTUMICLIENTSIFARALLONIPROJECTSI601 °WGIBLOGSIFSY-TP3.BOR

2-09-19-

1.1QUANTUMICLIENTSIFARALLONIPROJECTSI601 °WGIBLOGSIFSY-TP6.BOR

12-09-1{

IQUANTUMICLIENTSIFARALLONIPROJECTSI601°WGIBLOGSIFSY-TP8.BOR -

IQUANTUMICLIENTSIFARALLONIPROJECTSI601 "WGIBLOGSIFSY-TP9.BOR 1

IQUANTUMICLIENTS/FARALLON/PROJECTS/601 °WG/BLOGS/FSY-TP10.BOR 2 19.

QUANTUMICLIENTS/FARALLON/PROJECTS/601 °WG\BLOGS/FSY-TP14.BOR

C. C. QUANTUMICLIENTSIFARALLONIPROJECTSI601 * WGIBLOGSIFSY-TP15.BOR

12-09-19.
		FA 320	RALL) 3rd Issoc	ON (Ave. quah,	CONSULTING NE, Suite 200 WA 98027		LOG OF TEST	PIT	FSY-TP16 (Page	1 of 1)			FSTP8 FSTP12 FSTP16 FSTP16 FSTP14 FSTP14 FLUTP2	F.M.97
	MON F	NROE A 426 Mon arallon ogged B	UTO Fremo roe, W PN: 60	SALV ont Va. 01-00 tt Ess	/AGE 01 sig	Time Started Time Finished Hole Diameter Drilling Method Sampling Method	: : : 6 5/8 in. : NA : Grab	Surf Gro Drill Drill Equ	ace Elev. : NA und Water Elev. : ing Compny : Pro Forman : Rio pment : Ex	emium Contruction ck Wetzel tend-A-Hoe	For the second s	FST	FSTIPS FSTIPS FUIRS FUI FSTIPS FSTIPS FSTIPS FSTIPS STIP3 STIP3 STIP3	
Depth in Feet	Samples	% Rec overy	USCS	GRAPHIC		DESCRIPT	ION	Depth in Feet	Sample ID.	PID (ppm)	PID (ppm)	Submitted for Lab Analysis	REMARKS	Depth in Feet
0		100 100 100 100	FL		FILL, block san Sandy GRAVEI	d and gravel, dry. ., dense, well graded,	light brown with orange, dry.	0-	FSY-TP16@0.5 FSY-TP16@1.0 FSY-TP16@2.0 FSY-TP16@3.0	•	0 0 0			0-
		100 100	SW SP		Gravelly SAND, SAND, poorly g	well graded, light bro raded, light brown, litt	wn, little or no fines, dry. le or no fines, dry.	- 5-	FSY-TP16@4.0 FSY-TP16@5.0	¢	0 0			
		0	GW		Sandy GRAVE	_, well graded, light br	own, little or no fines, dry.							
- 10 -		100			Become moist. Total depth in fe	et below ground surf	ace 10'	- 10 -	FSY-TP16@10.0	¢	0			- 10
15-								15-						15 -

IQUANTUMICLIENTSIFARALLONIPROJECTSI601 °WGIBLOGSIFSY-TP16.BOR

12-09-19.

V		E 3	ARALLO 20 3rd A Issaqu	N CO ve. Ni ah, W	DNSU E, Sui A 980	LOG OF BORING FLM-SB1 (Page 1 of 1)		PSTP12 PUTP1 PSTP15 PSTP15 PSTP12 PUTP1 PSTP18 PSTP12 PUTP1 PSTP18 PSTP12 PUTP1					
Rem	M ledial Ir Lo	Ionroe nvestig Mo Projec	e Auto Sa gation / F onroe, W/ ct # 601-(by: Matt	lvage easibil A D01 Essig	ty Stu	Time Started : 8/6/99 Surface Elev. : NA Time Finished : 8/6/99 Ground Water : 22 feet Hole Diameter : 6 5/8 in. . Drilling Method : H.S.A. . Sampling Method : CA Mod. Sampler	: NA : 22 feet FS(TP)						
epth in eet	Sample Interval	% Rec overy	Blow Count 6/6/6	nscs	GRAPHIC	DESCRIPTION Sample ID.	/ell: FLM-SB1 lev.: NA	Well Construction Information					
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X	0 55	46,50-4"	SP SW	8	SAND, Poorly Graded, medium dense, brown, medium sand, damp. SAND, Well Graded, dense, gray-brown, medium to coarse sand with gravel, damp, no sheen, no odor.		WELL CONSTRUCTION Date Completed : 8/6/99 Hole Diameter : 5 5/8 in. Drill. Method : HSA Company Rep. : D. Simon WELL CASING : Material : Diameter :					
10	X	0 33 0	70-6"	GW	() () () () () () () () () ()	GRAVEL, Well Graded, dense. gray-brown, sandy gravel, damp, no sheen FLM-SB1@10.0'		Joints : WELL SCREEN Material : Diameter : Joints : Opening :					
15		33 0 61 0	60-6" 42,50-5"	SP SW		SAND, Poorly Graded, dense, rusty brown, medium sand with gravel, damp, no sheen, no odor FLM-SB1@13.0' X FLM-SB1@16.0' SAND, Well Graded, dense, gray-brown, gravelly coarse sand, damp,		SAND PACK ANNULUS SEAL bentonite pellets and slurry WELL SCREEN Material					
20 -	\mathbb{X}	33 0 61 27	60-6" 40,50-5" 60-5"	SP SW		SAND, Poorly Graded, dense, mottled gray & rust brown, medium sand with gravel, damp, no sheen, no odor.		Naterial : Diameter : Cap : NOTES					
25					<u>I</u>	SAND, Well Graded, dense, brown-gray, gravelly medium sand, damp, no sheen, no odor. SAND, Poorly Graded, dense, brown-gray, coarse sand with gravel, wet o saturated, no sheen, no odor.	23						
30 -						Fotal depth 23 feet below ground surface.							

Boring Log and Construction Data for Monitoring Well HC-4

- Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Figure A-5

Boring Log and Construction Data for Monitoring Well HC-5

Monitorina Geologic Log Well Design Casing Stickup in Feet -0.72 Top of PVC in Feet 73.90 Lab Sample N 0 Test H-Nu Loose, damp, brown to reddish brown, S-1 3 CA 0 silty, sandy GRAVEL. (FILL) Medium dense, damp, gray, slightly S-2 21 CA 0 silty, sandy GRAVEL. (Native) 5 S-3 15 0 S-4 33 Volciay 0 Cement 10 Grout Medium dense, wet, gray, sandy GRAVEL. S-5 37 0 Medium dense, damp, gray, gravelly S-6 33 0 SAND to sandy GRAVEL. 15 S-7 33 0 20 29 S-8 43 0 25 2-foot layer of very dense, moist to wet gravels and cobbles. S-9 37 0 30 Hard, damp, gray, slightly sandy SILT. (Native) S-10 39 0 35 Bottom of Boring at 34.0 Feet. Completed 6/7/90. 40 45 50

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

ARTAROWSER J-2915 6/90

Figure A- 6

/				1						
			ON	GEOLOGIS DRILLING	CLIENT/PROJECT NAME // 0/ ROC /1 G. TO 5 13/0 Age BORING NO. // W^{-1} PROJECT # $\frac{40358 - 017 \cdot 001(2)}{DATE BEGAN 5/1/96}$ GEOLOGIST/ENGINEER / CLIC GARSON DRILLING CONTRACTOR CASCADE DRILLING METHOD CME 75 / $\frac{101100057000}{DATE COMPLETED 5/1/96}$ SHEET OF					
	PLORAT	ORY B	ORING	Auge	- OR:11 RigHOLE DIA 9.25 1.0/7 0.0					
2		SAMPLI	NG DATA		WATER LEVEL DATA FIELD LOCATION OF BORING:					
OTHER PT	WELL OR PIEZOMETER DETAILS	SAMPLING METHOD SAMPLE NUMBER	BLOWS/FT DEPTH SAMPLED	DEPTH IN FEET SOIL GROUP SYMBOL (USCS)	DEPTH Nort to Draws shall TIME 0815 DATE 5/1/96 BORING 21,5' BORING					
					LITHOLOGIC DESCRIPTION					
				1 - 2 - \$M 3 - 4 - 5 -	0.0 to 5.5 feet: Silty SAND with GRAVEL (SM-GW) dARK BROWN, Fine to COURSE SAND ~15-20% JOW to medium pirsticity, fines ~10-15% Fire to COURSE GRAVEL, SCATTERED ROOTLets and GLASS tragnents, dense, damp (FFLL)					
0.0		5B MW-1 -5 5B MW-1 -11)	30 50/3 50/3	6 - 7 - 8 - 9 - Sw 10 - 11 - 12 - 13 -	5.5 to 17 feet: SAND (SW), light brown, fine to medium, ~5% COADS: SAND to fine gravel, trate fines, very dense, damp to wer (NAtive)					
		SB /nw-1 -15	6λ ×	14 15- 16 17 ¥ 18 19	17 to 19 Fect: SAND (SP) brown Fine, NSTO Dw plasticity Fines, take Medium to course SAND, veny dense, wet (NAtive)					
.NOT	ואדאנא: ז) לי E: Specify data reco	SB = So Samplia o Not Rep Maxing time	o: 1 Samp or a 2 or cor a 2 or cor a primero of dr; inated column (e	les colle 	Lited US. NG C: then a 2.5" × 24" DAMES and MOONE "Strin less Steel Split BAARCE SAMPIER 2) Blow counts ts 3) White the range = till estimate of water Level Soil Samples Scheened with PED S) Reference elevation = ground suptrice, pH, tip reading, pocket torvane, etc.)					

	CLIENT/PROJECT NAME MONROC Auto SA) UASC PROJECT # 40355 017.001(2) GEOLOGIST/ENGINEER N. LIC GARSON DRILLING CONTRACTOR CASCADE DRILLING METHOD CASTS HOLE DIA 4 25 7.0 /12"00	BORING NO. MW-1 DATE BEGAN <u>5/1/96</u> DATE COMPLETED <u>5/1/96</u> TOTAL DEPTH <u>3)5Fect</u> SHEET <u>3</u> OF <u>2</u>
LOG OF PLORATORY BORING SAMPLING DATA USUAL SIMPLING DATA USUAL US	DRILLING METHOD $(2/15, 75, 40.1/0.0, 575 Augent Barner Barne$	SHEET OF FIELD LOCATION OF BORING: GROUND ELEVATION DATUM TION ~ to gray, lan, wited tsticity, Stiff, the flush flacedid blawk Risce pipe ca, flush micodid blawk Risce pipe ca, flush micodid blawk Sister pipe ca, flush movent tacte M well move ment acte I med.'un bestonite 19 to Ja SAND
MARKS:	e.g. conductance, pH, tip reading, pocket torvane, etc.)	

DIHER. UNIVERSE SAMPLING RELLOR WELLOR PIEZOMETER DETAILS SAMPLING SAMPLING METHOD SAMPLER NUMBER BLOWS/FT BLOWS/FT BLOWS/FT BLOWS/FT BLOWS/FT BLOWS/FT SAMPLING SAMPLING SAMPLING SAMPLING SAMPLER SA	CLIENT/PROJECT NAME $\underline{MDACCALTOSAIVASC}$ PROJECT # <u>10358 - 017.001(2)</u> GEOLOGIST/ENGINEER $\underline{Micic Graison}$ DRILLING CONTRACTOR <u>CITSCIPDE</u> DRILLING METHOD <u>CME 75 jtollow stenn</u> <u>JAUGON DRIII Rig</u> HOLE DIA <u>9.25 I.0 /9"a.0</u> WATER LEVEL DATA <u>UEPTH</u> <u>21.5'</u> TIME <u>JOSS</u> DATE <u>5/1/92</u> DATE <u>5/1/92</u> <u>DATE 5/1/92</u>	BORING NO DATE BEGAN DATE COMPLETED <u>5/1/96</u> TOTAL DEPTH <u>29 Foot</u> SHEET OF FIELD LOCATION OF BORING: SOUTH OF OFFICE GROUND ELEVATION DATUM
		PTION
$ \begin{array}{c} $	$1 - \frac{0.0 + 0.10 \text{ fect } : 5.1 \text{ Hy} 5AND \text{ With}}{d \text{ ARK brown Fine}}$ $2 - \frac{15 - 20\%}{15 - 20\%} 10 \text{ with } 0 \text{ fines}}$ $4 - \frac{10 \text{ for } 15 - 20\%}{100 \text{ for } 15\%}$ $4 - \frac{1005c}{100 \text{ for } 10\%}$ $5 - \frac{100}{100 \text{ for } 10\%}$ $6 - \frac{100 \text{ for } 10\%}{100 \text{ for } 10\%}$ $10 - \frac{100 \text{ for } 15\%}{100 \text{ for } 10\%}$ $11 - \frac{100 \text{ for } 15\%}{100 \text{ for } 10\%}$ $12 - \frac{100 \text{ for } 15\%}{100 \text{ for } 10\%}$ $12 - \frac{100 \text{ for } 15\%}{100 \text{ for } 10\%}$ $13 - \frac{100 \text{ for } 10\%}{100 \text{ for } 10\%}$	hon ing ~ 3-4 to south. South frice to wood hon ing ~ 3-4 to south. South frice to wood Loose, damp hon ing ~ 3-4 to south. South frice to ~ 570 c SAND scattened wood 1005c, damp
2.7 - 56 mm 2 5 -15 7 -15 7 -1	$15 = - 15 + 0 + 21 + 221 \cdot 511 \times 11 (3 \times 1) (3 \times 1) (4 \times 1) (5 \times 1$	SAND, TRACE Fives, wet

BORING NO. MW-2 CLIENT/PROJECT NAME MUNRUC AUTO SALVASO AA EMCON PROJECT # 40359 -017.001(2) DATE BEGAN 5/1/96 DATE COMPLETED 5/1/96 GEOLOGIST/ENGINEER NICK GARSON TOTAL DEPTH 29 Fic + DRILLING CONTRACTOR CASCINDE DRILLING METHOD CME 75 H.S.A. DRILL Kic, SHEET 2 OF 2 LOG OF PLORATORY BORING HOLE DIA. 4. 25" J. U 19"0, W WATER LEVEL DATA SAMPLING DATA FIELD LOCATION OF BORING: SOIL GROUP SYMBOL (USCS) DEPTH DEPTH IN FEET PIEZOMETER SAMPLING METHOD TIME **BLOWS/FT** DEPTH SAMPLED WELL OR DETAILS SAMPLE NUMBER GROUND ELEVATION DTHER' DATE DATUM _____ BORING LITHOLOGIC DESCRIPTION 2:71. \$B mw.2 15 Św . . 21 to 27.5 fect: Silt (ML) Rust brown Now to -.20 34 21 low plasticity take five sand hard noist to wet ML, 50/5 Ŧ 55 NW-2 24 22--21.5 17 NATIVE) 23 23-21.5 to 27. steet: SAND (SW) brown time to nedium ~ 3-1076 course SAND 24 tAARe tives medium to Very deNSC WET 25 - Sw 5B MW-2 80/5 (NATive) - 35 26 -(~ 25 Feet: Fines increase to ~5-15% 27-27.5 to 28.5 fect: Silt (m2), gray, low plasticity, hand wer 5B mw-2 31 ML 28 --27.5 50 (NATIVE) 24 -TOTAL Depth DRilled : 27.5 fect bgs TotAL Depth Sample! : 29 fect bgs 30 -WCII Completion OctAils 0-17 feetbas: 2-inch digmeter, flush - machded Schedule 40 PUC HIMNIC Riser pipe 17 - 27 feet bas: 2- wich digneting Flugh - threaded Schedule 40 PUC well scheen with 0.020-inch machined slots MOUNT 0-1.5 feet: Flush well nonument with concrete 1.5 - 15.5 Feet: Plan "Gold medium bentonite chips 15.5 - 27 Fect: RML LOWESTAN #6/12 SAND ...MARKS: *NOTE: Specify data recorded in undesignated column (e.g. conductance, pH, tip reading, pocket torvane, etc.)

HER DID					NG ATA HLED		NT/PRO	DJECT NAME $\underline{MUNCUE Auto SAlvage}$ PROJECT # $\underline{40358 \cdot 017}$. UOI DATE BEGAN $\underline{5/1/96}$ DATE BEGAN $\underline{5/1/96}$ DATE COMPLETED $\underline{5/1/96}$ DATE COMPLETED $\underline{5/1/96}$ DATE COMPLETED $\underline{5/1/96}$ DATE COMPLETED $\underline{5/1/96}$ DATE COMPLETED $\underline{5/1/96}$ DATE COMPLETED $\underline{5/1/96}$ DATE DEPTH $\underline{250}$ DATE $\underline{5/1/96}$ TIME 1250 DATE $\underline{5/1/96}$ DATE $\underline{5/1/96}$
10	PIE	SAI	SAI	BLC	DE	DEI	S0 SYI	BORING DEPTH 28'
		5B		50/4 31 50		1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18	SW SP SW	LITHOLOGIC DESCRIPTION U. UTHOLOGIC DESCRIPTION ULTHOLOGIC DESCRIPTION U. UTHOLOGIC DESCRIPTI
						19_		
.NOI	MARKS:	i	undesig	nated c	olumn (e	a.g. con	ductanc	e, pH, tip reading, pocket torvane, etc.)

MAS METHOD M	F BORING	GEO DRIL DRIL	LOGIS LING C	PROJECT # $\frac{40355 - 017 - 007}{007}$ (2) T/ENGINEER <u>M. UC GAYOSON</u> ONTRACTOR <u>CASCAPDE</u> IETHOD <u>CINE 75 1757 DOM 1819</u> HOLE DIA <u>4.25 50/972 D</u>	DATE BEGAN <u>5/1/96</u> DATE COMPLETED <u>5/1/96</u> TOTAL DEPTH <u>25 for t</u> SHEET <u>0</u> OF <u>2</u>
2.7 2.7 2.7 2.7 3.7 5.0 mi 	SAMPLE NUMBER NUMBER BLOWS/FT BEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	WATER LEVEL DATA DEPTH TIME DATE BORING DEPTH LITHOLOGIC DESCRIP	FIELD LOCATION OF BORING: GROUND ELEVATION DATUM
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} - \\ 21 \\ - \\ 22 \\ - \\ 23 \\ - \\ 23 \\ - \\ 24 \\ - \\ 26 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	₽ SP SW	20 Yo 25 Feet: SAND (SP), Rust Fine, ~ SPo medium Tare to ~SPe fire (NA tive) e ~ 22 feet: Scarteast silt lenses gravel, ~ SPo 10 very dense, wet (NA tive) 27 to 28 feet: Silt (ML) h Ibm plasticity fire SAND, Stith Wet (NA tive) 27 to 28 feet: Silt (ML) h Ibm plasticity fire SAND, Stith Wet (NA tive) 27 to 28 feet: Silt (ML) h Ibm plasticity fire SAND, Stith Wet (NA tive) 10 TOTAL Depth Drilled: 27.5 f Total Depth Sampled: 28,0 f Well Completien Det Ails 0 - 17.5 feet: 2-inch diameter Schedule 40 PVe h 17.5 - 27.5 feet: 2-inch diameter Schedule 40 PVe h 0.020.: Neh Mae 0.020.: Neh Mae 0.020.: Neh Mae 16 - 27.5 feet: Rane Lonestan	to dank brown, to course sawd to course gravel, moist to wet up to 3" thick 20(SW), brown Five 20(SW), brown Five 2000 to gravy trace to course 2000 to gravy trace to ~5% to very stift c) 2000 to gravy trace to grave trace

*NOTE: Specify data recorded in undesignated column (e.g. conductance, pH, tip reading, pocket torvane, etc.)

1/

				CC OF Y B	DN ORI	NG	CLIE GEO DRII DRII	ENT/PRO	OJECT NAME TIENGINEER CONTRACTOR METHOD	BORING NO. <u>MW-4</u> DATE BEGAN <u>5/1/96</u> DATE COMPLETED <u>5/1/96</u> TOTAL DEPTH <u>25 Fee F</u> SHEET <u>1</u> OF <u>2</u>				
OTHER: PT)	WELL OR	DETAILS	SAMPLING METHOD	SAMPLE NUMBER	NG LJ/SMOTR	ATA DEPTH SAMPLED	DEPTH IN FEET	SOIL GROUP SYMBOL (USCS)	DEPTH TIME DATE BORING DEPTH	WATE ~ _{スス} ' <u>) 4 30</u> 5 / 1 / 96 みま'	LITHO		DESCRIP	FIELD LOCATION OF BORING: GROUND ELEVATION DATUM
			5B 5B	Mw-4 -5	$\frac{5}{2^3}$ $\frac{5}{50/2}$ 10 50 $\frac{10}{50}$ $\frac{10}{50}$		ユ 3 4 <i>5</i> 6 7 8 9 10 11 は 13 14 15 16 7 16 19	SP Sw		 2.5 5. Feet 	$\frac{ct: SA}{F:M}$ $\frac{F:M}{N}$ $\frac{1005}{(F)}$ $\frac{ct: Sco}{F}$ $\frac{Fcct: Sco}{F}$ $\frac{Fcct: Sco}{F}$	CRAL CRAL	P) 1.50 e Didian Frace iense /Ative) 2 013AN Eve to Coarse of Yo Jense ive) Coarse	r to JACK brown to coasse SANG Fine to coasse grand, damp i material coass ~ 15-30% coarse ~ 15-30% coarse ~ 15-30% coarse ~ 15-30% to ~ 5%
NOTE	Specify d	ata recor	ded in u	ndesign	nated co	lumn (e.	g. cond	luctance	e, pH, tip reading	g, pocket tor	vane, etc.)			

			F (BO	N	CLIE GEO DRII DRII	ENT/PR DLOGIS LLING C	OJECT NAME T/ENGINEER CONTRACTOF	BORING NO. 11W - 4 DATE BEGAN 5/1/96 DATE COMPLETED 5/1/96 TOTAL DEPTH 25 Feet SHEET 2 OF 2				
6		SAN	IPLING	DATA	1			WATE	R LEVEL	DATA		FIELD LOCATION OF BORING:
Id	TER	0			FEET	UP	DEPTH					
HER	LL OR ZOME	MPLIN	MBER	DWS/F	TH IN	L GRC	DATE					GROUND ELEVATION
10	PIE	SAI	NUI	BLO DEF	DEF	SVN	BORING DEPTH					DATUM
									LITHO		DESCRIP	TION
2.7		50	nw-4 5	u ×	1 -							
			-20		21 _							
)					22_	Ŧ	<u> </u>	776.4			()	
E		SB	mw-4 10	2 /	23_	ŚW	0.00	A3 1001	· 269	TTERil	Silt len	ises ~ [- + thier
			-22.5 10		94							
1							764		CG. V			
E	1 E · ·	5B M	nw-4 50		25-		<i>A</i> , 7 1	0 00	") F 2 C T	brown	Fine t	to coanse ~ 3757
- I		53	25 nw-45	0 ~	26-					Fixes	~15-	20% Fine to course
_		• •	36.5		27_	nL				(NA	+;ve)	
					28_		265+0	28 1	fect:	Silt	(ML)	GRAY NON TO
		·								SAND	sticity	tere to five
j	-			_						(NA	tive)	
					. –		Total	Depin	DRil	162: 2	27 Fee	T
					-	}	TOTA	2 Dep1	n samp	pled : a	27 fee	<i>t</i>
					_	ļ	Well	Lom	ietio	N Oc	+Ai is	
						ł	0-	17 Fee	+:2-	inch d	igneter	flush- Maaded
	} }					ŀ			Sche	dule 4	OFUL	birNK Risca pipe
						ļ	17-	27 fee	:t:2-	inch d	iume ten	- Flush - Macaded
					-	ŀ			D DZ	ule 40	D PVC L	hived slots
}					-	-		1 64	<i>t</i> , 0			
						ļ			et i r	160.20	nete	vell monument
						\vdash	1.5	- 15 -	cet:	Puzz	Sold N	redian Benterite
					1	F			C	hips 1	hy dra te	& with potable
					-	ŀ	15	-271	ect: 1	2MCL	ONCSTAN	2 # 6/12 SANd
1	ARKS.											

*NOTE: Specify data recorded in undesignated column (e.g. conductance, pH, tip reading, pocket torvane, etc.)

FARAL 320 3rd Isso	ON CONSULTING Ave. NE, Suite 200 quah, WA 98027	LOG OF WELL M	V-8	(Page 1 of 1)				4 Min-4	- 3
Monroe Auto Remedial Investigation Monroe, Project # 60 Logged by: Ma	Salvage Feasibilty Study WA 1-001 tt Essig	Time Started: 8/6/99Surface ETime Finished: 8/6/99Ground VHole Diameter: 6 5/8 in.Drilling Method: H.S.A.Sampling Method: CA Mod. Sampler	Elev. Vater	: NA : 22 feet				- MW-8 MW-8 MW-1	SM-5-
Depth in Feet S Course	USCS GRAPHIC	DESCRIPTION	Depth in Feet	Sample ID.	Submitted for Lab Analysis	Ŵell: M Elev.: N	NV-8 NA	Well Co Infor	nstruction mation
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FL FILL, s GM GA Silty Silty Si Solution GW Solution GW SAND GW SAND GW SAND GW SAND GW SAND SP SAND SAND SP SAND SAND SP SAND SAND SAND SP SAND SAND SAND SAND SP SAND SAND SAND SAND SP SAND	sandy gravel. andy GRAVEL, dense, brown, damp, no odor. GRAVEL, dense, gray, no odor. Ily SAND, dense, gray, coarse grained sand, no odor. with gravel, dense, gray, medium grained, clayey silt layer, odor. GRAVEL, dense, gray, odor. with gravel, dense, brown, medium grained, no odor. with gravel, dense, gray brown, coarse grained, no odor. with gravel, dense, gray brown, coarse grained, no odor. // with gravel, dense, gray brown, coarse grained, no odor. // dense, brownish gray, sandy gravel, saturated, no odor. // dense, brownish gray, saturated, coarse sand, no odor. // dense, brownish gray, saturated, coarse sand, no odor. // dense, brown, saturated, coarse sand, no odor. // dense, brown, coarse/sharp contact grading, fine to medium d sand. // dense, gray, very fined grained sand progressing to a gray silt.	0- 5- 10- 15- 20- 25- 30-	FSY-SB1@2.0' FSY-SB1@3.5' FSY-SB1@10.0' FSY-SB1@10.0' FSY-SB1@11.5' FSY-SB1@11.5' FSY-SB1@14.0' FSY-SB1@14.0' FSY-SB1@14.0' FSY-SB1@14.0' FSY-SB1@20.0' FSY-SB1@22.0' FSY-SB1@22.0' FSY-SB1@22.0' FSY-SB1@25.0' FSY-SB1@26.0' FSY-SB1@26.0' FSY-SB1@26.0'	x		12.5	WELL CONSTRU Date Completed Hole Diameter Drill, Method Company Rep. WELL CASING Material Diameter Joints WELL SCREEN Material Diameter Joints Opening SAND PACK ANNULUS SEAL WELL SCREEN Material Diameter Cap	CTION : 8/6/99 : 5 5/8 in. : HSA : D. Simon : PVC : 2 in. : threaded : OTO slot : #12-2 Lonestar sand : bentonite pellets : and slurry : steel : 6 in.

			Soil	Classif	ication Sys	tem				
	MAJOR DIVISIONS	6		GRAPHI SYMBOI	USCS C LETTER L SYMBOL ⁽¹⁾	DES	TYPICAL CRIPTIONS ⁽²⁾⁽³⁾			
	GRAVEL AN	ID CI	LEAN GRAVEL		GW	Well-graded gravel	l; gravel/sand mixture(s); little or no	fines		
SOIL size	GRAVELLY S	OIL (L	_ittle or no fines)		o GP	Poorly graded grav	el; gravel/sand mixture(s); little or r	no fines		
ED 9 nater sieve	(More than 50%	6 of GRA	VEL WITH FINES	<u>B</u> B B B B	GM	Silty gravel; gravel/	/sand/silt mixture(s)			
6 of r 200 s	on No. 4 siev	e) (App	fines)	[]]]	GC	Clayey gravel; grav	el/sand/clay mixture(s)			
No. 50%					SW	Well-graded sand;	gravelly sand; little or no fines			
RSE thar than	SANDY SU		Little or no fines)		SP	Poorly graded sand	d; gravelly sand; little or no fines			
	(More than 50%) coarse fraction pa	% of SAI assed (App	ND WITH FINES		SM	Silty sand; sand/silt	t mixture(s)			
	through No. 4 si	ieve)	fines)		SC	Clayey sand; sand/	/clay mixture(s)			
e) an	9	SILT AND CL	AY	ЦЦĻ	ML	sand or clayey silt	ery fine sand; rock flour; silty or cla with slight plasticity	yey fine		
D S(0% c aller t e size	(Liqu	uid limit less th	han 50)		CL	clay; silty clay; lean	n clay	y; sandy		
INE an 5 sieve	(=)4				OL	Organic silt; organi	ic, silty clay of low plasticity			
GRA ore the 200		SILT AND CL	AY		MH	Inorganic silt; mica	ceous or diatomaceous fine sand			
NE-0 NG (NG NE-0	(Liqui	d limit areater	than 50)	<u>//////</u>	СН	Inorganic clay of hi	gh plasticity; fat clay			
	· · · ·		,			Organic clay of me	dium to high plasticity; organic silt			
	HIGH	ILY ORGAN	IC SOIL		PT	Peat; humus; swan	np soil with high organic content			
	OTHER	R MATERIAI	LS	GRAPHI SYMBO	C LETTER	TYPICA	AL DESCRIPTIONS			
	PA	VEMENT		•	AC or PC	Asphalt concrete pavement or Portland cement pavement				
		ROCK			RK Rock (See Rock Classification)					
		WOOD			WD	Wood, lumber, wood chips				
	[DEBRIS		O DB Construction debris, garbage						
4. Soil	nutiple soil classifi descriptions are b sual-Manual Procee Standard Test Met description termin ined as follows: Pri Secon Addition density or consister avating conditions,	ior sand of grain ications. ased on the gr dure), outlined thod for Classi ology is based imary Constitute onal Constitute ency description field tests, an	eneral approach pres l in ASTM D 2488. W fification of Soils for E d on visual estimates ent: > 50 and ≤ 50 $> 15\%$ and ≤ 50 ents: $> 5\%$ and ≤ 15 $\le 5\%$ and $\le 15\%$ and $\le 15\%$ and $\le 15\%$ and $\le 15\%$ and $\le 15\%$ and $\le 15\%$ and $\le 15\%$ and $\le 15\%$ an $= 10\%$ an $= 10\%$	sented in the 'here laborat ingineering F (in the abse 0% - "GRAVE 0% - "With gra 5% - "with tra gement usin s appropriate	Standard Practic ory index testing h Purposes, as outli nce of laboratory EL," "SAND," "SIL avelly," "very sand y," "sandy," "silty," avel," "with sand," to g a combination of	e for Description and has been conducted, ned in ASTM D 2487, test data) of the perce T," "CLAY," etc. y," "very silty," etc. etc. "with silt," etc. race sand," "with trac of sampler penetration	Identification of Soils soil classifications are based on entages of each soil type and is ce silt," etc., or not noted.			
	Drilli	ng and S	Sampling Ke	у		Field	and Lab Test Data			
Code	SAMPLER TYPE	<u>-</u>	SAMPLE	NUMBER	& INTERVAL	Code	Description			
a 3.25 b 2.00 c She d Gra e Sing f Dou g 2.50 h 3.00 i Oth 1 300 2 140 3 Pus 4 Vibr	Description Descr	el el ch I.D. Split Sj el rel ch I.D. WSDC nch I.D. WSDC nch I.D. WSDC nch Drop ch Drop ch Drop ch Drop	poon poon 1 California	Sample Ident — Recove — Samp — Portion of S for Arr Croundw pproximate w pproximate w	ification Number ery Depth Interval ble Depth Interval Sample Retained chive or Analysis /ater level at time ater level at time	PP = 1.0 PP = 1.0 TV = 0.5 PID = 100 W = 10 D = 120 -200 = 60 GS (0 AL // GT (0 CA (0) of drilling (ATD) after drilling/excavation	Description Pocket Penetrometer, tsf Torvane, tsf Photoionization Detector VOC scre Moisture Content, % Dry Density, pcf Material smaller than No. 200 sieve Grain Size - See separate figure for Atterberg Limits - See separate figure Other Geotechnical Testing Chemical Analysis	ening, ppm , % r data ure for data		
	DAU OCIATES	Mon	roe Auto Salva Monroe, WA	ge	Soil Cla	assification S	System and Key	Figure A-1		

APPENDIX B TERRESTRIAL ECOLOGICAL EVALUATION SUPPORTING DOCUMENTS

ENVIRONMENTAL CONDITIONS SUMMARY REPORT Monroe Auto Salvage 500 East Fremont Street Monroe, Washington

VCP Project No. NW3251 526 Simons Road Monroe, Washington

Farallon PN: 2747-001

Legend

- Critical Area Site Plans
- Snohomish County Tax Parcels

1: 1,200

Notes

This map was automatically generated using Geocortex Essentials.

U.S. Fish and Wildlife Service **National Wetlands Inventory**

Wetlands

Wetlands

- Estuarine and Marine Wetland

Estuarine and Marine Deepwater

- Freshwater Forested/Shrub Wetland
 - **Freshwater Pond**

Lake Other Riverine base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.