

Naval Facilities Engineering Systems Command Northwest

Final Soil and Groundwater Supplemental Investigation Report, Operable Unit 2 Area 2, Van Meter Road Spill/Drum Storage Site

NAVAL BASE KITSAP KEYPORT KEYPORT, WASHINGTON

April 2023

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Final Soil and Groundwater Supplemental Investigation Report **Operable Unit 2 Area 2,** Van Meter Road Spill/Drum Storage Area Naval Base Kitsap Keyport **Keyport, Washington**

5 April 2023

Department of the Navy Naval Facilities Engineering Systems Command Northwest 1101 Tautog Circle, Suite 203 Silverdale, WA 98315-1101

Prepared by: EA Engineering, Science, and Technology, Inc., PBC 2200 6th Avenue, Suite 707 Seattle, WA 98121

Prepared under: N44255-20-D-6006, Contract Task Order N44255-21-F-4076 DCIN: EA-LTM/OM-6006-23-0027

Preparer Signature:	
Hannah Dennis	5 April 2023
Hannah Dennis, EA Report Preparer	Date
Reviewer Signature:	5 April 2023
Dana Ramquist, EA Task Order Manager	Date
Reviewer Signature:	
Rotade O. Maling	5-April-2023

Rrinda O. Mading

Brenda Nuding, EA Program Quality Assurance Manager

Table of Contents

Lis	t of A	ppendicesii
Lis	t of F	ïguresii
Lis	t of T	ablesii
Ac	ronyr	ns and Abbreviationsiii
1	Intro	duction
	1.1	Site Description and Background1-1
	1.2	Environmental Setting
	1.3	Summary of Previous Investigations1-9
	1.4	Project Objective
	1.5	Scope of Work
	1.6	Remediation Goals and Project Action Levels
2	Field	Activities
Ζ		
	2.1	Borehole Drilling, Well Installation, and Soil Sampling
	2.2	Well Development
	2.3	Groundwater Sampling2-5
	2.4	Investigation Derived Waste Handling and Disposal2-5
	2.5	Deviations
3	Soil	and Groundwater Sampling Results
	3.1	Soil Analytical Results
	3.2	Groundwater Elevations and Field Parameters
	3.3	Groundwater Analytical Results
	3.4	Laboratory Analysis
	3.5	Data Quality
4	Con	clusions and Recommendations4-1
	4 1	Conclusions
	4.1	Recommendations
	⊣.∠	1.econinienaallons
5	Refe	erences

List of Appendices

Appendix A:	Field Forms and LogbooksA	-1
Appendix B:	Data Quality Assessment ReportB	-1

List of Figures

Figure 1-1. Keyport Site Layout	1-3
Figure 1-2. Area 2 Site Layout	1-5
Figure 1-3. OU 2 Sample Locations	1-7
Figure 3-1. OU 2 Soil Analytical Results	
Figure 3-2. OU 2 Groundwater Analytical Results	3-19

List of Tables

Table 1. Remediation Goals for Area 2 Groundwater	1-11
Table 2. Project Action Levels for Chlorinated Volatile Organic Compounds in Groundwater	1-12
Table 3. Project Action Levels for Chlorinated Volatile Organic Compounds in Soil	1-14
Table 4. Well Construction Details	2-3
Table 5. Soil Boring Sampling Details	2-7
Table 6. Soil Sampling Analytical Data	3-3
Table 7. Groundwater Elevation and Field Parameter Measurements	3-15
Table 8. Groundwater Sampling Analytical Data	3-17

Acronyms and Abbreviations

μg/L <i>microgram</i> (s) per liter
bgs below ground surface
COC chemical of concern
cVOC chlorinated volatile organic compound
DoD Department of Defense
DONDepartment of the Navy
EA EA Engineering, Science, and Technology, Inc., PBC
LOD limit of detection
LTM long-term monitoring
MCL maximum contaminant level
mg/kg milligram(s) per kilogram
MTCAModel Toxics Control Act
NAVFAC NW Naval Facilities Engineering Systems Command Northwest
NBKNaval Base Kitsap
NTUnephelometric turbidity units
OU Operable Unit
PALproject action level
PVC polyvinyl chloride
QC quality control
RGremediation goal
RGremediation goal

Acronyms and Abbreviations

TCEtrichloroethene

1 Introduction

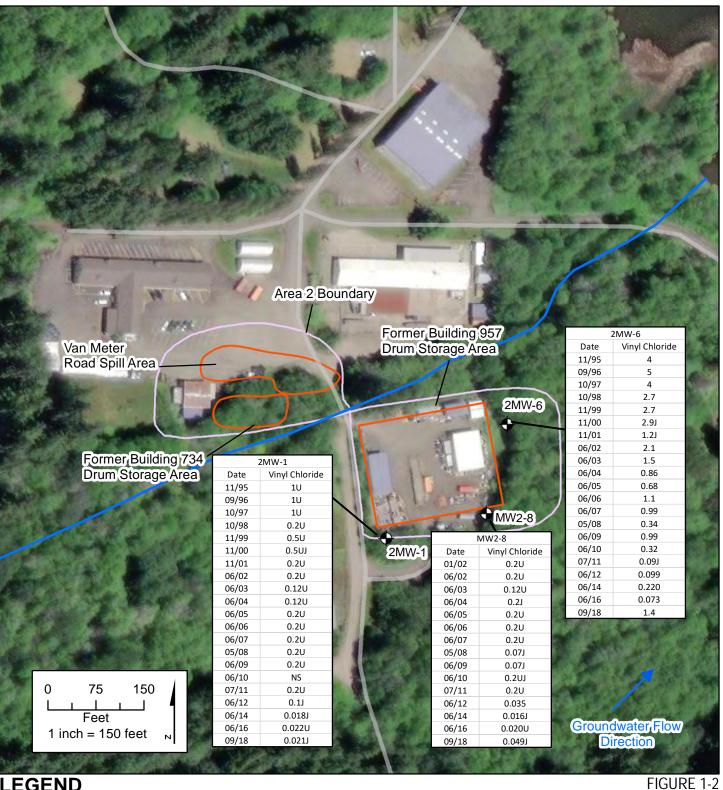
This report summarizes and evaluates the soil and groundwater investigation results for Operable Unit (OU) 2 Area 2 at Naval Base Kitsap (NBK) Keyport, Washington. The purpose of the investigation is to determine whether chlorinated volatile organic compounds (cVOCs) in soil and groundwater extend beyond the existing monitoring well network and to establish current site conditions.

Field activities were performed by EA Engineering, Science, and Technology, Inc., PBC (EA) in June and July 2022 and included well installation and soil and groundwater sampling in accordance with the Tier I Sampling and Analysis Plan (SAP; Department of the Navy [DON] 2022). EA conducted this work for Naval Facilities Engineering Systems Command Northwest (NAVFAC NW) under Contract No. N44255-20-D-6006, Task Order N44255-21-F-4076.

1.1 Site Description and Background

NBK Keyport occupies 340 acres (including tidelands) adjacent to Keyport in Kitsap County, Washington, on a small peninsula in the central portion of the west side of the Puget Sound. The peninsula is bordered by Dogfish Bay to the west, Liberty Bay to the northwest and north, and by Port Orchard Inlet to the northeast, east, and southeast (Figure 1-1). Marine and brackish water bodies on and near the site consist of tide flats, a marsh pond, and a marsh discharging into Dogfish Bay and subsequently Liberty Bay, and a shallow lagoon discharging into Port Orchard Inlet. Freshwater bodies include two creeks discharging into the marsh pond and two creeks discharging into the lagoon. The topography of the site rises gently from the shoreline to an average of 25 to 30 feet above mean sea level, and then rises steeply at the southeast corner of the site to approximately 130 feet above mean sea level.

OU 2 Area 2 is located in the southwest corner of NBK Keyport (Figure 1-2). Area 2 is composed of three distinct sites: Van Meter Road Spill Area and Former Building 734 Drum Storage Area (a small shed that was used for drum storage), both located immediately west of Van Meter Road, and the Former Building 957 Drum Storage Area (a large drum storage facility) located immediately east of Van Meter Road (Figure 1-3). Van Meter Road bisects the site in a generally north/south direction. The western area of the site (Van Meter Road Spill Area and Former Building 734 Drum Storage Area) is bounded by an unnamed creek to the south, the Building 95 parking area to the north and west, and Van Meter Road to the east. The eastern area of the site (Former Building 957 Drum Storage Area) is bound by the same unnamed creek to the north, undeveloped land to the east, Van Meter Road to the west, and an undeveloped, sharp topographic rise to the south that extends to the southern boundary of the installation.


The NBK Keyport property was acquired by the DON in 1913 and first used as a quiet-water range for torpedo testing. The base was expanded during World Wars I and II. During the early 1960s, manufacturing and fabrication operations such as welding, metal plating, carpentry, and sheet metal work were added. In 1978, the facility's function broadened to include various undersea warfare weapons and systems engineering and development activities. Operations currently include test and evaluation, in-service engineering, maintenance and repair, and fleet readiness and industrial base support for undersea weapons systems, countermeasures, and sonar systems.

At OU 2 Area 2, two unpaved drum storage areas were active from the 1940s through the 1960s. These two areas were reportedly used to store the chemicals (including solvents, fuel/oil) used at NBK Keyport during this time period. In 1976, approximately 2,000 to 5,000 gallons of plating shop wastes spilled from a tank truck onto the pavement near Van Meter Road, then into a nearby stream. It was also estimated that between 4,000 and 8,000 gallons of these chemicals were discharged to the two unpaved areas as a result of spills and leaks.

1.2 Environmental Setting

At OU 2 Area 2 the upper aquifer is 30 to 50 feet thick, with the more permeable units near the top and the base of the aquifer (DON 1995). The depth to the water table is 4 to 8 feet below ground surface (bgs). Contours plotted from previous investigations indicate that groundwater flows in a northeasterly direction toward the marsh and shallow lagoon (DON 1995). Groundwater flow direction based on recent July 2022 data corroborates the historical flow direction. There is no current use of groundwater as drinking water at the site. The site is predominantly flat with areas of asphalt pavement and structures covering most of the site. Adjacent to the site to the east is a heavily vegetated potential wetland area with seasonal fluctuations of standing water; however, the area is not currently categorized as wetlands by the installation. The previously mentioned unnamed creek is located north of the Former Building 957 Drum Storage Area.

LEGEND

Stream

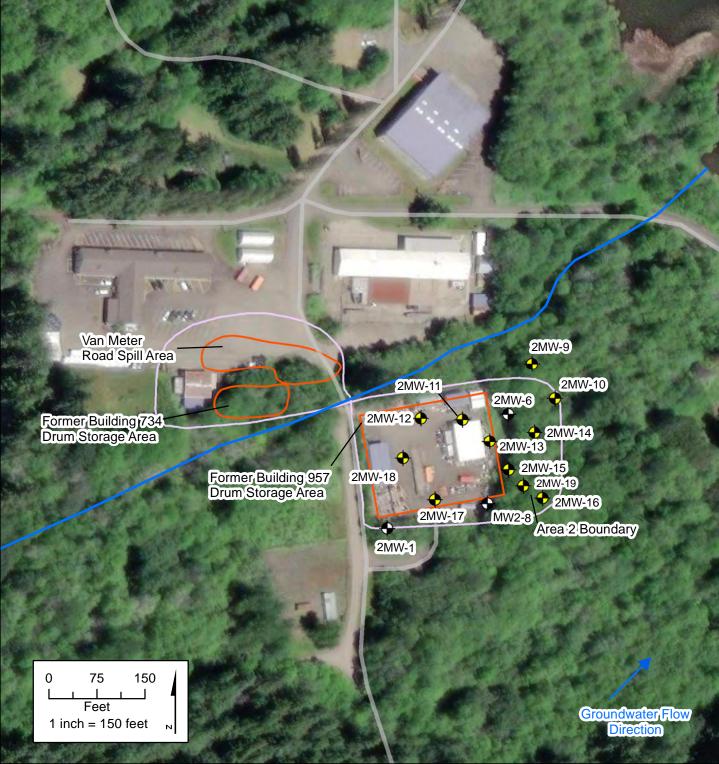
Monitoring Well

Notes:

Ð

Vinyl concentrations are in micrograms per liter. Tables present available vinyl chloride data from groundwater samples collected from 1995 to 2018.

The remediation goal for vinyl chloride is 0.029 micrograms per liter.


J = The result is an estimated concentration.

U = The compound was not detected at or above the stated limit.

AREA 2 SITE LAYOUT SOIL AND GROUNDWATER SUPPLEMENTAL INVESTIGATION REPORT, AREA 2 VAN METER ROAD SPILL/DRUM STORAGE SITE, OPERABLE UNIT 2 NAVAL BASE KITSAP KEYPORT **KEYPORT, WA**

Source: Sealaska 2019

LEGEND

Existing Monitoring Well

New Monitoring Well (Installed in 2022)

Note:

Soil and groundwater samples were collected at each new monitoring well location.

FIGURE 1-3 OU 2 SAMPLE LOCATIONS SOIL AND GROUNDWATER SUPPLEMENTAL INVESTIGATION REPORT, AREA 2 VAN METER ROAD SPILL/DRUM STORAGE SITE, OPERABLE UNIT 2 NAVAL BASE KITSAP KEYPORT KEYPORT, WA

1.3 Summary of Previous Investigations

In September 1984, the DON conducted an Initial Assessment Study, performed under the Navy Assessment and Control of Installation Pollutants program, to identify areas of possible environmental contamination resulting from past methods of storage, handling, and disposal of hazardous substances at NBK Keyport (SCS Engineers 1984). The remedial investigation/feasibility study process and human health and ecological risk assessments for OU 2 were completed in 1993. No human health or ecological risks were identified in association with the site at that time (DON 1993).

Selected remedies for the site included the long-term monitoring (LTM) of groundwater for cVOCs, implemented in 1995 to track potential migration of contaminants and progression of natural attenuation. Institutional controls for land use controls and groundwater use restrictions were implemented at the site in 2000. Due to the ongoing supplemental investigations at Area 1 and Area 8 and this soil and groundwater investigation at Area 2, LTM has been postponed by consensus of the Keyport Project Team until site characterization activities have been completed and the LTM monitoring well network can be reassessed.

1.4 Project Objective

The soil and groundwater investigation is being performed to determine the current magnitude and extent of the cVOC plume. The principal source of cVOCs in Area 2 groundwater is believed to be due to releases from the former drum storage facilities, located at Van Meter Road Spill Area, the Former Building 734 Drum Storage Area, and the Former Building 957 Drum Storage Area. These areas were used to store chemicals (including solvents, fuel/oil) used at NBK Keyport during the 1940s through the 1960s. An estimated 4,000 to 8,000 gallons of these chemicals were discharged in these areas. Trichloroethene (TCE) and vinyl chloride were identified as the remaining chemicals of concern (COCs) in groundwater based on the risk analyses; however, only vinyl chloride remains above the remediation goal (RG), based on the Fifth Five-Year Review (DON 2020).

1.5 Scope of Work

The soil and groundwater investigation included the following scope of work:

- Borehole drilling and well installation
- Well development
- Soil sampling from boreholes

- Groundwater sampling, including collection of water level measurements, field parameter measurements, and collection of samples for offsite laboratory analysis
- Investigation derived waste management
- Laboratory analysis and validation of cVOCs in soil and groundwater
- Reporting

1.6 Remediation Goals and Project Action Levels

The groundwater RGs for Area 2 are based on the human health risk for unrestricted use. The established RGs for COCs in groundwater at Area 2 for cVOCs identified in the Record of Decision (ROD) (DON 1994) are listed in Table 1. No RGs for soil are established in the ROD. The RG for each chemical (i.e., TCE and vinyl chloride) was selected in the ROD as the lowest value included in the applicable or relevant and appropriate regulatory criteria. The RG for TCE was established as 5.0 micrograms per liter (μ g/L), and there has been no change since it was established in the ROD (DON 1994). For vinyl chloride, the RG was established in the ROD (DON 1994). For vinyl chloride, the RG was established in the ROD (DON 1994) as the Model Toxics Control Act (MTCA) cleanup level of 0.023 μ g/L, which at the time was below the practical quantitation limit of 0.1 μ g/L was applied. In 2012, the RG for vinyl chloride was updated to 0.029 μ g/L based on the calculated MTCA B cleanup level using the current oral slope factor. Improved analytical techniques have achieved a practical quantitation limit below 0.029 μ g/L since June 2012.

	Regulatory Criteria and Remediation Goals (µg/L) Drinking Water Pathway						
	Establis						
	Drinking Water MCL						
	Federal	State	MTCA	Remediation			
Chemical of Concern	MCL	MCL	Method B	Goal			
Trichloroethene	5.0	5.0	5.0	5.0			
Vinyl chloride	2.0	2.0	0.0231/	0.0291/			
1994). Since this value was drinking water at the time of on the practical quantitation Washington State Departm Method B cleanup level ha	of the ROD, the ROE n limit. This approac nent of Ecology's Im	D stipulated that the th was in accordance plementation Memory d to 0.029 μg/L, wh	e remediation goal w ce with WAC-173-3 orandum No. 3 (199 ich is used as the re	vould be based 40-700(6) and 93). The MTCA			

Table 1. Remediation Goals for Area 2 Groundwater

ROD = Record of Decision

WAC = Washington Administrative Code

During the scoping meeting on 13 July 2021, it was determined that cVOCs in soil and water will be compared to project action levels (PALs) presented in Table 2 and Table 3, which reflect the most stringent, current criteria based on the groundwater and soil to surface water pathways.

Table 2. Project Action Levels for Chlorinated Volatile Organic Compounds in Groundwater

Analyte	Project Action Level (µg/L)	Project Action Level Reference			
Volatile Organic Compounds (EF	PA SW-846 Method 8260D)				
1,1,1,2-Tetrachloroethane	1.7	MTCA Method B protective of potable groundwater			
1,1,1-Trichloroethane	200	EPA MCL, MTCA MCL, MTCA Method A protective of groundwater and Method B protective of potable groundwater			
1,1,2,2-Tetrachloroethane	0.10	EPA protective of surface water (fresh water, human health)			
1,1,2-Trichloroethane	0.35	EPA protective of surface water (fresh water, human health)			
1,1-Dichloroethane	7.7	MTCA Method B protective of potable groundwater			
1,1-Dichloroethene	7.0	EPA MCL, MTCA MCL, MTCA Method B protective of groundwater			
1,1-Dichloropropene	NC	NC			
1,2,3-Trichlorobenzene	6.4	MTCA Method B protective of groundwater (noncancerous) and potable groundwater			
1,2,3-Trichloropropane	0.00038	MTCA Method B protective of groundwater (cancerous)			
1,2,4-Trichlorobenzene	0.036	EPA protective of surface water (fresh water, human health)			
1,2-Dichlorobenzene	600	EPA MCL, MTCA MCL, MTCA Method B protective of potable groundwater			
1,2-Dichloroethane	0.48	MTCA Method B protective of groundwater (cancerous)			
1,2-Dichloropropane	0.71	MTCA protective of surface water (fresh water, human health)			
1,3-Dichlorobenzene	2.0	EPA protective of surface water (fresh and marine water, human health)			
1,3-Dichloropropane	160	MTCA Method B protective of groundwater (noncancerous) and potable groundwater			
1,4-Dichlorobenzene	8.1	MTCA Method B protective of groundwater (cancerous)			
2,2-Dichloropropane	NC	NC			
2-Chlorotoluene	160	MTCA Method B protective of groundwater (noncancerous) and potable groundwater			
4-Chlorotoluene	NC	NC			
Carbon tetrachloride	0.20	MTCA protective of surface water (fresh water, human health)			
Chlorobenzene	100	EPA MCL, MTCA MCL, MTCA Method B protective of potable groundwater			
Chloroethane	NC	NC			

EA-LTM/OM-6006-23-0027

Section 1, Introduction

Analyte	Project Action Level (μg/L)	Project Action Level Reference			
Chloroform	1.4	MTCA Method B protective of groundwater (cancerous)			
Chloromethane	NC	NC			
1,2-Dichloroethene (cis)	16	MTCA Method B protective of groundwater (noncancerous) and potable groundwater			
1,2-Dichloroethene (trans)	100	EPA MCL, MTCA MCL, MTCA Method B protective of potable groundwater, EPA protective of surface water (fresh water, human health)			
Hexachlorobutadiene	0.01	EPA protective of surface water (fresh and marine water, human health)			
Methylene chloride	5.0	EPA MCL, MTCA MCL, MTCA Method A protective of groundwater, MTCA Method B protective of potable groundwater			
Tetrachloroethene	2.4	EPA protective of surface water (fresh water, human health)			
1,3-Dichloropropene (cis)	0.22 1/	EPA protective of surface water (fresh water, human health)			
1,3-Dichloropropene (trans)	0.22 1/	EPA protective of surface water (fresh water, human health)			
Trichloroethene	0.30 2/	EPA protective of surface water (fresh water, human health)			
Vinyl chloride	0.020 3/	MTCA protective of surface water (fresh water, human health)			

Notes:

^{1/} The project action level is for 1,3-dichloropropene (total) but will be applied to the cis- and transisomers.

 $^{2\prime}$ The remediation goal for trichloroethene per the Record of Decision (Department of the Navy 1994) is 5.0 µg/L.

^{3/} The remediation goal for vinyl chloride is 0.029 μ g/L as discussed in Section 1.6.

 $\mu g/L = microgram(s)$ per liter

EPA = U.S. Environmental Protection Agency

MCL = maximum contaminant level

MTCA = Model Toxics Control Act

NC = no criterion

Table 3. Project Action Levels for Chlorinated Volatile Organic Compounds in Soil

-	Project Action Level							
Analyte	(mg/kg)	Project Action Level Reference						
Volatile Organic Compounds (EPA SW-846 Method 8260D)								
1,1,1,2-Tetrachloroethane	0.00063	MTCA protective of groundwater, saturated						
1,1,1-Trichloroethane	0.084	MTCA protective of groundwater, saturated						
	0.000007	MTCA protective of surface water saturated						
1,1,2,2-Tetrachloroethane	0.000037	(fresh water)						
4.4.0 Trickland oth and	0.00010	MTCA protective of surface water saturated						
1,1,2-Trichloroethane	0.00013	(fresh water)						
1,1-Dichloroethane	0.0026	MTCA protective of groundwater, saturated						
1,1-Dichloroethene	0.0025	MTCA protective of groundwater, saturated						
1,1-Dichloropropene	NC	NC						
1,2,3-Trichlorobenzene	0.011	MTCA protective of groundwater, saturated						
1,2,3-Trichloropropane	0.0000015	MTCA protective of groundwater, saturated						
1,2,4-Trichlorobenzene	0.00007	MTCA protective of surface water saturated						
		(fresh water)						
1,2-Dichlorobenzene	0.4	MTCA protective of groundwater, saturated						
1,2-Dichloroethane	0.0016	MTCA protective of groundwater, saturated						
1,2-Dichloropropane	0.00024	MTCA protective of surface water saturated (fresh water)						
		MTCA protective of surface water saturated						
1,3-Dichlorobenzene	0.0013	(fresh water)						
1,3-Dichloropropane	0.057	MTCA protective of groundwater, saturated						
1,4-Dichlorobenzene	0.068	MTCA protective of groundwater, saturated						
2,2-Dichloropropane NC		NC						
2-Chlorotoluene 0.11		MTCA protective of groundwater, saturated						
4-Chlorotoluene	NC	NC						
		MTCA protective of surface water saturated						
Carbon tetrachloride	0.000088	(fresh water)						
Chlorobenzene	0.051	MTCA protective of groundwater, saturated and						
		surface water, saturated (fresh water)						
Chloroethane	NC	NC						
Chloroform	0.0048	MTCA protective of groundwater, saturated						
Chloromethane	NC	NC						
1,2-Dichloroethene (cis)	0.0052	MTCA protective of groundwater, saturated						
1,2-Dichloroethene (trans)	0.023 1/	MTCA protective of groundwater, saturated						
Hexachlorobutadiene	0.000011	MTCA protective of surface water saturated (fresh water)						
Methylene chloride	0.0015	MTCA protective of groundwater, saturated						
Tetrachloroethene	0.0013	MTCA protective of surface water saturated						
	0.0010	(fresh water)						
1,3-Dichloropropene (cis)	0.000069 2/	MTCA protective of surface water saturated (fresh water)						
1,3-Dichloropropene (trans)	0.000069 2/	MTCA protective of surface water saturated						
	0.00000	(fresh water)						
Trichloroethene	0.00011	MTCA protective of surface water saturated						
	0.00011	(fresh water)						
Vinyl chloride	0.0000062	MTCA protective of surface water saturated						
	0.000002	(fresh water)						

Section 1, Introduction

Analyte	Project Action Level	Project Action Level Reference				
(mg/kg) Project Action Level Reference						
Notes:						
¹ The project action level for ²	1,2-dichloroethene (mixed	d isomers) is slightly lower than the value for the				
trans- isomer (0.032 mg/kg) a	nd is listed in this table.					
		tal) but will be applied to the cis- and trans-				
isomers.						
	EPA = U.S. Environmental Protection Agency					
mg/kg = milligram(s) per kilogram						
MTCA = Model Toxics Control Act						
NC = no criterion						

2 Field Activities

The field activities completed for the soil and groundwater investigation included borehole drilling and well installation, well development, soil sampling from boreholes, groundwater sampling, and investigation derived waste management. Field activities were conducted in accordance with the procedures established in the Tier I SAP (DON 2022) and *Environmental Restoration Program Standard Operating Procedures* (NAVFAC NW 2019). Field forms and logbooks documenting field activities are provided in Appendix A.

2.1 Borehole Drilling, Well Installation, and Soil Sampling

Borehole drilling and well installation were performed in accordance with standard operating procedure (SOP) I-C-1 and FP-11 presented in the Tier I SAP (DON 2022). Eleven soil borings were advanced by a licensed driller using a rotary-sonic drilling method. The borings were logged according to the Unified Soil Classification System standards. Soils encountered during drilling and monitoring well installation generally consisted of sands and silts. Boring logs are included in Appendix A. Soil samples were collected from five depths at each borehole in accordance with SOP I-B-1 and FP-9 presented in the SAP (DON 2022), except as discussed in Section 2.5, Deviations. Soil samples were analyzed for cVOCs by Method 8260D.

New groundwater monitoring wells were installed in each of the soil boring locations. Monitoring wells were constructed using flush joint threaded 2-inch diameter schedule 40 polyvinyl chloride (PVC) casing and 2-inch diameter 0.020-inch slotted well screen. The borehole annulus was filled with #10-20 sand pack across the screened interval and to 2 to 3 feet above the top of screen, with hydrated bentonite chips to just below ground surface. Wells were completed with either traffic rated flush monuments or above ground monuments. Well construction details are presented in Table 4.

2.2 Well Development

Well development was performed in accordance with SOP I-C-2 and FP-12 presented in the Tier I SAP (DON 2022). Newly installed groundwater monitoring wells were developed using mechanical surging, bailing, and pumping methods. Bailers were used to remove sediment from the well to the extent feasible, prior to use of the pump, and as a final step in development to ensure the sump was free of sediment accumulation at the bottom of the well. Development of wells was considered complete when the removal of fines in the filter pack and nearby formation occurred so that turbidity does not affect the groundwater samples, and so that silting of the well will not occur.

Well ID	Surface Monument Type	Well Casing Diameter (inches)	Well Casing Material	Northing (feet)	Easting (feet)	Top of Well Casing Elevation (feet-MLLW)	Well Depth (feet- btoc)	Depth to Top of Well Screen (feet-btoc)	Well Screen Length (feet)
2MW-9	Stick-up	2	PVC	258054.05	1199369.98	21.41	35	25	10
2MW-10	Stick-up	2	PVC	258011.04	1199370.64	22.63	40	30	10
2MW-11	Flush	2	PVC	257980.98	1199292.21	22.81	20	10	10
2MW-12	Flush	2	PVC	257987.23	1199239.16	23.13	20	10	10
2MW-13	Flush	2	PVC	257952.13	1199330.72	22.13	20	10	10
2MW-14	Stick-up	2	PVC	257968.21	1199361.66	23.75	20	10	10
2MW-15	Stick-up	2	PVC	257918.21	1199369.11	23.84	18	8	10
2MW-16	Stick-up	2	PVC	257829.20	1199373.13	23.00	18	8	10
2MW-17	Flush	2	PVC	257831.61	1199246.10	24.40	20	10	10
2MW-18	Flush	2	PVC	257924.17	1199181.59	24.93	18	8	10
2MW-19	Stick-up	2	PVC	257873.19	1199396.37	22.16	18	8	10
MLLW = m	w top of casing ean lower low wa vinyl chloride	iter							

Table 4. Well Construction Details

Wells were developed between 48 hours to 7 days after cement grout emplacement, except as indicated in Section 2.5, Deviations. Each newly installed well was surged at various depths within the screened interval followed by evacuation of water until a minimum of three well casings of water had been purged, pH and specific conductance met stabilization criteria, and turbidity at or below 20 nephelometric turbidity units (NTU) was achieved.

2.3 Groundwater Sampling

Prior to purging, depth to water was taken at each well using an electronic water level measuring device, in accordance with SOP I-D-5 and FP-2 presented in the Tier I SAP (DON 2022).

Monitoring wells were purged, measured for field parameters, and sampled using a peristaltic pump using the low-flow technique in accordance with SOP I-C-5 and FP-4 presented in the Tier I SAP (DON 2022). Water quality parameters including temperature, specific conductance, pH, turbidity, oxidation reduction potential, salinity, and dissolved oxygen were monitored during purging. Field parameters met stabilization requirements except as indicated in Section 2.5, Deviations. After purging was completed and final water quality measurements were recorded, groundwater samples were collected immediately. Groundwater samples were taken directly from the outlet of the dedicated tubing and placed into laboratory-supplied containers.

2.4 Investigation Derived Waste Handling and Disposal

Investigation-derived waste generated during field activities included purge water, soil cuttings, and general sampling waste (used sample tubing, disposable gloves, and paper towels). The general sampling waste, such as used tubing and gloves, was placed in a designated onsite commercial waste dumpster. The purge water and soil cuttings were contained in 55-gallon drums and staged at the designated Keyport waste transportation and disposal location. Waste characterization sampling was conducted by a separate contractor and the DON managed waste in accordance with existing DON waste management practices.

2.5 Deviations

This section discusses deviations from the SAP (DON 2022).

The SAP (DON 2022) indicated up to 12 soil borings would be advanced for well installation, with eight wells installed to a maximum depth of 20 feet bgs and four wells to a maximum depth of 40 feet bgs. Two of the 12 soil borings, SB-19 and SB-20, were considered to be "contingency" locations for wells with a maximum depth of 40 feet bgs

in case more locations were needed based on field observations. The eight borings designated to be advanced to a maximum depth of 20 feet bgs include SB-9 through SB-16; the four borings designated for a maximum depth of 40 feet bgs include SB-17 through SB-20 (if SB-19 and/or SB-20 were drilled). A maximum of 60 soil samples were to be collected from the borings; the planned and "contingency" soil sample depths are summarized in Table 5. New monitoring wells were to be installed in each soil boring location and groundwater samples to be collected from each monitoring well. The following are deviations from the planned maximum depths and samples.

- SB-9 and SB-10: The SAP (DON 2022) indicated soil borings SB-9 and B-10 would be advanced to a maximum depth of 20 feet bgs and samples collected at the following depths in feet bgs: 0.0 to 0.5, 5.0 to 5.5, 10.0 to 10.5, 15.0 to 15.5, and 19.5 to 20. However, at the request of the Remedial Project Manager and as discussed in Field Change Request Number 21F4076-02 included in Appendix A, soil borings SB-9 and B-10 were advanced to 40 feet bgs in order to capture the potential vertical extent of contaminant migration rather than the planned 20-feet bgs. SB-9 and SB-10 are the most downgradient soil boring locations. Monitoring wells were installed in these borings at a total depth of 40 feet bgs. S0, and 40.
- SB-12: The boring was advanced to 25 feet bgs instead of the planned maximum 20 feet bgs due to visual evidence of soil staining and elevated PID readings.
- SB-17, SB-18, SB-19, and SB-20: The SAP (DON 2022) indicated these four soil borings be advanced to a maximum depth of 40 feet bgs and samples collected at the following depths in feet bgs: 0.0 to 0.5, 10.0 to 10.5, 20.0 to 20.5, 30.0 to 30.5, and 39.5 to 40.0. However, due to the Remedial Project Manager request discussed above, it was decided in the field that SB-17 through SB-19 being advanced to 20 feet bgs would be sufficient and that SB-20 was not necessary. Samples were collected at the depths indicated in Table 5.
- A maximum of 60 soil samples and 12 groundwater samples (excluding field quality control [QC] samples) were indicated in the SAP (DON 2022). While not necessarily a deviation from the planned quantities, 51 soil samples and 11 groundwater samples were collected rather than 60 and 12, respectively. For each soil boring, samples were planned and collected at five depths, with the following exceptions: soil samples from only three depths were collected at SB-17 and SB-18; SB-20 was not drilled so no soil or groundwater samples were collected and no well was installed.

Table 5. Soil Boring Sampling Details		
Boring	Planned Sampling Depths (ft bgs)	Actual Sampling Depths (ft bgs)
SB-9	0.0 to 0.5	0.5
	5.0 to 5.5	10.0
	10.0 to 10.5	20.0
	15.0 to 15.5	30.0
	19.5 to 20.0	40.0
SB-10	0.0 to 0.5	0.5
	5.0 to 5.5	10.0
	10.0 to 10.5	20.0
	15.0 to 15.5	30.0
	19.5 to 20.0	40.0
	0.0 to 0.5	0.5
SB-11	5.0 to 5.5	5.0
	10.0 to 10.5	10.0
	15.0 to 15.5	15.0
	19.5 to 20.0	20.0
	0.0 to 0.5	0.5
	5.0 to 5.5	5.0
SB-12	10.0 to 10.5	10.0
	15.0 to 15.5	20.0
	19.5 to 20.0	25.0
	0.0 to 0.5	0.5
	5.0 to 5.5	5.0
SB-13	10.0 to 10.5	10.0
	15.0 to 15.5	15.0
	19.5 to 20.0	20.0
	0.0 to 0.5	0.5
	5.0 to 5.5	5.0
SB-14	10.0 to 10.5	10.0
	15.0 to 15.5	15.0
	<u>19.5 to 20.0</u>	20.0
	0.0 to 0.5	0.5
	5.0 to 5.5	5.0
SB-15	10.0 to 10.5	10.0
	15.0 to 15.5	15.0
	<u>19.5 to 20.0</u>	20.0
SB-16	0.0 to 0.5	0.5
	5.0 to 5.5	5.0
	10.0 to 10.5 15.0 to 15.5	10.0
	19.5 to 20.0	15.0
		20.0
SB-17	0.0 to 0.5 10.0 to 10.5	0.5 10.0
	20.0 to 20.5	20.0
	30.0 to 30.5	20.0
	39.5 to 40.0	
SB-18		0.5
	0.0 to 0.5 10.0 to 10.5	10.0
	20.0 to 20.5	20.0
	30.0 to 30.5	20.0
	39.5 to 40.0	
	33.3 10 40.0	

Sampling Dotails Table E Sail Baring

Boring	Planned Sampling Depths (ft bgs)	Actual Sampling Depths (ft bgs)	
SB-19 ¹	0.0 to 0.5	0.5	
	10.0 to 10.5	5.0 -5.5	
	20.0 to 20.5	10.0	
	30.0 to 30.5	15.0	
	39.5 to 40.0	20.0	
SB-20 ¹	0.0 to 0.5	None	
	10.0 to 10.5		
	20.0 to 20.5		
	30.0 to 30.5		
	39.5 to 40.0		
Notes:			
¹ Locations SB-19 and SB-20 were considered "contingency" locations, with			
drilling to be performed only as deemed necessary based on field			
observations.			
ft = feet (foot)			
bgs = below ground surface			

The SAP (DON 2022) specifies stabilization criterion for purging of wells prior to groundwater sample collection. These are presented in Field Procedure 4 Step 11 and in the applicable field form (Well Inspection, Purging, and Field Measurement Form) presented in Appendix D of that document. The field form used in the field was not the same as the one presented in SAP Appendix D and is not consistent with the field procedure in some cases. The following parameters did not meet stabilization requirements listed in the field procedure:

- Dissolved oxygen: criteria per the field procedure is ± 10 percent or less than 0.1 milligrams per liter vs. no applicable criteria for the form used. Several wells did not explicitly meet the stabilization criteria per the field procedure, but the measurements are very low, ranging from 0.56 to 0.87 milligrams per liter. This was judged to have no significant impact on collecting a sample representative of groundwater.
- Oxidation reduction potential: criteria per the field form is a difference of less than or equal to 10 millivolts vs. no applicable criteria on the form used. Wells 2MW-12, 2MW-13, 2MW-14, 2MW-17, and 2MW-18 did not meet the stabilization criteria per the field procedure. This discrepancy was judged to have no significant impact on collecting a sample representative of groundwater since the stabilization criteria for other field parameters was demonstrated except as indicated in the above bullet.

The SAP (DON 2022) requires samples to be cooled to \leq 6 degrees Celsius. Due to an oversight in shipping samples to the designated laboratory, two coolers containing soil samples were shipped by ground transportation instead of air. The temperatures of these two coolers arrived at the laboratory above 20 degrees Celsius. As discussed in

Section 3.5 and Appendix B, detected results were qualified "J" as estimated and non-detected results were rejected (qualified "R") on this basis.

The SAP (DON 2022) requires field blanks to be collected for the groundwater sampling event; however, none were collected due to an oversight. Although field blanks were not collected during two days of groundwater sampling, no detections were reported in the daily field blanks collected during soil sampling. The field blanks collected during soil sampling appear to be representative of site conditions in the general timeframe that soil and groundwater sampling occurred. Therefore, reported detections for soil and groundwater samples are considered representative of the locations sampled rather than artifacts of ambient conditions.

Completeness is a measure of the amount of valid, usable data obtained from a measurement system compared with the amount that was expective to be obtained. The SAP (DON 2022) specifies 90 percent as the minimal acceptance criteria for completeness of laboratory data for this project. Due to four planned soil samples not being collected at SB-17 and SB-18 (discussed above) and data from four borings (SB-11, SB-12, SB-17, and SB-18) being rejected due to temperatures of two coolers containing soil samples that arrived at the laboratory above 20 degrees Celsius (discussed in Section 3.5), the percent completeness for laboratory data was 70 percent (further detailed in Appendix B). The lack of valid, usable data for several planned soil samples results in a data gap. However, it was judged that sufficient data were collected to generally achieve project objectives and conclude that cVOCs at concentrations above PALs are present in the soil at some locations and depths.

3 Soil and Groundwater Sampling Results

This section summarizes the distribution of contaminants detected in the samples collected during the soil and groundwater investigation and compares the reported concentrations to the PALs defined in the SAP (DON 2022) and summarized in Tables 2 and 3.

3.1 Soil Analytical Results

The results for the June/July 2022 soil sampling are provided in Table 6. Analytical results were compared to the PALs. Soil boring numbers correspond with well numbers for newly installed wells (e.g., SB-10 is in the location of 2MW-10, SB-11 is in the location of 2MW-11, etc.). Exceedances of the PAL occurred for the following analytes:

- TCE exceeded the PAL of 0.00011 milligrams per kilogram (mg/kg) in the samples from soil borings SB-13 (15 feet bgs) and SB-17 (10 feet bgs, 20 feet bgs). TCE was not detected in samples from other soil borings; however, the laboratory limit of detection (LOD) exceeded the PAL.
- Vinyl chloride exceeded the PAL of 0.0000062 mg/kg in the samples from soil borings SB-13 (15 feet bgs, 20 feet bgs), SB-14 (20 feet bgs), and SB-19 (15 feet bgs and 20 feet bgs). Vinyl chloride was not detected in samples from other soil borings; however, the laboratory LOD exceeded the PAL. Vinyl chloride exceedances in soil borings are shown in Figure 3-1.
- Cis-1,2-dichlorothene exceeded the PAL of 0.0052 mg/kg in the samples from soil borings SB-13 (15 feet bgs) and SB-14 (15 feet bgs, 20 feet bgs). Cis-1,2dichlorothene was not detected at concentrations above the PAL in the other samples; however, in two instances the laboratory LOD exceeded the PAL when this analyte was not detected.
- The following analytes were not detected; however, the laboratory LODs exceeded PALs: 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,2,3-trichloropropane, 1,2,4-trichlorobenzene, 1,2-dichloropropane, carbon tetrachloride, cis-1,3-dichloropropene, hexachlorobutadiene, methylene chloride, and trans-1,3-dichloropropene.

				Tabl	e 6. Soil Sampling	Analytical Data				
	L	ocation ID	SB-9	SB-9	SB-9	SB-9	SB-9	SB-9	SB-10	SB-10
	Sample De	epth (bgs)	0.5 ft	10 ft	10 ft (DUP)	20 ft	30 ft	40 ft	0.5 ft	10 ft
	Sample Colle	ction Date	29-Jun-2022	29-Jun-2022	29-Jun-2022	29-Jun-2022	29-Jun-2022	29-Jun-2022	29-Jun-2022	29-Jun-2022
	Project Action									
Analyte	Level	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
1,1,1,2-Tetrachloroethane	0.00063	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 UJ	0.16 UJ	0.0012 U	0.0014 U	0.0012 UJ
1,1,1-Trichloroethane	0.084	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 U	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
1,1,2,2-Tetrachloroethane	0.000037	mg/kg	0.00061 U	0.00054 U	0.00055 U	0.00063 UJ	0.039 UJ	0.00061 U	0.00068 U	0.00061 UJ
1,1,2-Trichloroethane	0.00013	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 UJ	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
1,1-Dichloroethane	0.0026	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 U	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
1,1-Dichloroethene	0.0025	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 U	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
1,1-Dichloropropene	NC	mg/kg	0.0012 U	0.0011 UJ	0.0011 UJ	0.0013 UJ	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
1,2,3-Trichlorobenzene	0.011	mg/kg	0.0049 U	0.0043 U	0.0044 U	0.005 UJ	0.32 UJ	0.0049 U	0.0055 U	0.42 UJ
1,2,3-Trichloropropane	0.0000015	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 UJ	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
1,2,4-Trichlorobenzene	0.000070	mg/kg	0.0049 U	0.0043 U	0.0044 U	0.005 UJ	0.32 UJ	0.0049 U	0.0055 U	0.42 UJ
1,2-Dichlorobenzene	0.40	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 UJ	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
1,2-Dichloroethane	0.0016	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 U	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
1,2-Dichloropropane	0.00024	mg/kg	0.0012 U	0.0011 UJ	0.0011 UJ	0.0013 UJ	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
1,3-Dichlorobenzene	0.0013	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 UJ	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
1,3-Dichloropropane	0.057	mg/kg	0.00061 U	0.00054 U	0.00055 U	0.00063 UJ	0.039 UJ	0.00061 U	0.00068 U	0.00061 UJ
1,4-Dichlorobenzene	0.068	mg/kg	0.00061 U	0.00054 U	0.00055 U	0.00063 UJ	0.039 UJ	0.00061 U	0.00068 U	0.00061 UJ
2,2-Dichloropropane	NC	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 U	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
2-Chlorotoluene	0.11	mg/kg	0.00061 U	0.00054 U	0.00055 U	0.00063 UJ	0.039 UJ	0.00061 U	0.00068 U	0.00061 UJ
4-Chlorotoluene	NC	mg/kg	0.00061 U	0.00054 U	0.00055 U	0.00063 UJ	0.039 UJ	0.00061 U	0.00068 U	0.052 UJ
Carbon tetrachloride	0.000088	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 U	0.16 UJ	0.0012 U	0.0014 U	0.0012 UJ
Chlorobenzene	0.051	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 UJ	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
Chloroethane	NC	mg/kg	0.0024 U	0.0022 U	0.0022 U	0.0025 U	0.16 UJ	0.0024 U	0.0027 U	0.0025 UJ
Chloroform	0.0048	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 U	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
Chloromethane	NC	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 U	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
cis-1,2-Dichloroethene	0.0052	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 U	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
cis-1,3-Dichloropropene	0.000069 1/	mg/kg	0.00061 U	0.00054 U	0.00055 U	0.00063 U	0.039 UJ	0.00061 U	0.00068 U	0.00061 UJ
Hexachlorobutadiene	0.000011	mg/kg	0.0049 U	0.0043 U	0.0044 U	0.005 UJ	0.32 UJ	0.0049 U	0.0055 U	0.42 UJ
Methylene chloride	0.0015	mg/kg	0.0024 U	0.0022 U	0.0022 U	0.0025 U	0.16 UJ	0.0024 U	0.0027 U	0.0025 UJ
Tetrachloroethene	0.0013	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 UJ	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
trans-1,2-Dichloroethene	0.023 ^{2/}	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 U	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
trans-1,3-Dichloropropene	0.000069 1/	mg/kg	0.00061 U	0.00054 U	0.00055 U	0.00063 UJ	0.039 UJ	0.00061 U	0.00068 U	0.00061 UJ
Trichloroethene	0.00011	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 U	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ
Vinyl chloride	0.0000062	mg/kg	0.0012 U	0.0011 U	0.0011 U	0.0013 U	0.079 UJ	0.0012 U	0.0014 U	0.0012 UJ

	Lo Sample Do Sample Colle		20 ft 30 ft 40 ft		SB-10 40 ft 29-Jun-2022	SB-11 0.5 ft 28-Jun-2022	SB-11 5 ft 28-Jun-2022	SB-11 5 ft (DUP) 28-Jun-2022	SB-11 10 ft 28-Jun-2022	SB-11 15 ft 28-Jun-2022	
	Project Action										
Analyte	Level	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	
1,1,1,2-Tetrachloroethane	0.00063	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
1,1,1-Trichloroethane	0.084	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
1,1,2,2-Tetrachloroethane	0.000037	mg/kg	0.00066 U	0.00059 U	0.00057 U	R	R	R	R	R	
1,1,2-Trichloroethane	0.00013	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
1,1-Dichloroethane	0.0026	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
1,1-Dichloroethene	0.0025	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
1,1-Dichloropropene	NC	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
1,2,3-Trichlorobenzene	0.011	mg/kg	0.0053 U	0.0047 U	0.0045 U	R	R	R	R	R	
1,2,3-Trichloropropane	0.0000015	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
1,2,4-Trichlorobenzene	0.000070	mg/kg	0.0053 U	0.0047 U	0.0045 U	R	R	R	R	R	
1,2-Dichlorobenzene	0.40	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
1,2-Dichloroethane	0.0016	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
1,2-Dichloropropane	0.00024	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
1,3-Dichlorobenzene	0.0013	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
1,3-Dichloropropane	0.057	mg/kg	0.00066 U	0.00059 U	0.00057 U	R	R	R	R	R	
1,4-Dichlorobenzene	0.068	mg/kg	0.00066 U	0.00059 U	0.00057 U	R	R	R	R	R	
2,2-Dichloropropane	NC	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
2-Chlorotoluene	0.11	mg/kg	0.00066 U	0.00059 U	0.00057 U	R	R	R	R	R	
4-Chlorotoluene	NC	mg/kg	0.00066 U	0.00059 U	0.00057 U	R	R	R	R	R	
Carbon tetrachloride	0.000088	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
Chlorobenzene	0.051	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
Chloroethane	NC	mg/kg	0.0026 U	0.0024 U	0.0023 U	R	R	R	R	R	
Chloroform	0.0048	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
Chloromethane	NC	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
cis-1,2-Dichloroethene	0.0052	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	0.0011 J	
cis-1,3-Dichloropropene	0.000069 1/	mg/kg	0.00066 U	0.00059 U	0.00057 U	R	R	R	R	R	
Hexachlorobutadiene	0.000011	mg/kg	0.0053 U	0.0047 U	0.0045 U	R	R	R	R	R	
Methylene chloride	0.0015	mg/kg	0.0026 U	0.0024 U	0.0023 U	R	R	R	R	R	
Tetrachloroethene	0.0013	mg/kg	0.0013 U	0.0012 U	0.0011 U		R	R	R	R	
trans-1,2-Dichloroethene	0.023 ^{2/}	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
trans-1,3-Dichloropropene	0.000069 1/	mg/kg	0.00066 U	0.00059 U	0.00057 U	R	R	R	R	R	
Trichloroethene	0.00011	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	
Vinyl chloride	0.0000062	mg/kg	0.0013 U	0.0012 U	0.0011 U	R	R	R	R	R	

Section 3, Soil and Groundwater
Sampling Results

		ocation ID epth (bgs) ction Date	SB-11 20 ft 28-Jun-2022	SB-12 0.5 ft 28-Jun-2022	SB-12 5 ft 28-Jun-2022		SB-12 10 ft Jun-2022	SB-12 20 ft 28-Jun-2022	•	SB-12 20 ft (DUP) 28-Jun-2022		2	SB-13 0.5 ft 28-Jun-2022
	Project Action												
Analyte	Level	Units	Result Q	Result Q	Result 0	Q Re	sult Q	Result Q	Result	Q	Result	Q	Result Q
1,1,1,2-Tetrachloroethane	0.00063	mg/kg	R	R	R		R	R		R		R	0.001 U
1,1,1-Trichloroethane	0.084	mg/kg	R	R	R		R	R		R		R	0.001 U
1,1,2,2-Tetrachloroethane	0.000037	mg/kg	R	R	R		R	R		R		R	0.00051 U
1,1,2-Trichloroethane	0.00013	mg/kg	R	R	R		R	R		R		R	0.001 U
1,1-Dichloroethane	0.0026	mg/kg	R	R	R		R	R		R		R	0.001 U
1,1-Dichloroethene	0.0025	mg/kg	R	R	R		R	R		R		R	0.001 U
1,1-Dichloropropene	NC	mg/kg	R	R	R		R	R		R		R	0.001 UJ
1,2,3-Trichlorobenzene	0.011	mg/kg	R	R	R		R	R		R		R	0.0041 U
1,2,3-Trichloropropane	0.0000015	mg/kg	R	R	R		R	R		R		R	0.001 U
1,2,4-Trichlorobenzene	0.000070	mg/kg	R	R	R		R	R		R		R	0.0041 U
1,2-Dichlorobenzene	0.40	mg/kg	R	R	R		R	R		R		R	0.001 U
1,2-Dichloroethane	0.0016	mg/kg	R	R	R		R	R		R		R	0.001 U
1,2-Dichloropropane	0.00024	mg/kg	R	R	R		R	R		R		R	0.001 UJ
1,3-Dichlorobenzene	0.0013	mg/kg	R	R	R		R	R		R		R	0.001 U
1,3-Dichloropropane	0.057	mg/kg	R	R	R		R	R		R		R	0.00051 U
1,4-Dichlorobenzene	0.068	mg/kg	R	R	R		R	R		R		R	0.00051 U
2,2-Dichloropropane	NC	mg/kg	R	R	R		R	R		R		R	0.001 U
2-Chlorotoluene	0.11	mg/kg	R	R	R		R	R		R		R	0.00051 U
4-Chlorotoluene	NC	mg/kg	R	R	R		R	R		R		R	0.00051 U
Carbon tetrachloride	0.000088	mg/kg	R	R	R		R	R		R		R	0.001 U
Chlorobenzene	0.051	mg/kg	R	R	R		R	R		R		R	0.001 U
Chloroethane	NC	mg/kg	R	R	R		R	R		R		R	0.002 U
Chloroform	0.0048	mg/kg	R	R	R		R	R		R		R	0.001 U
Chloromethane	NC	mg/kg	R	R	R		R	R		R		R	0.001 U
cis-1,2-Dichloroethene	0.0052	mg/kg	R	R	R		R	R		R		R	0.001 U
cis-1,3-Dichloropropene	0.000069 1/	mg/kg	R	R	R		R	R		R		R	0.00051 U
Hexachlorobutadiene	0.000011	mg/kg	R	R	R		R	R		R		R	0.0041 U
Methylene chloride	0.0015	mg/kg	R	R	R		R	R		R		R	0.002 U
Tetrachloroethene	0.0013	mg/kg	R	R	R		R	R		R		R	0.001 U
trans-1,2-Dichloroethene	0.023 ^{2/}	mg/kg	R	R	R		R	R		R		R	0.001 U
trans-1,3-Dichloropropene	0.000069 1/	mg/kg	R	R	R		R	R		R		R	0.00051 U
Trichloroethene	0.00011	mg/kg	R	R	R		R	R		R		R	0.001 U
Vinyl chloride	0.0000062	mg/kg	R	R	R		R	R		R		R	0.001 U

Section 3, Soil and Groundwater
Sampling Results

		ocation ID	SB-13	SB-13	SB-13	SB-13	SB-14	SB-14	SB-14	SB-14
	Sample De		5 ft	10 ft	15 ft	20 ft	0.5 ft	5 ft	10 ft	15 ft
	Sample Collec		28-Jun-2022	28-Jun-2022	28-Jun-2022	28-Jun-2022	30-Jun-2022	30-Jun-2022	30-Jun-2022	30-Jun-2022
			20 0011 2022	20 0411 2022	20 0011 2022	20 0011 2022	00 0011 2022	00 0011 2022	00 0011 2022	00 0411 2022
	Project									
	Action									
Analyte	Level	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
1,1,1,2-Tetrachloroethane	0.00063	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
1,1,1-Trichloroethane	0.084	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
1,1,2,2-Tetrachloroethane	0.000037	mg/kg	0.00056 U	0.00053 U	0.00059 U	0.00053 U	0.00069 U	0.00067 U	0.00058 U	0.00054 U
1,1,2-Trichloroethane	0.00013	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
1,1-Dichloroethane	0.0026	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
1,1-Dichloroethene	0.0025	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
1,1-Dichloropropene	NC	mg/kg	0.0011 UJ	0.0011 UJ	0.0012 UJ	0.0011 UJ	0.0014 U	0.0013 U	0.0012 U	0.0011 U
1,2,3-Trichlorobenzene	0.011	mg/kg	0.0045 UJ	0.0042 U	0.0047 U	0.0043 U	0.0055 U	0.0053 U	0.0047 U	0.0043 U
1,2,3-Trichloropropane	0.00000015	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
1,2,4-Trichlorobenzene	0.000070	mg/kg	0.0045 UJ	0.0042 U	0.0047 U	0.0043 U	0.0055 U	0.0053 U	0.0047 U	0.0043 U
1,2-Dichlorobenzene	0.40	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
1,2-Dichloroethane	0.0016	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
1,2-Dichloropropane	0.00024	mg/kg	0.0011 UJ	0.0011 UJ	0.0012 UJ	0.0011 UJ	0.0014 U	0.0013 U	0.0012 U	0.0011 U
1,3-Dichlorobenzene	0.0013	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U 0.00054 U
1,3-Dichloropropane	0.057	mg/kg	0.00056 U	0.00053 U	0.00059 U	0.00053 U	0.00069 U	0.00067 U	0.00058 U	
1,4-Dichlorobenzene	0.068	mg/kg	0.00056 U	0.00053 U	0.00059 U	0.00053 U	0.00069 U	0.00067 U	0.00058 U	0.00054 U
2,2-Dichloropropane	NC	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
2-Chlorotoluene	0.11	mg/kg	0.00056 U	0.00053 U	0.00059 U	0.00053 U	0.00069 U	0.00067 U	0.00058 U	0.00054 U
4-Chlorotoluene	NC	mg/kg	0.00056 U	0.00053 U	0.00059 U	0.00053 U	0.00069 U	0.00067 U	0.00058 U	0.00054 U
Carbon tetrachloride	0.000088	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
Chlorobenzene	0.051	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
Chloroethane	NC	mg/kg	0.0022 U	0.0021 U	0.0023 U	0.0021 U	0.0027 U	0.0027 U	0.0023 U	0.0022 U
Chloroform	0.0048	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
Chloromethane	NC	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
cis-1,2-Dichloroethene	0.0052	mg/kg	0.0011 U	0.0011 U	0.0083	0.0024 J	0.0014 U	0.0013 U	0.0013 J	0.0063
cis-1,3-Dichloropropene	0.000069 1/	mg/kg	0.00056 U	0.00053 U	0.00059 U	0.00053 U	0.00069 U	0.00067 U	0.00058 U	0.00054 U
Hexachlorobutadiene	0.000011	mg/kg	0.0045 U	0.0042 U	0.0047 U	0.0043 U	0.0055 U	0.0053 U	0.0047 U	0.0043 U
Methylene chloride	0.0015	mg/kg	0.0022 U	0.0021 U	0.0023 U	0.0021 U	0.0027 U	0.0027 U	0.0023 U	0.0022 U
Tetrachloroethene	0.0013	mg/kg	0.0011 U	0.0011 U	0.0012 U	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
trans-1,2-Dichloroethene	0.023 ^{2/}	mg/kg	0.0011 U	0.0011 U	0.00052 J	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
trans-1,3-Dichloropropene	0.000069 1/	mg/kg	0.00056 U	0.00053 U	0.00059 U	0.00053 U	0.00069 U	0.00067 U	0.00058 U	0.00054 U
Trichloroethene	0.00011	mg/kg	0.0011 U	0.0011 U	0.013	0.0011 U	0.0014 U	0.0013 U	0.0012 U	0.0011 U
Vinyl chloride	0.0000062	mg/kg	0.0011 U	0.0011 U	0.00062 J	0.00091 J	0.0014 U	0.0013 U	0.0012 U	0.0011 U

Section 3, Soil and Groundwater Sampling Results

	Lo Sample Do Sample Colleo		SB-14 20 ft 30-Jun-2022	SB-15 0.5 ft 1-Jul-2022	SB-15 0.5 ft (DUP) 1-Jul-2022	SB-15 5 ft 1-Jul-2022	SB-15 10 ft 1-Jul-2022	SB-15 15 ft 1-Jul-2022	SB-15 20 ft 1-Jul-2022	SB-16 0.5 ft 1-Jul-2022	
	Project Action										
Analyte	Level	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	
1,1,1,2-Tetrachloroethane	0.00063	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
1,1,1-Trichloroethane	0.084	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
1,1,2,2-Tetrachloroethane	0.000037	mg/kg	0.0006 U	0.00075 U	0.00064 U	0.00062 U	0.00072 U	0.0005 U	0.00058 U	0.00053 U	
1,1,2-Trichloroethane	0.00013	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
1,1-Dichloroethane	0.0026	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
1,1-Dichloroethene	0.0025	mg/kg	0.00051 J	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
1,1-Dichloropropene	NC	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
1,2,3-Trichlorobenzene	0.011	mg/kg	0.0048 U	0.006 U	0.0051 U	0.005 U	0.0057 U	0.004 U	0.0046 U	0.0042 U	
1,2,3-Trichloropropane	0.00000015	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
1,2,4-Trichlorobenzene	0.000070	mg/kg	0.0048 U	0.006 U	0.0051 U	0.005 U	0.0057 U	0.004 U	0.0046 U	0.0042 U	
1,2-Dichlorobenzene	0.40	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
1,2-Dichloroethane	0.0016	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
1,2-Dichloropropane	0.00024	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
1,3-Dichlorobenzene	0.0013	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
1,3-Dichloropropane	0.057	mg/kg	0.0006 U	0.00075 U	0.00064 U	0.00062 U	0.00072 U	0.0005 U	0.00058 U	0.00053 U	
1,4-Dichlorobenzene	0.068	mg/kg	0.0006 U	0.00075 U	0.00064 U	0.00062 U	0.00072 U	0.0005 U	0.00058 U	0.00053 U	
2,2-Dichloropropane	NC	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
2-Chlorotoluene	0.11	mg/kg	0.0006 U	0.00075 U	0.00064 U	0.00062 U	0.00072 U	0.0005 U	0.00058 U	0.00053 U	
4-Chlorotoluene	NC	mg/kg	0.0006 U	0.00075 U	0.00064 U	0.00062 U	0.00072 U	0.0005 U	0.00058 U	0.00053 U	
Carbon tetrachloride	0.000088	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
Chlorobenzene	0.051	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
Chloroethane	NC	mg/kg	0.0024 U	0.003 U	0.0026 U	0.0025 U	0.0029 U	0.002 U	0.0023 U	0.0021 U	
Chloroform	0.0048	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
Chloromethane	NC	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
cis-1,2-Dichloroethene	0.0052	mg/kg	0.071	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
cis-1,3-Dichloropropene	0.000069 1/	mg/kg	0.0006 U	0.00075 U	0.00064 U	0.00062 U	0.00072 U	0.0005 U	0.00058 U	0.00053 U	
Hexachlorobutadiene	0.000011	mg/kg	0.0048 U	0.006 U	0.0051 U	0.005 U	0.0057 U	0.004 U	0.0046 U	0.0042 U	
Methylene chloride	0.0015	mg/kg	0.0024 U	0.003 U	0.0026 U	0.0025 U	0.0029 U	0.002 U	0.0023 U	0.0021 U	
Tetrachloroethene	0.0013	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
trans-1,2-Dichloroethene	0.023 ^{2/}	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
trans-1,3-Dichloropropene	0.000069 1/	mg/kg	0.0006 U	0.00075 U	0.00064 U	0.00062 U	0.00072 U	0.0005 U	0.00058 U	0.00053 U	
Trichloroethene	0.00011	mg/kg	0.0012 U	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	
Vinyl chloride	0.0000062	mg/kg	0.00099 J	0.0015 U	0.0013 U	0.0012 U	0.0014 U	0.00099 U	0.0012 U	0.0011 U	

Section 3, Soil and Groundwater	•
Sampling Results	

		ocation ID epth (bgs) ction Date	SB-16 5 ft 1-Jul-2022	SB-16 10 ft 1-Jul-2022	SB-16 15 ft 1-Jul-2022	SB-16 20 ft 1-Jul-2022	SB-17 0.5 ft 27-Jun-2022	SB-17 10 ft 27-Jun-2022	SB-17 10 ft (DUP) 27-Jun-2022	SB-17 20 ft 27-Jun-2022
	Project Action									
Analyte	Level	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
1,1,1,2-Tetrachloroethane	0.00063	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
1,1,1-Trichloroethane	0.084	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
1,1,2,2-Tetrachloroethane	0.000037	mg/kg	0.00052 U	0.00053 U	0.00059 U	0.00064 U	R	R	R	R
1,1,2-Trichloroethane	0.00013	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
1,1-Dichloroethane	0.0026	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
1,1-Dichloroethene	0.0025	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
1,1-Dichloropropene	NC	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
1,2,3-Trichlorobenzene	0.011	mg/kg	0.0042 U	0.0043 U	0.0048 U	0.0051 U	R	R	R	R
1,2,3-Trichloropropane	0.00000015	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
1,2,4-Trichlorobenzene	0.000070	mg/kg	0.0042 U	0.0043 U	0.0048 U	0.0051 U	R	R	R	R
1,2-Dichlorobenzene	0.40	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
1,2-Dichloroethane	0.0016	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
1,2-Dichloropropane	0.00024	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
1,3-Dichlorobenzene	0.0013	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
1,3-Dichloropropane	0.057	mg/kg	0.00052 U	0.00053 U	0.00059 U	0.00064 U	R	R	R	R
1,4-Dichlorobenzene	0.068	mg/kg	0.00052 U	0.00053 U	0.00059 U	0.00064 U	R	R	R	R
2,2-Dichloropropane	NC	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
2-Chlorotoluene	0.11	mg/kg	0.00052 U	0.00053 U	0.00059 U	0.00064 U	R	R	R	R
4-Chlorotoluene	NC	mg/kg	0.00052 U	0.00053 U	0.00059 U	0.00064 U	R	R	R	R
Carbon tetrachloride	0.000088	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
Chlorobenzene	0.051	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
Chloroethane	NC	mg/kg	0.0021 U	0.0021 U	0.0024 U	0.0026 U	R	R	R	R
Chloroform	0.0048	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
Chloromethane	NC	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
cis-1,2-Dichloroethene	0.0052	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	0.0011 J	R
cis-1,3-Dichloropropene	0.000069 1/	mg/kg	0.00052 U	0.00053 U	0.00059 U	0.00064 U	R	R	R	R
Hexachlorobutadiene	0.000011	mg/kg	0.0042 U	0.0043 U	0.0048 U	0.0051 U	R	R	R	R
Methylene chloride	0.0015	mg/kg	0.0021 U	0.0021 U	0.0024 U	0.0026 U	R	R	R	R
Tetrachloroethene	0.0013	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
trans-1,2-Dichloroethene	0.023 ^{2/}	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R
trans-1,3-Dichloropropene	0.000069 1/	mg/kg	0.00052 U	0.00053 U	0.00059 U	0.00064 U	R	R	R	R
Trichloroethene	0.00011	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	0.13 J	0.17 J	0.50 J
Vinyl chloride	0.0000062	mg/kg	0.001 U	0.0011 U	0.0012 U	0.0013 U	R	R	R	R

Section 3, Soil and Groundwater
Sampling Results

Sa	Loc Sample Dep ample Collecti		SB-18 0.5 ft 28-Jun-202	2	SB-18 10 ft 28-Jun-2022	SB-18 20 ft 28-Jun-2022		SB-19 0.5 ft 1-Jul-2022	SB-19 5 ft 1-Jul-2022	SB-19 10 ft 1-Jul-2022	SB-19 15 ft 1-Jul-2022	SB-19 20 ft 1-Jul-2022
	Project Action											
Analyte	Level	Units	Result	Q	Result Q		Q	Result Q	Result Q	Result Q	Result Q	
1,1,1,2-Tetrachloroethane	0.00063	mg/kg		R	R		R	0.0022 U	0.0022 U	0.40 U	0.00098 U	0.001 U
1,1,1-Trichloroethane	0.084	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
1,1,2,2-Tetrachloroethane	0.000037	mg/kg		R	R		R	0.0011 U	0.0011 U	0.10 U	0.00049 U	0.0005 U
1,1,2-Trichloroethane	0.00013	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
1,1-Dichloroethane	0.0026	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
1,1-Dichloroethene	0.0025	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
1,1-Dichloropropene	NC	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
1,2,3-Trichlorobenzene	0.011	mg/kg		R	R		R	0.0089 U	0.0087 U	0.80 U	0.0039 U	0.004 U
1,2,3-Trichloropropane	0.0000015	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
1,2,4-Trichlorobenzene	0.000070	mg/kg		R	R		R	0.0089 U	0.0087 U	0.80 U	0.0039 U	0.004 U
1,2-Dichlorobenzene	0.40	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
1,2-Dichloroethane	0.0016	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
1,2-Dichloropropane	0.00024	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
1,3-Dichlorobenzene	0.0013	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
1,3-Dichloropropane	0.057	mg/kg		R	R		R	0.0011 U	0.0011 U	0.10 U	0.00049 U	0.0005 U
1,4-Dichlorobenzene	0.068	mg/kg		R	R		R	0.0011 U	0.0011 U	0.10 U	0.00049 U	0.0005 U
2,2-Dichloropropane	NC	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
2-Chlorotoluene	0.11	mg/kg		R	R		R	0.0011 U	0.0011 U	0.10 U	0.00049 U	0.0005 U
4-Chlorotoluene	NC	mg/kg		R	R		R	0.0011 U	0.0011 U	0.10 U	0.00049 U	0.0005 U
Carbon tetrachloride	0.000088	mg/kg		R	R	F	R	0.0022 U	0.0022 U	0.40 U	0.00098 U	0.001 U
Chlorobenzene	0.051	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
Chloroethane	NC	mg/kg		R	R	F	R	0.0045 U	0.0044 U	0.40 UJ	0.002 U	0.002 U
Chloroform	0.0048	mg/kg		R	R	F	R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
Chloromethane	NC	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
cis-1,2-Dichloroethene	0.0052	mg/kg		R	R	F	R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
cis-1,3-Dichloropropene	0.000069 1/	mg/kg		R	R	F	R	0.0011 U	0.0011 U	0.10 U	0.00049 U	0.0005 U
Hexachlorobutadiene	0.000011	mg/kg		R	R	F	R	0.0089 U	0.0087 U	0.80 U	0.0039 U	0.004 U
Methylene chloride	0.0015	mg/kg		R	R		R	0.0045 U	0.0044 U	0.40 U	0.002 U	0.002 U
Tetrachloroethene	0.0013	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
trans-1,2-Dichloroethene	0.023 ^{2/}	mg/kg		R	R	ŀ	R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
trans-1,3-Dichloropropene	0.000069 1/	mg/kg		R	R	F	R	0.0011 U	0.0011 U	0.10 U	0.00049 U	0.0005 U
Trichloroethene	0.00011	mg/kg		R	R		R	0.0022 U	0.0022 U	0.20 U	0.00098 U	0.001 U
Vinyl chloride	0.0000062	mg/kg		R	R	F	R	0.0022 U	0.0022 U	0.20 U	0.00081 J	0.00048 J

Section 3, Soil and Groundwater Sampling Results

Notes:

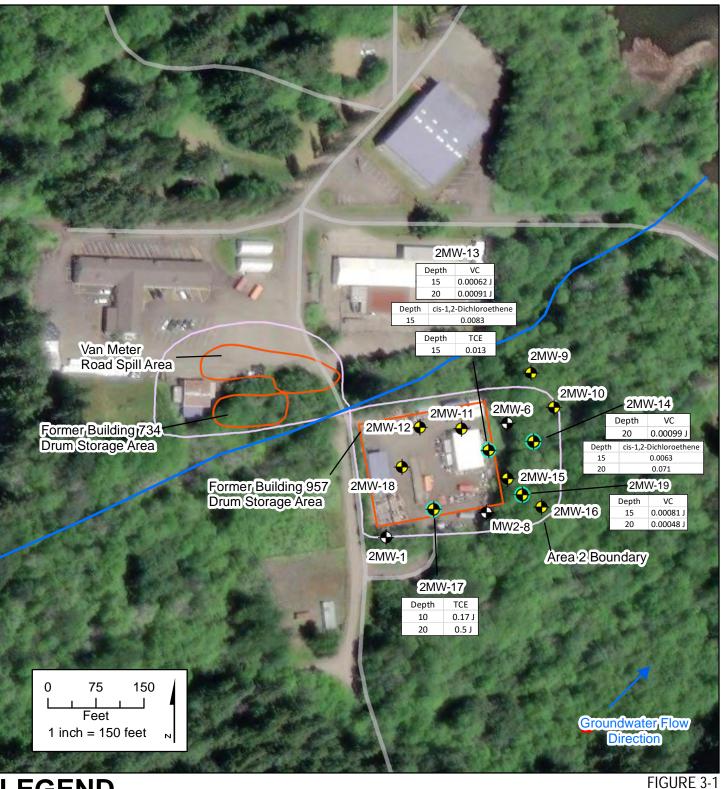
Detected results exceeding the Project Action Level are boldfaced and shaded grey.

Limits of detection for non-detected results exceeding the Project Action Level are shaded grey.

^{1/} The screening level is for 1,3-dichloropropene (total) but will be applied to the cis- and trans- isomers.

^{2/} The screening level is for 1,2-dichloroethene (mixed isomers) is slightly lower than the value for the trans- isomer (0.032 mg/kg) and is listed in this table.

bgs = below ground surface DUP = field duplicate ft = feet mg/kg = milligrams per kilogram NC = no criterion Q = qualifier Data Qualifiers:


J = The reported result is an estimated value.

R = The result is rejected.


U = The analyte is not detected at the associated numerical value.

UJ = The analyte is not detected; the associated numerical value is approximate.

EA-LTM/OM-6006-23-0027

LEGEND

- New Monitoring Well (sampled)
 - Vinyl Chloride Exceeds 0.0000062 mg/kg PAL, cis-1,2-Dichloroethene Exceeds 0.0052 mg/kg PAL, TCE Exceeds 0.0013 mg/kg PAL

OU 2 SOIL ANALYTICAL RESULTS SOIL AND GROUNDWATER SUPPLEMENTAL INVESTIGATION REPORT, AREA 2 VAN METER ROAD SPILL/DRUM STORAGE SITE, OPERABLE UNIT 2 NAVAL BASE KITSAP KEYPORT KEYPORT, WA

Notes:

Vinyl concentrations (VC) are presented in micrograms per liter where detected above the laboratory limit of detection. Depth is presented in feet below ground surface. J = The result is an estimated concentration.

Source: Sealaska 2019

Map Date: 3/9/2023

3.2 Groundwater Elevations and Field Parameters

The depth to water was measured between 8 and 11 July 2022 prior to groundwater purging and sample collection. The groundwater level measurements and calculated elevation are provided in Table 7. Field forms with depth to water and total well-depth measurements are provided in Appendix A.

Field parameters were measured during purging of monitoring wells prior to sampling and are summarized in Table 7. Field forms for groundwater purging and sampling are provided in Appendix A.

3.3 Groundwater Analytical Results

The analytical results for the July 2022 groundwater monitoring event are provided in Table 8. Analytical results were compared to the PALs defined in the SAP (DON 2022). Exceedances of the PAL occurred for the following analytes:

- TCE exceeded the PAL of 0.30 μ g/L in the samples from wells 2MW-11, 2MW-12, and 2MW-13.
- Vinyl chloride exceeded the PAL of 0.020 μg/L in the samples from wells 2MW-11, 2MW-12, 2MW-13, 2MW-14, 2MW-19. Vinyl chloride exceedances in groundwater samples are shown in Figure 3-2.
- Chloroform exceeded the PAL of 1.4 μ g/L in the sample from 2MW-14.
- The following analytes were not detected; however, the laboratory LODs exceeded PALs: 1,1,2,2-tetrachloroethane, 1,2,3-trichloropropane, 1,2,4-trichlorobenzene, and hexachlorobutadiene were not detected above the laboratory LOD.
- The following analytes were not detected in the sample from well 2MW-12; however, the laboratory LODs for this sample exceeded PALs: 1,1,2-trichloroethane, 1,2-dichloroethane, 1,2-dichloropropane, carbon tetrachloride, cis-1,3-dichloropropene, methylene chloride, tetrachloroethene, and trans-1,3-dichloropropene.

				Surements	arameter wea							
	Salinity (ppt)	Temperature (ºC)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Specific Conductance (mS/cm)	рН (s.u.)	Groundwater Elevation (feet-MLLW)	Depth to Groundwater (feet-BTOC)	Depth to Top of Screen (feet-BTOC)	Top of Well Casing Elevation (feet-MLLW)	Date	Well ID
0.13 -499.6	0.13	12.6	0.49	29.84	0.280	7.18	14.68	6.73	25.0	21.41	7/11/2022	2MW-9
0.14 -501.8	0.14	13.4	0.58	70.89	0.292	7.60	14.93	7.70	30.0	22.63	7/11/2022	2MW-10
0.14 8.1	0.14	13.8	0.50	6.39	0.289	6.43	16.27	6.54	10.0	22.81	7/8/2022	2MW-11
0.32 -325.9	0.32	15.4	0.40	15.12	0.647	6.53	17.43	5.70	10.0	23.13	7/8/2022	2MW-12
0.47 77.4	0.47	13.2	0.62	4.78	0.941	6.37	15.7	6.43	10.0	22.13	7/11/2022	2MW-13
0.43 -354.3	0.43	13.4	0.54	8.62	0.862	6.45	15.15	8.60	10.0	23.75	7/11/2022	2MW-14
0.18 42.4	0.18	11.7	0.76	3.14	0.376	6.48	17.19	6.65	8.0	23.84	7/11/2022	2MW-15
0.17 36.3	0.17	12.1	0.63	66.87	0.360	6.45	16.70	6.30	8.0	23.00	7/11/2022	2MW-16
0.20 -389.8	0.20	13.9	0.56	32.80	0.419	6.91	22.01	2.39	10.0	24.40	7/8/2022	2MW-17
0.10 -248.6	0.10	14.6	0.76	23.43	0.214	6.91	19.65	5.28	8.0	24.93	7/8/2022	2MW-18
0.25 131.5	0.25	12.6	4.60	21.32	0.519	6.45	13.86	8.30	8.0	22.16	7/11/2022	2MW-19
0.20 0.10	0.20 0.10	13.9 14.6	0.56 0.76	32.80 23.43	0.419 0.214	6.91 6.91	22.01 19.65	2.39 5.28	10.0 8.0	24.40 24.93	7/8/2022 7/8/2022	2MW-17 2MW-18

Table 7. Groundwater Elevation and Field Parameter Measurements

Notes:

BTOC = below top of casing

°C = degrees Celsius

mg/L = milligram(s) per liter

MLLW = mean low lower water

mS/cm = milliSiemens(s) per centimeter

mV = millivolt(s)

NTU = nephelometric turbidity units

ORP = oxidation/reduction potential

pH = potentiometric hydrogen ion concentration

ppt = parts per trillion

s.u. = standard units

				т	able 8. Grour	ndwater Sam	npling Ana	lytical Data							
		ocation ID	2MW-9	2MW-9 (DUP)	2MW-10	2MW-11	2MW-12	2MW-13	2MW-14	2MW-15	2MW-16	2MW-17	2MW-18	2MW-18 (DUP)	2MW-19
	Sample Colle	ection Date	7/11/2022	7/11/2022	7/11/2022	7/8/2022	7/8/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/8/2022	7/8/2022	7/8/2022	7/11/2022
Analyte	Project Action Level	Units													
1,1,1,2-Tetrachloroethane	1.7	μg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
1,1,1-Trichloroethane	200	µg/L	0.070 U	0.070 U	0.070 U	0.070 U	0.7 U	0.070 U	0.070 U	0.070 U	0.070 U	0.070 U	0.070 U	0.070 U	
1,1,2,2-Tetrachloroethane	0.10	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
1,1,2-Trichloroethane	0.35	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
1,1-Dichloroethane	7.7	µg/L	0.070 U	0.070 U	0.070 U	0.078 J	0.7 U	0.028 J	0.044 J	0.070 U	0.070 U	0.070 U	0.070 U	0.070 U	0.070 U
1,1-Dichloroethene	7.0	µg/L	0.070 U	0.070 U	0.070 U	0.096 J	0.7 U	0.070 U	0.098 J	0.070 U	0.070 U	0.27	0.070 U	0.070 U	0.070 U
1,1-Dichloropropene	NC	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
1,2,3-Trichlorobenzene	6.4	µg/L	0.35 UJ	0.35 UJ	0.35 UJ	0.35 UJ	3.5 UJ	0.35 UJ	0.35 UJ	0.35 UJ	0.35 U	0.35 UJ	0.35 U J	0.35 U J	0.35 UJ
1,2,3-Trichloropropane	0.00038	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
1,2,4-Trichlorobenzene	0.036	µg/L	0.35 U	0.35 U	0.35 U	0.35 U	3.5 U	0.35 UJ	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
1,2-Dichlorobenzene	600	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
1,2-Dichloroethane	0.48	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.044 J	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
1,2-Dichloropropane	0.71	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
1,3-Dichlorobenzene	2.0	µg/L	0.18 J	0.16 J	0.065 J	0.15 J	1.5 U	0.12 J	0.13 J	0.082 J	0.068 J	0.18 J	0.14 J	0.15 J	0.21 J
1,3-Dichloropropane	160	µg/L	0.070 U	0.070 U	0.070 U	0.070 U	0.7 U	0.070 U	0.070 U	0.070 U	0.070 U	0.070 U	0.070 U	0.070 U	0.070 U
1,4-Dichlorobenzene	8.1	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
2,2-Dichloropropane	NC	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
2-Chlorotoluene	160	µg/L	0.35 U	0.35 U	0.35 U	0.35 U	3.5 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
4-Chlorotoluene	NC	µg/L	0.25 U	0.25 U	0.25 U	0.25 U	2.5 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Carbon tetrachloride	0.20	µg/L	0.070 U	0.070 U	0.070 U	0.070 U	0.7 U	0.070 U	0.070 U	0.070 U	0.070 U	0.070 U	0.070 U	0.070 U	0.0.0
Chlorobenzene	100	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Chloroethane	NC	µg/L	0.25 U	0.25 U	0.25 U	0.53	2.5 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chloroform	1.4	µg/L	0.22	0.18 J	0.47	0.070 U	0.7 U	0.070 U	1.9	0.6	0.22	0.070 U	0.070 U	0.070 U	0.93
Chloromethane	NC	µg/L	0.35 U	0.35 U	0.35 U	0.35 U	3.5 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U
cis-1,2-Dichloroethene	16	µg/L	0.15 U	0.15 U	0.15 U	10	1.2 J	1.3	13	0.15 U	0.15 U	1.9	0.071 J	0.083 J	0.15 U
cis-1,3-Dichloropropene	0.22 ¹	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Hexachlorobutadiene	0.010	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Methylene chloride	5.0	µg/L	3.5 U	3.5 U	3.5 U	3.5 U	35 U	3.5 UJ	3.5 U	3.5 U	3.5 UJ	3.5 U	3.5 U	3.5 U	3.5 U
Tetrachloroethene	2.4	µg/L	0.25 U	0.25 U	0.25 U	0.25 U	2.5 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	
trans-1,2-Dichloroethene	100	µg/L	0.070 U	0.070 U	0.070 U	0.095 J	0.41 J	0.039 J	0.048 J	0.070 U	0.070 U	0.18 J	0.070 U	0.070 U	
trans-1,3-Dichloropropene	0.22 ¹	µg/L	0.15 U	0.15 U	0.15 U	0.15 U	1.5 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
Trichloroethene	0.30 ²	µg/L	0.15 U	0.15 U	0.15 U	4.7	7.6	0.40	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U J	0.24 J	0.15 U
Vinyl chloride	0.020 ³	µg/L	0.015 U	0.015 U	0.015 U	2.0	0.7	0.090	0.47 J	0.015 U	0.015 U	0.015 U	0.015 U	0.015 U	0.34

Notes:

Detected results exceeding the Project Action Level are boldfaced and shaded grey.

Limits of detection for non-detected results exceeding the Project Action Level are shaded grey.

^{1/} The project action level is for 1,3-dichloropropene (total) but will be applied to the cis- and trans-isomers.

 $^{2\prime}$ The remediation goal for trichloroethene is 5.0 $\mu g/L.$

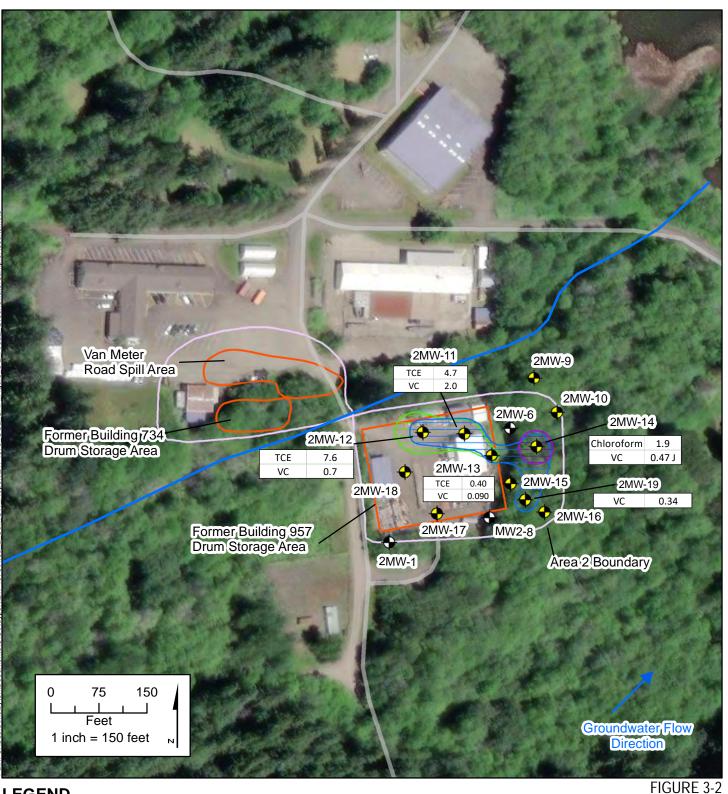
 $^{3\prime}$ The remediation goal for vinyl chloride is 0.029 $\mu g/L.$

µg/L = micrograms per liter

DUP = field duplicate

NC = no criterion

Q = qualifier


Data Qualifiers:

J = The reported result is an estimated value.

U = The analyte is not detected at the associated numerical value.

UJ = The analyte is not detected; the associated numerical value is approximate.

EA-LTM/OM-6006-23-0027

LEGEND

Stream

- Existing Monitoring Well (not sampled)
- New Monitoring Well (sampled)
- Chloroform Plume
 - Vinyl Chloride Plume

TCE Plume Notes: Concentrations are presented in micrograms per liter where exceedances occurred. J = The result is an estimated concentration.

OU 2 GROUNDWATER ANALYTICAL RESULTS SOIL AND GROUNDWATER SUPPLEMENTAL INVESTIGATION REPORT, AREA 2 VAN METER ROAD SPILL/DRUM STORAGE SITE, OPERABLE UNIT 2 NAVAL BASE KITSAP KEYPORT KEYPORT, WA

Source: Sealaska 2019

3.4 Laboratory Analysis

Soil samples were submitted to an off-site laboratory, Eurofins Lancaster Laboratories Environmental, in Lancaster, Pennsylvania. Groundwater samples were submitted to an off-site laboratory, Eurofins Seattle Laboratory, in Tacoma, Washington. These laboratories hold current accreditation for the scope of testing through the Department of Defense (DoD) and Washington Department of Ecology Environmental Laboratory Accreditation Programs. Groundwater samples and soil samples were analyzed for cVOCs by Method 8260D in accordance with the SAP (DON 2022).

3.5 Data Quality

Data validation was performed by a third-party data validator, Laboratory Data Consultants, Inc., in Carlsbad, California on the analytical results associated with samples using the guidelines presented in the SAP (DON 2022). The data validation was performed at a minimum frequency of 10 percent at Stage 4 and the remainder at Stage 2B, as defined in the General Data Validation Guidelines (DoD 2019) and Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by Gas Chromatograph/Mass Spectrometer (DoD 2020). The results of the validation were reviewed, and a data quality assessment report was prepared by the Contractor's Project Chemist. The data quality assessment report is presented in Appendix B and includes the data validation reports prepared by the third-party data validator.

The following significant issues were identified during data validation and/or assessment:

- As discussed in Section 2.5, only three of five planned soil samples were collected at SB-17 and SB-18.
- The temperatures of two coolers containing soil samples were above 20 degrees Celsius upon arrival at the laboratory. Due to the elevated temperatures, detected results for impacted samples were qualified "J" as estimated and non-detected results were rejected (qualified "R") on this basis. The soil samples from four borings (SB-11, SB-12, SB-17, and SB-18) and associated field QC samples were impacted by this issue. This includes the following samples and field QC samples: Area-2-22-SB-11-0.5, Area-2-22-SB-11-5, Area-2-22-SB-11-15, (field duplicate of prior sample), Area-2-22-SB-11-10, Area-2-22-SB-11-15, Area-2-22-SB-11-20, Area-2-22-SB-12-0.5, Area-2-22-SB-12-5, Area-2-22-SB-12-10, Area-2-22-SB-12-20, Area-2-22-SB-12-1-20 (field duplicate of prior sample), Area-2-22-SB-12-25, Area-2-22-SB-17-0.5, Area-2-22-SB-17-10, Area-2-22-SB-17-10 (field duplicate of prior sample), Area-2-22-SB-17-0.5, Area-2-22-SB-17-20,

Area-2-22-SB-18-0.5, Area-2-22-SB-18-10, Area-2-22-SB-18-20, two field blanks (FB-62722 and FB-62822), and two trip blanks (TB-62722 and TB-62822)

• Due to the issues discussed in the two bullets above, the percent completeness for the data set is 70 percent, which is significantly below the 90 percent minimal acceptance criteria for completeness specified in the Tier I SAP (DON 2022).

Otherwise, the results of data verification and validation processes indicate that the data generated from the samples collected during the field activities are generally of sufficient quality and quantity to accomplish project objectives. Unless rejected during data assessment, sample results accurately indicate the presence and/or absence of target analyte concentrations at sampled locations. Sample results are representative of site conditions at the time of collection. Results obtained are comparable to industry standards, in that collection and analytical techniques followed approved, documented procedures. Results are reported in industry standard units. As indicated in the SAP (DON 2022) in Worksheet #15, it was known that several LODs would be above the PALs. Non-detected sample results with LODs above PALs are indicated in grey highlight (no bolding) in Tables 6 and 8.

4 Conclusions and Recommendations

This section presents conclusions and recommendations related to the soil and groundwater investigation at OU 2.

4.1 Conclusions

Work performed during the investigation included soil sampling for cVOCs at 11 soil borings, installation and development of eleven new monitoring wells, and groundwater sampling for cVOCs at each new monitoring well. Soil and groundwater analytical results were compared to PALS defined in the SAP (DON 2022). Most soil and groundwater samples had no detected exceedances of PALs in soil or groundwater samples. In soil samples, TCE was detected above the PAL in 3 of 51 samples, vinyl chloride was detected above the PAL in 5 of 51 samples, and cis-1,2-dichloroethene was detected above the PAL in 3 of 51 samples. In groundwater samples, TCE was detected above the PAL in groundwater samples, TCE was detected above the PAL in 3 of 51 samples. In groundwater samples, TCE was detected above the PAL in 3 of 51 samples, and cis-1,2-dichloroethene was detected above the PAL in 3 of 51 samples. In groundwater samples, TCE was detected above the PAL in 3 of 51 samples. In groundwater samples, TCE was detected above the PAL in 3 of 51 samples. In groundwater samples, TCE was detected above the PAL in 10 or samples, TCE was detected above the PAL in 50 of 51 samples, and cis-1,2-dichloroethene was detected above the PAL in 3 of 51 samples. In groundwater samples, TCE was detected above the PAL in 3 of 51 samples, and cis-1,2-dichloroethene was detected above the PAL in 3 of 51 samples. In groundwater samples, TCE was detected above the PAL in 3 of 51 samples, and cis-1,2-dichloroethene was detected above the PAL in 3 of 51 samples. In groundwater samples, TCE was detected above the PAL in 3 of 51 samples, and cis-1,2-dichloroethene was detected above the PAL in 3 of 51 samples, and cis-1,2-dichloroethene was detected above the PAL in 3 of 51 samples, and cis-1,2-dichloroethene was detected above the PAL in 3 of 51 samples, and cis-1,2-dichloroethene was detected above the PAL in 3 of 51 samples, and cis-1,2-dichloroethene was detected above the PAL in 3 of 51 samples, and cis-1,2-dichloroethene was detected above the PAL in 3

As indicated in Section 3.5 and Appendix B, several soil and groundwater sample results presented in Tables 6 and 8, respectively, are considered usable but are qualified as estimated (with "J" or "UJ"). Notably, the detected cVOCs for soil samples from four borings (SB-11, SB-12, SB-17, and SB-18) may be biased low due to temperature above 20 degrees Celsius during shipment to the laboratory. Additionally, soil sample results not considered usable are rejected (qualified as "R"), with no numerical value presented in Table 6.

4.2 Recommendations

The soil and groundwater analytical results indicate that TCE and vinyl chloride concentrations exist outside of the previously installed point of compliance groundwater monitoring wells (2MW-1, 2MW-6, and MW2-8). It is recommended that the newly installed monitoring wells (2MW-9 through 2MW-19) are added to the long-term monitoring network for comparison to PALs.

5 References

- Department of Defense (DoD). 2019. General Data Validation Guidelines. Revision 1. Environmental Data Quality Workgroup. November.
- DoD. 2020. Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS. Environmental Data Quality Workgroup. May.
- Department of the Navy (DON). 1993. *Remedial Investigation, Comprehensive Long-Term Environmental Action Navy Northwest Area. Naval Undersea Warfare Center Division Keyport, Washington.* Prepared by URS Consultants, Seattle, Washington. October.
- DON. 1994. Record of Decision for Operable Unit 2. Comprehensive Long-Term Environmental Action Navy (CLEAN) Northwest Area. Naval Undersea Warfare Center, Division Keyport. Contract Task Order Number 0010. Prepared by URS Consultants, Seattle, Washington and Science Applications International Corporation, Bothell, Washington for Engineering Field Activity Northwest. September.
- DON. 1995. Long-Term Monitoring Plan for Operable Unit 2, Area 2 Van Meter Road Spill Site, Naval Undersea Warfare Center Division Keyport, Washington. Prepared by EA Engineering, Science, and Technology for U.S. Navy Engineering Field Activity Northwest. July.
- DON. 2019. Long-Term Monitoring Report, Van Meter Road Spill/Drum storage Area, Operable Unit 2, Area 2. Prepared by Sealaska Environmental Service, s LLC. December.
- DON. 2020. Fifth Five-Year Review, Naval Base Kitsap Keyport. Operational Units 1 and 2, Keyport, Washington. December.
- DON. 2022. Tier I Sampling and Analysis Plan, Soil and Groundwater Investigation, Operable Unit 2 Area 2, Van Meter Road Spill/Drum Storage Site. Naval Base Kitsap, Keyport, Washington. April.
- Naval Facilities Engineering Systems Command Northwest (NAVFAC NW). 2019. Environmental Restoration Program Standard Operating Procedures. Version 6.1. February.
- SCS Engineers. 1984. NEESA 13-054. International Assessment Study of Naval Undersea Warfare Engineering Station, Keyport, Washington.

Washington Department of Ecology. 1993. *Implementation Memo No. 3: Practical Quantitation Limits as Cleanup Standards.* August.

Appendix A Field Forms and Logbooks

	FIELD CHANGE REQUEST (FCR)	
TASK ORDER	FCR #	DATE
N44255-21F-4076	21F4076-02	30 June 2022
CONTRACTOR	LOCATION	NTR/RPM
EA Engineering, Science, and	Naval Base Kitsap Keyport – Operable Unit 2, Area 2	Carlotta Cellucci & Amanda
Technology, Inc., PBC		Rohrbaugh

1. Document to be changed. (Identify version #, date, section, drawing, etc. to be changed)

Final Tier I Sampling and Analysis Plan, Soil and Groundwater Investigation, Operable Unit 2, Area 2, Van Meter Road Spill/Drum Storage Site, Naval Base Kitsap Keyport (issued 29 April 2021); herein referred to as the SAP

2. Description of existing requirement and reason for the change (attach additional sheets/figures as needed)

Worksheet (WS) #17 Table 17-1 of the SAP indicates a maximum depth of 20 feet (ft) below ground surface (bgs) for monitoring wells 2MW-9 and 2MW-10 and a maximum depth of 40 ft bgs for 2MW-17, 2MW-18, New Well 11 (at location SB-19 and now identified as 2MW-19), and New Well 12. The proposed changes identified in Section 3 (below) will be implemented to achieve deeper borings and wells at down gradient locations 2MW-9 and 2MW-10. Additionally, the RPM determined that project objectives will be satisfied without digging SB-20 or installing New Well 12 and that the planned coverage or footage may be better suited to being applied to an increased depth at another location if evidence of contamination is observed in the field. A portion of this extra footage was utilized at SB-12 which was advanced to 25 ft bgs (due to contamination observed in that boring at approximately 10 ft bgs).

WS #18 states that soil samples will be collected from locations SB-17, SB-18, and SB-19 at the following depths (ft bgs): 20 to 20.5, 30 to 30.5, and 39.5 to 40.0. Because of the changes/switches in soil boring depths at these locations, the proposed changes identified in Section 3 (below) will be implemented.

WS #18 states that soil samples will be collected from SB-20 at the following depths (ft bgs): 0.0 to 0.5, 10.0 to 10.5, 20.0 to 20.5, 30.0 to 30.5, and 39.5 to 40.0. WS#18 also states that a groundwater sample will be collected from corresponding New Well 12. No soil or groundwater samples will be collected at SB-20 or New Well 12 because no boring or well will be completed at this location.

WS #18 Footnote 4 states that five samples will be collected from each borehole from depths spread out relatively evenly (e.g., approximately every 5 feet for a 20-foot well, approximately every 10 feet for a 40-foot well).

3. Proposed change(s). (Attach additional sheets/figures as needed)

Monitoring wells 2MW-9 and 2MW-10 will have a maximum depth of 40 ft bgs; monitoring wells 2MW-17, 2MW-18, and 2MW-19 will have a maximum depth of 20 ft bgs. The monitoring well identified in the SAP as New Well 12 (associated with SB 20) will not be installed; however, the planned footage at this location may be applied to increase the depth at another well(s) if determined necessary by the RPM.

Instead of collecting soil samples from locations SB-17 and SB-18 at depths (ft bgs) of 30 to 30.5 and 39.5 to 40.0, soil samples will be collected at 30 ft bgs and 40 ft bgs at SB-9 and SB-10. Soil samples will not be collected beyond 20 ft bgs from SB-17, SB-18, and SB-19. No soil samples will be collected at location SB-20; no groundwater samples will be collected from New Well 12.

4. Originator (Print)	Signature	Title	Date
Da	ana Ramquist	Donie Tanint	Task Order Manager	30 June 2022
5. Reviewed b	oy (Print)	Signature	Title	Date
Ca	amille Warren	Canut llaun	Project Quality Control Manager	5 July 2022
Br	renda Nuding	Rrinda O. Muling	Program QA Manager	30 June 2022
С	Carlotta Cellucci		NAVFAC NW NTR/RPM	

Table 17-1. Annual Sample Locations, Analytical Parameters, and Well Construction Data

Location	Matrix Type	VOCs (9) ^{1/} (SW8260D)	PFAS (LC/MS/MS compliant with 2019 QSM Version 5.3 Table B-15)	Vinyl chloride (SW8260D)	Salinity, Temperature, and Dissolved Oxygen		Screened Interval of Well (feet below toc)	Total Well Depth (feet below toc)
OU 1 Area 1 Moni	itoring W	ells						
1MW-1	GW	Х	Х		Х	Х	5.5-15.5	17.45
1MW-4	GW	Х	Х		Х	Х	15-25	26.59
MW1-2	GW	Х	Х		Х	Х	12.5-17.5	20.5
MW1-3	GW	Х	Х		Х	Х	5.5-10.5	11.21
MW1-4	GW	Х	Х		Х	Х	7-12	15.41
MW1-5	GW	Х	Х		Х	Х	6-11	14.26
MW1-6	GW	Х	Х		Х	Х	8-13	16.04
MW1-9	GW	Х	Х		Х	Х	48.5-58.5	61.2
MW1-10	GW	Х	Х		Х	Х	4-14	16.78
MW1-11	GW	Х	Х		Х	Х	54.5-59.5	63.5
MW1-14	GW	Х	Х		Х	Х	9-14	15.61
MW1-15	GW	Х	Х		Х	Х	6 - 11	11.99
MW1-17	GW	Х	Х		Х	Х	7.5-12.5	16.22
MW1-18	GW	Х	Х		Х	Х	12-17	20.55
MW1-19	G₩	×	×-		×	×	7.5-12.5	16.42
MW1-20	GW	Х	Х		Х	Х	10-15	16.06
MW1-23	GW	Х	Х		Х	Х	21-26	29.99
MW1-24	GW	Х	Х		Х	Х	23-28	28.97
MW1-25	GW	Х	Х		Х	Х	38-48	51.62

Location	Matrix Type	VOCs (9) ^{1/} (SW8260D)	PFAS (LC/MS/MS compliant with 2019 QSM Version 5.3 Table B-15)	Vinyl chloride (SW8260D)	Salinity, Temperature, and Dissolved Oxygen	Water	Screened Interval of Well (feet below toc)	Total Well Depth (feet below toc)
MW1-27	GW	Х	Х		Х	Х	24-29	30
MW1-28	GW	Х	Х		Х	Х	39-44	48.78
MW1-29	GW	Х	Х		Х	Х	31.5-36.5	39.63
MW1-31	GW	Х	Х		Х	Х	17-22	23.12
MW1-38	GW	Х	Х		Х	Х	44-49	50.23
MW1-39	GW	Х	Х		Х	Х	27.7-32.7	33.45
MW1-41	GW	Х	Х		Х	Х	5-15	17.74
MW1-42	GW	Х	Х		Х	Х	14.5-24.5	25
MW1-43	GW	Х	Х		Х	Х	14.5-24.5	25
MW1-44	GW	Х	Х		Х	Х	17.5-27.5	28
MW1-45	GW	Х	Х		Х	Х	14.5-24.5	25
MW1-46	GW	Х	Х		Х	Х	23.5-33.5	34
MW1-47	GW	Х	Х		Х	Х	14.5-24.5	25
MW1-48	GW	Х	Х		Х	Х	14.5-24.5	25
MW1-49	GW	Х	Х		Х	Х	4.5-14.5	15
MW1-50	GW	Х	Х		Х	Х	4.5-14.5	15
MW1-51	GW	Х	Х		Х	Х	9.5-19.5	20
MW1-52	GW	Х	Х		Х	Х	6.5-16.5	17
MW1-53	GW	Х	Х		Х	Х	4.5-14.5	15
MW1-54	GW	Х	Х		Х	Х	28.5-38.5	39
MW1-55	GW	Х	Х		Х	Х	26-36	36.5
MW1-56, Channel 2	GW	Х	Х		Х	Х	9.75-10.25	14

Location	Matrix Type	VOCs (9) ^{1/} (SW8260D)	PFAS (LC/MS/MS compliant with 2019 QSM Version 5.3 Table B-15)	Vinyl chloride (SW8260D)	Salinity, Temperature, and Dissolved Oxygen	Water	Screened Interval of Well (feet below toc)	Total Well Depth (feet below toc)
MW1-56, Channel 1	GW	х	Х		Х	х	21.75-22.25	26
MW1-56, Channel 0	GW	х	Х		Х	х	33.75-34.25	41
MW1-58, Channel 2	GW	х	Х		х	х	6.75-7.25	11
MW1-58, Channel 1	GW	х	Х		х	х	16.75-17.25	21
MW1-58, Channel 0	GW	х	Х		х	х	35.75-36.25	39.5
MW1-59	GW	Х	Х		Х	Х	61.8-71.8	75
MW1-60	GW	Х	Х		Х	Х	14.5-24.5	25
MW1-61	GW	Х	Х		Х	Х	2.64-12.64	60
MW1-62	GW	Х	Х		Х	Х	33.6-43.6	90
MW1-63	GW	Х	Х		Х	Х	32.71-42.71	75
MW1-64	GW	Х	Х		Х	Х	47.88-57.88	60
MW1-65	GW	Х	Х		Х	Х	55.88-65.88	85
MW1-67	GW	Х	Х		Х	Х	4.5-14.5	15
MW1-68	GW	Х	Х		Х	Х	38.95-48.95	80
P1-01	GW	Х	Х		Х	Х	10-15	17.51
P1-02	GW	Х	Х		Х	Х	10-15	17.61
P1-03	GW	Х	Х		Х	Х	10-15	18.03
P1-04	GW	Х	Х		Х	Х	10-15	16.86
P1-09	GW	Х	Х		Х	Х	10-15	15
OU 2 Area 2 Mon	itoring W	ells						
2MW-1	GW			Х	Х	Х	3-18	17.69

Location	Matrix Type	VOCs (9) ^{1/} (SW8260D)	PFAS (LC/MS/MS compliant with 2019 QSM Version 5.3 Table B-15)	Vinyl chloride (SW8260D)	Salinity, Temperature, and Dissolved Oxygen	Water	Screened Interval of Well (feet below toc)	Total Well Depth (feet below toc)
2MW-6	GW			Х	Х	Х	Unknown	21.11
MW2-8	GW			Х	Х	Х	7-12	13
^{1/} VOCs include 1-1 btoc = below top of GW = groundwater LC/MS/MS = liquid OU = operable unit PFAS = per- and po QSM = Quality Sys VOC = volatile orga	casing chromate olyfluoroa tems Ma	ography with t alkyl substanc nual for Enviro	andem mass sp es	ectrometry	DCE, PCE, 1,1,	,1-TCA,	TCE, vinyl chlorid	le.

SAP Worksheet #20: Field Quality Control Sample Summary Table

1

Analysis	No. of Sampling Locations	No. of Field Duplicates	No. of MS/MSDs	No. of Field Blanks	No. of Equipment Blanks	No. of VOA Trip Blanks
Area 1	•		•	·		
VOCs ^{1/}	60	1 for every 10 primary samples	1 set for every 10 20 primary samples	1 per day assuming samples are collected in the same area of the site	1 per day samples are collected using non- dedicated equipment	With each cooler containing samples for volatile analysis
PFAS	60	1 for every 10 primary samples	1 set for every 10 20 primary samples	1 per day assuming samples are collected in the same area of the site	1 set for every 20 primary samples, per day, samples are collected using non-dedicated equipment	none
Area 2						
Vinyl chloride	3	1 for every 10 primary samples	1 set for every 10 20 primary samples	1 per day assuming samples are collected in the same area of the site	1 for every 20 primary samples per day collected using non-dedicated equipment	With each cooler containing samples for volatile analysis
MS – matrix spike MSD – matric spike	e duplicate olyfluoroalkyl substa anic analysis		s-1,2-DCE, PCE, 1,1,1-T	CA, TCE, and vinyl chloride.		

Contract Number: <u>N</u> Well ID: _ Total Well	N44255-20-1	D-6006	Task				and the second se	the second s	COLUMN TO AN ADDRESS OF ADDRESS O		
			Order:	N4425521	F4076	Naval Installation:	Keyport		Site Name: OL	J2	
	2001	1-0				Data	1-77				
Total Well			1.		epth to Wate				ell Volume (
	Depth (ft b	toc): 37.	60	Dep	pth to Produc	ct (ft btoc):	NA	Volume	Pre-Purged (liters):	2-0
Mid Screer	n Depth (ft b	otoc):			Product This	ckness (ft):_	NA	Well Volu	me Purged (liters):	5.
Purge Meth	hod: Perista	Tig/Submer	sible/Blad	Ider/Other:				Purg	e Rate (liters	/min):	0.2
-					Well In	spection	and a second				
Wel	I Locked: Y	:N: /	-	D	edicated Pur	mp: Y:	N.V F	Pooled Wate	er in Monum	ent: Y.	N
Exterior Se	eal Good: Y	. / N.					/				
			- De	calcated Dis	scharge Tubi		<u>N:</u> M	aintenance/	Repairs Nee	ded: Y:	_ 1
Remarks: _	NA										
					Water San	mple Data					
0	1			The F			100 -	140			3
Sample ID:	: Arenz-2	2-2mu-9		Type: Un	DIV D	ate: //1	122 T	ime: 1953	> # Cor	ntainers:)
	in has a	22 2 2	a p	Tune:	D D	11/17 10	INA T	100 15K	6	talu	-
QC Sample	ID: Marz-	PII DI	1.12	Type: 1	D D	ale: /2 11	160	ime: 1.50	# Cor	itainers:	
Sampling F	Personnel: _	BH, D	20								
Remarks (c	color, odor,	Cle	w, no	odar						-	
etc.):											
	Purge	Depth to		Spec.							and Sectores
	Vol.	Water			Turkidte	DO	T	0.11.11	000		
Time				Cond.	Turbidity		Temp.	Salinity	ORP	-	
Time	(liters)	(ft btoc)	pH	(ms/cm)	(NTU)	(mg/L)	(°C)	(%)	(mv)	Com	ment
C					(± 10%		and the				
	zation Req					NA	(± 10%)	NA	NA		
1420	-	6.73		Depth to W							
	Besin	Runze	Set f	IOW to	0.2.11	hin				UL	1
1430	1.0	6-82	7.17	0.281	34.99	0.70	12.8	0.13	-4868	1	
1435	2.0		7.17	0.281	36.66	0.59	12.8	0.13	-5000		
1440	3.0	6.83	7.18	0.281	29.22	0.53	12.7	0.13			
The second secon	and the second sec	and the supervision of the super		0.282	E1.66	and a second sec	Contraction of the second seco		-304.4	-+	
1445	41.0	6.83	7.18				12.7	0.14	-531,7		
1466	50	6.83	7.18	6.286	27.84	0.49	12.6	0.13	-499-6		
1455	collec	t 5a	mpie							1	
											-
								1			+
											-
									BH		
									WIT		t
			Volume	Calculation	ns for Well	Casings or l	Discharge T	ubing			
		Volume (ing volume (I				(ft)]		
	a diamatar (and the second se	the second se		server mercence, frontinger mercen	1	
Wall anair-					Disch		diameter (in)				iters/f
Well casing	7→0.6	$4" \rightarrow 2.5$	6" -	+ 5.6		$1/4$ " $\rightarrow 0$.	010 3/8	$3^{"} \rightarrow 0.022$	1/2" -	+ 0.039	
	/										
	/										
(2)											
(2)	B.Hair H.Haje			1/11/22		Page	of \		Meter Mode	I. VCI D	ROD

-			E.	Ť	-			P	urging,	pection, and Field ant Form
Contract Number: 1	N44255-20-I	D-6006	Task Order:	N44255211		Naval Installation:	Keyport		Site Name: OU	12
Total Well Mid Screen Purge Met Wa Exterior Sc Remarks:		toc): <u>41,</u> ptoc): Itid/Submers Y: N: : N:	sible/Blad	Dep der/Other: De dicated Dis	oth to Product Product Thic <u>Well Ins</u> edicated Purr charge Tubit <u>Water San</u>	er (ft btoc): et (ft btoc): ekness (ft): spection np: Y:N ng: Y:N ng: Y:N	<u>NA</u> <u>NA</u> N: <u> </u>	Volume F Well Volur Purge Pooled Wate aintenance/F	Pre-Purged () me Purged () Rate (liters er in Monum Repairs Need	liters): <u>U.6</u> liters): <u>0</u> liters): <u>4.0</u> /min): <u>0.2</u> ent: Y: <u>N:</u> ded: Y: <u>N:</u>
Sampling I	Personnel:	BH,	Dr			Y Cloud) DO (mg/L)		Salinity (%)	ORP (mv)	Comments
Stabili	zation Req		(± 10%)	(± 10%)	(± 10% or <10)	NA	(± 10%)	NA	NA	
1341	_	1.70		epth to W						
1345	Begin	proc	, set	FID		2 210				IA
1356	1.0			0.295		0.82		0.14	-489.1	1
	7.0	8.18	7.60	0.293	71.05	0.66	13.5	0.14	-501-1	
1355			and the second se			1 1 .				
1355	3.0	8.18	7.60	0.293	71.51	0.64		0.14	-500.8	
1400	3.0	8.18		0.293	71.51 70.89	0.64				
1400	3.0	8.18		0.293	71.51 70.89	0.58		0.14	-500.8	
1400	3.0	8.18		0.293	71.51 70.89	0.58		0.14	-500.8	
1400	3.0	8.18		0.293	71.51	0.58		0.14	-500.8	
1400	3.0	8.18		0.293	71.51	0.64		0.14	-500.8	
1400	3.0	8.18		0.293	71.51 70.89	0.64		0.14	-500.8	
1400	3.0	8.18		0.293	71.51	0.64		0.14	-500.8 ' Sci 18	
1400	3.0	8.18		0.293	71.51	0.64		0.14	-500.8	
1400	3.0	8.18	~pi (0.293		0.64 0.58 Casings or I	13-5	0-14	-500.8 ' Sci 18	
1400 1405 1410 Well casir	3.0	$\frac{8.18}{8.18}$ $\frac{1}{5.18}$	Volume (liters) = [casing vo	Calculatio	ons for Well ing volume (Casings or I (liters/ft)] x [harge tubing	13-5 13-4 Discharge T Length of w diameter (in	0.) $40.14Tubingater column0 \rightarrow Discha$	-500.8 '501.8 2/4	volume (liters/ft) → 0.039

		3	E	Т	1			F	urging,	spection, and Field ment Form
Contract Number:	N44255-20-	D-6006	Task Order:	N4425521	F4076	Naval Installation:	Keyport		Site Name: 0	U2
Total Well Mid Scree	2 M I Depth (ft b in Depth (ft those Perista	toc): 19.2 btoc):	31	De	Depth to Wate	Data er (ft btoc):_ ct (ft btoc):_ ckness (ft):_	NP	Volume I Well Volu	Pre-Purged me Purged	(liters): 7.96 (liters): 1.0 (liters): 6.0 (s/min): 0.2
Exterior Se	II Locked: \underline{Y} cal Good: \underline{Y} $N \otimes \wedge \checkmark$	N:	- De		edicated Pur	spection mp: Y: 1 ing: Y: 1				nent: Y: N eded: Y: <u>N</u>
QC Sample Sampling	ID: Personnel:	H, Ha <u>cle</u>	jek, judy	Type: B. Hai	D	ate:		`ime:	# Co	ontainers: <u>3</u>
Time	Vol. (liters)	Depth to Water (ft btoc)	рН	Spec. Cond. (ms/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Salinity (%)	ORP (mv)	Comments
Stabili 1420	zation Req	uirements 16.54			(± 10% or <10) ater 0,5	NA ZL/MIN	(± 10%)	PP+ NA	NA	
1424	Beam						1			ALA
14:29	1.0	Proc. 7.01	6,42	0,290	61,88	0.58	13.9	0.14	22,8	ng
1434	2.0	7.19			25.77		14,1	0,14	19,4	
439	3.0	7.24	6.42		15.86	0,55	14,0	0.14	17.1	
1444	4.0	7,27	6.43	0.289	9,79	0,54	13,9	0.14	13,0	
449	50	7.30	6.43	0.289	7,59	0.51	13.9	0,14	10,0	
454	6.0	7.33	6,43	0,289	6.39	0,50	13,8	0,14	8.1	
C	TABI	4.77	ED						4	
-	TROJ	-CJC	FLD.		10	10.0-				
				HALK	0710	12022				
				hard						
			Volume	Calculatio	ns for Well	Casings or I	Discharge T	ubing		
		Volume				liters/ft)] x []			(ft)]	
-	g diameter ($2^{"} \rightarrow 0.6$)		casing vo				diameter (in		rge tubing v	olume (liters/ft → 0.039
a financial and a financial and										

-	-		E	Ť				1	Purging,	spection, and Field ment Form
Contract Number:	N44255-20-	-D-6006	Task Order	: N4425521		Naval Installation:	Keyport		Site Name: O	U2
Total Wel	ZM L Il Depth (ft b en Depth (ft	otoc): 20,	02	De	Pepth to Wat	ter (ft btoc): tet (ft btoc): tet (ft btoc): tickness (ft):	NP	Volume	ell Volume Pre-Purged	(liters): <u>8,59</u> (liters): <u>1,0</u> (liters): <u>7</u> ,0
Purge Me	thod: erista	altic/Submer	sible/Bla	dder/Other:		spection		Purg	e Rate (liter	rs/min):
We Exterior S Remarks:	Seal Good: Y	/:N:	D	D edicated Dis	edicated Pu scharge Tub	mp: Y: ing: Y:	N:			ment: Y:N: eded: Y:N:
QC Sample Sampling Remarks (Personnel:	BIL	laes	Type:	Laiok	Date:	1	lime:	# Co	ontainers: <u>3</u>
tc.): Time	Purge Vol. (liters)	Depth to Water (ft btoc)		Spec, Cond. (ms/cm)	Turbidity (NTU) (± 10%	DO (mg/L)	Temp. (°C)	Salinity (%)	ORP (mv)	Comments
	ization Rec	uirements		(±10%)	or <10)	NA	(± 10%)	NA	NA	
Stabili	Zation Kee			Depth to W	ater					
1333		5,70	Initial L		1	1	1	T	1	
1333 1336 1346 1346 1351 1356	Begir 1.0 2.0 3.0 4.0	5.70 Auge 6.41 6.46 6.49		0,800 0,756 0,691 0,625	20,66 19,88 37,98 43,30	0.45	16,0 15,7 15,5 15,5	0,39 0,37 0,34 0,33	-311.7. -309.0 -307.6 -308.6	Bubbles in Flow cell
1333 1336 1341 1346 1351	BegAr 1.0 2.0 3.0	5.70 Aurge 6.41 6.46 6.49	6.49 6.50 6.51 6.52 6.52 6.52	0,800	19,88 37,98 43,30 13,84 13,84	0.45	15,7	0:37	-309,0	Bubbles in Flow cell
1333 1336 1341 1346 1351 1356 1401 1406	Begar 1.0 2.0 3.0 4.0 5.0 6.0	5,70 Auge 6,41 6,46 6,53 6,55 6,56	6,49 6,50 6,51 6,52 6,52 6,52	0.800 0.756 0.691 0.625 0.665 0.657	19.88 37,98 43,30 13.84 13.96 15.12	0.45	15,7 15,5 15,5 15,4 15,4	0:37 0.34 0.33 0.33 0.33	-309,0 -307,6 -308,6 -314,6 -322,8	
1333 1336 1341 1346 1351 1356 1401 1406	Begar 1.0 2.0 3.0 4.0 5.0 6.0	5.70 Auge 6.41 6.46 6.53 6.55 6.55 6.56 6.58	6,49 6,50 6,51 6,52 6,52 6,52 6,53 0	0.800 0.756 0.691 0.665 0.665 0.657 0.647	19.88 37.98 43.30 13.84 13.94 13.94 15.12	0,45 0,41 0,41 0,40 0,40	15,7 15,5 15,5 15,5 15,4 15,4 15,4	0,37 0,34 0,33 0,33 0,32 0,32	-309,0 -307,6 -308,6 -314,6 -322,8 -325,9	

		3	F	Т		ogy, Inc	ice, and	1	Purging,	spection, , and Field ment Form
Contract Number:	N44255-20-	-D-6006	Task Order	: <u>N4425521</u>	F4076	Naval Installation:	Keyport		Site Name: O	U2
Total We Mid Scre	2ML ell Depth (ft t een Depth (ft ethod Perista	btoc): 19,		De	epth to Wat	ter (ft btoc): tet (ft btoc): tet (ft btoc): techness (ft):	NP	Volume Well Volu	Pre-Purged ime Purged	(liters): 8.016 (liters): 1_4O (liters): 6.0
W	ell Locked: Y Seal Good: Y : None	(:N:	/	D	edicated Pu	<u>spection</u> mp: Y: ing: Y:	And and a second se	Pooled Wat	er in Monur	rs/min): <u>0, 2</u> ment: Y: N: eded: Y: N:
QC Sampl Sampling Remarks		H. Ha	jek,	Type:	mper	Date:	Т			ontainers: <u>3</u>
etc.):										
Time	Purge Vol. (liters)	Depth to Water (ft btoc)	рН (± 10%)	Spec. Cond. (ms/cm)	Turbidity (NTU) (± 10% or <10)	(mg/L)	Temp. (°C)	Salinity (%) PS F	ORP (mv)	Comments
Time Stabil 0914 2916 0921 926	Vol. (liters) lization Reg Begin 1.0 2.0 3,0	Water (ft btoc) uirements 6.43 Purge 7.26 7.31 7.38	(± 10%)	Cond. (ms/cm) (± 10%) Depth to W 0,942 0,943 0,943	(NTU) (± 10% or <10) ater 24,64 20,28 10,41	(mg/L) NA 1.08 0.83 0,79	(°C) (± 10%) 13, 2 13, 2 13, 2	0.47 0.47 0.47	(mv) NA 202.1 185.5 [50.]	Comments
Time Stabil 0914 0916 0921 0926 0926 0931 0936 0936	Vol. (liters) lization Req Begin 1.0 2.0	Water (ft btoc) uirements 6.43 Purge 7.26 7.3	(± 10%) Initial I 6,37	Cond. (ms/cm) (± 10%) Depth to W 0,942 0,943	(NTU) (± 10% or <10) ater 24,64 20,28 10,41 7.00 5,51 4,78	(mg/L) NA 1.08 0.83 0.79 0.73 0.62 0.62 0.62	(°C) (± 10%) 13, 2 13, 2	0.47 0.47	(mv) NA 202.1 185.5	
Time	Vol. (liters) lization Reg Begin 1.0 2.0 3.0 4.0 5.0	Water (ft bloc) uirements 6.43 p_{wae} 7.26 7.31 7.38 7.40 7.42 7.42 7.42 7.42 7.42 7.42 7.42	(± 10%) Initial I 6,37 6,37 6,37 6,37 6,37 6,37 6,37 6,37	Cond. (ms/cm) (± 10%) Depth to W 0,942 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,9440000000000	(NTU) (± 10% or <10) ater 24, 64 20, 2.8 10, 4 1 7.00 5, 51 4, 78 7/1\/2	(mg/L) NA 1.08 0.83 0.79 0.73 0.62 0.62 0.62 0.62	(°C) (± 10%) 13, 2 13, 2 13, 2 13, 3 13, 3	(2%) PST NA 0,47 0,47 0,47 0,47 0,47 0,47 0,47	(mv) NA 202.1 185.5 [50.] 120.] 105.9 77.4	

and the second			E	Ť					urging,	spection, and Fiel nent For	d
Contract Number:	N44255-20-	-D-6006	Task Order	: <u>N4425521</u>	F4076	Naval Installation:	Keyport		Site Name: Ol	J2	
Wall ID.	ZMI	1-111				Data	12 1				
	Il Depth (ft b					er (ft btoc):_				liters): Z 2	
						et (ft bloc):_				liters):	
	en Depth (ft	2				ickness (ft):_	NA	Well Volu	me Purged (liters): 7, (0
Purge Me	thod: Perista	altie/Submer	rsible/Bla	dder/Other:				Purg	e Rate (liters	s/min):_0,2	-
Exterior S	ell Locked: Y Seal Good: Y None				edicated Pu	spection mp: Y: ing: Y:				nent: Y: ded: Y:	
						mple Data					2
										ntainers:	
Sampling	Personnel:	BH	1)0								
											-
	Purge Vol.	Depth to Water		Spec. Cond.	Turbidity		Temp.	Salinity	ORP	6	
etc.): Time			рН		Turbidity (NTU) (± 10%	DO (mg/L)	Temp. (°C)	Salinity (%)	ORP (mv)	Commer	nte
Time Stabil	Vol. (liters)	Water (ft btoc) uirements	рН (± 10%)	Cond. (ms/cm)) (± 10%)	(NTU) (± 10% or <10)					Commen	nte
Time Stabil	Vol. (liters) ization Rec	Water (ft btoc) uirements	pH (± 10%) Initial I	Cond. (ms/cm)) (± 10%) Depth to W	(NTU) (± 10% or <10) ater	(mg/L) NA	(°C) (± 10%)	(%)	(mv)		nte
Time Stabil 1240 1246 1251	Vol. (liters)	Water (ft btoc) uirements 8.60 PMg c	pH (± 10%) Initial I	Cond. (ms/cm)) (± 10%) Depth to W	(NTU) (± 10% or <10) /ater	(mg/L) NA	(°C) (± 10%)	(%) NA	(mv) NA	Commen	nts
Time Stabil 1240 1246 1256	Vol. (liters) ization Rec Regn 1.0 20	Water (ft btoc) uirements 8.60 PMg c	pH (± 10%) Initial I	Cond. (ms/cm)) (± 10%) Depth to W	(NTU) (± 10% or <10) ater	(mg/L) NA	(°C)	(%) NA 0.46	(mv) NA 56.0		nts
Time Stabil 1240 1246 1246 1256 1256 1301	Vol. (liters) ization Rec Begin 1:0 2:-0 3:0	Water (ft btoc) wirements 8.60 Prog.6 11.32 11.61 11.5	pH (± 10%) Initial I , 5x (0.42 (0.42 (0.43 (0.45)	Cond. (ms/cm)) (± 10%) Depth to W + F 10 Om23 Om23 Om23 Om23	(NTU) (± 10% or <10) ater 17. ¹⁰ 16.60 14.82	(mg/L) NA 0.45 0.45 0.46	(°C) (± 10%) (± 2.0%	(%) NA	(mv) NA 56.0 19.1 -36.5		nts
Time Stabil 1240 1246 1256 1256 1301 1300	Vol. (liters) ization Rec Regn 1:0 2:-6 3:6 4:6	Water (ft btoc) 1000 1000 1000 1000 1000 1000 1000 10	pH (± 10%) Initial I , 5< (0.42 (0.43 (0.43 (0.43) (0.43) (0.47)	Cond. (ms/cm) (± 10%) Depth to W + F 16 O.923 O.923 O.905 O.905 O.866	(NTU) (± 10% or <10) ater 17. [∞] 17. [∞] 17. [∞] 17. [∞] 17. [∞] 17. [∞] 17. [∞] 17. [∞] 17. [∞]	(mg/L) NA 0.65 0.65 0.61 0.56 0.54	(°C) (± 10%) 2.0% 12.6% 12.6% 12.7	(%) NA 0.46 0.46 0.45 0.45	(mv) NA 56.0 19.1 -38.5 -V25.8		nts
Time Stabil 1240 1246 1246 1256 1301 1300 1300 1311	Vol. (liters) $1 \cdot 0$ $2 \cdot 0$ $3 \cdot 0$ $4 \cdot 0$ $5 \cdot 0$	Water (ft btoc) uirements 8.63 PM-9.6 11.32 11.61 11.5 11.5 11.5	pH (± 10% Initial I , 5 (0.42 (0.42 (0.43 (0.43 (0.43 (0.43 (0.43 (0.43))	Cond. (ms/cm) $(\pm 10\%)$ Depth to W $+ F_{16}$ 0.923 0.923 0.905 0.355	(NTU) (± 10% or <10) ater 17. [∞] 17. [∞] 17.82 12.83 10.92	(mg/L) NA 0.2 4 0.45 0.46 0.54 0.55	(°C) (± 10%) (± 10%) (2.0% (2.0% (2.5) (2.5) (2.7) (2.8)	(%) NA 0.46 0.46 0.45 0.45 0.43 0.42	(mv) NA 56.0 19.1 -38.5 -125.8 -341.2		nts
Time Stabil 1240 1246 1246 1246 1246 1246 1246 1246 1240 1256 1301 1300 130	Vol. (liters) ization Rec 1.0 2.0 3.0 4:0 5.0 6.0	Water (ft btoc) 1000 (ft btoc) 1000	pH (± 10% Initial I , 5 (0.42 (0.42 (0.43 (0.43 (0.43 (0.45) (0.45)	Cond. (ms/cm) (± 10%) Depth to W + P 10 Om23 Om23 Om23 Om23 Om23 Om23 Om23 Om23	(NTU) (± 10% or <10) (ater +=> 17.** 18.60 14.82 12.83 10.92 9.52	(mg/L) NA 0.45 0.45 0.461 0.56 0.54 0.55 0.56	(°C) (± 10%) (± 10%) (2.0°C (2.5) (2.5) (2.7) (2.8) (3.1)	(%) NA 0.46 0.46 0.45 0.45 0.45 0.42 0.43	(mv) NA 56.0 19.1 -38.5 -125.8 -341.2 -358.7		ate
Time Stabil 1240 1246 1246 1246 1246 1256 1301 1300 1300 1316 1321	Vol. (liters) ization Rec 1.0 2.0 3.0 4:0 5.0 6.0 7.0	Water (ft btoc) 1000000000000000000000000000000000000	pH (± 10%) Initial I , 5 (0.42 (0.42 (0.42 (0.42 (0.42 (0.43 (0.45) (0.45) (0.45)	Cond. (ms/cm) (± 10%) Depth to W + F 10 OM23 OM23 OM23 OM23 OM23 OM23 OM25 OM25 OM25 OM25 OM25 OM25 OM25 OM25	(NTU) (± 10% or <10) ater 17. [∞] 17. [∞] 17.82 12.83 10.92	(mg/L) NA 0.2 4 0.45 0.46 0.54 0.55	(°C) (± 10%) (± 10%) (2.0% (2.0% (2.5) (2.5) (2.7) (2.8)	(%) NA 0.46 0.46 0.45 0.45 0.43 0.42	(mv) NA 56.0 19.1 -38.5 -125.8 -341.2		nte
Time Stabil 1240 1246 1246 1246 1246 1256 1301 1300 1300 1316 1321	Vol. (liters) ization Rec 1.0 2.0 3.0 4:0 5.0 6.0 7.0	Water (ft btoc) 1000000000000000000000000000000000000	pH (± 10% Initial I , 5 (0.42 (0.42 (0.43 (0.43 (0.43 (0.45) (0.45)	Cond. (ms/cm) (± 10%) Depth to W + F 10 OM23 OM23 OM23 OM23 OM23 OM23 OM25 OM25 OM25 OM25 OM25 OM25 OM25 OM25	(NTU) (± 10% or <10) (ater +=> 17.** 18.60 14.82 12.83 10.92 9.52	(mg/L) NA 0.45 0.45 0.461 0.56 0.54 0.55 0.56	(°C) (± 10%) (± 10%) (2.0°C (2.5) (2.5) (2.7) (2.8) (3.1)	(%) NA 0.46 0.46 0.45 0.45 0.45 0.42 0.43	(mv) NA 56.0 19.1 -38.5 -125.8 -341.2 -358.7		ate
Time Stabil 1240 1246 1246 1246 1246 1256 1301 1300 1300 1316 1321	Vol. (liters) ization Rec 1.0 2.0 3.0 4:0 5.0 6.0 7.0	Water (ft btoc) 1000000000000000000000000000000000000	pH (± 10%) Initial I , 5 (0.42 (0.42 (0.42 (0.42 (0.42 (0.43 (0.45) (0.45) (0.45)	Cond. (ms/cm) (± 10%) Depth to W + F 10 OM23 OM23 OM23 OM23 OM23 OM23 OM25 OM25 OM25 OM25 OM25 OM25 OM25 OM25	(NTU) (± 10% or <10) (ater +=> 17.** 18.60 14.82 12.83 10.92 9.52	(mg/L) NA 0.45 0.45 0.461 0.56 0.54 0.55 0.56	(°C) (± 10%) (± 10%) (2.0°C (2.5) (2.5) (2.7) (2.8) (3.1)	(%) NA 0.46 0.46 0.45 0.45 0.45 0.42 0.43	(mv) NA 56.0 19.1 -38.5 -125.8 -341.2 -358.7		nts
Stabil 1240 1246	Vol. (liters) ization Rec 1.0 2.0 3.0 4:0 5.0 6.0 7.0	Water (ft btoc) uirements 8.60 PM9 6 U.32 U.61 U.5 U.5 U.5 U.5 U.5 U.5 U.2 Checl S	pH (± 10%) Initial I , 5 (0.42 (0.42 (0.42 (0.43 (0.43 (0.43 (0.45 (0.45 (0.45 (0.45) (0.45) (0.45) (0.45) (0.45) (0.45) (0.45) (0.42)(Cond. (ms/cm) (± 10%) Depth to W + F 10 OM23 OM23 OM23 OM23 OM23 OM23 OM25 OM25 OM25 OM25 OM25 OM25 OM25 OM25	(NTU) (± 10% or <10) ater 17.°° 18.60 14.82 12.83 10.92 9.52 8.62	(mg/L) NA 0.45 0.45 0.461 0.56 0.54 0.55 0.56	(°C) (± 10%) (± 10%) (2.0°C (2.5) (2.5) (2.7) (2.8) (3.1) (3.1) (3.4) (3.4) (3.4) (3.4) (3.4) (3.4) (3.4)	(%) NA 0.46 0.46 0.45 0.45 0.45 0.45 0.43 0.42 0.43	(mv) NA 56.0 19.1 -38.5 -125.8 -341.2 -358.7 -354.3		nts

C			E	Т	echnolo 2200 6 th Ave Seattle, W	gy, Inc , Suite 707	ce, and	1	Purging,	spection, and Field nent Form
Contract Number:	N44255-20	-D-6006	Task Order	: N4425521	F4076	Naval Installation:	Keyport		Site Name: Ot	J2
Well (D:	_2ML	1-15 btoc): 22		D	Well Depth to Wate	Data er (ft btoc):_	6.65		ell Volume (liters): y c
1		btoc): 22 btoc):			pth to Produ					liters): 010
		altic/Submer	here and here a		Product Thi	ckness (II)				s/min): 0. Z
Exterior S	Seal Good: Y	Y:N: Y:N:			Well Instead Pure Scharge Tubi			Pooled Wat	er in Monum	nent: Y: <u>N</u> ded: Y: N
Remarks:	NA				Watan Da	-la Data				
Sample II	. Arcaz	2-22-2N	NW-15	Type En	Water San	and the second sec	177 1		4 4 600	ntainers: 3
OC Sample	e ID:			Type:	- 0	ate: // 11/		Time: 1131	# CO	ntainers:
Comple	D	011	17 5	Type:	D	ate:		ime:	# Coi	ntainers:
Sampling	Personnel:	DH	100	4				and the second		
Remarks	(color, odor,	C	lew,	10 00	lar					
etc.):										
	Purge	Depth to		Spec.						
Time	Vol. (liters)	Water (ft btoc)	рН	Cond. (ms/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Salinity (%)	ORP (mv)	Comments
	Vol. (liters)	Water (ft btoc)	рН	Cond. (ms/cm)	(NTU) (± 10%	(mg/L)	(°C)	(%)	(mv)	Comments
	Vol. (liters)	Water (ft btoc) quirements	рН (± 10%)	Cond. (ms/cm) (± 10%)	(NTU) (± 10% or <10)					Comments
Stabil	Vol. (liters)	Water (ft btoc) quirements 6.65	pH (± 10%) Initial D	Cond. (ms/cm) (± 10%) Depth to W	(NTU) (± 10% or <10) /ater	(mg/L) NA	(°C)	(%)	(mv)	Comments
Stabil 1100 1113 1124	Vol. (liters) ization Rec	Water (ft btoc) quirements 6.65 - 5 31	pH (± 10%) Initial D 6 · 5 1	Cond. (ms/cm) (± 10%) Depth to W	(NTU) (± 10% or <10) /ater	(mg/L) NA	(°C) (± 10%)	(%) NA	(mv) NA	NA
Stabil 1100 1113 1124 1129	Vol. (liters) ization Rec 	Water (ft bloc) uirements 6.65 5.31 5.70	pH (± 10%) Initial D 6.51 6.48	Cond. (ms/cm) (± 10%) Depth to W	(NTU) (± 10% or <10) /ater]1.80 6.18	(mg/L) NA 1.34 0.84	(°C) (± 10%)	(%) NA 0.18	(mv) NA	NA
Stabil 1100 1119 1124 1124 1129 1134	Vol. (liters) ization Rec $1 \cdot 0$ $2 \cdot 0$ $3 \cdot 0$	Water (ft btoc) G(65 5-31 5-70 5-70	pH (± 10%) Initial D 6.51 6.48 6.48	Cond. (ms/cm) (± 10%) Depth to W 0.372 0.371 0.373	(NTU) (± 10% or <10) /ater 11.80 6.18 4.18	(mg/L) NA 1.34 0.84 0.76	$(^{\circ}C)$ (± 10%) (± 10%) (1 + 7) (1	(%) NA 0.18 0.18	(mv) NA 45.5 41.0	NA
Stabil 1100 1119 1124 1124 1134 1134	Vol. (liters) ization Rec 	Water (ft bloc) 6.65 - 5.31 5.70 5.70 5.71	pH (± 10%) Initial I 6.51 6.48 6.48 6.48	Cond. (ms/cm) (± 10%) Depth to W 0.372 0.371 0.373	(NTU) (± 10% or <10) /ater 11.80 6.18 4.18	(mg/L) NA 1.34 0.84	(°C) (± 10%)	(%) NA 0.18	(mv) NA	
Stabil 1100 1119 1124 1129 1134	Vol. (liters) ization Rec $1 \cdot 0$ $2 \cdot 0$ $3 \cdot 0$	Water (ft bloc) 6.65 - 5.31 5.70 5.70 5.71	pH (± 10%) Initial D 6.51 6.48 6.48	Cond. (ms/cm) (± 10%) Depth to W 0.372 0.371 0.373 0.376	(NTU) (± 10% or <10) /ater 11.80 6.18 4.18	(mg/L) NA 1.34 0.84 0.76	$(^{\circ}C)$ (± 10%) (± 10%) (1 + 7) (1	(%) NA 0.18 0.18	(mv) NA 45.5 41.0	NA
Stabil 1100 1113 1124 1124 1134 1134	Vol. (liters) ization Rec 	Water (ft bloc) 6.65 - 5.31 5.70 5.70 5.71	pH (± 10%) Initial I 6.51 6.48 6.48 6.48	Cond. (ms/cm) (± 10%) Depth to W 0.372 0.371 0.373 0.376	(NTU) (± 10% or <10) /ater 11.80 6.18 4.18	(mg/L) NA 1.34 0.84 0.76	$(^{\circ}C)$ (± 10%) (± 10%) (1 + 7) (1	(%) NA 0.18 0.18	(mv) NA 45.5 41.0	NA
Stabil 1100 1113 1124 1124 1134 1134	Vol. (liters) ization Rec 	Water (ft bloc) 6.65 - 5.31 5.70 5.70 5.71	pH (± 10%) Initial I 6.51 6.48 6.48 6.48	Cond. (ms/cm) (± 10%) Depth to W 0.372 0.371 0.373 0.376	(NTU) (± 10% or <10) /ater 11.80 6.18 4.18	(mg/L) NA 1.34 0.84 0.76	$(^{\circ}C)$ (± 10%) (± 10%) (1 + 7) (1	(%) NA 0.18 0.18	(mv) NA 45.5 41.0	NA
Stabil 1100 1113 1124 1124 1134 1134	Vol. (liters) ization Rec 	Water (ft bloc) 6.65 - 5.31 5.70 5.70 5.71	pH (± 10%) Initial I 6.51 6.48 6.48 6.48	Cond. (ms/cm) (± 10%) Depth to W 0.372 0.371 0.373 0.376	(NTU) (± 10% or <10) /ater 11.80 6.18 4.18	(mg/L) NA 1.34 0.84 0.76	$(^{\circ}C)$ (± 10%) (± 10%) (1 + 7) (1	(%) NA 0.18 0.18	(mv) NA 45.5 41.0	NA
Stabil 1100 1113 1124 1124 1134 1134	Vol. (liters) ization Rec 	Water (ft bloc) 6.65 - 5.31 5.70 5.70 5.71	pH (± 10%) Initial I 6.51 6.48 6.48 6.48	Cond. (ms/cm) (± 10%) Depth to W 0.372 0.371 0.373 0.376	(NTU) (± 10% or <10) /ater 11.80 6.18 4.18	(mg/L) NA 1.34 0.84 0.76	$(^{\circ}C)$ (± 10%) (± 10%) (1 + 7) (1	(%) NA 0.18 0.18	(mv) NA U3.4 U3.4 U3.4 U3.4 U3.4 U2.4	NA
Stabil 1100 1113 1124 1124 1134 1134	Vol. (liters) ization Rec 	Water (ft bloc) 6.65 - 5.31 5.70 5.70 5.71	pH (± 10%) Initial I 6.51 6.48 6.48 6.48	Cond. (ms/cm) (± 10%) Depth to W 0.372 0.371 0.373 0.376	(NTU) (± 10% or <10) /ater 11.80 6.18 4.18	(mg/L) NA 1.34 0.84 0.76	$(^{\circ}C)$ (± 10%) (± 10%) (1 + 7) (1	(%) NA 0.18 0.18	(mv) NA 45.5 41.0	
Stabil 1100 1113 1124 1124 1134 1134	Vol. (liters) ization Rec 	Water (ft bloc) 6.65 - 5.31 5.70 5.70 5.71	рН (± 10%) Initial D 6.48 6.48 6.48 0.48	Cond. (ms/cm) (± 10%) Depth to W 0.372 0.371 0.375	(NTU) (± 10% or <10) /ater 11.80 6.18 4.60 3.14	(mg/L) NA 1.34 0.34 0.76 0.76	(°C) (± 10%) (± 10%) (1 · 7 11 · 7 i1 · 7 i1 · 7	(%) NA 0.18 0.18 0.18	(mv) NA U3.4 U3.4 U3.4 U3.4 U3.4 U2.4	NA
Stabil 1100 1113 1124 1124 1134 1134	Vol. (liters) ization Rec 	Water (ft bloc) uirements 6.65 5.31 5.70 5.70 5.70	pH (± 10%) Initial D 6.48 6.48 6.48 6.48 0.48	Cond. (ms/cm) (± 10%) Depth to W Depth to W Depth 77 Condensity Condensity Calculation	(NTU) (± 10% or <10) /ater 11.80 6.18 4.60 3.14	(mg/L) NA 1.34 0.76 0.76 0.76	$(^{\circ}C)$ (± 10%) (± 10%) (1 + 7) (1	(%) NA 0.18 0.18 0.18	(mv) NA U3.4 U3.4 U5.5 41.0 U2.4	
Stabil 1100 1113 1124 1124 1124 1134 1139	Vol. (liters) ization Rec - 1.0 2.0 3.0 U.0 COllec	Water (ft bloc) uirements 6.65 5.31 5.70 5.70 5.70	pH $(\pm 10\%)$ Initial I $G \cdot 5 I$ $G \cdot 4 g$ $G \cdot 4 g$ $G \cdot 4 g$ $G \cdot 4 g$ $G \cdot 4 g$ O I g Volume (liters) = [casing vo	Cond. (ms/cm) (± 10%) Depth to W 0.372 0.371 0.373 0.376 Calculation Casing/tubi	(NTU) (± 10% or <10) /ater 11.80 6.18 4.10 3.14	(mg/L) NA 1.34 0.76 0.76 0.76 0.76	(°C) (± 10%) (± 10%) (1.7 (1.7 (1.7 (1.7)((%) NA 0.18 0.18 0.18 0.18 0.18 $dentation between the second seco$	(mv) NA U13-4 U5-5 41-0 42-4 U2-4 U2-4 (ft)]	NA BH BH

Well ID:	N44255-20-			Т	Change States	ogy, Inc	ice, and 2.	1	Purging.	spection, , and Field ment Form
		-D-6006	Task Order	: <u>N442552</u>	1F4076	Naval Installation:	Keyport		Site Name: O	0U2
Mid Screen	n Depth (ft	J-16 btoc): 21, btoc):		De	Depth to Wat epth to Produ Product Thi		NP	Volume Well Volu	Pre-Purged ime Purged	(liters): 9.2 (liters): 1.0 (liters): 3.0 rs/min): 0, 2
						spection				<u> </u>
Wel Exterior Se Remarks: _	l Locked: Y eal Good: Y Nのへの	(:N:⊻ (:N:	D	L edicated Di	Dedicated Pu scharge Tub	mp: Y: ing: Y:	N:M			ment: Y: N eded: Y: N
QC Sample 1	ID:			Type: -	mper mper	Date:		Fime:	= # Cc	ontainers: <u>3</u>
Time	Purge Vol. (liters)	Depth to Water (ft btoc)	рН	Spec. Cond. (ms/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Salinity (%)	ORP (mv)	Comments
Stabilia	ation Rea	uirements	(+ 100/	(+ 109/)	(± 10%	NA	Summe	PPt		
1008		6.20		Depth to W		INA	(± 10%)	NA	NA	
1011	Begin	7.55		0.24/1		I		1		NA
1016	1.8	7.55	6.47	0.365	67.69	0.78	12,1	0.18	35.6	- Ma
1021	2,6	10,8	6.45	0,362	69.13	0,71	12,1	0.17	36.0	
1026	3.0	8,35	6.45	0,360	66.87	0.63	12,1	0.17	36.3	
51	ART	ELT	2Ef	D						
	1100			01	1110	111/207	2			
				10xu	MARS 1	HI-COS				
-										
					-					
				Calculation	as for Well	Charles and a large				
	_	Volume					Discharge T Length of wa		2000	

		A		EA En	2200 6th A	ing, Scie logy, In Ave, Suite 70 WA 98121	IC.		Purgin	nspection, g, and Field ement Form
Contrac Number	r: <u>N44255-</u> 2	20-D-6006	Tas Orc	k ler: <u>N44255</u>		Naval	n: Keyport		Site Name:	
Well ID	: 2M	12-17			W	ell Data /ater (ft btoc)				
	ell Depth (f									e (liters): 10,5
	een Depth (- day	1.1	L		duct (ft btoc)		Volum	e Pre-Purgeo	d (liters): 1, 0
					Product T	hickness (ft)	:	Well Vo	lume Purgeo	(liters): 5,0
ruige M	lethod.Peris	staltic/Subm	ersible/B	ladder/Othe						ers/min): 0,7
			1		Well	Inspection	~			
	ell Locked:				Dedicated P	ump: Y:	N:	Pooled Wa	ater in Monu	ment: Y: N:
Exterior	Seal Good:	Y: N:		Dedicated D	Discharge Tu	bing: Y: V	N N			
Remarks	: Non	e				- · · ·		aunchance	encepairs Ne	eded: Y: N:
			1 - 111		Water S	ample Data				
ample II	D: AREA2	-22-2M	1-17	Type I	Wit/	Datas 7/9/	20122	12	21	ontainers: 3
C Sampl	e ID:		×	Trans	100	Date: 110			<u>26</u> #C	ontainers: <u>3</u>
a sumbr				Vpe:		Date:		Time:		ontainers:
amping	Personnel:	B. Ha	ines 1	H.Ha	jek			_		
emarks	(color, odor	, <u> </u>	landy	, brou	n wit	tally,	odonle	55		
c.):						61	courte			
	Purge		1	1		1				
	Vol.	Depth to Water		Spec.	-					
Time	(liters)	(ft btoc)	pH	Cond. (ms/cm)	Turbidity		Temp.	Salinity	ORP	
					(1 100/	(mg/L)	(°C)	(%) PP4	(mv)	Comments
Stabili 196	ization Rec	uirements	(± 10%) (± 10%)	or <10)	NA	(± 10%)	NA	NA	
156		1.59	Initial	Depth to W	Vater			1 11/3	INA	
201	T.OM	2.61	107	pet pro	ge rate	00.2	LIM			
2.06	2.0	2.62	6.83	0,487	35,69	0.72	14.0	0.24	-362,3	
211	3.0	2,64	6.89	0,472	29,12	2,05	14,0	0.23	-306.9	
216	4.0	2,66	6.90	0.442	37,86	0,69	13.8	0,22	-36	5,2 +4 718122
2)	5,0		6.91	0,419	32,80	0.62	13,8	0.21	-379.1	
STA	RT1-	575	2			0,56	13,9	0,20	-389,8	
110	040.	T LL I	1-		N.I.					
				blob						>
-				and	geo -					
			Volume	Calculation	is for Well (Casings or D	lischause T	hing		
		· orune (1	11013) - 11	asing/tubir	o volume (1	Casings or D iters/ft)] x []	Pischarge Tu	bing	(A)1	
Il casing	diameter (in $2 \rightarrow 0.6$)	· orune (1	11013) - 11	ume (liters/	ng volume (1	iters/ft)] x [L	ength of wat liameter (in)	er column ((ft)] ge tubing vo $1/2" \rightarrow$	lume (liters/ft) 0.039

	-	3	E	Т	ineering echnolo 2200 6 th Ave Seattle, W	ogy, Inc		I	Purging,	spection, and Field nent Form
Contract Number:	N44255-20-	D-6006	Task Order	: N4425521	F4076	Naval Installation:	Keyport		Site Name: OL	J2
Total We Mid Scre	2 M W Il Depth (ft b en Depth (ft ethod: Rerista	btoc): 12		De	Depth to Wate pth to Produce Product This		-	Volume Well Volu	Pre-Purged (ime Purged (liters): 7,64 liters): 1,0 liters): 8,0 s/min): 0,2
						spection				
Exterior S	ell Locked: Y Seal Good: Y <u>NOへ</u> モ	:N:	De		edicated Pur scharge Tubi					nent: Y: N: ded: Y: N:
	Purge		ear,		ess, od	borless				
Time	Vol. (liters)	Water (ft btoc)	pH	Cond. (ms/cm)	Turbidity (NTU) (± 10%	DO (mg/L)	Temp. (°C)	Salinity (%)	ORP (mv)	Comments
Eta Lil	ization Reg				or <10)	NA	(± 10%)	NA	NA	
Stabi		5.28	Initial D	epth to W	ater		1			
1235		in the	R	00	2 Umi		1.17	0.00		NA
1235		1020	100			10160	14.4			125
1235 1240 1245	1,0	6,95	6.89		21.01	0.60	14.4	0.09	-339.6	100
1235 1240 1245 1250	2.0	7.62	6,89	0.202	29.38	0,56	14,4	0,10	-346.3	
1240 1245 1250 1255	2.0	7.62	6,89	0,202	29,38	0,56	14,4	0,10	-346.3	
1240 1240 1245 1250 1255 1300	2.0 3.0 4.0	6.95 7.62 7.65 7.70	6,89 6,89 6,90	0,202 0,203 0,206	29,38 34,49 29,24	0,56 0,55 0.53	14,4 14,6 14,6	0,10	-346.3 -341,1 -335,1	
1235 1240 1245 1250 1255 1300	2.0 3.0 4.0 5.0	7.62 7.65 7.70 7.74	6,89 6,89 6,90 6,90	0,202 0,203 0,206 0,209	29,38 34,49 29,24 25,52	0,55 0,55 0,52	14,4 14,6 14,6 14,5	0,10 0,10 0,10 0,10	-346.3 -341,1 -335,1 -309,9	
1235 1240 1245 1256 1255 1300 1305	2.0 3.0 4.0 5.0 6.0	6.95 7.62 7.65 7.70 7.74 7.79	6,89 6,89 6,90 6,90 6,91 6,91	0,202 0,203 0,206 0,209 0,209	29,38 34,49 29,24 25,52 25,16	0,56 0,55 0,53 0,52 0,56	14,4 14,6 14,6 14,5 14,6	0,10 0,10 0,10 0,10 0,10	-346.3 -341,1 -335,1 -309,9 -286,1	
1235 1240 1245 1250 1255 1300	1,0 2,0 3,0 4,0 5,0 6,0 7,0	6.95 7.62 7.65 7.70 7.79 7.79 7.80	6,89 6,89 6,90 6,90 6,91 6,91 6,91	0,202 0,203 0,206 0,209 0,209 0,211 0,213	29,38 34,49 29,24 25,52 25,16 22,95	0,55 0,55 0,52 0,52 0,56 0,69	14,4 14,6 14,6 14,5	0,10 0,10 0,10 0,10 0,10 0,10	-346.3 -341,1 -335,1 -309,9 -286,1 -255,7	
1235 1240 1245 1256 1255 1300 305 1310 1315 1320	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0	6.95 7.62 7.65 7.70 7.74 7.79 7.79 7.80 7.80	6,89 6,89 6,90 6,90 6,91 6,91	0,202 0,203 0,206 0,209 0,209	29,38 34,49 29,24 25,52 25,16	0,56 0,55 0,53 0,52 0,56	14,4 14,6 14,6 14,5 14,5	0,10 0,10 0,10 0,10 0,10	-346.3 -341,1 -335,1 -309,9 -286,1	
1235 1240 1245 1256 1255 1300 305 1310 1315 1320	1,0 2,0 3,0 4,0 5,0 6,0 7,0	6.95 7.62 7.65 7.70 7.79 7.79 7.80	6,89 6,89 6,90 6,90 6,91 6,91 6,91	0.202 0.203 0.206 0.209 0.211 0.213 0.213 0.214	29,38 34,49 29,24 25,52 25,16 22,95 23,43	0,55 0,55 0,52 0,52 0,56 0,69	14,4 14,6 14,6 14,5 14,5	0,10 0,10 0,10 0,10 0,10 0,10	-346.3 -341,1 -335,1 -309,9 -286,1 -255,7	
1235 1240 1245 1256 1255 1300 1310 1315 1315 1320	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0	6.95 7.62 7.65 7.70 7.74 7.79 7.79 7.80 7.80	6,89 6,89 6,90 6,90 6,91 6,91 6,91	0,202 0,203 0,206 0,209 0,209 0,211 0,213	29,38 34,49 29,24 25,52 25,16 22,95	0,55 0,55 0,52 0,56 0,69	14,4 14,6 14,6 14,5 14,5	0,10 0,10 0,10 0,10 0,10 0,10	-346.3 -341,1 -335,1 -309,9 -286,1 -255,7	25
1235 1240 1245 1256 1255 1300 1310 1315 1315 1320	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0	6.95 7.62 7.65 7.70 7.74 7.79 7.79 7.80 7.80	6.89 6.89 6.90 6.90 6.91 6.91 6.91 6.91	0.202 0.205 0.206 0.209 0.209 0.209 0.209 0.211 0.213 0.214	29,38 34,49 29,24 25,52 25,16 22,95 23,43 78122	0,55 0,55 0,52 0,52 0,56 0,56 0,69 0,76	14.4 14.6 14.5 14.5 14.5 14.5 14.5	0,10 0,10 0,10 0,10 0,10 0,10 0,10	-346.3 -341,1 -335,1 -309,9 -286,1 -255,7	
1235 1240 1245 1256 1255 1300 1310 1310 1315 1320	1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0	6.95 7.62 7.65 7.70 7.74 7.79 7.80 7.80 7.82	6.89 6.89 6.90 6.90 6.91 6.91 6.91 6.91 0	0.202 0.205 0.206 0.209 0.209 0.209 0.209 0.211 0.213 0.219	29,38 34,49 29,24 25,52 25,16 22,95 23,43	0,55 0,55 0,52 0,52 0,56 0,56 0,56 0,76	14,4 14,6 14,6 14,5 14,6 14,5 14,6	0,10 0,10 0,10 0,10 0,10 0,10 0,10	-346.3 -341.1 -335.1 -309.9 -286.1 -255.2 -248.6	

	-	3	E	Т	ineering echnolo 2200 6th Ave Seattle, W	suite 707	ice, and c.	I	Purging,	spection, and Field ment Form
Contract Number:	N44255-20-	D-6006	Task Order	: <u>N4425521</u>	F4076	Naval Installation:	Keyport		Site Name: O	U2
Total Wel Mid Scree Purge Me We	2 MW Il Depth (ft b en Depth (ft thod: Perista Il Locked: Y Seal Good: Y	toc): 21, btoc): ittic/Submer	ЧЦ rsible/Blad	De dder/Other: D	Pepth to Wate pth to Produce Product This Well Inst Pedicated Pur	ct (ft btoc): ckness (ft): spection np: Y:		Volume I Well Volu Purg Pooled Wate	Pre-Purged me Purged e Rate (liter er in Monur	(liters): <u>4.0</u> (liters): <u>0.0</u> (liters): <u>4.0</u> (s/min): <u>0.2</u> nent: Y: N
	NA	: <u> </u>	_ Do	edicated Dis	scharge Tubi	ng: Y:	N: M	aintenance/	Repairs Nee	eded: Y: N
QC Sample Sampling	D: <u>Aren2-1</u> HD: Personnel: color, odor,	64	,DR	Type:	D	ate:				ntainers: <u>3</u> ntainers: <u></u>
tc.): Time	Purge Vol. (liters)	Depth to Water (ft btoc)	рН	Spec. Cond. (ms/cm)	Turbidity (NTU)	DO (mg/L)	Temp. (°C)	Salinity (%)	ORP (mv)	Comments
Time Stabili	Vol.	Water (ft btoc) uirements	(± 10%)	Cond. (ms/cm) (± 10%)	(NTU) (± 10% or <10)					Comments
Time Stabil	Vol. (liters) ization Req	Water (ft btoc) uirements 8:30	(± 10%)	Cond. (ms/cm)	(NTU) (± 10% or <10)	(mg/L)	(°C)	(%)	(mv)	
Time Stabil	Vol. (liters) ization Req	Water (ft btoc) uirements 8:30 9-30	(± 10%) Initial I	Cond. (ms/cm) (± 10%) Depth to W	(NTU) (± 10% or <10) ater	(mg/L) NA	(°C) (± 10%)	(%) NA	(mv) NA	Comments
Time Stabil 155 202 207 242	Vol. (liters) ization Req	Water (ft btoc) uirements 8:30	(± 10%) Initial I 6.45 6.44	Cond. (ms/cm) (± 10%) Depth to W 0.521 0.517	(NTU) (± 10% or <10) ater 21.62 21.12	(mg/L) NA 4.75 4.80	(°C) (±10%)	(%) NA 0.25	(mv)	
Time Stabil 1155 202 207 242 1217	Vol. (liters) ization Req 	Water (ft btoc) uirements 8:30 9-30 10:50 10:50 10:51	(± 10%) Initial I 6.45 6.44 6.45	Cond. (ms/cm) (± 10%) Depth to W 0.521 0.517	(NTU) (± 10% or <10) ater	(mg/L) NA 4.75 4.80	(°C) (±10%) 12.6 12.6 12.6	(%) NA	(mv) NA	
Time Stabill 1155 202 207 242 217 1222	Vol. (liters) ization Req 	Water (ft btoc) uirements 8:30 9-30 10:50 10:50 10:51 10:52	(± 10%) Initial I 6.45 6.44 6.45 6.45 6.45	Cond. (ms/cm) (± 10%) Depth to W 0.521 0.517	(NTU) (± 10% or <10) ater 21.62 21.12	(mg/L) NA 4.75 4.80	(°C) (±10%)	(%) NA 0.25 0.25	(mv) NA 126.3 128.1	
Time Stabill 1155 202 207 242 217 1222	Vol. (liters) ization Req 	Water (ft btoc) uirements 8:30 9-30 10:50 10:50 10:51	(± 10%) Initial I 6.45 6.44 6.45 6.45 6.45	Cond. (ms/cm) (± 10%) Depth to W 0.521 0.517 0.517	(NTU) (± 10% or <10) ater 21.62 21.12 21.00	(mg/L) NA 4.75 4.20 4.66	(°C) (±10%) 12.6 12.6 12.6	(%) NA 0.25 0.25 6.25	(mv) NA 126.3 128.1 130.7	
Time Stabill 1155 202 207 242 1217 1222	Vol. (liters) ization Req 	Water (ft btoc) uirements 8:30 9-30 10:50 10:50 10:51 10:52	(± 10%) Initial I 6.45 6.44 6.45 6.45 6.45	Cond. (ms/cm) (± 10%) Depth to W 0.521 0.517 0.517	(NTU) (± 10% or <10) ater 21.62 21.12 21.00	(mg/L) NA 4.75 4.20 4.66	(°C) (±10%) 12.6 12.6 12.6	(%) NA 0.25 0.25 6.25	(mv) NA 126.3 128.1 130.7	
Time Stabill 1155 202 207 242 1217 1222	Vol. (liters) ization Req 	Water (ft btoc) uirements 8:30 9-30 10:50 10:50 10:51 10:52	(± 10%) Initial I 6.45 6.44 6.45 6.45 6.45	Cond. (ms/cm) (± 10%) Depth to W 0.521 0.517 0.517	(NTU) (± 10% or <10) ater 21.62 21.12 21.00	(mg/L) NA 4.75 4.20 4.66	(°C) (±10%) 12.6 12.6 12.6	(%) NA 0.25 0.25 6.25	(mv) NA 126.3 128.1 130.7	
Time Stabill 1155 202 207 242 1217 1222	Vol. (liters) ization Req 	Water (ft btoc) uirements 8:30 9-30 10:50 10:50 10:51 10:52	(± 10%) Initial I 6.45 6.44 6.45 6.45 6.45	Cond. (ms/cm) (± 10%) Depth to W 0.521 0.517 0.517	(NTU) (± 10% or <10) ater 21.62 21.12 21.00	(mg/L) NA 4.75 4.20 4.66	(°C) (±10%) 12.6 12.6 12.6	(%) NA 0.25 0.25 6.25	(mv) NA 126.3 128.1 130.7 131.5	
Time Stabill 1155 202 207 242 217 1222	Vol. (liters) ization Req 	Water (ft btoc) uirements 8:30 9-30 10:50 10:50 10:51 10:52	(± 10%) Initial I 6.45 6.45 6.45 6.45 6.45 6.45	Cond. (ms/cm) (± 10%) Depth to W 0.521 0.517 0.517 0.517	(NTU) (± 10% or <10) ater 21.62 21.12 21.00 21.32	(mg/L) NA 4.75 1.80 1.66 1.60	(°C) (±10%) 12.6 12.6 12.6	(%) NA 0.25 0.25 0.25 0.25	(mv) NA 126.3 128.1 130.7	
	Vol. (liters) ization Req 	Water (ft btoc) uirements 8:30 9-30 10:50 10:50 10:51 10:52 59~	(± 10%) Initial I 6.45 6.44 6.45 6.45 7.45 7.10	Cond. (ms/cm) (± 10%) Depth to W 0.521 0.517 0.517 0.517	(NTU) (± 10% or <10) ater 21.62 21.12 21.00 21.32	(mg/L) NA 4.75 1.80 1.66 1.66 1.60	(°C) (±10%) 12.6 12.6 12.6	(%) NA 0.25 0.25 6.25 0.25	(mv) NA 126.3 128.1 135.7 131.5	

This page intentionally left blank

-			-	g, Science,	Job. No. 6354426	Client: Project:	NAVFAC OU2 Soil a	NW and GW Inves	stigation		ocation: K Keyport
_		and To	echnolog	gy, Inc., PBC	Drilling Meth	od:					g/Well Number:
		LOG OF SC	DIL BORIN	JG	Sonic Sampling Met	hod:					2MW-9
Coordina										Shee	et 1 of 1
OC Elev	ation:		N	/A	Continuous					Γ	Drilling
	levation:		N	/A	Water Level:	7.0				Start	Finish
	e Elevation:			/A	Time:					DATE: 6/29/22	6/29/2022
leferenc	e Descriptio	n:	N/A	1	Date:					TIME: 11:20	TIME: 12:45
USCS	In. Recvrd/	Boring	PID (ppm)	Depth	Surface	Conditions:					
Class.	In. Driven	Diagram	10.6 eV with isobutylene	in			Partly sunny	У			
			as reference	Feet	Te	emperature:	60s°F				
			0.2	0.2		0.5	5 Fft: brown n	noist fine to med	ium sand w	v/silt, organics.	
SP											
01				5							
				6							
					6 ft gravish-bro	wn moist eilt.	v / ferv fine o	and, moteling la	nses of find	wet grev sand Tra	nsitions to wet gray ve
				8	5 m. grayisii-bi0		· / ici y inte s	fine silty s		and grey sand. Ifd	instants to wet gray ve
			0.1	10							
ML											
								15 ft: gray, wet	silty sand.		
				15							
				15							
								20 ft: as ab	ove.		
			0.1	20							
				25							
SM						30 f	: grav wet fin	ne sand w/ silt. ir	ncreasuing	to very fine sand.	
							. gruy net in				
			0.1	30							
						20.0	5 ft. harris 1		fina to	ium comd /14	
						32-3	5 II. Drownish	i-gray wet, very	to med	ium samd w/silt.	
				35							
CL	1		0.2	40				38-40 ft: clay, mo	oist, dense.		
			*	10		End of bori		-		25-35 ft. Ecology IE) tag:
		÷		ruction Inform	ation			-		nstallation Infor	
	onitoring W			in () lass			De	epth of Soil Var		N/A	ft
	ttom of Mon Stick Up or H			ft bgs Flush					f Tubing: and Pack:		ftft
	-	een Interval:		То	35	ft bgs		Top of Bento			ft
		iser Interval		То	25	ft bgs					
		ack Interval		То	35	ft bgs			oncrete		
		entonite Seal:		То	23 E	ft bgs		000000000000000000000000000000000000000	entonite		
	Surface	Completion	0	То	.5	ft bgs		Sa	and Pack		
		Logged by:	Dana Rai	nquist				Date: 6	/29/22		
		Drilling Cor	tractor	AEC Envirinm	ental				Wright		

	E	EA En	ngineerin	g, Science,	5		NAVFAC	NW and GW Inv	estigation		ocation: K Keyport
			-	-	Drilling Meth	-	00200116		conganon		
		and I	echnolog	5y, me., rdC	Sonic	uu:					g/Well Number: 2MW-10
		LOG OF SC	II ROPI	JG	Sonic Sampling Met	hod					
Coordina	ates: Nort				Continuous						t 1 of 1
OC Elev				/A				<u>г г</u>			rilling
	levation:			/A	Water Level:					Start	Finish
	e Elevation:			/A	Time:					DATE: 6/29/22	6/29/2022
Referenc	e Descriptio	n:	N/A	1	Date:	6/29/2022				TIME: 16:40	TIME: 14:40
			PID	Depth	Surface (Conditions:	vegetation				
USCS	In. Recvrd/	Boring	(ppm) 10.6 eV with	in			Partly sunny	7			
Class.	In. Driven	Diagram	isobutylene as reference		Та	emperature:		·			
01.6			gas	Feet	16	-					
SM			0.2	0		0.5	Fft: brown n	ioist silt w/ fin	e to medium	sand, organics.	
SM											
				2			2 - 10 ft: w	et, gray w/ver	y fine sand,	motteling.	
								'		_	
				5							
				7							
			0.1	10							
			0.1	10							
				10							
				12			12 - 18 ft: wet	dark gray silt	w/ verv find	to fine sand	
								Bruy Silt	.,,	Surra	
ML				15							
				-							
					1						
SP]							20 ft: as a	above		
			0.1	20				20 ft: as a	above.		
				25							
								30 ft_ as	above		
								50 n_ as			
			0.1	30							
				35							
			0.2	40		E 1 (1)		bove w/ occas		-	
	L	Monitoria		mation Inform	ation	End of bori	ng at 40 ft bgs			40-30 ft. Ecology ID	
٦.4				ruction Inform	auon		D	1		nstallation Infor	ft
	lonitoring W			in ft bas			D€	epth of Soil Va Bottom		N/A	<u> </u>
	ottom of Mon Stick Up or H			ft bgs Flush					of Tubing: Sand Pack:		ftft
	-	een Interval		То	40	ft bgs		Top of Ben			ft
		iser Interval		То		ft bgs		10P OF Dell	Sinc Jeal.		
		ack Interval		То	40	ft bgs			Concrete		
		entonite Seal		То		ft bgs			Bentonite	Seal	
		Completion		То		ft bgs		000000000000000000000000000000000000000	Sand Pack		
		1				0					
		Logged by:	Dana Rar	nquist				Date:	6/29/22		_

-		EA En	gineerin	ıg, Science,	Job. No. 6354426	Client: Project:	NAVFAC OU2 Soil a	NW Ind GW Investig	gation		ocation: K Keyport
-		and Te	chnolog	gy, Inc., PBC	Drilling Meth	od:				Soil Borin	g/Well Number:
			· · ·		Sonic						2MW-11
		LOG OF SO	IL BORIN	NG	Sampling Met	hod:				Shee	et 1 of 1
Coordina OC Elev		thing:	N	I/A	Continuous				-		Drilling
	levation:			I/A	Mater Level	105					Finish
	e Elevation:			I/A	Water Level:				D	Start ATE: 6/28/22	6/28/2022
	e Descriptio		N/A	-	Time:					IME: 13:20	TIME: 14:40
crerene	e Descriptio	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PID		Date:				11	INIE. 13.20	111viE. 14.40
USCS	In. Recvrd/	Boring	(ppm)	Depth	Surface	Conditions:					
Class.	In. Driven	Diagram	10.6 eV with isobutylene	in		Weather:					
		Ū.	as reference	Feet	Τe	emperature:	60s°F				
			2.6	0				0.5 ft Aspha	alt		
							0.5 ft: di	ry, gray fine sand w	v/silt, orga	anics.	
SM				2							
			5.1	5		5 ft	t: Moist, brow	nish-gray, silt w/ v	ery fine sa	nd, motteling.	
SM											
JIVI											
			2.3	10							
				▼ -··							
					1	2 ft: wet brow	nish gray, fine	silty sand w/ occas	sional sub	rounded gravel, n	notteling.
SW			4.6	15							
211											
						15 ft: wet, g	rey very fine t	o medium sand wit	th silt, ocas	ssional rounded g	ravel.
			1.5	20			20 ft:	wet, gray, very fine	e sand w/s	silt.	
			1.0	20							
		•									
SW											
						— • • • •		.			
						End of bori	ing at 20 ft bgs	s. Monitoring well i	nstalled 20	J-10 ft. Ecology IE) tag:
		Monitoring	Vell Cone	truction Inform	ation			Soil Vapor I	Point Ing	stallation Infor	mation
М		Vell Diameter:		in			De	epth of Soil Vapor		N/A	ft
		nitoring Well:		ft bgs			20	Bottom of T			ft
		Flush Mount:		Flush	_			Top of Sand	_		ft
		reen Interval:	10	То	20	ft bgs		Top of Bentonit			ft
		Riser Interval:	0	То	10	ft bgs					
		Pack Interval:		То	20	ft bgs			ncrete		
		entonite Seal:		То	8	ft bgs			tonite Se	eal	
	Surface	Completion:	0	То	.5	ft bgs		Sand	d Pack		
		Logged by:	Dana Rai	nquist				Date: 6/28	8/22		
		Drilling Con		AEC Envirinm	ental		-		right		_
					cittal		-	<u>J. V</u>	ingitt		

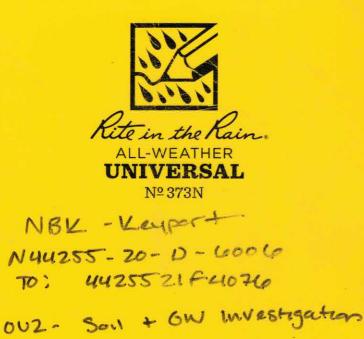
		B EA En	gineerin	ig, Science,	Job. No. 6354426	Client: Project:	NAVFAC OU2 Soil a	NW Ind GW Invest	tigation		ocation: K Keyport	
-	YA		-	-	Drilling Meth	,			Ť		g/Well Number:	
			, c		Sonic						2MW-12	
		LOG OF SO	IL BORIN	NG	Sampling Met	thod:				01-	1 af 1	
Coordina		thing:			Continuous						et 1 of 1	
OC Elev				I/A				I I			Drilling	
	levation:			Г/А	Water Level:	10.5				Start	Finish	
	e Elevation:			I/A	Time:					DATE: 6/28/22	6/28/2022	
leferenc	e Descriptio	on:	N/A	Α	Date:	6/28/2022				TIME: 16:45	TIME: 12:30	
			PID	Depth	Surface	Conditions:	vegetation					
USCS	In. Recvrd/	Boring	(ppm) 10.6 eV with	in	Weather: Sun							
Class.	In. Driven	Diagram	isobutylene as reference		т							
			gas	Feet	1	Temperature: 60s°F						
			4.6	0	0.5 ft Asphalt 1 ft: dry, dark gray sandy with subrounded to sub angular gravel.							
CIN												
GW				2								
					4							
			39.2	5	5 ft: Mo	oist, dark grey f	ine silty sand,	some silt and sul	brounded	gravel, trace organi	cs, wood debris.	
					4							
6					10 ft: Moist_dar	k grev fine silts	sand. some s	ilt and subround	ed gravel	grades to fine sand	trace silt, organics. TP	
SM					(a)	- 6-07 mic onty	Sarray Source S.	odor.	5-4701	o to line build,	organics, II	
					4							
			34.7	10								
					4							
					4							
					4							
					4							
SW			0.1	15								
					4							
				-	1	5 ft: wet, brow	vnish gray very fi	ne to fine s	sand, trace silt.			
				-								
							20 ft: wet,	, grayish brown,	very fine s	ilty sand.		
			4.2	20								
		•		25	-							
					-	a= ()		<i>.</i>				
SW					4	25 ft: wet, g	grey silt with f	tine sand, ocassio	nal subrou	unded gravel, motte	ling.	
					4							
					-							
					-							
					-							
					1							
					-							
					-							
					1							
					1							
					1							
					<u> </u>							
					1							
					1	End of bori	ng at 25 ft bos	s. Monitoring wel	l installed	20-10 ft. Ecology IE) tag:	
					1	2110 01 0011			uncu			
					1							
		Monitoring V	Vell Const	truction Inform	ation			Soil Vano	r Point I	nstallation Infor	mation	
M		ell Diameter:		in			De	epth of Soil Vap		N/A	ft	
		nitoring Well:		ft bgs				Bottom of			ft	
		Flush Mount:		Flush				Top of Sa			ft	
	-	reen Interval:		То	20	ft bgs		Top of Bentor			ft	
		Riser Interval:		То	10	ft bgs		r or bennor			_	
		Pack Interval:		То	20	ft bgs		Cc	oncrete			
					.5				nd Pack			
		r whom	-					Ju				
		Logged by:	Dana Rar	nquist				Date: 6/	28/22			
		Drilling Con	tractor:	AEC Envirinm	ental							
	Surface	Completion:	0 Dana Rar	To To mquist <u>AEC Envirinm</u>	.5	ft bgs ft bgs		Sa Date: <u>6/</u>	nd Pack			

-			-	g, Science,	Job. No. 6354426	Client: Project:	NAVFAC OU2 Soil a	NW and GW Invest	igation	NBI	ocation: K Keyport
		and Te	chnolog	gy, Inc., PBC		od:					g/Well Number:
		LOG OF SO	יימסע וו		Sonic Sompling Mot	had				2	2MW-13
oordina			il dukin	NG	Sampling Met	.1100:				Shee	et 1 of 1
OC Elev	vation:		Ν	/A	Continuous					Γ	Drilling
urface E	levation:		Ν	/A	Water Level:	10.0				Start	Finish
leferenc	e Elevation:		Ν	/A	Time:					DATE: 6/28/22	6/28/2022
Referenc	e Descriptio	n:	N/A	Δ	Date:	6/30/2022			,	TIME: 16:45	TIME: 12:30
			PID	Depth		Conditions:	vegetation				
USCS	In. Recvrd/	Boring	(ppm) 10.6 eV with	in	Weather: Sun						
Class.	In. Driven	Diagram	isobutylene as reference	Feet	Те	emperature:					
			0.1			emperature.		0.5.ft dry sandy	v gravel		
			0.1	0		0.5 ft dry, sandy gravel. 2 ft: dry, dark brown fine sandy gravel, trace silt, organisc.					
ML				2		2	e siit, organise.				
1012				2	3-5 ft: w	et brownish-g	rav silt w/ve	ry fine sand motte	eling grad	les to greyish-brow	n verv fine sand
			0.1	5	0010.00	et, biowilish g	tuy sht wy ve	ry mic sure, more	ening, grue	tes to greyisit brow	it very line build.
			011								
					5 ft: Moist, brownm fine to medium sand w/silt, mottleing.						
SM	1										
JIVI			0.3	10							
							5-8 ft: wet, g	ray, very fine to m	nedium sa	nd, trace silt.	
SM			0.1	15							
	18										
			4.2	20			18 ft - 20 ft	: wet, gray, very fi	ine to mee	lium sand.	
		▼									
	1										
						End of bor	ng at 20 ft bg	s. Monitoring well	l installed	20-10 ft. Ecology IE) tag:
		0		ruction Inform	ation					nstallation Infor	
		ell Diameter:		in			De	epth of Soil Vapo	-	N/A	ft
		itoring Well:		ft bgs				Bottom of			ft
	-	Flush Mount:		Flush	20	fthese		Top of Sar	-		$-\frac{ft}{t}$
		een Interval: iser Interval:	10 0	То	20 10	ft bgs ft bgs		Top of Benton	nte Seal:		ft
		ack Interval:		To To	20	ft bgs		Co	ncrete		
	Bentonite Seal: <u>.5</u> To Surface Completion: 0 To					ft bgs			ntonite S	Seal	
						ft bgs		000000000000000000000000000000000000000	nd Pack		
	Carrace	renom	~	-0	.5						
		Logged by:	Dana Rar	nquist				Date: $6/2$	28/22		
			tractor:		ental			Driller: J. V			

_			-	g, Science, g, Inc., PBC	Job. No. 6354426 Drilling Meth	Client: Project: od:	NAVFAC OU2 Soil a	NW and GW Investiga	tion NB	ocation: K Keyport g/Well Number:		
		0	-		Sonic					MW-14		
		LOG OF SO	IL BORIN	NG	Sampling Met	thod:			Shee	et 1 of 1		
Coordina OC Elev		hing:		[/A	Continuous							
	levation:			//A		5.0				Drilling		
	e Elevation:			//A	Water Level:				Start DATE: 6/30/22	Finish 6/30/2022		
	e Descriptio	n·	N/A		Time:				TIME: 9:30	TIME: 12:30		
			PID		Date:	6/30/2022 Conditions:			111viL. 9.50	111viL. 12.50		
USCS	In. Recvrd/	Boring	(ppm)	Depth	Suitace							
Class.	In. Driven	Diagram	10.6 eV with isobutylene	in		Weather:						
			as reference	Feet	Temperature: 60s°F							
			0.1	0	0.5 ft moist, dark brown fine to medium sand w/silt.							
SM												
0111					3-5 ft: w	et, brownish-g	rav silt w/ ve	rv fine sand, motteling	g, grades to greyish-brow	n verv fine sand.		
			0.1	5				- ,	5, 8			
]							
SM			0.5	8			5-8 ft: wet, g	ray, very fine to medi	um sand, trace silt.			
			0.3	10								
								As above.				
SM			0.1	15								
5111												
				10								
			4.2	18 20			18 ft - 20 ft:	wet, gray, very fine t	to medium sand.			
			1.2	20								
	1											
						End of bor	ing at 20 ft bgs	s. Monitoring well ins	talled 20-10 ft. Ecology II	D tag:		
		Monitoring	Vell Const	truction Inform	ation			Soil Vanar Pa	oint Installation Info	rmation		
M		ell Diameter:		in	auon		De	epth of Soil Vapor P		ft		
		itoring Well:		ft bgs				Bottom of Tub		ft		
	Stick Up or F	Flush Mount:		Flush	_			Top of Sand I		ft		
		een Interval:	10	То		ft bgs		Top of Bentonite	Seal:	ft		
		iser Interval:	0	То	10	ft bgs						
Sand Pack Interval: 8 To Bentonite Seal: .5 To					20	ft bgs ft bgs		Conce				
	Bentonite Seal:.5ToSurface Completion:0To					ft bgs ft bgs		Bento Sand	nite Seal Pack			
	Jurrace	completion:	0	10	.5			Sand				
		Logged by:	Dana Rai	nquist			_	Date: 6/30/	22			
		Drilling Con	tractor:	AEC Envirinm	ental		_	Driller: J. Wri	ght			

-				g, Science,	Job. No. 6354426	Client: Project:	NAVFAC OU2 Soil a	NW and GW Inve	estigation	NB	ocation: K Keyport	
		and Te	chnolog	gy, Inc., PBC	Drilling Meth	od:					ng/Well Number:	
		100 07 00	II BOBT		Sonic	1 1				2	2MW-15	
7.01"		LOG OF SO	IL BORIN	NG	Sampling Met	nod:				She	et 1 of 1	
Coordina OC Elev		ning:	• •	/A	Continuous					ļ,		
				-	TA 7-1- T		1	<u>г г</u>			Drilling	
	levation:			/A	Water Level:			$\left \right $		Start	Finish	
	e Elevation:	<u> </u>		/A	Time:					DATE: 7/1/22	7/1/2022	
lei erenc	e Descriptio	<u></u>	N/A PID		Date:	7/1/2022				TIME: 10:00	TIME: 12:00	
USCS	In. Recvrd/	Boring	(ppm)	Depth	Surface	Conditions						
Class.	In. Driven	Diagram	10.6 eV with isobutylene	in		Weather	Sun					
		0	as reference		Τe	emperature	60s°F					
			0.4	0								
ML			0.5			0.5 ft	- 5 ft: wet, dar	k brown silt w	/ fine sand,	motteling, organics	s.	
]		0	5								
	4						0.6		1.	1		
SM			0.1	8			8 ft: wet, gr	ay, very fine to	medium sai	na, trace silt.		
			0.1	10	ļ							
								As abo	ove.			
N 47			0.1	15								
ML												
	18											
								18 ft - 20 ft: mo	oist, grev. silt	t		
			0.1	20				international internationa International international internation				
	4											
						$E_{22} = 1 = 0.1$	ing = + 00 (* 1	Maritan'	wall :	1100 ft F1) to ge	
						End of Dol	nig at 20 ft bg	5. worntoring v	wen mstalle	d 18-8 ft. Ecology II	, iag.	
	1	Monitoring V	Vell Const	ruction Inform	ation			Soil Var	or Point I	nstallation Info	rmation	
Μ		ell Diameter:		in			De	epth of Soil Va		N/A	ft	
	-	itoring Well:		ft bgs					of Tubing:		ft	
		Flush Mount:		Flush	_				Sand Pack:		ft	
		een Interval:		То	18	ft bgs		Top of Bent			ft	
		iser Interval:	0	То	8	ft bgs						
		ack Interval:		То	18	ft bgs			Concrete			
Bentonite Seal: .5 To					8	ft bgs			Bentonite			
	Surface	Completion:	0	То	.5	ft bgs		ę	Sand Pack			
		Logged by:	Dana Rar	nauist				Date:	7/1/22			
				-	omto ¹		-	-				
		Drilling Con	uactor:	AEC Envirinm	ental		-	Dimer:	. Wright			

-				g, Science, v. Inc., PBC	Job. No. 6354426 Drilling Meth	Client: Project: od:	NAVFAC OU2 Soil a	NW and GW Inves	stigation	NB	.ocation: K Keyport ng/Well Number:	
				,,, I DC	Sonic						2MW-16	
		LOG OF SO	IL BORIN	NG	Sampling Met	thod:					et 1 of 1	
Coordina		hing:			Continuous							
OC Elev				/A	continuous		T			1	Drilling	
	levation:		N	/A	Water Level:	5.0				Start	Finish	
	e Elevation:			/A	Time:					DATE: 7/1/22	7/1/2022	
Referenc	e Descriptio	n:	N/A	1	Date:							
USCS	In. Recvrd/	Boring	PID (ppm)	Depth	Surface	Conditions	vegetation					
Class.	In. Driven	Diagram	10.6 eV with isobutylene	in		Weather	Sun					
		0	as reference	Feet	Τe	emperature	60s°F					
			0.9	0								
					0.5 ft - 5 ft: moist, dark brown silt w/ fine sand, motteling, organics.							
ML												
			1.0	-								
	1		1.3	5								
SM						5 ft: wet, as	above increasing	g fine to m	edium sand.			
								·				
SM				8		8 - 10 ft: wet, gray, very fine to medium sand, trace silt.						
5.71			0.8	10		10 - 11 ft: moist, dark grey clay, dense.						
					12-18 ft: Wet, dark grey, very fine to medium sand, trace silt.							
SM			1	15								
5111												
		18										
			0.1	20			18 ft - 20 ft:	: dark grey, very	fine silty s	and, dense.		
	-											
						Endoth	ing at 20 ft h -	e Monitoria	all installs	118-8 ft Feelers II) tag:	
						End of DO	ig at ∠0 IT bg	55. WOLLOTING W	CH HISTAIIG	d 18-8 ft. Ecology II	γ ια <u></u> ξ.	
		Monitoring V	Vell Const	ruction Inform	ation			Soil Vapo	or Point I	nstallation Info	rmation	
		ell Diameter:		in			De	epth of Soil Var		N/A	ft	
		itoring Well:		ft bgs					of Tubing:		ft	
		Flush Mount: reen Interval:		Flush	18	ft bgs		Top of Sa Top of Bento	and Pack:		ftft	
		iser Interval:	0	То	8	ft bgs		10p of Dento	Ante Jeal:			
		ack Interval:		То	18	ft bgs		C	Concrete			
Bentonite Seal: .5 To					8	ft bgs		В	entonite			
	Surface	Completion:	0	То	.5	ft bgs		Sa	and Pack			
							•					
		Logged by:	Dana Rar	nquist				Date: 7	/1/22			
		Drilling Con		AEC Envirinm	ental		-		Wright			
					Cinal		-	<u> </u>	vvirgill			


-			-	ıg, Science,	6354426	Client: Project:	NAVFAC OU2 Soil a	NW nd GW Inve	estigation		ocation: K Keyport	
-		and Te	echnolog	gy, Inc., PBC	Drilling Meth	od:				Soil Borin	g/Well Number:	
		0			Sonic					2	MW-17	
		LOG OF SO	IL BORIN	NG	Sampling Met	thod:				Shee	et 1 of 1	
oordina		hing:			Continuous							
OC Elev				I/A			1	· · ·			Drilling	
urface E	levation:		N	I/A	Water Level:	10.0				Start	Finish	
	e Elevation:			I/A	Time:					DATE: 6/27/22	6/27/2022	
leferenc	e Descriptio	on:	N/A	A	Date:	6/27/2022				TIME: 10:00	TIME: 15:30	
			PID (mmm)	Depth	Surface	Conditions:	Asphalt					
USCS	In. Recvrd/	Boring	(ppm) 10.6 eV with	in		Weather:	-					
Class.	In. Driven	Diagram	isobutylene as reference	Feet	Te	emperature:						
			935 0.1									
			0.1	0								
GW					0.5 ft - 5 ft: moist, brown coarce sandy gravel, wood debris, organics							
GW												
			0.1	5								
			0.1									
SW-SM				ļ		5 ft: moist, brown fine to mdium sand w/silt.						
			0.2									
				8			8 ft: r	noist, brown co	oarse sand v	v/silt.		
SM				10	1	10 ft: wet, brownish-grey fine silty sand, subrounded gravel						
			0.2		15 ft: Wet, greyish-brown fine silty sand							
SM				15								
	0.4											
				18 20		18 ft -	20 ft: wet, ver	y fine sand wit	th silt, reddi	sh-brown motteling		
				20								
		v										
				ļ								
					1	End of bori	ng at 20 ft bgs.	Monitoring w	ell installed	. Ecology ID tag: BN	W273	
					1		5	0		0, 0, 1		
	· · · · · · · · · · · · · · · · · · ·	Monitoring V	Vell Cons	truction Inform	ation			Soil Vap	or Point	Installation Infor	rmation	
М	onitoring W	ell Diameter:	2	in			De	pth of Soil Va	apor Point:	N/A	ft	
		itoring Well:		ft bgs					of Tubing:		ft	
1		Flush Mount:		Flush	-			_	Sand Pack:		ft	
		een Interval:		То		ft bgs		Top of Bent	tonite Seal:		ft	
		liser Interval:		То		ft bgs			-			
Sand Pack Interval: 8 To					20	ft bgs			Concrete	- I		
	Bentonite Seal: .5 To					ft bgs			Bentonite			
	Surface	Completion:	0	То	.5	ft bgs			Sand Pack	<		
		Logged by:	Dana Rai	nauist				Date: 6	6/27/22			
				-			-	-			_	
		Drilling Con	iractor:	AEC Envirinm	ental		-	Driller:]	J. Wright			

-				g, Science, zv, Inc., PBC	Job. No. 6354426 Drilling Meth	Client: Project: od:	NAVFAC OU2 Soil a	NW and GW Investi	gation	NBI	ocation: K Keyport g/Well Number:		
				,,, _ _ _ _ _ _ _ _ _ _ 	Sonic						MW-18		
		LOG OF SO	IL BORIN	NG	Sampling Met	thod:				Shee	et 1 of 1		
Coordina		hing:			Continuous				Ļ				
OC Elev				[/A		1	1	1 1			Drilling		
	levation:			[/A	Water Level:					Start	Finish		
	e Elevation:			/A	Time:					DATE: 6/28/22	6/28/2022		
Keferenc	e Descriptio	on:	N/A	A	Date:]	TIME: 10:00	TIME: 15:30		
USCS	In. Recvrd/	Boring	(ppm)	Depth	Surface	Conditions	Asphalt						
Class.	In. Driven	Diagram	10.6 eV with isobutylene	in		Weather	Sun						
		0	as reference	Feet	Te	emperature	98°F						
			0.2	0									
GW						0.5 ft - 5 ft: moist, dark grey fine to medium sand, subrounded gravel.							
			4	5									
						5 ft: moist, brownish-gray, fine to medium sand w/motteling.							
SW	1			8	1	6-8 ft: moist, grey sitly sand, motteling.							
200			2.3	10			10 ft: we	et, dark grey very fi	ine sand w	vith silt.			
			0		15 ft. Wat dark your fine city cand								
			0		15 ft: Wet, dark very fine silty sand.								
				15									
SM													
	18						18 ft - 20 ft	: wet, as above, sor	ne rounde	ed gravel.			
			0.1	20						-			
						End of bo	oring at 20 ft b	gs. Monitoring wel	ll installed	l 18-8. Ecology ID t	tag:		
]		-	0					
		0		truction Inform	ation			1		stallation Infor			
		ell Diameter:		in ft bac			De	epth of Soil Vapor	-	N/A	ft		
		itoring Well: Flush Mount:		ft bgs Flush				Bottom of T Top of San	-		ft ft		
	-	een Interval:		То	18	ft bgs		Top of Bentoni			ft		
		liser Interval:		То	8	ft bgs		r					
	Sand Pack Interval:6ToBentonite Seal:.5To					ft bgs			ncrete				
						ft bgs		000000000000000000000000000000000000000	ntonite S	eal			
	Surface	Completion:	0	То	.5	ft bgs		San	nd Pack				
							-						
		Logged by:	Dana Rai	nquist				Date: 6/2	28/22				
		Drilling Con		AEC Envirinm	ental		_		Vright		_		
					icindi		-	<u>J. W</u>	, i igitt				

-			-	g, Science,	Job. No. 6354426	Client: Project:	NAVFAC OU2 Soil a	NW and GW Inves	tigation	NB	ocation: K Keyport	
			201010108	5y, me., PBC	Drilling Meth Sonic	<i>ua</i> :					ng/Well Number: 2MW-19	
		LOG OF SO	IL BORIN	١G	Sonic Sampling Met	hod:						
Coordina	ates: Nort			/A	Continuous						et 1 of 1	
OC Elev											Drilling	
	levation:			/A	Water Level:					Start	Finish	
	e Elevation:			/A	Time:					DATE: 7/1/22	7/1/2022	
eferenc	e Descriptio	n:	N/A		Date:	7/1/2022				TIME: 8:40	TIME: 9:50	
USCS	In. Recvrd/	Boring	(ppm)	Depth	Surface	Conditions:	vegitation					
Class.	In. Kecvra/ In. Driven	Diagram	10.6 eV with isobutylene	in	Weather: Sunny							
C11 000		2	as reference	Feet	Τe	emperature:	60s°F					
			2.4	0.5			0.5 Fft: ł	brown dry fine sil	ty sand, o	rganics.		
SM			2.7	5		5 ft: brownish-gray, wet, very fine silty sand, motteling.						
2.11												
				7	10 ft: gray, wet, very fine to fine sand, trace silt, loose.							
							10 ft: gray, we	et, very fine to fin	e sand, tra	ace silt, loose.		
			1.5	10								
			1.5	10								
SP			1.3	15								
ML				18			18 -20:	dark gray wet silt	, medium	dense.		
_			1.3	20				0,				
						End of bor	ing at 20ft bgs	s. Monitoring well	l installed	18-20 ft. Ecology II	O tag:	
				ruction Inform	ation			_		nstallation Info		
	Ionitoring W			in			De	epth of Soil Vap		N/A	ft	
	Bottom of Monitoring Well:18ft bgsStick Up or Flush Mount:Flush							Bottom of	-		ft	
		lush Mount: een Interval:			10	ft bas		Top of Sar Top of Boptor			ftft	
		een Interval: iser Interval:		To To	18 18	ft bgs ft bgs		Top of Bentor	ute Seal:		IL	
	Sand Pack Interval: 6 To Bentonite Seal: .5 To				18	ft bgs		C	oncrete			
					6	ft bgs			ntonite	Seal		
	Surface Completion: 0 To					ft bgs		000000000000000000000000000000000000000	nd Pack			
		1			.5							
		Logged by:	Dana Rar	nquist				Date: 7/	1/22			
		Drilling Con	tractor:	AEC Envirinm	ental		_	Driller: J. V	Wright			

This page intentionally left blank

6/27/22 turash

	ON REFERENCE		DATE
Stephen	440,8081	Build 9	57
340.	440,8081		
			1
	*		
			-
			4
			1
	ŧ		
			4

Keypert U-2722
002- Soul Investigation
Sunny 70-90F
DRanguist, BHauns
AEL-Drilling C. Cellucci, A. Rohrbaggh (NAVFAC)
the second second second second second second second second
0730 ansile, waiting an duillers +
2pm
delay wil gate Security, trattic
backup due to addil
Security checks
0815 review WP/SSHP
Precon w/ RAMS
discussion of well dephi/location
2pm decisions 30-9+58-10
to 40 Ft, orme (8) 20 Ft wells
save Fourtage from add + TED
wells as optional if
impacks abound > 7 20ft
For to document well
deptus
Scale: 1 square = Rite in the Rain.

21 Leypart 0/2 (27-22	6-27-223
the box	2 MW-17-
	Char Son 40 pre
1015 ris durn tering jaws	
cum brunn aring back	
side of lence -	
1100 revent boring locations	- bentenite ohips
w/ RPM, 20f height	
cicaran kr vig marst	
1200 rig Junis reputed Crew on linch	10 7 3
walk trahans outside knie wij kant	- 1920anna
1300 Beyn drilling SB-17	
Ambunt PID-0.1 FB-102722 (Bland)	
1310 Area 2-22-58-17-05	alt II 311 sub cap
1330 Aren 2-22-58-17-10 Aren 2-22-58-17-10	- 7 10
	Sct up on SB-18
1335 Area 2-22-58-17-20	prep For decon, duriers remin
set well @ 20'	to shop for decan equip.
priced were while policing manne	1530 and of duy knips 98F mond single sipples
reduit bring + set well 2MANTA TE	O Shed OUL
	O SWEET COTTONES to ROM
	gave sommary of progress to RAM
A unit IFAN	Rete in the Rain
Scale: 1 square =	Scale: 1 square =

4 Keyport ar Drung 1-20122 Moshi Sum, breezed SF-DRanquist, BHautus AZC: John Wirsht, Branden Rich 0715 maile, prep samples, 0800 Dunus onsile, taugate decon tooling, Set monoment @ 2MW-17 0900 Begin drilling SB-18 Sample 10 914 0420 Area - 2-22-58-18-0.5 2.0 Area-2-22-SB-18-10 213 0425 : Area - 2-22-SB-18-20 0.1 nome 0945 FB-U2822 - Fund Blank 1000 Set well () 18-2mw-18 Seseen 18-81 1040 Set up @ 58-12 war 455 begin duilling OB 12 issues wit head donery, received 1205 begin drilling 1210 ARTE 22-58-12-0.5 10 415 1220 Mar 2-22 - 58-12 - 5 1911 4911 1236 Area-2-22-513-12 - 10 110 11.7 1235 Aren- 2-22-58-12-20 PD 21 82 (2822 1 1240 Mar 2-22-53-12-1-20 dup 290 pc

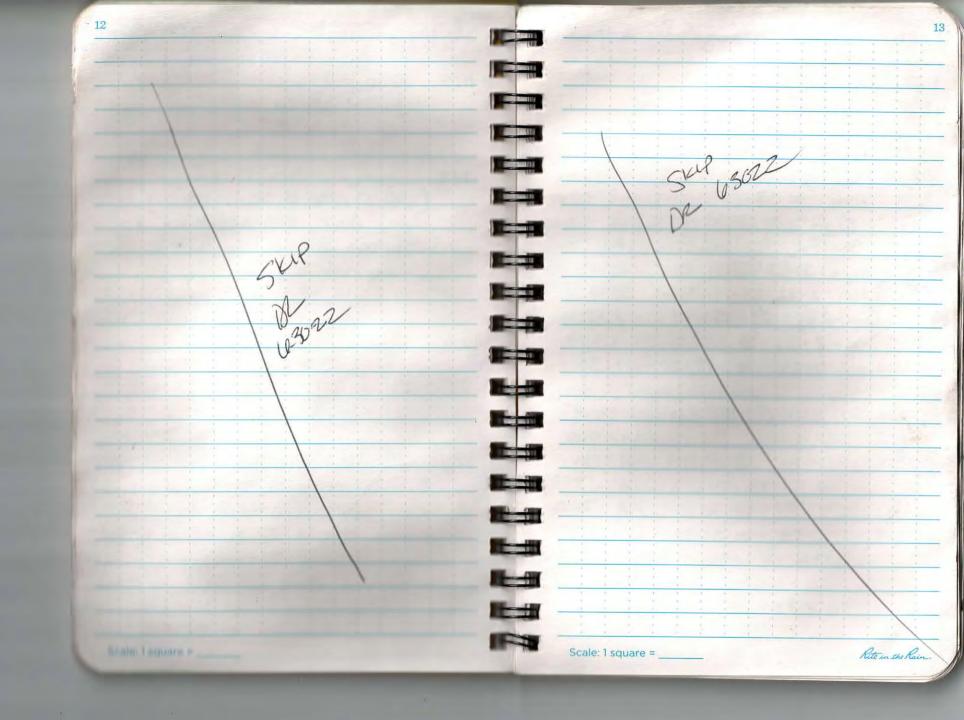
Keyport auz Dulling U-28-22	5
beim Loca	
Del IN Callet	
1 4127/22 DRUM-ØI 58-17 Sal	
(1/28/22 DRUM-\$2 SB-18 gul	
1 4/28/22 DZUM-Ø3 58-12 Son	
_ 0/28/22 DRUM-04 SR-11 Soil	
1 U/29/22 DRUM-05 SB-9, 5B-10 Sa	
1 4/19/22 DRUM- 040 SB-14,5B-10 SA	
1 4/22/72 DRUM-07- 5B-13 Sor)	-1
6/30/22 MUM-68 SB-19, SB-15, SB-	0
7/6/22 Deum-\$9 purgewater 2mw-17	-
114122 DRUM-10 2MW-17, 2MW-18, ZMW	1-1
7/11/22 DRUM-11 2MW-11, 2MW-13, 2MW-10 7/7/22 DRUM-12 2MW-19, 2MW-14, 2MW-10	í7
7/7/22 DRUM-12 2MH-19,2MH-14,2MH-10 7/7/22 DRUM-13 2MH-10,2MH-92MH-16	
11/122 DRWM-13 2MW-10,2MW-9,2MW-16.	
718/22 DDWM-14 2MU-14,2MU-4,2MU-17,2M+18 7 1250 Hren 2-22 SB-12-25 PO 0.3	-
1300 Set 2 MAN-D A 70FL	-
Screen 20-10 Ht, Sand 108.	
	-
	-K.
Scale: 1 square = Rete in the Rein.	

and a set of the set			
" augment and bring le	28-22	Keyf	at az Drilling
		Dizan	John John
		AEZ >	John
1320 Sel 40 SB-11			
1540 Beyn number SB-11		pt Su	my Lect,
1850 Area - 2-22-58-11-0.5 1	0-2,3	0730	onsite, prepsan
13-10 400 Area-2-22-58-11-5	PIP-5-1		await dullers,
Ber 145 Aron - 2-22-58-11-1-5 (Ap)	PID -5.1		loachens w/ sta
1410 Aren-2-22-8811-10	20 22	0800	Taugak
1415 Area-2-22-58-11-15	PID-44	0830	burred domes
1420 Aven-2-22-58-11- 20	PID-15 10		inpad discourse
Begin Setting Well 2MW-11	() 20Ft		of sence ne
Screened 20-10			2mw-15 100
			curs to RPM
11145 Set up @ SB-B			
1445 Set up @ SB-B 1500 Besin dalling 5B-13	· · ·		Bet up on SB
	PID T		Amerida ansor
1515 Aren- 2-22-58-13-015	0	1	drum loration,
1525 AVRG-2-22-58-13-5 0	no mymun I		borns locations
530 Acen- 2-22-58-13-10 0	5 11-11		3B-9+58-10 h
1540 Area - 2-22-58-13-15	2,64		added SB-19 be
1815 Aren 2-22-53-13-20 11	nel Ital		reserve x 3594 IF N
begin setting well (D) De " server	n 20-10/ 11-9		on Fuld observation
curries & beyond site	It-fl		
		+	
BEARD 1 AND - 52 192822		Scale	1 square =
A Deside Street		-	

prepsamplus Innus mere well w/ stakes + Hassing dunis parhally discoursed on east side nen proposion 15 location to RPM to notify n 58-9 ansall, looked () hen, revewed next a hous; -10 to 401 -19 between SB-15 + SB-16201

10-29-22

SPH IF needed footage bised


De 102922

bservations

4-29-22 Keyport 002 Dulling 42922 Keyport 002 Drinne Begin drilling SB-9 1020 heaving sunds, heed PID bare hole hold water Area - 2-22-58-9-0.5 0.2 1020 gen, will deanat 1030 Anon - 2 - 22 - 513 -9 - 10 0,3 Sit well next day Hran-2-22-3B-9-1-10 (Dip) 0.2 1035 1040 Area-2-22-5B-9-20 HOWAR 0.2 Cleanup + same site here 1100 Ara-2-22-53-9-30 0.1 DR. 0.2 1130 Aren- 2-22-5B= 9-40 1700 off sile RPM off site DIUS 1145 Set well @ 35' scien 25-35 well set 2MW-9 1245 duiler off site to get frauen OBinger. SCT UP (SB - ID 1400 begin druing SB-10 1430 TB-62922 PID 1435 Aren-2-22-58-10-0,5 0.2 11440 Main Area-2-22-5B-10-10 No1 #145 Viren-2-22-38-10 = 20 10-1 14150 Arna 2-22-53-10-30 Bal 1515 Acen-2-22-58-10-40 0.2 1540 Heren St self, wereit Henry MI M. M. Cure hele -----1545 Set well 401-30 - Da Vagne Rete in the Rain Scale: 1 square =

10 Keyport OUZ Drilling 10-30-29 M 0302211 Keyport OUZ Drilling mostry sunny, 65F 1125 Begin setting weil ZMW-14 DRanquest, B. Hains AEC, Jour Whight, Brandas Rich (5) 201 Scilen 20-10-Sand to 8-Contract of the 0730- anole, repark samples 1235 Ship 2- coolers Fed Ex w/ice (SB-17, SB-18, SB-11, SB-12) durlers anote OBDO + augate . Rig down, Aber Fixing rig No Further driving For the day 0830 Ful water lote + resume setting clean up, le samples ZMW-10 40 sie water and 0900 2MW-10 Set 1630 Off-sile Serein 40+30 1 Sund 2/102 to 28/ pack coolers 0930 30+ UP (SB-14) 1 10 PID 0935 FB-13022 1011 1100 Area-2-22-SB-14-0.5 1.0 0,3 105 10 10 Area - 2-22 - 5B-14- 10 Area- 2-22-5B-141-15 0.3 1115 1005 Arra-2-22-SB 5 Nus-2412-30.145 The second second H-H 1000 Rig tower pin yours, such halper to get port] IF-FI 1005 TB 63022 (33-14131A) 34 19-CH Scale: 1 square = Rite in the Rain.

-

14 Keyport 012 Drinne 7-1-22 Keyport OV2 Drilling 17-1-22 15 Shinij LOUS DiPanquist, BHanny Set up on SB-15 ARC: John What i begin drung SB-15 SAMONI ID PID 0730 consite prekice, aces 10112 Area - 2-22-5B-15-0.5 8.4 0300 tallgate, 10/5 Aven-2-22-53-15-1-0.5(Ap) 0.4 mdo to SB-P9 1020 Area - 2-22-58-15-5 Ø.Ø 0840 Bean dalling SB-19 1.5 Sample ID TIME PIP 1035 Areg-2-22-513-15 (MS/msp 1.1 0845 Area- 2-22-53-19-0,5 1040 Asen- 2-22-SB-15-20 2,4 0855 Dil Asea - 2-22-58-19-5 2.7 1050 TB-7122 0910 Area-2-22-58-19-10 1-5 1030 Set ZMW-15 () 18-8-925 Aran-2-22-SB - 19-15 1.3 1040 FB-7122 930 Area - 2-22 -SB - 19-20 1.3 Set up SB-ILP, Luner (100 ----Bogin drilling 1230 sit well @ 18 screen 18-8 0400 I IN Sample 15 TIME AID Unp tole A104-2-22-513-16-0,5 1240 29 1245 Areu-2-22-58-14-5 1.3 1280 II. III Aren-2-22-5B-14-10 0.8 1255 Aren-2-72-58-16-15 1.0 1300 Aren-2-22-SB-16-20 Ø.1 1310 pull samples for fed 2x durab dulling + cleanup take samples to Fed EX offsile Scale; 1 square = Rite in the Rein

.

16 Keyport auz. wen Del. 7-10-22 Keypert 002 9-10-22 cloudy mid los wen Development A Ranguist, H. Hayer Ace. Jour ungout 0730 anote 1208 prup well, sip rechange reduce points sut sut/min 120 Dillers ansite turigete 0900 cul Im RPM, 20 NTU okan centab church equipment For duelopment of superiorate 1230 surge well & bail 950 begin development ZMW-17 1248 reinnige 1255 DTW - 2.41, TD-19.85 DTW 11.4 ball well (poly build) ALL ALL prup. 4 brucers removed development anpuk a 25 gal 1326 110 1010 Suge well Final DTW-4879 12.94 K pusco 1020 ball (5 bailing) DrB - 18.02 SCT UP @2MW-12 (BNMU12) 1035 pump well ~ 3pm development complete 1115 265 gue pursed 1330 DTW 5.78- TD - FI.12 1 Final DTW - 3,26' TD - 19,9 bail well, surge, bail 1130 2mw-18 (ma BNM611) 8 banno remared DTW-5.22 TD-17.05 pump well (a) 2 gpm 1350 1140 bail well + 1420 centipparent complike USS BC Surge Well, but well (4 buildes) 100 52 gue purged 1155 pump WLII FINEL DTN 9.19, DTB- 20.02 1204 pinip stopped DTW-9-75 Scale: 1 square = Scale: 1 square = _____ Rite in the Rain.

۰,

18 Keyport OUZ Well Development 9-10-22 605 pt sunny showers set up () 2MW-1) 1440 DTW-U, 79 DTB- 19.08-1443 par well, 3 briles 1455 primp mile 1.25 Jpm pumped dry Sque purged 1458 let recharge, pimp 1315 development complete 2 14.5 Jul purgeal prep For dim maving, palatize domes > tent Clean ip Well the BNM LOB Final DTW - 8.82, DB- 19.81 100 1 - Internet 1 COL

Keyport OUL Well Der 07/7/2022 0800 H. Hajek onsite 0830 AEC: Sohntonight HHMMITTE weather: cloudy, 6t°F, Szmph Tasks: redevelopment of 7 remaining wells 0840 H& S briefly - Topics: ppe, strain, weather 0900 Begen development 2MW-13 DTW=6,28'BTOC, DTB=19.19'BTOC 0902 bail well (metal bailer) 1-11 3 bailers removed Surge well, 2 bailers removed 0908 Surge well, bail well (1 baile) 0912 Pump well ~ 2 GPM 0942 Development complete ~ 36 Gal purged Final DTW= 10.911BTOC, TD= 19.79'BTOC Tag! BNM 614 1000 Begin Development ZMV-16 DTW= 6.06'BTOC, DTB= 21.44" 1013 Bail Well (metal Briler) bailers removed A. Sale 1015 Surge well 1026 Pump well ~ 2 GPM 1047 Recharging well-water level very low 1054 Resume purge (Aulto 77722 Scale: 1 square =

20 7/7/2022 Keyport OUZ Well Peu Keyport OUZ Well Dev 7/7/2022 21 Development Complete 130 DTW = 8,59 BTOC, DTB= 20,61' ~ 25 gal purged 1419 Bail Well (metal bailer) Final DTU = 16,83 BT& DTB= 21,66" 3 bailess removed Tagi BNM 620 1424 Suge well, 1146 Begin Development 2MW-15 1428 Pump well DTW= 6.57'BTOC DTB= 21.97' 1505 Development complete Bail Well (motal bailer) 1148 ~ 18 gal purged 2 bailes removed Final DTW= 13.28 BTOC, DTB= 22,38' Surge well, I bailer renoved 1151 Tag: BNM 617 1157 Pump Well 1520 Begin Development 2MW-10 1225 Development Complete DTW= 7.74'BTOC, DTB=41,28' 217 Gal purgad 1522 Bail well (metal bailer) 1 Final DTW= 22.11 16.66', Find DTB= 22.11' bailer removed Tag: BNM 619 Surge well, 2 bailer removed 1527 1237 Begin Development 2MW-19 Pump well. 1534 DTU= 8.37'BRC DTB= 21.26' Development Complete 1609 Bail Well (metal bailer) 246 Final DTW= 10.48 DTB= 41.512 2 bailers removed Tag: BNM GIG Surge well, I bailer renoved 250 ~ 43gal purged Pump well 255 1630 End of day supplies put away crew offs, te 1355 Development complete ~ 19 gal purged Will norn Final DTW= 19, 11'BTa, DTB=21,44' Tag : BNM 618 1 1 1411 Begin Development 2MW-14 Scale: 1 square - Hellelan 7/7/2017 Rete in the Rain Scale: 1 square =

22718122 Vac + NID	1/2
	Keyport ouz Well Dev & Sanpling 7/8/23
1000 H. Hajeh ensite to mob supplies	Well tay BNM615
weather cloudy, 63-15 river Elingh	- 146 Arrive ZMW-17
	DTW= 2,39'BTOC
	1156 Begh Purge
	1221 Parameters Stabilized
all all a	pH=6,91 Temp= 13,9°C
M	spechord=0,419th Sal= 0,20ppt
Degn Development 2MW-9	Turb= 32,80 NTY ORP= -389,8mu
1015 YSI calibration	DO=0.56 M/L
parameters Barameter: 166,0	1 1006 Collect Sample AREA2-22-2010-11
	*X3 VOAS For CVOCS by 8260D
	1228 Decon ysi
pH10:10,02-210.07 DO:1006%-2100.8%	1235 Arrive 2MW-18
ORP: 2489mv=>231,5muTemp=19,0°F	DTW= 5,28'Broc
in the second wright offering in band	1240 Begin Purge
	320 Parameters Stabilized
Topics: ppe, preservatives, strain	pH=6,91 Forp=14.6°C
1050 Begin Development 2MW-9	spe lond = 0,214 22 Sal= 0,10ppt
NIW -6:03 DICC, DID-36:01	Turb=23,43,074 ORP=-248,6mV
	DO2 0,76 mg2
2 bailers remained	1325 Collect Sample Aleaz-22-2MW-18
1056 Surge well Zbailers	* X3 VOAS for VOCS per 8260D
100 Punp well	1328 Collect Dup Area 2-22-2MU-18B
	PXSUOAS Forward for 8260n
Final DTW-21.46 Bioc, DID-37.60	330 Decan YSI
heads 1 signature	Scale: 1 square = potto 7/8/22 Rite in the Rain.

24 713/2022 Respond well DEUA Sampling 1333 Amile 2MW-12 DTW= 5.70'BTOC 1336 Beam Purge 1411 Parameters Stabilized PH=6.53 Temp=15,4°C spectored = 0.817cm Sal= 0.3 Turb= 15,12,144 ORP=-325,9MJ DO: 0,40 ME 1416 Collect Sample AREAZ-22-2MW-12 * ×3 VOAs far clocs 8260P 1413 DeconYSI 1420 Arrive 2MW-11 DTW=6.54 BTOC 1424 Begin Purge 1454 Parameters Stabilized pH= 6.43 Tempz 13.8°C specCord= 0.789 2 sel= 0, 14 ppt Turb=6,39 NTU ORP= 8,1 m DO=0,50 Mg/L 1459 Collect Sample AREAZ-22-ZMW-11 * ×3 UDAS Far EVOCS 82600 1504 Dunpall purge water in DRUM # 14 Bampling water 2MW9, 2MW17, 2MW18, 2MW-11 1600 Denot, crew after te end of dry

Keyport Well DEU & Sampling 7/11/202225 0830 H. Hujek, S. Stamper ansite heyport ouz Weather 66°-80° F, wind NWF Zmph -Task: sampling redevelopsticells Decon' spray "alconox CDIA wipe Bottles: X3 VOAS W/HCL for cubcs by 82600 0910 Has Briefing by H. Hajek Topics: ppe, weather, futigue Arrive 2MW-13 0914 DTU: 6.43'BTOC 0916 Begin Purge Parameters Stabilized 0946 pH= 6.37 Temp= 13.2°C Tusb=4.78NTU ORP- 77.4nU D8=0.62 mg 0948 Collect Somple AREAZ-22-2MW-13 · Vocs per SAP 0955 Purge water dumped in Drunt 14 1008 Arrive 2MW-16 DTW=6.30'BTOC Begin Purge 011 1026 Parameters Stabilized PH2-6.45 Temp= 12.1°C a state Scale: 1 square =

C III

26 7/11/2022 Keyport Well Dev & Sampling	Keypart well Dev. + Sumpling 27
spectant=0,360= Jal=0,17pp+	Tur6-21.32170, DRP-1315 m
Turb=66.87NTU ORP= 36.3M	Do-4.60-3/2
DO= 0.63 %	
1029 Collect Sumple AREAZ-22-2MW-26	
	Dump per when in brief #121
1035 Dunp guge water in (DRM#14)	1240 Arrive 2mu-14
1035 Ampguge water in DRUHT 14	
Port in 100 To pich up Sample	2111
	Paretes stabelized
1100 Arrive 2MW-15 DTW = 6.65'Broc	RH - 6:45 -13.4 0
	8H-6.45 Temp-13.40 - 590-0.362 Man, 5al-0.01358
	10-054 Mg2
pH-6-48 , TEmp- 11.7 ec	1326 collect Sumpre Aciz-22-2mw-24
5PC= 0.76 m/2 5al= 0.18 %	· Voc's per SAP
	incoments I willing
	1341 Arrive 2mw-10
	DTw=7.20
· vocs per SAP	
1155 Arrive 2min-19	
DTW=8.30	PH - 7.60 , TEMP- 13.4 C°
1207 Begin purge	SPC-0292 20, 541-0.14%
Interacted States 156	Da-a Santha
PH = 6 45 , 7 emp = 12.6°C	1410 collect sample Aranziz-2mw-16
5PL=0514=1/m, 501=0.25 11.	
partia requires py	- Scale: 1 square = Rice in the fifth

4	VOCS Per Sap
	· pump punde water in Garel # 14
420	Arrive 2mw-9
	DTW=6.73
9.25	Besin Purse
	Parameters Stabalized
	pH-7.15 , 5pc-0280 -32
	TUG-24,84 NTU, DO-0-49-02
	Temp- 12.6 c° , 501-0.13%
	0RP 499.6-V
1455	collect Sample Areaz-22.2mn-9
	· VOU'S PU Sup
1500	collect sample Arenz -22 - 2mm - 9B
1	ivous per sap
	· Dump puscienter in barrel #14
1530	H. Hajeh & S. Stamper orsite to
11	assist. The packing & cleanup
600	Crev offsik, end of day
11 1	
11	A MIL official
11	All alton
4.	Community .
6	

Scale: 1 square = Mrt. Mc.	1									2	29
		-		1	1. 1	.k. -4	1 1	3		1 1	-
		1 1				N.	1 1	-		1 3-	-
	-			11			11	-		и — 1 Ф	-
	-	1	-		-		1 1		1 10	1 1	_
					-1	1	1 1			0 7	_
										24	_
	-			1 1	-	1	1 1		-		
	-	1 1	N O		1. 1	1	1 1	ł	4 4	4 R- 4 F	
				1 1	1 1	THE OF	1 1			3 1	_
	- 11								1 1	1 1	-
	-							-		1	
		1						-	R I		_
		1						1		-t - 1	
								1			_
										1 1	
	-11										
	-	1									
	-	1	1 1							100	
		1									
		-						-	1 1	1 1	
		-							1 1		_
		1									_
	-	1							1 1	1 1	
									1 :	1 1	
		-									
	1	¥	* ÷	1 1	1	1	1 1				
					1 3	-	1 19	-	1	1 1	
		-	1	-					1 1		-
Scale: 1 square = Rite in the Rain.		1	1 4					-1	-	1 .	
	-	Scale:	1 squar	e =	_				Rite	in the Rais	i.

			®		EA E	Tech 2200 6	nology, 5th Ave, Suite tle, WA 9812	707	and	WELL DEVELOPMENT FORM
Contract Number:	N94255-	20-D-6	Tas		521F	4076 II	Naval nstallation:	Key	trag	Site Name: 042
Start Dat End Dat Log	Driller: A nent Method: rush, Cump Ot	12022 6/2022 1. Haje TEC	/1050 /1128			Water Co I Casing Vo Well	ng Diameter olumn Height olume ¹⁷ (liter l Volume (lit Column Heig	Initial Total Well Depth (ft btoc): <u>36,8</u> Final Total Well Depth (ft btoc): <u>37,6</u> Initial Depth to Water (ft btoc): <u>6,69</u> Final Depth to Water (ft btoc): <u>21,4</u>		
Time	Purge Rate (liters/min)	Total Purge (liters)	Depth to Water (ft btoc)	Temp. (°C)	pH	ORP (mV)	Spec. Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Comments
	Stabili	zation Re	quirements	NA	(± 0.5)	NA	(±10%)	(± 10%) or <10)	BIA	
100	Begin	puge	Les		(510)	1111	(- 10 /0)	01 ~10)	NA	Well D. PAIMA
1116	Zgal	15	32,26	13,6	6.93	-317.0	0,284	75,59	5.29	Well Tag BNM615
1128	2 gal	20	32.81	13.1	1.08	-334,1	0,281	40,15	4,85	
1160	igal	20	32,94	12.7	7.09	-341.0	0,278	17,57	4.52	
-										
		-								
later V.C					1					
ores: Com	mon well casing v	olumes inclue		$er \rightarrow 0.6$ liters		' diameter \rightarrow	2.5 liters/foot	6" diameter	→ 5.6 liters/for	at 8" diameter \rightarrow 9.9 liters/foot
	11 11 10						1			
ecorded by:	HIMaye	CK	Date: /	18/202	2		Page o	f 1		Meter Model: YSI

1

3		EA E	Techi 2200 6	h Ave, Suite	707	nd	WELL DEVELOPMENT FORM			
-6006 Ord	sk der:NY4255	521F40	76 Ir	Naval stallation:	Leypo	rt	Site Name: 042			
22/1520 22/1609 azek			Water Co Casing Vo Well	lumn Height blume ¹⁷ (liters Volume (lite	(ft): <u>33.</u> s/ft): <u>0.</u> ers): <u>20</u> ,	54 5 124	Initial Total Well Depth (ft btoc): <u>41,28</u> Final Total Well Depth (ft btoc): <u>41,51</u> Initial Depth to Water (ft btoc): <u>7,74</u> Final Depth to Water (ft btoc): <u>10, 48</u> Total Volume Removed (lifes): <u>41,51</u> Initial Depth to Water (ft btoc): <u>41,28</u> Jack <u>41,51</u> Final Depth to Water (ft btoc): <u>41,28</u> Jack <u>41,51</u> Final Depth to Water (ft btoc): <u>41,28</u> Jack <u>41,51</u> Final Depth to Water (ft btoc): <u>41,51</u> Initial Depth to Water (ft btoc): <u>41,51</u> Final Depth to Water (ft btoc): <u>41,51</u> State Initial Depth to Water (ft btoc): <u>7,74</u> Final Depth to Water (ft btoc): <u>10,48</u> Total Volume Removed (lifes): <u>43,51</u> State Initial Depth to Water (ft btoc): <u>10,48</u> State Initia			
urge Water	Temp. (°C)	рН	ORP (mV)	Spec. Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Comments			
	NA	(+0.5)	NA	(+ 109/)	(± 10%					
The		(= 0.5)	1174	(± 1070)	01 ~10)	INA	Well tag			
	14.0	7.64	-268.4	0,284	140,07	2,36	the fug			
7gal 24.08		7,32	-260,4	0,271	65,77	3.01				
			-288.1	0.263	36,66	2,30				
3. 24.51	12.7	7.09	- 513,3	0,766	13,54	5.40				
	<u>-6006</u> Or -10 22/1520 22/1609 ayek Swzebla Swzebla Water ters) (ft btoc) For	Total Depth to Under Swigeblock We Swigeblock We We We We We We We We We We	6006 Order: <u>Nyy25521F40</u> -10	Seatt Task Order:NY425521F4076 In -10 Well Casin Water Co $22/1520$ Water Co Well Casing Value $22/1669$ Well Casing Value Well Casing Value $22/1669$ Well Casing Value Well Casing Value $22/1669$ Well Casing Value Well Casing Value $322/1669$ Well Volume = Water (Malue Well Value $322/1666$ (ft bloc) (°C) pH (mV) Well Value NA (± 0.5) NA $322/12 14.0 7.64 -268.4 322/12 24.08 13.9 7.32 -260.4 324/12 24.39 13.4 7.20 -288.1 $	Seattle, WA 9812TaskNavalOrder: N44255 21 F4076Installation:-10Well Casing Diameter22/15 20Well Casing Diameter22Well Casing Volume ¹¹ (liters)Well Casing Volume ¹¹ (liters)Well Volume = Water Column HeightWell Volume = Water Column HeightSurge blockORP Cond.(ft btoc) (°C) pH (mV) (mS/cm)PH (mV) (mS/cm)PH (mV) (mS/cm)Spal 23.72 14.07.64 -268.40.2847.32 -260,40.2847.32 -260,40.2847.32 -260,40.2847.32 -260,40.288,10.263	Seattle, WA 98121 Task Naval Order: $M425521F4076$ Installation: $Keype -10 Well Casing Diameter (in): 37. 22 /1520 Water Column Height (ft): 33. 22 /1669 Well Casing Volume" (liters/ft): 0. 22 /1669 Well Casing Volume" (liters/ft): 0. 22 /1669 Well Volume (liters): 20. 24 Well Volume = Water Column Height x Well Ca ayek Well Volume = Water Column Height x Well Ca Swgeblock (mV) (mS/cm) Year (mV) (mS/cm) on Requirements NA (± 0.5) NA Spal 23.72 14.0 7.64 -268.4 0.284 Spal 23.72 14.0 7.64 -268.4 0.271 65.77 Task 13.9 7.32 -260.4 0.271 65.77 Task 13.9 7.20 -288.1 0.263 36.66 $	Seattle, WA 98121TaskNavalOrder: NY4255 21 F4076Naval10Well Casing Diameter (in): 3.547 22/1520Water Column Height (ft): 3.547 22/669Well Casing Volume" (liters/ft):0.622Well Volume = Water Column Height x Well Casing VolumeayekWell Volume = Water Column Height x Well Casing VolumeSwzeblockSpec.Turbidity DOwell Volume(mV)(mS/cm)well Casing Volume(mV)(mg/L)well Casing Volume(mV)(mg/L)Swzeblock(# 10%)or <10)			

					EA EI	Techr 2200 6t	ring, Sc tology, h Ave, Suite le, WA 9812	707	and	WELL DEVELOPMENT FORM
Contract Number:	N44255-20-	D-100010	Tas. Ord	k er: <u>N4475</u> 5	521F407	🖉 In	Naval stallation:	Luppas	-	Site Name: 0.12
Start Date End Date Logg I Developn	Vell ID: <u>2</u> 2/Time: <u>1</u> 2/Time: <u>1</u> 2/Ti	/ 141 / 13 Zawgu	ist		Well	Water Col Casing Vo Well	ng Diameter lumn Height blume ¹⁷ (liters Volume (lite bolumn Heig	(ft): 12 i	29 1 1	Initial Total Well Depth (ft btoc): 19.08 Final Total Well Depth (ft btoc): 19.8(Initial Depth to Water (ft btoc): 9.82 Final Depth to Water (ft btoc): 8.82 Total Volume Removed (liters): 14.5 34 Circle Stabilization 2 Hours One: Criteria Met Elapsed Stabilization 2 Hours Circle Stabilization 2 H
Time	Purge Rate (liters/min)	Total Purge (liters)	Depth to Water (ft btoc)	Temp. (°C)	pH	ORP (mV)	Spec. Cond. (mS/em)	Turbidity (NTU)	DO (mg/L)	Comments
15.05	Stabiliz		uirements	NA	(± 0.5)	NA	(± 10%)	(± 10%) or <10)	NA	
1505	,5	1050	18.01	14.8	6.69	27.0	.347	109	8,38	
1314	.5	12.5	17.41	14.5	1020	32.9 23.1	.343	28 17,8	8.75 9.00	
										WLII tag BNM 413
tes: 12 Com	mon well casing ve	olumes includ	e: 2" diamete	$er \rightarrow 0.6$ liters	/foot 4"	diameter →	2.5 liters/foot	6" diameter	→ 5.6 liters/fo	ot 8^{**} diameter $\rightarrow 9.9$ liters/foot
corded by:			Date:	(Spe						

			B		EA E	2200 6 ¹	ring, So nology, h Ave, Suite le, WA 9812	707	ind	WELL DEVELOPMENT FORM			
Contract Number:	N44256-21	0-D-600	Tas Ord	k ler: <u>N44</u> 25	541741	570 In	Naval stallation:	Site Name: WZ					
Well ID: 2.MW - 12 Start Date/Time: 74/22 / 1330 End Date/Time: 74/22 / 1420 Logged By: D2 a mgm154 Driller: Act Development Method: Bailer, Brush Pump, Other: Surg duck Remarks:					Well	Water Col Casing Vo Well	ng Diameter lumn Height lume ¹⁷ (liter Volume (lit lolumn Heig	(ft): 13 , s/ft): 1	Initial Total Well Depth (ft btoc): 19.12 Final Total Well Depth (ft btoc): 20.02 Initial Depth to Water (ft btoc): 5.78 Final Depth to Water (ft btoc): 9.19 e Total Volume Removed (liters): 525 Circle Stabilization 2 Hours One: Criteria Met Etapsed X Well Volume Removed and Turbidity <10 NTU				
Time	Purge Rate (liters/min)	Total Purge (liters)	Depth to Water (ft btoc)	Temp. (°C)	рН	ORP (mV)	Spec. Cond. (mS/cm)	Turbidity (NTU) (± 10%	DO (mg/L)	Comments			
11.0	Stabili		quirements		(± 0.5)	NA	(±10%)	$(\pm 10\%)$ or <10)	NA				
400	ZSPM	17 gul	11,72	15.6	Colde	-112	-537	62	5.99				
1406	2gpm	28 sul	14.39	15,7	644	- 80,2	,529	56.50	6.30				
1915	25pm	40	13.94	5.8	614	- 67,6	0514	31.8	6.66				
1418	Zgom	52	17.71	15.5	648	-59.1	.50%	15.65	6.92				
										well tas BNM 1/12			
							_						
			and the second sec	Section 1.			S 201 1 1 1	A second like					
otes: ^U Com	mon well casing v	olumes includ	le: 2" diamete	$er \rightarrow 0.6$ liters	/foot 4"	diameter →	2.5 liters/foot	6" diameter	→ 5.6 liters/fo	ot 8" diameter \rightarrow 9.9 liters/foot			
	mon well casing v			er → 0.6 liters			2.5 liters/foot		→ 5.6 liters/fo	ot 8" diameter → 9.9 liters/foot Meter Model:			

Well	Well Casin Water Co. Casing Vo	Naval astallation: ng Diameter lumn Height	(in):	t	Site Name: 042			
Well	Water Co Casing Vo							
		olume ¹⁷ (liters Volume (lite Column Heig	ers): 7,7	Initial Total Well Depth (ft btoc): $9,19$ Final Total Well Depth (ft btoc): $19,79$ Initial Depth to Water (ft btoc): $6,28$ Final Depth to Water (ft btoc): $10,91$ e Total Volume Removed (liters): $36g_{2}l_{2}(\sim)/36$ Circle Stabilization 2 Hours One: Criteria Met 2 Hours Circle Stabilization 2 Hours Circle Net 2				
pH	ORP (mV)	Spec. Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Comments			
(±0.5)	NA	(+10%)	$(\pm 10\%)$	NA				
(= 0.2)	LUCK	(± 10 /0)	01 ~10)	INA				
6,47	-47.9	0.976	98,60	6.25	Well tag BNM 614			
6.50	-36.3	0.880	32.16					
6.52	-27.3	0855	19,25	8,03				
s/foot 4"	diameter →	2.5.19	6" diameter					
	(± 0.5) 6,47 6,50 6,52	pH (mV) (±0.5) NA 6,47 -47,9 6,50 -36,3 6,52 -27,3	ORP (mV) Cond. (mS/cm) (± 0.5) NA (± 10%) 6,47 -47,9 0,676 6,50 -36,3 0,7820 6,52 -27,3 0.855	ORP pH Cond. (mV) Turbidity (mS/cm) (± 0.5) NA (± 10%) (± 10%) (± 0.5) NA (± 10%) or <10)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

-					EA EI	Tech1 2200 6	ring, Sc nology, th Ave, Suite tle, WA 9812	WELL DEVELOPMENT FORM		
Contract Number:	144255-20	-D-600	6 Tas	k er: <u>N44255</u>	521 F407	7 <u>6</u> In	Naval	Keypas	+	Site Name: 042
Start Date End Date Logg	Yell ID: $2MW$ /Time: $7/7/$ /Time: $7/7/$ red By: <u>H</u> . Driller: <u>AE</u> nent Method: rush, Pump, Or	2022/1 2022/ Hayel	1505		Well	Water Co Casing Vo Well	ng Diameter lumn Height blume ¹⁷ (liters Volume (lite Column Heig	(ft): 12.0 /ft): 0, (ers): 7, 2	6212	Initial Total Well Depth (ft btoc): 20.6 Final Total Well Depth (ft btoc): 22.38 Initial Depth to Water (ft btoc): 8.59 Final Depth to Water (ft btoc): 13.28 Total Volume Removed (liters): 18 gal Circle Stabilization 2 Hours One: Criteria Met 2 Hours Circle Stabilization 2 Hours Circle One: Criteria Met 2 Hours Circle One: Circle One: Ci
Time	Purge Rate (liters/min)	Total Purge (liters)	Depth to Water (ft btoc)	Temp. (°C)	рН	ORP (mV)	Spec. Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Comments
	Stabil	GLL ization Re	quirements	NA	(±0.5)	NA	(± 10%)	(± 10%) or <10)	NA	
		1	I							Well Tag BNM 617
1428		purge								Victi ider DNITOT
1444	0. Soul	Sgal	19,92	22,4	7.00	-5513	0,664	135.27	8,79	0
1444	0.5gl	8 gal	19.95	21,1	6.85	-70,9	0.703	220,40	10.01	large clump of stuck soud/mud noved throw
1444	0. Soul	Sgal	19.95	22,4 21,1 20,4	6.85			220,40		lazeclump of stuck soud/mud moved throw tubing
1444	0.5gl	8 gal	19.95	21,1	6.85	-70,9	0.703	220,40	10.01	large clump of stuck soud/mud noved throws
1444	0.5gl	8 gal	19.95	21,1	6.85	-70,9	0.703	220,40	10.01	lazeclump of stuck sand/mud moved throng tub my
1444	O.Sgal O.Sgal	8 gal	19.95	21,1	6.85	-70,9	0.703	220,40	10.01	lazeclump of stuck sand/mud moved throng
1444	O.Sgal O.Sgal	8 gal	19.95	21,1	6.85	-70,9	0.703	220,40	10.01	lazeclump of stuck sand/mud moved throng
1444 1450 1505	O.Sgal O.Sgal	Sgel Ilgal 13gel	19,99	21,1	6.85	-70,9 -72.7	0.703	220,40	10.01	lage clup of stuck said/mud moved throng tub My Ton of sand pulled Scan well

F.

					EA EI	Tech1 2200 6	ring, Sc 10logy, 1 th Ave, Suite le, WA 9812	[nc. 707	nd	WELL DEVELOPMENT FORM			
Contract Number:	144255-2	20-D-60	Tasl	k er: <u>N4425</u>	5521FL	1076 In	Naval stallation:	Keype	ort	Site Name: 042			
Start Date End Date Logg	Yell ID: $2M$ Time: $7/7/$ Time: $7/7/$ wed By: H_{\star} Driller: AE nent Method: Tush Pump Of	1022/ 1022/ Hajek C	1225		Well	Water Co Casing Vo Well	ng Diameter (lumn Height blume ¹⁷ (liters Volume (lite Column Heig	(in): 2 (ft): 15, 0, 6 (ft): 0, 6 (ft): 9, 2	1 	Initial Total Well Depth (ft btoc): 21,97 Final Total Well Depth (ft btoc): 22,11 Initial Depth to Water (ft btoc): 6.57 Final Depth to Water (ft btoc): 16,66 Total Volume Removed (liters): 17gel Circle Stabilization One: Criteria Met 2 Hours Elapsed 3x Well Volume Removed and Turbidity <10 NT			
Time	Purge Rate (liters/min)	Total Purge (liters)	Depth to Water (ft btoc)	Temp. (°C)	рН	ORP (mV)	Spec. Cond. (mS/cm)	Turbidity (NTU) (± 10%	DO (mg/L)	Comments			
11.45			quirements	NA	(± 0.5)	NA	(± 10%)	or <10)	NA				
1157	Begin	Purpe	20,80	101.1	1.02	1.0	1.1.17	10100	0.00	Well Tag			
1207	gal	14 goe	20,74	14.1	6,83	-61.3	0,467	131.99	8.78				
1225	1	12	20.78	13.4		-43.9	0,441	8.64	9.37				
				1511	101/1			0.01	1.37				
	*												
							-						
					- 9								
	I mon well easing	volumes inclu	de: 2ª diame	ter $\rightarrow 0.6$ liter	s/foot 4	" diameter	+ 2.5 liters/foot	6" diameter	\rightarrow 5.6 liters/fo	AN 12			
Votes: "Con	innon wen casing									of S" diameter - 9.9 liters/foot			
Notes: ¹⁴ Con Recorded by	11 11		Date:	1-1		unineter	Page (/	- J.0 mers/ic	Not 8" diameter \rightarrow 9.9 liters/foot Meter Model: $YSIPRO$			

					EA E	Techr 2200 6	ring, Sc tology, h Ave, Suite le, WA 9812	707	nd	WELL DEVELOPMENT FORM				
Contract Number:	144255-20-	0-6006	Tasi Ord	k er: <u>N4425</u> 5	521F407	<u>6</u> In	Naval stallation:	Keypo	rt	Site Name: 042				
Start Date End Date Logg E Developm	ell ID: $2/$ /Time: $7/7/$ /Time: $7/7/$ ed By: H , H Driller: AE tent Method: ush, Pump Oth	2022/ 2022/ Lajek	,1000 30		Well	Water Col Casing Vo Well		(ft): 15	Initial Total Well Depth (ft btoc): 21,44 Final Total Well Depth (ft btoc): 21,66 Initial Depth to Water (ft btoc): 6.06 Final Depth to Water (ft btoc): 16,88 Total Volume Removed (liters): 25gel,6942 Circle Stabilization One: Criteria Met 2 Hours Elapsed Removed and Turbidity <10 NTUs					
Time	Purge Rate (liters/min)	Total Purge (liters)	Depth to Water (ft btoc)	Temp. (°C)	рН	ORP (mV)	Spec. Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Comments				
	Stabili	zation Re	quirements	NA	(± 0.5)	NA	(± 10%)	(± 10% or <10)	NA					
1026						1				Well Tag BNM				
1041	2.0	1510	20.47	14,3	7.36	-83.9	0.550	1670.35		0				
1109	2.0	2314	20,53		6.99		0,485	555.96		purge rale fell as water depth lowered				
121	2.0	21	20.60	14.2	6.97		0.466	209.52	10.87	n4 ·				
130	2.0	25	20.65	14,6	6,93	-49,2	0.451	102,32	10.67					
100	210	65	20.105	1-1,0	0,97	-59,2	0,995	15,78	10,37					
-				2.00	-									
		1.2.1												
	-					-								
						F.								
otes: ^w Com ecorded by eviewed by	0	olumes inclu eK		ter $\rightarrow 0.6$ liters 7/7/201		" diameter →	2.5 liters/foot Pagel	6" diameter	\rightarrow 5.6 liters/foc	Noter Model: $Y = PRO$				

				1	EA Er	Techn 2200 6 th	cing, Sc ology, 1 Ave, Suite e, WA 9812	707	nd	WELL DEVELOPMENT FORM			
Contract Number:	NYUZS	5-20-D	Tasl	k erNUU2	5521F	4574pIn:	Naval stallation:	Lupa-	1	Site Name: 0UZ			
W Start Date End Date Logg I Developn	Vell ID: 2 MM Time: 7 (02 Time: 7 (02 Tim	1-17 2/ 1017 1115 angu	15	Wel	Well	Well Casin Water Col Casing Vo Well	g Diameter umn Height lume ^{l/} (liters Volume (lite	(in): $2^{(ff)}$: $17.4^{(ff)}$: $0^{(ff)}$: $0^{(ff)}$: $0^{(ff)}$: $0^{(ff)}$: $10.4^{(ff)}$	Initial Total Well Depth (ft btoc): <u>19.85</u> Final Total Well Depth (ft btoc): <u>19.9</u> Initial Depth to Water (ft btoc): <u>2.41</u> Final Depth to Water (ft btoc): <u>3.26</u> Total Volume Removed (fiters): <u>66.9al</u> Circle Stabilization <u>2 Hours</u> One: Criteria Met <u>2 Hours</u> Elapsed <u>3x Well Volume</u> Removed and Turbidity <10 NTUs				
Time	Purge	Total Purge (liters)	Depth to Water (ft btoc)	Temp. (°C)	pH	ORP (mV)	Spec. Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Comments			
	Stabili	~	quirements	NA	(± 0.5)	NA	(±10%)	(± 10%) or <10)	NA				
10415	3	20	9.38	13.8	710	-274	.380	404	2.54				
USB	3	39	9.52	14.1	4.98	- 325	1354	75.	2.76				
108	2	57	9.73	13,5	7.02	- 294	.337	24	3.30				
111	2	44	9077	13.0	497	274	,33Z	_ 20.	3.37				
	-												
							-						
								-					
lotes: "Com	mon well casing	olumes inclu	de: 2" diame	ter $\rightarrow 0.6$ liters	/foot 4	° diameter →	2.5 liters/foot	6" diameter	→ 5.6 liters/for	ot 8" diameter \rightarrow 9.9 liters/foot			
ecorded by							Page 1	of)					
of			Date.				rage	ot		Meter Model:			

					EA Ei	2200 6th	ing, Sc ology, Ave, Suite e, WA 9812	707	WELL DEVELOPMENT FORM	
Contract Number:	N44255	-20-D-6	Task	c er: <u>184425</u> 5	521F40	<u>076</u> In:	Naval stallation:	Keypor	it	Site Name: 0U2
Start Date End Date Logg	nent Method: rush, Pump, Ot	/ 1130 1321 Majurist EC	Le		Well	Water Col Casing Vo Well	umn Height lume ^{1/} (liters Volume (lite	(in): 2^{-1} (ft): 2^{-1} (ft): 0^{-1} (ft): 0^{-1} (ft): 0^{-1} (ft): 0^{-1} (ft): 7^{-1} (ft):	43	Initial Total Well Depth (ft btoc): 17.05 Final Total Well Depth (ft btoc): 18.02 Initial Depth to Water (ft btoc): 5.22 Final Depth to Water (ft btoc): 2.96 Total Volume Removed (liters): 5.34 Circele Stabilization 2 Hours One: Criteria Met Elapsed 3x Well Volume Removed and Turbidity <10 NTU
Time	Purge Rate (liters/min)	Total Purge (liters)	Depth to Water (ft btoc)	Temp. (°C)	pH	ORP (mV)	Spec. Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Comments
	Stabili	zation Rec	uirements	NA	(± 0.5)	NA	(± 10%)	(± 10%) or <10)	NA	
1228	15(135N)		15.412	18.9	7.22	-29.4	.322	343	8.25	
320	.5	20 gal	15.53	17.8	7.21	-31,7	.300	400	8.74	
324		25	15.54	17.9	7.20 7.13	-36.0	.263	391. 18	8.47	
otes: ¹⁷ Com corded by viewed by			e: 2" diamete Date: Date:	$r \rightarrow 0.6$ liters	/foot 4*	' diameter → '	1	6" diameter	→ 5.6 liters/fo	bot 8" diameter → 9.9 liters/foot Meter Model: Filename: Well Devel Form-JPHC NEX Jul-20

					EAE	Tech1 2200 6	ring, Sc nology, th Ave, Suite tle, WA 9812	Inc. 707	nd	WELL DEVELOPMENT FORM
Contract Number:	N44255-2	20-D-66	Tasi	k er: <u>NYYZS</u>	5521 FC	1076 II	Naval stallation:	Keypol	4	Site Name: 042
Start Date End Date Logg	Vell ID: $2N$ Time: 7/7/2 Time: 7/7/2 Time	orz/1 orz/1 lesek EC			Well	Water Co Casing Vo Well	ng Diameter lumn Height blume ^{1/} (liters Volume (lit Column Heig	(ft): <u> 2</u> , s/ft): <u>0</u> , (ers): <u>7</u> , 7	34	Initial Total Well Depth (ft btoc): 21,26 Final Total Well Depth (ft btoc): 21,44 Initial Depth to Water (ft btoc): 8,37 Final Depth to Water (ft btoc): 19,11 Total Volume Removed (liters): 19,11 Circle Stabilization 2 Hours One: Criteria Met Elapsed 3x Well Volum Removed and Turbidity <10 N
Time	Purge Rate (liters/min)	Total Purge (liters)	Depth to Water (ft btoc)	Temp. (°C)	рН	ORP (mV)	Spec. Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Comments
10.00		zation Red	quirements	NA	(± 0.5)	NA	(±10%)	(± 10% or <10)	NA	HH 7/P/7072
1255	Begin P.		2020	16,=HH7		1.		1.00		Well Tag BIM 614
1340	0.5	9 gal 13 gal	20,39 20,42	16.7	6.73	12.2	0,608	870,58		
1350	0,5	17 gal	20,45	17.6	6.69	-12,2	0,594	229.19	9.73	water very murky, slow 3 lowed as
1355	0,5	19 gul	20,45	18.9	6,66	-23,5	0,608	63.21	9,73	well an out of water
										•
	mon well casing v <u>H. Haje</u>			$er \rightarrow 0.6$ liters		" diameter →	2.5 liters/foot Page	t	→ 5.6 liters/foo	ot 8" diameter → 9.9 liters/foot Meter Model: YSI_PR

)

This page intentionally left blank

Appendix B Data Quality Assessment Report This page intentionally left blank

APPENDIX B. DATA QUALITY ASSESSMENT REPORT

The purpose of this Data Quality Assessment Report, presented as an appendix to the Soil and Groundwater Investigation Report, Operable Unit 2 Area 2, Van Meter Road Spill/Drum Storage Site (herein referred to as the Soil and Groundwater Investigation Report, is to determine whether the data set collected in Summer 2022 at Naval Base Kitsap Keyport, Washington, meets the data quality objectives outlined in the Tier I Uniform Federal Policy Sampling and Analysis Plan (SAP) (Department of the Navy [DON] 2022).¹

A quality assurance (QA)/quality control (QC) program was implemented during the field investigation to ensure the generation of data of adequate and defensible quality. The specifications for the QA/QC program are outlined in the SAP (DON 2022).¹ The QA/QC program was designed to minimize error, provide early identification and correction of potential problems, control the data acquisition process, and evaluate the performance of the sampling program. The QA/QC procedures were followed in the field as well as at the offsite laboratories.

Field Change Request (FCR) number 21F4135, which is presented in Appendix A to the Soil and Groundwater Investigation Report, was issued to address the following changes from the SAP (DON 2022)¹:

- Drilling, collecting soil samples, and installing monitoring wells at a maximum depth of 40 feet below ground surface (bgs) at SB-9 (well 2MW-9) and SB-10 (well 2MW-10), 25 feet bgs for SB-12, and 20 feet bgs for SB-17 (well 2MW-17), SB-18 (well 2MW-18), and SB-19 (well 2MW-19)
- No drilling, well installing, or sample collecting at SB-20.
- Collecting soil samples from only three depths at SB-17 and SB-18.

Field data (including measurements of water quality parameters in water) were collected using standard operating procedures and manufacturer-recommended procedures to provide reliable results.

The data evaluation in this report focuses on environmental samples collected for offsite laboratory analysis.

¹ Tier I Sampling and Analysis Plan for Soil and Groundwater Investigation at Operable Unit 2, Area 2, Van Meter Road Spill/Drum Storage Site at Naval Base Kitsap Keyport, Keyport, Washington. Prepared by EA Engineering, Science, and Technology, Inc., PBC. Final. April 2022.

B.1 TEST METHODS AND LABORATORY QUALIFICATIONS

Soil and associated QC samples were collected from 27 June 2022 through 1 July 2022 and analyzed by Eurofins Lancaster Laboratories Environmental, LLC (ELLE) in Lancaster, Pennsylvania for chlorinated volatile organic compounds (cVOCs) by EPA SW-846 Method 8260D. Groundwater and associated QC samples were collected on 8 July 2022 and 11 July 2022 and analyzed for cVOCs by EPA SW-846 Method 8260D. The samples collected are presented in Table B-1.

The laboratories hold current accreditation for the scope of testing through the Department of Defense and Washington Department of Ecology Environmental Laboratory Accreditation Programs.

B.2 FIELD QUALITY CONTROL SAMPLES

In accordance with the SAP (DON 2022),¹ applicable field QC samples include field duplicates, field blanks, and trip blanks. Equipment rinsate blanks are also required in association with groundwater sampling if non-dedicated sampling equipment (e.g., a submersible pump) is used for sample collection. However, a peristaltic pump and dedicated tubing were used for the Summer 2022 event. Thus, an equipment rinsate blank was not required or collected.

A description and evaluation of each field QC sample type is presented in the following sections. The required field QC samples were collected except as indicated. Additional volumes for the preparation of matrix spike (MS)/matrix spike duplicate (MSD) samples were also collected and are discussed in Section B.3.

B.2.1 Field Duplicates

A field duplicate set consists of two samples (an original and duplicate) of the same matrix collected at the same time and location, to the extent possible, using the same sampling technique. The purpose is to evaluate the precision of the overall sample collection and analysis process by comparing the results for the two samples, including the calculation of the relative percent differences (RPDs) for detected analytes. For the Summer 2022 sampling event, the following field duplicate sets were collected:

- Primary soil sample Area-2-22-SB-9-10 and field duplicate sample Area-2-22-SB-9-1-10
- Primary soil sample Area-2-22-SB-11-5 and field duplicate sample Area-2-22-SB-11-1-5
- Primary soil sample Area-2-22-SB-12-20 and field duplicate sample Area-2-22-SB-12-1-20

- Primary soil sample Area-2-22-SB-15-0.5 and field duplicate sample Area-2-22-SB-15-1-0.5
- Primary soil sample Area-2-22-SB-17-10 and field duplicate sample Area-2-22-SB-17-1-10
- Primary groundwater sample AREA2-22-2MW-9 and field duplicate sample AREA2-22-2MW-9B
- Primary groundwater sample AREA2-22-2MW-18 and field duplicate sample AREA2-22-2MW-18B

Soil field duplicate sets were collected at a frequency of 9.8 percent, which rounds up to meet the minimum frequency of 10 percent specified in the SAP (DON 2022).¹ However, it is noted that the non-detected results for three soil field duplicate sets were rejected (qualified as "R") as discussed in Section B.4. Relatively few detections were reported for the soil samples for this project; thus, the lower than anticipated quantity of unrejected soil field duplicate results is not a significant concern.

Groundwater field duplicate sets were collected at a frequency of 18.1 percent, which meets the minimum frequency of 10 percent specified in the SAP (DON 2022).¹

The results for the field duplicate set are summarized in Table B-2 for soil and Table B-3 for groundwater. When target analytes were detected at concentrations greater than the limits of quantitation (LOQs), the RPDs for the results of the field duplicate set are within QC limits. For the field duplicate set consisting of groundwater samples AREA2-22-2MW-18 and AREA2-22-2MW-18B, trichloroethene was detected slightly above the LOQ in sample AREA2-22-2MW-18B but was not detected in AREA2-22-2MW-18. The results were qualified as estimated ("J" and "UJ", respectively). The detected result is below the project action limit and remediation goal. The variance in results is attributed to results near the LOQ (more specifically, within a factor of two of the LOQ), where higher RPDs are common.

B.2.2 Field Blanks

Field blanks are samples of analyte-free water opened at the site and exposed to ambient conditions, collected each day and associated with samples collected the same day. Five field blank samples (one per day) were collected during the 5-day soil sampling event, which meets the frequency specified in the SAP (DON 2022)¹. However, it is noted that the results for two of these field blanks were rejected (qualified as "R") as discussed in Section B.4. Field blank samples were also specified in the SAP (DON 2022)¹ for the groundwater sampling event; however, none were collected due to an oversight.

The field blank results are summarized in Table B-4. No target analytes were detected in the three reportable field blanks; thus, no associated sample results were qualified on the basis of field blank results. Although field blanks were not collected on for the days of groundwater sampling and results for two field blanks associated with soil sampling collection were rejected (qualified as "R"), the results of the three field blanks appear to be representative of site conditions in the timeframe that soil and groundwater sampling occurred. Therefore, reported detections for soil and groundwater samples are considered representative of the locations sampled rather than artifacts of ambient conditions.

B.2.3 Trip Blanks

Trip blanks are used to evaluate the potential for sample cross-contamination or introduction of ambient contamination with volatile contaminants during sample handling, transportation, or storage onsite or at the laboratory. Seven trip blanks were analyzed with project samples for cVOCs. The trip blank results are summarized in Tables B-5 (associated with soil samples) and B-6 (associated with groundwater samples). As discussed in Section B.4, the results for two trip blanks and associated samples were rejected (qualified as "R"). Review of the validated results for the remaining trip blanks indicates the target analytes were not detected in the trip blanks. No qualification of sample results was necessary based on trip blank results.

B.3 LABORATORY QUALITY ASSURANCE/QUALITY CONTROL

The chemical analyses were generally performed in accordance with the SAP (DON 2022)¹ by ELLE and Eurofins Seattle.

MS/MSD sample pairs were prepared by the analytical laboratory using samples designated on the chain-of-custody records at an appropriate frequency and for each preparatory batch. At the laboratory, known concentrations of target analytes were added to the sample material to prepare the MS/MSD samples. The MS/MSD samples were carried through the preparation and analytical procedures in the same manner as the associated field samples. The percent recoveries (%Rs) and RPDs of the spiked analytes in the MS/MSD samples were used to evaluate the effect of the sample matrix on accuracy and precision.

Additional laboratory QC samples (method blanks and laboratory control samples [LCSs]) were prepared alongside samples and each sample and QC sample was spiked with internal standards during sample preparation and analyzed as specified within the SAP (DON 2022).¹ These samples and spikes were used to perform the internal laboratory QC prior to the delivery of data. The laboratory's evaluation of the QC results includes comparison to the internal statistically generated control charts as well as the

project limits presented in the SAP (DON 2022)¹ to allow detections of trends or bias in the generated results.

B.4 DATA VALIDATION AND APPLIED DATA QUALIFIERS

Data validation was performed in accordance with the SAP (DON 2022)¹ by a thirdparty, Laboratory Data Consultants in Carlsbad, California, as described in the data validation reports presented in Attachment B-1. A minimum of 10 percent of sample data were validated at Stage 4 and the remaining data were validated at Stage 2B, as defined in the General Data Validation Guidelines (Department of Defense Environmental Data Quality Workgroup, 2019) and Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS Analysis (Department of Defense Environmental Data Quality Workgroup, 2020).

Associated sample results may be qualified when QC requirements are not achieved to determine the impact to associated sample results. Data were qualified during validation and assessment, as described below.

- The temperatures of two coolers were above 20 degrees Celsius upon arrival at ELLE. Detected results were qualified "J" and non-detected results were rejected (qualified "R") on this basis for the soil samples from four borings (SB-11, SB-12, SB-17, and SB-18) and associated field QC samples. This includes the following samples: Area-2-22-SB-11-0.5, Area-2-22-SB-11-5, Area-2-22-SB-11-15, Area-2-22-SB-11-10, Area-2-22-SB-11-15, Area-2-22-SB-11-20, Area-2-22-SB-12-0.5, Area-2-22-SB-12-5, Area-2-22-SB-12-5, Area-2-22-SB-12-0, Area-2-22-SB-12-20, Area-2-22-SB-13-20, Area-2-22-SB-13-20, Area-2-22-SB-13-20, Area-2-22-SB-13-20, FB-62722, FB-62811, TB-62722, and TB-62822.
- Headspace was observed in the sample containers for three field blanks (FB-62922, FB-63022, and FB-7122). No detections were reported in these field blanks. Non-detected results were qualified "UJ".
- The 14-day holding time specified in the SAP (DON 2022)¹ was exceeded for the following samples: Area-2-22-SB-9-30 (re-analysis), Area-2-22-SB-10-10 (re-analysis), and Area-2-22-SB-11-15 (original analysis). Detected and non-detected results reported from these analyses have been qualified "J" and "UJ," respectively.
- The percent difference (%D) values for a continuing calibration verification was outside control limits in a few instances. The impacted analytes were not detected in any associated sample; the non-detected results were qualified "UJ". This occurred for 1,1-dichloropropene (nine sample results), 1,2,3-trichlorobenene (13 sample results), 1,2,4-trichlorobenene (one sample result),

1,2-dichloropropane (nine sample results), chloroethane (two sample results), and methylene chloride (2 sample results).

- The %R was outside QC limits for one or more surrogate compounds for four samples (Area-2-22-SB-9-30, Area-2-22-SB-10-10, Area-2-22-SB-17-10, and Area-2-22-SB-17-20). The "J" qualifier was applied to detected results reported from an analysis when the %R was outside the control limit. The "UJ" qualifier was applied to non-detected results reported from an analysis when the %R was below the control limit.
- The area count was outside QC limits for one or more internal standards for two samples (Area-2-22-SB-9-20 and Area-2-22-SB-10-10). The "UJ" qualifier was applied to non-detected results associated with the impacted internal standard.
- Groundwater samples AREA2-22-2MW-18 and AREA2-22-2MW-18B were submitted as a primary and field duplicate pair. Trichloroethene was detected slightly above the LOQ in sample AREA2-22-2MW-18B but was not detected in AREA2-22-2MW-18. The results were qualified as "J" and "UJ", respectively.
- Sample Area-2-22-SB-10-10 was used to prepare MS/MSD samples for cVOCs. The %Rs for 26 analytes were below the lower QC limit in the MS and/or MSD; these %Rs ranged from 14 percent to 74 percent. The non-detected results for these analytes in the primary sample have been qualified "UJ" on this basis.
- Sample Area-2-22-SB-13-5 was used to prepare MS/MSD samples for cVOCs. The %Rs for two analytes (1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene) were below the lower control limit in the MS and MSD; these %Rs ranged from 54 percent to 65 percent. The non-detected results for these analytes in the primary sample have been qualified "UJ" on this basis.
- Sample AREA2-22-2MW-14 was used to prepare MS/MSD samples for cVOCs. The %R for one analyte (1,1-dichloroethene) was slightly above the upper control limit in the MS; the %R was 132 percent. Additionally, the RPD for one analyte (vinyl chloride) was slightly above the upper control limit; the RPD was 21 percent. The detected results for these analytes in the primary sample have been qualified "J" on this basis.

In addition, more than one analysis was performed and reported by the laboratory for several samples. In these cases, the data validator selected a "best" result for each target analyte based on professional judgement. The results not selected as the "best" results in these cases are not discussed in the above bullets and are not presented in the Soil and Groundwater Investigation Report.

No other qualifiers were added to the analytical results for project samples during validation or assessment. The qualifiers added to project data during data validation are summarized below.

- The "J" qualifier indicates that the reported result is an estimated value.
- The "R" qualifier indicates that the result is rejected.
- The "U" qualifier indicates that the analyte is not detected; the associated numerical value is the limit of detection or as qualified during data validation.
- The "UJ" qualifier indicates that the analyte is not detected; the associated numerical value is approximate.

Sample results as qualified are presented in the Soil and Groundwater Investigation Report.

B.5 DATA QUALITY INDICATORS

A discussion of data quality indicators for this project in terms of precision, accuracy, representativeness, completeness, comparability, and sensitivity is provided in the following sections.

B.5.1 Precision

Precision is defined as the degree of agreement among repeated measurement of the same parameter. Precision also characterizes the natural variation of the matrix. Precision is evaluated through the use of field duplicate samples and MS/MSD sets to assess the potential bias of field and laboratory conditions on the results. The quantitative indicator of precision is the RPD between the results of field duplicates and the associated primary samples and the MS/MSD pairs.

Field sample duplicate RPDs are within the SAP (DON 2022)¹ QC limits and in general agreement, unless otherwise noted in Section B.2.1 and Section B.4. Two sample results were qualified on the basis of field sample duplicate results. Overall the field duplicate sample results demonstrate that representative samples were adequately collected during field activities and that the laboratories were capable of evaluating the matrix consistently.

MS/MSD RPDs are within the SAP (DON 2022)¹ QC limits, unless otherwise noted in Attachment B-1 or Section B.4. One sample result was qualified on the basis of MS/MSD RPD.

B.5.2 Accuracy

An evaluation of accuracy monitors the agreement of measured results with "true values" established by spiking applicable samples with a known quantity of analyte, surrogate compound, or internal standard. Accuracy is measured by the %R for spiked samples (LCS, MS/MSD), surrogate compounds, and internal standards. LCS and MS/MSD samples were analyzed in accordance with the SAP (DON 2022)¹

specifications. LCS, MS/MSD, surrogate compound, and internal standard %Rs were within acceptable project-specified QC limits, unless otherwise noted in Attachment B-1 or in Section B.4. In most cases, the project goal for accuracy was met.

B.5.3 Representativeness

Representativeness is a qualitative parameter that expresses the degree to which the sample data are characteristic of a population, parameter, or environmental condition. Representativeness is most concerned with the proper design of a sampling system and careful selection of sampling locations. Representative data were obtained through selection of sampling locations, sampling procedure collection, handling of samples, and the use of established field and laboratory procedures as described in the SAP (DON 2022)¹ except as discussed in the first bullet in Section B.4. Non-detected results for several samples were rejected (qualified "R") due to elevated temperatures incurred during sample shipment to the laboratory.

B.5.4 Completeness

Completeness is a measure of the amount of usable data obtained versus the total possible planned data. The evaluation includes a comparison of the number of valid results divided by the possible number of individual results, expressed in a percentage.

The data completeness is defined as the percentage of usable data (usable data divided by the total possible data):

% completeness = <u>100 * number of valid results (i.e., non-R flagged)</u> number of planned results

Completeness for the data set is less than 100 percent due to the following:

- Borehole SB-20 was not drilled and a well at this location was not installed; therefore, no soil or groundwater samples were collected at this location. This location was considered a "contingency" location, with samples to be collected only if a boring and well were deemed necessary in the event another location was needed based on field observations. The samples at this location are not considered "planned" samples and are not used in the calculation of percent completeness.
- Soil samples were collected from three depths at SB-17 and SB-18, instead of five depths as planned.
- Presumably due to the above bullets, five soil field duplicates were collected instead of six planned soil field duplicates.

- Two field blanks associated with groundwater sampling were planned but not collected.
- As discussed in the first bullet in Section B.4, non-detected results for several samples were rejected (qualified "R") due to elevated temperatures incurred during sample shipment to the laboratory. This includes non-detected results for soil samples from four borings, SB-11 (five samples and one field duplicate), SB-12 (five samples and one field duplicate), SB-12 (five samples and one field duplicate), SB-17 (three samples and one field duplicate), and SB-18 (three samples), two field blanks, and two trip blanks. (Note: a total of 5 detections were reported for these samples and qualified as "J". The remaining 754 non-detected results were rejected (qualified "R").

Excluding field QC samples, there was a total of 2,178 planned results for 33 cVOC target analytes for samples to be collected from 66 samples from 11 wells and 55 soil borehole locations and depths. As induced from the bullets above, 132 data points were not collected, and 524 results were rejected (qualified "R). Thus, there were 1,522 valid results. The % completeness for this data set is 70%, which is significantly below the 90% minimal acceptance criteria for completeness specified in the SAP (DON 2022).¹

B.5.5 Comparability

Comparability is a qualitative parameter expressing the confidence with which one dataset can be compared with another. Sample results should be comparable with other measurements for similar samples and sample conditions. Comparability for the project was achieved by using standard protocols for sampling and analysis.

B.5.6 Sensitivity

Sensitivity was evaluated by comparing the project action levels (PALs) with the limits of detection (LODs) for each sample result. Non-detected sample results with LODs above PALs are indicated in grey highlight in Tables 6 and 7 of the Soil and Groundwater Investigation Report. As presented in the SAP (DON 2022)¹ in Worksheet #15, it was known that several LODs would be above the PALs. Other instances of LODs above PALs are as follows:

- Soil sample from SB-9 at 30 feet (ft) below ground surface (bgs), with results selected from the methanol dilution because the original results (from an aliquot preserved with sodium bisulfate) were associated with internal standard areas outside QC limits
- Soil sample from SB-19 at 10 ft bgs, with results reported from a methanol dilution; the laboratory indicated they originally performed analysis from an aliquot preserved with sodium bisulfate but didn't report results due to analytical issues with non-target analytes or interferences.

• Groundwater sample from well 2MW12, which was analyzed at a 10-fold dilution using the laboratory's low-level implementation of Method 8260D due to the sample matrix, as narrated by the laboratory.

B.6 OVERALL ASSESSMENT OF DATA

As indicated in FCR number 21F4135, which is presented in Appendix A to the Soil and Groundwater Investigation Report, and Section B.5.4, several planned samples and QC samples were not collected. Additionally, 754 results were rejected during data validation and assessment and should not be used for any purpose. The remaining results are acceptable for use as qualified.

Tables

This page intentionally left blank

Table B-1. Sample Summary

		Collected			Depth (ft		Laboratory	
Location ID	Field Sample ID	Date	QC Type	Primary Sample ID	bgs)	Matrix	Sample ID	Laboratory
SB-9	Area-2-22-SB-9-0.5	29-Jun-2022	N		0.5	Soil	410-89884-7	ELLE
SB-9	Area-2-22-SB-9-10	29-Jun-2022	Ν		10	Soil	410-89884-8	ELLE
SB-9	Area-2-22-SB-9-1-10	29-Jun-2022	FD	Area-2-22-SB-9-10	10	Soil	410-89884-9	ELLE
SB-9	Area-2-22-SB-9-20	29-Jun-2022	Ν		20	Soil	410-89884-10	ELLE
SB-9	Area-2-22-SB-9-30	29-Jun-2022	Ν		30	Soil	410-89884-11	ELLE
SB-9	Area-2-22-SB-9-40	29-Jun-2022	Ν		40	Soil	410-89884-12	ELLE
SB-10	Area-2-22-SB-10-0.5	29-Jun-2022	Ν		0.5	Soil	410-89884-14	ELLE
SB-10	Area-2-22-SB-10-10	29-Jun-2022	Ν		10	Soil	410-89884-15	ELLE
SB-10	Area-2-22-SB-10-20	29-Jun-2022	Ν		20	Soil	410-89884-16	ELLE
SB-10	Area-2-22-SB-10-30	29-Jun-2022	Ν		30	Soil	410-89884-17	ELLE
SB-10	Area-2-22-SB-10-40	29-Jun-2022	Ν		40	Soil	410-89884-18	ELLE
SB-11	Area-2-22-SB-11-0.5	28-Jun-2022	Ν		0.5	Soil	410-90316-16	ELLE
SB-11	Area-2-22-SB-11-5	28-Jun-2022	Ν		5	Soil	410-90316-17	ELLE
SB-11	Area-2-22-SB-11-1-5	28-Jun-2022	FD	Area-2-22-SB-11-5	5	Soil	410-90316-18	ELLE
SB-11	Area-2-22-SB-11-10	28-Jun-2022	Ν		10	Soil	410-90316-19	ELLE
SB-11	Area-2-22-SB-11-15	28-Jun-2022	Ν		15	Soil	410-90316-20	ELLE
SB-11	Area-2-22-SB-11-20	28-Jun-2022	Ν		20	Soil	410-90316-21	ELLE
SB-12	Area-2-22-SB-12-0.5	28-Jun-2022	Ν		0.5	Soil	410-90316-11	ELLE
SB-12	Area-2-22-SB-12-5	28-Jun-2022	N		5	Soil	410-90316-12	ELLE
SB-12	Area-2-22-SB-12-10	28-Jun-2022	N		10	Soil	410-90316-13	ELLE
SB-12	Area-2-22-SB-12-20	28-Jun-2022	Ν		20	Soil	410-90316-14	ELLE
SB-12	Area-2-22-SB-12-1-20	28-Jun-2022	FD	Area-2-22-SB-12-20	20	Soil	410-90316-15	ELLE
SB-12	Area-2-22-SB-12-25	28-Jun-2022	Ν		25	Soil	410-90316-22	ELLE
SB-13	Area-2-22-SB-13-0.5	28-Jun-2022	Ν		0.5	Soil	410-89884-1	ELLE
SB-13	Area-2-22-SB-13-5	28-Jun-2022	Ν		5	Soil	410-89884-2	ELLE
SB-13	Area-2-22-SB-13-10	28-Jun-2022	Ν		10	Soil	410-89884-3	ELLE
SB-13	Area-2-22-SB-13-15	28-Jun-2022	Ν		15	Soil	410-89884-4	ELLE
SB-13	Area-2-22-SB-13-20	28-Jun-2022	Ν		20	Soil	410-89884-5	ELLE
SB-14	Area-2-22-SB-14-0.5	30-Jun-2022	Ν		0.5	Soil	410-89884-19	ELLE
SB-14	Area-2-22-SB-14-5	30-Jun-2022	Ν		5	Soil	410-89884-20	ELLE
SB-14	Area-2-22-SB-14-10	30-Jun-2022	Ν		10	Soil	410-89884-21	ELLE
SB-14	Area-2-22-SB-14-15	30-Jun-2022	Ν		15	Soil	410-89884-22	ELLE
SB-14	Area-2-22-SB-14-20	30-Jun-2022	Ν		20	Soil	410-89884-23	ELLE
SB-15	Area-2-22-SB-15-0.5	1-Jul-2022	Ν		0.5	Soil	410-89884-31	ELLE
SB-15	Area-2-22-SB-15-1-0.5	1-Jul-2022	FD	Area-2-22-SB-15-0.5	0.5	Soil	410-89884-32	ELLE

Table B-1. Sample Summary

		Collected			Depth (ft		Laboratory	
Location ID	Field Sample ID	Date	QC Type	Primary Sample ID	bgs)	Matrix	Sample ID	Laboratory
SB-15	Area-2-22-SB-15-5	1-Jul-2022	N		5	Soil	410-89884-33	ELLE
SB-15	Area-2-22-SB-15-10	1-Jul-2022	Ν		10	Soil	410-89884-34	ELLE
SB-15	Area-2-22-SB-15-15	1-Jul-2022	Ν		15	Soil	410-89884-35	ELLE
SB-15	Area-2-22-SB-15-20	1-Jul-2022	Ν		20	Soil	410-89884-36	ELLE
SB-16	Area-2-22-SB-16-0.5	1-Jul-2022	Ν		0.5	Soil	410-89884-38	ELLE
SB-16	Area-2-22-SB-16-5	1-Jul-2022	Ν		5	Soil	410-89884-39	ELLE
SB-16	Area-2-22-SB-16-10	1-Jul-2022	Ν		10	Soil	410-89884-40	ELLE
SB-16	Area-2-22-SB-16-15	1-Jul-2022	Ν		15	Soil	410-89884-41	ELLE
SB-16	Area-2-22-SB-16-20	1-Jul-2022	Ν		20	Soil	410-89884-42	ELLE
SB-17	Area-2-22-SB-17-0.5	27-Jun-2022	Ν		0.5	Soil	410-90316-1	ELLE
SB-17	Area-2-22-SB-17-10	27-Jun-2022	N		10	Soil	410-90316-2	ELLE
SB-17	Area-2-22-SB-17-1-10	27-Jun-2022	FD	Area-2-22-SB-17-10	10	Soil	410-90316-3	ELLE
SB-17	Area-2-22-SB-17-20	27-Jun-2022	Ν		20	Soil	410-90316-4	ELLE
SB-18	Area-2-22-SB-18-0.5	28-Jun-2022	Ν		0.5	Soil	410-90316-5	ELLE
SB-18	Area-2-22-SB-18-10	28-Jun-2022	Ν		10	Soil	410-90316-6	ELLE
SB-18	Area-2-22-SB-18-20	28-Jun-2022	Ν		20	Soil	410-90316-7	ELLE
SB-19	Area-2-22-SB-19-0.5	1-Jul-2022	Ν		0.5	Soil	410-89884-26	ELLE
SB-19	Area-2-22-SB-19-5	1-Jul-2022	Ν		5	Soil	410-89884-27	ELLE
SB-19	Area-2-22-SB-19-10	1-Jul-2022	Ν		10	Soil	410-89884-28	ELLE
SB-19	Area-2-22-SB-19-15	1-Jul-2022	Ν		15	Soil	410-89884-29	ELLE
SB-19	Area-2-22-SB-19-20	1-Jul-2022	Ν		20	Soil	410-89884-30	ELLE
	FB-62722	27-Jun-2022	FB			Field QC	410-90316-8	ELLE
	FB-62822	28-Jun-2022	FB			Field QC	410-90316-9	ELLE
	FB-62922	29-Jun-2022	FB			Field QC	410-89884-44	ELLE
	FB-63022	30-Jun-2022	FB			Field QC	410-89884-24	ELLE
	FB-7122	1-Jul-2022	FB			Field QC	410-89884-37	ELLE
	TB-62722	27-Jun-2022	ТВ			Field QC	410-90316-10	ELLE
	TB-62822	28-Jun-2022	ТВ			Field QC	410-90316-23	ELLE
	TB-62822-1	28-Jun-2022	ТВ			Field QC	410-89884-6	ELLE
	TB-62922	29-Jun-2022	ТВ			Field QC	410-89884-13	ELLE
	TB-63022	30-Jun-2022	ТВ			Field QC	410-89884-25	ELLE
	TB-7122	1-Jul-2022	ТВ			Field QC	410-89884-43	ELLE

Location ID	Field Sample ID	Collected Date	QC Type	Primary Sample ID	Depth (ft bgs)	Matrix	Laboratory Sample ID	Laboratory
2MW-9	AREA2-22-2MW-9	11-Jul-2022	N			Groundwater	580-115786-5	Eurofins Seattle
2MW-9	AREA2-22-2MW-9B	11-Jul-2022	FD	AREA2-22-2MW-9		Groundwater	580-115786-6	Eurofins Seattle
2MW-10	AREA2-22-2MW-10	11-Jul-2022	N			Groundwater	580-115786-4	Eurofins Seattle
2MW-11	AREA2-22-2MW-11	8-Jul-2022	Ν			Groundwater	580-115786-7	Eurofins Seattle
2MW-12	AREA2-22-2MW-12	8-Jul-2022	N			Groundwater	580-115786-13	Eurofins Seattle
2MW-13	AREA2-22-2MW-13	11-Jul-2022	N			Groundwater	580-115786-8	Eurofins Seattle
2MW-14	AREA2-22-2MW-14	11-Jul-2022	N			Groundwater	580-115786-2	Eurofins Seattle
2MW-15	AREA2-22-2MW-15	11-Jul-2022	Ν			Groundwater	580-115786-3	Eurofins Seattle
2MW-16	AREA2-22-2MW-16	11-Jul-2022	Ν			Groundwater	580-115786-10	Eurofins Seattle
2MW-17	AREA2-22-2MW-17	8-Jul-2022	Ν			Groundwater	580-115786-11	Eurofins Seattle
2MW-18	AREA2-22-2MW-18	8-Jul-2022	Ν			Groundwater	580-115786-9	Eurofins Seattle
2MW-18	AREA2-22-2MW-18B	8-Jul-2022	FD	AREA2-22-2MW-18		Groundwater	580-115786-12	Eurofins Seattle
2MW-19	AREA2-22-2MW-19	11-Jul-2022	N			Groundwater	580-115786-1	Eurofins Seattle
	TB-070822	8-Jul-2022	ТВ			Field QC	580-115786-14	Eurofins Seattle

Notes:

ft bgs = feet below ground surface

ELLE = Eurofins Lancaster Laboratories Environmental, LLC

FD = field duplicate

ID = identification

N = normal (primary sample) QC = quality control

This page intentionally left blank

Table B-2. Results and Relative PercentDifferences for Primary Samples and FieldDuplicate Pairs - Soil

	ocation	SB-9 at 10 feet bgs					SB-	-11 at	5 feet bgs		RPD	SB-1	2 at 2	20 feet bgs		RPD	
	Field Sa	mple ID	Area-2-22-SB-9)-10	Area-2-22-SB-9-1	-10	RPD	Area-2-22-SB	-11-5	Area-2-22-SB-1	1-1-5	кги	Area-2-22-SB-12	-20	Area-2-22-SB-12	2-1-20	RFD
	Analytical																
Analyte	Method	Units	Result	Q	Result	Q		Result	Q	Result	Q		Result	Q	Result	Q	
1,1,1,2-Tetrachloroethane	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
1,1,1-Trichloroethane	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
1,1,2,2-Tetrachloroethane	8260D	mg/kg	0.00054	U	0.00055	U	NC		R		R	NC		R		R	NC
1,1,2-Trichloroethane	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
1,1-Dichloroethane	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
1,1-Dichloroethene	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
1,1-Dichloropropene	8260D	mg/kg	0.0011	UJ	0.0011	UJ	NC		R		R	NC		R		R	NC
1,2,3-Trichlorobenzene	8260D	mg/kg	0.0043	U	0.0044	U	NC		R		R	NC		R		R	NC
1,2,3-Trichloropropane	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
1,2,4-Trichlorobenzene	8260D	mg/kg	0.0043	U	0.0044	U	NC		R		R	NC		R		R	NC
1,2-Dichlorobenzene	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
1,2-Dichloroethane	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
1,2-Dichloropropane	8260D	mg/kg	0.0011	UJ	0.0011	UJ	NC		R		R	NC		R		R	NC
1,3-Dichlorobenzene	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
1,3-Dichloropropane	8260D	mg/kg	0.00054	U	0.00055	U	NC		R		R	NC		R		R	NC
1,4-Dichlorobenzene	8260D	mg/kg	0.00054	U	0.00055	U	NC		R		R	NC		R		R	NC
2,2-Dichloropropane	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
2-Chlorotoluene	8260D	mg/kg	0.00054	U	0.00055	U	NC		R		R	NC		R		R	NC
4-Chlorotoluene	8260D	mg/kg	0.00054	U	0.00055	U	NC		R		R	NC		R		R	NC
Carbon tetrachloride	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
Chlorobenzene	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
Chloroethane	8260D	mg/kg	0.0022	U	0.0022	U	NC		R		R	NC		R		R	NC
Chloroform	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
Chloromethane	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
cis-1,2-Dichloroethene	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
cis-1,3-Dichloropropene	8260D	mg/kg	0.00054	U	0.00055	U	NC		R		R	NC		R		R	NC
Hexachlorobutadiene	8260D	mg/kg	0.0043	U	0.0044	U	NC		R		R	NC		R		R	NC
Methylene chloride	8260D	mg/kg		U	0.0022	U	NC		R		R	NC		R		R	NC
Tetrachloroethene	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
trans-1,2-Dichloroethene	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
trans-1,3-Dichloropropene	8260D	mg/kg			0.00055	U	NC		R		R	NC		R		R	NC
Trichloroethene	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC
Vinyl chloride	8260D	mg/kg	0.0011	U	0.0011	U	NC		R		R	NC		R		R	NC

Notes:

bgs = below ground surface

mg/kg = milligrams per kilogram NC - not calculated; one or more of the sample pair results are "U" or "UJ" qualified. Q = qualifier RPD - relative percent difference <u>Data Qualifiers:</u> J = The reported result is an estimated value. R = The result is rejected.

U = The analyte is not detected; the associated numerical value is the limit of detection or as qualified during data validation.

UJ = The analyte is not detected; the associated numerical value is approximate.

Table B-2. Results and Relative PercentDifferences for Primary Samples and FieldDuplicate Pairs - Soil

	L	ocation	SB	-15 at (0.5 feet bgs		RPD	SB-17	′ at ′	I0 feet bgs		RPD
	Field Sa	mple ID	Area-2-22-SB-	15-0.5	Area-2-22-SB-15	5-1-0.5	RFD	Area-2-22-SB-17-10		Area-2-22-SB-17-	1-10	RFD
	Analytical											
Analyte	Method	Units	Result	Q	Result	Q		Result	Q	Result	Q	
1,1,1,2-Tetrachloroethane	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
1,1,1-Trichloroethane	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
1,1,2,2-Tetrachloroethane	8260D	mg/kg	0.00075	U	0.00064	U	NC		R		R	NC
1,1,2-Trichloroethane	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
1,1-Dichloroethane	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
1,1-Dichloroethene	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
1,1-Dichloropropene	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
1,2,3-Trichlorobenzene	8260D	mg/kg	0.0060	U	0.0051	U	NC		R		R	NC
1,2,3-Trichloropropane	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
1,2,4-Trichlorobenzene	8260D	mg/kg	0.0060	U	0.0051	U	NC		R		R	NC
1,2-Dichlorobenzene	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
1,2-Dichloroethane	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
1,2-Dichloropropane	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
1,3-Dichlorobenzene	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
1,3-Dichloropropane	8260D	mg/kg	0.00075	U	0.00064	U	NC		R		R	NC
1,4-Dichlorobenzene	8260D	mg/kg	0.00075	U	0.00064	U	NC		R		R	NC
2,2-Dichloropropane	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
2-Chlorotoluene	8260D	mg/kg	0.00075	U	0.00064	U	NC		R		R	NC
4-Chlorotoluene	8260D	mg/kg	0.00075	U	0.00064	U	NC		R		R	NC
Carbon tetrachloride	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
Chlorobenzene	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
Chloroethane	8260D	mg/kg	0.0030	U	0.0026	U	NC		R		R	NC
Chloroform	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
Chloromethane	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
cis-1,2-Dichloroethene	8260D	mg/kg	0.0015	U	0.0013	U	NC		R	0.0011	J	NC
cis-1,3-Dichloropropene	8260D	mg/kg	0.00075	U	0.00064	U	NC		R		R	NC
Hexachlorobutadiene	8260D	mg/kg	0.0060	U	0.0051	U	NC		R		R	NC
Methylene chloride	8260D	mg/kg	0.0030	U	0.0026	U	NC		R		R	NC
Tetrachloroethene	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
trans-1,2-Dichloroethene	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC
trans-1,3-Dichloropropene	8260D	mg/kg	0.00075	U	0.00064	U	NC		R		R	NC
Trichloroethene	8260D	mg/kg	0.0015	U	0.0013	U	NC	0.13	J	0.17	J	27%
Vinyl chloride	8260D	mg/kg	0.0015	U	0.0013	U	NC		R		R	NC

Notes:

bgs = below ground surface

mg/kg = milligrams per kilogram

NC - not calculated; one or more of the sample pair results are "U" or "UJ"

Q = qualifier

RPD - relative percent difference

Data Qualifiers:

J = The reported result is an estimated value.

R = The result is rejected.

U = The analyte is not detected; the associated numerical value is the limit

UJ = The analyte is not detected; the associated numerical value is approx

Table B-3. Results and Relative PercentDifferences for Primary Samples and FieldDuplicate Pairs - Groundwater

		ocation		2N	1W-9		RPD		2-N	IW18		RPD
	Field Sa	mple ID	AREA2-22-2M\	N-9	AREA2-22-2MW-	•9B	RFD	AREA2-22-2MV	V-18	AREA2-22-2MW	/-18B	RFD
	Analytical											
Analyte	Method	Units	Result	Q	Result	Q		Result	Q	Result	Q	
1,1,1,2-Tetrachloroethane	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
1,1,1-Trichloroethane	8260D	µg/L	0.070	U	0.070	U	NC	0.070	U	0.070	U	NC
1,1,2,2-Tetrachloroethane	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
1,1,2-Trichloroethane	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
1,1-Dichloroethane	8260D	µg/L	0.070	U	0.070	U	NC	0.070	U	0.070	U	NC
1,1-Dichloroethene	8260D	µg/L	0.070	U	0.070	U	NC	0.070	U	0.070	U	NC
1,1-Dichloropropene	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
1,2,3-Trichlorobenzene	8260D	µg/L	0.35	UJ	0.35	UJ	NC	0.35	UJ	0.35	UJ	NC
1,2,3-Trichloropropane	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
1,2,4-Trichlorobenzene	8260D	µg/L	0.35	U	0.35	U	NC	0.35	U	0.35	U	NC
1,2-Dichlorobenzene	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
1,2-Dichloroethane	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
1,2-Dichloropropane	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
1,3-Dichlorobenzene	8260D	µg/L	0.18	J	0.16	J	12%	0.14	J	0.15	J	7%
1,3-Dichloropropane	8260D	µg/L	0.070	U	0.070	U	NC	0.070	U	0.070	U	NC
1,4-Dichlorobenzene	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
2,2-Dichloropropane	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
2-Chlorotoluene	8260D	µg/L	0.35	U	0.35	U	NC	0.35	U	0.35	U	NC
4-Chlorotoluene	8260D	µg/L	0.25	U	0.25	U	NC	0.25	U	0.25	U	NC
Carbon tetrachloride	8260D	µg/L	0.070	U	0.070	U	NC	0.070	U	0.070	U	NC
Chlorobenzene	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
Chloroethane	8260D	µg/L	0.25	U	0.25	U	NC	0.25	U	0.25	U	NC
Chloroform	8260D	µg/L	0.22		0.18		20%	0.070	U	0.070	U	NC
Chloromethane	8260D	µg/L	0.35	U	0.35	U	NC	0.35	U	0.35	U	NC
cis-1,2-Dichloroethene	8260D	µg/L	0.15	U	0.15	U	NC	0.071	J	0.083	J	16%
cis-1,3-Dichloropropene	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
Hexachlorobutadiene	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
Methylene chloride	8260D	µg/L	3.5	U	3.5	U	NC	3.5	U	3.5	U	NC
Tetrachloroethene	8260D	µg/L	0.25	U	0.25	U	NC	0.25		0.25	U	NC
trans-1,2-Dichloroethene	8260D	µg/L	0.070		0.070		NC	0.070		0.070		NC
trans-1,3-Dichloropropene	8260D	µg/L	0.15	U	0.15	U	NC	0.15	U	0.15	U	NC
Trichloroethene	8260D	µg/L	0.15		0.15		NC	0.15		0.24	J	NC
Vinyl chloride	8260D	µg/L	0.015	U	0.015	U	NC	0.015	U	0.015	U	NC

Notes:

µg/L = microgram(s) per liter

NC - not calculated; one or more of the sample pair results are "U" or "UJ" qualified.

Q = qualifier

RPD - relative percent difference

Data Qualifiers:

J = The reported result is an estimated value.

U = The analyte is not detected; the associated numerical value is the limit of detection or as qualified during data validation.

UJ = The analyte is not detected; the associated numerical value is approximate.

This page intentionally left blank

	Field Sam	ple ID	FB-6272	22	FB-62822	2	FB-6292	22	FB-6302	2	FB-7122	
Sa	ample Collection	n Date	27-Jun-20)22	28-Jun-20	22	29-Jun-20)22	30-Jun-20)22	1-Jul-202	2
Analyte	Analytical Method	Units	Result	Q					Result	Q	Result	Q
1,1,1,2-Tetrachloroethane	8260D	µg/L	Result	R		R	0.60	UJ	0.60	UJ	0.60	UJ
1,1,1-Trichloroethane	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
1,1,2,2-Tetrachloroethane	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
1,1,2-Trichloroethane	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
1,1-Dichloroethane	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
1,1-Dichloroethene	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
1,1-Dichloropropene	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
1,2,3-Trichlorobenzene	8260D	µg/L		R		R	1.0	UJ	1.0	UJ	1.0	UJ
1,2,3-Trichloropropane	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
1,2,4-Trichlorobenzene	8260D	µg/L		R		R	1.0	UJ	1.0	UJ	1.0	UJ
1,2-Dichlorobenzene	8260D	µg/L		R		R	0.50	UJ	0.50	UJ	0.50	UJ
1,2-Dichloroethane	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
1,2-Dichloropropane	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
1,3-Dichlorobenzene	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
1,3-Dichloropropane	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
1,4-Dichlorobenzene	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
2,2-Dichloropropane	8260D	µg/L		R		R	0.50	UJ	0.50	UJ	0.50	UJ
2-Chlorotoluene	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
4-Chlorotoluene	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
Carbon tetrachloride	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
Chlorobenzene	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
Chloroethane	8260D	µg/L		R		R	0.50	UJ	0.50	UJ	0.50	UJ
Chloroform	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
Chloromethane	8260D	µg/L		R		R	0.50	UJ	0.50	UJ	0.50	UJ
cis-1,2-Dichloroethene	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
cis-1,3-Dichloropropene	8260D	µg/L		R		R	0.50	UJ	0.50	UJ	0.50	UJ
Hexachlorobutadiene	8260D	µg/L		R		R	4.0	UJ	4.0	UJ	4.0	UJ
Methylene chloride	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
Tetrachloroethene	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ

Table B-4. Summary of Field Blank Results

Table B-4. Summary of Field Blank Results

	ple ID	FB-6272	2	FB-6282	2	FB-6292	22	FB-6302	2	FB-7122		
Sample Collection Date			27-Jun-20)22	28-Jun-20)22	29-Jun-20)22	30-Jun-20	22	1-Jul-2022	
	Analytical											
Analyte	Method	Units	Result	Q					Result	Q	Result	Q
trans-1,2-Dichloroethene	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
trans-1,3-Dichloropropene	8260D	µg/L		R		R	0.50	UJ	0.50	UJ	0.50	UJ
Trichloroethene	8260D	µg/L		R		R	0.60	UJ	0.60	UJ	0.60	UJ
Vinyl chloride	8260D	µg/L		R		R	0.50	UJ	0.50	UJ	0.50	UJ

Notes:

µg/L = microgram(s) per liter

Q = qualifier

Data Qualifiers:

UJ = The analyte is not detected; the associated numerical value is approximate.

	•	ocation	TB-062722	2	TB-062822		TB-062822-	1	TB-062922		TB-063022		TB-71	22
	Field Sa	mple ID	27-Jun-202	2	28-Jun-2022		28-Jun-2022	2	29-Jun-202	2	30-Jun-202	2	1-Jul-2	022
	Analytical													
Analyte	Method	Units	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
1,1,1,2-Tetrachloroethane	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
1,1,1-Trichloroethane	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
1,1,2,2-Tetrachloroethane	8260D	mg/kg		R		R	0.0010	U	0.0010	U	0.0010	U	0.0010	U
1,1,2-Trichloroethane	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
1,1-Dichloroethane	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
1,1-Dichloroethene	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
1,1-Dichloropropene	8260D	mg/kg		R		R	0.0020	UJ	0.0020	U	0.0020	U	0.0020	U
1,2,3-Trichlorobenzene	8260D	mg/kg		R		R	0.0080	U	0.0080	U	0.0080	U	0.0080	U
1,2,3-Trichloropropane	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
1,2,4-Trichlorobenzene	8260D	mg/kg		R		R	0.0080	U	0.0080	U	0.0080	U	0.0080	U
1,2-Dichlorobenzene	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
1,2-Dichloroethane	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
1,2-Dichloropropane	8260D	mg/kg		R		R	0.0020	UJ	0.0020	U	0.0020	U	0.0020	U
1,3-Dichlorobenzene	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
1,3-Dichloropropane	8260D	mg/kg		R		R	0.0010	U	0.0010	U	0.0010	U	0.0010	U
1,4-Dichlorobenzene	8260D	mg/kg		R		R	0.0010	U	0.0010	U	0.0010	U	0.0010	U
2,2-Dichloropropane	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
2-Chlorotoluene	8260D	mg/kg		R		R	0.0010	U	0.0010	U	0.0010	U	0.0010	U
4-Chlorotoluene	8260D	mg/kg		R		R	0.0010	U	0.0010	U	0.0010	U	0.0010	U
Carbon tetrachloride	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
Chlorobenzene	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
Chloroethane	8260D	mg/kg		R		R	0.0040	U	0.0040	U	0.0040	U	0.0040	U
Chloroform	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
Chloromethane	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
cis-1,2-Dichloroethene	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
cis-1,3-Dichloropropene	8260D	mg/kg		R		R	0.0010	U	0.0010	U	0.0010	U	0.0010	U
Hexachlorobutadiene	8260D	mg/kg		R		R	0.0080	U	0.0080	U	0.0080	U	0.0080	U
Methylene chloride	8260D	mg/kg		R		R	0.0040	U	0.0040	U	0.0040	U	0.0040	U
Tetrachloroethene	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
trans-1,2-Dichloroethene	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
trans-1,3-Dichloropropene	8260D	mg/kg		R		R	0.0010	U	0.0010	U	0.0010	U	0.0010	U
Trichloroethene	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U
Vinyl chloride	8260D	mg/kg		R		R	0.0020	U	0.0020	U	0.0020	U	0.0020	U

Table B-5. Summary of Trip Blank Results - Soil

Notes:

mg/kg = milligrams per kilogram

Q = qualifier

Data Qualifiers:

R = The result is rejected.

U = The analyte is not detected; the associated numerical value is the limit of detection or as qualified during data validation.

UJ = The analyte is not detected; the associated numerical value is approximate.

This page intentionally left blank

	Field Sam	ple ID	TB-070822					
Samp	ole Collection	n Date	8-Jul-2022	2				
	Analytical							
Analyte	Method	Units	Result	Q				
1,1,1,2-Tetrachloroethane	8260D	µg/L	0.15	U				
1,1,1-Trichloroethane	8260D	µg/L	0.070	U				
1,1,2,2-Tetrachloroethane	8260D	µg/L	0.15	U				
1,1,2-Trichloroethane	8260D	µg/L	0.15	U				
1,1-Dichloroethane	8260D	µg/L	0.070	U				
1,1-Dichloroethene	8260D	µg/L	0.070	U				
1,1-Dichloropropene	8260D	µg/L	0.15	U				
1,2,3-Trichlorobenzene	8260D	µg/L	0.35	UJ				
1,2,3-Trichloropropane	8260D	µg/L	0.15	U				
1,2,4-Trichlorobenzene	8260D	µg/L	0.35	U				
1,2-Dichlorobenzene	8260D	µg/L	0.15	U				
1,2-Dichloroethane	8260D	µg/L	0.15	U				
1,2-Dichloropropane	8260D	µg/L	0.15	U				
1,3-Dichlorobenzene	8260D	µg/L	0.15	U				
1,3-Dichloropropane	8260D	µg/L	0.070	U				
1,4-Dichlorobenzene	8260D	µg/L	0.15	U				
2,2-Dichloropropane	8260D	µg/L	0.15	U				
2-Chlorotoluene	8260D	µg/L	0.35	U				
4-Chlorotoluene	8260D	µg/L	0.25	U				
Carbon tetrachloride	8260D	µg/L	0.070	U				
Chlorobenzene	8260D	µg/L	0.15	U				
Chloroethane	8260D	µg/L	0.25	U				
Chloroform	8260D	µg/L	0.070	U				
Chloromethane	8260D	µg/L	0.35	U				
cis-1,2-Dichloroethene	8260D	µg/L	0.15	U				
cis-1,3-Dichloropropene	8260D	µg/L	0.15	U				
Hexachlorobutadiene	8260D	µg/L	0.15	U				
Methylene chloride	8260D	µg/L	3.5	U				
Tetrachloroethene	8260D	µg/L	0.25	U				
trans-1,2-Dichloroethene	8260D	µg/L	0.070	U				
trans-1,3-Dichloropropene	8260D	µg/L	0.15	U				
Trichloroethene	8260D	µg/L	0.15	U				
Vinyl chloride	8260D	µg/L	0.015	U				

Table B-6. Summary of Trip Blank Results - Water

Notes:

µg/L = microgram(s) per liter

Q = qualifier

Data Qualifiers:

U = The analyte is not detected; the associated numerical value is the limit of detection or as qualified during data validation.

UJ = The analyte is not detected; the associated numerical value is approximate.

This page intentionally left blank

Attachment B-1 Data Validation Reports This page intentionally left blank

EA Engineering, Science, & Technology, Inc. 2200 Sixth Ave., Suite 707 Seattle, WA 98121 ATTN: Ms. Sherri Wunderlich swunderlich@eaest.com

SUBJECT: NBK Keyport OU2 - Data Validation

Dear Ms. Wunderlich,

Enclosed is the final validation report for the fraction listed below. This SDG was received on July 29, 2022. Attachment 1 is a summary of the samples that were reviewed for the analysis.

LDC Project #54603_RV1:

<u>SDG #</u>	Fraction
580-115786-1	Volatiles

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to the method:

- Final Tier I Sampling and Analysis Plan, Soil and Groundwater Investigation at Operable Unit 2 Area 2, Van Meter Road Spill/Drum Storage Site, Naval Base Kitsap Keyport, Keyport, Washington (April 2022)
- U.S. Department of Defense (DoD) General Validation Guidelines (November 2019)
- DoD Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Freng

Pei Geng Project Manager/Senior Chemist pgeng@lab-data.com

August 25, 2022

EA Engineering, Science, & Technology, Inc. 2200 Sixth Ave., Suite 707 Seattle, WA 98121 ATTN: Ms. Sherri Wunderlich swunderlich@eaest.com

SUBJECT: NBK Keyport OU2 - Data Validation

Dear Ms. Wunderlich,

Enclosed is the final validation report for the fraction listed below. This SDG was received on July 29, 2022. Attachment 1 is a summary of the samples that were reviewed for the analysis.

LDC Project #54603:

<u>SDG #</u>	Fraction
580-115786-1	Volatiles

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to the method:

- Final Tier I Sampling and Analysis Plan, Soil and Groundwater Investigation at Operable Unit 2 Area 2, Van Meter Road Spill/Drum Storage Site, Naval Base Kitsap Keyport, Keyport, Washington (April 2022)
- U.S. Department of Defense (DoD) General Validation Guidelines (November 2019)
- DoD Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Ferry

Pei Geng Project Manager/Senior Chemist pgeng@lab-data.com

August 19, 2022

	43 pages-ADV		3 WEEI	K TA	Г									Attac	hme	ent 1																			
	90/10 2B/4 E	DD			L	DC	# 54	460	3 (E	EA I	Eng	ine	erir	ng -	Se	attl	e, V	VA	NE	3K	Key	po	rt, C)U 2	2)					PO# :	23092	2			
LDC	SDG#	DATE REC'D	(2) DATE DUE	VC (826									-		-		-				-		-		_				_		-				
Matri	x: Water/Soil	1	1		s	W	s	W	s	W	s	w	s	W	s	W	s	W	S	W	s	W	s	W	s	W	s	W	s	W	S	W	S	W	s
А	580-115786-1	07/29/22	08/19/22	12																														\mid	
A	580-115786-1	07/29/22	08/19/22	2	0																												\mid	 	\square
																																	\Box		
																																		\mid	\square
		1																															┢──┦		
		1																																	
																																		\mid	\square
																																	\mid		
																																	┢━┥		
		_																																	
																																	\mid	\mid	
																																	\vdash		\vdash
		+																															\vdash	┝──┦	\vdash
Total	T/PG			14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: August 25, 2022

Parameters: Volatiles

Validation Level: Stage 2B & 4

Laboratory: Eurofins, Tacoma, WA

Sample Delivery Group (SDG): 580-115786-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
AREA2-22-2MW-19	580-115786-1	Water	07/11/22
AREA2-22-2MW-14**	580-115786-2**	Water	07/11/22
AREA2-22-2MW-15	580-115786-3	Water	07/11/22
AREA2-22-2MW-10	580-115786-4	Water	07/11/22
AREA2-22-2MW-9	580-115786-5	Water	07/11/22
AREA2-22-2MW-9B	580-115786-6	Water	07/11/22
AREA2-22-2MW-11**	580-115786-7**	Water	07/08/22
AREA2-22-2MW-13	580-115786-8	Water	07/11/22
AREA2-22-2MW-18	580-115786-9	Water	07/08/22
AREA2-22-2MW-16	580-115786-10	Water	07/11/22
AREA2-22-2MW-17	580-115786-11	Water	07/08/22
AREA2-22-2MW-18B	580-115786-12	Water	07/08/22
AREA2-22-2MW-12	580-115786-13	Water	07/08/22
TB-070822	580-115786-14	Water	07/08/22
AREA2-22-2MW-14MS	580-115786-2MS	Water	07/11/22
AREA2-22-2MW-14MSD	580-115786-2MSD	Water	07/11/22

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Tier I Sampling and Analysis Plan, Soil and Groundwater Investigation at Operable Unit 2 Area 2, Van Meter Road Spill/Drum Storage Site, Naval Base Kitsap Keyport, Keyport, Washington (April 2022), the U.S. Department of Defense (DoD) General Validation Guidelines (November 2019), and the DoD Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Codes

- 1 Holding Times Exceeded
- 2 Sample Preservation / Cooler Temperature Exceeded Acceptance Criteria
- 3 Sample Custody Potentially Compromised Sample Integrity
- 4 Missing/Incomplete Deliverables
- 5 Calibration Did Not Meet Method Criteria
- 6 Equipment/Field Blank Contamination
- 7 Laboratory Method or Calibration Blank Contamination
- 8 Matrix Spike % Recovery Exceeded Acceptance Criteria
- 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) Exceeded Acceptance Criteria
- 10A Laboratory Control Sample % Recovery Exceeded Acceptance Criteria
- 10B Laboratory Control Sample Duplicate (RPD) Exceeded Acceptance Criteria
- 11 ICP Interference Check Analysis Exceeded Method Criteria
- 12 RPD Between Two Columns (Pesticides/PCBs only)
- 13 Surrogate Recoveries Exceeded Acceptance Criteria
- 14 Field Duplicates RPD Exceeded Project Criteria
- 15 Peak Resolution did not meet method criteria
- 16 Serial Dilution Analysis Exceeded Method Criteria
- 17 Chemical Recoveries Exceeded Acceptance Criteria
- 18 Trip Blank Contamination
- 19 Internal Standards Did Not Meet Method Criteria
- 20 Calibration Range exceeded Method Criteria
- 21 Potential False Positives
- 22 Do not use, other result more technically sound (overall assessment)
- 23 Estimated Maximum Possible Concentration
- 24 Trace Detection Below the LOQ (RL) and Above the DL (MDL)
- 25 Other

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
07/17/22	1,2,3-Trichlorobenzene	20.1	AREA2-22-2MW-19 AREA2-22-2MW-14** AREA2-22-2MW-15 AREA2-22-2MW-10 AREA2-22-2MW-9 AREA2-22-2MW-9 AREA2-22-2MW-11** AREA2-22-2MW-11 AREA2-22-2MW-17 AREA2-22-2MW-17 AREA2-22-2MW-18 AREA2-22-2MW-12 TB-070822	UJ (all non-detects)	A
07/18/22	Methylene chloride	28.1	AREA2-22-2MW-16	UJ (all non-detects)	A

Date	Analyte	%D	Associated Samples	Flag	A or P
07/20/22	1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene	22.5 32.8	AREA2-22-2MW-13	UJ (all non-detects) UJ (all non-detects)	A

The percent differences (%D) were less than or equal to 50.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
07/21/22	Methylene chloride	139.3	AREA2-22-2MW-13	UJ (all non-detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Analyte	Concentration	Associated Samples
MB 580-397668/6	07/20/22	1,2,3-Trichlorobenzene Hexachlorobutadiene	0.170 ug/L 0.0912 ug/L	AREA2-22-2MW-13
MB 580-397301/6	07/17/22	1,2,3-Trichlorobenzene Hexachlorobutadiene	0.184 ug/L 0.104 ug/L	AREA2-22-2MW-19 AREA2-22-2MW-14** AREA2-22-2MW-15 AREA2-22-2MW-10 AREA2-22-2MW-9 AREA2-22-2MW-9B AREA2-22-2MW-9B AREA2-22-2MW-11** AREA2-22-2MW-118 AREA2-22-2MW-17 AREA2-22-2MW-18B AREA2-22-2MW-12 TB-070822
MB 580-397384/6	07/18/22	1,2,3-Trichlorobenzene Hexachlorobutadiene	0.196 ug/L 0.105 ug/L	AREA2-22-2MW-16

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

Sample TB-070822 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
AREA2-22-2MW-14MS/MSD (AREA2-22-2MW-14**)	1,1-Dichloroethene	132 (71-131)	-	J (all detects)	A
AREA2-22-2MW-14MS/MSD (AREA2-22-2MW-14**)	1,1-Dichloropropene 1,2,3-Trichlorobenzene	127 (79-125) 138 (69-129)	- 133 (69-129)	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
AREA2-22-2MW-14MS/MSD (AREA2-22-2MW-14**)	Vinyl chloride	21 (≤20)	J (all detects)	A

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/LCSD 580-397301 (AREA2-22-2MW-19 AREA2-22-2MW-19 AREA2-22-2MW-15 AREA2-22-2MW-10 AREA2-22-2MW-9 AREA2-22-2MW-9 AREA2-22-2MW-9 AREA2-22-2MW-11 AREA2-22-2MW-18 AREA2-22-2MW-17 AREA2-22-2MW-18 AREA2-22-2MW-12 TB-070822)	1,2,3-Trichlorobenzene	146 (69-129)	137 (69-129)	NA	-
LCS/LCSD 580-397384 (AREA2-22-2MW-16)	1,2,3-Trichlorobenzene Methylene chloride	152 (69-129) 138 (74-124)	143 (69-129) 150 (74-124)	NA	-
LCS/LCSD 580-397668 (AREA2-22-2MW-13)	1,2,3-Trichlorobenzene	156 (69-129)	150 (69-129)	NA	-

Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples AREA2-22-2MW-9 and AREA2-22-2MW-9B and samples AREA2-22-2MW-18 and AREA2-22-2MW-18B were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentr				
Analyte	AREA2-22-2MW-9	AREA2-22-2MW-9B	AREA2-22-2MW-9B RPD (Limits)		A or P
1,3-Dichlorobenzene	0.18	0.16	12 (≤30)	-	-
Chloroform	0.22	0.18	20 (≤30)	-	-

	Concent	ration (ug/L)			
Analyte	AREA2-22-2MW-18	AREA2-22-2MW-18B	RPD (Limits)	Flag	A or P
1,3-Dichlorobenzene	0.14	0.15	7 (≤30)	-	-
cis-1,2-Dichloroethene	0.071	0.083	16 (≤30)	-	-
Trichloroethene	0.15U	0.24	46 (≤30)	J (all detects) UJ (all non-detects)	A

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

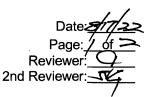
Due to continuing calibration %D and ending CCV %D, MS/MSD %R and RPD, and field duplicate RPD, data were qualified as estimated in fourteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

NBK Keyport OU2 Volatiles - Data Qualification Summary - SDG 580-115786-1

Sample	Analyte	Flag	A or P	Reason (Code)
AREA2-22-2MW-19 AREA2-22-2MW-14** AREA2-22-2MW-15 AREA2-22-2MW-10 AREA2-22-2MW-9 AREA2-22-2MW-9 AREA2-22-2MW-18 AREA2-22-2MW-18 AREA2-22-2MW-17 AREA2-22-2MW-18 AREA2-22-2MW-18 AREA2-22-2MW-12 TB-070822	1,2,3-Trichlorobenzene	UJ (all non-detects)	A	Continuing calibration (%D) (5)
AREA2-22-2MW-16	Methylene chloride	UJ (all non-detects)	A	Continuing calibration (%D) (5)
AREA2-22-2MW-13	1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene	UJ (all non-detects)	A	Continuing calibration (%D) (5)
AREA2-22-2MW-13	Methylene chloride	UJ (all non-detects)	A	Continuing calibration (ending CCV %D) (5)
AREA2-22-2MW-14**	1,1-Dichloroethene	J (all detects)	А	Matrix spike/Matrix spike duplicate (%R) (8)
AREA2-22-2MW-14**	Vinyl chloride	J (all detects)	A	Matrix spike/Matrix spike duplicate (RPD) (9)
AREA2-22-2MW-18 AREA2-22-2MW-18B	Trichloroethene	J (all detects) UJ (all non-detects)	A	Field duplicates (RPD) (14)

NBK Keyport OU2 Volatiles - Laboratory Blank Data Qualification Summary - SDG 580-115786-1


No Sample Data Qualified in this SDG

NBK Keyport OU2 Volatiles - Field Blank Data Qualification Summary - SDG 580-115786-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

SDG #:<u>580-115786-1</u> Laboratory:<u>Eurofins, Tacoma, WA</u>

LDC #: 54603A1a

METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)

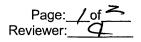
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	A.	
111.	Initial calibration/ICV	AA	#50=1570.12 Kal= 2073
IV.	Continuing calibration	and	ect = 20/5070
V.	Laboratory Blanks	IN	
<u>VI.</u>	Field blanks	NO	TB=K
VII.	Surrogate spikes	\mathbf{A}	
VIII.	Matrix spike/Matrix spike duplicates	IN	
IX.	Laboratory control samples	Ŵ	Lest
Х.	Field duplicates	aw	D=5+6 9+12
XI.	Internal standards	A	
XII.	Target analyte quantitation	A	Not reviewed for Stage 2B validation.
XIII.	Target analyte identification	A	Not reviewed for Stage 2B validation. $\mathcal{M}/$
XIV.	System performance	A	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data		

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
	AREA2-22-2MW-19	580-115786-1	Water	07/11/22
	AREA2-22-2MW-14**	580-115786-2**	Water	07/11/22
	AREA2-22-2MW-15	580-115786-3	Water	07/11/22
۱ <u> </u>	AREA2-22-2MW-10	580-115786-4	Water	07/11/22
54	AREA2-22-2MW-9	580-115786-5	Water	07/11/22
<u>}</u>	AREA2-22-2MW-9B	580-115786-6	Water	07/11/22
	AREA2-22-2MW-11**	580-115786-7**	Water	07/08/22
2	AREA2-22-2MW-13	580-115786-8	Water	07/11/22
)	AREA2-22-2MW-18	580-115786-9	Water	07/08/22
07	AREA2-22-2MW-16	580-115786-10	Water	07/11/22
1	AREA2-22-2MW-17	580-115786-11	Water	07/08/22
2	AREA2-22-2MW-18B	580-115786-12	Water	07/08/22
3	AREA2-22-2MW-12	580-115786-13	Water	07/08/22
4	TB-070822	580-115786-14	Water	07/08/22

VALIDATION COMPLETENESS WORKSHEET


Stage 2B/4

LDC #: <u>54603A1a</u> **VA** SDG #: <u>580-115786-1</u> Laboratory: <u>Eurofins, Tacoma, WA</u> Date: Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)

	Client ID	Lab ID	Matrix	Date
15	AREA2-22-2MW-14MS	580-115786-2MS	Water	07/11/22
16	AREA2-22-2MW-14MSD	580-115786-2MSD	Water	07/11/22
17				
18				
19				
Notes:				
	37730			
3	397384			
3	397384 397668			

LDC #: 5460=4/9

Method: Volatiles (EPA SW 846 Method 8260C)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	1			
Was cooler temperature criteria met?		L		
II. GC/MS Instrument performance check	1		1	
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12-hour clock criteria?		[
III. Initial calibration and Initial Calibration Verification			r	
Did the laboratory perform a 5-point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) $\leq 20\%$ and relative response factors (RRF) within method criteria?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	\leq	a.w		
Was an initial calibration verification (ICV) standard analyzed after each initial calibration for each instrument?	\leq	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Were all ICV percent differences $(\%D) \leq 30\%$?	/	P		
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	1	-		
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?				,
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks?			un anna an	
VI. Field blanks	1			
Were field blanks were identified in this SDG?	/	1		
Were target compounds detected in the field blanks?		/		
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?	/_			
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				r
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	\square			

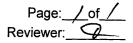
LDC #346035/9

VALIDATION FINDINGS CHECKLIST

Page: <u>Oof</u> Reviewer:	-
	_

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed per analytical batch?	\square			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/		-	
Were retention times within \pm 30 seconds of the associated calibration standard?				
XII. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?		-		
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Target compound identification			·	
Were relative retention times (RRT's) within <u>+ 0.06 RRT units of the standard?</u>				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?				
XIV. System performance	. <u> </u>		r	
System performance was found to be acceptable.	/			
XV. Overall assessment of data	\checkmark	/	r	
Overall assessment of data was found to be acceptable.	Ľ			

TARGET COMPOUND WORKSHEET


METHOD: VOA

.

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1, 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1.
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC #:546055/9

VALIDATION FINDINGS WORKSHEET Continuing Calibration

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". V N N/A V N N/AWas a continuing calibration standard analyzed at least once every 12 hours for each instrument? V N N/AWere percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Were all %D and RRFs within the validation criteria of ≤ 20 %D and ≥ 0.05 RRF ?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications (\mathcal{S})
	7/17/22	0717202	NNN	20.1		1-T.9.11-16.MB	
		•				(N/D)	, , , , , , , , , , , , , , , , , , , ,
	-di-al-a	07/8000	Ę	~~~			
 	7/10/22	07182202		28.		10. MA3 (NO)	- VM/A
							,
	7/20/22	07202000	KKK.	22.5 32.8		J.MB (NO)	XM/A
	//	,	NNN	32.8			
			<u></u>				
	7/2/22	07202229	E	139.3		8. MB (ND)	VAN /ST
} −−−	1991==	(clogic.)		127		0.175 (10)	- YMYX
		Contest					
			<u></u>				
			· ·				
				<u> </u>	<u> </u>	+	
					<u> </u>	++	

LDC #: 546034

VALIDATION FINDINGS WORKSHEET Blanks

Reviewe

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Was a method blank associated with every sample in this SDG?

<u>N/A</u> Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

Y/N N/A Was there contamination in the method blanks? If yes, please see the qualifications below.

Blank analysis date: 7/20/22

Conc. units: 14

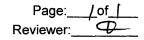
Associated Samples:

8

Compound	Blank ID		Sample Identification							
MBS	80-3976	8/6								
Methylene chloride		/								
Acetone										
NNN	0.170								:	
NNN 222	0.170									
	•									

Blank analysis date:

Conc. units:	sociated Sample	es:			 			
Compound	Blank ID	 		S	ample Identific	ation		
Methylene chloride		 						
Acetone								


All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #:

VALIDATION FINDINGS WORKSHEET

Blanks

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank associated with every sample in this SDG? TN N/A

YN N/A Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

YN N/A Was there contamination in the method blanks? If yes, please see the qualifications below.

Blank analysis date:_____ Conc. units: Mac

1

Associated Samples: 1-7.9.11-14

Compound	Blank ID		Sample Identification								
MBS	80-39732	1/6									
Methylene chloride		/									
Acetone											
WNN	0.184										
NNN Lec	0.181 0.104										
	/										

Blank analysis date: 7/18/== Conc. units: _/	2		Associated Sample	es:/ C	2			
Compound	Blank ID			s	ample Identific	ation		
MB5	80-3973	84/6						
Methylene chloride					-			
Acetone								
NNN 447	0.196							
441	0.105						· · · · · · · · · · · · · · · · · · ·	
	_							

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: Reviewer:

METHOD : GC/MS VOA (EPA SW 846 Method 8260C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A"

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

XIN N/A

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	%R	MS t (Limits)	MSD %R (Limits	;)	RPD	(Limits)	Associated Samples	Qualifications
		13/16	H	132	(71-131)	()		()	Z-(dets)	Hits/A (A)
		/	RR NNN C.	127	(79-125)	133 69-)		()	(ND)	
			NNN	138	69-1291	133 69-	1-9		()	V	
			<u>c</u>		()	()	21	(≤ 20)	(dots)	Jolats/A 19
					()	()		()		
					()	()		()		
		· · · · · · · · · · · · · · · · · · ·			()	()		()		
					()	()		()		
					<u>()</u>	()		<u>()</u>		
			+		<u>()</u>	(<u>()</u>	<u> </u>	
			+		()	(<u>()</u>		
			+	l	()	[()		()	 	
					()	()		()		
					()	()		()		
					()	()		()		
					()	()		()		
					()	()		()		
					()	()		()		
					()	()		()		
			+	<u> </u>	· · · · · ·	·····			$\frac{1}{1}$		<u> </u>
			+	<u> </u>	$\frac{1}{2}$		/		$\frac{1}{2}$	<u> </u>	<u> </u>
			+	}	() ·		,		<u> </u>	<u> </u>	
					()	()		()		
					()	()		()		
					()	()		()		
			<u>]</u>		()	()		()		

LDC #: Ether Ala

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: Reviewer

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound		LCS (Limits)	%	LCSD R (Limits)	RPD (Limits)	Associated Samples	Qualifications
<u> </u> +	and the second sec	5/15 580-29730							1-7.9.11-14,MB	
		70-0-21121			$\frac{\sqrt{2}}{\sqrt{2}}$	r = r	()		(ND)	- serge
					()	1	()	()		
					()		()	())	
					()		()	())	
	76	50 580-397384	NNN	132	69-12-9	143	69-129	()	10.MB (NO)	Vet3A
		s/0 580-397384	E	138	(74-124)	150	(74-124)	())	
					<u> </u>	+	_()	<u> </u>		
				ļ	()		()	()		
		60580-397668	NNN	156	69-129	150	69-129	()	8.MB (ND)	- Atta -
┣				<u> </u> '	(+		[]		
 +	·····				($)$			(
					<u>(</u>)		()	())	
+					()	1	()	()	
					()		()	())	
					()		()	()		
					()		()	()		
					()	1	()	())	
					()		()	())	
					()		()	())	
					()		()	())	
				ļ	()	1	()	())	
					()		()	())	

VALIDATION FINDINGS WORKSHEET **Field Duplicates**

Page: 1_of 1_ Reviewer: PG

METHOD:GCMS VOA (EPA SW 846 Method 8260D)Y N NAWere field duplicate pairs identified in this SDG?Y N NAWere target analytes detected in the field duplicate pairs?

	Concentra	tion (ug/L)		
Compound	5	6	RPD (≤ 30 %)	Qualifications (Parent only)
FFF	0.18	0.16	12	
к	0.22	_0.18	20	

	Concentra	tion (ug/L)			
Compound	9 12		RPD (≤ 30 %)	Qualifications (Parent only)	
FFF	0.14	0.15	7		
QQQ	0.071	0.083	16		
S	0.15U	0.24	46	J/UJ/A (14)	
				/	

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2022\54603A1_EA_Keyport.wpd

LDC #: 54603A/01

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	of
Reviewer:	Q

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

average RRF = sum of the RRFs/number of standards $C_x = Conc$ %RSD = 100 * (S/X)S = Stand			standards $A_x = Area of compou C_x = Concentration oS = Standard deviations X = Mean of the RRF$	f compound, on of the RRFs	A _{is} = Area of asso C _{is} = Concentration	ociated internal star	dard ard		
				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF _(/ 10 std)	RRF (/ 🖉 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	1 - 8	7/16/22	ORX (1st internal standard)	0.3748	0.3748	0.3618	0.3618	11.4	11.4
	KAZ	7/14/22	(2nd internal standard)	0.3724	0.3724	0.3711	0.3711	43	6.3
		,	FFF (3rd internal standard)	1.7910	1.7910	1.7143	1.7143	9.3	9.3
			(4th internal standard)						
2			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)	L					
			(4th internal standard)						
3		i	(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
			(4th internal standard)						
4			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
			(4th internal standard)						

Comments: <u>Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results</u>

LDC #: 5460351 a

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF A_x = Area of compound,

 $C_x = Concentration of compound,$

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

#	Standard ID	Calibration	Compound (Reference internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	0717202	7/17/22	CKR (1st internal standard)	0.3618	0.3773	0.3773	4.3	4.3
			AA (2nd internal standard)	0.3711	0.3692	0.3692	0.5	0.5
			FFF (3rd internal standard)	1.7143	1.841	1.84/	7.4	7.4
			(4th internal standard)				/	
2			(1st internal standard)					
			. (2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
3			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)				L	
4			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #:5460-A 9

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

Page:_	_/of_/_
Reviewer:	9

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

Sample ID:					
	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane	10.0	11.5	115	115	
1,2-Dichloroethane-d4		11.2	1/ >	112	
Toluene-d8		9.32	97	93	
Bromofluorobenzene		9.83	98	78	

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:__

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8				· · · · · · · · · · · · · · · · · · ·	
Bromofluorobenzene					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference	
Dibromofluoromethane			,			
1,2-Dichloroethane-d4						
Toluene-d8						
Bromofluorobenzene						

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8				· · · · · · · · · · · · · · · · · · ·	
Bromofluorobenzene	·				

LDC #: 5460 - AVe

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page:___ Reviewer: C

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentration

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD sample: 15/16

Compound	Ad	oike Idad ≁ ⊂)	Sample Concentration	Spiked S Concent	tration	Matrix Percent R		Matrix Spike			<u>s/MSD</u>
	MS	MSD			MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
1,1-Dichloroethene	5.00	5.00	0.098	6.72	5.75	132	132	113	113	16	16
Trichloroethene	V	V	11	5.62		112	112	107	107	5	5
Benzene					· · · · · · · · · · · · · · · · · · ·						
Toluene											
Chlorobenzene	V		NB	5.45	5.20	109	109	104	104	5	5

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 5/603A/a

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: /of / Reviewer: _____

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS ID: 580-39730

· ·		pike	Spiked Sample		<u> </u>	s	10	SD	LCS/LCSD RPD		
Compound				ntration	Percent Recovery		Percent R	Recovery			
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated	
1,1-Dichloroethene	5.00	5.00	5,5£	5.32	111	111	106	106	4	4	
Trichloroethene	V	V	5.06	4.97	101	101	99	99	2	d	
Benzene											
Toluene											
Chlorobenzene		V	5.22	5.1A	104	104	102	103	2	2	

Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page:	
Reviewer:_	<u>q</u>

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

	GC/NG VCA (LFA SVV 040 Method 02000)
<u>/[Y/N N/A</u>	Were all reported results recalculated and verified for all level IV samples?
(<u>Y/N N/A</u> Y N N/A	Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

 $(A_x)(I_y)(DF)$ Concentration = (A_{is})(RRF)(V_o)(%S) Area of the characteristic ion (EICP) for the A, = compound to be measured Area of the characteristic ion (EICP) for the specific A_{is} = internal standard Ξ Amount of internal standard added in nanograms l, (ng) RRF Relative response factor of the calibration standard. =

Volume or weight of sample pruged in milliliters (ml) V, = or grams (g).

Df Dilution factor. =

Percent solids, applicable to soils and solid matrices %S = only.

Example:

Sample I.D. _ , RRR :

Conc. = (13/4577) (10.0) (1) (1) (10.0) (1) (1) (10.0) (1) (1) (

#	Sample ID	Compound	Reported Concentration	Calculated Concentration ()	Qualification
	2	RRR	130		
	· ·				
	······································				
				[L

EA Engineering, Science, & Technology, Inc. 2200 Sixth Ave., Suite 707 Seattle, WA 98121 ATTN: Ms. Sherri Wunderlich swunderlich@eaest.com

SUBJECT: NBK Keyport OU2 - Data Validation

Dear Ms. Wunderlich,

Enclosed is the final validation report for the fraction listed below. This SDG was received on July 29, 2022. Attachment 1 is a summary of the samples that were reviewed for the analysis.

LDC Project #54604:

<u>SDG #</u>	Fraction
410-89884-1 410-90316-1	Volatiles

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to the method:

- Final Tier I Sampling and Analysis Plan, Soil and Groundwater Investigation at Operable Unit 2 Area 2, Van Meter Road Spill/Drum Storage Site, Naval Base Kitsap Keyport, Keyport, Washington (April 2022)
- U.S. Department of Defense (DoD) General Validation Guidelines (November 2019)
- DoD Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Freng

Pei Geng Project Manager/Senior Chemist pgeng@lab-data.com

August 19, 2022

	225 pages-AD	/	3 WEEI	K TA	Г									Attac	hme	ent 1																			
	90/10 2B/4 E	DD			L	DC;	# 54	460	4 (E	EA E	Eng	ine	erir	ng -	Se	attl	e, V	VA /	NE	3K	Key	/poi	rt, C)U 2	2)					PO# :	23092	2			
LDC	SDG#	DATE REC'D	(2) DATE DUE		DA 50D)		-																				-		-						
Matri	c: Water/Soil	1	•		S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
А	410-89884-1	07/29/22	08/19/22		39																												\mid		
А	410-89884-1	07/29/22	08/19/22	0																													\mid	\mid	
В	410-90316-1	07/29/22	08/19/22	2	24																													┢──┦	
╏──┤		-																															┝──┦	┢──┦	\vdash
																																		┢──┦	\vdash
																																			\square
																																			\square
																																			\square
																																		┢──┦	
																																	\mid	┝──┦	\vdash
																																		┢──┦	
∦+																																		┢──┦	\vdash
																																		┢──┦	
																																			\square
																				<u> </u>															
Total	T/PG			5	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	75

LDC Report# 54604A1a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NBK Keyport OU2
LDC Report Date:	August 18, 2022
Parameters:	Volatiles
Validation Level:	Stage 2B & 4
Laboratory:	Eurofins, Lancaster, PA

Sample Delivery Group (SDG): 410-89884-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
AREA-2-22-SB-13-0.5	410-89884-1	Soil	06/28/22
AREA-2-22-SB-13-5	410-89884-2	Soil	06/28/22
AREA-2-22-SB-13-10**	410-89884-3**	Soil	06/28/22
AREA-2-22-SB-13-15**	410-89884-4**	Soil	06/28/22
AREA-2-22-SB-13-20**	410-89884-5**	Soil	06/28/22
TB-62822-1	410-89884-6	Soil	06/28/22
AREA-2-22-SB-9-0.5	410-89884-7	Soil	06/29/22
AREA-2-22-SB-9-10	410-89884-8	Soil	06/29/22
AREA-2-22-SB-9-1-10	410-89884-9	Soil	06/29/22
AREA-2-22-SB-9-20	410-89884-10	Soil	06/29/22
AREA-2-22-SB-9-20DL	410-89884-10DL	Soil	06/29/22
AREA-2-22-SB-9-20DLRE	410-89884-10DLRE	Soil	06/29/22
AREA-2-22-SB-9-30	410-89884-11	Soil	06/29/22
AREA-2-22-SB-9-30DL	410-89884-11DL	Soil	06/29/22
AREA-2-22-SB-9-30DLRE	410-89884-11DLRE	Soil	06/29/22
AREA-2-22-SB-9-40	410-89884-12	Soil	06/29/22
TB-62922	410-89884-13	Soil	06/29/22
AREA-2-22-SB-10-0.5	410-89884-14	Soil	06/29/22
AREA-2-22-SB-10-10	410-89884-15	Soil	06/29/22
AREA-2-22-SB-10-10DL	410-89884-15DL	Soil	06/29/22
AREA-2-22-SB-10-20	410-89884-16	Soil	06/29/22
AREA-2-22-SB-10-30	410-89884-17	Soil	06/29/22
AREA-2-22-SB-10-40	410-89884-18	Soil	06/29/22
AREA-2-22-SB-14-0.5	410-89884-19	Soil	06/30/22
AREA-2-22-SB-14-5	410-89884-20	Soil	06/30/22
AREA-2-22-SB-14-10**	410-89884-21**	Soil	06/30/22

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
AREA-2-22-SB-14-15**	410-89884-22**	Soil	06/30/22
AREA-2-22-SB-14-20**	410-89884-23**	Soil	06/30/22
FB-63022	410-89884-24	Water	06/30/22
TB-63022	410-89884-25	Soil	06/30/22
AREA-2-22-SB-19-0.5	410-89884-26	Soil	07/01/22
AREA-2-22-SB-19-5	410-89884-27	Soil	07/01/22
AREA-2-22-SB-19-10	410-89884-28	Soil	07/01/22
AREA-2-22-SB-19-15	410-89884-29	Soil	07/01/22
AREA-2-22-SB-19-20**	410-89884-30**	Soil	07/01/22
AREA-2-22-SB-15-0.5	410-89884-31	Soil	07/01/22
AREA-2-22-SB-15-1-0.5	410-89884-32	Soil	07/01/22
AREA-2-22-SB-15-5	410-89884-33	Soil	07/01/22
AREA-2-22-SB-15-10	410-89884-34	Soil	07/01/22
AREA-2-22-SB-15-15	410-89884-35	Soil	07/01/22
AREA-2-22-SB-15-20	410-89884-36	Soil	07/01/22
FB-7122	410-89884-37	Water	07/01/22
AREA-2-22-SB-16-0.5	410-89884-38	Soil	07/01/22
AREA-2-22-SB-16-5	410-89884-39	Soil	07/01/22
AREA-2-22-SB-16-10	410-89884-40	Soil	07/01/22
AREA-2-22-SB-16-15	410-89884-41	Soil	07/01/22
AREA-2-22-SB-16-20	410-89884-42	Soil	07/01/22
TB-07122	410-89884-43	Soil	07/01/22
FB-062922	410-89884-44	Water	06/29/22
AREA-2-22-SB-13-5MS	410-89884-2MS	Soil	06/28/22
AREA-2-22-SB-13-5MSD	410-89884-2MSD	Soil	06/28/22
AREA-2-22-SB-10-10MS	410-89884-15MS	Soil	06/29/22
AREA-2-22-SB-10-10MSD	410-89884-15MSD	Soil	06/29/22
AREA-2-22-SB-10-10DLMS	410-89884-15DLMS	Soil	06/29/22
AREA-2-22-SB-10-10DLMSD	410-89884-15DLMSD	Soil	06/29/22
AREA-2-22-SB-15-15MS	410-89884-35MS	Soil	07/01/22
AREA-2-22-SB-15-15MSD	410-89884-35MSD	Soil	07/01/22

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Tier I Sampling and Analysis Plan, Soil and Groundwater Investigation at Operable Unit 2 Area 2, Van Meter Road Spill/Drum Storage Site, Naval Base Kitsap Keyport, Keyport, Washington (April 2022), the U.S. Department of Defense (DoD) General Validation Guidelines (November 2019), and the DoD Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Codes

- 1 Holding Times Exceeded
- 2 Sample Preservation / Cooler Temperature Exceeded Acceptance Criteria
- 3 Sample Custody Potentially Compromised Sample Integrity
- 4 Missing/Incomplete Deliverables
- 5 Calibration Did Not Meet Method Criteria
- 6 Equipment/Field Blank Contamination
- 7 Laboratory Method or Calibration Blank Contamination
- 8 Matrix Spike % Recovery Exceeded Acceptance Criteria
- 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) Exceeded Acceptance Criteria
- 10A Laboratory Control Sample % Recovery Exceeded Acceptance Criteria
- 10B Laboratory Control Sample Duplicate (RPD) Exceeded Acceptance Criteria
- 11 ICP Interference Check Analysis Exceeded Method Criteria
- 12 RPD Between Two Columns (Pesticides/PCBs only)
- 13 Surrogate Recoveries Exceeded Acceptance Criteria
- 14 Field Duplicates RPD Exceeded Project Criteria
- 15 Peak Resolution did not meet method criteria
- 16 Serial Dilution Analysis Exceeded Method Criteria
- 17 Chemical Recoveries Exceeded Acceptance Criteria
- 18 Trip Blank Contamination
- 19 Internal Standards Did Not Meet Method Criteria
- 20 Calibration Range exceeded Method Criteria
- 21 Potential False Positives
- 22 Do not use, other result more technically sound (overall assessment)
- 23 Estimated Maximum Possible Concentration
- 24 Trace Detection Below the LOQ (RL) and Above the DL (MDL)
- 25 Other

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
FB-63022 FB-7122 FB-062922	All analytes	A headspace was apparent in the sample containers.	There should be no headspace in the sample containers.	UJ (all non-detects)	A

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
AREA-2-22-SB-9-20DL AREA-2-22-SB-9-30DL AREA-2-22-SB-10-10DL	All analytes	22	14	UJ (all non-detects)	A
AREA-2-22-SB-9-20DLRE AREA-2-22-SB-9-30DLRE	All analytes	26	14	UJ (all non-detects)	A

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Date	Analyte	%D	Associated Samples	Flag	A or P
07/18/22	Chloroethane	69.8	AREA-2-22-SB-19-10	UJ (all non-detects)	A
07/21/22	Chloroethane	41.6	AREA-2-22-SB-9-20DL AREA-2-22-SB-9-30DL AREA-2-22-SB-10-10DL	UJ (all non-detects)	A
07/25/22	1,2,4-Trichlorobenzene Hexachlorobutadiene 1,2,3-Trichlorobenzene	21.8 36.4 23.4	AREA-2-22-SB-9-20DLRE AREA-2-22-SB-9-30DLRE	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A
07/11/22	1,1-Dichloropropene 1,2-Dichloropropane	23.5 21.1	AREA-2-22-SB-13-0.5 AREA-2-22-SB-13-5 AREA-2-22-SB-13-10** AREA-2-22-SB-13-15** AREA-2-22-SB-13-20** TB-62822-1 AREA-2-22-SB-9-10 AREA-2-22-SB-9-10 AREA-2-22-SB-9-10 AREA-2-22-SB-9-20 AREA-2-22-SB-9-30	UJ (all non-detects) UJ (all non-detects)	A

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
07/13/22	Chloroethane	98.1	AREA-2-22-SB-19-10	UJ (all non-detects)	A
07/25/22	Chloroethane	65.7	AREA-2-22-SB-9-20DLRE AREA-2-22-SB-9-30DLRE	UJ (all non-detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples TB-62822-1, TB-62922, TB-63022, and TB-07122 were identified as trip blanks. No contaminants were found.

Samples FB-63022, FB-7122, and FB-062922 were identified as field blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
AREA-2-22-SB-9-20DL	1,2-Dichloroethane-d4 Bromofluorobenzene Dibromofluoromethane Toluene-d8	56 (71-136) 78 (79-119) 53 (78-119) 49 (85-116)	All analytes	UJ (all non-detects)	A
AREA-2-22-SB-9-20DLRE	1,2-Dichloroethane-d4 Bromofluorobenzene Dibromofluoromethane Toluene-d8	50 (71-136) 76 (79-119) 46 (78-119) 44 (85-116)	All analytes	UJ (all non-detects)	A
AREA-2-22-SB-9-30DL	1,2-Dichloroethane-d4 Dibromofluoromethane Toluene-d8	45 (71-136) 43 (78-119) 43 (85-116)	All analytes	UJ (all non-detects)	A
AREA-2-22-SB-9-30DLRE	1,2-Dichloroethane-d4 Dibromofluoromethane Toluene-d8	36 (71-136) 32 (78-119) 34 (85-116)	All analytes	UJ (all non-detects)	A
AREA-2-22-SB-10-10DL	1,2-Dichloroethane-d4 Dibromofluoromethane Toluene-d8	58 (71-136) 57 (78-119) 55 (85-116)	All analytes	UJ (all non-detects)	A

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID		MS (%R)	MSD (%R)		
(Associated Samples)	Analyte	(Limits)	(Limits)	Flag	A or P
AREA-2-22-SB-13-5MS/MSD (AREA-2-22-SB-13-5)	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2-Chlorotoluene 4-Chlorotoluene Carbon tetrachloride Chlorobenzene Chloroethane Chloroethane chloroethane cis-1,2-Dichloroethene Trachloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride	- 131 (76-125) 148 (70-131) 141 (76-125) - 128 (76-123) 135 (67-133) - - - - - - - - 128 (77-123) - 134 (74-125) 129 (77-123) -	126 (78-125) 153 (73-130) 146 (76-125) 170 (70-131) 166 (76-125) 57 (66-130) 103 (78-121) 134 (76-123) 159 (67-133) 157 (75-122) 144 472-124) 149 (70-135) 129 (79-120) 158 (59-139) 133 (78-123) 157 (50-136) 138 (77-123) 161 (73-128) 150 (74-125) 147 (77-123) 166 (56-135)	NA	-
AREA-2-22-SB-13-5MS/MSD (AREA-2-22-SB-13-5)	1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	54 (66-130) 62 (67-129)	57 (66-130) 65 (67-129)	UJ (all non-detects) UJ (all non-detects)	A
AREA-2-22-SB-10-10MS/MSD (AREA-2-22-SB-10-10)	1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 4-Chlorotoluene Hexachlorobutadiene	0 (66-130) 0 (67-129) 9 (72-124) 0 (61-135)	27 (66-130) 0 (67-129) 33 (72-124) 26 (61-135)	X (all non-detects) X (all non-detects) X (all non-detects) X (all non-detects)	A
AREA-2-22-SB-10-10MS/MSD (AREA-2-22-SB-10-10)	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropane 1,2,3-Trichloropropane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,3-Dichloropropane 2,3-Dichloropropane 2,2-Dichloroethene 1,3-Dichloropropene Chloroform Chloromethane cis-1,2-Dichloroethene trans-1,2-Dichloropropene Trichloroethene Vinyl chloride	33 (78-125) 45 (73-130) 65 (78-121) 51 (76-125) 57 (70-131) 38 (73-125) 71 (73-125) 19 (78-121) 53 (73-128) 52 (76-123) 14 (77-121) 14 (75-120) 54 (67-133) 17 (75-122) 38 (70-135) 22 (79-120) 46 (78-123) 33 (74-126) 57 (70-128) 21 (73-128) 38 (74-125) 36 (71-130) 29 (77-123) -	59 (78-125) 62 (73-130) - 67 (76-125) 64 (70-131) 58 (76-125) 90 (73-125) 37 (78-121) - 73 (76-123) 31 (77-121) 29 (75-120) 59 (67-133) 38 (75-122) 55 (70-135) 46 (79-120) 65 (78-123) 69 (50-136) 71 (77-123) 59 (74-126) 47 (73-128) 58 (74-125) 61 (71-130) 55 (77-123) 61 (56-135)	UJ (all non-detects) UJ (all non-detects)	A
AREA-2-22-SB-10-10DLMS/MSD (AREA-2-22-SB-10-10DL)	1,1-Dichloroethene	60 (70-131)	69 (70-131)	UJ (all non-detects)	A
AREA-2-22-SB-10-10DLMS/MSD (AREA-2-22-SB-10-10DL)	Chloroethane	-	167 (59-139)	NA	-

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
AREA-2-22-SB-15-15MS/MSD (AREA-2-22-SB-15-15)	1,1,2,2-Tetrachloroethane	129 (70-124)	126 (70-124)	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
AREA-2-22-SB-13-5MS/MSD (AREA-2-22-SB-13-5)	1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane cis-1,3-Dichloropropene Methylene chloride trans-1,3-Dichloropropene	42 (≤20) 38 (≤20) 21 (≤20) 53 (≤20) 23 (≤20) 41 (≤20) 22 (≤20) 36 (≤20) 29 (≤20) 25 (≤20) 32 (≤20)	NA	-
AREA-2-22-SB-10-10MS/MSD (AREA-2-22-SB-10-10)	1,1,1,2-Tetrachloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichlorobenzene 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene Carbon tetrachloride Chloroethane Chloroethane Chloroethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Hexachlorobutadiene Tetrachloroethene trans-1,2-Dichloropropene Trichloroethene trans-1,3-Dichloropropene Trichloroethene Vinyl chloride	$\begin{array}{c} 46 \ (\leq\!20) \\ 29 \ (\leq\!20) \\ 200 \ (\leq\!20) \\ 54 \ (\leq\!20) \\ 23 \ (\leq\!20) \\ 21 \ (\leq\!20) \\ 66 \ (\leq\!20) \\ 55 \ (\leq\!20) \\ 63 \ (\leq\!20) \\ 104 \ (\leq\!20) \\ 26 \ (\leq\!20) \\ 26 \ (\leq\!20) \\ 21 \ (\leq\!20) \\ 22 \ (\leq\!20) \\ 44 \ (\leq\!20) \\ 33 \ (\leq\!20) \\ 46 \ (\leq\!20) \\ 200 \ (\leq\!20) \\ 64 \ (\leq\!20) \\ 29 \ (\leq\!20) \\ 40 \ (\leq\!20) \\ 49 \ (\leq\!20) \\ 36 \ (\leq\!20) \\ 36 \ (\leq\!20) \end{array}$		
AREA-2-22-SB-10-10DLMS/MSD (AREA-2-22-SB-10-10DL)	Chloroethane	23 (≤20)	NA	-

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/LCSD 410-274901 (AREA-2-22-SB-19-10)	Chloroethane	168 (59-139)	162 (59-139)	NA	-
LCS/LCSD 410-277983 (AREA-2-22-SB-9-20DL AREA-2-22-SB-9-30DL AREA-2-22-SB-10-10DL)	Chloroethane	173 (59-139)	160 (59-139)	NA	-

Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples AREA-2-22-SB-9-10 and AREA-2-22-SB-9-1-10 and samples AREA-2-22-SB-15-0.5 and AREA-2-22-SB-15-1-0.5 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

Sample	Internal Standards	Area (Limits)	Affected Analyte	Flag	A or P
AREA-2-22-SB-9-20	Chlorobenzene-d5 1,4-Dichlorobenzene-d4	488750 (503835-2015340) 251358 (300802-1203208)	1,1,2-Trichloroethane trans-1,3-Dichloropropene Tetrachloroethene 1,1,2,2-Tetrachloroethane Chlorobenzene 1,3-Dichloropropane 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane 2-Chlorotoluene 4-Chlorotoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobutadiene 1,2,3-Trichlorobenzene	UJ (all non-detects) UJ (all non-detects)	A
AREA-2-22-SB-9-30	Fluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4	122042 (588604-2354414) 101746 (503835-2015340) 54911 (300802-1203208)	All analytes	X (all non-detects)	А
AREA-2-22-SB-10-10	Fluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4	414071 (616598-2466390) 328938 (496003-1984010) 184726 (280860-1123440)	All analytes	UJ (all non-detects)	A

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
AREA-2-22-SB-9-20DL AREA-2-22-SB-9-20DLRE AREA-2-22-SB-9-30DLRE	All analytes	Analyzed outside of holding time.	Not reportable	
AREA-2-22-SB-9-30	All analytes	Internal standard out.	Not reportable	-
AREA-2-22-SB-10-10	1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 4-Chlorotoluene Hexachlorobutadiene	Low MS recovery.	Not reportable	-
AREA-2-22-SB-10-10DL All analytes except 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 4-Chlorotoluene Hexachlorobutadiene		Results from undiluted analyses were more usable.	Not reportable	-

Due to headspace, technical holding time, continuing calibration %D, surrogate %R, MS/MSD %R, and internal standard area, data were qualified as estimated in sixteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

.

NBK Keyport OU2 Volatiles - Data Qualification Summary - SDG 410-89884-1

Sample FB-63022 FB-7122 FB-062922	Analyte All analytes	Flag UJ (all non-detects)	A or P	Reason (Code) Sample condition (headspace) (2)
AREA-2-22-SB-9-30DL	All analytes	UJ (all non-detects)	A	Technical holding times (1)
AREA-2-22-SB-10-10DL	1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 4-Chlorotoluene Hexachlorobutadiene	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A	Technical holding times (1)
AREA-2-22-SB-19-10 AREA-2-22-SB-9-30DL	Chloroethane	UJ (all non-detects)	A	Continuing calibration (%D) (5)
AREA-2-22-SB-13-0.5 AREA-2-22-SB-13-5 AREA-2-22-SB-13-10** AREA-2-22-SB-13-15** AREA-2-22-SB-13-20** TB-62822-1 AREA-2-22-SB-9-10 AREA-2-22-SB-9-10 AREA-2-22-SB-9-10	1,1-Dichloropropene 1,2-Dichloropropane	UJ (all non-detects) UJ (all non-detects)	A	Continuing calibration (%D) (5)
AREA-2-22-SB-19-10	Chloroethane	UJ (all non-detects)	A	Continuing calibration (ending CCV %D) (5)
AREA-2-22-SB-9-30DL	All analytes	UJ (all non-detects)	А	Surrogates (%R) (13)
AREA-2-22-SB-10-10DL	1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 4-Chlorotoluene Hexachlorobutadiene	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A	Surrogates (%R) (13)
AREA-2-22-SB-13-5	1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	UJ (all non-detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (%R) (8)

Sample	Analyte	Flag	A or P	Reason (Code)
AREA-2-22-SB-10-10	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropane 1,2-Dichloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,2-Dichloropropane 2,3-Dichloropropane 2,3-Dichloropropane 2,3-Dichloropropane 3	UJ (all non-detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (%R) (8)
AREA-2-22-SB-9-20	1,1,2-Trichloroethane trans-1,3-Dichloropropene Tetrachloroethene 1,1,2,2-Tetrachloroethane Chlorobenzene 1,3-Dichloropropane 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane 2-Chlorotoluene 4-Chlorotoluene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobutadiene 1,2,3-Trichlorobenzene	UJ (all non-detects) UJ (all non-detects)	A	Internal standards (area) (19)
AREA-2-22-SB-10-10	All analytes except 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 4-Chlorotoluene Hexachlorobutadiene	UJ (all non-detects)	A	Internal standards (area) (19)
AREA-2-22-SB-9-20DL AREA-2-22-SB-9-20DLRE AREA-2-22-SB-9-30DLRE	All analytes	Not reportable	-	Overall assessment of data (22)
AREA-2-22-SB-9-30	All analytes	Not reportable	-	Overall assessment of data (22)
AREA-2-22-SB-10-10	1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 4-Chlorotoluene Hexachlorobutadiene	Not reportable	-	Overall assessment of data (22)

Sample	Analyte	Flag	A or P	Reason (Code)
AREA-2-22-SB-10-10DL	All analytes except 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 4-Chlorotoluene Hexachlorobutadiene	Not reportable	-	Overall assessment of data (22)

NBK Keyport OU2 Volatiles - Laboratory Blank Data Qualification Summary - SDG 410-89884-1

No Sample Data Qualified in this SDG

NBK Keyport OU2 Volatiles - Field Blank Data Qualification Summary - SDG 410-89884-1

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date: 217/22 Page: _______ Reviewer: ______ 2nd Reviewer: ______

Laboratory: Eurofins, Lancaster, PA

LDC #: 54604A1a

SDG #: 410-89884-1

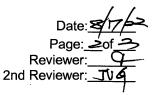
METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	fur	
١١.	GC/MS Instrument performance check	\blacksquare	
111.	Initial calibration/ICV	AA	250 < 1570. 1° 10/ = 20/0
IV.	Continuing calibration	AN	$250 \le 1570.1^{2}$ $121 \le 2070$ $ecv \le 20/5070$
V.	Laboratory Blanks	A	
VI.	Field blanks	ND	TB=6.17.30.48 FB=29.42.49
VII.	Surrogate spikes	aw	, , , , , , , , , , , , , , , , , , ,
VIII.	Matrix spike/Matrix spike duplicates	TW	
IX.	Laboratory control samples	-w	Les D
<u> </u>	Field duplicates	ND	5=8+9.36+37
_XI.	Internal standards	TW	,
XII.	Target analyte quantitation	A	Not reviewed for Stage 2B validation.
XIII.	Target analyte identification	\overline{A}	Not reviewed for Stage 2B validation.
XIV.	System performance	\mathbf{A}	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data	-	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:


Client ID	Lab ID	Matrix	Date
AREA-2-22-SB-13-0.5	410-89884-1	Soil	06/28/22
AREA-2-22-SB-13-5	410-89884-2	Soil	06/28/22
AREA-2-22-SB-13-10 **	410-89884-3 **	Soil	06/28/22
AREA-2-22-SB-13-15**	410-89884-4**	Soil	06/28/22
AREA-2-22-SB-13-20**	410-89884-5**	Soil	06/28/22
TB-62822-1	410-89884-6	Soil	06/28/22
3 AREA-2-22-SB-9-0.5	410-89884-7	Soil	06/29/22
AREA-2-22-SB-9-10	410-89884-8	Soil	06/29/22
AREA-2-22-SB-9-1-10	410-89884-9	Soil	06/29/22
0 AREA-2-22-SB-9-20	410-89884-10	Soil	06/29/22
17 AREA-2-22-SB-9-20DL	410-89884-10DL	Soil	06/29/22
AREA-2-22-SB-9-20DLRE	410-89884-10DLRE	Soil	06/29/22
32 AREA-2-22-SB-9-30	410-89884-11	Soil	06/29/22
47 AREA-2-22-SB-9-30DL	410-89884-11DL	Soil	06/29/22

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

SDG #:<u>410-89884-1</u> Laboratory:<u>Eurofins, Lancaster, PA</u>

LDC #: 54604A1a

METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)

	Client ID	Lab ID	Matrix	Date
15 O	AREA-2-22-SB-9-30DLRE	410-89884-11DLRE	Soil	06/29/22
16 3	AREA-2-22-SB-9-40	410-89884-12	Soil	06/29/22
17 3	TB-62922	410-89884-13	Soil	06/29/22
18	AREA-2-22-SB-10-0.5	410-89884-14	Soil	06/29/22
195	- AREA-2-22-SB-10-10	410-89884-15	Soil	06/29/22
₂₀ 7	AREA-2-22-SB-10-10DL	410-89884-15DL	Soil	06/29/22
₂₁ 5	AREA-2-22-SB-10-20	410-89884-16	Soil	06/29/22
225	AREA-2-22-SB-10-30	410-89884-17	Soil	06/29/22
235	AREA-2-22-SB-10-40	410-89884-18	Soil	06/29/22
24 9	AREA-2-22-SB-14-0.5	410-89884-19	Soil	06/30/22
25 5	AREA-2-22-SB-14-5	410-89884-20	Soil	06/30/22
265	AREA-2-22-SB-14-10**	410-89884-21**	Soil	06/30/22
275	- AREA-2-22-SB-14-15**	410-89884-22**	Soil	06/30/22
₂₈ 5	AREA-2-22-SB-14-20**	410-89884-23**	Soil	06/30/22
29	FB-63022	410-89884-24	Water	06/30/22
305	TB-63022	410-89884-25	Soil	06/30/22
₃₁ 5	AREA-2-22-SB-19-0.5	410-89884-26	Soil	07/01/22
325	AREA-2-22-SB-19-5	410-89884-27	Soil	07/01/22
33	AREA-2-22-SB-19-10	410-89884-28	Soil	07/01/22
34 X	AREA-2-22-SB-19-15	410-89884-29***	Soil	07/01/22
35 5	AREA-2-22-SB-19-20**	410-89884-30**	Soil	07/01/22
365	AREA-2-22-SB-15-0.5	410-89884-31	Soil	07/01/22
375	AREA-2-22-SB-15-1-0.5	410-89884-32	Soil	07/01/22
₃₈ 5	AREA-2-22-SB-15-5	410-89884-33	Soil	07/01/22
₃₉ 5	AREA-2-22-SB-15-10	410-89884-34	Soil	07/01/22
40	AREA-2-22-SB-15-15	410-89884-35	Soil	07/01/22
46	AREA-2-22-SB-15-20	410-89884-36	Soil	07/01/22
42	FB-7122	410-89884-37	Water	07/01/22
43	AREA-2-22-SB-16-0.5	410-89884-38	Soil	07/01/22
44 6	AREA-2-22-SB-16-5	410-89884-39	Soil	07/01/22
456	AREA-2-22-SB-16-10	410-89884-40	Soil	07/01/22
46	AREA-2-22-SB-16-15	410-89884-41	Soil	07/01/22
476	AREA-2-22-SB-16-20	410-89884-42	Soil	07/01/22
48	TB-07122	410-89884-43	Soil	07/01/22
49	FB-062922	410-89884-44	Water	06/29/22

LDC #: <u>54604A1a</u> SDG #: <u>410-89884-1</u>

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Laboratory: Eurofins, Lancaster, PA

Date: 917/2 Page: 20f 7 Reviewer: 0 2nd Reviewer: 11/9

METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)

	Client ID	Lab ID	Matrix	Date
50Z	AREA-2-22-SB-13-5MS	410-89884-2MS	Soil	06/28/22
₅₁ 2	AREA-2-22-SB-13-5MSD	410-89884-2MSD	Soil	06/28/22
₅₂ 5	AREA-2-22-SB-10-10MS	410-89884-15MS	Soil	06/29/22
53 5	AREA-2-22-SB-10-10MSD	410-89884-15MSD	Soil	06/29/22
541	AREA-2-22-SB-10-10DLMS	410-89884-15DLMS	Soil	06/29/22
₅₅ 1	AREA-2-22-SB-10-10DLMSD	410-89884-15DLMSD	Soil	06/29/22
56	AREA-2-22-SB-15-15MS	410-89884-35MS	Soil	07/01/22
57 b	AREA-2-22-SB-15-15MSD	410-89884-35MSD	Soil	07/01/22
58				
59				
60				
lotes:				

273011	274950 *	
574095 +	27543	
574547	277982	
574901	279093	

LDC #: 54604519

Page: /of <u>></u> Reviewer: _____

=1

Method: Volatiles (EPA SW 846 Method 8260C)

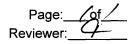
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?		/		
Was cooler temperature criteria met?		r		
II. GC/MS Instrument performance check	1	r		
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12-hour clock criteria?	//			
III. Initial calibration and Initial Calibration Verification		[
Did the laboratory perform a 5-point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) $\leq 20\%$ and relative response factors (RRF) within method criteria?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	\square			
Was an initial calibration verification (ICV) standard analyzed after each initial calibration for each instrument?		e		
Were all ICV percent differences $(\%D) \leq 30\%$?				
IV. Continuing calibration	·			
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?				
V. Laboratory Blanks	1	r	r	
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	~			
Was there contamination in the laboratory blanks?			ł	
VI. Field blanks		r	r	
Were field blanks were identified in this SDG?	$\left \right $			
Were target compounds detected in the field blanks?			ł	et menenen biskunsen sind kommunen sin sinde sammen biske Sind Alik Alimenter Son ander Son ander sinder
VII. Surrogate spikes	r	·	r	
Were all surrogate percent recovery (%R) within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Matrix spike/Matrix spike duplicates			1	
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				

LDC #:546014/9

VALIDATION FINDINGS CHECKLIST

Page: →of <u>→</u> Reviewer: _____

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		/		
IX. Laboratory control samples	·			
Was an LCS analyzed per analytical batch?	/	-		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?			-	
X. Field duplicates		2		
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?			- 	
XI. Internal standards	r			
Were internal standard area counts within -50% to +100% of the associated calibration standard?		/		
Were retention times within <u>+</u> 30 seconds of the associated calibration standard?				
XII. Compound quantitation	1		r	
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	\langle			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	\leq			
Were chromatogram peaks verified and accounted for?				·
XIV. System performance	r	· · · · · · · · ·		
System performance was found to be acceptable.				
XV. Overall assessment of data		/	-	
Overall assessment of data was found to be acceptable.	Ľ			


TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1.
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC #: 5460+A M

VALIDATION FINDINGS WORKSHEET <u>Technical Holding Times</u>

All circled dates have exceeded the technical holding times.

WIN N/A Were all cooler temperatures within validation criteria?

Y N/A Were air bubbles > 1/4 inch or was headspace present in the vials?

METHOD : GC/MS VOC (EPA SW 846 Method 8260C) (+1=1+)							
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	(حر) Qualifier
29.42.49	He	1 dace					-1/13/A
(ND)							··· (-
11, 14, 20	х		6-29-22		7-21-22	20	- AHA
12, (5 (ND)	V				7-21-22	26	
(ND)							
			·				
				······································			
			······································				
				·	<u></u>		
					<u> </u>		
					<u> </u>		L
				······································			
					<u> </u>		
			· · · · · · · · · · · · · · · · · · ·	<u> </u>			
				<u> </u>			
				<u> </u>	<u> </u>		
						ļ	
	L		L	L	L <u> </u>		

TECHNICAL HOLDING TIME CRITERIA

Water unpreserved: Water preserved: Soil: Aromatic within 7 days, non-aromatic within 14 days of sample collection. Within 14 days of sample collection. Within 14 days of sample collection.

LDC #: 54604AIa

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	_/of	/
Reviewer:	Q	

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

N/A Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

Y/N N/A Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF ?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit: <u>≥</u> 0.05)	Associated Samples	Qualifications (5)
	7/12/22	VL/BCD/	⊅	69.8		33. MB (NO)	-Var A
 			4	201			
\vdash	7/13/22	(clong)	<u> </u>	98.1		33. MD (NO)	- VUIX
		(210-9 5)					/
	T/2/22	*L2/CO1	7D	41.6		11,14.20.54-55	J/H/A
	·/	•				MB (ND)	
		R125C0	KKK	~18		IT IS UP MAN	
 	(PSP-		444	21.8.		12.15.MB(NO)	
			NNN	23.4			
	7/5/52	R125524	Б	65.7		12.15. MB(ND)	-VIN/A
 	, 	(closing)	<u>)</u> 				
	7/1/2>	- XLIICO/	ar	23.5		1-6.8-10 13,	- TAL A
	49	<i></i>	R	21.1		50-51. MB (ND)	
				· · · · · · · · · · · · · · · · · · ·			
-							
		······································					
							· · · · · · · · · · · · · · · · · · ·

LDC #:34604

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

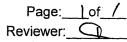
Page: Reviewe

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y/N/A Were all surrogate %R within QC limits?

(YN N/A


If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

#	Date	Sample ID	Surrogate	%Recover	ry (Limits)	Qualifi	cations
		11 (ND)	DCE	56	(71-130)	NANA	(13)
		~	BFB OFM	78 53	(79-119)		
			DFM		(78-119)		
			TOL	49	(85-11-6)		
 -		()					
		1= (NO)	itce BFB	50	()		
┣┣			BF35	Tb	()		
			DFM .	46 44	()		
┣			TOL	- 44	(_V)		
		IZ IND)	<i><i>5</i></i>	45	(71-136		
	<u></u>		DFAL	43	(78-119)		
			TOL	43	(83-116)		
		f			()		
		15 (ND)	DEE	36	()		
		``````````````````````````````````````	DFM	32	()		
			DECE DEM TOL	34			
					()		
		20 (ND)	DCE	58	( )		
<b> </b>			OFM	57	(_/_)		
∦∔			TOL	55	( V )	√	
╟∔	<u> </u>				)		
∦∔							
∦∔		+					

(TOL) = Toluene-d8 (BFB) = Bromofluorobenzene (DCE) = 1,2-Dichloroethane-d4 (DFM) = Dibromofluoromethane

LDC #: 54604A

## VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates



## METHOD : GC/MS VOA (EPA SW 846 Method 8260C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

(<u>Y/N_N/A</u> Y/N)N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		50/5	see	nexit page	ges ful TO FR	out ()	2 (ND)	-Het3/A
		/	see		PS JUN RPD	out ()		V
			NNN		ST 66-130	( )		Vill (8)
				62 (57-29)	65 (6T-1=9)			
$\ $				( )	( )			
		59/53	NNN	0 66-130	2T 66-30	( )	19(ND)	V/X/A(8)
			KKK	0 47-129	0 (67-1=9)	( )		
			BBB	9 (72-p4)	33 (72-124)	()		
			44	0 (6/125)	26 (6/-135)			
				PD out +		+ pages) - pake)		1/11/4(8)
╟┿	7				( )			Natel 7 A
		54/35	H	60 (70-13/)	69 (70-131)	( )	20 (N/2)	J/W/A (8)
		735	$\overline{D}$	()	167 (59-139)	( )	20 (1/3)	Jotz A
			$\mathcal{D}$	( )	( )	23 (220)		Hot3/A (9)
		· · · · · · · · · · · · · · · · · · ·		( )	( )	( )		
		56/57	\$B	1=9(70+24	126 70-124	()	40 (NO)	Shet3/A 18)
				( )	( )	( )		
				( )	( )	( )		
$\square$				( )	( )	( )		
				( )	( )	( )		
				( )	( )	( )		
				()	( )	( )		
				()	( )	()		

Client: EA Engineering, Science, and Technology Project/Site: NAVFAC NW Keyport Area 1 and Area 2 Supplemental

## Method: 8260D - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 410-89884 Matrix: Solid Analysis Batch: 274095	4-2 MS	50/	[5]			Cli	ent S	ample	Prep Ty	2-22-SB-13- pe: Total/N/ atch: 27236
analysis Batch. 274055	Samplo	Sample	Spike	MS	MS				%Rec	aton. 27200
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	0.0011		0.0136	0.0149		mg/Kg	— <u>–</u>	110	78 - 125	
I,1,1-Trichloroethane	0.0011		0.0136	0.0176		mg/Kg	¢	130	73 - 130	
1,1,2,2-Tetrachloroethane	0.00056		0.0136	0.0166	*3	mg/Kg	¢	123	70 - 124	
1,1,2-Trichloroethane	0.0011		0.0136	0.0160	•	mg/Kg	₽	118	78 - 121	
I,1-Dichloroethane	0.0011		0.0136	0.0177	FH	mg/Kg	\$	131	76 - 125	Ŧ
I,1-Dichloroethene	0.0011		0.0136	0.0200		mg/Kg	₽	148	70 - 131	H H
I,1-Dichloropropene		U ^c FH	0.0136	0.0192		mg/Kg	¢	141	76 - 125	RR
1,2,3-Trichlorobenzene	0.0045	U F2 FL	0.0136	0.00735	FL *3	mg/Kg	₿	54	66 - 130	
I,2,3-Trichloropropane	0.0011		0.0136	0.0160		mg/Kg	¢	118	73 - 125	
1,2,4-Trichlorobenzene	and the second second	U F2 FL	0.0136	0.00846		mg/Kg	÷.	62	67 - 129	
1,2-Dichlorobenzene	0.0011		0.0136	0.0125		mg/Kg	¢	92	78 - 121	
1,2-Dichloroethane	0.0011		0.0136	0.0123	v	mg/Kg	¢	112	73 - 128	
1,2-Dichloropropane		U [^] c F2 FH cn	0.0136	0.0173	FH	mg/Kg	¢	128	76 - 123	R
1,3-Dichlorobenzene	0.0011		0.0136	0.0132	*3	mg/Kg	₽	98	77 ₋ 121	
,3-Dichloropropane	0.00056	U F2	0.0136	0.0154	-	mg/Kg	¢	113	77 - 121	
,4-Dichlorobenzene	0.00056		0.0136	0.0128	*3	mg/Kg	¢	94	75 - 120	
2,2-Dichloropropane	0.0011		0.0136	0.0183		mg/Kg	¢	135	67 - 133	00
2-Chlorotoluene	0.00056		0.0136	0.0162		mg/Kg	₽	119	75 - 122	
1-Chlorotoluene	0.00056		0.0136	0.0154		mg/Kg	¢	114	72 - 124	
Carbon tetrachloride	0.0011		0.0136	0.0172	Ū	mg/Kg	¢	127	70 - 135	
Chlorobenzene	0.0011		0.0136	0.0152		mg/Kg	¢	112	79 - 120	
Chloroethane	0.0022		0.0136	0.0181		mg/Kg	÷.	134	59 - 139	
Chloroform	0.0011		0.0136	0.0164		mg/Kg	¢	121	78 - 123	
Chloromethane	0.0011		0.0136	0.0164		mg/Kg	¢	121	50 - 136	
cis-1,2-Dichloroethene	0.0011		0.0136	0.0174	FH	mg/Kg		128	77 - 123	R
cis-1,3-Dichloropropene	0.00056		0.0136	0.0150		mg/Kg	¢	111	74 - 126	1 -
Hexachlorobutadiene	0.0045		0.0136	0.0101	*3	mg/Kg	¢	74	61 - 135	
Methylene Chloride	0.0022		0.0136	0.0168	0	mg/Kg	¢	124	70 - 128	
Tetrachloroethene	0.0011		0.0136	0.0173		mg/Kg	¢	123	73 - 128	
rans-1,2-Dichloroethene	0.0011		0.0136	0.0182	FH	mg/Kg	¢	134	74 - 125	DPP
rans-1,3-Dichloropropene	0.00056		0.0136	0.0151		mg/Kg	¢	111	71 - 130	711
Trichloroethene	0.00000		0.0136	0.0175	FH	mg/Kg	×	129	77 - 123	5
Vinyl chloride	0.0011		0.0136	0.0173		mg/Kg	¢	128	56 - 135	
0		MS	1 :							
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	87		71 - 136 70 - 110							
4-Bromofluorobenzene (Surr)	92		79 - 119 78 - 110							
Dibromofluoromethane (Surr)	88		78 - 119							
Toluene-d8 (Surr)	103		85-116							

Analysis Batch: 274095								Prep Ba	atch: 27	/2368
	Sample Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane UU	0.0011 U FH	0.0104	0.0131	FH	mg/Kg	¢	126	78 - 125	13	20

Eurofins Lancaster Laboratories Environment Testing, LLC

Client: EA Engineering, Science, and Technology Project/Site: NAVFAC NW Keyport Area 1 and Area 2 Supplemental

## Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 410-8 Matrix: Solid Analysis Batch: 2740	95	50/3 Sample	Spike	MSD	MSD	Cli	ent S	ample	Prep Ty	D: Area-2-22-SB-1 Prep Type: Total Prep Batch: 272	
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	RPI Limi
1,1,1-Trichloroethane	<u> </u>	U FH	0.0104	0.0159			– <del>–</del>	153	73 - 130	10	2
	0.00056		0.0104	0.0109		mg/Kg			73 - 130 70 - 124		
1,1,2,2-Tetrachloroethane						mg/Kg	¢	104		42	2
1,1,2-Trichloroethane	<u>U</u> 0.0011		0.0104	0.0108		mg/Kg	¢	105	78 - 121	38	20
1,1-Dichloroethane	<b>T</b> 0.0011		0.0104	0.0151		mg/Kg	¢	146	76 - 125	16	20
1,1-Dichloroethene	H 0.0011		0.0104	0.0176		mg/Kg	₽	170	70 - 131	13	20
		U ^c FH	0.0104	0.0172	FH	mg/Kg	¢	166	76 - 125	11	20
1,2,3-Trichlorobenzene	VNN 0.0045	cn U F2 FL	0.0104	0 00596	F2 *3 FL	mg/Kg	¢	57	66 - 130	21	20
1,2,3-Trichloropropane	×× 0.0011		0.0104	0.00934		mg/Kg	÷	90	73 - 125	53	20
1,2,4-Trichlorobenzene		U F2 FL	0.0104		F2 *3 FL	mg/Kg	¢	65	67 - 129	23	20
1,2-Dichlorobenzene	0.0011		0.0104	0.00072		mg/Kg	¢	103	78 - 123	16	20
1,2-Dichloroethane			0.0104	0.0100		mg/Kg	¢	97	73 - 121	41	20
	<b>^</b>	U ^c F2	0.0104	0.0139		• •	¢	134	76 - 123	22	20
1,2-Dichloropropane	0.0011	FH cn	0.0104	0.0139	FULT	mg/Kg	*	134	70-123	22	20
1.3-Dichlorobenzene	0.0011		0.0104	0.0122	*3	mg/Kg	¢	118	77 - 121	8	20
,	<b>S</b> 0.00056		0.0104	0.0107		mg/Kg	☆	103	77 ₋ 121	36	20
1,4-Dichlorobenzene	0.00056		0.0104	0.0115		mg/Kg	ta ta	111	75 - 120	11	20
2,2-Dichloropropane	-		0.0104	0.0165		mg/Kg	¢	159	67 - 133	10	2
2-Chlorotoluene			0.0104	0.0163		mg/Kg	¢	157	75 - 122	1	2
	3 0.00056		0.0104	0.0150		mg/Kg		144	72 - 124	3	2
	0.0011		0.0104	0.0155		mg/Kg	¢	149	70 - 135	10	20
	D 0.0011		0.0104	0.0133		mg/Kg	¢	129	79 - 120	13	20
Chloroethane T			0.0104	0.0164		mg/Kg	÷.	158	59 - 139	10	20
Chloroform	v 0.0011		0.0104	0.0138		mg/Kg	¢	133	78 - 123	17	2
Chloromethane	A 0.0011		0.0104	0.0163		mg/Kg	¢	157	50 - 136		20
cis-1,2-Dichloroethene	RR 0.0011		0.0104	0.0143		mg/Kg	¢	138	77 - 123	20	2
cis-1,3-Dichloropropene	R 0.00056		0.0104	0.0140		mg/Kg	¢	108	74 - 126	29	2
Hexachlorobutadiene	0.0045		0.0104	0.0112		mg/Kg	¢	111	61 - 135	14	2
Methylene Chloride	-		0.0104	0.0110		mg/Kg	÷	125	70 - 128	25	2
· · ·			0.0104	0.0130				125	70 - 128 73 - 128	25	2
•	$\overrightarrow{PPP}$ 0.0011		0.0104	0.0107		mg/Kg	¢		73 - 128 74 - 125		2
trans-1,2-Dichloroethene						mg/Kg		150		16	
trans-1,3-Dichloropropene	•	U F2	0.0104	0.0109		mg/Kg	\$ \$	105	71 - 130	32	20
	<b>S</b> 0.0011		0.0104	0.0153		mg/Kg	Å	147	77 - 123	14	2
Vinyl chloride	0.0011	UFH	0.0104	0.0173	FN	mg/Kg	☆	166	56 - 135	1	2
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr,	70	S1-	71 - 136								
4-Bromofluorobenzene (Sun	) 86		79 - 119								
Dibromofluoromethane (Sur	) 79		78 - 119								
Toluene-d8 (Surr)	110		85 - 116								
• •			5 =	100	5						
Lab Sample ID: 410-8	9884-15 MS		5-	/ >/		Clie	nt Sa	mple II	D: Area-2-		
Matrix: Solid			,						Prep Ty	-	
Analysis Batch: 2749									Prep Ba	atch: 2	72436
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		

Added **Result Qualifier** Unit Limits Result Qualifier %Rec 0.0012 U F2 FL 0.0135 0.00440 FL*3 ₽ 33 1,1,1,2-Tetrachloroethane mg/Kg 78 - 125 UV *3 cn

Eurofins Lancaster Laboratories Environment Testing, LLC

Client: EA Engineering, Science, and Technology Project/Site: NAVFAC NW Keyport Area 1 and Area 2 Supplemental

## Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 410-89884-1 Matrix: Solid Analysis Batch: 274950	5 MS	52/	57			Clie	nt Sa	mple IC	): Area-2-22-SB-10-10 Prep Type: Total/NA Prep Batch: 272436
•	Sample	Sample	Spike	MS	MS				%Rec
Analyte		Qualifier	Added		Qualifier	Unit	<u>D</u>	%Rec	Limits
1,1,1-Trichloroethane	0.0012	U FL *3 cn	0.0135	0.00611	FL *3	mg/Kg	¢	45	73 - 130
1,1,2,2-Tetrachloroethane	0.00061	U *3 cn	0.0135	0.0110	*3	mg/Kg	₽	82	70 - 124
1,1,2-Trichloroethane	0.0012	U FL *3 cn	0.0135	0.00873	FL *3	mg/Kg	₽	65	78 - 121
1,1-Dichloroethane	0.0012	U FL *3 cn	0.0135	0.00683	FL *3	mg/Kg	¢	51	76 - 125
1,1-Dichloroethene $H$	0.0012	U FL *3 cn	0.0135	0.00774	FL *3	mg/Kg	¢	57	70 - 131
1,1-Dichloropropene RR	0.0012	U F2 FL *3 cn	0.0135	0.00519	FL *3	mg/Kg	¢	38	76 ₋ 125
1,2,3-Trichlorobenzene	0.0049	U FL *3 cn	0.0135	0.0054	U FL *3	mg/Kg	☆	<u> </u>	<del>- 66 - 130 -</del>
1,2,3-Trichloropropane $XX$	0.0012	U FL *3 cn	0.0135	0.00963	FL *3	mg/Kg	¢	71	73 - 125
1,2,4-Trichlorobenzene	0.0049	U FL *3 cn	0.0135	0.0054	U FL *3	mg/Kg	¢	0	67 - 129
1,2-Dichlorobenzene	0.0012	U F2 FL *3 cn	0.0135	0.00252	J FL *3	mg/Kg	₽	19	78 - 121
1,2-Dichloroethane	0.0012	U F2 FL *3 cn	0.0135	0.00712	FL *3	mg/Kg	¢	53	73 - 128
1,2-Dichloropropane	0.0012	U F2 FL *3 cn	0.0135	0.00703	FL *3	mg/Kg	¢	52	76 - 123
1,3-Dichlorobenzene FFF	0.0012	U F2 FL *3 cn	0.0135	0.00183	J FL *3	mg/Kg	¢	14	77 - 121
1,3-Dichloropropane	0.00061		0.0135	0.00754	FL *3	mg/Kg	¢	56	77 - 121
1,4-Dichlorobenzene HHH	0.00061	U F2 FL *3 cn	0.0135	0.00193	J FL *3	mg/Kg	¢	14	75 - 120
2,2-Dichloropropane $OO$	0.0012	U FL *3 cn	0.0135	0.00725	FL *3 M	mg/Kg	¢	54	67 - 133
2-Chlorotoluene	0.00061	U F2 FL *3 cn	0.0135	0.00236	J FL *3	mg/Kg	₽	17	75 - 122
4-Chiorotoluene	0.00061	U F2 FL *3 cn	0.0135	0.00124	J FL *3	mg/Kg	¢	9	72 <u>-</u> 124
Carbon tetrachloride	0.0012	U F2 FL *3 cn	0.0135	0.00507	FL *3 M	mg/Kg	₽	38	70 - 135
Chlorobenzene	0.0012	U F2 FL *3 cn	0.0135	0.00299	J FL *3	mg/Kg	¢	22	79 - 120
Chloroethane	0.0025	U F2 *3	0.0135	0.00962	*3	mg/Kg	¢	71	59 - 139
Chloroform	0.0012	cn U F2 FL *2 en	0.0135	0.00625	FL *3	mg/Kg	₽	46	78 - 123
Chloromethane	0.0012	*3 cn U F2 *3	0.0135	0.0127	*3 M	mg/Kg	¢	94	50 - 136
cis-1,2-Dichloroethene	0.0012	cn U F2 FL	0.0135	0.00608	FL *3 M	mg/Kg	¢	45	77 - 123
cis-1,3-Dichloropropene R	0.00061	*3 cn U F2 FL *2 en	0.0135	0.00444	FL *3	mg/Kg	¢	33	74 - 126
Hexachlorobutadiene	0.0049	*3 cn U FL *3	0.0135	0.0054	U FL *3	mg/Kg	₽	<del>0</del>	61-135
Methylene Chloride	0.0025	cn U FL *3 cn	0.0135	0.00762	FL *3	mg/Kg	₽	57	70 - 128

Client: EA Engineering, Science, and Technology Project/Site: NAVFAC NW Keyport Area 1 and Area 2 Supplemental

## Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 410-89884-15 MS Matrix: Solid Analysis Batch: 274950				57	57		Clie	nt Sa	mple IC	Prep Ty	: Area-2-22-SB-10-10 Prep Type: Total/NA Prep Batch: 272436	
		Sample	Sample	Spike	/ мз	MS				%Rec		
Analyte		Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Tetrachloroethene	AA	0.0012	U F2 FL *3 cn	0.0135	0.00290	J FL *3	mg/Kg	⊉	21	73 - 128		
trans-1,2-Dichloroethene	PPP	0.0012	U F2 FL *3 cn	0.0135	0.00510	FL *3 M	mg/Kg	¢	38	74 - 125		
trans-1,3-Dichloropropene	W	0.00061	U F2 FL *3 cn	0.0135	0.00481	FL *3	mg/Kg	₽	36	71 - 130		
Trichloroethene	5	0.0012	U F2 FL *3 cn	0.0135	0.00392	FL *3	mg/Kg	¢	29	77 - 123		
Vinyl chloride		0.0012	U F2 *3 cn	0.0135	0.0104	*3 M	mg/Kg	¢	77	56 - 135		

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90	*3	71 - 136
4-Bromofluorobenzene (Surr)	89	*3	79 - 119
Dibromofluoromethane (Surr)	96	*3	78 - 119
Toluene-d8 (Surr)	103	*3	85-116

## Lab Sample ID: 410-89884-15 MSD Matrix: Solid

Analysis Batch: 274950									Prep Ba	atch: 27	/2436
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane UU	0.0012	U F2 FL *3 cn	0.0119	0.00705	F2 FL	mg/Kg	¢	59	78 - 125	46	20
1,1,1-Trichloroethane	0.0012	U FL *3 cn	0.0119	0.00735	FL	mg/Kg	₽	62	73 - 130	18	20
1,1,2,2-Tetrachloroethane	0.00061	U *3 cn	0.0119	0.0109		mg/Kg	☆	92	70 - 124	1	20
1,1,2-Trichloroethane	0.0012	U FL *3 cn	0.0119	0.00971		mg/Kg	₽	82	78 - 121	11	20
1,1-Dichloroethane	0.0012	UFL*3 cn	0.0119	0.00796	FL	mg/Kg	₽	67	76 - 125	15	20
1,1-Dichloroethene	0.0012	U FL *3 cn	0.0119	0.00764	M FL	mg/Kg	¢	64	70-131	1	20
1,1-Dichloropropene	0.0012	U F2 FL *3 cn	0.0119	0.00691	F2 FL	mg/Kg	¢	58	76 - 125	29	20
1,2,3-Trichlorobenzene	0.0049	U FL *3 cn	0.0119	0.00323	J FL	mg/Kg	¢	-27	<del>- 66 - 130</del>	<del>NG</del> 2	<b>200</b> 20
1,2,3-Trichloropropane $\times X$	0.0012	U FL *3 cn	0.0119	0.0107		mg/Kg	¢	90	73 - 125	11	20
1,2,4-Trichlorobenzene	0.0049	U FL *3 cn	0.0119	0.0048	U FL	mg/Kg	¢	0	67 - 129	NC	20
1,2-Dichlorobenzene	0.0012	U F2 FL *3 cn	0.0119	0.00437	F2 FL	mg/Kg	₽	37	78 - 121	54	20
1,2-Dichloroethane	0.0012	U F2 FL *3 cn	0.0119	0.00894	F2	mg/Kg	¢	75	73 - 128	23	20
1,2-Dichloropropane	0.0012	U F2 FL *3 cn	0.0119	0.00866	F2 FL	mg/Kg	₽	73	76 - 123	21	20
1,3-Dichlorobenzene FFF	0.0012	U F2 FL *3 cn	0.0119	0.00365	F2 FL	mg/Kg	¢	31	77 - 121	66	20
1,3-Dichloropropane	0.00061	U FL *3 cn	0.0119	0.00883	FL	mg/Kg	₽	74	77 - 121	16	20

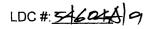
Client Sample ID: Area-2-22-SB-10-10 Prep Type: Total/NA

Client: EA Engineering, Science, and Technology Project/Site: NAVFAC NW Keyport Area 1 and Area 2 Supplemental

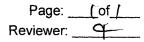
## Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 410-89884 Matrix: Solid	-15 MSD		C	52/5	7	Client Sample ID: Area-2-22-SB-1 Prep Type: Tota Prep Batch: 27					
Analysis Batch: 274950	_									itch: 27	
	•	Sample	Spike		MSD				%Rec		RPD
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	0.00061	U F2 FL *3 cn	0.0119	0.00341	F2 FL	mg/Kg	\$	29	75 - 120	55	20
2,2-Dichloropropane	0.0012	U FL *3 cn	0.0119	0.00702	FL	mg/Kg	¢	59	67 - 133	3	20
2-Chlorotoluene ZZ		U F2 FL *3 cn	0.0119	0.00451	F2 FL	mg/Kg	₽	38	75 - 122	63	20
4-Chlorotoluene BBB	0.00061	U F2 FL *3 cn	0.0119	0.00391	F2 FL	mg/Kg	₽	<del>,33</del>	72_124	104	20
Carbon tetrachloride	0.0012	U F2 FL *3 cn	0.0119	0.00657	F2 FL	mg/Kg	₽	55	70 - 135	26	20
	0.0012	U F2 FL *3 cn	0.0119	0.00547	F2 FL	mg/Kg	₽	46	79 - 120	59	20
Chloroethane D	0.0025	U F2 *3 cn	0.0119	0.00779	F2	mg/Kg	₽	66	59 - 139	21	20
Chloroform	0.0012	U F2 FL *3 cn	0.0119	0.00777	F2 FL	mg/Kg	₽	65	78 - 123	22	20
Chloromethane A		U F2 *3 cn	0.0119	0.00816	F2	mg/Kg	☆	69	50 - 136	44	20
cis-1,2-Dichloroethene	0.0012	U F2 FL *3 cn	0.0119	0.00849	F2 FL	mg/Kg	☆	71	77 - 123	33	20
cis-1,3-Dichloropropene R		U F2 FL *3 cn	0.0119	0.00706	F2 FL	mg/Kg	¢	59	74 - 126	46	20
Hexachlorobutadiene	- 0.0049	U FL *3 cn	0.0119	0.00304	J FL	mg/Kg	¢	_26_	61_135	ME 2	<b>DO</b> 20
Methylene Chloride	0.0025	U FL *3 cn	0.0119	0.00884		mg/Kg	☆	74	70 - 128	15	20
Tetrachloroethene	-	U F2 FL *3 cn	0.0119	0.00560	F2 FL	mg/Kg	☆	47	73 - 128	64	20
trans-1,2-Dichloroethene	',	U F2 FL *3 cn	0.0119	0.00685	F2 FL	mg/Kg	¢	58	74 - 125	29	20
trans-1,3-Dichloropropene N	0.00061	U F2 FL *3 cn	0.0119	0.00720	F2 FL	mg/Kg	¢	61	71 - 130	40	20
Trichloroethene S	0.0012	U F2 FL *3 cn	0.0119	0.00649	F2 FL	mg/Kg	¢	55	77 - 123	49	20
Vinyl chloride		U F2 *3 cn	0.0119	0.00723	F2	mg/Kg	₽	61	56 - 135	36	20
		MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	90		71 - 136								
4-Bromofluorobenzene (Surr)	96		79 - 119								

 Dibromofluoromethane (Surr)
 89
 78 - 119


 Toluene-d8 (Surr)
 101
 85 - 116

## Lab Sample ID: 410-89884-15 MS Matrix: Solid


# Client Sample ID: Area-2-22-SB-10-10

Matrix: Solid Analysis Batch: 277983	Sample	Sample	Spike	MS	MS				Prep Type: Total/NA Prep Batch: 272437 %Rec
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	0.21	UHcn	0.925	1.03	D H cn	mg/Kg	☆	111	78 - 125
1,1,1-Trichloroethane	0.10	U H cn	0.925	0.806	D H cn	mg/Kg	₽	87	73 - 130
1,1,2,2-Tetrachloroethane	0.052	U M H cn	0.925	1.02	D H cn	mg/Kg	₽	111	70 - 124
1,1,2-Trichloroethane	0.10	U H cn	0.925	1.02	D H cn	mg/Kg	¢	110	78 - 121

Eurofins Lancaster Laboratories Environment Testing, LLC



# VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)



#### METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".



Was a LCS required?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	13	spato-574901	Ð	168 159-139	162 (59-139)	( )	33. NB(NO)	Het3A
				( )	( )	()		
				( )	( )	( )		
				( )	()	()		
	100	DA10-277983	≯	173 (59-139)	160 (59-139)	( )	11,14,20 UB	tet= P
		1		( ')	( ')	( )	IND)	
				()	( )	( )	,	
				()	()	()		
				( )	( )	( )		
				( )	( )	( )		
				()	( )	()		
				()	()	( )		
<b> </b>				()	()	()		
				( )	( )	( )		
		•		( )	()	( ·)		
				()_	()	( )		
				( )	( )	( )		
				( [·] )	( )	( )		
				()	( )	()		
				()	( )	( )		
				( )	( )	( )		
				( )	( )	()		
				( )	( )	()		
				( )	()	( )		

LDC #: 5AECALA

# VALIDATION FINDINGS WORKSHEET Internal Standards

Page:_	∠of_	$\underline{/}$
Reviewer:_	9	

## METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

WN/A Were all internal standard area counts within -50 to +100% of the associated calibration standard?

N/A Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
		10 (NB)	CB2	488750 (503835-201	5340)	-1/41/ X-1see cgd
			40CB	251358 (700802-120	3-20 8)	+able)
					, 	
<b> </b>		12 (1)		10000 - Company - Do		
		(3(ND))	FB CB2	121242 (508614-230	$\left( \frac{14}{2} \right)$	-1/X/AIITE
			40CB	122042 (588604-235 101746 (503835-20) 54911 (300802-120)	3208)	
					/	
		19 (ND)	FB -332	414071 (616598-2466 328938 (496003-1984 1847-6 (280860-1123	390)	V/H/A LallTer
		-	<u> 32</u>	328938 (496003-1984		·····
┣			40eB	184720 (280860-11-2	44.0)	₩
		in 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199 I				
┣						
<b> </b>		······	······			

(FBZ) = Fluorobenzene

(BCM) = Bromochloromethane (DFB) = 1,4-Difluorobenzene (CBZ) = Chlorobenzene-d5 (PFB) = Pentafluorobenzene

(4DCB) = 1,4-Dichlorobenzene-d4 (2DCB) = 1,2-Dichlorobenzene-d4

LDC # 3460+19

## VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	of
Reviewer:	<u> </u>

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

<u>W/N N/A</u> Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Findings	Qualifications
		11-12, 15	A11	HT out	NR/X
		· · · · · · · · · · · · · · · · · · ·			
		13	A11	IS out	me/A
<b> </b>				· · · · · · · · · · · · · · · · · · ·	
		19	NNN, HK. BBB. 212	MS ION	
		20	All except NNN, HE	EBB 112- most	uşable V
			·		

Comments: _____

LDC #: 34604 \$19

# VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Reviewe

## METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = $(A_x)(C_{is})'(A_{is})(C_x)$ $A_x$ = Area of compouaverage RRF = sum of the RRFs/number of standards $C_x$ = Concentration o%RSD = 100 * (S/X)S = Standard deviationX = Mean of the RRFX = Mean of the RRF		compound, n of the RRFs	A _{is} = Area of asso C _{is} = Concentration	ociated internal stan on of internal standa	dard ard					
					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Refer	ence Internal Standard)	RRF (50 std)	RRF (570std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1		, ,	2	(1st internal standard)	0.3188	0.3188	0.3105	0.3105	10.4	10.4
	KAZ	1/11/22	AA	(2nd internal standard)		0.4187		0.3844	14.2	H.~
			FFF	(3rd internal standard)	1.7242	1.7242	1.6308	1.6308	10.	10,1
				(4th internal standard)						
2				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						
		L		(4th internal standard)						
3				(1st internal standard)						
				(2nd internal standard)						
				(3rd internal standard)						
				(4th internal standard)						
4				(1st internal standard)						
			_	(2nd internal standard)						
				(3rd internal standard)						
				(4th internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results



Page: **Reviewer**:

## METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF =  $(A_x)(C_{is})/(A_{is})(C_x)$ 

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF  $A_x$  = Area of compound,

 $C_x = Concentration of compound,$ 

 $A_{is}$  = Area of associated internal standard  $C_{is}$  = Concentration of internal standard

#	Standard ID	Calibration	Compound (Reference internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	XLIIL01	7/11/22	(1st internal standard)	0.3105	0.3062	0.3062	1.4	1.4
		() ()	(2nd internal standard)	0.38+4	0.409T	0.4-9T	II. B	8.11
			(3rd internal standard)	1.6308	1.625	1.6250	0A	04
			(4th internal standard)					
2	x413Co/	7/12/22	(1st internal standard)	0.3105	0.2712	0.2T12	12.7	12.T
			AX (2nd internal standard)	0.3844	0.3709	0.3709	3.5	3.5
			(3rd internal standard)	1.6308	1.541	1.54/	5.5	5.5
			(4th internal standard)					
3			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
4		•••	(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)		L			
			(4th internal standard)					

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 5604A 9

# VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	/of	
Reviewer:	<u>`</u> a	<u>}</u>

## METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

#### Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane	50.0	45.0	90	90	
1,2-Dichloroethane-d4	1	46.4	93	93	
Toluene-d8	/	47.1	94	94	
Bromofluorobenzene		48.1	96	96	

#### Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

## Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

## Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

## Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

LDC #: 560tAla

# VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page:_	et	_
Reviewer:	$\overline{}$	

#### METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

50

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentration

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD sample: ____

Compound	Ad	ike ded.	Sample Concentration (WSA <del>BS</del>	Spiked S Concent ( <i>MS</i>	•	<u>Matrix</u> Percent R		Matrix Spike			RPD
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
1,1-Dichloroethene	0.0126	0.010k	NB	0.0200	0.0176	148	HT	170	169	17	13
Trichloroethene	V	V	V	0.0175	0.0153	129	129	147	147	14	H
Benzene						· /			, 		
Toluene											
Chlorobenzene	0.0136	0.0102	NÞ	0.0152	0.0133	112	112	129	128	13	13

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 54%

# VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: Reviewer

#### METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

# LCS ID: 410-274095

	Ad	Spike Spiked Sample <u>ICS</u> Added Concentration		Concentration		LCSD				
Compound	(M)	5/63	(MZ	tes	Percent R	Recovery	Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene	0.0.200	0.020	0.0-34	0.0=32	117	117	114	IL		
Trichloroethene	$\checkmark$	V	0.0=32	0.0731	16	116	116	116	0	1
Benzene										
Toluene										
Chlorobenzene	0.0200	0.0-00	0.0210	0.0202	105	105	10]	10)	4	4

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 54604 9

%S

=

# VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	
Reviewer:_	9

#### METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

Y <u>N N/A</u>	Were all reported results recalculated ar	id verified for all level IV samples?	s?
Y <u>N N/A</u>	Were all recalculated results for detected	I target compounds agree within 10.0% of the reported result	
Concentration =	(A,)(I,)(DF) (A,)(BRE)(V,)(%S)	Example:	

		$(A_{is})(RRF)(V_{o})(703)$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
$A_{is}$	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)
RRF	=	Relative response factor of the calibration standard.
Vo	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).
Df	=	Dilution factor.

Percent solids, applicable to soils and solid matrices

Sample I.D. ____;

Conc. = (11/22) (50.) (5) (1)(108009) (0.3105) (9.984) (0.84) (1000)= 0.00099 ME/5

%5	only.				
#	Sample ID	Compound	Reported Concentration MS/H=Ss	Calculated Concentration ()	Qualification
	28	e	0.00099		
·			-		
-					
					<b>├────</b> ┤

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	NBK Keyport OU2
--------------------	-----------------

LDC Report Date: August 19, 2022

Parameters: Volatiles

Validation Level: Stage 2B

Laboratory: Eurofins, Lancaster, PA

Sample Delivery Group (SDG): 410-90316-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
AREA-2-22-SB-17-0.5	410-90316-1	Soil	06/27/22
AREA-2-22-SB-17-0.5RE	410-90316-1RE	Soil	06/27/22
AREA-2-22-SB-17-10	410-90316-2	Soil	06/27/22
AREA-2-22-SB-17-10RE	410-90316-2RE	Soil	06/27/22
AREA-2-22-SB-17-1-10	410-90316-3	Soil	06/27/22
AREA-2-22-SB-17-20	410-90316-4	Soil	06/27/22
AREA-2-22-SB-17-20RE	410-90316-4RE	Soil	06/27/22
AREA-2-22-SB-18-0.5	410-90316-5	Soil	06/28/22
AREA-2-22-SB-18-10	410-90316-6	Soil	06/28/22
AREA-2-22-SB-18-20	410-90316-7	Soil	06/28/22
FB-062722	410-90316-8	Water	06/27/22
FB-062822	410-90316-9	Water	06/28/22
TB-062722	410-90316-10	Soil	06/27/22
AREA-2-22-SB-12-0.5	410-90316-11	Soil	06/28/22
AREA-2-22-SB-12-5	410-90316-12	Soil	06/28/22
AREA-2-22-SB-12-10	410-90316-13	Soil	06/28/22
AREA-2-22-SB-12-20	410-90316-14	Soil	06/28/22
AREA-2-22-SB-12-1-20	410-90316-15	Soil	06/28/22
AREA-2-22-SB-11-0.5	410-90316-16	Soil	06/28/22
AREA-2-22-SB-11-5	410-90316-17	Soil	06/28/22
AREA-2-22-SB-11-1-5	410-90316-18	Soil	06/28/22
AREA-2-22-SB-11-10	410-90316-19	Soil	06/28/22
AREA-2-22-SB-11-15	410-90316-20	Soil	06/28/22
AREA-2-22-SB-11-20	410-90316-21	Soil	06/28/22
AREA-2-22-SB-12-25	410-90316-22	Soil	06/28/22
TB-062822	410-90316-23	Soil	06/28/22

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date	
AREA-2-22-SB-18-20MS	410-90316-7MS	Soil	06/28/22	
AREA-2-22-SB-18-20MSD	410-90316-7MSD	Soil	06/28/22	

#### Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Tier I Sampling and Analysis Plan, Soil and Groundwater Investigation at Operable Unit 2 Area 2, Van Meter Road Spill/Drum Storage Site, Naval Base Kitsap Keyport, Keyport, Washington (April 2022), the U.S. Department of Defense (DoD) General Validation Guidelines (November 2019), and the DoD Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## **Qualification Codes**

- 1 Holding Times Exceeded
- 2 Sample Preservation / Cooler Temperature Exceeded Acceptance Criteria
- 3 Sample Custody Potentially Compromised Sample Integrity
- 4 Missing/Incomplete Deliverables
- 5 Calibration Did Not Meet Method Criteria
- 6 Equipment/Field Blank Contamination
- 7 Laboratory Method or Calibration Blank Contamination
- 8 Matrix Spike % Recovery Exceeded Acceptance Criteria
- 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) Exceeded Acceptance Criteria
- 10A Laboratory Control Sample % Recovery Exceeded Acceptance Criteria
- 10B Laboratory Control Sample Duplicate (RPD) Exceeded Acceptance Criteria
- 11 ICP Interference Check Analysis Exceeded Method Criteria
- 12 RPD Between Two Columns (Pesticides/PCBs only)
- 13 Surrogate Recoveries Exceeded Acceptance Criteria
- 14 Field Duplicates RPD Exceeded Project Criteria
- 15 Peak Resolution did not meet method criteria
- 16 Serial Dilution Analysis Exceeded Method Criteria
- 17 Chemical Recoveries Exceeded Acceptance Criteria
- 18 Trip Blank Contamination
- 19 Internal Standards Did Not Meet Method Criteria
- 20 Calibration Range exceeded Method Criteria
- 21 Potential False Positives
- 22 Do not use, other result more technically sound (overall assessment)
- 23 Estimated Maximum Possible Concentration
- 24 Trace Detection Below the LOQ (RL) and Above the DL (MDL)
- 25 Other

# I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
All samples in SDG 410-90316-1	All analytes	Cooler temperature was reported at 20.4°C and 21.6°C upon receipt by the laboratory.	Cooler temperature must be 4±2°C.	J (all detects) X (all non-detects)	A

Sample	Analyte	Finding	Criteria	Flag	A or P
FB-062722	All analytes	A headspace was apparent in the sample containers.	There should be no headspace in the sample containers.	J (all detects) UJ (all non-detects)	A

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
AREA-2-22-SB-17-0.5RE AREA-2-22-SB-12-20 AREA-2-22-SB-12-1-20 AREA-2-22-SB-11-0.5 AREA-2-22-SB-11-5 AREA-2-22-SB-11-5 AREA-2-22-SB-11-10 AREA-2-22-SB-11-15 AREA-2-22-SB-11-20	All analytes	15	14	J (all detects) UJ (all non-detects)	A
AREA-2-22-SB-17-10RE AREA-2-22-SB-17-20RE	All analytes	16	14	J (all detects) UJ (all non-detects)	A
AREA-2-22-SB-12-25	All analytes	17	14	J (all detects) UJ (all non-detects)	A

# II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

# **III. Initial Calibration and Initial Calibration Verification**

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0% with the following exceptions:

Date	Analyte	%RSD	Associated Samples	Flag	A or P
05/08/22	2,2-Dichloropropane Trichloroethene	15.1 15.1	AREA-2-22-SB-12-0.5 AREA-2-22-SB-12-20 AREA-2-22-SB-12-1-20 AREA-2-22-SB-11-0.5 AREA-2-22-SB-11-5 AREA-2-22-SB-11-15 AREA-2-22-SB-11-10 AREA-2-22-SB-11-15 AREA-2-22-SB-11-20	UJ (all non-detects) UJ (all non-detects)	A

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination ( $r^2$ ) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

## IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
07/14/22	Hexachlorobutadiene	21.1	AREA-2-22-SB-12-25	UJ (all non-detects)	А
07/11/22 (VL11C01)	Chloroethane trans-1,3-Dichloropropene	146.9 20.7	AREA-2-22-SB-17-20	UJ (all non-detects) UJ (all non-detects)	A
07/13/22	Chloroethane	69.8	AREA-2-22-SB-17-10RE AREA-2-22-SB-17-20RE	UJ (all non-detects)	A
07/12/22	Chloroethane	93.0	AREA-2-22-SB-12-5 AREA-2-22-SB-12-10	UJ (all non-detects)	A
07/11/22 (XL11C01)	1,1-Dichloropropene 1,2-Dichloropropane	23.5 21.1	AREA-2-22-SB-17-0.5 AREA-2-22-SB-17-1-10 TB-062722	UJ (all non-detects) UJ (all non-detects)	A
07/11/22 (LL11C51)	1,2-Dichloropropane Tetrachloroethene Hexachlorobutadiene	23.5 27.2 22.1	FB-062722 FB-062822	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes with the following exceptions:

Date	Analyte	%D	Associated Samples	Flag	A or P
07/11/22	Chloroethane	139.4	AREA-2-22-SB-17-20	UJ (all non-detects)	A
07/13/22	Chloroethane	98.1	AREA-2-22-SB-17-10RE AREA-2-22-SB-17-20RE	UJ (all non-detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

# V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

# VI. Field Blanks

Samples TB-062722 and TB-062822 were identified as trip blanks. No contaminants were found.

Samples FB-062722 and FB-062822 were identified as field blanks. No contaminants were found.

# VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
AREA-2-22-SB-17-10	1,2-Dichloroethane-d4 Bromofluorobenzene Dibromofluoromethane Toluene-d8	145 (71-136) 148 (79-119) 136 (78-119) 147 (85-116)	All analytes	J (all detects)	A
AREA-2-22-SB-17-10RE	Toluene-d8	118 (85-116)	All analytes	J (all detects)	А
AREA-2-22-SB-17-20	Bromofluorobenzene Dibromofluoromethane Toluene-d8	135 (79-119) 123 (78-119) 138 (85-116)	All analytes	J (all detects)	A
AREA-2-22-SB-12-5	Bromofluorobenzene Dibromofluoromethane Toluene-d8	148 (79-119) 137 (78-119) 144 (85-116)	All analytes	NA	-

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
AREA-2-22-SB-12-10	Bromofluorobenzene Dibromofluoromethane Toluene-d8	168 (79-119) 129 (78-119) 133 (85-116)	All analytes	NA	-

# VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) _(Limits)	Flag	A or P
AREA-2-22-SB-18-20MS/MSD (AREA-2-22-SB-18-20)	1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	147 (70-124) 143 (73-125)	136 (70-124) 131 (73-125)	NA	-
AREA-2-22-SB-18-20MS/MSD (AREA-2-22-SB-18-20)	Trichlorofluoromethane	-	64 (67-129)	UJ (all non-detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
AREA-2-22-SB-18-20MS/MSD (AREA-2-22-SB-18-20)	Chloromethane	22 (≤20)	NA	-

# IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/LCSD 410-274040 (AREA-2-22-SB-17-10 AREA-2-22-SB-17-20)	Chloroethane	266 (59-139)	245 (59-139)	NA	-
LCS/LCSD 410-274528 (AREA-2-22-SB-12-5 AREA-2-22-SB-12-10)	Chloroethane	196 (59-139)	171 (59-139)	NA	-
LCS/LCSD 410-274656 (AREA-2-22-SB-12-0.5)	cis-1,2-Dichloroethene	-	124 (77-123)	NA	-

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/LCSD 410-274901 (AREA-2-22-SB-17-10RE AREA-2-22-SB-17-20RE)	Chloroethane	168 (59-139)	162 (59-139)	NA	-

Relative percent differences (RPD) were within QC limits.

# X. Field Duplicates

Samples AREA-2-22-SB-17-10 and AREA-2-22-SB-17-1-10, samples AREA-2-22-SB-17-10RE and AREA-2-22-SB-17-1-10, samples AREA-2-22-SB-12-20 and AREA-2-22-SB-12-1-20, and samples AREA-2-22-SB-11-5 and AREA-2-22-SB-11-1-5 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (mg/Kg)				
Analyte	AREA-2-22-SB-17-10	AREA-2-22-SB-17-1-10	RPD (Limits)	Flag	A or P
Trichloroethene	0.13	0.17	27 (≤50)	-	-
cis-1,2-Dichloroethene	0.095U	0.0011	195 (≤50)	NQ	-

	Concentration (mg/Kg)				
Analyte	AREA-2-22-SB-17-10RE	AREA-2-22-SB-17-1-10	RPD (Limits)	Flag	A or P
Trichloroethene	0.13	0.17	27 (≤50)	-	-
cis-1,2-Dichloroethene	0.095U	0.0011	195 (≤50)	NQ	-

NQ = One or both results were less than the limit of quantitation (LOQ), therefore no data were qualified.

## XI. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

Sample	Internal Standards	Area (Limits)	Affected Analyte	Flag	A or P
AREA-2-22-SB-17-0.5	1,4-Dichlorobenzene-d4	278825 (300802-1203208)	1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane 2-Chlorotoluene 4-Chlorotoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobutadiene 1,2,3-Trichlorobenzene	UJ (all non-detects) UJ (all non-detects)	A

## XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

## XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

## XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

# XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to cooler temperature, data were qualified for recommended exclusion in twenty-three samples.

For samples AREA-2-22-SB-17-10, AREA-2-22-SB-17-10RE, AREA-2-22-SB-17-1-10, AREA-2-22-SB-12-0.5, AREA-2-22-SB-12-5, AREA-2-22-SB-12-10, AREA-2-22-SB-12-20, AREA-2-22-SB-11-0.5, AREA-2-22-SB-11-5, AREA-2-22-SB-11-15, AREA-2-22-SB-11-10, AREA-2-22-SB-11-15, AREA-2-22-SB-11-20, and AREA-2-22-SB-12-25 the laboratory indicates too much soil was added to the preserved containers for low- and high-level kit. The 50mL plastic unpreserved containers were used.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Analyte	Reason	Flag	A or P
AREA-2-22-SB-17-0.5RE AREA-2-22-SB-17-10RE AREA-2-22-SB-17-20RE	All analytes	Analyzed outside of holding time.	Not reportable	-

Due to cooler temperature, headspace, technical holding time, initial calibration %RSD, continuing calibration %D, surrogate %R, MS/MSD %R, and internal standard area, data were qualified as estimated in twenty-three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

# NBK Keyport OU2 Volatiles - Data Qualification Summary - SDG 410-90316-1

Sample	Analyte	Flag	A or P	Reason (Code)
AREA-2-22-SB-17-0.5 AREA-2-22-SB-17-10 AREA-2-22-SB-17-10 AREA-2-22-SB-17-10 AREA-2-22-SB-17-20 AREA-2-22-SB-18-0.5 AREA-2-22-SB-18-10 AREA-2-22-SB-18-20 FB-062722 FB-062722 AREA-2-22-SB-12-0.5 AREA-2-22-SB-12-5 AREA-2-22-SB-12-10 AREA-2-22-SB-12-10 AREA-2-22-SB-12-20 AREA-2-22-SB-11-0.5 AREA-2-22-SB-11-5 AREA-2-22-SB-11-15 AREA-2-22-SB-11-15 AREA-2-22-SB-11-15 AREA-2-22-SB-11-20 AREA-2-22-SB-11-20 AREA-2-22-SB-11-20 AREA-2-22-SB-11-20 AREA-2-22-SB-11-20 AREA-2-22-SB-12-25 TB-062822	All analytes	J (all detects) X (all non-detects)	A	Cooler temperature (2)
FB-062722	All analytes	J (all detects) UJ (all non-detects)	A	Sample condition (headspace) (2)
AREA-2-22-SB-12-20 AREA-2-22-SB-12-1-20 AREA-2-22-SB-11-0.5 AREA-2-22-SB-11-5 AREA-2-22-SB-11-1-5 AREA-2-22-SB-11-10 AREA-2-22-SB-11-15 AREA-2-22-SB-11-20 AREA-2-22-SB-12-25	All analytes	J (all detects) UJ (all non-detects)	A	Technical holding times (1)
AREA-2-22-SB-12-0.5 AREA-2-22-SB-12-20 AREA-2-22-SB-12-1-20 AREA-2-22-SB-11-0.5 AREA-2-22-SB-11-5 AREA-2-22-SB-11-15 AREA-2-22-SB-11-10 AREA-2-22-SB-11-15 AREA-2-22-SB-11-20	2,2-Dichloropropane Trichloroethene	UJ (all non-detects) UJ (all non-detects)	A	Initial calibration (%RSD) (5)
AREA-2-22-SB-12-25	Hexachlorobutadiene	UJ (all non-detects)	A	Continuing calibration (%D) (5)
AREA-2-22-SB-17-20	Chloroethane trans-1,3-Dichloropropene	UJ (all non-detects) UJ (all non-detects)	А	Continuing calibration (%D) (5)
AREA-2-22-SB-12-5 AREA-2-22-SB-12-10	Chloroethane	UJ (all non-detects)	А	Continuing calibration (%D) (5)

Sample	Analyte	Flag	A or P	Reason (Code)
AREA-2-22-SB-17-0.5 AREA-2-22-SB-17-1-10 TB-062722	1,1-Dichloropropene 1,2-Dichloropropane	UJ (all non-detects) UJ (all non-detects)	A	Continuing calibration (%D) (5)
FB-062722 FB-062822	1,2-Dichloropropane Tetrachloroethene Hexachlorobutadiene	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A	Continuing calibration (%D) (5)
AREA-2-22-SB-17-20	Chloroethane	UJ (all non-detects)	A	Continuing calibration (ending CCV %D) (5)
AREA-2-22-SB-17-10 AREA-2-22-SB-17-20	All analytes	J (all detects)	A	Surrogates (%R) (13)
AREA-2-22-SB-18-20	Trichlorofluoromethane	UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (%R) (8)
AREA-2-22-SB-17-0.5	1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane 2-Chlorotoluene 4-Chlorotoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobutadiene 1,2,3-Trichlorobenzene	UJ (all non-detects) UJ (all non-detects)	A	Internal standards (area) (19)
AREA-2-22-SB-17-0.5RE AREA-2-22-SB-17-10RE AREA-2-22-SB-17-20RE	All analytes	Not reportable	-	Overall assessment of data (22)

# NBK Keyport OU2

Volatiles - Laboratory Blank Data Qualification Summary - SDG 410-90316-1

No Sample Data Qualified in this SDG

NBK Keyport OU2 Volatiles - Field Blank Data Qualification Summary - SDG 410-90316-1

No Sample Data Qualified in this SDG

# VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 8/17/22 Page: ______of 22 Reviewer: ______ 2nd Reviewer: ______

Laboratory: Eurofins, Lancaster, PA

LDC #: 54604B1a

SDG #: 410-90316-1

## METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	TW	
١١.	GC/MS Instrument performance check	A	
Ш.	Initial calibration/ICV	W/A	250×1570.12 10×2 2070
IV.	Continuing calibration	W	ect = 20/5070
V.	Laboratory Blanks	$\mathbf{A}$	
VI.	Field blanks	ND	TB=13.76. FB=11, 12
VII.	Surrogate spikes	TW	
VIII.	Matrix spike/Matrix spike duplicates	Tui	
IX.	Laboratory control samples	TW	200/70 >=3+5,4+5,17+18.20+21
Х.	Field duplicates	m/	D=3+5,4+5,17+18.20+21
XI.	Internal standards	Til	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	1/1/	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1×	AREA-2-22-SB-17-0.5	410-90316-1	Soil	06/27/22
25	AREA-2-22-SB-17-0.5RE	410-90316-1RE	Soil	06/27/22
3	AREA-2-22-SB-17-10	410-90316-2	Soil	06/27/22
₄ 7	AREA-2-22-SB-17-10RE	410-90316-2RE	Soil	06/27/22
っこ	AREA-2-22-SB-17-1-10	410-90316-3	Soil	06/27/22
6	AREA-2-22-SB-17-20	410-90316-4	Soil	06/27/22
77	AREA-2-22-SB-17-20RE	410-90316-4RE	Soil	06/27/22
85	AREA-2-22-SB-18-0.5	410-90316-5	Soil	06/28/22
₉	AREA-2-22-SB-18-10	410-90316-6	Soil	06/28/22
10 S	AREA-2-22-SB-18-20	410-90316-7	Soil	06/28/22
113	FB-062722	410-90316-8	Water	06/27/22
123	FB-062822	410-90316-9	Water	06/28/22
13	TB-0162722	410-90316-10	Soil	06/27/22
14 <b>6</b>	AREA-2-22-SB-12-0.5	410-90316-11	Soil	06/28/22

**VALIDATION COMPLETENESS WORKSHEET** 

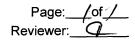
Stage 2B

LDC #: <u>54604B1a</u> **VALII** SDG #: <u>410-90316-1</u> Laboratory: <u>Eurofins, Lancaster, PA</u> Date: <u>A17/2</u> Page: <u>Aof</u> Reviewer: <u>314</u> 2nd Reviewer: <u>314</u>

METHOD: GC/MS Volatiles (EPA SW-846 Method 8260D)

Client ID	Lab ID	Matrix	Date
AREA-2-22-SB-12-5	410-90316-12	Soil	06/28/22
AREA-2-22-SB-12-10	410-90316-13	Soil	06/28/22
AREA-2-22-SB-12-20	410-90316-14	Soil	06/28/22
AREA-2-22-SB-12-1-20	410-90316-15	Soil	06/28/22
AREA-2-22-SB-11-0.5	410-90316-16	Soil	06/28/22
AREA-2-22-SB-11-5	410-90316-17	Soil	06/28/22
AREA-2-22-SB-11-1-5	410-90316-18	Soil	06/28/22
AREA-2-22-SB-11-10	410-90316-19	Soil	06/28/22
AREA-2-22-SB-11-148 5 +	410-90316-20	Soil	06/28/22
AREA-2-22-SB-11-20	410-90316-21	Soil	06/28/22
AREA-2-22-SB-12-25	410-90316-22	Soil	06/28/22
TB-062822	410-90316-23	Soil	06/28/22
AREA-2-22-SB-18-20MS	410-90316-7MS	Soil	06/28/22
AREA-2-22-SB-18-20MSD	410-90316-7MSD	Soil	06/28/22
	AREA-2-22-SB-12-5 AREA-2-22-SB-12-10 AREA-2-22-SB-12-20 AREA-2-22-SB-12-1-20 AREA-2-22-SB-11-0.5 AREA-2-22-SB-11-5 AREA-2-22-SB-11-5 AREA-2-22-SB-11-15 AREA-2-22-SB-11-10 AREA-2-22-SB-11-148 5 -+ AREA-2-22-SB-11-20 AREA-2-22-SB-11-20 AREA-2-22-SB-12-25 TB-062822 AREA-2-22-SB-18-20MS	AREA-2-22-SB-12-5       410-90316-12         AREA-2-22-SB-12-10       410-90316-13         AREA-2-22-SB-12-20       410-90316-14         AREA-2-22-SB-12-1-20       410-90316-15         AREA-2-22-SB-11-0.5       410-90316-16         AREA-2-22-SB-11-0.5       410-90316-16         AREA-2-22-SB-11-5       410-90316-17         AREA-2-22-SB-11-5       410-90316-17         AREA-2-22-SB-11-10       410-90316-18         AREA-2-22-SB-11-10       410-90316-20         AREA-2-22-SB-11-10       410-90316-20         AREA-2-22-SB-11-20       410-90316-20         AREA-2-22-SB-11-20       410-90316-20         AREA-2-22-SB-11-20       410-90316-20         AREA-2-22-SB-11-20       410-90316-20         AREA-2-22-SB-12-25       410-90316-22         TB-062822       410-90316-23         AREA-2-22-SB-18-20MS       410-90316-7MS         AREA-2-22-SB-18-20MSD       410-90316-7MSD	AREA-2-22-SB-12-5       410-90316-12       Soil         AREA-2-22-SB-12-10       410-90316-13       Soil         AREA-2-22-SB-12-20       410-90316-14       Soil         AREA-2-22-SB-12-120       410-90316-15       Soil         AREA-2-22-SB-12-120       410-90316-15       Soil         AREA-2-22-SB-12-120       410-90316-15       Soil         AREA-2-22-SB-11-0.5       410-90316-16       Soil         AREA-2-22-SB-11-5       410-90316-17       Soil         AREA-2-22-SB-11-15       410-90316-18       Soil         AREA-2-22-SB-11-10       410-90316-19       Soil         AREA-2-22-SB-11-10       410-90316-19       Soil         AREA-2-22-SB-11-10       410-90316-20       Soil         AREA-2-22-SB-11-20       410-90316-21       Soil         AREA-2-22-SB-11-20       410-90316-22       Soil         AREA-2-22-SB-12-25       410-90316-22       Soil         TB-062822       410-90316-7MS       Soil         AREA-2-22-SB-18-20MSD       410-90316-7MSD       Soil         AREA-2-22-SB-18-20MSD       410-90316-7MSD       Soil         AREA-2-22-SB-18-20MSD       410-90316-7MSD       Soil

274040	274547	273692	
=74.095	274656		
274346	27290		
5745-8	272964		


# TARGET COMPOUND WORKSHEET

## **METHOD: VOA**

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1. Ethylene Dibromide

LDC #: 54604 F

# VALIDATION FINDINGS WORKSHEET **Technical Holding Times**

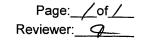


All circled dates have exceeded the technical holding times. Y N/A Were all cooler temperatures within validation criteria? Y N/A Were air bubbles > 1/4 inch or was headspace present in the vials?

METHOD : GC/M	S Volatiles (EPA	SW 846 Met	hod 8260B)				
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	ح) Qualifier
AII	Temp		Sampling Date 이 수 and 기.	6°C			YX/X
11	Her	lsac	2				VUJ A
						(++T=+4)	(1)
<u>n</u>	N		6-27-22		7-12-22	15	HAHA
4,7					T-13-22	16	↓ <u>↓</u>
17-24			6-28-22			15	<b>├──┼──╢</b>
25 (At3+NO)	V		↓		7-15-22	17	<b>├─</b> ₩──┃
		ļ				l	
	· 		· · · · · · · · · · · · · · · · · · ·		+		╆────╢
						<u> </u>	<del>  </del>
			l	/ 			
		<u> </u>			+	<u> </u>	
<u> </u>					1		<u>+</u>
	 	<b> </b>	<b> </b>			<b> </b>	
				<b> </b>	+		<b> </b>
		<b> </b>			+	<b> </b>	┼───┤
				<u> </u>	+		╂
	 				+		╄────┦
				<b> </b>	+	<u> </u>	╄────┦
	L	<u> </u>		<u> </u>			

#### **TECHNICAL HOLDING TIME CRITERIA**

Water unpreserved: Water preserved: Soil:


Aromatic within 7 days, non-aromatic within 14 days of sample collection.

Within 14 days of sample collection.

Within 14 days of sample collection.

LDC #: 5460189

# VALIDATION FINDINGS WORKSHEET Initial Calibration

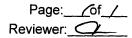


#### METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

<u>MNN/A</u> Did the laboratory perform a 5 point calibration prior to sample analysis?

Vere percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

N/A Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?


Did the initial calibration meet the acceptance criteria?

<u>N/N/A</u> Were all %RSDs and RRFs within the validation criteria of  $\leq$  30/15 %RSD and  $\geq$  0.05 RRF?

#	Date	Standard ID	Compound	Finding %RSD (Limit: <u>&lt;</u> 30.0/15.0%)	Finding RRF (Limit: <u>&gt;</u> 0.05)	Associated Samples	Qualifications
	5/3/22	ICAL	00	15./		14.17-24.MB	-1/W/A (5)
	11		M	15.1		(NO)	y ay a c
1							
<b>  </b>						· · · · · · · · · · · · · · · · · · ·	
		<u></u>					
				<u> </u>			
<u> </u>							
<b>  </b>							
<b>  </b>							
II							
<b> </b>							
<b> </b>							
<b> </b>							
┣							
┣		: 					
┠				<u> </u>			
<b> </b>							
<b>  </b>							
┣							
╟──				· ·			
1				1			

LDC #: 54604P

# VALIDATION FINDINGS WORKSHEET Continuing Calibration



#### METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>N N/A</u> Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

N/A Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ?

V(N)N/A Were all %D and RRFs within the validation criteria of  $\leq 20$  %D and  $\geq 0.05$  RRF?

#	Date	Standard ID	Compound	Finding %D (Limit: <u>&lt;</u> 20.0%)	Finding RRF (Limit: <u>&gt;</u> 0.05)	Associated Samples	Qualifications (5)
	7/14/22	7214X02	LLL	<i>2</i> /./	· · ·	25.MB	-VIH A
	//						707
	7/11/22	141001	B	146.9 20.7		6. MB (NO)	VUN/A
	. /		W	20.7			
<b></b>					<u> </u>		
ļ	7/11/22	VL/1517	⊅	139.4		6. MB (NO)	-/IH/A
	/	(closice)					
	. /			12.8		1 - 10 (1)	
	7/13/22	VL13CO/	Z	69.8		4.7. MB(NO)	-1/H/A
		1117800	712	OF /		1 7 117 (0/2)	
	7/13/22	14/3520	<u> </u>	98.		4.7. MB (ND)	V
-	́	(clone,					
	- 4-1-2	RL/200/	75	93.0		15-16. UB(ND)	V/iH KA
<b> </b>	7/12/22	RL/2CU/		72		(3.10. MD(ND)	
	7/11/22	X211<01	RR	23.5		1,5, 13, MB(NO)	JAH A
	111/22		R	-1.1		I ME ME (NO)	
	7/11/22	41185	R	23.5		11-12. MB (ND)	JAIA
	, <i>, , , , , ,</i>		-AA				
			44	27.2			
	7/12/22	BLACOL		- <del>22</del> ,D		HA. MB (NO)	V/H/AC
					·		/ / .
			l <u></u>				

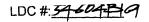
LDC #:54

# VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page Reviewe

## METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".


YANA Were all surrogate %R within QC limits?

Y N N/A

If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

#	Date	Sample ID	Surrogate	%Recov	very (Limits)	Qualifications (13)
		= (lets+NP)	DCZ.	145	(71-136)	vets/st
			OFP OFM TOL	48	(79-119)	
			DFM	136	(78-119)	
			TOL	147	(85-114)	
		4 (det3+NB)	TOL	118	( / )	Jet3/A
		l				
		600	BFB	175	(79-119)	
			DFM TOZ	123	(T8-1P)	
<u> </u>			TOL	138	(85-116)	
				L	( )	
		(5 (ND)		H8	( )	
			DAM	137	( )	
			TO 2	(44		·····
					( )	
		16 (ND)	₽₽₽	168	()	
			OFM	129	( ( )	
			TOL	133	( )	
					( )	
		MB 410-274040/8	TOL	113	(85-116)	Llet= P
		( /			( )	
					()	
					( )	
					()	
1)		1			()]	

(TOL) = Toluene-d8 (BFB) = Bromofluorobenzene (DCE) = 1,2-Dichloroethane-d4 (DFM) = Dibromofluoromethane



# VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	/et/
Reviewer:	$\square$

.

#### METHOD : GC/MS VOA (EPA SW 846 Method 8260C)

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

<u>MN N/A</u> Was a MS/MSD analyzed every 20 samples of each matrix?

DN/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
$\square$		27/58	BB	14T (TO-124)	136 (70-124)	( )	ID (ND)	- Het3A (8)
		/	DO XX	143 (73-125)	131 (T3-1=5)	( )		
			HKK A	( )	64 (67-129)	( )		J/W/A.
		· · · · · · · · · · · · · · · · · · ·	A	( )	( )	$ZZ (\neq 20)$		Jobst > (A 19)
				( )	( )	( )		
				( )	( )	()		
				()	( )	()		
				()	()	()		
		 		()	()	()	· · · · · · · · · · · · · · · · · · ·	
				()	()	()		
				()	()	()		
				()	( )	()		
				()	( )	( )		
				()	()	()		
				( )	( )	( )		
				()	()	( )		
				( )	( )	( )		
				( )	( )	( )		
				( )	( )	( ' )		
				( )	( )	( )		
				()	( )	( )		
				( )	( )	( )		
				( )	( )	()		
				( )	( )	( )		
				( )	( )	()		

LDC #:5

# VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: of Reviewer:

## METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".



Was a LCS required?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	LC	5/0410-274040	$\Delta$	766 (59-139)	245 (59-139)	()	3,6,MB(NO)	Het PIOA
		1		( )		( )		
				( )	( )	( )		
				( )	()	( )		(
	<u></u>	5/410-274528	5	196 59-139	ITI (59-139)	()	15-16 MB(ND)	Jet3P
		י פן		( ')	( ')	()		
				( )	( )	( )		
				()_	()	()		
	20	5/2410-274656	BRA	( )	1=4 (17-1=3)	( )	14. MB (ND)	Job A
				()	( )	( )	· · · · · · · · · · · · · · · · · · ·	
				()	()	()		
		-1+ XID -THROL	Б	(	(62 (59-139)	()	4.7. MB	det3A
	<u></u>	5 3 4 10 - 27 4901		(60 (5-1-12))	10- (3-(		4. (. M	- beizz
				( )	( )	( )		
				( )	( )	()		
				( )	( )	( )		
				( )	( )	( )		
				( )	( )	()		
				( )	( )	()		

#### VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1_of_1_ Reviewer: PG

## **METHOD**: GCMS VOA (EPA SW 846 Method 8260D)

YNNA Were field duplicate pairs identified in this SDG?

Y/N NA Were target analytes detected in the field duplicate pairs?

	Concentration (mg/kg)				
Compound	3	5	RPD (≤ 50 %)	Qualifications (Parent only)	
S	0.13	0.17	27		
QQQ	0.095U	0.0011	195	NQ	

	Concentration (mg/kg)			
Compound	4	5	RPD (≤ 50 %)	Qualifications (Parent only)
S	0.13	0.17	27	
QQQ	0.095U	0.0011	195	NQ

NQ - one or both results < LOQ

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2022\54604B1_EA_Keyport.wpd

LDC #: 54604

# VALIDATION FINDINGS WORKSHEET Internal Standards

Page:	<u>of</u>
Reviewer:	

## METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y/N/N/A Were all internal standard area counts within -50 to +100% of the associated calibration standard?

<u>N/A</u> Were the retention times of the internal standards within +/- 30 seconds of the retention times of the associated calibration standard?

_#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
		1 (NO)	ADOB	<u>Area (Limits)</u> 2788-25 ( 300 802 - 1203	(8%	N/UN/A (see ctd
			ļ			Table)
		······································			l	
╞──						
			<u> </u>			
<b> </b>						<u>`</u>
┣			<u> </u>		· · · · · · · · · · · · · · · · · · ·	
<b> </b>			<u> </u>		1	
		· · · · · · · · · · · · · · · · · · ·				
		······································				
			l	L		I

(BCM) = Bromochloromethane (DFB) = 1,4-Difluorobenzene

(CBZ) = Chlorobenzene-d5

(PFB) = Pentafluorobenzene

(FBZ) = Fluorobenzene

(4DCB) = 1,4-Dichlorobenzene-d4 (2DCB) = 1,2-Dichlorobenzene-d4

LDC #: 5460 19

# VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	
Reviewer:	9

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Findings	Qualifications
		3-5. 14-25	Lab islicates too muc		Text
			to the preserved cont	ainers for low and	
			ligh fore tit. The	som plastic	
			unpreserved contain		
		2,4,7	A11	Htout	NR/A
		· •			

Comments: