

Oregon Portland | Baker City

> California Oakland | Irvine

TECHNICAL MEMORANDUM

- **TO:** Michael Merlone MGP XI Town Center Lake Forest, LLC
- **FROM:** Russell Luiten, P.E., Associate Engineer Emerald Erickson-Mulanax, L.G., Senior Geologist Jeffery Kaspar, L.G., L.H.G., Principal Geologist

DATE: November 19, 2021

RE: ENVIRONMENTAL INVESTIGATION SUMMARY LAKE FOREST PARK CLEANERS 17171 BOTHELL WAY NORTHEAST LAKE FOREST PARK, WASHINGTON FARALLON PN: 1993-007

Farallon Consulting, L.L.C. (Farallon) has prepared this Technical Memorandum (Tech Memo) to present a summary of the environmental investigation activities performed at 17171 Bothell Way Northeast in Lake Forest Park, Washington (herein referred to as the Site) (Figure 1). This Technical Memorandum presents a brief description of the Site background with details regarding the two former dry cleaner sites subject to past remediation efforts, and the results of more recent environmental investigation activities conducted at the Site consisting of groundwater monitoring and sampling events, aquifer testing, and a soil vapor extraction (SVE) pilot test.

The purpose of the environmental investigation work was to assess current conditions and the potential for applying soil and/or groundwater cleanup technologies to accelerate groundwater cleanup and reduce, or eliminate, current restrictions associated with an Environmental Covenant recorded with the Washington State Department of Ecology (Ecology) in 2006 for the former Magic Cleaners site. The 2006 Environmental Covenant currently restricts uses of groundwater where a plume of the dry cleaning solvent tetrachloroethene (PCE) exists (PCE plume), and requires vapor intrusion mitigation measures at the current Rite Aid drugstore (Rite Aid tenant space).

BACKGROUND

The Site is a retail shopping center where two dry cleaner facilities historically were present, both of which have had documented releases of dry cleaning solvents. The two dry cleaner facilities include the former Forest Park Cleaners and the former Magic Cleaners site, located on the southwestern and northeastern portions, respectively, of the main Lake Forest Park Retail Center building (Figure 2).

Farallon understands that Ecology issued a no further action (NFA) determination at the former Forest Park Cleaners location in 2004 following a thermally enhanced in-situ chemical oxidation cleanup action. An Environmental Covenant was enacted at that this location on the Site restricting groundwater use and included other standard restrictions on future development and use. Farallon understands the Environmental Covenant is still in-effect and that no further actions have been conducted at this location on the Site since 2005.

The former Magic Cleaners site initially was reported to Ecology in 1998. Former owner-operators conducted investigation and cleanup work that was communicated to Ecology under the Voluntary Cleanup Program. Remediation efforts included excavation of impacted soils, installation and operation of a Density Driven Convection (DDC) system, and installation and operation of a Subslab Depressurization system (SSDS). In 2006 former owner-operators recorded an Environmental Covenant on the property, with Ecology, citing conditions regarding ongoing groundwater treatment, monitoring, and continued operation of the SSDS. The Environmental Covenant also included other routine restrictions and conditions on affected media and land use at the locations where PCE-impacted media persisted, pending demonstration that the MTCA cleanup levels have been achieved in all affected media throughout the former Magic Cleaners site. The former owner-operators ceased operations of the DDC system by 2009, but continued to monitor groundwater and maintain the SSDS.

According to MGP XI Town Center Lake Forest, LLC, the Site was purchased in 2014. Limited work conducted by others between 2014 and 2018 regarding the former Magic Cleaners site included operation of the SSDS, groundwater monitoring, and a limited groundwater investigation in 2018 to better understand groundwater conditions and the PCE plume geometry.

ENVIRONMENTAL INVESTIGATIONS AND RESULTS

Below is a summary of the environmental investigations that have been conducted at the former Magic Cleaners site consisting of a groundwater monitoring and sampling events, aquifer testing, and an SVE pilot test.

GROUNDWATER MONITORING AND SAMPLING EVENTS

Numerous groundwater monitoring events have been conducted by various consultants at the former Magic Cleaners site since 1995. Recent groundwater monitoring has been conducted at the

former Magic Cleaners site by Associated Earth Sciences, Inc. (AESI), TOR Environmental, Inc. (TOR), and Farallon between 2016 and 2021.

AESI 2017

AESI conducted quarterly groundwater monitoring at on-site groundwater monitoring wells MW-1 to MW-3, MW-4R, MW-5, and/or MW-6 from to 2016 to 2017. The purpose of the groundwater sampling was to evaluate current conditions, PCE plume stability, and natural attenuation status.

TOR 2018

A groundwater sampling event was conducted at the former Magic Cleaners site by TOR on August 28 and 31, 2018. The TOR groundwater sampling event consisted of collecting a groundwater sample from existing monitoring wells MW-2, MW-4R, and MW-6 and advancing borings B-1 through B-13 for the purpose of collecting reconnaissance groundwater samples from each boring at the first-encountered groundwater-bearing zone. The purpose of this work was to evaluate current conditions and refine the understanding of the current PCE plume geometry. Figure 2 shows the boring and monitoring well sample locations. The monitoring well and reconnaissance groundwater samples were submitted for laboratory analysis by OnSite Environmental Inc. (Onsite) for halogenated volatile organic compounds (HVOCs) by U.S. Environmental Protection Agency (EPA) Method 8260C.

Farallon 2021

A groundwater monitoring and sampling event was conducted at the former Magic Cleaners site by Farallon on March 30 and April 16, 2021 to evaluate PCE plume stability and groundwater geochemistry to assess whether HVOCs in groundwater were naturally attenuating via biodegradation processes, which potentially could be enhanced to reduce and/or eliminate the restrictions in-place under the 2006 Environmental Covenant. A summary of the groundwater monitoring and sampling activities is provided below.

The groundwater monitoring and sampling activities conducted on March 30, 2021 consisted of measuring the depth to groundwater at monitoring wells MW-1 through MW-3, MW-4R, MW-5, and MW-6 and collecting groundwater samples from monitoring wells MW-1, MW-4R, MW-5, and MW-6 (Figure 2). It was determined that monitoring wells MW-2 and MW-3 required rehabilitation and redevelopment due to roots intruding the well screens. On April 16, 2016, Farallon rehabilitated and redeveloped monitoring wells MW-2 and MW-3 and collected groundwater samples from each. It was determined the roots likely did not impact the depth to groundwater measurements collected on March 30, 2021.

Groundwater samples were collected from the monitoring wells in accordance with the EPA (2010) Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells guidance dated January 19, 2010, following the procedures described below:

• The locking well cap was removed from each monitoring well, and the groundwater level was allowed to equilibrate to atmospheric pressure for at least 15 minutes before the depth to groundwater was measured.

- The depth to groundwater at each monitoring well was measured to the nearest 0.01 foot using an electronic water-level measuring device from the surveyed location on the north side of the top of each well casing. The groundwater level measurements for the monitoring wells were taken within a 1-hour period. The depth to the bottom of the monitoring well also was measured to evaluate siltation of the monitoring wells. Reusable equipment was decontaminated between uses.
- Each monitoring well was purged at a low-flow rate of 120 to 200 milliliters per minute using a peristaltic pump. The pump intake was placed 2-feet from the bottom of the monitoring well. During purging, the groundwater geochemical parameters temperature, specific conductance, pH, dissolved oxygen, oxidation-reduction potential, and/or turbidity were recorded approximately every 3 minutes using a multiparameter meter equipped with a flow-through cell to determine when stabilization of these parameters had occurred.
- Groundwater samples were collected directly from the pump outlet following stabilization of the temperature, pH, conductivity, and dissolved-oxygen parameters.
- Groundwater samples were placed directly into laboratory-supplied sample containers, with care taken to minimize turbulence and prevent handling of the seal and/or lid of the container when the samples were placed into the containers. The containers were filled completely to eliminate headspace, and the seal and/or lid was secured.
- The sample container was labeled with the date and time sampled, well identification number, project number, and preservative used, if any. The sample identification included the well identification number as the prefix, and the date sampled as the suffix.
- Sampling information was documented on a Chain of Custody form, and the groundwater sample was placed into a cooler with ice and maintained at approximately 4 degrees Celsius for transport to the laboratory. Chain-of-custody protocols were maintained during sample transport and submittal to the laboratory.
- Groundwater generated from the purging of the monitoring wells was placed into labeled 30-gallon steel drums that were sealed and placed on the Site. Following waste profiling and identification of an appropriate disposal alternative, the 30-gallon steel drums were removed from the Site and disposed of at a Subtitle C Landfill under existing Resource Conservation and Recovery Act (RCRA) Site Identification Number WAH000059015.

Groundwater samples collected from the monitoring wells MW-1 through MW-3, MW-4R, MW-5, and MW-6 were submitted to OnSite for analysis for HVOCs by EPA Method 8260B.

Groundwater samples collected from monitoring wells MW-2, MW-3, MW-5, and MW-6 were also submitted to OnSite for analysis for other geochemical parameters to assess potential future application of groundwater cleanup technologies. The additional analyses included the following:

- Total organic carbon by Standard Method (SM) 5310B/EPA Method 9060A;
- Total dissolved solids by SM 2540C;
- Nitrate by EPA Method 353.2;

- Sulfate by ASTM Method D516-11;
- Methane, ethane, and ethene by RSK 175; and
- Alkalinity by EPA Method 310.2/SM 2330B.

Ferrous iron content in groundwater was measured in the field using Hach Test Kit IR-18C.

Groundwater Levels, Gradient, and Flow Direction

Groundwater conditions at the former Magic Cleaners site described below are based on information collected during historical subsurface investigation activities conducted by others from 1997 to 2014, AESI from 2016 to 2017, TOR in 2018, and Farallon in 2021. Static groundwater levels in the monitoring wells screened in the groundwater-bearing zone ranged from approximately 3 to 13 feet below the top of well casing during groundwater monitoring activities conducted from 1997 to 2021 (Table 1). Based on groundwater monitoring data collected by Farallon and others, the groundwater elevation fluctuates seasonally by approximately 0.5 to 2 feet, with higher groundwater elevations in the winter/spring and lower groundwater elevations in the summer/fall.

Groundwater elevations were contoured using groundwater levels measured by Farallon during the March 30, 2021 groundwater monitoring event. Table 1 presents a summary of the depth to groundwater measurements for groundwater monitoring events conducted by AESI on May 5, 2017 and August 7, 2017 and by Farallon on March 30 and April 16, 2021. Groundwater level data was not available from TOR. Based on the groundwater measurements collected by AESI in May and August 2017, groundwater elevation contours prepared by Farallon are shown on Figures 3 and 4, respectively. Groundwater elevation contours for the March 30, 2021 groundwater monitoring event are shown on Figure 5. The groundwater elevation contours for March 30, 2021 indicate a groundwater flow direction that is generally south and southeast, with an average gradient of approximately 0.018 foot per foot (Figure 5; Table 1) The groundwater elevation contours for March 2021 are consistent with previous groundwater elevation measurements collected by AESI in May and August 2017 (Figures 3 and 4; Table 1) and groundwater monitoring data collected by others. The groundwater flow direction does not change seasonally.

HVOC Results

Table 2 and Figure 5 provide a summary of the groundwater analytical results. The laboratory analytical reports for the groundwater monitoring events are provided in Attachment A.

The groundwater analytical results from the March/April 2021 groundwater monitoring event are as follows:

• Vinyl chloride was detected at concentrations of 0.21 and 1.6 micrograms per liter ($\mu g/l$) in the groundwater samples collected from monitoring wells MW-3 and MW-6, respectively, which exceed the MTCA Method A cleanup level of 0.2 $\mu g/l$;

P:\1993 Merlone Geier Partners\1993007 Lake Forest Park Cleaners\Deliverables\2021 EI TM\2021-11-19 Environmental Investigation TM.docx

• PCE, trichloroethene (TCE), and cis-1,2-dichloroethene, and trans-1,2-dichloroethene (collected referred to as DCE isomers) were either not detected at concentrations exceeding laboratory reporting limits or were detected at concentrations less than the MTCA cleanup levels.

Geochemical Parameter Results

The geochemical data for the laboratory analysis and field parameter measurements at monitoring wells MW-2, MW-3, MW-5, and MW-6 are presented in Table 3 and include:

- Primary electron receptors that are potential energy sources for native bacteria capable of biodegrading PCE, and indicators of groundwater geochemistry, which include dissolved oxygen, nitrate, and sulfate;
- Metabolic by-products of PCE biodegradation and indicators of groundwater geochemistry, which include total alkalinity as carbon dioxide, ferrous iron (Fe²⁺) manganese (II), methane, ethane, and ethene; and
- Additional geochemical indicators of whether the subsurface environment is amenable to biodegradation of PCE, which include oxidation-reduction potential, temperature, total organic carbon, total dissolved solids, and pH.

The geochemical parameters indicate that groundwater conditions at the former Magic Cleaners site are moderately anaerobic. Geochemical indicators of anaerobic conditions in groundwater at the former Magic Cleaners site include:

- Low concentrations of dissolved oxygen and nitrate;
- The presence of a reduced form of iron, Fe^{2+} ; and
- The presence of methane.

Biodegradation of PCE to TCE, DCE isomers, vinyl chloride, and ethene is possible under the anaerobic conditions at the former Magic Cleaners site area. Further, pH and temperature conditions are within a range conducive to biodegradation processes. Alkalinity values can be used to assess microbial activity as an indication of carbon dioxide production by microbes within a plume area versus outside the plume area. The alkalinity values are consistently higher at the monitoring wells inside the PCE plume area at monitoring wells MW-3 and MW-6 compared to monitoring wells MW-1 (upgradient) and MW-5 (cross gradient).

Concentrations of TCE, DCE isomers, and/or vinyl chloride have been detected in groundwater for samples collected from monitoring wells MW-3 and MW-6 where PCE has been detected, suggesting that anaerobic biodegradation is occurring in areas proximate to these monitoring wells. The HVOC and geochemical parameter data show a positive correlation regarding ongoing biodegradation processes that could be enhanced to accelerate groundwater restoration.

AQUIFER TESTING

Farallon conducted slug tests at monitoring wells MW-2, MW-3, and MW-6 to obtain data to estimate the hydraulic conductivity of the groundwater water-bearing zone at the former Magic Cleaners site PCE plume area to better assess the potential design parameters for an injection-based cleanup technology application. Hydraulic conductivity values were estimated using AQTESOLV modeling software. The slug test/hydraulic conductivity evaluation results are summarized on Table 4 and charts of the AQTESOLV aquifer testing results are provided in Attachment B. One falling head test and one rising head slug test was conducted at each of the three monitoring wells using a combination pressure transducer/data logger to record water levels following insertion and removal of a 3-foot-long slug testing tool.

The geometric mean of the average hydraulic conductivity values estimated from the rising and falling head tests at each test well is 1.41×10^{-3} centimeters per second, which is consistent with the soil types encountered at the former Magic Cleaners site.

The estimated groundwater seepage velocity based on the geometric mean of the hydraulic conductivity values for the tests is 105.2 feet per year assuming an average hydraulic gradient of 0.018 foot per foot, based on the previous groundwater monitoring event conducted on March 30, 2021, and an effective porosity of 0.25 (Table 4). These results can be used to assess application of an injection-based cleanup technology such as enhanced biodegradation, in-situ chemical reduction, in situ chemical oxidation, or other groundwater cleanup technologies.

SVE PILOT TESTING

A soil vapor extraction (SVE) pilot test was performed on October 3 through October 4, 2021 to evaluate the potential for modifying the existing SSDS at the Rite Aid tenant space to increase the HVOC mass removal rates from soil and soil gas beneath the Rite Aid tenant space and to reduce potential desorption of HVOCs to groundwater and accelerate groundwater cleanup. The testing was conducted based on evaluation of the SSDS, which indicated that HVOCs continue to be present in the system effluent.

The existing SSDS consists of a blower that applies a vacuum to two extraction trenches at the Rite Aid tenant space. A northern trench extends from the blower equipment area toward the Rite Aid tenant space break room and a southern trench extends under the retail section of Rite Aid tenant space. Each extraction trench consists of a 3-inch-diameter perforated pipe placed approximately 8 inches below the building's concrete slab in a trench backfilled with clean pea gravel. Figure 6 illustrates the SSDS blower location, and overhead and subsurface extraction piping (trenches). Collected soil gas passes through a moisture separator and series of in-line instrumentation prior to the blower and discharge outside the building. The effluent from the SSDS system was historically captured using two 500-pound granular activated carbon filters, plumbed in-line. SSDS effluent sampling conducted on April 2, 2021 indicated that effluent discharge rates for PCE and related degradation products contributing to the total air contaminants were less than the Puget Sound Clean Air Agency exemption for emission treatment at soil and groundwater

remediation sites; therefore, the granular activated carbon filters were disconnected. The SSDS effluent analytical data is included as Attachment A and are summarized in Table 6.

The SVE pilot test utilized the existing SSDS extraction trenches to apply additional vacuum using a separate pilot test blower connected to the SSDS manifold after disconnecting the existing blower. Vapor Pins were installed directly beneath the building floor slab to provide monitoring points to evaluate the effectiveness of the applied vacuum at each of the SSDS extraction trenches (Figure 6). The SSDS pilot test consisted of a step test to apply variable vacuums to the SSDS extraction trenches using the 5-horsepower pilot test blower.

The SVE pilot test consisted of applying vacuum in three steps, starting with a low initial applied vacuum, and systematically increasing the vacuum to the maximum vacuum that could be applied using the pilot test blower. The applied vacuum to the SSDS manifold was controlled by adjusting the air dilution valve on the instrument train between the SSDS manifold and the pilot test blower. The vacuum applied to the SSDS manifold ranged from 8 to 32 inches of water column during the pilot test. Air flow rates and vacuum at each SSDS trench were monitored during the pilot test. The Vapor Pins were installed to monitor induced subslab vacuums at varied distances from each extraction trench (Figure 6). Applied vacuum and flow rates, and response vacuums at the Vapor Pin locations are summarized in Table 5.

The measured vacuum at a Vapor Pin location was considered significant if at least 1 percent of the applied vacuum from the trench was observed at the Vapor Pin location. A significant vacuum was observed at Vapor Pin locations VP-1 through VP-5 with a maximum distance from an SSDS trench of 34 feet. An applied vacuum to the south extraction trench of 18 inches of water column corresponds to a vacuum of 0.2 inches of water column at Vapor Pin location VP-1, approximately 34 feet from the south extraction trench. For each vacuum step of the pilot test, the ratio of observed vacuum at a Vapor Pin location to the applied vacuum at the extraction test did not significantly change, indicating that the maximum influence zone for SVE is approximately 34 feet from either extraction trench regardless of the applied vacuum.

Vapor Pin locations VP-5 and VP-6 did not exhibit an increased influence from the various stages if increased vacuum applied regardless of a closer proximity to the north extraction trench than VP-1. The variability in the observed vacuum responses at the Vapor Pin locations may be associated with factors such as variability in concrete slab thickness and subbase materials, variations in soil lithology beneath the Rite Aid tenant space, unknown subsurface building features such as utility conduits/trenches, or cracks/breaks in the concrete slab beneath the flooring materials.

Prior to completing the SVE pilot test, a soil gas sample was collected from each extraction trench at the highest applied vacuum. The soil gas samples were collected from each leg of the SSDS manifold located before entry to the SVE pilot test blower. Each soil gas sample was collected into a 1-liter Summa canister and submitted to Friedman and Bruya, Inc. of Seattle, Washington for analysis by EPA Method TO-15. Table 6 presents a summary of soil gas analytical results for the

samples collected during the SVE pilot test and the laboratory analytical report is included in Attachment A.

Extracted soil gas concentrations and the measured flow rate derived from the SVE pilot test were used to calculate HVOC mass removal rates for each extraction trench for both the SVE pilot test and the prior April 2, 2021 SSDS sampling event and compared. In response to the increased extraction flow rate during the SVE pilot test, the HVOC mass removal rates increased by 125 percent for the north extraction trench and 180 percent for the south extraction trench. Anticipated emission rates for the regulated HVOCs generated from operation of the existing SSDS or a potential expansion to an SVE system would be less than the Puget Sound Clean Air Agency exemption for effluent treatment for soil and groundwater remediation sites.

CONCLUSIONS

Based on evaluation of the SVE Pilot Test data, increasing flow rate and vacuum of the existing SSDS by upgrading the system to a higher capacity blower likely would result in only a minor extension of the existing capture zone. The rate of HVOC mass removal also would not increase significantly. Based on the short duration of the SVE pilot test (e.g., less than 1 day), HVOC mass removal rate trends could not be fully evaluated. However, HVOC mass removal rates would likely decrease to a steady state within a relatively short operational time frame based on the low HVOC concentrations detected in the effluent samples for the SVE pilot test. The anticipated HVOC removal rates resulting from modifying the existing SSDS would likely be less than 0.2 pounds of HVOC per year, resulting in a higher overall operational cost with minimal increase in overall HVOC mass removal relative to operating the existing SSDS as its maximum capacity.

The cost for upgrading the SSDS and increased operation and maintenance is disproportionate to the benefit for achieving Site cleanup goals. However, operating the existing SSDS will continue to remove HVOC mass over time while also preventing vapor intrusion. Also, the SVE pilot test results indicate that the prior soil cleanup activities were successful and the residual HVOC mass beneath the Rite Aid tenant space appears to be low. The groundwater analytical data for the monitoring wells closest to the Rite Aid tenant space support this since overall HVOC concentrations at monitoring wells MW-2 and MW-6 (Figure 5) have remained non-detect (MW-2) or have continued to decrease since between 2017 and 2021 (MW-6).

The groundwater monitoring results from May and August 2017, August 2018, and March and April 2021 indicate that groundwater is flowing south-southeast at the former Magic Cleaners site (Figure 5). Groundwater data indicate that concentrations of PCE and/or vinyl chloride are still present in groundwater at concentrations exceeding MTCA Method A cleanup levels at monitoring wells MW-3 and MW-6 but are less than the MTCA cleanup levels in the remaining wells. The PCE plume extends downgradient from the former release(s) at the Rite Aid tenant space to the south across the parking lot to monitoring well MW-3, located approximately 100 feet from Bothell Way Northeast. The PCE plume appears to be decreasing over time in comparison with prior monitoring results and the PCE plume area as represented on the 2005 Environmental Covenant.

The geochemical parameters indicate that groundwater conditions at the former Magic Cleaners site are moderately anaerobic. Biodegradation of PCE to TCE, DCE isomers, vinyl chloride, and ethene is possible under these anaerobic conditions and appears to be occurring as evident at monitoring wells MW-3 and MW-6.Based on this evidence and decreasing groundwater concentrations over time, natural attenuation via biodegradation appears to be a viable path to achieving MTCA Method A cleanup levels at the former Magic Cleaners site.

The historical soil cleanup data, SVE pilot test results, and groundwater monitoring results indicate that the source area beneath the former Magic Cleaners site has been successfully remediated in a manner that should result in Ecology eliminating soil as a media of concern. The SVE pilot test results further indicated that additional remediation work in this area is unlikely to accelerate the timeline for achieving groundwater cleanup levels for the PCE plume area. Natural attenuation will continue to occur at the former Magic Cleaners site and will likely eventually reduce PCE and related compounds in groundwater to concentrations that are less than the MTCA cleanup levels.

Attachments: Figure 1, Site Vicinity Map

Figure 2, Site Plan Figure 3, Groundwater Elevation Contours – May 5, 2017 Figure 4, Groundwater Elevation Contours – August 9, 2017 Figure 5, Groundwater Contours – March 30, 2021 and Groundwater Results for HVOCs Figure 6, SVE Pilot Test Features Table 1, Groundwater Elevations Table 2, Groundwater Analytical Results for Halogenated VOCs Table 3, Natural Attenuation and Water Quality Parameters Table 4, Aquifer Testing Results Table 5, Soil Vapor Extraction Pilot Test Data Table 6, Soil Gas Analytical Results and Removal Rates Attachment A, Laboratory Reports Attachment B, AQTESOLV Aquifer Testing Results

EEM/JK:cm

FIGURES

ENVIRONMENTAL INVESTIGATION SUMMARY Lake Forest Park Cleaners 17171 Bothell Way Northeast Lake Forest Park, Washington

Farallon PN: 1993-007

- MANHOLE

Drawn By: vpehlivan

Checked By: EEM Date: 11/17/202 Disc Reference Path: Q:\Projects\1993 Merlone Geier Partners\007 LakeForestPark\Mapfiles\Site 2021-05\Figure-02_SitePlan_WA.mxd

- FORMER DENSITY DRIVEN CONV WELL LOCATION
- MONITORING WELL LOCATION
- FORMER MONITORING WELL €
- MANHOLE •

		1.7
		2. F
	ELEVATION IN FEET RELATIVE CAN VERTICAL DATUM OF 1988	
,	,	FA
ON OF GROUNDWATER FLOW	RECTION OF GROUNDWATER FLOW	11
IER MONITORING WELL MW-4 USED	JNDWATER ELEVATION. TOP OF CASING FORMER MONITORING WELL MW-4 USED DUNDWATER ELEVATION FOR REPLACEMENT	Your
TION CONTOUR IN FEET RED) ON OF GROUNDWATER FLOW ATER ELEVATION. TOP OF CASING IER MONITORING WELL MW-4 USED	ELEVATION CONTOUR IN FEET INFERRED) RECTION OF GROUNDWATER FLOW JNDWATER ELEVATION. TOP OF CASING FORMER MONITORING WELL MW-4 USED	

Portland | Baker City California Oakland | Irvine

ur Challenges. Our Priority. | farallonconsulting.com

LAKE FOREST PARK, WASHINGTON FARALLON PN: 1993-007

MAY 5, 2017

LAKE FOREST PARK TOWN CENTER

Checked By: EEM Date: 11/17/2021 Disc Reference Path: Q:\Projects\1993 Merlone Geier Partners\007 LakeForestPark\Mapfiles\Site 2021-05\Figure-03_GW_Contour_May2017.mxd

- FORMER DENSITY DRIVEN CO WELL LOCATION
- MONITORING WELL LOCATION
- FORMER MONITORING WELL €
- MANHOLE •

ER	 CULVERT			NOTES: 1. ALL LOCATIONS 2. FIGURES WERE
	BUILDING	(33.06)	GROUNDWATER ELEVATION IN FEET RELATIVE TO NORTH AMERICAN VERTICAL DATUM OF 1988	
CONVECTION	FORMER MAGIC CLEANERS COIN-OPERATED DRY CLEANER REMEDIATION AREA		AUGUST 9, 2017 GROUNDWATER ELEVATION CONTOUR IN FEET	-
CONVECTION	STORMWATER RETENTION POND	32.00	(DASHED WHERE INFERRED)	
ON	SITE BOUNDARY	\rightarrow	APPROXIMATE DIRECTION OF GROUNDWATER FLOW	FARALLON CONSUL
LL	KING COUNTY PARCEL BOUNDARY	MW-4R (31.86)	ESTIMATED GROUNDWATER ELEVATION. TOP OF CASING ELEVATION FROM FORMER MONITORING WELL MW-4 USED TO ESTIMATE GROUNDWATER ELEVATION FOR REPLACEMENT	Your Challenges. Our Pr
		× /	WELL MW-4R.	Drawn By: vpehliva Path:

Iting.com

California Oakland | Irvine

LAKE FOREST PARK, WASHINGTON FARALLON PN: 1993-007

LAKE FOREST PARK TOWN CENTER

Checked By: EEM Date: 11/17/2021 Disc Reference ath: Q:\Projects\1993 Merlone Geier Partners\007 LakeForestPark\Mapfiles\Site 2021-05\Figure-04_GW_Contour_Aug2017.mxd

A St Cast Stat	
	A Production of the second
a to a fait	
	WAR STREAM
	July and a Charles All's
Star Star	
All She B. A.	
Back Bar L	
GERA MAN NO ATTHEMAST	
TR.	
ZPL	
10	
ATT IN A REAL OF	
20,	
NE VA C	
A CALL	
18 2 2 2 2 3	
Provide States	
.6 0.38	
.1 0.65	ad and a state of the state of the
0.84 0.39	an and
.20 1.3 1.6	and a start and
180 VIII	The A Charles and and a second second
B-8	D CON
08/31/2018 0.45 <0.20 <0.2	20 <0.20
3-7	Charles and the second
08/31/2018 1.4 <0.20 <0.20 <0.2	20
0	
20	
ALL THE PARTY A	
ar and the second second	Charles and the
<1 <1 <0.2	
<1 <1 <0.2	
0.20 < 0.20 < 0.20 < 0.20 < 0.20	and the second s
Same Balling Sta	
.8 <1 <1 <0.2	
.3 1.2 <1 <0.2	N
2.5 0.60 1.0 0.21	
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The Allen
V/ K	The state of the s
Caller Istan	
	0 100
	SCALE IN FEET
RE APPROXIMATE RODUCED IN COLOR. GRAYSCALE CO	PIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.
Washington	
Issaquah Bellingham Seattle	FIGURE 5
Oregon Portland Baker City	GROUNDWATER CONTOURS-MARCH 30, 2021
	AND GROUNDWATER RESULTS FOR HVOCs
California Oakland Irvine	LAKE FOREST PARK TOWN CENTER LAKE FOREST PARK, WASHINGTON

ehlivan Checked By: EEM Date: 11/17/2021 Disc Reference: Path: Q:\Projects\1993 Merlone Geier Partners\007 LakeForestPark\Mapfiles\Site 2021-05\Figure-05_GW_Contour_Mar2021.mxd

FARALLON PN: 1993-007

ulting.com

TABLES

ENVIRONMENTAL INVESTIGATION SUMMARY Lake Forest Park Cleaners 17171 Bothell Way Northeast Lake Forest Park, Washington

Farallon PN: 1993-007

Location	Screened Interval (feet bgs) ¹	Top of Casing Elevation (feet MSL) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet MSL) ²
			1/30/1997	12.63	42.77
			3/25/1997	12.59	42.81
N 6337 1	10 / 25	55 A	5/30/1997	12.68	42.72
MW-1	10 to 25	55.4	9/12/1997	13.13	42.27
			12/10/1997	13.27	42.13
			3/30/2021	12.79	42.61
			1/30/1997	4.90	38.38
			3/25/1997	4.95	38.33
			5/30/1997	5.10	38.18
			9/12/1997	5.26	38.02
			12/10/1997	5.35	37.93
			1/3/2003	6.08	37.20
			9/20/2004	8.20	35.08
			1/26/2005	5.34	37.94
			10/6/2005	5.07	38.21
			2/10/2006	5.11	38.17
MW-2	3 to 15	43.28	3/1/2007	5.15	38.13
			9/14/2007	5.61	37.67
			3/28/2008	5.24	38.04
			9/18/2008	5.67	37.61
			6/10/2009	5.35	37.93
			9/9/2009	5.45	37.83
			3/13/2014	5.01	38.27
			5/16/2017	5.45	37.83
			8/9/2017	6.00	37.28
			3/30/2021	5.01	38.27
			4/16/2021	5.07	38.21
			1/30/1997	6.29	34.38
			3/25/1997	6.25	34.42
			5/30/1997	5.57	35.10
			9/12/1997	6.51	34.16
			12/10/1997	7.11	33.56
MW 2	3 to 15	40.67	1/23/2002	6.92	33.75
MW-3	5 10 15	40.67	5/2/2002	3.00	37.67
			9/20/2002	7.28	33.39
			1/3/2003	8.91	31.76
			6/11/2003	9.23	31.44
			9/12/2003	8.85	31.82
			2/13/2004	8.23	32.44

Location	Screened Interval (feet bgs) ¹	Top of Casing Elevation (feet MSL) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet MSL) ²	
			8/11/2004	7.34	33.33	
			1/26/2005	7.09	33.58	
			10/6/2005	7.28	33.39	
			2/10/2006	6.98	33.69	
			3/1/2007	6.72	33.95	
			9/14/2007	7.39	33.28	
			3/28/2008	7.10	33.57	
MW-3 (continued)	3 to 15	40.67	9/18/2008	7.38	33.29	
			6/10/2009	7.13	33.54	
			9/9/2009	7.32	33.35	
			3/13/2014	6.95	33.72	
			5/16/2017	7.39	33.28	
			8/9/2017	8.09	32.58	
			3/30/2021	7.40	33.27	
			4/16/2021	7.32	33.35	
			1/30/1997	2.73	33.82	
			3/25/1997	2.82	33.73	
			5/30/1997	3.35	33.20	
			9/12/1997	3.64	32.91	
					3.42	33.13
				1/23/2002	3.28	33.27
			5/2/2002	3.27	33.28	
			9/20/2002	3.77	32.78	
			1/3/2003	3.99	32.56	
			6/11/2003	4.61	31.94	
			9/12/2003	4.52	32.03	
MW-4	2.5 to 15	36.55	2/13/2004	4.03	32.52	
			8/11/2004	3.53	33.02	
			1/26/2005	3.41	33.14	
			10/6/2005	3.67	32.88	
			2/10/2006	3.08	33.47	
			3/1/2007	3.10	33.45	
			9/14/2007	3.79	32.76	
			3/28/2008	3.20	33.35	
			9/18/2008	3.89	32.66	
			6/10/2009	3.42	33.13	
			9/9/2009	4.00	32.55	
			3/13/2014	3.01	33.54	

Location	Screened Interval (feet bgs) ¹	Top of Casing Elevation (feet MSL) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet MSL) ²
			5/16/2017	4.09	32.46
MW-4R	2.5 to 15 ⁴	36.55 ⁴	8/9/2017	4.69	31.86
			3/30/2021	4.31	32.24
			1/30/1997	5.73	34.73
			3/25/1997	5.76	34.70
			5/30/1997	5.98	34.48
			9/12/1997	6.41	34.05
			12/10/1997	6.57	33.89
			10/6/2005	6.55	33.91
			2/10/2006	6.14	34.32
			3/1/2007	6.14	34.32
MW-5	3 to 15	40.46	9/14/2007	7.20	33.26
			3/28/2008	6.41	34.05
			9/18/2008	7.20	33.26
			6/10/2009	6.78	33.68
			9/9/2009	6.95	33.51
			3/13/2014	9.31	31.15
			5/16/2017	6.19	34.27
			8/9/2017	7.40	33.06
			3/30/2021	6.55	33.91
			1/23/2002	3.43	36.61
			5/2/2002	3.36	36.68
			9/20/2002	4.30	35.74
			1/3/2003	4.73	35.31
			6/11/2003	4.99	35.05
			9/12/2003	5.10	34.94
			2/13/2004	4.35	35.69
			8/11/2004	4.04	36.00
MW-6	4.5 to 14.5	40.04	1/26/2005	3.84	36.20
1 v1 vv -0	4.3 10 14.3	40.04	10/6/2005	4.15	35.89
			2/10/2006	3.37	36.67
			3/1/2007	3.39	36.65
			9/14/2007	4.23	35.81
			3/28/2008	3.45	36.59
			9/18/2008	4.15	35.89
			6/10/2009	3.89	36.15
			9/9/2009	4.00	36.04
			3/13/2014	3.40	36.64

Location	Screened Interval (feet bgs) ¹	Top of Casing Elevation (feet MSL) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet MSL) ²
	4.5 to 14.5		5/16/2017	3.46	36.58
MW-6 (continued)		40.04	8/9/2017	4.26	35.78
WW-0 (continued)			3/30/2021	3.52	36.52
			4/16/2021	3.67	36.37

Notes:

¹ In feet below ground surface.

² In feet above mean sea level.

³ In feet below top of well casing.

⁴ Top of casing elevation and screened interval for MW-4R are estimates as the values were set to those of MW-4 as

survey and well log information is not available for MW-4R.

bgs = below ground surface MSL = mean sea level

P:\1993 Merlone Geier Partners\1993007 Lake Forest Park Cleaners\Deliverables\2021 El TM\Tables\1993-007_Tables_2021-11-08

Table 2Groundwater Analytical Results for Halogenated VOCsLake Forest Park CleanersLake Forest Park, WashingtonFarallon PN: 1993-007

					Analy	tical Results (microg	rams per liter) ¹	
Sample Location	Sampled By	Sample Date	Sample Identification	PCE	ТСЕ	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride
			Reconnaissance	Boring Groun	dwater Sampl	es		
B-1	TOR	8/31/2018		6.0	< 0.20	< 0.20	< 0.20	< 0.20
B-2	TOR	8/31/2018		7.7	< 0.20	< 0.20	< 0.20	< 0.20
B-3	TOR	8/31/2018		2.5	< 0.20	< 0.20	< 0.20	< 0.20
B-4	TOR	8/31/2018		< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
B-5	TOR	8/31/2018		7.6	0.66	0.66	< 0.20	< 0.20
B-6	TOR	8/31/2018		3.4	0.34	0.22	< 0.20	< 0.20
B-7	TOR	8/31/2018		1.4	< 0.20	< 0.20	< 0.20	< 0.20
B-8	TOR	8/31/2018		0.45	< 0.20	< 0.20	< 0.20	< 0.20
B-9	TOR	8/31/2018		1.3	0.49	0.48	< 0.20	0.67
B-10	TOR	8/31/2018		< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
B-11	TOR	8/31/2018		< 0.20	< 0.20	0.29	< 0.20	< 0.20
B-12	TOR	8/31/2018		< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
B-13	TOR	8/31/2018		< 0.20	< 0.20	2.3	< 0.20	0.98
			Monitoring V	Vell Groundw	ater Samples			
MW-1	Farallon	3/30/2021	MW-1-033021	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	AESI	11/8/2016	MW-2-161108	< 1	< 1	< 1	< 1	< 0.2
	AESI	2/9/2017	MW-2-20170209	< 1	< 1	< 1	< 1	< 0.2
	AESI	5/16/2017	MW-2:170516	< 1	< 1	< 1	< 1	< 0.2
MW-2	AESI	8/9/2017	MW-2-170809	< 1	< 1	< 1	< 1	< 0.2
	TOR	8/31/2018		< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	Farallon	4/16/2021	MW-2-041621	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	AESI	11/8/2016	MW-3-161108	8.9	1.0	< 1	< 1	< 0.2
	AESI	2/9/2017	MW-3-20170209	6.1	< 1	< 1	< 1	< 0.2
MW-3	AESI	5/16/2017	MW-3:170516	6.8	< 1	< 1	< 1	< 0.2
	AESI	8/9/2017	MW-3-170809	7.3	1.2	< 1	< 1	< 0.2
	Farallon	4/16/2021	MW-3-041621	2.5	0.60	1.0	< 0.20	0.21
ITCA Clean	up Levels for Gr	oundwater ²		5	5	16 ³	160 ³	0.2

Table 2Groundwater Analytical Results for Halogenated VOCsLake Forest Park CleanersLake Forest Park, WashingtonFarallon PN: 1993-007

					Analyt	tical Results (microg	rams per liter) ¹	
Sample						cis-1,2-	trans-1,2-	
Location	Sampled By	Sample Date	Sample Identification	PCE	TCE	Dichloroethene	Dichloroethene	Vinyl Chloride
	AESI	11/8/2016	MW-4R-161108	< 1	< 1	< 1	< 1	< 0.2
	AESI	2/9/2017	MW-4R-20170209	< 1	< 1	< 1	< 1	< 0.2
MW 4D	AESI	5/16/2017	MW-4R:170516	< 1	< 1	< 1	< 1	< 0.2
IVI VV -4K	AESI	8/9/2017	MW-4R-170809	< 1	< 1	< 1	< 1	< 0.2
	TOR	8/28/2018		< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	Farallon	3/30/2021	MW-4R-033021	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	AESI	11/8/2016	MW-5-161108	< 1	< 1	< 1	< 1	< 0.2
	AESI	2/9/2017	MW-5-20170209	< 1	< 1	< 1	< 1	< 0.2
MW-5	AESI	5/16/2017	MW-5:170516	< 1	< 1	< 1	< 1	< 0.2
	AESI	8/9/2017	MW-5-170809	< 1	< 1	< 1	< 1	< 0.2
Location MW-4R MW-5 MW-6	Farallon	3/30/2021	MW-5-033021	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	AESI	11/8/2016	MW-6-161108	2.8	< 1	1.3	< 1	0.65
	AESI	2/9/2017	MW-6-20170209	1.3	< 1	1.8	< 1	0.61
MW 6	AESI	5/16/2017	MW-6:170516	3.6	1.1	1.6	< 1	0.38
101 00 -0	AESI	8/9/2017	MW-6-170809	2.0	1.1	2.1	< 1	0.65
	TOR	8/28/2018		5.0	0.61	0.84	< 0.20	0.39
	Farallon	3/30/2021	MW-6-033021	< 0.20	< 0.20	1.3	< 0.20	1.6
MTCA Clean	up Levels for Gr	oundwater ²		5	5	16³	160 ³	0.2

NOTES:

Results in **bold** and highlighted yellow denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

- denotes sample not analyzed or information unknown.

¹Analyzed by U.S. Environmental Protection Agency Method 8260C/8260D.

²Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

³Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B Values for Groundwater, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC AESI = Associated Earth Sciences, Inc.

Farallon = Farallon Consulting, L.L.C.

ND = analyte not detected and reporting limit is unknown

PCE = tetrachloroethene

TCE = trichloroethene

 $TOR = T\bar{O}R$ Environmental, Inc.

VOC = volatile organic compound

Table 3 Natural Attenuation and Water Quality Parameters Lake Forest Park Cleaners Lake Forest Park, Washington Farallon PN: 1993-007

				Elec	tron Recepto	ors	М	etals	Meta	abolic Byproc	lucts				Water Qu	ality Parameters			
Sample Location	Sampled/ Measured By	Sample Date	Sample Identification	Dissolved Oxygen ¹ (mg/l)	Nitrate ² (mg/l)	Sulfate ³ (mg/l)	Ferrous Iron ⁴ (mg/l)	Manganese (II) ⁴ (mg/l)	Methane ⁵ (µg/l)	Ethane ⁵ (µg/l)	Ethene ⁵ (µg/l)	TOC ⁶ (mg/l)	Alkalinity ⁷ (mg/l CaCO3)	Total Dissolved Solids ⁸ (mg/l)	pH^1	Temperature ¹ (°Celsius)	Conductivity ¹ (mS/cm)	ORP ¹ (mV)	Turbidity ¹ (NTU)
MW-1	Farallon	3/30/2021	MW-1-033021	1.83			0.0	0.0							6.34	13.4	0.299	167.5	6.85
	AESI	5/16/2017	MW-2:170516	0.14											6.43	13.5	0.180	-16.9	4.2
MW-2	AESI	8/9/2017	MW-2-170809	-0.08 (IE)											6.59	18.9	0.1601	36.7	10.5
	Farallon	4/16/2021	MW-2-041621	0.49	0.17	7.5	0.0	0.0	1.4	< 0.22	< 0.29	< 1.0	84	110	6.86	13.4	0.184	136.9	1.01
	AESI	5/16/2017	MW-3:170516	0.15											6.15	12.1	0.3327	73.1	5.3
MW-3	AESI	8/9/2017	MW-3-170809	-0.15 (IE)											6.21	17.1	0.2823	84.4	7.9
	Farallon	4/16/2021	MW-3-041621	0.30	0.13	12	1.0 to 1.5	0.3	88	< 0.22	< 0.29	4.7	140	230	6.43	12.7	0.412	41.4	1.08
	AESI	5/16/2017	MW-4R:1705016	0.19											6.71	13.3	0.1952	-61.7	214.7
MW-4R	AESI	8/9/2017	MW-4R-170809	-0.13 (IE)											6.45	18.6	0.2306	-49.6	2.2
	Farallon	3/30/2021	MW-4R-033021	0.32			0.5	0.3							6.78	13.8	0.291	24.1	5.29
	AESI	5/16/2017	MW-5:170516	0.17											6.36	12.3	0.2727	58.5	3
MW-5	AESI	8/9/2017	MW-5-170809	0.0											6.09	15.6	0.2205	87.4	2.1
	Farallon	3/30/2021	MW-5-033021	0.37	< 0.050	13	0.0	0.0	2.0	< 0.22	< 0.29	< 1.0	110	200	6.34	11.6	0.463	183.0	6.24
	AESI	5/16/2017	MW-6:170516	0.14											6.1	12.4	0.3797	-75.7	4.5
MW-6	AESI	8/9/2017	MW-6-170809	0.01											6.25	20.4	0.4078	-57.6	13.9
	Farallon	3/30/2021	MW-6-033021	0.35	0.18	< 5.0	3.5	0.0	1,400	< 0.22	< 0.29	13	140	380	6.23	11.4	0.775	-33.6	17.48

NOTES:

< denotes analyte not detected at or above the reporting limit listed.

- denotes sample not analyzed, parameter not measured, or information unknown.

¹Collected using a field instrument.

²Analyzed by U.S. Environmental Protection Agency (EPA) Method 353.2.

³Analyzed by ASTM Method D516-11.

⁴Measured in the field using Hach field test kits.

⁵Analyzed by Method RSK-175.

⁶Analyzed by Standard Method 5310B.

⁷Analyzed by EPA Method 310.2 or Standard Method 2320B.

⁸Analyzed by Standard Method 2540C.

AESI = Associated Earth Sciences, Inc.

electron receptors = compounds that gain electrons and are sources of energy during biodegradation ° = degrees

Farallon = Farallon Consulting, L.L.C.

IE = instrument error

mg/l = milligrams per liter

mg/l CaCO3 = milligrams per liter as calcium carbonate equivalents

mS/cm = milliSiemens per centimeter specific conductance units

mV = millivolt units for measurement of oxidation-reduction potential (ORP) metabolic byproducts = compounds that result from biodegradation processes

NTU = Nephelometric Turbidity Units

TOC = total organic carbon

 $\mu g/l = micrograms per liter$

Table 4 **Aquifer Testing Results** Lake Forest Park Cleaners Lake Forest Park, Washington **Farallon PN: 1993-007**

Monitoring Well Tested	Date Tested	Test Conducted	Estimated Hydraulic Conductivity (centimeters/second)	Average Hydraulic Conductivity (centimeters/second)	Hydraulic Conductivity Geometric Mean (centimeters/second)	Hydraulic Conductivity Geometric Mean (feet/day)	Groundwater Seepage Velocity (feet per year)
MW-2	4/16/2021	Rising Head	2.60E-04	3.15E-04			
101 00 -22	4/16/2021	Falling Head	3.71E-04	5.1512-04			
MW-3	4/16/2021	Rising Head	7.51E-03	4.97E-03	1.41E-03	4.00E+00	105.2
101 00-5	4/16/2021	Falling Head	2.44E-03	4.972-05	1.412-03	4.00L+00	105.2
MW-6	4/16/2021	Rising Head	2.78E-03	1.80E-03			
101 00-0	4/16/2021	Falling Head	8.12E-04	1.002-05			

NOTES:

Groundwater seepage velocity (V) = K v/n

K = hydraulic conductivity

 ι = hydraulic gradient of 0.018 feet per foot

 η = effective porosity of 0.25 (unitless) for silty sands and gravels

1 of 1

Table 5 Soil Vapor Extraction Pilot Test Data Lake Forest Park Cleaners Lake Forest Park, Washington Farallon PN: 1993-007

								VP-4	VP-3	VP-5	VP-2	VP-6	VP-1
					Radial Distan	ce From nearest Ext	raction Trench (FT)	2	4	9	12	19	34
Pilot Study Phase	Date	Time	System Vacuum	North Extraction Trench Vacuum (IOW)		South Extraction Trench Vacuum (IOW)	South ExtractionTrench Flowrate (SCFM)	VP-4	VP-3	VP-5	VP-2	VP-6	VP-1
Baseline	1/22/2020	20:40	-	-	-	-	-	-0.004	0.000	0.000	0.000	0.000	-0.004
_	10/3/2021	22:50	-8.8	-3.9	34.0	-5.9	32.0	-0.198	-2.210	-0.016	-0.730	-0.024	-0.072
tep	10/3/2021	23:05	-8.8	-3.4	34.0	-5.4	33.0	-0.186	-1.912	-0.021	-0.842	-0.030	-0.080
ž	10/3/2021	23:20	-8.8	-3.4	34.0	-5.3	33.0	-0.172	-1.912	-0.022	-0.835	-0.029	-0.079
	10/3/2021	23:40	-21.2	-7.0	47.6	-12.3	53.1	-0.346	-3.485	-0.040	-1.554	-0.052	-0.143
p 2	10/3/2021	23:55	-21.2	-7.0	50.0	-12.4	53.1	-0.346	-3.957	-0.041	-1.557	-0.053	-0.148
Ste	10/4/2021	0:10	-21.2	-7.0	49.3	-12.4	53.0	-0.346	-3.471	-0.041	-1.550	-0.054	-0.150
	10/4/2021	0:25	-21.2	-7.1	48.5	-12.4	53.1	-0.344	-3.540	-0.041	-1.546	-0.054	-0.144
	10/4/2021	0:45	-32.3	-10.1	61.0	-18.2	67.0	-0.389	-5.255	-0.047	-1.788	-0.070	-0.188
p 3	10/4/2021	1:00	-32.2	-10.1	59.0	-18.3	70.0	-0.458	-4.535	-0.054	-2.079	-0.070	-0.207
Ste	10/4/2021	1:15	-32.2	-10.1	63.0	-18.3	65.0	-0.459	-5.214	-0.055	-2.084	-0.071	-0.207
	10/4/2021	1:30	-32.4	-10.2	63.0	-18.2	70.0	-0.463	-5.332	-0.052	-2.110	-0.066	-0.209

NOTES:

FT = feet

IOW = inches of water

PID = photoionization detector

ppm = parts per million as measure by isobutylene by PID

 $SCFM = standard \ cubic \ feet \ per \ minute$

SVE = soil vapor extraction

Table 6Soil Gas Analytical Results and Removal RatesLake Forest Park CleanersLake Forest Park, WashingtonFarallon PN: 1993-007

Sample Location	Sample Identification	Sample Methodology		Analytical Results (micrograms per cubic meter)						HVOCs	
			Sample Date	PCE ¹	TCE ¹	cis-1,2- Dichloroethene ¹	trans-1,2- Dichloroethene ¹	Vinyl Chloride ¹	Extraction Flowrate (scfm)	Removal Rate (mg/min) ²	Estimated Annual Removal Rate (lbs/year)
North Extraction Trench	SSDS-WAREHOUSE-040221	EPA TO-15	4/2/2021	140	<0.91	<3.4	<3.4	<2.2	16.00	0.06	0.07
North Extraction Trench	SSDS-WAREHOUSE-100421	EPA TO-15	10/4/2021	45	< 0.63	<2.3	<2.3	<1.5	63.00	0.08	0.09
South Extraction Trench	SSDS-STORE-040221	EPA TO-15	4/2/2021	68	4	<2.3	<2.3	<1.5	30.00	0.06	0.07
	SSDS-STORE-100421	EPA TO-15	10/4/2021	53	2.6	<2.3	<2.3	<1.5	70.00	0.11	0.13

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹ Analyzed by U.S. Environmental Protection Agency (EPA) Method 8260C.

² Removal Rate calculation: Rate = Discharge flowrate*Sum of HVOCs*(mg/1000 ug)*(m3/ 35.3147 ft3)

³ Amount Removed Between Events calculation: lbs = (# of days between events)*(day/24 hrs)*(hr/60 min)*(Avg Removal Rate)*(1 lb/453592 mg)

HVOCs = halogenated volatile organic compounds PCE = tetrachloroethene

TCE = trichloroethene

ATTACHMENT A LABORATORY REPORTS

ENVIRONMENTAL INVESTIGATION SUMMARY Lake Forest Park Cleaners 17171 Bothell Way Northeast Lake Forest Park, Washington

Farallon PN: 1993-007

September 11, 2018

Jeff Borum TOR Environmental, Inc. P.O. Box 73626 San Clemente, CA 92673

Re: Analytical Data for Project Lake Forest Park Town Center Laboratory Reference No. 1808-379

Dear Jeff:

Enclosed are the analytical results and associated quality control data for samples submitted on August 31, 2018.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 11, 2018 Samples Submitted: August 31, 2018 Laboratory Reference: 1808-379 Project: Lake Forest Park Town Center

Case Narrative

Samples were collected on August 28 and 31, 2018 and received by the laboratory on August 31, 2018. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260C page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-1					
Laboratory ID:	08-379-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	1.4	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Iodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-1					
Laboratory ID:	08-379-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	6.0	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	120	75-127				
Toluene-d8	109	80-127				
4-Bromofluorobenzene	90	78-125				

VOLATILE ORGANICS EPA 8260C page 2 of 2

4

VOLATILE ORGANICS EPA 8260C page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-2					
Laboratory ID:	08-379-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	1.9	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Iodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-2					
Laboratory ID:	08-379-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	7.7	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	86	78-125				

VOLATILE ORGANICS EPA 8260C page 2 of 2

6

VOLATILE ORGANICS EPA 8260C page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-3					
Laboratory ID:	08-379-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	2.2	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Iodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-3					
Laboratory ID:	08-379-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	2.5	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	87	78-125				

8

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-4					
Laboratory ID:	08-379-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	1.5	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Iodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-4					
Laboratory ID:	08-379-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	85	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-5					
Laboratory ID:	08-379-05					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	2.0	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
lodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	0.66	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	0.66	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-5					
Laboratory ID:	08-379-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	7.6	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	118	75-127				
Toluene-d8	109	80-127				
4-Bromofluorobenzene	86	78-125				

12

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-6					
Laboratory ID:	08-379-06					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	1.2	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
lodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	0.22	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	0.34	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

13

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-6					
Laboratory ID:	08-379-06					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	3.4	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	86	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-7					
Laboratory ID:	08-379-07					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	1.2	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
lodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

15

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-7					
Laboratory ID:	08-379-07					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	1.4	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	75-127				
Toluene-d8	110	80-127				
4-Bromofluorobenzene	88	78-125				

16

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-8					
Laboratory ID:	08-379-08					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	1.7	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
lodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

17

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-8					
Laboratory ID:	08-379-08					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	0.45	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	86	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-9					
Laboratory ID:	08-379-09					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	1.1	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	0.67	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
lodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	0.48	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	0.49	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

19

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-9					
Laboratory ID:	08-379-09					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	1.3	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	85	78-125				

20

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-10					
Laboratory ID:	08-379-10					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	1.5	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
lodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

21

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-10					
Laboratory ID:	08-379-10					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	115	75-127				
Toluene-d8	110	80-127				
4-Bromofluorobenzene	84	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-11					
Laboratory ID:	08-379-11					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Iodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	0.29	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

23

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-11					
Laboratory ID:	08-379-11					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	75-127				
Toluene-d8	108	80-127				
4-Bromofluorobenzene	85	78-125				

24

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-12					
Laboratory ID:	08-379-12					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	1.3	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
lodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

25

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-12					
Laboratory ID:	08-379-12					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	83	78-125				

26

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-13					
Laboratory ID:	08-379-13					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloromethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Vinyl Chloride	0.98	0.20	EPA 8260C	9-10-18	9-10-18	
Bromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
lodomethane	ND	1.5	EPA 8260C	9-10-18	9-10-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(cis) 1,2-Dichloroethene	2.3	0.20	EPA 8260C	9-10-18	9-10-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroform	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Trichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	

27

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B-13					
Laboratory ID:	08-379-13					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromoform	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Bromobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	84	78-125				

28

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2					
Laboratory ID:	08-379-14					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloromethane	1.1	1.0	EPA 8260C	9-10-18	9-10-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Iodomethane	ND	1.5	EPA 8260C	9-10-18	9-10-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroform	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Trichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

29

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2					
Laboratory ID:	08-379-14					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromoform	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Bromobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	120	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	83	78-125				

30

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4R					
Laboratory ID:	08-379-15					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloromethane	1.3	1.0	EPA 8260C	9-10-18	9-10-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
lodomethane	ND	1.5	EPA 8260C	9-10-18	9-10-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroform	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Trichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	

31

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4R					
Laboratory ID:	08-379-15					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromoform	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Bromobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	119	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	85	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6					
Laboratory ID:	08-379-16					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloromethane	1.5	1.0	EPA 8260C	9-10-18	9-10-18	
Vinyl Chloride	0.39	0.20	EPA 8260C	9-10-18	9-10-18	
Bromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
lodomethane	ND	1.5	EPA 8260C	9-10-18	9-10-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(cis) 1,2-Dichloroethene	0.84	0.20	EPA 8260C	9-10-18	9-10-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroform	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Trichloroethene	0.61	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	

33

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6					
Laboratory ID:	08-379-16					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Tetrachloroethene	5.0	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromoform	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Bromobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	121	75-127				
Toluene-d8	110	80-127				
4-Bromofluorobenzene	85	78-125				

34

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0907W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloromethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroethane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Iodomethane	ND	1.3	EPA 8260C	9-7-18	9-7-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chloroform	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Trichloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromomethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-7-18	9-7-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-7-18	9-7-18	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

Analyte	Result	PQL				
		FQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0907W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Bromoform	ND	1.0	EPA 8260C	9-7-18	9-7-18	
Bromobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-7-18	9-7-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-7-18	9-7-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-7-18	9-7-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	86	78-125				

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0910W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloromethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Vinyl Chloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroethane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Trichlorofluoromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Iodomethane	ND	1.5	EPA 8260C	9-10-18	9-10-18	
Methylene Chloride	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chloroform	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Carbon Tetrachloride	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Trichloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromomethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromodichloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	9-10-18	9-10-18	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	9-10-18	9-10-18	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0910W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Tetrachloroethene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Dibromochloromethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromoethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Chlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Bromoform	ND	1.0	EPA 8260C	9-10-18	9-10-18	
Bromobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	9-10-18	9-10-18	
2-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
4-Chlorotoluene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Hexachlorobutadiene	ND	1.0	EPA 8260C	9-10-18	9-10-18	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	9-10-18	9-10-18	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	75-127				
Toluene-d8	106	80-127				
4-Bromofluorobenzene	83	78-125				

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB090	07W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.65	9.57	10.0	10.0	97	96	62-129	1	15	
Benzene	9.43	9.44	10.0	10.0	94	94	77-127	0	15	
Trichloroethene	9.42	9.05	10.0	10.0	94	91	70-120	4	15	
Toluene	9.65	9.48	10.0	10.0	97	95	82-123	2	15	
Chlorobenzene	9.37	8.94	10.0	10.0	94	89	79-120	5	15	
Surrogate:										
Dibromofluoromethane					106	111	75-127			
Toluene-d8					104	105	80-127			
4-Bromofluorobenzene					83	84	78-125			

VOLATILE ORGANICS EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09 ⁻	10W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.2	9.81	10.0	10.0	102	98	62-129	4	15	
Benzene	9.94	9.63	10.0	10.0	99	96	77-127	3	15	
Trichloroethene	9.86	9.35	10.0	10.0	99	94	70-120	5	15	
Toluene	10.2	9.78	10.0	10.0	102	98	82-123	4	15	
Chlorobenzene	9.76	9.14	10.0	10.0	98	91	79-120	7	15	
Surrogate:										
Dibromofluoromethane					109	111	75-127			
Toluene-d8					107	107	80-127			
4-Bromofluorobenzene					86	85	78-125			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received WORLD LADO	Relinquished	Signature	0.8-10	08-80	8.88	18.7	6 8-6	5 6.5	4 8-4	5.8	9	18-1	Lab ID Sample Identification	The left they	Sampled her Breun	Project Manager:	Project Name:	Project Number:		Analytical Laboratory Testing Services	Environmental Inc
Reviewed/Date					02		Company	V									8-31 (2)	Date Time Sampled Sampled M	(other)		Standard (7 Days)		Same Day 1 Day	(Check One)	Turnaround Request	Chair
7					1	- Martin											WATER 3	NWTF		1	ners	3 Days	Day		Lat	Chain of Custody
-					E1 21/18/3	8:31-10	Date Time											NWTF NWTF Volati	PH-Gx PH-Dx es 826	(d / SG (p)		Laboratory Nur	stody
Chrom	Data P			0	66	1		4									X	EDB I Semiv (with	EPA 80 volatile: ow-lev	11 (Wa s 8270 rel PAH	les 8260 Iters Onl D/SIM Is) ow-leve	y)			umber:	
Chromatograms with final report	Data Package: Standard		6166	El a	Sere R	1 Alla	Comments/Special Instructions											PCBs Orgar Orgar	8082A lochlor	ine Pe	sticides	8081B des 827	OD/SIM	-	08-379	
	Level III		370-	1.1.1	anno	207/aus	SUD											Total TCLP	MTCA Metals			•				Page
Electronic Data Deliverables (EDDs)	Level IV		2016			SAND 3												HEM	oil and	greas	e) 1664/	4				1 of 2
DDs)																		% Mo	isture							

Image: Standard Repetition Construction Construction<	Received Reviewed/Date	Relinquished	Received	Relinquished	Received NUKON WOON	Relinquished	Signature			6110-6	SH-WR	H M6-2	38-13	1-8-12	11-8-11	Lab ID Sample Identification	Sampled by:	Project Number:	Analytical Labora 14648 NE 95th Phone: (425) 8	Environmental Inc.
Image: Standard Signed Sign	Beviewed				05	No la	Company		žan	0	8-28	4		_	8-31	-	(oth	Same 2 Day Stand	(in working (Check O	5
Image: Standard Velatiles 8260C Volatiles 8260C Halogenated Volatiles 8260C Image: Standard Velatiles 8260C EDB EPA 8011 (Waters Only) EDB EPA 8011 (Waters Only) Image: Standard Velatiles 8260C Image: Standard Velatiles 8260C Image: Standard Velatiles 8260C Image: Standard Velatiles 8260C Image: Standard Velatiles 8260C Image: Standard Velatiles 8260C Image: Standard Velatiles 8260C Image: Standard Velatiles 8260C Image: Standard Velatiles 8270D/SIM (ow-level) Image: Standard Velatiles 8270D/SIM (ow-level) Image: Standard Velatiles 8270D/SIM (ow-level) Image: Standard Velatiles 8270D/SIM (ow-level) Image: Standard Velatiles 8270D/SIM (ow level) Image: Standard Velatiles 8270D/SIM (ow-level) Image: Standard Velatiles 8270D/SIM (ow-level)	/Date				1	ES/TOR	1				Brick	VV			r	Matrix Numb	per of Contair	1 Day 3 Days	days)	
Package: Standard Comments/Special Instructions Comments/Special Instructions Organophosphorus Pesticides 8270D/SIM Organophosphorus Pesticides 8270D/SIM Image: Package: Standard Chlorinated Acid Herbicides 8151A Organophosphorus Pesticides 8151A 79					81818	8/11/18										NWTF NWTF	PH-Gx/BTEX PH-Gx PH-Dx (Acid	d / SG Clean-up)		usiony
ata Package: Standard Very Image: Image: Image: Image: <td></td> <td></td> <td></td> <td></td> <td>1322</td> <td>1.12</td> <td></td> <td></td> <td></td> <td>-</td> <td>~</td> <td></td> <td></td> <td></td> <td></td> <td>Halog EDB E</td> <td>enated Volatile EPA 8011 (Wat</td> <td>ters Only)</td> <td>Number:</td> <td></td>					1322	1.12				-	~					Halog EDB E	enated Volatile EPA 8011 (Wat	ters Only)	Number:	
Total MTCA Metals	Data Package: Standard	-					Comments/Special Instructi									(with I PAHs PCBs Organ	low-level PAH: 8270D/SIM (k 8082A nochlorine Pes nophosphorus	s) pw-level) ticides 8081B Pesticides 8270D/SIM		
		6					ons									Total I TCLP	MTCA Metals Metals	ə) 1664A	79	Page N

April 8, 2021

Emerald Erickson-Mulanax Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1993-007 Laboratory Reference No. 2103-375

Dear Emerald:

Enclosed are the analytical results and associated quality control data for samples submitted on March 31, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: April 8, 2021 Samples Submitted: March 31, 2021 Laboratory Reference: 2103-375 Project: 1993-007

Case Narrative

Samples were collected on March 30, 2021 and received by the laboratory on March 31, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-033021					
Laboratory ID:	03-375-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloromethane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
Vinyl Chloride	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloroethane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Methylene Chloride	ND	1.0	EPA 8260D	4-2-21	4-2-21	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2,2-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Bromochloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloroform	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Trichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Bromodichloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	4-2-21	4-2-21	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-033021					
Laboratory ID:	03-375-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Tetrachloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,3-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Dibromochloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2-Chlorotoluene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
4-Chlorotoluene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Hexachlorobutadiene	ND	1.0	EPA 8260D	4-2-21	4-2-21	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	100	78-125				

VOLATILE ORGANICS EPA 8260D page 2 of 2

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-033021					
Laboratory ID:	03-375-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloromethane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
Vinyl Chloride	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloroethane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Methylene Chloride	ND	1.0	EPA 8260D	4-2-21	4-2-21	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2,2-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Bromochloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloroform	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Trichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Bromodichloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	4-2-21	4-2-21	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-033021					
Laboratory ID:	03-375-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Tetrachloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,3-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Dibromochloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2-Chlorotoluene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
4-Chlorotoluene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Hexachlorobutadiene	ND	1.0	EPA 8260D	4-2-21	4-2-21	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	75-127				
Toluene-d8	101	80-127				
4-Bromofluorobenzene	99	78-125				

VOLATILE ORGANICS EPA 8260D page 2 of 2

6

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4R-033021					
Laboratory ID:	03-375-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloromethane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
Vinyl Chloride	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloroethane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Methylene Chloride	ND	1.0	EPA 8260D	4-2-21	4-2-21	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2,2-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Bromochloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloroform	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Trichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Bromodichloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	4-2-21	4-2-21	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4R-033021					
Laboratory ID:	03-375-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Tetrachloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,3-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Dibromochloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2-Chlorotoluene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
4-Chlorotoluene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Hexachlorobutadiene	ND	1.0	EPA 8260D	4-2-21	4-2-21	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	97	78-125				

VOLATILE ORGANICS EPA 8260D page 2 of 2

VOLATILE ORGANICS EPA 8260D page 1 of 2

.

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-033021					
Laboratory ID:	03-375-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloromethane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
Vinyl Chloride	1.6	0.20	EPA 8260D	4-2-21	4-2-21	
Chloroethane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Methylene Chloride	ND	1.0	EPA 8260D	4-2-21	4-2-21	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2,2-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
(cis) 1,2-Dichloroethene	1.3	0.20	EPA 8260D	4-2-21	4-2-21	
Bromochloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloroform	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Trichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Bromodichloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	4-2-21	4-2-21	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-033021					
Laboratory ID:	03-375-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Tetrachloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,3-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Dibromochloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2-Chlorotoluene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
4-Chlorotoluene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Hexachlorobutadiene	ND	1.0	EPA 8260D	4-2-21	4-2-21	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	75-127				
Toluene-d8	99	80-127				
4-Bromofluorobenzene	97	78-125				

VOLATILE ORGANICS EPA 8260D page 2 of 2

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0402W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloromethane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
Vinyl Chloride	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloroethane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Methylene Chloride	ND	1.0	EPA 8260D	4-2-21	4-2-21	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2,2-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Bromochloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chloroform	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Trichloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Bromodichloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	4-2-21	4-2-21	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-2-21	4-2-21	

11

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0402W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Tetrachloroethene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,3-Dichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Dibromochloromethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Chlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-2-21	4-2-21	
2-Chlorotoluene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
4-Chlorotoluene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-2-21	4-2-21	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Hexachlorobutadiene	ND	1.0	EPA 8260D	4-2-21	4-2-21	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	4-2-21	4-2-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	99	78-125				

12

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB040	02W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.2	10.3	10.0	10.0	102	103	65-126	1	19	
Benzene	9.98	10.1	10.0	10.0	100	101	71-119	1	16	
Trichloroethene	10.0	9.91	10.0	10.0	100	99	82-123	1	18	
Toluene	9.97	9.85	10.0	10.0	100	99	77-119	1	18	
Chlorobenzene	10.1	10.2	10.0	10.0	101	102	80-120	1	17	
Surrogate:										
Dibromofluoromethane					98	100	75-127			
Toluene-d8					101	100	80-127			
4-Bromofluorobenzene					99	100	78-125			

13

DISSOLVED GASES RSK 175

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-033021					
Laboratory ID:	03-375-02					
Methane	2.0	0.55	RSK 175	4-7-21	4-7-21	
Ethane	ND	0.22	RSK 175	4-7-21	4-7-21	
Ethene	ND	0.29	RSK 175	4-7-21	4-7-21	

Client ID:	MW-6-033021					
Laboratory ID:	03-375-04					
Methane	1400	11	RSK 175	4-7-21	4-7-21	
Ethane	ND	0.22	RSK 175	4-7-21	4-7-21	
Ethene	ND	0.29	RSK 175	4-7-21	4-7-21	

DISSOLVED GASES RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

onno: ag/2 (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0407W1					
Methane	ND	0.55	RSK 175	4-7-21	4-7-21	
Ethane	ND	0.22	RSK 175	4-7-21	4-7-21	
Ethene	ND	0.29	RSK 175	4-7-21	4-7-21	

					Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	covery	Limits	RPD	Limit	Flags
SPIKE BLANK										
Laboratory ID:	SB04	07W1								
	SB	SBD	SB	SBD	SB	SBD				
Methane	17.6	17.9	22.1	22.1	80	81	75-125	2	25	
Ethane	33.1	34.0	41.6	41.6	80	82	75-125	3	25	
Ethene	37.9	37.6	38.8	38.8	98	97	75-125	1	25	

TOTAL ALKALINITY EPA 310.2

Matrix: Water Units: mg CaCO3/L

America (De sult	DOI		Date	Date	F laws
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-033021					
Laboratory ID:	03-375-02					
Alkalinity	110	75	EPA 310.2	4-1-21	4-1-21	
Client ID:	MW-6-033021					
Laboratory ID:	03-375-04					
Alkalinity	140	75	EPA 310.2	4-1-21	4-1-21	

TOTAL ALKALINITY EPA 310.2 QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

Analyte		Result	PQL	Me	ethod	Date Prepared	Date Analyzed		Flags
METHOD BLANK						-			
Laboratory ID:		MB0401W1							
Alkalinity		ND	15	EPA	310.2	4-1-21	4-1-2 ⁻	1	
Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE									
Laboratory ID:	03-37	75-02							
	ORIG	DUP							
Alkalinity	105	124	NA	NA	NA	NA	17	28	
MATRIX SPIKE									
Laboratory ID:	03-37	75-02							
	М	S	MS		MS				
Alkalinity	33	30	250	105	90	65-126	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB04	01W1							
	S	В	SB		SB				
Alkalinity	52	0	50.0	NA	104	77-116	NA	NA	

17

TOTAL DISSOLVED SOLIDS SM 2540C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-033021					
Laboratory ID:	03-375-02					
Total Dissolved Solids	200	13	SM 2540C	4-1-21	4-2-21	
Client ID:	MW-6-033021					
Laboratory ID:	03-375-04					
Total Dissolved Solids	380	13	SM 2540C	4-1-21	4-2-21	

TOTAL DISSOLVED SOLIDS SM 2540C QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0401W1					
Total Dissolved Solids	ND	13	SM 2540C	4-1-21	4-2-21	

• • • •	_	•	.	Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	03-37	75-02							
	ORIG	DUP							
Total Dissolved Solids	199	199	NA	NA	NA	NA	0	21	
SPIKE BLANK									
Laboratory ID:	SB04	01W1							
	S	В	SB		SB				
Total Dissolved Solids	47	79	500	NA	96	84-110	NA	NA	

TOTAL ORGANIC CARBON SM 5310B

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-5-033021					
03-375-02					
ND	1.0	SM 5310B	4-2-21	4-2-21	
MW-6-033021					
03-375-04					
13	1.0	SM 5310B	4-2-21	4-2-21	
	MW-5-033021 03-375-02 ND MW-6-033021 03-375-04	MW-5-033021 03-375-02 ND 1.0 MW-6-033021 03-375-04	MW-5-033021 03-375-02 ND 1.0 SM 5310B MW-6-033021 03-375-04	Result PQL Method Prepared MW-5-033021 03-375-02 -	Result PQL Method Prepared Analyzed MW-5-033021 03-375-02 - </td

TOTAL ORGANIC CARBON SM 5310B QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0402W1					
Total Organic Carbon	ND	1.0	SM 5310B	4-2-21	4-2-21	

				Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	03-3	75-02							
	ORIG	DUP							
Total Organic Carbon	ND	ND	NA	NA	NA	NA	NA	12	
MATRIX SPIKE									
Laboratory ID:	03-3	75-02							
	N	IS	MS		MS				
Total Organic Carbon	10).9	10.0	ND	109	80-124	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB04	02W1							
	S	В	SB		SB				
Total Organic Carbon	10).4	10.0	NA	104	80-124	NA	NA	

NITRATE (as Nitrogen) EPA 353.2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-033021					
Laboratory ID:	03-375-02					
Nitrate	ND	0.050	EPA 353.2	3-31-21	3-31-21	
Client ID:	MW-6-033021					
Laboratory ID:	03-375-04					
Nitrate	0.18	0.050	EPA 353.2	3-31-21	3-31-21	

NITRATE (as Nitrogen) EPA 353.2 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0331W1					
Nitrate	ND	0.050	EPA 353.2	3-31-21	3-31-21	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	03-3	53-01							
	ORIG	DUP							
Nitrate	ND	ND	NA	NA	NA	NA	NA	15	
MATRIX SPIKE									
Laboratory ID:	03-3	53-01							
	Ν	IS	MS		MS				
Nitrate	2.	21	2.00	ND	111	89-123	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB03	31W1							
	S	В	SB		SB				
Nitrate	2.	08	2.00	NA	104	90-119	NA	NA	

SULFATE ASTM D516-11

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-5-033021					
03-375-02					
13	5.0	ASTM D516-11	4-1-21	4-1-21	
MW-6-033021					
03-375-04					
ND	5.0	ASTM D516-11	4-1-21	4-1-21	
	MW-5-033021 03-375-02 13 MW-6-033021 03-375-04	MW-5-033021 03-375-02 13 5.0 MW-6-033021 03-375-04	MW-5-033021 03-375-02 13 5.0 ASTM D516-11 MW-6-033021 03-375-04	Result PQL Method Prepared MW-5-033021	Result PQL Method Prepared Analyzed MW-5-033021 03-375-02 - </td

SULFATE ASTM D516-11 QUALITY CONTROL

Matrix: Water Units: mg/L

Method	Prepared	Analyzed	Flags
ASTM D516-11	4-1-21	4-1-21	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	03-37	75-02							
	ORIG	DUP							
Sulfate	12.5	12.7	NA	NA	NA	NA	2	11	
MATRIX SPIKE									
Laboratory ID:	03-37	75-02							
	М	IS	MS		MS				
Sulfate	21	.8	10.0	12.5	93	61-148	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB04	01W1							
	S	В	SB		SB				
Sulfate	9.	61	10.0	NA	96	86-116	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Red Red S	Relinquished Guity Natur	Signature		The second secon	T.K	(4 MW-6-033021	3 MW-4R-033021	2 MW-5-033021	1 MW-1-033021	Lab ID Sample Identification	Courtney vin Stolk	Emerald Enickson - Mulanax	Project Name: Lake Forest Park cleaners	1993-007	Company: Favallon	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Analytical aboratory Testing Services	in OnSite
Reviewed/Date		CAR	A Margar		Sneedy	r Favallon	Company	/				4 A C181 A	1625	1500	3/30/21/1300 Water -	1	(other)	Containe	Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(in working days)	Turnaround Request	Chain of
C	Da	XSUM LOSI	2		3-31-21 0850	3/30/21 2007	Date Time C					X	X	×	×	NWTP NWTP NWTP Volatil Halog EDB E Semiv	PH-HCII PH-Gx/E PH-Gx PH-Dx (es 8260 enated EPA 801 volatiles	D Acid	/ SG Clo V O O s 8260D ers Only) /SIM	13		Laboratory Number:		Chain of Custody
Chromatograms with final report \square Electronic Data Deliverables (EDDs) \square	Data Package: Standard 🗌 Level III 🗌 Level IV 🗌						Comments/Special Instructions							X X X X X		(with I PAHs PCBs Organ Organ Chlori Total F Total N Total N HEM (A) K(TO: N) H	ow-leve 8270E/ 8082A iochlori ophosp nated A RCRA N MTCA N	e PAHs)	RS Pesticides bicides RS PA3 254(081B es 8270 8151A 8151A 8151A 8151A 8151A 8151A 8151A 8151A	5 2 2 4 90t			Page 1 of 1

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 8, 2021

Emerald Erickson, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Ms Erickson:

Included are the results from the testing of material submitted on April 2, 2021 from the Lake Forest Park Cleaners 1993-007, F&BI 104048 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0408R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 2, 2021 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC Lake Forest Park Cleaners 1993-007, F&BI 104048 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Farallon Consulting, LLC</u>
104048 -01	SSDS-WAREHOUSE-040221
104048 -02	SSDS-STORE-040221
104048 -03	SSDS-EFFLUENT-040221

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SSDS-WA 04/02/21 04/02/21 04/05/21 Air ug/m3	REHOU	SE-040221	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC Lake Forest Park Cleaners 1993-007 104048-01 1/8.5 040521.D GCMS7 bat
Surrogates: 4-Bromofluorobenz		% covery: 95	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concent ug/m3	cration ppbv		
Vinyl chloride		<2.2	< 0.85		
trans-1,2-Dichloroe	thene	<3.4	< 0.85		
cis-1,2-Dichloroeth	ene	<3.4	< 0.85		
Trichloroethene		< 0.91	< 0.17		
Tetrachloroethene		140	20		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SSDS-S 04/02/2 04/02/2 04/05/2 Air ug/m3	1	221	Inst	iect:	Farallon Consulting, LLC Lake Forest Park Cleaners 1993-007 104048-02 1/5.7 040520.D GCMS7 bat
Surrogates: 4-Bromofluorobenz		% Recovery: 97	Lov Lir	wer nit: 70	Upper Limit: 130	
Compounds:		Concent ug/m3		n obv		
Vinyl chloride trans-1,2-Dichloroe cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene		<1.5 <2.3 <2.3 4.0 68	<0 <0	0.57 0.57 0.57 0.75 10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Bla Not Applica Not Applica 04/05/21 Air ug/m3	ble	Client: Project: Lab ID: Data File: Instrument: Operator:		Farallon Consulting, LLC Lake Forest Park Cleaners 1993-007 01-760 MB 040515.D GCMS7 bat
Surrogates: 4-Bromofluorobenz		% overy: 93	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concent 1g/m3	ration ppbv		
Vinyl chloride trans-1,2-Dichloroe cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	thene ene	<0.26 <0.4 <0.4 <0.11 <6.8	<0.1 <0.1 <0.1 <0.02 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/08/21 Date Received: 04/02/21 Project: Lake Forest Park Cleaners 1993-007, F&BI 104048

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 104042-02 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.4	<1.4	nm
trans-1,2-Dichloroethene	ug/m3	<2.2	<2.2	nm
cis-1,2-Dichloroethene	ug/m3	<2.2	<2.2	nm
Trichloroethene	ug/m3	< 0.59	< 0.59	nm
Tetrachloroethene	ug/m3	<37	<37	nm

Laboratory Code: Laboratory Control Sample

ner or Sampro			
		Percent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
ug/m3	35	90	70-130
ug/m3	54	86	70-130
ug/m3	54	85	70-130
ug/m3	73	96	70-130
ug/m3	92	99	70-130
	Reporting Units ug/m3 ug/m3 ug/m3 ug/m3	Reporting UnitsSpike Levelug/m335ug/m354ug/m354ug/m373	Reporting UnitsSpike LevelPercent Recovery LCSug/m33590ug/m35486ug/m35485ug/m37396

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

14 A															111	Mahampion party pressor and		миулаланын шалама к н үзүлөн	<u>8</u>
FORMS\COC\COCTO-15.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruva. Inc.						SSDS- EFFLIENT-OHOLZI	5505 - 5TORE - 040221	SSDS-VADEHOUSE-O40224	Sample Name	SAMPLE INFORMATIO N	Phone	City, State, ZIP	Company <u></u> /- c; l(on Address	104048 Emercial
	Received by:	Relinquished by:	Received by:	Relinquished by:	SIGNATITRE						1 2300 706	3674 299	3476 224	Lab Canister Co ID ID I		Email FErichson Frichlansub 6 on		Constitution	Frickson
						IA / SG	IA / SG	IA / SG	HA / SG	IA / SG	1A 1/80	IA / SQ	IA / 89	Reporting Level: Flow LA=Indoor Air Cont. SG=Soil Gas ID (Circle One)		Lon	NOTES:	PROJEC	SAMPLI
a mana ang pang pang pang pang pang pang pa				N + R /	DDIVIL VIVIL			(ARC)			4/2/21 -30 1208	1/2/21 -30 1155	4/2/22 -30 1145	Date Sampled ("Hg) Time	· ·		n, nor	PROJECT NAME & ADDRESS Lake Forest Park Lland 1983 - 007	SAMPLERS (signature)
			2								1-1 1-1 1-1	1-5 1200	ۍ ا	d Final Field al Vac. Final e ("Hg) Time			INI		t Par
		TX 01	1 -010-	F. H.	COMPANY		Sample						\leq	TO15 Full Sca TO15 BTEXN TO15 cVOCs APH	ALYS	AP	INVOICE TO	PO#	ME OY/Da/a
		17/07 1727		TIME TIME			Samples received at $\frac{20}{0}$ °C				まり	tass-1,2-DCG;	PLEITLE:	Helium	STED	Archive (Fee may apply)	SAMPLE DISPOSAL	B -Standard RUSH Rush charges authorized by:	Page # 1 of 1

April 26, 2021

Emerald Erickson-Mulanax Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1993-007 Laboratory Reference No. 2104-150

Dear Emerald:

Enclosed are the analytical results and associated quality control data for samples submitted on April 16, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: April 26, 2021 Samples Submitted: April 16, 2021 Laboratory Reference: 2104-150 Project: 1993-007

Case Narrative

Samples were collected on April 16, 2021 and received by the laboratory on April 16, 2021. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-041621					
Laboratory ID:	04-150-01					
Dichlorodifluoromethane	ND	0.26	EPA 8260D	4-19-21	4-19-21	
Chloromethane	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Vinyl Chloride	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromomethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Chloroethane	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Acetone	ND	5.0	EPA 8260D	4-19-21	4-19-21	
lodomethane	ND	1.4	EPA 8260D	4-19-21	4-19-21	
Carbon Disulfide	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Methylene Chloride	ND	1.0	EPA 8260D	4-19-21	4-19-21	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Vinyl Acetate	ND	1.0	EPA 8260D	4-19-21	4-19-21	
2,2-Dichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Butanone	ND	5.0	EPA 8260D	4-19-21	4-19-21	
Bromochloromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Chloroform	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1-Dichloropropene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Benzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Trichloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Dibromomethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromodichloromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	4-19-21	4-19-21	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-19-21	4-19-21	
Toluene	ND	1.0	EPA 8260D	4-19-21	4-19-21	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-19-21	4-19-21	

VOLATILE ORGANICS EPA 8260D page 2 of 2

	_			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-041621					
Laboratory ID:	04-150-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Tetrachloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,3-Dichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Hexanone	ND	2.0	EPA 8260D	4-19-21	4-19-21	
Dibromochloromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dibromoethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Chlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Ethylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
m,p-Xylene	ND	0.40	EPA 8260D	4-19-21	4-19-21	
o-Xylene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Styrene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromoform	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Isopropylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
n-Propylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Chlorotoluene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
4-Chlorotoluene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
tert-Butylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
sec-Butylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
p-Isopropyltoluene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
n-Butylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-19-21	4-19-21	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Hexachlorobutadiene	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Naphthalene	ND	1.3	EPA 8260D	4-19-21	4-19-21	
1,2,3-Trichlorobenzene	ND	0.26	EPA 8260D	4-19-21	4-19-21	
Surrogate:	Percent Recovery	Control Limits	LI / 0200D	T-10-21	7-10-21	
Dibromofluoromethane	101	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	95	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-041621					
Laboratory ID:	04-150-02					
Dichlorodifluoromethane	ND	0.26	EPA 8260D	4-19-21	4-19-21	
Chloromethane	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Vinyl Chloride	0.21	0.20	EPA 8260D	4-19-21	4-19-21	
Bromomethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Chloroethane	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Acetone	ND	5.0	EPA 8260D	4-19-21	4-19-21	
lodomethane	ND	1.4	EPA 8260D	4-19-21	4-19-21	
Carbon Disulfide	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Methylene Chloride	ND	1.0	EPA 8260D	4-19-21	4-19-21	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Vinyl Acetate	ND	1.0	EPA 8260D	4-19-21	4-19-21	
2,2-Dichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
(cis) 1,2-Dichloroethene	1.0	0.20	EPA 8260D	4-19-21	4-19-21	
2-Butanone	ND	5.0	EPA 8260D	4-19-21	4-19-21	
Bromochloromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Chloroform	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1-Dichloropropene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Benzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Trichloroethene	0.60	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Dibromomethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromodichloromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	4-19-21	4-19-21	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-19-21	4-19-21	
Toluene	ND	1.0	EPA 8260D	4-19-21	4-19-21	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-19-21	4-19-21	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

5

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-041621					
Laboratory ID:	04-150-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Tetrachloroethene	2.5	0.20	EPA 8260D	4-19-21	4-19-21	
1,3-Dichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Hexanone	ND	2.0	EPA 8260D	4-19-21	4-19-21	
Dibromochloromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dibromoethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Chlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Ethylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
m,p-Xylene	ND	0.40	EPA 8260D	4-19-21	4-19-21	
o-Xylene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Styrene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromoform	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Isopropylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
n-Propylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Chlorotoluene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
4-Chlorotoluene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
tert-Butylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
sec-Butylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
p-Isopropyltoluene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
n-Butylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-19-21	4-19-21	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Hexachlorobutadiene	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Naphthalene	ND	1.3	EPA 8260D	4-19-21	4-19-21	
1,2,3-Trichlorobenzene	ND	0.26	EPA 8260D	4-19-21	4-19-21	
Surrogate:	Percent Recovery	Control Limits		110-21	1 10-21	
Dibromofluoromethane	100	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	98	78-127 78-125				
+-DI UITIUIIUUI UDENZENE	90	10-120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Drum-1-041621					
Laboratory ID:	04-150-03					
Dichlorodifluoromethane	ND	0.26	EPA 8260D	4-19-21	4-19-21	
Chloromethane	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Vinyl Chloride	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromomethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Chloroethane	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
lodomethane	ND	1.4	EPA 8260D	4-19-21	4-19-21	
Vethylene Chloride	ND	1.0	EPA 8260D	4-19-21	4-19-21	
trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2,2-Dichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
(cis) 1,2-Dichloroethene	0.55	0.20	EPA 8260D	4-19-21	4-19-21	
Bromochloromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Chloroform	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1-Dichloropropene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Trichloroethene	0.39	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Dibromomethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromodichloromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	4-19-21	4-19-21	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-19-21	4-19-21	

7

Client ID: Drum-1-041621 Laboratory ID: 04-150-03 1,1,2-Trichloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 Dibromochloromethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromoethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromoethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,2-Tetrachloroethane ND 0.20 EPA 8260D					Date	Date	
Laboratory ID: 04-150-03 1,1,2-Trichloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Tetrachloroethene 1.3 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromoethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromoethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Bromoform ND 1.0 EPA 8260D 4-19-21 4-19-21 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Tichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichorobuae </th <th>Analyte</th> <th>Result</th> <th>PQL</th> <th>Method</th> <th>Prepared</th> <th>Analyzed</th> <th>Flags</th>	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
1,1,2-Trichloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Tetrachloroethene 1.3 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromoethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromoethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Bromoform ND 1.0 EPA 8260D 4-19-21 4-19-21 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloroptopane ND 0.20 EPA 8260D 4-19-21 4-19-21 2-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D <	Client ID:	Drum-1-041621					
Tetrachloroethene 1.3 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 Dibromochloromethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromoethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromoethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Bromoform ND 1.0 EPA 8260D 4-19-21 4-19-21 1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Bromoform ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,2-Tickloroppane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Tickloroppane ND 0.20 EPA 8260D 4-19-	Laboratory ID:	04-150-03					
1,3-Dichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 Dibromochloromethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromoethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromoethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Bromoform ND 1.0 EPA 8260D 4-19-21 4-19-21 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloroptopane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloroptopane ND 0.20 EPA 8260D 4-19-21 4-19-21 2-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 </td <td>1,1,2-Trichloroethane</td> <td>ND</td> <td>0.20</td> <td>EPA 8260D</td> <td>4-19-21</td> <td>4-19-21</td> <td></td>	1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Dibromochloromethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromoethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Chlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Bromoform ND 1.0 EPA 8260D 4-19-21 4-19-21 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloropthane ND 0.20 EPA 8260D 4-19-21 4-19-21 2-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 2-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4	Tetrachloroethene	1.3	0.20	EPA 8260D	4-19-21	4-19-21	
1.2-Dibromoethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Chlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Bromoform ND 1.0 EPA 8260D 4-19-21 4-19-21 Bromobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,4-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20	1,3-Dichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Chlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Bromoform ND 1.0 EPA 8260D 4-19-21 4-19-21 Bromobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloroptopane ND 0.20 EPA 8260D 4-19-21 4-19-21 2-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 4-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 4-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibiromo-3-chloropropane ND 1.0 EPA 8260D 4-19-	Dibromochloromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 Bromoform ND 1.0 EPA 8260D 4-19-21 4-19-21 Bromobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 2-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 4-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 4-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,4-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibloromo-3-chloropropane ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.20	1,2-Dibromoethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromoform ND 1.0 EPA 8260D 4-19-21 4-19-21 Bromobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 2-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 4-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 4-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,4-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-1	Chlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 2-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 4-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,4-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromo-3-chloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D </td <td>1,1,1,2-Tetrachloroethane</td> <td>ND</td> <td>0.20</td> <td>EPA 8260D</td> <td>4-19-21</td> <td>4-19-21</td> <td></td>	1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 2-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 4-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,4-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND	Bromoform	ND	1.0	EPA 8260D	4-19-21	4-19-21	
1,2,3-Trichloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 2-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 4-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,4-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 Surrogate: Percent Recovery	Bromobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 4-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,4-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,4-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromo-3-chloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 Surrogate: Percent Recovery Control Limits Voltable Voltable Voltable Dibromofluoromethane	1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
4-Chlorotoluene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,4-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,4-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromo-3-chloropropane ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 Surrogate: Percent Recovery Control Limits Vontrol Limits Vontrol Limits Vontrol Limits Dibromofluoromethane 98 75-127 Vontrol Limits Vontrol Limits Vontrol Limits Vontro	1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,3-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,4-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 Surrogate: Percent Recovery Control Limits Vontrol Limits Vontrol Limits Vontrol Limits Vontrol Limits Dibromofluoromethane 99 80-127 Vontrol Limits Vontrol Limits	2-Chlorotoluene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,4-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 Surrogate: Percent Recovery Control Limits Voltaritist Voltaritist Voltaritist Dibromofluoromethane 98 75-127 Voltaritist Voltaritist Voltaritist Toluene-d8 99 80-127 Voltaritist Voltaritist Voltaritist Voltaritist	4-Chlorotoluene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 Hexachlorobutadiene ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 Surrogate: Percent Recovery Control Limits End End 5 5 Dibromofluoromethane 98 75-127 7 5 5 5 5	1,3-Dichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dibromo-3-chloropropane ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 Hexachlorobutadiene ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 Surrogate: Percent Recovery Control Limits 4-19-21 4-19-21 Dibromofluoromethane 98 75-127 4-19-21 4-19-21 Toluene-d8 99 80-127 4-19-21 4-19-21	1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2,4-Trichlorobenzene ND 0.20 EPA 8260D 4-19-21 4-19-21 Hexachlorobutadiene ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 Surrogate: Percent Recovery Control Limits 5000000000000000000000000000000000000	1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Hexachlorobutadiene ND 1.0 EPA 8260D 4-19-21 4-19-21 1,2,3-Trichlorobenzene ND 0.26 EPA 8260D 4-19-21 4-19-21 Surrogate: Percent Recovery Control Limits 5 5 5 Dibromofluoromethane 98 75-127 5 5 5 Toluene-d8 99 80-127 5 5 5	1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-19-21	4-19-21	
1,2,3-TrichlorobenzeneND0.26EPA 8260D4-19-214-19-21Surrogate:Percent RecoveryControl LimitsDibromofluoromethane9875-127Toluene-d89980-127	1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Surrogate:Percent RecoveryControl LimitsDibromofluoromethane9875-127Toluene-d89980-127	Hexachlorobutadiene	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Dibromofluoromethane 98 75-127 Toluene-d8 99 80-127	1,2,3-Trichlorobenzene	ND	0.26	EPA 8260D	4-19-21	4-19-21	
Dibromofluoromethane 98 75-127 Toluene-d8 99 80-127	Surrogate:	Percent Recovery	Control Limits				
	Dibromofluoromethane	98	75-127				
A.Bromofluorobenzone 05 78-125	Toluene-d8	99	80-127				
4-DIOINONUOIODENZENE 93 10-123	4-Bromofluorobenzene	95	78-125				

VOLATILE ORGANICS EPA 8260D page 2 of 2

8

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

Anglista	Desult	DOL	Mathad	Date	Date	Flore
Analyte METHOD BLANK	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID: Dichlorodifluoromethane	MB0419W1 ND	0.26	EPA 8260D	4-19-21	4-19-21	
Chloromethane	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Vinyl Chloride	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromomethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Chloroethane	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Trichlorofluoromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1-Dichloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Acetone	ND	5.0	EPA 8260D	4-19-21	4-19-21	
lodomethane	ND	1.4	EPA 8260D	4-19-21	4-19-21	
Carbon Disulfide	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Methylene Chloride	ND	1.0	EPA 8260D	4-19-21	4-19-21	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1-Dichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Vinyl Acetate	ND	1.0	EPA 8260D	4-19-21	4-19-21	
2,2-Dichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Butanone	ND	5.0	EPA 8260D	4-19-21	4-19-21	
Bromochloromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Chloroform	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Carbon Tetrachloride	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1-Dichloropropene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Benzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Trichloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Dibromomethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromodichloromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260D	4-19-21	4-19-21	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	4-19-21	4-19-21	
Toluene	ND	1.0	EPA 8260D	4-19-21	4-19-21	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	4-19-21	4-19-21	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0419W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Tetrachloroethene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,3-Dichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Hexanone	ND	2.0	EPA 8260D	4-19-21	4-19-21	
Dibromochloromethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dibromoethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Chlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Ethylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
m,p-Xylene	ND	0.40	EPA 8260D	4-19-21	4-19-21	
o-Xylene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Styrene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromoform	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Isopropylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Bromobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	4-19-21	4-19-21	
n-Propylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
2-Chlorotoluene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
4-Chlorotoluene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
tert-Butylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
sec-Butylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
p-Isopropyltoluene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
n-Butylbenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	4-19-21	4-19-21	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	4-19-21	4-19-21	
Hexachlorobutadiene	ND	1.0	EPA 8260D	4-19-21	4-19-21	
Naphthalene	ND	1.3	EPA 8260D	4-19-21	4-19-21	
1,2,3-Trichlorobenzene	ND	0.26	EPA 8260D	4-19-21	4-19-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	75-127				
Toluene-d8	107	80-127				
4-Bromofluorobenzene	97	78-127				
	37	10-120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB04	19W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	11.3	11.5	10.0	10.0	113	115	65-126	2	19	
Benzene	11.0	11.3	10.0	10.0	110	113	71-119	3	16	
Trichloroethene	10.8	11.0	10.0	10.0	108	110	82-123	2	18	
Toluene	10.7	10.8	10.0	10.0	107	108	77-119	1	18	
Chlorobenzene	10.1	10.3	10.0	10.0	101	103	80-120	2	17	
Surrogate:										
Dibromofluoromethane					104	104	75-127			
Toluene-d8					102	103	80-127			
4-Bromofluorobenzene					98	100	78-125			

TOTAL ALKALINITY SM 2320B

Matrix: Water Units: mg CaCO3/L

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-2-041621					
Laboratory ID:	04-150-01					
Total Alkalinity	84	2.0	SM 2320B	4-16-21	4-16-21	
Client ID:	MW-3-041621					
Laboratory ID:	04-150-02					
Total Alkalinity	140	2.0	SM 2320B	4-16-21	4-16-21	

TOTAL ALKALINITY SM 2320B QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

Analyte		Result	PQL	Me	ethod	Date Prepared	Date Analyzo	ed	Flags
METHOD BLANK									•
Laboratory ID:		MB0416W1							
Total Alkalinity		ND	2.0	SM	2320B	4-16-21	4-16-2	1	
Analyte	Res	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE	1.0.	Suit		Result	Recovery	Linits		Liiiit	Tiugo
Laboratory ID:	04-09	95-01							
	ORIG	DUP							
Total Alkalinity	84.0	86.0	NA	NA	NA	NA	2	10	
SPIKE BLANK									
Laboratory ID:	SB04	16W1							
	S	В	SB		SB				
Total Alkalinity	96	6.0	100	NA	96	89-110	NA	NA	

13

NITRATE (as Nitrogen) EPA 353.2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-041621					
Laboratory ID:	04-150-01					
Nitrate	0.17	0.050	EPA 353.2	4-16-21	4-16-21	
Client ID:	MW-3-041621					
Laboratory ID:	04-150-02					
Nitrate	0.13	0.050	EPA 353.2	4-16-21	4-16-21	

NITRATE (as Nitrogen) EPA 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L-N

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0416W1					
Nitrate	ND	0.050	EPA 353.2	4-16-21	4-16-21	

				Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	04-1	50-01							
	ORIG	DUP							
Nitrate	0.166	0.172	NA	NA	NA	NA	4	15	
MATRIX SPIKE									
Laboratory ID:	04-1	50-01							
	Ν	IS	MS		MS				
Nitrate	2.	22	2.00	0.166	103	89-123	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB04	16W1							
	S	B	SB		SB				
Nitrate	2.	00	2.00	NA	100	90-119	NA	NA	

DISSOLVED GASES RSK 175

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-041621					
Laboratory ID:	04-150-01					
Methane	1.4	0.55	RSK 175	4-26-21	4-26-21	
Ethane	ND	0.22	RSK 175	4-26-21	4-26-21	
Ethene	ND	0.29	RSK 175	4-26-21	4-26-21	

Client ID:	MW-3-041621					
Laboratory ID:	04-150-02					
Methane	88	0.55	RSK 175	4-26-21	4-26-21	
Ethane	ND	0.22	RSK 175	4-26-21	4-26-21	
Ethene	ND	0.29	RSK 175	4-26-21	4-26-21	

16

DISSOLVED GASES RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

onito: ag/2 (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0426W1					
Methane	ND	0.55	RSK 175	4-26-21	4-26-21	
Ethane	ND	0.22	RSK 175	4-26-21	4-26-21	
Ethene	ND	0.29	RSK 175	4-26-21	4-26-21	

					Pei	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANK										
Laboratory ID:	SB04	26W1								
	SB	SBD	SB	SBD	SB	SBD				
Methane	20.8	20.2	22.1	22.1	94	91	75-125	3	25	
Ethane	39.5	38.0	41.6	41.6	95	91	75-125	4	25	
Ethene	47.8	43.3	38.8	38.8	123	112	75-125	10	25	

TOTAL ORGANIC CARBON SM 5310B

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-2-041621					
04-150-01					
ND	1.0	SM 5310B	4-20-21	4-20-21	
MW-3-041621					
04-150-02					
4.7	1.0	SM 5310B	4-20-21	4-20-21	
	MW-2-041621 04-150-01 ND MW-3-041621 04-150-02	MW-2-041621 04-150-01 ND 1.0 MW-3-041621 04-150-02	MW-2-041621 04-150-01 ND 1.0 SM 5310B MW-3-041621 04-150-02	Result PQL Method Prepared MW-2-041621	Result PQL Method Prepared Analyzed MW-2-041621 04-150-01 - </td

TOTAL ORGANIC CARBON SM 5310B QUALITY CONTROL

offits. http://						Date	Date		
Analyte	Result		PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK	HOD BLANK								
Laboratory ID:		MB0420W1							
Total Organic Carbon		ND	1.0	SM	5310B	4-20-21	4-20-2	1	
				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	04-15	50-01							
	ORIG	DUP							
Total Organic Carbon	ND	ND	NA	NA	NA	NA	NA	12	
MATRIX SPIKE									
Laboratory ID:	04-15	50-01							
	М	S	MS		MS				
Total Organic Carbon	10	.0	10.0	ND	100	80-124	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB042	20W1							
	S	В	SB		SB				
Total Organic Carbon	10	.5	10.0	NA	105	80-124	NA	NA	

TOTAL DISSOLVED SOLIDS SM 2540C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-041621					
Laboratory ID:	04-150-01					
Total Dissolved Solids	110	13	SM 2540C	4-20-21	4-21-21	
Client ID:	MW-3-041621					
Laboratory ID:	04-150-02					
Total Dissolved Solids	230	13	SM 2540C	4-20-21	4-21-21	

TOTAL DISSOLVED SOLIDS SM 2540C QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0420W1					
Total Dissolved Solids	ND	13	SM 2540C	4-20-21	4-21-21	

	_			Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	04-15	50-02							
	ORIG	DUP							
Total Dissolved Solids	231	236	NA	NA	NA	NA	2	21	
SPIKE BLANK									
Laboratory ID:	SB04	20W1							
	S	В	SB		SB				
Total Dissolved Solids	48	33	500	NA	97	84-110	NA	NA	

SULFATE ASTM D516-11

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-041621					
Laboratory ID:	04-150-01					
Sulfate	7.5	5.0	ASTM D516-11	4-19-21	4-19-21	
Client ID:	MW-3-041621					
Laboratory ID:	04-150-02					
Sulfate	12	5.0	ASTM D516-11	4-19-21	4-19-21	

SULFATE ASTM D516-11 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0419W1					
Sulfate	ND	5.0	ASTM D516-11	4-19-21	4-19-21	

				Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	04-1	50-01							
	ORIG	DUP							
Sulfate	7.45	7.36	NA	NA	NA	NA	1	11	
MATRIX SPIKE									
Laboratory ID:	04-1	50-01							
	N	IS	MS		MS				
Sulfate	17	7.5	10.0	7.45	101	61-148	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB04	19W1							
	S	B	SB		SB				
Sulfate	9.	73	10.0	NA	97	86-116	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received Michael A	Relinquished	Received (29 yark	Relinquished Yun Swith	Signature					3 Drum -1-041621	2 MW-3-041621	1 MM-2-04/121	Lab ID Sample Identification	Courtieus Van Stolk	Enverald Enckson-Mulanax	Lake Forest Park Cleaners	INA3-007	Project Number:	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date			, 300	Streedy	Speeduj	- Favallon	Company					1 1125 4 3	8 0HON	G M Ohore/alli	Date Time Sampled Sampled Matrix	(other)	Contain	Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of Custody
			4/11/2/12/0	d-16-21 1310	21/21 12-944	4/11/21 1140	Date Time			C		×	X	×.	NWTF NWTF NWTF NWTF Volatil Halog	PH-HC PH-Gx/ PH-Gx PH-Dx les 826 enatec	D BTEX (Acid 0C Volatile	I / SG C es 82600 ers Only	2	p)		Laboratory Number:	Custody
Chromatograms with final report	Data Package: Standard 🛛 Level III 🗍 Level IV 🗌				1		Comments/Special Instructions							X X X X X	Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I Total I Total I Total I Total I Total I Total I	volatile ow-leve 8270D 8082A nochlor ophos nated RCRA I RCRA I RCRA I RCRA I RCRA I SOIN UTCA	s 8270E el PAHs /SIM (Ic ine Pes phorus Acid He Metals Grease)/SIM) w-level) ticides 8	10081B es 827 8151A	y Hraty		r: 04 - 150	Page of

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 11, 2021

Emerald Erickson, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Ms Erickson:

Included are the results from the testing of material submitted on October 4, 2021 from the Lake Forest Park Cleaners 1993-007, F&BI 110056 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data, EErickson@farallonconsulting.com, Russel Luiten FLN1011R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 4, 2021 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC Lake Forest Park Cleaners 1993-007, F&BI 110056 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
110056 -01	SSDS-Store-100421
110056 -02	SSDS-Warehouse-100421

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SSDS-Store-10 10/04/21 10/04/21 10/04/21 Air ug/m3	0421	Proj Lab Dat Inst	ect:	Farallon Consulting, LLC 1993-007, F&BI 110056 110056-01 1/5.9 100418.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	Recover	% ry: 89	Lower Limit: 70	Upper Limit: 130	
Compounds:	Con ug/r		ation ppbv		
Vinyl chloride trans-1,2-Dichloroe cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene	thene <2 ene <2	1.5 2.3 2.3 2.6 53	<0.59 <0.59 <0.59 0.49 7.9		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	SSDS- 10/04/2 10/04/2 10/04/2 Air ug/m3	21 21	100421	Client: Project: Lab ID: Data File: Instrument: Operator:	Farallon Consulting, LLC 1993-007, F&BI 110056 110056-02 1/5.9 100419.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	ene	% Recovery: 89	Lower Limit: 70	Upper Limit: 130	
Compounds:		Concent ug/m3	cration ppbv		
Vinyl chloride		<1.5	< 0.59		
trans-1,2-Dichloroe	ethene	<2.3	< 0.59		
cis-1,2-Dichloroeth	ene	<2.3	< 0.59		
Trichloroethene		< 0.63	< 0.12		
Tetrachloroethene		45	6.7		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 10/04/21 Air ug/m3	Pro Lal Da Ins	ent: oject: o ID: ta File: trument: erator:	Farallon Consulting, LLC 1993-007, F&BI 110056 01-2212 MB 100411a.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	% Recovery: ene 90	Lower Limit: 70	Upper Limit: 130	
Compounds:	ug/m3	11		
Vinyl chloride	< 0.26			
trans-1,2-Dichloroe		0.1-		
cis-1,2-Dichloroeth				
Trichloroethene	< 0.11	< 0.02		
Tetrachloroethene	<6.8	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/11/21 Date Received: 10/04/21 Project: Lake Forest Park Cleaners 1993-007, F&BI 110056

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 109556-01 1/5.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.3	<1.3	nm
trans-1,2-Dichloroethene	ug/m3	<2.1	<2.1	nm
cis-1,2-Dichloroethene	ug/m3	<2.1	<2.1	nm
Trichloroethene	ug/m3	< 0.56	< 0.56	nm
Tetrachloroethene	ug/m3	<35	<35	nm

Laboratory Code: Laboratory Control Sample

Haberlatory could. Haberlatory con	lei oi sampio			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	100	70-130
trans-1,2-Dichloroethene	ug/m3	54	101	70-130
cis-1,2-Dichloroethene	ug/m3	54	99	70-130
Trichloroethene	ug/m3	73	105	70-130
Tetrachloroethene	ug/m3	92	115	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Emergald Erickson/ Luiten Company Farallon	ricks	m./ Rus	iten	PROJ	SAMPLERS (signature) PROJECT NAME & ADDRESS	& AD	Thuh The DRESS NK Cle	UNRY.		PO#	Υ Υ	Rus	Page # TURN XStandard RUSH Rush charge	Page # of TURNAROUND TIME Indard SH Charges authorized by:	D TIME
Address 975 5th Ave NW City, State, ZIP 13599 Ugh WA 98027 Phone Email Consulting Com	Ave h Avallonc	VA 980	4		Lake Forest Anrk, WA NOTES: * PCE, TCE, CIS-DCE, * Vans-DCE, Vinyl Chloride	Lin C.	I Chilo	Vide	Ĺ	INVOICE TO		D Ar	1 charg SAM fault: (chíve (J	Rush charges authorized by; SAMPLE DISPOSAL Default: Clean after 3 days Archive (Fee may apply)	rized by; POSAL er 3 days apply)
SAMPLE INFORMATION										ANALY	SIS R	ANALYSIS REQUESTED	TED		
· · · ·		-	되 요	Reporting Level: 1A=Indoor Air			Field	도 기 일	Field	5 Full Scan 15 BTEXN)15 cVOCs	APH Helium		· · · · · · · · · · · · · · · · · · ·	,
Sample Name	₽₽	Canister ID		(Circle One)	Date Sampled	Vac. ("Hg)	Initial Time	Vac. ("Hg)	Pinai + Time	Ť				7	 Notes
2202 - 24018 - 10042	~	4184	15	IA / (SG)		30+	0/25		1510	÷	\times			*	
SSOS - Wavehouse	٥2	8530	18	IA / SG	10/4/21 30+0137	30 t	12:00	େ	0144	4	\mathbf{X}			★	
				IA / SG											
				IA / SG											
				IA / SG								*			
				IA / SG											
				IA / SG		· · · ·									
				IA / SG										-	
Friedman & Bruya, Inc.		SIGN	SIGNATURE	E	4	PRIN	PRINT NAME			CC	COMPANY	YN		DATE	TIME
3012 16th Avenue West	Relintu	Relinquished by		*	LISQ.	1	Thompson	ロブ	71	Favallon	5		10	10 4 21	1230
Seattle, WA 98119-2029	Received by:	Received by: ml	flour	R		Whan	Ŀ	Offin		1285			10	10/4/21	12 3
Fax (206) 283-5044	Received by:	d by:		A sub-short the set of a data set of the set				and the state of t		N San	nlae x		7		
										540	T eorch	Partonal confronce			

λ.

ATTACHMENT B AQTESOLV AQUIFER TESTING RESULTS

ENVIRONMENTAL INVESTIGATION SUMMARY Lake Forest Park Cleaners 17171 Bothell Way Northeast Lake Forest Park, Washington

Farallon PN: 1993-007

