

INTERIM REMEDIAL ACTION & CLEANUP ACTION PLAN

PREPARED BY:

THE RILEY GROUP, INC. 17522 BOTHELL WAY NORTHEAST BOTHELL, WASHINGTON 98011

PREPARED FOR:

MR. DEAN KRUSE TOULA PROPERTIES 3801 92ND AVENUE NORTHEAST BELLEVUE, WASHINGTON 98004

RGI PROJECT NO. 2021-465-1

FORMER FIRESTONE COMPLETE AUTO CARE PROPERTY 351 RAINIER AVENUE SOUTH RENTON, WASHINGTON 98057

AUGUST 4, 2022

Corporate Office 17522 Bothell Way Northeast Bothell, Washington 98011 Phone 425.415.0551 ♦ Fax 425.415.0311

www.riley-group.com

TABLE OF CONTENTS

1.0	INTRODUCTION	. 4
1.1	PROJECT OVERVIEW	4
1.2	PROPERTY INFORMATION	4
2.0	DESCRIPTION OF PROPERTY AND ADJOINING PROPERTIES	. 5
2.1	PROPERTY IDENTIFICATION AND LOCATION	5
2.2	ZONING	5
2.3	POTENTIAL FUTURE DEVELOPMENT	5
2.4	CURRENT ADJOINING PROPERTY USES	5
2.5	UTILITIES AND WATER SUPPLY	5
3.0	HISTORICAL INFORMATION	. 6
3.1	HISTORICAL PROPERTY USES	6
3.2	HISTORICAL ADJOINING PROPERTY USES	6
4.0	POTENTIAL SOURCES OF CONTAMINATION	. 6
4.1	POTENTIAL ON-PROPERTY SOURCES OF CONTAMINATION	6
4.2	POTENTIAL OFF-PROPERTY SOURCES OF CONTAMINATION	6
5.0	NATURAL CONDITIONS	. 7
5.1	Physiographic Setting and Topography	7
5.2	SURFACE WATER	7
5.3	GEOLOGIC SETTING	7
5.4	Soil	7
5.5	GROUNDWATER	7
6.0	PREVIOUS ENVIRONMENTAL INVESTIGATION SUMMARY	. 7
6.1	LIMITED SUBSURFACE SAMPLING AND TESTING, VACANT FORMER FIRESTONE COMPLETE AUTO CARE, 351 RAINIER	
Avenu	E SOUTH, RENTON WA BY EAI, FEBRUARY 18, 2021	7
6.2	CHARACTERIZATION OF ON-SITE CONTAMINATION, VACANT FORMER FIRESTONE COMPLETE AUTO CARE, 351 RAINIER	
Avenu	IE SOUTH, RENTON WA BY EAI, APRIL 12, 2021	8
7.0	CLEANUP STANDARDS	. 9
7.1	MTCA CLEANUP REGULATION	9
7.2	CLEANUP LEVELS & SCREENING LEVELS	9
7.2.1	SOIL CLEANUP LEVELS	9
8.0	INTERIM ACTIONS SUMMARY	10
8.1	CLEANUP ACTION SELECTION AND METHODOLOGY	
8.2	LIMITED HOIST CASING REMOVALS AND SOIL EXCAVATION WITH SAMPLING AND TESTING	
8.3	CONTAMINATED SOIL DISPOSAL	12
8.4	GROUNDWATER TREATMENT	12
8.5	PROPERTY RESTORATION	12
9.0		
9.1	CONCEPTUAL SITE MODEL	12
J.1	CONCEPTUAL SITE MODEL TERRESTRIAL ECOLOGICAL RESOURCES	
9.2		12
-	TERRESTRIAL ECOLOGICAL RESOURCES	12 13
9.2	TERRESTRIAL ECOLOGICAL RESOURCES	12 13 14
9.2 9.3	Terrestrial Ecological Resources Contaminants of Concern and Occurrence Potentially Complete Exposure Pathways	12 13 14 14
9.2 9.3 10.0	TERRESTRIAL ECOLOGICAL RESOURCES CONTAMINANTS OF CONCERN AND OCCURRENCE POTENTIALLY COMPLETE EXPOSURE PATHWAYS CLEANUP ACTION PLAN	12 13 14 14 14
9.2 9.3 10.0 10.1	TERRESTRIAL ECOLOGICAL RESOURCES CONTAMINANTS OF CONCERN AND OCCURRENCE POTENTIALLY COMPLETE EXPOSURE PATHWAYS CLEANUP ACTION PLAN CLEANUP ACTION OBJECTIVES	12 13 14 14 14 14
9.2 9.3 10.0 10.1 10.2	TERRESTRIAL ECOLOGICAL RESOURCES CONTAMINANTS OF CONCERN AND OCCURRENCE POTENTIALLY COMPLETE EXPOSURE PATHWAYS CLEANUP ACTION PLAN CLEANUP ACTION OBJECTIVES PROPOSED REMEDIAL ACTION APPROACH – MONITORING WELL INSTALLATION AND GROUNDWATER MONITORING	12 13 14 14 14 14 14 14

LIST OF APPENDICES

Figure 2 Figure 3	Property Vicinity Map Property Representation with EAI Soil Analytical Results EX1 and EX2 with RGI Soil Analytical Results
	Southwest-Northeast Cross-Section with EAI and RGI Soil Analytical Results AI Groundwater Analytical Results & RGI Proposed Monitoring Well Locations
Table 2	Summary of Soil Sample Analytical Laboratory Results Summary of Groundwater Sample Analytical Laboratory Results Summary of Sub-Slab Soil Vapor (WA) Sample Results
Appendix B Appendix C	Laboratory Analytical Reports Previous Reports Subcontractor Soil Disposal Receipts

1.0 INTRODUCTION

The Riley Group, Inc. (RGI) is pleased to present this Interim Remedial Action (RA) and Cleanup Action Plan (CAP) Report summarizing previous investigation, interim remedial activities and planned ongoing cleanup actions conducted for the property located at 351 Rainier Avenue South in Renton, King County, Washington (hereafter referred to as the Property). The location and vicinity of the Property is displayed on Figure 1.

This report was prepared to meet the requirements of the Washington State Model Toxics Control Act (MTCA) regulation (173-340 Washington Administrative Code (WAC)) which mandates the necessity of, and establishes requirements for, site cleanups that are protective of human health and the environment.

1.1 **Project Overview**

The Property is an approximately 0.36-acre parcel of land (King County parcel number 000720-0126) located in Renton, Washington. The Property is currently undergoing redevelopment as a parking lot.

In February 2021, Environmental Associates, Inc. (EAI) reported the presence of total petroleum hydrocarbons (TPH) in the boiling range of diesel as well as tetrachloroethene (PCE) in soils at concentrations exceeding their applicable MTCA Method A cleanup levels located around two former inground hoists (the casings of which had been filled with concrete prior to EAI's investigation). Additionally, diesel-range TPH impacts were identified in groundwater at the same two in-ground hoist locations. Further evaluation by EAI in April 2021 revealed gasoline-range TPH and arsenic in soils at concentrations exceeding applicable MTCA Method A cleanup levels, co-located with the previous PCE detections. EAI's exploration localities and the areas of impact are presented on the attached Figures 2 and 5.

In November 2021, Toula Properties contracted with RGI to perform interim remedial work based on the prior assessments of EAI. The interim remedial work included limited excavation and lawful removal/disposal of impacted soils, groundwater treatment, and groundwater monitoring. In April 2022, excavation of the previously identified non-compliant impacted soils occurred along with confirmatory sampling and testing. The Property is currently scheduled for redevelopment as a parking lot for the neighboring Chick-Fil-A restaurant.

As part of the interim remedial action, Toula Properties (collectively referred to as the Client hereafter) requested that RGI conduct this RA and CAP report.

Site Name:	Former Firestone Complete Auto Care
Site Address:	351 Rainier Avenue South, Renton, Washington 98057
King County Parcel No.:	000720-0126
ERTS ID:	N/A
Ecology Facility/Site No.:	62398766
Project Consultant:	The Riley Group, Inc.
Project Consultant Contact Information:	Eric Zuern
	17522 Bothell Way NE, Bothell, WA 98011
	P: 425.415.0551 E: ezuern@riley-group.com
Current Owner/Contact	Toula Properties. c/o Dean Kruse

1.2 Property Information

2.0 DESCRIPTION OF PROPERTY AND ADJOINING PROPERTIES

2.1 Property Identification and Location

The 0.36 acre tax parcel (King County parcel number 000720-0126) is located approximately 3,100 feet southeast of the Cedar River and is bounded by Rainier Avenue South and commercial/retail businesses to the north (auto parts store), south (Chick-Fil-A), and west (multiple retail operations including Fred Meyers and a dry cleaner). The Property was developed in 1960 with a Firestone Complete Auto Care shop building which was demolished in early 2022. The Property is currently undergoing redevelopment into a commercial parking lot for the south-adjacent Chick-Fil-A restaurant. The Property will have asphalt surface cover as well as decorative landscaping.

Nomenclature Note: This report utilizes the term Property (capital P) which refers to the land within the boundaries of the tax parcel referenced above. This report also utilizes the term Site (capital S), which refers to the subject Site (Ecology Facility ID# 62398766) and is defined as any place that contamination with the potential to pose a threat to human health and the environment has come to be as a result of this release. The boundaries of the *Site* do not appear to extend beyond the boundaries of the *Property* and/or into rights-of-way (ROW) at this time. A discussion of the *Site* boundaries are presented in the Conceptual Site Model section of this report.

2.2 Zoning

The Property is zoned in the City of Renton's Commercial Arterial (CA) zone.

2.3 Potential Future Development

The Property is located in a zone designated for anticipated commercial use with plans to be occupied by a parking lot for approximately 45 years.

2.4 Current Adjoining Property Uses

Typical use in the Property vicinity is commercial development, summarized as follows:

North of the Property:	A commercial building occupied by O'Reilly Auto Parts is present to the north.
East of the Property:	Rainier Avenue South defines the eastern Property line. A Shell gasoline station and Taco Bell restaurant occupy the area across the Rainier Avenue South.
South of the Property:	A recently developed Chick-Fil-A restaurant is located to the south.
West of the Property:	A retail strip building lies adjacent to the west. A nearby tenant of that building includes Renton Cleaning Center (a retail dry cleaner).

No off-Property sources of contamination have been identified at the neighboring properties.

2.5 Utilities and Water Supply

The utilities (main water, storm, and sewer) for the Property have previously been and will be connected to municipal facilities along Rainier Avenue South (east of the Property). Drinking water for the area is supplied by municipal wells (the nearest of which is over 3,000 feet east of the Property) which draw from the Cedar Valley Aquifer.

3.0 HISTORICAL INFORMATION

In December 2020, EAI completed a Phase I Environmental Site Assessment (Phase I ESA) for the Property. That history is detailed below.

3.1 Historical Property Uses

Available historical information revealed the Property was first developed in 1960 with Firestone Complete Auto Care shop building. The Property operated as Firestone Complete Auto Care from 1960 to 2020. Prior to 1960, the Property appeared to be covered in vegetation/pastureland. Prior to Firestone's vacating of the building in 2020, they had reportedly removed the six in-ground hoists which had previously served the business however upon closer inspection, only the internal mechanisms of the hoists appeared to have been removed with the remaining cylinder casings filled with concrete and remaining product/control lines and fluid reservoirs left in place.

Records indicate Firestone utilized an underground storage tank (UST) for waste oil storage and that such tank was removed at some time in the past. No removal date was listed with the Washington Department of Ecology. Additional inquires to the City of Renton revealed that no permits for tank removals were found in their City records which extended back to 1994. Further inquiries to Firestone indicated they also did not have records of the installation or removal of a UST at the Property. Further evaluation for the presence of that UST is discussed later in this report. Observations in 2020 revealed that Firestone stored waste oil in an above ground storage tank (AST) kept within a secondary containment enclosure.

3.2 Historical Adjoining Property Uses

The surrounding area has been utilized for commercial operations since approximately the mid-20th century. Of particular note, a commercial dry-cleaning business, Renton Cleaning Center has been located in the western adjacent building while a retail gas station has been located to the east across Rainier Avenue South. No reports of releases from the adjacent dry cleaner were identified in the public record. The eastern adjacent gas station, identified as the "Renton BP" by Ecology and addressed at 300-320 Rainier Avenue South had historically reported a release of petroleum products to soil and groundwater however, based on review of remedial actions performed at that property, Ecology issued a status of "no further action" (NFA) for that release in 2012.

4.0 POTENTIAL SOURCES OF CONTAMINATION

4.1 Potential On-Property Sources of Contamination

The Property had been in operation as tire and auto care center from 1960 to 2020. Potential sources of contamination at the Property consisted of the following: in-ground hydraulic hoists, automotive fluids stored on the Property, de-greasers and other auto part cleaning chemicals utilized on the Property, general vehicle servicing operations, and waste oil storage.

4.2 Potential Off-Property Sources of Contamination

While the Property is situated adjacent to an active dry cleaner (northwest of the Property) and gas station (east of the Property across Rainier Avenue South), sampling and testing by EAI indicate that on-Property contaminants are attributable to the tire and auto care center operations based on the isolated occurrences of the contaminants.

5.0 NATURAL CONDITIONS

5.1 Physiographic Setting and Topography

The Property is located on the United States Geologic Survey (USGS) Renton, Washington, 7.5-Minute Topographic Map (Figure 1) at an elevation of approximately 30 feet above mean sea level. The Property is located approximately 3,100 feet southwest of the Cedar River in the southeast quarter of Section 18, Township 23 north, Range 5 east of the Willamette Meridian. The King County parcel number for the Property is 000720-0126. The Property is relatively flat.

5.2 Surface Water

There is no surface water on the Site, Property, or adjacent properties.

5.3 Geologic Setting

Review of the geologic Maps for the vicinity of the Property (Hones 1998) reveal that much of the material underlying the Property is alluvium which may include clay, silt, sand, and gravel. Other geologic maps (Mullineaux, 1965) indicate that the Property is within an area consisting of artificial fill material. The Property also appears to have been located along the former Black River which flowed in a southerly direction from Lake Washington prior to 1916. The description of alluvium (primarily sands and silts) are similar to the native soil encountered during our field explorations.

5.4 Soil

Subsurface soil conditions encountered during drilling were described using the Unified Soil Classification System (USCS), and generally consist of brown silts or silty sand to grey sands and transitioning to gravels or sandy gravels below 20 feet below ground surface (bgs).

5.5 Groundwater

A zone of groundwater is present at depths between 9 to 11 feet bgs based on prior measurements. Based upon regional topography, the inferred flow direction of groundwater is to the south. Actual gradient will be measured after the installation of monitoring wells upon completion of Property redevelopment.

6.0 PREVIOUS ENVIRONMENTAL INVESTIGATION SUMMARY

Prior environmental investigations actions have been conducted at the Site by EAI. The analytical results from previous environmental investigations or interim actions are compared to using MTCA Method A cleanup levels to determine if further action may be warranted. Soil and groundwater sample locations are presented on Figures 2 and 5. Soil and groundwater analytical results are presented in Tables 1 and 2, respectively. Soil vapor analytical data is presented in Table 3. Analytical reports and boring logs conducted by EAI are provided in previous reports contained in Appendix B. The following reports for the Property are summarized in the following section:

6.1 Limited Subsurface Sampling and Testing, Vacant Former Firestone Complete Auto Care, 351 Rainier Avenue South, Renton WA by EAI, February 18, 2021.

Upon Firestone vacating the subject Property in 2020, EAI performed limited sampling and testing of soils, groundwater, and soil vapor across the Property in an effort to determine whether prior releases from the Firestone operation had occurred. EAI had observed the remnants of six in-ground hoist casings. Firestone appeared to have removed the internal mechanisms of the hoists and filled the steel casings with concrete. Hydraulic fluid lines appeared to remain extending from several of casings. Prior

to drilling, EAI attempted to locate the former location of an UST which had reportedly stored waste oil and had been removed at some time in the past. The Firestone operators had no knowledge of the UST and had stored waste oil in an above ground storage tank (AST) within a secondary containment area on the northwest exterior of the Property until 2020. EAI oversaw a geophysical survey of the Property including building interiors and exteriors. No evidence of the former UST was discovered during the survey. EAI advanced 10 soil borings at locations adjacent to the former hoists, shop/work areas, the location of the former above ground waste oil tank, and along the northern and southern Property lines. Testing of soils and groundwater from the temporary borings had revealed the elevated presence of diesel-range TPH above the MTCA Method A cleanup level in soils at sample location B7 at a narrow zone around 9 to 10 feet bgs. Diesel-range TPH was also identified above the MTCA Method A cleanup level in groundwater grab samples collected from sample locations B6 and B7. The chlorinated solvent PCE was reported in soils at concentrations at or above its MTCA Method A cleanup level at multiple depths adjacent to a former hoist at the B6 sample location. Other detections of the contaminants of concern (COCs) were identified at either compliant or non-detectable concentrations. Three soil-vapor samples collected from beneath the floor slab of the shop revealed concentrations of naphthalene and PCE above their applicable MTCA Method B screening levels.

6.2 Characterization of On-Site Contamination, Vacant Former Firestone Complete Auto Care, 351 Rainier Avenue South, Renton WA by EAI, April 12, 2021.

EAI returned to the Property in March and April 2021 to further characterize the extent of the contaminants identified above applicable cleanup levels during the prior assessment. An additional eight soil borings were installed surrounding the previous B6 and B7 sampling locations as well as resampling the B6 locality in an effort to reach deeper depths than previously explored to identify the vertical extent of potential contamination at that location. Two soil borings were placed proximal to the previous B3 sampling location where compliant concentrations of PCE had been detected in an effort determine if PCE concentrations are more widespread in that area. The results of laboratory analysis revealed that non-compliant diesel-range TPH in soils appeared limited vertically and horizontally at the prior B7 location at 9 to 10 feet bgs.

During redrilling of the B6 location (B6A), petroleum odors were observed at approximately 10 feet bgs (which corresponds to the top of the shallow groundwater table) and while diesel TPH had not been detected at that depth previously, the 10 foot sample was run again at a different laboratory for gasoline-, diesel, and oil-range TPH. The results of that test revealed gasoline TPH at concentrations above its MTCA Method A cleanup level as well as a flagged, compliant detection of diesel TPH. No oil was reported above its laboratory reporting limit. EAI inquired with the project laboratory as to the flagged diesel detection as it not been reported at that depth by the other laboratory. Laboratory staff reportedly advised that based on the sample chromatogram, the diesel detection appeared to be "carryover" from the gasoline detection. RGI subsequently interviewed the project laboratory about that finding and they advised that such can occur with a degraded gasoline product. Traces of ethylbenzene and xylenes were also present in that sample, which appears consistent with an old/degraded gasoline product. The lack of true diesel at that sample location also appears to correspond with the non-detection of diesel TPH during the prior assessment at that location and depth.

When attempting to define the vertical extent of PCE at the B6 locality, testing of soils at depths of 15 feet bgs and lower did not detect PCE even though prior testing had detected PCE at 15 feet bgs. A second test of soils at 15 feet bgs also did not reveal the presence of PCE. Based on the lack of detections at 15 feet bgs and not being able to reproduce the same results through multiple tests, the previous PCE detection at 15 feet does not represent conditions at 15 feet bgs at that locality and was most likely a laboratory error.

Based on the characterization sampling and testing, limited zones of soils impacted by gasoline TPH and arsenic were present at the base and within the "smear zone" of the B6 sampling locality. Non-compliant concentrations PCE previously encountered at the B6 locality appeared limited to shallower zones surrounding the B6 hoist (4 to 10 feet bgs) than previously inferred. PCE did not appear to be present in soils from similar depths in surrounding soil borings indicating that the non-compliant PCE was limited to the immediate area around that hoist casing. Additionally, soils contaminated with non-compliant diesel TPH appeared to be isolated to a relatively small zone at the base of the hoist proximal to the B7 sampling location as surrounding borings did not identify similar conditions. Groundwater contamination by diesel TPH also appeared to be isolated at the B6 and B7 sampling localities and did not appear to be a site-wide issue.

In April 2022, the former Firestone building was demolished. The floor slab and northern parking lot were left in place for completion of the following interim remedial actions.

7.0 CLEANUP STANDARDS

7.1 MTCA Cleanup Regulation

In Washington State, the Model Toxics Control Act (MTCA, RCW 70.105D), mandates that site cleanups protect human health and the environment. The MTCA Cleanup Regulation (173-340 WAC) defines the approach for establishing cleanup requirements for individual sites, including the establishment of cleanup standards and selection of cleanup actions.

The MTCA regulation provides three options for establishing standard and site-specific cleanup levels for soil and groundwater. Method A cleanup levels have been adopted for specific purposes and are intended to provide conservative cleanup levels for sites undergoing routine site characterization or cleanup actions or those sites with relatively few hazardous substances. Method B and C cleanup levels are set using a site risk assessment, which focus on the use of "reasonable maximum exposure" assumptions based on site-specific characteristics and toxicity of COCs.

7.2 Cleanup Levels & Screening Levels

Prior to commencing with the interim remedial action, RGI selected cleanup levels which were appropriate for evaluating compounds detected in soil and groundwater on the Property.

Groundwater and vapor intrusion were not evaluated during the interim remedial action. Therefore, cleanup levels and soil vapor/indoor air screening levels are not discussed herein. The evaluation of post interim remedial action groundwater data and the vapor intrusion assessment will be documented in a future report after the installation of the groundwater monitoring wells and associated groundwater sampling are completed.

Soil cleanup levels used to evaluate soil concentrations of COCs in soil during the interim remedial action are discussed below.

7.2.1 Soil Cleanup Levels

The selected soil cleanup levels for the Property were the MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses. RGI's evaluation of soil analytical data obtained during the interim remedial action indicate that these soil cleanup levels were sufficient to evaluate soil for compliance with MTCA regulations throughout the Property.

When no MTCA Method A soil cleanup level had been established for a given compound, the MTCA Method B soil cleanup level obtained from the Ecology Cleanup Level and Risk Calculation (CLARC) database was referenced.

8.0 INTERIM ACTIONS SUMMARY

The May 2021 interim cleanup action at the Property consisted of limited hoist casing removal, soil excavation with sampling and testing, and groundwater treatment, and is discussed below.

8.1 Cleanup Action Selection and Methodology

Due to the planned redevelopment of the Property as a parking lot for the neighboring Chick-Fil-A restaurant, mass excavation was the remedial alternative selected because it is a cost effective, practicable, proven effective and permanent remedy.

The interim remedial action included the appropriate performance and cleanup confirmation soil sampling and analysis to demonstrate compliance with MTCA regulations. Performance and cleanup sampling and field screening were used to direct the remedial excavation activities, directly soil to either a clean stockpile or a contaminated soil stockpile. Soil was screened in the field for the presence of VOCs using a portable gas analyzer equipped with a photoionization detector (PID). Soil samples were collected directly from the track hoe bucket and placed in laboratory-provided sample containers. Samples that were analyzed for gasoline-range TPH and VOCs were collected using EPA's Method 5035 sample collection method. Field screening consisted of visual and olfactory observations, PID readings, and/or petroleum hydrocarbon sheen testing. Field screening guided any further remedial excavation (if necessary) until analytical data demonstrated that *in-situ* soil concentrations were in compliance with the MTCA Method A CULs throughout the lateral and vertical limits of the remedial excavations. Soil exhibiting contamination was excavated directly loaded into trucks for off-Property disposal at an approved facility.

Confirmation soil samples were collected from the limits of the remedial excavation to verify that all soil containing concentrations of COCs above applicable soil cleanup levels had been removed from within the Property boundaries. In general, sidewall samples were collected from native soil at depths ranging from 8 to 11 feet bgs. Bottom samples were collected from native soil at depths ranging from 13 to 14 feet bgs. In general, confirmation samples were collected from the lateral limits of the remedial excavations at a distance that did not exceed 20 linear feet apart. At least one confirmation sample was collected at the bottom of the remedial excavations for every 400 square feet of excavation bottom. A mobile laboratory was used to analyze confirmation samples collected from the Property.

8.2 Limited Hoist Casing Removals and Soil Excavation with Sampling and Testing

Remedial Excavation EX1

Commencing on April 26, 2022, RGI oversaw the excavation and removal of the concrete filled hoist casings at the previous B6 and B7 EAI sample locations. Remedial excavation 1 (EX1) was advanced at the previous B7 sample location and remedial excavation 2 (EX2) advanced at the previous B6 sample location.

At EX1, a cylindrical hydraulic fluid reservoir was collocated with the hoist and was also removed. The Property owner had previously contracted to have the remaining hydraulic fluid from the hoist systems pumped out. Soils within the vadose zone at EX1 did not display evidence of contamination and as no previous contamination had been identified in the vadose zone by EAI at EX1, soils above the water table that did not display evidence of contamination were stockpiled adjacent to the excavation to be reused as backfill. All stockpiled materials were placed on visqueen above the concrete foundation pad. EX1 was initially excavated to dimensions of approximately 10 feet wide by 12 feet long by approximately 13 feet deep. A shallow pipe was found just below the floor slab from the hoist

mechanism, extending to the southwest (where the back wall of the shop, hydraulic controls, and an above ground hydraulic fluid reservoir had historically been located). The piping was cut at the margin of the excavation and a de minimis (less than 1 gallon) of oily sludge material dripped out of the remaining end of the pipe. Soils immediately below the pipe were over-excavated and removed from the Property and the end of the pipe was sealed. Groundwater slowly infiltrated the excavation at approximately 11 feet bgs. Petroleum odors became evident at approximately 8 to 9 feet bgs, corresponding to previous observations by EAI. Soils deeper than approximately 7 feet bgs were directly loaded to trucks and transported to a waste handling facility for further transport to an approved landfill. Soils were screened for contaminants utilizing a portable gas photoionization detector (PID) and water sheen tests.

Upon completion of initial excavation activities, RGI collected soil samples from each of the sidewalls using the on-site track hoe/excavator at depths between 10 to 11 feet bgs, just below the previously mentioned hydraulic fluid pipe, and two samples from the base of the excavation at approximately 13 feet bgs. Samples were placed in preconditioned, sterilized containers provided by an Ecology-accredited analytical laboratory. If soil samples were collected for analysis of VOCs, they were collected using the Environmental Protection Agency's Method 5035 sampling method. Samples were transferred directly to the on-Property mobile laboratory or placed in a chilled cooler for transport to an off-Property laboratory. As previous testing by EAI had confirmed diesel-range TPH at EX1 (B7), soil samples were analyzed for diesel and oil TPH using Method NWTPH-Dx. The results of the testing revealed no detections of diesel or oil TPH except for the eastern sidewall sample (EX1-ESW1) which contained oil TPH at 1,700 mg/kg which is below the MTCA Method A cleanup level of 2,000 mg/kg and the bottom sample (EX1-B1) which reported oil TPH at 2,400 mg/kg. Laboratory staff indicated the oil was indicative of lube oil which appeared to be hydraulic fluid from the former hoist. Acknowledging the variations between laboratories reporting TPH between diesel and oil (i.e. splitting the TPH-Dx value), the oil TPH detection is opined to be similar to the previous diesel TPH detections at that locality.

Acknowledging that the bottom sample remained non-compliant, that area of the excavation was further dug, and another sample was collected at approximately 13.5 to 14 feet bgs. Testing of that sample revealed no detections of diesel or oil TPH at that depth. As oil TPH had not previously been detected in soils at the Property (which may be a result of different laboratories being utilized), the bottom sample at EX1-B1 was also tested for polychlorinated biphenyls (PCBs), naphthalenes, and carcinogenic polyaromatic hydrocarbons (PAHs) corresponding to heavy oil testing requirements of Table 830-1 of the MTCA. No concentrations of PAHs, naphthalenes, or PCBs were detected in that sample.

Based on the results of the testing, the previously identified non-compliant diesel/oil-range TPH soil contamination at EX1 was successfully excavated from that area and no further remedial excavation was warranted in this area.

Remedial Excavation EX2

In an effort to avoid cross-contamination between excavation locations (as different contaminants were present at each), a different bucket was affixed to the excavator and soils at EX2 were dug to an overall excavation size of approximately 9 feet long by 9 feet wide by approximately 13 feet bgs. As previous testing by EAI had identified PCE in soils along the extent of the former hoist, all soils from EX2 were directly loaded to trucks for removal and appropriate approved disposal. Transport and disposal requirements stipulated in a previously approved "contained-in" letter from Ecology were followed during the excavation process. Throughout the excavation process, soils were field screened for visual and olfactory indicators of contamination as well as using a PID and water sheen tests. Subsurface conditions at EX2 were similar to EX1 with gasoline odors becoming evident at approximately 9 feet bgs.

Upon reaching the limits of the excavation, soil samples were collected from the sidewalls using the onsite track hoe/excavator at depths between 10 to 11 feet bgs and two samples from the base of the excavation at approximately 13 feet bgs. Soil samples were collected into laboratory provided glassware and immediately transferred to the on-site mobile project laboratory or kept in a chilled cooler for transport to an off-site project laboratory. Relying upon previous information developed by EAI, soil samples were analyzed for gasoline TPH by Method NWTPH-Gx, specific volatile organic compounds (VOCs) including benzene, toluene, ethylbenzene, xylenes (BTEX), PCE, trichloroethene (TCE), dichloroethenes (DCE), and vinyl chloride by EPA Method 8260D, as well as arsenic by EPA Method 6020B. No detections of gasoline-range TPH or VOCs were reported in the soil samples. Arsenic was reported in each of the soil samples at concentrations well below their applicable MTCA Method A cleanup level (consistent with background concentrations). Acknowledging that diesel TPH was found in groundwater by EAI at the EX2 location, RGI inquired with the project laboratory as to whether they observed any indicators of substantial diesel-range TPH in the soil sample TPH chromatograms to which they responded that they did not.

Based on the results of laboratory testing, it appears that PCE and gasoline-range TPH (which may have been released from historic vehicle servicing operations), as well as, the occurrence of arsenic at the base of the former hoist at the EX2 location had been successfully removed and no further remedial excavation was warranted in this area.

8.3 Contaminated Soil Disposal

Between April 27 and May 5, 2022, approximately 82.21 tons of contaminated soil was excavated and trucked to Waste Management's Seattle transfer station for proper disposal.

See Appendix C for soil disposal documentation.

8.4 Groundwater Treatment

Upon achieving compliant results of soil tests from each of the excavations, in an effort to treat contaminated groundwater, approximately 200 lbs of the remedial product Petrofix, provided by Regenesis, was applied to the base of each of the excavations. The Petrofix was distributed throughout the excavations using the on-site track hoe.

8.5 Property Restoration

Prior to backfilling EX1, three samples of the stockpiled material from the vadose zone were tested for gasoline-, diesel-, and oil-range TPH, BTEX, and chlorinated VOCs. No detections of those analytes were detected in the stockpile samples except for oil TPH in two of the samples at concentrations of 560 and 1,600 mg/kg, which are compliant with the MTCA Method A cleanup level of 2,000 mg/kg. The stockpiled material was then placed in the base of EX1 which were then covered with structural fill/gravels provided by Miles Sand and Gravel transported from the Fennel Quarry pit in Pierce County, Washington. EX2 was backfilled solely with the structural fill/gravels provided by Miles Sand and Gravel.

9.0 CONCEPTUAL SITE MODEL

9.1 Terrestrial Ecological Resources

A Terrestrial Ecological Evaluation (TEE) is required by WAC 173-340-7490 at any Site where there has been a release of a hazardous substance to soil. The regulation requires that one of the following actions be taken:

- Documenting a TEE exclusion
- Conducting a simplified TEE

Conducting a site-specific TEE

A simplified TEE evaluation was conducted for the Site. Based on the quantified factors of MTCA table 749-1, per WAC 173-340-7492(2)(a) further evaluation is not necessary. The TEE evaluation table is provided as Appendix D.

9.2 Contaminants of Concern and Occurrence

Contaminants of Concern

Based on information provided from previous environmental investigations, gasoline-range TPH, PCE and arsenic had been identified in soils at the B6/EX2 location above applicable MTCA Method A cleanup levels soil while diesel/oil-range TPH have separately been identified in soil at the B7/EX1 location. Diesel-range TPH has been identified in groundwater above its MTCA Method A cleanup level in groundwater at EX1 and EX2. Therefore, such are considered the contaminants of concern at those separate localities. PCE and naphthalene had previously been identified in shallow sub-slab soil-vapor; however, upon excavation activities and removal of the on-Property building (with no plans for future building construction), the soil-vapor detections are not considered contaminants of concern to vapor or air at this time.

Contaminant Occurrence and Movement

Soil: Table 1 and Figures 2, 3, and 4 attached to this report present the analytical results from soil samples collected and analyzed from EAI's prior studies and RGI's interim remedial action for the current contaminants of concern and other potential contaminants. Contaminant occurrences were colocated with historic in-ground hoists and appeared to be either release from the hoist systems (EX1) or alternatively, spills/releases of automotive fluids/solvents from the on-site shop for which the hoist casings likely acted as a preferential pathway into the subsurface. Confirmation sampling and testing of the soil excavation areas indicates that the direct excavation of contaminated soils was successful

Groundwater: Table 2 and Figure 5, attached to this report, depict the analytical results from groundwater samples collected and analyzed from EAI's prior sampling events. Contaminated groundwater occurrence appeared isolated to the EX1 and EX2 locations. While contaminated groundwater was not identified at EAI sample location B16, a separate preferential pathway between the two locations may account for the occurrence of lower concentration diesel TPH at EX2 compared to EX1. At this time, groundwater does not appear to be transporting the contaminants of concern beyond the points of compliance identified below.

Soil Vapor: Table 3, attached to this report, presents the analytical results from soil-vapor samples collected and analyzed by EAI during their initial sampling and testing event. Potential receptors for soil-vapor including on-site buildings and southern adjacent structures have been removed.

Points of Compliance

Referring to Figures 2 and 3, based on the sampling and testing documented above, RGI (with data presented by EAI) has established the following points of compliance for characterization of each separated excavation:

EX1:

- Soil: Soil borings B8, B16, B17, B18, B19 as well as soil samples EX1-NSW, EX1-SSW, EX1-PIPE, EX1-ESW, EX1-WSW, EX1-B1A, EX1-B2 are points of compliance.
- Groundwater: Sampling of temporary soil borings B8, B16, B17, B18, and B19 are points of compliance for groundwater.

EX2:

- Soil: Soil borings B5, B13, B14, B15, B16 as well as soil samples EX2-NSW, EX2-SSW, EX2-ESW, EX2-WSW, EX2-B1, EX2-B2 are points of compliance.
- Groundwater: Sampling of temporary soil borings B5, B13, B14, B15, and B16 are points of compliance for groundwater.

Surface Water: There is not a surface water body or significant drainage located on the Site. Therefore, an evaluation of this media is not necessary.

Air/Soil Vapor: On-site structures have been removed with no plans for future building construction therefore a vapor intrusion evaluation is not necessary.

Sediment: Sediment is not present on the Site. Therefore, an evaluation of this media is not necessary.

9.3 Potentially Complete Exposure Pathways

A potentially complete exposure pathway consists of: 1) an identified contaminant source; 2) a transport pathway to locations (exposure points) where potential receptors might come in contact with the COCs; and 3) an exposure route (e.g., soil ingestion, vapor inhalation, drinking water) through which potential receptors might be exposed to the COCs.

The Property is currently vacant and undeveloped, which eliminates present concerns for the vapor intrusion exposure pathway (regarding indoor air/soil vapor). Future plans for the Property include development of the site as a parking lot.

Dermal contact for excavation/utility workers in at the Site is also identified as a potentially complete pathway.

The Property is not served by private wells and any water service would be connected through municipal sources, completing the pathway for drinking water.

10.0 CLEANUP ACTION PLAN

10.1 Cleanup Action Objectives

The objective of the cleanup action is to achieve a Site No Further Action (NFA) determination under MTCA. The primary objective when selecting an appropriate cleanup action will be to remediate petroleum contaminated soil and groundwater associated with the Site in accordance with applicable local, state, and federal rules.

10.2 Proposed Remedial Action Approach – Monitoring Well Installation and Groundwater Monitoring

To address the remaining groundwater contamination at the Property and assess the effectiveness of the interim cleanup action, RGI has proposed to install a network of six groundwater monitoring wells within and around the EX1 and EX2 locations upon completion of site redevelopment (as a parking lot). The compliance monitoring wells would then be sampled on a quarterly basis for one year to assess the progress of the Petrofix application discussed earlier. Groundwater samples from each well would be analyzed for diesel/oil-range TPH. Proposed locations of groundwater monitoring wells are depicted on Figure 5.

10.3 Response to Further Action Triggers

In the event that TPH is detected in groundwater within the surrounding wells or does not appear to be declining at EX1 or EX2, such wells will be re-sampled and groundwater re-analyzed. If the initial findings

are not confirmed by the follow-up testing, then the initial findings will be interpreted as a laboratory "false positive" or due to a sampling irregularity, and the previously established confirmation monitoring schedule will resume.

If the above-referenced follow-up analysis confirms the initial result, then the findings will be disclosed to the Ecology and RGI will assess whether additional applications of Petrofix or other remedial compounds would be beneficial.

If contaminated groundwater or contaminated soils at locations not previously assessed are found to remain within the bounds of the Property upon completion of the proposed remedial action and do not appear to be migrating off-Property, RGI would assess whether a potential restrictive covenant may be necessary to achieve regulatory site closure.

11.0 LIMITATIONS

This report is the property of RGI, Toula Properties, and their authorized representatives or affiliates. This report is intended for specific application to the Former Firestone Complete Auto Care Property located at 351 Rainier Avenue South, Renton, King County, Washington.

Work for this project was performed, and this report prepared, in accordance with generally accepted professional practices for the nature and conditions of work completed in same or similar locations at the present time.

Any findings and recommendations presented in this report are based upon data obtained by RGI and others at the time of preparing this report. RGI's results and findings do not necessarily reflect subsurface conditions underlying other areas of the Site not investigated. Conditional changes may occur through time by natural or human-made process on this or adjacent properties. Additional changes may occur in legislative standards, which may or may not be applicable to this report. These changes, beyond RGI's control, may render this report invalid, partially or wholly. If variations appear evident, RGI should be notified and RGI reserves the right to modify its conclusions and/or recommendations as new data and information is made available. No legal or other warranty, expressed or implied, is made.

If we may provide you with any additional information or clarification of this work, please contact the undersigned at (425) 415-0551.

Sincerely,

THE RILEY GROUP, INC.

Eric Zuern Project Manager

Mygah

Megan Poysnick, LG Senior Environmental Manager

Report Distribution: Mr. Dean Kruse, Toula Properties (PDF)

			EAI B	15	-		
Date	Depth	Gas	BTEX	DSL	Oil	VOCS	As
03/21	4					ND	
03/21	10	ND	ND			ND	2.82
03/21	15	ND	ND				4.03
03/21	25					ND	

	EAI B1	7				E
Date	Depth	DSL	Oil		Date	Τ
03/21	9-10	ND	ND		03/21	Τ
03/21	15	ND	ND		03/21	Т
				· /		_

il
D
D

		-					
	ite	Depth	Gas	BTEX	DSL	Oil	VOCS
02/	/21	9	ND	ND	ND	ND	ND

		EA	AI B7			
Date	Depth	Gas	BTEX	DSL	Oil	VOCS
02/21	4		ND			
02/21	9-10	ND	ND	7,200	ND	ND
02/21	16			ND	ND	ND

EAI B16							
Date	Depth	Gas	BTEX	DSL	Oil	VOCS	As
03/21	4			ND	ND	ND	
03/21	10	ND	ND	ND	ND	ND	3.9
03/21	15	ND	ND	ND	ND		6.31
03/21	25					ND	

	EAI B1	8				
Date	Depth	DSL	Oil			
03/21	3	ND	ND			
03/21	10	ND	ND			
03/21	15	ND	ND			
EAI B20						

		EAI B
	Date	Deptl
	03/21	6
S	03/21	9-10
	03/21	14

			EAI B	14			
Date	Depth	Gas	BTEX	DSL	Oil	VOCS	As
03/21	4					ND	
03/21	3/21 10 ND		ND ND -			ND	2.85
03/21	12	ND	ND	ND	ND	ND	
03/21	15	ND	ND				1.08
03/21	20					ND	

DSL Oil

ND ND

ND ND

ND ND

	Approximate Scale: 1"=	=30'	_ ▲									
	0 15 30		60 N									
er F	irestone Complete Auto Care	F	Figure 2									
ber:												
	Analytical Results		8/2022									
s: 35	1 Rainier Avenue South, Renton, Wash	nington	98057									

Soil Analytical Results in mg/kg;

	Depth = Feet below ground surface		
	Gas = Gasoline total petroleum hydrocarbons (TPH)		
	BTEX = Benzene, toluene, ethylbenzene, xylenes		
	DSL/Oil = Diesel/oil TPH		
	VOCs = Volatile organic compounds		
	Naph. = Naphthalene		
	cPAHs = Carcinogenic polycyclic aromatic hydrocarbons		
	PCBs = Polychlorinated biphenyls		
	x = the sample chromatographic pattern does not resemble the fuel standard used for quantitation.		
	PCE = Tetrachloroethene		Constant
= Approximate Excavation Boundary	As, Cd, Cr, Pb, Hg, CrVI = Total arsenic, cadmium, chromium, lead, mercury, hexavalent chromium		Corporate
— O= Hoist mechanism features	ND = Not detected above laboratory detection limits		17522 Bo
	Bold results indicate concentrations above laboratory detection limits		Bothell, V
Boring by RGI, 04/27/22	Bold and highlighted results (if any) indicate concentrations above MTCA Soil Cleanup Levels		Phone: 42
Subject property boundary		RILETURUUP	Fax: 425.4

	Corporate Office	Former
	17522 Bothell Way Northeast	RGI Project Number:
	Bothell, Washington 98011 Phone: 425.415.0551	2021-465-1
RILEYGROUP	Fax: 425.415.0311	Address: 3

Riley	Group I	EX1-NSV	V1								
ate	Depth	DSL	Oil								
27/22	10-11	ND	ND								
Riley Group EX1-B2											
ate Depth DSL Oil											
27/22	10-11	ND	ND								
Riley	Group	EX1-ESV	V1								
ate	Depth	DSL	Oil								
27/22	10-11	ND	1,700								

Riley	Group	EX1-B1	A								
ate	Depth	DSL	Oil								
27/22 13.5-14 ND ND											
,		EX1-SSV	V1								
ate Depth DSL Oil											
27/22	10-11	ND	ND								

	Riley	Group	EX1-SP	1									
Date	Gas	BTEX	DSL	Oil	VOCS								
04/27/22	04/27/22 ND ND ND ND ND												
	Riley	/ Group	EX1-S	P2									

Date	Gas	BTEX	DSL	Oil	VOCS
04/27/22	ND	ND	ND	1,600	ND

	Riley Group EX1-SP3												
Date Gas BTEX DSL Oil VOCS													
04/27/22	ND	ND	ND	560	ND								

= Hoist mechanism features

= Boring by EAI, 03/2021

= Subject property boundary

Bold results indicate concentrations above laboratory detection limits

Bold and highlighted results (if any) indicate concentrations above MTCA Groundwater Cleanup Levels

2021-465-1 Address:

Bothell, Washington 98011

Phone: 425.415.0551

RILEYGROUP Fax: 425.415.0311

	EAI B17	(Ground	water)					
	Date	DSL	Oil					
	02/21	86x	ND					
	EAI B19	(Ground	water)					
	Date		Oil					
	02/21	. ND	ND					
je s	Data		AI B9 (0	Froundwa		Oil	VOCS	
- Et	Date 02/21			E X BND ND	DSL ND	ND	ND	
L enue solution					a t a u)			
	Date			Groundwa	DSL	Oil	VOCS	
	02/21			2.3 ND			ND	
	-	EAI	B7A f (G	roundwa	ter)			
(Date 02/21	As . ND	Cd ND	Cr ND	Pb ND	H _{		
1		AI B7A (0					<u> </u>	
	Date	cPAH	Othe	er cPAHs				
				threne = 2	2.9			
	02/21	0.07	Fluor	ene=1.40				
			Pyrer	ne = 1.90				
		E	AI B8 (0	Froundwa	ater)			
	Date		B T	E X	DSL	Oil	VOCS	
	02/21	. ND	ND 2.3		ND	ND	ND	
	-	(Ground	1	EAI B16				
	Date 02/21	DSL . 62x	Oil ND	Date 02/21				
) (Groundwate DSL 0								
1 ND NI								
		Appr	oximat	e Scale	: 1"=3	30'	A	
		0	15	30			60 N	
er Fireston							Figure 5	
				EAI Grou			Date Drav	vn:
. Anaiyti	cai kesu		GI Propo cations	osed Mon	itoring	weii	8/2022	2
s: 351 Raini	er Ave			enton, V	Nashi	ngtor	n 98057	

Table 1. Summary of Soil Sample Analytical Laboratory Results

Former Firestone Complete Auto Care

351 Rainier Avenue South, Renton, Washington 98057

351 Rainier Avenue : The Riley Group, Inc				3057																					
Sample	Sample	Sample	Gasoline	I	B	TEX		Diesel		1		cis-1,2-	trans-1,2]		Other		I	1			Total Metal	s		
Number	Depth	Date	трн	В	т	E	х	ТРН	Oil TPH	PCE	TCE	DCE	DCE	vc	1,1-DCE	VOCs	Naph.	cPAHs	PCBs	As	Cd	Cr	Pb	Hg	CrVI
Confirmation Samples	Collected	By Riley Gro	oup	•						•							•		•			•			
EX1-SP1		04/27/22	ND<10	ND<0.02	ND<0.10	ND<0.05	ND<0.15	ND<50	ND<250	ND<0.03	ND<0.02	ND<0.03	ND<0.03	ND<0.02	ND<0.05										
EX1-SP1 (Duplicate)		04/27/22						ND<50	ND<250																
EX1-SP2		04/27/22	ND<10	ND<0.02	ND<0.10	0 ND<0.05	ND<0.15	ND<50	1,600	ND<0.03	ND<0.02	ND<0.03	ND<0.03	ND<0.02	ND<0.05										
EX1-SP3		04/27/22	ND<10	ND<0.02	ND<0.10	ND<0.05	ND<0.15	ND<50	560	ND<0.03	ND<0.02	ND<0.03	ND<0.03	ND<0.02	ND<0.05										
EX2-B1:13	13	04/27/22	ND<10	ND<0.02	ND<0.10		ND<0.15			ND<0.03	ND<0.02	ND<0.03	ND<0.03	ND<0.02	ND<0.05					2.57					
EX2-B2:13	13	04/27/22	ND<10	ND<0.02			ND<0.15			ND<0.03	ND<0.02	ND<0.03	ND<0.03	ND<0.02	ND<0.05					3.13					
EX2-B2:13 (Duplicate)	13	04/27/22	ND<10	ND<0.02	-		ND<0.15													3.13					
EX2-ESW1:11	10-11	04/27/22	ND<10	ND<0.02	-		ND<0.15			ND<0.03		ND<0.03	ND<0.03	ND<0.02	ND<0.05					5.34					
EX2-SSW1:11	10-11	04/27/22	ND<10	ND<0.02	-		ND<0.15			ND<0.03		ND<0.03	ND<0.03	ND<0.02	ND<0.05					3.61					
EX2-WSW1:11	10-11	04/27/22	ND<10	ND<0.02	ND<0.10		ND<0.15			ND<0.03		ND<0.03	ND<0.03	ND<0.02	ND<0.05					3.73					
EX2-NSW1:11 EX1-8	10-11 8	04/27/22 04/27/22	ND<10	ND<0.02	ND<0.10	0 ND<0.05	ND<0.15			ND<0.03	ND<0.02	ND<0.03	ND<0.03	ND<0.02	ND<0.05					ND<1					
EX1-8 EX1-B1:13	13	04/27/22						ND<50	2,400								ND<0.05	ND	ND						
EX1-B1A:13.5	13.5	04/27/22						ND<50	ND<250																
EX1-B2:13	13.5	04/27/22						ND<50	ND<250																
EX1-NSW1:10	10-11	04/27/22						ND<50	ND<250																
EX1-ESW1:10	10-11	04/27/22						ND<50	1,700																
EX1-SSW1:10	10-11	04/27/22						ND<50	ND<250																
EX1-WSW1:10	10-11	04/27/22						ND<50	ND<250																
EX1-SW Pipe:0.5	0.5	04/27/22						ND<50	ND<250																
Historical Test Probes	by EAI																								
B1-10	10	02/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND									
B2-2.5	2.5	02/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		0.02	ND	4	ND	23.9	9.5	ND	
B3-10	10	02/21	ND	ND	ND	ND	ND	ND	ND	0.05	ND	ND	ND	ND		ND									
B4-4	4	02/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND									
B5-3	3	02/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
B5-15	15	02/21								ND	ND	ND	ND	ND											
B6-4	4	03/21								0.06	ND	ND	ND	ND											
B6A-4	4	03/21	ND	ND	ND	ND	ND													5.18					
B6-10	10	02/21						ND	ND	0.05	ND	ND	ND	ND											
B6A-10	10	03/21	160	ND	ND	0.18	0.29	450 x	ND							ND		0.01	ND	32.4	ND	26.6	7.14	ND	ND
B6-15	15	02/21	ND	ND	ND	ND	ND	ND	ND	0.08	ND	ND	ND	ND		ND									
B6A-15	15 15	02/21 02/21								ND ND	ND ND	ND ND	ND ND	ND ND						ND					
B6A-15 (Dubplicate) B6A-20	20	02/21								ND	ND	ND	ND	ND											
B6A-30	30	02/21								ND	ND	ND	ND	ND											
B7-4	4	02/21		ND	ND																				
B7-9-10	10	02/21	ND	ND	ND	ND	ND	7,200	ND	ND	ND	ND	ND	ND		ND									
B7-16	16	02/21						ND	ND	ND	ND	ND	ND	ND											
B8-8	8	02/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND									
B8-8 (Duplicate)	8	02/21	ND																						
B9-2	2	02/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND									
B10-8	8	02/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND									
B11-2.5	2.5	03/21								ND	ND	ND	ND	ND											
B11-10	10	03/21								ND	ND	ND	ND	ND											
B11-20	20	03/21								ND	ND	ND	ND	ND											
B12-3	3	03/21								ND	ND	ND	ND	ND											
B12-10	10	03/21								ND	ND	ND	ND	ND											
B12-30	30	03/21								ND	ND	ND	ND	ND											
B13-4	4	03/21								ND	ND	ND	ND	ND											
MTCA Method A Soi Unrestricted	-		100/30 ¹	0.03	7	6	9	2,	000	0.05	0.03					Analyte Specific	5	TEF = 0.1	Analyte Specific	20	2	19/2,000 ²	250	2	19
MTCA Method B S	oil Cleanu	p Levels										160	1,600	0.67 ³	4,000										
for Unrestrict	ed Land U	ses			1						<u> </u>		,	0.07											1

Table 1. Summary of Soil Sample Analytical Laboratory Results

Former Firestone Complete Auto Care

351 Rainier Avenue South, Renton, Washington 98057

Sample	Sample	Sample	Gasoline		BT	ΈX		Diesel	Oil TPH	PCE	TCE	cis-1,2-	trans-1,2-	vc	1,1-DCE	Other	Naph.	cPAHs	PCBs			Total Metal	ls		CrV
Number	Depth	Date	TPH	В	Т	E	х	ТРН	OILINH	PCE	ICE	DCE	DCE	vc	1,1-DCE	VOCs	Napn.	СРАПS	PLDS	As	Cd	Cr	Pb	Hg	Crv
est Probes by EAI C	ontinued																								
B13-10	10	03/21	ND	ND	ND	ND	ND													3.35					
B13-13	13	03/21								ND	ND	ND	ND	ND											
B13-20	20	03/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						ND					
B14-4	4	03/21								ND	ND	ND	ND	ND											
B14-10	10	03/21	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND			-			2.85	-				
B14-12	12	03/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
B14-15	15	03/21	ND	ND	ND	ND	ND				-									1.08					
B14-20	20	03/21		-			-			ND	ND	ND	ND	ND			-				-				
B15-4	4	03/21								ND	ND	ND	ND	ND											-
B15-10	10	03/21	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND						2.82					i
B15-15	15	03/21	ND	ND	ND	ND	ND				-						-			4.03	-				i
B15-25	25	03/21		-			-			ND	ND	ND	ND	ND			-				-				-
B 16-4	4	03/21						ND	ND	ND	ND	ND	ND	ND											-
B16-10	10	03/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			-			3.9	-				-
B16-15	15	03/21	ND	ND	ND	ND	ND	ND	ND		-						-			6.31	-				
B16-25	25	03/21								ND	ND	ND	ND	ND											
B 17-3	3	03/21						ND	ND		-														i
B17-9-10	10	03/21						ND	ND																
B17-15	15	03/21						ND	ND																
B18-3	3	03/21						ND	ND		-														i
B18-10	10	03/21		-			-	ND	ND		-						-				-				
B18-15	15	03/21						ND	ND																
B19-10	10	03/21						ND	ND																
B19-15	15	03/21						ND	ND																
B20-6	6	03/21						ND	ND																-
B20-9-10	10	03/21						ND	ND																-
B20-14	14	03/21						ND	ND																
MTCA Method A S Unrestrict	oil Cleanup ed Land Use		100/30 ¹	0.03	7	6	9	2,	000	0.05	0.03					Analyte Specific	5	TEF = 0.1	Analyte Specific	20	2	19/2,000 ²	250	2	:
MTCA Method B for Unrestric												160	1,600	0.67 ⁴	4,000										-

Notes:

All results and detection limits are given in milligrams per kilogram (mg/kg); equivalent to parts per million (ppm).

Sample Depth = Soil sample depth interval in feet below ground surface (bgs).

PID = Photoionization detector.

Gasoline TPH (total petroleum hydrocarbons) determined using Northwest Test Method NWTPH-Gx.

BTEX (benzene, toluene, ethylbenzene, and xylenes) determined using EPA Test Method 8021B or 8260D.

Diesel and Oil TPH (total petroleum hydrocarbons) determined using Northwest Test Method NWTPH-Dx

PCE (tetrachloroethene), TCE (trichloroethene), cis-1,2-DCE (cis-1,2-dichloroethene), trans-1,2-DCE (trans-1,2-dichloroethene), VC (vinyl chloride), 1,1-DCE (1,1-dichloroethene), and other VOCs (volatile organic compounds) determined using EPA Test Method 8260D.

VOCs (volatile organic compounds) determined using EPA Test Method 8270E.

Naph. (naphthalene) determined using EPA Test Method 8270E.

cPAHs (carcinogenic polycyclic aromatic hydrocarbons) determined using EPA Test Method 8270D SIM.

PCBs (polychlorinated biphenyls) determined using EPA Test Method 8082A.

CrVI (chromium, Hexavalent) determined using EPA Test Method 7196

Total Metals (As = arsenic, Cd = cadmium, Cr = chromium, Pb = lead, Hg = mercury) determined using EPA Method 6020B.

Table 1. Summary of Soil Sample Analytical Laboratory Results Former Firestone Complete Auto Care 351 Rainier Avenue South, Renton, Washington 98057 The Riley Group, Inc. Project No. 2021-465-1 Notes continued: x = The sample chromatographic pattern does not resemble the fuel standard used for quantitation. j = The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate. ND = Not detected at a concentration above the analytical detection limit. --- = Not analyzed or not applicable. TEF = Toxicity Equivalency Factor per WAC 173-340-708(8). Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses (WAC 173-340-900, Table 740-1). MTCA Method B Soil Screening Levels from Ecology's Cleanup Level and Risk Calculation (CLARC) database. ¹ The higher cleanup level is allowed if no benzene is present in the gasoline mixture and the total concentration of toluene, ethylbenzene and xylenes is less than 1% of the gasoline mixture. ¹ The higher cleanup level is allowed if no hexavalent chromium (CrVI) is present in the sample. ³ No MTCA Method A Cleanup Level has been established. Therefore, the MTCA Method B Non-Carcinogenic Standard Formula Value is listed for reference. ⁴ No MTCA Method A Cleanup Level has been established. Therefore, the MTCA Method B Carcinogenic Standard Formula Value is listed for reference.

Bold results indicate concentrations (if any) above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that exceed MTCA Method A or B Soil Cleanup Levels.

Table 2. Summary of Previous Groundwater Sample Analytical

Laboratory Results Former Firestone Complete Auto Care

351 Rainier Avenue South, Renton, Washington 98057

The Riley Group, Inc. Project No. 2022-465-1

The Riley G	iroup, Inc. Proj	ject No. 202	2-465-1																			
Sample	Sample	Gasoline		BT	EX		Diesel	0.1 70.1	205	TCE	cis-1,2-	trans-1,2-		Other					Disso	olved Me	tals	
Number	Date	ТРН	В	т	E	х	ТРН	Oil TPH	PCE	ICE	DCE	DCE	vc	VOCs	cPAHs	Other cPAHs	PCBs	As	Cd	Cr	Pb	Hg
Groundwate	er Sampling by I	EAI																				
B1	02/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
B2	02/21	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND		0.08	ND	ND	ND	ND	ND	ND	ND
B3	02/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
B4	02/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
B5	02/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
B6	02/21	240	ND	ND	ND	ND	2,400	ND	ND	ND	ND	ND	ND									
B7	02/21	ND	ND	2.3	ND	ND	16,000	ND	ND	ND	ND	ND	ND					-	-		-	
B7A f	02/21																ND	1.89	ND	ND J	ND	ND
B7A	02/21														0.07	Phenanthrene = 2.9 Fluorene=1.40						
DIA	02/21														0.07	Pyrene = 1.90	ND	1.89	ND	ND J	ND	ND
B8	02/21	ND	ND	2.1	1.0	ND	ND	ND	ND	ND	ND	ND	ND									
B9	02/21	ND	ND	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND									
B10	02/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
B11	03/21								ND	ND	ND	ND	ND									
B12	03/21								ND	ND	ND	ND	ND									
B13	03/21						81 x	ND														
B14	03/21						ND	ND														
B15	03/21						130 x	ND														
B16	03/21						79 x	ND														
B17	03/21						86 x	ND														
B18	03/21						62 x	ND														
B19	03/21						ND	ND														
B20	03/21						ND	ND														
	hod A Cleanup Ground Water	800/1,000 ¹	5	1,000	700	1,000	500	500	5	5			0.2	Analyte Specific	TEF = 0.1			5	5	50	15	2
	hod B Cleanup Ground Water ²										16	160				Phenanthrene = NA Fluorene=640 Pyrene = 480	400					

Notes:

Samples collected by RGI field staff using a peristaltic pump under low-flow conditions.

Unless otherwise noted, all analytical results are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

Gasoline TPH (total petroleum hydrocarbons) determined using Northwest Test Method NWTPH-Gx.

BTEX (benzene, toluene, ethylbenzene, and xylenes) determined using EPA Test Method 8021B or 8260D.

Diesel and Oil TPH (total petroleum hydrocarbons) determined using Northwest Test Method NWTPH-Dx.

PCE (tetrachloroethene), TCE (trichloroethene), cis-1,2-DCE (cis-1,2-dichloreothene), trans-1,2-DCE (trans-1,2-dichloroethene), VC (vinyl chloride), 1,1-DCE (1,1-dichloroethene), and other VOCs (volatile organic compounds) determined using EPA Method 8260D.

VOCs (volatile organic compounds) determined using EPA Test Method 8260D.

Dissolved Metals (As = arsenic, Cd = cadmium, Cr = chromium, Pb = lead, Hg = mercury) determined using EPA Method 6020B.

ND = Not detected at a concentration above the analytical detection limit.

---- = Not analyzed or not applicable.

x = The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

f = The sample was laboratory filtered prior to analysis

j = The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

Table 2. Summary of Groundwater Sample Analytical Laboratory Results Former Firestone Complete Auto Care 351 Rainier Avenue South, Renton, Washington 98057 The Riley Group, Inc. Project No. 2022-465-1 Notes continued: cPAHs (carcinogenic polycyclic aromatic hydrocarbons) determined using EPA Test Method 8270D SIM. ---- = Not analyzed or not applicable. Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A Cleanup Levels for Ground Water (WAC 173-340-900, Table 720-1). MTCA Method B Standard Formula Values for Ground Water from Ecology's Cleanup Level and Risk Calculation (CLARC) database.

¹ The higher cleanup level is applicable if no benzene is detected in groundwater.

² No MTCA Method A Cleanup Level has been established. Therefore, the MTCA Method B Non-Carcinogenic Standard Formula Value is listed for reference.

Bold results indicate concentrations (if any) above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that exceed MTCA Method A or B Cleanup Levels for Ground Water.

Table 3. Summary of Previous Sub-Slab Soil Vapor (WA) Sample Results

Former Firestone Complete Auto Care

351 Rainier Avenue South, Renton, Washington 98057

The Riley Group, Inc. Project No. 2021-465-1

The fune	Group) II	ic. Froject No. 20	EI 400 I															
		Sample Depth	Т	PHv Fraction	IS	BTEX												
Sample		(feet below	C ₅ - C ₈	C ₉ - C ₁₂	C ₉ - C ₁₀	_	_	_		Naph.	TPHv	PCE	TCE	1,1-DCE		trans 1,2	vc	Other
Number	Date	concrete slab)	aliphatics	aliphatics	aromatics	В	Т	E	X						DCE	DCE		VOCs
B5	02/01/21		1,900	510	180	4.7	ND<98	16	117	3.1	2,730.80	440	ND<0.56	ND<2.1	ND<2.1	ND<2.1	ND<1.3	1,1,1 Trichloroethane = 49
B9	02/01/21		910 fb	460	170	5.4	ND<62	15	109	3.4	1,672.80	ND<22	ND<0.35	ND<1.3	ND<1.3	ND<1.3	ND<0.84	1,1,1 Trichloroethane = 3.6
B10	02/01/21		710 fb	410	190	5.6	63	18	126	3.6	1,526.20	ND<21	ND<0.33	ND<1.3	ND<1.2	ND<1.2	ND<0.79	ND
ΜΤϹΑ Ν	Method B S Screening	ub-Slab Soil Gas g Level	90,000	4,700	6,000	10.7	76,200	15,200	1,520	2.5	4,700	320	12	52			94	1,1,1 Trichloroethane = NA

Notes:

Unless otherwise noted, all analytical results are given in micrograms per cubic meter (ug/m,).

TPHv = (total petroleum hydrocarbons) C^5 to C^{11} using EPA Method TO-15.

TPHv Fractions = Equivalent Carbon Ranges for aliphatics C⁵ - C⁸ and C⁹ - C¹⁵ and aromatics C⁹ - C¹⁰ determined using EPA Test Method TO-15.

BTEX = Benzene, toluene, ethylbenzene, and total xylenes determined using EPA Test Method TO-15.

PCE (tetrachloroethene), TCE (trichloroethene), cis-1,2-DCE (cis-1,2-dichloroethene), trans-1,2-DCE (trans-1,2-dichloroethene), VC (vinyl chloride), 1,1-DCE (1,1-dichloroethene), and other VOCs (volatile organic compounds) determined using EPA Test Method TO-15.

fb = The analyte was detected in the method blank.

Naph. (naphthalene) determined using EPA Test Method TO-15.

Other VOCs (volatile organic compounds) determined using EPA Test Method TO-15.

ND = Not detected above the laboratory detection limit.

---- = Not applicable.

Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method B Sub-Slab Soil Gas Screening Levels. Most conservative value referenced.

Bold results indicate concentrations above laboratory detection limits.

Bold and highlighted results indicate any detected soil vapor concentrations that would result in an exceedance to the MTCA screening levels.

3322 South Bay Road NE • Olympia, WA 98506-2957

May 9, 2022

Eric Zuern The Riley Group 17522 Bothell Way NE, Suite A Bothell, WA 98011

Dear Mr. Zuern:

Please find enclosed the analytical data report for the Former Firestone Complete Auto Care Project located in Renton, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

hy I the

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environmen	tal, Ir	IC.		CI	hain	of C	usto	dy F	lecor	ď	-		-	4°	www.Libb	yEnvironn	nental.com
3322 South Bay Road NE		360-352-2				Dete	11/2	-10	A22		· · · ·	De		1		-6	1
Olympia, WA 98506		360-352-4	154					0.4	125 . 1				ge:	1		of	F
Client: Rilley Grou	or an					Proje	ect Mana	ager:	an	ZVE	111		C.		1010	0.1.	Camo
Address:								ie: H	SAM	ur fi	1671				use	Auto	arc
City:		State:	Zip:			Loca	tion:						y, Sta				
Phone:		Fax:				Colle	ector:					Da	te of (Collec	tion: 4	27/2	022
Client Project # 2021-40	5-1					Ema	il:		1	/ /	,		~		, ,		
THE BAA			Sample	Container	50°	250 50 250 10 250 11	1910 1910 1910 1910 1910 1910 1910 1910	ANN PHAN	50 50 50 50 50 50 50 50 50 50 50 50 50 5	2 5 Netal	Medals Medals	8210 5810	018210				
Sample Number	Depth	Time	Туре	Туре	13/			22 22	20/4	Ver a	<u>~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	58/	\leftarrow	$ \leftarrow $		d Notes	
1 EX1-SP1	-	9:03	5	1Jar, 2Voy		ЯXI	X	X					_				vile for
2 EX1-SP2	-	9:05	1			X	\mathbf{X}	X	-				-		10	ackfil	1
3 EX1-SP3	-	9:05			2	X	X	X					-		V		
4 Ex2-B1:13		9:35				$\langle \times \rangle$	X							1.192		sidem	
5 EX2-B2:13		9:50			\geq		X									samp	les
6 EX2-ESW1:11		9:45				$\langle \times \rangle$	X										
7 EX2-SSW1:11		9:53			$ \rangle$	$\langle \times \rangle$	\times										
8 EX 2 - WSW 1:11		9:58				$\langle \times \rangle$	\times										
9 EX2-NSW1:11		10:11					X										
10 EX1-B1:13		13:39						X									
11 EX1-B2113		13:40						\bowtie									
12 EX1-NSW1:10		13:47						X									
13 EX1-ESW1:10		13:54						\mathbb{N}									
14 EX1-55W140		13:58	4					X									
15 EX1-WSW1110		14:01						X									
16 EX1-500 Pipe: 0.5		14:21						X									
17		1.001															
Relinquished by:	1	2:56	Date / Time	Received by			14	56	ate / Time	Sa Good Cor		Receip Y	N N	Rem	arks:		
Relinquished by:				Received by:					ate / Time				°C	1			1.0
D. B. and L. B.			Deta (The	Deceived here	diameter officer to the		and a constant of the second second	P	ata / Tim	Sample T			°C	-			ml
Relinquished by:			Date / Time	Received by:				D	ate / Time	Total Nun Contai				TAT	: 24HR	48HR	

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

FORMER FIRESTONE COMPLETE AUTO CARE PROJECT The Riley Group Renton, Washington Libby Project # L22D090 Client Project # 2021-465-1

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method Blank	EX1-SP1	EX1-SP2	EX1-SP3	EX2-B1:13	EX2-B2:13
Date Sampled		N/A	4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022
Date Analyzed	PQL	4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022
2	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.03	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.03	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.03	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		104	109	111	118	109	113
1,2-Dichloroethane-d4		100	103	117	126	119	117
Toluene-d8		100	101	97	98	98	99
4-Bromofluorobenzene		96	98	96	95	94	99

Volatile Organic Compounds by EPA Method 8260D in Soil

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

Client Project # 2021-465-1

FORMER FIRESTONE COMPLETE AUTO CARE PROJECT The Riley Group Renton, Washington Libby Project # L22D090

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

		EV2 D2 12	EV2	EV2	EV2	FVA	
Sample Description		EX2-B2:13	EX2-	EX2-	EX2-	EX2-	
		Dup	ESW1:11	SSW1:11	WSW1:11	NSW1:11	
Date Sampled		4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022	
Date Analyzed	PQL	4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Vinyl Chloride (VC)	0.02	nd	nd	nd	nd	nd	
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	
trans-1,2-Dichloroethene	0.03	nd	nd	nd	nd	nd	
cis-1,2-Dichloroethene	0.03	nd	nd	nd	nd	nd	
Trichloroethene (TCE)	0.02	nd	nd	nd	nd	nd	
Tetrachloroethene (PCE)	0.03	nd	nd	nd	nd	nd	
Surrogate Recovery							
Dibromofluoromethane		111	110	113	118	113	
1,2-Dichloroethane-d4		101	117	122	123	121	
Toluene-d8		102	97	101	97	98	
4-Bromofluorobenzene		93	94	95	96	95	

Volatile Organic Compounds by EPA Method 8260D in Soil

"nd" Indicates not detected at listed detection limit.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

FORMER FIRESTONE COMPLETE AUTO CARE PROJECT The Riley Group Renton, Washington Libby Project # L22D090 Client Project # 2021-465-1

Matrix Spike Sample Identification: EX2-B2:13									
		Date	e Analyzed:	4/27/2022					
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data	
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag	
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	-	
Vinyl Chloride (VC)	0.25	0.21	0.23	84	92	9.1	65-135		
1,1-Dichloroethene	0.25	0.28	0.20	112	80	33.3	65-135		
trans-1,2-Dichloroethene	0.25	0.21	0.20	84	80	4.9	65-135		
cis-1,2-Dichloroethene	0.25	0.25	0.25	100	100	0.0	65-135		
Trichloroethene (TCE)	0.25	0.24	0.26	96	104	8.0	65-135		
Tetrachloroethene (PCE)	0.25	0.17	0.22	68	88	25.6	65-135		
Surrogate Recovery (%)				MS	MSD				
Dibromofluoromethane				120	116		65-135		
1,2-Dichloroethane-d4				129	139 S		65-135		
Toluene-d8				99	97		65-135		
4-Bromofluorobenzene				100	101		65-135		

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

"S" Spike compound recovery is outside acceptance limits (High Bias). ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Paul Burke

Laboratory Control Sample

Date Analyzed: 4/27/2022										
	Spiked	LCS	LCS	LCS	Data					
	Conc.	Response	Recovery	Recovery	Flag					
	(mg/kg)	(mg/kg)	(%)	Limits (%)						
Vinyl Chloride (VC)	0.25	0.22	88	80-120						
1,1-Dichloroethene	0.25	0.22	88	80-120						
trans-1,2-Dichloroethene	0.25	0.20	80	80-120						
cis-1,2-Dichloroethene	0.25	0.21	84	80-120						
Trichloroethene (TCE)	0.25	0.23	92	80-120						
Tetrachloroethene (PCE)	0.25	0.21	84	80-120						
Surrogate Recovery										
Dibromofluoromethane			104	65-135						
1,2-Dichloroethane-d4			105	65-135						
Toluene-d8			99	65-135						
4-Bromofluorobenzene			101	65-135						

FORMER FIRESTONE COMPLETE AUTO CARE PROJECT The Riley Group Renton, Washington Libby Project # L22D090 Client Project # 2021-465-1

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	EX1-SP1	EX1-SP2	EX1-SP3	EX2-B1:13	EX2-B2:13
		Blank					
Date Sampled		N/A	4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022
Date Analyzed	PQL	4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.10	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.05	nd	nd	nd	nd	nd	nd
Total Xylenes	0.15	nd	nd	nd	nd	nd	nd
Gasoline	10	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		104	109	111	118	109	113
1,2-Dichloroethane-d4		100	103	117	126	119	117
Toluene-d8		100	101	97	98	98	99
4-Bromofluorobenzene		96	98	96	95	94	99
"nd" Indicates not dete	ected at listed			90	95	94	99

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

Indicates not detected at listed detection limit. 'nd

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

FORMER FIRESTONE COMPLETE AUTO CARE PROJECT The Riley Group Renton, Washington Libby Project # L22D090 Client Project # 2021-465-1

Sample Description		EX2-B2:13	EX2-	EX2-	EX2-	EX2-	
		Dup	ESW1:11	SSW1:11	WSW1:11	NSW1:11	
Date Sampled		4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022	
Date Analyzed	PQL	4/27/2022	4/27/2022	4/27/2022	4/27/2022	4/27/2022	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Benzene	0.02	nd	nd	nd	nd	nd	
Toluene	0.10	nd	nd	nd	nd	nd	
Ethylbenzene	0.05	nd	nd	nd	nd	nd	
Total Xylenes	0.15	nd	nd	nd	nd	nd	
Gasoline	10	nd	nd	nd	nd	nd	
Surrogate Recovery							
Dibromofluoromethane		111	110	113	118	113	
1,2-Dichloroethane-d4		101	117	122	123	121	
Toluene-d8		102	97	101	97	98	
4-Bromofluorobenzene		93	94	95	96	95	
"nd" Indicates not dete	ected at liste	d detection li	nit.				

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

FORMER FIRESTONE COMPLETE AUTO CARE PROJECT The Riley Group Renton, Washington Libby Project # L22D090 Client Project # 2021-465-1

Matrix Spike Sample Identification: EX2-B2:13											
		Date	e Analyzed:	4/27/2022							
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data			
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag			
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)				
Benzene	0.25	0.22	0.24	88	96	8.7	65-135				
Toluene	0.25	0.23	0.27	92	108	16.0	65-135				
Ethylbenzene	0.25	0.21	0.22	84	88	4.7	65-135				
Total Xylenes	0.75	0.60	0.65	80	87	8.0	65-135				
Surrogate Recovery (%)				MS	MSD						
Dibromofluoromethane				120	116		65-135				
1,2-Dichloroethane-d4				129	139 S		65-135				
Toluene-d8				99	97		65-135				
4-Bromofluorobenzene				100	101		65-135				

QA/QC for Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

"S" Spike compound recovery is outside acceptance limits (High Bias).

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Paul Burke

Laboratory Control Sample

Date Analyzed	l: 4/27/2022				
	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Benzene	0.25	0.21	84	80-120	
Toluene	0.25	0.23	92	80-120	
Ethylbenzene	0.25	0.22	88	80-120	
Total Xylenes	0.75	0.65	87	80-120	
Surrogate Recovery					
Dibromofluoromethane			104	65-135	
1,2-Dichloroethane-d4			105	65-135	
Toluene-d8			99	65-135	
4-Bromofluorobenzene			101	65-135	

FORMER FIRESTONE COMPLETE AUTO CARE PROJECT

The Riley Group Renton, Washington Libby Project # L22D090 Client Project # 2021-465-1 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

<u> </u>		0	D' 1	0'1						
Sample	Date	Surrogate	Diesel	Oil						
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)						
Method Blank	4/27/2022	119	nd	nd						
EX1-SP1	4/27/2022	110	nd	nd						
EX1-SP1 Dup	4/27/2022	110	nd	nd						
EX1-SP2	4/27/2022	89	nd	1600						
EX1-SP3	4/27/2022	100	nd	560						
EX1-B1:13	4/27/2022	117	nd	2400						
EX1-B2:13	4/27/2022	96	nd	nd						
EX1-NSW1:10	4/27/2022	87	nd	nd						
EX1-ESW1:10	4/27/2022	117	nd	1700						
EX1-SSW1:10	4/27/2022	88	nd	nd						
EX1-WSW1:10	4/27/2022	120	nd	nd						
EX1-SW Pipe:0.5	4/27/2022	90	nd	nd						
Practical Quantitation Limit 50 250										
"nd" Indicates not detected at the listed detection limits.										
"int" Indicates that interference prevents determination.										

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Alex Randolph

3322 South Bay Road NE • Olympia, WA 98506-2957

May 9, 2022

Eric Zuern The Riley Group 17522 Bothell Way NE, Suite A Bothell, WA 98011

Dear Mr. Zuern:

Please find enclosed the analytical data report for the Former Renton Firestone Property Project located in Renton, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

hz I Chu

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.
Libby Environmental, Inc.			С	hain	of (Cus	tod	y F	Rec	or	d							www.Libb	yEnviron	mental.com	
3322 South Bay Road NE	Ph:	360-352-2	2110					1	4-)	8.	-22	$\mathbf{)}$		_			1	1		
Olympia, WA 98506	Riley	: 360-352-4	1154				ite:	and the second se)		Page):):			of	
	Kiley	ULUN	18	and the state of the state			oject N		ger:	1	[]	NK	20	ine	-1	F		1	n		
Address:						Pro	oject N	lame	:	10	[m	er	Ke	into		1-10	25	ton	5 Pro	pert	7
City:		State:	Zip:			Lo	cation	:							0	City,	Stat	e:	2 en lo	n, h	1
Phone:		Fax:				Co	llector	:							0	Date	of C	Collec	ction: 4/	-28-	22
Client Project #							nail:														
Sample Number	Depth	Time	Sample Type	Container	10	380	Daugher Daugher Antipher	2100 3+ 82 1+ 14	SO THE W	SAL SHIN	10t	X S 2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Aetals Aetals Ant 821	9 10 6 8210 586	NOIS C	5270		Fiel	d Notes	
1EX1-B1A:13,	S	0754	5	1 Jur					X												
2																					
3																					
4			-																		
5																					
6																					
7																					
8																					
9																					
10																					
11																					
12																					
13																					
14																					
15																					
16																					
17	/																				
Relinquished by:	114 /	el-	Date / Time	Received by:	1			4/3	D 4/1	ate / T	ime				Rece	_		Rem	arks:		
Relinquished by:		()		Received by:	1/			120		ate / T		Good Coolei	and the second design of the s	Training and the local division of the local	Y		N ℃				
												Sampl					°C				00.
Relinquished by:			Date / Time	Received by:					D	ate / T	īme	Total I Cor	Numb					TAT	: 24HF	48HF	5-DAY

Libby Environmental, Inc.

FORMER RENTON FIRESTONE PROPERTY PROJECT The Riley Group Renton, Washington Libby Project # L22E024

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample Number	Date Analyzed	Surrogate Recovery (%)	Diesel (mg/kg)	Oil (mg/kg)			
Method Blank	4/28/2022	<u>88</u>	nd	nd			
EX1-B1A:13.5	4/28/2022	91	nd	nd			
EX1-B1A:13.5 Dup	4/28/2022	89	nd	nd			
Practical Quantitation Limit 50 250							
"nd" Indicates not detected at the listed detection limits.							
"int" Indicates that interference prevents determination.							

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Alex Randolph

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 29, 2022

Eric Zuern, Project Manager The Riley Group, Inc. 17522 Bothell Way NE Bothell, WA 98011

Dear Mr Zuern:

Included are the results from the testing of material submitted on April 27, 2022 from the Renton Firestone 2021-465, F&BI 204449 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures TRG0429R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 27, 2020 by Friedman & Bruya, Inc. from the The Riley Group Renton Firestone 2021-465, F&BI 204449 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	The Riley Group
204449 -01	EX1-8
204449 -02	EX2-B1:13
204449 -03	EX2-B2:13
204449 -04	EX2-ESW1:11
204449 -05	EX2-WSW1:11
204449 -06	EX2-SSW1:11
204449 -07	EX2-NSW1:11

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	EX2-B1:13 04/27/22 04/27/22 04/27/22 Soil	Client: Project: Lab ID: Data File: Instrument:	The Riley Group 2021-465, F&BI 204449 204449-02 204449-02.097 ICPMS2 SD
Units: Analyte: Arsenic	mg/kg (ppm) Dry Weight Concentration mg/kg (ppm) 2.57	Operator:	SP

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	EX2-B2:13	Client:	The Riley Group
Date Received:	04/27/22	Project:	2021-465, F&BI 204449
Date Extracted:	04/27/22	Lab ID:	204449-03
Date Analyzed:	04/27/22	Data File:	204449-03.098
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte: Arsenic	Concentration mg/kg (ppm) 3.13		51

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	EX2-ESW1:11 04/27/22 04/27/22 04/27/22 Soil	Client: Project: Lab ID: Data File: Instrument:	The Riley Group 2021-465, F&BI 204449 204449-04 204449-04.099 ICPMS2
Units:	mg/kg (ppm) Dry Weight Concentration	Operator:	SP
Analyte:	mg/kg (ppm)		
Arsenic	5.34		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	EX2-WSW1:11	Client:	The Riley Group
Date Received:	04/27/22	Project:	2021-465, F&BI 204449
Date Extracted:	04/27/22	Lab ID:	204449-05
Date Analyzed:	04/27/22	Data File:	204449-05.100
Matrix:	Soil	Instrument:	ICPMS2
Units: Analyte: Arsenic	mg/kg (ppm) Dry Weight Concentration mg/kg (ppm) 3.73	Operator:	SP

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	EX2-SSW1:11 04/27/22 04/27/22 04/27/22 Soil	Client: Project: Lab ID: Data File: Instrument:	The Riley Group 2021-465, F&BI 204449 204449-06 204449-06.101 ICPMS2
Units:	mg/kg (ppm) Dry Weight Concentration	Operator:	SP
Analyte:	mg/kg (ppm)		
Arsenic	3.61		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	EX2-NSW1:11 04/27/22 04/27/22 04/27/22 Soil	Client: Project: Lab ID: Data File: Instrument:	The Riley Group 2021-465, F&BI 204449 204449-07 204449-07.102 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	2.90		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	The Riley Group
Date Received:	Not Applicable	Project:	2021-465, F&BI 204449
Date Extracted:	04/27/22	Lab ID:	I2-314 mb
Date Analyzed:	04/27/22	Data File:	I2-314 mb.079
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte: Arsenic	Concentration mg/kg (ppm) <1		51

ENVIRONMENTAL CHEMISTS

Date of Report: 04/29/22 Date Received: 04/27/22 Project: Renton Firestone 2021-465, F&BI 204449

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 204432-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	92	102	75 - 125	10

Laboratory Code: Laboratory Control Sample

Laboratory Co	ode: Laboratory Con	troi Sample	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	94	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Received by: Received by: Relinquished by: Received by:		40 11: 1ms/1-2X3 90 11: 1msz-2X3 54 11: 1msm-2X3	EX2-65111 07 EX2-82:13 02 EX2-82:13 02 EX2-82:13 02	Sample ID Lab ID	Address City, State, ZIP Sold WA Phone 425-45-057 Email ezue Meriky-group	204449 Report To Exit Zueza Company Rikey Group Inc.
Eleven	SIGNATURE	6 9 101 6 25: P	4-27-22	Date Sampled		×
Thumps			2 2 12	Sample Type Sample Jars of NWTPH-Dx NWTPH-Gx STEX EPA 8021 NWTPH-HCID	REMARKS Project specific RLs? - Yes / No	FCUSTO
COMPANY RGI TAPO Samples				AHS EPA 8260 AHS EPA 8270 Carcinegenic CBS EPA 8082 CBS EPA 8082	INVOICE TO	27-22
Samples received at $2 oC$			cancelles	ED Notes	SRUSH ACAX Rush charges authorized by: SAMPLE DISPOSAL Archive samples	Page # of BI3 TURNAROUND TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 3, 2022

Eric Zuern, Project Manager The Riley Group, Inc. 17522 Bothell Way NE Bothell, WA 98011

Dear Mr Zuern:

Included are the results from the testing of material submitted on April 27, 2022 from the Renton Firestone 2021-465, F&BI 204458 project. There are 8 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures TRG0503R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 27, 2022 by Friedman & Bruya, Inc. from the The Riley Group Renton Firestone 2021-465, F&BI 204458 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	The Riley Group
204458 -01	EX1-B1:13

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EX1-B1:13 04/27/22 04/28/22 04/28/22 Soil mg/kg (ppm) D	ry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	The Riley Group Renton Firestone 2021-465 204458-01 1/25 042808.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14		6 Recovery: 66 d 71 d 68 d 74 d 77 d 81 d	$\begin{array}{c} {\rm Lower} \\ {\rm Limit:} \\ 39 \\ 48 \\ 23 \\ 50 \\ 40 \\ 50 \end{array}$	Upper Limit: 103 109 138 150 127 150
Compounds:		ncentration g/kg (ppm)		
-	11.			
Naphthalene		< 0.05		
2-Methylnaphthale		< 0.05		
1-Methylnaphthale	ene	< 0.05		
Benz(a)anthracene		< 0.05		
Chrysene		< 0.05		
Benzo(a)pyrene		< 0.05		
Benzo(b)fluoranthe	ene	< 0.05		
Benzo(k)fluoranthe	ene	< 0.05		
Indeno(1,2,3-cd)pyr	rene	< 0.05		
Dibenz(a,h)anthrac	cene	< 0.05		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 04/28/22 04/28/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	The Riley Group Renton Firestone 2021-465 02-1038 mb3 1/5 042806.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophe Terphenyl-d14	% Recovery: 76 85 78 83 nol 72 91	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)py Dibenz(a,h)anthrac	ene <0.01 <0.01 <0.01 <0.01 ene <0.01 ene <0.01 rene <0.01		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EX1-B1:13 04/27/22 04/28/22 04/28/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	The Riley Group Renton Firestone 2021-465 204458-01 1/6 042808.D GC7 MG
Surrogates: TCMX	% Recovery: 71	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 04/28/22 04/28/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	The Riley Group Renton Firestone 2021-465 02-1039 mb3 1/6 042805.D GC7 MG
Surrogates: TCMX	% Recovery: 73	Lower Limit: 23	Upper Limit: 127
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/03/22 Date Received: 04/27/22 Project: Renton Firestone 2021-465, F&BI 204458

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 204315-01 1/5 (Matrix Spike)

Laboratory Code: 204315-01 1/5 (Matrix Spike)							
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Ū nits	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	78	79	34-118	1
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	82	84	29-130	2
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	82	83	37-119	1
Benz(a)anthracene	mg/kg (ppm)	0.83	0.076	88	83	50-150	6
Chrysene	mg/kg (ppm)	0.83	0.082	83	80	50-150	4
Benzo(a)pyrene	mg/kg (ppm)	0.83	0.079	90	86	50 - 150	5
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	0.10	90	85	50-150	6
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	0.028	88	89	50-150	1
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	0.044	81	83	41-134	2
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	0.0097	83	81	44-130	2

Laboratory Code: Laboratory Control Sample 1/5

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	82	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	84	67-108
1-Methylnaphthalene	mg/kg (ppm)	0.83	84	66-107
Benz(a)anthracene	mg/kg (ppm)	0.83	89	70-130
Chrysene	mg/kg (ppm)	0.83	89	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	89	68-120
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	92	69-125
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	91	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	93	67-129
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	93	67-128

ENVIRONMENTAL CHEMISTS

Date of Report: 05/03/22 Date Received: 04/27/22 Project: Renton Firestone 2021-465, F&BI 204458

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 204449-01 1/6 (Matrix Spike) 1/6

	Reporting	Spike	Sample Result	Percent Recovery	Percent Recoverv	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	65	64	44-107	2
Aroclor 1260	mg/kg (ppm)	0.25	< 0.02	60	60	38 - 124	0

Laboratory Code: Laboratory Control Sample 1/6

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	97	47-158
Aroclor 1260	mg/kg (ppm)	0.25	108	69-147

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	*.	N - 193 - 1		
Friedman & Bruya, Inc.] Ph. (206) 285-8282			Sample ID EX1-61:13	Report To UIL Company Riley C Address City, State, ZIP BOH Phone 415-415-0551 En Ex 7: 334
SIG Relinquished by: Received by: Relinquished by: Received by:			Lab ID	LUGO Ly Group Inc. (RGI Sothell, WA Sothell, WA Sothell, WA Sothell, WA Sothell, WA Sothell, WA Sothell, WA
SIGNATURE			Date Sampled	nc. (RGI) group.com
			Time Sampled	SAMPLE C SAMPLER PROJECT PROJECT REMARKS
Jessica Mack			Sample Type Soll	SAMPLE CHAIN OF CUST SAMPLERS (signature) PROJECT NAME PROJECT NAME PROJECT NAME Fiber of the REMARKS Project specific RLs? - Yes / No
CA BAD			# of Jars	OF OF
Ba			NWTPH-Dx	
NE DE			NWTPH-Gx	TODY
			BTEX EPA 8021 NWTPH-HCID	
			VOCs EPA 8260	PO# PO# 2021-465 INVOICE TO RG1
			PAHs EPA 8270	DICE OUCE
com RG1 Samp			 PCBs EPA 8082	TO
COMPANY			KePAHst naphth- alene	A DE
Tec				PO# 10 PO# 10 PO# 10 PO# 10 Ru Ru NVOICE TO Ru Ru Ru De
zive				Pa Pa TU Stand X RUSH Rush ch Rush ch Rush ch C Archiv C Archiv C Archiv C Archiv C Archiv C Archiv C Archiv
COMPANY 1 PAC1 4 Samples received at				Page # 1 of 1 TURNAROUND TIME Standard turnaround X RUSH A SAP Rush charges authorized by: SAMPLE DISPOSAL Archive samples Other Default: Dispose after 30 of
			Notes	AKROU AKROU AS A S auth S auth D less
17 en 17			Notes	ND II Pound SPOS
16:28 16:28				Page # I of I TURNAROUND TIME I I I In Standard turnaround SAMPLE DISPOSAL I I Rush charges authorized by: SAMPLE DISPOSAL I I In Archive samples I Other I I Default: Dispose after 30 days ED ED
TIME 16:28				lavs

CHARACTERIZATION OF ON-SITE CONTAMINATION

Vacant Former Firestone Complete Auto Care 351 Rainier Avenue South Renton, Washington 98057

TOULA PROPERTIES LLC

ENVIRONMENTAL ASSOCIATES, INC.

1380 - 112th Avenue Northeast, Suite 300 Bellevue, Washington 98004 (425) 455-9025 Office (888) 453-5394 Toll Free (425) 455-2316 Fax

April 12, 2019

JN-40139-2

Mr. Curt Kruse Toula Properties LLC 3801 92nd Avenue Northeast Bellevue, Washington 98004

Subject: CHARACTERIZATION OF ON-SITE CONTAMINATION Vacant Former Firestone Complete Auto Care 351 Rainier Avenue South Renton, Washington 98057

Dear Mr. Kruse:

Environmental Associates, Inc. (EAI) has performed additional sampling and testing of subsurface soils and groundwater at selected localities on the subject property. The purpose of this work was to attempt to define the extent of chlorinated solvent and petroleum impacted soils and/or groundwater previously detected by EAI at the site in February 2021. This report, prepared in accordance with the terms of our proposal dated March 1, 2021, summarizes our approach to the project along with results and conclusions.

The contents of this report are confidential and are intended solely for your use and the use of your representatives. No other distribution or discussion of this report will take place without your prior approval in writing.

REPA: 418290

JN-40139-2 Page - 2

We appreciate the opportunity to be of service on this assignment. If you have any questions or if we may be of additional service, please do not hesitate to contact us.

Respectfully submitted, ENVIRONMENTAL ASSOCIATES, INC. Wash Don W. Spencer, M.Sc., P.G. Principal Hydrogealogis License: 604 (Washington) 604 ensed Geo License: 11464 (Oregon) License: 876 (California) DON W. SPENCER License: 5195 (Illinois) License: 0327 (Mississippi)

CHARACTERIZATION OF ON-SITE CONTAMINATION

Vacant Former Firestone Complete Auto Care 351 Rainier Avenue South Renton, Washington 98057

Prepared for:

Toula Properties LLC 3801 92nd Avenue Northeast Bellevue, Washington 98004

Questions regarding this investigation, the conclusions reached and the recommendations given should be addressed to one of the following undersigned.

Eric Zuern Environmental Geologist / Project Manager

Reference Job Number: JN 40139-2

April 12, 2021

ENVIRONMENTAL ASSOCIATES, INC.

TABLE OF CONTENTS

INTRODUCTION/SCOPE OF WORK	;
Site/Project Description5	;
Background	;
FINDINGS	,
Subsurface Investigation	,
Soil Boring Sampling	,
Soil and Groundwater Sampling Procedure	,
Subsurface Conditions	;
Laboratory Analysis	}
CONCLUSIONS/RECOMMENDATIONS	1
LIMITATIONS	4
REFERENCES 1	4

PLATES

Plate	1	-	Vicinity/Topographic Map
Plate	2	-	Site Plan
Plate	3	-	Southwest to Northeast Cross Section
Plates	4-14	-	Boring Logs

TABLES

- Table 1 Petroleum Hydrocarbons and BTEX Soil Sampling Results
- Table 2 Petroleum Hydrocarbons and BTEX Groundwater Sampling Results
- Table 3 Select VOC Soil Sampling Results
- Table 4 Select VOC Groundwater Sampling Results
- Table 5 MTCA-5 Metals Soil Sampling Results
- Table 6 Dissolved MTCA-5 Metals Groundwater Sampling Results
- Table 7 PCBs Soil Sampling Results
- Table 8 PCBs Groundwater Sampling Results
- Table 9 Carcingenic PAHs Soil Sampling Results
- Table 10- Other PAHs Soil Sampling Results
- Table 11- Carcinogenic PAHs Groundwater Sampling Results
- Table 12- Other PAHs Groundwater Sampling Results

APPENDICES

Laboratory Reports

INTRODUCTION/SCOPE OF WORK

SITE/PROJECT DESCRIPTION

The subject property is a roughly rectangular - shaped parcel (tax parcel number 000720-0126) covering approximately 15,578 square feet of land or approximately 0.36 acres. Existing improvements consist principally of a single-story building of masonry design enclosing approximately 8,750 square feet of space which was reportedly constructed in 1960. Additional improvements include an asphalt paved parking lot and untended landscaping. The property was occupied by Firestone from construction in 1960 until roughly 2020. Firestone was the only occupant of the building, which is currently unoccupied. Firestone used the property for approximately 60 years for automotive service and repair. Firestone's operations included the use of multiple in-ground hydraulic hoists, an underground storage tank (reportedly in the 100 to 1000-gallon capacity range) that contained used/waste oil that was removed at an unknown time, and an above-ground waste oil storage tank (AST) that was removed from the western margin of the site. The approximate location of the site is shown on the Vicinity/Topographic Map, Plate 1, appended herewith.

Background

In December 2020, Environmental Associates, Inc. (EAI) completed a Phase I Environmental Site Assessment for the subject. That report identified the following environmental conditions associated with the site:

- Long-term on-site automotive service and repair by Firestone which utilized in-ground hoists.
- An underground waste oil storage tank (UST) had previously been utilized by Firestone on the property and reportedly removed at some time in the past. No documentation regarding subsurface environmental conditions at the time of UST removal was discovered in the readily available public record.

EAI recommended that if the client and/or other involved parties desired knowledge of current environmental conditions beneath the site, subsurface sampling and testing could be employed to assess whether impacts were present.

On February 25, 2021, EAI presented a report titled Limited Subsurface Sampling and Testing to Kidder Mathews relating to the subject site. That report documented the results of soil and groundwater sampling and testing at ten (10) locations (B1 through B10 on the attached Site Plan, Plate 2) as well as soil-vapor sampling and testing at three (3) locations (B5, B9, and B10) across the site. Soil and groundwater samples were analyzed for gasoline, diesel, heavy oil total petroleum hydrocarbons (TPH) as well as volatile organic compounds (VOCs). Select soil and groundwater samples proximal to a former waste oil storage area (B2) were also analyzed for polychlorinated

ENVIRONMENTAL ASSOCIATES, INC.

biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), and MTCA-5 metals including arsenic, cadmium, chromium, lead, and mercury. Soil-vapor samples were tested for aliphatic/aromatic petroleum hydrocarbons (APHs), BTEX, naphthalene, and chlorinated solvents. Laboratory analysis revealed diesel TPH was identified in soils (B7) and groundwater (B6 and B7) above its applicable MTCA Method-A compliance limit around the central portion of the shop while tetrachloroethene (PCE) in soils above applicable compliance limits were also identified in the central portion of the shop (B6). Naphthalene and PCE were detected in soil-vapor <u>above</u> their applicable MTCA Method-B screening limits at select locations.

Acknowledging that the full <u>extent</u> of impacted media was not defined during that preliminary investigation, additional subsurface sampling and testing was recommended in the event that the client and/or other involved parties wished to quantify the extent of the contamination so that suitable management alternatives could be evaluated along with a reliable projection of costs which might be associated with implementation of such alternatives.

The reader is referred to the above reports for further details.

Current Study

Your expressed interests to conduct additional evaluation of subsurface conditions to attempt to assess the vertical and areal extent of petroleum and chlorinated solvent impacted soils and/or groundwater as memorialized in EAI's proposal dated March 1, 2021, formed the basis for the following scope of work:

- Drilled and sampled eleven (11) borings in accessible locations throughout the subject site and surrounding the previously discovered contamination. Soil and groundwater samples were obtained from each boring and a log of subsurface conditions encountered was prepared for each boring by the EAI project geologist. In addition, EAI drilled directly to the water table and re-sampled groundwater at boring B7 for further characterization.
- Laboratory analysis of selected soil and groundwater samples for diesel and oil TPH and chlorinated volatile organic compounds (cVOCs).Two (2) "worst case" samples were submitted for analysis of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and MTCA-5 metals including arsenic, cadmium, chromium, lead, and mercury. The client authorized additional testing of soil samples for arsenic as well as gasoline TPH and associated fuel constituents based upon olfactory observations during drilling. Further testing was also performed on a single soil sample for hexavalent chromium.
- Preparation of this summary report documenting the methodology and results of the investigation.

FINDINGS

SUBSURFACE INVESTIGATION

Soil Boring Sampling

Between March 17th, 2021 and March 19th, 2021, eleven (11) borings were made at the approximate locations identified as B6A and B11 through B20 on the attached Site Plan (Plate 2). Borings B11 and B12 were placed along the western margin of the shop where compliant detections of PCE had been reported during prior explorations in that area. Borings B13 through B19 were installed surrounding prior explorations B6 and B7 where non-compliant detections of diesel TPH and PCE had previously been found. Boring B6A was installed proximal to the prior B6 exploration in an effort to reach greater depths than the original iteration of that boring. Finally, B20 was placed to the south of B7 in an area where heavily stained concrete was observed. In an effort to resample groundwater from the prior B7 locality, a stainless-steel screen was extended directly into the water table at that locality for sample retrieval.

The borings were installed to depths of approximately 20 to 30 feet below ground surface (bgs) except for B20 which could only reach a depth of eighteen (18) feet bgs before subsurface soil density precluded further exploration with the drilling equipment employed for this study.

Soil and Groundwater Sampling Procedure

Under the observation of the EAI field geologist, a truck-mounted push probe drill rig or limited access push probe drill rig were brought into position over each boring location. Following set-up preparations, the push-probe boring/sampling technique consisted of advancing a 2 to 5-foot plastic lined sampler into the ground. The sampler was then withdrawn and the liner was removed and cut open for examination and transfer of the soil sample to laboratory prepared glassware by EPA Method 5035 as well as 4 ounce glass jars. New liners were inserted into the sampler at each interval, extending to the lowest extent of the boring.

After soil sampling within the borings had been completed, a temporary well screen was installed within the borings in an attempt to collect groundwater from moist or wet soil zones. Small diameter plastic tubing was extended from a peristaltic pump into that temporary screen to recover groundwater samples.

Soil and groundwater samples were transferred from sampling apparatus directly to sterilized laboratory prepared glassware which were then stored in an iced chest maintained at approximately 4 degrees centigrade at the site and taken to the laboratory in this condition in an effort to preserve sample integrity.

ENVIRONMENTAL ASSOCIATES, INC.

Each sample container was clearly labeled as to boring and sample number/depth, date, time, project, etc. EPA-recommended sample-management protocol was observed at each stage of the project.

During drilling, a field log was made by EAI for each boring. Information recorded versus corresponding depth included soil classification (Unified Soil Classification System), color, texture, relative moisture, odors (if present), etc. Final form logs appear as plates 4 through 14. Boring logs relating to B1 through B10 are found in EAI's February 25, 2021-dated report.

Subsurface Conditions

Referring to boring logs (Plates 4 to 14), soils encountered within the borings generally consisted of silts, sands, and gravels, with grey sands or silty sands becoming prominent below a depth of 10 feet below ground surface (bgs). Groundwater was generally encountered at depths between 9 to 10 feet bgs. Petroleum odors were noticed in soils collected from boring B6 within a narrow zone at a depth of approximately 10 feet bgs which also corresponded to an elevated reading on EAI's photo-ionization detector (PID) utilized for field screening. Materials below 20 feet transitioned to gravels or sandy gravels. Throughout the sampling process, EAI's PID began showing detections of vapors between 0 to 12 ppm when field screening, even when no other evidence of potential contaminants was present. After checking various field parameters, EAI deduced that the plastic bags used to hold soils for field screening were emitting vapors which were being detected by the PID. As such, PID concentrations between 0 to 12 ppm annotated on the attached boring logs are not likely representative of true vapor concentrations.

LABORATORY ANALYSIS

Laboratory analysis of soil and groundwater samples during this current phase of work was conducted by Friedman & Bruya, Inc., Seattle, Washington and Fremont Analytical, Seattle, Washington, both being WDOE-accredited analytical laboratories. Selected soil and groundwater samples were submitted for analysis of diesel and oil TPH and chlorinated volatile organic compounds (cVOCs). Two (2) "worst case" samples were submitted for analysis of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and MTCA-5 metals including arsenic, cadmium, chromium, lead, and mercury. The client authorized additional testing of soil samples for arsenic as well as gasoline TPH and associated fuel constituents based upon olfactory observations during drilling. Further testing was also performed on a single soil sample for hexavalent chromium

As documented in Table 1 of this report, laboratory analysis of soils sampled during March 2021 revealed no detections of petroleum or associated BTEX constituents except for gasoline and diesel TPH along with ethylbenzene and xylenes at B6A at a depth of 10 feet bgs. The detection of gasoline TPH (at 160 parts per million (ppm)) is <u>above</u> the MTCA Method-A compliance limit for that analyte (100 ppm). As shown in the attached laboratory data, further analysis of that sample did not reveal the presence of additional fuel constituents hexane, methyl t-butyl ether (MTBE), 1,2-dibromoethane (EDB), or 1,2-dichloroethane (EDC) above the minimum laboratory reporting limits. The results of testing from surrounding soils indicate that the non-compliant gasoline TPH contamination is limited to depths shallower than 15 feet bgs and was not present at similar depths in the surrounding borings.

While the detection of "diesel" TPH in the B6A-10 soil sample was below the applicable action level for that compound, that detection was flagged by the project laboratory as not matching the standard "diesel" chemistry chromatogram. EAI inquired with the project lab as to whether any other compounds were suspected in that sample or what the detection was suspected to be. After further review of the chemistry chromatogram, laboratory staff advised that the "diesel" detection appeared to be some "carry-over" from the gasoline detection as well as a trace of oil. Similar to the gasoline contamination noted above, diesel and oil testing from borings surrounding the prior non-compliant concentration of diesel at B7 (at a depth of 9 to 10 feet bgs) indicate that the non-compliant diesel TPH contamination is limited to the immediate B7 vicinity at depths shallower than 16 feet bgs and was not present in the surrounding borings. Both non-compliant petroleum detections are co-located with in-ground hoist mechanisms left by Firestone.

The ethylbenzene and xylenes detections were both well under their published MTCA Method-A compliance limits for unrestricted land use.

As depicted in Table 2, attached to this report, laboratory testing of groundwater sampled in March 2021 from borings B13, B15, B16, B17, and B18 reported diesel TPH at levels below (i.e. compliant with) the applicable MTCA Method-A compliance limit for that analyte. Each of those detections were "flagged" by the project laboratory as not matching a standard diesel pattern on the chemistry chromatogram. Again EAI inquired with the project lab as to whether any other compounds were suspected in that sample or what the detection was presumed to be. After further review of the chemistry chromatogram, laboratory staff advised that the "diesel" detections appeared to be possible "fuel metabolite" (i.e. fuel breakdown) or simply organic material interfering in the sample as opposed to some other type of fuel product. The non-compliant diesel TPH in groundwater appears to be limited to the vicinity of B6 and B7 at the time of this writing.

As shown in Table 3 and supporting laboratory data attached to this report, the soil samples analyzed in March 2021 reportedly did not contain detectable concentrations of chlorinated volatile organic compounds (cVOCs) including PCE. That includes soils sampled from B6A (installed proximal to previous boring B6) at a depth of 15 feet bgs. Prior testing in February 2016 detected PCE at that locality /depth slightly above published cleanup limits. In an effort to identify any discrepancy between the lab results, the sample from B6A at 15 feet bgs was re-run (i.e. re-extracted). No detections of PCE continued to be reported in the re-analyzed sample indicating that PCE was not currently present at that depth/location. The March 2021 testing indicates that PCE does not extend below depths of 10 to 15 feet bgs at B6/B6A and is not present in surrounding soils at similar depths.

As summarized in Table 4 as well as the appended laboratory data, groundwater samples collected in March 2021 did not contain concentrations of cVOCs above the project lab's minimum reporting limits.

As depicted in Table 5, attached to this report, arsenic, chromium, and lead were reported in soils sampled at B6A at a depth of 10 feet bgs with arsenic being detected above its MTCA Method-A action level. Based on that arsenic detection soils at shallower and deeper depths from that boring as well as from similar depths in surrounding borings (B13 through B16). Based on these results, the non-compliant arsenic detection appears limited to soils in the vicinity of B6/B6A at a depth of 10 feet bgs.

Chromium was detected in soils at B6A at a depth of 10 feet bgs at 26.6 ppm. There are two (2) species of chromium (Chromium III and Chromium VI) with each having different cleanup levels (2,000 ppm and 19 ppm respectively). Given that the detected concentrations in the soil samples analyzed in February and March 2021 are between the two cleanup levels, follow-up testing would need to be conducted to discern what type of chromium is present. With that said, according to the referenced Natural Background Soil Metals Concentrations in Washington State document by WDOE, the "<u>background</u>" levels for chromium in the Puget Sound region in the 90th percentile for soil samples is 48.15 ppm, a value well above the detected concentrations in question. Based upon the WDOE data, it would appear that the results of the completed testing would fall into the realm of normal <u>background</u> levels for this area.

In an effort to determine which species of chromium is present on the property, the sample with the highest level of chromium (B6A-10) was analyzed for hexavalent chromium. As depicted in the attached laboratory data results, that test revealed <u>no hexavalent chromium</u> above the minimum laboratory reporting limits. Based on that result, the chromium species present at the site appears to be chromium III and would therefore be considered <u>compliant</u>.

As shown in Table 6, appended to this report, dissolved arsenic was detected in groundwater at boring B7A at 1.89 parts per billion (ppb) which is well below (i.e. compliant with) its applicable MTCA Method-A compliance limit of 5 ppb. No other metals were reported in the groundwater sampled from that location.

ENVIRONMENTAL ASSOCIATES, INC.

JN-40139-2 Page - 11

As summarized in Tables 7 and 8, attached to this report, no PCBs were detected in the soil or groundwater samples analyzed during either the February or March 2021 sampling events.

As depicted in Tables 9 and 10 appended to this report, no carcinogenic or non-carcinogenic PAHs were detected in soils sampled from B6A at a depth of 10 feet bgs (where petroleum hydrocarbons had previously been identified) except for the non-carcinogenic compound phenanthrene (detected at 0.015 ppm) which does not currently have a published MTCA compliance limit in the State of Washington.

Table 11, attached to this report, depicts test results for groundwater sampled from B7A (vicinity where previous detections of diesel TPH had been encountered). The carcinogenic PAH chrysene was detected at a concentration of 0.61 ppb however when calculating the total carcinogenic PAHs in the sample which includes multiplying compounds by their toxicity equivalent fractions, the total carcinogenic PAH value in the groundwater sample was 0.07 ppb which is below (i.e. compliant with) the MTCA Method-A compliance limit of 0.1 ppb.

Finally, Table 12 appended to this report depicts the results of testing groundwater sampled from B7A during the March 2021 sampling event for non-carcinogenic PAHs. Fluorene, and pyrene were detected at various concentrations below their published applicable MTCA compliance limits while phenanthrene was also reported at a trace detection however that analyte does not currently have a published cleanup level with the State of Washington.

CONCLUSIONS / RECOMMENDATIONS

Relying upon the results of limited sampling and laboratory testing documented in this report, soils impacted by PCE, gasoline TPH, arsenic, and diesel TPH appear limited to isolated vertical and horizontal "zones" in the vicinity of in-ground hoists at B6 or B7. Similarly, diesel impacted groundwater appears limited to the B6 and B7 localities. Consistent with earlier investigations, these findings are believed to be the result of historic automotive service operations by Firestone at the property.

In analyzing the test results documented above, two (2) "zones" of impacted soils have been identified and are noted as Zone B6 and Zone B7. The zones of impacted soils are depicted on the attached **Plate 3 "Southwest to Northeast Cross Section"**. The following observations are made:

• Acknowledging that non-compliant concentrations of arsenic and gasoline TPH in "Zone B6" were not detected at a depth of 15 feet bgs, soils impacted by those compounds appear to be limited to depths between 10 to 15 feet bgs. Based on retesting of soils from the 15 foot depth at the B6 location for PCE, it appears that non-compliant PCE in soils may be limited to similar depths. Additionally, as those contaminants of concern were not detected in surrounding borings at similar depths, it appears reasonable to presume that impacted soils are horizontally limited to a potential 10 foot by 10 foot area around boring B6. That contaminated zone is further identified as Zone B6.

ENVIRONMENTAL ASSOCIATES, INC.
Toula Properties LLC April 12, 2021

- Similar to the conditions described above, soils previously identified as adversely impacted by diesel TPH at depths of 9 to 10 feet below grade appear limited both in vertical and horizontal extent as soils sampled from shallower and deeper intervals from the B7 boring as well as from similar depths in surrounding borings did not detect diesel TPH above compliance limits. This contaminated soil zone is identified as Zone B7.
- Groundwater previously identified as impacted by diesel TPH in borings B6 and B7 appear to be limited to those areas as groundwater sampled and tested from surrounding borings did not reveal elevated (i.e. non-compliant) concentrations of TPH.

At the request of the client and their representatives, EAI has included a tentative scope of work to address/remediate the contaminants identified above along with approximate costs for completing such work. The following "cleanup action plan" (CAP) includes the following tasks:

- 1) Limited excavation of impacted soils along with remaining hoist features at the B6 and B7 zones. Each excavation may have dimensions of 10 feet long by 10 feet wide by approximately 10 feet deep (corresponding to the top of the perched groundwater table). Prior to excavation, applicable permits would be obtained by the excavation contractor and acknowledging the detection of PCE and arsenic in soils, EAI would request a "contained-in/out" letter from the WDOE so that soils may be classified as "non-dangerous waste" for handling and disposal purposes. Acknowledging the depth that contaminants were present (approximately 10 feet below grade), depending upon the depths reachable through excavation, some impacted soils may not be able to be removed through this method. Upon completion of excavation activities, soil samples would be collected from the base, sidewalls, and stockpiled material and submitted for laboratory analysis to confirm conditions at the limits of hole. A mobile laboratory may be brought to the site to analyze samples as they are collected from the dig areas for the sake of expedience and efficiency in defining the limits of the excavation.
- 2) Application of remedial compound to the base of the excavation(s) and backfilling. Upon reaching the accessible depths of the soil excavations, the contractor would apply remedial compounds supplied by Regenesis Environmental Remediation Research (Regenesis) to the base of the excavation and mix it into the upper water table in an attempt to treat remaining soils as well as groundwater at the impacted locations. After application of the remedial compound(s), the excavation would be backfilled with engineering grade backfill materials/gravels. During backfilling, effort may be made to install perforated PVC injection piping so that additional remedial compounds may be re-applied if needed at a later date.

As work items 1 and 2 above would be performed together, an estimated cost for completing both items as provided by local vendors may be on the order of approximately \$84,500 (see Limitations section).

ENVIRONMENTAL ASSOCIATES, INC.

Toula Properties LLC April 12, 2021

3) **Monitoring well installation and groundwater sampling/testing.** Upon completion of backfilling activities, contractors would install a series of monitoring wells at and around the B6 and B7 zones of impact. The wells would allow for periodic sampling and testing of groundwater to verify the effectiveness of the remedial products. In an effort to achieve regulatory closure for the subject site, four (4) consecutive quarters of compliant groundwater results would need to be achieved. This work would also tentatively occur <u>after</u> demolition of the current structure and redevelopment as a parking lot.

Estimated costs for the initial well installation are based upon only performing evaluation of groundwater samples for diesel/oil range petroleum hydrocarbons (as previously shown to be the only contaminant in groundwater above compliance limits). Approximate costs for the initial well installation, sampling and testing, and report finalization of the above work items may be on the order of \$24,000. Additionally, costs for four quarters of monitoring (i.e. sampling and testing) from the wells may be estimated at \$13,500 (approximately 3,375 per each sampling event).

4) Regulatory data submittal. In an effort to work with the Washington Department of Ecology towards gaining a status of "no further action" (NFA) for the identified subject site release, EAI would provide confirmation sampling reports, remedial action reports, and groundwater monitoring data (including electronic testing spreadsheets) to the WDOE, documenting remedial progress. The site would also be required to enroll in Ecology's Voluntary Cleanup Program (VCP) and submit a "Remedial Investigation/Feasibility Study" (RIFS) report. Ecology may request additional data (i.e. testing activities) upon review of the submitted data. In an effort to provide Ecology an opportunity to provide commentary on proposed cleanup actions, the client may elect to apply to the VCP prior to commencement of excavation and sampling/testing activities. The estimated costs for completing entry into the VCP as well as drafting RIFS documents and electronic data uploads may be approximately \$8,600.

In summary, after totaling the above costs and adding an approximate 20% contingency, the total estimated costs for the above work items may be on the order of approximately \$160,200 or more. It should be noted that the approximate costs provided above are preliminary estimates and should not be used as a sole informational resource for final budgeting. Exact quantities of impacted subsurface materials can only be known at the time of excavation. EAI would be pleased to meet with the client to discuss potential remedial options in further detail prior to finalization of a remedial action strategy.

As a footnote, to achieve lawful compliance with Chapter 173-340-300, WAC, copies of this report along with any future reports regarding the environmental conditions encountered be forwarded to the Northwest Regional Office of the Department of Ecology (Bellevue, Washington) by the property <u>owner</u>.

LIMITATIONS

This report has been prepared for the exclusive use of Toula Properties LLC and their several representatives for specific application to this site. Our work for this project was conducted in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area, and in accordance with the terms and conditions set forth in our proposal dated March 1, 2021. The findings and conclusions of this study are based upon the results of laboratory testing of selected samples obtained from separated boring localities and conditions may vary between those locations or at other locations, media, depths, or date. To reiterate, costs for various stages of work discussed herein are approximate and preliminary being based upon experience on similar past projects and approximations provided by potential vendors. As such, actual costs may only be known upon completion of remedial work. No other warranty, expressed or implied is made. If new information is developed in future site work which may include excavations, borings, studies, etc., Environmental Associates, Inc., must be retained to reevaluate the conclusions of this report and to provide amendments as required.

REFERENCES

- Environmental Associates, Inc., December 18, 2020, Phase I Environmental Site Assessment. Vacant Former Firestone Complete Auto Care, 351 Rainier Avenue South, Renton, Washington 98057.
- Environmental Associates, Inc., September 1, 2017, Phase 2 Limited Subsurface Sampling and Testing, Firestone Master Care Service Facility - 1145 Northwest Market Street, Seattle, Washington.
- Washington State Department of Ecology. Model Toxics Control Act Cleanup Regulation (MTCA), Chapter 173-340 WAC. Publication #94-06, et seq.
- Washington State Department of Ecology, October 1994, Natural Background Soil Metals Concentrations in Washington State. Publication #94-115.

1380 - 112th Avenue N.E., Ste. 300 Bellevue, Washington 98004

Boring: B6A

Job Number:	Date:	Logged by:	Plate:
JN 40139-2	April 2021	EAZ	4

Depth/ Sample	Well Design	Moisture/ Water Table	Blows / Foot	USCS				
	1	Dry		GM		rown silt and gravels, dry, dors or discoloration, PID=	=0	
				SM		brown silts and sand		
	8- to 18'	Moist		SM		Grey silt and sand, moist, dors or discolorations, PID	=0	-
5	Temporary screen 8- to 18'	Wet		SP		rey/brown sands, wet, rs or discolorations, PID=()	
	Temp	Wet		SP/ GW		vn sands and gravels, wet, ors or discolorations, PID=	0	
_			1					
	I	1380 - 1	RON DCIA 112th Ave evue, Wa	ΓES,] mue N.E	NC. Vacan Ste. 300	Boring Former Firestone 351 Rainier Av Renton, Was	e Auto Care P enue South	rop

epth/ \ Imple D	Well esign	Moisture/ Water Table	Blows / Foot US	
•		Dry	SI	Brown silt and sand, dry, no odors or discoloration, PID=0
	to 15'	Moist	M	Brown silt, moist, no odors or discolorations, PID=0
	Temporary screen 11- to 15'	Wet	S	Grey sands, wet, no odors or discolorations, PID=0
	Temp	Wet	G	Brown gravels, wet, no odors or discolorations, PID=0
		Wet	G	Brown gravels, wet, no odors or discolorations, PID=0
		Wet	G	Brown gravels, wet, no odors or discolorations, PID=0
				Boring terminated at 30 feet below grade on March 17, 2021

Boring: B12

Job Number:	Date:	Logged by:	Plate:
JN 40139-2	April 2021	EAZ	6

oth/ We	ell ign	Moisture/ Water Table	Blows / Foot		BORING B13
		Dry		ML	Brown silt, dry, no odors or discoloration, PID=0
+~ 1 ۔	CT 01	Moist		SM	Brown silt and sand, moist, no odors or discolorations, PID=0
Torrest of the second monocommute		Wet		SP	Grey sands, wet, no odors or discolorations, PID=0
Tommer		Wet		SP	Grey sand, wet, no odors or discolorations, PID=0
		Wet		SP/ GW	Brown gravels and sands, wet, no odors or discolorations, PID=0
		Wet		SP/ GW	Brown gravels and sands, wet, no odors or discolorations, PID=0
					Boring terminated at 30 feet below grade on March 17, 2021

Boring: B13

Job Number:	Date:	Logged by:	Plate:
JN 40139-2	April 2021	EAZ	7

epth/ ample	Well Design	Moisture/ Water Table	Biows / Foot	USCS	DESCRIPTION
		Dry		ML	Brown silt, dry, no odors or discoloration, PID=0
	o 15'	Moist		SP	Brown sand, moist, no odors or discolorations, PID=0
] }_	Temporary screen 11- to 15'	Wet		SM SP	Transition from brown silts/sands to grey sand organic odor, PID=0.6 Grey sands, wet, no odors or discolorations, PID=0
	Tempor	Wet		SP	Grey sand, organic matieral, wet, no odors or discolorations, PID=0.3
		Wet		SP/ GW	Brown gravels and sands, wet, no odors or discolorations, PID=0.4
-		Wet		SP/ GW	Brown gravels and sands, wet, no odors or discolorations, PID=1.5
1					Boring terminated at 30 feet below grade on March 17, 2021.
-					

Boring: B14

Job Number:	Date:	Logged by:	Plate:
JN 40139-2	April 2021	EAZ	8

Job Number:	Date:	Logged by:	Plate:
JN 40139-2	April 2021	EAZ	9

ENVIRONMENTAL ASSOCIATES, INC.

> 1380 - 112th Avenue N.E., Ste. 300 Bellevue, Washington 98004

Boring: B17

Job Number:	Date:	Logged by:	Plate:
JN 40139-2	April 2021	EAZ	11

Depth/ Sample	Well Design	Moisture/ Water Table	Blows / Foot USCS	DESCRIPTI	ION
		Dry	ML		Brown silt, dry, no odors or discoloration, PID=3.8
	- to 15'	Moist	SM		Brown silt and sand, moist, no odors or discoloration, PID=3.4
	Temporary screen 11- to 15'	Wet	SP		Grey sand, wet, no odors or discolorations, PID=7.3
	Ter	Wet	SP/ GW	8881	Brown sand and gravels, wet, no odors or discolorations, PID=11
-		Wet	SP/ GW	8881	Brown sand and gravels, wet, no odors or discolorations, PID=11.3
				Boring te	erminated at 25 feet below grade on March 18, 2021.
	F	INVI	RONME	NTAL	Boring: B18 Vacant Former Firestone Auto Care Pro

1380 - 112th Avenue N.E., Ste. 300 Bellevue, Washington 98004	Renton, Washington					
	Job Number:	Date:	Logged by:	Plate:		
	JN 40139-2	April 2021	EAZ	12		

				E	BORING B19
Depth/ Sample	Well Design	Moisture/ Water Table	Blows / Foot	USCS	DESCRIPTION
0 5 5		Dry		ML	Brown silt, dry, no odors or discoloration, PID=5.7
	1- to 15'	Moist		SM	Brown silt and sand, moist, no odors or discoloration, PID=8.3
 15 -⊖- 	Temporary screen 11- to 15'	Wet		SP	Transition from brown silts/sands to grey sand no odors Grey sand, wet, no odors or discolorations, PID=10
20	Ter	Wet		SP/ GW	Sand and gravels, wet, no odors or discolorations, PID=9.3
25-D		Wet		SP/ GW	Brown sand and gravels, wet, no odors or discolorations, PID=8.5
30 — - - - - - - - - - - - - - - - - - - -					Boring terminated at 25 feet below grade on March 18, 2021.

Depth/ Sample	Well Design	Moisture/ Water Table	Blows / Foot		DESCRIPT	NG I			
		Dry		ML			wn silt and gravels, dry, s or discoloration, PID=	12	
		Moist		SM			n silt and sand, moist, s or discoloration, PID=7	7	
₀□	- to 15'	Moist		ML			wn to grey silts, moist, or discolorations, PID=9	9.5	
- - - 5	Femporary screen 11- to 15'	Wet		SM		no odors (Grey sand, wet, or discolorations, PID=9	.9	r
	Tempo	Wet		GW			rown gravels, wet, or discolorations, PID=1	1	
30 31 35									
40—									
40	I	ASS (DCIA 112th Av	MEN TES, I enue N.E. ashington	, Ste. 300	Vacant I	Boring Former Firestone 351 Rainier Av Renton, Was	e Auto Care P enue South	ropo

Sample Date	Sample & Depth	Gasoline (TPH)	Diesel	Heavy Oil	Benzene	Toluene	Ethylbenzene	Tota Xylei
Feb-21	B1-10 @ 10' BGS	ND	ND	ND	ND	ND	ND	NI
Feb-21	B2-2.5 BGS	ND	ND	ND	ND	ND	ND	NI
Feb-21	B3-10 @ 10' BGS	ND	ND	ND	ND	ND	ND	NI
Feb-21	B4-4 @ 4' BGS	ND	ND	ND	ND	ND	ND	NI
Feb-21	B5-3 @ 3' BGS	ND	ND	ND	ND	ND	ND	NI
Mar-21	B6A-4 @ 4' BGS	ND	NA	NA	ND	ND	ND	NI
Feb-21	B6-10 @ 10' BGS	NA	ND	ND	NA	NA	NA	NA
Mar-21	B6A-10 @ 10' BGS	160	450x	ND	ND	ND	0.18	0.2
Feb-21	B6-15 @ 15' BGS	ND	ND	ND	ND	ND	ND	NI
Feb-21	B7-4 @ 4' BGS	NA	ND	ND	NA	NA	NA	NA
Feb-21	B7-9-10 @ 9' TO 10' BGS	ND	7,200	ND	ND	ND	ND	NE
Feb-21	B7-16 @ 16' BGS	NA	ND	ND	NA	NA	NA	NA
Feb-21	B8-8 @ 8' BGS	ND	ND	ND	ND	ND	ND	NE
Feb-21	B8-8 @ 8' BGS DUPLICATE	ND	NA	NA	NA	NA	NA	NA
Feb-21	B9-2 @ 2' BGS	ND	ND	ND	ND	ND	ND	NI
Feb-21	B10-8 @ 8' BGS	ND	ND	ND	ND	ND	ND	NE
Mar-21	B13-10 @ 10' BGS	ND	NA	NA	ND	ND	ND	NE
Mar-21	B13-20 @ 20' BGS	ND	ND	ND	ND	ND	ND	NE
Mar-21	B14-10 @ 10' BGS	ND	NA	NA	ND	ND	ND	NI
Mar-21	B14-12 @ 12' BGS	ND	ND	ND	ND	ND	ND	NI
Mar-21	B14-15 @ 15' BGS	ND	NA	NA	ND	ND	ND	NE
Mar-21	B15-10 @ 10' BGS	ND	NA	NA	ND	ND	ND	NE
Mar-21	B15-15 @ 15' BGS	ND	NA	NA	ND	ND	ND	NE
Mar-21	B16-4 @ 4' BGS	NA	ND	ND	NA	NA	NA	NA
Mar-21	B16-10 @ 10' BGS	ND	ND	ND	ND	ND	ND	NI
Mar-21	B16-15 @ 15' BGS	ND	ND	ND	ND	ND	ND	NI
Mar-21	B17-3 @ 3' BGS	NA	ND	ND	NA	NA	NA	NA
Mar-21	B17-9-10 @ 9'-10' BGS	NA	ND	ND	NA	NA	NA	NA
Mar-21	B17-15 @ 15' BGS	NA	ND	ND	NA	NA	NA	NA
Mar-21	B18-3 @ 3' BGS	NA	ND	ND	NA	NA	NA	NA
Mar-21	B18-10 @ 10' BGS	NA	ND	ND	NA	NĀ	NA	NA
Mar-21	B18-15 @ 15' BGS	NA	ND	ND	NA	NA	NA	NA
Mar-21	B19-3 @ 3' BGS	NA	ND	ND	NA	NA	NA	NA
Mar-21	B19-10 @ 10' BGS	NA	ND	ND	NA	NA	NA	NA
Mar-21	B19-15 @ 15' BGS	NA	ND	ND	NA	NA	NA	NA
Mar-21	B20-6 @ 6' BGS	NA	ND	ND	NA	NA	NA	NA
Mar-21	B20-9-10 @ 9' TO 10' BGS	NA	ND	ND	NA	NA	NA	NA
Mar-21	B20-14 @ 14' BGS	NA	ND	ND	NA	NA	NA	NA
	Reporting Limit ³	5 to 10	50	100 to 250	0.02	0.05/.02	0.05/.02	0.15/
	Farget Compliance Level ⁴	30 or 100 ⁵	2000	2000	0.03	7	6	9

BGS - Below ground surface.

TABLE 2- Petro	oleum Hydro All results					ampling R	esults	
Sample Date	Sample	Gasoline (TPH)	Diesel (TPH)	Heavy Oil (TPH)	Benzene	Toluene	thylbenzer	Total Xylenes
Feb-21	B1	ND	ND	ND	ND	ND	ND	ND
Feb-21	B2	ND	ND	ND	ND	ND	ND	ND
Feb-21	B3	ND	ND	ND	ND	ND	ND	ND
Feb-21	B4	ND	ND	ND	ND	ND	ND	ND
Feb-21	B5	ND	ND	ND	ND	ND	ND	ND
Feb-21	B6	240	2,400	ND	ND	ND	ND	ND
Feb-21	B7	ND	16,000	ND	ND	2.3	ND	ND
Feb-21	B8	ND	ND	ND	ND	2.1	1.0	ND
Feb-21	B9	ND	ND	ND	ND	1.3	ND	ND
Feb-21	B10	ND	ND	ND	ND	ND	ND	ND
Mar-21	B13	NA	81 x	ND	NA	NA	NA	NA
Mar-21	B14	NA	ND	ND	NA	NA	NA	NA
Mar-21	B15	NA	130 x	ND	NA	NA	NA	NA
Mar-21	B16	NA	79x	ND	NA	NA	NA	NA
Mar-21	B17	NA	86 x	ND	NA	NA	NA	NA
Mar-21	B18	NA	62 x	ND	NA	NA	NA	NA
Mar-21	B19	NA	ND	ND	NA	NA	NA	NA
Mar-21	B20	NA	ND	ND	NA	NA	NA	NA
Reporting Limit ³		100	50 to 53	100	1	1	1	3
MTCA-Method-A Cleanup	Levels ⁴	800 or 1000 ⁵	500	500	5	1000	700	1000

Notes:

"ND" denotes analyte not detected at or above listed Reporting Limit.
 "NA" denotes sample not analyzed for specific analyte.
 "Reporting Limit" represents the laboratory lower quantitation limit.
 Method A groundwater cleanup levels as published in the Model Toxit
 The MTCA gasoline TPH cleanup level is 800 ppb for groundwater with the Model Toxit

Method A groundwater cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC. The MTCA gasoline TPH cleanup level is 800 ppb for groundwater with benzene. Otherwise, the cleanup level is 1000 ppb.

x- The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Bold and Italics denotes concentrations above existing or proposed MTCA Method A groundwater cleanup levels.

	BLE 3- Select VOCs - results and limits in					
ample Date	Sample	Tetrachloroethene (PCE)	Trichloroethene (TCE)	(cis) 1,2 Dichloroethene	(trans) 1,2 Dichloroethene	Vinyl Chloride
Feb-21	B1-10	ND	ND	ND	ND	ND
Feb-21	B2-2.5	ND	ND	ND	ND	ND
Feb-21	B3-10	0.05	ND	ND	ND	ND
Feb-21	B4-4	ND	ND	ND	ND	ND
Feb-21	B5-3	ND	ND	ND	ND	ND
Feb-21	B5-15	ND	ND	ND	ND	ND
Feb-21	B6-4	0.06	ND	ND	ND	ND
Feb-21	B6-10	0.05	ND	ND	ND	ND
Feb-21	B6-15	0.08	ND	ND	ND	ND
Mar-21	B6A-15	ND	ND	ND	ND	ND
Mar-21	B6A-15 (RE-EXTRACT)	ND	ND	ND	ND	ND
Mar-21	B6A-20	ND	ND	ND	ND	ND
Mar-21	B6A-30	ND	ND	ND	ND	ND
Feb-21	B7-9-10	ND	ND	ND	ND	ND
Feb-21	B7-16	ND	ND	ND	ND	ND
Feb-21	B8-8	ND	ND	ND	ND	ND
Feb-21	B9-2	ND	ND	ND	ND	ND
Feb-21	B10-8	ND	ND	ND	ND	ND
Mar-21	B11-2.5	ND	ND	ND	ND	ND
Mar-21	B11-10	ND	ND	ND	ND	ND
Mar-21	B11-20	ND	ND	ND	ND	ND
Mar-21	B12-3	ND	ND	ND	ND	ND
Mar-21	B12-10	ND	ND	ND	ND	ND
Mar-21	B12-30	ND	ND	ND	ND	ND
Mar-21	B13-4	ND	ND	ND	ND	ND
Mar-21	B13-13	ND	ND	ND	ND	ND
Mar-21	B13-20	ND	ND	ND	ND	ND
Mar-21	B14-4	ND	ND	ND	ND	ND
Mar-21	B14-10	ND	ND	ND	ND	ND
Mar-21	B14-12	ND	ND	ND	ND	ND
Mar-21	B14-20	ND	ND	ND	ND	ND
Mar-21	B15-4	ND	ND	ND	ND	ND
Mar-21	B15-10	ND	ND	ND	ND	ND
Mar-21	B15-25	ND	ND	ND	ND	ND
Mar-21	B16-4	ND	ND	ND	ND	ND
Mar-21	B16-10	ND	ND	ND	ND	ND
Mar-21	B16-25	ND	ND	ND	ND	ND
Rep	orting Limit ³	0.02/.025	0.02	0.05	0.05	0.05
	estricted Land Use (Method-A)4	0.05	0.03			
Cleanup L	evel - (Method-B) ⁵	480	12	160	1600.0	0.667

"Reporting Limit" represents the laboratory lower quantitation limit.
 Method A soil cleanup levels for unrestricted land use as published in the Model Toxics Control Act (MTCA) 173-340-WAC, Table 740-1.
 Method-B soil cleanup levels for the "direct contact pathway", as published in Ecology's CLARC database.

	TABLE 4- Select VOCs - Groundwater Sampling Results All results and limits in parts per billion (ppb)											
Sample Date	Boring	Tetrachloroethene (PCE)	Trichloroethene (TCE)	(cis) 1,2 Dichloroethene	(trans) 1,2 Dichloroethene	Vinyl Chloride						
Feb-21	B1	ND	ND	ND	ND	ND						
Feb-21	B2	1.2	ND	ND	ND	ND						
Feb-21	B3	ND	ND	ND	ND	ND						
Feb-21	B4	ND	ND	ND	ND	ND						
Feb-21	B5	ND	ND	ND	ND	ND						
Feb-21	B6	ND	ND	ND	ND	ND						
Feb-21	B7	ND	ND	ND	ND	ND						
Feb-21	B8	ND	ND	ND	ND	ND						
Feb-21	B9	ND	ND	ND	ND	ND						
Feb-21	B10	ND	ND	ND	ND	ND						
Mar-21	B11	ND	ND	ND	ND	ND						
Mar-21	B12	ND	ND	ND	ND	ND						
Reporti	ng Limit ³	1	1	1	1	0.2						
	eanup Level ⁴	5 (A)	5 (A)	16 (B)	160 (B)	0.2 (A)						

Notes:

"ND" denotes analyte not detected at or above listed Reporting Limit.
 "NA" denotes sample not analyzed for specific analyte.
 "Reporting Limit" represents the laboratory lower quantitation limit.

4- Method A or B groundwater cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC.

TABLE 5 - MTCA-5 Metals All results and limits in p		-	-		
Sample Name & Sample Date	Arsenic	Cadmium	Chromium	Lead	Mercury
B2-2.5 (February 2021)	4	ND	23.9	9.5	ND
B6A-4 (March 2021)	5.18	NA	NA	NA	NA
B6A-10 (March 2021)	32.4	ND	26.6	7.14	ND
B6A-15 (March 2021)	ND	NA	NA	NA	NA
B13-10 (March 2021)	3.35	NA	NA	NA	NA
B13-20 (March 2021)	ND	NA	NA	NA	NA
B14-10 (March 2021)	2.85	NA	NA	NA	NA
B14-15 (March 2021)	1.08	NA	NA	NA	NA
B15-10 (March 2021)	2.82	NA	NA	NA	NA
B15-15 (March 2021)	4.03	NA	NA	NA	NA
B16-10 (March 2021)	3.9	NA	NA	NA	NA
B16-15 (March 201)	6.31	NA	NA	NA	NA
Reporting Limit ³	1	1	1	1	1
WDOE-Method-A Cleanup Level (unrestricted land use)	20	2	19 / 2000 ⁽⁵⁾	250	2

Notes:

1 - "ND" denotes analyte not detected at or above listed Reporting Limit.

2- "NA" denotes sample not analyzed for specific analyte.

3- "Reporting Limit" represents the laboratory lower quantitation limit.

4- Method A or B cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC.

5- Results reported as total chromium. The Method A target compliance level for chromium III is 2,000 ppm, while the Method-A compliance level for chromium VI is 19 ppm. Additional testing of sample B6A-10 revealed no detections of chromium VI (hexavalent chromium).

TABLE 6 - Dissolved MTCA-5 Metals - Groundwater Sampling Results All results and limits in parts per billion (ppb)											
Sample Location (and sample date)	Arsenic	Cadmium	Chromium	Lead	Mercury						
B2 (February 2021)	ND	ND	ND	ND	ND						
B7A f (March 2021)	1.89	ND	ND J	ND	ND						
Reporting Limit ³	1	0.5-1	0.5-10	0.25-1	0.25-1						
Existing Cleanup Level ⁴ 5 (A) 5 (A) 50 (A) 15 (A) 2 (A)											

2- "NA" denotes sample not analyzed for specific analyte.
3- "Reporting Limit" represents the laboratory lower quantitation limit.

4- Method A or B cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC.
 f - The sample was laboratory filtere prior to analysis.
 J- The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

	TABLE 7 - PCBs - Soil Sampling Results All results and limits in parts per million (ppm)												
Sample (and date)	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Arochlor 1260	Arochlor 1262	Arochlor 1268	Total PCBs			
B2-2.5 (February 2021)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
B6A-10 (March 2021)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
Reporting Limit ³	0.2-0.005	0.02-0.005	0.02-0.005	0.02-0.005	0.02-0.005	0.02-0.005	0.02-0.005	0.02-0.005	0.02-0.005	0.02-0.005			
Existing Cleanup Level ⁴										1_(A)			

3-

"Reporting Limit" represents the laboratory lower quantitation limit. Method A soil cleanup level for total PCB mixtures as published in the Model Toxics Control Act (MTCA) 173-340-WAC. 4-

TABLE 8 - PCBs - Groundwater Sampling Results All results and limits in parts per billion (ppb)												
Sample Name (and Date)	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Arochlor 1260	Arochlor 1262	Arochlor 1268	Total PCBs		
B2 (February 2021)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
B7A (March 2021)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Reporting Limit ³	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
Existing Cleanup Level ⁴										0.1 (A)		
Notes: 1 - "ND" denotes analyte not detected 2- "NA" denotes sample not analyzed 3- "Reporting Limit" represents the la	d for specific aboratory low	analyte. er quantitation	limit.	<u></u>	1	.	<u> </u>		<u> </u>			

4- Method A soil cleanup level for total PCB mixtures as published in the Model Toxics Control Act (MTCA) 173-340-WAC.

	TABLE 9 - Carcinogenic PAHs - Soil Sampling Results All results and limits in parts per million (ppm)											
Sample Name (and date)	Benzo(a)pyrene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3,-cd)pyrene	Benzo(k)fluoranthene	Benzo(a)anthracene	Benzo(b)fluoranthene	Total Carcinogenic PAHs ⁽⁵				
B22.5* (February 2021)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02				
B6A-10* (March 2021)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.0				
cPAH Toxicity Equivilant Fraction ⁽⁴⁾	1.0	0.01	0.1	0.1	0.1	0.1	0.1					
Reporting Limit ²	0.01-0.02	0.01-0.02	0.01-0.02	0.01-0.02	0.01-0.02	0.01-0.02	0.01-0.02					
MTCA-Method-A Residential ⁽³⁾								0.1				
MTCA-Method-A Industrial ⁽³⁾								2				

Notes:

1- "NA" denotes sample not analyzed for specific analyte.

WA denotes sample not analyzed for specific analyzed

*- Sample results were "non detected" with a reporting limit of 0.1 ppb however values above were reported at half the reporting limit so value could be entered.

						TABLE 10 - Other PAHs - Soil Sampling Results All results and limits in parts per million (ppm)											
Sample Name	Naphthalene	Acenaphthene	Phenanthrene	Anthracene	Fluoranthene	Pyrene											
B2-2.5	ND	ND	ND	ND	ND	ND											
B6A-10	ND	ND	0.015	ND	ND	ND											
Reporting Limit ³	0.01-0.02	0.01-0.02	0.01-0.02	0.01-0.02	0.01-0.02	0.01-0.02											
Cleanup Level for Unrestricted Land Use (Method-A) ⁴	5																
Cleanup Level - Direct Contact (Method-B) ⁵	1600	4800		24000	3200	2400											

Notes:

1 - "ND" denotes analyte not detected at or above listed Reporting Limit.

2- "NA" denotes sample not analyzed for specific analyte.

3- "Reporting Limit" represents the laboratory lower quantitation limit.

4- Method A soil cleanup levels for unrestricted land use as published in the Model Toxics Control Act (MTCA) 173-340-WAC.

5- Method-B soil cleanup levels for the "direct contact pathway", as published in Ecology's CLARC database.

6- Method-B soil cleanup level for the protection of groundwater based upon the Method-B groundwater cleanup levels. Values as published in Ecology's CLARC database.

TABLE 11 - Carcinogenic PAHs - Groundwater Sampling Results All results and limits in parts per billion (ppb)								
Sample Name (and date)	Benzo(a)pyrene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3,-cd)pyrene	Benzo(k)fluoranthene	Benzo(a)anthracene	Benzo(b)fluoranthene	Total Carcinogenic PAHs ^{(†}
B2* (February 2021)	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.08
B7A (March 2021)	0.04	0.61	0.04	0.04	0.04	0.04	0.04	0.07
cPAH Toxicity Equivilant Fraction ⁽⁴⁾	1.0	0.01	0.1	0.1	0.1	0.1	0.1	
Reporting Limit ²	0.02-0.1	0.02-0.1	0.02-0.1	0.02-0.1	0.02-0.1	0.02-0.1	0.02-0.1	
Existing Cleanup Level ³								0.1

"NA" denotes sample not analyzed for specific analyte.
 "Reporting Limit" represents the laboratory lower quantitation limit.
 Method-A Groundwater cleanup level for total carcinogenic PAHs as published in the Model Toxics Control Act (MTCA) 173-340-WAC.
 Total carcinogenic PAHs are calculated by suming the product of each cPAH mulitplied by its toxicity equivalency fraction per WAC 173-340-708(8).

*_ Sample results were "non detected" with a reporting limit of 0.1 ppb however values above were reported at half the reporting limit so value could be entered.

Sample Name (and Date)	Vaphthalene	Phenanthrene	fluorene	Pyrene
B2 (February 2021)	ND	ND	ND	ND
B7A (March 2021)	ND	2.9	1.40	1.90
Reporting Limit ³	0.1-0.4	0.1-0.2	0.1-0.04	0.1-0.0
Existing Cleanup Level ⁴	160		640	480

APPENDIX A

Laboratory Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 1, 2021

Eric Zuern, Project Manager Environmental Associates, Inc. 1380 112th Ave. NE, 300 Bellevue, WA 98004

Dear Mr Zuern:

Included are the results from the additional testing of material submitted on March 18, 2021 from the Renton Firestone 40139-2, F&BI 103364 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Color

Michael Erdahl Project Manager

Enclosures EAI0401R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 18, 2020 by Friedman & Bruya, Inc. from the Environmental Associates Renton Firestone 40139-2, F&BI 103364 project. Samples were logged in under the laboratory ID's listed below.

Environmental Associates
B15-4
B15-10
B15-15
B15-20
B15-25
B15-30
B15
B16-4
B16-10
B16-15
B16-20
B16-25
B16- 30
B16
B17-3
B17-9-10
B17-15
B17-20
B17-25
B17
B18-3
B18-10
B18-15
B18-20
B18-25
B18
B19-3
B19-10
B19-15
B19-20
B19-25
B19

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/18/21 Project: Renton Firestone 40139-2, F&BI 103364 Date Extracted: 03/29/21 Date Analyzed: 03/30/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
B15-10 103364-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	77
B15-15 103364-03	< 0.02	< 0.02	< 0.02	<0.06	<5	87
B16-10 103364-09	< 0.02	< 0.02	<0.02	<0.06	<5	89
B16-15 103364-10	< 0.02	< 0.02	< 0.02	<0.06	<5	82
Method Blank 01-591 MB	< 0.02	< 0.02	< 0.02	<0.06	<5	90

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B15-10	Client:	Environmental Associates
Date Received:	03/18/21	Project:	Renton Firestone 40139-2, F&BI 103364
Date Extracted:	03/26/21	Lab ID:	103364-02
Date Analyzed:	03/26/21	Data File:	103364-02.121
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)	operator.	51

Arsenic

2.82

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B15-15	Client:	Environmental Associates
Date Received:	03/18/21	Project:	Renton Firestone 40139-2, F&BI 103364
Date Extracted:	03/26/21	Lab ID:	103364-03
Date Analyzed:	03/26/21	Data File:	103364-03.122
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)	o por atori	

Arsenic

4.03

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B16-10	Client:	Environmental Associates
Date Received:	03/18/21	Project:	Renton Firestone 40139-2, F&BI 103364
Date Extracted:	03/26/21	Lab ID:	103364-09
Date Analyzed:	03/26/21	Data File:	103364-09.123
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)	o por ator.	

Arsenic

3.90
ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B16-15	Client:	Environmental Associates
Date Received:	03/18/21	Project:	Renton Firestone 40139-2, F&BI 103364
Date Extracted:	03/26/21	Lab ID:	103364-10
Date Analyzed:	03/26/21	Data File:	103364-10.124
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Arsenic

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Environmental Associates
Date Received:	NA	Project:	Renton Firestone 40139-2, F&BI 103364
Date Extracted:	03/26/21	Lab ID:	I1-195 mb
Date Analyzed:	03/26/21	Data File:	I1-195 mb.039
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)	Operator.	51

Arsenic

<1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/18/21 Project: Renton Firestone 40139-2, F&BI 103364

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 103509-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	<0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	94	69-120
Toluene	mg/kg (ppm)	0.5	96	70-117
Ethylbenzene	mg/kg (ppm)	0.5	96	65-123
Xylenes	mg/kg (ppm)	1.5	100	66-120
Gasoline	mg/kg (ppm)	20	105	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/18/21 Project: Renton Firestone 40139-2, F&BI 103364

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code	e: 103463-21 (M	latrix Spil	ce)				
	Reporting	Spike	Sample Result	Percent Recovery	Percent Recovery	Acceptance	RPD
A . 1 .	- U			-		*	
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	5.68	66 b	66 b	75-125	0 b

-

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	\mathbf{Spike}	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	95	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

 ${\bf j}$ - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

103364			SAMPL	E CHAII LERS (sign			STO	DY		03	5-18-:	U	VS	\$/E	04/80	3/ 7
Report To CAU IFOAU Company CAU IFOAU Address 380 11	vental Assoc	÷ ,	- PROJE	CT NAME	; <i>C</i>	Ŋ		<u>, 1</u>	1013	20#			a Sta	TURN ndard SH_	AROUNI turnarou es author	O TIME
City, State, ZIP Belle Phone 425-455-9625	we wh	28004	REMAI	RKS specific RI	Ls? - Y	es /	No	To - sa	INV(she as ne as	DICE Stop	TO v. s.h.	•.	□ Arc □ Oth	hive's ler	PLE DISI amples ispose af	POSAL ter 80 days
						Ĺ					SREQU	UEST	ED	·····		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		NWTPH-Gx	BTEX EPA 8021	VOCA EPA 2260	PAHs EPA 8270	PCBs EPA 8082	JINSCH			1	Notes
815-4	OLAC	3-18-21	8:52	Soil	3				X						•;	per EZ
B15=10	07		8:56	1	3				X						•	21 ME.
B15-15	03		9:00		3		•				•				,	• •
815-20	. 04		9:18		3											
B15-25	05		9:30		3				X							
B15-30	06		9:45	V	2											
B15	074-5)	9:08	Water	4	X				•						
B16-4	08 A7		10:04	Soil	3	X			X							
B16-10	09		10:08		3	\times	•		X							· · ·
B16-15	р	J.	10:15	U	3	X	•				•					
	SI	GNATURE.			PRIN	IT N	AME				COM	the second second	IY	·	DATE	
Friedman & Bruya, Inc.	Relinquished by:	a / 20	<u></u>	6	hie	2.	190	~	i		EA.				5-18-2	12:45
3012 16th Avenue West	Received by:	45KC	p	HON		NC	Fl	VË	=N	F	hi				V	- 1
Seattle, WA 98119-2029	Relinquished by: 7	<u> </u>						/								
Ph. (206) 285-8282	Received by:	, ,									Same	les	recei	reds	it <u>4</u>	٥Ċ

102264			SAMPL	e chain	VOF	CUS	STO	DY		3-11	-	L	VS)	3 E	FOY	1_Be	23/ 年
103364 Report To Effect	Zuem		SAMPI	ERS (sign	ature)	Tu Iu	0	f.	_] _	~ `	~~~~	AROUN	
Common EA	भत्त		PROJE	CT NAME	-C	9	f]	20#			10	Stan	dard	turnarou	ınd
Address			~ R	Rauton Firestone 40					Yor	<u> ३</u> ९-	Rush charges authorized by:						
City, State, ZIP		ىسىرى بىلىرى بىلەر بىرىكە بىرىدىن يەرىپىتى ھەرىپىلىرىكى بىرىكە بىرىپىتى بىرىكى بىرىپى بىرىپى بىرىپى بىرىپى بىرىپى بىرىپى بىرىپى بىرىپى بىرىپى	REMAI	RKS					INVO	DICE	то			Archi	úve sa	LE DIS amples	POSAL
Phone]	Smail		- Project	specific RL	<u>s? - Y</u>	es /	No							Othe efaul	r lt: Di	spose a	fter 30 da
	······			· · · · · · · · · · · · · · · · · · ·		Γ			ANA	LYSI	CS RI	CQUI	STE	D			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		NWTPH-Gx	BTEX EPA 8021	VOCSEPA 3280	PAHs EPA 8270	PCBs EPA 8082	Arsenie]	Notes
B16-20	11 Ar	3-18-21	10:40	Soil	3												
B16-25	12		10:53		3				X								
B16-30	13		11:07	J	3										T		
B16	14 A-F		10125	Water	6	X								T			
617-3	15 A-C		1[:3]	Sail	3	\mathbf{x}									·		
B17-9-10 -	- 16		11:35		3	X											
B17-15	17		11:40		3	X											
B17-20	18		12:04		3												
B17-25	17		12:18		3									-			
· B17	no A.E	V	11:50	Waster	5	X		·				1					
19 1 7 A 19	SIC Relinquished by:	INATURE		<u>[</u>	PRIN	T NA	ME					OMP				DATE	
Friedman & Bruya, Inc. 3012 16th Avenue West	Received by:	al ye			En	. (4				5-6-	8 3:4
Seattle, WA 98119-2029	Relinquished by:	you	P	HON	GI	<i>I</i> G	ay	15	N	Ĕ	P	2				JL	· /
Ph. (206) 285-8282	Received by:	(/					4t. *t			~						•C
14 (200) 200-0202	anycarnic Uy.					•					San	npies	s rec	erve	ant	: <u> </u>	<u> </u>

103364 Report To	Even		SAMPI	LERS (sign	ature	L.	1	1 1 , , ,		\sim				, 		# <u>P</u> NAROUNI	AI3
E 1.			PROJE	CT NAME	_0	<u>av</u>	-6	Æ	<u></u>	P) #	•••••			andar	d turnarou	
Company CA			(auton Fl		Are			40	ß	৭-'	۲. 2			JSH_ 1 char	ges authori	zed by:
			REMAI	RKS	<u></u>				IN	IVOI	CE '	ro	-	<u> </u>	SAN	IPLE DISP	OSAL
City, State, ZIP	414 11 11 11 11 11 11 11 11 11 11 11 11 		-													samples	
PhoneE	mail		- Project	specific RI	<u>.s? - Y</u>	es /	No									Dispose af	ter 30 days
		<u>т</u>	T	·	7	<u> </u>				- T		· · · · ·	QUES	TED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	POBs EPA 8082	Arsenie				lotes
B18-3	ZIAC	3-18-21	12=33	Soit	3	X										1	
B18-10	22	1	12:37	1	3	X						1					
B18-15	23		12=42		3	X											
B18-20	24		1:08		3										1		
B18-25	25 -1		1:24	J	3							T					
618	26 A.F		12:50	Waster	6	X										· ·	
B19-3	27 AK		1:35	Soil	3	X											
B19-10	28		1:40	1	3	X			·	T			1		1	1.	
B19-15	29	(1:44		3	X	·										
B19-20	30		2:10	J	$\overline{\boldsymbol{\gamma}}$									<u> </u>	1		***
(NATURE		T	PRIN	TN	AME		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			CO	MPA	NY		DATE	TIME
Friedman & Bruya, Inc.	Relinquished by:	a Au	<u> </u>	6	a.t	2	>	È T	•			E	ĄI	•		3-18-2	3:45
3012 16 th Avenue West	Beceived by:	002		HON	G	IJ	Gi	u,	10	N		FØ	T	-		1 de la compañía de la	
Seattle, WA 98119-2029	Relinquished by:	X					- .			T							

103364 Report To Eric Company EA	<u>Luem</u>	<u> </u>	- PROJE	ERS (sign CT NAME	-6	(ji	6	<i>GU</i>	~	PC)#				TURN ndard	AROUND turnaroun	3/4-F3/v SfV TIME ad
Address			Ke	enton F	irest	MC.		1	401	39	-Z Rush charges auth				es authoriz	prized by:	
ity, State, ZIP			-	REMARKS Project specific RLs? - Yes / No				INVOICE TO				SAMPLE DISPOSAL Archive samples Other Default: Dispose after 30 days					
		·····				<u>, 10 / 1</u>			Al	VAL	YSE	SRE	QUES			appose and	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	Arxnic			N	otes
B19-25	3(AC	3-18-21	2:24	Soil	3												
B19-25 B19	32A4	1 11	(1:50)	Waser	5	X			_								
· · · · · · · · · · · · · · · · · · ·																	
		······································	·····														
<u></u>			· · · · · · · · · · · · · · · · · · ·	<u>1</u>													
										1		_					
		NATURE		<u> </u>	PRIN	T Nz	AME						MPA	NY		DATE	TIME
riedman & Bruya, Inc.	SIC Relinquished by: Received by:	a		E	- MIN					╈		Ĕ	ĂĴ				3:45

Seattle, WA 98119-Ph. (206) 285-8282

.

.

			CITC CULT			
Nest	Received by: Hou	ieent	HONG NGUMEN	FRI	- 10-61	V
2029	Relinguished by:	0				
	Received by:	· · ·		Samples received a	t <u>4</u> °C	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 1, 2021

Eric Zuern, Project Manager Environmental Associates, Inc. 1380 112th Ave. NE, 300 Bellevue, WA 98004

Dear Mr Zuern:

Included are the results from the testing of material submitted on March 17, 2021 from the Renton Firestone 40139-2, F&BI 103339 project. There are 53 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

* Colorf

Michael Erdahl Project Manager

Enclosures EAI0401R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 17, 2020 by Friedman & Bruya, Inc. from the Environmental Associates Renton Firestone 40139-2, F&BI 103339 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Environmental Associates
103339 -01	B11-2.5
103339 -02	B11-10
103339 -03	B11-15
103339 -04	B11-20
103339 -05	B11
103339 -06	B12-3
103339 -07	B12-10
103339 -08	B12-15
103339 -09	B12-20
103339 -10	B12-25
103339 -11	B12-30
103339 -12	B12
103339 -13	B13-4
103339 -14	B13-10
103339 -15	B13-13
103339 -16	B13-20
103339 -17	B13-25
103339 -18	B13-30
103339 -19	B13
103339 -20	B14-4
103339 -21	B14-10
103339 -22	B14-12
103339 -23	B14-15
103339 -24	B14-20
103339 -25	B14-25
103339 -26	B14-30
103339 -27	B14
103339 -28	B6A-4
103339 -29	B6A-10
103339 -30	B6A-15
103339 -31	B6A-20
103339 -32	B6A-25
103339 -33	B6A-30
103339 -34	B6A

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339 Date Extracted: 03/22/21 and 03/29/21 Date Analyzed: 03/23/21 and 03/30/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx Results Reported on a Dry Weight Basis

Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
B13-10 103339-14	< 0.02	< 0.02	< 0.02	<0.06	<5	93
B13-20 103339-16	< 0.02	< 0.02	< 0.02	<0.06	<5	94
B14-10 103339-21	< 0.02	< 0.02	< 0.02	<0.06	<5	92
B14-12 103339-22	< 0.02	< 0.02	< 0.02	<0.06	<5	80
B14-15 103339-23	< 0.02	< 0.02	< 0.02	< 0.06	<5	90
B6A-4 103339-28	< 0.02	< 0.02	< 0.02	<0.06	<5	89
B6A-10 103339-29	< 0.02	< 0.02	0.18	0.29	160	95
Method Blank 01-583 MB	< 0.02	< 0.02	< 0.02	<0.06	<5	78
Method Blank 01-591 MB	< 0.02	< 0.02	< 0.02	<0.06	<5	90

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339 Date Extracted: 03/18/21 and 03/25/21 Date Analyzed: 03/18/21 and 03/25/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
B13-20 103339-16	<50	<250	86
B14-12 103339-22	<50	<250	84
B6A-10 103339-29	450 x	<250	96
Method Blank 01-695 MB	<50	<250	101
Method Blank 01-725 MB	<50	<250	88

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339 Date Extracted: 03/18/21 Date Analyzed: 03/18/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
B13 103339-19	81 x	<250	106
B14 103339-27	<50	<250	73
Method Blank 01-693 MB	<50	<250	96

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B13-10	Client:	Environmental Associates
Date Received:	03/17/21	Project:	Renton Firestone 40139-2
Date Extracted:	03/25/21	Lab ID:	103339-14
Date Analyzed:	03/25/21	Data File:	103339-14.131
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Arsenic

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B13-20	Client:	Environmental Associates
Date Received:	03/17/21	Project:	Renton Firestone 40139-2
Date Extracted:	03/25/21	Lab ID:	103339-16
Date Analyzed:	03/25/21	Data File:	103339-16.132
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Arsenic

<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B14-10	Client:	Environmental Associates
Date Received:	03/17/21	Project:	Renton Firestone 40139-2
Date Extracted:	03/25/21	Lab ID:	103339-21
Date Analyzed:	03/25/21	Data File:	103339-21.133
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Arsenic

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B14-15	Client:	Environmental Associates
Date Received:	03/17/21	Project:	Renton Firestone 40139-2
Date Extracted:	03/25/21	Lab ID:	103339-23
Date Analyzed:	03/25/21	Data File:	103339-23.147
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Arsenic

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B6A-4	Client:	Environmental Associates
Date Received:	03/17/21	Project:	Renton Firestone 40139-2
Date Extracted:	03/25/21	Lab ID:	103339-28
Date Analyzed:	03/25/21	Data File:	103339-28.154
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Arsenic

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6A-10 03/17/21 03/22/21 03/22/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-29 103339-29.106 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Lead Mercury	32.4 <1 7.14 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B6A-10	Client:	Environmental Associates
Date Received:	03/17/21	Project:	Renton Firestone 40139-2
Date Extracted:	03/22/21	Lab ID:	103339-29 x5
Date Analyzed:	03/23/21	Data File:	103339-29 x5.095
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Chromium

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	B6A-15	Client:	Environmental Associates
Date Received:	03/17/21	Project:	Renton Firestone 40139-2
Date Extracted:	03/25/21	Lab ID:	103339-30
Date Analyzed:	03/25/21	Data File:	103339-30.155
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Arsenic

<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 03/22/21 03/22/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 I1-182 mb I1-182 mb.090 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead Mercury	<1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Environmental Associates
Date Received:	NA	Project:	Renton Firestone 40139-2
Date Extracted:	03/25/21	Lab ID:	I1-189 mb2
Date Analyzed:	03/25/21	Data File:	I1-189 mb2.038
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Arsenic

<1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B11-2.5 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-01 031810.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	106	90	109
Toluene-d8		99	89	112
4-Bromofluorobenz	ene	96	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	•	<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroeth	ene	<0.05		
1,2-Dichloroethane	(EDC)	<0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B11-10 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppm	.) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-02 031811.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	103	90	109
Toluene-d8		100	89	112
4-Bromofluorobenz	zene	98	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	e	<0.5		
trans-1,2-Dichloroe	ethene	<0.05		
1,1-Dichloroethane)	< 0.05		
cis-1,2-Dichloroeth	ene	<0.05		
1,2-Dichloroethane	e (EDC)	<0.05		
1,1,1-Trichloroetha	ane	<0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B11-20 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-04 031812.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	e-d4	103	90	109
Toluene-d8		99	89	112
4-Bromofluorobenz	ene	98	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene	1	< 0.05		
Methylene chloride	9	<0.5		
trans-1,2-Dichloroe	ethene	<0.05		
1,1-Dichloroethane	•	<0.05		
cis-1,2-Dichloroeth	ene	<0.05		
1,2-Dichloroethane	e (EDC)	< 0.05		
1,1,1-Trichloroetha		< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-3 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-06 031813.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	90	109
Toluene-d8		99	89	112
4-Bromofluorobenz	ene	99	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	e	<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane	•	< 0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ine	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-10 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-07 031814.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	98	90	109
Toluene-d8		98	89	112
4-Bromofluorobenz	ene	102	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride)	<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane		<0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-30 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-11 031815.D GCMS4 JCM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 99 100 98	Lower Limit: 90 89 84	Upper Limit: 109 112 115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	e ethene e ene e (EDC)	$< 0.05 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.02 \\ < 0.025 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B13-4 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-13 031816.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	105	90	109
Toluene-d8		98	89	112
4-Bromofluorobenz	ene	97	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	•	<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane		<0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B13-13 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-15 031817.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	90	109
Toluene-d8		98	89	112
4-Bromofluorobenz	ene	101	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	•	<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ine	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B13-20 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppm	a) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-16 031818.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	103	90	109
Toluene-d8		97	89	112
4-Bromofluorobenz	ene	97	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	•	<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroethene		< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B14-4 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-20 031819.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	103	90	109
Toluene-d8		99	89	112
4-Bromofluorobenz	ene	102	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	9	<0.5		
trans-1,2-Dichloroe	ethene	<0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B14-10 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-21 031820.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	104	90	109
Toluene-d8		99	89	112
4-Bromofluorobenz	ene	100	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	<u>}</u>	<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane	;	< 0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ine	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B14-12 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-22 031821.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4		103	90	109
Toluene-d8		97	89	112
4-Bromofluorobenzene		102	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		< 0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride		<0.5		
trans-1,2-Dichloroethene		< 0.05		
1,1-Dichloroethane		<0.05		
cis-1,2-Dichloroethene		< 0.05		
1,2-Dichloroethane (EDC)		< 0.05		
1,1,1-Trichloroethane		<0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		
ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B14-20 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppm	ı) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-24 031822.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	90	109
Toluene-d8		98	89	112
4-Bromofluorobenz	ene	104	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride		< 0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6A-15 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-30 031823.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	90	109
Toluene-d8		99	89	112
4-Bromofluorobenz	ene	98	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride		<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane		<0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6A-15 RE 03/17/21 03/26/21 03/26/21 Soil mg/kg (ppm	EXTRACT 1) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-30 032613.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	107	90	109
Toluene-d8		101	89	112
4-Bromofluorobenz	ene	96	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	,	<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	<0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6A-20 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppm	a) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-31 031824.D GCMS4 JCM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 99 101	Lower Limit: 90 89 84	Upper Limit: 109 112 115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	e ene e (EDC)	$< 0.05 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.02 \\ < 0.025 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6A-30 03/17/21 03/18/21 03/18/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-33 031825.D GCMS4 JCM
C		0/ D	Lower	Upper
Surrogates:	14	% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-α4	102	90	109
Toluene-d8		99	89	112
4-Bromofluorobenz	ene	99	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene	•	< 0.05		
Methylene chloride	9	<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane	;	<0.05		
cis-1,2-Dichloroeth		<0.05		
1,2-Dichloroethane		< 0.05		
1,1,1-Trichloroetha	· ·	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applicab 03/18/21 03/18/21 Soil mg/kg (ppm)	le	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 01-639 mb 031809.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	100	90	109
Toluene-d8		98	89	112
4-Bromofluorobenz	ene	98	84	115
Compounds:	(Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	•	<0.5		
trans-1,2-Dichloroe	thene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	<0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/26/21 03/26/21 Soil mg/kg (ppm) D	2	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 01-665 mb 032609.D GCMS4 JCM
			Lower	Upper
Surrogates:	9	% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	107	90	109
Toluene-d8		101	89	112
4-Bromofluorobenz	ene	101	84	115
Compounds:	Con	oncentration ng/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		<0.05		
Methylene chloride	9	<0.5		
trans-1,2-Dichloroe	ethene	<0.05		
1,1-Dichloroethane	1	<0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	<0.05		
1,1,1-Trichloroetha	ine	<0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B11 03/17/21 03/30/21 03/30/21 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-05 033010.D GCMS13 JCM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 91 93 114 vo	Lower Limit: 85 88 90	Upper Limit: 117 112 111
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12 03/17/21 03/30/21 03/30/21 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-12 033011.D GCMS13 JCM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 102 91 109	Lower Limit: 85 88 90	Upper Limit: 117 112 111
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	e ethene ene e (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blan Not Applica 03/30/21 03/30/21 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 01-673 mb 033008.D GCMS4 JCM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 101 96 102	Lower Limit: 86 88 88 88	Upper Limit: 113 114 112
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	e ethene ene e (EDC)	<0.2 <1 <1 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6A-10 03/17/21 03/23/21 03/23/21 Soil mg/kg (ppm) Dry	Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-29 1/5 032314.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14		ecovery: 73 82 93 87 87 85	Lower Limit: 32 46 24 46 25 50	Upper Limit: 100 107 127 108 127 150
Compounds:	0 0 1 1 0	entration kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)py Dibenz(a,h)anthrace Benzo(g,h,i)perylen	ene ene ene ene ene ene ene ene ene	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/23/21 03/23/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 01-715 mb 1/5 032310.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recovery: 88 97 104 106 nol 89 106	Lower Limit: 32 46 24 46 25 50	Upper Limit: 100 107 127 108 127 150
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)py Dibenz(a,h)anthrac	$\begin{array}{rcl} {\rm ene} & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & <0.01 \\ & \\ {\rm ene} & <0.01 \\ {\rm ene} & <0.01 \\ {\rm rene} & <0.01 \\ {\rm cene} & <0.01 \end{array}$		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6A-10 03/17/21 03/24/21 03/24/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103339-29 1/6 032419.D GC9 IJL
Surrogates: TCMX	% Recovery: 66	Lower Limit: 23	Upper Limit: 120
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232	<0.02 <0.02		
Aroclor 1016	<0.02		
Aroclor 1242 Aroclor 1248	<0.02 <0.02		
Aroclor 1248 Aroclor 1254	<0.02		
Aroclor 1260	< 0.02		
Aroclor 1262 Aroclor 1268	<0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/24/21 03/24/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 01-720 mb 1/6 032414.D GC9 IJL
Surrogates: TCMX	% Recovery: 76	Lower Limit: 23	Upper Limit: 120
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 103348-07 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result _(Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	0.042	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	0.61	0.47	26 hr
Xylenes	mg/kg (ppm)	0.52	0.40	26 hr
Gasoline	mg/kg (ppm)	85	66	25 hr

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	88	69-120
Toluene	mg/kg (ppm)	0.5	91	70-117
Ethylbenzene	mg/kg (ppm)	0.5	89	65-123
Xylenes	mg/kg (ppm)	1.5	92	66-120
Gasoline	mg/kg (ppm)	20	100	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 103509-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	<0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	94	69-120
Toluene	mg/kg (ppm)	0.5	96	70-117
Ethylbenzene	mg/kg (ppm)	0.5	96	65-123
Xylenes	mg/kg (ppm)	1.5	100	66-120
Gasoline	mg/kg (ppm)	20	105	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	103339-16 (Matri	x Spike)	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	80	82	64-133	2
Laboratory Code:	Laboratory Contr	ol Samp	le Percent	;			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5.000	82		147		

43

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	103427-04 (Matri	x Spike)	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	210	91	94	64-133	3
		3,000		v -	• -	01 100	-
Laboratory Code:	Laboratory Contr					01 100	-
Laboratory Code:			le	5		01 100	-
Laboratory Code: Analyte	Laboratory Contr	ol Samp	le Percent	5	tance	01 100	-

44

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	88	100	63-142	13

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 103386-01 x5 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result _(Wet wt)	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	mg/kg (ppm)	10	11.3	111	116	75-125	4
Cadmium	mg/kg (ppm)	10	<5	101	102	75-125	1
Chromium	mg/kg (ppm)	50	14.7	100	101	75-125	1
Lead	mg/kg (ppm)	50	8.72	103	104	75-125	1
Mercury	mg/kg (ppm	5	<5	106	110	75-125	4

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Arsenic	mg/kg (ppm)	10	109	80-120
Cadmium	mg/kg (ppm)	10	99	80-120
Chromium	mg/kg (ppm)	50	104	80-120
Lead	mg/kg (ppm)	50	103	80-120
Mercury	mg/kg (ppm)	5	104	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Cod	e: 103407-01 (M	latrix Spil	ce)				
Analyte	Reporting Units	Spike Level	Sample Result (Wet wt)	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	mg/kg (ppm)	10	2.07	102	109	75-125	7

	oue. Daboratory Com		Percent	
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Arsenic	mg/kg (ppm)	10	98	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 103339-01 (Matrix Spike)

Laboratory Code: 105359-01	(matrix spike)		C	Devee	Developet		
			Sample	Percent	Percent		-
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	1	< 0.05	33	31	10-138	6
Chloroethane	mg/kg (ppm)	1	<0.5	44	42	10-176	5
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	57	54	10-160	5
Methylene chloride	mg/kg (ppm)	1	<0.5	74	71	10 - 156	4
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	62	62	14 - 137	0
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	67	64	19-140	5
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	71	70	25 - 135	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	76	73	12-160	4
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	67	64	10-156	5
Trichloroethene	mg/kg (ppm)	1	< 0.02	78	75	21 - 139	4
Tetrachloroethene	mg/kg (ppm)	1	<0.025	76	74	20-133	3

Babbiatory could. Babbiatory c	control Sumpto		-	
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	1	69	22-139
Chloroethane	mg/kg (ppm)	1	58	9-163
1,1-Dichloroethene	mg/kg (ppm)	1	95	47 - 128
Methylene chloride	mg/kg (ppm)	1	100	10-184
trans-1,2-Dichloroethene	mg/kg (ppm)	1	94	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	92	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	1	93	72 - 127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	97	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	89	62-131
Trichloroethene	mg/kg (ppm)	1	97	63-121
Tetrachloroethene	mg/kg (ppm)	1	105	72 - 114

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 103339-30 (Matrix Spike)

Laboratory Code. 103333-30	(matin opike)		a 1	D			
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	1	< 0.05	28	31	10-138	10
Chloroethane	mg/kg (ppm)	1	<0.5	41	44	10-176	7
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	48	54	10-160	12
Methylene chloride	mg/kg (ppm)	1	<0.5	59	70	10-156	17
trans-1,2-Dichloroethene	mg/kg (ppm)	1	<0.05	53	61	14 - 137	14
1,1-Dichloroethane	mg/kg (ppm)	1	<0.05	55	63	19-140	14
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	58	67	25 - 135	14
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	62	71	12-160	14
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	55	62	10-156	12
Trichloroethene	mg/kg (ppm)	1	< 0.02	60	67	21-139	11
Tetrachloroethene	mg/kg (ppm)	1	<0.025	59	70	20-133	17

Habbiatory Couc. Habbiatory	Control Sumpto			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	1	64	22-139
Chloroethane	mg/kg (ppm)	1	71	9-163
1,1-Dichloroethene	mg/kg (ppm)	1	85	47-128
Methylene chloride	mg/kg (ppm)	1	97	10-184
trans-1,2-Dichloroethene	mg/kg (ppm)	1	83	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	84	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	1	87	72-127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	89	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	86	62-131
Trichloroethene	mg/kg (ppm)	1	88	63-121
Tetrachloroethene	mg/kg (ppm)	1	87	72-114

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 103462-01 (Matrix Spike)

	matrix opine)			Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	<0.2	65	67	36-166	3
Chloroethane	ug/L (ppb)	10	<1	65	69	46-160	6
1,1-Dichloroethene	ug/L (ppb)	10	<1	79	81	58 - 142	2
Methylene chloride	ug/L (ppb)	10	<5	94	104	50-145	10
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	77	79	61-136	3
1,1-Dichloroethane	ug/L (ppb)	10	<1	80	80	63-135	0
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	83	86	63-134	4
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<1	91	92	48-149	1
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	85	87	60-146	2
Trichloroethene	ug/L (ppb)	10	<1	88	91	66-135	3
Tetrachloroethene	ug/L (ppb)	10	<1	105	105	10-226	0

Laboratory Coue. Laboratory	control sample		D	D		
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	88	87	50-154	1
Chloroethane	ug/L (ppb)	10	88	85	58-146	3
1,1-Dichloroethene	ug/L (ppb)	10	99	96	67-136	3
Methylene chloride	ug/L (ppb)	10	97	96	19-178	1
trans-1,2-Dichloroethene	ug/L (ppb)	10	94	92	68-128	2
1,1-Dichloroethane	ug/L (ppb)	10	90	89	74-135	1
cis-1,2-Dichloroethene	ug/L (ppb)	10	93	92	74-136	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	94	94	66-129	0
1,1,1-Trichloroethane	ug/L (ppb)	10	95	94	74-142	1
Trichloroethene	ug/L (ppb)	10	92	93	67-133	1
Tetrachloroethene	ug/L (ppb)	10	108	104	76-121	4

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 103407-03 1/5 (Matrix Spike)

Laboratory Code:	103407-03 1/5 (Mat	rix Spik	e)				
2	,	-	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Ûnits	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	84	86	50-150	2
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	85	85	50-150	0
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	84	85	50-150	1
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	100	99	50-150	1
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	92	92	50-150	0
Fluorene	mg/kg (ppm)	0.83	< 0.01	96	96	50-150	0
Phenanthrene	mg/kg (ppm)	0.83	0.029	87	88	50-150	1
Anthracene	mg/kg (ppm)	0.83	< 0.01	90	94	50-150	4
Fluoranthene	mg/kg (ppm)	0.83	0.046	94	95	50-150	1
Pyrene	mg/kg (ppm)	0.83	0.054	95	94	50-150	1
Benz(a)anthracene	mg/kg (ppm)	0.83	0.025	97	98	50-150	1
Chrysene	mg/kg (ppm)	0.83	0.026	90	92	50-150	2
Benzo(a)pyrene	mg/kg (ppm)	0.83	0.031	99	102	50-150	3
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	0.028	94	95	50-150	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	0.011	94	98	50-150	4
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	0.021	127	114	50-150	11
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	101	111	50-150	9
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	0.019	97	106	50-150	9

Laboratory Code. Laboratory	-		Percent	
A realizate	Reporting Units	Spike	Recovery LCS	Acceptance
Analyte	Units	Level	LUD	Criteria
Naphthalene	mg/kg (ppm)	0.83	87	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	87	70-130
1-Methylnaphthalene	mg/kg (ppm)	0.83	87	70-130
Acenaphthylene	mg/kg (ppm)	0.83	101	70-130
Acenaphthene	mg/kg (ppm)	0.83	93	70-130
Fluorene	mg/kg (ppm)	0.83	99	70-130
Phenanthrene	mg/kg (ppm)	0.83	94	70-130
Anthracene	mg/kg (ppm)	0.83	96	70-130
Fluoranthene	mg/kg (ppm)	0.83	100	70-130
Pyrene	mg/kg (ppm)	0.83	99	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	101	70-130
Chrysene	mg/kg (ppm)	0.83	97	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	103	70-130
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	103	70-130
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	96	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	104	70-130
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	99	70-130
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	98	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 04/01/21 Date Received: 03/17/21 Project: Renton Firestone 40139-2, F&BI 103339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 103407-06 1/6 (Matrix Spike) 1/6

Analyte	Reporting Units	Spike Level	Sample Result (Wet Wt)	Percent Recovery MS	Percent Recovery MSD	Control Limits	RPD (Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	90	92	44-107	2
Aroclor 1260	mg/kg (ppm)	0.25	< 0.02	93	92	38 - 124	1

		Percent									
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria							
Aroclor 1016	mg/kg (ppm)	0.25	96	47-158							
Aroclor 1260	mg/kg (ppm)	0.25	100	69-147							

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

 ${\bf j}$ - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\bf J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

103331 Report To GAY Z	1 1		_ }	SALVIE LEANS (Signature) Here m							TI	TURNAROUND TIME					
Company ENVINMME Address 1386 112	the Association	<u>tes Tuc.</u> #300	1						1) RUSI	<u>1</u>	V	14				
City, State, ZIP Belleui	ie, WI as	004	- REMAR	RKS 386 Bell	1 92"	dore 1 USCOL	JE 1	Cur	INVO Ke	DICE	TO thesLL] Archi] Other	ve samples			
	associuterin	. com	- [Project.	specific KI	<u> /S? - 11</u>		NO 1		ANA	LYSI	S REQU			: Dispose att	er 30 days	ม า	
		Date	Time	Sample	# of	H-Dx	H-Gx	A 8021		And the second second	8082						
Sample ID	Lab ID	Sampled	Sampled	Туре	Jars	NWTEB	AT-WN	BTEXE	Voov	PAHs EF	PCBs BP					-	
B11-2.5	ol A-C	3-17-21	9-19	Sil	3				K								
B11-10	,	1	9:24		3		T	T	X							1	
B11-15	03		9=28		3											1	
B11-20	04	• • • • • •	9738	Ψ	3.				X						****	1	
BII	05 A.D		10:14	Water	4				Ő					- Huti-			
B12-3	,		10:36	Soil	3		4.2		X								
B12-10	071		10:34	. 1	3				X		•						
B12-15	08		10:38		3	•									ĩ]	
B12-20	09	/	10:57	,	3												
B12-25	10	V	1(:23	J	3		Ι			T]	
Friedman & Bruya, Inc.		NATURE			PRIN	>					COM	PANY		DATE 3-17-21	TIME 4:50		
3012 16 th Avenue West	leceived by:	VE		KF	101			~e .	_		FB	1				1.	
Seattle, WA 98119-2029	lelinquished by:							8								1	
	Company GNUMMA Address 1386 112 City, State, ZIP Bellew Phone 425-453-8625 En Sample ID B11-2.5 B11-20 B11 B12-3 B12-15 B12-15 B12-25 Friedman & Bruya, Inc. 3012 16 ^h Avenue West Seattle, WA 98119-2029	Company Environmental Associated Address 1386 112° are NE City, State, ZIP Belleville, WA 98 Phone 425-455-8625 Email Modeul 7 associates into a secondary and a secondary and a second for the secon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Company AV indimential Associates Tuc. Address 1386 1/2 ^T are $NE \pm 300$ City, State, ZIP Belley we, WA 98004 Phone $425-453-8015$ Email indicely is numbered associates in a company Sample ID Lab ID Date Time Sampled Sampled B11-2,5 0/A-C 3-17-21 9:19 B11-15 03 9:24 B11-15 03 9:28 B11-20 04 9:38 B11 0:5A 9 B12-3 06 A C 10:34 B12-15 08 10:38 B12-15 08 10:38 B12-25 /D 10:57 B12-25 /D 10:57 B12-25 /D 10:57 B12-25 /D 10:57 B12-25 /D 10:57 B12-25 /D 10:34 B12-25 /D 10:38 B12-25 /D 10:38 B12-25 /D 10:38 B12-25 /D 10:38 B12-25 /D 10:57 B12-25 /D 10:38 B12-25 /D 10:38	Company Antited Associates Tuc.Address 1386 112° are $NE #300$ City, State, ZIP Belley UE, WA 98004REMARKS 235Phone US-455-4625 Email NGC ey To nurselREMARKS 235Sample IDLab IDDateSample IDLab IDSampledB11-2.5 $0/A < 3-17-21$ 9^219 B11-15 03 9^228 B11-20 04 9^238 B11 $05A \cdot 7$ $10:14$ B12-3 $06A < 10:36$ $50:1$ B12-15 08 $10:38$ B12-25 $10:14$ $10:57$ B12-25 $10:123$ $10:23$ Friedman & Bruya, Inc.Received by: W Kettle, WA 98119-2029Received by: W	Company Autive Medial Associates Tuc.Address 1386 112" are NE #300PROJECT NAMECity, State, ZIP Belley UP, WA 98004REMARKS -3851 92"Phone 425-455-9025 Email information informationRemarks informationSample IDLab IDDateSample IDLab IDSample IDLab IDSample IDLab IDSample IDSampledBill-2.501 A-c3-17-219:19Sample IDSampledSample IDSampledBill-109:24Sample ID9:24Sample ID9:28Sample ID9:28Sample ID10:31Sample ID10:32Sample ID10:32Sample ID10:32Sample ID10:32Sample ID10:33Sample ID10:34Sample ID10:34Sample ID0:4 Sample ID10:38Sample ID10:38Sample ID10:34Sample ID10:38Sample ID10:38Sample ID10:38Sample ID10:38Sample ID10:38Sample ID10:37Sample ID10:38Sample ID10:37Sample ID10:37Sample ID10:37Sample ID10:38Sample ID10:38Sample ID10:37Sample ID10:37Sample ID10:37Sample ID10:37Sample ID10:38<	Company Environmental Associates Tuc.Address1386112" a.e. $N \in #300$ City, State, ZIP Beller use, $W \in #300$ REMARKSPhone 412-413-2025Email No equive numberSample IDLab IDSample IDLab IDBill-2,501 A-cBill-16029:243Bill-15039:283Bill-20:049:283Bill-20:049:283Bill-20:049:283Bill-20:049:283Bill-20:049:283Bill-20:049:283Bill-20:049:283Bill-20:049:283Bill-20:049:283Bill-20:049:283Bill-20:049:283Bill-20:049:283Bill-20:049:283Bill-20:0710:383Bill-20:0710:383Bill-20:0710:383Bill-20:0710:383Bill-20:0710:383Bill-20:0710:383Bill-20:0710:383Bill-20:0710:300710:300710	Company Environmental Associates Tuc.Address I386 112" are NE #300PROJECT NAMECity, State, ZIP Belley Ue, WA 98004REMARKS 3951 92 down KE Eclique, WA 98004Phone 425-455-4625 Email No Control associates in controlProject specific RLs? Yes / NoSample IDLab IDDate SampledTime SampleSample IDLab IDDate SampledTime SampleBill-2,50/A-C3-17-219:19Bill-15039:243Bill-10029:243Bill-20:049:383Bill 0:3605:113Bill 0:3605:113Bill 0:360710:36Soil 310:383Bill 0:38310:38Bill 0:38310:38Bill 0:38310:38Bill 0:38310:38Bill 0:38310:38Bill 0:2-150911:23Bill 0:3833Bill 0:3833Bill 0:3910:573Bill 0:300710:57Bill 0:3007Bill 0:3007	Company AU in Multi Associates I_{4C} Address 1386 112 ^m are $NE #300$ City, State, ZIP Bellewie, $WA 98004$ Phone 425-455-6625 Email McDey in Mundbel associates $NC coA$ Sample ID Lab ID Sampled Sample $H of H H H of H H H h h h h h h h h h h h h h h h h $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Interfere To EAC CLEEN TITLE ADDUST TALE Company Anuive Methal Associates Tuc. Address 1386 112" are NE #300 Chips state, DIP Belley U.e., WA #80004 Protect sensity in anuabal Protect sensity in anuabal Protect sensity in anuabal Address 1200 State Clips and only anuabal Protect sensity in anuabal Protect sensity in anuabal Anualyses Requires authorized by: Default Dispose after 30 daw Sampled Anualyses Requires the full bit for anuabal Bampled Time Sampled <td col<="" td=""></td>						

-2²¹ 1.....

ì

103339 SA Report To Eric Zuern Company EAT				SAMPLERS (signature)									ſ		Rage #	# <u>Z</u>	ITIME
Comucan	AI		PROJE	CT NAME		-6		PO#						Standard turnaround			
Address				Revtou "	Fires	kuc		•	40	139	-2			RUSHE Rush charges authorized by: W			
City, State, ZIP		*****	REMA	REMARKS					IN	VOIC	E TO			SAMPLE DISPOSAL			
Phone	Email		- Project	specific RI	<u>15? - Y</u>	es /	No							🗆 Oth	er	Dispose afte	r 30 days
		·····			1	Ţ	r			IALYS	1	EQU	EST	ED		-	í
			Time	- Sample	# ~ 5	1.Dx	T-Gx	BTEX EPA 8021	NWTPH-HCID	<u> </u>	PCBs EPA 8082						
Sample ID	Lab ID	Sampled	Sampled	Туре	Jars	NWTEH-Dx	NWTFH-Gx	EXEP	WITPH.	3 원 3 원	Bs BP	Arsenic				· No	ites
							4	A	ZJ	A	Â	X		<u> </u>			
B(2-30	116-	3-17-2	11:23	50;(3				X	1						5	
BIZ	12 A =	5	10:45	+	Ч												
BBY	13 A~		11:41	انک						1							
B13-16	14 7	· · · · · · · · · · · · · · · · · · ·	11:45				•			****	· · · · · · · · · · · · · · · · · · ·	0		2000 s			
B13-13	15		11:50						>								
B13-20	16		12:16			X	0	9	\rightarrow			0					
B13-25	17		12:29														
B13-30	18		12:43	J		-											1
B13 .	17 A.D		12:00	Water		X			Ø	\mathcal{P}					-	Hold per EZ 3/18/	BB CVOC
B14-4	· ROA-	V	1:00	Soil					X								·
		IGNATURE		<u> </u>	PRIN	TN	AME					OMI	AN	Y		DATE	TIME
Friedman & Bruya, Inc.	Relinquished by:	<u>ai Jun</u>		·	Eniz	2	~~~~~	.	****		E,	<u>+I</u>	والقاصل وروا القالي			3-17-21	
3012 16th Avenue West	Received by:	ME		K	.hoi		oa				F	<u>- B</u>	E			3-17-21	16:50
Seattle, WA 98119-2029	Relinquished by:	`	•					1							Ī		
Ph. (206) 285-8282	Received by:			Γ						1							

	107270			SAMPL	E CHAIN	NOF	CUS	TO	DY				ວ່ມ	7					-
	105531				SAMPLERS (signature) Killen							ME 03-17-21 Page #						\$3 105	
	Address			_	PROJECT NAME Beaks Firestone REMARKS				PO#				SAMPLE DISPOSAL				04 113		
																	-		
	Phone	Email		- Project	specific RL	<u>s? - Y</u>	es /]	No						De	D Other Default: Dispose after 30 days				
			<u> </u>	1	<u> </u>	1	<u> </u>						QUE	STED					-
1449-2014-201		`	Date	Time	Sample-	# of	H-Dx	H-Gx	PA 802	7.828 828	PA 8270	A 8082	2	the ct)	No.			
	Sample ID	Lab ID	Sampled	Sampled	Туре	Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021 NWTPH-HCID	vocs EPA \$280	PAHS EPA 8270	PCBs EPA 8082	MT CA	CVOC Rother	t vert		No		
	B14-16	21	3-17-21	1:04	Soil	3		0		X		<u>р</u>	4			- V -	Per 3/1	62 4	
	B14-12	22)	1:13		3	•			X							e)	
	B14-15	73		1:10		3											````	· <u> </u>	
· ·	B14-20	74		1:32		-3				X				len and			-pc	62 4/1/2	M
	B14-25	25		(:44		3			_										
	B14-30	76		5:00	V	3		<u>;;</u>											
	BIY	27		1:20	Water	Ч	X			8							civols. z s/urt	21 mb]
	B6A-4	78		2:22 "	Sail	3	·											- <u></u>	
	B6A-16	- 29		22:25		د	<u>٦</u> ,	$\langle \rangle$	1		4	4.	4						
Ļ	B6A-15	30		2:34	<u>۲</u>	2				X									<u> </u>
	Friedman & Bruya, Inc.	Friedman & Bruya, Inc. Relinquished by:			PRINT NAME							CO	MPA T	NY -		DA	1	TIME]
	3012 16th Avenue West Received by:			EnicZuem										3-17-2			4:50		
-	Seattle, WA 98119-2029	Relinquished by:	12		K	101	Н	ou	- <u>5</u>			<u> - 6</u>	, h			3-1	1-21	16:30	
j	Ph. (206) 285-8282	Received by:							• <u></u>										

· ·

(03339	•		SAMPLI	E CHAIN	1 OF	CUS	STC	DJ			N	e	07	2-1-	7-2	1		11	<u>.</u> .
Report To Gric Zurn				SAMPLERS (signature)											Page			-	
CompanyEAI				PROJECT NAME Renton Firestone				PO# 40139-2					11	TURNAROUND TIME Standard turnaround C RUSH <u>E</u> Rush charges authorized by: J				5H N3	
Address			REMAR	REMARKS					IN	IVO)	ICE	ro	*******		SAMPLE DISPOSAL				
Phone	Email		_ Project	specific RI	.s? - Y	es /	No							10		ier ult: I	Dispose af	ær 30 davs] ·
·····	<u> </u>	<u></u>	1	r	T	-			and the second	and the second second	YSE	T	ເຊນ	ESTI	ED T		T		4
		Date	Time	Sample	#of	H-Dx	H-Gx	PA 8023	HCID	A 8260	A 8270	A 8082		-					
Sample ID	Lab ID	. Sampled	Sampled	Туре	Jars	NWTPH-Dx	NWTPH-Gx	BTEX KPA 8021	NWTPH-HCID	OCs HI	AHs BI	PCBs EPA 8082			<u> </u>		<u></u>	lotes	<u> </u>
R/1 70	- ()	2 12 21	2'6.	Seil	3					ŧ	-	4			<u> </u>	<u> </u>			
B6A-25	3(A·<	3-17-21	3:66	<u>Je</u> ,) 3				┯┼	4		+			 			*****	
B6A-30			3:28	Ų	3	·			下	X]
66A	34	V	2:40	Water	4								<u></u>						
								-		<u>_</u>		4				ļ	<u> </u>	,	1
								:								ļ			
				·]
-			, X -			•		:							•]
,																			
						ĺ								×,	·····]
Friedman & Bruya, Inc. Relinquished by:				PRIN Dic i										TIME 4:55					
3012 16th Avenue West Received by: W					<u>roi</u>		nar						·BI					16:50	
Seattle, WA 98119-2029	Relinquished by:							T]
Ph. (206) 285-8282	Received by:											_							

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 24, 2021

Eric Zuern, Project Manager Environmental Associates, Inc. 1380 112th Ave. NE, 300 Bellevue, WA 98004

Dear Mr Zuern:

Included are the results from the testing of material submitted on March 18, 2021 from the Renton Firestone 40139-2, F&BI 103364 project. There are 15 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

& Color

Michael Erdahl Project Manager

Enclosures EAI0324R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 18, 2020 by Friedman & Bruya, Inc. from the Environmental Associates Renton Firestone 40139-2, F&BI 103364 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Environmental Associates
103364 -01	B15-4
103364 -02	B15-10
103364 -03	B15-15
103364 -04	B15-20
103364 -05	B15-25
103364 -06	B15-30
103364 -07	B15
103364 -08	B16-4
103364 -09	B16-10
103364 -10	B16-15
103364 -11	B16-20
103364 -12	B16-25
103364 -13	B16-30
103364 -14	B16
103364 -15	B17-3
103364 -16	B17-9-10
103364 -17	B17-15
103364 -18	B17-20
103364 -19	B17-25
103364 -20	B17
103364 -21	B18-3
103364 -22	B18-10
103364 -23	B18-15
103364 -24	B18-20
103364 -25	B18-25
103364 -26	B18
103364 -27	B19-3
103364 -28	B19-10
103364 -29	B19-15
103364 -30	B19-20
103364 -31	B19-25
103364 -32	B19

The 8260D matrix spike and matrix spike duplicate exceeded the relative percent difference for methylene chloride. The analyte was not detected in the samples therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/21 Date Received: 03/18/21 Project: Renton Firestone 40139-2, F&BI 103364 Date Extracted: 03/22/21 Date Analyzed: 03/22/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
B16-4 103364-08	<50	<250	86
B16-10 103364-09	<50	<250	92
B16-15 103364-10	<50	<250	92
B17-3 103364-15	<50	<250	84
B17-9-10 103364-16	<50	<250	82
B17-15 103364-17	<50	<250	92
B18-3 103364-21	<50	<250	83
B18-10 103364-22	<50	<250	81
B18-15 103364-23	<50	<250	92
B19-3 103364-27	<50	<250	91

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/21 Date Received: 03/18/21 Project: Renton Firestone 40139-2, F&BI 103364 Date Extracted: 03/22/21 Date Analyzed: 03/22/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
B19-10 103364-28	<50	<250	83
B19-15 103364-29	<50	<250	90
Method Blank 01-703 MB	<50	<250	95

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/21 Date Received: 03/18/21 Project: Renton Firestone 40139-2, F&BI 103364 Date Extracted: 03/19/21 Date Analyzed: 03/19/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
B15 103364-07	130 x	<250	81
B16 103364-14	79 x	<250	39
B17 103364-20	86 x	<250	90
B18 103364-26	62 x	<250	106
B19 103364-32	<53	<260	46
Method Blank 01-702 MB	<50	<250	105
ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B15-4 03/18/21 03/19/21 03/19/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103364-01 031914.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	106	90	109
Toluene-d8		99	89	112
4-Bromofluorobenz	ene	97	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	•	<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ine	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B15-10 03/18/21 03/19/21 03/19/21 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103364-02 031915.D GCMS4 JCM
Surrogates: 1,2-Dichloroethane	-d4	% Recovery: 107	Lower Limit: 90	Upper Limit: 109
Toluene-d8		98	89	112
4-Bromofluorobenzene		101	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	•	<0.5		
trans-1,2-Dichloroe	thene	<0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroeth	ene	<0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ne	<0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B15-25 03/18/21 03/19/21 03/19/21 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103364-05 031916.D GCMS4 JCM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 102 98 103	Lower Limit: 90 89 84	Upper Limit: 109 112 115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	$< 0.05 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.02 \\ < 0.025 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B16-4 03/18/21 03/19/21 03/19/21 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103364-08 031917.D GCMS4 JCM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	90	109
Toluene-d8		99	89	112
4-Bromofluorobenz	ene	99	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	;	<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		<0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B16-10 03/18/21 03/19/21 03/19/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103364-09 031918.D GCMS4 JCM
_		_	Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	103	90	109
Toluene-d8		99	89	112
4-Bromofluorobenz	ene	101	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		< 0.05		
Methylene chloride	•	<0.5		
trans-1,2-Dichloroe	ethene	< 0.05		
1,1-Dichloroethane		< 0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ne	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		< 0.025		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B16-25 03/18/21 03/19/21 03/19/21 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 103364-12 031919.D GCMS4 JCM
Common and to be		0/ B	Lower	Upper
Surrogates:	3.4	% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-04	105	90	109
Toluene-d8		100	89	112
4-Bromofluorobenz	ene	99	84	115
Compounds:		Concentration mg/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		<0.05		
Methylene chloride	<u>)</u>	<0.5		
trans-1,2-Dichloroe	ethene	<0.05		
1,1-Dichloroethane	1	< 0.05		
cis-1,2-Dichloroeth	ene	<0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ine	< 0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

.

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/19/21 03/19/21 Soil mg/kg (ppm) I	5	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2 01-643 mb 031909.D GCMS4 JCM
~			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	109 vo	90	109
Toluene-d8		100	89	112
4-Bromofluorobenz	ene	98	84	115
Compounds:	C	oncentration ng/kg (ppm)		
Vinyl chloride		<0.05		
Chloroethane		<0.5		
1,1-Dichloroethene		<0.05		
Methylene chloride	•	<0.5		
trans-1,2-Dichloroe	ethene	<0.05		
1,1-Dichloroethane		<0.05		
cis-1,2-Dichloroeth	ene	< 0.05		
1,2-Dichloroethane	(EDC)	< 0.05		
1,1,1-Trichloroetha	ne	<0.05		
Trichloroethene		< 0.02		
Tetrachloroethene		<0.025		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/21 Date Received: 03/18/21 Project: Renton Firestone 40139-2, F&BI 103364

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	103364-08 (Matri	x Spike)	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	82	94	73-135	14
Laboratory Code:	Laboratory Contr	ol Sampl	le				
			Percent				
	Reporting	Spike	Recovery	Acceptan	ice		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	92	74-139	1		

12

,

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/21 Date Received: 03/18/21 Project: Renton Firestone 40139-2, F&BI 103364

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	112	124	63-142	10

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/21 Date Received: 03/18/21 Project: Renton Firestone 40139-2, F&BI 103364

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 103364-01 (Matrix Spike)

Laboratory Code. 105504-01	(Matrix Spike)		~ -	-	-		
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	1	< 0.05	24	27	10-138	12
Chloroethane	mg/kg (ppm)	1	<0.5	34	40	10-176	16
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	41	46	10-160	11
Methylene chloride	mg/kg (ppm)	1	<0.5	53	70	10-156	28 vo
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	45	51	14 - 137	12
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	48	57	19-140	17
cis-1,2-Dichloroethene	mg/kg (ppm)	1	<0.05	51	61	25 - 135	18
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	55	66	12-160	18
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	47	56	10-156	17
Trichloroethene	mg/kg (ppm)	1	< 0.02	83	88	21 - 139	6
Tetrachloroethene	mg/kg (ppm)	1	<0.025	52	61	20-133	16

Laboratory Coue. Laboratory C	onnoi oampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	1	63	22-139
Chloroethane	mg/kg (ppm)	1	70	9-163
1,1-Dichloroethene	mg/kg (ppm)	1	89	47-128
Methylene chloride	mg/kg (ppm)	1	102	10-184
trans-1,2-Dichloroethene	mg/kg (ppm)	1	89	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	90	68-115
cis-1,2-Dichloroethene	mg/kg (ppm)	1	91	72-127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	98	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	91	62-131
Trichloroethene	mg/kg (ppm)	1	93	63-121
Tetrachloroethene	mg/kg (ppm)	1	101	72-114

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\bf J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

103364			SAMPL	E CHAIP	N OF	CUS	STC	DY		03	-18	-21	V	133/	EO4/	l Roz	AFF -
103364 Report To EREC	Jem		SAMPL	ERS (sign	ature)	(h)	n	1	n	-					e#_/_ RNARO		
Company GAN iro AM		JacTuc	- PROJE	CT NAME	ť	/		PO#					RUSH Rush charges authorized by:				
Address_1380 [[]			- Reuton Firestone						4013	\$9-7							
City, State, ZIP Belle			- REMAR	RKS	•				INVO	DICE	TO				MPLE		SAL
	•							1	sula f sure as	AND Dec	يا. 2	М.		Other_			
Phone 425455-96251	association	, com	- Project	specific RI	<u>_s? - Y</u>	<u>es /</u>	No								Dispos	se afte	r 30 days
	T	I	T ·	1	T			, El		LYSE	T	<u>I UB</u>	STEI	, 	- <u> </u>		,
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID VOC8 EPA 8260	AHs EPA 827	PCBs EPA 8082	·				No	tes
B15-4	DIAC	3-18-21	8:52	Soil	3			<u> </u>	- <u>-</u> - <u>-</u> - <u>-</u>								
B15-10	07	1	8:56	1	3				X								
B15-15	03		9:00		3												
B15-20	84		9:18		3					ŀ							
B15-25	05		9:30		3				X								
B15-30	06		9:45	V	12							T					
B15	07A-D		9:08	Water	4	X									ŕ		
B16-4	08 A 7		10:04	Soil	3	X			X								
B16-10	09		10:08	,	3	\times			X								
B16-15	10	J	10:15	U	3	X											
Friedman & Dans T	SIC Relinquished by:	NATURE			PRIN	-					C	OMP.	ANY		-	TE	TIME
Friedman & Bruya, Inc. 3012 16 th Avenue West	Received by:	i Cy	-	6	hie	<u>Z</u>	1	**	. 7		<u>e</u>	AC	•		5-0	6-51	5:45
Seattle, WA 98119-2029	Relinquished by:	1000	yr-	HON	G	NC	<u>–</u>	ef	5N	F	Ð	2				K	
Ph. (206) 285-8282	Received by:	\mathcal{O}													dat_	1	C

102264			SAMPLI	E CHAIN	IOF	CUS	STC	DY				3-21		VS	3 l	For	12	303	(AI3
Report 18_Efic7	Juem		SAMPL	ERS (signo	ature)	Tu.	2	4	~] [r	age #		01	
Company EA	Ŧ			CT NAME		•		F			0# ,9-	2			RUS	H	turnai es auth		
Address City, State, ZIP			- REMAR	RKS				[IN	VO	ICE	то		1 1		uive s	PLE DI amples		SAL
PhoneE	mail	·······	- Project	specific RL	<u>s? - Y</u>	es /	No								Defau	n lt: D	ispose	after	30 days
		·····		· · · · · · · · · · · · · · · · · · ·	Y							SRE	QUI	CSTR	D		r		······
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCS EPA 8260	PAHs EPA 8270	PCBs EPA 8082						Not	es
B16-ZO	11 AZ	3-18-21	10:40	Soil	3								[
B16-25	12		10:53		3					\times									
B16-30	13		11:07	J	3														
B16	K4 A-F		10125	Water	6	X					l.								
617-3	15 A.C		1 (:3)	Soil	3	4													
B17-9-10	- 16		11:35		3	X													
B17-15	n		11:40		3	X													
B17-20	18		12:04		3												:		
B17-25	17		12:18	J	3														
B17	no A.E	V	11:50	Water	5	X													•
Friedman & Bruya, Inc.	SI(Relinquished by:	SNATURE			PRIN		AMI 2		· · ·			Ë	DMF	AN	Y		DAT		TIME.
3012 16 th Avenue West	Received by:	you	p	HON	GN					1	F	R	2					-	/
Seattle, WA 98119-2029	Relinquished by: J	()							-									
Ph. (206) 285-8282	Received by:											Sam	ple	s re	ceiv	ed a	t Y	_•q	

103364 Report To	7		SAMPL								05-	91-	-21	÷	V <i>S3</i> P	E2 ave #	24 BU	
Report To	with		- SAMPI	LERS (sign	aturer	ju .	\mathcal{L}	7	<u> </u>	~					, T	'URNA	ROUND	TIME
Company	t						C	1		F	°0#	2		11.	I RUS	H	urnaroun	
Address	*****		- Ke	uton Fl	resto	re			40	515	9-	C	۰.	I	Rush c	harges	authoriz	ed by:
City, State, ZIP			REMAI	RKS					II	VVC	DICE	TO				SAMPI	LE DISPO mples	SAL
PhoneE			– Proiect	specific RL	s? - Y	es /	No) Othe	er	pose afte	r 30 d
······						T			A	NA	LYSE	SR	EQUI	ESTE	ED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082					No	otes
B18-3	21 AC	3-18-21	12:33	Soil	3	X												
B18-10	22		12:37	1	3	X												
B18-15	23		12=42		3	X												
B18-20	24		(:08		3													
B18-25	25 -		1:24	J	3													
BIB	26 A-F		12:50	Waster	6	X											,	
B19-3	27 A.C		1:35	Soil	3	X												
B19-10	25		1:40	1	3	X												
B19-15	29	1	1:44		3	X											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
B19-20	30	V	2:10	J	3													
Friedman & Bruya, Inc.	SI Relinguished by:	GNATURE			PRIN	IT N	AMI	<u> </u>				C	OMI	AN	Y		DATE	TIN
3012 16th Avenue West	Received by:	a 74	<u> </u>	L	-	- 6	-	et.	A			E	A	I		3.	-18-21	2.,
Seattle, WA 98119-2029	Relinquished by:	1007		HON	IG_	ρ	G	w	10	-24	/	Ē	est f	\square			\swarrow	1
Ph. (206) 285-8282	Received by:	<u> </u>										~	. 4			3	4 °C	
L				1						1		San	aptes	s teo	ceive	uqu		<u> </u>

103364			SAMPLI	E CHAIN	IOF	CUS	STC	DD2	ζ		03	-1B-	21	V,	\$3/	EO	4/4 ^B	03/12	53/
103364 Report To Eric 7 Company EAT	Jern		SAMPL	ERS (sign	alure)	lu.	6	Z.	n						$\frac{I_{P}}{T}$	'age # 'URN	AROUNI	 D TIME	<u>}</u>
Comment EAT			1	CT NAME		$\gamma \sim$	-7			P	0#					ndard	l turnarou		
Address			- R	enton F	irest	ne			40	B	1-7	, ~		R	ush c	harg	es author	ized by:	
City, State, ZIP		<u></u>	- REMAR	RKS	·····				IJ	NVO	İCE	TO					PLE DISI amples	POSAL	
PhoneEma				. en 191	0 17	,								110	Othe	er	ispose af	Gan 20 J	
			- Project	specific RL	<u>.s? - Y</u> (No			ANA]	LYSI	CS RI	QUE			<u>n: p</u>	ispose ai	ter ou u	
		1		1				21	A	00	2	82		T				,	
Sample ID	Lab ID	Date	Time	Sample	# of	H-D,	NWTPH-Gx	PA 8(H-HC	PA 82	PA 85	PCBs EPA 8082					, ,	Notes	
Sample ID	. Lab ID	Sampled	Sampled	Туре	Jars	ET WV	ITWV	EXE	HTTPI	Cs E	Hs E	Bs E						10000	
							~	BT	Ż	2	PA	PC						-	
<u>B19-25</u> B19	3(AC	3-18-21	2:24	Soil	3											 			
B19	32A4	N	(:50	Waser	5	X]				
: 	· · · ·																		
																	·		
	SI	GNATURE	L		PRIN	IT N	AMI	2	I			1 C	OMP.	ANY	7		DATE	TIM	/IE
	linguished by:	GNATURE		E		-	.		L			E	K	Γ		-	3.997	. 3:4	15
3012 16th Avenue West Re	ceived by:	11.11	na							-1		17	nã.	~			- 16-c	20	• 7

Seattle, WA 98119-2029 Ph. (206) 285-8282

Relinquished by:	Eric Zuern	EAI	3.972.	3:45
Received by: Houce	HONG NGUMEN	FAI	-16-61	V
Relinquished by:				
Received by:		Samples received a	t_4_°C	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 29, 2021

Eric Zuern, Project Manager Environmental Associates, Inc. 1380 112th Ave. NE, 300 Bellevue, WA 98004

Dear Mr Zuern:

Included are the results from the testing of material submitted on March 19, 2021 from the Renton Firestone 40139-2, F&BI 103389 project. There are 16 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Glark

Michael Erdahl Project Manager

Enclosures EAI0329R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 19, 2021 by Friedman & Bruya, Inc. from the Environmental Associates Renton Firestone 40139-2, F&BI 103389 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Environmental Associates
103389 -01	B7A
103389 -02	B20-2
103389 -03	B20-6
103389 -04	B20-9-10
103389 -05	B20-14
103389 -06	B20-18
103389 -07	B20

A 6020B internal standard failed the acceptance criteria for sample B7A. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/29/21 Date Received: 03/19/21 Project: Renton Firestone 40139-2, F&BI 103389 Date Extracted: 03/22/21 Date Analyzed: 03/22/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
B20-6 103389-03	<50	<250	94
B20-9-10 103389-04	<50	<250	96
B20-14 103389-05	<50	<250	93
Method Blank 01-710 MB	<50	<250	95

ENVIRONMENTAL CHEMISTS

Date of Report: 03/29/21 Date Received: 03/19/21 Project: Renton Firestone 40139-2, F&BI 103389 Date Extracted: 03/22/21 Date Analyzed: 03/22/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
B20 103389-07	<50	<250	81
Method Blank 01-706 MB	<50	<250	115

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B7A f 03/19/21 03/25/21 03/25/21 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2, F&BI 103389 103389-01 103389-01.108 ICPMS2 SP
Analyte:		Concentration ug/L (ppb)		
Arsenic Cadmium		1.89 <1		
Chromium Lead		<1 J <1		
Mercury		<1		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	B7A f		Client:	Environmental Associates
Date Received:	03/19/21		Project:	Renton Firestone 40139-2, F&BI 103389
Date Extracted:	03/25/21		Lab ID:	103389-01 x10
Date Analyzed:	03/26/21		Data File:	103389-01 x10.053
Matrix:	Water		Instrument:	ICPMS2
Units:	ug/L (ppb)		Operator:	SP
Analyte:	0 UI /	Concentration ug/L (ppb)	-	

<10

Chromium

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank f NA 03/25/21 03/25/21 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2, F&BI 103389 I1-191 mb I1-191 mb.106 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

the state of the state of					
Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B7A 03/19/21 03/22/21 03/22/21 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2, F&BI 103389 103389-01 1/2 032214.D GCMS8 YA	
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 36 30 95 96 90 94	Lower Limit: 15 11 10 16 12 35	Upper Limit: 99 65 145 138 132 138	
Compounds:		Concentration ug/L (ppb)			
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrace	ne ne re	<0.4 <0.4 <0.04 <0.04 <0.04 1.4 6 46 2.9 NA <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04	2		
Benzo(g,h,i)perylen	e	<0.08			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/22/21 03/22/21 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2, F&BI 103389 01-709 mb 032207.D GCMS8 YA
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	% Recc 23 16 10 93 nol 63 94	$egin{array}{cccc} & 15 \\ 5 & 11 \\ 1 & 10 \\ 3 & 16 \\ 2 & 12 \end{array}$	Upper Limit: 99 65 145 138 132 138
Compounds:	Concen ug/L		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(b)fluoranthe Indeno(1,2,3-cd)py Dibenz(a,h)anthrac Benzo(g,h,i)peryler	ne <0. <0. <0. <0. <0. <0. <0. <0. <0. <0.	2 2 02 02 02 02 02 02 02 02 02	

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B7A 03/19/21 03/23/21 03/24/21 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2, F&BI 103389 103389-01 032411.D GC9 VM
Surrogates: TCMX		% Recovery: 40	Lower Limit: 25	Upper Limit: 160
Compounds:		Concentration ug/L (ppb)		
Aroclor 1221		<0.1		
Aroclor 1232		<0.1		
Aroclor 1016		< 0.1		
Aroclor 1242		<0.1		
Aroclor 1248		<0.1		
Aroclor 1254		< 0.1		
Aroclor 1260		<0.1		
Aroclor 1262		<0.1		
Aroclor 1268		<0.1		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 03/23/21 03/24/21 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2, F&BI 103389 01-714 mb 032408.D GC9 VM
Surrogates: TCMX	% Recovery: 43	Lower Limit: 25	Upper Limit: 160
Compounds:	Concentration ug/L (ppb)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/29/21 Date Received: 03/19/21 Project: Renton Firestone 40139-2, F&BI 103389

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	103390-01 (Matri	x Spike)	a 1	D			
Analyte	Reporting Units	Spike Level	Sample Result (Wet Wt)	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	86	88	64-133	2
Laboratory Code:	Laboratory Conti	ol Samp	le Percent				
	Reporting	Spike	Recovery	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	82	58-1	147		

11

ENVIRONMENTAL CHEMISTS

Date of Report: 03/29/21 Date Received: 03/19/21 Project: Renton Firestone 40139-2, F&BI 103389

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	116	112	63-142	4

ENVIRONMENTAL CHEMISTS

Date of Report: 03/29/21 Date Received: 03/19/21 Project: Renton Firestone 40139-2, F&BI 103389

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 103389-01 x10 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20) _
Arsenic	ug/L (ppb)	10	<10	91	92	75-125	1
Cadmium	ug/L (ppb)	5	<10	99	97	75-125	2
Chromium	ug/L (ppb)	20	<10	89	90	75-125	1
Lead	ug/L (ppb)	10	<10	93	92	75-125	1
Mercury	ug/L (ppb)	5	<10	91	92	75-125	1

_

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	91	80-120
Cadmium	ug/L (ppb)	5	99	80-120
Chromium	ug/L (ppb)	20	97	80-120
Lead	ug/L (ppb)	10	97	80-120
Mercury	ug/L (ppb)	5	99	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 03/29/21 Date Received: 03/19/21 Project: Renton Firestone 40139-2, F&BI 103389

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory C	ontrol Sampl	le	Percent	Percent		
Analyte	Reporting Units	Spike Level	Recovery LCS	Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene	ug/L (ppb)	5	79	78	56-100	1
2-Methylnaphthalene	ug/L (ppb)	5	81	81	60-104	0
1-Methylnaphthalene	ug/L (ppb)	5	80	81	60-104	1
Acenaphthylene	ug/L (ppb)	5	100	99	70-130	1
Acenaphthene	ug/L (ppb)	5	91	90	65-122	1
Fluorene	ug/L (ppb)	5	86	87	70-130	1
Phenanthrene	ug/L (ppb)	5	89	89	70-130	0
Anthracene	ug/L (ppb)	5	93	93	70-130	0
Fluoranthene	ug/L (ppb)	5	103	104	70-130	1
Pyrene	ug/L (ppb)	5	102	99	70-130	3
Benz(a)anthracene	ug/L (ppb)	5	98	97	70-130	1
Chrysene	ug/L (ppb)	5	93	93	70-130	0
Benzo(a)pyrene	ug/L (ppb)	5	91	92	70-130	1
Benzo(b)fluoranthene	ug/L (ppb)	5	97	99	70-130	2
Benzo(k)fluoranthene	ug/L (ppb)	5	96	96	70-130	0
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	101	99	57-141	2
Dibenz(a,h)anthracene	ug/L (ppb)	5	98	95	57-137	3
Benzo(g,h,i)perylene	ug/L (ppb)	5	96	92	50-143	4

ENVIRONMENTAL CHEMISTS

Date of Report: 03/29/21 Date Received: 03/19/21 Project: Renton Firestone 40139-2, F&BI 103389

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: Laboratory Control Sample

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Aroclor 1016	ug/L (ppb)	0.25	65	62	25-165	5
Aroclor 1260	ug/L (ppb)	0.25	82	76	25-163	

,

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

103380)		SAMPLI	E CHAIN	OF	CUS	STO	DY		1	ME	0	3-1	9-2	21		ł	, VW2
103380 Report To Cric Z	Vem		SAMPL	ERS (sign	ature)	l	TNX.	14	n							Page #	I o	0 1.1 4 1
Company EAVINGAM		ates Tur.	_	CT NAME		0	<u> </u>	1			0#				Star	naaro	l turnaround	1 607 1 AII
Address 1386 112" a			- R	cuton Fil	restone			પ	01	39	-7						es authorize	ed by: BOZ
City, State, ZIP Bellev			REMAR	RKS				Tou		IVO]	+						PLE DISPO samples	SAL
Phone 425-455-9025 H		•	- Project	specific RL	~? . V		No	Tou-sau	ny Jud	85. T.S.	Piero P	lus J	emilte E] Oth	er	ispose afte	r 30 dave
	associates			<u> </u>		<u>,, ,</u>							EQU					<u> </u>
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars		NWTPH-Gx	BTEX EPA 8021		1	PAHs EPA 8270		from ranjessi jo una				No	tes
B7A	OLA-F	3-19-21	9:35	Whater	6					ŀ	\times	×	X					
B20-2	OZ AC		10:08	Soil	3													
B20-6	03		10:23		3	\times												
BZ0-9-10	04		10:35		3	X												
620-14	05		10:52	ŀ	3	X												
BZO-K	06		11:49	J	3													
620	107	J	11:06	Water	3	Х			·									
														S	mpl	s re	eived at	_°C
		GNATURE			PRIN	IT N	AME	;				C	OMI	PAN	Ŷ		DATE	TIME
Friedman & Bruya, Inc.	Relinguished by:	lu Gu	<u> </u>	6	rel	7 A	m	~				E	Ał			ļ	3-19-21	3:33
3012 16th Avenue West	Received by			Eli	-4	a	n				7		B				3/12/21	1537
Seattle, WA 98119-2029	Relinquished y:				l	/												
Ph. (206) 285-8282	Received by:									T								

DRAFT

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B6A-10 ht 03/17/21 04/01/21 04/01/21 12 Soil mg/kg (ppn	2:37 n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2, F&BI 103339 103339-29 040113.D GCMS4 JCM
Surrogates:	_	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane	-d4	98	90	109
Toluene-d8		98	89	112
4-Bromofluorobenz	ene	101	84	115
Compounds:		Concentration mg/kg (ppm)		
Hexane		< 0.25		
Methyl t-butyl ethe	er (MTBE)	< 0.05		
	(77 75 75)			

Analysis For Volatile Compounds By EPA Method 8260D

< 0.05

< 0.05

1,2-Dibromoethane (EDB)

1,2-Dichloroethane (EDC)

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applic 04/01/21 04/01/21 Soil mg/kg (ppr		Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates Renton Firestone 40139-2, F&BI 103339 01-679 mb 040110.D GCMS4 JCM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 104 97 98	Lower Limit: 90 89 84	Upper Limit: 109 112 115
Compounds:		Concentration mg/kg (ppm)		
Hexane Methyl t-butyl ethe 1,2-Dibromoethane 1,2-Dichloroethane	e (EDB)	<0.25 <0.05 <0.05 <0.05		

Analysis For Volatile Compounds By EPA Method 8260D

103.33] Report To	Ar Z	zem		SAMPI	ERS (sig	nature)	h	w	2	n	-mc		2 [7-		Page	#	. of	15	
•	A	utel Associ		PROJE	CT NAM	Ē	12				PO#				standa	rd turnarou	· 6	u u	
Company F	TOC UT	ave NE	#2~	- Rev	tton F	itestan	ز		3	540	139	-2			WSH sh cha	rges authori	¥		
Address	011	and 10			RKS	······		Iter		INV	DICE	TO			SA	MPLE DISP	OSAL	-	
	-	ue, W/ a			RKS 38	st 92	2855	nic U N	S	rt Kr	250	ties 1	LC			e samples			
Phone 425-	453-4025 F	mail in Cey	ibonutrata	Project	specific R	<u>Ls? - Y</u>	es I	No		801- 1						Dispose aft	er 30 days		
		assoriants (<u>M. 2017</u>				1			the second s	a state of the second se	S RE	QUE	STED			······]	
			Date	Time	Sample	# of	H-Dx	I-Gx	A 8021	VOCS EPA 8260	A 8270	A 8082							
Sar	nple ID	Lab ID	Sampled		Type	Jars		NWTPH-Gx	BTEX EPA 8021		PAHs EPA 8270	PCBs EPA				N	otes	╞	
						-			A	Z Z	A	A A				9 -p	u ez		
BIL	-2,5	0/ A-C	3-17-2	1 9-19	Sil	3				X						3/24/	21 ME	1	
В	1-10	02		9:24		3				X									
BI	,1-15	03		9=28		3												1	
	1-20:	OH	· · · · ·	9:38	Y	3				X							999 6999	1	
	511	05 A.J	,	10:14	Water	- 4				Ø						-	11 5 /18/2 AE	1	
B	12-3	D6AX	1	10:36	Soil	3	\square	ľ	:	X								1	
BI	2-10	07		10:34	, [3				X		·						1	
·····	12-15	08		10:38		3	•	1										1	
B	12-20	09	1	10:57	1	3												1	
ß	12-25		V	11:23	J	3		=	=		=	-	=	十	+			╞	
· · ·]		CNATURE		1	PRIN	IT NA	ME		······		CC)MP/	NY		DATE	TIME	1	
⁷ riedman & E	druya, Inc.	Relinquished by:	à qu	· · ·	E		2						(1			3-17-21]	
012 16 th Aven	ue West	Received by:	VE			101			zng	1		F	BI			3-17-2			
eattle, WA 98	3119-2029	Relinquished by:							0						les re	ceived at		}	
·	103339	•		SAMPL	E CHAII	NOF	CUS	STO	DY	r.		al.e	- 0	3 - 1'	7-2	ŀ			
---	---	----------------------------------	-----------------	-----------------	----------------------------------	--------------	-------------	-----------------	---------------	------	--------------------------------	-----------------	-------------	--------	----------	----------	---------------------	----------------	--
	103339 Report To	-Zuem EAI		SAMP	LERS (sign	ature)	·		~/	Te	~					lage i	# <u>Z</u> NAROU	of	<u>Y</u> VE
	CompanyE	AI		PROJE	CT NAME		-6				PO	. . #		÷Π		indar	d turna		00
	Address		******		Rentau .	tives	<i>iche</i>		١	40	139	-2					ges auth	norized	and the second s
	City, State, ZIP			REMA	RKS					IN	VOIC	E TO		~	() Arc		IPLE DI samples		AL
		Email		- Project	specific RI	.s? . Y	es /	No							O Oth	ner			30 days
ſ							T T	<u></u>		AÌ	IALY	JES R	EQI						00 4470
	• • •				-		Dx	ž	8021	Ê.	8260 8270	8082		T	T	Ī			
T	Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	WWTEHLDx	HH	BPA	H	A A	PA	, , ,	2	<u> </u>	<u> </u>	<u> .</u>	Not	25
_			Campieu	Campica	1.ype	Joans	MA	NWTPH-Gx	BTEX EPA 8021	ENNS	VUC8 EPA 8260 PAH8 EPA 8270	PCBs EPA	Area	, 					
f	B(2-30	11.6~	3-17-21	11:23	507.1	3	┝╼╼┥	$\neg \uparrow$	7	1	7	f	<u>†</u>	+	+				
	BIZ	12 43	1	10:45	Where	4										-	ينغنك. الله		
	BB-4	13 A.X		11:41	Sil					>	2								
	B13-16	14 3	·····	11:45	v at 1-140 11 4 4 a at 10 4 a an		v-~		D .										
	B13-13	15		11:50						>	Ś								
ŀ	B13-20	16	-	12:16			X	0	D	X			9				:	,	
L	B13-25	17		12:29															
	B13-30	18		12:43	J		-												
	B13·	17 A-D	<u> </u>	12:00	Water		X			Ø	\overline{P}						Hold pe	, EZ 3/12/2	BB CVOC
	B14-4	· ROAL	V	1:00	Soil					×									
	a	SIG	NATURE			PRIN					1			PAN	Y .		DAT		TIME
	riedman & Bruya, Inc. 012 16 th Avenue West	Relinquished by: Received by:	i Jun			Enic						E,	41	•					1:50
	eattle, WA 98119-2029	Relinquished by:	M		<u> </u>	hoi	H	oa	z			E	<u>- B</u>	E			3-(7	15	16:50
	h. (206) 285-8282	Received by:			<u> </u>				/				····						

Report To Grie C Company EAR	weth		SAMP	LERS (sign	ature)	fa	h	14	n		- 7				Page #	AROUND	
Et.	τ		PROJE	CT NAME		-6	<i></i>	1 a		PO	#			E Sta	indard	l turnaroun	time d v
	••••••••••••••••••••••••••••••••••••••		- 2	anton F	itest	sne			40	139	(-2			🛛 RU Rush	Charg	es authoriz	
Address			- REMA	RKS					TN	VOIC	E TO				SAM	PLE DISPO	SAT.
City, State, ZIP			-						***	VOIC	10				hive s	samples	
PhoneEr	nail		- Project	specific RI	.s? - Y	es /	No							🛛 Otl Defa	oer ult: D	ispose afte	r 30 days
[<u> </u>			A	NALY	SES F	EQU	EST	ED			·····
	· · · · · · · · · · · · · · · · · · ·					Ă	š	BTEX EPA 8021	HCID	VOCS EPA 8260	PCBs EPA 8082		4		×		
Sample ID	Lab ID	Date	Time	Sample	# of	H	H	EPA	H	X A		1 20	1 24			H No	tes
		Sampled	Sampled	Туре	Jars	NWTPH-Dx	NWTPH-Gx	Xa	HALAN	3	Ball	MT CA	8		к Ц Ц	20	
					<u> </u>			<u>E</u>	2		- A	3			来の	V-per	- 62
B14-10	21	3-17-21	1:04	Sil	3		•		>	1				\bullet		3/	ব
B14-12	22)	1:13		3	•	•	0	>	<						e)
B14-15	73		1:10		3									•		,)	\
B14-20	24		1:32	a ann an 19 - 19 - 19 - 24 - 1914	-3					<						- pc	12 4/1/2
B14-25	25		1:44		3												-
B14-30	76		2:00	J	3		i.	•								÷	
BIY	27		1:20	Water	۲	X			X	Ż						Hold cuble . pr Et 3/4	
B6A-4	78		2:22 /	Sail	3		0							0			5
B6A-16_	-29		2:26		2	X	イド	\checkmark		V	1/	1					
B6A-15	30	J J	2:34	h	3				X	<			0	•			·
		NATURE			PRIN	TN	AME				(COM	PAN	¥ .		DATE	TIME
Friedman & Bruya, Inc.	telinquished by:	a Am		E	Fric	2.	e v	Ń			E	fI				3-17-21	4:55
3012 16th Avenue West	leceived by:	W			hoi		100				F	BT	-			3-17-21	16.30
Seattle, WA 98119-2029 🖪	elinquished by:	••••••••••••••••••••••••••••••••••••••		t			,	1						****			1

103339	· •		•	E CHAIN		÷	STC	DDY	-2		ME	- 03	2-17	1-2	1	ч	()	153
Report To <u>Gric</u> Company EA	ZUM		SAMPI	LERS (sign	ature)	h	w	[4]	in	~					Page	# NAROUND	MYZ CTO	-
Company_EA	L	·		CT NAME		\sim	<i></i>	100		PO #				Sta		rd turnarour	ad E	oH
Address				enten Fi	12570	re			40	157.	-2		F	Rush	char	ges authoriz	zed by: J	w3
City, State, ZIP			REMAI	RKS					IN	VOIC	e to					APLE DISP samples	OSAL	
Phone	Email	•	- Project	specific RI	⊿s? - Y	es /	No		_					J Oth Defai	ier ult: 1	Dispose aft	er 30 davs	
										ALYS	ES R	EQUI	CSTE	D	~		·····]
· · ·						-Dx	PH-Gx	BTEX EPA 8021	NWTPH-HCID	VUUS BYA 8260 PAHs RPA 8270	PCBs EPA 8082							
Sample ID	Lab ID	Date Sampled	<u>Time</u> Sampled	Sample Type	# of Jars	WTPH-D	HĄTWN	RP/	HA	AT A	LPA A					N	otes	
-	1 hans					M	-N	BTEX	NN	PAH	PCBs				ļ			
B6A-20	3(A·<	3-17-21	3,66	50:1	3			-+	-	7						+		
B6A-25	37		3:13	· 1	3	÷		-		1						1	<u></u>	1
B6A-30			3:28	V	3	,			X	:							· · · · · · · · · · · · · · · · · · ·	1
66A-	34	V	2:40	Water	4		· · · · ·				••••••	•••••••					·····]

								·										
	·		<u></u>			•		:									<u> </u>	
						Ī							×		*********	1		1-
Friedman & Bruya, Inc.	N 12 3.1 5.1	INATURE a m			PRIN					1-		OMP (1	The state of the s	<u>,</u>		DATE 3-{7-2 \	TIME 4:55	-
3012 16th Avenue West	Received by:	n yn		· · · · · · · · · · · · · · · · · · ·	101		och			1		-BI				3-17-21		-
Seattle, WA 98119-2029	Relinquished by:	<u> </u>		<u> </u>				7		1			·			<u>v (61</u>	110-11	
Ph. (206) 285-8282	Received by:								······································	1							1	1

. .

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 103339 Work Order Number: 2104013

April 08, 2021

Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 4/1/2021 for the analyses presented in the following report.

Hexavalent Chromium by EPA Method 7196 Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Original

CLIENT: Project:	Friedman & Bruya 103339	Work Order S	Sample Summary
Work Order: Lab Sample ID	2104013 Client Sample ID	Date/Time Collected	Date/Time Received
2104013-001	B6A-10	03/17/2021 2:26 PM	04/01/2021 11:59 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: 2104013 Date: 4/8/2021

CLIENT: Friedman & Bruya Project: 103339

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 2104013 Date Reported: 4/8/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2104013

 Date Reported:
 4/8/2021

Client: Friedman & I	Bruya			Collection	n Date:	3/17/2021 2:26:00 PM
Project: 103339						
Lab ID: 2104013-001				Matrix: S	oil	
Client Sample ID: B6	A-10					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Sample Moisture (Pe	ercent Moisture)			Bato	h ID: Re	6294 Analyst: CH
Sample Moisture (Pe	ercent Moisture) 25.7	0.500		Bato wt%	h ID: R6	6294 Analyst: CH 4/1/2021 4:53:47 PM
Percent Moisture		0.500		wt%		4/1/2021 4:53:47 PM

Drder: 2104013 T: Friedman & I	Bruva							QC S	SUMMA	RY REF	POR
t: 103339	Diaja					ł	lexava	lent Chrom	ium by EF	PA Metho	d 719
D: MB-31887	SampType: MBLK			Units: mg/Kg		Prep Date	4/6/202	21	RunNo: 66	436	
MBLKS	Batch ID: 31887					Analysis Date	: 4/6/202	21	SeqNo: 13	36765	
	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m, Hexavalent	ND	0.500				-					
D: LCS-31887	SampType: LCS			Units: mg/Kg	1	Prep Date	4/6/202	21	RunNo: 664	436	-
LCSS	Batch ID: 31887					Analysis Date	: 4/6/202	21	SeqNo: 13	36766	
	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m, Hexavalent	ND	0.500	0.5000	0	97.6	86.5	114				
D: 2104013-001ADUP	SampType: DUP			Units: mg/Kg-c	ry	Prep Date	: 4/6/202	21	RunNo: 664	436	
: B6A-10	Batch ID: 31887					Analysis Date	: 4/6/202	21	SeqNo: 13	36768	
	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m, Hexavalent	ND	0.670						0	1	30	1
D: 2104013-001AMS	SampType: MS		_	Units: mg/Kg-c	ry	Prep Date	4/6/202	21	RunNo: 664	436	
: B6A-10	Batch ID: 31887					Analysis Date	: 4/6/202	1	SeqNo: 13	36769	
	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m, Hexavalent S: tlying spike recovery(ies) of	ND	0.673 Ivsis was pe	0.6726	0.1327 ecovered within range	-19.7	6.79	138				S
D: 2104013-001AMSD	SampType: MSD	4		Units: mg/Kg-c		Prep Date:	4/6/202	1	RunNo: 664	136	-
B6A-10	Batch ID: 31887					Analysis Date	4/6/202	1	SeqNo: 13	36770	
	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m, Hexavalent	0.389	0.673	0.6726	0.1327	38.1	6.79	138	0		30	

Sample Log-In Check List

Client Na	me: FB	Work Order N	lumber: 2104013	
Logged by	y: Gabrielle Coeuille	Date Receive	d: 4/1/2021	11:59:00 AM
Chain of	Custody			7815
1, Is Chai	n of Custody complete?	Yes 🖌	No 🗆	Not Present
2. How w	as the sample delivered?	Client		
Log In				
3. Coolers	s are present?	Yes 🗌	No 🗹	NA 🗆
		No cooler pr	resent	
4. Shippir	ng container/cooler in good condition?	Yes 🗹	No 🗌	
	y Seals present on shipping container/cooler? to comments for Custody Seals not intact)	Yes 🗌	No 🗌	Not Present 🗹
6. Was a	n attempt made to cool the samples?	Yes 🗹	No 🗔	
7. Were a	ill items received at a temperature of >2°C to 6°C *	Yos 🗹	N. 🗆	
8. Sample	e(s) in proper container(s)?	Yes 🗹	N. 🗆	
9. Sufficie	ent sample volume for indicated test(s)?	Yes V	N. 🗆	
10. Are sa	mples properly preserved?	Yes 🗹	No 🗆	
	reservative added to bottles?	Yes 🗌	No 🗹	
12. Is there	e headspace in the VOA vials?	Yes 🗌	No 🗆	NA 🗹
13. Did all	samples containers arrive in good condition(unbroken)?	Yes 🗹	No 🗔	
14. Does p	aperwork match bottle labels?	Yes 🗹	No 🗆	
15. Are ma	trices correctly identified on Chain of Custody?	Yes 🗹	No 🗆	
16. Is it cle	ar what analyses were requested?	Yes 🗹	No 🗆	
17. Were a	all holding times able to be met?	Yes 🗹	No 🗆	
Special H	andling (if applicable)			
18. Was c	ient notified of all discrepancies with this order?	Yes 🗌	No 🗆	NA 🗹
P	orson Notified: Dat	el		
В	y Whom: Via	Mau _	Prono EFax	In Person
R	egarding.			
C	lient Instructions;			
19. Additio	nal remarks:			
Item Informa	ation			
	Item # Temp °C			
Sampl				

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

			SUBCC)NTRACI	r SAM	PLE	CHA	MN (OF C	UST	ODY		1	104	013		
Send Report <u>To</u>	Mishan	I Fadabl			BCONT	RACT	ER	Fremo	at					Pag	re#I RNAROUND	of	-
Send Report 10	wiichae	(Craani	and an entropy of the second		DJECT	NAME					PO#		Vs		1 773 8 773		
Company I	Friedma	an and Bruya	a, Inc.	1 100	30130/1	18231911	2110.						R	USH	d IAI ges authorize		of 8
Address:	3012-16	th Ave W	na de analisa de la composición de la c		10	>33	39			β.	203		Rus				Page 8 of 8
City, State, ZIPS	Seattle	WA 98119		RE	MARKS					, 20 00 			- 1		MPLE DISP		- aí
					Pl	ease E	mail F	tesult.	s				_ R	eturn s	after 30 day: samples		
Phone #(206) 283	5-8282	merdahl@fri	edmanandbruy	a.com									<u> </u>	/ill call	with instruc	tions	
		1	*****						ANA	LYSES	S REQU	ESTE	D				
						rans											
Sample ID	Lab	Date	Time	Matrix	# of	Dioxins/Furans	EPH	HdV	T							lotes	
•	ID	Sampled	Sampled		jars	xin	E	>	C. F						-		
						Dic											
56A -10		3/17/21	1426	Soil	($\underline{\otimes}$								
																n, en General my style i frequencies in source of source	
			·····														_
	ļ									 							-
										 							4
																	4
	<u></u>																_
······································	<u> </u>									 							_
																	_
Enfadoren 6 De	<u> </u>		OTAN SPRITTS		<u> </u>		NINT N 177	****	A 12			0014	DANTO			1 7313.612	1
Friedman & Bruya 3012 16th Avenue V		Relinquishert	SIGNATURE	~	/ Mich	ael Er	<u>PRINT</u> dahl	<u>NAN</u>	<u>1E</u>	•.•	Fried	COM man &		the second s	<u>DATE</u> 4/1/21	TIME	
Seattle, WA 98119-	2029	Received by:		7	27.	L		. 2-	(مر در		FIN	-1			4/1/21	11 5 67	
Ph. (206) 285-8282		Refinquished I	<u>ultuch</u>		1.4.+6	<u>. 66</u>	teile	45	<u>cr I</u>		<u> </u>			A	144		
Fax (206) 283-5044	1	Received by	,				#1100 COV/#1992 Co. 2000					n an		******		-	_

LIMITED SUBSURFACE SAMPLING AND TESTING

Vacant Former Firestone Complete Auto Care 351 Rainier Avenue South Renton, Washington 98057

KIDDER MATHEWS

ENVIRONMENTAL ASSOCIATES, INC.

1380 - 112th Avenue Northeast, Suite 300 Bellevue, Washington 98004 (425) 455-9025 Office (888) 453-5394 Toll Free (425) 455-2316 Fax

February 18, 2021

JN-40139-1

Mr. Mike Catt, Associate Vice President Kidder Mathews 12886 Interurban Avenue South Seattle, Washington 98168

Subject: LIMITED SUBSURFACE SAMPLING AND TESTING Vacant Former Firestone Auto Care Property 351 Rainier Avenue South Renton, Washington 98057

Dear Mr. Catt:

Environmental Associates, Inc. (EAI) has performed sampling and environmental testing of subsurface soils, groundwater, and soil-vapor at selected localities on the subject property. The purpose of this work was to make an assessment of the conditions beneath the property in recognition of prior on-site auto service and waste oil storage. This report, prepared in accordance with the terms of our proposal dated January 18, 2021, summarizes our approach to the project along with results and conclusions.

The contents of this report are confidential and are intended solely for your use and the use of your representatives. No other distribution or discussion of this report will take place without your prior approval in writing.

Kidder Mathews February 18, 2021

JN-40139-1 Page - 2

We appreciate the opportunity to be of service on this assignment. If you have any questions or if we may be of additional service, please do not hesitate to contact us.

Respectfully submitted, ENVIRONMENTAL ASSOCIATES, INC.

Jown. Sunor

Don W. Spencer, M.Sc., P.G. Principal

- License: 604 License: 11464 License: 876 License: 5195 License: 0327 REPA: 418290
- (Washington) (Oregon) (California) (Illinois) (Mississippi)

LIMITED SUBSURFACE SAMPLING AND TESTING

Vacant Former Firestone Auto Care Property 351 Rainier Avenue South Renton, Washington 98057

Prepared for:

Kidder Mathews 12886 Interurban Avenue South Seattle, Washington 98168

Questions regarding this investigation, the conclusions reached should be addressed to one of the following undersigned.

Zuern

Environmental Geologist / Project Manager

Nas Don W. Spencer, M.Sc., P.G. Principal laster nos lan License: 604 (Washington) DON W. SPENCER License: 11464 (Oregon) License: 876 (California) License: 5195 (Illinois)

(Mississippi)

Reference Job Number: JN 40139-1

License: 0327

REPA: 418290

February 18, 2021

ENVIRONMENTAL ASSOCIATES, INC.

TABLE OF CONTENTS

INTRODUCTION/SCOPE OF WORK
Site/Project Description5
Background
FINDINGS
Geophysical Survey
Subsurface Investigation6
Soil Boring Sampling6
Soil and Groundwater Sampling Procedure
Soil-Vapor Sampling Procedure
Subsurface Conditions
Laboratory Analysis
CONCLUSIONS/RECOMMENDATIONS
LIMITATIONS
REFERENCES

PLATES

Plate	1	-	Vicinity/Topographic Map
Plate	2	-	Site Plan
Plates	3-12	-	Boring Logs

TABLES

Table 1 - Petroleum Hydrocarbons & BTEX Soil Sampling Results

- Table 2 Petroleum Hydrocarbons & BTEX Groundwater Sampling Results
- Table 3 Select VOCs Soil Sampling Results
- Table 4 Select VOCs Groundwater Sampling Results
- Table 5 PAH Soil Sampling Results
- Table 6 PAHs Groundwater Sampling Report
- Table 7 PCBs Soil Sampling Results
- Table 8 PCBs Groundwater Sampling Results
- Table 9 MTCA-5 Metals Soil Sampling Results
- Table 10-MTCA-5 Metals Groundwater Sampling Results
- Table 11- APH & Select VOCs Soil Vapor Sampling Results

APPENDICES

A: Laboratory Reports

INTRODUCTION/SCOPE OF WORK

SITE/PROJECT DESCRIPTION

The subject property is a roughly rectangular - shaped parcel (tax parcel number 000720-0126) covering approximately 15,578 square feet of land or approximately 0.36 acres. Existing improvements consist principally of a single-story building of masonry design enclosing approximately 8,750 square feet of space which was reportedly constructed in 1960. Additional improvements include an asphalt paved parking lot and untended landscaping. The property was recently occupied by a Firestone Automotive Service Center however the building is currently unoccupied. The approximate location of the site is shown on the Vicinity/Topographic Map, Plate 1, appended herewith.

Background

In December 2020, Environmental Associates, Inc.(EAI) completed a Phase I Environmental Site Assessment for the subject. That report identified the following environmental conditions associated with the site:

- Long-term on-site automotive service and repair which utilized in-ground hoists.
- An underground waste oil storage tank (UST) had previously been utilized on the property and reportedly removed at some time in the past. No documentation regarding subsurface conditions at the time of UST removal was discovered in the readily available public record.

EAI recommended that if the client and/or other involved parties desired knowledge of current environmental conditions beneath the site, subsurface sampling and testing could be employed to assess whether impacts were present.

The reader is referred to the above reports for further details.

Current Study

Your expressed interests to evaluate current subsurface conditions beneath the site as memorialized in EAI's proposal dated January 18, 2021, formed the basis for the following scope of work:

- Conduct a geophysical survey of the accessible portions of the site in an attempt to determine the former location of the historic waste oil UST.
- Drill and sample ten (10) borings surrounding the on-site building. Soil and groundwater samples were obtained from the borings and a log of subsurface conditions encountered was prepared for each boring by the EAI project geologist. Soil-vapor samples were collected from three (3) of the borings.

- Laboratory analysis of selected soil and groundwater samples for gasoline, diesel, and heavy oil total petroleum hydrocarbons as well as benzene, toluene, ethylbenzene, xylenes (BTEX) and volatile organic compounds (VOCs). Two (2) samples generally proximal to the former waste oil storage area were submitted for analysis of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and MTCA-5 metals including arsenic, cadmium, chromium, lead, and mercury. Soil-vapor samples were analyzed for aliphatic/aromatic petroleum hydrocarbons (APHs) and select VOCs including BTEX compounds, naphthalene, and chlorinated solvents.
- Preparation of this summary report documenting the methodology and results of the investigation.

FINDINGS

Geophysical Survey

On January 28, 2021, EAI's technical team performed a geophysical survey of the interior shop areas, storage areas, and exterior parking lot of the subject in an effort to discover the former waste oil UST tank excavation as well as to "clear" each of the proposed boring locations of utilities which may be present in the exploration areas. Ground penetrating radar (GPR) equipment was used to scan for subsurface "anomalies". No anomalies (i.e. vent piping, soil disturbances, etc.) were identified which would otherwise indicate the locality of the former UST. Interior below grade electric, sewer, water, and air lines were noted within the shop building as were features which appeared to be remnants of fence posts along the western building exterior. Additionally, below grade piping was detected running from one of the former hoist areas to an above-ground stand pipe. The stand pipe was found to still contain hydraulic oil. The piping appeared to transport hydraulic oil to the hoist from a former above ground reservoir tank which likely sat next the stand pipe.

SUBSURFACE INVESTIGATION

Soil Boring Sampling

Referring to the attached Site Plan, Plate 2, ten (10) borings were made on February 1 and 2, 2021 at the approximate locations noted as B1 through B10. Boring locations were selected to assess for impacts from the former hoists, as well as from where an above-ground waste oil storage tank (AST) had previously been located. "Guard" holes were also placed along the northern and southern property lines to assess for contaminant migration (if any) along the parcel boundaries. The borings were extended to depths between approximately 12 to 16 feet below ground surface (bgs) depending upon the occurrence of groundwater and reaching depths below the in-ground hoist mechanisms. Recoverable groundwater was generally encountered at various depth zones between approximately 8 feet and 12 feet bgs depending upon location across the site.

Soil and Groundwater Sampling Procedure

Under the observation of the EAI field geologist, a push probe drill rig was brought into position over the borings locations. Following set-up preparations, the push-probe sampling technique consisted of advancing a plastic lined sampler into the ground. The sampler was then withdrawn and the liner was removed and cut open for examination and transfer of the soil sample to laboratory prepared glassware by EPA Method 5035 as well as sterilized 4 ounce jars.

As groundwater was observed in each boring, after soil sampling within the borings had been completed, a temporary well screen was installed in an attempt to sample the groundwater. Small diameter plastic tubing was extended from a peristaltic pump into each temporary well screen to recover groundwater samples.

Soil and groundwater samples were transferred from the sampler directly to sterilized laboratory prepared glassware which were then stored in an iced chest maintained at approximately 4 degrees centigrade at the site and taken to the laboratory in this condition in an effort to preserve sample integrity.

Each sample container was clearly labeled as to boring and sample number/depth, date, time, project, etc. EPA-recommended sample-management protocol was observed at each stage of the project. During drilling, a field log was made by EAI for each boring. Information recorded versus corresponding depth included soil classification (Unified Soil Classification System), color, texture, relative moisture, odors (if present), etc.

Soil-Vapor Sampling Procedure

In an effort to evaluate soil-vapor beneath the floor slab, sampling "pins" (essentially a hollow smalldiameter steel spike) were extended through the concrete slab floor at locations adjacent to B5, B9, and B10 and a soil -vapor sample from immediately beneath the floor slab was collected through the temporary sampling pin and tubing at each location.

Laboratory-prepared "summa canisters" (vacuum cylinders drawing at a predetermined rate) were utilized to collect samples of the subsurface (sub-slab) soil-vapor at the specified locations. Utilizing flow controllers and gauge-vacuum provided by Friedman & Bruya, Inc. of Seattle, Washington, soil-vapor was collected over a span of several minutes.

Each sample container was recorded as to sample number/location, date, time, project, etc. EPA-recommended sample-management protocol was observed at each stage of the project.

Kidder Mathews February 18, 2021

Subsurface Conditions

Referring to boring logs (Plates 3 to 12), soils encountered within the borings generally consisted of silts, sands, and gravels, with sands or silty sands becoming prominent below a depth of 10 feet below ground surface (bgs). Groundwater was generally encountered at depths between 7 to 10 feet bgs. Petroleum odors were noticed in soils collected from boring B7 at depths between 9 to 10 feet bgs.

LABORATORY ANALYSIS

Laboratory analysis of soil and groundwater samples was conducted by ESN Northwest of Olympia and Renton, Washington, Friedman & Bruya, Inc. of Seattle, Washington, and Dragon Analytical Laboratories of Tumwater, Washington, all being WDOE-accredited analytical laboratories. Select soil and groundwater samples were submitted for analysis of gasoline, diesel, and heavy oil total petroleum hydrocarbons (TPH) along with fuel constituents benzene, toluene, ethylbenzene, and xylenes (BTEX) as well as volatile organic compounds (VOCs). Two (2) samples proximal to the former waste oil storage area were also analyzed for polycyclic aromatic hydrocarbons (PAHs), MTCA-5 metals (including arsenic, cadmium, chromium, lead, and mercury), and polychlorinated biphenyls (PCBs). Soil-vapor samples were tested for aliphatic/aromatic petroleum hydrocarbons (APHs), BTEX, naphthalene, and chlorinated solvents.

As summarized in Table 1 attached to this report, total petroleum hydrocarbons (TPH) in the boiling range of diesel was reported in <u>soils</u> collected from boring B7 between 9 to 10 feet bgs. That detection of **7,200** parts per million (ppm) is <u>above</u> the applicable MTCA Method-A compliance limit for diesel TPH, currently published at **2,000** ppm. No other detections of petroleum or BTEX constituents were found in the soil samples analyzed.

As discussed in Table 2 appended to this report, diesel TPH was reported in <u>groundwater</u> samples from borings B6 and B7 at concentrations <u>above</u> the applicable MTCA Method-A cleanup level. Gasoline TPH was also reported in groundwater sampled from B6 however that concentration was below (i.e. compliant with) the published compliance limit for that analyte. Trace detections of toluene were also encountered in groundwater from borings B7, B8, and B9 at compliant concentrations while ethylbenzene was reported in groundwater sampled from B8 at a compliant level.

As documented in Table 3 attached to this report as well as the appended laboratory data, tetrachloroethene (PCE) was reported in soil sampled from B3 at a depth of 10 feet bgs and B6 at a depths between 4 to 15 feet bgs. The detections at B6 at 4 and 10 feet bgs (at concentrations of 0.06 and 0.08 ppm respectively) are <u>above</u> the MTCA Method-A compliance limit for PCE, currently established at 0.05 ppm. Other detections of PCE just met the cleanup level. No other VOCs were reported in the soil samples analyzed.

Kidder Mathews February 18, 2021

JN-40139-1 Page - 9

As depicted in Table 4 attached to this report and as reflected in the appended laboratory data, PCE was reported in groundwater sampled from boring B2 at a concentration of 1.2 parts per billion (ppb) which is below (i.e. compliant with) the MTCA Method-A compliance limit of 5 ppb for PCE in groundwater.

As reported in Tables 5 and 6 attached to this report as well as the appended laboratory data, no PAHs (carcinogenic or otherwise) were detected in the soil or groundwater samples analyzed from boring B2 (former waste oil UST area).

As summarized in Tables 7 and 8 attached to this report, no detections of PCBs were found in the soil or groundwater samples analyzed from boring B2.

As documented in Table 9, attached to this report, various detections of arsenic, chromium, and lead were reported in the soil sample analyzed from boring B2 (former waste oil UST area). While the lead and arsenic detections were well below their applicable MTCA Method A compliance limits for unrestricted land use, chromium was found at 23.9 parts per million (ppm). There are two (2) species of chromium (Chromium III and Chromium VI) with each having different cleanup levels (2,000 pmm and 19 ppm respectively). Given that the detected concentration in the soil sample is between the two cleanup levels, follow-up testing would need to be conducted to discern what type of chromium is present. With that said, according to the referenced Natural Background Soil Metal Concentrations in Washington State document by WDOE, the "background" levels for chromium in soils in western Washington is 22 ppm, a value similar to the detected concentration in question. Based upon the WDOE data, and site history it would appear that the results of the completed testing would fall into the realm of normal background levels for this area.

As depicted in Table 10 appended to this report, no detections of dissolved arsenic, cadmium, chromium, lead, or mercury were reported in groundwater sampled from B2.

As shown in Table 11 along with the attached laboratory data, various APHs as well as VOCs were detected in the three (3) soil-vapor samples collected at the site. Individual analytes as well as the calculated TPH value were generally compliant with applicable MTCA Method-B screening levels <u>except</u> for naphthalene in each of the soil-vapor samples as well as PCE in soil-vapor sampled from B5 which were <u>above</u> their applicable MTCA Method-B screening limits.

CONCLUSIONS / RECOMMENDATIONS

Relying upon the results of limited soil, groundwater, and soil-vapor sampling and laboratory testing documented in this report, soil, groundwater, and soil-vapor have been impacted by the contaminants of concern (COCs). Based on the findings discussed earlier, EAI concludes that long-term use of the site for automotive service has impacted subsurface materials beneath the site.

In analyzing the data developed thus far, the diesel TPH in soils appears limited to a relatively vertically limited zone positioned between 4 to 16 feet bgs. Based upon field observations, the occurrence may consist of a band just several feet thick. The release appears to have likely originated from the former adjacent hoist mechanism. No diesel TPH was detected in soils collected from multiple depths in adjacent borings. Additionally, diesel impacted groundwater appears limited to the central shop area around borings B6 and B7.

While the single PCE detection in soil at B3 would be considered compliant, non-compliant concentrations of PCE at multiple depths in B6 including at the lowest depth sampled (15 feet bgs) indicates that the PCE release at that locality may have originated from a shallow or surficial (i.e. on-site) source and that the impact may extend to greater depths beneath the site. As PCE was not detected in borings surrounding B6, the areal extent of PCE at B6 may conceivably be limited to that area. The PCE detection at B3 may be from a separate release point. The PCE occurrences in soil appear to be the source of PCE found in soil-vapor collecting from beneath the floor slab.

Acknowledging that the full <u>extent</u> of impacted media was not defined during this preliminary investigation, additional subsurface sampling and testing would be necessary in the event that the client and/or other involved parties wish to quantify the extent of the contamination so that suitable management alternatives can be developed along with a reliable projection of costs which might be associated with implementation of such alternatives.

EAI has been informed that plans for the current structure include demolition. That said, <u>if</u> the structure is to become occupied again, EAI would then recommend that the client consider sampling and testing air from various locations including within and outside the building in an effort to determine whether subsurface vapors are migrating above the floor slab into potential occupied spaces. Alternatively, any new structures should be designed and constructed so as to incorporate an appropriate soil-vapor barrier/vapor mitigation system into the floor slab and foundation system. Indoor and outdoor air testing should then be conducted to verify the performance of that "system".

Finally, to achieve lawful compliance with Chapter 173-340-300, WAC, copies of this report along with any future reports regarding the environmental conditions encountered be forwarded to the Northwest Regional Office of the Department of Ecology (Bellevue, Washington) by the property <u>owner</u>.

LIMITATIONS

This report has been prepared for the exclusive use of Kidder Mathews and their several representatives for specific application to this site. Our work for this project was conducted in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area, and in accordance with the terms and conditions set forth in our proposal dated January 18, 2021. The findings and conclusions of this study are based upon the results of laboratory testing of selected samples obtained from separated boring localities and conditions may vary between those localities or at other locations, media, depths, or date. No other warranty, expressed or implied, is made. If new information is developed in future site work which may include excavations, borings, studies, etc., Environmental Associates, Inc., must be retained to reevaluate the conclusions of this report and to provide amendments as required.

REFERENCES

Environmental Associates, Inc., December 18, 2020, Phase I Environmental Site Assessment. Vacant Former Firestone Complete Auto Care, 351 Rainier Avenue South, Renton, Washington 98057.

Depth/ Sample	Well Design	Moisture/ Water Table	Blows / Foot	USCS	DESCRIPTION
_					
-					No Recovery
		Moist		ML	Brown silt, moist, no odors or discoloration, PID=0
	15'			SP	brown sand
-	l- to				
	en 1	Moist		ML	Brown silts, moist,
	scre	WOISt			no odors or discolorations, PID=0
-	rary				
	Temporary screen 11- to 15'			SP	Grey sand, wet,
0	Ľ,	Wet		ਤਿਸ	no odors or discolorations, PID=0
					Boring terminated at 15 feet below grade on February 1, 202
_					
_					
_					
-					
—					
-					
_					
_					
-					
—					
-					
-					

1380 - 112th Avenue N.E., Ste. 300 Bellevue, Washington 98004

Boring: B1

Vacant Former Firestone Auto Care Property 351 Rainier Avenue South Renton, Washington

Job Number:	Date:	Logged by:	Plate:
JN 40139-1	February 2021	EAZ	3

Depth/ Well Sample Desigr	Moisture/ B Water Table I	lows /	RING B2
	Dry	SM/ GP	No Recovery Brown silty sand, gravels, dry, no odors or discoloration, PID=0
- to 15'		SP	brown sand
Femporary screen 11- to 15'	Moist	ML	Brown silts, moist, no odors or discolorations, PID=0
- Tempora	Wet	SM	Brown silty sand, wet, no odors or discolorations, PID=0
- - -			

. .

Job Number:	Date:	Logged by:	Plate:
JN 40139-1	February 2021	EAZ	4

					BOR	ING	B3		
Depth/ Sample	Well Design	Moisture/ Water Table	Blows / Foot	USCS					
-							No Recovery		
		Dry		GM		Br no od	own silt and gravels, dry, lors or discoloration, PID	=0	
5 —	0 15'			SM			brown silts and sand		
10 — 10 —	Temporary screen 11- to 15'	Moist		ML		no od	Brown soft silts, moist, ors or discolorations, PID	i=0	
- - 15 -	Temporary	Wet		SP		no odor	Grey sands, wet, s or discolorations, PID=	0	
							5 feet below grade or		21.
	E	ASS 1380 -	RON OCIA' 112th Ava levue, Wa	TES, I enue N.E.	, Ste. 300	Vacant	Boring Former Firestone 351 Rainier Av Renton, Was	e Auto Care P enue South	roperty
mee -	- <u>-</u>					Job Number: JN 40139-1	Date: February 2021	Logged by: EAZ	Plate: 5

epth/ ample_l	Well Design	Moisture/ Water Table	Blows / Foot	USCS	DESCRIPT	ING		99 (1-1)	
				SM			No Recovery		
		Dry		- ƏIVI		Bi no odo	rown silt and sand, dry, rs or discoloration, PID=	0.4	
	5.			SM					
	- to]			Sivi			brown silts and sand		
	een 1	 Moist		SM		Gi	rey silt and sand, moist, rs or discolorations, PID=	-0.1	
	Femporary screen 11- to 15'	monse				10 0001		-0.1	
	ıporaı								
	Ten	Wet		SP		no odors	Grey sand, wet, or discolorations, PID=0	.1	
					Boring te	rminated at 15	feet below grade or	n February 1, 20)2
			1-1-1						
							Boring		
_	E	NVI	RON	MEN	NTAL	X 7	Boring		
د. م ۲.	-	ASS	OCIA	TES, I	NC.	vacant	Former Firestone 351 Rainier Av		ſr
<u>.</u>				enue N.E.			Renton, Was		
_		Bell	evue, wa	ishington	>8004	Job Number:	Date:	Logged by:	Т
· · <u>.</u> ·	· · · ·	•						Logged by.	
						JN 40139-1	February 2021	EAZ	

Depth/ Well Sample Design	Moisture/ Water Table	Blows / Foot			RING	B5			
	Dry		GM		Br no od	No Recovery rown silt and gravels ors or discoloration,	s, dry, PID=0.	1	
C I I I I C I C I C I C I C I C I C I C	Moist		SP ML		no od	brown sand Grey silt, moist, lors or discoloration:)	
T T T T T T Temporary screen 11- to 15' T T T T T T	Wet		SP		no odo	Grey sand, wet, rs or discolorations,	PID=0		4
				Boring to	erminated at 18	5 feet below grad	de on F	^z ebruary 1, 20	21.
- - -									
-									
-									
·	-J	<u> </u>							
	ENVI	RONI			Vacant	Bori Former Fires	tone A	Auto Care P	rop
I	ASS 1380 -	UCIAI 112th Aven levue, Wasl	ue N.E., S	te. 300		351 Rainier Renton,			

-

			BOR	RING	B6		
O Pepth/ Weil Sample Design	Moisture/ Water Table	Blows / Foot USCS	DESCRIP		No Recovery		
	Dry			no od	own silt and gravels, dry, lors or discoloration, PID Recovery - loose materia	=0	
1 		SM		E no od	Brown silt and sand, dry, ors or discolorations, PIE	D=0	
15 +⊡	Wet	SP	Boring te		Grey sand, wet, or discolorations, PID=0 feet below grade of		21.
25 — - - - - - - - - - - - - - - - - - - -							
- - 35 - - - 40							
E	ASSC 1380 - 1	RONME DCIATES, 1 12th Avenue N.E Evue, Washington	INC.	Vacant]	Boring Former Firestone 351 Rainier Av Renton, Was	e Auto Care P enue South	roperty
	,			Job Number: JN 40139-1	Date: February 2021	Logged by: EAZ	Plate: 8

1

-	Well Design	Moisture/ Water Table	Blows / Foot	uscs	DESCRIPT	ION				
-		P					No Recovery	Ý		
		Dry		ML		no odo	Brown silt, dr rs or discoloratio		1	
	to 15'			SP ML			brown sands Brown silt , mo			
	een 10-	Moist		ML			rs or discoloratio Grey silt, mo	ns, PID=0 ist,	.2	
-	Temporary screen 10- to	Wet		SP		-	Grey sand, we	t,		
-	Fempo					no odor	s or discoloration		3	
; _	к. ⁻	Wet		SP		no odor	Grey sand, we s or discoloration	et, ns, PID=0.	3	
					Boring te	minated at 16	feet below gr	rade on l	February 2, 20	021.
	E	ASSC 1380 - 1)CIA	ΓES, I	NTAL NC. , Ste. 300	Vacant]	Former Fir 351 Raini		Auto Care I nue South	Prop

Job Number:	Date:	Logged by:	Plate:
JN 40139-1	February 2021	EAZ	9

pth/ Well _{Moisture/} Blows / mple <u>Design</u> Water Table Foot	
Dry CI CI CI CI Moist Wet Moist Moist	ML No Recovery ML Brown silt, dry, no odors or discoloration, PID=0.3 SP brown sands ML Brown silt, moist, no odors or discolorations, PID=0.5 Brown sand, wet, Brown silt, moist, no odors or discolorations, PID=0.4 Boring terminated at 12 feet below grade on February 2, 2021.
	MENTAL Boring: B8

Job Number:	Date:	Logged by:	Plate:
JN 40139-1	February 2021	EAZ	10

-	Well Design	Moisture/ Water Table	Blows / Foot	USCS	
		Dry		GM	Brown sand and gravels, dry, no odors or discoloration, PID=0.3
-	7- to 12'			ML	brown silt
	Temporary screen 7- to 12'	Moist		ML SM	Brown silt , moist, no odors or discolorations, PID=0.1 Brown sand to grey silty sand
• •	Tempo	Wet		SP	Brown sand, wet, no odors or discolorations, PID=0.2
— —)—					

読をない

· ···

Job Number:	Date:	Logged by:	Plate:
JN 40139-1	February 2021	EAZ	11

			BOR	ING	B10		
Sample D	Well Moistur Design Water Ta		DESCRIPT	ΓΙΟΝ	· · · · · · · · · · · · · · · · · · ·		
$ \begin{array}{c} 0 & \underline{Sample} \\ 0 & \underline{-} \\ - \\ - \\ 1 \\ 5 & \underline{-} \\ - \\ - \\ 1 \\ 0 \\ - \\ - \\ 1 \\ 0 \\ - \\ - \\ - \\ 2 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	Temporary screen 7- to 12. Moist Moist Moist Water Ta	SM/ GP		Brown no od B no odo no odo	No Recovery silty sand and gravels, dors or discoloration, PID frown silty sand, moist, rs or discolorations, PID Brown silty sand, wet, ors or discolorations, PID feet below grade on	=0 =0.3 ==0.3	
	ASS 1380	IRONME SOCIATES, J - 112th Avenue N.E ellevue, Washington	INC. ., Ste. 300	Vacant 1 Job Number:	Boring Former Firestone 351 Rainier Av Renton, Was	e Auto Care P enue South shington	
and the second	<u>-</u> ****			JN 40139-1	Date: February 2021	Logged by: EAZ	Plate: 12

Kidder Mathews

JN-40139-1

TABLE 1 - Peti All	etroleum Hydrocarbons and BTEX - Soil Sampling Results All results and limits in parts per million (ppm)	carbons limits in p	and BTEX oarts per r	(- Soil Sa nillion (p	ampling F pm)	Results	
Sample & Depth	Gasoline	Diesel	Heavy Oil	Benzene	Toluene	Ethylbenzene	Total
	(HTH)						Xylenes
B1-10 @ 10' BGS	ND	ND	ND	ND	ND	ND	QN
B2-2.5 BGS	ND	ND	ND	ND	QN	QN	QN
B3-10 @ 10' BGS	ND	ND	DN	QN	DN	QN	ND
B4-4 @ 4' BGS	ND	ND	DN	QN	DN	ND	ND
B5-3 @ 3' BGS	ND	ND	DN	QN	DN	QN	ND
B6-10 @ 10' BGS	NA	DN	DN	NA	NA	NA	NA
B6-15 @ 15' BGS	ND	ND	DN	QN	QN	ND	QN
B7-4 @ 4' BGS	NA	QN	QN	NA	NA	NA	NA
B7-9-10 @ 9' TO 10' BGS	ND	7,200	QN	QN	DN	QN	ND
B7-16 @ 16' BGS	NA	ND	QN	NA	NA	NA	NA
B8-8 @ 8' BGS	ND	ND	DN	ND	ND	QN	DN
B8-8 @ 8' BGS DUPLICATE	ND	NA	NA	NA	NA	NA	NA
B9-2 @ 2' BGS	ND	ND	DN	DN	DN	QN	DN
B10-8 @ 8' BGS	ND	ΠN	ND	ND	DN	QN	DN
Reporting Limit ³	10	50	100	0.02	0.05	0.05	0.15
WDOE Target Compliance Level ⁴	30 or 100 ⁵	2000	2000	0.03	7	9	6
 Notes: "ND" denotes analyte not detected at or above listed Reporting Limit. "ND" denotes analyte not detected at or above listed Reporting Limit. "NA" denotes sample not analyzed for specific analyte. "NA" denotes sample not analyzed for specific analyte. "Reporting Limit" represents the laboratory lower quantitation limit. Soil samples were field screened using a GasTech combustible gas meter to measure the concentration of combustible gas, such as petroleum VOCs. Fie MTCA gasoline TPH cleanup level is 30 ppm for soils without benzene or toleune, etheylbenzene, and xylenes = more than 1% of gas detections otherwise it is ppm. Laboratory flag advises that "carbon range detection is indicative of kerosene rather than gasoline". Kerosene is measured against a cleanup level of 2,000 ppm. 	 listed Reporting Limit. analyte. analyte. er quantitation limit. er quantitation limit. fech combustible gas mete ed after placing the soil san pm for soils without benzen pm for soils without benzen tection is indicative of keros CA Method A soil cleanup le 	r to measure the mple in a sealed le or toleune, ett ene rather than g	concentration of c plastic bag and all Jeylbenzene, and : gasoline''. Kerosen	combustible gas, owing soil and ai xylenes = more ti te is measured a	such as petroleu r inside the bag han 1% of gas d gainst a cleanup	im VOCs. to equilibrate. etections otherwise it level of 2,000 ppm.	is 100

Environmental Associates, Inc.
Kidder Mathews

JN-40139-1

TABLE 2- Petroleun All	n Hydrocarbons and BTEX- Groundwater S results and limits in parts per billion (ppb)	ons and l limits in p	BTEX- Gr	oundwa billion (tter San opb)	n Hydrocarbons and BTEX- Groundwater Sampling Results I results and limits in parts per billion (ppb)	Its
Sample	Gasoline	Diesel	Heavy Oil	Benzene	Toluene	Benzene Toluene Ethylbenzene	Total
	(TPH)	(HAT)	(HTH))	Xylenes
B1	ND	QN	QN	ΩN	QN	QN	QN
B2	ND	QN	QN	QN	DN	QN	QN
B3	ND	QN	QN	QN	ΠN	QN	QN
B4	ND	QN	QN	QN	QN	QN	QN
B5	ND	QN	QN	QN	QN	QN	QN
B6	240	2,400	QN	ΟN	QN	QN	QN
B7	ND	16,000	QN	QN	2.3	QN	QN
B8	ND	ΟN	QN	QN	2.1	1.0	QN
B9	ND	QN	Q	QN	1.3	QN	QN
B10	ND	ΠN	ND	QN	DN	QN	QN
Reporting Limit ³	100	50	100	1	1	1	6
MTCA-Method-A Cleanup Levels ⁴	$800 \text{ or } 1000^5$	500	500	ŝ	1000	700	1000
Notes: 1 - "ND" denotes analyte not detected at or above listed Reporting Limit. 2- "NA" denotes sample not analyzed for specific analyte. 3- "Reporting Limit" represents the laboratory lower quantitation limit. 4- Method A groundwater cleanup levels as published in the Model Tox 5- The MTCA gasoline TPH cleanup level is 800 ppb for groundwater w Bold and Italics denotes concentrations above existing or proposed MTC/	ove listed Reporting Limit. cific analyte. · lower quantitation limit. published in the Model Toxics Control Act (MTCA) 173-340-WAC. 800 ppb for groundwater with benzene. Otherwise, the cleanup level is 1000 ppb. existing or proposed MTCA Method A groundwater cleanup levels.	iit. oxics Control Ac r with benzene. O CA Method A gro	t (MTCA) 173-34 therwise, the clea	0-WAC. anup level is 10 b levels.	.dqq 000		

Environmental Associates, Inc.

TABLE 3- Select VOCs - All results and limits in p					
Sample	Tetrachloroethene (PCE)	Trichloroethene (TCE)	(cis) 1,2 Dichlorocthene	(trans) 1,2 Dichloroethene	Z Uinyl Chloride
B1-10	ND	ND	ND	ND	ND
B2-2.5	ND	ND	ND	ND	ND
B3-10	0.05	ND	ND	ND	ND
B4-4	ND	ND	ND	ND	ND
B5-3	ND	ND	ND	ND	ND
B5-15	ND	ND	ND	ND	ND
B6-4	0.06	ND	ND	ND	ND
B6-10	0.05	ND	ND	ND	ND
B6-15	0.08	ND	ND	ND	ND
B7-9-10	ND	ND	ND	ND	ND
B7-16	ND	ND	ND	ND	ND
B8-8	ND	ND	ND	ND	ND
B9-2	ND	ND	ND	ND	ND
B10-8	ND	ND	ND	ND	ND
Reporting Limit ³	0.02	0.02	0.05	0.05	0.05
Cleanup Level for Unrestricted Land Use (Method-A) ⁴	0.05	0.03			
Cleanup Level - (Method-B) ⁵	480	12	160	1600.0	0.667

Notes:

1 - "ND" denotes analyte not detected at or above listed Reporting Limit.

2- "NA" denotes sample not analyzed for specific analyte.

3- "Reporting Limit" represents the laboratory lower quantitation limit.

4- Method A soil cleanup levels for unrestricted land use as published in the Model Toxics Control Act (MTCA) 173-340-WAC, Table 740-1.

5- Method-B soil cleanup levels for the "direct contact pathway", as published in Ecology's CLARC May 2014 database.

* - Methylene Chloride contamination is suspected laboratory contamination

Bold and Italics denotes concentrations above existing MTCA Method A or B soil cleanup levels.

TABLE 4- Select VOCs - Groundwa All results and limits in parts				sults	
Boring	Tetrachloroethene (PCE)	Trichloroethene (TCE)	(cis) 1,2 Dichloroethene	(trans) 1,2 Dichloroethene	Vinyl Chloride
B1	ND	ND	ND	ND	ND
B2	1.2	ND	ND	ND	ND
B3	ND	ND	ND	ND	ND
B4	ND	ND	ND	ND	ND
B5	ND	ND	ND	ND	ND
B6	ND	ND	ND	ND	ND
B7	ND	ND	ND	ND	ND
B8	ND	ND	ND	ND	ND
B9	ND	ND	ND	ND	ND
B10	ND	ND	ND	ND	ND
Reporting Limit ³	1	1	1	1	0.2
Existing Cleanup Level ⁴	5 (A)	5 (A)	16 (B)	160 (B)	0.2 (A)

Notes:
"ND" denotes analyte not detected at or above listed Reporting Limit.
"NA" denotes sample not analyzed for specific analyte.
"Reporting Limit" represents the laboratory lower quantitation limit.

4- Method A or B groundwater cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC, amended May 2014.

Bold and Italics denotes concentrations above existing MTCA Method A groundwater cleanup levels.

TABLE All r	5- Carci esults a	nogenic nd limit	: PAHs - s in par	Soil Sa ts per m	mpling illion (p	Results pm)		
Sample Name	Benzo(a)pyrene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3,-cd)pyrene	Benzo(k)fluoranthene	Benzo(a)anthracene	Benzo(b)fluoranthene	Total Carcinogenic PAHs ⁽⁵
B2-2.5	ND	ND	ND	ND	ND	ND	ND	ND
cPAH Toxicity Equivilant Fraction ⁽⁵⁾	1.0	0.01	0.1	0.1	0.1	0.1	0.1	
Reporting Limit ³	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
MTCA-Method-A Residential ⁽⁴⁾	0.1							0.1
MTCA-Method-A Industrial ⁽⁴⁾								2

Notes:

Notes: 1 - "ND" denotes analyte not detected at or above listed Reporting Limit. 2 - "NA" denotes sample not analyzed for specific analyte. 3 - "Reporting Limit" represents the laboratory lower quantitation limit. 4 - Method A soil cleanup level for total carcinogenic PAHs as published in the Model Toxics Control Act (MTCA) 173-340-WAC. 5 - Total carcinogenic PAHs are calculated by suming the product of each cPAH mulitplied by its toxicity equivalency fraction per WAC 173-340-708(8).

Bold and Italics denotes concentrations above existing MTCA Method A soil cleanup levels.

TABLE	6 - Carcinog All results	enic PAI and limi	Hs - Gro ts in pai	undwat ts per b	er Samp illion (p	ling Res pb)	sults	
Strataprobe Boring	Benzo(a)pyrene	Chrysene	Dibenzo(a,h)anthracene	Indeno(1,2,3,-cd)pyrene	Benzo(k)fluoranthene	Benzo(a)anthracene	Benzo(b)fluoranthene	Total Carcinogenic PAHs ⁽⁵
B2	ND	ND	ND	ND	ND	ND	ND	ND
cPAH Toxicity Equivalent Fraction ⁽⁵⁾	1.0	0.01	0.1	0.1	0.1	0.1	0.1	
Reporting Limit ³	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
Existing Cleanup Level ⁴								0.1

 Notes:

 1 - "ND" denotes analyte not detected at or above listed Reporting Limit.

 2 - "NA" denotes sample not analyzed for specific analyte.

 3 - "Reporting Limit" represents the laboratory lower quantitation limit.

 4 - Method-A Groundwater cleanup level for total carcinogenic PAHs as published in the Model Toxics Control Act (MTCA) 173-340-WAC.

 5 - Total carcinogenic PAHs are calculated by suming the product of each cPAH multiplied by its toxicity equivalency fraction per WAC 173-340-708(8).

Bold and Italics denotes concentrations above existing MTCA Method A soil cleanup levels.

			r - PCBs nd limi							
Sample	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Arochlor 1260	Arochlor 1262	Arochior 1268	Fotal PCBs
B2-2.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Reporting Limit 3	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Existing Cleanup Level ⁴										1 (A)
es; "ND" denotes analyte not detected i "NA" denotes sample not analyzed "Reporting Limit" represents the lab Method A soil cleanup level for tota	for specific anal oratory lower qu	yte. antitation limi	it.	Toxics Control	Act (MTCA)	173-340-WA	C.	.	.	

Bold and Italics denotes concentrations above existing MTCA Method A soil cleanup levels.

Kidder Mathews

JN 40139-1

Γ			r		1
	Total PCBs	QN		0.1 (A)	
	821 1011201A	ND	0.05	1	
S	Arochlor 1262	ΟN	0.05	1	
g Result n (ppb)	921 1011201A	UN	0.05	1	40-WAC.
amplinç sr billior	Aroclor 1254	Sample Aroclor 12.21 Sample Aroclor 12.42 B2 ND B2 ND ND ND ND ND ND ND Sting Cleanup Level ⁴	1	(MTCA) 173-3.	
E 8 - PCBs - Groundwater Sampling Results esults and limits in parts per billion (ppb)	Aroclor 1248		Control Act (
	Aroclor 1242		e Model Toxics oil cleanup leve		
PCBs - ts and li	Aroclor 1232	ND	0.05	1	eporting Limit. itation limit. Jublished in the
TABLE 8 - All resul	Aroclor 1221	ND	0.05		above listed Ruecific analyte. Ny lower quant 3 mixtures as p e existing MTC
TAI /	Aroclor 1016	ND	0.05		letected at or a inalyzed for sp ts the laborato el for total PCE ntrations above
	Sample	B2	Reporting Limit ³	Existing Cleanup Level ⁴	Notes: 1 - "ND" denotes analyte not detected at or above listed Reporting Limit. 2 - "NA" denotes sample not analyzed for specific analyte. 3 - "Reporting Limit" represents the laboratory lower quantitation limit. 4 - Method A soil cleanup level for total PCB mixtures as published in the Model Toxics Co Bold and Italics denotes concentrations above existing MTCA Method A soil cleanup levels.

TABLE 9 - MTCA-5 Metals - Soil Sampling Results All results and limits in parts per million (ppm)	Soil S irts pe	Sampli er milli	ng Results ion (ppm)		
Sample Name	Arsenic	muimbrJ	тиітоля	рвэД	Μετευτγ
B2-2.5	4	ND	23.9	9.5	QN
Reporting Limit ³	1	0.5	0.5	0.25	0.25
WDOE-Method-A Cleanup Level (unrestricted land use)	20	2	19 / 2000 ⁽⁵⁾	250	2
 Notes: "ND" denotes analyte not detected at or above listed Reporting Limit. "ND" denotes sample not analyzed for specific analyte. "NA" denotes sample not analyzed for specific analyte. "Reporting Limit" represents the laboratory lower quantitation limit. Results reported as total chromium. The Method A target compliance level for chromium III is 2,000 ppm, while the Method-A compliance level for chromium III is 2,000 ppm, while the Method-A compliance level for chromium VI is 19 ppm. Additional testing of sample B2-2.5 revealed no detections of chromium VI (hexavalent chromium). J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate. 	Act (MTC/ vel for chr le B2-2.5 i The report	A) 173-340. omium III is revealed no	WAC. 2,000 ppm, while the detections of chroring chronic attended to the detection of chroring attended to the detection is an estimate	ie Method-A nium VI	

Environmental Associates, Inc.

TABLE 10 - MTCA-5 Metals - Groundwater Sampling Results All results and limits in parts per billion (ppb)	- Grour s in par	ldwater ts per bi	Samplin Ilion (pp	ig Resul b)	ts
Sample Location	9. SinserA	muimbrJ	mnimordO	рвэД	Mercury
B2 (dissolved)	ND	ΠN	QN	DN	ND
Reporting Limit ³	1	0.5	0.5	0.25	0.25
Existing Cleanup Level ⁴	5 (A)	5 (A)	50 (A)	15 (A)	2 (A)
Notes: 1 - "ND" denotes analyte not detected at or above listed Reporting Limit. 2 - "NA" denotes sample not analyzed for specific analyte. 3 - "Reporting Limit" represents the laboratory lower quantitation limit. 4 - Method A or B cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC.	porting Limit. ation limit. Toxics Contro	l Act (MTCA) 1	73-340-WAC.		
f - The sample was laboratory filtere prior to analysis.					
Bold and Italics denotes concentrations above existing MTCA Method A soil cleanup levels.	A Method A soil	l cleanup levels			

*
0
ŝ
*
0
4
÷.
3

r	·					7
	Vinyl Chloride	. 5	<0.84	02.02	9.4	
	ensationoldin't L(L)	0.04	3.6	512		
	snsstarethoroethene	- Ç	÷۲			
-	snsftsoroldsid-2,1-2i2	1.0>	- 1	<1 >	1	10, 2018.
	L.2-Dichloroethane (EDC)	<0.21	<0.13	11 U>	3.2	e For ed January
		2	5	12	52	DE's Guidanc
esults /M³)	Chloroethane	<14	<8.7	<8.2	152,000	Farget Compliance Levels. result in exceedance of the air cleanup level in the overlying structure, per the WDOE's Guidance For timate. Petroleum Hydrocarbon (TPH) Compliance Limit per WDOE Memorandum 18 document published January 10, 2018
npling R neter (ug	Trichloroethene (TCE)	<0.56	<0.35	<0.33	12	ng structure DE Memorar
APH and Select VOCs - Soil Vapor Sampling Results and limits in micro-grams per cubic meter (ug/M³)	Tetrschlorocthene (PCE)	440.0	<22	<21	320	the overlyid
	НАДВОСУВВОИЗ (LЬН) LOLYF БЕТВОГЕЛМ	2.730.8	1.672.8	1.526.2	4,700	anup level ir ompliance Li
t VOCs nicro-gr	ənəlatiyaqaN	3.1	3.4	3.6	2.50	rels. f the air cle. n (TPH) Cc
l Selec its in n	Total Xylenes	117.0	109.0	126,0	1,500	liance Lev :edance o' :ydrocarbo
PH and and lim	Ethylbenzene	16.0	15.0	18.0	15,000	arget Compliance Levels esult in exceedance of th imate. Pelroleum Hydrocarbon (
	Toluene	86>	<62	63.0	76,000	d-B Air Ta to not res is an estin th Total Pe
TABLE 11 - All results	əuəzuəg	4.7	5.4	5.6		lard Metho g expected e reported eplaced wi
	APH EC9-10 aromatics	180.000	170	190.000	\$000	'DOE Stand th a buildin e. The vafu n use and r
	APH EC9-12 alighatics	510	460	410	4700*	ceed the W i just benea oration rang
	APH ECS-8 aliphatics	0061	910 fb	710 fb	*00006	unds that ex the soil gas L. K. Mance levels
	Location	Adjacent to former in- ground hoist and oil line	Within former service bay in eastern half of the	margin of the property in former material storage	WDOE - Soil Vapor Screening Levels ¹	Boid and Italics indicate concentrations of compounds that exceed the WDOE Standard Method-B Air Target 1. Soil gas screening level that concentrations in the soil gas just beneath a building expected to not result in Evaluating Soil Vapor Intrusion - (April, 2013). 1. Soil gas screening response exceeded the Valid instrument calibration range. The value reported is an estimate. 1. The analyte response exceeded the Valid instrument calibration range. The value reported is an estimate. 1. The analyte was detected in the method blank. 1. Individual petroleum fraction hydrocarbon compliance levels no longer in use and replaced with Total Petroleum fraction.
	Sample Name	B5	B9	B10	WDOE	Bold and Italics indi 1 - Soil gas screenin Evaluating Soil V. Ve - The analyte resp fb - The analyte was: - Individual petroleur

Environmental Associates, Inc.

APPENDIX A

Laboratory Reports

February 16, 2021

Mr. Eric Zuern Environmental Associates, Inc. 1380 112th Ave NE #300 Bellevue, WA 98004

Dear Eric,

Please find enclosed analytical data report for **PROJECT: FIRESTONE, Project Number: 40139-1** located in Renton, WA. Fifteen soil samples and ten water samples were analyzed for Gasoline by NWTPH-Gx, VOC by EPA Method 8260, Diesel by NWTPH-Dx/Dx Ext, PAH by EPA Method 8270, PCB by EPA Method 8082, VOC-Chlorinated by EPA Method 8260 and MTCA 5 Metals by EPA Method on February 1,2021- February 12, 2021.

.The results of the analyses are summarized and included on this report. Applicable detection limits and QA/QC data are included.

ESN Analytical appreciates the opportunity to have provided services for this project. If you have any further questions about the data report, please give us a call at 425-207-8345.

Thank you so much and it was a pleasure working with your company on this project. We are looking forward to the next opportunity to work together.

Sincerely,

Dely Grace Agoy Senior Chemist 425-207-8345 delygrace.agoy@esnanalytical.com

ANALYTICAL DATA REPORT Project: FIRESTONE

Project Number: 40139-1

Location: Renton, WA

Submitted to: ENVIROMENTAL ASSOCIATES, INC. Project Manager: Eric Zuern Sample Collector: Eric Zuern

Sample Matrix: Water, Soil

CONTENTS

1.	SAMPLE INFORMATION	1
2.	TEST RESULTS	2
3.	CHAIN OF CUSTODY	3

SAMPLE ID	ESN Analytical Project Number	SAMPLING DATE	Sampling Time	Depth	Matrix	Analysis
B1-10	S210202.1	02/01/21	0922	10'	S	NWTPH-Gx NWTPH-Dx, 8260
B1	S210202.1	02/01/21	0940	11'-15'	W	NWTPH-Gx, NWTPH-Dx, 8260
B2-2.5	S210202.1	02/01/21	1015	2.5'	S	NWTPH-Gx NWTPH-Dx, 8260, PAH, PCB, MTCA 5 Metals
В2	S210202.1	02/01/21	1040	11'-15"	W	NWTPH-Gx NWTPH-Dx, 8260, PAH, PCB, MTCA 5 Metals
B3-10	S210202.1	02/01/21	1104	10'	S	NWTPH-Gx NWTPH-Dx, 8260
B3	S210202.1	02/01/21	1112	11'-15'	W	NWTPH-Gx NWTPH-Dx, 8260
B4-4	S210202.1	02/01/21	1146	10'	S	NWTPH-Gx NWTPH-Dx, 8260
B4	S210202.1	02/01/21	1215	2'-12'	W	NWTPH-Gx NWTPH-Dx, 8260
B5-3	S210202.1	02/01/21	1235	3'	S	NWTPH-Gx NWTPH-Dx, 8260
B5	S210202.1	02/01/21	1300	11'-15'	W	NWTPH-Gx NWTPH-Dx, 8260
B5-15	S210202.1	02/01/21	1247	15'	S	VOC-Chlorinated*
B6-4	S210201.1	02/01/21	123	4'	S	VOC-Chlorinated*
B6-10	S210201.1	02/01/21	126	10'	S	NWTPH-Dx*, VOC- Chlorinated*
B6-15	S210202.1	02/01/21	1330	15'	S	NWTPH-Gx NWTPH-Dx, 8260
B6	S210202.1	02/01/21	1345	11'-15	W	NWTPH-Gx NWTPH-Dx, 8260
B7-4	S210203.1	02/02/21	0909	4"	S	NWTPH-Dx*
B7-9-16	S210203.1	02/02/21	0917	9'-10'	S	NWTPH-Gx, NWTPH-Dx, 8260

SAMPLE INFORMATION

*Add-on

SAMPLE ID	ESN Analytical Project Number	SAMPLING DATE	SAMPLING TIME	DEPTH	MATRIX	ANALYSIS
B7-16	S210203.1	02/02/21	0924	16'	S	NWTPH-Dx*, VOC- Chlorinated*
B7	S210203.1	02/02/21	0935	10'-15'	W	NWTPH-Gx, NWTPH-Dx, 8260
B8-8	S210203.1	02/02/21	0949	8'	S	NWTPH-Gx, NWTPH-Dx, 8260
B8	S210203.1	02/02/21	1000	10'-15'	W	NWTPH-Gx, NWTPH-Dx, 8260
B9-2	S210203.1	02/02/21	1011	2'	S	NWTPH-Gx, NWTPH-Dx, 8260
B-9	S210203.1	02/02/21	1025	10'-15'	W	NWTPH-Gx, NWTPH-Dx, 8260
B10-8	S210203.1	02/02/21	1112	12"	S	NWTPH-Gx, NWTPH- Dx, 8260
B10	S210203.1	02/02/21	1140	10'-15'	W	NWTPH-Gx, NWTPH- Dx, 8260

*Add-on

TEST RESULTS

Sampling date: February 1, 2021

Analysis of Diesel Range Organics & Lube Oil Range Organics in Soil by Method NWTPH-Dx/Dx Extended

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Diesel Range Organics (mg/kg)	Lube Oil Range Organics (mg/kg)
Method Blank	2/3/2021	2/3/2021	99	nd	nd
LCS	2/3/2021	2/3/2021	141	118%	
B1-10	2/3/2021	2/3/2021	62	nd	nd
B2-2.5	2/3/2021	2/3/2021	73	nd	nd
B3-10	2/3/2021	2/3/2021	74	nd	nd
B4-4	2/3/2021	2/3/2021	50	nd	nd
B5-3	2/3/2021	2/3/2021	54	nd	nd
B6-15	2/3/2021	2/3/2021	64	nd	nd
B6-15 Duplicate	2/3/2021	2/3/2021	62	nd	nd
Reporting Limits				50	100

"---" Indicates not tested for component.

"nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

	Analysis of Diesel Range	Organics & Lube O	il Range Organics in Water by	y Method NWTPH-Dx/Dx Extended
--	--------------------------	-------------------	-------------------------------	-------------------------------

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Diesel Range Organics (ug/L)	Lube Oil Range Organics (ug/L)
Method Blank	2/2/2021	2/2/2021	132	nd	nd
LCS	2/2/2021	2/2/2021	139	110%	
B1	2/2/2021	2/2/2021	91	nd	nd
B2	2/2/2021	2/2/2021	111	nd	nd
B3	2/2/2021	2/2/2021	107	nd	nd
B4	2/2/2021	2/2/2021	91	nd	nd
B5	2/2/2021	2/2/2021	97	nd	nd
B6	2/2/2021	2/2/2021	98	2400	nd
Reporting Limits				50	100

"---" Indicates not tested for component.

"nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

Analysis	of Gasoline	Range	Organics	in Soil
	by Method	NWTI	PH-Gx	

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Gasoline Range Organics (mg/kg)
Method Blank	2/4/2021	2/4/2021	102	nd
LCS	2/4/2021	2/4/2021	106	68%
B1-10	2/1/2021	2/4/2021	100	nd
B2-2.5	2/1/2021	2/4/2021	101	nd
B3-10	2/1/2021	2/4/2021	101	nd
B4-4	2/1/2021	2/4/2021	99	nd
B5-3	2/1/2021	2/4/2021	97	nd
B6-15	2/1/2021	2/4/2021	98	nd
Reporting Limits				10

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

Sample Number	Date Analyzed	Surrogate Recovery (%)	Gasoline Range Organics (ug/L)
Method Blank	2/3/2021	101	nd
LCS	2/3/2021	95	64%
BI	2/3/2021	99	nd
B2	2/3/2021	93	nd
B3	2/3/2021	87	nd
B4	2/3/2021	106	nd
B5	2/3/2021	95	nd
B6	2/3/2021	109	240

Analysis of Gasoline Range Organics in Water by Method NWTPH-Gx

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

D	RL	MB	LCS	LCSD	B1-10	B2-2.5	B3-10	B4-4
Date extracted		02/04/21	02/04/21	02/04/21	02/01/21	02/01/21	02/01/21	02/01/21
Date analyzed	(mg/Kg)	02/04/21	02/04/21	02/04/21	02/04/21	02/04/21	02/04/21	02/04/21
% Moisture			_		29%	7%	31%	29%
Dichlorodifluoromethane	0.05	nd			nd			
Chloromethane	0.05	nd			nd	nd	nd	nd
Vinyl chloride	0.03	nd	90%	107%		nd	nd	nd
Bromomethane	0.02		90.20	107.76	nd	nd	nd	nd
Chloroethane	0.05	nd			nd	nd	nd	nd
	1.112.5	nd			nd	nd	nd	nd
Trichlorofluoromethane	0.05	nd			nd	nd	nd	nd
trans-1,2-Dichloroethene	0.05	nd			nd	nd	nd	nd
1,1-Dichloroethane	0.05	nd			nd	nd	nd	nd
2-Butanone (MEK)	0.25	nd			nd	nd	nd	nd
cis-1.2-Dichloroethene	0.05	nd			nd	nd	nd	nd
2.2-Dichloropropane	0.05	nd			nd	nd	nd	nd
Chloroform	0.05	nd	107%	128%	nd	nd	nd	nd
Bromochloromethane	0.05	nd			nd	nd	nd	nd
1.1.1-Trichloroethane	0.05	nd			nd	nd	nd	nd
1,2-Dichloroethane (EDC)	0.05	nd			nd	nd	nd	nd
1,1-Dichloropropene	0.05	nd			nd	nd	nd	nd
Carbon tetrachloride	0.05	nd			nd	nd	nd	nd
Benzene	0.02	nd	84%	106%	nd	nd	nd	nd
Trichloroethene (TCE)	0.02	nd	88%	106%	nd	nd	nd	nd
1.2-Dichloropropane	0.05	nd	83%	102%	nd	nd	nd	nd
Dibromomethane	0.05	nd	14.1		nd	nd	nd	nd
Bromodichloromethane	0.05	nd			nd	nd	nd	nd
4-Methyl-2-pentanone (MIBK)	0.25	nd			nd	nd	nd	nd
cis-1.3-Dichloropropene	0.05	nd			nd	nd	nd	
Toluene	0.05	nd	76%	122%	nd	nd	nd	nd
trans-1,3-Dichloropropene	0.05	nd	70.70	12270	nd	nd	nd	nd
1.1.2-Trichloroethane	0.05	nd			nd	nd		nd
2-Hexanone	0.25	nd			nd		nd	nd
1.3-Dichloropropane	0.05	nd				nd	nd	nd
Dibromochloromethane	0.05				nd	nd	nd	nd
Tetrachloroethene (PCE)		nd	7000		nd	nd	nd	nd
	0.02	nd	79%	97%	nd	nd	0.05	nd
1.2-Dibromoethane (EDB)	0.05	nd		1.11	nd	nd	nd	nd
Chlorobenzene	0.05	nd	85%	105%	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	41.0		nd	nd	nd	nd
Ethylbenzene	0.05	nd	76%	99%	nd	nd	nd	nd
Xylenes	0.15	nd	76%	105%	nd	nd	nd	nd
Styrene	0.05	nd			nd	nd	nd	nd
Bromoform	0.05	nd			nd	nd	nd	nd
1.1.2.2-Tetrachloroethane	0.05	nd			nd	nd	nd	nd
lsopropylbenzene	0.05	nd			nd	nd	nd	nd
1.2.3-Trichloropropane	0.05	nd			nd	nd	nd	nd
Bromobenzene	0.05	nd			nd	nd	nd	nd
a-Propylbenzene	0.05	nd			nd	nd	nd	nd

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	MB	LCS	LCSD	B1-10	B2-2.5	B3-10	B4-4
Date extracted		02/04/21	02/04/21	02/04/21	02/01/21	02/01/21	02/01/21	02/01/2
Date analyzed	(mg/Kg)	02/04/21	02/04/21	02/04/21	02/04/21	02/04/21	02/04/21	02/04/2
% Moisture					29%	7%	31%	29%
n-Propylbenzene	0.05	nd			nd	nd	nd	nd
2-Chlorotoluene	0.05	nd			nd	nd	nd	nd
4-Chlorotoluene	0.05	nd			nd	nd	nd	nd
1.3.5-Trimethylbenzene	0.05	nd			nd	nd	nd	nd
tert-Butylbenzene	0.05	nd			nd	nd	nd	nd
1.2.4-Trimethylbenzene	0.05	nd			nd	nd	nd	nd
sec-Butylbenzene	0.05	nd			nd	nd	nd	nd
1.3-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
1,4-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
lsopropyltoluene	0.05	nd			nd	nd	nd	nd
1.2-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
n-Butylbenzene	0.05	nd			nd	nd	nd	nd
1.2-Dibromo-3-Chloropropane	0.05	nd			nd	nd	nd	nd
1.2.4-Trichlorobenzene	0.05	nd			nd	nd	nd	nd
Naphthalene	0.05	nd			nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.05	nd			nd	nd	nd	nd
1.2.3-Trichlorobenzene	0.05	nd			nd	nd	nd	nd
Surrogate recoveries								
Dibromofluoromethane		124%	120%	117%	117%	126%	117%	125%
Toluene-d8		97%	98%	99%	95%	93%	95%	97%
4-Bromofluorobenzene		102%	104%	105%	100%	101%	101%	99%

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

	RL	B5-3	B6-15
Date extracted		02/01/21	02/01/2
Date analyzed	(mg/Kg)	02/04/21	02/04/2
% Moisture	101110	21%	22%
D. 11. 10. 1			
Dichlorodifluoromethane	0.05	nd	nd
Chloromethane	0.05	nd	nd
Vinyl chloride	0.02	nd	nd
Bromomethane	0.05	nd	nd
Chloroethane	0.05	nd	nd
Trichlorofluoromethane	0.05	nd	nd
trans-1,2-Dichloroethene	0.05	nd	nd
1,1-Dichloroethane	0.05	nd	nd
2-Butanone (MEK)	0.25	nd	nd
cis-1,2-Dichloroethene	0.05	nd	nd
2.2-Dichloropropane	0.05	nd	nd
Chloroform	0.05	nd	nd
Bromochloromethane	0.05	nd	nd
1,1,1-Trichloroethane	0.05	nd	nd
,2-Dichloroethane (EDC)	0.05	nd	nd
I, I-Dichloropropene	0.05	nd	nd
Carbon tetrachloride	0.05	nd	nd
Benzene	0.02	nd	nd
Frichloroethene (TCE)	0.02	nd	nd
.2-Dichloropropane	0.05	nd	nd
Dibromomethane	0.05	nd	nd
Bromodichloromethane	0.05	nd	nd
4-Methyl-2-pentanone (MIBK)	0.25	nd	nd
is-1,3-Dichloropropene	0.05	nd	nd
Foluene	0.05	nd	nd
rans-1,3-Dichloropropene	0.05	nd	nd
1.1.2-Trichloroethane	0.05	nd	nd
2-Hexanone	0.25	nd	nd
,3-Dichloropropane	0.05	nd	nd
Dibromochloromethane	0.05	nd	nd
Fetrachloroethene (PCE)	0.02	nd	0.08
.2-Dibromoethane (EDB)	0.05	nd	nd
Chlorobenzene	0.05	nd	nd
1,1,1.2-Tetrachloroethane	0.05	nd	nd
Ethylbenzene	0.05	nd	
Xylenes	0.05		nd
	10.50	nd	nd
Styrene	0.05	nd	nd
Bromoform	0.05	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd
sopropylbenzene	0.05	nd	nd
1,2.3-Trichloropropane	0.05	nd	nd
Bromobenzene	0.05	nd	nd

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	B5-3	B6-15
Date extracted	5	02/01/21	02/01/21
Date analyzed	(mg/Kg)	02/04/21	02/04/21
% Moisture		21%	22%
n-Propylbenzene	0.05	nd	nd
2-Chlorotoluene	0.05	nd	nd
4-Chlorotoluene	0.05	nd	nd
1.3.5-Trimethylbenzene	0.05	nd	nd
tert-Butylbenzene	0.05	nd	nd
1,2,4-Trimethylbenzene	0.05	nd	nd
sec-Butylbenzene	0.05	nd	nd
1,3-Dichlorobenzene	0.05	nd	nd
1,4-Dichlorobenzene	0.05	nd	nd
Isopropyltoluene	0.05	nd	nd
1,2-Dichlorobenzene	0.05	nd	nd
n-Butylbenzene	0.05	nd	nd
1.2-Dibromo-3-Chloropropane	0.05	nd	nd
1,2,4-Trichlorobenzene	0.05	nd	nd
Naphthalene	0.05	nd	nd
Hexachloro-1,3-butadiene	0.05	nd	nd
1,2,3-Trichlorobenzene	0.05	nd	nd
Surrogate recoveries			
Dibromofluoromethane		124%	126%
Toluene-d8		97%	97%
4-Bromofluorobenzene		97%	98%

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

	RL	MB	LCS	LCSD	BI	B2	B3	B4
Date analyzed	(ug/L)	02/03/21	02/03/21	02/03/21	02/03/21	02/03/21	02/12/21	02/03/21
Dichlorodifluoromethane	1.0	nd			nd		- 1	
Chloromethane	1.0	nd			nd	nd nd	nd	nd
Vinyl chloride	0.2	nd	99%	98%	nd	nd	nd nd	nd
Bromomethane	1.0	nd	3770	20.70	nd	nd	nd	nd
Chloroethane	1.0	nd			nd	nd		nd
Trichlorofluoromethane	1.0	nd			nd	nd	nd	nd
Acetone	10.0	nd			nd	nd	nd nd	nd nd
1.1-Dichloroethene	1.0	nd				1.12		15
2-Butanone (MEK)	10.0	nd			nd	nd	nd	nd
n-hexane	1.0				nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd			nd	nd	nd	nd
2.2-Dichloropropane	1.0	nd nd			nd	nd	nd	nd
Chloroform	1.0	nd	11.50	1020/	nd	nd	nd	nd
Bromochloromethane	1.0	nd	115%	126%	nd	nd	nd	nd
1.1.1-Trichloroethane	1.0	nd			nd nd	nd	nd	nd
1.2-Dichloroethane (EDC)	1.0	nd				nd	nd	nd
1.1-Dichloropropene	1.0	nd			nd nd	nd	nd	nd
Carbon tetrachloride	1.0	nd				nd	nd	nd
Benzene	1.0	nd	98%	103%	nd	nd	nd	nd
Trichloroethene (TCE)	1.0	nd	102%	99%	nd	nd	nd	nd
1.2-Dichloropropane	1.0	nd	102%	1000	nd	nd	nd	nd
Dibromomethane	1.0	nd	10120	105%	nd	nd	nd	nd
Bromodichloromethane	1.0	nd			nd nd	nd	nd	nd
4-Methyl-2-pentanone (MIBK)	1.0	nd			0.077	nd	nd	nd
cis-1.3-Dichloropropene	1.0	nd			nd	nd	nd	nd
Toluene	1.0	nd	97%	89%	nd	nd	nd	nd
trans-1.3-Dichloropropene	1.0	nd	97.0	6970	nd	nd	nd	nd
1.1.2-Trichloroethane	1.0	nd			nd	nd nd	nd	nd
2-Hexanone	1.0	nd			nd	nd	nd	nd
1,3-Dichloropropane	1.0	nd				A. M. C.	nd	nd
Dibromochloromethane	1.0	nd			nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	94%	87%		nd	nd	nd
1.2-Dibromoethane (EDB)	1.0	nd	2420	0/20	nd	1.2	nd	nd
Chlorobenzene	1.0	nd	101%	98%	nd	nd	nd	nd
1.1.1.2-Tetrachloroethane	1.0	nd	101.20	70.0	nd	nd	nd	nd
Ethylbenzene	1.0	nd	92%	84%	nd	nd	nd	nd
Xylenes	3.0	nd	111%	83%	nd	nd	nd	nd
Styrene	1.0	nd	111:0	0.370		nd	nd	nd
Bromoform	1.0	nd			nd nd	nd	nd	nd
1.1.2.2-Tetrachloroethane	1.0	nd			nd	nd	nd	nd
Isopropylbenzene	1.0	nd					nd	nd
1.2.3-Trichloropropane	1.0	nd			nd	nd	nd	nd
Bromobenzene	1.0	nd			nd	nd	nd	nd
n-Propylbenzene					nd	nd	nd	nd
a-r topytoenzene	1.0	nd			nd	nd	nd	nd

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

	RL	MB	LCS	LCSD	B1	B2	B3	B4
Date analyzed	(ug/L)	02/03/21	02/03/21	02/03/21	02/03/21	02/03/21	02/12/21	02/03/2
2-Chlorotoluene	1.0	nd			nd	nd	nd	nd
4-Chlorotoluene	1.0	nd			nd	nd	nd	nd
1,3,5-Trimethylbenzene	1.0	nd			nd	nd	nd	nd
tert-Butylbenzene	1.0	nd			nd	nd	nd	nd
1.2.4-Trimethylbenzene	1.0	nd			nd	nd	nd	nd
sec-Butylbenzene	1.0	nd			nd	nd	nd	nd
1,3-Dichlorobenzene	1.0	nd			nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nd			nd	nd	nd	nd
Isopropyltoluene	1.0	nd			nd	nd	nd	nd
1.2-Dichlorobenzene	1.0	nd			nd	nd	nd	nd
n-Butylbenzene	1.0	nd			nd	nd	nd	nd
1.2-Dibromo-3-Chloropropane	1.0	nd			nd	nd	nd	nd
1.2.4-Trichlorobenzene	1.0	nd			nd	nd	nd	nd
Naphthalene	1.0	nd			nd	nd	nd	nd
Hexachloro-1,3-butadiene	1.0	nd			nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd			nd	nd	nd	nd
Surrogate recoveries		_1.1.2						
Dibromofluoromethane		118%	117%	124%	121%	122%	127%	127%
Toluene-d8		94%	98%	102%	93%	97%	96%	100%
4-Bromofluorobenzene		101%	103%	101%	99%	93%	101%	106%

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Data Quantiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

	RL	B5	B6
Date analyzed	(ug/L)	02/03/21	02/03/2
	1		
Dichlorodifluoromethane	1.0	nd	nd
Chloromethane	1.0	nd	nd
Vinyl chloride	0.2	nd	nd
Bromomethane	1.0	nd	nd
Chloroethane	1.0	nd	nd
Trichlorofluoromethane	1.0	nd	nd
Acetone	10.0	nd	nd
1,1-Dichloroethene	1.0	nd	nd
2-Butanone (MEK)	10.0	nd	nd
n-hexane	1.0	nd	nd
cis-1.2-Dichloroethene	1.0	nd	nd
2,2-Dichloropropane	1.0	nd	nd
Chloroform	1.0	nd	nd
Bromochloromethane	1.0	nd	nd
1,1.1-Trichloroethane	1.0	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd
1.1-Dichloropropene	1.0	nd	nd
Carbon tetrachloride	1.0	nd	nd
Benzene	1.0	nd	nd
Trichloroethene (TCE)	1.0	nd	nd
1,2-Dichloropropane	1.0	nd	nd
Dibromomethane	1.0	nd	nd
Bromodichloromethane	1.0	nd	nd
4-Methyl-2-pentanone (MIBK)	1.0	nd	nd
cis-1,3-Dichloropropene	1.0	nd	nd
Toluene	1.0	nd	nd
rans-1,3-Dichloropropene	1.0	nd	nd
1,1.2-Trichloroethane	1.0	nd	nd
2-Hexanone	1.0	nd	nd
1.3-Dichloropropane	1.0	nd	nd
Dibromochloromethane	1.0	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd
1.2-Dibromoethane (EDB)	1.0	nd	nd
Chlorobenzene	1.0	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd	nd
Ethylbenzene	1.0	nd	nd
Xylenes	3.0	nd	nd
Styrene	1.0	nd	nd
Bromoform	1.0	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd	nd
sopropylbenzene	1.0	nd	nd
.2.3-Trichloropropane	1.0	nd	nd
Bromobenzene	1.0	nd	nd
n-Propylbenzene	1.0	nd	nd

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

	RL	B5	B6
Date analyzed	(ug/L)	02/03/21	02/03/2
n-Propylbenzene	1.0	nd	nd
2-Chlorotoluene	1.0	nd	nd
4-Chlorotoluene	1.0	nd	nd
1.3.5-Trimethylbenzene	1.0	nd	nd
tert-Butylbenzene	1.0	nd	nd
1,2,4-Trimethylbenzene	1.0	nd	nd
sec-Butylbenzene	1.0	nd	nd
1.3-Dichlorobenzene	1.0	nd	nd
1,4-Dichlorobenzene	1.0	nd	nd
Isopropyltoluene	1.0	nd	nd
1,2-Dichlorobenzene	1.0	nd	nd
n-Butylbenzene	1.0	nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd	nd
1,2,4-Trichlorobenzene	1.0	nd	nd
Naphthalene	1.0	nd	nd
Hexachloro-1,3-butadiene	1.0	nd	nd
1,2.3-Trichlorobenzene	1.0	nd	nd
Surrogate recoveries			
Dibromofluoromethane		125%	112%
Toluene-d8		99%	91%
4-Bromofluorobenzene		95%	109%

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

	Reporting	MTH BLK	LCS	B2
Date extracted	Limits	02/02/21	02/02/21	02/02/21
Date analyzed	(ug/L)	02/02/21	02/02/21	02/02/2
Naphthalene	0.1	nd	107%	nd
2-Methylnaphthalene	0.1	nd	105%	nd
I-Methylnaphthalene	0.1	nd	100%	nd
Acenaphthylene	0.1	nd	133%	nd
Acenaphthene	0.1	nd	100%	nd
Fluorene	0.1	nd	114%	nd
Phenanthrene	0.1	nd	98%	nd
Anthracene	0.1	nd	99%	nd
Fluoranthene	0.1	nd	108%	nd
Pyrene	0.1	nd	106%	nd
Benzo(a)anthracene*	0.1	nd	78%	nd
Chrysene*	0.1	nd	121%	nd
Benzo(b)fluoranthene*	0,1	nd	94%	nd
Benzo(k)fluoranthene*	0.1	nd	93%	nd
Benzo(a)pyrene*	0.1	nd	95%	nd
Indeno(1,2,3-cd)pyrene*	0.1	nd	121%	nd
Dibenzo(a,h)anthracene*	0.1	nd	85%	nd
Benzo(ghi)perylene	0.1	nd	86%	nd
Total Carcinogens				nd
Surrogate recoveries:				
2-Fluorobiphenyl		77%	95%	104%
p-Terphenyl-d14		116%	92%	106%

Analysis of Polynuclear Aromatic Hydrocarbons in Water by Method 8270E

Data Qualifiers and Analytical Comments * - Carcinogenic Analyte

nd - not detected at listed reporting limits

ns - not spiked

Acceptable Recovery limits: 50% TO 150%

Acceptable RPD limit: 35%

		MTH BLK	LCS	B2-2.5
Date extracted	Reporting	02/03/21	02/03/21	02/03/21
Date analyzed	Limits	02/03/21	02/03/21	02/03/21
Moisture, %	(mg/kg)			7%
Naphthalene	0.02	nd	102%	nd
2-Methylnaphthalene	0.02	nd	105%	nd
1-Methylnaphthalene	0.02	nd	99%	nd
Acenaphthylene	0.02	nd	135%	nd
Acenaphthene	0.02	nd	99%	nd
Fluorene	0.02	nd	112%	nd
Phenanthrene	0.02	nd	99%	nd
Anthracene	0.02	nd	96%	nd
Fluoranthene	0.02	nd	111%	nd
Pyrene	0.02	nd	109%	nd
Benzo(a)anthracene*	0.02	nd	81%	nd
Chrysene*	0.02	nd	122%	nd
Benzo(b)fluoranthene*	0.02	nd	96%	nd
Benzo(k)fluoranthene*	0.02	nd	112%	nd
Benzo(a)pyrene*	0.02	nd	96%	nd
Indeno(1.2.3-cd)pyrene*	0.02	nd	107%	nd
Dibenzo(a,h)anthracene*	0.02	nd	93%	nd
Benzo(ghi)perylene	0.02	nd	88%	nd
Total Carcinogens				nd
Surrogate recoveries:				
2-Fluorobiphenyl		98%	95%	72%
p-Terphenyl-d14		97%	97%	71%

Analysis of Polynuclear Aromatic Hydrocarbons in Soil by Method 8270E

Data Qualifiers and Analytical Comments * - Carcinogenic Analyte nd - not detected at listed reporting limits ns - not spiked Results reported on dry-weight basis Acceptable Recovery limits: 50% TO 150% Acceptable RPD limit: 35%

Third Party Laboratory Test Results

Contraction	
5-2-	D
Carlo and	
196. 1000	_

PRAGON ANALYTICAL LABORATORY 527 Duris Raas Sd. 5TE Bilds. Turneter, WAjelsdi I (2008/6-054) Caterimers weigt Disgen Laboratory can

Hazardous Waste, Microtiology, NPDES, Potable and Non-potable Water Mobile Environmental Laboratory

ESN Analytical 3155 NE Sunset Blvd, Suite A Renton, WA 98056

Sampled By: Unknown

DAL Project No.: 210202-02

Preparation Method: US EPA 200.8 Dissolved Analytical Method: US EPA 200.8 Date Prepared: 2/2/2021 Date Analyzed: 2/4/2021 Analyst: TM

Project Name: Firestone Project Na:: Firestone PO Na:: n/a Date Collected: 2/1/2021:10:15 - 10.40 Date Received: 2/2/2021; 11:30 Temperature Received (*C): 4 Report Date: 2/8/2021

Units: ug/L Matrix: Non-Potable Water Reporting Limits: Standard Instrument ID: Agilent 7500 Lab Data File: 21B04k00

DISSOLVED HEAVY METALS ANALYTICAL RESULTS

		10.2	Method	
Analyte	CAS No.	MRL	Blank	B2
Arsonic (As)	7440-38-2	1.0	nd	nd
Cadmium (Cd)	7440-43-9	0.50	nd	nd
Chromium (Cr)	7440-47-3	0.50	nd	nd
Lead (Pb)	7439-92-1	0.25	nd	nd
Marcury (Hg)	7439-97-6	0.25	nd	nd
Dilution Factor			1.0	1.0

DISSOLVED HEAVY METALS QUALITY CONTROL RESULTS

LABORATORY CONTROL SAMPLE AND MATRIX SPIKE

DC Batch ID: 210204-Metals				MS/	MSD Samp	e ID: 21020	4-Motals MS	MSD	· · · · · · · · · · · · · · · · · · ·		LCS Sample	ID: 210204-	Metals LC
Analyte	MS/MSD Level (ug/L)	Sample Conc. (ug/L)	MS Recovery (ug/L)	MS Percent Recovery	MSD Recovery (ug/L)	MSD Percent Recovery	MS/MSD Limits (%)	RPD	MS/MSD RPD Limits	LCS Level (vg/L)	LCS Recovery (ug/L)	LCS Percent Recovery	LCS Limits (%)
Arsenic (As)	50	0.51	50.0	98.9%	50.7	100%	70-130	1.4	\$ 25%	50	49.0	97.9%	85-115
Cadmium (Cd)	50	0.00	49.4	98.9%	49.7	99.4%	70-130	0.56	≤ 25%	50	48.2	96.4%	85-115
Chromium (Cr)	50	7.4	57.3	99.8%	56.6	98.5%	70-130	1.3	\$ 25%	50	54.1	108%	85-115
Lead (Pb)	50	0.40	50.8	101%	50.8	101%	70-130	0.040	\$ 25%	50	50.1	100%	85-115
Mercury (Hg)	4.0	0.020	4.0	09.8%	4.3	106%	70-130	6.1	\$ 25%	4.0	4.0	99.8%	85-115

Preparation Method:	US EPA 3050B
Analytical Method:	US EPA 6020B
Date Prepared:	2/2/2021
Date Analyzed:	2/4/2021
Analyst:	TM

Units: mg/kg Matrix: Soil Reporting Limits: Standard Instrument ID: Agilent 7500 Lab Data File: 21804k00

TOTAL METALS ANALYTICAL RESULTS

Sample Identification	CAS No.	MRL	Blank	B2-2.5
Arsenic (As)	7440-38-2	1.0	nd	4.0
Cadmium (Cd)	7440-43-9	0.50	nd	nd
Chromium (Cr)	7440-47-3	0.50	nd	23.9
Lead (Pb)	7439-92-1	0.25	nd	9.5
Mercury (Hg)	7439-97-6	0.25	nd	nd
Percent Solids (%)				92.1
Dilution Factor				1000

TOTAL METALS QUALITY CONTROL RESULTS LABORATORY CONTROL SAMPLE AND MATRIX SPIKE

Analyte	MS-PD Lovel (mg/kg)	Sample Conc. (mg/kg)	MS-PD Recovery (mg/kg)	MS-PD Percent Recovery	MS-PD Limits (%)	LCS Level (mg/kg)	LCS Recovery (mg/kg)	LCS Percent Recovery	LCS Limits (%)
Arsenic (As)	0.050	0.0037	0.051	95.1%	75-125	0.050	0.050	101%	80-120
Cadmium (Cd)	0.050	0.00016	0.049	98.3%	75-125	0.050	0.049	98.9%	80-120
Chromium (Cr)	0.050	0.022	0.065	86.6%	75-125	0.050	0.049	98.2%	80-120
Lead (Pb)	0.050	0.0088	0.057	97.0%	75-125	0.050	0.050	101%	80-120
Mercury (Hg)	0.0040	0.00	0.0039	95.4%	75-125	0.0040	0.0039	97.3%	80-120

Sample Identification	CAS	No.	MRL	Methoa Blank	82	PCB's ANALYTICAL RESULTS			
Preparation Method Analytical Method Date Preparo Date Analyzed Analys	US EF	A 8082					Units: Matrix Reporting Limits: Injection Volume: Instrument ID; Lab Data File;	Non-Potable Water Standard 2 µL Agilent 9074	
DAL Project No.: 210202	-02				2		Temperature Received (*C): Report Date:		
Renton, WA 98056 Sampled By: Unknown									
ESN Analytical 3155 NE Sunset Blvd, Su	te A						Project Name:		

Sample Identification	CAS	No.	MRL	Blank	82
PCB Aroclor 1016	1267	4-11-2	0.050	nd	nd
PCB Aroclor 1221	110	4-28-2	0.050	nd	nd
PCB Arocler 1232	1114	1-16-5	0.050	nd	nd
PCB Aroclar 1242	5346	9-21-9	0.050	nd	nd
PCB Aroclor 1248	1267	2.29.6	0.050	nd	nd
PCB Aroclor 1254	1109	7-69-1	0.050	nd	nd
PCB Aroclor 1260	1109	8-82-5	0.050	nd	nd
PCB Aroclor 1262	3732	4-23-5	0.050	nd	nd
PCB Aroclor 1268	1110	0-14-4	0.050	nd	nd
Concentration Factor					200

Data Flags

Comments and Explanations: None.

PCB's QUALITY CONTROL RESULTS

SURROGATE RECOVERY

	100 100 Adverse	Method	10.7
Surrogate	Limits (%)	Blank	82
TCMX	30-150	104	99.3
DCBP	30-150	124	117

LABORATORY CONTROL SAMPLE AND MATRIX SPIKE

OC Batch ID: 210202-PCB		_		MS	S/MSD Samp	le ID: 21020	2-PCB MS/M	SD		LCS Sam	ple ID: 2102	2-PCB LCS
Analyte	MS/MSD Limits (%)	MS/MSD Level (µg/L)	Sample Conc. (µg/L)	MS Recovery (µg/L)	MS Percent Recovery	MSD Recovery (µg/L)	MSD Percent Recovery	RPD	LCS Limits (%)	LCS Level (µg/L)	LCS Recovery (µg/L)	LCS Percent Recovery
PCB Atoclor 1016	29-135	400	nd	418	104%	395	98.7%	5.6	50-120	400	411	103%
PC8 Aroclor 1260	29-135	400	nd	245	61.2%	376	93.9%	42.2	50-120	400	395	98.6%

WA-DOE-Laboratory Certification No.: C890 "nd" indicates the analyte was not detected at or above the listed Method Reporting Limit. "n/a" indicates not applicable

ESN Analytical 3155 NE Sunset Blvd, St	uite A						Project Name. Project No.		
Renton, WA 98056							P.O. No.		
								2/1/2021:10:15 - 10:40	
Sampled By. Unknown							Date Received	2/2/2021: 11:30	
							Temperature Received (*C)	411728	
DAL Project No.: 21020	2-02						Report Date.	2/8/2021	
Preparation Metho	d: US EP	A 3550	c				Linite	marka	
Analytical Metho	d: US EP	A 8082	A					Solids	
Date Prepare	d: 2/2/202	21					Reporting Limits		
Date Analyze	d: 2/2/202	21					Injection Volume		
Analys	IL: TM							Agilent 9074	
							Lab Data File		
					1.15	PCB's ANALYTICAL RESULTS			
Sample Identification	CAS	No.	MRL	Methoa Blank	B2-2.5				
PCB Arector 1016	12674	-11-2	0.0050	nd	nd				
PCB Aroclor 1221		-28-2	0.0050	nd	nd				
PCB Arocier 1232	1114	1-16-5	0.0050	nd	nd				
PCB Aroclor 1242	53460	0-21-9	0.0050	nd	nd				
PCB Aroclor 1248	12673	2-29-6	0.0050	nd	nd				
PCB Aroclor 1254	11097	7-69-1	0.0050	nd	nd				
PCB Aroclor 1260	11096	5-82-5	0.0050	nd	nd				
PCB Aroclor 1262	37324	-23-5	0.0050	nd	nd				
PCB Aroclor 1268	11100	-14-4	0.0050	nd	nd				
Dilution Factor	1.				100				
Percent Solids					92.1				
Data Flags									

Comments and Explanations: None.

Percent Solids Data Flags

PCB's QUALITY CONTROL RESULTS

SURROGATE RECOVERY

Surrogate	Limits (%)	Method Blank	B2-2.5
TCMX	30-150	118	112
DCBP	30-150	96.5	89.7

LABORATORY CONTROL SAMPLE AND MATRIX SPIKE

QC Batch ID: 210202-PCB		_		MS	MSD Samp	le ID: 21020	2-PCB MS/M	SD		LCS Sam	ple ID: 2102	2-PCB LCS
Analyte	MS/MSD Limits (%)	MS/MSD Level (mg/kg)	Sample Conc. (mg/kg)	MS Recovery (mg/kg)	MS Percent Recovery	MSD Recovery (mg/kg)	MSD Percent Recovery	RPD	LCS Limits (%)	LCS Level (mg/kg)	LCS Recovery (mg/kg)	LCS Percent Recovery
PCB Aroclor 1016	29-135	0.40	nd	0.42	104%	0.39	98.7%	5.6	50-120	0.40	0.42	105%
PCB Aroclor 1260	29-135	0.40	nd	0.24	61.2%	0.38	93.9%	42.2	50-120	0.40	0.24	61.2%

WA-DOE-Laboratory Certification No.: C690 "nd" indicates the analyte was not detected at or above the listed Method Reporting Limit, "n/a" indicates not applicable

Sampling Date: February 2, 2021

Analysis of Diesel Range Organics & Lube Oil Range Organics in Soil by Method NWTPH-Dx/Dx Extended

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Diesel Range Organics (mg/kg)	Lube Oil Range Organics (mg/kg)
Method Blank	2/3/2021	2/3/2021	99	nd	nd
LCS	2/3/2021	2/3/2021	141	118%	
B7-9-10	2/3/2021	2/3/2021	52	7200	nd
B8-8	2/3/2021	2/3/2021	62	nd	nd
B9-2	2/3/2021	2/3/2021	56	nd	nd
B10-8	2/3/2021	2/3/2021	67	nd	nd
Reporting Limits				50	100

"---" Indicates not tested for component.

"nd" Indicates not detected at the listed detection limits.

Analysis of Diesel Range Organics & Lube Oil Range Organics in Water by Method NWTPH-Dx/Dx Extended

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Diesel Range Organics (ug/L)	Lube Oil Range Organics (ug/L)
Method Blank	2/4/2021	2/4/2021	91	nd	nd
LCS	2/4/2021	2/4/2021	133	102%	
B7	2/4/2021	2/4/2021	85	16000	nd
B8	2/4/2021	2/4/2021	77	nd	nd
B9	2/4/2021	2/4/2021	67	nd	nd
B10	2/4/2021	2/4/2021	73	nd	nd
Reporting Limits				50	100

"---" Indicates not tested for component.

"nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Gasoline Range Organics (mg/kg)
Method Blank	2/4/2021	2/4/2021	102	nd
LCS	2/4/2021	2/4/2021	106	68%
B7-9-10	2/2/2021	2/4/2021	96	nd
B8-8	2/2/2021	2/4/2021	103	nd
B8-8 Duplicate	2/2/2021	2/4/2021	101	nd
B9-2	2/2/2021	2/4/2021	98	nd
B10-8	2/2/2021	2/4/2021	101	nd
Reporting Limits				10

Analysis of Gasoline Range Organics in Soil by Method NWTPH-Gx

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

Analysis of Gasoline Range Organics in Water by Method NWTPH-Gx

Sample Number	Date Analyzed	Surrogate Recovery (%)	Gasoline Range Organics (ug/L)
Method Blank	2/3/2021	101	nd
LCS	2/3/2021	95	64%
B7	2/3/2021	99	nd
B8	2/3/2021	94	nd
B9	2/3/2021	99	nd
B10	2/3/2021	98	nd
Reporting Limits			100

"nd" Indicates not detected at the listed detection limits. "int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

	RL	MB	LCS	LCSD	B7	BS	B9	B10
Date analyzed	(ug/L)	02/03/21	02/03/21	02/03/21	02/03/21	02/03/21	02/03/21	02/03/21
Dichlorodifluoromethane	1.0						1.1.1	- 1.5
Chloromethane	1.0	nd			nd	nd	nd	nd
Vinyl chloride	0.2	nd	000	0.00	nd	nd	nd	nd
Bromomethane		nd	99%	98%	nd	nd	nd	nd
Chloroethane	1.0	nd			nd	nd	nd	nd
Trichlorofluoromethane		nd			nd	nd	nd	nd
Acetone	1.0	nd			nd	nd	nd	nd
, ep escote	10.0	nd		10000	nd	nd	nd	ba
1.1-Dichloroethene	1.0	nd	103%	119%	nd	nd	nd	nd
Methylene chloride	1.0	nd			nd	nd	nd	nd
Methyl-t-butyl ether (MTBE)	1.0	nd			nd	nd	nd	nd
rans-1,2-Dichloroethene	1.0	nd			nd	nd	nd	nd
1,1-Dichloroethane	1.0	nd			nd	nd	nd	nd
2-Butanone (MEK)	10.0	nd			nd	nd	nd	nd
n-hexane	1.0	nd			nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd			nd	nd	nd	nd
2.2-Dichloropropane	1.0	nd			nd	nd	nd	nd
Chloroform	1.0	nd	115%	126%	nd	nd	nd	nd
Bromochloromethane	1.0	nd			nd	nd	nd	nd
1.1.1-Trichloroethane	1.0	nd			nd	nd	nd	nd
1.2-Dichloroethane (EDC)	1.0	nd			nd	nd	nd	nd
1.1-Dichloropropene	1.0	nd			nd	nd	nd	nd
Carbon tetrachloride	1.0	nd			nd	nđ	nd	nd
Benzene	1.0	nd	98%	103%	nd	nd	nd	nd
Trichloroethene (TCE)	1.0	nd	102%	99%	nd	nd	nd	nd
.2-Dichloropropane	1.0	nd	101%	105%	nd	nd	nd	nd
Dibromomethane	1.0	nd			nd	nd	nd	nd
Bromodichloromethane	1.0	nd			nd	nd	nd	nd
4-Methyl-2-pentanone (MIBK)	1.0	nd			nd	nd	nd	nd
is-1.3-Dichloropropene	1.0	nd			nd	nd	nd	nd
Foluene	1.0	nd	97%	89%	2.3	2.1	1.3	nd
rans-1,3-Dichloropropene	1.0	nd			nd	nd	nd	nd
1.1.2-Trichloroethane	1.0	nd			nd	nd	nd	nd
2-Hexanone	1.0	nd			nd	nd	nd	nd
1,3-Dichloropropane	1.0	nd			nd	nd	nd	nd
Dibromochloromethane	1.0	nd			nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	94%	87%	nd	nd	nd	
1.2-Dibromoethane (EDB)	1.0	nd			nd	nd	nd	nd
Chlorobenzene	1.0	nd	101%	98%	nd	nd	nd	nd
1.1.1.2-Tetrachloroethane	1.0	nd	101-0	2020	nd	nd	nd	nd
Ethylbenzene	1.0	nd	92%	84%	nd	1.0	nd	nd
Cylenes	3.0	nd	111%	83%	nd	nd		nd
Styrene	1.0	nd		0.376	nd		nd	nd
Bromoform	1.0	nd				nd	nd	nd
.1.2.2-Tetrachloroethane	1.0	nd			nd	nd	nd	nd
					nd	nd	nd	nd
sopropylbenzene	1.0	nd			nd	nd	nd	nd
1,2.3-Trichloropropane	1.0	nd			nd	nd	nd	nd
Bromobenzene	1.0	nd			nd	nd	nd	nd

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

	RL	MB	LCS	LCSD	B7	BS	B9	B10
Date analyzed	(ug/L)	02/03/21	02/03/21	02/03/21	02/03/21	02/03/21	02/03/21	02/03/2
n-Propylbenzene	1.0	nd			nd	nd	nd	nd
2-Chlorotoluene	1.0	nd			nd	nd	nd	nd
4-Chlorotoluene	1.0	nd			nd	nd	nd	nd
1,3,5-Trimethylbenzene	1.0	nd			nd	nd	nd	nd
tert-Butylbenzene	1.0	nd			nd	nd	nd	nd
1,2,4-Trimethylbenzene	1.0	nd			nd	nd	nd	nd
sec-Butylbenzene	1.0	nd			nd	nd	nd	nd
1.3-Dichlorobenzene	1.0	nd			nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nd			nd	nd	nd	nd
lsopropyltolucne	1.0	nd			nd	nd	nd	nd
1,2-Dichlorobenzene	1.0	nd			nd	nd	nd	nd
n-Butylbenzene	1.0	nd .			nd	nd	nd	nd
1.2-Dibromo-3-Chloropropane	1.0	nd			nd	nd	nd	nd
1.2.4-Trichlorobenzene	1.0	nd			nd	nd	nd	nd
Naphthalene	1.0	nd			nd	nd	nd	nd
Hexachloro-1,3-butadiene	1.0	nd			nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd			nd	nd	nd	nd
Surrogate recoveries								
Dibromolluoromethane		118%	117%	124%	137%*	142%*	125%	128%
Toluene-d8		94%	98%	102%	100%	98%	97%	96%
4-Bromofluorobenzene		101%	103%	101%	99%	94%	99%	98%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

*Dibromoflouromethane exceeded acceptable recovery limits. Analytes compared to this surrogate were non-detect, therefore

no fiurther action was taken

	RL	MB	LCS	LCSD	B7-9-10	B8-8	B9-2	B10-8
Date extracted		02/04/21	02/04/21	02/04/21	02/02/21	02/02/21	02/02/21	02/02/2
Date analyzed	(mg/Kg)	02/04/21	02/04/21	02/04/21	02/04/21	02/04/21	02/04/21	02/04/2
% Moisture				1.	37%	32%	7%	27%
Dichlorodifluoromethane	0.05	nd			nd	nd	nd	nd
Chloromethane	0.05	nd			nd	nd	nd	nd
Vinyl chloride	0.02	nd	90%	107%	nd	nd	nd	nd
Bromomethane	0.05	nd	2010	10770	nd	nd	nd	25.7
Chloroethane	0.05	nd			nd	nd		nd
Trichlorofluoromethane	0.05	nd			nd	nd	nd	nd nd
Acetone	0.25	nd			nd	nd	nd	nd
1.1-Dichloroethene	0.05	nd	104%	125%	nd	nd		
Methylene chloride	0.05	nd	10424	12070	nd	nd	nd	nd
Methyl-t-butyl ether (MTBE)	0.05	nd			nd	nd		nd
trans-1,2-Dichloroethene	0.05	nd					nd	nd
1.1-Dichloroethane	0.05	nd			nd	nd	nd	nd
2-Butanone (MEK)	0.05	nd			nd	nd	nd	nd
cis-1,2-Dichloroethene	0.25	nd			nd	nd	nd	nd
2,2-Dichloropropane	0.05	nd			nd	nd	nd	nd
Chloroform	0.05	nd	107%	13002	nd	nd	nd	nd
Bromochloromethane	0.05	nd	10720	128%	nd	nd	nd	nd
1,1,1-Trichloroethane	0.05				nd	nd	nd	nd
		nd			nd	nd	nd	nd
L2-Dichloroethane (EDC)	0.05	nd			nd	nd	nd	nd
I.I-Dichloropropene	0.05	nd			nd	nd	nd	nd
Carbon tetrachloride	0.05	nd			nd	nd	nd	nd
Benzene Trichloroethene (TCE)	0.02	nd	84%	106%	nd	nd	nd	nd
	0.02	nd	88%	106%	nd	nd	nd	nd
1,2-Dichloropropane Dibromomethane	0.05	nd	83%	102%	nd	nd	nd	nd
	0.05	nd			nd	nd	nd	nd
Bromodichloromethane	0.05	nd			nd	nd	nd	nd
4-Methyl-2-pentanone (MIBK)	0.25	nd			nd	nd	nd	nd
cis-1.3-Dichloropropene	0.05	nd	- 600	1.1.1	nd	nd	nd	nd
Toluene	0.05	nd	76%	122%	nd	nd	nd	nd
trans-1,3-Dichloropropene	0.05	nd			nd	nd	nd	nd
1.1.2-Trichloroethane	0.05	nd			nd	nd	nd	nd
2-Hexanone	0.25	nd			nd	nd	nd	nd
1,3-Dichloropropane	0.05	nd			nd	nd	nd	nd
Dibromochloromethane	0.05	nd	100		nd	nd	nd	nd
Tetrachloroethene (PCE)	0.02	nd	79%	97%	nd	nd	nd	nd
1,2-Dibromoethane (EDB)	0.05	nd			nd	nd	nd	nd
Chlorobenzene	0.05	nd	85%	105%	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd			nd	nd	nd	nd
Ethylbenzene	0.05	nd	76%	99%	nd	nd	nd	nd
Xylenes	0.15	nd	76%	105%	nd	nd	nd	nd
Styrene	0.05	nd			nd	nd	nd	nd
Bromoform	0.05	nd			nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd			nd	nd	nd	nd
lsopropylbenzene	0.05	nd			nd	nd	nd	nd
1,2,3-Trichloropropane	0.05	nd			nd	nd	nd	nd
Bromobenzene	0.05	nd			nd	nd	nd	nd

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

and the second se	RL.	MB	LCS	LCSD	B7-9-10	B8-8	B9-2	B10-8
Date extracted	1	02/04/21	02/04/21	02/04/21	02/02/21	02/02/21	02/02/21	02/02/2
Date analyzed	(mg/Kg)	02/04/21	02/04/21	02/04/21	02/04/21	02/04/21	02/04/21	02/04/2
% Moisture			111/11/10		37%	32%	7%	27%
n-Propylbenzene	0.05	nd			nd	nd	nd	nd
2-Chlorotoluene	0.05	nd			nd	nd	nd	nd
4-Chlorotoluene	0.05	nd			nd	nd	nd	nd
1.3.5-Trimethylbenzene	0.05	nd			nd	nd	nd	nd
tert-Butylbenzene	0.05	nd			nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.05	nd			nd	nd	nd	nd
sec-Butylbenzene	0.05	nd			nd	nd	nd	nd
1.3-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
1.4-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
Isopropyltoluene	0.05	nd			nd	nd	nd	nd
1,2-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
n-Butylbenzene	0.05	nd			nd	nd	nd	nd
1.2-Dibromo-3-Chloropropane	0.05	nd			nd	nd	nd	nd
1,2,4-Trichlorobenzene	0.05	nd			nd	nd	nd	nd
Naphthalene	0.05	nd			nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.05	nd			nd	nd	nd	nd
1,2.3-Trichlorobenzene	0.05	nd			nd	nd	nd	nd
Surrogate recoveries		6.5		1			nu	110
Dibromofluoromethane		124%	120%	117%	131%	120%	122%	122%
Toluene-d8		97%	98%	99%	102%	95%	96%	98%
4-Bromotluorobenzene		102%	104%	105%	96%	103%	98%	101%

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

ADDITIONAL ANALYSIS TEST RESULTS

Analysis of Diesel Range Organics & Lube Oil Range Organics in Soil by Method NWTPH-Dx/Dx Extended

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Diesel Range Organics (mg/kg)	Lube Oil Range Organics (mg/kg)
Method Blank	2/10/2021	2/10/2021	64	nd	nd
LCS	2/10/2021	2/10/2021	65	72%	
B6-10	2/10/2021	2/10/2021	52	nd	nd
B7-4	2/10/2021	2/10/2021	73	nd	nd
B7-16	2/10/2021	2/10/2021	68	nd	nd
Reporting Limits				50	100

"---" Indicates not tested for component.

"nd" Indicates not detected at the listed detection limits.

Analyst: LH

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 50% TO 150%

RL	MB	LCS	LCSD	B5-15	B6-4	B6-10	B7-16
			the second se			02/01/21	02/02/2
(mg/Kg)	02/12/21	02/12/21	02/12/21			02/12/21	02/12/2
				19%	16%	21%	19%
0.05							15
1 C C C C C						397E)	nd
		1000	0.001				nd
1		103%	94%				nd
1							nd
	000		in the second se	19.00			nd
		75%	68%	2,2,22			nd
				10.00			nd
0.175							nd
						10070	nd
1000						nd	nd
	100 44		1000		nd	nd	nd
0.14, 4, 4,		76%	66%		nd	nd	nd
					nd	nd	nd
77575		1.11		2.546	nd	nd	nd
		82%	70%	nd	nd	nd	nd
				nd	nd	nd	nđ
12 5 77 77				nd	nd	nd	nd
175775	1.4.44		112%	nd	nd	nd	nd
1. 2. 1. 2.	nd	125%	106%	nd	nd	nd	nd
	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.02	nd	117%	102%	nd	0.06	0.05	nd
0.05	nd	130%	115%	nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	5075	nd
0.05	nd			nd	1.4.6.6.6		nd
0.05	nd			nd	nd		nd
0.05	nd			nd	nd		nd
0.05	nd			nd	nd		nd
0.05	nd			nd	nd		nd
0.05	nd					1 - 0 - mail	nd
0.05	nd			nd	nd	nd	nd
	129%	124%	116%	12104	11994	12502	126%
							98%
	101%	105%	107%	99%	106%	98%	98%
	(mg/Kg) 0.05 0.0	02/12/21 (mg/Kg) 02/12/21 0.05 nd 0.05	02/12/21 02/12/21 02/12/21 (mg/Kg) 02/12/21 02/12/21 0.05 nd 02/12/21 0.05 nd 03% 0.05 nd 103% 0.05 nd 75% 0.05 nd 76% 0.05 nd 127% 0.05 nd 125% 0.05 nd 125% 0.05 nd 125% 0.05 nd 125% 0.05 nd 130% 0.05 nd 130% 0.05 nd 130% 0.05 nd 0.05 0.05	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	02/12/21 $02/12/21$ $02/12$	02/12/21 02/12/21

Analysis of Chlorinated Volatile Organic Compounds in Soil by Method 8260C/5035

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

Analyst: Jennifer A

TIENT: Califies Automate Date: C1-C1 PAGE Log DORESS: 1/300 1/27 ave ME 3/20 Bellan USE DORESS DORE	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn Around Time: 24 HR 48 HR 5 DA	Turn Around Time	-					NOTES:	Phone: 360-459-4570	Phon						le 200	1210 Eastside Street SE, Suite 200	0 East
Autored Arssociates Type Type PAGE DATE: $2-1-21$ PAGE Information 112 Th ave ME # 3GS Bellcuar UK (8004) Information Informati	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L)				0	ND./COL	GOOD CC	RECEIVED										
Auseric Associates Tice. DATE: \mathcal{L} -Cl PAGE ICT Auseric Associates Tice. PAGE Construction PROJECT NAME: Free start. OF COCS EMAIL independences existentic.com IOCATION: VCI Server COLTION: VCI Server COLLECTOR:	CHAIN-OF-CUSTODY RI Autom MAIL ARC Colspan="2">Char UX (3800") PROJECT MANAGER: Char UX (3800") Colspan="2">PROJECT MANAGER: Char Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" C	in a	1.4				NA	TACT? Y/W	SEALS IN	ATE/TIME	D	nature)	ED BY (Sig	RECEIV	TIME	DATE/	re)	SHED BY (Signatu	UDNI
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ctor	Call find	26		VERS	CONTAIN SEALS Y	F CUSTODY	CHAIN OI	¢.	2.62	det	7 Ruce	Com	81	22		a har	101
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		LABORATORY NO			ECEIPT	AMPLE R	5		ATE/TIME	0	nature)	ED BY (Sig	RECEN	TIME	DATE/	18)	SHED BY (Signatu	LINQU
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2		-	-	-	-		-				-		E		d'	01 Sq	18.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	53			-	-	-	-			X.	4	XX		A.			55-3	17.
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W		-	-	-					X	-			Center			134	16.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2		-	-			_	-		_				£	89:2		B4-15	15.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2		-	_	-	-	_		-	R	1	5		-	12:04		B4-10	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2		-		_	-	-	-		X	4	_		Spil		100.0	84-4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5		-	-	-	-	-	_	_	X	2	XV		Jose		11-15	63	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3		-	_	_		-	_	-		_			t	1:01		63-15	1
$ \frac{d}{dx} \frac{\Delta x_{SO}}{\Delta x_{SO}} \frac{d}{dx} \frac{d}{$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2		-	-	-	_	_	-	_	X	K I	in the second		1	11XCH	10	63-10	
a.ve $M = 306$ Bell cur $M = 4306$ Bell cur $M = 4306$ Bell cur $M = 4306$ Bell cur $M = 1000$ EMAIL infe $M = 4306$ Bell cur $M = 48004$ $PROJECT$ $PROJECT$ $PROJECT$ $PROJECT$ $PROJECT$ $PROJECT$ $PROJECT$ $PROJECT$ $MRME:$ $Frester OF Semple container E = 1000 E = 1000 OF OCATION: OCATION: PROJECT PROJECT PROJECT PROJECT NAME: Frester ORTEOF semple container E = 1000 E = 1000 E = 10000 ORTEOF OCATION: PROJECT NAME: PROJECT NAME: PROJECT NAME: ORTEOF semple container E = 10000 E = 100000 E = 10000000 ORTEOF OCULECTOR: Cr: $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2		-	-	-	-	-	-		_	-	_		5.		1	B3-4	
a. $A332$ clothes $Txc.$ DATE: $C-1-21$ PAGE OF Marc $NC + 3CC$ $Bellc.ur$ $UX (8004)$ PROJECT NAME: $Frestrat OF Semple container E_{ext}^{ext} S_{ext}^{ext} S_{ex$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5		-	1	-	-	X	1		X	2			Later	10:40 4	1	102	
$\frac{d}{dx} \frac{dx}{dx} \frac{dx}$	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	1		-		-	-		-		_		_		E	10:25		82-15	
$\frac{d}{dx} \frac{dx}{dx} \frac{dx}$	$\begin{array}{c c} SN \\ \hline \\ Sample Number \\ B_{1-15} \\$	1		-	-			-	-				_		1		1	62-10	
$\frac{d}{dx} \frac{dx}{dx} \frac{dx}$	$\begin{array}{c c} SV\\ \hline \\ Simple Number & log Risk \\ B_1 & lit S Rick \\ \hline \\ B_1 & lit S Rick \\ \hline \\ \\ \end{array} \end{array} \begin{array}{c c} DATE: C \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2		+	-	_		X	-	XX	X	1			5:	51:01		82-2.5	
$\frac{d}{dx} \frac{dx}{dx} \frac{dx}$	$\begin{array}{c} SN\\ Sample Number \\ B_{1-15} \\ Structure \\ Stru$	2		-	-	1	-	-	-	-	X	7			Labo	1 04:40	1	18	
$\frac{d}{dx} \frac{dx}{dx} \frac{dx}$	$\begin{array}{c c} SN \\ \hline \\ Sample Number \\ B(-16) \\ \hline \\ B(-16) \\ \hline \\ B(-16) \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline			-		-	-		-		_	_			E	12:29		31-15	3.
$\frac{d}{dx} \frac{A350 \text{ clocks Twc.}}{A350 \text{ clocks Twc.}} = \frac{DATE: 2-1-21}{PROJECT NAME: Free Kr.c.} = \frac{DATE: 2-1-21}{PROJECT Free Kr.c.} = D$	$\frac{d}{dx} = \frac{A_{2} + B_{2} +$	2		-	-	1		-	-	_	x	1	X		Y.	9:22	1	51-16	-
$\frac{d}{dx} \frac{A352 \text{ cricks } T_{\text{NC}}}{A \text{ ave } \mathcal{N} \in \mathcal{H} \text{ SCG } Bell_{\text{Cutr}} \mathcal{H} \frac{48004}{8004} $	$\frac{d}{dx} = \frac{A_{2} S_{2} C_{10} + S_{2} T_{KC}}{A_{12} C_{10} + S_{2} C_{10} + $	4		-	1	-		-							8	9:15	1	51-4	
Al Associates Jr.C., DATE: 2-1-21 PAGE 1 OF The ave NE # 300 Belleur WH (8004 PROJECT NAME: Firestone EMAIL inferenciation sono cibitante increan SG(1 PROJECT MANAGER: Gric Cueson COLLECTOR: Gric Cueson Collection Col	Mave NE #300 Bellever WX (8004 PROJECT N EMAIL information association LOCATION: 394 PROJECT MANAGER: Eric Zuern COLLECTOR		11	\square	WO Sinte #30.1	ORO : 830;	ASBES	ATCAS ANOTALS	1.8083 11 1155	PANY PANY	NOC MORE	14.	7.0.	ontainer Type			Depth	ple Number	San
email information and associated to control to cation: Rente A control to cation to ca	MAIL information associates intering LOCATION:	COLLECTION:		UCN	1- 1		ECTO	COLI	Ś	1 - 1	Serie	GER:	MANA	ROJECT		139-		VT PROJECT	LIEP
n ave NE #300 Bellchur WX (8004 PROJECT NAME: Firestone	n ave NE #300 Bellevier WX (8004 PROJECT N		44	Pen		Ĩ	ATION	LOC	3	s.Esiluc.	55600	surculat a	עלטו אשע	Nope	EMAIL	1	200-2	VE: 125-4	HO
GAVITE ALMENTAL ASSOCIATES TRC. DATE: 2-1-21 PAGE 1 OF	Gavino Aurenti Associates Jac, DATE: 2		esteric	The		AME:	JECT N	PRO	204	989	r why	Sellen	1.2	UC #		12	11 0	RESS: 138	ADD
	CHAIN-OF-CUSTODY RECORD		AGE	P		1-2-1-	1	DAT					JKC.	ciates	4550	atel	Park of	L	CLIE

LENT:	PLE RECEIPT LABORATOR	REC			
LIENT: LIENT DATE: C-1-21 PA INT PROJECT R: VOI37-1 PROJECT MANAGER: Container Email: Email: Container Email: Container Email: Container Email: Email: <td< th=""><th>NTAINERS TE (</th><th></th><th></th><th></th><th></th></td<>	NTAINERS TE (
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	The (all	DATE/TIME SEAL	RECEIVED BY (Signature)	DATE/TIME	(ELINQUISHED BY (Signature)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LABORATO		Cary mu	2:00	1000 yes
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	RECEIVED BY (Signature)	DATE/TIME	LELINQUOHED BY (Signature)
LIENT: EAX DATE: $C-1-21$ PA DORESS: EMAIL FROJECT MAIL PROJECT NAME: Freshe LIENT PROJECT #: $CUI39-1$ PROJECT MANAGER: EXTC Zuern COLLECTOR: Example Number Sample Number Deab Time Type $\begin{bmatrix} d & d & d & d & d & d & d & d & d & d $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
LIENT: EAL DATE: $C - 1 - 21$ PA DDRESS:					10.
LIENT: $\mathcal{L}\mathcal{L}$ DATE: \mathcal{C} - \mathcal{I} pate: DORESS: EMAIL EMAIL PROJECT NAME: Frisher HONE: EMAIL PROJECT NAMAGER: Constance \mathcal{L} Sample Number Doption: Time Time Time \mathcal{L}					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
					12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,H
$S: _ _ EMAIL _ EMAIL _ EMAIL _ EMAIL _ EMAIL _ PROJECT MANAGER: _ Critic Zucum Collectors: _ States and a general sample container \begin{bmatrix} g \\ g $					10.
$S: _ _ EMAIL _ EMAIL _ EMAIL _ EMAIL _ PROJECT MANAGER: Critic Container S: _ _ U(1)3q - (PROJECT MANAGER: Critic Container S: _ U(1)3q - (PROJECT MANAGER: Critic Con$					
$S_{1} = EMAIL = EMAI$					
$S: _ EMAL _ EMAL _ EMAL _ EMAL _ Critical MANAGER: Critical States = Critical Stat$		X	X	1:45	
S: EMAIL DATE: $C - 1 - 21$ PA FROJECT #: $U(x)39 - 1$ PROJECT MANAGER: $Cric Zuern$ DATE: $C - 1 - 21$ PA Number Depth Time Type $E = 1 - 21$ PA DATE: $C - 1 - 21$ PA S: EMAIL EMAIL ENDIECT MANAGER: $Cric Zuern$ DATE: $C - 1 - 21$ PA Number Depth Time Type $E = 1 - 21$ PA Collectors: $E = 2 - 2 - 21$ S: Sample Container $E = 2 - 1 - 21$ PA Collectors: $E = 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2$		1	XX X		
$S_{\rm result} = \frac{EMAL}{EMAL} = \frac{EMAL}{EMAL} = \frac{EMAL}{PROJECT MANAGER: Cric Crear} = \frac{EMAL}{Location: Firester} = \frac{EMAL}{$	- 1	0		1:26	
$S_{1} = EMAIL = Emai$			1 1 1 0	1:73	
$S: _ EMAIL _ EN`C Z JELM LOCATION: _ Frester Locatio: Frester Locatio: Frester Locatio: Fres$		X	* *	ž	
S: EMAL DATE: $C - 1 - 21$ PAGE S: EMAL PROJECT NAME: Fire start PROJECT #: $UC(139 - 1)$ PROJECT MANAGER: Eric Zuern Number Depth Time Sample Container Start Number Depth Time Type Start Eric Zuern				12:47	
S:EMAILEMAILEMAILEMAILEMAILEMAILEMAILENTECT #: 40139-1 PROJECT MANAGER: ENTE ZUENT COLLECTOR: ENTEZIENT	2455700458004 869484004 4470434004 4470434000 458655705944 458655705944 5905000	1.6260C 1.05.8260 5.67.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	Intracio Intracio Intracista Anto an Intracaso inte	Sample Time Type	
SIEMAILEMAILEMAILEMAILEMAILLOCATION:ROJECT NAME:ROJECT NAME:ROJE	6xic Ziem	Enictum	ROJECT MANAGER:	Γ	1
CAT DATE: 2-1-21 PAGE 2 PROJECT NAME: Firestere				EMAIL	PHONE:
EAT DATE: 2-1-21 PAGE 2	Fire				ADDRESS:
	2-1-21 PAGE 2		Π	ex-	CLIENT:

Much Associates Tax Date: 2-2-21 S 112 ^m ax NE #30C Red(rive, WA & 8/cc) BROIECT NAME: Freedom Versee (G15 ^k) PROJECT MANAGER: Girls and	BHR SOA	Turn Around Time: 24 HR 48 HR SDA		Phone: 360-459-4670			e 200	Eastside Street SE, Suite 200
CHAIN-OF-CUSTODY REC BORDECT MAME: Solution of the second	1	1	and a second second	MOTEC				
Mulaulte Associates Tax. Onte: C-2-21 PROJECT NAME: Freedown S. 112 ^m a.w. NE #30C Bellcviue, WA 9800 Brouler NAME: Freedown C-9023 EMAIL Market Associates inc. rev COLECTION: COLECTION: COLECTION: Freedown Windows Sample consister Image Image Image Image Image Sample revel Image Image Image Image Image Image Sample reve		I.	ED GOOD COND /COLD	RECEIV				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	NTACT? Y/W/NA	DATE/TIME SEALS	RECEIVED BY (Signature)	ATE/TIME		SHED BY (Signatur
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(4)	OF CUSTODY SEALS Y/N/IIA	-		12:00	ľ	Al Ma
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		LABORATO	SHIMPLE VECENI		N. N	12-2-21		111
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5			h	RECEIVED BY (Signature)	ATE/TIME		SHED BY (Signatur
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12			X	TX X	C Wat		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1				-	4 W	1	810-12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3			X	-		1	815-8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10						- 1	610-3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5			X	++			84
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5					t t	1	21-69
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5						1	8-98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2			T	++	11/2011		84-2
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				X	1XX	Stran		68
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1					4		128-16
$\label{eq:constructed} \begin{array}{ c c c c c c } \hline \label{eq:constructed} \\ \hline \end{tabular}	14			t	ヤヤー	1 1 13		158-8
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	100							1-89
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	P		_		5 Wat		131
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	A STA		-		4 4	1	157-16
Chainesting Associates Tuc. Date: 2-2-1 PROJECT NAME: Project NAME: 1386 112 ^m ave NE #30C Cellcrine, WA 98004 PROJECT NAME: PROJECT NAME: PROJECT NAME: 25-455-9025 EMAIL 1460200000000000000000000000000000000000	31				7	0	1.00	87-12
Channester Associates Tuc. Date: 2-2-21 PROJECT NAME:	15			X	_	Ū L		B7-9-16
Chainenter Location Date: Z-Z-Z PROJECT NAME: Fresh 1386 112 ^m a.v. NE # 30C Belleving, WA 98004 PROJECT NAME: Fresh 25-455-9025 EMAIL indee envintementelasse sides inc. com Date: Z-Z-Z PROJECT NAME: Fresh 25-455-9025 EMAIL indee envintementelasse sides inc. com Docation: Environmentelasse sides inc. com Contect name: Fresh 25-455-9025 Consiner 100 Environmentelasse sides inc. com Contect name: Fresh 25-455-9025 Consiner 100 Environmentelasse sides inc. com Contect name: Fresh 25-455-9025 Consiner 100 Environmentelasse sides inc. com Contect name: Fresh 25-455-9025 Consiner 100 Environmentelasse sides inc. com Contect name: Fresh 25-455-9025 Consiner 100 Environmentelasse sides inc. com Contect name: Fresh 25-455 Environmentelasse sides inc. Environmentelasse sides inc. Environmentelasse sides inc. Environmentelasse sides inc. 25-455 Environmentelasse sides inc. Environmentelasse sides inc. Environmentelasse sides inc. Environmentelasse sides inc. 25-455 Environmen	-					3 1	1	37-8
Chained Associates Two Date: 2-2-21 PROJECT NAME: Fresh 1386 112 ^m ave NE # 300 20(Lviue, WA 9.8004 PROJECT NAME: Fresh 25-455-9025 EMAIL 14600 animer 14600 animer 18 Fresh Location: Fresh DIECT #: Verails 401361 project MANAGER: Exic 2 xer Collection: Collection: Exit Diect #: Verails 401361 project MANAGER: Exit 2 animer 18 18 18 18 18 10 Diect #: Verails Container 18 18 18 18 18 18 18 19 19 19		112	0 0 0 0 0		Q	(Sei)	1	87-4
CHAIN-OF-C Avirenmented Associates Two. 1386 112" ave NE # 300 Belleving WA 98004 25-455-9025 EMAIL inderendendensidesing octor DIECT 11: 4000561 PROJECT MANAGER: Enic Zuern COLLECTOR: Enic Zuern		1111	100 5 A teluis 511 5 105 61 11 20 5.016 530 1 20 5.016 530 1	13760G 102(83760 102(83760 102(83760 102(83760 102(83760 102(83760)	instancio Vintolista Ano ca principacian	Sample	Depth Tir	ple Number
CHAIN-OF-C ISBG 112th ave NE #300 Belleving WA 98004 DATE: 2-2-21 PROJECT NAME: Fresh 25-455-9625 EMAIL info@environmentalssociatesinc.com LOCATION: Rent			Gric Z	Chicken	1	s fulst-l pp	#	T PROJECT
CHAIN-OF-C Chain-OF-C Chain-OF-C Chain-OF-C DATE: 2-2-21 PROJECT NAME: Fresh		enter	5	aciatesiac. cow	ree currented s	. L.		VL. 100 1
CHAIN-OF-C Invirented Associates Tuc. DATE: 2-2-21 P		restant	AME:	WALLSOON	The relieve	11	- 9075	21
CHAIN-OF-C	H	-	12-2-2	111 00000	tare Zur.	- r	enulated	T
	ECOF	F-CUSTODY R	CHAIN-C					
Chicken 1				1.0000.1	(N

From:	donspencer@environmentalassociatesinc.com	
Sent:	Tuesday, February 9, 2021 1:30 PM	
To:	Jennifer Arnold	
Cc:	ESN Analytical	
Subject:	RE: Corrected Reports Firestone 02/1/21	
Hi Jennifer,		
Based on our initial re	esults, I'd like to run a few more samples from the Renton Firestone site.	
'd like to run the follo	owing soil samples for Diesel-extended:	
86-10		
37-4		
87-16		
'd like to run the follo	owing samples for chlorinated VOCs:	
35-15		
36-4		
6-10		

Eric Zuern Environmental Associates, Inc. Phone: 425-455-9025

INVOICE

ESN ANALYTICAL 3155 NE Sunset Blvd, Suite A Renton, WA 98056

February 16,2021

BILL TO: Toula Properties LLC 3801 92nd Ave NE Bellevue WA 98004 REMIT TO: ESN ANALYTICAL C/O JONAS EVANGELISTA 10701 Main St., Unit 710 Bellevue, WA 98004

Tax ID: 85-3345717

ATTENTION: Mr. Curt Kruse

PROJECT: Firestone 351 Rainier Ave., S, Renton, WA

PROJECT NUMBER: 40139-1 PROJECT MANAGER: ERIC ZUERN (EAI)

TERMS: NET 30 DAYS

Date Samples Received	Quantity	Description	Sample Matrix	Unit Cost (5 dayTAT) per Sample	AMOUNT
02/01/21, 02/02/21	10	NWTPH-Gx	w	\$60.00	\$600.00
02/01/21, 02/02/21	13	NWTPH-Dx	w	\$60.00	\$780.00
02/01/21, 02/02/21	10	NWTPH-Gx	S	\$60.00	\$600.00
02/01/21, 02/02/21	10	NWTPH-Dx	S	\$60.00	\$600.00
02/01/21, 02/02/21	10	VOC	W	\$120.00	\$1200.00
02/01/21, 02/02/21	10	VOC	S	\$120.00	\$1200.00
02/01/21,02/02/21	4	Chlorinated VOC	S	\$100.00	\$400.00
02/01/2021	1	РАН	W	\$160.00	\$160.00
02/01/2021	1	PAH	S	\$160.00	\$160.00
02/01/2021	1	PCB	W	\$75.00	\$75.00
02/01/2021	1	PCB	S	\$75.00	\$75.00
02/01/2021	1	MTCA 5 Metals	S	\$90.00	\$90.00
02/01/2021	1	MTCA 5 Metals	W	\$90.00	\$90.00
02/01/2021	32	5035 Sampling Kit	S	\$4.00	\$128.00
The start of the s				TOTAL AMOUNT DUE	\$6158.00

Invoice#: 1017

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 10, 2021

Eric Zuern, Project Manager Environmental Associates, Inc. 1380 112th Ave. NE, 300 Bellevue, WA 98004

Dear Mr Zuern:

Included are the results from the testing of material submitted on February 1, 2021 from the Renton Firestone PO 40139-1, F&BI 102015 project. There are 12 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

le

Michael Erdahl Project Manager

Enclosures EAI0210R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 1, 2020 by Friedman & Bruya, Inc. from the Environmental Associates Renton Firestone PO 40139-1, F&BI 102015 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Environmental Associates</u>
102015 -01	B5
102015 -02	B9
102015 -03	B10

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

APH EC5-8 aliphatics were detected in the MA-APH method blank at a level greater than one tenth the concentration detected in the samples. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: B5 Client: Environmental Associates	
Date Received: 02/01/21 Project: Renton Firestone PO 40139-1, F&BI	102015
Date Collected: 02/01/21 Lab ID: 102015-01 1/5.2	
Date Analyzed: 02/05/21 Data File: 020427.D	
Matrix: Air Instrument: GCMS12	
Units: ug/m3 Operator: bat	
% Lower Upper	
Surrogates: Recovery: Limit: Limit:	
4-Bromofluorobenzene 101 70 130	
Concentration	
Compounds: ug/m3	
APH EC5-8 aliphatics 1,900	
APH EC9-12 aliphatics 510	
APH EC9-10 aromatics 180	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	B9	Client	:	Environmental Associates
Date Received:	02/01/21	Projec	et:	Renton Firestone PO 40139-1, F&BI 102015
Date Collected:	02/01/21	Lab II	D:	102015-02 1/3.3
Date Analyzed:	02/05/21	Data	File:	020426.D
Matrix:	Air	Instru	iment:	GCMS12
Units:	ug/m3	Opera	tor:	bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 100	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 910 fb			
APH EC9-12 aliph				
APH EC9-10 arom				

ENVIRONMENTAL CHEMISTS

Client Sample ID: B10	Client:	Environmental Associates
Date Received: 02/01/21	Project:	Renton Firestone PO 40139-1, F&BI 102015
Date Collected: 02/01/21	Lab ID:	102015-03 1/3.1
Date Analyzed: 02/05/21	Data File:	020424.D
Matrix: Air	Instrument:	GCMS12
Units: ug/m3	Operator:	bat
%	Lower Upper	
Surrogates: Recovery:	Limit: Limit:	
4-Bromofluorobenzene 99	70 130	
Concentration		
Compounds: ug/m3		
APH EC5-8 aliphatics 710 fb		
APH EC9-12 aliphatics 410		
APH EC9-10 aromatics 190		

ENVIRONMENTAL CHEMISTS

Date Received: Date Collected: Date Analyzed: Matrix:	Collected: Not Applicable Analyzed: 02/04/21 fix: Air		:: et: D: File: ment:	Environmental Associates Renton Firestone PO 40139-1, F&BI 102015 01-221 MB 020413.D GCMS12
Units:	ug/m3	Opera	tor:	bat
Surrogates: 4-Bromofluorobenz	% Recovery: zene 103	Lower Limit: 70	Upper Limit: 130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha APH EC9-12 aliph APH EC9-10 arom	atics <50			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	te Received: 02/01/21 te Collected: 02/01/21 te Analyzed: 02/05/21 atrix: Air		Client Projec Lab II Data Instru Opera	et: D: File: 1ment:	Environmental Associates Renton Firestone PO 40139-1, F&BI 102015 102015-01 1/5.2 020427.D GCMS12 bat
		%	Lower	Upper	
Surrogates:]	Recovery:	Limit:	Limit:	
4-Bromofluorobenz		101	70	130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
T 7' 1 1 1 1					
Vinyl chloride		<1.3	<0.52		
Chloroethane		<14	<5.2		
1,1-Dichloroethene	.1	<2.1	< 0.52		
trans-1,2-Dichloroe	thene	<2.1	< 0.52		
1,1-Dichloroethane		<2.1	<0.52		
cis-1,2-Dichloroethe		<2.1	<0.52		
1,2-Dichloroethane		< 0.21	<0.052		
1,1,1-Trichloroetha	ne	49	9.0		
Benzene		4.7	1.5		
Trichloroethene		<0.56	<0.1		
Toluene		<98	<26		
1,1,2-Trichloroetha	ne	<0.28	<0.052		
Tetrachloroethene		440	66		
Ethylbenzene		16	3.6		
m,p-Xylene		92	21		
o-Xylene		25	5.7		
Naphthalene		3.1	0.58		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	B9 02/01/2 02/01/2 02/05/2 Air ug/m3	21	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	Environmental Associates Renton Firestone PO 40139-1, F&BI 102015 102015-02 1/3.3 020426.D GCMS12 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	100	70	130	
		_			
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<0.84	<0.33		
Chloroethane		<0.84 <8.7	<0.33 <3.3		
1,1-Dichloroethene		<0.7 <1.3	<0.33		
trans-1,2-Dichloroe	thone	<1.3 <1.3	<0.33 <0.33		
1,1-Dichloroethane		<1.3 <1.3	<0.33 <0.33		
cis-1,2-Dichloroethe		<1.3	<0.33 <0.33		
1,2-Dichloroethane		< 0.13	<0.33		
1,1,1-Trichloroetha	. ,	~0.15 3.6	<0.033 0.67		
Benzene	ne	5.0 5.4	1.7		
Trichloroethene		< 0.35	<0.066		
Toluene		<62	<16		
1,1,2-Trichloroetha	ne	<0.18	< 0.033		
Tetrachloroethene		<22	<3.3		
Ethylbenzene		15	3.6		
m,p-Xylene		86	20		
o-Xylene		23	5.2		
Naphthalene		3.4	0.64		
-					

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

3.6

0.69

Naphthalene

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	B10 02/01/2 02/01/2 02/05/2 Air ug/m3	21	Client Projec Lab II Data I Instru Opera	ct: D: File: ument:	Environmental Associates Renton Firestone PO 40139-1, F&BI 102015 102015-03 1/3.1 020424.D GCMS12 bat
Sumagataa		%	Lower	Upper	
Surrogates: 4-Bromofluorobenze	ene	Recovery: 98	Limit: 70	Limit: 130	
		Concent	tration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<0.79	<0.31		
Chloroethane		<8.2	<3.1		
1,1-Dichloroethene		<1.2	<0.31		
trans-1,2-Dichloroe	thene	<1.2	<0.31		
1,1-Dichloroethane		<1.3	<0.31		
cis-1,2-Dichloroethe	ene	<1.2	< 0.31		
1,2-Dichloroethane	(EDC)	<0.13	<0.031		
1,1,1-Trichloroetha	ne	<1.7	<0.31		
Benzene		5.6	1.8		
Trichloroethene		<0.33	<0.062		
Toluene		63	17		
1,1,2-Trichloroetha	ne	<0.17	<0.031		
Tetrachloroethene		<21	<3.1		
Ethylbenzene		18	4.0		
m,p-Xylene		100	23		
o-Xylene		26	6.1		
Mombehalana		0.0	0.00		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Not A		Client Projec Lab II Data Instru Opera	ct: D: File: 1ment:	Environmental Associates Renton Firestone PO 40139-1, F&BI 102015 01-221 MB 020413.D GCMS12 bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene	103	70	130	
~ .		Concent	ration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		<0.26	<0.1		
Chloroethane		<2.6	<1		
1,1-Dichloroethene		<0.4	<0.1		
trans-1,2-Dichloroe	thene	< 0.4	< 0.1		
1,1-Dichloroethane		<0.4	<0.1		
cis-1,2-Dichloroethe	ene	< 0.4	< 0.1		
1,2-Dichloroethane	(EDC)	< 0.04	< 0.01		
1,1,1-Trichloroetha	ne	<0.55	<0.1		
Benzene		<0.32	<0.1		
Trichloroethene		<0.11	< 0.02		
Toluene		<19	<5		
1,1,2-Trichloroetha	ne	< 0.055	<0.01		
Tetrachloroethene		<6.8	<1		
Ethylbenzene		< 0.43	<0.1		
m,p-Xylene		<0.87	<0.2		
o-Xylene		<0.43	<0.1		
Naphthalene		<0.26	< 0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/21 Date Received: 02/01/21 Project: Renton Firestone PO 40139-1, F&BI 102015

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 102015-03 1/3.1 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	710 fb	690 fb	3
APH EC9-12 aliphatics	ug/m3	410	400	2
APH EC9-10 aromatics	ug/m3	190	170	11

Laboratory Code: Laboratory Control Sample

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
APH EC5-8 aliphatics	ug/m3	<u>67</u>	85	70-130
APH EC9-12 aliphatics APH EC9-10 aromatics	ug/m3 ug/m3	67 67	$\begin{array}{c} 103 \\ 113 \end{array}$	70-130 70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/21 Date Received: 02/01/21 Project: Renton Firestone PO 40139-1, F&BI 102015

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 102015-03 1/3.1 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<0.79	<0.79	nm
Chloroethane	ug/m3	<8.2	<8.2	nm
1,1-Dichloroethene	ug/m3	<1.2	<1.2	nm
trans-1,2-Dichloroethene	ug/m3	<1.2	<1.2	nm
1,1-Dichloroethane	ug/m3	<1.3	<1.3	nm
cis-1,2-Dichloroethene	ug/m3	<1.2	< 1.2	nm
1,2-Dichloroethane (EDC)	ug/m3	<0.13	<0.13	nm
1,1,1-Trichloroethane	ug/m3	<1.7	<1.7	nm
Benzene	ug/m3	5.6	5.3	6
Trichloroethene	ug/m3	<0.33	< 0.33	nm
Toluene	ug/m3	63	<58	nm
1,1,2-Trichloroethane	ug/m3	<0.17	<0.17	nm
Tetrachloroethene	ug/m3	<21	<21	nm
Ethylbenzene	ug/m3	18	16	12
m,p-Xylene	ug/m3	100	93	7
o-Xylene	ug/m3	26	24	8
Naphthalene	ug/m3	3.6	3.4	6

Laboratory Code: Laboratory Control Sample

	1		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	99	70-130
Chloroethane	ug/m3	36	108	70-130
1,1-Dichloroethene	ug/m3	54	102	70-130
trans-1,2-Dichloroethene	ug/m3	54	99	70-130
1,1-Dichloroethane	ug/m3	55	102	70-130
cis-1,2-Dichloroethene	ug/m3	54	101	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	103	70-130
1,1,1-Trichloroethane	ug/m3	74	102	70-130
Benzene	ug/m3	43	101	70-130
Trichloroethene	ug/m3	73	99	70-130
Toluene	ug/m3	51	97	70-130
1,1,2-Trichloroethane	ug/m3	74	102	70-130
Tetrachloroethene	ug/m3	92	97	70-130
Ethylbenzene	ug/m3	59	103	70-130
m,p-Xylene	ug/m3	120	104	70-130
o-Xylene	ug/m3	59	106	70-130
Naphthalene	ug/m3	71	105	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

 ${\bf j}$ - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

is - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMSNCOCYCOCTO-15_DOC	Ph. (206) 285-8282	Sentile WA 98119-2029	Friedman & Bruya, Inc.							Pio	PS	82	Sample Name	SAMPLE INFORMATION	City, State, ZIP Belle J ve Phone 425-455-4025 Emai	Report To GAIC ZUERN Company Ewino Amerika As
Received by:	Relinquished by:	Received by:	SIGNATURE							808 8233 303	102 4180 307	205 LIN 10	Lab Canister Cont. ID ID ID		Bmail info Peningunental	Associates Inc.
	1 min	- sh	URE		IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	8 IA 1(SG	I IA 1(SG)	2 IA / SG	Reporting Level: L=Indoor Air L SG=Soil Gas (Circle One)		NOTES:	SAMPLERS PROJECT N Zente A
	NAME FARA		PRINT NAME							U 30 7:594	30 9:52 4 0	2-1-21 29 9:43 H	Date Vac. Initial Vac. Sampled ("Hg) Time ("Hg)		Nifer. (a HOK: dder, cam	(signature) (1) IAME & ADDRESS Firestore
	1074	T off	COMPANY	a construction of the second		Sar				LODY XXX		Pirts XXX	TO15 Full Scan TO15 BTEXN TO15 cVOCs APH	ANALYSIS REQUESTED	NVOICE TO	PO#
	-	2-1-2 1	DATE			mples received at 16						Can # 4177	Helium Notes	UESTED	SAMPLE DISPOSAL Profault: Clean after 3 days Archive (Fee may apply)	TURNAROUND TIME

natchee Regional Landfill Grea Reprint Road Ticket# 924155 191 Webb Wenatachee MANAge98802 Ph: (509) 884-2802 Customer Name ANDERSON ENVIRONMENTAL A Carrier r transport Vehicle# 88 Ticket Date 04/27/2022 Payment Type Credit Account Container Manual Ticket# Driver Route Check# Hauling Ticket# Billing# 0508083 Destination Grid Manifest 116848wa Profile 116848WA (CID SOIL) Generator 168-FORMER FIRESTONE AUTO CARE FORMER FIRESTONE AUTO CARE PROPERTY 351 RAIN PO# 21-0050 95860 lb Time Scale Operator Inbound Gross In 04/27/2022 12:06:41 Inbound 39520 lb Janelle Tare Out 04/27/2022 12:19:38 Outbound Janelle Net 56340 lb

Comments

Product	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
 Spwaste Solid Oth-Tons- EVF-P-Standard Environm CDHD FEE-Chelan Douglas TF-TRANSPORTATION FEE T 	100 100	28.17 28.17 28.17 28.17	Tons % Tons Tons			KING KING KING KING

Total Tax/Fees Total Ticket

Tons

28.17

Driver`s Signature

A for RTV anput 87

natchee Regional Landfill Grea Reprint Road Ticket# 924240 191 Webb Wenatachee MANAge98802 Ph: (509) 884-2802 Customer Name ANDERSON ENVIRONMENTAL A Carrier r transport Vehicle# 87 Ticket Date 04/28/2022 Payment Type Credit Account Container Manual Ticket# Driver Route Check# Hauling Ticket# Billing# 0508083 Destination Grid Manifest 116848wa Profile 116848WA (CID SOIL) Generator 168-FORMER FIRESTONE AUTO CARE FORMER FIRESTONE AUTO CARE PROPERTY 351 RAIN PO# 21-0050 109060 lb Time Scale Operator Inbound Gross In 04/28/2022 09:21:38 Inbound Janelle 41640 lb Tare Out 04/28/2022 09:40:26 Outbound Janelle Net 67420 lb

Comments

Product	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
 Spwaste Solid Oth-Tons- EVF-P-Standard Environm CDHD FEE-Chelan Douglas TF-TRANSPORTATION FEE T 	100 100	33.71 33.71 33.71	Tons % Tons Tons			KING KING KING KING

Total Tax/Fees Total Ticket

Tons

33.71

Driver`s Signature

Jel for R Transport 87

natchee Regional Landfill Grea Reprint Road Ticket# 924294 191 Webb Wenatachee MANAge98802 Ph: (509) 884-2802 Customer Name ANDERSON ENVIRONMENTAL A Carrier r transport Vehicle# 84 Ticket Date 04/28/2022 Payment Type Credit Account Container Manual Ticket# Driver Route Check# Hauling Ticket# Billing# 0508083 Destination Grid Manifest 116848wa Profile 116848WA (CID SOIL) Generator 168-FORMER FIRESTONE AUTO CARE FORMER FIRESTONE AUTO CARE PROPERTY 351 RAIN PO# 21-0050 62800 lb Time Scale Operator Inbound Gross In 04/28/2022 13:45:46 Inbound Janelle 42420 lb Tare Out 04/28/2022 14:00:51 Outbound Janelle Net 20380 lb

Comments

Proc	luct	LD%	Qty	UOM	 Rate	Tax/Fee	Amount	Origin	
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		10.19	Tons %				KING	
3	CDHD FEE-Chelan Douglas TF-TRANSPORTATION FEE T	100	10.19 10.19	Tons Tons					
5	SBY125-STAND BY 125\$/HR		3.00	Each					

Total Tax/Fees Total Ticket

Tons

10.19

Driver`s Signature

Al for ETransport

atchee Regional Landfill Grea Reprint Road Ticket# 924816 191 Webb Wenatachee MANAge98802 Ph: (509) 884-2802 Carrier r transport Vehicle# r80 Customer Name ANDERSON ENVIRONMENTAL A Carrier Ticket Date 05/05/2022 Payment Type Credit Account Container Manual Ticket# Driver Route Check# Hauling Ticket# Billing# 0508083 Destination Grid Manifest 116848wa 116848WA (CID SOIL) Profile Generator 168-FORMER FIRESTONE AUTO CARE FORMER FIRESTONE AUTO CARE PROPERTY 351 RAIN PO# 21-0050 60140 lb Time Scale Operator Inbound Gross In 05/05/2022 06:03:16 Inbound Janelle 39860 lb Tare Out 05/05/2022 06:19:16 Outbound Janelle Net 20280 lb

Comments

Product	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
 Spwaste Solid Oth-Tons- EVF-P-Standard Environm CDHD FEE-Chelan Douglas TF-TRANSPORTATION FEE T 	100 100	10.14 10.14 10.14	Tons % Tons Tons			KING KING KING KING

Total Tax/Fees Total Ticket

Tons

10.14

Driver`s Signature

IL for Jason RTransport

Table 749-1Simplified Terrestrial Ecological Evaluation – ExposureAnalysis Procedure under WAC 173-340-7492(2)(a)(ii).ª

Estimate the area of contiguous (connected) undeveloped land on the site or within 500 feet of any area of the site to the nearest 1/2 acre (1/4 acre if the area is less than 0.5acre). "Undeveloped land" means land that is not covered by existing buildings, roads, paved areas or other barriers that will prevent wildlife from feeding on plants, earthworms, insects or other food in or on the soil. 1) From the table below, find the number of points corresponding to the area and enter this number in the box to the right. Points Area (acres) 0.25 or less 4 0.5 5 1.0 6 Ц 7 1.5 8 2.02.5 9 3.0 10 3.5 11 12 4.0 or more 2) Is this an industrial or commercial property? 3 See WAC 173-340-7490(3)(c). If yes, enter a score of 3 in the box to the right. If no, enter a score of 1. 3) Enter a score in the box to the right for the habitat quality of the site, using the rating system 3 shown below^b. (High = 1, Intermediate = 2, Low = 3) 4) Is the undeveloped land likely to attract 2 wildlife? If yes, enter a score of 1 in the box to the right. If no, enter a score of 2. See footnote c. 5) Are there any of the following soil contaminants present: Chlorinated dioxins/furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, Y endosulfan, endrin, heptachlor, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, pentachlorobenzene? If yes, enter a score of 1 in the box to the right. If no, enter a score of 4. 6) Add the numbers in the boxes on lines 2 12 through 5 and enter this number in the box to the right. If this number is larger than the number in the box on line 1, the simplified terrestrial ecological evaluation may be ended under WAC 173-340-7492 (2)(a)(ii).

Footnotes:

c

- **a** It is expected that this habitat evaluation will be undertaken by an experienced field biologist. If this is not the case, enter a conservative score (1) for questions 3 and 4.
- b Habitat rating system. Rate the quality of the habitat as high, intermediate or low based on your professional judgment as a field biologist. The following are suggested factors to consider in making this evaluation:

Low: Early successional vegetative stands; vegetation predominantly noxious, nonnative, exotic plant species or weeds. Areas severely disturbed by human activity, including intensively cultivated croplands. Areas isolated from other habitat used by wildlife.

High: Area is ecologically significant for one or more of the following reasons: Late-successional native plant communities present; relatively high species diversity; used by an uncommon or rare species; priority habitat (as defined by the Washington Department of Fish and Wildlife); part of a larger area of habitat where size or fragmentation may be important for the retention of some species.

Intermediate: Area does not rate as either high or low.

Indicate "yes" if the area attracts wildlife or is likely to do so. Examples: Birds frequently visit the area to feed; evidence of high use by mammals (tracks, scat, etc.); habitat "island" in an industrial area; unusual features of an area that make it important for feeding animals; heavy use during seasonal migrations.