

Oregon Portland | Baker City

> California Oakland | Irvine

July 8, 2022

Mr. Charles Lee East Wind Investments, Inc. Comfort Suites 7200 Fun Center Way Tukwila, Washington 98188-5508

RE: LIMITED SUBSURFACE INVESTIGATION REPORT FAMILY FUN CENTER SITE – PARCEL 2 7200 FUN CENTER WAY, TUKWILA, WASHINGTON FARALLON PN: 2812-001

Dear Mr. Lee:

Farallon Consulting, L.L.C. (Farallon) has prepared this letter to summarize the results from the limited subsurface investigation conducted in May 2022 for East Wind Investments, Inc. (East Wind) at the property at 7200 Fun Center Way in Tukwila, Washington (herein referred to as the Property) (Figure 1). The limited subsurface investigation was conducted in accordance with the Farallon proposal dated March 23, 2022¹ to further evaluate the current environmental conditions of the Property.

This letter provides a summary of relevant background information, describes the scope of work performed for the limited subsurface investigation, presents the results from the limited subsurface investigation, and summarizes the current environmental conditions at the Property.

BACKGROUND

The Property consists of King County Parcel No. 2423049013, which totals approximately 3.57 acres of land currently owned by East Wind and occupied by a four-story hotel building and associated parking lot. The Property is part of the cleanup site known to the Washington State Department of Ecology (Ecology) as the Family Fun Center Site (Cleanup Site ID No. 385). As defined by Ecology, the Family Fun Center Site is composed of King County Parcel Nos. 2423049092 (Parcel 1 at address 7100 Fun Center Way), 2423049013 (Parcel 2, the Property), and 2423049063 (Parcel 3 at 7300 Fun Center Way), and potentially a portion of South Grady Way. Parcel 1 totals approximately 2.56 acres of land currently owned by H2 Office LLC and occupied by a one-story retail and office building. Parcel 3 totals approximately 8.25 acres of land currently owned by Family Fun Center Tukwila LLC and occupied by an amusement park (Family Fun Center). The Family Fun Center Site is bounded by the Interurban Trail and the Green River to the

¹ Letter regarding Proposal for Environmental Consulting Services – Preliminary Activities and Regulatory Strategy Development, Family Fun Center Site – Parcel 2, 7200 Fun Center Way, Tukwila, Washington dated March 23, 2022, from Mark Havighorst of Farallon to Mr. Lee of East Wind.

P:\2812 Eastwind Investments Inc\2812001 Parcel 2 Comfort Suites\Deliverables\2022 Env Summary Ltr\2022 SSI Report.docx

north, Burlington Northern Santa Fe railway tracks and Monster Road Southwest to the east, South Grady Way and Interstate 405 to the south, and Fun Center Way to the west.

HISTORICAL DEVELOPMENT

The Property and Parcels 1 and 3 were redeveloped for their current uses in 1998 and 1999. Prior to redevelopment, the Family Fun Center Site historically was occupied by several residences and businesses that included a barn and shed on the southern portion of the Property; and five houses with ancillary buildings, an automotive repair shop, a barn, a former nursery retail shop, a milk processing plant, and a shed on Parcel 3.

GEOLOGY AND HYDROGEOLOGY

The Property is in the Puget Sound Basin, which consists of nearly level and rolling, bench-like glaciated plains covered by alluvial deposits in the Property vicinity. The Green River flows south-southeast to north-northwest through the Property vicinity. Surficial geology at the Property vicinity consists of Quaternary alluvial sediments. The sediments consist primarily of interlayered and/or sequential deposits of alluvial clays, silts, and sands situated over deposits of glacial till that consist of silty sand to sandy silt with gravel.

Soil encountered during Farallon's limited subsurface investigation in May 2022 consisted primarily of silty sand to depths between approximately 8 and 17 feet below ground surface (bgs). Poorly graded sand was encountered below the sandy silt to the maximum depth explored of 30 feet bgs. The lithology is described in detail in the boring and monitoring well construction logs included in Attachment A.

Groundwater was encountered during drilling at depths ranging from approximately 17 to 18.5 feet bgs. Based on groundwater elevations calculated using depth to water measurements (Table 1) collected on May 16, 2022, the interpreted groundwater flow direction is to the north-northwest toward the Green River. Groundwater contours from May 16, 2022 are depicted on Figure 2.

PREVIOUS INVESTIGATIONS AND CLEANUP ACTIONS

Several documents describing the results of investigations and remediation to address environmental conditions performed for the Family Fun Center Site by others were provided to Farallon by East Wind and Ecology. Information provided in the environmental documents reviewed by Farallon and relevant for the Property is summarized below.

1997 Phase II Environmental Site Assessment

GeoEngineers conducted a Phase II Environmental Site Assessment (ESA) at the Family Fun Center Site in October 1997 to assess the subsurface conditions in areas of potential contamination that were identified as part of a Phase I ESA completed by GeoEngineers for the Family Fun

Center Site, and to further assess subsurface contamination reportedly encountered by others during previous environmental and geotechnical studies.

As part of its Phase II ESA, GeoEngineers completed five hand-auger borings (HA-3 through HA-6) and two direct-push borings (SP-4 and SP-25) at the Property, and two hand auger borings (HA-1 and HA-2) on Parcel 3 proximate to the boundary with the Property. The boring locations and results of soil sampling are shown on Figures 2 and 3 (included in Attachment B) from the *Phase II Environmental Site Assessment Report, Proposed Family Fun Center, Tukwila, Washington* dated November 17, 1997, prepared by GeoEngineers , and described as follows:

- Boring HA-1 was completed to a depth of approximately 1.5 feet bgs in the northwestern corner of the Property in an area used for agriculture. A soil sample was collected and analyzed for polychlorinated biphenyls (PCBs) and pesticides. PCBs and pesticides were not detected at the laboratory practical quantitation limit (PQL), except for pesticides gamma-chlordane and 4,4- dichlorodiphenyldichloroethane, which were detected at concentrations less than the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A cleanup levels.
- Boring HA-2 was completed to a depth of approximately 0.5 foot bgs proximate to the southern Property boundary with Parcel 3 in an area where agricultural chemicals had been stored near the former barn. A soil sample was collected and analyzed for PCBs and pesticides. PCBs and pesticides were not detected at the PQL, except for pesticides gamma-chlordane, 4,4- dichlorodiphenyldichloroethane, and dieldrin, which were detected at concentrations less than the MTCA Method A cleanup levels.
- Borings HA-3 through HA-5 were completed to a maximum depth of approximately 1 foot bgs in the southern portion of the Property adjacent to the garage and in an area of observed oil staining. Soil samples collected at depths of 1 foot bgs from HA-3 and 0.5 foot bgs from HA-4 and HA-5 were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX); total petroleum hydrocarbons (TPH) as gasoline-, diesel-, and oil-range organics (GRO, DRO, and ORO); volatile organic compounds (VOCs); priority pollutant metals (antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, titanium, and zinc); and barium. DRO and/or ORO were detected at concentrations exceeding the MTCA Method A cleanup level in the soil samples collected from HA-4 and HA-5. All other analytes were either reported non-detect at the laboratory PQL or at concentrations less than the applicable MTCA Method A or B cleanup levels. The soil samples also were analyzed for volatile petroleum hydrocarbons (VPH) and extractable petroleum hydrocarbons (EPH) for the calculation of a site-specific cleanup level for TPH.
- Borings HA-6 and SP-25 were completed to depths of approximately 0.5 foot bgs and 1 foot bgs, respectively, in the southeastern portion of the Property in the vicinity of former oil dump. Soil samples collected from HA-6 and SP-25 from depths of 0.5 foot and 1 foot bgs, respectively, were analyzed for VOCs, GRO, DRO, ORO, VPH, and EPH. Soil samples from SP-25 also were analyzed for priority pollutant metals and barium. DRO and/or ORO were detected at concentrations exceeding the MTCA Method A cleanup level

in the samples collected from HA-6 and SP-25. All other analytes were either reported nondetect at the laboratory PQL or at concentrations less than the applicable cleanup levels. Soil samples also were analyzed for VPH and EPH for the calculation of a site-specific MTCA Method B cleanup level for TPH in soil, which GeoEngineers determined to be 2,984 milligrams per kilogram.

• SP-4 was completed to a depth of approximately 21 feet bgs in the northeastern corner of the Property for evaluation of groundwater conditions near the northern property boundary. A reconnaissance groundwater sample was collected from boring SP-4 and analyzed for GRO, DRO, ORO, VOCs, dissolved priority pollutant metals, and dissolved barium. Dissolved arsenic was detected at a concentration of 69.4 micrograms per liter ($\mu g/l$) in the reconnaissance groundwater sample, which exceeds the Puget Sound Basin natural background concentration of 8 $\mu g/l$.² All other analytes were either reported non-detect at the laboratory PQL or at concentrations less than the applicable MTCA Method A or B cleanup levels.

Additionally, a groundwater sample was collected from monitoring well GCW-16 that was previously installed at the northwestern corner of the Property. The groundwater sample was analyzed for GRO, DRO, ORO, VOCs, dissolved priority pollutant metals, and dissolved barium. Dissolved arsenic was detected at a concentration of 6.6 μ g/l in the groundwater sample, which is less than the natural background concentration of 8 μ g/l.

1997 – 1998 Underground Storage Tank Removal Monitoring and Supplemental Subsurface Assessment

GeoEngineers conducted supplemental subsurface investigation activities in November 1997 and February 1998 and underground storage tank (UST) removal monitoring in February 1998 at the Family Fun Center Site to further investigate potential on-site and off-site sources of arsenic; remove the heating oil and gasoline USTs located on Parcel 3 and obtain samples from the limits of the excavations; and complete a focused site assessment in areas suggested by Ecology to close data gaps identified for the Family Fun Center Site.

As part of the supplemental subsurface investigation, GeoEngineers completed two hand-auger borings (98012301-1-8 and 8012301-2) to a depth of approximately 0.75 foot bgs at the Property adjacent to the location of the former barn on the Property. A soil sample was collected from each boring and field screened for evidence of petroleum hydrocarbons. Field screening reportedly did not indicate the presence of petroleum hydrocarbon contamination in the samples. The soil samples were submitted for laboratory analysis of total lead and arsenic. Lead and arsenic were detected at concentrations less than MTCA Method A cleanup levels.

² Groundwater Arsenic Concentrations in Washington State, Publication No. 14-09-044 dated January 2022, prepared by Ecology.

P:\2812 Eastwind Investments Inc\2812001 Parcel 2 Comfort Suites\Deliverables\2022 Env Summary Ltr\2022 SSI Report.docx

1997 – 1999 Cleanup Action

GeoEngineers conducted cleanup action activities in accordance with the *Cleanup Action Plan and Engineering Report, Proposed Family Fun Center, Tukwila, Washington* dated September 14, 1998, prepared by GeoEngineers, at the Family Fun Center Site before and during redevelopment in 1998 and 1999. Cleanup action activities included excavation of soil from the following five areas at the Property:

- "Hot Spots" A, C, and D, which encompass the five borings (HA-2, HA-4, HA-5, HA-6, and SP-25) on or proximate to the Property where chemical compounds were detected at concentrations exceeding MTCA Method A cleanup levels during the 1997 Phase II Environmental Site Assessment;
- "Hot Spot" F, which encompasses boring HA-1 to portions of Parcel 3 where chemical compounds were detected at concentrations exceeding MTCA Method A cleanup levels during the 1997 Phase II Environmental Site Assessment; and
- A portion of the Property where metal slag was known to have been emplaced.

The locations of these excavation areas are shown on Figures 3 through 7 (included in Attachment B) from the *Revised Cleanup Action Report, Family Fun Center Site, Tukwila, Washington* dated February 19, 2002, prepared by GeoEngineers. The excavations are described as follows.

Hot Spot A

An area of approximately 1,100 square feet was excavated to a depth of approximately 1.5 feet bgs near the location of the October 1997 hand auger boring HA-2, which was located on Parcel 3 adjacent to the southern Property to remove pesticide-impacted soil. An area of approximately 725 square feet of soil was excavated to a depth of approximately 1.5 feet bgs from the Property. Three confirmation soil samples were collected from the excavation area on the Property and submitted for laboratory analysis of pesticides. All analytes were reported non-detect at the laboratory PQL in the soil samples. Approximately 60 cubic yards of soil was removed from "Hot Spot A" and transported to TPS Technologies, Inc. in Tacoma, Washington for recycling.

Hot Spot C

An area of approximately 180 square feet was excavated to a depth of approximately 1.5 feet bgs near the location of the October 1997 hand auger boring HA-4 to remove TPH-impacted soil. Three soil samples collected from the excavation were field screened for the potential presence of petroleum hydrocarbons and one was submitted for laboratory analysis of DRO, ORO, and polycyclic aromatic hydrocarbons to confirm the removal of impacted soils. All analytes were reported non-detect at the laboratory PQL in the soil samples. Approximately 10 cubic yards of soil was excavated from "Hot Spot C" and transported to TPS Technologies, Inc. in Tacoma, Washington for recycling.

East Wind Investments July 8, 2022 Page 6

Hot Spot D

An area of approximately 90 square feet was excavated to a depth of approximately 3 feet bgs near the locations of the October 1997 hand auger boring HA-4 and direct-push boring SP-25 (identified as "Hot Spot D") to remove TPH-impacted soil. A total of 10 soil samples collected from the excavation were field screened for the potential presence of petroleum hydrocarbons and five were submitted for laboratory analysis of DRO and ORO to confirm the removal of impacted soils. DRO and ORO were detected at concentrations less than the MTCA Method A cleanup levels for soil in the samples. Approximately 10 cubic yards of soil was removed from "Hot Spot D" and placed as fill in the containment and capping area of Parcel 3.

Hot Spot F

The excavation of the former retention pond on Parcel 3 with identified TPH impacts to soil extended onto approximately 48 square feet of the eastern portion of the Property. The portion of the excavation on the Property was completed to a depth of approximately 1.5 feet bgs. A confirmation sample was collected from the bottom of the portion of the excavation on the Property and submitted for laboratory analysis of DRO and ORO. DRO and ORO were detected at concentrations less than the MTCA Method A cleanup levels for soil in the sample. Approximately 2.5 cubic yards of soil was removed from "Hot Spot F" on the Property and placed as fill in the containment and capping area of Parcel 3.

Metal Slag

Metal slag was excavated from existing gravel roads and driveways to an approximate depth of 2 feet bgs at the Family Fun Center Site, including an area of approximately 86 square feet in the southern portion of the Property. Two discrete soil samples were collected from the limits of the slag excavation on the Property and were field screened for the potential presence of petroleum hydrocarbons. One soil sample was submitted for analysis of DRO and ORO to characterize soil beneath the roadway. DRO and ORO were detected at concentrations less than the MTCA Method A cleanup level in the samples. A composite soil sample was collected from the bottom of the slag excavation and submitted for analysis of priority pollutant metals. The analytes were detected at concentrations less than the MTCA Method A cleanup levels and the soil leaching to groundwater screening levels. Approximately 150 cubic yards of slag and soil were removed from the existing roads and driveways and placed as fill in the containment and capping area of Parcel 3.

2002 – 2005 Monitoring Well Installation and Groundwater Sampling

GeoEngineers installed groundwater monitoring well MW-22 on the northern portion of the Property, and monitoring wells MW-20 and MW-21 on the northern portion of Parcel 3, in March 2002 to characterize groundwater at locations on the down-gradient portion of the Family Fun Center Site proximate to the Green River. The approximate locations of MW-20, MW-21, and MW-22 are shown on the attached Figure 1 of the report titled *2004/2005 Compliance*

Groundwater Sampling, Family Fun Center Site, Tukwila, Washington dated July 6, 2005, prepared by GeoEngineers.

GeoEngineers conducted groundwater monitoring at monitoring wells MW-20, MW-21, and MW-22 in April and October 2002; April, July, and November 2004; and January 2005. Groundwater samples were submitted for laboratory analysis of GRO, DRO, ORO, BTEX, and total and dissolved arsenic, chromium, nickel, and lead. The laboratory analytical results are summarized in a table (Attachment C, Table 1), which was included in the letter regarding Site Hazard Assessment –Family Fun center dated March 26, 2018, from Donna Musa of Ecology to Family Fun Center Tukwila (SHA) (2018 SHA) and described as follows:

Total and dissolved arsenic was detected at concentrations ranging from 5 to 15 μ g/l, which exceed the MTCA Method A cleanup level of 5 μ g/l, in groundwater samples collected from Property monitoring well MW-22. However, dissolved arsenic was detected at concentrations of only 10 μ g/l or less. Total lead was detected at concentrations exceeding the MTCA Method A cleanup level in the groundwater samples collected from Property monitoring well MW-22 in July and November 2004 and January 2005; however, dissolved lead was either reported non-detect at the laboratory PQL or at concentrations less than the cleanup level in the corresponding samples.

Total and dissolved arsenic, total chromium, and/or total and dissolved lead were detected at concentrations exceeding the MTCA Method A cleanup levels in the groundwater samples collected from Parcel 3 monitoring wells MW-20 and MW-21. GRO, DRO, ORO, and BTEX were reported non-detect at the laboratory PQL in all groundwater samples submitted for analysis.

2019 Site Hazard Assessment

In 2019, Ecology conducted the 2018 SHA. Ecology assigned the Family Fun Center Site a hazard ranking of 1, which represents the highest level of concern. The basis for the ranking is the confirmed detections of arsenic, chromium, and lead at concentrations exceeding the MTCA Method A cleanup levels for groundwater and the potential for metals-contaminated groundwater to discharge from the Family Fun Center Site to the Green River.

2020 Phase I Environmental Site Assessment

Associated Environmental Group, LLC (AEG) performed a Phase I Environmental Site Assessment (ESA) for the Property in 2020. AEG identified the following recognized environmental conditions for the Property:

- The presence of metals-contaminated shallow soil near the former automotive repair shop, associated with "Hot Spot C" on Parcel 3, and
- Arsenic- and lead-contaminated groundwater in Property monitoring well MW-22.

2021 Phase II Environmental Site Assessment

AEG conducted a Phase II ESA at the Property in February 2021 to further evaluate the impacts to soil and groundwater identified in the Phase I ESA. The Phase II ESA activities were described in the *Phase II Environmental Site Assessment, Comfort Suites Airport, 7200 Fun Center Way, Tukwila, Washington* dated March 15, 2021, prepared by AEG and (AEG Phase II ESA Report). Five borings (B-1 through B-5) were completed at the Property for the collection of soil and reconnaissance groundwater samples. Borings B-1 through B-4 were advanced to a depth of approximately 26.5 feet bgs and boring B-5 was completed to approximately 9 feet bgs at the locations described below:

- Borings B-1, B-2, B-4, and B-5 were advanced proximate to the boundary between the Property and Parcel 3; and
- Boring B-3 was advanced proximate to the former automotive repair shop and "Hot Spot C."

The locations of the borings are shown on the attached Figure 1 in Attachment B of the AEG Phase II ESA Report.

Soil samples were collected from borings B-1 through B-4 at the apparent depth of shallow groundwater at approximately 21 feet bgs and from boring B-5 at a depth of 6 feet bgs. Reconnaissance groundwater samples were collected from temporary monitoring wells installed in borings B-1 through B-4. Soil samples were submitted for laboratory analysis of MTCA 5 metals (arsenic, cadmium, chromium, lead, and mercury). Arsenic was detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring B-5, which was located proximate to the eastern Property boundary. Concentrations of MTCA 5 metals were less than MTCA cleanup levels in all other soil samples.

Reconnaissance groundwater samples were submitted for laboratory analysis of total but not dissolved MTCA 5 metals. Total arsenic, lead, and/or cadmium were detected at a concentration exceeding the MTCA Method A cleanup level in reconnaissance groundwater samples collected from borings B-1 through B-4.

FARALLON LIMITED SUBSURFACE INVESTIGATION

Farallon conducted a limited subsurface investigation at the Property in May 2022. The purpose and objectives, scope of work, and results of the limited subsurface investigation are described as follows.

PURPOSE AND OBJECTIVES

The purpose of the limited subsurface investigation was to further evaluate environmental conditions at the Property that were not addressed by the 1997—1998 Underground Storage Tank Removal Monitoring and Supplemental Subsurface Assessment and 1997—1999 Cleanup Action and may be relevant for pursuing a NFA opinion for the Property from Ecology. These

East Wind Investments July 8, 2022 Page 9

environmental conditions include soil and groundwater with concentrations of chemicals of concern exceeding relevant MTCA cleanup levels at the Property, specifically:

Metals-contaminated Groundwater

Groundwater at the Property may be flowing to the Green River, and dissolved arsenic and lead were detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from on-Property monitoring well MW-22, which was proximate to the Green River as recently as 2005. Total arsenic, lead, and/or cadmium were detected at a concentration exceeding the MTCA Method A cleanup level in reconnaissance groundwater samples collected from borings B-1 through B-4. The sampling methodology and the laboratory analytical method used likely biased high results over actual concentrations of metals in groundwater. The limited subsurface investigation was conducted to evaluate current groundwater conditions at the Property.

Arsenic-contaminated soil

Arsenic was detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring B-5, which was proximate to the eastern Property boundary and Hot Spot F, at a depth of 6 feet bgs. The limited subsurface investigation was conducted to further evaluate the extent of arsenic-contaminated soil proximate to boring B-5.

The limited subsurface investigation also was performed to evaluate the following environmental conditions that may not be relevant for pursuing a No Further Action opinion for the Property but are useful for informing ongoing use of the Property.

Residual Metal Slag

Metal slag historically present at the Property was removed from hot spots, driveways, and roads on the Property. The limited subsurface investigation was performed to further evaluate the potential presence of metal slag at other portions of the Property.

Petroleum-Impacted Soil and Groundwater

Soil with concentrations of DRO and ORO less than MTCA cleanup levels historically present on Parcel 3 was relocated to the Property as part of the 1997 – 1999 Cleanup Action. The limited subsurface investigation was performed to further evaluate the potential presence of petroleum-impacted soil and groundwater at portions of the Property.

SCOPE OF WORK

The scope of work for the limited subsurface investigation consisted of advancing borings, installing monitoring wells, and collecting soil and groundwater samples for laboratory analysis.

Boring and Soil Sampling

The locations of the borings and monitoring wells are shown on Figure 2 and described below:

- FMW-01 was installed proximate to boring B-1 to evaluate the potential presence of metals-contaminated groundwater;
- FMW-02 was installed proximate to historical boring B-5 to further evaluate the extents of arsenic-contaminated soil and the potential presence of metals-contaminated groundwater;
- FMW-03 was installed proximate to boring B-3 to evaluate the potential presence of metals-contaminated groundwater; and
- FMW-04 was installed proximate to the northwestern property boundary to evaluate potential migration of metals-contaminated groundwater from the Property to the Green River.

Prior to conducting limited subsurface investigation activities, Farallon retained public and private utility locating services to clear the proposed boring locations and provide additional information pertaining to the locations of subsurface utilities at the Property. Linescape, LLC of Seattle, Washington conducted a private utility locate at the Property.

Cascade Drilling, L.P. of Woodinville, Washington advanced borings FMW-01 through FMW-04 to a depth of 30 feet bgs. The first 5 feet of soil below ground surface at each location was cleared for utilities using a vacuum, and the borings were completed using a drilling rig equipped with a hollow-stem auger. A split-spoon sampler was driven 18 inches in advance of the lead auger using a 300-pound automatic hammer, or until refusal due to soil density or obstruction to the maximum depth explored.

Soil samples from the borings were collected continuously at approximately 1.5-foot intervals at a depth of 5 feet bgs to first-encountered groundwater and at the bottom of each boring for geological logging and potential laboratory analysis. A Farallon geologist observed subsurface conditions and retained soil samples from selected intervals based on field indications of potential contamination for submittal to an analytical laboratory. The information recorded on the boring logs included soil types encountered, visual and olfactory evidence, VOC concentrations as measured using a photoionization detector (PID), and metals concentrations as measured using a using a hand-held X-ray fluorescence analyzer. Metals slag was not observed in the borings. The completed boring logs are included in Attachment A.

Soil samples were collected from each boring at a depth of 2.5 feet bgs to further evaluate the potential presence of petroleum-impacted soil at the Property.

A soil sample was collected from boring FMW-02 at a depth of 7 feet bgs to further evaluate the extent of arsenic-contaminated soil proximate to boring B-5.

Soil samples were collected from each boring at depths of 15 to 18 feet bgs, immediately above first-encountered groundwater, for the evaluation of the potential for leaching of metals in soil to groundwater at the Property.

Soil samples were collected and transferred directly into laboratory-prepared glass sample containers. Soil samples were submitted to OnSite Environmental, Inc. of Redmond, Washington (OnSite) under standard chain-of-custody protocols for analysis of DRO and ORO by Northwest Method NWTPH-Dx or MTCA 5 Metals by U.S. Environmental Protection Agency EPA (EPA) Method 6010D/7471B.

Monitoring Well Installation

Borings FMW-01 through FMW-04 were completed as groundwater monitoring wells constructed in accordance with the Minimum Standards for Construction and Maintenance of Wells, as established in Chapter 173-160 of the Washington Administrative Code. The final depths of the monitoring wells were 30 feet bgs.

The monitoring wells were constructed using 2-inch-diameter Schedule 40 polyvinyl chloride (PVC) casing and 0.010-inch slotted screens completed at grade in flush-mounted steel monuments. The borehole annulus surrounding each well screen was filled with a filter pack consisting of #2/12 Monterey sand to a height of approximately 1 foot above the top of the screened interval. A bentonite pellet seal was emplaced from the top of the filter pack to a depth of approximately 1.5 feet bgs. A 0.5-foot-thick concrete surface seal was placed around the wells from the top of the bentonite to approximately 1 foot bgs and surrounding the flush-mounted monument up to the ground surface.

The monitoring wells were developed using a submersible pump shortly after well construction had been completed. Newly installed monitoring wells FMW-01 through FMW-04 and existing monitoring well MW-22 were developed until the majority of fine-grained sediment had been removed from the well screen and adjacent sand pack.

The horizontal locations, ground surface or protective monument elevations, and top of the PVC well casing of each monitoring well were surveyed to an accuracy of 0.01 feet by Apex Engineering, PLLC of Tacoma, Washington on May 16, 2022. Monitoring well construction details and monitoring well survey data are summarized in Table 1. Monitoring well construction logs are provided in Attachment A.

Groundwater Monitoring

Groundwater monitoring was conducted on May 16, 2022 to evaluate groundwater quality, groundwater flow direction, and hydraulic gradient. The groundwater monitoring event included measuring depth to groundwater and collecting groundwater samples from monitoring wells FMW-01 through FMW-04 and previously installed monitoring well MW-22. The monitoring wells were opened and the water levels were permitted to equilibrate with atmospheric pressure before groundwater level measurements were obtained. Groundwater levels were measured to the

surveyed reference point on the top of the monitoring well casing to an accuracy of 0.01 foot using an electric water-level meter.

Prior to sampling, groundwater was purged from the monitoring wells in accordance with EPA low-flow sampling protocols. Purging and sampling were performed using a peristaltic pump and dedicated polyethylene tubing at flow rates ranging from 100 to 300 milliliters per minute. The tubing intake was placed at the approximate middle of the water column in each monitoring well or sump. Water quality was monitored during purging using a YSI ProDSS water quality system equipped with a flow-through cell. The water quality parameters monitored and recorded included temperature, pH, specific conductance, oxidation-reduction potential, and dissolved oxygen. The wells and sumps were purged until the parameters stabilized. Following purging, groundwater samples were collected directly from the pump outlet tubing upstream of the flow-through cell, and placed into laboratory-prepared sample containers.

Groundwater samples were submitted to OnSite under standard chain-of-custody protocols for analysis of TPH (C10 to C36) by Northwest Method NWTPH-Dx, and dissolved MTCA 5 Metals by EPA Method 6010D/7471B.

Investigation-Derived Waste Management

Soil cuttings, equipment decontamination water, and well development and purge water generated during the subsurface investigation were temporarily stored in twelve 55-gallon steel drums on the Property pending profiling for disposal. Seven 55-gallon drums of soil cuttings and five 55-gallon drums of decontamination and purge water were generated. This investigation-derived waste will be transported to and disposed of at an appropriate licensed facility.

SUBSURFACE INVESTIGATION RESULTS

A summary of the results of soil and groundwater sampling conducted by Farallon is presented below and summarized on Figures 3 and 4 and in Tables 1 through 4. The complete laboratory analytical reports for soil and groundwater samples are provided in Attachment D.

SOIL ANALYTICAL RESULTS

There were no indications of potential petroleum contamination observed or measured (i.e., visual, olfactory evidence, and VOC concentrations as measured using a PID) in the soil samples collected from borings FMW-01 through FMW-04.

DRO and ORO were detected at concentrations less than MTCA Method A cleanup levels in the soil samples collected from borings FMW-01, FMW-02, and FMW-04 at a depth of 2.5 feet bgs, which indicates the potential presence of petroleum-impacted shallow soil at the Property proximate to these borings.

Metals, including arsenic, were not detected at concentrations exceeding the laboratory PQL in the soil sample collected from boring FMW-02 at a depth of 7 feet bgs, which indicates that the arsenic-contaminated soil is limited to the close vicinity of boring B-5.

Arsenic, cadmium, lead, and mercury were not detected at concentrations exceeding the laboratory PQL and chromium was not detected at concentrations exceeding the MTCA Method A cleanup level in soil samples collected from each boring immediately above first-encountered groundwater. These results indicate that potential leaching of metals in soil to groundwater is not a concern.

GROUNDWATER

Dissolved cadmium, chromium, lead, and mercury were not detected at concentrations exceeding the laboratory PQL in groundwater samples collected from monitoring wells FMW-01 through FMW-04 and MW-22. Dissolved arsenic was detected at concentrations exceeding the MTCA Method A cleanup level of 5 μ g/l in the groundwater samples collected from only monitoring wells FMW-01, FMW-02, and FMW-04. The concentrations ranged from 16 to 66 μ g/l, respectively, Dissolved arsenic was detected at concentrations of 4.5 and 16 μ g/l, respectively, in the groundwater sample from monitoring wells MW-22 and FMW-04, which are the monitoring wells closes to the Green River.

The concentrations of dissolved arsenic in monitoring wells FMW-01, FMW-02, and MW-22 also exceed the Puget Sound Basin natural background concentration of 8 μ g/l described in Ecology's *Groundwater Arsenic Concentrations in Washington State*.³ However, these concentrations do not exceed published local background concentrations, as described below.

Farallon reviewed Ecology's Environmental Information Management database⁴ for information regarding background arsenic concentrations in groundwater at nearby properties. The review identified data collected as part of a background arsenic groundwater study requested by Ecology for the Boeing Striker South property at 21249 72nd Avenue South in Kent (Striker Property), approximately 3.8 miles from the Property. Study results were described in letters dated October 11, 2011 and March 16, 2012 from The Boeing Company to Ecology.^{5 6}

P:\2812 Eastwind Investments Inc\2812001 Parcel 2 Comfort Suites\Deliverables\2022 Env Summary Ltr\2022 SSI Report.docx

³ Groundwater Arsenic Concentrations in Washington State, Publication No. 14-09-044 dated January 2022, prepared by Ecology.

⁴ Background Arsenic Concentrations in Groundwater at Properties in the Site Vicinity. Environmental Information Management Database Search. No Date. <<u>http://www.ecy.wa.gov/eim/</u>>

⁵ The Boeing Company. Letter Regarding Evaluation of Arsenic in Groundwater, Striker Property South, Boeing Space Center, Kent, Washington dated October 11, 2011, from Joe Flaherty of EHS Remediation Group to Byung Maeng of Ecology.

⁶ The Boeing Company. Letter Regarding Additional Evaluation of Arsenic in Groundwater, Boeing Space Center Area, Kent, Washington. From Joe Flaherty, EHS Remediation Group. To Byung Maeng, Washington State Department of Ecology. March 16, 2012.

The study indicated that although environmental investigations identified dissolved arsenic in groundwater at the Striker Property at concentrations ranging from 0.3 to 114 μ g/l, the investigations had not identified an anthropogenic arsenic source at the Striker Property.

The study further indicated that concentrations of dissolved arsenic in shallow groundwater samples collected at Ecology-approved locations at nearby properties with no known impacts to groundwater ranged from 3.3 to $115 \mu g/l$. The study concluded that the dissolved arsenic concentrations detected in groundwater at the Striker Property and nearby locations are isolated and the result of regional background conditions, and do not pose a potential threat to human health or the environment. In "Public Comment Notice for Termination of Interim Status for the Boeing Space Center – Striker Property in Kent" issued by Ecology (2012) in July 2012, Ecology concluded that the dissolved arsenic concentrations present in groundwater at the Striker Property are localized and isolated in several different locations, and consistent with the area-wide pattern of arsenic in groundwater in the vicinity of the Boeing Kent Space Center.

Dissolved arsenic was detected at concentrations ranging from 16 to 66 μ g/l in groundwater samples collected at the Property, which is consistent with results from the background arsenic groundwater study performed for the nearby Striker Property. Therefore, it is reasonable to conclude that arsenic concentrations in groundwater at the Property are representative of background conditions.

TPH (C10 to C36) was either reported non-detect at the laboratory PQL or at concentrations less than the MTCA Method A cleanup level in the groundwater samples collected from monitoring wells FMW-03, FMW-04, and MW-22. FMW-04 and MW-22 are the wells closest to the Green River. TPH (C10 to C36) was detected at concentrations less than the MTCA Method A cleanup levels in groundwater samples collected from monitoring wells FMW-01 and FMW-02, which are proximate to the eastern Property boundary Hot Spots D and C, respectively. Collectively, these results indicate the potential presence of petroleum-impacted groundwater at the Property only proximate to Hot Spots C and D and not the Green River.

SUMMARY OF CURRENT ENVIRONMENTAL CONDITIONS

Multiple subsurface investigations and remedial actions were conducted at the Property between 1997 and 2022 to evaluate soil and groundwater for the presence of hazardous substances and to clean up hazardous substances identified at the Property. Following is a summary of current environmental conditions for soil and groundwater at the Property based on these subsurface investigations and remedial actions.

SOIL

Remedial actions completed at the Property in 1998 removed soil with concentrations of DRO and/or ORO exceeding MTCA Method A cleanup levels and steel slag previously placed in gravel

roads on the Property. Investigation activities performed following the remedial actions indicate the following:

- Arsenic-contaminated soil (i.e., soil with concentrations of arsenic exceeding MTCA Method A cleanup levels) is limited to the close vicinity of boring B-5 at a depth of approximately 6 feet bgs. Metals, including arsenic, were not detected at concentrations exceeding the laboratory PQL in the soil sample collected from boring FMW-02 at a depth of 7 feet bgs, which indicates that the arsenic-contaminated soil is limited to the close vicinity of boring B-5. Metals were not detected at concentrations exceeding the laboratory PQL in soil samples collected proximate to first-encountered groundwater. These results indicate that potential leaching of metals in soil to groundwater is not a concern.
- Some petroleum-impacted soil (i.e., soil with concentrations of DRO and/or ORO less than MTCA Method A cleanup levels) remains at the property proximate to borings FMW-01, FMW-02, and FMW-04, which are proximate to Hot Spots D, F, C, respectively. This petroleum-impacted soil is beneath the asphalt-paved parking lot that serves the hotel at the Property.

GROUNDWATER

Groundwater was encountered during drilling at depths ranging from approximately 17 to 18.5 feet bgs. Based on groundwater elevations calculated using depth to water measurements (Table 1) collected on May 16, 2022, the interpreted groundwater flow direction is to the north-northwest toward the Green River. Groundwater contours from May 16, 2022 are depicted on Figure 2.

Arsenic is present at concentrations exceeding the MTCA Method A cleanup level and the Puget Sound Basin natural background concentration in groundwater at the Property. However, the concentrations of arsenic in groundwater samples collected from monitoring wells in May 2022 are consistent with published local background concentrations. Therefore, it is reasonable to conclude that arsenic concentrations in groundwater at the Property are representative of background conditions. Other MTCA 5 metals are not present at concentrations exceeding the MTCA Method A cleanup level at the Property.

Some petroleum-impacted groundwater (i.e., groundwater with concentrations of TPH less than MTCA Method A cleanup levels) remains at the Property proximate to Hot Spots C and D and not the Green River.

East Wind Investments July 8, 2022 Page 16

Farallon appreciates the opportunity to provide environmental consulting services for this project. Please contact either of the undersigned at (425) 295-0800 if you have questions or need additional information.

Sincerely,

Farallon Consulting, L.L.C.

amanda M. Maryniet

Amanda Meugniot, L.G. Associate Geologist

the A

Mark Havighorst, P.E. Principal Engineer

Attachments: Figure 1, Site Vicinity Map

Figure 2, Groundwater Elevations and Contours, May 16, 2022 Figure 3, Soil Analytical Results for TPH and Metals Figure 4, Groundwater Analytical Results for TPH and Metals

Table 1, Groundwater Elevations Table 2, Groundwater Field Parameters Table 3, Soil Analytical Results for TPH and Metals Table 4, Groundwater Analytical Results for TPH and Metals

Attachment A, Boring and Monitoring Well Construction Logs Attachment B, Historical Investigation Location Figures Attachment C, Ecology SHA Table 1 Attachment D, Laboratory Analytical Results

AM/MH:cm

FIGURES

LIMITED SUBSURFACE INVESTIGATION REPORT Family Fun Center Site – Parcel 2 7200 Fun Center Way Tukwila, Washington

Farallon PN: 2812-001

TABLES

LIMITED SUBSURFACE INVESTIGATION REPORT Family Fun Center Site – Parcel 2 7200 Fun Center Way Tukwila, Washington

Farallon PN: 2812-001

Table 1Groundwater ElevationsParcel 2 Comfort Suites7200 Fun Center WayTukwila, WashingtonFarallon PN: 2812-001

Location	Top of Casing Elevation (feet NAVD88) ¹	Monitoring Date	Depth to Water (feet) ²	Water Level Elevation (feet NAVD88) ¹
FMW-01	29.93	5/16/2022	18.60	11.33
FMW-02	30.11	5/16/2022	18.93	11.18
FMW-03	28.69	5/16/2022	17.34	11.35
FMW-04	28.78	5/16/2022	17.71	11.07
MW-22	27.63	5/16/2022	16.73	10.90

NOTES:

¹ In feet referenced to North American Vertical Datum of 1988 (NAVD88).

² In feet below top of well casing.

Groundwater Field Parameters Parcel 2 Comfort Suites 7200 Fun Center Way Tukwila, Washington Farallon PN: 2812-001 Table 2

					Oxidation-Reduction	Specific	
	Measurement	Temperature		Dissolved Oxygen	Potential	Conductivity	Turbidity
Monitoring Well	Date	(degrees Celsius)	рН	(mg/l)	(millivolts)	(mS/cm)	(NTU)
FMW-01	5/16/2022	16.1	6.84	0.61	-133.9	0.848	3.9
FMW-02	5/16/2022	16.3	6.67	0.70	-129.9	1.147	5.6
FMW-03	5/16/2022	16.4	6.39	0.61	6.96-	1.029	9.4
FMW-04	5/16/2022	16.7	6.52	0.68	-86.5	1.206	5.8
MW-22	5/16/2022	14.1	6.56	0.70	3.6	0.619	4.4
NOTES:							

mg/l = milligrams per liter mS/cm = milliSiemens per centimeter NTU = nephelometric turbidity unit

Table 3 Soil Analytical Results for TPH and Metals Parcel 2 Comfort Suites 7200 Fun Center Way Tukwila, Washington Farallon PN: 2812-001

						Analytical Re.	Analytical Results (milligrams per kilogram)	per kilogram)		
		Sample Depth								
Sample Location	Sample Identification	(feet) ¹	Sample Date	DRO ²	ORO ²	Arsenic ³	Cadmium ³	Chromium ³	Lead ³	Mercury ³
EMM 01	FMW-01-2.5	2.5	5/12/2022	26 N	270	-	-	1	1	1
10- M M J	FMW-01-16.0	16.0	5/12/2022	1	-	< 13	< 0.67	18	< 6.7	< 0.34
	FMW-02-2.5	2.5	5/12/2022	35 N	280	-	-	1	1	1
FMW-02	FMW-02-7.0	7.0	5/12/2022			< 12	< 0.59	32	27	< 0.29
	FMW-02-18.0	18.0	5/12/2022	-		< 12	< 0.61	14	< 6.1	< 0.31
ENAW 02	FMW-03-5.0	5.0	5/12/2022	< 26	< 64				-	
CO- M INLI	FMW-03-17.0	17.0	5/12/2022	1		< 13	< 0.64	6.1	< 6.4	< 0.32
ENTRY 04	FMW-04-2.5	2.5	5/12/2022	31 N	380				1	
+0- AA TAT.T	FMW-04-15.0	15.0	5/12/2022			< 14	< 0.68	15	< 6.8	< 0.34
MTCA Method A (MTCA Method A Cleanup Levels for Soil ⁴			2,000	2,000	20	2	2,000	250	2
NOTES:										

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

--- denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by U.S. Environmental Protection Agency Method 6010D/7471B.

⁴Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics N = hydrocarbons in the oil-range are impacting the diesel-range result ORO = TPH as oil-range organics

1 of 1

Table 4 Groundwater Analytical Results for TPH and Metals Parcel 2 Comfort Suites 7200 Fun Center Way Tukwila, Washington Farallon PN: 2812-001

				Ana	alytical Results (n	Analytical Results (micrograms per liter)	er)	
			TPH^{1}	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
Sample Location	Sample Date	Sample Identification	(C10 to C36)	Arsenic ²	Cadmium ²	Chromium ²	Lead ²	Mercury ²
		W	Monitoring Well Groundwater Samples	roundwater Samp	les			
FMW-01	5/16/2022	FMW-01-051622	490	64	< 4.0	< 10	< 1.0	< 0.50
FMW-02	5/16/2022	FMW-02-051622	380	66	< 4.0	< 10	< 1.0	< 0.50
FMW-03	5/16/2022	FMW-03-051622	< 280	6.8	< 4.0	< 10	< 1.0	< 0.50
FMW-04	5/16/2022	FMW-04-051622	< 280	16	< 4.0	< 10	< 1.0	< 0.50
MW-22	5/16/2022	MW-22-051622	< 270	4.5	< 4.0	< 10	< 1.0	< 0.50
MTCA Method A Cleanup Levels for Groundwater ³	up Levels for Grou	undwater ³	500	5	5	20	15	2
Puget Sound Basin Natural Background Concentrations ⁴	ral Background Co	oncentrations ⁴	NE	8.0	NE	NE	NE	NE
<u>NOTES:</u> <u>Pesults</u> in hold and highlighted :	wollow denote concentrat	<u>NOTES:</u> Basults in hold and highlichted <u>vallow</u> denote concentrations acceeding analicable cleanum levels and book wound levels	burrom hood burst a		NF = not established			

Results in **bold** and highlighted <mark>yellow</mark> denote concentrations exceeding applicable cleanup levels and background levels. < denotes analyte not detected at or above the reporting limit listed.

¹Analyzed by Northwest Method NWTPH-Dx.

²Analyzed by U.S. Environmental Protection Agency Method 200.8/7470A.

³Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater,

Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013. ⁴Natural Background Groundwater Arsenic Concentrations in Washington State, Washington State Department

of Ecology, Publication No. 14-09-044, dated January 2022.

NE = not established

TPH (C10 to C36) = total petroleum hydrocarbons quantified as a single product within the carbon range of C10 to C36 (diesel- and oil-range)

1 of 1

ATTACHMENT A BORING AND MONITORING WELL CONSTRUCTION LOGS

LIMITED SUBSURFACE INVESTIGATION REPORT Family Fun Center Site – Parcel 2 7200 Fun Center Way Tukwila, Washington

Farallon PN: 2812-001

FARALLON		-00	g oʻ	fB	ori	ng:	FMW-0	1	Page	1 of 3
Client: Eastwind Investments Project: Parcel 2 Comfort Suites	Date/Time Started: Date/Time Complete	ed: 5/		1515	5		Depth to Water A Boring Diameter	(in):		17 8
Location: Tukwila, WA	Drilling Company: Drilling Method:		ascad		lling Auge	r	Total Boring Dep Constructed Wel			30 30
Farallon PN: 2812-001	Drilling Equipment:		ME 75		Auge		Constructed We	i Deb	un (it bys).	50
Logged By: C. van Stolk	Drilling Operator: Sampler Type:		urtis A &M S							
Reviewed By: A. Meugniot	Drive Hammer (Ibs)									
Cepth (ft bgs) Fithologic Descript	ion	uscs	USCS Graphic	Blow Counts	% Recovery	(vmqq) Olq	Sample ID	Sample Analyzed	Boring/ Constru Deta	ction

0.0-4.0': Cleared for utilities using vactor truck. Samples collected using hand auger.									
1.0-1.5': Silty SAND (70% sand, 15% gravel, 15% silt), fine to coarse sand, dark brown, loose, moist. Fill material.	SM	0.0	N/A	100	0.4				Monume
2.5-3.0': Silty SAND (60% sand, 20% silt, 20% gravel), fine to coarse sand, fine and coarse gravel, dark brown, very loose, moist. Fill material, trace organic matter.	SM	0.0	N/A	100	0.0	FMW-02-2.5	x		Cement
4.0-5.0': No Recovery - large rock.									
5.0-6.5': Silty SAND (60% sand, 20% silt, 20% gravel), fine to coarse sand, fine and coarse gravel, gray, very loose, moist, organic odor. Fill material.	SM	0000	6/5/5	100	0.4				Bentonit
6.5-8.0': Silty SAND (60% sand, 20% silt, 20% gravel), fine to coarse sand, fine and coarse gravel, gray, loose, moist, strong petroleum odor. Fill material.	SM	00000	2/2/2	100	0.2	FMW-02-7.0	×		Domonik
8.0-9.5': Silty SAND (60% sand, 20% silt, 20% gravel), fine to coarse sand, fine and coarse gravel, gray, very loose, wet, organic odor. Fill material, trace organic material.	SM	00000	3/4/4	100	0.1				
9.5-11.0": Silty SAND (60% sand, 20% silt, 20% gravel), fine to coarse sand, fine and coarse gravel, gray, very loose, wet, organic	SM	000	2/3/3	100	0.1			-	

		Well Constructi	on Information		
Monument Type:	Flush	Filter Pack:	2/12 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	4	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y; NA
Screened Interval (ft bgs):	15'-30'	Boring Abandonment:	NA	Unique Well ID: BNC-991	

FARALLON		Lo	g o	fB	ori	ng:	FMW-0	1	Page	2 of 3
Client: Eastwind Investments Project: Parcel 2 Comfort Suites Location: Tukwila, WA	Date/Time Started: Date/Time Complet Drilling Company: Drilling Method:	ted: 5 C	/12/22 /12/22 Cascad	1518 le Dri	5 Iling		Depth to Water A Boring Diameter Total Boring Dep Constructed Wel	(in): oth (ft	bgs):	17 8 30 30
Farallon PN: 2812-001	Drilling Equipment	: c	ME 7	5			Constituted We	n Dep	un (n. oga).	00
Logged By: C. van Stolk	Drilling Operator: Sampler Type:		Curtis A							
Reviewed By: A. Meugniot	Drive Hammer (Ibs): 3	00							
Cepth (ft bgs) Sample Interval Lithologic Descripti	on	USCS	USCS Graphic	Blow Counts	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Boring/ Constru Deta	ction

11.0-11.3': Silty SAND (60% sand, 20% silt, 20% gravel), fine to	SM	0.0	2/2/2	100	0.6			Н	
coarse sand, fine and coarse gravel, gray, very loose, wet, organic odor. Fill material, trace organic material.	SM	00				FMW-02-11.5			
11.3-12.5': Silty SAND (65% sand, 35% silt), fine and medium sand, gray, very loose, moist, organic odor, organic material.								-	Bentonite
12.5-13.0 [°] : Silty SAND (65% sand, 35% silt), fine and medium sand, gray, loose, moist, organic odor, organic material.	SM	0.0	3/4/5	100	1.6				
13.0-14.0': Sandy SILT (60% silt, 40% sand), fine and medium sand, brownish gray, soft, moist, organic odor, organic material.	ML						000000	****	
14.0-15.5': Sandy SILT (60% silt, 40% sand), fine and medium sand, brownish gray, soft, moist, organic odor, organic material.	ML		2/2/2	100	1.0		101010		Sand Pack
15.5-17.0': Silty SAND (70% sand, 30% silt), fine sand, gray, loose, moist to wet at 16.2', no odor, trace organic material.	SM	0000	4/5/5	75	0.7				
17.0-18.5': Poorly-graded SAND (100% sand), medium and coarse sand, black, moist, no odor.	SP		2/3/3	100	0.2		1212222		¥ Water Leve
	_					FMW-02-18.0	x		
18.5-20.0': Poorly graded SAND (100% sand), medium and coarse sand, black, very loose, wet, no odor.	SP		2/2/2	100	0.1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

		Well Constructi	on Information		
Monument Type:	Flush	Filter Pack:	2/12 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	4	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	15'-30'	Boring Abandonment:	NA	Unique Well ID: BNC-991	

FARALLON	Lo	og o	fB	ori	ng	: FMW-0	1	Page	3 of 3
Client: Eastwind Investments Project: Parcel 2 Comfort Suites Location: Tukwila, WA	Date/Time Started: Date/Time Completed: Drilling Company: Drilling Method:	5/12/22 5/12/22 Cascad Hollow	2 1518 de Dri	5 Iling	ər	Depth to Water A Boring Diameter Total Boring Dep Constructed Wel	(in): oth (ft	bgs):	17 8 30 30
Farallon PN: 2812-001	Drilling Equipment:	CME 7	5				n Dep	un (n. ogo).	
Logged By: C. van Stolk	Drilling Operator: Sampler Type:	Curtis / D&M S							
Reviewed By: A. Meugniot	Drive Hammer (Ibs):	300							
Cepth (ft bgs) Sample Interval	on Sos	USCS Graphic	Blow Counts	% Recovery	(vmqq) OIA	Sample ID	Sample Analyzed	Boring, Constru Deta	ction

						Sand Pa
28.5-30.0': Poorly graded SAND (100% sand), medium and coarse sand, black, very loose, wet, no odor.	SP	2/2/2	100	0.1		

		Well Constructi	on Information		
Monument Type:	Flush	Filter Pack:	2/12 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	4	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	15'-30'	Boring Abandonment:	NA	Unique Well ID: BNC-991	

FARALLON		Lo	g o	fB	ori	ng:	FMW-0	2	Page	1 of 3
Client: Eastwind Investments Project: Parcel 2 Comfort Suites Location: Tukwila, WA	Date/Time Started: Date/Time Comple Drilling Company: Drilling Method:	ted: 5	/12/22 /12/22 ascad	1248 le Dri	5 Iling		Depth to Water A Boring Diameter Total Boring Dep Constructed Wel	(in): oth (ft	bgs):	18.5 8 30 30
Farallon PN: 2812-001	Drilling Equipment	: 0	ME 7	5						
Logged By: C. van Stolk	Drilling Operator: Sampler Type:		ans A							
Reviewed By: A. Meugniot	Drive Hammer (Ibs): 3	00				8.4			
Cepth (ft bgs) Sample Interval Lithologic Descripti	on	USCS	USCS Graphic	Blow Counts	% Recovery	(vmqq) OIA	Sample ID	Sample Analyzed	Boring/ Constru Deta	ction

	0.0-4.0': Cleared for utilities using vactor truck. Samples collected using hand auger.	r =								
	1.0-1.5': Silty SAND (75% sand, 25% silt), fine and medium sand, dark gray, moist, no odor. Trace gravel, brick fragments, Fill material.	SM	0.0	N/A	100	0.3				Monum
	2.5-3.0': Silty SAND (75% sand, 20% silt, 5% gravel), fine to coarse sand, fine gravel, gray, moist, no odor.	SM	0.0	N/A	100	0.2	FMW-02-2.5	x		Cemen
-	4.0-5.0': No Recovery - large rock.									
	5.0-5.4': Silty SAND (75% sand, 20% silt, 5% gravel), fine to coarse sand, fine gravel, gray, very loose, moist, no odor. 5.4-6.5': No Recovery.	SM	0.0	5/3/2	30	0.0				
	6.5-7.2': Silty SAND (75% sand, 20% silt, 5% gravel), fine to coarse sand, fine gravel, gray, medium dense, moist, no odor. Plastic and metal debris. 7.2-8.0': No Recovery.	SM		8/10/ 10	40	0.0	FMW-02-7.0	×	I I I I	Benton
1	8.0-9.5': No Recovery.			8/2/1	0	1				
	9.5-10.0': Silty SAND (65% sand, 20% gravel, 15% silt), fine to coarse sand, fine and coarse gravel, gray, dense, wet, no odor.	SM	20	12/	35	0.0				

		Well Constructi	on Information		
Monument Type:	Flush	Filter Pack:	2/12 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	4	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y; NA
Screened Interval (ft bgs):	15'-30'	Boring Abandonment:	NA	Unique Well ID: BNC-990	

FARALLON		Log	j of	fB	ori	ng:	FMW-0	2	Page	2 of 3
Client: Eastwind Investments Project: Parcel 2 Comfort Suites Location: Tukwila, WA	Date/Time Started: Date/Time Complete Drilling Company: Drilling Method:	ed: 5/1 Ca	ascad	1245 e Dri	5	ər	Depth to Water A Boring Diameter Total Boring Dep Constructed Wel	(in): oth (ft	bgs):	18.5 8 30 30
Farallon PN: 2812-001	Drilling Equipment:	CN	NE 75	5						
Logged By: C. van Stolk	Drilling Operator: Sampler Type:		urtis A SM SS							
Reviewed By: A. Meugniot	Drive Hammer (Ibs)	30	0							
Cepth (ft bgs) Sample Interval Lithologic Descripti	on	uscs	USCS Graphic	Blow Counts	% Recovery	(vmqq) OI9	Sample ID	Sample Analyzed	Boring/ Constru Deta	ction

11.0-12.0': Silty SAND (85% sand, 15% silt), fine to coarse sand, gray, very loose, wet, no odor.	SM	000	8/1/1	66	0.1	FMW-02-11.5		-
12.0-12.5': No Recovery.								
12.5-13.0': Silty SAND (85% sand, 15% silt), fine to coarse sand, gray, very loose, wet, no odor.	SM	0.0	2/1/1	100	0.2			-
13.0-15.0': Sandy SILT (60% silt, 40% sand), fine sand, dark brown, very loose, moist, no odor. Contains organic matter.	ML						897959599999	
15.0-15.5': No Recovery.							<u> </u>	
15.5-17.0': Silty SAND (60% sand, 40% silt), fine sand, brown, loose, moist, no odor.	SM	0000	3/4/4	100	0.1		58888888888888888888888888888888888888	Sand Pad
		0						
17.0-17.4': Silty SAND (60% sand, 40% silt), fine sand, brown, loose, moist, no odor.	SM	0	5/5/6	100	0.7			Well Scre
17.4-18.5" Poorly-graded SAND (95% sand, 5% silt), medium and coarse sand, black, loose, moist, no odor.	SP					FMW-02-18.0	x	
18.5-20.0': Poorly graded SAND (100% sand), medium and coarse sand, black, loose, wet, no odor.	SP		2/3/5	100	0.6		8888888888888888888	¥ Water Le

		Well Constructi	on Information		
Monument Type:	Flush	Filter Pack:	2/12 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	4	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	15'-30'	Boring Abandonment:	NA	Unique Well ID: BNC-990	

FARALLON	L	og o	f B	ori	ng	: FMW-0	2	Page	3 of 3
Client: Eastwind Investments Project: Parcel 2 Comfort Suites Location: Tukwila, WA	Date/Time Started: Date/Time Completed: Drilling Company: Drilling Method:	5/12/22 5/12/22 Cascad Hollow	2 1245 de Dri	5 Iling	ər	Depth to Water A Boring Diameter Total Boring Dep Constructed We	(in): oth (ft	bgs):	18.5 8 30 30
Farallon PN: 2812-001	Drilling Equipment:	CME 7	5						
Logged By: C. van Stolk	Drilling Operator: Sampler Type:	Curtis / D&M S							
Reviewed By: A. Meugniot	Drive Hammer (Ibs):	300							
Cepth (ft bgs) Sample Interval Lithologic Description	on	USCS Graphic	Blow Counts	% Recovery	(vmqq) Olq	Sample ID	Sample Analyzed	Boring, Constru Deta	ction

5-	20.0-28.5': Split spoon samples not collected.					Sand Pack
	28.5-30.0': Poorly graded SAND (100% sand), medium and coarse sand, black, loose, wet, no odor.	SP	NR	100	0.1	Well Screen

		Well Constructi	on Information		
Monument Type:	Flush	Filter Pack:	2/12 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	4	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	15'-30'	Boring Abandonment:	NA	Unique Well ID: BNC-990	

FARALLON		Lo	g o	fB	ori	ng:	FMW-0	3	Page	1 of 3
Client: Eastwind Investments Project: Parcel 2 Comfort Suites Location: Tukwila, WA	Date/Time Started Date/Time Comple Drilling Company: Drilling Method:	eted: 5 C	/13/22 /13/22 ascad	1338 le Dri	5 Iling		Depth to Water A Boring Diameter Total Boring Dep Constructed Wel	(in): oth (ft	bgs):	18.5 8 30 30
Farallon PN: 2812-001	Drilling Equipmen	t: C	ME 7	5						
Logged By: C. van Stolk	Drilling Operator: Sampler Type:		urtis A							
Reviewed By: A. Meugniot	Drive Hammer (Ibs	s): 3	00							
Cepth (ft bgs) Pepth (ft bgs) Fithologic Descripti	on	USCS	USCS Graphic	Blow Counts	% Recovery	(vmqq) Olq	Sample ID	Sample Analyzed	Boring/ Constru Deta	ction

using hand auger.								
0.1-1.5': Well graded SAND with silt (60% sand, 30% gravel, 10% silt), fine to coarse sand, fine to coarse gravel, brownish-gray, moist.	SW- SM	澎	N/A	100	0.4			Monu
2.5-3.0': Poorly graded SAND with silt (90% sand, 10% silt), fine and medium sand, brown, very loose, dry.	sw		N/A	100	0.0			Ceme
5.0-6.0': Poorly graded SAND with silt (90% sand, 10% silt), fine and medium sand, brown, very loose, moist.	SP- SM		1/2/1	67	0.9	FMW-03-5.0	x	
6.0-6.5': No Recovery. 6.5-7.0': Poorly graded SAND (100% sand), medium and coarse sand, black, very loose, wet, no odor, 7.0-8.0': No Recovery.	SP		1/1/1	35	1.3			Bento
8.0-8.5 ^r : Poorly graded SAND (100% sand), fine and medium sand, brownish gray, very loose, moist, no odor. 8.5-9.5': No Recovery.	SP		2/2/2	35	1.1			

		Well Constructi	on Information		
Monument Type:	Flush	Filter Pack:	2/12 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	4	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y; NA
Screened Interval (ft bgs):	15'-30'	Boring Abandonment:	NA	Unique Well ID: BNC-993	

FARALLON	Lo	og o	fB	ori	ng	: FMW-0	3	Page	2 of 3
Client: Eastwind Investments Project: Parcel 2 Comfort Suites Location: Tukwila, WA	Date/Time Started: Date/Time Completed: Drilling Company: Drilling Method:	5/13/22 5/13/22 Cascad Hollow	1338 le Dri	5 Iling	ər	Depth to Water A Boring Diameter Total Boring Dep Constructed Wel	(in): oth (ft	bgs):	18.5 8 30 30
Farallon PN: 2812-001	Drilling Equipment:	Drilling Equipment: CME 75							
Logged By: C. van Stolk	Drilling Operator: Sampler Type:	Curtis A D&M S							
Reviewed By: A. Meugniot	Drive Hammer (Ibs):	300							
Cepth (ft bgs) Cample Interval	on So	USCS Graphic	Blow Counts	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Boring/ Constru Deta	ction

							FMW-03-10.0		-	
	11.0-12.5': Poorly graded SAND (100% sand), fine and medium sand, brownish gray, very loose, moist, no odor.	SP	2/	1/2 10	00 0	0.6				
	12.5-14.0': Poorly graded SAND (100% sand), fine and medium sand, brownish gray with orange mottling, very loose, moist, no odor.	SP	2/	3/2 10	00 0	0.6			86888 1 1 1 86888	
	14-15.5" Poorly graded SAND (100% sand), fine and medium sand, brownish gray with orange mottling, very loose, moist, no odor.	SP	3/	3/3 10	00 0	0.3			<u> </u>	
5-	15.5-17": Poorly graded SAND (100% sand), fine and medium sand, dark gray with orange mottling, very loose, moist, no odor.	SP	3/	3/3 10	00 0	0.8				Sand Pack
	17.0-18.5': Poorly graded SAND (100% sand), fine and medium sand, dark gray with orange mottling, very loose, wet, no odor.	SP	3/	3/3 10	. 00	1.1	FMW-03-17.0	×		▼ Water Level
1	18.5-20.0': Poorly graded SAND (100% sand), fine and medium sand, dark gray with orange mottling, very loose, wet, no odor.	SP	N	NR 10	00 1	NR				
)										

		Well Constructi	on Information		
Monument Type:	Flush	Filter Pack:	2/12 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	4	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	15'-30'	Boring Abandonment:	NA	Unique Well ID: BNC-993	

	1	FARALLON		Log	g o	fΒ	ori	ng:	FMW-0	3	P	age 3 of 3
Client: Eastwind Investments Project: Parcel 2 Comfort Suites Location: Tukwila, WA Farallon PN: 2812-001		Date/Time Started: 5/13/22 1225 Depth to Water ATD (ft bgs): 18. Date/Time Completed: 5/13/22 1335 Boring Diameter (in): 8 Drilling Company: Cascade Drilling Total Boring Depth (ft bgs): 30 Drilling Method: Hollow Stem Auger Constructed Well Depth (ft bgs): 30 Drilling Equipment: CME 75									30	
_00	ggeo	d By: C. van Stolk	Drilling Operator Sampler Type:		urtis A &M S							
Rev	liew	ved By: A. Meugniot	Drive Hammer (II	bs): 3	00							
Depth (ft bgs)	Sample Interval	Lithologic Description		uscs	USCS Graphic	Blow Counts	% Recovery	(vmqq) OI9	Sample ID	Sample Analyzed	Con	ing/Well struction Details
25-												Sand Pack Well Screer

		Well Constructi	on Information							
Monument Type:	Flush	Filter Pack:	2/12 Sand	Ground Surface Elevation (ft):	NA					
Casing Diameter (in):	4	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA					
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA					
Screened Interval (ft bgs):	15'-30'	Boring Abandonment:	NA	Unique Well ID: BNC-993						
FARALLON	L	Log of Boring: FMW-04 Page 1 of 3								
---	--	--------------------------------------	----------------------------	-------------	------------	--	------------------	----------------------------	---------------------	--
Client: Eastwind Investments Project: Parcel 2 Comfort Suites Location: Tukwila, WA	Date/Time Started: Date/Time Completer Drilling Company: Drilling Method:	d: 5/13/: Casc	22 090 22 100 ade Dr	0 illing	ər	Depth to Water A Boring Diameter Total Boring Dep Constructed Wel	(in): oth (ft	bgs):	17 8 30 30	
Farallon PN: 2812-001	Drilling Equipment:	Drilling Equipment: CME 75								
Logged By: C. van Stolk	Drilling Operator: Curtis Askew Sampler Type: D&M SS 18"x2"									
Reviewed By: A. Meugniot	Drive Hammer (Ibs):	300								
Cepth (ft bgs) Sample Interval Lithologic Descripti		USCS USCS Granhic	Blow Counts	% Recovery	(vmqq) Olq	Sample ID	Sample Analyzed	Boring, Constru Deta	ction	

		16.1							
0.1-1.5': Silty SAND (60% sand, 25% gravel, 15% silt), fine to coarse sand, fine to coarse gravel, brown, moist.	SM	0.0	N/A	100	0.4				Mor
2.5-3.0': Silty SAND (60% sand, 25% silt, 15% gravel), fine to coarse sand, brownish gray, moist.	SM	0.0	N/A	100	0.1	FMW-04-2.5	x		Cer
5.0-6.5': Silty SAND (60% sand, 25% silt, 15% gravel), fine to coarse sand, brownish gray, very loose, moist.	SM	0.00	1/2/1	100	0.5				
6.5-8.0': Silty SAND (70% sand, 30% silt), fine and medium sand, gray to brown at 7', loose, moist, contains trace gravel and organic material.	SM	00000	1/1/1	100	0.5				Ber
8.0-8.3': Silty SAND (70% sand, 15% silt, 15% gravel), fine to coarse sand, fine and coarse gravel, gray, medium dense, moist. 8.3-9.5': No Recovery.	SM	0.00	2/2/2	15	0.0				
9.5-11.0": Silty SAND (70% sand, 30% silt), fine and medium sand, gray to brown at 7', loose, moist, contains trace gravel and organic	SM	20	2/2/2	100	0.0			-	

		Well Constructi	on Information		
Monument Type:	Flush	Filter Pack:	2/12 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	4	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y; NA
Screened Interval (ft bgs):	15'-30'	Boring Abandonment:	NA	Unique Well ID: BNC-992	

FARALLON	Lo	Log of Boring: FMW-04 Page 2 of 3								
Client: Eastwind Investments Project: Parcel 2 Comfort Suites	Date/Time Started: Date/Time Completed:	5/13/22				Depth to Water A Boring Diameter			17 8	
Location: Tukwila, WA	Drilling Company:	Cascad				Total Boring Dep	th (ft	bgs):	30	
Farallon PN: 2812-001	Drilling Method: Drilling Equipment:	Drilling Equipment: CME 75 Drilling Operator: Curtis Askew								
Logged By: C. van Stolk	Drilling Operator: Sampler Type:									
Reviewed By: A. Meugniot	Drive Hammer (Ibs):									
Depth (ft bgs) Cample Interval	on	USCS Graphic	Blow Counts	% Recovery	(vmqq) OIA	Sample ID	Sample Analyzed	Boring/ Constru Deta	ction	

material.					FMW-04-10.0		F	1
11.0-12.5": Poorly graded SAND with silt (90% sand, 10% silt), fine and medium sand, brown, very loose, moist, no odor.	SP- SM	0.(2/1//	2 100	0.0				
12.5-13.5': Poorly graded SAND with silt (90% sand, 10% silt), fine and medium sand, brown, very loose, moist, no odor.	SP- SM	2/3/2	2 67	0.2			-	
13.5-14.0': Poorly graded SAND with silt (90% sand, 10% silt), fine and medium sand, brown, very loose, moist, no odor.							388888	
14.0-15.5': Poorly graded SAND (95% sand, 5% silt), fine and medium sand, blue-gray with orange mottling, very loose, wet, no odor.	SP	3/3/:	3 100	0.1	FMW-04-15.0			
15.5-17.0': Poorly graded SAND (100% sand), medium and coarse sand, brownish black, very loose, moist.	SP	3/3/	3 100	0.4	FMW-04-13.0	Â		Sand Pack
17.0-18.5': Poorly graded SAND (100% sand), medium and coarse sand, brownish black, very loose, wet.	SP	3/3/3	3 100	0.4				¥ Water Level
				H.				Well Screen
18.5-20.0': Poorly graded SAND (100% sand), medium and coarse sand, brownish black, very loose, wet.	SP	3/3/3	100	0.4			<u></u>	

		Well Constructi	on Information		
Monument Type:	Flush	Filter Pack:	2/12 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	4	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	15'-30'	Boring Abandonment:	NA	Unique Well ID: BNC-992	

	1	FARALLON CONSULTING		Log	g o	fB	ori	ng:	FMW-0	4	Р	age 3 of 3
Pro Loc Far	allo	t: Parcel 2 Comfort Suites on: Tukwila, WA on PN: 2812-001	Date/Time Started Date/Time Comple Drilling Company Drilling Method: Drilling Equipmer Drilling Operator: Sampler Type:	eted: 5/ C H nt: C	13/22 13/22 ascad ollow ME 7 urtis A &M S	1000 le Dril Stem 5 Askew) Iling Auge	0	Depth to Water A Boring Diameter Total Boring Dep Constructed Wel	(in): oth (ft	bgs):	17 8 30 gs): 30
Rev	liew	wed By: A. Meugniot	Drive Hammer (Ib	s): 30	00							
Depth (ft bgs)	Sample Interval	Lithologic Description		USCS	USCS Graphic	Blow Counts	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Con	ing/Well struction Details
25-												Sand Pack Well Screen

		Well Constructi	on Information		
Monument Type:	Flush	Filter Pack:	2/12 Sand	Ground Surface Elevation (ft):	NA
Casing Diameter (in):	4	Surface Seal:	Cement	Top of Casing Elevation (ft):	NA
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	15'-30'	Boring Abandonment:	NA	Unique Well ID: BNC-992	

ATTACHMENT B HISTORICAL INVESTIGATION LOCATION FIGURES

LIMITED SUBSURFACE INVESTIGATION REPORT Family Fun Center Site – Parcel 2 7200 Fun Center Way Tukwila, Washington

Farallon PN: 2812-001

TUB:KK1 E:/2352003/CKD/04/2352003E.DMC 03/03/33

ATTACHMENT C ECOLOGY SHA TABLE 1

LIMITED SUBSURFACE INVESTIGATION REPORT Family Fun Center Site – Parcel 2 7200 Fun Center Way Tukwila, Washington

Farallon PN: 2812-001

	Table 1 Summary of	mmary of	Groundwat	er Metal	Groundwater Metal Analytical Data from 2002 to 2005	Data from	2002 to 20	05	
					Metals	als			
Monitoring Well	Date Sampled	Ars	Arsenic	Chro	Chromium	<u>م</u>	head	Nickel	kel
D			2 2		50		15		
MTCA Method A Cleanup Levels	Cleanup Levels	Total	Dissovled	Total	Dissovled	Total	Dissovled	Total	Dissovled
MW-20	4/1/2002	33	25	<10	<10	7	<4	<20	<20
	10/3/2002	72	55	<10	<10	ŝ	\heartsuit	<20	<20
	4/14/2004	20	\$	6	<7	7	ŝ	20	<20
	7/15/2004	40	26	62	<7	58	ŝ	40	<20
	11/4/2004	20	11	76	10	68	17	100	20
	1/19/2005	15	10	45	<7	20	<3	20	<20
MW-21	4/1/2002	170	77	10	<10	<4	4>	<20	<20
	10/3/2002	62	41	<10	<10	ŝ	ŝ	<20	<20
	4/14/2004	21	55	10	<7	4	\heartsuit	<20	<20
	7/15/2004	19	10	59	<7	17	\heartsuit	<20	<20
	11/4/2004	21	21	15	7	7	2	<20	<20
	1/19/2005	50	15	<7	<7	3	<3	<20	<20
MW-22	4/1/2002	2	<5	<10	<10	<4	<4	<20	<20
	10/3/2002	12	9	<10	<10	\$	ŝ	<20	<20
	4/14/2004	6	\$	10	<7	6	ŝ	<20	<20
	7/15/2004	15	7	33	<7	30	\$	<20	<20
	11/4/2004	12	10	22	<7	17	14	20	<20
	1/19/2005	9	<5	10	<7	17	<3	30	<20
All results are in I	All results are in micrograms per liter (μ g/L).	er (µg/L).							
Bolded and shade	Bolded and shaded results are in excess of MTCA Method A cleanup levels for groundwater.	cess of MTC	A Method A	cleanup leve	ls for groundv	vater.			

ATTACHMENT D LABORATORY ANALYTICAL RESULTS

LIMITED SUBSURFACE INVESTIGATION REPORT Family Fun Center Site – Parcel 2 7200 Fun Center Way Tukwila, Washington

Farallon PN: 2812-001

May 24, 2022

Amanda Meugniot Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 2812-001 Laboratory Reference No. 2205-171

Dear Amanda:

Enclosed are the analytical results and associated quality control data for samples submitted on May 13, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: May 24, 2022 Samples Submitted: May 13, 2022 Laboratory Reference: 2205-171 Project: 2812-001

Case Narrative

Samples were collected on May 12 and 13, 2022 and received by the laboratory on May 13, 2022. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-02-2.5					
Laboratory ID:	05-171-01					
Diesel Range Organics	35	23	NWTPH-Dx	5-17-22	5-18-22	Ν
Lube Oil Range Organics	280	56	NWTPH-Dx	5-17-22	5-18-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	FMW-01-2.5					
Laboratory ID:	05-171-05					
Diesel Range Organics	26	24	NWTPH-Dx	5-17-22	5-18-22	Ν
Lube Oil Range Organics	270	61	NWTPH-Dx	5-17-22	5-18-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	73	50-150				
Client ID:	FMW-04-2.5					
Laboratory ID:	05-171-09					
Diesel Range Organics	<u> </u>	24	NWTPH-Dx	5-19-22	5-20-22	N
Lube Oil	380	61	NWTPH-Dx	5-19-22	5-20-22	IN
Surrogate:	Percent Recovery	Control Limits		5-19-22	5-20-22	
o-Terphenyl	74	50-150				
0-Terphenyi	74	50-750				
Client ID:	FMW-03-5.0					
Laboratory ID:	05-171-12					
Diesel Range Organics	ND	26	NWTPH-Dx	5-17-22	5-18-22	
Lube Oil Range Organics	ND	64	NWTPH-Dx	5-17-22	5-18-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	58	50-150				
(· ·)						

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

		Result	DC		Metho	لم	Da		Date	Fla	~~~
Analyte METHOD BLANK	r	kesult	PC	<u>ال</u>	Metho	a	Prep	ared	Analyzed	Flag	gs
Laboratory ID:	MB	0517S2									
Diesel Range Organics	IVIL	ND	20	<u>า</u>	NWTPH	-Dy	5-17	-22	5-18-22		
Lube Oil Range Organics		ND	50		NWTPH		5-17		5-18-22		
Surrogate:	Percer	nt Recovery	Control			BA	0 11		0 10 22		
o-Terphenyl		95	50-1	150							
Laboratory ID:	MB	0519S1									
Diesel Range Organics		ND	20	0	NWTPH	-Dx	5-19	-22	5-19-22		
Lube Oil Range Organics		ND	50	C	NWTPH	-Dx	5-19	-22	5-19-22		
Surrogate:	Percer	nt Recovery	Control	Limits							
o-Terphenyl		86	50-1	150							
					Source	Dor	cent	Recover		RPD	
Analyte	Res	sul t	Sniko	Level	Result		overy	Limits	y RPD	Limit	Flage
DUPLICATE	Net	suit	эріке	Level	Result	Neu	Jvery	LIIIIIIS	RFD	Linin	Flags
	05-13	0.05									
Laboratory ID:	ORIG	DUP									
Diesel Range Organics	202	192	NA	NA		N	IA	NA	5	NA	
Lube Oil Range Organics	151	142	NA	NA		-	IA	NA	6	NA	
Surrogate:	151	142	INA	INA				INA	0	IN/A	
•						88	81	50-150			
o-Terphenyl						00	01	50-750			
Laboratory ID:	05-17										
	ORIG	DUP									
Diesel Range	ORIG ND	DUP ND	NA	NA		Ν	IA	NA	NA	NA	
Diesel Range Lube Oil			NA NA	NA NA		-	IA IA	NA NA	NA 3	NA NA	

70 72 50-150

o-Terphenyl

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

0 0 11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-02-7.0					
Laboratory ID:	05-171-02					
Arsenic	ND	12	EPA 6010D	5-23-22	5-23-22	
Cadmium	ND	0.59	EPA 6010D	5-23-22	5-23-22	
Chromium	32	0.59	EPA 6010D	5-23-22	5-23-22	
Lead	27	5.9	EPA 6010D	5-23-22	5-23-22	
Mercury	ND	0.29	EPA 7471B	5-18-22	5-18-22	
Client ID:	FMW-02-18.0					
Laboratory ID:	05-171-04					
Arsenic	ND	12	EPA 6010D	5-23-22	5-23-22	
Cadmium	ND	0.61	EPA 6010D	5-23-22	5-23-22	
Chromium	14	0.61	EPA 6010D	5-23-22	5-23-22	
Lead	ND	6.1	EPA 6010D	5-23-22	5-23-22	
Mercury	ND	0.31	EPA 7471B	5-18-22	5-18-22	
Client ID:	FMW-01-16.0					
Laboratory ID:	05-171-08					
Arsenic	ND	13	EPA 6010D	5-23-22	5-23-22	
Cadmium	ND	0.67	EPA 6010D	5-23-22	5-23-22	
Chromium	18	0.67	EPA 6010D	5-23-22	5-23-22	
Lead	ND	6.7	EPA 6010D	5-23-22	5-23-22	
Mercury	ND	0.34	EPA 7471B	5-18-22	5-18-22	
Client ID:	FMW-04-15.0					
Laboratory ID:	05-171-11					
Arsenic	ND	14	EPA 6010D	5-23-22	5-23-22	
Cadmium	ND	0.68	EPA 6010D	5-23-22	5-23-22	
Chromium	15	0.68	EPA 6010D	5-23-22	5-23-22	
Lead	ND	6.8	EPA 6010D	5-23-22	5-23-22	
Mercury	ND	0.34	EPA 7471B	5-18-22	5-18-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-03-17.0					
Laboratory ID:	05-171-14					
Arsenic	ND	13	EPA 6010D	5-23-22	5-23-22	
Cadmium	ND	0.64	EPA 6010D	5-23-22	5-23-22	
Chromium	6.1	0.64	EPA 6010D	5-23-22	5-23-22	
Lead	ND	6.4	EPA 6010D	5-23-22	5-23-22	
Mercury	ND	0.32	EPA 7471B	5-18-22	5-18-22	

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0523SM2					
Arsenic	ND	10	EPA 6010D	5-23-22	5-23-22	
Cadmium	ND	0.50	EPA 6010D	5-23-22	5-23-22	
Chromium	ND	0.50	EPA 6010D	5-23-22	5-23-22	
Lead	ND	5.0	EPA 6010D	5-23-22	5-23-22	
Laboratory ID:	MB0518S1					
Mercury	ND	0.25	EPA 7471B	5-18-22	5-18-22	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-17	/1-02									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA			NA	NA	NA	20	
Cadmium	ND	ND	NA	NA			NA	NA	NA	20	
Chromium	26.8	24.4	NA	NA			NA	NA	9	20	
Lead	23.0	19.9	NA	NA			NA	NA	14	20	
Laboratory ID:	05-11	9-01									
Mercury	ND	ND	NA	NA			NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	05-17	/1-02									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	93.9	91.3	100	100	ND	94	91	75-125	3	20	
Cadmium	48.1	47.8	50.0	50.0	ND	96	96	75-125	1	20	
Chromium	125	120	100	100	26.8	98	94	75-125	4	20	
Lead	257	257	250	250	23.0	94	94	75-125	0	20	
Laboratory ID:	05-11	9-01									

97

80-120

20

1

Mercury

0.488

0.493

0.500

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

0.500 0.00870 96

Date of Report: May 24, 2022 Samples Submitted: May 13, 2022 Laboratory Reference: 2205-171 Project: 2812-001

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
FMW-02-2.5	05-171-01	11	5-17-22
FMW-02-7.0	05-171-02	15	5-17-22
FMW-02-18.0	05-171-04	19	5-17-22
FMW-01-2.5	05-171-05	18	5-17-22
FMW-01-16.0	05-171-08	26	5-17-22
FMW-04-2.5	05-171-09	18	5-17-22
FMW-04-15.0	05-171-11	26	5-17-22
FMW-03-5.0	05-171-12	22	5-17-22
FMW-03-17.0	05-171-14	22	5-17-22

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished 2 July Luy	Received P July July	Relinquished Construct another	Signature	10 FMW- 04- 10,0	9 FMW- 04- 2.5	8 FMW-01-16.0	7 FMW-01- 11.5	6 FMW-01-7.5	S FMW-01 - 2,5	4 FMW-02- 18.0	3 FMW-02- 11.5	2 FMW-02-7.0	1 Fmw-02-2.5	Lab ID Sample Identification	4	Amanda Maugniot	Privatel 2 Comfort Suites	2812-001	Project Number	Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.	
			Л	9		M	0	5-13	7			-				-	5-12	Date Sampled			Xstan	2 Days	Same Day			1
Reviewed/Date			6	A PPH_	ALPHY	Favallon	Company	6160	1603	1455	1438	1417	1310	1208	1135	1120	1000	Time Sampled	(other)		Standard (7 Days)	iys [e Day	(in working days) (Check One)	Chain	2
0			2 M	A		2		5011	A							_	50:1	Matrix				3 Days	1 Day	(S)		
								-	4								-	1	PH-HC	Contain D	ers				G	>
	_		S	5)	5	5	Date											NWTF	PH-Gx/	BTEX (8	021 8	260])		abo	Sn Sn	
			13/2	5	reeli	5-13-22	CD .											NWTF						Laboratory N	of Custody	
			20	B	-	-	п		×		-	-	X	_			×		PH-Dx es 826	(Acid / 5	SG Clea	n-up []))	N VI	V	
			21	5.1	41192	442	Time					-	-	-						I Volatile	s 8260			umber:		
			20	38	2	D												EDB E	EPA 80	11 (Wat	ers Only)		- Der:		
Chro	Data			3		P	Com											(with I	ow-lev	s 8270/S el PAHs)					
Chromatograms with final report	Package:				X	F	Comments/Special Instructions							_				PAHs PCBs	_	SIM (Iow	-level)			0	1	
rams v					1	F	Specia	_	-		-			-	-					ine Pest	icides 8	081	-		-	
vith fin	Standard				Added	Cal	1 Instr											Organ	ophos	phorus	Pesticid	es 8270	D/SIM			
al repo	rd 🗌					F	uction												_	Acid He	rbicides	8151				
ort 🗌	Level				5/1	ta	S							V	-		-			Metals Metals				_		
Electro					5/2	mortyse				×	-		-	X	-	×		TCLP						_	Page	
onic Da	Lev				5/16/22-03	250					-				-			HEM	oil anc	l grease) 1664				F	
Electronic Data Deliverables (EDDs)	Level IV				20	Y																			of	
rerables					(STA,	1																			2	
(EDDs					4	,											-							_		
s)								1	X	×			X	X		×	X	% Moi	sture					-		

Reviewed/Date	Received	Relinquished	Relinquished I Ally I Land	Received Nale Ha	Relinquished Conviting or and tork	Signature		ł	5		14 FMW-03- 17.0	13 FMW-03-10-0	12 FMW-03- 5.0	11 FMW-04-15.0	Lab ID Sample Identification	C. vm Stolk	Amanda Mengniot	Project Name: Parcel 2 Comfort Suites	2812-001		Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
Reviewed/Date		OTE	ALPHA	S ALPHA	· Favallon	Company		×			A 1312 A A	1255	1233	5-12 0930 5011 1			Contain	Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	Turnaround Request (in working days)	Chain of Custody
		RISI 111115	2-13-02 15:181	5-13-20 14:42	5-13-21 1442	Date Time							×		NWTF NWTF NWTF Volatil Halog	PH-Gx PH-Dx es 826 enated	BTEX (8 (Acid / 5 0 Volatile	BG Clear BG Clear BS 8260 ers Only)	n-up∏)		Laboratory Number:	Sustody
Chromatograms with final report 🔲 Electronic Data Deliverables (EDDs) 🗌	Data Package: Standard 🛛 Level III 🗍 Level IV 🗍				pra with contract w/ analysis as	Comments/Special Instructions					×			×	(with I PAHs PCBs Organ Organ Chlori Total P Total N TOtal N	ow-lev 8270/S 8082 iochlori ophosp nated / NTCA I Metals (oil and	ohorus Acid He Metals Metals	;) r-level) ticides 8(Pesticides rbicides	es 8270/	/SIM	05-171	Page 2 of 2

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 20, 2022

Amanda Meugniot Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 2812-001 Laboratory Reference No. 2205-183

Dear Amanda:

Enclosed are the analytical results and associated quality control data for samples submitted on May 17, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: May 20, 2022 Samples Submitted: May 17, 2022 Laboratory Reference: 2205-183 Project: 2812-001

Case Narrative

Samples were collected on May 16, 2022 and received by the laboratory on May 17, 2022. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Dx Analysis

Samples are not identifiable as any particular fuel product, and consist mainly of an unresolved envelope encompassing the range covering diesel and heavy oil. They were therefore quantitated as one product over the entire range encompassing C10-C36.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Matrix: Water

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Beault	DOI	Mathad	Date	Date	Flore
	PQL	wethod	Prepared	Analyzeu	Flags
	0.27		5-18-22	5-10-22	
	-	NWITTEDX	5-10-22	5-15-22	
32	00 100				
FMW-03-051622					
05-183-02					
ND	0.28	NWTPH-Dx	5-18-22	5-19-22	
Percent Recovery	Control Limits				
91	50-150				
FMW-01-051622					
05-183-03					
0.49	0.27	NWTPH-Dx	5-18-22	5-19-22	
Percent Recovery	Control Limits				
92	50-150				
EMW 02 054622					
	0.26		5-18-22	5-19-22	
			0-10-22	0-10-22	
31	00-700				
FMW-04-051622					
05-183-05					
ND	0.28	NWTPH-Dx	5-18-22	5-19-22	
Percent Recovery	Control Limits				
	05-183-02 ND Percent Recovery 91 FMW-01-051622 05-183-03 0.49 Percent Recovery 92 FMW-02-051622 05-183-04 0.38 Percent Recovery 91 FMW-04-051622 05-183-05 ND	MW-22-051622 05-183-01 0.27 ND 0.27 Percent Recovery 92 Control Limits 50-150 FMW-03-051622 05-183-02 Control Limits 50-150 Percent Recovery 91 0.28 FMW-01-051622 05-183-03 Control Limits 50-150 FMW-01-051622 05-183-03 Control Limits 50-150 FMW-02-051622 05-183-04 Control Limits 50-150 FMW-02-051622 05-183-04 Control Limits 50-150 FMW-04-051622 05-183-05 Control Limits 50-150 FMW-04-051622 05-183-05 0.28	MW-22-051622 05-183-01 ND 0.27 NWTPH-Dx Percent Recovery 92 Control Limits 50-150 FMW-03-051622 05-183-02 ND 0.28 NWTPH-Dx Percent Recovery 91 Control Limits 50-150 NWTPH-Dx Percent Recovery 91 Control Limits 50-150 NWTPH-Dx FMW-01-051622 05-183-03 V NWTPH-Dx Percent Recovery 92 Control Limits 50-150 NWTPH-Dx Percent Recovery 92 Control Limits 50-150 NWTPH-Dx Percent Recovery 91 0.26 NWTPH-Dx Percent Recovery 91 Control Limits 50-150 NWTPH-Dx Percent Recovery 91 0.26 NWTPH-Dx Percent Recovery 91 0.28 NWTPH-Dx	Result PQL Method Prepared MW-22-051622 05-183-01	Result PQL Method Prepared Analyzed MW-22-051622 05-183-01

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: May 20, 2022 Samples Submitted: May 17, 2022 Laboratory Reference: 2205-183 Project: 2812-001

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0518W1					
DRO/RRO C10-C36	ND	0.20	NWTPH-Dx	5-18-22	5-18-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB05	18W1									
	ORIG	DUP									
Diesel Fuel #2	0.488	0.472	NA	NA		N	A	NA	3	NA	
Surrogate:											
o-Terphenyl						99	96	50-150			

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

5° (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-22-051622					
Laboratory ID:	05-183-01					
Arsenic	4.5	3.0	EPA 200.8		5-18-22	
Cadmium	ND	4.0	EPA 200.8		5-18-22	
Chromium	ND	10	EPA 200.8		5-18-22	
Lead	ND	1.0	EPA 200.8		5-18-22	
Mercury	ND	0.50	EPA 7470A		5-19-22	

Client ID:	FMW-03-051622			
Laboratory ID:	05-183-02			
Arsenic	6.8	3.0	EPA 200.8	5-18-22
Cadmium	ND	4.0	EPA 200.8	5-18-22
Chromium	ND	10	EPA 200.8	5-18-22
Lead	ND	1.0	EPA 200.8	5-18-22
Mercury	ND	0.50	EPA 7470A	5-19-22

Client ID:	FMW-01-051622			
Laboratory ID:	05-183-03			
Arsenic	64	3.0	EPA 200.8	5-18-22
Cadmium	ND	4.0	EPA 200.8	5-18-22
Chromium	ND	10	EPA 200.8	5-18-22
Lead	ND	1.0	EPA 200.8	5-18-22
Mercury	ND	0.50	EPA 7470A	5-19-22

Client ID:	FMW-02-051622			
Laboratory ID:	05-183-04			
Arsenic	66	3.0	EPA 200.8	5-18-22
Cadmium	ND	4.0	EPA 200.8	5-18-22
Chromium	ND	10	EPA 200.8	5-18-22
Lead	ND	1.0	EPA 200.8	5-18-22
Mercury	ND	0.50	EPA 7470A	5-19-22

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-04-051622					
Laboratory ID:	05-183-05					
Arsenic	16	3.0	EPA 200.8		5-18-22	
Cadmium	ND	4.0	EPA 200.8		5-18-22	
Chromium	ND	10	EPA 200.8		5-18-22	
Lead	ND	1.0	EPA 200.8		5-18-22	
Mercury	ND	0.50	EPA 7470A		5-19-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0518D1					
Arsenic	ND	3.0	EPA 200.8		5-18-22	
Cadmium	ND	4.0	EPA 200.8		5-18-22	
Chromium	ND	10	EPA 200.8		5-18-22	
Lead	ND	1.0	EPA 200.8		5-18-22	
Laboratory ID:	MB0519D1					
Mercury	ND	0.50	EPA 7470A		5-19-22	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Result		Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-18	83-01									
	ORIG	DUP									
Arsenic	4.54	5.04	NA	NA		I	NA	NA	10	20	
Cadmium	ND	ND	NA	NA		I	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		I	NA	NA	NA	20	
Lead	ND	ND	NA	NA		I	NA	NA	NA	20	
Laboratory ID:	05-18	83-01									
Mercury	ND ND		NA	NA		I	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:		83-01									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	93.8	90.2	80.0	80.0	4.54	112	107	75-125	4	20	
Cadmium	80.0	80.2	80.0	80.0	ND	100	100	75-125	0	20	
Chromium	83.4	80.4	80.0	80.0	ND	104	101	75-125	4	20	
Lead	77.4	76.6	80.0	80.0	ND	97	96	75-125	1	20	
Laboratory ID:	05-18	83-01									
Mercury	11.7	11.7	12.5	12.5	ND	93	94	75-125	0	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received Michaelez In	Relinquished	Vas	Relinquished Construct work	Signature		×		5 FMW- 64-051622	4 FMW-02-051622	3 FMW-01-051622	2 FMW-03-051622	1 MW-22-051622	0	C. Van Stalk	Amanda Mesgniot	Project Name: Parcel 2 Comfort Suites	Project Number: 2812-001	Company: Farallon	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
Reviewed/Date				/ npdis	Show	the Favallon	Company	l			\$ 1612 \$ \$	1507	0041	1235	5-16-22 1045 Gw 3	Date Time Sampled Sampled Matrix	(other)	Contain	Standard (7 Days)	🗌 2 Days 🅅 3 Days	Same Day 1 Day	(in working days)	Chain of
		-	5112 1205	5/17/22/205	2/17/22 1105	5-16-22 1705	Date Time				×.	×	×	×.	×	NWTP NWTP NWTP NWTP Volatil Haloge	PH-HCI PH-Gx/I PH-Gx H-Dx (es 826 enated	D 3TEX (8 Acid / 5 D Volatile	6021 🗌 82 6G Clear	n-up [])		Laboratory Number:	Custody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV					metals samples were field f	Comments/Special Instructions								×	(with I) PAHs PCBs Organ Organ Chlori Total F Total N TCLP	ow-leve 8270/S 8082 ochlori ophosp nated / RCRA N //TCA N Metals oil and	ohorus I Acid Her Aetals Metals grease)) -level) Pesticides rbicides	es 8270 8151		05-183	Page of
ables (EDDs)						filtered.										% Moi	sture					_	

File :C:\msdchem\1\data\T220518\0518-T23.D Operator : LAD Acquired : 19 May 2022 0:55 using AcqMethod T220201F.M Instrument : Teri Sample Name: 05-183-03 Misc Info : Sample Vial Number: 23

· 0 - 32 C

22.00

File :C:\msdchem\1\data\T220518\0518-T24.D
Operator : LAD
Acquired : 19 May 2022 1:38 using AcqMethod T220201F.M
Instrument : Teri
Sample Name: 05-183-04
Misc Info : Sample
Vial Number: 24

22.00