APPENDIX B
APRIL 10, 2012 TECHNICAL MEMORANDUM
RESULTS OF VAN STONE MINE BACKGROUND
SAMPLING AND NATURAL BACKGROUND
METAL CONCENTRATIONS

TECHNICAL MEMORANDUM

DATE: April 10, 2012

TO: Brendan Dowling, Project Manager, Ecology Eastern Division

FROM: Steven Hughes

RE: Results of Van Stone Mine Background Sampling and Natural Background Metal

Concentrations

17800-11

CC: Project File

This technical memorandum presents the draft natural background metal concentrations in soil and sediment at the Van Stone Mine. The natural background concentrations were developed based on statistical analysis of data generated from laboratory analysis of samples collected from areas near the mine. Background surface water samples were collected, but because of the high number of non-detects in the analytical results, background metal concentrations were not calculated.

INTRODUCTION

The Van Stone Mine (Site) is located in the headwaters of the Onion Creek Watershed (Figure 1), 23 miles northeast of Colville, Washington. Historical mining activities at the mine have resulted in environmental impacts on the Site and nearby areas. In 2011, Ecology asked Hart Crowser to prepare a work plan for conducting a Remedial Investigation/Feasibility Study (RI/FS) of the Site. The work plan was developed to comply with cleanup requirements administered by Ecology under the Model Toxics Control Act (MTCA) [WAC 173-4300-360 through 173-340-390]. The final RI/FS work plan (dated September 11, 2011) was approved by Ecology and the investigation subsequently authorized.

Field work at the Site started with collection of background samples. The following sections discuss the basis for using natural background metals concentrations, sample collection, and data analysis used to develop draft natural background for the Site (Table 1). The information presented in this memorandum will be used in the RI/FS and included in the final RI report.

Fax 206.328.5581 Tel 206.324.9530

17800-11

Page 2

BASIS FOR NATURAL BACKGROUND

Based on our review of historical site information, the Onion Creek watershed is a mostly rural setting with limited residential development along the creek and its tributaries. The Onion Creek Elementary School is located about 1/3 mile west of the western extent of mine features (Lower Tailings Pile). In addition to the Van Stone Mine, logging appears to be the only large commercial/industrial activity present in the watershed.

As part of work plan preparation, we visited the Site in May 2011 to observe current conditions in the watershed. Observed conditions in the watershed were found to be consistent with historical information reviewed before the site visit. Based on the historical information and observed watershed conditions, we concluded that it was most likely that concentrations of hazardous substances on and in the vicinity of the Site are related to releases from the Site, rather than the result of human activities. Thus, the conditions in the watershed are consistent with using a natural background rather than an area background as defined in MTCA [173-340-200]. Where Method A or B cleanup levels are below background concentrations cleanup levels may be established at background concentrations.

Two concerns evaluated in establishing background were: 1) the presence of outcrops of the dolomite host rock that were not mined or changed by mining activity, which may contain naturally elevated metal concentrations; and 2) the lower tailings pile, which is located in a sub-watershed in Onion Creek in which the dominant soil rock types are glacial drift and igneous rock (Figure 1). These conditions presented a potential need for multiple natural backgrounds at the Site. To evaluate this need, the background samples were divided and pooled and a statistical comparison was made on the two data sets, which is discussed in a later section of this memorandum.

Sampling Locations and Sample Size

During development of the RI/FS work plan, analytical datasets were not identified that were suitable for establishing background, as defined in MTCA [WAC 173-340-200, and 709]. To address this data gap, the work plan identified 15 potential background sample locations in the Onion Creek watershed. Selection of sample locations was based on watershed geology, topography, habitat, aerial photography, rural development, and historical mining operations, including the potential extent of areas impacted by mining. The number of samples collected for each media (soil, sediment, surface water) was based on a minimum of 10 samples required under MTCA for establishing a natural background. The minimum number of samples was increased to 15 to provide sufficient sample coverage in the event that any sample results were unusable.

17800-11

Page 3

Soil, Sediment, and Surface Water

The background sampling locations presented in the work plan were approximate and adjusted based on field conditions encountered at the time of sampling (i.e., lack of flow in creek or tributary, or access to a sample location). During the field work, as presented in the work plan, 15 samples of each media were collected; however, one location (BG-12) was inadvertently located on the southeast tributary to Onion Creek, rather than a smaller creek tributary. Location BG-12 is potentially mining impacted and was excluded from the final background sample set. All data analysis and draft background concentrations presented in this memorandum are based on a sample size of 14.

Groundwater

Groundwater at the Site may be environmentally impacted; however, development of background for metals in groundwater was only partially addressed. This approach was based on discussions during work plan development with Ecology. Natural background metals concentrations for groundwater are difficult to establish because data on historical groundwater quality and groundwater flow in the glacial material and igneous rock fractures/faults is lacking. Collecting samples is complicated by the size and topography of the area that needs to be sampled.

As a starting point for discussions with Ecology on evaluating potential mining impacts on groundwater, six candidate domestic wells were identified and groundwater samples were collected and submitted for laboratory analysis. As with other sampling locations, the wells actually sampled were adjusted based on discussions with well owners or their lack of availability at the time of the field work.

SAMPLE COLLECTION AND TESTING

Background samples were collected during field investigation activity at the Site in October 2011. Weather conditions were less than ideal during sampling with persistent periods of precipitation, resulting in increased stream flows during field work. Conditions observed at sampling locations are summarized in Table 2.

The background samples were submitted to Test America in Tacoma, Washington, an Ecology-accredited laboratory, for chemical analysis. A quality control/quality assurance (QA/QC) review of background data received from the laboratory was performed. The data was found to be usable as reported from the laboratory. The full data set has been uploaded to Ecology's Environmental Information Management (EIM) website.

Washington State Department of Ecology April 10, 2012 17800-11 Page 4

The following sections summarize the background sampling protocols from the Sampling and Analysis Plan (SAP), protocol deviations, and sample location descriptions.

Soil Sample Collection Protocols

Protocols for soil, sediment, and groundwater are presented in the SAP. The following three soil protocols are outlined for clarity.

- Each background soil sample collected was a five-point composite sample. At each sampling location a center sampling point was first located and marked with a pin flag. Then a measuring tape was used to delineate an approximately 20-foot by 20-foot square area with pin flags marking the corners of the square. At the majority of locations, the creek channel was narrow allowing sub-samples to be collected from both sides of the creek. This placed the corner sampling points at 10 or more feet from the creek channel. At some sample locations, rock outcroppings or thick undergrowth was present. When this occurred the sampling grid was established completely on the opposite side of the creek channel.
- To avoid natural variations in the shallow soil column, background samples were collected from a depth of 3 to 6 inches. For consistency, the surface layer (i.e., grass, leaves, or forest duff) was removed before collecting each soil sample.
- In cases where a sample location was near dirt roads, telephone and power line right-of-ways, and home sites, care was taken to locate the sample in an area not affected by land disturbance.

Sampling and Analysis Plan (SAP) Deviations

- During the field work, as presented in the work plan, 15 samples of each media were collected; however, one location (BG-12) was inadvertently located on the southeast tributary to Onion Creek rather than in an upgradient small tributary to the creek. The location sampled is potentially mining impacted and was not included in the final background sample set.
- All sediment samples were collected with a pre-cleaned stainless steel spoon in shallow and low energy pools. Care was taken to slowly sample through the water column in order to capture the <2mm fraction of sediment at each location. This procedure was used instead of the McNeil sampler because of the presence of large gravel and cobbles in the creek bed, and the narrow creek channels at many locations.</p>

Background Sample Location Descriptions

Soil, sediment, and water samples were collected from background locations in the upper portion of the Onion Creek watershed (Figure 1). The 14 sampling locations are summarized as follows:

- BG-1,2,3,4: Collected east of the Lower Tailings Pile on the northeast tributary;
- BG-7: Collected south of the Open Pits and topographically uphill from the open pits;
- BG-6,8,11: Collected east of the open pits and waste rock along a tributary which drains into the southeast tributary;
- BG-10: Collected southwest of the Upper Tailings Pile along a tributary which drains into the southeast tributary;
- BG-9,13,14: Collected on Onion Creek above the confluence with the southeast tributary; and
- BG-5: Collected east of the Onion Creek watershed divide.

BG-12 was collected on the southeast tributary upstream of the confluence with Onion Creek. As mentioned earlier, this sample was not included in the background data set. A brief description of the background locations and observations are summarized in Table 2.

DEVELOPMENT OF NATURAL BACKGROUND FOR SOIL AND SEDIMENT

At the Site, rock outcrops containing economic or sub-economic grade ore deposits located outside of the area mined and not altered by mining activity can be considered part of the natural metal background. The host rock for the lead-zinc deposit at the Van Stone Mine is the dolomite unit of the Metaline limestone. As shown on Figure 1, outcrops of the Metaline Formation are limited to higher topographic areas in the southern portion of the watershed. In his master's thesis, which describes the geology of the Van Stone Mine, Neitzel (1972) concluded that the lead-zinc ore was present in the dolomite unit of the Metaline Formation prior to emplacement of the Spirit pluton. This conclusion implies that high metal concentrations associated with ore deposition would likely be limited to rocks of the Metaline Formation. The higher metal concentrations could potentially create a justification for using multiple backgrounds in different areas of the watershed.

To address this concern, the first part of determining natural background was to assess whether background concentrations should be evaluated separately by the dominant geologic formations which weather and form the soils and sediments in the watershed (Figure 1). This was done by dividing the background sample set into two populations of seven samples each. The two populations were based on whether the background samples were collected from or downgradient of the Metaline limestone and older formations (dolomitic) or background samples were collected from continental drift or downgradient of the igneous rocks of the Spirit pluton (non-dolomitic).

Washington State Department of Ecology April 10, 2012 17800-11 Page 6

While the small sample sizes make the comparisons less robust then desired, they are still considered informative in evaluation of potential multiple backgrounds in soil and sediment.

The software and statistical methods recommended in EPA's ProUCL statistical software package were used both for hypothesis testing to determine if there were statistically significant differences between the two geological units and to calculate the background concentrations¹.

Comparisons between Geologic Units

Nonparametric hypothesis testing methods were used for making the background comparisons. Nonparametric methods were selected because they:

- Can be used on data sets with normal and non-normal distributions;
- Have a good performance for a wide variety of data distributions; and
- Can handle data sets with non-detected values.

Following EPA's ProUCL recommendations, the nonparametric Wilcoxon-Mann-Whitney (WMW) test was used when the dolomitic or non-dolomitic data sets contained non-detect (ND) values.² However, the WMW test was not used on data sets with multiple detection limits. The Gehan test was used when multiple detection limits were present in either of the data sets. The Gehan test was used only for comparing sediment mercury and thallium concentrations and soil thallium concentrations since these were the only cases with multiple detection limits for non-detected results.

With the exception of zinc sediment background samples, there were no statistically significant differences between samples collected from dolomitic and non-dolomitic areas in the watershed (Table 3). The apparent zinc difference was influenced by a single sample (BG-10) which had an anomalously high sediment concentration (3,800 mg/kg) and was located along the northeast-southwest trend of the Van Stone ore deposit.

ProUCL background comparison results are summarized in Table 1 and output files are provided in Attachment A.

¹ ProUCL version 4.00.005 software and supporting documentation are available online at http://www.epa.gov/esd/tsc/software.htm.

² Although ProUCL recommends the Quantile test be run in parallel with the Wilcoxon-Mann-Whitney test, the Quantile test is only used to detect a shift to the right in the right tails of the site and background data sets. Since the Quantile test has several statistical limitations that may apply to Van Stone Site data sets, it was not used in the background comparisons.

17800-11

Page 7

Natural Background Calculation

Because the data do not support calculating separate background concentrations for the different geological formations, background concentrations were calculated using the pooled data set of 14 background samples collected across the geologic units present in the watershed. The ProUCL test used was the "Background" using the "With NDs" setting and a confidence level of 0.90. For calculating background, MTCA [WAC 173-340-709(3) states that:

"For lognormally distributed data sets, background shall be defined as the true upper 90th percentile or four times the true 50th percentile, whichever is lower" and "For normally distributed data sets, background shall be defined as the true upper 80th percentile or four times the true 50th percentile, whichever is lower."

MTCA also allows "Other statistical methods to be used if approved by the department" [of Ecology].³

In cases where data fit more than a single distribution, the following hierarchical order was used to calculate the background concentration: lognormal, normal, gamma, and non-parametric.

A summary of calculated surface soil and sediment background metal concentrations for the pooled datasets are shown in Table 1. It is important to note that the calculated natural background concentrations are representative of the immediate, non-impacted surroundings of the Van Stone Mine and may not be representative of natural background concentrations of the larger surrounding region. ProUCL raw statistics and background concentration output files are provided in Appendix A.

Attachments:

Table 1 - Van Stone Mine Background Metal Concentrations

Table 2 - Descriptions of Background Sample Locations

Table 3 - Summary of Hypothesis Test Results for Comparison of Background Data

Figure 1 - Background Sampling Locations and Regional Geology

-

³ For example, Ecology accepted the use of the 90th percentile for gamma and nonparametric distributions for the 2011 Washington State Background Soil Concentration Study (Hart Crowser 2011b).

Washington State Department of Ecology April 10, 2012

17800-11 Page 8

Attachment A - ProUCL Raw Statistics and Background Concentration Output Files

L:\Jobs\1780011\Background Memo\Final Background Memo.doc

Table 1 - Van Stone Mine Background Metal Concentrations

		Surface S	oil			Sedimen	t	
	Distribution	90th Percentile	Median	Selected Background Concentration		90th Percentile	Median	Selected Background Concentration
Metal	Туре	Res	sults in mg/	'kg	Distribution Type	Res	sults in mg/	/kg
Antimony	lognormal	0.857	0.345	0.857	lognormal	0.587	0.16	0.587
Arsenic	lognormal	5.04	3.65	5.04	lognormal	6.662	2.4	6.662
Beryllium	lognormal	0.719	0.47	0.719	lognormal	0.741	0.31	0.741
Cadmium	lognormal	1.596	0.49	1.596	nonparametric	0.427	0.2	0.427
Chromium	lognormal	15.84	9.95	15.84	lognormal	14.33	5.95	14.33
Copper	lognormal	12.67	6.15	12.65	lognormal	14.4	3.05	12.2
Lead	lognormal	44.87	20	44.87	nonparametric	26.77	5.7	22.8
Mercury	lognormal	0.134	0.0675	0.134	nonparametric	0.0931	0.0071	0.0284
Nickel	lognormal	13.05	8.05	13.05	lognormal	10.95	5	10.95
Selenium	lognormal	1.645	0.8	1.645	lognormal	2.029	0.515	2.029
Silver	lognormal	0.122	0.0635	0.122	nonparametric	0.171	0.022	0.088
Thallium	lognormal	0.203	0.165	0.203	lognormal	0.406	0.185	0.406
Zinc	nonparametric	315	51.5	206	nonparametric	120.4	33.5	120.4

Background Concentration = 4 x Median n = 14 Co-located Background Sample Locations

Table 2 - Descriptions of Background Sample Locations

	Collection	Channel Description (feet and cubic feet per			
Sample ID	Date	second)	General Location	Sampling Area Observations	Observations of Current or Historical Activity
BG-1	10/6/2011	~3' wide, ~20 cfs.	Along NE tributary, above lower tailings pile.	Below confluence with small tributary, above road. Grassy, organic, lots of worms in soil sample.	Mowed area. Apparently previously used as pasture.
BG-2	10/4/2011	~2-3' wide, ~10 cfs.	NE tributary, upstream from Lower Tailings Pile.	Creek bottom has been logged previously. Heavy tree cover and undergrowth, in an ~50' wide creek basin. Some marshy areas with skunk cabbage.	Previously logged. Burned wood observed in soil sample.
BG-3	10/6/2011	~1.5' wide, ~ 2-5 cfs.	Upstream of Lower Tailings Pile, NE tributary.	Small stream between logged areas. Stumps, downed trees, newer tree growth. Creek disappears under tree roots and forest duff.	Previously logged. Appears to be within streamside management zone.
BG-4	10/6/2011	~1' wide, ~ 2-3cfs.	NE tributary, upstream from lower tailings pile.	Small stream between logged areas. Small trees, heavy undergrowth, downed logs. Creek disappears under logs, debris and forest duff. Two grouse in area.	Clearcuts nearby. Upstream from logging road.
BG-5	10/5/2011	~3' wide, ~20 cfs.	Above main mine area, on tributary that flows into different watershed.	Small creek flowing within wider flat valley (50' wide). Heavily forested with downed logs, minor undergrowth. Creek disappears below forest litter in some areas.	Between clearcuts, upstream from logging road. Old flagging tape observed near one soil subsample.
BG-6	10/4/2011	~1.5' wide, ~ 2-5 cfs.	Above main mine area, on tributary that flows into SE tributary.	Small creek flowing within wider flat valley (~ 20-30' wide). High tree cover, downed trees, little undergrowth. Aerial photos show heavily logged away from stream area.	Between clearcuts, uphill from logging road.
BG-7	10/4/2011	~1.5' wide, ~20-30 cfs.	Above main mine area, on tributary that flows into SE tributary.	Small creek with steep drainage banks above logging road. Heavy tree cover and undergrowth; Downed logs and mossy banks.	Near logging road.
BG-8	10/3/2011	~1.5' wide, 2-6" deep, ~5 cfs.	Above main mine area, on tributary that flows into SE tributary.	Small creek flowing within wider flat valley (~ 50' wide). Downed trees crossing creek, low shrubs and plants in valley, forested on upper banks. Aerial photos show heavily logged away from stream area.	~2 to 5 pieces of clear plastic from old milk carton found in creekbed
BG-9	10/7/2011	~10' wide, ~ 200 cfs.	Onion Creek, above confluence with SE tributary.	Heavily forested, appears unlogged. Downed trees, undergrowth.	Near forest road, ATV trails
BG-10	10/5/2011	~3' wide, ~1-2 cfs.	Small tributary upstream from upper tailings pile, feeds into SE tributary.	Small creek, appears to be intermittent. Small trees, tree stumps, downed trees, minor undergrowth.	~50 feet from road. Previously logged
BG-11	10/8/2011	~2' wide.	Above main mine area, on tributary which flows into SE tributary.	Small creek in open area, many small trees, medium undergrowth. Game animal trail.	Upstream from old road bed. Clearcuts to both sides of creek area.
BG-12	10/7/2011	~8-10 wide, ~150 to 200 cfs.	SE tributary, downstream from mine, above confluence with Onion Creek. Not true background sample.	Grassy area with small trees and shrubs. Near road.	~150' from Onion Creek Road.
BG-13	10/5/2011	6-8' wide, ~200 cfs.	Onion Creek, above confluence with SE tributary.	Flat creekbed, area cleared for DNR management, large trees, some downed logs. Fish in creek.	Area cleared of undergrowth for DNR management.
BG-14	10/6/2011	~8' wide, ~100 cfs	Onion Creek, above confluence with SE tributary.	Flat creekbed, undercut banks, medium dense forest undergrowh, trees and stumps.	~50 feet from road.
BG-15	10/7/2011	~3' wide, ~50 cfs	Tributary that drains into SE tributary.	Heavy undergrowth, logs, trees and stumps.	Upstream from very old logging road. Two old log (early 1900s?) cabin structures downstream on old road.

Notes:

BG - Background SD - Sediment Sample

cfs - Cubic Feet per Second

NE - Northeast

SE - Southeast

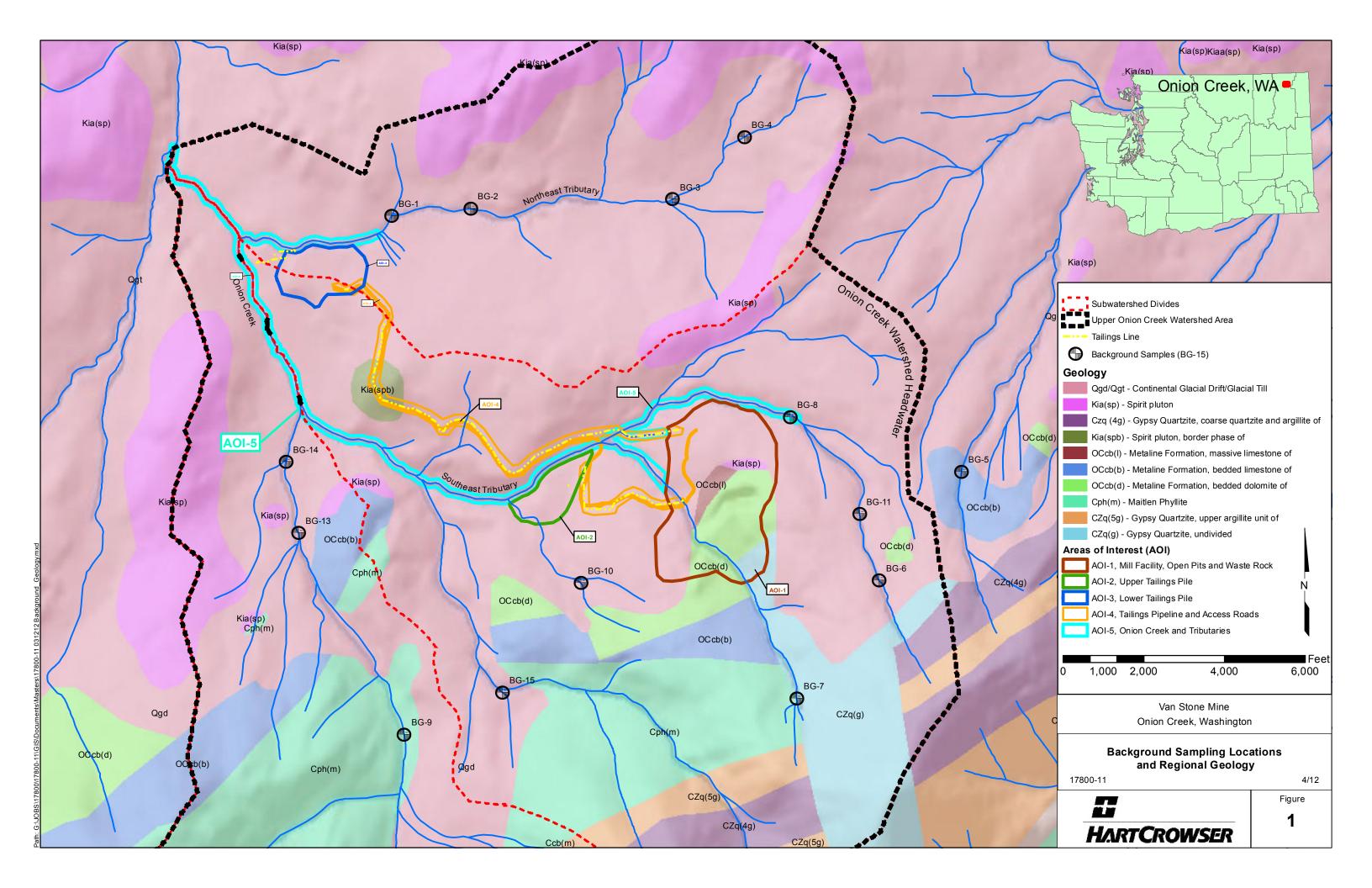

SR-9425 - State Route 9425

Table 3 - Summary of Hypothesis Test Results for Comparison of Background Data

Metal ¹	Test Method ²	Sediment Result ^{3,4}
Antimony	WMW	Do Not Reject H0, Conclude Site = Background
Arsenic	WMW	Do Not Reject H0, Conclude Site = Background
Beryllium	WMW	Do Not Reject H0, Conclude Site = Background
Cadmium	WMW	Do Not Reject H0, Conclude Site = Background
Chromium	WMW	Do Not Reject H0, Conclude Site = Background
Copper	WMW	Do Not Reject H0, Conclude Site = Background
Lead	WMW	Do Not Reject H0, Conclude Site = Background
Mercury	Gehan	Do Not Reject H0, Conclude Site = Background
Nickel	WMW	Do Not Reject H0, Conclude Site = Background
Selenium	WMW	Do Not Reject H0, Conclude Site = Background
Silver	WMW	Do Not Reject H0, Conclude Site = Background
Thallium	Gehan	Do Not Reject H0, Conclude Site = Background
Zinc	WMW	Reject H0, Conclude Site <> Background
Metal ¹	Test Method ²	Soil Result ^{3,4}
Antimony	WMW	Do Not Reject H0, Conclude Site = Background
Arsenic	WMW	Do Not Reject H0, Conclude Site = Background
Beryllium	WMW	Do Not Reject H0, Conclude Site = Background
Cadmium	WMW	Do Not Reject H0, Conclude Site = Background
Chromium	WMW	Do Not Reject H0, Conclude Site = Background
Copper	WMW	Do Not Reject H0, Conclude Site = Background
Lead	WMW	Do Not Reject H0, Conclude Site = Background
Mercury	WMW	Do Not Reject H0, Conclude Site = Background
Nickel	WMW	Do Not Reject H0, Conclude Site = Background
Calautium	*******	,
Selenium	WMW	Do Not Reject H0, Conclude Site = Background
Selenium		Do Not Reject H0, Conclude Site = Background Do Not Reject H0, Conclude Site = Background
	WMW	, ,

Notes:

- 1) Background Samples were divided into two pools based on rock type at or upgradient of the sampling locations. Background Samples BG-1,2,3,4,6,8,11 were selected as glacial outwash. Background Samples BG-5,7,9,10,13,14,15 were selected as dolomite/limestone or downgradient of dolomite/limestone outcrops.
- 2) WMW Wilcoxon-Mann-Whitney
- 3) Confidence Coefficient = 95 percent
- 4) Null Hypothesis (H0): mean/median of glacial till background = mean/median of limestone/dolomite background

ATTACHMENT A PROUCL RAW STATISTICS AND BACKGROUND CONCENTRATION OUTPUT FILES

	Α	В	С	D	E	F	G	Н	ı	J	K	ı	\neg
1	Λ	D		General Backg		-			lon-Detects		I IX		\dashv
2		User Select	ted Options										
3			From File	L:\Project Note	book\178	00-11 Van S	Stone Mine\201	1-10 Field	d Event 1\Bad	ckground Ana	alysis\ProUCI	_ajg\Re	sults
4		Full	Precision	OFF									
5	(Confidence (Coefficient	95%									
6			Coverage	90%									
7	Differ	ent or Future	e K Values	1									
8	Number o	f Bootstrap (Operations	2000									
9													
10													
11	Antimony												
12													
13						General	Statistics						
14				Number of V	/alid Data	14				Number of D	etected Data	13	
15			Number	of Distinct Dete	cted Data	13			Nι	ımber of Non	-Detect Data	1	
16				Toleran	ce Factor	2.109				Percent	Non-Detects	7.14%	
17						11							
18			Raw St	tatistics					Log-transform	med Statistic	S		
19				Minimum	Detected	0.051				Minim	um Detected	-2.976	
20				Maximum	Detected	0.85				Maxim	um Detected	-0.163	
21		Mean of Do				0.271				Mear	n of Detected	-1.666	
22		SD of D Minimum Nor				0.239				SE	of Detected	0.904	
23		Minimum Nor				0.056				Minimun	n Non-Detect	-2.882	
24		Minimum Non Maximum Non				0.056				Maximun	n Non-Detect	-2.882	
25													
26													
27						Backgroun	d Statistics						
28	N	ormal Distrib		vith Detected Va			Logr	normal Dis			ed Values Or	•	
29			S	hapiro Wilk Tes	t Statistic	0.847					Test Statistic		
30				hapiro Wilk Criti		0.866				•	Critical Value	0.866	
31		Data not	Normal at 5	% Significance	Level		D	ata appea	r Lognormal	at 5% Signif	icance Level		
32													
33		As		nal Distribution				Ass	suming Logno				
34			[DL/2 Substitutio							ution Method		
35					Mean						n (Log Scale)		
36						0.238) (Log Scale)		
37		95% UTL 90% Cover								95% UTL 90	0% Coverage		
38		95% UP									95% UPL (t)		
39		90% Percentile		. ,						Percentile (z)			
40					centile (z)						Percentile (z)		
41				99% Per	centile (z)	0.809				99% [Percentile (z)	1./17	
42													
43		Maximu	ım Likelihoo	d Estimate(MLE	-					_	ROS Method		
44					Mean						Original Scale		
45			0=0.	ITI 111 0001		0.256			0=0:		Original Scale		
46			95% l	JTL with 90%	Coverage	U.//4			95%	UIL with 90	0% Coverage	1.317	

Т	^	A B C D						F	G	1 11	T 1	1 .	K	
47	Α	В	(<i>_</i>	D		<u>E</u>	Г	G	Н	95% BC/	A UTL with 9	00% Coverage	0.754
48										95% B	ootstrap (%) UTL with 9	00% Coverage	0.85
49						95%	UPL (t)	0.704					95% UPL (t)	1.005
50					90	% Perce	entile (z)	0.562				90%	Percentile (z)	0.587
51					95	% Perce	entile (z)	0.655				95%	Percentile (z)	0.837
52					99	% Perce	entile (z)	0.83				99%	Percentile (z)	1.628
53														
54	G	amma Dist	ribution	Test w									l Values Only	
55					k star	(bias co	rrected)	1.23	Da	ta appear G	amma Distr	ributed at 5%	Significance L	.evel
56						Th	eta Star							
57							nu star	31.97						
58														
59						-D Test					•	netric Statistic		
60						-D Critic						Kaplan-Meier	(KM) Method	
61						-S Test							Mean	
62						-S Critic								0.228
63	Data	appear Ga	amma D	istribu	ted at 5%	6 Signifi	cance L	evel					SE of Mean	
64											95% KM		00% Coverage	
65				-	ma Distri								nebyshev UPL	
66		Gamma	ROS S	tatistic	s with Ex	ktrapola							% KM UPL (t)	
67								0.252					Percentile (z)	
68		N					Median						Percentile (z)	
69								0.241				99%	Percentile (z)	0.786
70								0.474						
71						Th	neta star					with Extrapo		T
72							Nu star					` , ' ' '	. Gamma UPL	
73			95	% Per	centile of	f Chisqu	ıare (2k)	3.714			=		. Gamma UPL	
74													00% Coverage	
75							ercentile		9:	% HW Appi	rox. Gamm	a UTL with 9	00% Coverage	1.5
76							ercentile							
77						99% P	ercentile	1.719						
78	Note: DL/2 i	a not a race	mmon	dod me	athod .									
79	NUC. DL/2	o not a rect	AIIIII CIIC	acu IIIE	zu IUU.									
80														
81	Arsenic	onio												
02	, 4301110	senic												
83								Genera	l Statistics					
84				Total	Number	of Ohse	rvations				Numh	er of Distinct	Observations	14
85				. 5.01		oleranc					1101111			
86														
87			F	Raw St	atistics						Log-Transfe	ormed Statist	ics	
88						N	linimum	0.4					Minimum	-0.916
89							aximum						Maximum	
90						Second						Se	econd Largest	
91							Quartile						First Quartile	
92								_						

										_		
93	Α	В	С	D	E Median	F 2.4	G	Н		J	K Median	0.872
93				T	nird Quartile						Third Quartile	
95					Mean	2.886					Mean	0.697
96				Geo	metric Mean	2.007					SD	0.936
97					SD	2.539						
98				Coefficient	of Variation	0.88						
99					Skewness	1.789						
100												
101						Backgrour	nd Statistics					
102			Normal Dist			T.		l	ognormal D			
103				hapiro Wilk T							Test Statistic	
104				napiro Wilk C		0.874					Critical Value	0.874
105		Data not	Normal at 5	% Significand	ce Level			Data appea	r Lognormal	at 5% Signi	ficance Level	
106		Α-		I Distalle at				A		al Distrib		
107		As	suming Norm	JTL with 90		0.241		Ass	uming Logn			14.46
108			95% (% Coverage 95% UPL (t)				95%	UIL With 9	0% Coverage 95% UPL (t)	
109					ercentile (z)					90%	Percentile (z)	
110					ercentile (z)						Percentile (z)	
111					ercentile (z)						Percentile (z)	
112											(-)	11111
113 114			Gamma Dist	ribution Test					Data Distr	ibution Test		
115					k star	1.244	Data	a appear Ga	mma Distrib	uted at 5% S	Significance Lo	evel
116					Theta Star	2.32						
117				N	ILE of Mean	2.886						
118			M	LE of Standa	rd Deviation	2.588						
119					nu star	34.82						
120												
121				A-D T	est Statistic	0.201			Nonparame	etric Statistic	s	
122					ritical Value						0% Percentile	
123					est Statistic						5% Percentile	
124					ritical Value					9:	9% Percentile	9.389
125	Data	a appear Gar	nma Distribu	ted at 5% Sig	gnificance Le	evel						
126		۸۵	suming Gam	ma Diatributi	on.				050/	LITI with O	0% Coverage	10
127		Λ3	sulling Gain		% Percentile	6 296	9	5% Percenti			0% Coverage	
128					% Percentile		J		-		0% Coverage	
129					% Percentile			0070 20	,	012 111111 0	95% UPL	
130										95% Ch	ebyshev UPL	
131			95% V	VH Approx. C	Gamma UPL	8.563		U	pper Thresh		sed upon IQR	
132 133				··· ··································					•		•	
134	95	5% WH Appro	ox. Gamma l	JTL with 90	% Coverage	10.01						
135	95	5% HW Appro	ox. Gamma l	JTL with 90	% Coverage	10.65						
136						I.	1					I.
137												
138												

	Α	В	С	D	E	F	G	Н	1	I .i I	K	ı
139	Beryllium		<u> </u>	<u> </u>			ų .		'	Ü	- IX	
140												
141						General	Statistics					
142				Number o	of Valid Data	14			I	Number of De	tected Data	13
143			Number	of Distinct De	etected Data	13			Nu	mber of Non-	Detect Data	1
144				Tolei	rance Factor	2.109				Percent N	Non-Detects	7.14%
145												
146			Raw St					L	_og-transforr	med Statistics		
147					um Detected						m Detected	
148					um Detected						m Detected	
149					of Detected						of Detected	
150					of Detected						of Detected	
151					Non-Detect						Non-Detec	
152				Maximum	Non-Detect	0.34				Maximum	Non-Detect	1-1.079
153												
154												
155						-	d Statistics					
156		lormal Distrit	oution Test w		-		Log	normal Dist		t with Detecte		-
157				•	Test Statistic					Shapiro Wilk T		
158				•	Critical Value	0.866				hapiro Wilk C		0.866
159		Data not	Normal at 5	% Significan	ce Level			Data appear	Lognormal	at 5% Signific	ance Level	
160												
161		As	suming Norn			T		Assı		ormal Distribu		
162			L	DL/2 Substitu	ution Method					DL/2 Substitu		
163						0.416					(Log Scale)	
164				F0/ LITE 00		0.371					(Log Scale)	
165			9.		% Coverage					95% UTL 90°	_	
166					95% UPL (t)						95% UPL (t)	
167					Percentile (z)						ercentile (z)	
168					Percentile (z)						ercentile (z)	
169				99% F	Percentile (z)	1.279				99% P	ercentile (z)	1.431
170		Maxim	um Likelihoo	d Estimato/N	II E\ Mathad					l og F	OS Method	
171		IVIAXIIII	uiii Likeiiiioo	u Estimate(N	,	0.183				Mean in Or		
172						0.183					iginal Scale	
173			Q50/_I	ITI with 00	% Coverage				QE0/. I	UTL with 90°	_	
174			33 /0 C	.,∟ wiiii 30	, o coverage	1.713				UTL with 90°	_	
175								95% Ro		UTL with 90°		
176					95% UPL (t)	1 257		33 /0 DO	Joistiap (70)		95% UPL (t)	
177					ercentile (z)						ercentile (z)	
178					ercentile (z)						ercentile (z)	
179					ercentile (z)						ercentile (z)	
180				33701	5.55mm (2)	1.010				33701	2.0011tile (Z)	1.554
181		amma Distri	bution Test w	vith Detected	l Values Onl	v		Data Distribi	ution Test wi	ith Detected V	alues Only	
182	k star (bigg corrected) 1.06									ribution at 5%		e Level
183				. Clai (bic	Theta Star		Data K				- Jigi illiound	
184					THOM OM	V.LLL						

105	Α	В	С	D	E nu star	F 50.96	G	Н		J	K	L
185 186												
187				A-D T	Test Statistic	0.795			Nonparame	etric Statistic	es .	
188				5% A-D C	Critical Value	0.741			K	aplan-Meie	(KM) Method	
189				K-S T	Γest Statistic	0.204					Mean	0.42
190				5% K-S C	Critical Value	0.239					SD	0.355
191	Data fo	llow Appx. G	amma Distri	bution at 5%	Significance	Level					SE of Mean	0.0987
192									95% KM I	UTL with	00% Coverage	1.169
193		As	suming Gam	ıma Distributi	ion					95% KM Ch	nebyshev UPL	2.021
194		Gamma I	ROS Statistic	s with Extra	polated Data					95	% KM UPL (t)	1.071
195					Mean	0.422				90%	Percentile (z)	0.875
196					Median	0.267	90% Percentile 95% Percentile 99% Pe					
197						0.367				99%	Percentile (z)	1.246
198					k star	2.06						
199					Theta star	0.205				•		
200					Nu star	57.69		95% Wils	on Hilferty (V	VH) Approx	. Gamma UPL	1.03
201			95% Pe	rcentile of Ch	nisquare (2k)	9.683						
202								• • •			ŭ	
203				909	% Percentile	0.816	95	% HW App	rox. Gamma	UTL with	00% Coverage	1.178
204				95	% Percentile	0.993						
205				999	% Percentile	1.384						
206												
207	Note: DL/2 i	s not a reco	mmended m	ethod.								
208												
209												
210	Cadmium											
211												
212			 				Statistics			(5)	<u> </u>	
213			I otal	Number of C					Numbe	er of Distinct	Observations	14
214				I olei	rance Factor	2.109						
215			D 0						T			
216			Raw S	tatistics	Minimum	0.000			Log-Transfor	mea Statist		2.710
217					Maximum						Minimum Maximum	
218				Con						0.	waximum econd Largest	
219					cond Largest First Quartile					56	First Quartile	
220				F	Median						Median	
221					hird Quartile						Niedian Third Quartile	
222				I		3.855					Mean	
223				Coo	metric Mean							1.619
224				Geo		13.57					20	1.019
225				Coofficient	รบ t of Variation							
226				Coemcien	Skewness							
227					Skewness	J. /4 I						
228						Backgroun	nd Statistics					
229			Normal Dist	ribution Test		Dackgrouf	nd Statistics		ognormal D	ietrikutien T	ost	
230			ואטוווומו טואנ	INULION TEST					Lognormal D	I NODUUUI I	esi .	

	1				ı					r	
231	А	В	C S	D hapiro Wilk	E Test Statistic	0.305	G	Н	l S	J K hapiro Wilk Test Stat	istic 0.671
232			S	hapiro Wilk (Critical Value	0.874			SI	napiro Wilk Critical Va	alue 0.874
233		Data not	Normal at 5	% Significan	ce Level			Data not Lo	gnormal at	5% Significance Leve	el
234											
235		As	suming Nor	mal Distribut	ion			Assu	ming Logno	rmal Distribution	
236			95%	JTL with 90)% Coverage	32.47			95% l	JTL with 90% Cover	•
237					95% UPL (t)	28.73				95% UP	L (t) 5.522
238				90% F	Percentile (z)	21.25				90% Percentile	e (z) 2.26
239				95% F	Percentile (z)	26.18				95% Percentile	e (z) 4.071
240				99% F	Percentile (z)	35.42				99% Percentile	e (z) 12.28
241											
242		(Gamma Dis	tribution Tes					Data Distri		
243						0.259	D	ata do not fol	low a Disce	ernable Distribution (C).05)
244					Theta Star						
245					MLE of Mean						
246			М	LE of Standa	ard Deviation						
247					nu star	7.252					
248											
249					Test Statistic				Nonparamet	ric Statistics	
250					Critical Value					90% Perce	
251				_	Test Statistic					95% Perce	
252					Critical Value					99% Perce	ntile 44.43
253	Data	a not Gamn	na Distribute	d at 5% Sigi	nificance Lev	el					
254											
255		Ass	suming Gam	ıma Distribut		T				JTL with 90% Cover	•
256					% Percentile		95		•	JTL with 90% Cover	_
257					% Percentile			95% BCA	Bootstrap l	JTL with 90% Cover	_
258				99	% Percentile	36.8					UPL 51
259						10.00				95% Chebyshev	
260				• • •	Gamma UPL			Up _l	per Thresho	old Limit Based upon	IQR 0.756
261	0.50	/ 14/1 A			Gamma UPL						
262		• • •			0% Coverage						
263	95%	6 HVV Appro	ox. Gamma	JIL With 90	0% Coverage	14.81					
264											
265											
266	Chromium										
267	Omonium										
268						Genera	al Statistics				
269			Total	Number of (Observations		ii Otadouco		Numbo	of Distinct Observat	ions 14
270			10101		rance Factor				Nullibel	OI DISHING ODSEIVAL	10110
271				1016	Tarice I aciti	2.100					
272			Raw S	tatistics				l c	a-Transfor	ned Statistics	
273					Minimum	1.8					num 0.588
274					Maximum						num 3.497
275				Sec	cond Largest					Second Lar	
276					- J Largoot					CCCONG Edit	35000

	Α	В	С	D	E	F	G	Н	I	J	K	L
277				i	First Quartile					First	Quartile	
278					Median						Median	
279				Т	hird Quartile					Third	Quartile	
280					Mean						Mean	
281				Geo	metric Mean						SD	0.671
282						7.668						
283				Coefficien	t of Variation							
284					Skewness	3.106						
285												
286						Backgroun	d Statistics					
287				ribution Test				L		istribution Test		
288				•	Test Statistic					Shapiro Wilk Test		
289				•	Critical Value	0.874				Shapiro Wilk Critic		0.874
290		Data not	Normal at 5	% Significan	ce Level			Data appea	r Lognormal	at 5% Significand	ce Level	
291												
292		As	_	mal Distributi		I = = =		Ass	• •	ormal Distribution		
293			95% (% Coverage				95%	UTL with 90% C	•	
294					95% UPL (t)						6 UPL (t)	
295					Percentile (z)					90% Perc	. ,	
296					Percentile (z)					95% Perc		
297				99% F	Percentile (z)	25.64				99% Perc	entile (z)	28.89
298												
299			Gamma Dis	tribution Test		T -				ibution Test		
300								Data appea	r Lognormal	at 5% Significand	ce Level	
301					Theta Star							
302					MLE of Mean	_						
303			М	LE of Standa	ard Deviation							
304					nu star	48.29						
305												
306					Test Statistic				Nonparame	tric Statistics		
307					Critical Value						ercentile	
308					Test Statistic						ercentile	
309					Critical Value					99% P	ercentile	30.27
310	Da	ata not Gamr	na Distribute	ed at 5% Sigr	nificance Lev	el						
311				Part 7 11	•					HT 14 000/ 1		00
312		As	suming Gam	nma Distribut		145 74		-0/ D :::		UTL with 90% C	Ū	
313					% Percentile		95		· .	UTL with 90% C		
314					% Percentile			95% BC	A Bootstrap	UTL with 90% C	•	
315				99	% Percentile	27.66					95% UPL	
316			0=0/-	A/I I A	· ·	00.44			·	95% Chebys		
317					Gamma UPL			U	pper Thresh	old Limit Based u	ipon IQR	10.33
318		-0/ \\\ \\			Gamma UPL							
319		5% WH Appr			_							
320	95	5% HW Appr	ox. Gamma	UIL with 90	% Coverage	23.33						
321												
322												

	Α	В	С	D	ΙE	F	G	Н		J	K	L
323	, ,											_
324	Copper											
325												
326						General	Statistics					
327				Number of	of Valid Data	14				Number of De	etected Data	13
328			Number	of Distinct D	etected Data	13			Nι	ımber of Non-	Detect Data	1
329				Tole	rance Factor	2.109				Percent N	Non-Detects	7.14%
330						I						
331			Raw St	atistics				l	_og-transfori	med Statistics	}	
332				Minim	um Detected	1.1				Minimu	ım Detected	0.0953
333				Maxim	um Detected	21				Maximu	ım Detected	3.045
334				Mear	of Detected	6.385				Mean	of Detected	1.421
335				SD	of Detected	6.608				SD	of Detected	0.947
336				Minimum	Non-Detect	0.9				Minimum	Non-Detec	t -0.105
337				Maximum	Non-Detect	0.9				Maximum	Non-Detec	t -0.105
338												
339						1						
340						Backgroun	nd Statistics					
341	١	Normal Distril	bution Test w	ith Detected	Values Only	/	Log	gnormal Dist	ribution Tes	t with Detecte	d Values O	nly
342			S	hapiro Wilk	Test Statistic	0.758			5	Shapiro Wilk T	est Statistic	0.942
343			5% Sł	napiro Wilk (Critical Value	0.866			5% S	Shapiro Wilk C	ritical Value	0.866
344		Data not	Normal at 5°	% Significan	ce Level			Data appear	r Lognormal	at 5% Signific	cance Level	
345												
346		As	suming Norn	nal Distributi	on			Ass	uming Logno	ormal Distribu	tion	
347				DL/2 Substitu	ution Method					DL/2 Substitu	tion Method	1
348					Mean	5.961					(Log Scale)	
349					SD	6.544					(Log Scale)	
350			9		% Coverage				9	95% UTL 90°	•	
351					95% UPL (t)						95% UPL (t	
352					Percentile (z)						ercentile (z	
353					Percentile (z)						ercentile (z	
354				99% F	Percentile (z)	21.18				99% P	ercentile (z	44.21
355												
356		Maxim	um Likelihoo	d Estimate(N						ŭ	ROS Method	
357						5.716					riginal Scale	
358						6.631					riginal Scale	
359			95% L	JTL with 90	% Coverage	19.7				UTL with 90°		
360										UTL with 90		
361					050/ 1151 (1	17.67		95% Bc	ootstrap (%)	UTL with 90	_	
362					95% UPL (t)						95% UPL (t	
363					Percentile (z)						ercentile (z	
364					Percentile (z)						ercentile (z	
365				99% F	Percentile (z)	21.14				99% P	ercentile (z	45.55
366				111 PS				B . B! : "		W B · · · ·		
367	G	amma Distri	bution Test w							ith Detected \		
368				k star (bia	s corrected)	1.049	Data	a appear Ga	ımma Distrib	outed at 5% S	ignificance l	_evel

200	A	В	С		D	E Theta Star	F 6.086	G	Н	I		J		K	L
369 370						nu star									
371															
372					A-D	Test Statistic	0.574			Nonpara	metri	c Statistic	cs		
373					5% A-D (Critical Value	0.753				Kap	lan-Meie	r (KM)	Method	
374					K-S	Test Statistic	0.203							Mean	6.007
375					5% K-S (Critical Value	0.242							SD	6.267
376		appear Ga	mma Distr	ribute	d at 5% S	ignificance Lo	evel						SE c	f Mean	1.743
377										95% K	M UT	L with	90% Co	verage	19.22
378			ssuming G								95	% KM Cl	-		
379		Gamma	ROS Stati	istics	with Extra	polated Data								UPL (t)	
380							5.929							ntile (z)	
381						Median								ntile (z)	
382							6.574					99%	Perce	ntile (z)	20.59
383							0.399								
384						Theta star				ROS Limi		•			00.45
385						Nu star	-			son Hilferty	•				
386			95%	Perc	entile of C	hisquare (2k)	3.317			kins Wixley	-				
387					00	0/ 5 .::	40.70		• • • • • • • • • • • • • • • • • • • •	rox. Gamm				Ū	
388						% Percentile		95	% HW App	orox. Gamn	na U	L with §	90% Co	verage	36.33
389						% Percentile									
390					99	% Percentile	44.55								
391	Note: DL/2 i	a not a roce	mmondod	l mot	had										
392		3 1101 a 1660	iiiiieiided	1 111 0 u	iou.										
393															
394	Lead														
395															
396 397							General	Statistics							
398			To	otal N	umber of 0	Observations	14			Num	nber c	of Distinct	Obser	vations	14
399					Tole	rance Factor	2.109								
400															
401			Raw	v Sta	tistics					Log-Trans	forme	ed Statist	ics		
402						Minimum	2.2						М	inimum	0.788
403						Maximum	170						Ма	ximum	5.136
404					Se	cond Largest	34					S	econd	Largest	3.526
405						First Quartile	3.925						First (Quartile	1.358
406						Median	5.7							Median	1.74
407					Т	hird Quartile	8.9	Third Quartile 2						2.181	
408						Mean	19.23							Mean	1.978
409					Geo	metric Mean	7.226							SD	1.141
410						SD	44.12								
					Coefficien	t of Variation	2.294								
411	1						1	1							
411 412						Skewness	3.549								
						Skewness	3.549								
412						Skewness		nd Statistics							

			T -							1 -	 					
415	А	В	Normal		D ution Test	<u> E</u>	F	G	H L	<u> </u>	j J istribution Test	K	L			
416				Sha	piro Wilk	Test Statistic	0.409			-	Shapiro Wilk Test	Statistic	0.809			
417				Sha	piro Wilk C	Critical Value	0.874			S	Shapiro Wilk Critic	al Value	0.874			
418		Data not	Normal	l at 5%	Significan	ce Level			Data not l	Lognormal a	t 5% Significance	Level				
419																
420		As	suming	Norma	l Distributi	ion			Ass	suming Logn	ormal Distribution	1				
421			9	5% UT	L with 90	% Coverage	112.3			95%	UTL with 90% C	overage	80.24			
422						95% UPL (t	100.1				95%	6 UPL (t)	58.56			
423					90% F	Percentile (z	75.77				90% Perce	entile (z)	31.2			
424					95% F	Percentile (z	91.8				95% Perce	entile (z)	47.24			
425					99% F	Percentile (z	121.9		entile (z)	102.8						
426																
427			Gamma	Distrib	ution Test	t				Data Distr	ibution Test					
428						k star	0.54		Data do not f	follow a Disc	ernable Distributi	on (0.05)				
429						Theta Sta	35.58									
430					N	MLE of Mear	19.23									
431		MLE of Standard Dev														
432						nu sta	15.13									
433																
434					A-D	Test Statistic	2.122			Nonparame	tric Statistics					
435						Critical Value					90% P	ercentile	26.77			
436					K-S	Test Statistic	0.37				95% P	ercentile	81.6			
437						Critical Value					99% P	ercentile	152.3			
438	Da	ta not Gamr	ma Distri	ibuted a	at 5% Sigr	nificance Lev	rel .									
439																
440		As	suming	Gamma	a Distribut						UTL with 90% C	-				
441						% Percentile		95			UTL with 90% C					
442						% Percentile	_		95% BC	A Bootstrap	UTL with 90% C	-				
443					99	% Percentile	122.3					5% UPL				
444											95% Chebys					
445						Gamma UPI			U	pper Thresh	old Limit Based u	pon IQR	16.36			
446						Gamma UPI										
447						0% Coverage										
448	95	% HW Appro	ox. Gam	ıma UT	L with 90)% Coverage	83.68									
449																
450																
451	Manares															
452	Mercury															
453							00===	al Ctatistics								
454					Niumahaii	of Volid Date		al Statistics			Number of Date -	tod Data	10			
455			Nine	nhor of		of Valid Data					Number of Detec					
456			inum	innet of		rance Factor	-			NU	Percent Non					
457					1016	ialice Facto	2.109				Percent Non	-Detects	20.3/%			
458	Daw Statistics						Log-transformed Statistics									
459	Raw Statistics					1 0 0040	-					_5 310				
460		Minimum Dete					0.0049				iviiriimum L	Jelected	-3.318			

			1	_							T		
461	A	В	(С	D Maxi	E mum Detected	0.15	G	H		J K Maximum Detected	L I -1.897	
461 462					Me	an of Detected	0.0455				Mean of Detected	-3.915	
463					5	SD of Detected	0.0529				SD of Detected	1.425	
464					Minimu	ım Non-Detect	0.0045				Minimum Non-Detec	t -5.404	
465					Maximu	ım Non-Detect	0.0085				Maximum Non-Detec	t -4.768	
466													
467		Dat	ta with N	/lultiple	Detection	Limits			Sin	gle Detection	n Limit Scenario		
168	Note: Data I	have multip	le DLs -	- Use o	f KM Meth	od is recomme	ended	nded Number treated as Non-Detect with Single					
169	For all meth	ods (excep	t KM, D	L/2, ar	d ROS M	ethods),			Numb	er treated a	s Detected with Single DI	- 5	
170	Observation	s < Larges	t ND are	e treate	ed as NDs					Single D	L Non-Detect Percentage	64.29%	
171													
172							Backgrou	nd Statistics					
73	N	lormal Dist	ribution	Test w	ith Detect	ed Values Only	<i>'</i>	Log	normal Dist	ribution Tes	t with Detected Values O	nly	
174				SI	napiro Wil	k Test Statistic	0.784			5	Shapiro Wilk Test Statistic	0.808	
175				5% Sł	napiro Will	Critical Value	0.842			5% S	Shapiro Wilk Critical Value	0.842	
176		Data no	ot Norm	al at 5°	% Significa	ance Level			Data not L	ognormal a	t 5% Significance Level		
177													
178		Α	Assumin	g Norn	nal Distrib	ution			Assı	uming Logn	ormal Distribution		
79					DL/2 Subs	titution Method					DL/2 Substitution Method	i	
.80						Mean	0.0334				Mean (Log Scale)	-4.448	
81						SD	0.0483				SD (Log Scale)	1.479	
182				9	5% UTL	90% Coverage	0.135			(95% UTL 90% Coverage	0.265	
183						95% UPL (t)	0.122				95% UPL (t	0.176	
184					90%	Percentile (z)	0.0953				90% Percentile (z)	0.0779	
185					95%	Percentile (z)	0.113				95% Percentile (z)	0.133	
186					99%	Percentile (z)	0.146				99% Percentile (z)	0.365	
187													
188		Maxir	num Lik	elihoo	d Estimate	(MLE) Method					Log ROS Method	I	
189						Mean	-0.0248				Mean in Original Scale	0.0332	
190						SD	0.102				SD in Original Scale	0.0484	
91				95% L	JTL with	90% Coverage	0.189			95%	UTL with 90% Coverage	0.335	
92										95% BCA	UTL with 90% Coverage	0.135	
193									95% Bo	otstrap (%)	UTL with 90% Coverage	0.15	
94						95% UPL (t)	0.161				95% UPL (t	0.212	
95					90%	Percentile (z)	0.105				90% Percentile (z)	0.0857	
196					95%	Percentile (z)	0.142				95% Percentile (z)	0.156	
197					99%	Percentile (z)	0.212				99% Percentile (z)	0.479	
198							*					•	
199	G	amma Dist	tribution	Test w	ith Detect	ed Values Onl	у		Data Distribi	ution Test w	ith Detected Values Only		
500					k star (l	oias corrected)	0.576	[Data do not	follow a Disc	cernable Distribution (0.0	5)	
501						Theta Star	0.079						
502						nu star	11.53						
503													
504					A-[Test Statistic	0.955	1		Nonparame	etric Statistics	<u>. I</u>	
505					5% A-D	Critical Value	0.759	1		K	aplan-Meier (KM) Method	i	
					K-9	S Test Statistic	0.286				Mear	0.034	

551	Assuming Normal Distribution		Assuming Lognormal Distribution	
220				
550	Data appear Narmal at E0/ Cignificance Lavel		Data appear Lognormal at 5% Significance Level	
549	Shapiro Wilk Critical Value	0.874	Shapiro Wilk Critical Value	0.874
548			Shapiro Wilk Test Statistic	
547	Normal Distribution Test		Lognormal Distribution Test	
546		Background	I Statistics	
545				
544	Skewness	1.42		
543	Coefficient of Variation	0.62		
542	SD	3.544		
541	Geometric Mean	4.784	SD	0.646
540	Moon	5.714	Mean	1.565
539	Third Quartile	7.125	Third Quartile	1.959
538	Median	5	Median	1.609
537	First Quartile	3.6	First Quartile	1.28
536	Casand Largast	9.2	Second Largest	2.219
535	Maximum	15	Maximum	2.708
534	Minimum	1.1	Minimum	0.0953
533	Raw Statistics		Log-Transformed Statistics	
532				
531	Tolerance Factor	2.109		
530	Total Number of Observations	14	Number of Distinct Observations	13
528 529		General S	Statistics	
527 528				
	Nickel			
525 526				
524 525				
523 524	Note: DL/2 is not a recommended method.			
522 523				
521 522	99% Percentile	0.34		
520	95% Percentile			
519	00% Decemble	0.0982	95% HW Approx. Gamma UTL with 90% Coverage	
518	· ` ` '		95% WH Approx. Gamma UTL with 90% Coverage	
517	OFO/ Developing of Chicagons (21)		95% Hawkins Wixley (HW) Approx. Gamma UPL	
516	r neta star Nu star		95% Wilson Hilferty (WH) Approx. Gamma UPL	0 168
515	Thata atom		Gamma ROS Limits with Extrapolated Data	
514	11		99% Percentile (z)	0.141
513	Median	0.0059	95% Percentile (z) 99% Percentile (z)	
512		0.0325	90% Percentile (z)	
511	Gamma ROS Statistics with Extrapolated Data	0.0005	95% KM UPL (t)	
510			95% KM Chebyshev UPL	
509			95% KM UTL with 90% Coverage	
508	Data not Gamma Distributed at 5% Significance Leve	el .	SE of Mean	
EΛO				
507	5% K-S Critical Value			0.0461

-	Α.	-	_ ^	1		-		T ^			1 1 12		
553	A	В	95%	% UTL	D with 90	E % Coverage	13.19	G	Н	95% U	J K TL with 90% Coverage	18.69	
554						95% UPL (t)	12.21				95% UPL (t)	15.64	
555					90% F	Percentile (z)	10.26				90% Percentile (z)	10.95	
556					95% F	Percentile (z)	11.54				95% Percentile (z)	13.85	
557					99% F	Percentile (z)	13.96				99% Percentile (z)	21.51	
558							1						
559			Gamma D	Distribu	tion Test	ì		Data Distribution Test					
560						k star	2.382		Data appe	ear Normal at	5% Significance Level		
561						Theta Star	2.399						
562					N	ILE of Mean	5.714						
563				MLE c	of Standa	ard Deviation							
564						nu star	66.7						
565													
566						Test Statistic				Nonparameti			
567				5		Critical Value					90% Percentile		
568						Test Statistic					95% Percentile		
569						Critical Value					99% Percentile	14.25	
570	Data	appear Ga	mma Distri	ibuted	at 5% Si	gnificance Lo	evel						
571					D' - '' -	•				050/ 1	TI :: 000/ 0	45	
572		As	ssuming Ga	amma			10.07	0.0	70/ D +:1		TL with 90% Coverage		
573						% Percentile		95		•	TL with 90% Coverage		
574						% Percentile			95% BC	A Bootstrap U	TL with 90% Coverage		
575					99	% Percentile	17.59				95% UPL		
576			050	V 10/11/	N	O LIDI	10.40		- 11	Th h.	95% Chebyshev UPL		
577						Gamma UPL Gamma UPL			U	pper inresno	d Limit Based upon IQR	12.41	
578	05	0/ \\/!! \				3amma OPL 1% Coverage							
579						1% Coverage							
580	93	76 ПИ Аррі	ox. Gaiiiii	ia UTL	WILLI 30	7/6 Coverage	13.74						
581													
582													
583	Selenium												
584 585													
586							Genera	I Statistics					
587				١	Number o	of Valid Data	14			N	umber of Detected Data	13	
588			Numb	er of D	istinct De	etected Data	13			Nur	nber of Non-Detect Data	1	
589					Tole	rance Factor	2.109				Percent Non-Detects	7.14%	
590							1	-					
591			Raw	Statis	tics				l	Log-transform	ed Statistics		
592		Minimum Dete									Minimum Detected	-1.427	
593		Maximum Dete									Maximum Detected	1.281	
594	Mean of Dete						0.992				Mean of Detected	-0.393	
595		SD of Dete									SD of Detected	0.881	
596		Minimum Non-De									Minimum Non-Detect	-1.386	
597		Maximum Non-Det					0.25				Maximum Non-Detect	-1.386	
598													
550													

	A B C D E	F		- 11				
599	A B C D E	<u> </u> F	G	Н	l	J	K	<u> </u>
600		Backgrour	nd Statistics					
601	Normal Distribution Test with Detected Values Only	у	Log	gnormal Distr	ibution Test	with Detecte	d Values Or	nly
602	Shapiro Wilk Test Statistic	0.753			S	hapiro Wilk T	est Statistic	0.904
603	5% Shapiro Wilk Critical Value	0.866			5% SI	hapiro Wilk C	ritical Value	0.866
604	Data not Normal at 5% Significance Level	1		Data appear	Lognormal	at 5% Signific	ance Level	
605								
606	Assuming Normal Distribution			rmal Distribut				
607	DL/2 Substitution Method			tion Method				
608	Mean						(Log Scale)	
609		0.981		(Log Scale)				
610	95% UTL 90% Coverage			% Coverage				
611	95% UPL (t)						95% UPL (t)	
612	90% Percentile (z)						ercentile (z)	
613	95% Percentile (z)						ercentile (z)	
614	99% Percentile (z)	3.213				99% P	ercentile (z)	5.574
615								
616	Maximum Likelihood Estimate(MLE) Method					•	ROS Method	
617		0.847				Mean in Or	-	
618		1.05					iginal Scale	
619	95% UTL with 90% Coverage	3.06				JTL with 909	_	
620						JTL with 909	-	
621				95% Bo	otstrap (%) l	JTL with 90°	•	
622	95% UPL (t)	2.771				Ç	95% UPL (t)	3.422
623	90% Percentile (z)						ercentile (z)	
624	95% Percentile (z)	2.573					ercentile (z)	
625	99% Percentile (z)	3.288				99% P	ercentile (z)	5.461
626								
627	Gamma Distribution Test with Detected Values Onl					th Detected V		
628	k star (bias corrected)		Data fo	ollow Appr. C	Samma Distr	ibution at 5%	Significand	e Level
629	Theta Star							
630	nu star	30.15						
631								
632	A-D Test Statistic				•	tric Statistics		
633	5% A-D Critical Value				Ka	aplan-Meier (I	,	
634	K-S Test Statistic							0.939
635	5% K-S Critical Value							0.939
636	Data follow Appx. Gamma Distribution at 5% Significance	Level					SE of Mean	
637					95% KM L		% Coverage	
638	Assuming Gamma Distribution	T			(95% KM Chel	•	
639	Gamma ROS Statistics with Extrapolated Data						KM UPL (t)	
640		0.921					ercentile (z)	
641	Median						ercentile (z)	
642		0.99				99% P	ercentile (z)	3.123
643		0.441						
644	Theta star	2.092		Gamma F	ROS Limits w	ith Extrapola	ted Data	

	A B C D E	F	GHIJK	1
645	Nu eter		95% Wilson Hilferty (WH) Approx. Gamma UPL	3.531
	059/ Paraentile of Chicauara (2k)	3.54	95% Hawkins Wixley (HW) Approx. Gamma UPL	4.348
646	, ,		95% WH Approx. Gamma UTL with 90% Coverage	
647	90% Percentile	2.557	95% HW Approx. Gamma UTL with 90% Coverage	
648	95% Percentile	3.702		
649	99% Percentile			
650				
651	Note: DL/2 is not a recommended method.			
652				
353				
654	Silver			
355				
356		General	Statistics	
657	Number of Valid Data		Number of Detected Data	13
658	Number of Distinct Detected Data		Number of Non-Detect Data	
659	Toloropeo Costor		Percent Non-Detects	
660	i diciance Factor	۵. ۱۵۵	r etcett Noti-Detects	, . 1 Tr /U
61	Raw Statistics		Log-transformed Statistics	
662	Minimum Detected	0.014	Minimum Detected	4 260
63	Maximum Detected		Maximum Detected	
664	Mean of Detected		Mean of Detected	
65				
666			SD of Detected	
667	Minimum Non-Detect		Minimum Non-Detect	
668	Maximum Non-Detect	0.015	Maximum Non-Detect	-4.2
669				
370				
371		Backgroun		
372	Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values On	•
373			Shapiro Wilk Test Statistic	
674	5% Shapiro Wilk Critical Value	0.866	5% Shapiro Wilk Critical Value	0.866
375	Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
676				
677	Assuming Normal Distribution		Assuming Lognormal Distribution	
,,,				
			DL/2 Substitution Method	
678 679	Mean	0.0641	Mean (Log Scale)	
678 679	Mean SD	0.0641	Mean (Log Scale) SD (Log Scale)	1.081
678 679 680	Mean SD 95% UTL 90% Coverage	0.0641 0.0868 0.247	Mean (Log Scale) SD (Log Scale) 95% UTL 90% Coverage	1.081 0.334
678 679 680 681	Mean SD	0.0641 0.0868 0.247	Mean (Log Scale) SD (Log Scale)	1.081 0.334
678 679 680 681 682	Mean SD 95% UTL 90% Coverage 95% UPL (t)	0.0641 0.0868 0.247 0.223	Mean (Log Scale) SD (Log Scale) 95% UTL 90% Coverage	1.081 0.334 0.248
678 679 680 681 682 683	Mean SD 95% UTL 90% Coverage 95% UPL (t)	0.0641 0.0868 0.247 0.223 0.175	Mean (Log Scale) SD (Log Scale) 95% UTL 90% Coverage 95% UPL (t)	1.081 0.334 0.248 0.136
678 679 680 681 682 683	Mean SD 95% UTL 90% Coverage 95% UPL (t) 90% Percentile (z) 95% Percentile (z)	0.0641 0.0868 0.247 0.223 0.175 0.207	Mean (Log Scale) SD (Log Scale) 95% UTL 90% Coverage 95% UPL (t) 90% Percentile (z)	1.081 0.334 0.248 0.136 0.202
678 679 680 681 682 683 684	Mean SD 95% UTL 90% Coverage 95% UPL (t) 90% Percentile (z) 95% Percentile (z) 99% Percentile (z)	0.0641 0.0868 0.247 0.223 0.175 0.207	Mean (Log Scale) SD (Log Scale) 95% UTL 90% Coverage 95% UPL (t) 90% Percentile (z) 95% Percentile (z)	1.081 0.334 0.248 0.136 0.202
678 679 680 681 682 683 684 685	Mean SD 95% UTL 90% Coverage 95% UPL (t) 90% Percentile (z) 95% Percentile (z) 99% Percentile (z)	0.0641 0.0868 0.247 0.223 0.175 0.207 0.266	Mean (Log Scale) SD (Log Scale) 95% UTL 90% Coverage 95% UPL (t) 90% Percentile (z) 95% Percentile (z)	1.081 0.334 0.248 0.136 0.202
678 680 681 682 683 684 685 686	Mean SD 95% UTL 90% Coverage 95% UPL (t) 90% Percentile (z) 95% Percentile (z) 99% Percentile (z) Maximum Likelihood Estimate(MLE) Method	0.0641 0.0868 0.247 0.223 0.175 0.207	Mean (Log Scale) SD (Log Scale) 95% UTL 90% Coverage 95% UPL (t) 90% Percentile (z) 95% Percentile (z) 99% Percentile (z)	1.081 0.334 0.248 0.136 0.202 0.422
678 679 680 681 682 683 684 685	Mean SD 95% UTL 90% Coverage 95% UPL (t) 90% Percentile (z) 95% Percentile (z) 99% Percentile (z) Maximum Likelihood Estimate(MLE) Method Mean	0.0641 0.0868 0.247 0.223 0.175 0.207	Mean (Log Scale) SD (Log Scale) 95% UTL 90% Coverage 95% UPL (t) 90% Percentile (z) 95% Percentile (z) 99% Percentile (z) Log ROS Method	1.081 0.334 0.248 0.136 0.202 0.422

		т —				_	T _		_					T .	
601	Α		В		С	D	E	F	G	Н	95% BCA l	J JTL with	K 90% Coverage	0.268	
691 692										95% Bo	ootstrap (%) l	JTL with	90% Coverage	0.28	
693							95% UPL (t)	0.226					95% UPL (t)	0.253	
694						90%	Percentile (z)	0.175				90%	Percentile (z)	0.138	
695						95%	Percentile (z)	0.209				95%	Percentile (z)	0.205	
696						99%	Percentile (z)	0.272				99%	Percentile (z)	0.434	
697								1						1	
698	C	Gam	ma Distri	ibutio	n Test v	vith Detecte	d Values Onl	y	Data Distribution Test with Detected Values Only						
699						k star (bi	as corrected)			Data do not	follow a Disc	ernable Di	stribution (0.05	5)	
700							Theta Star							,	
701							nu star	21.27							
702															
703							Test Statistic				Nonparamet				
704							Critical Value				Ka	aplan-Meie	er (KM) Method		
705							Test Statistic							0.0646	
706				-			Critical Value							0.0834	
707	D	ata r	not Gamı	ma Di	istribute	d at 5% Sig	nificance Lev	el			050/ 1/041		SE of Mean		
708			A -			Distallar							90% Coverage		
709						ma Distribu					,		hebyshev UPL		
710			Jamma	RUS	Statistic	S WITH EXTR	polated Data	0.0636					5% KM UPL (t)		
711							Median						Percentile (z)		
712								0.022					Percentile (z)		
713								0.0872				99%	6 Percentile (z)	0.259	
714							Theta star			Gamma	ROS Limite v	vith Eytran	olated Data		
715							Nu star		Gamma ROS Limits with Extrapolated Data 95% Wilson Hilferty (WH) Approx. Gamma UPL 0.25						
716					95% Pei	rcentile of C	hisquare (2k)				• ,	,	. Gamma UPL		
717							- Inoquaro (En)	0.000	959				90% Coverage		
718						90)% Percentile	0.176					90% Coverage		
719							5% Percentile								
720 721							% Percentile								
721 722															
	Note: DL/2	is no	ot a reco	mmer	nded me	ethod.									
724															
725															
	Thallium														
727															
728								General	Statistics						
729	Number of Valid [14			1	Number of	Detected Data	6	
730	Number of Distinct Detected							6			Nu	mber of No	on-Detect Data	8	
731	Tolerance Fa						erance Factor	2.109				Percer	nt Non-Detects	57.14%	
732								•						•	
733					Raw St	tatistics					Log-transform	ned Statist	iics		
734						Minim	um Detected	0.15					mum Detected		
735							um Detected					Maxi	mum Detected	-0.0943	
736		Mean of Det						0.37				Me	an of Detected	-1.254	

				T	1	T	1	1	1			
737	А	В	С	D SI	E O of Detected	0.312	G	Н	I	J K SD of Detected	L 0.754	
738				Minimun	n Non-Detect	0.13				Minimum Non-Detect	-2.04	
739				Maximur	n Non-Detect	0.41				Maximum Non-Detect	-0.892	
740												
741		Data	with Multipl	e Detection I	_imits	1		Sing	gle Detection	Limit Scenario		
742	Note: Data ha	ave multiple	DLs - Use	of KM Metho	d is recomme	ended		Number	treated as N	on-Detect with Single DL	12	
743	For all metho	ds (except	KM, DL/2, a	nd ROS Met	hods),		Number treated as Detected with Single DL 2					
744	Observations	< Largest	ND are treat	ted as NDs					Single DL	Non-Detect Percentage	85.71%	
745												
746												
747				W	arning: There	e are only 6	Detected Value	ues in this da	ta			
748			Note:	It should be	noted that ev	en though b	ootstrap may	be performe	d on this dat	a set		
749				the resulting	g calculations	may not be	reliable enou	gh to draw c	onclusions			
750												
751		I	t is recomm	ended to hav	e 10-15 or m	ore distinct	observations	for accurate	and meaning	gful results.		
752												
753						Backgroui	nd Statistics					
754	No	rmal Distrib	bution Test v	with Detected	d Values Only	/	Log	normal Distr	ibution Test	with Detected Values On	ly	
755			5	Shapiro Wilk	Test Statistic	0.765			S	hapiro Wilk Test Statistic	0.824	
756			5% S	hapiro Wilk	Critical Value	0.788			5% Sh	napiro Wilk Critical Value	0.788	
757		Data not	Normal at 5	5% Significar	nce Level	1		Data appear	Lognormal a	at 5% Significance Level		
758												
759		As	suming Nor	mal Distribut	ion			Assu	ıming Logno	rmal Distribution		
760				DL/2 Substit	ution Method					DL/2 Substitution Method		
761					Mean	0.219				Mean (Log Scale)	-1.862	
762					SD	0.239				SD (Log Scale)	0.772	
763			(95% UTL 90	0% Coverage				9	5% UTL 90% Coverage	0.792	
764					95% UPL (t)	0.657				95% UPL (t)		
765				90%	Percentile (z)	0.525				90% Percentile (z)	0.418	
766				95%	Percentile (z)	0.612				95% Percentile (z)	0.553	
767				99%	Percentile (z)	0.775				99% Percentile (z)	0.937	
768												
769		Maxim	um Likelihoo	od Estimate(l	MLE) Method	N/A				Log ROS Method		
770										Mean in Original Scale		
771										SD in Original Scale		
772										Mean in Log Scale		
773										SD in Log Scale		
774									9	5% UTL 90% Coverage		
775										95% UPL (t)		
776										90% Percentile (z)		
777										95% Percentile (z)		
778										99% Percentile (z)	1.011	
779												
780	Ga	mma Distri	bution Test		d Values Onl					h Detected Values Only		
781				k star (bi	as corrected)		Data fo	ollow Appr. G	Samma Distr	ibution at 5% Significance	e Level	
782					Theta Star	0.322						
											-	

,		_	_				T =	_		1 -	 		1.6	 -
783	Α	В	С		D	E nu star	F 13.81	G H I J K						
784														
785					A-D 7	Test Statistic	0.688			Nonparame	tric Statis	tics		
786				5%	A-D C	Critical Value	0.704			K	aplan-Mei	ier (KM)	Method	
787					K-S 7	Test Statistic	0.36						Mean	0.247
788				5%	K-S C	Critical Value	0.336						SD	0.215
789	Data fo	llow Appx. 0	Gamma Dis	stribution	at 5%	Significance	Level					SE c	of Mean	0.063
790										95% KM	UTL with	90% Co	overage	0.701
791		As	ssuming Ga	amma Di	stribut	ion					95% KM (Chebysh	ev UPL	1.217
792		Gamma	ROS Statis	stics with	Extra	polated Data					(95% KM	UPL (t)	0.641
793						Mean	0.159				90	% Perce	ntile (z)	0.523
794						Median	0.000001				95	% Perce	ntile (z)	0.601
795						SD	0.271				99	% Perce	ntile (z)	0.747
796						k star	0.142							
797						Theta star	1.116		Gamma	ROS Limits	with Extra	polated [Data	
798						Nu star	3.98		95% Wils	on Hilferty (\	VH) Appro	x. Gamr	na UPL	0.876
799			95% F	Percentile	e of Ch	nisquare (2k)	1.58		95% Hawk	ins Wixley (F	HW) Appro	x. Gamr	na UPL	1.108
800								959	% WH Appr	ox. Gamma	UTL with	90% C	overage	1.179
801					909	% Percentile	0.466	95	% HW Appı	ox. Gamma	UTL with	90% Cd	overage	1.629
802					959	% Percentile	0.882							
803					999	% Percentile	2.1							
804							II.							
	Note: DL/2 i	s not a reco	mmended	method.										
806														
807														
808	Zinc													
809														
810								Statistics						
811			Tot	tal Numb		Observations				Numbe	er of Distin	ct Obser	vations	12
812					Tole	rance Factor	2.109							
813														
814			Raw	Statistic	S		1		l	Log-Transfo	med Stati			
815						Minimum							inimum	
816						Maximum							aximum	
817						ond Largest						Second	-	
818					F	irst Quartile							Quartile	
819						Median							Median	
820					Т	hird Quartile						Third (Quartile	
821							312.9						Mean	
822					Geo	metric Mean								
823					u : -! ·		1004							
824				Coe	πicient	of Variation								
825						Skewness	3./35							
826								10. 11.						
827	Normal Distribution Test						Backgrour	ackground Statistics Lognormal Distribution Test						
828			Normal Di	estributio	n i est				L	_ognormal D	stribution	ı est		

ightharpoons	Α	В	С	D	E	F	G	Н	l l	J	K	L			
829				<u> </u>	Test Statistic					· ·	Test Statistic				
830				•	Critical Value	0.874				•	Critical Value	0.874			
831		Data not	t Normal at 5	% Significa	nce Level			Data not L	ognormal at	5% Significa	ance Level				
832															
833		As	ssuming Nort					Ass		ormal Distrib					
834			95% l	UTL with 9	0% Coverage		95% UTL with 90% Coverage 94								
835					95% UPL (t)		95% UPL (t) 64								
836					Percentile (z)		90% Percentile (z) 299.								
837				95%	Percentile (z)	1965	95% Percentile (z) 497								
838				99%	Percentile (z)	2649				99% I	Percentile (z)	1283			
839															
840			Gamma Dist	tribution Tes	st				Data Distri	bution Test					
841					k star	0.335	C	ata do not f	ollow a Disce	ernable Distr	ibution (0.05)				
842					Theta Star	934.7									
843					MLE of Mean	312.9									
844			M	ILE of Stand	ard Deviation	540.8									
845					nu star	9.374									
846															
847				A-D	Test Statistic	3.122			Nonparame	tric Statistics	3	I			
848				5% A-D	Critical Value	0.819				90	% Percentile	120.4			
849				K-S	Test Statistic	0.386				95	% Percentile	1415			
850				5% K-S	Critical Value	0.246				99	% Percentile	3323			
851	Da	ta not Gamr	ma Distribute	ed at 5% Sig	nificance Lev	el									
852															
853		As	suming Gam	nma Distribu	tion				95% (UTL with 90)% Coverage	3800			
854				90	0% Percentile	909.6	95	% Percentil	e Bootstrap	UTL with 90	0% Coverage	3800			
855				95	5% Percentile	1381		95% BC	A Bootstrap	UTL with 90)% Coverage	2699			
856				99	9% Percentile	2590					95% UPL	3800			
857										95% Che	ebyshev UPL	4844			
858			95% \	WH Approx.	Gamma UPL	1124		Ul	pper Thresho	old Limit Bas	ed upon IQR	112.1			
859			95% H	HW Approx.	Gamma UPL	982.9									
860	959	% WH Appro	ox. Gamma l	UTL with 9	0% Coverage	1451									
861	959	% HW Appro	ox. Gamma l	UTL with 9	0% Coverage	1305									
862						1						1			
マムン															

	Α	В	С	D E	F	G H I J K	L
1				General Background Sta	tistics for So	il Data Sets with Non-Detects	
2		User Selec	cted Options				
3			From File	L:\Project Notebook\178	00-11 Van S	tone Mine\2011-10 Field Event 1\Background Analysis\ProUCL	_ajg\Result
4		Ful	II Precision	OFF			
5		Confidence	Coefficient	95%			
6			Coverage	90%			
7	Diffe	ent or Futur	e K Values	1			
8	Number o	f Bootstrap	Operations	2000			
9							
10							
11	Antimony						
12							
13					General		
14			Total	Number of Observations		Number of Distinct Observations	12
15				Tolerance Factor	2.109		
16							
17			Raw S	tatistics		Log-Transformed Statistics	
18				Minimum		Minimum	
19				Maximum		Maximum	
20				Second Largest		Second Largest	
21				First Quartile		First Quartile	-1.445
22				Median	0.345	Median	-1.067
23				Third Quartile		Third Quartile	-0.503
24				Mean		Mean	
25				Geometric Mean		SD	0.633
26				SD	0.288		
27				Coefficient of Variation	0.63		
28				Skewness	0.941		
29							
30					Backgroun		
31				ribution Test		Lognormal Distribution Test	
32				hapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	
33				hapiro Wilk Critical Value	0.874	Shapiro Wilk Critical Value	0.874
34		Data appe	ear Normal at	5% Significance Level		Data appear Lognormal at 5% Significance Level	
35							
36		Ās	•	mal Distribution		Assuming Lognormal Distribution	
37			95% l	JTL with 90% Coverage		95% UTL with 90% Coverage	
38				95% UPL (t)		95% UPL (t)	
39				90% Percentile (z)		90% Percentile (z)	
40				95% Percentile (z)		95% Percentile (z)	
41				99% Percentile (z)	1.127	99% Percentile (z)	1.66
42							
43			Gamma Dist	ribution Test		Data Distribution Test	
44				k star	2.32	Data appear Normal at 5% Significance Level	
45				Theta Star			
46				MLE of Mean	0.457		
47			M	LE of Standard Deviation			
48				nu star	64.95		
49							
50				A-D Test Statistic	0.303	Nonparametric Statistics	
51				5% A-D Critical Value	0.743	90% Percentile	0.919
						go 1 of 16 Soil Data Sate with No	

	A B C D E	F	G H I J K	L
52	K-S Test Statistic	0.144	95% Percentile	1
53	5% K-S Critical Value		99% Percentile	1
54	Data appear Gamma Distributed at 5% Significance Le	evel		
55				
56	Assuming Gamma Distribution		95% UTL with 90% Coverage	
57	90% Percentile		95% Percentile Bootstrap UTL with 90% Coverage	
58	95% Percentile		95% BCA Bootstrap UTL with 90% Coverage	
59	99% Percentile	1.423	95% UPL	
60			95% Chebyshev UPL	
61	95% WH Approx. Gamma UPL		Upper Threshold Limit Based upon IQR	1.163
62	95% HW Approx. Gamma UPL			
63	95% WH Approx. Gamma UTL with 90% Coverage			
64	95% HW Approx. Gamma UTL with 90% Coverage	1.268		
65				
66				
67				
68	Arsenic			
69				
70			I Statistics	
71	Total Number of Observations		Number of Distinct Observations	13
72	Tolerance Factor	2.109		
73				
74	Raw Statistics	T. 0	Log-Transformed Statistics	0.500
75	Minimum		Minimum	
76	Maximum		Maximum	
77	Second Largest		Second Largest	
78	First Quartile		First Quartile	
79	Median		Median	
80	Third Quartile		Third Quartile	
81		3.436	Mean	
82	Geometric Mean		50	0.339
83		1.08		
84	Coefficient of Variation			
85	Skewness	-0.0744		
86		Daalamaa	nd Statistics	
87	Normal Distribution Test	Баскугои		
88	Shapiro Wilk Test Statistic	0.042	Lognormal Distribution Test	0.026
89	Shapiro Wilk Critical Value		Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	
90	Data appear Normal at 5% Significance Level	0.674	Data appear Lognormal at 5% Significance Level	0.074
91	Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
92	Assuming Normal Distribution		Assuming Lognormal Distribution	
93	95% UTL with 90% Coverage	5 713	95% UTL with 90% Coverage	6 671
94	95% UPL (t)		95% UTL With 90% Coverage 95% UPL (t)	
95	90% Percentile (z)		90% Percentile (z)	
96	95% Percentile (z)		95% Percentile (z)	
97	99% Percentile (z)		99% Percentile (z)	
98	33 % Fercentile (2)	J.J+/	99 % Fercentile (2)	7.101
99	Gamma Distribution Test		Data Distribution Test	
100		7.949	Data Distribution Test Data appear Normal at 5% Significance Level	
101	K Star Theta Star		Data appear Normal at 5% Significance Level	
102	meta Star	0.432		
		_	Page 2 of 16 Soil Data Sets with No	_

	A B C D E	F	G	Н	ı	J	K	L
103	MLE of Mean							
104	MLE of Standard Deviation							
105	nu star	222.6						
106	A D.T. v Ov. r. r.	0.400			1	- 4-1 - 04-41-41-		
107	A-D Test Statistic				vonparam	etric Statistic		4.54
108	5% A-D Critical Value						0% Percentil	
109	K-S Test Statistic						5% Percentil	
110	5% K-S Critical Value					9	9% Percentil	5.122
111	Data appear Gamma Distributed at 5% Significance Le	evei						_
112	Assuming Gamma Distribution				0E9/	LITI with C	0% Coverag	5 F 2
113	90% Percentile	5.06	OF	5% Percentile				
114	95% Percentile		3.				00% Coverag	
115	99% Percentile			93 % DCA	Dootstrap	OTE WILL S	95% UP	
116	33 % Felcentile	0.884				95% Ck	nebyshev UP	
117	95% WH Approx. Gamma UPL	5 778		Her	ner Throat		sed upon IQI	
118	95% WH Approx. Gamma UPL			орр	per milesi	IOIU LIIIIII DA	seu upon iQi	1.075
119	95% WH Approx. Gamma UTL with 90% Coverage							
120	95% HW Approx. Gamma UTL with 90% Coverage							
121	5576 THY Approx. Gaining OTE with 5076 Coverage	J.J22						
122								
123								
124	Beryllium							
123	Doily main							
126		General	Statistics					
127	Total Number of Observations				Numb	er of Distinct	Observation	12
128	Tolerance Factor							
129								
130	Raw Statistics			Lo	g-Transfo	rmed Statist	ics	
131	Minimum	0.27					Minimun	n -1.309
132	Maximum						Maximun	
133	Second Largest	0.73				S	econd Larges	t -0.315
134 135	First Quartile						First Quartile	e -1.054
136	Median	0.47					Media	n -0.755
137	Third Quartile	0.57					Third Quartile	e -0.563
138	Mean	0.486					Mea	n -0.776
139	Geometric Mean	0.46					SI	0.348
140	SD	0.166						
141	Coefficient of Variation	0.342						
142	Skewness	0.452						
143		<u> </u>						
144	Background Statistics							
145	Normal Distribution Test			Lo	gnormal C	Distribution T	est	
146	Shapiro Wilk Test Statistic	0.927				Shapiro Wilk	Test Statisti	0.942
147	Shapiro Wilk Critical Value	0.874			;	Shapiro Wilk	Critical Value	0.874
148	Data appear Normal at 5% Significance Level	I		Data appear I	Lognorma	l at 5% Sign	ficance Leve	
149								
150	Assuming Normal Distribution		Assuming Lognormal Distribution					
151	95% UTL with 90% Coverage	0.837	95% UTL with 90% Coverage 0.958					
152	95% UPL (t)	0.791					95% UPL (1	0.871
153	90% Percentile (z)	0.7				90%	Percentile (z	0.719
<u></u> 00								

	A B C D E	F	G H I J K	L
154	95% Percentile (z)		95% Percentile (z)	
155	99% Percentile (z)	0.873	99% Percentile (z)	1.033
156				
157	Gamma Distribution Test		Data Distribution Test	
158	k star	7.295	Data appear Normal at 5% Significance Level	
159	Theta Star	0.0667		
160	MLE of Mean	0.486		
161	MLE of Standard Deviation	0.18		
162	nu star	204.3		
163				
164	A-D Test Statistic		Nonparametric Statistics	
165	5% A-D Critical Value	0.735	90% Percentile	
166	K-S Test Statistic	0.14	95% Percentile	0.748
167	5% K-S Critical Value		99% Percentile	0.774
168	Data appear Gamma Distributed at 5% Significance Le	evel		
169				
170	Assuming Gamma Distribution		95% UTL with 90% Coverage	
171	90% Percentile	0.727	95% Percentile Bootstrap UTL with 90% Coverage	
172	95% Percentile	0.815	95% BCA Bootstrap UTL with 90% Coverage	
173	99% Percentile	1	95% UPL	
174			95% Chebyshev UPL	
175	95% WH Approx. Gamma UPL		Upper Threshold Limit Based upon IQR	0.9
176	95% HW Approx. Gamma UPL			
177	95% WH Approx. Gamma UTL with 90% Coverage			
178	95% HW Approx. Gamma UTL with 90% Coverage	0.913		
179				
180				
181				
182	Cadmium			
102	Cadmium			
183			Statistics	
183 184	Total Number of Observations	14	Statistics Number of Distinct Observations	13
183 184 185		14		13
183 184 185 186	Total Number of Observations Tolerance Factor	14	Number of Distinct Observations	13
183 184 185 186 187	Total Number of Observations Tolerance Factor Raw Statistics	2.109	Number of Distinct Observations Log-Transformed Statistics	
183 184 185 186 187	Total Number of Observations Tolerance Factor Raw Statistics Minimum	2.109	Number of Distinct Observations Log-Transformed Statistics Minimum	-1.609
183 184 185 186 187 188	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum	14 2.109 0.2 3.1	Log-Transformed Statistics Minimum Maximum	-1.609 1.131
183 184 185 186 187 188 189	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest	0.2 3.1 1.8	Log-Transformed Statistics Minimum Maximum Second Largest	-1.609 1.131 0.588
183 184 185 186 187 188 189 190	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile	0.2 3.1 1.8 0.303	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile	-1.609 1.131 0.588 -1.203
183 184 185 186 187 188 189 190 191	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile Median	0.2 3.1 1.8 0.303 0.49	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile Median	-1.609 1.131 0.588 -1.203
183 184 185 186 187 188 189 190 191 192 193	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile	0.2 3.1 1.8 0.303 0.49 0.848	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile	-1.609 1.131 0.588 -1.203 -0.724 -0.166
182 183 184 185 186 187 188 189 190 191 192 193	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean	0.2 3.1 1.8 0.303 0.49 0.848 0.798	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean	-1.609 1.131 0.588 -1.203 -0.724 -0.166 -0.567
183 184 185 186 187 188 189 190 191 192 193 194 195	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean Geometric Mean	0.2 3.1 1.8 0.303 0.49 0.848 0.798	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean	-1.609 1.131 0.588 -1.203 -0.724 -0.166
183 184 185 186 187 188 189 190 191 192 193 194 195	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean Geometric Mean	0.2 3.1 1.8 0.303 0.49 0.848 0.798 0.567 0.803	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean	-1.609 1.131 0.588 -1.203 -0.724 -0.166 -0.567
183 184 185 186 187 188 189 190 191 192 193 194 195 196	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean Geometric Mean SD Coefficient of Variation	0.2 3.1 1.8 0.303 0.49 0.848 0.798 0.567 0.803 1.006	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean	-1.609 1.131 0.588 -1.203 -0.724 -0.166 -0.567
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean Geometric Mean	0.2 3.1 1.8 0.303 0.49 0.848 0.798 0.567 0.803 1.006	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean	-1.609 1.131 0.588 -1.203 -0.724 -0.166 -0.567
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean Geometric Mean SD Coefficient of Variation	0.2 3.1 1.8 0.303 0.49 0.848 0.798 0.567 0.803 1.006 2.16	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean SD	-1.609 1.131 0.588 -1.203 -0.724 -0.166 -0.567
183 184 185 186 187 188 190 191 192 193 194 195 196 197 198 199 200	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean Geometric Mean SD Coefficient of Variation Skewness	0.2 3.1 1.8 0.303 0.49 0.848 0.798 0.567 0.803 1.006 2.16	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean SD	-1.609 1.131 0.588 -1.203 -0.724 -0.166 -0.567
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean Geometric Mean SD Coefficient of Variation Skewness Normal Distribution Test	0.2 3.1 1.8 0.303 0.49 0.848 0.798 0.567 0.803 1.006 2.16	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean SD	-1.609 1.131 0.588 -1.203 -0.724 -0.166 -0.567 0.807
182 183 184 185 186 187 188 199 191 192 193 194 195 196 197 198 199 200 201 202 203	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean Geometric Mean SD Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic	0.2 3.1 1.8 0.303 0.49 0.848 0.798 0.567 0.803 1.006 2.16	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean SD SD Mod Statistics Lognormal Distribution Test Shapiro Wilk Test Statistic	-1.609 1.131 0.588 -1.203 -0.724 -0.166 -0.567 0.807
183 184 185 186 187 188 190 191 192 193 194 195 196 197 198 199 200 201 202	Total Number of Observations Tolerance Factor Raw Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean Geometric Mean SD Coefficient of Variation Skewness Normal Distribution Test	0.2 3.1 1.8 0.303 0.49 0.848 0.798 0.567 0.803 1.006 2.16	Log-Transformed Statistics Minimum Maximum Second Largest First Quartile Median Third Quartile Mean SD	-1.609 1.131 0.588 -1.203 -0.724 -0.166 -0.567 0.807

Assuming Normal Distribution		A B C D E	F	G H I J K	L
Assuming Lognormal Distribution Assuming Lognormal Distribution S9% UTL with 90% Coverage 2.49 S9% UTL with 90% Coverage 3.112	205	Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Section Sect	206				
SS% UPL (II) 2.695 95% UPL (II) 2.491 95% UPL (II) 2.491 95% UPL (II) 2.491 95% UPL (II) 2.491 95% Percentile (2) 1.596 95% Percentile (2) 1.596 95% Percentile (2) 2.141 95% Percenti	207				
90% Percentile (z) 2.18 90% Percentile (z) 2.18 95% Percentile (z) 2.19 95% Percentile (z) 2.18 95% Percentile (z) 2.19	208	-			
10	209				
12 99% Percentile (z) 2,665 99% Percentile (z) 3,769	210	* *			
Gamma Distribution Test	211	``			
Gamma Distribution Test	212	99% Percentile (z)	2.665	99% Percentile (z)	3.709
19	213				
The table Tabl	214				
MILE of Mean 0.798	215			Data appear Gamma Distributed at 5% Significance Le	vel
MLE of Standard Deviation 0.696	216				
Nonparametric Statistics Nonparametric Statistics Nonparametric Statistics	217				
1920 A-D Test Statistic 0.534 Nonparametric Statistics 221 S-S A-D Critical Value 0.75 90% Percentile 1.65 225 235 K-S Test Statistic 0.204 95% Percentile 2.255 235 K-S Critical Value 0.322 99% Percentile 2.255 235 S-S K-S Critical Value 0.322 99% Percentile 2.931 235 2	218				
A-D Test Statistic 0.634 Nonparametric Statistics Statistic Statistic Statistic Statistic Statistic Statistic 225 S% A-D Critical Value 0.75 90% Percentile 1.65 225 23 K-S Test Statistic 0.204 95% Percentile 2.931 225 24 5% K-S Critical Value 0.232 99% Percentile 2.931 225 226 231 232 233 233 235 234 235 23	219	nu star	36.83		
Second Largest Seco	220				
Symbol S	221				
K-S Test Statistic 0.204 95% Percentile 2.255	222	5% A-D Critical Value	0.75	90% Percentile	1.65
Data appear Gamma Distributed at 5% KS. Critical Value 0.232 99% Percentile 2.931	223	K-S Test Statistic	0.204	95% Percentile	2.255
Data appear Gamma Distributed at 5% Significance Level	224	5% K-S Critical Value	0.232	99% Percentile	2.931
Assuming Gamma Distribution 95% UTL with 90% Coverage 3.1	225	Data appear Gamma Distributed at 5% Significance Le	evel		
Assuming Gamma Distribution 95% UTL with 90% Coverage 3.1	226				
95% Percentile 2.173 95% BCA Bootstrap UTL with 90% Coverage 3.1 30 99% Percentile 3.211 95% UPL 3.1 31 95% WHA Approx. Gamma UPL 2.293 Upper Threshold Limit Based upon IQR 1.665 32 95% WHA Approx. Gamma UPL 2.293 Upper Threshold Limit Based upon IQR 1.665 33 95% HW Approx. Gamma UTL with 90% Coverage 2.675 34 95% WHA Approx. Gamma UTL with 90% Coverage 2.745 35 95% HW Approx. Gamma UTL with 90% Coverage 2.745 36 37 38 39 Chromium 4.7 Number of Distinct Observations 1.54 44 Tolerance Factor 2.109	227	Assuming Gamma Distribution		95% UTL with 90% Coverage	3.1
30 99% Percentile 3.211 95% UPL 3.1	228	90% Percentile	1.717	95% Percentile Bootstrap UTL with 90% Coverage	3.1
	229	95% Percentile	2.173	95% BCA Bootstrap UTL with 90% Coverage	3.1
	230	99% Percentile	3.211		
333 95% HW Approx. Gamma UPL 2.323	231			95% Chebyshev UPL	4.419
95% HW Approx. Gamma UTL with 90% Coverage 2.675 95% HW Approx. Gamma UTL with 90% Coverage 2.745 369 370 380 380 390 390 390 390 390 390 390 390 390 39	232	95% WH Approx. Gamma UPL	2.293	Upper Threshold Limit Based upon IQR	1.665
95% HW Approx. Gamma UTL with 90% Coverage 2.745	233	95% HW Approx. Gamma UPL	2.323		
Second Largest First Quartile 7.375	234	95% WH Approx. Gamma UTL with 90% Coverage	2.675		
Chromium Chromium	235	95% HW Approx. Gamma UTL with 90% Coverage	2.745		
Chromium Chromium	236				
Chromium Chromium	237				
General Statistics General Statistics Total Number of Observations 14	238				
	239	Chromium			
	240				
Tolerance Factor 2.109	241		General	Statistics	
Tolerance Factor 2.109	242	Total Number of Observations	14	Number of Distinct Observations	13
Raw Statistics Log-Transformed Statistics	243	Tolerance Factor	2.109		
Raw Statistics Log-Transformed Statistics Log-Transformed Statistics April Maximum 16 Maximum 2.773 April Maximum 16 Maximum 2.773 April Maximum Maximum Maximum Maximum 2.773 April Maximum Maximum Maximum 2.773 April Maximum Maximum 2.773 April Maximum Maximum Maximum 2.773 April Maximum Maximum 2.773 April Maximum Maximum Maximum 2.773 April Maximum Maximum Maximum Maximum 2.773 April Maximum Maximum Maximum Maximum 2.773 April Maximum Maximum 2.774 April Maximum Maximum 2.774 April Maximum Maximum 2.774 April Maximum Maximum 2.774 April Maximum Maximum 2.775 April Maximum Maximum 2.775 April Maximum Maximum 2.775 April Maxim	244				
446 Minimum 4.7 Minimum 1.548 447 Maximum 16 Maximum 2.773 448 Second Largest 15 Second Largest 2.708 449 First Quartile 7.375 First Quartile 1.997 450 Median 9.95 Median 2.298 451 Third Quartile 12.75 Third Quartile 2.545 452 Mean 10.18 Mean 2.251 453 Geometric Mean 9.498 SD 0.399 454 SD 3.716 SD 0.365	245		·	Log-Transformed Statistics	-
Maximum Maximum Maximum Maximum 2.773 Maximum 15 Second Largest 2.708 Maximum 2.773 Maximum 2.708 Maximum 2.708 Maximum 2.708 Maximum 2.708 Maximum 2.708 Maximum 1.997 Maximum 2.298 Median 2.298 Maximum 2.298 Median 2.298 Maximum 2.298 Median 2.298 Median 2.298 Mean 10.18 Mean 2.251 Mean 2.251 Mean 3.716 Mean 0.365	246	Minimum	4.7	Minimum	1.548
148 Second Largest 15 Second Largest 2.708 149 First Quartile 7.375 First Quartile 1.997 150 Median 9.95 Median 2.298 151 Third Quartile 12.75 Third Quartile 2.545 152 Mean 10.18 Mean 2.251 153 Geometric Mean 9.498 SD 0.399 154 SD 3.716 155 Coefficient of Variation 0.365	247	Maximum	16	Maximum	2.773
First Quartile 7.375 First Quartile 1.997 Median 9.95 Median 2.298 Third Quartile 12.75 Third Quartile 2.545 Mean 10.18 Mean 2.251 Geometric Mean 9.498 SD 0.399 SD 3.716 Coefficient of Variation 0.365	248	Second Largest	15	Second Largest	2.708
Median 9.95 Median 2.298 151 Third Quartile 12.75 Third Quartile 2.545 152 Mean 10.18 Mean 2.251 153 Geometric Mean 9.498 SD 0.399 154 SD 3.716	249	First Quartile	7.375	First Quartile	1.997
Third Quartile 12.75 Third Quartile 2.545	250	Median	9.95	Median	2.298
Mean 10.18 Mean 2.251	251	Third Quartile	12.75	Third Quartile	2.545
Geometric Mean 9.498 SD 0.399	252	Mean	10.18	Mean	2.251
SD 3.716 Coefficient of Variation 0.365	253	Geometric Mean	9.498	SD	0.399
Coefficient of Variation 0.365	254	SD	3.716		
	255	Coefficient of Variation	0.365		

	Α	В	С		D		E	F		G	Н		<u> </u>		J		K	L
256						Ske	wness	0.08										
257																		
258								Backgro	ound Sta	tistics								
259			Normal I					T				Logn			ution Te			
260					oiro Wilk									-		Test St		
261					oiro Wilk			0.874						•		Critical		0.874
262		Data appe	ar Norma	al at 5%	Signific	ance L	evel				Data app	ear Lo	gnorma	al at 5%	6 Signif	icance	Level	
263																		
264		As	ssuming I									Assumir						
265			95	5% UTL	with 90		_						95%	6 UTL v	with 9	0% Cov		
266					222		• • •	16.99									JPL (t)	
267						Percen	. ,									Percen	. ,	
268						Percen	. ,									Percen	• • •	
269					99%	Percen	tile (z)	18.82							99%	Percen	itile (z)	24.02
270			Gamma	D:										4-21 -1				
271			Gamma	DISTRIBU	ution les			E 050					ata Dis					
272								5.856 1.738			Data ap	pear N	iormal	at 5% :	oignific	ance Lo	evel	
273						I het MLE of												
274				NAI ⊏	of Stand													
275				IVILE	oi Stanu		nu star											
276						<u> </u>	iu Stai	104										
277					Λ D	Test St	totictic	0.267				Nor	nnorom	notrio S	tatistic			
278					5% A-D							1101	iparaii	ieuic S		o 0% Pero	contilo	15
279						Test St										5% Pero		
280					5% K-S											9% Per		
281	Data	appear Gar	mma Dist															10.07
282		прроц. сс.			- C - C - C - C - C - C - C - C - C - C													
283		As	suming (Gamma	Distribu	ıtion							95%	6 UTL v	with 9	0% Cov	verage	16
284						0% Per	centile	15.8		95	5% Perce	entile Bo						
285						5% Per						BCA Bo		•			Ū	
286 287					99	9% Pero	centile	22.41						•			% UPL	
288														9	5% Ch	ebyshe	v UPL	26.94
289			95	5% WH	Approx.	Gamm	a UPL	18.41				Upper	r Thres			sed upo		
290					Approx.													
291	95%	% WH Appro																
292	95%	% HW Appro	ox. Gamr	ma UTL	with 9	0% Cov	verage	20.46										
293								1										
294																		
295	-	-																
	Copper																	
297																		
298								Gene	ral Statis	stics	-	-						
299			Т	otal Nu	mber of	Observ	ations	14					Numb	oer of D	Distinct	Observ	ations	13
300					Tole	erance	Factor	2.109										
301									l									
302			Ra	w Statis	stics							Log-	Transfo	ormed	Statisti	cs		
303						Mir	nimum	2.5								Mir	nimum	0.916
304						Max	kimum	20								Max	ximum	2.996
305					Se	cond L	argest	14							Se	cond L	.argest	2.639
306						First Q	uartile	3.7								First Q	uartile	1.307
									Page 6	of 16				,s	Soil Dat	a Sets	with N	on-Detects

	Α	В	С	D	E	F	G	Н		J	K	L
307				т	Median hird Quartile						Median Third Quartile	
308					Mean							1.765
309				Geo	metric Mean							0.604
310						4.853						0.001
311				Coefficien	t of Variation							
312					Skewness							
313 314												
315						Backgroui	nd Statistics					
316			Normal Distr	ribution Test				L	ognormal D	istribution Te	est	
317			S	hapiro Wilk	Test Statistic	0.806			(Shapiro Wilk	Test Statistic	0.952
318			Sh	napiro Wilk C	Critical Value	0.874			S	Shapiro Wilk	Critical Value	0.874
319		Data not	t Normal at 5	% Significan	ce Level			Data appear	Lognormal	at 5% Signif	icance Level	
320												
321		As	suming Norn	nal Distributi	on			Assı	uming Logn	ormal Distrib	ution	
322			95% L	JTL with 90	% Coverage	17.24			95%	UTL with 9	0% Coverage	20.88
323					95% UPL (t)	15.9					95% UPL (t)	17.67
324				90% F	Percentile (z)	13.22				90%	Percentile (z)	12.67
325					Percentile (z)						Percentile (z)	
326				99% F	Percentile (z)	18.29				99%	Percentile (z)	23.8
327												
328			Gamma Dist	ribution Test		T				ibution Test		
329					k star		Data	appear Gar	nma Distrib	uted at 5% S	ignificance L	evel
30					Theta Star							
31			N 41		ALE of Mean							
32			IVII	LE of Standa	ard Deviation							
333					nu star	65.66						
334				Δ-D -	Test Statistic	0.447			Nonnarame	etric Statistic	•	
335					Critical Value				Nonparame)% Percentile	12.8
336					Test Statistic						5% Percentile	
337					Critical Value						9% Percentile	
338	Data	a appear Gar	mma Distribu									
339					g							
340 341		As	suming Gam	ma Distribut	ion				95%	UTL with 9	0% Coverage	20
342				90	% Percentile	13.12	95	5% Percentile	e Bootstrap	UTL with 9	0% Coverage	20
343				95	% Percentile	15.8		95% BC/	A Bootstrap	UTL with 9	0% Coverage	20
344				99	% Percentile	21.7					95% UPL	. 20
345										95% Ch	ebyshev UPL	28.9
346			95% V	VH Approx.	Gamma UPL	16.49		Uţ	per Thresh	old Limit Bas	sed upon IQF	12.51
347			95% F	HW Approx.	Gamma UPL	16.69						
348	95	5% WH Appr	ox. Gamma l	JTL with 90	% Coverage	18.65						
349	95	5% HW Appr	ox. Gamma l	JTL with 90	% Coverage	19.05						
350												
351												
	Lead											
353							A					
353 I 354				N			Statistics			(5)	01 :	40
352 353 354 355 356			Total		Observations rance Factor	14	Statistics		Numbe	er of Distinct	Observations	13

	Α	В	С	D	E	F	G	Н		I		J	K	L
358			Raw S	tatistics					l og-	Transfo	ormed S	Statistic	<u> </u>	
359			- Naw O	Tatiotico .	Minimum	9.6			Log	Transio	,,,,,,		Minimur	2 262
360					Maximum								Maximur	
361				900	cond Largest							Soc	ond Larges	
362					First Quartile								irst Quartil	
363				'	Median	-								1 2.994
364				т	hird Quartile								hird Quartil	
365					Mean									3.062
366				Coo	metric Mean	-								0.579
367				Geo		13.96							31	0.579
368				Coefficien	טס t of Variation									
369				Coefficien	Skewness									
370					Skewness	0.497								
371						Daalamaaa	d Otatiatian							
372			Marina al Diat			Backgroun	d Statistics		1		N: - 4!!	T.		
373				tribution Test		0.06			Logr	ormal D				0 007
374				Shapiro Wilk									est Statisti	
375		D-4		hapiro Wilk (U.8/4	_	_4c - :			•		critical Valu	
376		Data not	i Normai at 5	i% Significan	ce Level		L	лата арр	ear Lo	gnorma	ıı at 5%	Signifi	cance Leve	· · · · · · · · · · · · · · · · · · ·
377				15:	•							D:		
378		As		mal Distributi		54.04		, , , , , , , , , , , , , , , , , , ,	Assumi	ng Logr				70.40
379			95% l	UTL with 90	•					95%	UIL		% Coverag	
380					95% UPL (t)								95% UPL (*
381					Percentile (z)								ercentile (z	
382					Percentile (z)								ercentile (z	
383				99% F	Percentile (z)	57.37						99% F	ercentile (z	82.13
384														
385			Gamma Dist	tribution Test						ata Dist				
386					k star		Data	appear (Gamm	a Distrib	outed a	t 5% Si	gnificance I	.evel
387					Theta Star	9.07								
388					MLE of Mean									
389			М	ILE of Standa	ard Deviation	15.03								
390					nu star	76.87								
391														
392					Test Statistic				No	nparam	etric S			
393				5% A-D (Critical Value	0.741							% Percentil	
394					Test Statistic								% Percentil	
395					Critical Value							99	% Percentil	46.74
396	Data	appear Gar	mma Distribu	uted at 5% Si	ignificance Le	evel								
397														
398		As	suming Gam	nma Distribut	ion					95%	UTL v	vith 90	% Coverag	e 47
399				90	% Percentile	45.04	959	% Perce	entile B	ootstrap	UTL v	with 90	% Coverag	e 47
400				95	% Percentile	53.62		95% I	BCA B	ootstrap	UTL v	with 90	% Coverag	e 47
401				99	% Percentile	72.3							95% UP	47
102											9	5% Che	byshev UP	87.88
103			95% V	WH Approx.	Gamma UPL	56			Uppe	r Thresh	hold Li	mit Bas	ed upon IQ	R 76.13
404			95% F	HW Approx.	Gamma UPL	57.14								
405	95	% WH Appro	ox. Gamma l	UTL with 90)% Coverage	62.88								
406	95	% HW Appro	ox. Gamma l	UTL with 90)% Coverage	64.73								
407						1	1							
408														

400	Α	В	С	D	E	F	G	Н		1		J	K		L
409															
410	Mercury														
411							100 11 11								
412							I Statistics								10
413			Total Nu	umber of Ob					N	Number	r of Dis	tinct C)bservati	ons	13
414				Tolerar	nce Factor	2.109									
415							T		. =						
416			Raw Statis	istics					Log-Tr	ansforr	med St	atistic			A :
417					Minimum										-3.772
418					Maximum								Maxim		
419					nd Largest								ond Lar		
420				Fir	st Quartile							F	irst Qua		
421						0.0675									-2.702
422				Thir	rd Quartile							TI	hird Qua		
423						0.0721									-2.787
424				Geome	etric Mean									SD	0.605
425						0.0395									
426			(Coefficient o											
427				;	Skewness	0.492									
428															
429						Backgroui	nd Statistics								
430			Normal Distribu						Lognor						
131			· · · · · · · · · · · · · · · · · · ·	piro Wilk Te				_					est Stat		
132				piro Wilk Crit		0.874							ritical Va		0.874
433		Data appea	ar Normal at 5%	% Significand	ce Level			Data appe	ar Logn	ormal a	at 5% 9	Signific	cance Le	vel	
434					_			_							
435		As	suming Normal					As	ssuming	-					
436			95% UTL	L with 90%	_					95% L	JTL wit		% Cover	_	
				95	5% UPL (t)								95% UP		
437						0.400						90% P	ercentile	, .т	
					rcentile (z)										o 40-
438				95% Per	rcentile (z)	0.137					(95% P	ercentile	e (z)	
438 439				95% Per		0.137					(95% P		e (z)	
438 439 440				95% Per 99% Per	rcentile (z)	0.137					(95% P 99% P	ercentile	e (z)	
438 439 440 441			Gamma Distrib	95% Per 99% Per	rcentile (z)	0.137				a Distril	bution	95% P 99% P Test	ercentile ercentile	e (z)	
438 439 440 441 442		(Gamma Distrib	95% Per 99% Per oution Test	rcentile (z)	0.137 0.164 2.669		Data app			bution	95% P 99% P Test	ercentile ercentile	e (z)	
438 439 440 441 442 443		(Gamma Distrib	95% Per 99% Per oution Test	rcentile (z) rcentile (z) k star	0.137 0.164 2.669 0.027		Data app			bution	95% P 99% P Test	ercentile ercentile	e (z)	
438 439 440 441 442 443		(95% Per 99% Per oution Test	rcentile (z) rcentile (z) k star Theta Star E of Mear	0.137 0.164 2.669 0.027 0.0721		Data app			bution	95% P 99% P Test	ercentile ercentile	e (z)	
438 439 440 441 442 443 444		(95% Per 99% Per oution Test	k star Theta Star E of Mear	0.137 0.164 2.669 0.027 0.0721 0.0441		Data app			bution	95% P 99% P Test	ercentile ercentile	e (z)	
438 439 440 441 442 443 444 445		(95% Per 99% Per oution Test	rcentile (z) rcentile (z) k star Theta Star E of Mear	0.137 0.164 2.669 0.027 0.0721 0.0441		Data app			bution	95% P 99% P Test	ercentile ercentile	e (z)	
438 449 441 442 443 444 445 446 447				95% Per 99% Per oution Test	k star Theta Star E of Mear	0.137 0.164 2.669 0.027 0.0721 0.0441		Data app			bution	95% P 99% P Test	ercentile ercentile	e (z)	
438 439 440 441 442 443 444 445 446 447 448			MLE	95% Per 99% Per oution Test ML of Standard	k star Theta Star E of Mear Deviatior nu star	0.137 0.164 2.669 0.027 0.0721 0.0441 74.72		Data app	oear No		bution 5	95% P 99% P Test gnifica	Percentile	e (z)	0.252
438 439 440 441 442 443 444 445 446 447 448 449			MLE	95% Per 99% Pe	k star Theta Star E of Mear Deviatior nu star	0.137 0.164 2.669 0.027 0.0721 0.0441 74.72 0.253 0.742		Data app	oear No	rmal at	bution 5	95% P 99% P Test gnifica tistics	rercentile rercentile rercentile	e (z) e (z) elimitation	0.252
438 439 440 441 442 443 444 445 446 447 448 449 450			MLE	95% Per 99% Pe	k star Theta Star E of Mear Deviatior nu star	0.137 0.164 2.669 0.027 0.0721 0.0441 74.72 0.253 0.742		Data app	oear No	rmal at	bution 5	95% P 99% P Test gnifica tistics	Percentile	e (z) e (z) elimitation	0.252
438 439 440 441 442 443 444 445 446 447 448 449 450 451			MLE	95% Per 99% Pe	k star Theta Star E of Mear I Deviatior nu star st Statistic tical Value st Statistic	0.137 0.164 2.669 0.027 0.0721 0.0441 74.72 0.253 0.742 0.129 0.23		Data app	oear No	rmal at	bution 5	95% P 99% P Test gnifica tistics 909	rercentile rercentile rercentile	e (z) e (z) e la contraction de la contraction d	0.252 0.117 0.131
438 439 440 441 442 443 444 445 446 447 448 450 451	Data		MLE	95% Per 99% Pe	k star Theta Star E of Mear I Deviatior nu star st Statistic tical Value st Statistic	0.137 0.164 2.669 0.027 0.0721 0.0441 74.72 0.253 0.742 0.129 0.23		Data app	oear No	rmal at	bution 5	95% P 99% P Test gnifica tistics 909	ercentile ercentile ercentile mce Leve % Percer	e (z) e (z) e la contraction de la contraction d	0.252 0.117 0.131
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453	Data		MLE	95% Per 99% Pe	k star Theta Star E of Mear I Deviatior nu star st Statistic tical Value st Statistic	0.137 0.164 2.669 0.027 0.0721 0.0441 74.72 0.253 0.742 0.129 0.23		Data app	oear No	rmal at	bution 5	95% P 99% P Test gnifica tistics 909	ercentile ercentile ercentile mce Leve % Percer	e (z) e (z) e la contraction de la contraction d	0.252 0.117 0.131
438 439 440 441 442 443 444 445 446 447 450 451 452 453 454	Data	a appear Gan	MLE	95% Per 99% Pe	k star Theta Star E of Mear I Deviation nu star st Statistic tical Value st Statistic tical Value	0.137 0.164 2.669 0.027 0.0721 0.0441 74.72 0.253 0.742 0.129 0.23		Data app	oear No	rmal at	bution 5% Signature	95% P 99% P Test gnifica tistics 909 959	ercentile ercentile ercentile mce Leve % Percer	et (z) et (z) et (z) et (z)	0.252 0.117 0.131 0.146
438 439 440 441 442 443 444 445 446 447 448 450 451 452 453 454 455	Data	a appear Gan	MLE	95% Per 99% Pe	k star Theta Star E of Mear I Deviation nu star st Statistic tical Value st Statistic tical Value	0.137 0.164 2.669 0.027 0.0721 0.0441 74.72 0.253 0.742 0.129 0.23 evel	95	Data app	Nonp	aramet	bution 5% Signature Startic St	95% P 99% P Test gnifica tistics 90% 95% 99%	mce Leve	e(z) el el entile ntile	0.252 0.117 0.131 0.146
438 439 440 441 442 443 444 445 446 447 448 450 451 452 453 454 455 456	Data	a appear Gan	MLE	95% Per 99% Pe	k star Theta Star E of Mear I Deviatior nu star st Statistic tical Value st Statistic tical Value	0.137 0.164 2.669 0.027 0.0721 0.0441 74.72 0.253 0.742 0.129 0.23 evel	95	% Percen	Nonp	aramet 95% U	bution 5% Signature tric Sta	95% P 99% P Test gnifica tistics 909 959 959 th 900 th 90	mce Leve % Percei % Percei % Percei	el e	0.252 0.117 0.131 0.146 0.15 0.15
437 438 439 440 441 442 443 446 447 448 449 450 451 452 453 454 455 456 457 458	Data	a appear Gan	MLE	95% Per 99% Pe	k star Theta Star E of Mean I Deviation nu star st Statistic tical Value st Statistic tical Value ificance L Percentile	0.137 0.164 2.669 0.027 0.0721 0.0441 74.72 0.253 0.742 0.129 0.23 evel	95	% Percen	Nonp	aramet 95% U	bution 5% Signature tric Sta	95% P 99% P Test gnifica tistics 909 959 959 th 900 th 90	mce Leve % Percer % Percer % Cover	e (z) el el entile ntile age age	0.252 0.117 0.131 0.146 0.15 0.15 0.141

	A B C D E	F	G H I J K	L
460	95% WH Approx. Gamma UPL	0.164	Upper Threshold Limit Based upon IQR	0.202
461	95% HW Approx. Gamma UPL	0.168		
462	95% WH Approx. Gamma UTL with 90% Coverage	0.184		
463	95% HW Approx. Gamma UTL with 90% Coverage	0.191		
464		1	-	
465				
466				
467	Nickel			
468				
469		General	Statistics	
470	Total Number of Observations	14	Number of Distinct Observations	13
471	Tolerance Factor	2.109		
472		1		
473	Raw Statistics		Log-Transformed Statistics	
474	Minimum	3.7	Minimum	1.308
475	Maximum	14	Maximum	2.639
476	Second Largest	13	Second Largest	2.565
477	First Quartile	6.425	First Quartile	1.857
478	Median	8.05	Median	2.086
479	Third Quartile	9.9	Third Quartile	2.292
480	Mean	8.2	Mean	2.027
481	Geometric Mean	7.591	SD	0.423
482	SD	3.165		
483	Coefficient of Variation	0.386		
484	Skewness	0.252		
485		I.		
486		Backgroun	d Statistics	
487	Normal Distribution Test		Lognormal Distribution Test	
488	Shapiro Wilk Test Statistic	0.955	Shapiro Wilk Test Statistic	0.929
489	Shapiro Wilk Critical Value	0.874	Shapiro Wilk Critical Value	0.874
490	Data appear Normal at 5% Significance Level	-	Data appear Lognormal at 5% Significance Level	
491				
492	Assuming Normal Distribution		Assuming Lognormal Distribution	
493	95% UTL with 90% Coverage	14.88	95% UTL with 90% Coverage	18.52
494	95% UPL (t)	14	95% UPL (t)	16.48
495	90% Percentile (z)	12.26	90% Percentile (z)	13.05
496	95% Percentile (z)	13.41	95% Percentile (z)	15.22
497	99% Percentile (z)	15.56	99% Percentile (z)	20.31
498		II.		
499	Gamma Distribution Test		Data Distribution Test	
500	k star	5.262	Data appear Normal at 5% Significance Level	
501	Theta Star	1.558		
502	MLE of Mean	8.2		
503	MLE of Standard Deviation	3.575		
504	nu star	147.3		
505				
506	A-D Test Statistic	0.323	Nonparametric Statistics	
507	5% A-D Critical Value	0.737	90% Percentile	12.4
	K-S Test Statistic	0.163	95% Percentile	13.35
508		1	ı	
508 509	5% K-S Critical Value	0.229	99% Percentile	13.87
508 509 510	5% K-S Critical Value Data appear Gamma Distributed at 5% Significance Le		99% Percentile	13.87

	A B C D E	F	G H I J K	L
511				
512	Assuming Gamma Distribution		95% UTL with 90% Coverage	
513	90% Percentile		95% Percentile Bootstrap UTL with 90% Coverage	
514	95% Percentile		95% BCA Bootstrap UTL with 90% Coverage	
515	99% Percentile	18.7	95% UPL	
516			95% Chebyshev UPL	
517	95% WH Approx. Gamma UPL	15.25	Upper Threshold Limit Based upon IQR	15.11
518	95% HW Approx. Gamma UPL	15.5		
519	95% WH Approx. Gamma UTL with 90% Coverage	16.67		
520	95% HW Approx. Gamma UTL with 90% Coverage	17.04		
521				
522				
523				
	Selenium			
525				
526		Genera	I Statistics	
527	Total Number of Observations	14	Number of Distinct Observations	11
528	Tolerance Factor	2.109		
529		l		
530	Raw Statistics		Log-Transformed Statistics	
531	Minimum	0.45	Minimum	-0.799
532	Maximum	2.3	Maximum	0.833
533	Second Largest	2.3	Second Largest	0.833
534	First Quartile	0.65	First Quartile	-0.431
535	Median	0.8	Median	-0.227
536	Third Quartile	0.96	Third Quartile	-0.0408
537	Mean	0.994	Mean	-0.133
	Geometric Mean	0.875	SD	0.493
538	SD	0.594		
539 540	Coefficient of Variation	0.598		
541	Skewness	1.729		
542				
543		Backgrou	nd Statistics	
544	Normal Distribution Test		Lognormal Distribution Test	
545	Shapiro Wilk Test Statistic	0.74	Shapiro Wilk Test Statistic	0.894
546	Shapiro Wilk Critical Value	0.874	Shapiro Wilk Critical Value	0.874
547	Data not Normal at 5% Significance Level	<u> </u>	Data appear Lognormal at 5% Significance Level	
548				
549	Assuming Normal Distribution		Assuming Lognormal Distribution	
550	95% UTL with 90% Coverage	2.246	95% UTL with 90% Coverage	2.474
551	95% UPL (t)	2.082	95% UPL (t)	2.159
552	90% Percentile (z)	1.755	90% Percentile (z)	1.645
553	95% Percentile (z)	1.97	95% Percentile (z)	1.968
554	99% Percentile (z)	2.375	99% Percentile (z)	2.753
555		I.		
556	Gamma Distribution Test		Data Distribution Test	
557	k star	3.267	Data appear Lognormal at 5% Significance Level	
558	Theta Star	0.304		
559	MLE of Mean	0.994		
560	MLE of Standard Deviation	0.55		
561	nu star	91.47		
2011		1		

	A B C D E	F	G H I J K	L
562				
563	A-D Test Statistic		Nonparametric Statistics	
564	5% A-D Critical Value		90% Percentile	
565	K-S Test Statistic		95% Percentile	
566	5% K-S Critical Value		99% Percentile	2.3
567	Data not Gamma Distributed at 5% Significance Lev	el		
568				
569	Assuming Gamma Distribution		95% UTL with 90% Coverage	
570	90% Percentile		95% Percentile Bootstrap UTL with 90% Coverage	
571	95% Percentile		95% BCA Bootstrap UTL with 90% Coverage	
572	99% Percentile	2.693	95% UPL	
573			95% Chebyshev UPL	
574	95% WH Approx. Gamma UPL		Upper Threshold Limit Based upon IQR	1.425
575	95% HW Approx. Gamma UPL			
576	95% WH Approx. Gamma UTL with 90% Coverage			
577	95% HW Approx. Gamma UTL with 90% Coverage	2.37		
578				
579				
580				
261	lver			
582		0	I Chatication	
583	Total Number of Observations		I Statistics	10
584			Number of Distinct Observations	12
585	Tolerance Factor	2.109		
586	Raw Statistics		Log-Transformed Statistics	
587	Minimum	0.03	Log-Hansloffied Statistics Minimum	3 507
588	Maximum		Maximum	
589	Second Largest		Second Largest	
590	First Quartile		First Quartile	
591		0.0635	Median	
592	Third Quartile		Third Quartile	
593		0.075	Mean	
594	moun			
	Geometric Mean	0.068	SD	0.459
595	Geometric Mean SD		SD	0.459
595 596	SD	0.0351	SD	0.459
595 596 597	SD Coefficient of Variation	0.0351 0.467	SD	0.459
595 596 597 598	SD	0.0351 0.467	SD	0.459
595 596 597 598 599	SD Coefficient of Variation	0.0351 0.467 0.897		0.459
595 596 597 598 599 600	SD Coefficient of Variation	0.0351 0.467 0.897	nd Statistics Lognormal Distribution Test	0.459
595 596 597 598 599 600 601	SD Coefficient of Variation Skewness	0.0351 0.467 0.897	nd Statistics	
595 596 597 598 599 600 601 602	Coefficient of Variation Skewness Normal Distribution Test	0.0351 0.467 0.897 Backgroun	nd Statistics Lognormal Distribution Test	0.971
595 596 597 598 599 600 601 602 603	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic	0.0351 0.467 0.897 Backgroun	nd Statistics Lognormal Distribution Test Shapiro Wilk Test Statistic	0.971
595 596 597 598 599 600 601 602 603 604	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	0.0351 0.467 0.897 Backgroun	nd Statistics Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	0.971
595 596 597 598 599 600 601 602 603 604 605	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	0.0351 0.467 0.897 Backgroun	nd Statistics Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	0.971
595 596 597 598 599 600 601 602 603 604 605 606	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level	0.0351 0.467 0.897 Backgroun 0.91 0.874	nd Statistics Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level	0.971 0.874
595 596 597 598 599 600 601 602 603 604 605 606 607	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution	0.0351 0.467 0.897 Background 0.91 0.874	nd Statistics Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution	0.971 0.874 0.179
595 596 597 598 599 600 601 602 603 604 605 606 607 608	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution 95% UTL with 90% Coverage	0.0351 0.467 0.897 Background 0.91 0.874 0.149 0.139	Ind Statistics Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% UTL with 90% Coverage	0.971 0.874 0.179 0.158
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution 95% UTL with 90% Coverage 95% UPL (t)	0.0351 0.467 0.897 Background 0.91 0.874 0.149 0.139 0.12	Data appear Lognormal Distribution Assuming Lognormal Distribution 95% UTL with 90% Coverage 95% UPL (t)	0.971 0.874 0.179 0.158 0.122
595 596 597 598 599 600 601 602 603 604 605 606 607 608	Coefficient of Variation Skewness Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level Assuming Normal Distribution 95% UTL with 90% Coverage 95% UPL (t) 90% Percentile (z)	0.0351 0.467 0.897 Background 0.91 0.874 0.149 0.139 0.12 0.133	Data appear Lognormal Distribution Assuming Lognormal Distribution 95% UTL with 90% Coverage 95% UPL (t) 90% Percentile (z)	0.971 0.874 0.179 0.158 0.122 0.145

	A B C D E	F	G	Н	l J	K	L
613	Gamma Distribution Test				Data Distribution Test		
614	k star	4.199		Data appea	ar Normal at 5% Signific	cance Level	
615	Theta Star	0.0179					
616	MLE of Mean	0.075					
617	MLE of Standard Deviation						
618	nu star	117.6					
619							
620	A-D Test Statistic	0.329		l	Nonparametric Statistic		
621	5% A-D Critical Value	0.738			9	0% Percentile	0.12
622	K-S Test Statistic	0.16			9	5% Percentile	0.131
623	5% K-S Critical Value				9	9% Percentile	0.146
624	Data appear Gamma Distributed at 5% Significance Le	evel					
625							
626	Assuming Gamma Distribution				95% UTL with 9	•	
627	90% Percentile		95%		Bootstrap UTL with 9		
628	95% Percentile			95% BCA	N Bootstrap UTL with 9	_	
629	99% Percentile	0.185				95% UPL	
630						ebyshev UPL	
631	95% WH Approx. Gamma UPL			Up	per Threshold Limit Ba	sed upon IQR	0.155
632	95% HW Approx. Gamma UPL						
633	95% WH Approx. Gamma UTL with 90% Coverage						
634	95% HW Approx. Gamma UTL with 90% Coverage	0.166					
635							
636							
637							
638	Thallium						
639							
640			Statistics				
641	Number of Valid Data					Detected Data	
642	Number of Distinct Detected Data				Number of No		
643	Tolerance Factor	2.109			Percen	t Non-Detects	35.71%
644							
645	Raw Statistics	1		L	og-transformed Statisti		
646	Minimum Detected					num Detected	
647	Maximum Detected					num Detected	
648	Mean of Detected					n of Detected	
649	SD of Detected					D of Detected	
650	Minimum Non-Detect					m Non-Detect	
651	Maximum Non-Detect	0.26			Maximu	m Non-Detect	-1.347
652	B						
653	Data with Multiple Detection Limits				gle Detection Limit Sce		
654	Note: Data have multiple DLs - Use of KM Method is recomme	ended			treated as Non-Detect v	_	
655	For all methods (except KM, DL/2, and ROS Methods),			Numbe	er treated as Detected		
656	Observations < Largest ND are treated as NDs				Single DL Non-Dete	ct Percentage	100.00%
657							
658			B				
659	Warning: There						
660	Note: It should be noted that ev			-			
661	the resulting calculations	may not be	reliable enoug	n to draw c	onclusions		
662							
663	It is recommended to have 10-15 or m	ore distinct	observations fo	r accurate	and meaningful results.		

	A B C D E	F	G H I J K
664		Background	nd Statistics
365	Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only
666	Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic 0.888
67	5% Shapiro Wilk Critical Value		5% Shapiro Wilk Critical Value 0.829
68	Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level
69	Data appear normal at 0 /0 dig.iiiidando 2010.		Data appear Logiterina at 0 % e.g. meaned Love.
70	Assuming Normal Distribution		Assuming Lognormal Distribution
71	DL/2 Substitution Method		DL/2 Substitution Method
72	Mean	0 146	Mean (Log Scale) -1.98
73		0.0501	SD (Log Scale) 0.395
74	95% UTL 90% Coverage		95% UTL 90% Coverage 0.315
75	95% UPL (t)		95% UPL (t) 0.282
76	90% Percentile (z)		90% Percentile (z) 0.227
77	95% Percentile (z)		95% Percentile (z) 0.262
78	95% Percentile (z) 99% Percentile (z)		95% Percentile (z) 0.262 99% Percentile (z) 0.343
79	99% Percentile (z)	0.203	99% Percentile (Z) 0.343
80	Movimum Likelihaad Fatier - 1-784 FVM - 1	NI/A	La- DOO Marka I
81	Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method
82			Mean in Original Scale 0.163
83			SD in Original Scale 0.030
84			Mean in Log Scale -1.82
85			SD in Log Scale 0.181
86			95% UTL 90% Coverage 0.235
37			95% UPL (t) 0.224
88			90% Percentile (z) 0.203
89			95% Percentile (z) 0.216
90			99% Percentile (z) 0.245
91			
92	Gamma Distribution Test with Detected Values Only	1	Data Distribution Test with Detected Values Only
93	k star (bias corrected)	33.35	Data appear Normal at 5% Significance Level
94	Theta Star	0.0053	
95	nu star	600.3	
96			
97	A-D Test Statistic	0.537	Nonparametric Statistics
98	5% A-D Critical Value	0.721	Kaplan-Meier (KM) Method
99	K-S Test Statistic	0.255	Mean 0.17
00	5% K-S Critical Value	0.279	SD 0.024
01	Data appear Gamma Distributed at 5% Significance Le	vel	SE of Mean 0.007
02			95% KM UTL with 90% Coverage 0.222
03	Assuming Gamma Distribution		95% KM Chebyshev UPL 0.281
04	Gamma ROS Statistics with Extrapolated Data		95% KM UPL (t) 0.215
	Mean	0.154	90% Percentile (z) 0.201
05 06	Median		95% Percentile (z) 0.21
		0.0455	99% Percentile (z) 0.227
)7	k star		(-)
اء	Theta star		Gamma ROS Limits with Extrapolated Data
			95% Wilson Hilferty (WH) Approx. Gamma UPL 0.26
09	Nu etar	_ 10.0	95% Hawkins Wixley (HW) Approx. Gamma UPL 0.26
09 10	Nu star	25.86	
08 09 10 11	Nu star 95% Percentile of Chisquare (2k)	25.86	
09 10 11 12	95% Percentile of Chisquare (2k)		95% WH Approx. Gamma UTL with 90% Coverage 0.28
09 10 11		0.228	

	A B C D E	F	G	Н		l		J	K	L
715	99% Percentile	0.31							-	
716										
717	Note: DL/2 is not a recommended method.									
718										
719										
720	Zinc									
721										
722		General	Statistics							
723	Total Number of Observations	14				Numb	er of D	istinct C	bservations	14
724	Tolerance Factor	2.109								
725										
726	Raw Statistics				Log-T	ransfo	rmed S	Statistic		
727	Minimum	23							Minimum	3.135
728	Maximum	660							Maximum	6.492
729	Second Largest	390						Sec	ond Largest	5.966
730	First Quartile	36.25						F	irst Quartile	3.59
731	Median								Median	
732	Third Quartile	84.75						Т	hird Quartile	
733		122.2								4.209
734	Geometric Mean								SD	0.989
735	SD	181.2								
736	Coefficient of Variation	1.483								
737	Skewness	2.552								
738										
739		Backgroun	d Statistics							
740	Normal Distribution Test				Logno			tion Te		
741	Shapiro Wilk Test Statistic								est Statistic	
742	Shapiro Wilk Critical Value	0.874					-		ritical Value	0.874
743	Data not Normal at 5% Significance Level			Data no	t Logno	ormal a	at 5% S	Significa	nce Level	
744										
745	Assuming Normal Distribution			A	ssumin			Distribu		
746	95% UTL with 90% Coverage					95%	UTL v		% Coverage	
747	95% UPL (t)								95% UPL (t)	
748	90% Percentile (z)	354.5							ercentile (z)	
	, ,									
	95% Percentile (z)								ercentile (z)	
749	000/ D 11/ ()								ercentile (z) ercentile (z)	
749 750	99% Percentile (z)							99% F	7.7	
749 750 751	99% Percentile (z) Gamma Distribution Test	543.8					ributio	99% F	ercentile (z)	672.7
749 750 751 752	99% Percentile (z) Gamma Distribution Test k star	0.811	D	ata do no				99% F	7.7	672.7
749 750 751 752 753	99% Percentile (z) Gamma Distribution Test k star Theta Star	543.8 0.811 150.7	D	Pata do no				99% F	ercentile (z)	672.7
749 750 751 752 753 754	99% Percentile (z) Gamma Distribution Test k star Theta Star MLE of Mean	0.811 150.7 122.2	D	eata do no				99% F	ercentile (z)	672.7
749 750 751 752 753 754	99% Percentile (z) Gamma Distribution Test k star Theta Star MLE of Mean MLE of Standard Deviation	0.811 150.7 122.2 135.7	D	Pata do no				99% F	ercentile (z)	672.7
749 750 751 752 753 754 755	99% Percentile (z) Gamma Distribution Test k star Theta Star MLE of Mean	0.811 150.7 122.2 135.7	D	eata do no				99% F	ercentile (z)	672.7
749 750 751 752 753 754 755 756 757	Gamma Distribution Test k star Theta Star MLE of Mean MLE of Standard Deviation nu star	0.811 150.7 122.2 135.7 22.7	D	Pata do no	t follow	a Disc	cernab	99% F n Test le Distri	ercentile (z)	672.7
749 750 751 752 753 754 755 756 757	Gamma Distribution Test k star Theta Star MLE of Mean MLE of Standard Deviation nu star A-D Test Statistic	0.811 150.7 122.2 135.7 22.7	D	eta do no	t follow	a Disc	cernab	99% F n Test le Distri	bution (0.05)	672.7
749 750 751 752 753 754 755 756	Gamma Distribution Test k star Theta Star MLE of Mean MLE of Standard Deviation nu star A-D Test Statistic 5% A-D Critical Value	0.811 150.7 122.2 135.7 22.7 1.436 0.761	D	Pata do no	t follow	a Disc	cernab	99% F n Test le Distri	bution (0.05)	315
749 750 751 752 753 754 755 756 757 758 759 760	Gamma Distribution Test k star Theta Star MLE of Mean MLE of Standard Deviation nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	0.811 150.7 122.2 135.7 22.7 1.436 0.761 0.278		ata do no	t follow	a Disc	cernab	99% F n Test le Distri	bution (0.05) % Percentile	315 484.5
749 750 751 752 753 754 755 756 757 758 759 760	Gamma Distribution Test k star Theta Star MLE of Mean MLE of Standard Deviation nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.811 150.7 122.2 135.7 22.7 1.436 0.761 0.278 0.235	C	Pata do no	t follow	a Disc	cernab	99% F n Test le Distri	bution (0.05)	315 484.5
749 750 751 752 753 754 755 756 757 758 760 761	Gamma Distribution Test k star Theta Star MLE of Mean MLE of Standard Deviation nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	0.811 150.7 122.2 135.7 22.7 1.436 0.761 0.278 0.235	C	Pata do no	t follow	a Disc	cernab	99% F n Test le Distri	bution (0.05) % Percentile	315 484.5
749 750 751 752 753 754 755 756 757 758 759	Gamma Distribution Test k star Theta Star MLE of Mean MLE of Standard Deviation nu star A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.811 150.7 122.2 135.7 22.7 1.436 0.761 0.278 0.235	D	Pata do no	t follow	parame	etric St	99% F n Test le Distri	bution (0.05) % Percentile	315 484.5 624.9

	Α	В	С	D	Е	F	G	Н		J	K	L
766				909	% Percentile	296.2	95% Percentile Bootstrap UTL with 90% Coverage					660
767		95% Percentile					95% BCA Bootstrap UTL with 90% Coverage 660					660
768	99% Percentile					626.5	95% UPL					660
769										95% Che	byshev UPL	939.9
770		95% WH Approx. Gamma UPL					Upper Threshold Limit Based upon IQR					157.5
771		95% HW Approx. Gamma UPL										
772	95	95% WH Approx. Gamma UTL with 90% Coverage										
773	95	% HW Appro	ox. Gamma l	JTL with 90	% Coverage	500.2						
774												
775												