

2020 Riverfront Park Soil Management Report

Riverfront Park Spokane, Washington

for

City of Spokane Parks and Recreation

December 14, 2020

523 East Second Avenue Spokane, Washington 99202 509.363.3125

2020 Riverfront Park Soil Management Report

Riverfront Park Spokane, Washington

File No. 0110-148-06

December 14, 2020

Prepared for:

City of Spokane Parks and Recreation 808 West Spokane Falls Boulevard, 5th Floor Spokane, Washington 99201

Attention: Berry Ellison

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Jedidiah R. Sugalski, PE Environmental Engineer

Bruce D. Williams

Principal

JML:JRS:BDW:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRODUCTION	. 1
2.0	SITE DESCRIPTION AND BACKGROUND	. 1
	Site History	
	Previous Investigations and Reports	
3.1.	North Bank	.3
	3.1.1. PCS Excavation	
3	3.1.2. Removal of Former Maintenance Building	.4
3	3.1.3. Characterization Samples	.4
	Havermale Island	
4.0	SUMMARY	. 6
5.0	REFERENCES	. 6

LIST OF TABLES

Table 1. North Bank Soil Chemical Analytical Data - TPH, Metals and PAHs

Table 2. West Havermale Soil Chemical Analytical Data - TPH, Metals and PAHs

LIST OF FIGURES

Figure 1. Vicinity Map

Figure 2. North Bank Sample Locations

Figure 3. West Havermale Island Sample Locations

APPENDICES

Appendix A. Analytical Laboratory Reports and Data Validation

Appendix B. PCS Disposal records

Appendix C. Lead Contaminated Soil Disposal Records

1.0 INTRODUCTION

This report documents results of soil sampling and earthwork activities conducted from February 2020 through September 2020 at Riverfront Park (the Park) in Spokane, Washington. Two areas of the Park, the North Bank and Havermale Island, were under construction during this time period. This is the fifth and final year of redevelopment activities planned for the Park.

Before the Park was established as part of the World's Fair of 1974 (Expo '74), it was occupied by many industrial facilities and as a result, contaminants of concern (COCs) associated with historical industrial use have been identified in soil throughout the Park. Soil sampling conducted in the Park (GeoEngineers 2016b and 2016c) has identified the following COCs with soil concentrations greater than the Model Toxics Control Act (MTCA) Method A Cleanup Levels (CULs):

- Polycyclic Aromatic Hydrocarbons (PAHs);
- Lead;
- Cadmium:
- Arsenic; and
- Diesel- and oil-range petroleum hydrocarbons (DRPH and ORPH, respectively).

In 2014, the city of Spokane (City) passed a \$64 million bond for the revitalization of the Park. The city of Spokane Parks and Recreation Department (Parks) expected to encounter contamination because of the historical uses and decided to engage regulatory agencies to ensure soil management was conducted with regulatory approval. Riverfront Park was entered into the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) under Site CSID 13026, VCP project number EA0318. To manage contaminated soil at the site in a manner protective of human health and the environment, a Soil Management Plan (SMP) was developed to provide guidance for the Park revitalization projects. The SMP included requirements to collect characterization samples of soil left in place and to document contaminated soil uses at the site. This report describes soil handling and characterization activities for the Riverfront Park revitalization projects from February 2020 through October 2020.

2.0 SITE DESCRIPTION AND BACKGROUND

The following sections provide information on the historical use of the site and previous environmental investigations and reports.

2.1. Site History

The project site is located at 507 North Howard Street, in Spokane, Washington and is bound by Spokane Falls Boulevard to the south, Post Street to the west, Division Street to the east and West Cataldo Avenue to the north. The property is currently owned by the City and used as a public park and outdoor recreation area. The site includes portions of Havermale Island, Snxw₂ Meme Island and areas on the north and south banks of the Spokane River (Vicinity Map, Figure 1).

Development in the Park area began in the late 1870s. The falls were the source of early power for industries in the city, then known as Spokane Falls. Factories, mills (flour and lumber) and various commercial, industrial and railroad properties near the project site were constructed in the 1880s to harness the power of the falls.

Development and building density on Havermale Island and the North Bank started in the late 1800's and occurred until about 1910. From 1910 through 1970, the building density in these areas remained similar, though the occupants of some buildings changed. By 1929, the area currently occupied by the Park was almost completely developed with buildings and railroad infrastructure. Howard Street went through the Park from north to south and Havermale Avenue connected Howard Street to Washington Street on Havermale Island.

The North Bank of Riverfront Park was primarily occupied by multiple railroad lines running east/west across the site as far back as 1891 according to Sanborn maps. A small passenger depot was present in 1910 and was removed by 1950. According to Sanborn maps, the Van Water and Rogers Chemical warehouse was present on the east side of the North Bank from about 1950 and was vacated about 1968. A lumber yard was also present in the southeast portion of the North Bank in the early 1900's.

Mill activities utilized the channel between the South Bank and Havermale Island to transport logs down the river and store them for mill use. In a 1952 Sanborn map, an auto service station was present at the northeast corner of the intersection of Howard Street and Havermale Avenue and a laundry facility was present on the west side of Howard Street located on Snxw? Meme Island. A 1960 photograph shows that many of the buildings on Havermale Island had been demolished and parking areas occupied most of the island. By 1970, a railroad depot was located on Havermale Island. The City acquired the railroad properties in the Park in 1972. The railroad yards and industrial structures on Havermale Island were removed by 1973, according to documents from the Spokane Public Library's Northwest Room.

Riverfront Park was constructed to host Expo '74. Construction for Expo '74 began in 1973 and the existing structures on the islands, North Bank and South Bank were demolished except for the clock tower on Havermale Island. Plans for Expo '74 called for a radical alteration of the Park, including site elevations (Youngs 1996). Large amounts of fill (including topsoil) were brought in to grade the Park and according to one source (Youngs 1996), at least 200,000 cubic yards (CY) of fill were used in support of construction. It is not documented how much fill was used, but aerial photographs and Sanborn maps indicate that large portions of the Park were altered with fill.

Temporary buildings constructed for Expo '74 were demolished within about a year after Expo '74. Relatively few changes were made to the Park between removal of the temporary buildings from Expo '74 and 2016, except for the removal of almost 17 acres of asphalt, concrete and pavement that covered the Park at the time of Expo '74. The former Van Water and Rogers Chemical warehouse on the east side of the North Bank was eventually converted to a maintenance shop for Riverfront Park.

2.2. Previous Investigations and Reports

GeoEngineers has conducted environmental and geotechnical sampling at the site in support of redevelopment activities. Reports documenting previous investigations and soil characterization include:

Access Road from Post Street to the Sister Cities Garden (GeoEngineers 2016a);

- Ice Ribbon (GeoEngineers 2016b);
- Looff Carrousel (GeoEngineers 2016c);
- North Bank (GeoEngineers 2016e);
- Canada Island (GeoEngineers 2016e);
- Central Green (GeoEngineers 2016e);
- Theme Stream (GeoEngineers 2016e);
- 2016 and 2017 Soil Management Report (GeoEngineers 2018a);
- US Pavilion (GeoEngineers 2018b);
- 2018 Soil Management Report (GeoEngineers 2019b); and
- 2019 Riverfront Park Soil Management report (GeoEngineers 2020).

Soil sample locations and laboratory analytical results for past work are provided in the above referenced reports.

3.0 SUMMARY OF 2020 EARTH MOVING ACTIVITIES AND ENVIRONMENTAL SAMPLING

In 2020, revitalization construction took place primarily on the North Bank and west Havermale Island. The following sections describe earthwork activities and soil sampling conducted in support of the construction projects. Results are described as follows:

- Contaminated concentrations for one or more COCs are greater than MTCA Method A cleanup levels
- Impacted concentrations for one or more COCs are less than MTCA Method A cleanup levels, but are greater than the laboratory reporting limits. For metals, concentrations are less than MTCA Method A cleanup levels, but more than twice the background concentrations.
- Clean concentrations for COCs are less than laboratory reporting limits. For metals, concentrations
 are less than twice the background concentrations.

Analytical reports and a data validation report for the soil samples collected are provided in Appendix A.

3.1. North Bank

Construction activities in 2020 for the North Bank generally included removal of petroleum contaminated soil (PCS), removal of the former maintenance building and construction of a parking lot, new maintenance building and new playground with various features. Soil samples were collected when site grading was near completion to characterize soil left in place before it was covered with soil or park infrastructure in accordance with the soil management plan (GeoEngineers 2017). Samples were field screened and if field screening indicated the presence of petroleum contamination, the soil sample was analyzed for petroleum contamination. Characterization samples were generally analyzed for metals and PAHs.

3.1.1. PCS Excavation

Starting on March 2, 2020, T. LaRiviere began excavating known PCS from the North Bank using a Caterpillar 345C excavator. The PCS had been partially excavated in March 2017 but the extents of the

PCS had not been fully defined or removed because the area was needed to construct a temporary soil stockpile (GeoEngineers 2018a). Samples RFPNB-1C through RFPBN-6C were collected at the extent of the excavation in 2017.

The southern extent of the previous excavation was located using GPS coordinates obtained in 2017. The LaRiviere then excavated soil and stockpiled it on site. Field screening of the soil was conducted to guide the excavation and characterization samples were collected at the excavation limits (RFPNB-7C through RFPNB-11C). Analytical samples were submitted on an accelerated turn-around time and if petroleum concentrations were greater than the MTCA Method A Cleanup Level, additional soil was excavated from the sample location. PCS was excavated from the area down to bedrock.

As the excavation progressed west, shallow perched groundwater was encountered on the bedrock surface. The water was about 6 to 12 inches deep over the irregular bedrock surface. An oily sheen was observed on the water and over the bedrock surface. T. LaRiviere used the Caterpillar 345C excavator to rip through the bedrock and remove the oil coated rocks. The oil appeared to be very dense and resembled Bunker C oil. The excavator continued vertically until multiple scrapes with the bucket removed little fractured rock and further vertical excavation using the excavator was not practicable.

Analytical results for the characterization samples are summarized in Table 1. Laboratory analytical reports are provided in Appendix A and the excavation extents are shown on North Bank Sample Locations, Figure 2. Approximately 820 tons of PCS were removed from the North Bank. Disposal tickets for the PCS are included in Appendix B.

3.1.2. Removal of Former Maintenance Building

After removal of the former maintenance building, soil under the building was sampled to evaluate it for reuse or offsite disposal. Soil samples from locations RFPMB-1, RFPMB-2 and RFPMB-3 were collected at various depths to characterize soil previously under the maintenance building. The soil was removed as part of site grading activities to level out the area and accommodate construction of a parking lot.

Analytical results indicated the lead concentration at location RFPMB-1 was greater than 1,000 milligrams per kilogram (mg/kg) from about 0 to 1 foot below ground surface (bgs). On March 18, 2020, T. LaRiviere excavated soil from this location and stockpiled it at the site pending additional analysis to assist with offsite disposal. Samples RFPMB-1A, RFPMB-1B, RFPMB-1C and RFPMB-1D were collected from the excavation sidewalls from 0 to 1 foot bgs. Lead concentrations greater than 1,000 mg/kg could designate as dangerous waste in Washington unless further analysis did not exhibit characteristics of dangerous waste. Therefore, additional analysis was conducted for sample RFPNB-MB1 (Toxicity Characteristic Leaching Procedure [TCLP] for lead and Bioassay); results indicated the soil did not designate as a state regulated dangerous waste. Therefore, approximately 66 tons of soil was allowed to be hauled to and disposed at Waste Management's Graham Road Landfill (Graham Road). The remaining soil from beneath the maintenance building as represented by RFPMB-1A, RFPMB-1B, RFPMB-1C and RFPMB-1D was added to a soil stockpile and used for general grading at the North Bank. Disposal tickets for the lead contaminated soil under the former maintenance building are included in Appendix C.

3.1.3. North Bank Characterization Samples

On April 24 and 28, 2020, characterization samples RFPNB-12C through RFPNB-22C were collected to characterize soil left in place at the park. Analysis of RFPNB-13C and RFPNB-22C indicated the lead

concentrations in soil were 3,600 mg/kg and 6,500 mg/kg respectively. These samples were submitted on a standard turnaround time and by the time the analytical results were available, soil near RFPNB-22C had been moved and added to the soil stockpile for the North Bank. A composite sample of the stockpile collected on May 15, 2020 (RFPNB-SP1) indicated that the lead was greater than the cleanup level, but it was less than 1,000 mg/kg, which meant the stockpile was not considered a dangerous waste in the state of Washington. Soil from the stockpile was used for grading during construction of the North Bank. A majority of the soil used for grading was covered with an impermeable surface or at least 12 inches of clean imported soil before it was vegetated in accordance with the soil management plan (GeoEngineers 2017). The remaining areas will be covered with 12 inches of clean imported soil in the spring of 2021.

On April 25 and May 5, 2020, soil samples were collected from locations RFPNB-28C and RFPNB-29C and RFPNB-40C. Soil samples were analyzed to evaluate if contaminated soil was present in the unlined stormwater swales. Analysis of these samples indicted COCs were less than the MTCA Method A cleanup levels and the soil was left in place.

On May 5, 2020, T. LaRiviere excavated soil represented by location RFPNB-13C. Between May 5, 2020 and May 26, 2020, T. LaRiviere excavated additional soil from the area in an iterative process. Soil samples were submitted on an expedited turn-around time and if analytical results indicated lead concentrations were greater than the MTCA Method A cleanup Level of 250 mg/kg, additional soil was removed (RFPNB-24C, RFPNB-26C, RFPNB-27C, RFPNB-30C and RFPNB-38C). Location RFPNB-13C was located within the extents of an unlined stormwater swale and therefore soil with COC concentrations greater than the MTCA Method A cleanup level were removed from the swale footprint. Soil samples representing soil at the extents of the excavation include locations RFPNB-23C, RFPNB-25C, RFPNB-31C, RFPNB-32C and RFPNB-39C. TCLP and bioassay analysis was conducted on sample RFPNB-13C to evaluate if the soil designated as a hazardous waste. TCLP analysis and the bioassay testing indicted the soil did not designate as hazardous waste and approximately 237 tons of soil from this location was hauled and disposed at Graham Road. Disposal tickets for the lead contaminated soil located around original characterization sample RFPNB-13C are in Appendix C.

On May 12, 2020, soil samples RFPNB-33C, RFPNB-34C, RFPNB-35C, RFPNB-36C and RFPNB-37C were collected from the excavation extents where RFPNB-22C was collected. Chemical analysis indicted that lead concentrations were less than 1,000 mg/kg in these samples.

On June 29, 2020, samples RFPNB-41C, RFPNB-42C and RFPNB-43C were collected to characterize soil left in place after site grading activities were near completion.

Analytical results for the soil samples collected from the North Bank are shown on Table 1. North Bank sample locations are shown on Figure 2. Laboratory analytical reports are provided in Appendix A. In general, lead cadmium, arsenic and PAHs were present at concentrations greater than the cleanup level in soil left in place at the North Bank except in the stormwater swale areas.

3.2. Havermale Island

Havermale Island activities included construction of the west Havermale playground and Theme Stream area. On April 14, 2020, samples WH-1C through WH-8C were collected to characterize soil left in place in the area when site grading was near completion and before placement of cover soil and impermeable surface (asphalt and concrete). Analytical results for the samples collected from West Havermale are

provided on Table 2. West Havermale sample locations are shown on Figure 3. Three locations had PAHs greater than the cleanup level and one location (WH-7C) also had lead greater than the MTCA Method A cleanup level.

4.0 SUMMARY

In 2020, construction projects at the Park occurred at the North Bank and Havermale Island. Approximately 820 tons of PCS and 303 tons of soil contaminated with elevated lead concentrations were removed from the site.

Confirmation soil samples collected in designated stormwater swale areas did not contain concentrations of COCs greater than MTCA Method A cleanup levels.

Soil with COCs greater than the MTCA Method A cleanup levels at the North Bank and west Havermale Island was covered with concrete, asphalt or at least 12 inches of imported soil in general accordance with the project soil management plan. Characterization samples of soil left in place were collected and analytical results are summarized in Tables 2 and 3. A geographic information system (GIS) database has been developed for this project to document soil samples collected during construction activities. The database was developed by GeoEngineers and can be utilized by the city to identify contaminated soil left in place at Riverfront Park in the future. The North Bank and west Havermale Island construction projects are the last construction projects anticipated under the \$64 million bond. Major construction projects at the park are not anticipated after these projects are completed.

5.0 REFERENCES

- GeoEngineers, Inc. 2016a. "Memorandum: Analytical Results for the Howard Street Bridge, Riverfront Park." GEI File No. 0110-148-04.
- GeoEngineers, Inc. 2016b. "Geotechnical Engineering Evaluation and Environmental Site Assessment, Riverfront Park Ice Ribbon and Skyride Facility, Spokane, Washington." GEI File No. 0110-148-04.
- GeoEngineers, Inc. 2016c. "Geotechnical Engineering Evaluation and Environmental Site Assessment, Riverfront Park Looff Carousel, Spokane, Washington." GEI File No. 0110-148-04.
- GeoEngineers, Inc. 2016d. "Soil Stockpile Management Plan" GEI File No. 0110-148-06.
- GeoEngineers, Inc. 2016e. "Phase II Assessment Report, Riverfront Park, Spokane, Washington." GEI File No. 0110-148-06.
- GeoEngineers, Inc. 2017. "Soil Management Plan Revision 1, Riverfront Park Redevelopment, Spokane, Washington." GEI File No. 0110-148-04.
- GeoEngineers, Inc. 2018a. "2016 and 2017 Riverfront Park Soil Management Report, Riverfront Park, Spokane, Washington." GEI File No. 0100-148-06.
- GeoEngineers, Inc. 2018b. "Geotechnical Engineering Evaluation and Environmental Site Assessment, Riverfront Park, Spokane, Washington." GEI File No. 0110-148-06.

- GeoEngineers, Inc. 2019a. "Geotechnical Engineering Evaluation." GEI File No. 12088-006-03. March 6, 2019.
- GeoEngineers, Inc. 2019b. "2018 Riverfront Park Soil Management Report, Riverfront Park, Spokane, Washington." GEI File No. 0100-148-06. June 7, 2019.
- GeoEngineers, Inc. 2020. "2019 Riverfront Park Soil Management Report, Riverfront Park, Spokane, Washington." GEI File No. 0100-148-06. May 4, 2020.
- Washington State Department of Ecology. 1994. "Natural Background Soil Metals Concentrations in Washington State." Toxics Cleanup Program, Washington State Department of Ecology, Publication #94-115. October 1994.
- Youngs, J. William T. 1996. "The Fair and the Falls: Spokane's Expo '74 Transforming an American Environment."

Table 1

North Bank Soil Chemical Analytical Data - TPH, Metals, and PAHs¹ Riverfront Park Spokane, Washington

								Locatio	on ID, Date, and Depti	ı Interval			
				MTCA Method	RFPMB-1A(0-1)	RFPMB-1B(0-1)	RFPMB-1C(0-1)	RFPMB-1D(0-1)	RFPMB-1(0-1)	RFPMB-1(2-3)	RFPMB-2(0-1)	RFPMB-2(1-2)	RFPMB-3(0.5-1.5)
				A Cleanup	3/18/2020	3/18/2020	3/18/2020	3/18/2020	2/28/2020	2/28/2020	2/28/2020	2/28/2020	2/28/2020
				Level ¹⁰	0 - 1 ft	0 - 1 ft	2 - 3 ft	0 - 1 ft	1 - 2 ft	0.5 - 1.5 ft			
				Justification	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample
Analyte	Analida	No.th.	Spokane Basin Background Metal	Fate	North Bank Construction Stockpile	North Bank Construction Stockpile	North Bank Construction Stockpile	North Bank Construction Stockpile	Graham Road	Left in Place	North Bank Construction Stockpile	North Bank Construction Stockpile	North Bank Construction Stockpile
Group	Analyte Diesel-range hydrocarbons	Units mg/Kg	Concentration ¹¹ NE	2,000									
TPH ²	Lube oil-range hydrocarbons	mg/Kg	NE NE	2,000									
	Arsenic	mg/Kg	9.34	20					15	5.9	6.1	7.8	3.9
	Barium	mg/Kg	NE	NE								-	-
	Cadmium	mg/Kg	0.7	2	0.68 J	0.94	1.7	0.69 J	2.8	0.23 J	0.23 J	0.10 J	0.067 J
	Chromium	mg/Kg	17.8	2,000 ⁸		-				-	-	-	-
Metals ³	Lead	mg/Kg	14.9	250	120 J	580	390	220	1,300	140	42	12	11
	Lead (TCLP)	mg/L	NE	5 ¹²		-			4.5			-	-
	Mercury ⁷	ug/Kg	20	2,000		-					-		-
	Selenium	mg/Kg	NE	NE					-				-
	Silver	mg/Kg	NE	NE								-	
	1-Methylnaphthalene	ug/Kg	NE						18	11 U	30	11 U	10 U
	2-Methylnaphthalene	ug/Kg	NE	5,000 ⁹					24	11 U	39	11 U	10 U
	Naphthalene	ug/Kg	NE						13	11 U	20	11 U	10 U
	Acenaphthene	ug/Kg	NE	NE					2.9 J	11 U	4.5 J	11 U	10 U
	Acenaphthylene	ug/Kg	NE	NE					5.7 J	11 U	12 U	11 U	10 U
	Anthracene	ug/Kg	NE	NE					9.4 J	11 U	4.9 J	11 U	10 U
PAHs ⁴	Benzo(a)anthracene	ug/Kg	NE	NE					38	9.3 J	14	11 U	10 U
IAIIS	Benzo(a)pyrene	ug/Kg	NE	100					40	9.7 J	16	11 U	10 U
	Benzo(b)fluoranthene	ug/Kg	NE	NE					60	13	22	11 U	10 U
	Benzo(g,h,i)perylene	ug/Kg	NE	NE		-			33	7.3 J	13	11 U	10 U
	Benzo(k)fluoranthene	ug/Kg	NE	NE		-			19	5.4 J	8.8	11 U	10 U
	Chrysene	ug/Kg	NE	NE		-			53	13	19	11 U	10 U
	Dibenzo(a,h)anthracene	ug/Kg	NE	NE					9.8 J	3.8 J	5.5 J	11 U	10 U
	Fluoranthene	ug/Kg	NE	NE					59	12	22	11 U	10 U

									Locatio	on ID, Date, and D	epth Interval			
				MTCA Method	RFPMB-1A(0-1) RFPN	IB-1B(0-1)	RFPMB-1C(0-1)	RFPMB-1D(0-1)	RFPMB-1(0-1	.) RFPMB-1(2-3)	RFPMB-2(0-1)	RFPMB-2(1-2)	RFPMB-3(0.5-1.5)
				A Cleanup	3/18/2020	3/1	.8/2020	3/18/2020	3/18/2020	2/28/2020	2/28/2020	2/28/2020	2/28/2020	2/28/2020
				Level ¹⁰	0 - 1 ft	(- 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	2 - 3 ft	0 - 1 ft	1 - 2 ft	0.5 - 1.5 ft
				Justification	Characterizatio Sample		cterization ample	Characterization Sample	Characterization Sample	Characterizati Sample	on Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample
Analyte Group	Analyte	Units	Spokane Basin Background Metal Concentration ¹¹	Fate	North Bank Construction Stockpile	Con	th Bank struction ockpile	North Bank Construction Stockpile	North Bank Construction Stockpile	Graham Roa	d Left in Place	North Bank Construction Stockpile	North Bank Construction Stockpile	North Bank Construction Stockpile
	Fluorene	ug/Kg	NE	NE						2.4	J 11 U	12 U	11 U	10 U
	Indeno(1,2,3-c,d)pyrene	ug/Kg	NE	NE						25	6.0 J	10 J	11 U	10 U
	Phenanthrene	ug/Kg	NE	NE						39	4.7 J	28	11 U	10 U
	Pyrene	ug/Kg	NE	NE						67	18	24	11 U	10 U
	Total cPAH TEQ ⁵ (ND=0.5RL) ⁶	ug/Kg	NE	100						56	14	22	8 U	8 U

				MTCA				Locatio	on ID, Date, and Depth	Interval			
				Method A	RFPNB-7C(1.5-2)	RFPNB-8C(0.5-1)	RFPNB-9C(3-4)	RFPNB-10C(1.5-2)	RFPNB-11C(2-2.5)	RFPNB-12C (4-4.5)	RFPNB-13C (4-4.5)	RFPNB-14C (4-4.5)	RFPNB-15C(0-0.5)
				Cleanup	3/3/2020	3/3/2020	3/3/2020	3/3/2020	3/3/2020	4/24/2020	4/24/2020	4/24/2020	4/28/2020
				Level ¹⁰	1.5 - 2 ft	0.5 - 1 ft	3 - 4 ft	1.5 - 2 ft	2 - 2.5 ft	4 - 4.5 ft	4 - 4.5 ft	4 - 4.5 ft	0 - 0.5 ft
				Justification	Characterization Sample								
Analyte Group	Analyte	Units	Spokane Basin Background Metal Concentration ¹¹	Fate	Left in Place	Graham Road Landfill	Left in Place	Left in Place					
TPH ²	Diesel-range hydrocarbons	mg/Kg	NE	2,000	100 J	39	11 U	130 J	230 J	-			
IPH-	Lube oil-range hydrocarbons	mg/Kg	NE	2,000	1,100	170	6.5 J	1,200	710	-	-		
	Arsenic	mg/Kg	9.34	20	3.0	7.6	8.0	5.6	7.4	5.9 J	22	9.8	10
	Barium	mg/Kg	NE	NE				-		39 J	140	44	78
	Cadmium	mg/Kg	0.7	2	0.45 J	0.33 J	0.068 J	0.58 J	0.34 J	0.37 J	3.8 J	0.059 J	0.67 J
	Chromium	mg/Kg	17.8	2,0008					-	6.9	6.7	8.2	11
Metals ³	Lead	mg/Kg	14.9	250	120	120	12	130	52	76	3,600	7.1	180 J
	Lead (TCLP)	mg/L	NE	5 ¹²		-		-	-	-	3.2	-	
	Mercury ⁷	ug/Kg	20	2,000						55	1,900	50 U	150
	Selenium	mg/Kg	NE	NE				-		3.7 U	22 U	3.9 U	20 U
	Silver	mg/Kg	NE	NE	-	-		-		0.92 U	3.3 J	0.98 U	5.0 U
	1-Methylnaphthalene	ug/Kg	NE		130 J	110	11 U	93	9.0 J	10 U	17	9.8 U	2.7 J
	2-Methylnaphthalene	ug/Kg	NE	5,000 ⁹	170 J	130	11 U	120	12	10 U	25	9.8 U	4.2 J
	Naphthalene	ug/Kg	NE		89 J	61	11 U	68	8.3 J	10 U	11	9.8 U	2.3 J
	Acenaphthene	ug/Kg	NE	NE	220 U	3.8 J	11 U	16 J	5.8 J	10 U	4.9 J	9.8 U	10 U
	Acenaphthylene	ug/Kg	NE	NE	220 U	5.4 J	11 U	17 J	3.7 J	10 U	12	9.8 U	5.8 J
	Anthracene	ug/Kg	NE	NE	54 J	9.8 J	11 U	28	11	10 U	15	9.8 U	8.0 J
PAHs ⁴	Benzo(a)anthracene	ug/Kg	NE	NE	130 J	26	11 U	93	18	4.9 J	73	9.8 U	33
PAHS	Benzo(a)pyrene	ug/Kg	NE	100	150 J	25	11 U	98	27	5.3 J	88	9.8 U	39
	Benzo(b)fluoranthene	ug/Kg	NE	NE	270	41	11 U	140	37	7.0 J	120	9.8 U	45
	Benzo(g,h,i)perylene	ug/Kg	NE	NE	160 J	19	11 U	55	17	4.6 J	79	9.8 U	33
	Benzo(k)fluoranthene	ug/Kg	NE	NE	110 J	14	11 U	55	11	3.4 J	45	9.8 U	20
	Chrysene	ug/Kg	NE	NE	220	39	11 U	120	45	4.1 J	92	9.8 U	41
	Dibenzo(a,h)anthracene	ug/Kg	NE	NE	75 J	8.0 J	11 U	20 J	7.7 J	10 U	19	9.8 U	8.2 J
•	Fluoranthene	ug/Kg	NE	NE	190 J	37	11 U	140	36	6.2 J	140	9.8 U	57

				MTCA				Location	n ID, Date, and Depth	Interval			
				Method A	RFPNB-7C(1.5-2)	RFPNB-8C(0.5-1)	RFPNB-9C(3-4)	RFPNB-10C(1.5-2)	RFPNB-11C(2-2.5)	RFPNB-12C (4-4.5)	RFPNB-13C (4-4.5)	RFPNB-14C (4-4.5)	RFPNB-15C(0-0.5)
				Cleanup	3/3/2020	3/3/2020	3/3/2020	3/3/2020	3/3/2020	4/24/2020	4/24/2020	4/24/2020	4/28/2020
				Level ¹⁰	1.5 - 2 ft	0.5 - 1 ft	3 - 4 ft	1.5 - 2 ft	2 - 2.5 ft	4 - 4.5 ft	4 - 4.5 ft	4 - 4.5 ft	0 - 0.5 ft
				Justification	Characterization Sample								
Analyte Group	Analyte	Units	Spokane Basin Background Metal Concentration ¹¹	Fate	Left in Place	Graham Road Landfill	Left in Place	Left in Place					
•	Fluorene	ug/Kg	NE	NE	220 U	5.2 J	11 U	10 J	5.1 J	10 U	4.1 J	9.8 U	2.2 J
	Indeno(1,2,3-c,d)pyrene	ug/Kg	NE	NE	100 J	16	11 U	44	11	3.4 J	63	9.8 U	25
	Phenanthrene	ug/Kg	NE	NE	210 J	92	11 U	150	32	10 U	73	9.8 U	23
	Pyrene	ug/Kg	NE	NE	210 J	44	11 U	150	52	5.9 J	140	9.8 U	62
	Total cPAH TEQ ⁵ (ND=0.5RL) ⁶	ug/Kg	NE	100	221	36	8 U	134	36	8	121	7 U	53

				MTCA				Locatio	n ID, Date, and Dept	n Interval			
				Method A	RFPNB-16C(0-0.5)	RFPNB-17C(0-0.5)	RFPNB-18C(0-0.5)	RFPNB-19C(0-0.5)	RFPNB-20C(0-0.5)	RFPNB-21C(0-0.5)	RFPNB-22C(0-0.5)	RFPNB-23C (7-7.5)	RFPNB-24C (4-4.5)
				Cleanup	4/28/2020	4/28/2020	4/28/2020	4/28/2020	4/28/2020	4/28/2020	4/28/2020	5/5/2020	5/5/2020
				Level ¹⁰	0 - 0.5 ft	7 - 7.5 ft	4 - 4.5 ft						
				Justification	Characterization Sample	Characterization Sample	Characterization Sample						
Analyte Group	Analyte	Units	Spokane Basin Background Metal Concentration ¹¹	Fate	Left in Place	North Bank Construction Stockpile	Left in Place	Graham Road					
•	Diesel-range hydrocarbons	mg/Kg	NE	2,000		-							
TPH ²	Lube oil-range hydrocarbons	mg/Kg	NE	2,000	-	-			-			-	
	Arsenic	mg/Kg	9.34	20	20	11	10	3.4	7.4	9.5	44	5.1 U	6.8
	Barium	mg/Kg	NE	NE	65	79	81	59	120	79	170	59	83
	Cadmium	mg/Kg	0.7	2	0.28 J	0.95	1.4	0.21 J	1.3 J	1.0	5.6 J	0.24 ¹³ U	0.89
	Chromium	mg/Kg	17.8	2,000 ⁸	9.8	12	23	6.7	11	12	8.3 J	1.1 J	4.8
Metals ³	Lead	mg/Kg	14.9	250	51	330	270	70	600	330	6,500	24	250
	Lead (TCLP)	mg/L	NE	5 ¹²		-	-	-		-	-		
	Mercury ⁷	ug/Kg	20	2,000	120	140	360	36 J	240	150	1,700	30 J	240
	Selenium	mg/Kg	NE	NE	4.1 U	3.8 U	3.9 U	6.8 U	7.7 U	3.6 U	39 U	20 U	4.2 U
	Silver	mg/Kg	NE	NE	0.14 J	0.98	0.68 J	1.7 U	1.1 J	0.65 J	6.8 J	5.1 U	0.52 J
	1-Methylnaphthalene	ug/Kg	NE		6.6 J	5.4 J	18	7.7 J	25 J	12	37	10 U	6.6 J
	2-Methylnaphthalene	ug/Kg	NE	5,000 ⁹	13	7.4 J	24	12 J	37 J	15	48	10 U	8.8 J
	Naphthalene	ug/Kg	NE		6.9 J	3.8 J	14	6.6 J	19 J	9.8 J	23	10 U	4.3 J
	Acenaphthene	ug/Kg	NE	NE	3.1 J	3.0 J	21	5.2 J	51 U	16	25	10 U	10 U
	Acenaphthylene	ug/Kg	NE	NE	16	8.8	13	20 U	51 U	16	9.8 J	10 U	5.5 J
	Anthracene	ug/Kg	NE	NE	19	9.3 J	58	11 J	23 J	48	56	2.5 J	7.3 J
PAHs ⁴	Benzo(a)anthracene	ug/Kg	NE	NE	67	29	160	37	52	130	120	5.6 J	22
17410	Benzo(a)pyrene	ug/Kg	NE	100	78	37	180	44	72	150	140	6.1 J	30
	Benzo(b)fluoranthene	ug/Kg	NE	NE	130	50	220	64	97	200	180	8.3 J	44
	Benzo(g,h,i)perylene	ug/Kg	NE	NE	63	25	70	24	51	59	52	5.3 J	26
	Benzo(k)fluoranthene	ug/Kg	NE	NE	17	18	90	19 J	37 J	77	71	4.1 J	15
	Chrysene	ug/Kg	NE	NE	85	36	180	81	90	150	150	5.5 J	30
	Dibenzo(a,h)anthracene	ug/Kg	NE	NE	17	7.2 J	22	9.1 J	18 J	18	16	10 U	7.2 J
	Fluoranthene	ug/Kg	NE	NE	91	44	290	66	83	250	260	10	36

				MTCA				Location	n ID, Date, and Depth	Interval			
				Method A	RFPNB-16C(0-0.5)	RFPNB-17C(0-0.5)	RFPNB-18C(0-0.5)	RFPNB-19C(0-0.5)	RFPNB-20C(0-0.5)	RFPNB-21C(0-0.5)	RFPNB-22C(0-0.5)	RFPNB-23C (7-7.5)	RFPNB-24C (4-4.5)
				Cleanup	4/28/2020	4/28/2020	4/28/2020	4/28/2020	4/28/2020	4/28/2020	4/28/2020	5/5/2020	5/5/2020
				Level ¹⁰	0 - 0.5 ft	7 - 7.5 ft	4 - 4.5 ft						
				Justification	Characterization Sample	Characterization Sample	Characterization Sample						
Analyte Group	Analyte	Units	Spokane Basin Background Metal Concentration ¹¹	Fate	Left in Place	North Bank Construction Stockpile	Left in Place	Graham Road					
	Fluorene	ug/Kg	NE	NE	7.0 J	9.9 U	14	4.8 J	51 U	13	14	10 U	10 U
	Indeno(1,2,3-c,d)pyrene	ug/Kg	NE	NE	54	21	65	17 J	34 J	54	47	4.2 J	22
	Phenanthrene	ug/Kg	NE	NE	30	19	190	41	60	160	230	5.1 J	19
	Pyrene	ug/Kg	NE	NE	110	48	340	86	110	290	300	9.2 J	38
	Total cPAH TEQ ⁵ (ND=0.5RL) ⁶	ug/Kg	NE	100	107	50	238	59	97	199	185	9	41

								Location	n ID, Date, and Depth	Interval			
				MTCA Method A Cleanup Level ¹⁰	RFPNB-25C (3.5-4) 5/5/2020 3.5 - 4 ft	RFPNB-26C (4-4.5) 5/5/2020 4 - 4.5 ft	RFPNB-27C (4-4.5) 5/5/2020 4 - 4.5 ft	RFPNB-28C (3-3.5) 5/5/2020 3 - 3.5 ft	RFPNB-29C (3-3.5) 5/5/2020 3 - 3.5 ft	RFPNB-30C (4.5-5) 5/12/2020 4.5 - 5 ft	RFPNB-31C (4.5-5) 5/12/2020 4.5 - 5 ft	RFPNB-32C (4.5-5) 5/12/2020 4.5 - 5 ft	RFPNB-33C (1-1.5) 5/12/2020 1 - 1.5 ft
				Justification	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample
Analyte Group	Analyte	Units	Spokane Basin Background Metal Concentration ¹¹	Fate	Left in Place	Graham Road	Graham Road	Left in Place	Left in Place	Graham Road	Left in Place	Left in Place	Left in Place
TPH ²	Diesel-range hydrocarbons	mg/Kg	NE	2,000									
IPH	Lube oil-range hydrocarbons	mg/Kg	NE	2,000									
	Arsenic	mg/Kg	9.34	20	3.0	4.2	14	4.5	5.6	9.5	1.4	0.52 J	9.5
	Barium	mg/Kg	NE	NE	69	75	120	33	57	100 J	58	58	100
	Cadmium	mg/Kg	0.7	2	0.14 J	0.57 J	4.3 J	0.064 J	0.10 J	1.0 J	0.22 J	0.12 J	0.72 J
	Chromium	mg/Kg	17.8	2,000 ⁸	2.7	3.0	9.6	7.1	8.5	7.4 J	0.25 J	0. 1 7 J	9.8
Metals ³	Lead	mg/Kg	14.9	250	25	180	5,000	7.4	13	1,400 J	3.3	7.0	330
	Lead (TCLP)	mg/L	NE	5 ¹²			0.5			-	-		-
	Mercury ⁷	ug/Kg	20	2,000	290	260	320	9.5 J	13 J	140	20 J	36 J	200
	Selenium	mg/Kg	NE	NE	4.2 U	4.3 U	41 U	4.0 U	3.8 U	20 U	4.2 U	4.1 U	4.2 U
	Silver	mg/Kg	NE	NE	0.13 J	0.34 J	6.0	1.0 U	0.96 U	5.0 U	1.0 U	1.0 U	1.1 U
	1-Methylnaphthalene	ug/Kg	NE		11 U	4.7 J	5.1 J	10 U	6.1 J	3.8 J	10 U	10 U	50 U
	2-Methylnaphthalene	ug/Kg	NE	5,000 ⁹	3.4 J	6.5 J	6.4 J	10 U	9.0 J	4.6 J	10 U	10 U	50 U
	Naphthalene	ug/Kg	NE		11 U	3.8 J	3.1 J	10 U	4.5 J	3.3 J	10 U	10 U	50 U
	Acenaphthene	ug/Kg	NE	NE	11 U	4.7 J	10 U	10 U	10 U	10 U	10 U	10 U	50 U
	Acenaphthylene	ug/Kg	NE	NE	11 U	8.2 J	4.4 J	10 U	10 U	7.5 J	10 U	10 U	17 J
	Anthracene	ug/Kg	NE	NE	2.4 J	25	5.4 J	10 U	10 U	7.9 J	10 U	10 U	29 J
PAHs ⁴	Benzo(a)anthracene	ug/Kg	NE	NE	6.0 J	110	16	10 U	2.5 J	28	11	3.7 J	89
FAIIS	Benzo(a)pyrene	ug/Kg	NE	100	6.9 J	120	23	10 U	10 U	43	14	10 U	120
	Benzo(b)fluoranthene	ug/Kg	NE	NE	8.8 J	150	33	10 U	4.0 J	55	16	5.1 J	130
	Benzo(g,h,i)perylene	ug/Kg	NE	NE	6.2 J	70	19	10 U	2.6 J	37	10	3.4 J	82
	Benzo(k)fluoranthene	ug/Kg	NE	NE	4.4 J	52	12	10 U	10 U	18	6.7 J	10 U	48 J
	Chrysene	ug/Kg	NE	NE	5.8 J	120	23	10 U	2.2 J	36	12	3.3 J	110
	Dibenzo(a,h)anthracene	ug/Kg	NE	NE	11 U	21	5.3 J	10 U	10 U	9.1 J	10 U	10 U	23 J
	Fluoranthene	ug/Kg	NE	NE	9.0 J	200	26	10 U	3.5 J	41	22	6.4 J	160

								Locatio	n ID, Date, and Depth	Interval			
				MTCA Method	RFPNB-25C (3.5-4)	RFPNB-26C (4-4.5)	RFPNB-27C (4-4.5)	RFPNB-28C (3-3.5)	RFPNB-29C (3-3.5)	RFPNB-30C (4.5-5)	RFPNB-31C (4.5-5)	RFPNB-32C (4.5-5)	RFPNB-33C (1-1.5)
				A Cleanup	5/5/2020	5/5/2020	5/5/2020	5/5/2020	5/5/2020	5/12/2020	5/12/2020	5/12/2020	5/12/2020
				Level ¹⁰	3.5 - 4 ft	4 - 4.5 ft	4 - 4.5 ft	3 - 3.5 ft	3 - 3.5 ft	4.5 - 5 ft	4.5 - 5 ft	4.5 - 5 ft	1 - 1.5 ft
				Justification	Characterization Sample								
Analyte Group	Analyte	Units	Spokane Basin Background Metal Concentration ¹¹	Fate	Left in Place	Graham Road	Graham Road	Left in Place	Left in Place	Graham Road	Left in Place	Left in Place	Left in Place
	Fluorene	ug/Kg	NE	NE	11 U	3.4 J	10 U	50 U					
	Indeno(1,2,3-c,d)pyrene	ug/Kg	NE	NE	4.8 J	67	15	10 U	10 U	29	8.2 J	10 U	59
	Phenanthrene	ug/Kg	NE	NE	11 U	57	13	10 U	10 U	18	7.2 J	10 U	86
	Pyrene	ug/Kg	NE	NE	9.5 J	190	27	10 U	10 U	45	21	6.0 J	170
	Total cPAH TEQ ⁵ (ND=0.5RL) ⁶	ug/Kg	NE	100	10	161	31	8 U	7	57	19	7	156

										Locati	on ID, Date, and	Depth	Interval				
				MTCA Method	-	-	RFPNB-35C (1-1.5)	-	4)	RFPNB-37C (3.5-4		-		RFPNB-40C (7	-	RFPNB-41C (0.5-1)	RFPNB-DUP1
				A Cleanup	5/12/2020		5/12/2020	5/12/2020		5/12/2020	5/19/202		5/26/2020	4/28/2020)	6/29/2020	6/29/2020
				Level ¹⁰	1 - 1.5 ft		1 - 1.5 ft	3.5 - 4 ft		3.5 - 4 ft	4 - 4.5 ft	!	4.5 - 5 ft	7 - 8 ft		0.5 - 1 ft	0.5 - 1 ft
				Justification	Characterization Sample	on	Characterization Sample	Characterization Sample	n	Characterization Sample	Characteriza Sample		Characterization Sample	Characterizati Sample	ion	Characterization Sample	Duplicate for RFPNB-41C
Analyte Group	Analyte	Units	Spokane Basin Background Metal Concentration ¹¹	Fate	Left in Place		Left in Place	Left in Place		Left in Place	Graham Ro	ad	Left in Place	Left in Place	e	Left in Place	Left in Place
•	Diesel-range hydrocarbons	mg/Kg	NE	2,000								_					
TPH ²	Lube oil-range hydrocarbons	mg/Kg	NE	2,000				-									
	Arsenic	mg/Kg	9.34	20	12		13	8.8		4.6			7.0	4.6		11	13
	Barium	mg/Kg	NE	NE	110		78	75		63				35		61	64
	Cadmium	mg/Kg	0.7	2	2.8		0.82	0.63 J		0.090 J		-	0.050 J	0.070	J	0.27 J	0.21 J
	Chromium	mg/Kg	17.8	2,000 ⁸	11		8.6	7.0		8.8		-		8.9		8.2	9.2
Metals ³	Lead	mg/Kg	14.9	250	530		310	310		27	50	0	8.0	6.3		63 J	44 J
	Lead (TCLP)	mg/L	NE	5 ¹²			-					-	-				
	Mercury ⁷	ug/Kg	20	2,000	240		120	140		120		-		50	UR	58	50 U
	Selenium	mg/Kg	NE	NE	4.1	U	4.0 U	4.3 U	ı	3.9 U		-	-	3.5	U	4.1 U	3.9 U
	Silver	mg/Kg	NE	NE	0.39	J	0.99 U	1.1 U	ı	0.99 U		-	-	0.88	U	0.13 J	0.11 J
	1-Methylnaphthalene	ug/Kg	NE		16		9.3 J	6.2 J		10 U		-	10 U	9.8	UR	3.3 J	4.6 J
	2-Methylnaphthalene	ug/Kg	NE	5,000 ⁹	19		12	8.3 J		10 U			10 U	9.8	UR	3.4 J	6.0 J
	Naphthalene	ug/Kg	NE		18		7.2 J	5.3 J		10 U			10 U	9.8	UR	4.2 J	5.5 J
	Acenaphthene	ug/Kg	NE	NE	32		4.9 J	11 U	ı	10 U			10 U	9.8	UR	21	17
	Acenaphthylene	ug/Kg	NE	NE	22		6.2 J	8.9 J		10 U			3.4 J	9.8	UR	14	16
	Anthracene	ug/Kg	NE	NE	78		14	11		2.6 J			7.9 J	9.8	UR	44	43
PAHs ⁴	Benzo(a)anthracene	ug/Kg	NE	NE	180		54	46		12			29	9.8	UR	130	140
PARS	Benzo(a)pyrene	ug/Kg	NE	100	130		66	56		15			28	9.8	UR	160	170
	Benzo(b)fluoranthene	ug/Kg	NE	NE	220		86	72		16			31	9.8	UR	170	190
	Benzo(g,h,i)perylene	ug/Kg	NE	NE	100		35	31		7.6 J		-	16	9.8		100 J	69 J
	Benzo(k)fluoranthene	ug/Kg	NE	NE	31		31	25		6.9 J		-	12	9.8	UR	59	68
	Chrysene	ug/Kg	NE	NE	190		65	57		12		-	34	9.8	UR	150 J	160
	Dibenzo(a,h)anthracene	ug/Kg	NE	NE	28		11	8.6 J		10 U		-	4.4 J	9.8		25	19
	Fluoranthene	ug/Kg	NE	NE	360		90	74		18		-	59	9.8	UR	260	250

								Locatio	n ID, Date, and Depth	Interval			
				MTCA Method	RFPNB-34C (1-1.5)	RFPNB-35C (1-1.5)	RFPNB-36C (3.5-4)	RFPNB-37C (3.5-4)	RFPNB-38C (4-4.5)	RFPNB-39C(4.5-5)	RFPNB-40C (7-8)	RFPNB-41C (0.5-1)	RFPNB-DUP1
				A Cleanup	5/12/2020	5/12/2020	5/12/2020	5/12/2020	5/19/2020	5/26/2020	4/28/2020	6/29/2020	6/29/2020
				Level ¹⁰	1 - 1.5 ft	1 - 1.5 ft	3.5 - 4 ft	3.5 - 4 ft	4 - 4.5 ft	4.5 - 5 ft	7 - 8 ft	0.5 - 1 ft	0.5 - 1 ft
				Justification	Characterization Sample	Duplicate for RFPNB-41C							
Analyte	Avaluta	Unito	Spokane Basin Background Metal Concentration ¹¹	Fate	Left in Place	Left in Place	Left in Place	Left in Place	Graham Road	Left in Place	Left in Place	Left in Place	Left in Place
Group	Analyte	Units		NE	00	2.41	0.71	40		40	0.01110	45	40
		ug/Kg	NE	NE	28	3.4 J	2.7 J	10 U		10 U	9.8 UR	15	13
	Indeno(1,2,3-c,d)pyrene	ug/Kg	NE	NE	88	28	27	6.9 J		13	9.8 UR	79 J	60
	Phenanthrene	ug/Kg	NE	NE	280	52	34	7.4 J	-	25	9.8 UR	160	130
	Pyrene	ug/Kg	NE	NE	340	96	78	18		61	9.8 UR	280	280
	Total cPAH TEQ ⁵ (ND=0.5RL) ⁶	ug/Kg	NE	100	187	88	74	20		37	7 UR	208	219

						Loca	tion ID, Date, and De	epth Interval	
				MTCA Method	RFPNB-42C (0.5-1) RFPNB-DUP2	RFPNB-43C (0.5	5-1) RFPNB-DUP3	RFPNB-SP1 (0-0.5)
				A Cleanup	6/29/2020	6/29/2020	6/29/2020	6/29/2020	5/15/2020
				Level ¹⁰	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.0 - 0.5 ft
				Justification	Characterization Sample	Duplicate for RFPNB-42C	Characterization Sample	on Duplicate for RFPNB-43C	Composite Sample of North Bank Construction Stockpile
Analyte Group	Analyte	Units	Spokane Basin Background Metal Concentration ¹¹	Fate	Left in Place	Left in Place	Left in Place	Left in Place	Used as fill with the North Bank Site
	Diesel-range hydrocarbons	mg/Kg	NE	2,000	-	<u> </u>			-
TPH ²	Lube oil-range hydrocarbons	mg/Kg	NE	2,000		-	-	-	
	Arsenic	mg/Kg	9.34	20	6.1	4.6	3.9	J 5.9 J	12
	Barium	mg/Kg	NE	NE	46	55	68 .	J 88 J	
	Cadmium	mg/Kg	0.7	2	0.22 J	0.29	0.47	J 0.66 J	1.4
	Chromium	mg/Kg	17.8	2,000 ⁸	11	12	1,100	1,300	
Metals ³	Lead	mg/Kg	14.9	250	25	32	56 .	J 82 J	530
	Lead (TCLP)	mg/L	NE	5 ¹²		-	-		-
	Mercury ⁷	ug/Kg	20	2,000	50 U	50 l	J 49 I	U 49 U	-
	Selenium	mg/Kg	NE	NE	3.9 U	4.0 l	3.7	U 8.1 U	
	Silver	mg/Kg	NE	NE	0.98 U	1.0 l	0.18	J 0.24 J	-
	1-Methylnaphthalene	ug/Kg	NE		50 U	51 l	J 20 I	U 49 U	-
	2-Methylnaphthalene	ug/Kg	NE	5,000 ⁹	50 U	51 l	J 20 I	U 49 U	-
	Naphthalene	ug/Kg	NE		50 U	51 l	5.1	J 49 UJ	-
	Acenaphthene	ug/Kg	NE	NE	50 U	51 l	J 20 I	U 49 U	-
	Acenaphthylene	ug/Kg	NE	NE	50 U	51 l	48	24 J	-
	Anthracene	ug/Kg	NE	NE	50 U	51 l	39	33 J	
PAHs ⁴	Benzo(a)anthracene	ug/Kg	NE	NE	50 U	51 l	90	J 31 J	-
PAHS	Benzo(a)pyrene	ug/Kg	NE	100	23 J	51 l	150 .	J 42 J	
	Benzo(b)fluoranthene	ug/Kg	NE	NE	50 U	51 l	200	J 70 J	-
	Benzo(g,h,i)perylene	ug/Kg	NE	NE	38 J	33 J	120	J 55 J	-
	Benzo(k)fluoranthene	ug/Kg	NE	NE	50 U	51 l		23 J	
	Chrysene	ug/Kg	NE	NE	50 U	51 l	110 .	J 42 J	-
	Dibenzo(a,h)anthracene	ug/Kg	NE	NE	50 U			49 U	
	Fluoranthene	ug/Kg	NE	NE	50 U	51 l	98	J 42 J	-

					Location ID, Date, and Depth Interval						
				MTCA Method	RFPNB-42C (0.5-2	L) RFPNB-DUP	2	RFPNB-43C (0.5-1	RFPNB-DUP3	RFPNB-SP1 (0-0.5)	
				A Cleanup	6/29/2020	6/29/2020)	6/29/2020	6/29/2020	5/15/2020	
				Level ¹⁰	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft 0.5 - 1 ft		0.5 - 1 ft	0.0 - 0.5 ft	
				Justification	Characterization Sample	Duplicate fo RFPNB-42C		Characterization Sample	Duplicate for RFPNB-43C	Composite Sample of North Bank Construction Stockpile	
Analyte Group	Analyte	Units	Spokane Basin Background Metal Concentration ¹¹	Fate	Left in Place	Left in Place)	Left in Place	Left in Place	Used as fill with the North Bank Site	
	Fluorene	ug/Kg	NE	NE	50 U	51	U	5.6 J	49 U.		
	Indeno(1,2,3-c,d)pyrene	ug/Kg	NE	NE	50 U	51	U	87 J	28 J		
	Phenanthrene	ug/Kg	NE	NE	50 U	51	U	21	49 U		
	Pyrene	ug/Kg	NE	NE	50 U	21	J	120 J	45 J		
	Total cPAH TEQ ⁵ (ND=0.5RL) ⁶	ug/Kg	NE	100	36	39	U	198	60		

Notes

based on methodology described in MTCA Cleanup Regulation Washington Administrative Code (WAC) 173-340-708.

mg/kg = milligrams per kilogram; mg/L = milligrams per liter; NE = not established; µg/kg = micrograms per kilogram;

J = estimated result; U = analyte was not detected above the reporting limit; R = rejected result.

Bold indicates analyte was detected.

Bold and gray shading indicates the analyte was detected above the MTCA Method A CUL.

¹Samples analyzed by TestAmerica Laboratories, Inc. located in Spokane Valley, Washington.

 $^{^2}$ Total Petroleum Hydrocarbons (TPH) analyzed using Method Northwest Method TPH-Dx.

³Metals analyzed using Environmental Protection Agency (EPA) Method 6010D.

⁴Polycyclic aromatic hydrocarbons analyzed using EPA Method 8270ESIM.

⁵Carcinogenic PAH (cPAH) toxic equivalency (TEQ) calculated using toxicity equivalency factors (TEF) from MTCA Table 708-2,

 $^{^6}$ The TEQ reported was calculated using half the laboratory reporting limits for cPAHs less than reporting limits.

⁷Mercury analyzed using EPA Method 7471B.

⁸Chromium III cleanup level is 2,000 mg/kg. MTCA Method A cleanup level for Chromium VI is 19 mg/kg.

⁹Sum total value for naphthalene, 1-methyl naphthalene and 2-methyl naphthalene.

 $^{^{10}}$ Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup levels (CUL).

¹¹Background level used for metals in soil is the Washington State Department of Ecology (Ecology) Natural Background 90th percentile value for the Spokane basin (Ecology 1994).

¹²RCRA maximum toxicity characteristic concentration

¹³Non-detected result is reported at method detection limit

Table 2West Havermale Soil Chemical Analytical Data - TPH, Metals, and PAHs¹
Riverfront Park
Spokane, Washington

	Location ID, Date, and Depth Interval											
				MTCA Method	WH-1C(0-0.5)	WH-2C(0-0.5)	WH-3C(0-0.5)	WH-4C(0-0.5)	WH-5C(0-0.5)	WH-6C(0-0.5)	WH-7C(0-0.5)	WH-8C(0-0.5)
				A Cleanup	4/14/2020	4/14/2020	4/14/2020	4/14/2020	4/14/2020	4/14/2020	4/14/2020	4/14/2020
				Level ¹⁰	0 - 0.5 ft							
				Justification	Characterization Sample							
Analyte			Spokane Basin Background Metal	Fate	Left in Place							
Group	Analyte		Concentration ¹¹									
TPH ²	Diesel-range hydrocarbons	mg/Kg	NE	2,000	-	-		-			-	
11 11	Lube oil-range hydrocarbons	mg/Kg	NE	2,000								
	Arsenic	mg/Kg	9.34	20	7.0	9.1	13	17	14	13	10	11
	Barium	mg/Kg	NE	NE	34	52	82	87	55	66	87	74
	Cadmium	mg/Kg	0.7	2	0.070 J	0.15 J	0.72 J	0.15 J	0.10 J	0.31 J	0.90 J	0.53 J
	Chromium	mg/Kg	17.8	2,000 ⁸	7.5	8.8	9.2	12	11	9.2	11	9.4
Metals ³	Lead	mg/Kg	14.9	250	13	29	230	17	7.9	110	300	160
	Lead (TCLP)	mg/L	NE	5 ¹²	-	-		-	-	-	-	-
	Mercury ⁷	ug/Kg	20	2,000	14 J	32 J	230	11 J	46 U	82	230	220
	Selenium	mg/Kg	NE	NE	4.3 U	4.2 U	4.4 U	3.9 U	4.2 U	4.5 U	8.8 U	4.1 U
	Silver	mg/Kg	NE	NE	1.1 U	1.0 U	1.1 U	0.97 U	1.1 U	1.1 U	2.2 U	1.0 U
	1-Methylnaphthalene	ug/Kg	NE	5,000 ⁹	10 U	9.7 U	8.8 J	10 U	10 U	5.8 J	19 J	17
I	2-Methylnaphthalene	ug/Kg	NE		10 U	9.7 U	13 J	10 U	10 U	9.6 J	38	16
	Naphthalene	ug/Kg	NE		10 U	9.7 U	10 J	10 U	10 U	6.1 J	22	13
	Acenaphthene	ug/Kg	NE	NE	10 U	9.7 U	22	10 U	10 U	3.0 J	25	34
	Acenaphthylene	ug/Kg	NE	NE	5.6 J	4.1 J	61	10 U	10 U	12	37	90
	Anthracene	ug/Kg	NE	NE	11	5.8 J	110	2.3 J	2.2 J	18	86	180
PAHs ⁴	Benzo(a)anthracene	ug/Kg	NE	NE	30	18	330	5.7 J	5.9 J	38	200	480
	Benzo(a)pyrene	ug/Kg	NE	100	53	22	340	6.7 J	7.0 J	50	240	490
	Benzo(b)fluoranthene	ug/Kg	NE	NE	70 J	28	420	8.3 J	8.3 J	67	300	620
	Benzo(g,h,i)perylene	ug/Kg	NE	NE	37	21 U	200	10 U	10 U	39	140	230
	Benzo(k)fluoranthene	ug/Kg	NE	NE	26	11	150	4.1 J	4.5 J	23	120	240
	Chrysene	ug/Kg	NE	NE	44 J	22	360	5.2 J	6.3 J	51	240	490
	Dibenzo(a,h)anthracene	ug/Kg	NE	NE	11	5.1 J	58	10 U	10 U	9.8 J	37	71

								Location ID, Date,	and Depth Interval			
				MTCA Method	WH-1C(0-0.5)	WH-2C(0-0.5)	WH-3C(0-0.5)	WH-4C(0-0.5)	WH-5C(0-0.5)	WH-6C(0-0.5)	WH-7C(0-0.5)	WH-8C(0-0.5)
				A Cleanup	4/14/2020	4/14/2020	4/14/2020	4/14/2020	4/14/2020	4/14/2020	4/14/2020	4/14/2020
		Level ¹⁰	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft		
		Justification	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample	Characterization Sample		
Analyte Group	Analyte	Units	Spokane Basin Background Metal Concentration ¹¹	Fate	Left in Place	Left in Place	Left in Place					
	Fluoranthene	ug/Kg	NE	NE	24	31	600	10 U	10 U	62	400	840
	Fluorene	ug/Kg	NE	NE	10 U	9.7 U	18 J	10 U	10 U	2.3 J	22	42
	Indeno(1,2,3-c,d)pyrene	ug/Kg	NE	NE	30	15	180	3.3 J	3.8 J	30	120	210
	Phenanthrene	ug/Kg	NE	NE	8.9 J	14	310	4.1 J	4.8 J	34	280	480
	Pyrene	ug/Kg	NE	NE	32	32	600	10 U	11 U	64	420	870
	Total cPAH TEQ ⁵ (ND=0.5RL) ⁶	ug/Kg	NE	100	70	30	457	9	10	67	320	657

Notes

based on methodology described in MTCA Cleanup Regulation Washington Administrative Code (WAC) 173-340-708.

mg/kg = milligrams per kilogram; mg/L = milligrams per liter; NE = not established; µg/kg = micrograms per kilogram;

J = estimated result; U = analyte was not detected above the reporting limit; R = rejected result.

Bold indicates analyte was detected.

Bold and gray shading indicates the analyte was detected above the MTCA Method A CUL.

 $^{^{1}\}mbox{Samples}$ analyzed by TestAmerica Laboratories, Inc. located in Spokane Valley, Washington.

²Total Petroleum Hydrocarbons (TPH) analyzed using Method Northwest Method TPH-Dx.

³Metals analyzed using Environmental Protection Agency (EPA) Method 6010D.

⁴Polycyclic aromatic hydrocarbons analyzed using EPA Method 8270ESIM.

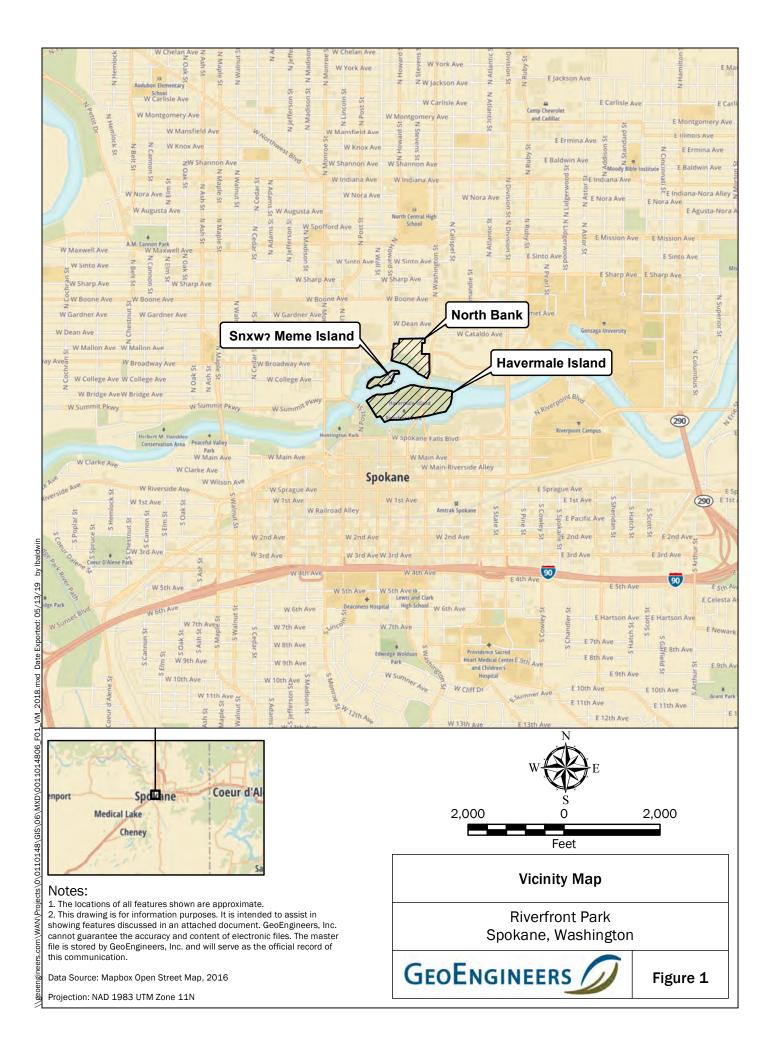
⁵Carcinogenic PAH (cPAH) toxic equivalency (TEQ) calculated using toxicity equivalency factors (TEF) from MTCA Table 708-2,

 $^{^6}$ The TEQ reported was calculated using half the laboratory reporting limits for cPAHs less than reporting limits.

⁷Mercury analyzed using EPA Method 7471B.

⁸Chromium III cleanup level is 2,000 mg/kg. MTCA Method A cleanup level for Chromium VI is 19 mg/kg.

⁹Sum total value for naphthalene, 1-methyl naphthalene and 2-methyl naphthalene.


 $^{^{10}}$ Model Toxics Control Act (MTCA) Method A unrestricted land use cleanup levels (CUL).

¹¹Background level used for metals in soil is the Washington State Department of Ecology (Ecology) Natural Background 90th percentile value for the Spokane basin (Ecology 1994).

 $^{^{\}rm 12}{\rm RCRA}$ maximum toxicity characteristic concentration

¹³Non-detected result is reported at method detection limit

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. 3. * = 2017 Sample

Data Source: ESRI World Imagery

Contaminated - Concentration greater than MTCA Method A Cleanup Level for one or more COC analyzed

Impacted - Concentration less than MTCA Method A Cleanup Levels and greater than laboratory reporting limits or twice the available background metals concentration for each COC analyzed

Clean - Concentration less than laboratory reporting limits or less than twice the available background metals concentrations for each COC analyzed

TPH Metals

A PAHs

North Bank Area Oily Water RFPNB-13C = Sample Hauled

Off Site

Approximate Limits of Remedial Excavation (2017) Approximate Limits of Remedial Excavation (2020)

Feet

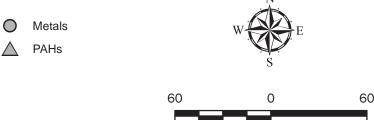

North Bank Sample Locations

Riverfront Park Spokane, Washington

Figure 2

Projection: NAD 1983 UTM Zone 11N

Notes:


1. The locations of all features shown are approximate.
2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: ESRI World Imagery

Projection: NAD 1983 UTM Zone 11N

<u>Legend</u>

- Contaminated Concentration greater than MTCA Method A Cleanup Level for one or more COC analyzed
- Impacted Concentration less than MTCA Method A Cleanup
 Levels and greater than laboratory reporting limits or twice the
 available background metals concentration for each COC analyzed
- Clean Concentration less than laboratory reporting limits or less than twice the available background metals concentrations for each COC analyzed

Feet

West Havermale Island Sample Locations

Riverfront Park Spokane, Washington

Figure 3

APPENDIX A Analytical Laboratory Reports and Data Validation

Data Validation Report

523 East Second Avenue, Spokane, Washington 99202, Telephone: 509.363.3125

www.geoengineers.com

Project: City of Spokane –Riverfront Park

February, March, April, May, and June 2020 Soil Samples

GEI File No: 00110-148-14

Date: July 27, 2020

This report documents the results of a United States Environmental Protection Agency (EPA)-defined Stage 2A data validation (EPA Document 540-R-08-005; EPA 2009) of analytical data from the analyses of soil samples collected as part of the February, March, April, May, and June 2020 sampling events, and the associated laboratory quality control (QC) samples. The samples were obtained from the Riverfront Park site located in Spokane, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the EPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (EPA 2017a) and Inorganic Superfund Methods Data Review (EPA 2017b) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Quality Assurance Project Plan (QAPP), Appendix A of the Work Plan, Riverfront Park Geotechnical and Environmental Services (GeoEngineers 2016), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Rinsate Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory/Field Duplicates
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated	
590-12823-1	RFPMB-1(0-1), RFPMB-1(2-3), RFPMB-2(0-1), RFPMB-2(1-2), RFPMB-3(0.5-1.5)	
590-12823-2	RFPMB-1(0-1)	
590-12833-1	RFPNB-7C(1.5-2), RFPNB-8C(0.5-1), RFPNB-9C(3-4), RFPNB-1OC(1.5-2), RFPNB-11C(2-2.5)	
590-12833-2	REPIND-7C(1.5-2), REPIND-6C(0.5-1), REPIND-9C(5-4), REPIND-10C(1.5-2), REPIND-11C(2-2.5)	
590-12931-1	RFPMB-1A(0-1), RFPMB-1B(0-1), RFPMB-1C(0-1), RFPMB-1D(0-1)	
590-13048-1	$\label{eq:WH-1C(0-0.5), WH-2C(0-0.5), WH-3C(0-0.5), WH-4C(0-0.5), WH-5C(0-0.5), WH-6C(0-0.5), WH-7C(0-0.5), WH-8C(0-0.5)} \\$	
590-13087-1	RFPNB-12C (4-4.5), RFPNB-13C (4-4.5), RFPNB-14C (4-4.5)	
590-13087-2	RFPNB-13C (4-4.5)	
590-13092-1	RFPNB-15C(0-0.5), RFPNB-16C(0-0.5), RFPNB-17C(0-0.5), RFPNB-18C(0-0.5), RFPNB-20C(0-0.5), RFPNB-21C(0-0.5), RFPNB-22C(0-0.5)	
590-13122-1	RFPNB-23C (7-7.5), RFPNB-24C (4-4.5), RFPNB-25C (3.5-4), RFPNB-26C (4-4.5), RFPNB-27C (4-4.5), RFPNB-28C (3-3.5), RFPNB-29C (3-3.5)	
590-13122-3	RFPNB-27C (4-4.5)	
590-13171-1	RFPNB-33C (1-1.5), RFPNB-34C (1-1.5), RFPNB-35C (1-1.5), RFPNB-36C (3.5-4), RFPNB-37C (3.5-4)	
590-13171-2	RFPNB-30C (4.5-5), RFPNB-31C (4.5-5), RFPNB-32C (4.5-5), RFPNB-33C (1-1.5), RFPNB-34C (1-1.5), RFPNB-35C (1-1.5), RFPNB-36C (3.5-4), RFPNB-37C (3.5-4)	
590-13195-1	RFPNB-SP1(00.5)	
590-13217-1	RFPNB-38C (4-4.5)	
590-13239-1	DEDNID 200(4 5 5)	
590-13239-2	RFPNB-39C(4.5-5)	
590-13394-1	RFPNB-40C (7-8)	
590-13423-1	RFPNB-41C (0.5-1), RFPNB-DUP1, RFPNB-42C (0.5-1), RFPNB-DUP2, RFPNB-43C (0.5-1), RFPNB-DUP3, RFPNB-Rinsate	

CHEMICAL ANALYSIS PERFORMED

Eurofins TestAmerica Laboratories, Inc. (TestAmerica), located in Spokane, Washington, performed laboratory analyses on the samples using one or more of the following methods:

- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270E-SIM;
- Total Metals by Methods EPA6010D/EPA7470A/EPA7471B; and
- Toxicity Characteristic Leaching Procedure (TCLP) for Lead by Method EPA6010D

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

TestAmerica provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory, with the following exceptions:

SDG 590-12823-2: The laboratory noted that TCLP analysis was requested for Sample RFPMB-1(0-1) on 3/18/2020, which was not originally requested on the COC.

SDG 590-13087-2: The laboratory noted that TCLP analysis was requested for Sample RFPNB-13C (4-4.5) on 5/4/2020, which was not originally requested on the COC.

SDG 590-13122-3: The laboratory noted that TCLP analysis was requested for Sample RFPNB-27C (4-4.5) on 5/28/2020, which was not originally requested on the COC.

SDG 590-13239-2: The laboratory noted that metals and PAH analyses were requested for Sample RFPNB-39C(4.5-5) on 5/28/2020, which were not originally requested on the COC.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for each analysis, with the exceptions noted below. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius, with the exceptions noted below.

SDGs 590-12823-1 and 590-12823-2: The sample cooler temperature recorded at the laboratory was 11.7 degrees Celsius. It was determined through professional judgment that since the samples were received on ice at the laboratory the same day they were collected, and the cooling process had begun, this temperature should likely not affect the sample analytical results.

SDG 590-12931-1: The sample cooler temperature recorded at the laboratory was 1.1 degrees Celsius. It was determined through professional judgment that since the samples were not frozen, this temperature should not affect the sample analytical results.

SDGs 590-13087-1 and 590-13087-2: The sample cooler temperature recorded at the laboratory was 9.9 degrees Celsius. It was determined through professional judgment that since the samples were received on ice at the laboratory the same day they were collected, and the cooling process had begun, this temperature should likely not affect the sample analytical results.

SDG 590-130921-1: The sample cooler temperature recorded at the laboratory was 1.6 degrees Celsius. It was determined through professional judgment that since the samples were not frozen, this temperature should not affect the sample analytical results.

SDGs 590-13122-1 and 590-13122-3: The sample cooler temperature recorded at the laboratory was 14.4 degrees Celsius. It was determined through professional judgment that since the samples were received on ice at the laboratory the same day they were collected, and the cooling process had begun, this temperature should likely not affect the sample analytical results.

SDGs 590-13171-1 and 590-13171-2: The sample cooler temperature recorded at the laboratory was 20.8 degrees Celsius. It was determined through professional judgment that since the samples were received on ice at the laboratory the same day they were collected, and the cooling process had begun, this temperature should likely not affect the sample analytical results.

SDG 590-13195-1: The sample cooler temperature recorded at the laboratory was 6.5 degrees Celsius. It was determined through professional judgment that since the samples were received on ice at the laboratory the same day they were collected, and the cooling process had begun, this temperature should likely not affect the sample analytical results.

SDG 590-13517-1: The sample cooler temperature recorded at the laboratory was 14.1 degrees Celsius. It was determined through professional judgment that since the samples were received on ice at the laboratory the same day they were collected, and the cooling process had begun, this temperature should likely not affect the sample analytical results.

SDGs 590-13239-1 and 590-13239-2: The sample cooler temperature recorded at the laboratory was 1.8 degrees Celsius. It was determined through professional judgment that since the samples were not frozen, this temperature should not affect the sample analytical results.

SDG 590-13394-1: (PAHs) The 14-day holding time for PAH analysis was grossly exceeded by 43 days in Sample RFPNB-40C (7-8). The reporting limits for the PAH target analytes were qualified as rejected (R) in this sample. These data are considered unusable.

(Total Metals) The 28-day holding time for mercury analysis was grossly exceeded by 29 days in Sample RFPNB-40C (7-8). The laboratory reported a positive result for total mercury in this sample; however, the result was qualified as non-detected due to blank contamination. The reporting limit for total mercury was qualified as rejected (R) in this sample. This datum is considered unusable.

SDG 590-13423-1: The sample cooler temperature recorded at the laboratory was 10.5 degrees Celsius. It was determined through professional judgment that since the samples were received on ice at the laboratory the same day they were collected, and the cooling process had begun, this temperature should likely not affect the sample analytical results.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. The surrogate percent recoveries for field samples were within the laboratory control limits, with the following exceptions:

SDG 590-13048-1: (PAHs) The percent recovery for surrogate p-Terphenyl-d14 was less than the control limits in Sample WH-6C(0-0.5); however, the sample was spiked with two additional surrogates each within their control limits. No action was required for this outlier.

SDG 590-13423-1: (PAHs) The percent recovery for surrogate p-Terphenyl-d14 was less than the control limits in Sample RFPNB-Rinsate; however, the sample was spiked with two additional surrogates each within their control limits. No action was required for this outlier.

Method and Rinsate Blanks

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For each sample batch, method blanks for the applicable methods were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks, with the following exceptions:

SDG 590-13048-1: (PAHs) There was a positive result for benzo(g,h,i)perylene, fluoranthene, and pyrene detected above the method detection limit, but below the reporting limit in the method blank extracted on 4/21/2020. The positive result for benzo(g,h,i)perylene was qualified as non-detected (U) in Sample WH-2C(0-0.5). The positive results for benzo(g,h,i)perylene, fluoranthene, and pyrene were qualified as non-detected (U) in Samples WH-4C(0-0.5) and WH-5C(0-0.5). The positive results for fluoranthene and pyrene in Sample WH-2C(0-0.5) and the positive results for benzo(g,h,i)perylene, fluoranthene, and pyrene in Samples WH-1C(0-0.5), WH-3C(0-0.5), WH-6C(0-0.5), WH-7C(0-0.5), and WH-8C(0-0.5) were greater than 5X the concentration detected in the method blank; therefore, no qualifications were required.

SDG 590-13394-1: (PAHs) There was a positive result for fluorene detected above the method detection limit, but below the reporting limit in the method blank extracted on 6/24/2020. There were no positive results for this target analyte in the associated field sample; therefore, no qualification was required.

(Total Metals) There was a positive result for total mercury detected above the method detection limit, but below the reporting limit in the method blank digested on 6/24/2020. The positive result for this target analyte was qualified as non-detected (U) in Sample RFPNB-40C (7-8).

SDG 590-13423-1: (Total Metals) There was a positive result for total mercury detected above the method detection limit, but below the reporting limit in the method blank digested on 7/13/2020. The positive results for this target analyte were qualified as non-detected (U) in Samples RFPNB-41C (0.5-1), RFPNB-DUP1, RFPNB-42C (0.5-1), RFPNB-DUP2, RFPNB-43C (0.5-1), and RFPNB-DUP3.

Rinsate Blanks

Equipment rinsate blanks are analyzed to provide an indication as to whether field decontamination and sampling procedures effectively prevent cross-contamination in field activities. None of the analytes of interest were detected in the rinsate blank, with the following exception:

SDG 590-13423-1: (PAHs) There was a positive result for benzo(a)pyrene detected above the method detection limit, but below the reporting limit in the rinsate blank collected on 6/29/2020. The positive results for this target analyte were greater than 5X the concentration detected in the rinsate blank in Samples RFPNB-41C (0.5-1), RFPNB-DUP1, RFPNB-42C (0.5-1), RFPNB-43C (0.5-1), and RFPNB-DUP3 and there were no positive results for this target analyte in Sample RFPNB-DUP2; therefore, no qualifications were required.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The percent recovery control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the percent recovery and RPD values were within the proper control limits, with the following exceptions:

SDG 590-12931-1: (Total Metals) The laboratory performed an MS/MSD sample set on Sample RFPMB-1A(0-1). The percent recoveries for total lead were less than the control limits in the MS/MSD digested on 3/18/2020. The positive result for this target analyte was qualified as estimated (J) in this sample.

SDG 590-13048-1: (PAHs) The laboratory performed an MS/MSD sample set on Sample WH-1C(0-0.5). The RPD values for benzo(b)fluoranthene and chrysene were greater than the control limits in the MS/MSD extracted on 4/21/2020. The positive results for these target analytes were qualified as estimated (J) in this sample.

Additionally, in the same MS/MSD sample set, the percent recovery for benzo(b)fluoranthene was less than the control limits in the MS and the percent recovery for 1-Methylnaphthalene was less than the control limits in the MSD; however, the percent recoveries for these target analytes were within the control limits in the corresponding MSD and MS, respectively. No action was required for these outliers.

SDG 590-13087-1: (Total Metals) The laboratory performed an MS/MSD sample set on Sample RFPNB-12C (4-4.5). The percent recovery for total barium was greater than the control limits in the MSD digested on 4/28/2020; however, the percent recovery for this target analyte was within the control limits in the corresponding MS. No action was required for this outlier.

SDG 590-13092-1: (Total Metals) The laboratory performed an MS/MSD sample set on Sample RFPNB-15C(0-0.5). The percent recoveries and RPD for total lead were greater than the control limits in the MS/MSD digested on 5/1/2020. The positive result for this target analyte was qualified as estimated (J) in this sample.

The laboratory performed an MS/MSD sample set on Sample RFPNB-15C(0-0.5). The percent recovery for total mercury was greater than the control limits in the MS digested on 5/6/2020; however, the percent recovery for this target analyte was within the control limits in the corresponding MSD. No action was required for this outlier.

SDG 590-13122-3: (TCLP) The laboratory performed an MS/MSD sample set on Sample RFPNB-27C (4-4.5). The percent recovery for total lead was greater than the control limits in the MSD digested on 5/29/2020; however, the percent recovery for this target analyte was within the control limits in the corresponding MS. No action was required for this outlier.

SDG 590-13171-2: (Total Metals) The laboratory performed an MS/MSD sample set on Sample RFPNB-30C (4.5-5). The percent recoveries for total barium were less than the control limits in the MS/MSD digested on 5/13/2020 at 09:03. The positive result for this target analyte was qualified as estimated (J) in this sample.

The laboratory performed an MS/MSD sample set on Sample RFPNB-30C (4.5-5). The percent recovery for total mercury was greater than the control limits in the MS digested on 5/13/2020 at 09:05; however, the percent recovery for this target analyte was within the control limits in the corresponding MSD. No action was required for this outlier.

SDG 590-13423-1: (PAHs) The laboratory performed an MS/MSD sample set on Sample RFPNB-41C (0.5-1). The RPD values for benzo(g,h,i)perylene, chrysene, and indeno(1,2,3-cd)pyrene were greater than the control limits in the MS/MSD extracted on 7/7/2020. The positive results for these target analytes were qualified as estimated (J) in this sample.

Additionally, in the same MS/MSD sample set, the percent recoveries for benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene were less than the control limits in the MSD; however, the percent recoveries for these target analytes were within the control limits in the corresponding MS. No action was required for these outliers.

(Total Metals) The laboratory performed an MS/MSD sample set on Sample RFPNB-41C (0.5-1). The percent recoveries for total lead were less than the control limits in the MS/MSD digested on 7/7/2020. The positive result for this target analyte was qualified as estimated (J) in this sample.

The laboratory performed an MS/MSD sample set on Sample RFPNB-41C (0.5-1). The percent recoveries for total mercury were outside the control limits in the MS/MSD digested on 7/13/2020. The laboratory reported positive result was qualified non-detected due to method blank contamination; therefore, the reporting limit for this target analyte was qualified as estimated (UJ) in this sample.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. The RPD control limits are specified in the laboratory documents. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exceptions:

SDG 590-12931-1: (Total Metals) The laboratory performed a laboratory duplicate sample set on Sample RFPMB-1A(0-1). The RPD for total lead was greater than the control limits in the laboratory duplicate digested on 3/18/2020. The positive result for this target analyte was qualified as estimated (J) in this sample.

SDG 590-13087-1: (Total Metals) The laboratory performed a laboratory duplicate sample set on Sample RFPNB-12C (4-4.5). The RPD values for total arsenic and total barium were greater than the control limits in the laboratory duplicate digested on 4/28/2020. The positive results for these target analytes were qualified as estimated (J) in this sample.

SDG 590-13092-1: (Total Metals) The laboratory performed a laboratory duplicate sample set on Sample RFPNB-15C(0-0.5). The RPD for total lead was greater than the control limits in the laboratory duplicate digested on 5/1/2020. The positive result for this target analyte was qualified as estimated (J) in this sample.

SDG 590-13171-2: (Total Metals) The laboratory performed a laboratory duplicate sample set on Sample RFPNB-30C (4.5-5). The RPD values for total barium, total chromium, and total lead were greater than the control limits in the laboratory duplicate digested on 5/13/2020. The positive results for these target analytes were qualified as estimated (J) in this sample.

SDG 590-13423-1: (Total Metals) The laboratory performed a laboratory duplicate sample set on Sample RFPNB-41C (0.5-1). The RPD for total lead was greater than the control limits in the laboratory duplicate digested on 7/7/2020. The positive result for this target analyte was qualified as estimated (J) in this sample.

Field Duplicates

In order to assess precision, field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit 35 percent.

SDG 590-13423-1: Three field duplicate sample pairs, RFPNB-41C (0.5-1)/RFPNB-DUP1, RFPNB-42C (0.5-1)/RFPNB-DUP2, and RFPNB-43C (0.5-1)/RFPNB-DUP3, were submitted with this SDG. The precision criteria for all target analytes were met for these sample pairs, with the following exceptions:

RFPNB-41C (0.5-1)/RFPNB-DUP1: The positive results for benzo(g,h,i)perylene and total lead were qualified as estimated (J) in this sample pair.

RFPNB-43C (0.5-1)/RFPNB-DUP3: The positive results and reporting limits for total arsenic, total barium, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, chrysene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, total lead, naphthalene, and pyrene were qualified as estimated (J and UJ, accordingly) in this sample pair.

Miscellaneous

SDG 590-12833-2: (NWTPH-Dx) The positive results for diesel-range hydrocarbons in Samples RFPNB-7C(1.5-2), RFPNB-10C(1.5-2), and RFPNB-11C(2-2.5) may be influenced by the relative concentration of lube oil-range hydrocarbons in the samples. For this reason, the positive results for

diesel-range hydrocarbons were qualified as estimated (J) in these samples, in order to signify a potential high bias.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS, and MS/MSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the MS/MSD and laboratory duplicate RPD values, with the exceptions noted above.

With the exception of rejected data, as noted above, the data are acceptable for the intended use with the following qualifications listed below in Table 2.

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

Sample ID	Analyte	Qualifier	Reason
RFPMB-1A(0-1)	Total lead	J	MS/MSD Recovery/Laboratory Duplicate Precision
RFPNB-7C(1.5-2)	Diesel-range hydrocarbons	J	See Miscellaneous
RFPNB-10C(1.5- 2)	Diesel-range hydrocarbons	J	See Miscellaneous
RFPNB-11C(2- 2.5)	Diesel-range hydrocarbons	J	See Miscellaneous
RFPNB-12C (4- 4.5)	Total arsenic Total barium) J	Laboratory Duplicate Precision Laboratory Duplicate Precision
RFPNB-15C(0- 0.5)	Total lead	J	MS/MSD Recovery and Precision/Laboratory Duplicate Precision
RFPNB-30C (4.5-5)	Total barium Total chromium Total lead]]]	MS/MSD Recovery/Laboratory Duplicate Precision Laboratory Duplicate Precision Laboratory Duplicate Precision
RFPNB-40C (7-8)	All PAH target analytes Total mercury	R R	Holding Time Holding Time
RFPNB-41C (0.5-1)	Benzo(g,h,i)perylene Chrysene Indeno(1,2,3-cd)pyrene Total lead Total mercury	nn 1 1 1	MS/MSD Precision/Field Duplicate Precision MS/MSD Precision MS/MSD Precision MS/MSD Recovery/Laboratory and Field Duplicate Precision Method Blank Contamination/MS/MSD Recovery
RFPNB-DUP1	Benzo(g,h,i)perylene Total lead Total mercury	N N	Field Duplicate Precision Field Duplicate Precision Method Blank Contamination
RFPNB-42C (0.5- 1)	Total mercury	U	Method Blank Contamination
RFPNB-DUP2	Total mercury	U	Method Blank Contamination

REFERENCES

- U.S. Environmental Protection Agency (EPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (EPA), 2017a. "Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review," EPA-540-R-2017-002. January 2017.
- U.S. Environmental Protection Agency (EPA), 2017b. "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review," EPA-540-R-2017-001. January 2017.
- GeoEngineers, Inc. "Work Plan, Riverfront Park Geotechnical and Environmental Services," prepared for City of Spokane. April 1, 2016.

WDOE 80-12 DESIGNATION REPORT

Project Name: ET-Spokane

<u>Location</u>: SPOKANE, WASHINGTON

Attention: Randee Arrington

Prepared by: Eurofins TestAmerica - Corvallis

1100 NE Circle Boulevard, Suite 310 Corvallis, Oregon 97330 541-243-6137

Oregon Environmental Laboratory Accreditation Program #OR100022 (NELAP) State of Washington DOE Environmental Laboratory Accreditation Program, Lab ID C556 California State Environmental Laboratory Accreditation Program, Certificate No.: 1726

Report Date: April 7, 2020 Released by: Michelle Bennett

Eurofins TestAmerica – Corvallis Lab I.D. No. B4637 Eurofins TestAmerica Spokane Job Number: 590-12823-2

CONTENTS

Section Pa	ıge
INTRODUCTION	. 3
OVERVIEW OF REGULATORY GUIDANCE	. 3
SUMMARY OF TEST RESULTS	. 4
METHODS AND MATERIALS	4
TEST METHODS	4
DEVIATIONS FROM PROTOCOLS	4
TEST DESIGN	. 5
DILUTION WATER	
SAMPLE COLLECTION AND STORAGE	6
DATA ANALYSIS	6
RESULTS AND DISCUSSION	. 7
ACUTE BIOASSAYS	. 7
REFERENCE TOXICANT TESTS	. 8
APPENDIX A. RAW DATA SHEETS APPENDIX B. REFERENCE TOXICANT DATA SHEETS APPENDIX C. CHAIN OF CUSTODY	

LABORATORY CONTACT: Alise Lampi, Aquatic Toxicity Department Manager alyssa.lampi@testamericainc.com (541) 243-0964

INTRODUCTION

Eurofins TestAmerica – Corvallis (ET-C) Aquatic Toxicology Laboratory conducted 96-hour Washington State Hazardous Waste Regulation bioassay testing using rainbow trout (*Oncorhynchus mykiss*) on sample(s) provided by Eurofins TestAmerica Spokane, from Spokane, Washington.

The testing was initiated on March 20, 2020, on sample(s) labeled:

• 'RFPMB-1(0-1)'

Regulatory threshold tested:

• 'Dangerous Waste' or DW designation (a sample concentration of 100 mg/L)

OVERVIEW OF REGULATORY GUIDANCE

The following provides an overview and excerpts of applicable permit specifics, regulatory guidance, and other relevant information. This is intended only as a helpful guide, from a laboratory perspective, for understanding test outcomes. The final responsibility for interpretation of results remains with the client and/or regulatory agency.

The following is taken from the WDOE guidance (Method 80-12, Part A, June 2009 revision):

- "The Washington State Department of Ecology (Ecology) developed the acute fish toxicity test (Method 80-12) to determine if a waste meets the definition of dangerous waste in the *Dangerous Waste Regulations*, Chapter 173-303 WAC."
- "If the toxicity of a waste is unknown, the waste must be tested for dangerous waste designation using Method 80-12. The waste concentrations of 100 mg/L and 10 mg/L were selected to correspond with the definitions of dangerous waste and extremely hazardous waste, respectively."
- "This method determines if the sample waste LC50 is significantly less than or equal to the regulatory threshold of 100 mg/L dangerous waste (DW), 10 mg/L extremely hazardous waste (EHW) ..."
- "Waste designated by Method 80-12 [as DW or EHW] must be regulated and managed as specified in WAC 173-303 ..."

The following is taken from *Dangerous Waste Regulations*, Chapter 173-303 WAC:

- 100 (5)(c)(ii): "The EHW ... bioassay. To determine if a waste is EHW, a person must establish the toxicity of a waste by means of the fish bioassay at 10 mg/L ..."
 - "If the data from the test indicates that the waste is EHW, then the person will assign the dangerous waste number WT01."
 - o "Otherwise, the waste will be designated DW, and the person will assign the dangerous waste number WT02." [unless DW testing proves otherwise]
- 100 (5)(c)(i): "<u>The DW bioassay</u>. To determine if a waste is DW, a person must establish the toxicity category range of a waste by means of the 100 mg/L acute static fish test ..."

- "If the data from the test indicates that the waste is DW, then the person will assign the dangerous waste number WT02."
- o "Otherwise, the waste is not regulated as toxic dangerous waste."
- 100 (5)(d): "If the designation acquired from book designation and bioassay data do not agree, then bioassay data will be used to designate a waste. If a waste is designated as DW or EHW following the book designation procedure, a person may test the waste by means of the ... static acute fish ... method, to demonstrate that the waste is not a dangerous waste or should be designated as DW and not EHW."

SUMMARY OF TEST RESULTS

Exhibit 1 provides a summary of the final test results.

EXHIBIT 1 Summary of Static Acute Test Results

Sample ID	Does the sample designate as an Extremely Hazardous Waste	Does the sample designate as a Dangerous Waste (DW)?
' RFPMB-1(0-1) '	NA	No

METHODS AND MATERIALS

TEST METHODS

The test was performed according to: *Biological Testing Methods*, Washington State Department of Ecology, DOE 80-12, Revised June 2009.

DEVIATIONS FROM PROTOCOLS

Deviations from <u>required</u> procedures in the test methods:

• None noted.

Deviations from recommended procedures in the test methods:

None noted.

TEST DESIGN

The following summarizes the conditions used for both overall testing and the specifics for each test (observations and notations can be found on the datasheets in Appendix A):

Overall Test Design:

• *O. mykiss* Acute test: 100 mg/L sample (dangerous waste designation) + dilution water for the control.

Test Organism Conditions:

- All organisms tested were fed and maintained during culturing, acclimation, and testing as prescribed by WDOE (2009).
- The test organisms appeared vigorous and in good condition prior to testing.

O. mykiss acute test:

- Source: Thomas Fish Company, Anderson, California
- Age:
 - o 30 to 90 days old (After Swim Up), within a 24 hour age range
 - o Minimum 7 day acclimation period prior to test initiation
- Design: Three test vessels per concentration, Ten organisms per vessel
- Loading of Test Chambers: Less than 0.8 g of fish per Liter of water
- Test Solution Preparation:
 - Sample particles were reduced (as needed) to smaller than ~ 1 cm in its narrowest dimension.
 - Appropriate amount of sample was placed into borosilicate glass jar with 200 ml of dilution water and tumbled for ~ 18 hours at ambient lab temperatures (~ 23 °C).
 - o Jar and all contents placed into aquaria containing additional volume of dilution water to create final sample concentration.
 - o Test organisms introduced to test chambers within 30 minutes of jar addition.
- Test Solution Renewal: None
- Monitoring:
 - o Test Initiation: DO and pH; all test chambers
 - o Test Initiation: Temperature, Conductivity, Hardness, and Alkalinity; all concentrations
 - o Daily: Survival, DO, and pH; all test chambers
 - o Daily: Temperature and Survival, DO, pH, and temperature; all concentrations.
 - o Test Termination: Survival, DO, and pH; all test chambers
 - Test Termination: Temperature, Conductivity, Hardness, and Alkalinity; all concentrations
- Termination: 96 hours.
- Endpoints: Survival (at termination)

DILUTION WATER

The dilution water used was the standard culture water used by ET-C:

• Reconstituted, moderately hard water (as per EPA protocol) with a total hardness of 75 to 105 mg/L as CaCO₃ and an alkalinity of 50 to 75 mg/L as CaCO₃.

SAMPLE COLLECTION AND STORAGE

Sample collection was performed by ET-Spokane personnel. The samples were accepted as scheduled by ET-C. Chain of Custody and Sample Receipt Records are provided in Appendix C.

• Following receipt, the samples were stored in the dark at 0 to 6 °C until test solutions were prepared and tested.

DATA ANALYSIS

The statistical analyses performed for the acute tests were those outlined in *Biological Testing Methods*, Washington State Department of Ecology, DOE 80-12, Revised June 2009.

• The statistical outputs are included with each test's datasheets in Appendix A.

RESULTS AND DISCUSSION

The raw data sheets for all tests are presented in Appendix A.

WDOE Method 80-12 DEFINITION

Extremely Hazardous Waste (EHW): 96 hr LC_{50} concentration less than or equal to 10 mg/L. Dangerous Waste (DW): 96 hr LC_{50} concentration less than or equal to 100 mg/L.

ACUTE BIOASSAY

Table 1 summarizes the survival data for the *O. mykiss* acute testing.

Table 1 Summary of Acute Results O. mykiss	_	
Sample	Concentration (mg/L)	Number Dead/ Number Tested
Control	0	0/30
' RFPMB-1(0-1)'	100	0/30

According to the definitions listed above, samples should not be classified as a "Dangerous Waste".

The dissolved oxygen concentration remained at 6.0 mg/L or greater throughout the testing period. Test temperatures remained in the range of 12 ± 1.0 °C.

The *O. mykiss* acute test meets Test Acceptability Criteria (TAC) of a minimum 90 percent control survival. The test proceeded without any noted deviations or interruptions that could have affected test results. The testing should be considered "valid".

REFERENCE TOXICANT TEST

Reference toxicant (reftox) testing is performed to document both initial and ongoing laboratory performance of the test method(s). While the health of the test organisms is primarily evaluated by the performance of the laboratory control, reftox test results also may be used to assess the health and sensitivity of the test organisms. Reftox test results within their respective cumulative summary (Cusum) chart limits are indicative of consistent laboratory performance and normal test organism sensitivity.

The results of the reftox test indicate that the test organisms were within their respective cusum chart limits based on EPA guidelines. This demonstrates ongoing laboratory proficiency of the test methods and suggests normal test organism sensitivity in the associated client testing.

The O. mykiss reftox test was conducted using potassium chloride.

The data sheets for the reference toxicant test are provided in Appendix B.

Table 2 summarizes the reference toxicant test results and Cusum chart limits.

Ta	ble 2										
Acute Reference Toxicant Test (g/L)											
Species	LC_{50}	Cusum Chart Limits									
Oncorhynchus mykiss	1.62	0.60 to 2.74									

APPENDIX A RAW DATA SHEETS

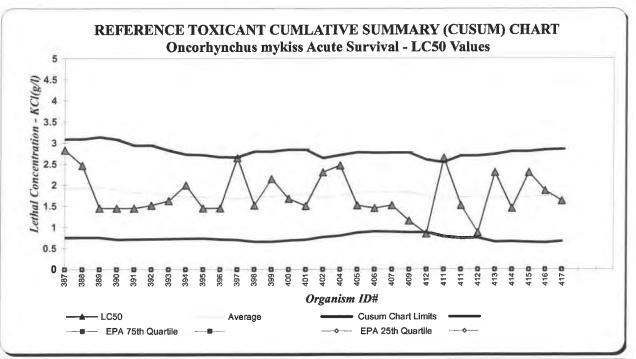
Client			ET-	Spokane				SDG # B4637	Tes	st Initiation:	Date 2	2020	
Contact			Rande	Arringtor	1					ermination:		/24/2020	
Sample ID Number	F	ield ID	Date	Collec e (mm/dd/yy)		Date Receive	' '	Sample Concentration (mg/L)	Ammonia NH ₃ -N	1	rdness s CaCO ₃)		alinity s CaCO ₃)
B4637 -01	RFPMB-1(0-1	1)	02	128 120	12 54	03/19/	21 12.2	100 mg/L	-	117	110	70	96 hrs
					-								
												1_1	
						rting Limits:		na	0.10 mg/L	4 n	ng/L	4 m	ıg/L
	Note: "-" In	dicates data	a collection o	r dechlorinat	ion not need	led. Any oth	er adjustments to	samples prior to use are do	ocumented in Comme	nts below or o	on Dilutions p	age.	
Dilution Water		ID#		rdness s CaCO ₃)		alinity s CaCO ₃)	Comments: 🗹	Indicates the action was ta	ken, (\square = action not to		ated or analy	te not collec	ted/noods
		2-25	0 hrs	96 hrs	0 hrs	96 hrs				and a deliteration	atou, or unary	to not conec	ied/fieede
Recon MH (FHI	vI))	063	92	103	66	80							

FRESHWATER TOXICITY TEST: TEST ORGANISM INFORMATION

Client	ET-Spokane	3.5	Sample Designation (SDG):	BB4637
Test Species Information	RBT # '417 Oncorhynchus mykiss Acute			
Organism Age at Initiation	*7 9 Days			
Test Container Size	2.5 gallon			
Test Volume	5 L			
Feeding: Type and Amount	TetraMin during acclimation			
Aeration: In Test Chambers via Slow Bubble :	 □ None ☑ Prior to use □ @ hrs 			
Acclimation Period	19 Days			
Organism Source Size	Thomas fish to			
Loading Rate	0.56 g/L			
Dissolved Oxygen aeration justification Test(s):	ns (in test chambers):	· ·		

Comments:

SAMPLE WEIGHT


Client		ET-Spokane		
Tumbling Start Date:	3/19/20	Time: 1617	In	itials: BC
Client ID#	Lab ID#	Concentration (mg/L)	Target Weight (g)	Actual Weight (g)
RFPMB-1(0-1)	B4637-01	100 mg/L A	0.500	0.50004
		100 mg/L B	0.500	0.50° 0.500°
		100 mg/L	0.500	.50075

TestAm	ANTHIA TERTAG	terbath/Inco	ibator Used	#ZNC 9		SDG's ±	# B4637				Description		see below			-	LITY DA	est Initiation	Date:	3	1 750/21	70	Time:	13	05	
Also collec					- 1			lk in both	Control	-				al = 0%)				Termination	Date:	3	1242	20	Time:		00	
Client				ET-Sr	okane				Technician	0 hr 0 hr	13	:05	24 hr 24 hr	TO	2 (48 hr 48 hr	20	: 35	72 hr 72 hr	BC	:85	96 hr 86 Ros	BC	1/5/13	Collect I	
Test Species		Once	orhynchus .	_		RBT L	17		Therm. ID#		# 26			# 25		48 hr	# 2	50	72 hr	# 255	5	96 hr 96 hr 96 hr 96 hr	# Z4	50	@9	6 hrs
Concentration	Test Container		Numb	er of Live Or	nganisms			Disso	lved Oxyger	(me/l)				рН				Te	emperature (°C)			Condu	activity (µm	ohs/cm)	
	Number	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48		96
	A	10	10	01	10	10	9.5	9.8	9.9	7. 2 51 ROS 5/13/12	9.4	7.6	7.2	7.0	6-9	69	315	RI	12.1	12.2	12,0	315				34C
Control	В	10	(0)	io	10	10	9.7	9.8				7.6					370									
	С	10	10	10	[6	10	9.7	9.9	9.6	9.2	9.3	7.6	7, 2	6.9	6-9	6.9										
1(0-1)	A	10	0	10	lo	10	9.4	9,5	10.0	9,0	9.1	7.4	7.1	6.9	6.9	6.8	12.8	122	12.1	12,1	8.11	332				37
100 mg/L RFPMB-1(0-1)	В	10	(1)	10	10	16	9.4	9.5	10.1	9.2	9.3	7.5	7.1	6.9	6.9	6.9										
-01 100	С	10	10	10	10	10	9.4	9.4	9.6	9,1	9.3	7.5	1.5	69	6.9	6.9										

APPENDIX B REFERENCE TOXICANT DATA SHEETS

REFERENCE TOXICANT DATA SHEET

	Client		QA/Q	С		Tes	st Chaml			_			Toxican			(Cl		Т	est Begi	n: Date	2	/11 /:	2020	Time	01	100
_			hynchus		_		ne per R	-			-	Stock	Solution	50 g/L	in DI (ASTM T	ype I) w	ater	est End	: Date	2	1151	2026		(0	: 15
So	ource	[2] = 1	homas F	ish Co.		Design	ned Tem	perature	12 ±	: 1 °C	- F	Reagent 1	Log ID#	ZBC	78-0	6							\$ 50	12		
	ID#		r# 41.	7	-															otal Alk						_
			Z day		1/20				01				01				_	Dilution	Water	Total Ha			3 68			
^**	Age	om cizo	28.4	ys ASU mm		Te	chnician Time	0 hr	DQ 2/2/	SC BC II	[00]		BC	k -	-		BC			72 hr	BC		-		BC	
	-		0.3		_	The	rm. ID#	0 hr	764	11/20 1	100		150		-		092		-	72 hr	10:0	0	_		101	
_	2000	_					III. 115 #		- 1			24 nr	1,70		-	48 hr	290		-		262	1	-	96 hr	764	
Conc.	Rep			of Live 10 per rep	Organis	sms		Disso	olved O	xygen				pН				Te	emperat	ure			Co	nductiv	ity	
g/L)	Кор	0	24	48	72	96	0	24	(mg/l)	72	96	0	24	40	70	T 06	_		(°C)					(mS)		,
		Ť		10	1 12	10		-						48	72	96	0	24	48	72	96	0	24	48	72	96
Cont.	A	10	10	io	10	16	9.6	9.9	9.6	9.8	9.8	8.1	80	7.3	7.2	7.4	12.1	11.8	11.6	11.5	11.5	313				341
0.5	A	jo	10	10	(0	10	10.1	9.7	9.8	9.9	9.9	8.1	7.9	7,5	7.5	7.6	12.2	11.6	11.6	11.5	11,5	1196				1240
1.0	A	10	10	io	10	10	10,3	9.7	9.7	7.9	9.8	21	7.8	7.5	75	7.5	12,0	12,2	12.0	12.0	11.9	2140				2280
2.0	A	10	34	2	2	2	6.3	9,7	9.8	W.Z	þ.z	8.(7.9	7.7	7.9	7.9	11,8	11,7	11.7	11.6	11,6	3960				4150
4.0	A	10	0				10.4	9.8	demonstrate filters 4.			8.0	7-9	_			12,3	12,5	-	gas politica transposadado	and the second second	7420	7810			A 1200
8.0	A	10	0	-			10:3	9.8	-		general in the	8.0	7.9	-			12.1	11.9				14070	14090	_		
		(req	uired Tes	t Accepta	ols: ≥ 90% bility Cri	iteria)			P°C): > 4, mmende		10.8		_	> 6.0 and mmende					l erature: mmende	_			((QA) nor	ne	
Diluti	on W	ater Co	de:	Recon	= recons	tituted w	vater		MH = I	noderate	ly hard								W	e verify	this data	a is true	and corre	ct.		
				Hour L			•				Hour L						Task N	Manager	Bro	#	(9)	vde	n			
*Age			Cusui	m Chart	Limits	0.6k	o to	-52		Cusui	n Chart	Limits	0.60	o to 2	2.74	1	Project N	Manager	0	V	111	my	7			
SU =	After	r Swim	1 Stati	stical M	ethod	Spar	mu-	Las.					San			~	OA	Officer	R	11/	-///	m				
						1							1				×.,,			1	100		1		_	

Oncorhynchus mykiss - ACUTE (EPA Test Method 2019.0)

Stats Method: Probit, Spearman-Karber, Linear Interpolation

POTASIUM CHLORIDE (g/L)

From EPA 833-R-00-003:

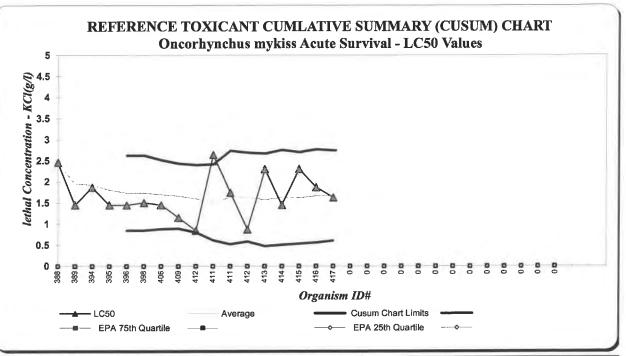
na

Organism age: 15 to 90 days

10th Quartile CV (control limit) =

Endpoint: 48 hour Survival

25th Quartile CV (warning limit) = na


75th Quartile CV (warning limit) =

Test Conditions: Recon MH, 12 oC

90th Quartile CV (control limit) = na

As per EPA 833-R-00-003, section B.2.1, the quartiles listed above are from just a few labs (5) and therefore not to be considered typical or representative. Cusum limits are based on ASL data only.

Event	RBT	Test Start	LC50	Running	Running	Cusum Cl	Intralab	
#	ID#	Date	LC50	Average	SD	AVG-2SD	AVG+2SD	CV
98	396	2/12/2019	1.45	1.68	0.49	0.71	2.66	0.29
99	397	2/27/2019	2.64	1.68	0.49	0.70	2.65	0.31
100	398	3/28/2019	1.52	1.72	0.54	0.65	2.79	0.31
101	399	4/5/2019	2.14	1.72	0.54	0.65	2.79	0.31
102	400	4/25/2019	1.67	1.76	0.54	0.68	2.83	0.30
103	401	5/16/2019	1.51	1.77	0.53	0.70	2.84	0.28
104	402	5/22/2019	2.30	1.70	0.47	0.76	2.64	0.27
105	404	6/21/2019	2.46	1.75	0.48	0.79	2.70	0.26
106	405	7/17/2019	1.52	1.82	0.48	0.87	2.77	0.26
107	406	7/31/2019	1.45	1.83	0.47	0.90	2.76	0.26
108	407	8/15/2019	1.52	1.83	0.47	0.89	2.76	0.26
109	409	10/1/2019	1.15	1.82	0.47	0.88	2.76	0.25
110	412	10/16/2019	0.84	1.74	0.43	0.87	2.60	0.27
111	411	10/22/2019	2.64	1.65	0.44	0.78	2.53	0.28
112	411	10/28/2019	1.52	1.71	0.49	0.74	2.69	0.28
113	412	10/16/2019	0.87	1.72	0.49	0.75	2.69	0.31
114	413	11/6/2019	2.30	1.69	0.52	0.65	2.73	0.31
115	414	11/20/2019	1.45	1.73	0.53	0.66	2.80	0.31
116	415	12/3/2019	2.30	1.72	0.54	0.64	2.79	0.32
117	416	12/31/2019	1.87	1.73	0.55	0.63	2.83	0.31
118	417	2/11/2020	1.62	1.75	0.55	0.66	2.85	0.31
119								
120								

Oncorhynchus mykiss - ACUTE (EPA Test Method 2019.0)

POTASIUM CHLORIDE (g/L)

From EPA 833-R-00-003:

Organism age: 15 to 90 days

Endpoint: 96 hour Survival

Stats Method: Probit, Spearman-Karber, Linear Interpolation

10th Quartile CV (control limit) = na
25th Quartile CV (warning limit) = na

Test Conditions: Recon MH, 12 oC

90th Quartile CV (control limit) = na

As per EPA 833-R-00-003, section B.2.1, the quartiles listed above are from just a few labs (5) and therefore not to be considered typical or representative. Cusum limits are based on ASL data only.

Event	RBT	Test Start	LC50	Running	Running	Cusum Cl	nart Limits	Intralab
#	ID#	Date	LCSU	Average	SD	AVG-2SD	AVG+2SD	CV
1	388	8/4/2018	2.46	2.46				
2	389	10/13/2018	1.45	1.96				
3	394	1/9/2019	1.87	1.93	0.51			
4	395	1/17/2019	1.45	1.81	0.48			
5	396	2/12/2019	1.45	1.74	0.44	0.85	2.62	0.27
6	398	3/28/2019	1.51	1.74	0.44	0.85	2.62	0.26
7	406	7/31/2019	1.45	1.70	0.41	0.88	2.51	0.24
8	409	10/1/2019	1.15	1.66	0.38	0.89	2.43	0.23
9	412	10/16/2019	0.84	1.60	0.40	0.80	2.40	0.25
10	411	10/22/2019	2.64	1.51	0.45	0.61	2.41	0.30
11	411	10/28/2019	1.74	1.63	0.55	0.52	2.73	0.34
12	412	11/6/2019	0.87	1.64	0.53	0.58	2.69	0.32
13	413	11/6/2019	2.30	1.57	0.55	0.47	2.67	0.35
14	414	11/20/2019	1.45	1.63	0.56	0.50	2.75	0.35
15	415	12/3/2019	2.30	1.62	0.54	0.53	2.70	0.34
16	416	12/31/2019	1.87	1.66	0.55	0.56	2.76	0.33
17	417	2/11/2020	1.62	1.67	0.54	0.60	2.74	0.32
18								

APPENDIX C CHAIN OF CUSTODY

Environment Testing TestAmerica

Sample F	Receipt	Record
----------	---------	--------

Batch Number: 84 63 7-01	Date Received: 3/19/20
Client/Project: ET-Spokare	Received By:
Were custody seals intact?	Yes No N/A
Packing Material:	☐ Ice ☐ Blue Ice Ø Box
Temp OK? (≤ 6°C) Therm ID: T#253 Expires: 12/13/2020Observed: 13:	2°C, Actual Temp:12.2°C ☐ Yes ☐ No 💢 N/A
If sample is noted @ \leq 0.0 °C, is the sample frozen or partial	ally frozen?
Was a Chain of Custody (CoC) Provided?	Yes No N/A
Was the CoC correctly filled out? (If No, document below)	Yes No N/A
Were the sample containers in good condition (not broken or leaking)?	Yes No N/A
Are all samples within 36 hours of collection?	☐ Yes ☐ No N/A
Method of Shipment:	Greyhound, Other: N/A
Sample Exception Report (The following	ing exceptions were noted)
Tek: 1502 8756 5820	
Client was notified on: Client contact:	
Resolution to Exception:	

Chain of C

Eurofins TestAmerica, Spokane

11922 East 1st Ave Spokane, WA 99206 Phone: 509-924-9200 Fax: 509-924-9290

_
5
ō
ပ္
e
Ľ
<u>></u>
ਕ੍ਰ
2
S
⋾

Environment Testing
TestAmerica

Client Information (Sub Contract Lab)				Arri	Arrington, Randee F	Pee F	Carrier fracking No(s):	O	COC No:	
Client Contact:	Phone:			E-Mail:	:		State of Origin:	0 0	590-5190.1 Page:	
Snipping/Receiving Company				ranc	ee.arringtor	randee.arrington@testamericainc.com	Washington	. 0.	Page 1 of 1	
TestAmerica Laboratories, Inc.					Accreditation State Prod	Accreditations Required (See note): State Program - Washington		3.	Job #:	
Address: 1100 NE Circle Blvd, Suite 310,	Due Date Requested: 3/30/2020	:eq:						0 4	Preservation Codes:	
City: Corvallis	TAT Requested (days):	ays):				N SIGNIAN N	palaenha	4 0	A - HCL M - Hexane	
State, Zp: OR, 97330	Τ				-15 DM					
Phone: 541-243-0980(Tel)	PO #:								E - Nation	
Email:	.#OM				(0			12.		ahydrate
Project Name: Riverfront Park (0110-148-06)	Project #: 59000877				N 10 8				J - DI Water V - MCAA K - EDTA W - pH 4-5 L - EDA Z - other (specify)	2
Site:	SSOW#:				(Ye			_		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp,	Matrix (Wwwster, S=solid, O=wastefoll,	2 benetii 7 biei 2M/2M mnohe bontaM AW) aus			lo redmuN lato		
	X	X		Preservation Code:	×			1	Special Instructions/Note:	ote:
RFPMB-1(0-1) (590-12823-1)	Octobic	12:54		3				X		
(1-02071-060) (1-0)1-0111	2/28/20	Pacific		Solid	×			-	84637-01	
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica attention will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica.	stAmerica places the ownershi ts/matrix being analyzed, the sg urrent to date, return the signec	p of method, a amples must b I Chain of Cus	nalyte & accred e shipped back tody attesting to	itation compliar to the Eurofins said complicar	ice upon out si TestAmerica la	ubcontract laboratories. This sa aboratory or other instructions w i TestAmerica.	mple shipment is forwarded unde	er chain-of-cu:	stody. If the laboratory does not cu status should be brought to Eurofins	rently
Possible Hazard Identification					Sample	Disposal (A fee may be	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	e retained	longer than 1 month)	
Deliverable Beautodad: 1 11 11 20 01 11 11]	Return To Client	Disposal By Lab	Archive For	For Months	
Deliverable Nequested: 1, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	able Rank:	61		Special	Special Instructions/QC Requirements:	ents:			
Empty Kit Relinquished by:		Date:			Time:	11 . 11	Method of Shipment:			T
Relinquished by: Relinquished by:	Date/Timy:	1 02	5.09	Company	1	Of De	Jessica Davensuith 3	3/19/20	(0 (0 ET: C	covallis
	Date:			Company	88 88	Received by:	Date/Time:		Company	
Relinquished by:	Date/Time:			Company	Dona	Dominad har	1			

Ver: 01/16/2019

Cooler Temperature(s) °C and Other Remarks:

Received by:

Company

Date/Time:

Custody Seals Intact: Custody Seal No.:

Page 20 of 20

WDOE 80-12 DESIGNATION REPORT

Project Name: ET-Spokane

<u>Location</u>: SPOKANE, WASHINGTON

Attention: Randee Arrington

Prepared by: Eurofins TestAmerica - Corvallis

1100 NE Circle Boulevard, Suite 310 Corvallis, Oregon 97330 541-243-6137

Oregon Environmental Laboratory Accreditation Program #OR100022 (NELAP) State of Washington DOE Environmental Laboratory Accreditation Program, Lab ID C556 California State Environmental Laboratory Accreditation Program, Certificate No.: 1726

Report Date: May 15, 2020 Released by: Brett Muckey

Eurofins TestAmerica – Corvallis Lab I.D. No. B4685 Eurofins TestAmerica Spokane Job Number: 590-13087-3

CONTENTS

Section Pa	age
INTRODUCTION	. 3
OVERVIEW OF REGULATORY GUIDANCE	. 3
SUMMARY OF TEST RESULTS	. 4 . 4 . 5 . 5
RESULTS AND DISCUSSIONACUTE BIOASSAYSREFERENCE TOXICANT TESTS	. 7
APPENDIX A. RAW DATA SHEETS APPENDIX B. REFERENCE TOXICANT DATA SHEETS APPENDIX C. CHAIN OF CUSTODY	

LABORATORY CONTACT: Alise Lampi, Aquatic Toxicity Department Manager alyssa.lampi@testamericainc.com (541) 243-0964

INTRODUCTION

Eurofins TestAmerica – Corvallis (ET-C) Aquatic Toxicology Laboratory conducted 96-hour Washington State Hazardous Waste Regulation bioassay testing using rainbow trout (*Oncorhynchus mykiss*) on sample(s) provided by Eurofins TestAmerica Spokane, from Spokane, Washington.

The testing was initiated on May 7, 2020, on sample(s) labeled:

• 'RFPNB-13C (4-4.5)'

Regulatory threshold tested:

• 'Dangerous Waste' or DW designation (a sample concentration of 100 mg/L)

OVERVIEW OF REGULATORY GUIDANCE

The following provides an overview and excerpts of applicable permit specifics, regulatory guidance, and other relevant information. This is intended only as a helpful guide, from a laboratory perspective, for understanding test outcomes. The final responsibility for interpretation of results remains with the client and/or regulatory agency.

The following is taken from the WDOE guidance (Method 80-12, Part A, June 2009 revision):

- "The Washington State Department of Ecology (Ecology) developed the acute fish toxicity test (Method 80-12) to determine if a waste meets the definition of dangerous waste in the *Dangerous Waste Regulations*, Chapter 173-303 WAC."
- "If the toxicity of a waste is unknown, the waste must be tested for dangerous waste designation using Method 80-12. The waste concentrations of 100 mg/L and 10 mg/L were selected to correspond with the definitions of dangerous waste and extremely hazardous waste, respectively."
- "This method determines if the sample waste LC50 is significantly less than or equal to the regulatory threshold of 100 mg/L dangerous waste (DW), 10 mg/L extremely hazardous waste (EHW) ..."
- "Waste designated by Method 80-12 [as DW or EHW] must be regulated and managed as specified in WAC 173-303 ..."

The following is taken from Dangerous Waste Regulations, Chapter 173-303 WAC:

- 100 (5)(c)(ii): "<u>The EHW ... bioassay</u>. To determine if a waste is EHW, a person must establish the toxicity of a waste by means of the fish bioassay at 10 mg/L ..."
 - o "If the data from the test indicates that the waste is EHW, then the person will assign the dangerous waste number WT01."
 - o "Otherwise, the waste will be designated DW, and the person will assign the dangerous waste number WT02." [unless DW testing proves otherwise]

- 100 (5)(c)(i): "The DW bioassay. To determine if a waste is DW, a person must establish the toxicity category range of a waste by means of the 100 mg/L acute static fish test ..."
 - "If the data from the test indicates that the waste is DW, then the person will assign the dangerous waste number WT02."
 - o "Otherwise, the waste is not regulated as toxic dangerous waste."
- 100 (5)(d): "If the designation acquired from book designation and bioassay data do not agree, then bioassay data will be used to designate a waste. If a waste is designated as DW or EHW following the book designation procedure, a person may test the waste by means of the ... static acute fish ... method, to demonstrate that the waste is not a dangerous waste or should be designated as DW and not EHW."

SUMMARY OF TEST RESULTS

Exhibit 1 provides a summary of the final test results.

EXHIBIT 1 Summary of Static Acute Test Results

Sample ID	Does the sample designate as an Extremely Hazardous Waste	Does the sample designate as a Dangerous Waste (DW)?
'RFPNB-13C (4-4.5)'	NA	No

METHODS AND MATERIALS

TEST METHODS

The test was performed according to: *Biological Testing Methods*, Washington State Department of Ecology, DOE 80-12, Revised June 2009.

DEVIATIONS FROM PROTOCOLS

Deviations from <u>required</u> procedures in the test methods:

• None noted.

Deviations from recommended procedures in the test methods:

• None noted.

TEST DESIGN

The following summarizes the conditions used for both overall testing and the specifics for each test (observations and notations can be found on the datasheets in Appendix A):

Overall Test Design:

• *O. mykiss* Acute test: 100 mg/L sample (dangerous waste designation) + dilution water for the control.

Test Organism Conditions:

- All organisms tested were fed and maintained during culturing, acclimation, and testing as prescribed by WDOE (2009).
- The test organisms appeared vigorous and in good condition prior to testing.

O. mykiss acute test:

- Source: Thomas Fish Company, Anderson, California
- Age:
 - o 30 to 90 days old (After Swim Up), within a 24 hour age range
 - o Minimum 7 day acclimation period prior to test initiation
- Design: Three test vessels per concentration, Ten organisms per vessel
- Loading of Test Chambers: Less than 0.8 g of fish per Liter of water
- Test Solution Preparation:
 - Sample particles were reduced (as needed) to smaller than ~ 1 cm in its narrowest dimension.
 - Appropriate amount of sample was placed into borosilicate glass jar with 200 ml of dilution water and tumbled for ~ 18 hours at ambient lab temperatures (~ 23 °C).
 - o Jar and all contents placed into aquaria containing additional volume of dilution water to create final sample concentration.
 - o Test organisms introduced to test chambers within 30 minutes of jar addition.
- Test Solution Renewal: None
- Monitoring:
 - o Test Initiation: DO and pH; all test chambers
 - o Test Initiation: Temperature, Conductivity, Hardness, and Alkalinity; all concentrations
 - o Daily: Survival, DO, and pH; all test chambers
 - o Daily: Temperature and Survival, DO, pH, and temperature; all concentrations.
 - o Test Termination: Survival, DO, and pH; all test chambers
 - o Test Termination: Temperature, Conductivity, Hardness, and Alkalinity; all concentrations
- Termination: 96 hours.
- Endpoints: Survival (at termination)

DILUTION WATER

The dilution water used was the standard culture water used by ET-C:

• Reconstituted, moderately hard water (as per EPA protocol) with a total hardness of 75 to 105 mg/L as CaCO₃ and an alkalinity of 50 to 75 mg/L as CaCO₃.

SAMPLE COLLECTION AND STORAGE

Sample collection was performed by ET-Spokane personnel. The samples were accepted as scheduled by ET-C. Chain of Custody and Sample Receipt Records are provided in Appendix C.

• Following receipt, the samples were stored in the dark at 0 to 6 °C until test solutions were prepared and tested.

DATA ANALYSIS

The statistical analyses performed for the acute tests were those outlined in *Biological Testing Methods*, Washington State Department of Ecology, DOE 80-12, Revised June 2009.

• The statistical outputs are included with each test's datasheets in Appendix A.

RESULTS AND DISCUSSION

The raw data sheets for all tests are presented in Appendix A.

WDOE Method 80-12 DEFINITION

Extremely Hazardous Waste (EHW): 96 hr LC_{50} concentration less than or equal to 10 mg/L. Dangerous Waste (DW): 96 hr LC_{50} concentration less than or equal to 100 mg/L.

ACUTE BIOASSAY

Table 1 summarizes the survival data for the *O. mykiss* acute testing.

Table 1 Summary of Acute Results O. mykiss	_	
Sample	Concentration (mg/L)	Number Dead/ Number Tested
Control	0	0/30
'RFPNB-13C (4-4.5)'	100	0/30

According to the definitions listed above, samples should not be classified as a "Dangerous Waste".

The dissolved oxygen levels in the chronic tests remained above 6.0 mg/L. Test temperatures remained at 12±1°C. Test pH remained within the recommended 6.0 to 9.0 range

The *O. mykiss* acute test meets Test Acceptability Criteria (TAC) of a minimum 90 percent control survival. Other than noted above, the test proceeded without any deviations or interruptions that could have affected test results. The testing should be considered "valid".

REFERENCE TOXICANT TEST

Reference toxicant (reftox) testing is performed to document both initial and ongoing laboratory performance of the test method(s). While the health of the test organisms is primarily evaluated by the performance of the laboratory control, reftox test results also may be used to assess the health and sensitivity of the test organisms. Reftox test results within their respective cumulative summary (Cusum) chart limits are indicative of consistent laboratory performance and normal test organism sensitivity.

The results of the reftox test indicate that the test organisms were within their respective cusum chart limits based on EPA guidelines. This demonstrates ongoing laboratory proficiency of the test methods and suggests normal test organism sensitivity in the associated client testing.

The O. mykiss reftox test was conducted using potassium chloride.

The data sheets for the reference toxicant test are provided in Appendix B.

Table 2 summarizes the reference toxicant test results and Cusum chart limits.

Ta	ble 2	
Acute Reference	Toxicant Test (g	/L)
Species	LC_{50}	Cusum Chart Limits
Oncorhynchus mykiss	2.30	0.63 to 2.86

APPENDIX A RAW DATA SHEETS

FRESHWATER TOXICITY TEST: SAMPLE AND DILUTION WATER DATA TestAmerica TestAmerica

Client		ET-Spokane Randee Arrington			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SDG# 4685	Test.	Test Initiation: D	Date 5	5-7-30	
		0			ĺ		וכון וכין			3	
Sample ID Number	Field ID	Collected Date (mm/dd/yy)	ted) Time (Pacific Zone)	Date Received	Temp	Sample Concentration (mg/L)	Ammonia NH ₃ -N	Hardness (mg/l as CaCO ₃)	ness CaCO ₃)	Alkalinity (mg/l as CaCO ₃)	inity CaCO ₃)
				_	as Kcvd			0 hrs	96 hrs	0 hrs	96 hrs
4685 -01	-01 RFPNB-13C (4-4.5)	07/17/10	00: 50	05/03/50	44	100 mg/L	ı	93	47	67	73
			Repo	Reporting Limits:	na	na	0.10 mg/L	4 mg/L	J/6	4 ma/ī	1/4
	Note: "-" Indicates data	collection or dechlorina	tion not need	led. Any other adj	ustments to	Note: "-" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are documented in Comments below or on Dilutions page.	ocumented in Commen	its below or or	Dilutions p	1	1
		Hardness	Alka	Alkalinity Com	Comments:	\square Indicates the action was taken, (\square = action not taken):	ıken, (□= action not ta	ıken):			
Dilution Water	#01	(mg/l as CaCO ₃)	(mg/l as	(mg/l as CaCO ₃)			" - " = sample not dechlorinated, or analyte not collected/needed.	not dechlorina	ted, or analy	te not collect	ted/needed.
		0 hrs 96 hrs	0 hrs	96 hrs							
Recon MH (FHM)	M) 5095	86	0 9	70							
		Water Quality Meters Used/ID#	ers Used/ID#	#: Dissolved Oxygen	xygen #	1) # Hd h	Conductivity #	*			
							B4(B4685 ET-Spokane.xlsm Doc Control 10: ASL998-0618	ane.xlsm Doc	Control ID: ASL99	8-0618

FRESHWATER TOXICITY TEST: TEST ORGANISM INFORMATION

Client		ET-Spokane		Sample Designation (SDC	Sample Designation (SDG): B		
Test Spe	cies Information	RBT # 430 Oncorhynchus mykiss Acute					
Organism	Age at Initiation	51	AAN 5/15/20				
Test C	Container Size	2.5 gallon					
Te	st Volume	5 L					
Feeding:	Type and Amount	TetraMin during acclimation					
Aeration: In Test Chamb	pers via Slow Bubble :	None Prior to use @ hrs					
Acclir	nation Period	22 Days					
Orga	nism Source	Momas Fish					
	Size	35.0 mm					
Loa	ading Rate	0.75 9/2					
	en aeration justification	ns (in test chambers):					

Comments:

SAMPLE WEIGHT

Client		ET-Spokane		
Tumbling Start Date:	5/6/20	Time: 1400	Initials:	<u>50</u>
Client ID#	Lab ID#	Concentration (mg/L)	Target Weight (g)	Actual Weight (g)

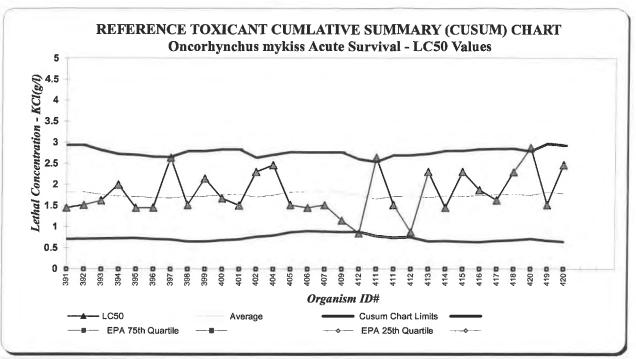
Client ID#	Lab ID#	Concentratio (mg/L)	n	Target Weight (g)	Actual Weight (g)	
RFPNB-13C (4-4.5)	4685-01	100 mg/L A		0.500	0,50230	
		100 mg/L	В	0.500	0.50150	
		100 mg/L	С	0.500	0.50525	

\Box
ក
·Ĕ
<u>(1)</u>
č
•
1 2
ăí
ı

96 HOUR FRESHWATER TOXICITY TEST SURVIVAL AND WATER QUALITY DATA

lardness calinity thrs	96	32			365							
: 45 : 15 Collect Hardness and Alkalinity	ohs/cm)											
15/5	Conductivity (µmohs/cm) 24 48 72											
# + + +	IН											
120 20 120 20 120 20 96 hr 96 hr	0	325			428							
L=87.2	96	11.9 11.7			12.1 120 12.3 11.9 12.6			-				
MM 9#	re (°C)				3 11,							
ion Date: 72 hr 72 hr 72 hr 72 hr	Temperature (°C)	3 11.8			0 12.			-				
Test Initiation Termination T. 00 Z. 50	0 24	11.5 11.3 11.8			1 12,						-	
10 #			6	IN		1	6				-	
2 48 # # # # # # # # # # # # # # # # # #	2 96	2,575	7575	R,	7.57.575	K,	7.67.475		-	+	-	
25. 40 25. 40 25. 40	pH 48 72	7.5 7	57	1 9.	5	57	19.		-	+-	-	
see below then survival = (24 P	5 7	4	4	7 4	rt	47		-	-		
1 2 2	0	8.37.5	847775	8.377 7.6 7.57.5	4.3.3	8.37.47.57.57.5	8.47					
Description L. (2) 96 hrs (4) 20 1	96			V.	9.19		29					
Sample Description 100 mg/L @ 96 h 0 hr 0 hr 0 hr 0 hr 0 hr	ng () 72	9.49.1	9.79.1	9.760	9.90	8.3 6.6	9.989					
Control & Technician Time Therm. ID#	Dissolved Oxygen (mg/l) 24 48 72	9.10	4.5	4.6	4,6	9.4	4.4					
c in both C	Dissolve 24	9.3	9.1	9.5	0	0,0	0					
# 4685 Hard & All	0	J. P	10.01	10.1	0.01	0.0	10.0					
	96	0	(0	0	5	9	0					
00 mg/L @ 0 hrs ET-Spokane	reanisms 72	0)	9	2	2	0	0					
a 100 mg/	Number of Live Organisms 24 48 72	Q)	07	0	0	0	0]					
h'Incubator Used: # Cd Alkalinity in 100 ET Oncorfynchus mykiss	Numb 24	9	5	5	0	2	10					
Also collect: Hardness and Alkalinity in 100 mg/L @ 0 hrs. Client Test Species Oncorhynchus mykiss D#	0	10	10	10	10	10	10					
ct: Hardn	Test Container Number	- V	щ	Ü	∢	B	၁					
Also collect: Hardness and Alkalinity in 100 m Client Client Client Chest Species Oncorignehus mykiss	Concentration		Control		3C (4-4.5)	₁₈ /L RFP/JB-1	m 001 10-					

Summary of Test Results											
for ET-Spokane											
LabID:		B4685		Start Date: 05/07/20							
	Contro	ol	10 mg	/L	100 m	g/L					
Replicate	Number	Proport.	Number	Proport.	Number	Proport.					
	Dead	Dead	Dead	Dead	Dead	Dead					
Α	0	0.0000	n/a	n/a	0	0.0000					
В	0	0.0000	n/a	n/a	0	0.0000					
С	0	0.0000	n/a	n/a	0	0.0000					
Mean		0.0000		n/a		0.0000					
Variance		0.0000		n/a		0.0000					


F statistic for variance test										
	10 mg/L	100 mg/L								
Calculated F statistic	n/a	Equal Variance								
Critical F degrees of freedom (Numerator, Denominator)	2 , 2	2 , 2								
Cricital F (See Table 2 WDOE 80-12)	39	39								
Equal Variance?	n/a	Yes								

		t-Test
Ī	 10 mg/L	100 mg/L
Calculated t staistic	n/a	n/a
Critical t degrees of freedom	n/a	4
Critical t value (See Table 3 WDOE 80-12)	n/a	-1.53
Does Waste Designate	as an Extremely Hazardous Waste?	as a Dangerous Waste?
	n/a	No

APPENDIX B REFERENCE TOXICANT DATA SHEETS

REFERENCE TOXICANT DATA SHEET

35	18	0		344	12	23%	No.			T	1 111
5/3	37 12			72						9	880-0819)
Time Time	96 hr 96 hr	96 hr Conductivity	(mS)	84						(QA) none	St.
120 2C 03 52 03 52		ပိ		24				0360	2900	9	and correct.
Test Begin: Date / /2/20 & Vater Test End: Date / / / / / / / / / / / / / / / / / / /	Care Care			682	1155	0,02	3800	0269	127605 12900		We verify this data is true and correct.
/ S / S / S / S / S / S / S / S / S / S	B C B C B C B C B C B C B C B C B C B C	52		8 = 9		0		1	1	1	is data ii
Date Date 'ater (Re	72 hr 72 hr	72 hr		0.11	11.2 11.1 (0.8)11.4	(90)	S.11.5		1	ာ ₍ န	erify thi
Test Begin: Test End: *Dilution Water Total	arci 10	7 Temperature	(00)	9 3	-	80	=			Temperature: ±1 °C (recommended OA)	è à à
5 .9		Tem	7	11.6 11.9	12	11.0	11.3	11.6	3.	emperat	ager 1
Stock Solution 50 g/L in DI (ASTM Type I) water agent Log ID # 2 B OS - 6 - Diluti	2960	5			11 1/2	11.5.11		17.3	0.21	-	Task Manager Project Manager QA Officer
M Type		48 nr	180	_	19		3116	2	1,2	-	Ta Proje
KCI I (AST)	4 4	£	-	4	7.9.	1.6 7.57.6 7.6	4.6	1	+	-	1, 161
3 OS	1.1	1 _	7.7	14	1	7.6	4		-	pH: > 6.0 and < 9.0 (recommended QA)	2.30 0.63 to 3.86 Secumen
on 50 s	50 40 S	Ha	-	LE	7.6	14.	2491		1	pH: > 6.0 and < 9.0 (recommended QA)	2.30
Reference Toxicant Stock Solution 50 g/l Reagent Log ID # 2 B		11	24	+	1-3-	12	F	7	7.7	pH. (rec	Nº 6
eferenc Stoc Reagen	24 hr 24 hr		0	-CA	4.	29	4	80	00		C ₅₀ Limits ethod
~	1.1		96	9	87 PS	2	39		1	8.0.8	derately hard 96 Hour LC ₅₀ Cusum Chart Limits Statistical Method
7.5 gal. 5 L 12±1°C	N	xygen	72	20	43	4.6	9.6			DO: (@ 12°C): > 4.0 and < 10.8 (recommended QA)	MH = moderately hard 96 Hour L Cusum Chart Statistical M
	1535		(mg/l) 48	3	9.6	80	t.		1	(@ 12°C): > 4.0 and (recommended QA)	MH = n
oer Size	0 hr 0 hr	Disso	24	9	9.7	8		9.6	1.6	(@ 12° (recon	
Test Chamber Size Volume per Replicate Designed Temperature	Technician Time Therm. ID #		0	10.00	102 97	8.9 Hol	8.p p.01	10.3 9.6	1.6 2 9.1		d water 2.46 by to 2.9 let to 2.9 lessonan les
Tes Volum Design	Тес		96	9	9	9	4		1	(gir	2.46 0.64 to 2.9 Speasman
		rganisn	72	2	0	Ŝ	4			≥ 90% ity Crite	econstit
h Co.	ASU mm	lber of Live Organ	48	0	0	2	M			Controls:	Recon = reconstituted water 48 Hour LC ₅₀ Cusum Chart Limits Statistical Method Method
Oncorhynchus mykiss = Thomas Fish Co.		Number of Live Organisms	24	101	(6	101	8	0	0	vival i	48 Cusun Statis
Jacorhi = Tho RBT #	**Age il days Organism size 2:2 Loading rate 0.78	Nun	0	0)	9	٥	0	0)	0)	Sur (require	r Code:
Organism (Source)	**Age Organism Loadin	Ren		A	A	V V	A) V) <u>}</u>	-	*Dilution Water Code: **Age ASU = After Swim 1
Orga Sc	* Ō		(g/L)	Cont.	0.5	1.0	2.0	4.0	8.0		**Age

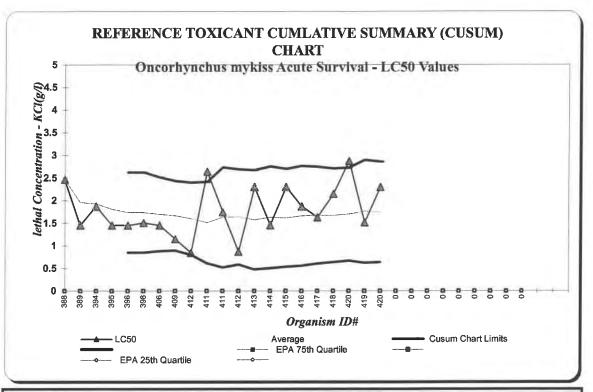
Oncorhynchus mykiss - ACUTE (EPA Test Method 2019.0)

POTASIUM CHLORIDE (g/L)

From EPA 833-R-00-003:

Organism age: 15 to 90 days

10th Quartile CV (control limit) = na
Endpoint: 48 hour Survival


Stats Method: Probit, Spearman-Karber, Linear Interpolation

Test Conditions: Recon MH, 12 oC

10th Quartile CV (control limit) = na
75th Quartile CV (warning limit) = na
90th Quartile CV (control limit) = na

As per EPA 833-R-00-003, section B.2.1, the quartiles listed above are from just a few labs (5) and therefore not to be considered typical or representative. Cusum limits are based on ASL data only.

Event	RBT	Test Start	LC50	Running	Running		nart Limits	Intralal
#	ID#	Date	EC50	Average	SD	AVG-2SD	AVG+2SD	CV
102	400	4/25/2019	1.67	1.76	0.54	0.68	2.83	0.30
103	401	5/16/2019	1.51	1.77	0.53	0.70	2.84	0.28
104	402	5/22/2019	2.30	1.70	0.47	0.76	2.64	0.27
105	404	6/21/2019	2.46	1.75	0.48	0.79	2.70	0.26
106	405	7/17/2019	1.52	1.82	0.48	0.87	2.77	0.26
107	406	7/31/2019	1.45	1.83	0.47	0.90	2.76	0.26
108	407	8/15/2019	1.52	1.83	0.47	0.89	2.76	0.26
109	409	10/1/2019	1.15	1.82	0.47	0.88	2.76	0.25
110	412	10/16/2019	0.84	1.74	0.43	0.87	2.60	0.27
111	411	10/22/2019	2.64	1.65	0.44	0.78	2.53	0.28
112	411	10/28/2019	1.52	1.71	0.49	0.74	2.69	0.28
113	412	10/16/2019	0.87	1.72	0.49	0.75	2.69	0.31
114	413	11/6/2019	2.30	1.69	0.52	0.65	2.73	0.31
115	414	11/20/2019	1.45	1.73	0.53	0.66	2.80	0.31
116	415	12/3/2019	2.30	1.72	0.54	0.64	2.79	0.32
117	416	12/31/2019	1.87	1.73	0.55	0.63	2.83	0.31
118	417	2/11/2020	1.62	1.75	0.55	0.66	2.85	0.31
119	418	3/16/2020	2.30	1.76	0.54	0.68	2.85	0.30
120	420	4/17/2020	2.87	1.75	0.52	0.71	2.78	0.32
121	419	4/22/2020	1.52	1.81	0.57	0.67	2.96	0.32
122	420	4/27/2020	2.46	1.78	0.57	0.64	2.92	0.32
123								
124								

Oncorhynchus mykiss - ACUTE (EPA Test Method 2019.0)

POTASIUM CHLORIDE (g/L)

Test Conditions: Recon MH, 12 oC

From EPA 833-R-00-003:

10th Quartile CV (control limit) = Organism age: 15 to 90 days na 25th Quartile CV (warning limit) = Endpoint: 96 hour Survival na

75th Quartile CV (warning limit) = Stats Method: Probit, Spearman-Karber, Linear Interpolation na 90th Quartile CV (control limit) =

As per EPA 833-R-00-003, section B.2.1, the quartiles listed above are from just a few labs (5) and therefore not to be considered typical or representative. Cusum limits are based on ASL data only.

Event #	RBT ID#	Test Start Date	LC50	Running Average	Running SD	11.	art Limits AVG+2SD	Intralat CV
4	395	1/17/2019	1.45	1.81	0.48	111 0 202		
5	396	2/12/2019	1.45	1.74	0.44	0.85	2.62	0.27
6	398	3/28/2019	1.51	1.74	0.44	0.85	2.62	0.26
7	406	7/31/2019	1.45	1.70	0.41	0.88	2.51	0.24
8	409	10/1/2019	1.15	1.66	0.38	0.89	2.43	0.23
9	412	10/16/2019	0.84	1.60	0.40	0.80	2.40	0.25
10	411	10/22/2019	2.64	1.51	0.45	0.61	2.41	0.30
11	411	10/28/2019	1.74	1.63	0.55	0.52	2.73	0.34
12	412	11/6/2019	0.87	1.64	0.53	0.58	2.69	0.32
13	413	11/6/2019	2.30	1.57	0.55	0.47	2.67	0.35
14	414	11/20/2019	1.45	1.63	0.56	0.50	2.75	0.35
15	415	12/3/2019	2.30	1.62	0.54	0.53	2.70	0.34
16	416	12/31/2019	1.87	1.66	0.55	0.56	2.76	0.33
17	417	2/11/2020	1.62	1.67	0.54	0.60	2.74	0.32
18	418	3/16/2020	2.14	1.67	0.52	0.63	2.71	0.31
19	420	4/17/2020	2.87	1.70	0.52	0.67	2.73	0.30
20	419	4/22/2020	1.52	1.76	0.57	0.62	2.90	0.32
21	420	4/27/2020	2.30	1.75	0.56	0.63	2.86	0.31
22								

APPENDIX C CHAIN OF CUSTODY

Environment Testing TestAmerica

Sam	ple	Rece	eipt	Re	CO	rd

Batch Number: 84685-01	Date Received: 5/5/20	
Client/Project: <u>ET-Spokane</u>	Received By:	
Were custody seals intact?	Yes No I	N/A
Packing Material:	☐ Ice ☐ Blue Ice ☑ I	Вох
Temp OK? (≤ 6°C) Therm ID: Expires: / /20	Observed: °C, Actual Temp: °C	N/A
If sample is noted @ ≤ 0.0 °C, is the sample	e frozen or partially frozen?	N/A
Was a Chain of Custody (CoC) Provided?	X Yes No n	I/A
Was the CoC correctly filled out? (If No, document below)	Yes No No	N/A
Were the sample containers in good condition (not broken or	or leaking)?	N/A
Are all samples within 36 hours of collection?	☐ Yes ☐ No ☒ N	I/A
Method of Shipment: Hand Delivered, K FedEx,	UPS, Greyhound, Other:	I/A
Sample Exception Rep	port (The following exceptions were noted)	
Tracking No: 1502 8	3756 7524	
Client was notified on: Client contact:	t:	
Resolution to Exception:		

Eurofins TestAmerica, Spokane

11922 East 1st Ave

Spokane, WA 99206 Phone: 509-924-9200 Fax: 509-924-9290

Chain of Custody Record

& eurofins Environment Testing America

Client Information (Sub Contract Lab)	Sampler:			Lab PM: Arringt	Lab PM: Arrington, Randee E	Indee E			Carrier 1	Carrier Tracking No(s):	<u></u>	COC No: 590-5268.1	1.8	
ilent Confact: Shipping/Receiving	Phone:			E-Mail: rande	ail: dee.arring	ton@test	E-Mail: randee.arrington@testamericainc.com	moo:	State of Origin:	Origin:		Page:	1,5	
Sompany: FestAmerica Laboratories, Inc.					Accredita State P	lons Requir	Accreditations Required (See note): State Program - Washington	ے د				Job #:	24.0	
Address: 1100 NE Circle Blvd, Suite 310,	Due Date Requested: 5/5/2020	#					Ana	lysis R	Analysis Requested			Preserva	Preservation Codes:	
Sity: Sorvallis	TAT Requested (days):	/s):										A - HCL B - NaOH	j	M - Hexane N - None
State, Zip: DR, 97330						10 S1-0						D - Nitric Acid		0 - Asna02 P - Na204S Q - Na2SQ3
Phone: 541-243-0980(Tel)	PO #:				()8 borti						F - MeOH G - Amchlor		R - Na2S203 S - H2S04
email:	WO #:					eM Α\						H - Ascorbic Acid		T - TSP Dodecahydrate U - Acetone
roject Name: Riverfront Park (0110-148-06)	Project #: 59000877					DM)\ N						ainers K-EDTA L-EDA		v - MCAA W - pH 4-5 Z - other (specify)
ite:	SSOW#:					21-08						f cont		
Samela Idantification. Client ID J. ob ID)	200	Sample	Sample Type (C=comp,	Matrix (W=water, S=solid, O=wasterioil,	eld Filtered S MSMM	oorliaM AW) 8L						o redrimbler o		
	A Call Did C	X	Preserva	Preservation Code:	X	s							ecial Instru	Special Instructions/Note:
RFPNB-13C (4-4.5) (590-13087-2)	4/24/20	09:00 Pacific		Solid		×						100 -	1106-01	-
													000	
						1	1							
						4								
					1	1	1	1						
						1								

Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compilance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation status should be brought to Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compilcance to Eurofins TestAmerica. Possible Hazard Identification

Possible Hazard Identification		Š	Sample Disposal (A fee may be assessed if samples are retained former than 4 month)	ssed if samples are retained found	r than 4 month
Unconfirmed			Betum To Client		in many monay
Dollarochlo Demonstral, 1 11 11 10 On - 1 1			ויפוחוו וס סוופווו	usal by Lab	Months
Deliverable requested: I, II, III, IV, Omer (specify)	Primary Deliverable Rank: 2	ਲ	Special Instructions/QC Requirements:		
Empty Kit Relinquished by:	Date:	Time:		Method of Shipment:	
Reimpulshed by: F200CC	Date/Time:	Company	Received by:	Date/Time:	Company
Relinquished by:	Date/Time:	Company	Received by	Date/Tine:	Company
Relinquished by:	Date/Time;	Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) °C and Other Remarks:		

Ver: 01/16/2019

WDOE 80-12 DESIGNATION REPORT

<u>Project Name</u>: ET-Spokane

<u>Location</u>: SPOKANE, WASHINGTON

Attention: Randee Arrington

Prepared by: Eurofins TestAmerica - Corvallis

1100 NE Circle Boulevard, Suite 310 Corvallis, Oregon 97330 541-243-6137

Oregon Environmental Laboratory Accreditation Program #OR100022 (NELAP) State of Washington DOE Environmental Laboratory Accreditation Program, Lab ID C556 California State Environmental Laboratory Accreditation Program, Certificate No.: 1726

Report Date: June 24, 2020 Released by: Michelle Bennett

Eurofins TestAmerica – Corvallis Lab I.D. No. B4704 Eurofins TestAmerica Spokane Job Number: 590-13122-4

CONTENTS

Section Pa	ıge
INTRODUCTION	. 3
OVERVIEW OF REGULATORY GUIDANCE	. 3
SUMMARY OF TEST RESULTS	. 4 . 4 . 5 . 5
RESULTS AND DISCUSSION	. 7
APPENDIX A. RAW DATA SHEETS APPENDIX B. REFERENCE TOXICANT DATA SHEETS APPENDIX C. CHAIN OF CUSTODY	

LABORATORY CONTACT: Alise Lampi, Aquatic Toxicity Department Manager alyssa.lampi@testamericainc.com (541) 243-0964

INTRODUCTION

Eurofins TestAmerica – Corvallis (ET-C) Aquatic Toxicology Laboratory conducted 96-hour Washington State Hazardous Waste Regulation bioassay testing using rainbow trout (*Oncorhynchus mykiss*) on sample(s) provided by Eurofins TestAmerica Spokane, from Spokane, Washington.

The testing was initiated on June 4, 2020, on sample(s) labeled:

• 'RFPNB-27C (4-4.5)'

Regulatory threshold tested:

• 'Dangerous Waste' or DW designation (a sample concentration of 100 mg/L)

OVERVIEW OF REGULATORY GUIDANCE

The following provides an overview and excerpts of applicable permit specifics, regulatory guidance, and other relevant information. This is intended only as a helpful guide, from a laboratory perspective, for understanding test outcomes. The final responsibility for interpretation of results remains with the client and/or regulatory agency.

The following is taken from the WDOE guidance (Method 80-12, Part A, June 2009 revision):

- "The Washington State Department of Ecology (Ecology) developed the acute fish toxicity test (Method 80-12) to determine if a waste meets the definition of dangerous waste in the *Dangerous Waste Regulations*, Chapter 173-303 WAC."
- "If the toxicity of a waste is unknown, the waste must be tested for dangerous waste designation using Method 80-12. The waste concentrations of 100 mg/L and 10 mg/L were selected to correspond with the definitions of dangerous waste and extremely hazardous waste, respectively."
- "This method determines if the sample waste LC50 is significantly less than or equal to the regulatory threshold of 100 mg/L dangerous waste (DW), 10 mg/L extremely hazardous waste (EHW) ..."
- "Waste designated by Method 80-12 [as DW or EHW] must be regulated and managed as specified in WAC 173-303 ..."

The following is taken from *Dangerous Waste Regulations*, Chapter 173-303 WAC:

- 100 (5)(c)(ii): "<u>The EHW ... bioassay</u>. To determine if a waste is EHW, a person must establish the toxicity of a waste by means of the fish bioassay at 10 mg/L ..."
 - \circ "If the data from the test indicates that the waste is EHW, then the person will assign the dangerous waste number WT01."
 - o "Otherwise, the waste will be designated DW, and the person will assign the dangerous waste number WT02." [unless DW testing proves otherwise]
- 100 (5)(c)(i): "<u>The DW bioassay</u>. To determine if a waste is DW, a person must establish the toxicity category range of a waste by means of the 100 mg/L acute static fish test ..."

- "If the data from the test indicates that the waste is DW, then the person will assign the dangerous waste number WT02."
- o "Otherwise, the waste is not regulated as toxic dangerous waste."
- 100 (5)(d): "If the designation acquired from book designation and bioassay data do not agree, then bioassay data will be used to designate a waste. If a waste is designated as DW or EHW following the book designation procedure, a person may test the waste by means of the ... static acute fish ... method, to demonstrate that the waste is not a dangerous waste or should be designated as DW and not EHW."

SUMMARY OF TEST RESULTS

Exhibit 1 provides a summary of the final test results.

EXHIBIT 1 Summary of Static Acute Test Results

Sample ID	Does the sample designate as an Extremely Hazardous Waste	Does the sample designate as a Dangerous Waste (DW)?
'RFPNB-27C (4-4.5)'	NA	No

METHODS AND MATERIALS

TEST METHODS

The test was performed according to: *Biological Testing Methods*, Washington State Department of Ecology, DOE 80-12, Revised June 2009.

DEVIATIONS FROM PROTOCOLS

Deviations from required procedures in the test methods:

- For the *O. mykiss* WDOE 80-12 test, some of the instantaneous temperature readings fell outside of the <u>required</u> range of 12±1°C. This situation is detailed further in the Results and Discussion section of this report.
- The required conductivity was not collected at test initiation. This situation is detailed further in the Results and Discussion section of this report.

Deviations from recommended procedures in the test methods:

None noted.

TEST DESIGN

The following summarizes the conditions used for both overall testing and the specifics for each test (observations and notations can be found on the datasheets in Appendix A):

Overall Test Design:

• *O. mykiss* Acute test: 100 mg/L sample (dangerous waste designation) + dilution water for the control.

Test Organism Conditions:

- All organisms tested were fed and maintained during culturing, acclimation, and testing as prescribed by WDOE (2009).
- The test organisms appeared vigorous and in good condition prior to testing.

O. mykiss acute test:

- Source: Thomas Fish Company, Anderson, California
- Age:
 - o 30 to 90 days old (After Swim Up), within a 24 hour age range
 - o Minimum 7 day acclimation period prior to test initiation
- Design: Three test vessels per concentration, Ten organisms per vessel
- Loading of Test Chambers: Less than 0.8 g of fish per Liter of water
- Test Solution Preparation:
 - Sample particles were reduced (as needed) to smaller than ~ 1 cm in its narrowest dimension.
 - Appropriate amount of sample was placed into borosilicate glass jar with 200 ml of dilution water and tumbled for ~ 18 hours at ambient lab temperatures (~ 23 °C).
 - o Jar and all contents placed into aquaria containing additional volume of dilution water to create final sample concentration.
 - o Test organisms introduced to test chambers within 30 minutes of jar addition.
- Test Solution Renewal: None
- Monitoring:
 - o Test Initiation: DO and pH; all test chambers
 - o Test Initiation: Temperature, Conductivity, Hardness, and Alkalinity; all concentrations
 - o Daily: Survival, DO, and pH; all test chambers
 - o Daily: Temperature and Survival, DO, pH, and temperature; all concentrations.
 - o Test Termination: Survival, DO, and pH; all test chambers
 - Test Termination: Temperature, Conductivity, Hardness, and Alkalinity; all concentrations
- Termination: 96 hours.
- Endpoints: Survival (at termination)

DILUTION WATER

The dilution water used was the standard culture water used by ET-C:

• Reconstituted, moderately hard water (as per EPA protocol) with a total hardness of 75 to 105 mg/L as CaCO₃ and an alkalinity of 50 to 75 mg/L as CaCO₃.

SAMPLE COLLECTION AND STORAGE

Sample collection was performed by ET-Spokane personnel. The samples were accepted as scheduled by ET-C. Chain of Custody and Sample Receipt Records are provided in Appendix C.

• Following receipt, the samples were stored in the dark at 0 to 6 °C until test solutions were prepared and tested.

DATA ANALYSIS

The statistical analyses performed for the acute tests were those outlined in *Biological Testing Methods*, Washington State Department of Ecology, DOE 80-12, Revised June 2009.

• The statistical outputs are included with each test's datasheets in Appendix A.

RESULTS AND DISCUSSION

The raw data sheets for all tests are presented in Appendix A.

WDOE Method 80-12 DEFINITION

Extremely Hazardous Waste (EHW): 96 hr LC_{50} concentration less than or equal to 10 mg/L. Dangerous Waste (DW): 96 hr LC_{50} concentration less than or equal to 100 mg/L.

ACUTE BIOASSAY

Table 1 summarizes the survival data for the *O. mykiss* acute testing.

Table 1 Summary of Acute Results O. mykiss	_	
Sample	Concentration (mg/L)	Number Dead/ Number Tested
Control	0	1/30
'RFPNB-27C (4-4.5)'	100	1/30

According to the definitions listed above, samples should not be classified as a "Dangerous Waste".

WDOE guidance requires test temperature to remain at $12.0\pm1.0^{\circ}$ C for the acute tests. On day 4 of the *O. mykiss* test, the instantaneous temperatures in the test concentrations were slightly outside of this range at 10.8 to 12.8 °C. It is the laboratory's professional judgment that the minor deviation in the test temperature did not appear to affect the test results and the test should be accepted.

The conductivity was not taken at test initiation as required by the WDOE manual. WDOE manual states that the conductivity must be measured in the test and control tanks at the start of the test and at the end of the test. However, it is ET-C's professional opinion that missing the required conductivity had no significant impact on test results.

The dissolved oxygen levels in the chronic tests remained above 6.0 mg/L. Except as noted, test temperatures remained at 12±1°C.

The *O. mykiss* acute test meets Test Acceptability Criteria (TAC) of a minimum 90 percent control survival. Other than noted above, the test proceeded without any deviations or interruptions that could have affected test results. The testing should be considered "valid".

REFERENCE TOXICANT TEST

Reference toxicant (reftox) testing is performed to document both initial and ongoing laboratory performance of the test method(s). While the health of the test organisms is primarily evaluated by the performance of the laboratory control, reftox test results also may be used to assess the health and sensitivity of the test organisms. Reftox test results within their respective cumulative summary (Cusum) chart limits are indicative of consistent laboratory performance and normal test organism sensitivity.

The results of the reftox test indicate that the test organisms were within their respective cusum chart limits based on EPA guidelines. This demonstrates ongoing laboratory proficiency of the test methods and suggests normal test organism sensitivity in the associated client testing.

The O. mykiss reftox test was conducted using potassium chloride.

The data sheets for the reference toxicant test are provided in Appendix B.

Table 2 summarizes the reference toxicant test results and Cusum chart limits.

Ta	ble 2	
Acute Reference	Toxicant Test (g	/L)
Species	LC_{50}	Cusum Chart Limits
Oncorhynchus mykiss	1.52	0.67 to 2.96

APPENDIX A RAW DATA SHEETS

O
.Ö
7
Ě
₹
쉱
الق

FRESHWATER TOXICITY TEST: SAMPLE AND DILUTION WATER DATA

September Sept	Contact		E1-S	E1-Spokane		# OQS		SDC#					
Field ID Date (mm/dd/yy) Time Date (°C) Sample Concentration Recycled 200e) 14 : 65 20 14 : 65 6 3 20 Recycled 200e 200e 200e Recycled 200e 200e 200e 200e Recycled 200e 200e 200e 200e Reporting Limits: na na Note: "-" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are docume Hardness Alkalimity Comments: Indicates the action was taken (mg/l as CaCO ₃) (mg/l as			Randee,	Arrington			1	3DG# B4704	Te			10-11-0	
Field ID	Sample ID		3	8			Temm		Test T		1 1	08-8-90	10
RPPNB-27C (4-4.5)	Number	Field ID	Date		Time Pacific	Date Received	(C) —	Sample Concentration (mg/L)		Hard (mg/l as	ness CaCO ₃)	Alka (mg/l as	Alkalinity (mg/l as CaCO.)
Note: "" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are docume Hardness Alkalinity Comments: El Indicates the action was taken, (I 5100	1 1 1	PNB-27C (4-4.5)	2	138	1:05	6,3,30		100 mg/L		0 hrs	96 hrs	0 hrs	96 hrs
Note: "-" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are docume Hardness Alkalinity D# (mg/l as CaCO ₃) O hrs So 6 hrs So 6 60 So													
Note: "-" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are docume Hardness Alkalinity Comments: If Indicates the action was taken, (I mg/l as CaCO ₃) (mg/l as CaCO ₃) 51 0 4 80 80 60 50													
Note: "-" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are docume Hardness Alkalinity (mg/l as CaCO ₃) (mg/l as CaC													
Note: "-" Indicates data collection or dechlorination not needed. Any other adjustments to samples prior to use are docume Hardness Alkalinity Comments: Indicates the action was taken, (Img/l as CaCO ₃) (mg/l as CaCO ₃) 51000 86 hrs 0 hrs 96 hrs So 86 hrs 0 hrs 96 hrs 51000 8000 8000 8000 8000 8000 8000 8000													
Hardness Alkalinity Comments: I Indicates the action was taken, (I Solo Solo Solo Solo Solo Solo Solo Sol	Not	te: "-" Indicates data o	collection or deel	Posimoni	Reporting	Limits:	na	па	0.10 mg/L	11 1			
5100 80 450 60 50	1	#0	Hardness (mo/l as CoC	TO THE THE TOTAL	needed. Alkalinity	Any other adjust	ments to san	aples prior to use are doc cates the action was take	umented in Comments	t mg/L	lutions page	4 mg/L	٦
09 08 09	con MH (FHM)	2017	+		as	O ₃)		NY SAN CANAL	" - " = sample not	dechlorinated, (or analyte no	ot collected/	/needed
			+++	+++		0							
					-	-							

B4704 ET-Snokane viem -

FRESHWATER TOXICITY TEST: TEST ORGANISM INFORMATION

Client	ET-Spokane	Sample David of Control
Test Species Information	RBT # 419 Oncorhynchus	Sample Designation (SDG): B B470
Test Species Information	mykiss Acute	
Organism Age at Initiation	(elo Days ASU	
Test Container Size	2.5 gallon	
Test Volume	5 L	
eeding: Type and Amount	TetraMin during acclimation	
eration:	None None	
1 Test Chambers via Slow Bubble :	Prior to use	
Acclimation Period	58 Days	
Organism Source	Thomas Fish	
Size Loading Rate	29.2 mm	
	0.419/1	
solved Oxygen aeration justification		
	is (in test chambers):	
est(s): \square All \square		
Date:		

Comments:

11

SAMPLE WEIGHT

		DAME WEIGHT	
Client		ET-Spokane	
Fumbling Start Date:	6/3/20	Time: \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Initials: BC

Lab ID#	Concentrat (mg/L)	ion	Target Weight (g)	Actual Weight (g)
B4704-01	100 mg/L	A	0.500	
		В		0.50196
	100 mg/L	C	0.500	0.50186
				700
				1
		_		
		B4704-01 100 mg/L 100 mg/L	B4704-01 100 mg/L A 100 mg/L B	Cab ID# (mg/L) Weight (g)

	4	-	
	ι		ъ
	٩	-	r
	ı		٠
	ъ		3
٠	÷		-
	٩.		=
	2	a.	₹
	ε	E	ъ
	9	ø,	r
	ø	-	-
	3	-	
	κ		
	н	۳	=
	-	e	•
4	٩,	ā.	
		ν	ь
-	r	-	*
	ĸ	r	3
	3	۵.	5
	r	ľ	ъ
	ч	L	,
Þ	-		

Ė
74
0
Ε
7
\forall
\approx
~
ER
Ξ
W
2
⋖
1
Z
E
Z
5
I
S
5
Ξ
\Box
\mathbf{z}
9
室
NA
H
53
2
压
K
Ξ
Ħ
96
-,

The control of the co	Waterbath/Incubator Used: # 100 C Also collect: Hardness and Alkalinity in 100 mg/L (w: t: Hardne	aterbath/Inc.	ubator Usea kalinity i	Waterbath/Incubator Used: # 10C Also collect: Hardness and Alkalinity in 100 mg/L @ 0 hrs.	 L @ 0 hr:		SDG's# B4704 AND Hard &	Alk in bo	th Control &	Samp I & 100 m	Sample Description 00 mg/L @ 96 h	on 5 hrs (or v	see below	SDGs # B4704 Sample Description See below AND Hard & Alk in both Control & 100 mg/L @ 96 hrs (or when survival = 0%) Technician Ohr R C 24 to 12 C	10	6	1	Test Initiation		900	200	120 20	Time	5 =		2110
2 10 10 10 10 10 10 10 10 10 10 10 10 10	Client Test Species		Опсс	orhynchus.	ET-S	pokane D#	# RBT	4/4		Tin Therm. II		# 0	1 16-7	24 hr	#	92	48 hr 48 hr	#	350	72 hr 72 hr 72 hr 72 hr	#	200			52	1.1	t Hardne Alkalinity 96 hrs
10 10 10 10 10 10 10 10	Concentration	Test Container Number		Numb 24	er of Live O	reanisms 72	96	0	Dis 24	solved Oxy	en (mg/l) 72	96	0	24	PH 48	72	П	0	24	Temperatur 48		96	0	Conc 24	ductivity (pr	nohs/cm)	96
0 10 10 10 10 10 10 10 10 10 10 10 10 10		¥	10	2	0,	2	<u></u>	10.		9.7	5	. 0				7	7		11.2	11.	11.6	0.3		240			R
C 10 10 10 10 10 10 10 29 9,7 9,5 8,1 74, 7,5 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7,	Сопио	æ	10	9	0	0	0	10.3	93		8		8.3		7-5	7.7	£.4.										
8 10 10 10 10 10 10 10 10 10 10 10 10 10		υ	10	0	0/	10	5	9.	5,95		6	V3		14		1.7	Et										
B 10 (0 (0 10 10 b) 19.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.	(5.4-4) D72	<	10	<u>o</u> .	0	0	0	3.6	9	9	38.	9.6	800		3.7.5	7-1	72		126	12.	3 12.6	12.3	*	182			28
C 10 O O 10.2 d. 2 d. 7 d. 4	E/L RFPNB-2	В	10	0	9	0	5			0		2	%	京		13	44										
	tu 001 10-	υ	10	3	0	2	5	10,2			79.4		88	4	12	7:19	7.7										
									-											4./							

* Missed measurement 13c 6/570

		Summa	ary of Test	Results		
for			ET-Sp	okane		
LabID:		B4707		Start Date:	06/0	04/20
	Contro	ol	10 mg	/L	100 m	g/L
Replicate	Number	Proport.	Number	Proport.	Number	Proport.
	Dead	Dead	Dead	Dead	Dead	Dead
Α	0	0.0000	n/a	n/a	0	0.0000
В	1	0.1000	n/a	n/a	0	0.0000
С	0	0.0000	n/a	n/a	1	0.1000
Mean		0.0333		n/a		0.0333
Variance		0.0033		n/a		0.0033

	F statistic for variance test	
	10 mg/L	100 mg/L
Calculated F statistic	n/a	1.00
Critical F degrees of freedom (Numerator, Denominator)	2 , 2	2 , 2
Cricital F (See Table 2 WDOE 80-12)	39	39
Equal Variance?	n/a	Yes

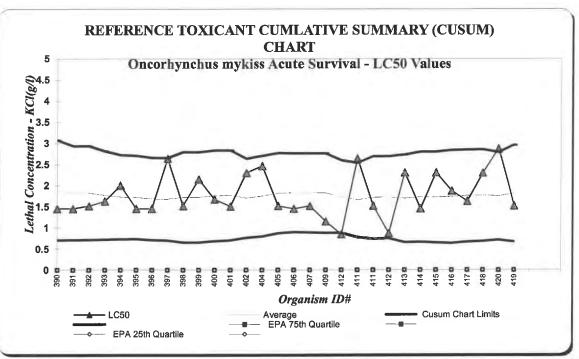
		t-Test
Г	10 mg/L	100 mg/L
Calculated t staistic	n/a	-10.66
Critical t degrees of freedom	n/a	4
Critical t value (See Table 3 WDOE 80-12)	n/a	-1.53
Does Waste Designate	as an Extremely Hazardous Waste?	as a Dangerous Waste?
	n/a	No

APPENDIX B REFERENCE TOXICANT DATA SHEETS

REFERENCE TOXICANT DATA SHEET

71.	TA/510		96	30	8	2010	3440	1		
76	2	vity	72)ne
Time (P83 4-61	96 hr 96 hr 96 hr	Conductivity (mS)	48					1	1	(QA) none
0000 0000 0000 0000 0000 0000 0000 0000 0000		ŏ	24					00EZ 010Z	13610 13650	
$\frac{1}{4} \frac{12J_{\perp}/20 \text{lb}}{120 \text{lb}}$ $\frac{1}{4} \frac{12J_{\parallel}/20 \text{lb}}{120 \text{lost}}$ $\frac{1}{4} \frac{12J_{\parallel}/20 \text{lost}}{120 \text{lost}}$ $\frac{1}{4} \frac{12J_{\parallel}}{120 \text{lost}}$	17A 250 250		0	315	1194	2080	3680	7090	०१३६ ।	
d/d/lecon M linity as dness as	17A 08 25		96	12.6	12.3	12.	12.3		1	
Test Begin: Date $(1/3)^2/20$ h Time water Test End: Date $(1/2)^2/20$ Time *Dilution Water (Recon MH) $(1/2)^2/20$ Time *Dilution Water Total Alkalinity as $(1/2)^2/20$ h Dilution Water Total Hardness as $(1/2)^2/20$ h Dilution Water Total Hardness as $(1/2)^2/20$	72 hr 72 hr 72 hr	lre lre	72	12.6	12.3	12.1	12.1			-1 °C -(A)
Fest Begin: Test End: Dilution W Water Tot		Temperature (°C)	48	12.5	2.3	2.6	12.1			Temperature: ±1 °C (recommended QA)
Tes er Te *Di lution W		Ten	24	12,2	9:11	11.3	11.3	11.3	11.5	Tempe (recon
KCI in DI (ASTM Type I) water 0.8 - Ol Dilut	287		0	7.0 43 12.2 125 12.6 12.6 315	7.7 7.2 7.2 (2,3 11.6 12.3 12.3 12.3 1194	18 7.8 7.2 7.7 7.9 7.4 12.2 11.3 12.6 12.1 12.1 2080	80 7.5 7.7 23 11.3 2.1 12.7 12.3 3680	04 11.3	40	11
II VI MIX	48 hr 48 hr 48 hr		96	2.0	7.2	4.2	1.1		1	
KCI in DI (AST			72	6.6	2.2	7.3	5.2			< 9.0 QA)
		Hd	48	7.7	tt	Ct.	0.		1	pH: > 6.0 and < 9.0 (recommended QA)
Stock Solution 50 g/L Reagent Log ID # 2 B	767		24	57.8 7.1 7.7 6.9°		ره.		2.4	52	pH: >
Reference Toxicant Stock Solution Reagent Log ID #	24 hr 24 hr 24 hr		0	00	1.7 2.8 7.2	500	2.8 7.3	5.9 2.4	7.9 25	
Refer			96	3.5	4.7		a	1	1	∞.
gal.	111	'gen	72	3,5		es'	0.1			and < 10 2A)
3,5 ga 5 12 ± 1°C	X 233	Dissolved Oxygen (mg/l)	48	2.	9	4	9.7			DO: (@ 12°C): > 4.0 and < 10.8 (recommended QA)
Size licate rature	0 hr 0 hr 0 hr	Dissolv (24	7.	00	3.8	0.7	0.01	00	(@ 12°(
Test Chamber Size Volume per Replicate Designed Temperature	Technician Time 'herm, ID#		0	10.0 9.7 9.5 9.59	10 10.0 9.8 9.6 9.7	9.9 9.8 9.7 9.89	10.1 9.9 9.7 10.1 9	10.1	(0.2) 9.8	Ö
Test (Volume	Technician Time Therm. ID #	S	96	2	0	0		1		ria)
		ganism ate)	72	0	10	01	-			≥ 90% lity Crite
vkiss	Mm g/L	ber of Live Orgar (use 10 per replicate)	84	0						Controls:
QA / QC "corhynchus m; = Thomas Fish RBT # H 9	days / 9.7	Number of Live Organisms (use 10 per replicate)	24	0	0)	01 01	9	0	0	Survival in Controls: ≥ 90% (required Test Acceptability Criteria)
Client QA / QC Organism Oncorhynchus mykiss Source A= Thomas Fish Co. □ = □ = □ +)	Num	0	01) 01	(0)	0)	(D)	0	Sur (require
Client ganism C Source U U	**Age Z Organism size Loading rate	Rep	+) V	A) V	∀	\forall
Cl Orgar Sou	1# 10 I	Conc.	(2.6)	Cont.	0.5	16 1.0	2.0	4.0	8.0	

Statistical Method 96 Hour LC₅₀ Cusum Chart Limits 2.67 to 2.96 ASU = After Swim | Statistical Method Sparamer's 48 Hour LC₅₀


**Age

Cusum Chart Limits 0,62 to

Task Manager kolt 304/14/2. Project Manager

QA Officer

REFTOX - RBT acute (ASL 680-0819) ASL680-0819

Oncorhynchus mykiss - ACUTE (EPA Test Method 2019.0)

POTASIUM CHLORIDE (g/L)

From EPA 833-R-00-003:

Organism age: 15 to 90 days

Endpoint: 48 hour Survival

Stats Method: Probit, Spearman-Karber, Linear Interpolation

Test Conditions: Recon MH, 12 oC

10th Quartile CV (control limit) = na
75th Quartile CV (warning limit) = na
75th Quartile CV (control limit) = na

As per EPA 833-R-00-003, section B.2.1, the quartiles listed above are from just a few labs (5) and therefore not to be considered typical or representative. Cusum limits are based on ASL data only.

Event	RBT	Test Start	1.050	Running	Running	Cusum Cl	nart Limits	Intralat
#	ID#	Date	LC50	Average	SD	AVG-2SD	AVG+2SD	CV
102	400	4/25/2019	1.67	1.76	0.54	0.68	2.83	0.30
103	401	5/16/2019	1.51	1.77	0.53	0.70	2.84	0.28
104	402	5/22/2019	2.30	1.70	0.47	0.76	2.64	0.27
105	404	6/21/2019	2.46	1.75	0.48	0.79	2.70	0.26
106	405	7/17/2019	1.52	1.82	0.48	0.87	2.77	0.26
107	406	7/31/2019	1.45	1.83	0.47	0.90	2.76	0.26
108	407	8/15/2019	1.52	1.83	0.47	0.89	2.76	0.26
109	409	10/1/2019	1.15	1.82	0.47	0.88	2.76	0.25
110	412	10/16/2019	0.84	1.74	0.43	0.87	2.60	0.27
111	411	10/22/2019	2.64	1.65	0.44	0.78	2.53	0.28
112	411	10/28/2019	1.52	1.71	0.49	0.74	2.69	0.28
113	412	10/16/2019	0.87	1.72	0.49	0.75	2.69	0.31
114	413	11/6/2019	2.30	1.69	0.52	0.65	2.73	0.31
115	414	11/20/2019	1.45	1.73	0.53	0.66	2.80	0.31
116	415	12/3/2019	2.30	1.72	0.54	0.64	2.79	0.32
117	416	12/31/2019	1.87	1.73	0.55	0.63	2.83	0.31
118	417	2/11/2020	1.62	1.75	0.55	0.66	2.85	0.31
119	418	3/16/2020	2.30	1.76	0.54	0.68	2.85	0.30
120	420	4/17/2020	2.87	1.75	0.52	0.71	2.78	0.32
121	419	4/22/2020	1.52	1.81	0.57	0.67	2.96	0.32
122								
123								
124								

APPENDIX C CHAIN OF CUSTODY

Environment Testing TestAmerica

Batch Number:	B4704	1-01		Sample Receipt Rece
Client/Project:	ET	Spokane	Date Received:	6-3-20
Were custody seals			Received By:	J K
	intact?			Yes No N/A
Packing Material:				4 -
Temp OK? (≤ 6°C) Th	nerm ID: [23	Expires: 7 /1 /20/0 Ob	served:9-0 °C, Actual Temp:	Box
If sam	ple is noted @	≤ 0.0 °C, is the sample froz	or nortical c	
Was a Chain of Custo	dy (CoC) Provi	ded?	en or partially trozen?	Yes No N/A
		f No, document below)		Yes No N/A
Nere the sample conta	ainers in good	condition (not broken or leak		Yes No N/A
Are all samples within 3	36 barrer 5	condition (not broken or leak	ing)?	Yes No N/A
				Yes No N/A
lethod of Shipment:	∐ Hand De	elivered, FedEx,	UPS, Greyhound,	Othor
		·	he following exceptions were note	d)
	7	TRR#1	'SO2 836	8520
	J rock	is in light	6-3-20TR	
nt was notified on:		Client contact:		
olution to Exception:				

Curofins Environment Testing Page: Page 1 of 1 590-5315.1 State of Origin: Washington randee.arrington@testamericainc.com Accreditations Required (See note) Arrington, Randee E Chain of Custody Record Due Date Requested: 6/4/2020 shone:

Client Information (Sub Contract Lab)

Shipping/Receiving

Spokane, WA 99206 Phone: 509-924-9200 Fax: 509-924-9290

---- эрокапе

11922 East 1st Ave

M - Hexane
N - None
O - AsklaO2
P - Na2O4S
Q - Na2SO3
R - Na2SO3
S - H2SO4
T - TSP Dodecahydrate U - Acetone V - MCAA W - pH 4-5 Z - other (specify) Special Instructions/Note: Note: Since laboratory accreditations are subject to change. Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subconfract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.

TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.

TestAmerica attentions will be provided. Any changes to accreditation status should be brought to Eurofins Preservation Codes: A - HCL B - NaOH C - Zn Acetate D - Nitric Acid F - NaHSOH G - Amechy H - Ascorbic Acid H - Ascorbic Acid J - Di Water K - EDTA 590-13122-4 L - EDA Total Number of containers Analysis Requested State Program - Washington WG S1-08 hortieM AW \(WG S1-08 bortieM AW) BUS Perform MS/MSD (Yes or No) Field Fittered Sample (Yes or No) (W=water, S=solid, O=waste/oll, BT=Tlasue, A=Alr) Matrix Preservation Code: Solid G=grab) Sample (C=comp, Type Sample Time 14:05 Pacific fAT Requested (days): Sample Date Project #: 59000877 5/5/20 WO #: Sample Identification - Client ID (Lab ID) Suite 310, TestAmerica Laboratories, Inc. RFPNB-27C (4-4.5) (590-13122-5) Riverfront Park (0110-148-06) 1100 NE Circle Blvd, 541-243-0980(Tel) State, Zip: OR, 97330 Corvallis

Company + Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Return To Client Disposal By Lab Archive For Mont ompany Date/Time: 6-2-20 1 (UC Date/Time: ethod of Shipment: Cooler Temperature(s) °C and Other Remarks: Ch Received by: Received by: lime: Company Company Date: Sate/Time: Date/Time: Custody Seal No.: Manushed by:
Manushed by: Custody Seals Intact: A Yes A No elinquished by:

20

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-12823-1

Laboratory Sample Delivery Group: 0110-148-06 Client Project/Site: Riverfront Park (0110-148-06)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

dancue trington

Authorized for release by: 3/16/2020 4:30:34 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

5

6

8

9

1 1

12

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Laboratory Job ID: 590-12823-1

SDG: 0110-148-06

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	
Client Sample Results	6
QC Sample Results	10
Chronicle	12
Certification Summary	15
Method Summary	16
Chain of Custody	17
Receipt Checklists	18

Case Narrative

Client: GeoEngineers Inc

Job ID: 590-12823-1 Project/Site: Riverfront Park (0110-148-06) SDG: 0110-148-06

Job ID: 590-12823-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 2/28/2020 4:07 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 11.7° C.

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: RFPMB-1(0-1) (590-12823-1), RFPMB-1(2-3) (590-12823-2), RFPMB-2(0-1) (590-12823-3), RFPMB-2(1-2) (590-12823-4) and RFPMB-3(0.5-1.5) (590-12823-5). The samples are considered acceptable since they were collected and submitted to the laboratory on the same day and there is evidence that the chilling process has begun.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06) Job ID: 590-12823-1 SDG: 0110-148-06

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
590-12823-1	RFPMB-1(0-1)	Solid	02/28/20 12:54	02/28/20 16:07	
590-12823-2	RFPMB-1(2-3)	Solid	02/28/20 13:00	02/28/20 16:07	
590-12823-3	RFPMB-2(0-1)	Solid	02/28/20 13:05	02/28/20 16:07	
590-12823-4	RFPMB-2(1-2)	Solid	02/28/20 13:07	02/28/20 16:07	
590-12823-5	RFPMB-3(0.5-1.5)	Solid	02/28/20 13:11	02/28/20 16:07	

Definitions/Glossary

Client: GeoEngineers Inc

Job ID: 590-12823-1 Project/Site: Riverfront Park (0110-148-06) SDG: 0110-148-06

Qualifiers

GC/MS Semi VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) NC.

Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points **RPD**

Toxicity Equivalent Factor (Dioxin) **TEF** Toxicity Equivalent Quotient (Dioxin) **TEQ**

Client: GeoEngineers Inc Job ID: 590-12823-1 Project/Site: Riverfront Park (0110-148-06) SDG: 0110-148-06

Client Sample ID: RFPMB-1(0-1)

Lab Sample ID: 590-12823-1 Date Collected: 02/28/20 12:54 **Matrix: Solid** Date Received: 02/28/20 16:07 Percent Solids: 95.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	13		10	2.2	ug/Kg	₩	03/05/20 07:37	03/05/20 15:11	1
2-Methylnaphthalene	24		10	3.2	ug/Kg	☼	03/05/20 07:37	03/05/20 15:11	1
1-Methylnaphthalene	18		10	2.3	ug/Kg	☼	03/05/20 07:37	03/05/20 15:11	1
Acenaphthylene	5.7	J	10	3.4	ug/Kg	₽	03/05/20 07:37	03/05/20 15:11	1
Acenaphthene	2.9	J	10	2.6	ug/Kg	≎	03/05/20 07:37	03/05/20 15:11	1
Fluorene	2.4	J	10	2.2	ug/Kg	☼	03/05/20 07:37	03/05/20 15:11	1
Phenanthrene	39		10	3.7	ug/Kg	\$	03/05/20 07:37	03/05/20 15:11	1
Anthracene	9.4	J	10	2.0	ug/Kg	☼	03/05/20 07:37	03/05/20 15:11	1
Fluoranthene	59		10	2.5	ug/Kg	≎	03/05/20 07:37	03/05/20 15:11	1
Pyrene	67		10	3.9	ug/Kg	₽	03/05/20 07:37	03/05/20 15:11	1
Benzo[a]anthracene	38		10	2.2	ug/Kg	☼	03/05/20 07:37	03/05/20 15:11	1
Chrysene	53		10	1.5	ug/Kg	₩	03/05/20 07:37	03/05/20 15:11	1
Benzo[b]fluoranthene	60		10	3.6	ug/Kg	₽	03/05/20 07:37	03/05/20 15:11	1
Benzo[k]fluoranthene	19		10	2.5	ug/Kg	₩	03/05/20 07:37	03/05/20 15:11	1
Benzo[a]pyrene	40		10	4.3	ug/Kg	☼	03/05/20 07:37	03/05/20 15:11	1
Indeno[1,2,3-cd]pyrene	25		10	3.0	ug/Kg	₽	03/05/20 07:37	03/05/20 15:11	1
Dibenz(a,h)anthracene	9.8	J	10	2.9	ug/Kg	₩	03/05/20 07:37	03/05/20 15:11	1
Benzo[g,h,i]perylene	33		10	2.4	ug/Kg	₩	03/05/20 07:37	03/05/20 15:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	73		43 - 120				03/05/20 07:37	03/05/20 15:11	1
2-Fluorobiphenyl (Surr)	92		56 - 120				03/05/20 07:37	03/05/20 15:11	1
p-Terphenyl-d14	92		74 - 136				03/05/20 07:37	03/05/20 15:11	1

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	15		1.2	0.47	mg/Kg	₩	03/09/20 07:57	03/11/20 10:28	1
Cadmium	2.8		0.96	0.056	mg/Kg	₽	03/09/20 07:57	03/16/20 13:39	1
Lead	1300		2.9	1.4	mg/Kg	₽	03/09/20 07:57	03/11/20 10:28	1

Client Sample ID: RFPMB-1(2-3) Lab Sample ID: 590-12823-2 Date Collected: 02/28/20 13:00 **Matrix: Solid** Percent Solids: 94.1 Date Received: 02/28/20 16:07

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		11	2.3	ug/Kg	<u> </u>	03/05/20 07:37	03/05/20 15:38	1
2-Methylnaphthalene	ND		11	3.3	ug/Kg	☼	03/05/20 07:37	03/05/20 15:38	1
1-Methylnaphthalene	ND		11	2.4	ug/Kg	☼	03/05/20 07:37	03/05/20 15:38	1
Acenaphthylene	ND		11	3.5	ug/Kg	₽	03/05/20 07:37	03/05/20 15:38	1
Acenaphthene	ND		11	2.7	ug/Kg	☼	03/05/20 07:37	03/05/20 15:38	1
Fluorene	ND		11	2.3	ug/Kg	☼	03/05/20 07:37	03/05/20 15:38	1
Phenanthrene	4.7	J	11	3.9	ug/Kg	₽	03/05/20 07:37	03/05/20 15:38	1
Anthracene	ND		11	2.1	ug/Kg	☼	03/05/20 07:37	03/05/20 15:38	1
Fluoranthene	12		11	2.6	ug/Kg	₩	03/05/20 07:37	03/05/20 15:38	1
Pyrene	18		11	4.0	ug/Kg	φ.	03/05/20 07:37	03/05/20 15:38	1
Benzo[a]anthracene	9.3	J	11	2.3	ug/Kg	☼	03/05/20 07:37	03/05/20 15:38	1
Chrysene	13		11	1.6	ug/Kg	☼	03/05/20 07:37	03/05/20 15:38	1
Benzo[b]fluoranthene	13		11	3.7	ug/Kg	₽	03/05/20 07:37	03/05/20 15:38	1
Benzo[k]fluoranthene	5.4	J	11	2.7	ug/Kg	≎	03/05/20 07:37	03/05/20 15:38	1

Eurofins TestAmerica, Spokane

Page 6 of 18 3/16/2020

Job ID: 590-12823-1

Project/Site: Riverfront Park (0110-148-06) SDG: 0110-148-06

Client Sample ID: RFPMB-1(2-3)

Client: GeoEngineers Inc

Lab Sample ID: 590-12823-2 Date Collected: 02/28/20 13:00 **Matrix: Solid** Date Received: 02/28/20 16:07 Percent Solids: 94.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	9.7	J	11	4.5	ug/Kg	<u></u>	03/05/20 07:37	03/05/20 15:38	1
Indeno[1,2,3-cd]pyrene	6.0	J	11	3.2	ug/Kg	₽	03/05/20 07:37	03/05/20 15:38	1
Dibenz(a,h)anthracene	3.8	J	11	3.0	ug/Kg	☼	03/05/20 07:37	03/05/20 15:38	1
Benzo[g,h,i]perylene	7.3	J	11	2.5	ug/Kg	₩	03/05/20 07:37	03/05/20 15:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	57		43 - 120				03/05/20 07:37	03/05/20 15:38	1
2-Fluorobiphenyl (Surr)	73		56 - 120				03/05/20 07:37	03/05/20 15:38	1
p-Terphenyl-d14	82		74 - 136				03/05/20 07:37	03/05/20 15:38	1

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.9		1.2	0.47	mg/Kg	\	03/09/20 07:57	03/11/20 10:32	1
Cadmium	0.23	J	0.94	0.056	mg/Kg	₩	03/09/20 07:57	03/16/20 13:43	1
_Lead	140		2.8	1.4	mg/Kg	₽	03/09/20 07:57	03/11/20 10:32	1

Lab Sample ID: 590-12823-3 Client Sample ID: RFPMB-2(0-1) Date Collected: 02/28/20 13:05 **Matrix: Solid** Date Received: 02/28/20 16:07 Percent Solids: 84.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	20		12	2.5	ug/Kg	<u> </u>	03/05/20 07:37	03/05/20 16:04	1
2-Methylnaphthalene	39		12	3.6	ug/Kg	☼	03/05/20 07:37	03/05/20 16:04	1
1-Methylnaphthalene	30		12	2.6	ug/Kg	☼	03/05/20 07:37	03/05/20 16:04	1
Acenaphthylene	ND		12	3.9	ug/Kg		03/05/20 07:37	03/05/20 16:04	1
Acenaphthene	4.5	J	12	3.0	ug/Kg	☼	03/05/20 07:37	03/05/20 16:04	1
Fluorene	ND		12	2.6	ug/Kg	☼	03/05/20 07:37	03/05/20 16:04	1
Phenanthrene	28		12	4.2	ug/Kg	φ.	03/05/20 07:37	03/05/20 16:04	1
Anthracene	4.9	J	12	2.3	ug/Kg	₩	03/05/20 07:37	03/05/20 16:04	1
Fluoranthene	22		12	2.9	ug/Kg	☼	03/05/20 07:37	03/05/20 16:04	1
Pyrene	24		12	4.4	ug/Kg	φ.	03/05/20 07:37	03/05/20 16:04	1
Benzo[a]anthracene	14		12	2.5	ug/Kg	☼	03/05/20 07:37	03/05/20 16:04	1
Chrysene	19		12	1.8	ug/Kg	☼	03/05/20 07:37	03/05/20 16:04	1
Benzo[b]fluoranthene	22		12	4.1	ug/Kg	₽	03/05/20 07:37	03/05/20 16:04	1
Benzo[k]fluoranthene	8.8	J	12	2.9	ug/Kg	☼	03/05/20 07:37	03/05/20 16:04	1
Benzo[a]pyrene	16		12	4.9	ug/Kg	☼	03/05/20 07:37	03/05/20 16:04	1
Indeno[1,2,3-cd]pyrene	10	J	12	3.5	ug/Kg	₽	03/05/20 07:37	03/05/20 16:04	1
Dibenz(a,h)anthracene	5.5	J	12	3.3	ug/Kg	☼	03/05/20 07:37	03/05/20 16:04	1
Benzo[g,h,i]perylene	13		12	2.7	ug/Kg	☼	03/05/20 07:37	03/05/20 16:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	58		43 - 120				03/05/20 07:37	03/05/20 16:04	1
2-Fluorobiphenyl (Surr)	71		56 - 120				03/05/20 07:37	03/05/20 16:04	1
p-Terphenyl-d14	85		74 - 136				03/05/20 07:37	03/05/20 16:04	1

Method: 6010D - Metals (ICP) Analyte	Result Qı	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.1	1.2	0.49	mg/Kg	\	03/09/20 07:57	03/11/20 10:35	1
Cadmium	0.23 J	0.98	0.058	mg/Kg	₩	03/09/20 07:57	03/16/20 13:46	1
Lead	42	2.9	1.4	mg/Kg	₩	03/09/20 07:57	03/11/20 10:35	1

Eurofins TestAmerica, Spokane

Page 7 of 18 3/16/2020

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Lab Sample ID: 590-12823-4

Matrix: Solid

Percent Solids: 92.9

Job ID: 590-12823-1

SDG: 0110-148-06

Client Sample ID: RFPMB-2(1-2)

Date Collected: 02/28/20 13:07 Date Received: 02/28/20 16:07

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) Result Qualifier Dil Fac **Analyte** MDL Unit D Prepared Analyzed ₩ Naphthalene $\overline{\mathsf{ND}}$ 11 2.3 ug/Kg 03/05/20 07:37 03/05/20 16:30 2-Methylnaphthalene ND 11 03/05/20 07:37 03/05/20 16:30 3.3 ug/Kg 1 1-Methylnaphthalene ND 03/05/20 07:37 03/05/20 16:30 11 ug/Kg 1 Acenaphthylene ND 11 3.6 ug/Kg 03/05/20 07:37 03/05/20 16:30 Acenaphthene ND 11 2.7 03/05/20 07:37 03/05/20 16:30 ug/Kg 1 Fluorene ND 11 2.4 ug/Kg 03/05/20 07:37 03/05/20 16:30 Phenanthrene ND 11 3.9 ug/Kg 03/05/20 07:37 03/05/20 16:30 Anthracene ND 11 2.1 ug/Kg 03/05/20 07:37 03/05/20 16:30 ND 03/05/20 07:37 03/05/20 16:30 Fluoranthene 11 2.7 ug/Kg ND 11 4.1 03/05/20 07:37 03/05/20 16:30 Pyrene ug/Kg Benzo[a]anthracene ND 11 2.3 ug/Kg 03/05/20 07:37 03/05/20 16:30 Chrysene ND 11 ug/Kg 03/05/20 07:37 03/05/20 16:30 11 Benzo[b]fluoranthene ND 3.8 ug/Kg 03/05/20 07:37 03/05/20 16:30 Benzo[k]fluoranthene ND 11 2.7 ug/Kg 03/05/20 07:37 03/05/20 16:30 Benzo[a]pyrene ND 11 4.5 ug/Kg 03/05/20 07:37 03/05/20 16:30 Indeno[1,2,3-cd]pyrene ND 11 3.2 ug/Kg 03/05/20 07:37 03/05/20 16:30 Dibenz(a,h)anthracene ND 11 3.0 ug/Kg 03/05/20 07:37 03/05/20 16:30 1 Benzo[g,h,i]perylene ND 11 2.5 ug/Kg 03/05/20 07:37 03/05/20 16:30 Qualifier Surrogate %Recovery Limits Prepared Dil Fac Analyzed Nitrobenzene-d5 61 43 - 120 03/05/20 07:37 03/05/20 16:30 71 56 - 120 03/05/20 07:37 03/05/20 16:30 2-Fluorobiphenyl (Surr) 1

p-Terphenyl-d14	81		74 - 136				03/05/20 07:37	03/05/20 16:30	1
Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.8		1.2	0.49	mg/Kg	<u></u>	03/09/20 07:57	03/11/20 10:39	1
Cadmium	0.10	J	0.99	0.058	ma/Ka	☆	03/09/20 07:57	03/16/20 13:50	1

3.0

1.5 mg/Kg

12

Client Sample ID: RFPMB-3(0.5-1.5)

Date Collected: 02/28/20 13:11

Lead

Date Received: 02/28/20 16:07

Lab Sample ID: 590-12823-5

© 03/09/20 07:57 03/11/20 10:39

Matrix: Solid Percent Solids: 94.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg	₽	03/05/20 07:37	03/05/20 16:56	1
2-Methylnaphthalene	ND		10	3.2	ug/Kg	☼	03/05/20 07:37	03/05/20 16:56	1
1-Methylnaphthalene	ND		10	2.3	ug/Kg	☼	03/05/20 07:37	03/05/20 16:56	1
Acenaphthylene	ND		10	3.4	ug/Kg	₽	03/05/20 07:37	03/05/20 16:56	1
Acenaphthene	ND		10	2.6	ug/Kg	☼	03/05/20 07:37	03/05/20 16:56	1
Fluorene	ND		10	2.3	ug/Kg	₩	03/05/20 07:37	03/05/20 16:56	1
Phenanthrene	ND		10	3.7	ug/Kg		03/05/20 07:37	03/05/20 16:56	1
Anthracene	ND		10	2.1	ug/Kg	☼	03/05/20 07:37	03/05/20 16:56	1
Fluoranthene	ND		10	2.6	ug/Kg	☼	03/05/20 07:37	03/05/20 16:56	1
Pyrene	ND		10	3.9	ug/Kg	φ.	03/05/20 07:37	03/05/20 16:56	1
Benzo[a]anthracene	ND		10	2.2	ug/Kg	₩	03/05/20 07:37	03/05/20 16:56	1
Chrysene	ND		10	1.6	ug/Kg	☼	03/05/20 07:37	03/05/20 16:56	1
Benzo[b]fluoranthene	ND		10	3.6	ug/Kg	φ.	03/05/20 07:37	03/05/20 16:56	1
Benzo[k]fluoranthene	ND		10	2.6	ug/Kg	≎	03/05/20 07:37	03/05/20 16:56	1

Eurofins TestAmerica, Spokane

Page 8 of 18

6

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-12823-1 Project/Site: Riverfront Park (0110-148-06) SDG: 0110-148-06

Client Sample ID: RFPMB-3(0.5-1.5) Lab Sample ID: 590-12823-5 Date Collected: 02/28/20 13:11

Matrix: Solid

Date Received: 02/28/20 16:07 Percent Solids: 94.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	ND		10	4.3	ug/Kg	<u> </u>	03/05/20 07:37	03/05/20 16:56	1
Indeno[1,2,3-cd]pyrene	ND		10	3.1	ug/Kg	φ.	03/05/20 07:37	03/05/20 16:56	1
Dibenz(a,h)anthracene	ND		10	2.9	ug/Kg	₩	03/05/20 07:37	03/05/20 16:56	1
Benzo[g,h,i]perylene	ND		10	2.4	ug/Kg	₩	03/05/20 07:37	03/05/20 16:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	65		43 - 120				03/05/20 07:37	03/05/20 16:56	1
2-Fluorobiphenyl (Surr)	77		56 - 120				03/05/20 07:37	03/05/20 16:56	1
p-Terphenyl-d14	83		74 - 136				03/05/20 07:37	03/05/20 16:56	1
Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.9		1.1	0.45	mg/Kg	<u> </u>	03/09/20 07:57	03/11/20 10:43	1
Cadmium	0.067	J	0.92	0.054	mg/Kg	₩	03/09/20 07:57	03/16/20 14:03	1
Lead	11		2.7	1.3	mg/Kg	≎	03/09/20 07:57	03/11/20 10:43	1

Client: GeoEngineers Inc

Job ID: 590-12823-1 Project/Site: Riverfront Park (0110-148-06) SDG: 0110-148-06

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-26633/1-A

Matrix: Solid

Analysis Batch: 26635

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 26633

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
2-Methylnaphthalene	ND		10	3.1	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
1-Methylnaphthalene	ND		10	2.2	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Acenaphthylene	ND		10	3.3	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Acenaphthene	ND		10	2.5	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Fluorene	ND		10	2.2	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Phenanthrene	ND		10	3.6	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Anthracene	ND		10	2.0	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Fluoranthene	ND		10	2.5	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Pyrene	ND		10	3.8	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Benzo[a]anthracene	ND		10	2.1	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Chrysene	ND		10	1.5	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Benzo[b]fluoranthene	ND		10	3.5	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Benzo[k]fluoranthene	ND		10	2.5	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Benzo[a]pyrene	ND		10	4.2	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Indeno[1,2,3-cd]pyrene	ND		10	3.0	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Dibenz(a,h)anthracene	ND		10	2.8	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Benzo[g,h,i]perylene	ND		10	2.4	ug/Kg		03/05/20 07:33	03/05/20 10:50	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	75		43 - 120	03/05/20 07:33	03/05/20 10:50	1
2-Fluorobiphenyl (Surr)	81		56 - 120	03/05/20 07:33	03/05/20 10:50	1
p-Terphenyl-d14	89		74 - 136	03/05/20 07:33	03/05/20 10:50	1

Lab Sample ID: LCS 590-26633/2-A

Matrix: Solid

Client Sample ID:	Lab (Contro	Sample
	Prep	Type:	Total/NA
	—		

Analysis Batch: 26635							Prep Batch: 26633
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	267	204		ug/Kg		77	39 - 120
2-Methylnaphthalene	267	202		ug/Kg		76	48 - 120
1-Methylnaphthalene	267	202		ug/Kg		76	55 - 120
Acenaphthylene	267	232		ug/Kg		87	59 - 120
Acenaphthene	267	209		ug/Kg		79	53 - 120
Fluorene	267	225		ug/Kg		85	63 - 120
Phenanthrene	267	220		ug/Kg		82	65 - 121
Anthracene	267	224		ug/Kg		84	60 - 129
Fluoranthene	267	239		ug/Kg		89	63 - 127
Pyrene	267	247		ug/Kg		93	68 - 125
Benzo[a]anthracene	267	248		ug/Kg		93	61 - 125
Chrysene	267	243		ug/Kg		91	67 - 127
Benzo[b]fluoranthene	267	240		ug/Kg		90	67 - 127
Benzo[k]fluoranthene	267	238		ug/Kg		89	63 - 127
Benzo[a]pyrene	267	220		ug/Kg		83	60 - 120
Indeno[1,2,3-cd]pyrene	267	244		ug/Kg		91	63 - 128
Dibenz(a,h)anthracene	267	247		ug/Kg		93	60 - 128
Benzo[g,h,i]perylene	267	243		ug/Kg		91	58 - 129

Job ID: 590-12823-1 Project/Site: Riverfront Park (0110-148-06) SDG: 0110-148-06

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-26633/2-A

Matrix: Solid

Analysis Batch: 26635

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 26633

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Nitrobenzene-d5	81	43 - 120
2-Fluorobiphenyl (Surr)	91	56 - 120
p-Terphenyl-d14	89	74 - 136

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-26679/2-A

Matrix: Solid

Analysis Batch: 26726

Client Sampl	e ID:	Meth	od E	Blank
_			T	TALA

Prep Type: Total/NA

Prep Batch: 26679

	MB I	МВ						•	
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.3	0.50	mg/Kg		03/09/20 07:56	03/11/20 09:29	1
Cadmium	ND		1.0	0.059	mg/Kg		03/09/20 07:56	03/11/20 09:29	1
Lead	ND		3.0	1.5	mg/Kg		03/09/20 07:56	03/11/20 09:29	1

Lab Sample ID: MB 590-26679/2-A

Matrix: Solid

Analysis Batch: 26801

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 26679

	IVID IV	VID .							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	 -	1.3	0.50	mg/Kg		03/09/20 07:56	03/16/20 13:21	1
Cadmium	ND		1.0	0.059	mg/Kg		03/09/20 07:56	03/16/20 13:21	1
Lead	ND		3.0	1.5	mg/Kg		03/09/20 07:56	03/16/20 13:21	1

Lab Sample ID: LCS 590-26679/1-A

Matrix: Solid

Analysis Batch: 26726

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 26679

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic		100	102		mg/Kg		102	80 - 120	
Lead		50.0	52.5		mg/Kg		105	80 - 120	

Lab Sample ID: LCS 590-26679/1-A

Matrix: Solid

Analysis Batch: 26801

Client Sample I): Lab Control Sa	mple
	Prep Type: Tota	al/NA

Prep Batch: 26679

	Spik	e LCS	LCS		%Rec.
Analyte	Adde	d Result	Qualifier Unit	D %Re	c Limits
Arsenic		0 100	mg/Kg	g 10	0 80 - 120
Cadmium	50.	0 50.6	mg/Kg	g 10	1 80 - 120
Lead	50.	0 52.4	mg/Kg	g 10	5 80 - 120

SDG: 0110-148-06

Lab Sample ID: 590-12823-1

Matrix: Solid

Client Sample ID: RFPMB-1(0-1)

Date Collected: 02/28/20 12:54 Date Received: 02/28/20 16:07

Client: GeoEngineers Inc

	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	Moisture		1			26624	03/04/20 16:07	NMI	TAL SPK

Client Sample ID: RFPMB-1(0-1)

Project/Site: Riverfront Park (0110-148-06)

Date Collected: 02/28/20 12:54 Date Received: 02/28/20 16:07

Lab Samp	le ID: 590-12823-1
_	Matrix: Solid
	Percent Solids: 95.1

Prep Type Total/NA	Batch Type Prep	Batch Method 3550C	Run	Dil Factor	Amount 15.50 g	Final Amount 2 mL	Batch Number 26633	Prepared or Analyzed 03/05/20 07:37	Analyst NMI	Lab TAL SPK
Total/NA Total/NA	Analysis Prep	8270E SIM 3050B		1	1.10 g	50 mL	26635 26679	03/05/20 15:11 03/09/20 07:57		TAL SPK
Total/NA Total/NA Total/NA	Analysis Prep Analysis	6010D 3050B 6010D		1	1.10 g	50 mL	26726 26679 26801	03/11/20 10:28 03/09/20 07:57 03/16/20 13:39	SJK	TAL SPK TAL SPK TAL SPK

Client Sample ID: RFPMB-1(2-3)

Date Collected: 02/28/20 13:00

Date Received: 02/28/20 16:07

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture					26624	03/04/20 16:07	NMI	TAL SPK

Client Sample ID: RFPMB-1(2-3)

Date Collected: 02/28/20 13:00 Date Received: 02/28/20 16:07

Lab San	nple ID: 590-12823-2
	Matrix: Solid
	Percent Solids: 94.1

Lab Sample ID: 590-12823-3

Lab Sample ID: 590-12823-2

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.02 g	2 mL	26633	03/05/20 07:37	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			26635	03/05/20 15:38	NMI	TAL SPK
Total/NA	Prep	3050B			1.13 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26726	03/11/20 10:32	SJK	TAL SPK
Total/NA	Prep	3050B			1.13 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26801	03/16/20 13:43	SJK	TAL SPK

Client Sample ID: RFPMB-2(0-1)

Date Collected: 02/28/20 13:05

Date Received: 02/28/20 16:07

Γ		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Р	гер Туре	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
T	otal/NA	Analysis	Moisture		1			26624	03/04/20 16:07	NMI	TAL SPK

Matrix: Solid

Client Sample ID: RFPMB-2(0-1)

Lab Sample ID: 590-12823-3 Date Collected: 02/28/20 13:05 **Matrix: Solid** Date Received: 02/28/20 16:07 Percent Solids: 84.1

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.29 g	2 mL	26633	03/05/20 07:37	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			26635	03/05/20 16:04	NMI	TAL SPK
Total/NA	Prep	3050B			1.21 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26726	03/11/20 10:35	SJK	TAL SPK
Total/NA	Prep	3050B			1.21 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26801	03/16/20 13:46	SJK	TAL SPK

Client Sample ID: RFPMB-2(1-2)

Date Collected: 02/28/20 13:07 Date Received: 02/28/20 16:07

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture					26624	03/04/20 16:07	NMI	TAL SPK

Client Sample ID: RFPMB-2(1-2)

Date Collected: 02/28/20 13:07 Date Received: 02/28/20 16:07

	u. 02/20/20 .	<u> </u>			-	0.00	011401 0210			
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.04 g	2 mL	26633	03/05/20 07:37	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			26635	03/05/20 16:30	NMI	TAL SPK
Total/NA	Prep	3050B			1.09 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26726	03/11/20 10:39	SJK	TAL SPK
Total/NA	Prep	3050B			1.09 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26801	03/16/20 13:50	SJK	TAL SPK

Client Sample ID: RFPMB-3(0.5-1.5)

Date Collected: 02/28/20 13:11 Date Received: 02/28/20 16:07

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture					26624	03/04/20 16:07	NMI	TAL SPK	

Client Sample ID: RFPMB-3(0.5-1.5)

Date Collected: 02/28/20 13:11 Date Received: 02/28/20 16:07

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.50 g	2 mL	26633	03/05/20 07:37	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			26635	03/05/20 16:56	NMI	TAL SPK
Total/NA	Prep	3050B			1.16 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26726	03/11/20 10:43	SJK	TAL SPK
Total/NA	Prep	3050B			1.16 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26801	03/16/20 14:03	SJK	TAL SPK

Eurofins TestAmerica, Spokane

Lab Sample ID: 590-12823-4

Lab Sample ID: 590-12823-4

Lab Sample ID: 590-12823-5

Lab Sample ID: 590-12823-5

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 94.2

Percent Solids: 92.9

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Job ID: 590-12823-1

SDG: 0110-148-06

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

4

5

7

8

9

1 0

11

Accreditation/Certification Summary

Client: GeoEngineers Inc

Job ID: 590-12823-1 Project/Site: Riverfront Park (0110-148-06) SDG: 0110-148-06

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-21

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Job ID: 590-12823-1

SDG: 0110-148-06

Method	Method Description	Protocol	Laboratory
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
6010D	Metals (ICP)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3050B	Preparation, Metals	SW846	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

4

8

9

10

11

lestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ADDRESS: 523 E 2nd Ave, Spokene, Wa

CLIENT: GC

PROJECT NAME: Riverfront Park North

000

P.O. NUMBER:

t+80085

PRESERVATIVE

5 4 STD.

REQUESTED ANALYSES

(W, S, O)

OF

V

M

1

FAX:

PHONE (509)

PROJECT NUMBER: 0110-149-06

SAMPLED BY: USE

01

CLIENT SAMPLE IDENTIFICATION

SAMPLING DATE/TIME

notal

PAHS

RAPMB-2(0-)

RFP~B-2(1-2)

R FPMB-3 6.4.15

<

131

X

590-12823 Chain of Custody

R FPMB-1 (2-3 RFPMB-1(0-1)

2-28-2020 1254

X

1300

X

1305 1307

X

X

RELEASED BY

FIRM: GE

DATE

TIME 16

0

PRINT NAME WOLVICA

15700L

TIME:

PRINT NAME

FIRM:

TAL-1000 (0714) PAGE

40

RECEIVED BY

DVIE: 2-78-1019

RECEIVED BY

FIRM

RELEASED BY PRINT NAME:

ADDITIONAL REMARKS:

PRINT NAME

CHAIN OF CUSTODY REPORT

INVOICE TO:

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 Work Order #: 509-924-9200 503-906-9200 907-563-9200 FAX 924-9290 FAX 906-9210 FAX 563-9210

STD. Petroleum Hydrocarbon Analyses Turnaround Requests less than star FIRM ADPO OTHER Specify TURNAROUND REQUEST Organic & Inorganic Analyses 3 2 *As LOCATION/ COMMENTS TEMP: dard may incur Rush Charges 4 64,83 DATE TIME TIME 16,07 DATE 2/28/20 4 WOID ^ Page 17 of 18

5

2

1

5

Client: GeoEngineers Inc

Job Number: 590-12823-1

SDG Number: 0110-148-06

Login Number: 12823 List Number: 1

Creator: O'Toole, Maria C

List Source: Eurofins TestAmerica, Spokane

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	N/A	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-12823-2

Laboratory Sample Delivery Group: 0110-148-06 Client Project/Site: Riverfront Park (0110-148-06)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by: 4/7/2020 1:45:40 PM

Randee Arrington, Project Manager II (509)924-9200

dance trington

randee.arrington@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

5

7

8

9

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Laboratory Job ID: 590-12823-2 SDG: 0110-148-06

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	
Definitions	5
Client Sample Results	6
QC Sample Results	7
Chronicle	8
Certification Summary	9
Method Summary	10
Chain of Custody	11
Receint Checklists	

3

4

6

8

9

10

Case Narrative

Client: GeoEngineers Inc

Job ID: 590-12823-2 Project/Site: Riverfront Park (0110-148-06) SDG: 0110-148-06

Job ID: 590-12823-2

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 2/28/2020 4:07 PM; the samples arrived in good condition. The temperature of the cooler at receipt was 11.7° C.

Receipt Exceptions

The following sample was activated for TCLP Lead and Method 80-12 Bioassay analysis by the client on 03/18/2020: RFPMB-1(0-1) (590-12823-1). This analysis was not originally requested on the chain-of-custody (COC).

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06)

Job ID: 590-12823-2

SDG: 0110-148-06

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-12823-1	RFPMB-1(0-1)	Solid	02/28/20 12:54	02/28/20 16:07	

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-12823-2

Project/Site: Riverfront Park (0110-148-06) SDG: 0110-148-06

Glossary

Abbreviation	reviation These commonly used abbreviations may or may not be present in this report.		
n n	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CNF	Contains No Free Liquid		

CNF Contains No Free Liquid
DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

4

3

O

7

8

9

Client Sample Results

Client: GeoEngineers Inc
Project/Site: Riverfront Park (0110-148-06)
Job ID: 590-12823-2
SDG: 0110-148-06

Client Sample ID: RFPMB-1(0-1)

Lab Sample ID: 590-12823-1

Date Collected: 02/28/20 12:54

Matrix: Solid

Date Received: 02/28/20 16:07

 Method: 6010C - Metals (ICP) - TCLP

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Lead
 4.5
 0.060
 0.0051
 mg/L
 03/20/20 07:39
 03/20/20 15:57
 1

3

5

6

8

9

QC Sample Results

Client: GeoEngineers Inc Job ID: 590-12823-2 Project/Site: Riverfront Park (0110-148-06)

SDG: 0110-148-06

Method: 6010C - Metals (ICP)

Lab Sample ID: LB 590-26892/1-B

Matrix: Solid

Analysis Batch: 26931

Lab Sample ID: LCS 590-26907/1-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 26931**

Prep Batch: 26907

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Lead 1.00 1.15 mg/L 115 80 - 120

Client Sample ID: Method Blank Prep Type: TCLP

Prep Batch: 26907

LB LB Analyte **Result Qualifier** RL MDL Unit Prepared Analyzed Dil Fac $\overline{\mathsf{ND}}$ 0.060 03/20/20 07:39 03/20/20 15:53 Lead 0.0051 mg/L

Lab Chronicle

Client: GeoEngineers Inc
Project/Site: Riverfront Park (0110-148-06)
Job ID: 590-12823-2
SDG: 0110-148-06

Client Sample ID: RFPMB-1(0-1)

Lab Sample ID: 590-12823-1

Date Collected: 02/28/20 12:54

Matrix: Solid

Date Received: 02/28/20 16:07

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.05 g	2000.01 mL	26892	03/19/20 08:45	AMB	TAL SPK
TCLP	Prep	3010A			50 mL	50 mL	26907	03/20/20 07:39	AMB	TAL SPK
TCLP	Analysis	6010C		1			26931	03/20/20 15:57	JSP	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

5

6

8

4.0

Accreditation/Certification Summary

Client: GeoEngineers Inc

Job ID: 590-12823-2 Project/Site: Riverfront Park (0110-148-06) SDG: 0110-148-06

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-21

Laboratory: Eurofins TestAmerica, ASL

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State Program	418	09-01-20
US Fish & Wildlife	Federal	058448	07-31-20
USDA	Federal	P330-17-00268	08-02-20
Washington	State Program	C556	06-21-20

Method Summary

Client: GeoEngineers Inc

Job ID: 590-12823-2 Project/Site: Riverfront Park (0110-148-06) SDG: 0110-148-06

otocol	Laboratory
10.40	TAL ODK

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL SPK
1311	TCLP Extraction	SW846	TAL SPK
3010A	Preparation, Total Metals	SW846	TAL SPK

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

lestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ADDRESS: 523 E 2nd Ave, Spokene, Wa

CLIENT: GC

PROJECT NAME: RIVER Front Park North

000

P.O. NUMBER:

t+80085

PRESERVATIVE

5 4 STD.

REQUESTED ANALYSES

(W, S, O)

OF

V

2 1

M

FAX:

PHONE (509)

PROJECT NUMBER: 0110-149-06

SAMPLED BY: USE

01

CLIENT SAMPLE IDENTIFICATION

SAMPLING DATE/TIME

notal

PAHS

RAPMB-2(0-)

RFP~B-2(1-2)

R FPMB-3 6.4.15

<

131

X

590-12823 Chain of Custody

R FPMB-1 (2-3 RFPMB-1(0-1)

2-28-2020 1254

X

1300

X

1305 1307

X

X

RELEASED BY

FIRM GE

DATE

TIME 16

0

PRINT NAME WOLVICA

15700L

FIRM ADPO

TIME:

PRINT NAME

FIRM:

4

PAGE

40

TAL-1000 (0714)

RECEIVED BY

DVIE: 2-78-1019

RECEIVED BY

FIRM

RELEASED BY PRINT NAME:

ADDITIONAL REMARKS:

PRINT NAME

CHAIN OF CUSTODY REPORT

Work Order #:

INVOICE TO:

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200 503-906-9200 907-563-9200

FAX 924-9290 FAX 906-9210 FAX 563-9210

STD. Petroleum Hydrocarbon Analyses Turnaround Requests less than star OTHER Specify TURNAROUND REQUEST Organic & Inorganic Analyses 3 2 *As LOCATION/ COMMENTS TEMP: dard may incur Rush Charges 64,83 DATE TIME TIME 16,07 DATE 2/28/20 4 WOID ^ Page 11 of 12

1

5 M

2

Client: GeoEngineers Inc

Job Number: 590-12823-2 SDG Number: 0110-148-06

Login Number: 12823 List Source: Eurofins TestAmerica, Spokane

List Number: 1

Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	N/A	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-12833-1

Client Project/Site: Riverfront Park (0110-148-14)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by: 3/17/2020 9:28:28 AM

Randee Arrington, Project Manager II (509)924-9200

Langue trington

randee.arrington@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

4

5

b

8

1 በ

11

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14) Laboratory Job ID: 590-12833-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	
Definitions	5
Client Sample Results	6
QC Sample Results	10
Chronicle	12
Certification Summary	14
Method Summary	15
Chain of Custody	16
Receint Checklists	17

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Job ID: 590-12833-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 3/3/2020 1:49 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.0° C.

GC/MS Semi VOA

Method 8270E SIM: The following sample was diluted due to the nature of the sample matrix: RFPNB-7C(1.5-2) (590-12833-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 590-12833-1

Sample Summary

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-12833-1	RFPNB-7C(1.5-2)	Solid	03/03/20 11:20	03/03/20 13:49	
590-12833-2	RFPNB-8C(0.5-1)	Solid	03/03/20 11:30	03/03/20 13:49	
590-12833-3	RFPNB-9C(3-4)	Solid	03/03/20 08:50	03/03/20 13:49	
590-12833-4	RFPNB-10C(1.5-2)	Solid	03/03/20 08:55	03/03/20 13:49	
590-12833-5	RFPNB-11C(2-2.5)	Solid	03/03/20 09:00	03/03/20 13:49	

Job ID: 590-12833-1

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-12833-1

Project/Site: Riverfront Park (0110-148-14)

Qualifiers

GC/MS Semi VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly	used abbreviations mag	y or may not be	present in this report.
--------------	----------------	------------------------	-----------------	-------------------------

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

4

4

,

6

7

10

11

Client Sample ID: RFPNB-7C(1.5-2)

Date Collected: 03/03/20 11:20 Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-1

Matrix: Solid

Percent Solids: 87.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	89	J	220	48	ug/Kg	₩	03/05/20 07:37	03/05/20 17:22	20
2-Methylnaphthalene	170	J	220	69	ug/Kg	≎	03/05/20 07:37	03/05/20 17:22	20
1-Methylnaphthalene	130	J	220	50	ug/Kg	☼	03/05/20 07:37	03/05/20 17:22	20
Acenaphthylene	ND		220	74	ug/Kg	₽	03/05/20 07:37	03/05/20 17:22	20
Acenaphthene	ND		220	57	ug/Kg	≎	03/05/20 07:37	03/05/20 17:22	20
Fluorene	ND		220	49	ug/Kg	☼	03/05/20 07:37	03/05/20 17:22	20
Phenanthrene	210	J	220	81	ug/Kg	\$	03/05/20 07:37	03/05/20 17:22	20
Anthracene	54	J	220	45	ug/Kg	☼	03/05/20 07:37	03/05/20 17:22	20
Fluoranthene	190	J	220	56	ug/Kg	☼	03/05/20 07:37	03/05/20 17:22	20
Pyrene	210	J	220	85	ug/Kg	₽	03/05/20 07:37	03/05/20 17:22	20
Benzo[a]anthracene	130	J	220	48	ug/Kg	☼	03/05/20 07:37	03/05/20 17:22	20
Chrysene	220		220	34	ug/Kg	≎	03/05/20 07:37	03/05/20 17:22	20
Benzo[b]fluoranthene	270		220	78	ug/Kg	₽	03/05/20 07:37	03/05/20 17:22	20
Benzo[k]fluoranthene	110	J	220	56	ug/Kg	≎	03/05/20 07:37	03/05/20 17:22	20
Benzo[a]pyrene	150	J	220	95	ug/Kg	≎	03/05/20 07:37	03/05/20 17:22	20
Indeno[1,2,3-cd]pyrene	100	J	220	66	ug/Kg	₽	03/05/20 07:37	03/05/20 17:22	20
Dibenz(a,h)anthracene	75	J	220	63	ug/Kg	≎	03/05/20 07:37	03/05/20 17:22	20
Benzo[g,h,i]perylene	160	J	220	53	ug/Kg	₩	03/05/20 07:37	03/05/20 17:22	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	72		43 - 120				03/05/20 07:37	03/05/20 17:22	20
2-Fluorobiphenyl (Surr)	89		56 - 120				03/05/20 07:37	03/05/20 17:22	20
p-Terphenyl-d14	85		74 - 136				03/05/20 07:37	03/05/20 17:22	20
Method: 6010D - Metals (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

1.2

0.96

2.9

0.48 mg/Kg

0.057 mg/Kg

1.4 mg/Kg

3.0

120

0.45 J

Client Sample ID: RFPNB-8C(0.5-1)

Date Collected: 03/03/20 11:30

Arsenic

Lead

Cadmium

Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-2

© 03/09/20 07:57 03/16/20 14:14

☼ 03/09/20 07:57 03/16/20 14:14

Matrix: Solid Percent Solids: 74.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	61		13	2.9	ug/Kg	\$	03/05/20 07:37	03/05/20 17:49	1
2-Methylnaphthalene	130		13	4.2	ug/Kg	☼	03/05/20 07:37	03/05/20 17:49	1
1-Methylnaphthalene	110		13	3.0	ug/Kg	≎	03/05/20 07:37	03/05/20 17:49	1
Acenaphthylene	5.4	J	13	4.5	ug/Kg	\$	03/05/20 07:37	03/05/20 17:49	1
Acenaphthene	3.8	J	13	3.4	ug/Kg	☼	03/05/20 07:37	03/05/20 17:49	1
Fluorene	5.2	J	13	3.0	ug/Kg	≎	03/05/20 07:37	03/05/20 17:49	1
Phenanthrene	92		13	4.9	ug/Kg	₽	03/05/20 07:37	03/05/20 17:49	1
Anthracene	9.8	J	13	2.7	ug/Kg	☼	03/05/20 07:37	03/05/20 17:49	1
Fluoranthene	37		13	3.4	ug/Kg	₽	03/05/20 07:37	03/05/20 17:49	1
Pyrene	44		13	5.1	ug/Kg	φ.	03/05/20 07:37	03/05/20 17:49	1
Benzo[a]anthracene	26		13	2.9	ug/Kg	☼	03/05/20 07:37	03/05/20 17:49	1
Chrysene	39		13	2.0	ug/Kg	☼	03/05/20 07:37	03/05/20 17:49	1
Benzo[b]fluoranthene	41		13	4.7	ug/Kg	₽	03/05/20 07:37	03/05/20 17:49	1
Benzo[k]fluoranthene	14		13	3.4	ug/Kg	₩	03/05/20 07:37	03/05/20 17:49	1

Eurofins TestAmerica, Spokane

Page 6 of 17

2

3

5

8

10

11

Client: GeoEngineers Inc Job ID: 590-12833-1

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-8C(0.5-1)

Lab Sample ID: 590-12833-2 Date Collected: 03/03/20 11:30 **Matrix: Solid**

Date Received: 03/03/20 13:49 Percent Solids: 74.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	25		13	5.7	ug/Kg	₩	03/05/20 07:37	03/05/20 17:49	1
Indeno[1,2,3-cd]pyrene	16		13	4.0	ug/Kg	₩	03/05/20 07:37	03/05/20 17:49	1
Dibenz(a,h)anthracene	8.0	J	13	3.8	ug/Kg	☼	03/05/20 07:37	03/05/20 17:49	1
Benzo[g,h,i]perylene	19		13	3.2	ug/Kg	₩	03/05/20 07:37	03/05/20 17:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	63		43 - 120				03/05/20 07:37	03/05/20 17:49	1
2-Fluorobiphenyl (Surr)	77		56 - 120				03/05/20 07:37	03/05/20 17:49	1
p-Terphenyl-d14	81		74 - 136				03/05/20 07:37	03/05/20 17:49	1

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.6		1.2	0.49	mg/Kg		03/09/20 07:57	03/11/20 11:00	1
Cadmium	0.33	J	0.99	0.058	mg/Kg	₩	03/09/20 07:57	03/16/20 14:18	1
Lead	120		3.0	1.5	mg/Kg	₩	03/09/20 07:57	03/11/20 11:00	1

Client Sample ID: RFPNB-9C(3-4) Lab Sample ID: 590-12833-3 Date Collected: 03/03/20 08:50 **Matrix: Solid**

Date Received: 03/03/20 13:49 Percent Solids: 91.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		11	2.4	ug/Kg	<u> </u>	03/05/20 07:37	03/05/20 18:15	1
2-Methylnaphthalene	ND		11	3.4	ug/Kg	₩	03/05/20 07:37	03/05/20 18:15	1
1-Methylnaphthalene	ND		11	2.4	ug/Kg	☼	03/05/20 07:37	03/05/20 18:15	1
Acenaphthylene	ND		11	3.6	ug/Kg	₩	03/05/20 07:37	03/05/20 18:15	1
Acenaphthene	ND		11	2.8	ug/Kg	₩	03/05/20 07:37	03/05/20 18:15	1
Fluorene	ND		11	2.4	ug/Kg	☼	03/05/20 07:37	03/05/20 18:15	1
Phenanthrene	ND		11	4.0	ug/Kg	φ.	03/05/20 07:37	03/05/20 18:15	1
Anthracene	ND		11	2.2	ug/Kg	☼	03/05/20 07:37	03/05/20 18:15	1
Fluoranthene	ND		11	2.7	ug/Kg	☼	03/05/20 07:37	03/05/20 18:15	1
Pyrene	ND		11	4.2	ug/Kg		03/05/20 07:37	03/05/20 18:15	1
Benzo[a]anthracene	ND		11	2.3	ug/Kg	☼	03/05/20 07:37	03/05/20 18:15	1
Chrysene	ND		11	1.7	ug/Kg	☼	03/05/20 07:37	03/05/20 18:15	1
Benzo[b]fluoranthene	ND		11	3.8	ug/Kg	₽	03/05/20 07:37	03/05/20 18:15	1
Benzo[k]fluoranthene	ND		11	2.7	ug/Kg	☼	03/05/20 07:37	03/05/20 18:15	1
Benzo[a]pyrene	ND		11	4.6	ug/Kg	☼	03/05/20 07:37	03/05/20 18:15	1
Indeno[1,2,3-cd]pyrene	ND		11	3.2	ug/Kg	₽	03/05/20 07:37	03/05/20 18:15	1
Dibenz(a,h)anthracene	ND		11	3.1	ug/Kg	☼	03/05/20 07:37	03/05/20 18:15	1
Benzo[g,h,i]perylene	ND		11	2.6	ug/Kg	☼	03/05/20 07:37	03/05/20 18:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	75		43 - 120				03/05/20 07:37	03/05/20 18:15	1
2-Fluorobiphenyl (Surr)	87		56 - 120				03/05/20 07:37	03/05/20 18:15	1
p-Terphenyl-d14	85		74 - 136				03/05/20 07:37	03/05/20 18:15	1

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	8.0		1.1	0.45	mg/Kg	\	03/09/20 07:57	03/11/20 11:03	1
Cadmium	0.068	J	0.90	0.053	mg/Kg	₩	03/09/20 07:57	03/16/20 14:22	1
Lead	12		2.7	1.3	mg/Kg	₩	03/09/20 07:57	03/11/20 11:03	1

Eurofins TestAmerica, Spokane

Page 7 of 17 3/17/2020 Client Sample ID: RFPNB-10C(1.5-2)

Date Collected: 03/03/20 08:55 Date Received: 03/03/20 13:49 Lab Sample ID: 590-12833-4

Matrix: Solid

Percent Solids: 81.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	68		24	5.2	ug/Kg	₩	03/05/20 07:37	03/05/20 18:41	2
2-Methylnaphthalene	120		24	7.6	ug/Kg	☼	03/05/20 07:37	03/05/20 18:41	2
1-Methylnaphthalene	93		24	5.4	ug/Kg	☼	03/05/20 07:37	03/05/20 18:41	2
Acenaphthylene	17	J	24	8.1	ug/Kg	\$	03/05/20 07:37	03/05/20 18:41	2
Acenaphthene	16	J	24	6.1	ug/Kg	☼	03/05/20 07:37	03/05/20 18:41	2
Fluorene	10	J	24	5.4	ug/Kg	₽	03/05/20 07:37	03/05/20 18:41	2
Phenanthrene	150		24	8.8	ug/Kg	φ.	03/05/20 07:37	03/05/20 18:41	2
Anthracene	28		24	4.9	ug/Kg	☼	03/05/20 07:37	03/05/20 18:41	2
Fluoranthene	140		24	6.0	ug/Kg	☼	03/05/20 07:37	03/05/20 18:41	2
Pyrene	150		24	9.3	ug/Kg	₽	03/05/20 07:37	03/05/20 18:41	2
Benzo[a]anthracene	93		24	5.2	ug/Kg	☼	03/05/20 07:37	03/05/20 18:41	2
Chrysene	120		24	3.7	ug/Kg	☼	03/05/20 07:37	03/05/20 18:41	2
Benzo[b]fluoranthene	140		24	8.5	ug/Kg	₽	03/05/20 07:37	03/05/20 18:41	2
Benzo[k]fluoranthene	55		24	6.1	ug/Kg	☼	03/05/20 07:37	03/05/20 18:41	2
Benzo[a]pyrene	98		24	10	ug/Kg	₽	03/05/20 07:37	03/05/20 18:41	2
Indeno[1,2,3-cd]pyrene	44		24	7.2	ug/Kg	₽	03/05/20 07:37	03/05/20 18:41	2
Dibenz(a,h)anthracene	20	J	24	6.9	ug/Kg	☼	03/05/20 07:37	03/05/20 18:41	2
Benzo[g,h,i]perylene	55		24	5.7	ug/Kg	≎	03/05/20 07:37	03/05/20 18:41	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	69		43 - 120				03/05/20 07:37	03/05/20 18:41	2
2-Fluorobiphenyl (Surr)	85		56 - 120				03/05/20 07:37	03/05/20 18:41	2
p-Terphenyl-d14	85		74 - 136				03/05/20 07:37	03/05/20 18:41	2

	Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Arsenic	5.6		1.2	0.49	mg/Kg	₩	03/09/20 07:57	03/11/20 11:07	1
	Cadmium	0.58	J	0.99	0.058	mg/Kg	₽	03/09/20 07:57	03/16/20 14:26	1
l	Lead	130		3.0	1.5	mg/Kg	₩	03/09/20 07:57	03/11/20 11:07	1

Client Sample ID: RFPNB-11C(2-2.5)

Lab Sample ID: 590-12833-5 Date Collected: 03/03/20 09:00 **Matrix: Solid** Date Received: 03/03/20 13:49

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	8.3	J	11	2.4	ug/Kg	₩	03/05/20 07:37	03/05/20 19:07	1
2-Methylnaphthalene	12		11	3.5	ug/Kg	≎	03/05/20 07:37	03/05/20 19:07	1
1-Methylnaphthalene	9.0	J	11	2.5	ug/Kg	≎	03/05/20 07:37	03/05/20 19:07	1
Acenaphthylene	3.7	J	11	3.7	ug/Kg	\$	03/05/20 07:37	03/05/20 19:07	1
Acenaphthene	5.8	J	11	2.8	ug/Kg	≎	03/05/20 07:37	03/05/20 19:07	1
Fluorene	5.1	J	11	2.5	ug/Kg	≎	03/05/20 07:37	03/05/20 19:07	1
Phenanthrene	32		11	4.1	ug/Kg	\$	03/05/20 07:37	03/05/20 19:07	1
Anthracene	11		11	2.2	ug/Kg	≎	03/05/20 07:37	03/05/20 19:07	1
Fluoranthene	36		11	2.8	ug/Kg	₽	03/05/20 07:37	03/05/20 19:07	1
Pyrene	52		11	4.3	ug/Kg	≎	03/05/20 07:37	03/05/20 19:07	1
Benzo[a]anthracene	18		11	2.4	ug/Kg	₽	03/05/20 07:37	03/05/20 19:07	1
Chrysene	45		11	1.7	ug/Kg	☼	03/05/20 07:37	03/05/20 19:07	1
Benzo[b]fluoranthene	37		11	3.9	ug/Kg	φ.	03/05/20 07:37	03/05/20 19:07	1
Benzo[k]fluoranthene	11		11	2.8	ug/Kg	₩	03/05/20 07:37	03/05/20 19:07	1

Eurofins TestAmerica, Spokane

3/17/2020

Page 8 of 17

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-12833-1

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-11C(2-2.5)

Date Collected: 03/03/20 09:00

Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-5

Matrix: Solid

Percent Solids: 87.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	27		11	4.7	ug/Kg	₩	03/05/20 07:37	03/05/20 19:07	1
Indeno[1,2,3-cd]pyrene	11		11	3.3	ug/Kg	₽	03/05/20 07:37	03/05/20 19:07	1
Dibenz(a,h)anthracene	7.7	J	11	3.2	ug/Kg	☼	03/05/20 07:37	03/05/20 19:07	1
Benzo[g,h,i]perylene	17		11	2.6	ug/Kg	☼	03/05/20 07:37	03/05/20 19:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	71		43 - 120				03/05/20 07:37	03/05/20 19:07	1
2-Fluorobiphenyl (Surr)	90		56 - 120				03/05/20 07:37	03/05/20 19:07	1
p-Terphenyl-d14	93		74 - 136				03/05/20 07:37	03/05/20 19:07	1
Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.4		1.2	0.46	mg/Kg	<u></u>	03/09/20 07:57	03/11/20 11:11	1
Cadmium	0.34	J	0.93	0.055	mg/Kg	☼	03/09/20 07:57	03/16/20 14:29	1
Lead	52		2.8	1.4	mg/Kg	₩	03/09/20 07:57	03/11/20 11:11	1

3/17/2020

-

Δ

6

8

9

10

Client: GeoEngineers Inc Job ID: 590-12833-1

Project/Site: Riverfront Park (0110-148-14)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

MR MR

Lab Sample ID: MB 590-26633/1-A

Matrix: Solid

Analysis Batch: 26635

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 26633

	IVID IV	/ID						
Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	10	2.2	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
2-Methylnaphthalene	ND	10	3.1	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
1-Methylnaphthalene	ND	10	2.2	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Acenaphthylene	ND	10	3.3	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Acenaphthene	ND	10	2.5	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Fluorene	ND	10	2.2	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Phenanthrene	ND	10	3.6	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Anthracene	ND	10	2.0	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Fluoranthene	ND	10	2.5	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Pyrene	ND	10	3.8	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Benzo[a]anthracene	ND	10	2.1	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Chrysene	ND	10	1.5	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Benzo[b]fluoranthene	ND	10	3.5	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Benzo[k]fluoranthene	ND	10	2.5	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Benzo[a]pyrene	ND	10	4.2	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Indeno[1,2,3-cd]pyrene	ND	10	3.0	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Dibenz(a,h)anthracene	ND	10	2.8	ug/Kg		03/05/20 07:33	03/05/20 10:50	1
Benzo[g,h,i]perylene	ND	10	2.4	ug/Kg		03/05/20 07:33	03/05/20 10:50	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	75	43 - 120	03/05/20 07:33	03/05/20 10:50	1
2-Fluorobiphenyl (Surr)	81	56 - 120	03/05/20 07:33	03/05/20 10:50	1
p-Terphenyl-d14	89	74 - 136	03/05/20 07:33	03/05/20 10:50	1

Lab Sample ID: LCS 590-26633/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 26635	Spike	LCS	LCS				Prep Batch: 26633 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	267	204		ug/Kg		77	39 - 120
2-Methylnaphthalene	267	202		ug/Kg		76	48 - 120
1-Methylnaphthalene	267	202		ug/Kg		76	55 - 120
Acenaphthylene	267	232		ug/Kg		87	59 - 120
Acenaphthene	267	209		ug/Kg		79	53 - 120
Fluorene	267	225		ug/Kg		85	63 - 120
Phenanthrene	267	220		ug/Kg		82	65 - 121
Anthracene	267	224		ug/Kg		84	60 - 129
Fluoranthene	267	239		ug/Kg		89	63 - 127
Pyrene	267	247		ug/Kg		93	68 - 125
Benzo[a]anthracene	267	248		ug/Kg		93	61 - 125
Chrysene	267	243		ug/Kg		91	67 - 127
Benzo[b]fluoranthene	267	240		ug/Kg		90	67 - 127
Benzo[k]fluoranthene	267	238		ug/Kg		89	63 - 127
Benzo[a]pyrene	267	220		ug/Kg		83	60 - 120
Indeno[1,2,3-cd]pyrene	267	244		ug/Kg		91	63 - 128
Dibenz(a,h)anthracene	267	247		ug/Kg		93	60 - 128
Benzo[g,h,i]perylene	267	243		ug/Kg		91	58 - 129

Eurofins TestAmerica, Spokane

Page 10 of 17

3/17/2020

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-26633/2-A

Matrix: Solid

Analysis Batch: 26635

Client: GeoEngineers Inc

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 26633

LCS LCS

Surrogate	%Recovery Qu	alifier Limits
Nitrobenzene-d5	81	43 - 120
2-Fluorobiphenyl (Surr)	91	56 - 120
p-Terphenyl-d14	89	74 - 136

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-26679/2-A

Matrix: Solid

Analysis Batch: 26726

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 26679

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1.3 03/09/20 07:56 03/11/20 09:29 Arsenic $\overline{\mathsf{ND}}$ 0.50 mg/Kg Cadmium ND 1.0 0.059 mg/Kg 03/09/20 07:56 03/11/20 09:29 Lead ND 3.0 1.5 mg/Kg 03/09/20 07:56 03/11/20 09:29

Lab Sample ID: MB 590-26679/2-A

Matrix: Solid

Analysis Batch: 26801

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 26679

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.50 mg/Kg Arsenic ND 1.3 03/09/20 07:56 03/16/20 13:21 Cadmium ND 1.0 0.059 mg/Kg 03/09/20 07:56 03/16/20 13:21 Lead ND 3.0 1.5 mg/Kg 03/09/20 07:56 03/16/20 13:21

Lab Sample ID: LCS 590-26679/1-A

Matrix: Solid

Analysis Batch: 26726

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 26679

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits 100 Arsenic 102 mg/Kg 102 80 - 120 Lead 50.0 52.5 mg/Kg 105 80 - 120

Lab Sample ID: LCS 590-26679/1-A

Matrix: Solid

Analysis Batch: 26801

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 26679

%Rec. Limits

Added **Analyte** Result Qualifier Unit %Rec Arsenic 100 100 mg/Kg 100 80 - 120 Cadmium 50.0 50.6 mg/Kg 101 80 - 120 Lead 50.0 52.4 mq/Kq 105 80 - 120

Spike

LCS LCS

Eurofins TestAmerica, Spokane

3/17/2020

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-7C(1.5-2)

Date Collected: 03/03/20 11:20 Date Received: 03/03/20 13:49 Lab Sample ID: 590-12833-1

Matrix: Solid

Job ID: 590-12833-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			26624	03/04/20 16:07	NMI	TAL SPK

Client Sample ID: RFPNB-7C(1.5-2)

Date Collected: 03/03/20 11:20 Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-1 **Matrix: Solid** Percent Solids: 87.4

To	ep Type otal/NA	Batch Type Prep Analysis	Batch Method 3550C 8270E SIM	Run	Dil Factor	Amount 15.37 g	Final Amount 2 mL	Batch Number 26633 26635	Prepared or Analyzed 03/05/20 07:37 03/05/20 17:22	Analyst NMI	Lab TAL SPK TAL SPK
1	otal/NA otal/NA	Prep Analysis	3050B 6010D		1	1.19 g	50 mL	26679 26801	03/09/20 07:57 03/16/20 14:14		TAL SPK TAL SPK

Client Sample ID: RFPNB-8C(0.5-1)

Date Collected: 03/03/20 11:30 Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-2

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			26624	03/04/20 16:07	NMI	TAL SPK

Client Sample ID: RFPNB-8C(0.5-1)

Date Collected: 03/03/20 11:30 Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-2 **Matrix: Solid** Percent Solids: 74.0

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.04 g	2 mL	26633	03/05/20 07:37	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			26635	03/05/20 17:49	NMI	TAL SPK
Total/NA	Prep	3050B			1.37 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26726	03/11/20 11:00	SJK	TAL SPK
Total/NA	Prep	3050B			1.37 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26801	03/16/20 14:18	SJK	TAL SPK

Client Sample ID: RFPNB-9C(3-4)

Date Collected: 03/03/20 08:50 Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			26624	03/04/20 16:07	NMI	TAL SPK

Client Sample ID: RFPNB-9C(3-4)

Date Collected: 03/03/20 08:50

Lab Sample ID: 590-12833-3 **Matrix: Solid** Date Received: 03/03/20 13:49 Percent Solids: 91.4

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.01 g	2 mL	26633	03/05/20 07:37	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			26635	03/05/20 18:15	NMI	TAL SPK

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-9C(3-4)

Date Collected: 03/03/20 08:50

Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-3

Matrix: Solid

Percent Solids: 91.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.21 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26726	03/11/20 11:03	SJK	TAL SPK
Total/NA	Prep	3050B			1.21 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26801	03/16/20 14:22	SJK	TAL SPK

Client Sample ID: RFPNB-10C(1.5-2)

Date Collected: 03/03/20 08:55

Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			26624	03/04/20 16:07	NMI	TAL SPK

Client Sample ID: RFPNB-10C(1.5-2)

Date Collected: 03/03/20 08:55 Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-4 **Matrix: Solid**

Percent Solids: 81.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.16 g	2 mL	26633	03/05/20 07:37	NMI	TAL SPI
Total/NA	Analysis	8270E SIM		2			26635	03/05/20 18:41	NMI	TAL SPI
Total/NA	Prep	3050B			1.24 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPI
Total/NA	Analysis	6010D		1			26726	03/11/20 11:07	SJK	TAL SPI
Total/NA	Prep	3050B			1.24 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPI
Total/NA	Analysis	6010D		1			26801	03/16/20 14:26	SJK	TAL SP

Client Sample ID: RFPNB-11C(2-2.5)

Date Collected: 03/03/20 09:00

Date Received: 03/03/20 13:49

Lab Sampl	e ID:	590-12833-5
		Matrice Callel

Lab Sample ID: 590-12833-5

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture					26624	03/04/20 16:07	NMI	TAL SPK

Client Sample ID: RFPNB-11C(2-2.5)

Date Collected: 03/03/20 09:00

Matrix: Solid Date Received: 03/03/20 13:49 Percent Solids: 87.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.23 g	2 mL	26633	03/05/20 07:37	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			26635	03/05/20 19:07	NMI	TAL SPK
Total/NA	Prep	3050B			1.22 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26726	03/11/20 11:11	SJK	TAL SPK
Total/NA	Prep	3050B			1.22 g	50 mL	26679	03/09/20 07:57	SJK	TAL SPK
Total/NA	Analysis	6010D		1			26801	03/16/20 14:29	SJK	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-12833-1

Project/Site: Riverfront Park (0110-148-14)

Laboratory: Eurofins TestAmerica, Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Washington		Program State	Identification Number C569	Expiration Date 01-06-21
The following analytes the agency does not do	•	port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
Moisture		Solid	Percent Moisture	
Moisture		Solid	Percent Solids	

16

4

_

0

9

10

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Method	Method Description	Protocol	Laboratory
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
6010D	Metals (ICP)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3050B	Preparation, Metals	SW846	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-12833-1

-

4

7

ŏ

10

		DATE 3/3/20 PAGE OF LAB LAB NO.
ANALYS	SIS REQUIRED	NOTES/COMMENTS
		(Preserved, filtered, etc.)
		1
X		7215 701
P		for ouch son
XXX		
イナメ		
×××		
XXX		
×	-	
	590-12833 Chain of Custor	dy
FIRM	RELINQUISHED BY	FIRM
	PRINTED NAME	
TIME	DATE	TIME
FIRM	RECEIVED BY SIGNATURE	FIRM
	PRINTED NAME	
TIME	DATE	TIME
	THE XXXXX AS, Pb, Cd	ANALYSIS REQUIRED BRITALED ANALYSIS REQUIRED BRITALED ANALYSIS REQUIRED ANALYSIS REQUIRED BRITALED ANALYSIS REQUIRED BRITALED ANALYSIS REQUIRED BRITALED ANALYSIS REQUIRED ANALYSI

Client: GeoEngineers Inc

Job Number: 590-12833-1

Login Number: 12833

List Source: Eurofins TestAmerica, Spokane

List Number: 1

Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-12833-2

Client Project/Site: Riverfront Park (0110-148-14)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

dance trington

Authorized for release by: 3/6/2020 6:15:23 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

5

7

8

10

11

| 4

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14) Laboratory Job ID: 590-12833-2

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	
Client Sample Results	6
QC Sample Results	8
Chronicle	9
Certification Summary	10
Method Summary	
Chain of Custody	12
Receipt Checklists	13

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Job ID: 590-12833-2

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 3/3/2020 1:49 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.0° C.

GC Semi VOA

Method NWTPH-Dx: Detected hydrocarbons in the diesel range appear to be due to oil overlap in the following samples: RFPNB-7C(1.5-2) (590-12833-1), RFPNB-10C(1.5-2) (590-12833-4) and RFPNB-11C(2-2.5) (590-12833-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 590-12833-2

2

3

4

5

6

1

8

9

11

Sample Summary

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-12833-1	RFPNB-7C(1.5-2)	Solid	03/03/20 11:20	03/03/20 13:49	
590-12833-2	RFPNB-8C(0.5-1)	Solid	03/03/20 11:30	03/03/20 13:49	
590-12833-3	RFPNB-9C(3-4)	Solid	03/03/20 08:50	03/03/20 13:49	
590-12833-4	RFPNB-10C(1.5-2)	Solid	03/03/20 08:55	03/03/20 13:49	
590-12833-5	RFPNB-11C(2-2.5)	Solid	03/03/20 09:00	03/03/20 13:49	

Job ID: 590-12833-2

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-12833-2

Project/Site: Riverfront Park (0110-148-14)

Qualifiers

GC Semi VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

2

5

_

10

11

Job ID: 590-12833-2

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-7C(1.5-2) Lab Sample ID: 590-12833-1

Date Collected: 03/03/20 11:20 **Matrix: Solid** Date Received: 03/03/20 13:49 Percent Solids: 87.4

Method: NWTPH-Dx - Northw	est - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	100		70	29	mg/Kg	<u>₩</u>	03/05/20 10:12	03/05/20 16:13	1
Residual Range Organics (RRO) (C25-C36)	1100		180	35	mg/Kg	☼	03/05/20 10:12	03/05/20 16:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	92		50 - 150				03/05/20 10:12	03/05/20 16:13	1
n-Triacontane-d62	103		50 - 150				03/05/20 10:12	03/05/20 16:13	1

Client Sample ID: RFPNB-8C(0.5-1) Lab Sample ID: 590-12833-2

Date Collected: 03/03/20 11:30 **Matrix: Solid** Date Received: 03/03/20 13:49 Percent Solids: 74.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	39		13	5.6	mg/Kg		03/05/20 10:12	03/05/20 16:57	1
Residual Range Organics (RRO) (C25-C36)	170		33	6.7	mg/Kg	☼	03/05/20 10:12	03/05/20 16:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96		50 - 150				03/05/20 10:12	03/05/20 16:57	1
n-Triacontane-d62	115		50 ₋ 150				03/05/20 10:12	03/05/20 16:57	1

Client Sample ID: RFPNB-9C(3-4) Lab Sample ID: 590-12833-3

Date Collected: 03/03/20 08:50 **Matrix: Solid** Date Received: 03/03/20 13:49 Percent Solids: 91.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		11	4.5	mg/Kg	₩	03/05/20 10:12	03/05/20 17:20	1
Residual Range Organics (RRO) (C25-C36)	6.5	J	27	5.4	mg/Kg	☼	03/05/20 10:12	03/05/20 17:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	88		50 - 150				03/05/20 10:12	03/05/20 17:20	1
n-Triacontane-d62	92		50 ₋ 150				03/05/20 10:12	03/05/20 17:20	1

Client Sample ID: RFPNB-10C(1.5-2) Lab Sample ID: 590-12833-4

Date Collected: 03/03/20 08:55 **Matrix: Solid** Date Received: 03/03/20 13:49 Percent Solids: 81.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	130		18	7.7	mg/Kg	\	03/05/20 10:12	03/05/20 17:42	1
Residual Range Organics (RRO) (C25-C36)	1200		46	9.2	mg/Kg	☼	03/05/20 10:12	03/05/20 17:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	103		50 - 150				03/05/20 10:12	03/05/20 17:42	1
n-Triacontane-d62	133		50 - 150				03/05/20 10:12	03/05/20 17:42	1

Eurofins TestAmerica, Spokane

Page 6 of 13

3/6/2020

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-12833-2

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-11C(2-2.5) Lab Sample ID: 590-12833-5

Date Collected: 03/03/20 09:00 **Matrix: Solid** Date Received: 03/03/20 13:49

Percent Solids: 87.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	230		17	7.1	mg/Kg	<u>∓</u>	03/05/20 10:12	03/05/20 18:04	1
Residual Range Organics (RRO) (C25-C36)	710		42	8.5	mg/Kg	₩	03/05/20 10:12	03/05/20 18:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91		50 - 150				03/05/20 10:12	03/05/20 18:04	1
n-Triacontane-d62	109		50 - 150				03/05/20 10:12	03/05/20 18:04	1

QC Sample Results

Client: GeoEngineers Inc Job ID: 590-12833-2

Project/Site: Riverfront Park (0110-148-14)

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-26638/1-A

Lab Sample ID: LCS 590-26638/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 26642

Analysis Batch: 26642

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 26638

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		10	4.2	mg/Kg		03/05/20 10:12	03/05/20 12:52	1
Residual Range Organics (RRO) (C25-C36)	ND		25	5.0	mg/Kg		03/05/20 10:12	03/05/20 12:52	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
o-Terphenyl	98		50 - 150	03/05/20 10:12 03/05/20 12:52	1
n-Triacontane-d62	96		50 - 150	03/05/20 10:12 03/05/20 12:52	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 26638 %Rec.

Spike LCS LCS D %Rec Analyte Added Result Qualifier Unit Limits Diesel Range Organics (DRO) 66.7 56.1 mg/Kg 84 50 - 150 (C10-C25) 66.7 63.4 50 - 150 Residual Range Organics (RRO) mg/Kg 95 (C25-C36)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	97		50 - 150
n-Triacontane-d62	98		50 - 150

3/6/2020

Job ID: 590-12833-2

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-7C(1.5-2)

Date Collected: 03/03/20 11:20

Client: GeoEngineers Inc

Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-1

Matrix: Solid

Percent Solids: 87.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			2.44 g	5 mL	26638	03/05/20 10:12	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			26642	03/05/20 16:13	NMI	TAL SPK

Client Sample ID: RFPNB-8C(0.5-1)

Date Collected: 03/03/20 11:30 Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-2 **Matrix: Solid** Percent Solids: 74.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.16 g	5 mL	26638	03/05/20 10:12	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			26642	03/05/20 16:57	NMI	TAL SPK

Client Sample ID: RFPNB-9C(3-4)

Date Collected: 03/03/20 08:50 Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-3

Matrix: Solid Percent Solids: 91.4

Percent Solids: 81.5

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.11 g	5 mL	26638	03/05/20 10:12	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			26642	03/05/20 17:20	NMI	TAL SPK

Client Sample ID: RFPNB-10C(1.5-2)

Date Collected: 03/03/20 08:55 Date Received: 03/03/20 13:49

Lab Sample ID: 590-12833-4 **Matrix: Solid**

Lab Sample ID: 590-12833-5

Dil Batch Batch Initial Final Batch Prepared **Prep Type** Method Amount Amount Number or Analyzed Analyst Type Run **Factor** Lab Prep 03/05/20 10:12 NMI Total/NA 3550C 26638 10.02 g 5 mL TAL SPK Total/NA Analysis **NWTPH-Dx** 26642 03/05/20 17:42 NMI TAL SPK

Client Sample ID: RFPNB-11C(2-2.5)

Date Collected: 03/03/20 09:00

Matrix: Solid Date Received: 03/03/20 13:49 Percent Solids: 87.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			10.08 g	5 mL	26638	03/05/20 10:12	NMI	TAL SPK
Total/NA	Analysis	NWTPH-Dx		1			26642	03/05/20 18:04	NMI	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Eurofins TestAmerica, Spokane

Page 9 of 13

3/6/2020

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-12833-2

Project/Site: Riverfront Park (0110-148-14)

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-21

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Method **Method Description** Protocol Laboratory NWTPH-Dx Northwest - Semi-Volatile Petroleum Products (GC) NWTPH TAL SPK 3550C TAL SPK Ultrasonic Extraction SW846

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-12833-2

		DATE 3/3/20 PAGE OF LAB LAB NO.
ANALYS	SIS REQUIRED	NOTES/COMMENTS
		(Preserved, filtered, etc.)
		1
X		7215 701
P		for ouch son
XXX		
イナメ		
×××		
XXX		
×	-	
	590-12833 Chain of Custor	dy
FIRM	RELINQUISHED BY	FIRM
	PRINTED NAME	
TIME	DATE	TIME
FIRM	RECEIVED BY SIGNATURE	FIRM
	PRINTED NAME	
TIME	DATE	TIME
	THE XXXXX AS, Pb, Cd	ANALYSIS REQUIRED BRITALED ANALYSIS REQUIRED BRITALED ANALYSIS REQUIRED ANALYSIS REQUIRED BRITALED ANALYSIS REQUIRED BRITALED ANALYSIS REQUIRED BRITALED ANALYSIS REQUIRED ANALYSI

Client: GeoEngineers Inc

Job Number: 590-12833-2

Login Number: 12833

List Source: Eurofins TestAmerica, Spokane

List Number: 1

Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-12931-1

Client Project/Site: Riverfront Park (0110-148-D6)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

tarque trington

Authorized for release by: 3/20/2020 4:12:18 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

9

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-D6) Laboratory Job ID: 590-12931-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	7
Chronicle	8
Certification Summary	10
Method Summary	11
Chain of Custody	12
Receint Checklists	13

3

4

6

0

9

10

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-D6)

Job ID: 590-12931-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 3/18/2020 1:17 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.1° C.

Metals

Method 6010D: The sample duplicate (DUP) precision for preparation batch 590-26873 and analytical batch 590-26912 was outside control limits. Sample non-homogeneity is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 590-12931-1

Sample Summary

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-D6)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asse
590-12931-1	RFPMB-1A(0-1)	Solid	03/18/20 12:07	03/18/20 13:17	
590-12931-2	RFPMB-1B(0-1)	Solid	03/18/20 12:09	03/18/20 13:17	
590-12931-3	RFPMB-1C(0-1)	Solid	03/18/20 12:11	03/18/20 13:17	
590-12931-4	RFPMB-1D(0-1)	Solid	03/18/20 12:13	03/18/20 13:17	

Job ID: 590-12931-1

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-12931-1

Project/Site: Riverfront Park (0110-148-D6)

Qualifiers

Metals Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
F3	Duplicate RPD exceeds the control limit
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the absolute difference is less than the RL.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

<u> </u>	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

ML

NC

ND

PQL

Practical Quantitation Limit **Quality Control**

Not Calculated

Relative Error Ratio (Radiochemistry)

Minimum Level (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points RPD

Not Detected at the reporting limit (or MDL or EDL if shown)

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-12931-1

Project/Site: Riverfront Park (0110-148-D6)

Client Sample ID: RFPMB-1A(0-1)

Date Collected: 03/18/20 12:07

Date Received: 03/18/20 13:17

Lab Sample ID: 590-12931-1

Matrix: Solid

Percent Solids: 92.3

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.68	J	0.81	0.048	mg/Kg		03/18/20 13:35	03/19/20 08:37	1
Lead	120	F1	2.4	1.2	mg/Kg	☆	03/18/20 13:35	03/19/20 08:37	1

Client Sample ID: RFPMB-1B(0-1)

Date Collected: 03/18/20 12:09 Date Received: 03/18/20 13:17

Lab Sample ID: 590-12931-2 **Matrix: Solid**

Percent Solids: 93.7

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.94		0.78	0.046	mg/Kg	\	03/18/20 13:35	03/19/20 08:58	1
Lead	580		12	5.8	mg/Kg	₩	03/18/20 13:35	03/20/20 12:21	5

Client Sample ID: RFPMB-1C(0-1)

Date Collected: 03/18/20 12:11

Date Received: 03/18/20 13:17

Lab Sample ID: 590-12931-3

Matrix: Solid Percent Solids: 94.6

Method: 6010D - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 03/18/20 13:35 03/19/20 09:02 Cadmium 0.77 0.046 mg/Kg 1.7 Lead 390 2.3 1.1 mg/Kg 03/18/20 13:35 03/19/20 09:02

Client Sample ID: RFPMB-1D(0-1)

Date Collected: 03/18/20 12:13

Date Received: 03/18/20 13:17

Lab Sample ID: 590-12931-4

Matrix: Solid Percent Solids: 96.5

Method: 6010D - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit Prepared Dil Fac Analyzed Cadmium 0.76 0.045 mg/Kg 0.69 03/18/20 13:35 03/19/20 09:15 J Lead 220 2.3 1.1 mg/Kg © 03/18/20 13:35 03/19/20 09:15

Job ID: 590-12931-1

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-D6)

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-26873/2-A

Lab Sample ID: LCS 590-26873/1-A

Matrix: Solid

Analysis Batch: 26912

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 26873

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Cadmium 1.0 0.059 mg/Kg 03/18/20 13:35 03/19/20 08:34 $\overline{\mathsf{ND}}$ 3.0 03/18/20 13:35 03/19/20 08:34 Lead ND 1.5 mg/Kg

MB MB

120 F1

Client Sample ID: Lab Control Sample

Ö

57

75 - 125

Prep Type: Total/NA

mg/Kg

Prep Type: Total/NA

Prep Batch: 26873

20

Prep Batch: 26873

Spike LCS LCS %Rec. Analyte Added Result Qualifier D %Rec Limits Unit Cadmium 50.0 52.7 105 80 - 120 mg/Kg Lead 50.0 55.9 mg/Kg 112 80 - 120

Lab Sample ID: 590-12931-1 MS Client Sample ID: RFPMB-1A(0-1) Prep Type: Total/NA

Matrix: Solid

Matrix: Solid

Analysis Batch: 26912

Analysis Batch: 26912

MS MS Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier D %Rec Limits Unit

53.1

Analyte ₩ Cadmium 0.68 J 53.1 48.7 75 - 125 mg/Kg 90 Lead 120 F1 53.1 150 F1 mg/Kg 54 75 - 125

Lab Sample ID: 590-12931-1 MSD Client Sample ID: RFPMB-1A(0-1) **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 26912** Prep Batch: 26873 MSD MSD **RPD** Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Cadmium 0.68 J 53.1 47.0 ₩ 87 75 - 125 3 20 mg/Kg

Lab Sample ID: 590-12931-1 DU Client Sample ID: RFPMB-1A(0-1)

151 F1

Matrix: Solid

Lead

Analysis Batch: 26912 Prep Batch: 26873 Sample Sample DU DU **RPD** Result Qualifier Limit Analyte Result Qualifier Unit D **RPD**

₩ Cadmium 0.68 J 0.527 J F5 25 20 mg/Kg ₩ 120 F1 83.2 F3 37 20 Lead mg/Kg

3/20/2020

Prep Type

Total/NA

Project/Site: Riverfront Park (0110-148-D6)

Client Sample ID: RFPMB-1A(0-1)

Date Collected: 03/18/20 12:07

Date Received: 03/18/20 13:17

Lab Sample ID: 590-12931-1

Matrix: Solid

Job ID: 590-12931-1

	Dil	Initial	Final	Batch	Prepared			
Run	Factor	Amount	Amount	Number	or Analyzod	Analyet	l ah	

26874

Client Sample ID: RFPMB-1A(0-1)

Batch

Type

Analysis

Batch Method

Moisture

Date Collected: 03/18/20 12:07

Date Received: 03/18/20 13:17

03/18/20 13:39 AMB TAL SPK Lab Sample ID: 590-12931-1

> **Matrix: Solid** Percent Solids: 92.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.34 g	50 mL	26873	03/18/20 13:35	AMB	TAL SPK
Total/NA	Analysis	6010D		1			26912	03/19/20 08:37	AMB	TAL SPK

Client Sample ID: RFPMB-1B(0-1)

Date Collected: 03/18/20 12:09

Date Received: 03/18/20 13:17

Lab Sample ID: 590-12931-2 **Matrix: Solid**

ſ	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	Moisture		1			26874	03/18/20 13:39	AMB	TAL SPK

Client Sample ID: RFPMB-1B(0-1)

Date Collected: 03/18/20 12:09

Date Received: 03/18/20 13:17

Lab Sample ID: 590-12931-2 Matrix: Solid

Lab Sample ID: 590-12931-3

Percent Solids: 93.7

Matrix: Solid

Percent Solids: 94.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.36 g	50 mL	26873	03/18/20 13:35	AMB	TAL SPK
Total/NA	Analysis	6010D		1			26912	03/19/20 08:58	AMB	TAL SPK
Total/NA	Prep	3050B			1.36 g	50 mL	26873	03/18/20 13:35	AMB	TAL SPK
Total/NA	Analysis	6010D		5			26924	03/20/20 12:21	AMB	TAL SPK

Client Sample ID: RFPMB-1C(0-1)

Date Collected: 03/18/20 12:11

Date Received: 03/18/20 13:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture					26874	03/18/20 13:39	AMB	TAL SPK

Client Sample ID: RFP

Date Collected: 03/18/20 1

Total/NA

Date Received: 03/18/20 13:17

Analysis

6010D

PMB-1C(0-1)	Lab Sample ID: 590-12931-3
12:11	Matrix: Solid

26912

Batch Batch Dil Initial Final Batch Prepared Method Amount **Prep Type Factor** Amount Number Type Run or Analyzed Analyst Lab Total/NA Prep 3050B 1.37 g 50 mL 26873 03/18/20 13:35 AMB TAL SPK

1

03/19/20 09:02 AMB

TAL SPK

Lab Chronicle

Client: GeoEngineers Inc Job ID: 590-12931-1

Project/Site: Riverfront Park (0110-148-D6)

Lab Sample ID: 590-12931-4 Client Sample ID: RFPMB-1D(0-1)

Date Collected: 03/18/20 12:13 **Matrix: Solid**

Date Received: 03/18/20 13:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			26874	03/18/20 13:39	AMB	TAL SPK

Client Sample ID: RFPMB-1D(0-1)

Lab Sample ID: 590-12931-4 Date Collected: 03/18/20 12:13 **Matrix: Solid** Date Received: 03/18/20 13:17 Percent Solids: 96.5

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.36 g	50 mL	26873	03/18/20 13:35	AMB	TAL SPK
Total/NA	Analysis	6010D		1			26912	03/19/20 09:15	AMB	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-12931-1

Project/Site: Riverfront Park (0110-148-D6)

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Washington	State	C569	01-06-21	

3

4

E

7

9

10

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-D6)

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3050B	Preparation, Metals	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-12931-1

3

4

7

ŏ

10

4 4

11

OF COMPANDE ON THE COMPANDE OF THE COMPAND OF THE COM	DATE \$//8/70 OF LAB NO.
SIS REQUIRED	NOTES/COMMENTS
	(Freserved, mixered, etc.)
	78 77
2931 Chain of Custo	
590	
RELINQUISHED BY	FIRM
SIGNATURE	
PRINTED NAME	
DATE	TIME
RECEIVED BY	FIRM
SIGNATURE PRINTED NAME	
DATE	TIME

Client: GeoEngineers Inc

Job Number: 590-12931-1

Login Number: 12931 List Number: 1 List Source: Eurofins TestAmerica, Spokane

Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13048-1

Client Project/Site: Riverfront Park - Havermale Island

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

dancue timington

Authorized for release by: 4/29/2020 4:16:56 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GeoEngineers Inc Project/Site: Riverfront Park - Havermale Island Laboratory Job ID: 590-13048-1

Table of Contents		
Cover Page	1	
Table of Contents	2	
Case Narrative	3	
Sample Summary	4	
Definitions	5	
Client Sample Results	6	
QC Sample Results	13	
Chronicle	18	
Certification Summary	22	
Method Summary	23	
Chain of Custody	24	
Receipt Checklists	25	

8

9

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park - Havermale Island

Job ID: 590-13048-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 4/14/2020 1:18 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.4° C.

GC/MS Semi VOA

Method 8270E SIM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 590-27247 and analytical batch 590-27246 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8270E SIM: The method blank for preparation batch 590-27247 and analytical batch 590-27246 contained Pyrene, Fluoranthene and Benzo[g,h,i]perylene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8270E SIM: Surrogate recovery for the following sample was outside control limits: WH-6C(0-0.5) (590-13048-6). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 7471B: The sample duplicate (DUP) precision for preparation batch 590-27255 and analytical batch 590-27288 was outside control limits. Sample non-homogeneity is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 590-13048-1

3

4

6

-

8

9

10

Sample Summary

Client: GeoEngineers Inc Project/Site: Riverfront Park - Havermale Island

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-13048-1	WH-1C(0-0.5)	Solid	04/14/20 08:15	04/14/20 13:18	
590-13048-2	WH-2C(0-0.5)	Solid	04/14/20 08:20	04/14/20 13:18	
590-13048-3	WH-3C(0-0.5)	Solid	04/14/20 08:25	04/14/20 13:18	
590-13048-4	WH-4C(0-0.5)	Solid	04/14/20 08:30	04/14/20 13:18	
590-13048-5	WH-5C(0-0.5)	Solid	04/14/20 08:35	04/14/20 13:18	
590-13048-6	WH-6C(0-0.5)	Solid	04/14/20 08:40	04/14/20 13:18	
590-13048-7	WH-7C(0-0.5)	Solid	04/14/20 08:45	04/14/20 13:18	
590-13048-8	WH-8C(0-0.5)	Solid	04/14/20 08:50	04/14/20 13:18	

Job ID: 590-13048-1

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13048-1

Project/Site: Riverfront Park - Havermale Island

Qualifier Description

Qualifiers

Qualifier

00	BAC	C	NO A
GU		Sem	i VOA

	·
В	Compound was found in the blank and sample.
□1	MS and/or MSD recovery exceeds control limits

F2 MS/MSD RPD exceeds control limits

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Х Surrogate recovery exceeds control limits

Metals

Qualifier **Qualifier Description**

Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the

absolute difference is less than the RL.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DΙ Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Client: GeoEngineers Inc

Project/Site: Riverfront Park - Havermale Island

Client Sample ID: WH-1C(0-0.5)

Date Collected: 04/14/20 08:15

Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-1

Matrix: Solid

Percent Solids: 97.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg	<u></u>	04/21/20 13:26	04/21/20 17:54	1
2-Methylnaphthalene	ND		10	3.2	ug/Kg	☼	04/21/20 13:26	04/21/20 17:54	1
1-Methylnaphthalene	ND	F1	10	2.3	ug/Kg	₽	04/21/20 13:26	04/21/20 17:54	1
Acenaphthylene	5.6	J	10	3.4	ug/Kg	\$	04/21/20 13:26	04/21/20 17:54	1
Acenaphthene	ND		10	2.6	ug/Kg	☼	04/21/20 13:26	04/21/20 17:54	1
Fluorene	ND		10	2.3	ug/Kg	☼	04/21/20 13:26	04/21/20 17:54	1
Phenanthrene	8.9	J	10	3.7	ug/Kg	φ.	04/21/20 13:26	04/21/20 17:54	1
Anthracene	11		10	2.0	ug/Kg	☼	04/21/20 13:26	04/21/20 17:54	1
Fluoranthene	24	В	10	2.5	ug/Kg	☼	04/21/20 13:26	04/21/20 17:54	1
Pyrene	32	В	10	3.9	ug/Kg	₽	04/21/20 13:26	04/21/20 17:54	1
Benzo[a]anthracene	30		10	2.2	ug/Kg	☼	04/21/20 13:26	04/21/20 17:54	1
Chrysene	44	F2	10	1.6	ug/Kg	☼	04/21/20 13:26	04/21/20 17:54	1
Benzo[b]fluoranthene	70	F1 F2	10	3.6	ug/Kg	₽	04/21/20 13:26	04/21/20 17:54	1
Benzo[k]fluoranthene	26		10	2.6	ug/Kg	☼	04/21/20 13:26	04/21/20 17:54	1
Benzo[a]pyrene	53		10	4.3	ug/Kg	☼	04/21/20 13:26	04/21/20 17:54	1
Indeno[1,2,3-cd]pyrene	30		10	3.0	ug/Kg	₽	04/21/20 13:26	04/21/20 17:54	1
Dibenz(a,h)anthracene	11		10	2.9	ug/Kg	₽	04/21/20 13:26	04/21/20 17:54	1
Benzo[g,h,i]perylene	37	В	10	2.4	ug/Kg	₩	04/21/20 13:26	04/21/20 17:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	73		43 - 120				04/21/20 13:26	04/21/20 17:54	1
2-Fluorobiphenyl (Surr)	75		56 - 120				04/21/20 13:26	04/21/20 17:54	1
p-Terphenyl-d14	80		74 - 136				04/21/20 13:26	04/21/20 17:54	1
Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.0		1.1	0.43	mg/Kg	<u> </u>	04/22/20 09:55	04/29/20 13:46	1
Barium	34		1.1	0.29	mg/Kg	₩	04/22/20 09:55	04/29/20 13:46	1
Cadmium	0.070	J	0.86	0.051	mg/Kg	₩	04/22/20 09:55	04/29/20 13:46	1
Chromium	7.5		1.1	0.15	mg/Kg	₽	04/22/20 09:55	04/29/20 13:46	1
Lead	13		2.6	1.3	mg/Kg	₩	04/22/20 09:55	04/29/20 13:46	1
Selenium	ND		4.3	2.6	mg/Kg	₩	04/22/20 09:55	04/29/20 13:46	1
Silver	ND		1.1	0.11	mg/Kg	₽	04/22/20 09:55	04/29/20 13:46	1
_									

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	14	J	49	3.5	ug/Kg	₩	04/22/20 09:45	04/24/20 14:51	1

Client Sample ID: WH-2C(0-0.5) Lab Sample ID: 590-13048-2 Date Collected: 04/14/20 08:20 **Matrix: Solid** Date Received: 04/14/20 13:18 Percent Solids: 97.9

Analyte	Result Qualif	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	9.7	2.1	ug/Kg	<u> </u>	04/21/20 13:26	04/21/20 19:13	1
2-Methylnaphthalene	ND	9.7	3.0	ug/Kg	☼	04/21/20 13:26	04/21/20 19:13	1
1-Methylnaphthalene	ND	9.7	2.2	ug/Kg	☼	04/21/20 13:26	04/21/20 19:13	1
Acenaphthylene	4.1 J	9.7	3.2	ug/Kg	φ.	04/21/20 13:26	04/21/20 19:13	1
Acenaphthene	ND	9.7	2.5	ug/Kg	☼	04/21/20 13:26	04/21/20 19:13	1
Fluorene	ND	9.7	2.2	ug/Kg	☼	04/21/20 13:26	04/21/20 19:13	1
Phenanthrene	14	9.7	3.5	ug/Kg		04/21/20 13:26	04/21/20 19:13	1

Eurofins TestAmerica, Spokane

Page 6 of 25

4/29/2020

Client: GeoEngineers Inc

Project/Site: Riverfront Park - Havermale Island

Client Sample ID: WH-2C(0-0.5)

Lab Sample ID: 590-13048-2 Date Collected: 04/14/20 08:20 **Matrix: Solid** Date Received: 04/14/20 13:18

Percent Solids: 97.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	5.8	J	9.7	1.9	ug/Kg	<u> </u>	04/21/20 13:26	04/21/20 19:13	1
Fluoranthene	31	В	9.7	2.4	ug/Kg	☼	04/21/20 13:26	04/21/20 19:13	1
Pyrene	32	В	9.7	3.7	ug/Kg	₽	04/21/20 13:26	04/21/20 19:13	1
Benzo[a]anthracene	18		9.7	2.1	ug/Kg	☼	04/21/20 13:26	04/21/20 19:13	1
Chrysene	22		9.7	1.5	ug/Kg	₩	04/21/20 13:26	04/21/20 19:13	1
Benzo[b]fluoranthene	28		9.7	3.4	ug/Kg	₽	04/21/20 13:26	04/21/20 19:13	1
Benzo[k]fluoranthene	11		9.7	2.4	ug/Kg	₩	04/21/20 13:26	04/21/20 19:13	1
Benzo[a]pyrene	22		9.7	4.1	ug/Kg	☼	04/21/20 13:26	04/21/20 19:13	1
Indeno[1,2,3-cd]pyrene	15		9.7	2.9	ug/Kg		04/21/20 13:26	04/21/20 19:13	1
Dibenz(a,h)anthracene	5.1	J	9.7	2.8	ug/Kg	₩	04/21/20 13:26	04/21/20 19:13	1
Benzo[g,h,i]perylene	21	В	9.7	2.3	ug/Kg	₩	04/21/20 13:26	04/21/20 19:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	63		43 - 120				04/21/20 13:26	04/21/20 19:13	1
2-Fluorobiphenyl (Surr)	73		56 - 120				04/21/20 13:26	04/21/20 19:13	1
p-Terphenyl-d14	84		74 - 136				04/21/20 13:26	04/21/20 19:13	1

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	9.1	<u> </u>	1.0	0.42	mg/Kg	<u></u>	04/22/20 09:55	04/29/20 14:00	1
Barium	52		1.0	0.28	mg/Kg	☼	04/22/20 09:55	04/29/20 14:00	1
Cadmium	0.15	J	0.84	0.049	mg/Kg	☼	04/22/20 09:55	04/29/20 14:00	1
Chromium	8.8		1.0	0.15	mg/Kg	₽	04/22/20 09:55	04/29/20 14:00	1
Lead	29		2.5	1.2	mg/Kg	☼	04/22/20 09:55	04/29/20 14:00	1
Selenium	ND		4.2	2.5	mg/Kg	₩	04/22/20 09:55	04/29/20 14:00	1
Silver	ND		1.0	0.11	mg/Kg	₩.	04/22/20 09:55	04/29/20 14:00	1

Method: 7471B - Mercury (CVAA	()								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	32	J	47	3.4	ug/Kg	₽	04/22/20 09:45	04/24/20 15:00	1

Lab Sample ID: 590-13048-3 Client Sample ID: WH-3C(0-0.5) Date Collected: 04/14/20 08:25 **Matrix: Solid** Date Received: 04/14/20 13:18 **Percent Solids: 91.5**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	10	J	21	4.6	ug/Kg	<u> </u>	04/21/20 13:26	04/21/20 19:39	2
2-Methylnaphthalene	13	J	21	6.6	ug/Kg	☼	04/21/20 13:26	04/21/20 19:39	2
1-Methylnaphthalene	8.8	J	21	4.7	ug/Kg	☼	04/21/20 13:26	04/21/20 19:39	2
Acenaphthylene	61		21	7.0	ug/Kg		04/21/20 13:26	04/21/20 19:39	2
Acenaphthene	22		21	5.4	ug/Kg	☼	04/21/20 13:26	04/21/20 19:39	2
Fluorene	18	J	21	4.7	ug/Kg	☼	04/21/20 13:26	04/21/20 19:39	2
Phenanthrene	310		21	7.7	ug/Kg	₽	04/21/20 13:26	04/21/20 19:39	2
Anthracene	110		21	4.2	ug/Kg	☼	04/21/20 13:26	04/21/20 19:39	2
Fluoranthene	600	В	21	5.3	ug/Kg	☼	04/21/20 13:26	04/21/20 19:39	2
Pyrene	600	В	21	8.1	ug/Kg	₽	04/21/20 13:26	04/21/20 19:39	2
Benzo[a]anthracene	330		21	4.5	ug/Kg	₩	04/21/20 13:26	04/21/20 19:39	2
Chrysene	360		21	3.2	ug/Kg	☼	04/21/20 13:26	04/21/20 19:39	2
Benzo[b]fluoranthene	420		21	7.4	ug/Kg	₽	04/21/20 13:26	04/21/20 19:39	2
Benzo[k]fluoranthene	150		21	5.3	ug/Kg	≎	04/21/20 13:26	04/21/20 19:39	2

Eurofins TestAmerica, Spokane

Page 7 of 25 4/29/2020 Client: GeoEngineers Inc Job ID: 590-13048-1

Project/Site: Riverfront Park - Havermale Island

Client Sample ID: WH-3C(0-0.5)

Lab Sample ID: 590-13048-3 Date Collected: 04/14/20 08:25 **Matrix: Solid**

Date Received: 04/14/20 13:18 Percent Solids: 91.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	340		21	9.0	ug/Kg	₽	04/21/20 13:26	04/21/20 19:39	2
Indeno[1,2,3-cd]pyrene	180		21	6.3	ug/Kg	φ.	04/21/20 13:26	04/21/20 19:39	2
Dibenz(a,h)anthracene	58		21	6.0	ug/Kg	☼	04/21/20 13:26	04/21/20 19:39	2
Benzo[g,h,i]perylene	200	В	21	5.0	ug/Kg	≎	04/21/20 13:26	04/21/20 19:39	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	81		43 - 120				04/21/20 13:26	04/21/20 19:39	2
Nitrobenzene-d5	01								
Nitrobenzene-d5 2-Fluorobiphenyl (Surr)	83		56 - 120				04/21/20 13:26	04/21/20 19:39	2

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	13		1.1	0.43	mg/Kg	₩	04/22/20 09:55	04/29/20 14:10	1
Barium	82		1.1	0.29	mg/Kg	≎	04/22/20 09:55	04/29/20 14:10	1
Cadmium	0.72	J	0.87	0.052	mg/Kg	≎	04/22/20 09:55	04/29/20 14:10	1
Chromium	9.2		1.1	0.15	mg/Kg	\$	04/22/20 09:55	04/29/20 14:10	1
Lead	230		2.6	1.3	mg/Kg	☼	04/22/20 09:55	04/29/20 14:10	1
Selenium	ND		4.4	2.6	mg/Kg	₽	04/22/20 09:55	04/29/20 14:10	1
Silver	ND		1.1	0.12	mg/Kg		04/22/20 09:55	04/29/20 14:10	1

Method: 7471B - Mercury (CVAA))							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	230	49	3.5	ug/Kg	₩	04/22/20 09:45	04/24/20 15:03	1

Client Sample ID: WH-4C(0-0.5) Lab Sample ID: 590-13048-4 Date Collected: 04/14/20 08:30 **Matrix: Solid** Date Received: 04/14/20 13:18 **Percent Solids: 93.9**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg	-	04/21/20 13:26	04/21/20 20:06	1
2-Methylnaphthalene	ND		10	3.2	ug/Kg	☼	04/21/20 13:26	04/21/20 20:06	1
1-Methylnaphthalene	ND		10	2.3	ug/Kg	₩	04/21/20 13:26	04/21/20 20:06	1
Acenaphthylene	ND		10	3.4	ug/Kg	₩	04/21/20 13:26	04/21/20 20:06	1
Acenaphthene	ND		10	2.6	ug/Kg	☼	04/21/20 13:26	04/21/20 20:06	1
Fluorene	ND		10	2.3	ug/Kg	☼	04/21/20 13:26	04/21/20 20:06	1
Phenanthrene	4.1	J	10	3.7	ug/Kg	₩	04/21/20 13:26	04/21/20 20:06	1
Anthracene	2.3	J	10	2.0	ug/Kg	☼	04/21/20 13:26	04/21/20 20:06	1
Fluoranthene	8.1	JB	10	2.5	ug/Kg	☼	04/21/20 13:26	04/21/20 20:06	1
Pyrene	8.4	JB	10	3.9	ug/Kg	₩	04/21/20 13:26	04/21/20 20:06	1
Benzo[a]anthracene	5.7	J	10	2.2	ug/Kg	₩	04/21/20 13:26	04/21/20 20:06	1
Chrysene	5.2	J	10	1.6	ug/Kg	☼	04/21/20 13:26	04/21/20 20:06	1
Benzo[b]fluoranthene	8.3	J	10	3.6	ug/Kg		04/21/20 13:26	04/21/20 20:06	1
Benzo[k]fluoranthene	4.1	J	10	2.6	ug/Kg	☼	04/21/20 13:26	04/21/20 20:06	1
Benzo[a]pyrene	6.7	J	10	4.3	ug/Kg	☼	04/21/20 13:26	04/21/20 20:06	1
Indeno[1,2,3-cd]pyrene	3.3	J	10	3.0	ug/Kg		04/21/20 13:26	04/21/20 20:06	1
Dibenz(a,h)anthracene	ND		10	2.9	ug/Kg	☼	04/21/20 13:26	04/21/20 20:06	1
Benzo[g,h,i]perylene	6.2	JB	10	2.4	ug/Kg	≎	04/21/20 13:26	04/21/20 20:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	58		43 - 120				04/21/20 13:26	04/21/20 20:06	1

Eurofins TestAmerica, Spokane

Page 8 of 25 4/29/2020 Client: GeoEngineers Inc Job ID: 590-13048-1

Project/Site: Riverfront Park - Havermale Island

Client Sample ID: WH-4C(0-0.5)

Lab Sample ID: 590-13048-4 Date Collected: 04/14/20 08:30 **Matrix: Solid**

Date Received: 04/14/20 13:18 Percent Solids: 93.9

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	65		56 - 120	04/21/20 13:26	04/21/20 20:06	1
p-Terphenyl-d14	76		74 - 136	04/21/20 13:26	04/21/20 20:06	1

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	17		0.97	0.39	mg/Kg	<u></u>	04/22/20 09:55	04/29/20 14:24	1
Barium	87		0.97	0.26	mg/Kg	☼	04/22/20 09:55	04/29/20 14:24	1
Cadmium	0.15	J	0.78	0.046	mg/Kg	₩	04/22/20 09:55	04/29/20 14:24	1
Chromium	12		0.97	0.14	mg/Kg	₩.	04/22/20 09:55	04/29/20 14:24	1
Lead	17		2.3	1.1	mg/Kg	₩	04/22/20 09:55	04/29/20 14:24	1
Selenium	ND		3.9	2.3	mg/Kg	₩	04/22/20 09:55	04/29/20 14:24	1
Silver	ND		0.97	0.10	mg/Kg	₽	04/22/20 09:55	04/29/20 14:24	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	11	J	49	3.5	ug/Kg		04/22/20 09:45	04/24/20 15:05	1

Client Sample ID: WH-5C(0-0.5) Lab Sample ID: 590-13048-5 Date Collected: 04/14/20 08:35 **Matrix: Solid** Date Received: 04/14/20 13:18 Percent Solids: 98.9

ND			MDL		D	Prepared	Analyzed	Dil Fac
		10	2.2	ug/Kg	<u> </u>	04/21/20 13:26	04/21/20 20:32	1
ND		10	3.1	ug/Kg	☼	04/21/20 13:26	04/21/20 20:32	1
ND		10	2.2	ug/Kg	₩	04/21/20 13:26	04/21/20 20:32	1
ND		10	3.3	ug/Kg	₽	04/21/20 13:26	04/21/20 20:32	1
ND		10	2.5	ug/Kg	☼	04/21/20 13:26	04/21/20 20:32	1
ND		10	2.2	ug/Kg	☼	04/21/20 13:26	04/21/20 20:32	1
4.8	J	10	3.7	ug/Kg	₽	04/21/20 13:26	04/21/20 20:32	1
2.2	J	10	2.0	ug/Kg	☼	04/21/20 13:26	04/21/20 20:32	1
9.8	JB	10	2.5	ug/Kg	☼	04/21/20 13:26	04/21/20 20:32	1
11	В	10	3.8	ug/Kg	₽	04/21/20 13:26	04/21/20 20:32	1
5.9	J	10	2.1	ug/Kg	☼	04/21/20 13:26	04/21/20 20:32	1
6.3	J	10	1.5	ug/Kg	☼	04/21/20 13:26	04/21/20 20:32	1
8.3	J	10	3.5	ug/Kg	₽	04/21/20 13:26	04/21/20 20:32	1
4.5	J	10	2.5	ug/Kg	☼	04/21/20 13:26	04/21/20 20:32	1
7.0	J	10	4.3	ug/Kg	☼	04/21/20 13:26	04/21/20 20:32	1
3.8	J	10	3.0	ug/Kg	₽	04/21/20 13:26	04/21/20 20:32	1
ND		10	2.9	ug/Kg	☼	04/21/20 13:26	04/21/20 20:32	1
5.9	JB	10	2.4	ug/Kg	₩	04/21/20 13:26	04/21/20 20:32	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
55		43 - 120				04/21/20 13:26	04/21/20 20:32	1
59		56 - 120				04/21/20 13:26	04/21/20 20:32	1
75		74 - 136				04/21/20 13:26	04/21/20 20:32	1
	ND ND ND 4.8 2.2 9.8 11 5.9 6.3 8.3 4.5 7.0 3.8 ND 5.9 %Recovery	ND ND ND 4.8 J 2.2 J 9.8 J B 11 B 5.9 J 6.3 J 8.3 J 4.5 J 7.0 J 3.8 J ND 5.9 J B **Recovery Qualifier 55 59 75	ND 10 ND 10 ND 10 A.8 J 10 2.2 J 10 9.8 JB 10 11 B 10 5.9 J 10 6.3 J 10 8.3 J 10 4.5 J 10 7.0 J 10 3.8 J 10 ND 10 5.9 JB 10 **Recovery Qualifier Limits 55 43-120 59 56-120 75 74-136	ND 10 3.3 ND 10 2.5 ND 10 2.2 4.8 J 10 3.7 2.2 J 10 2.0 9.8 JB 10 2.5 11 B 10 3.8 5.9 J 10 2.1 6.3 J 10 1.5 8.3 J 10 3.5 4.5 J 10 3.5 4.5 J 10 3.5 7.0 J 10 4.3 3.8 J 10 3.0 ND 10 2.9 5.9 JB 10 2.4 **Recovery Qualifier Limits 55 43-120 59 56-120 74-136	ND 10 3.3 ug/Kg ND 10 2.5 ug/Kg ND 10 2.2 ug/Kg 4.8 J 10 3.7 ug/Kg 2.2 J 10 2.0 ug/Kg 9.8 JB 10 2.5 ug/Kg 11 B 10 3.8 ug/Kg 5.9 J 10 2.1 ug/Kg 6.3 J 10 1.5 ug/Kg 8.3 J 10 3.5 ug/Kg 4.5 J 10 2.5 ug/Kg 7.0 J 10 2.5 ug/Kg 7.0 J 10 4.3 ug/Kg 3.8 J 10 3.0 ug/Kg ND 10 2.9 ug/Kg ND 10 2.9 ug/Kg ND 10 2.4 ug/Kg **Recovery Qualifier Limits 55 43-120 59 56-120 75 74-136	ND 10 3.3 ug/Kg ☆ ND 10 2.5 ug/Kg ☆ ND 10 2.2 ug/Kg ☆ 4.8 J 10 3.7 ug/Kg ☆ 2.2 J 10 2.0 ug/Kg ☆ 9.8 JB 10 2.5 ug/Kg ☆ 11 B 10 3.8 ug/Kg ☆ 5.9 J 10 2.1 ug/Kg ☆ 6.3 J 10 1.5 ug/Kg ☆ 8.3 J 10 3.5 ug/Kg ☆ 4.5 J 10 2.5 ug/Kg ☆ 7.0 J 10 4.3 ug/Kg ☆ 3.8 J 10 3.0 ug/Kg ☆ ND 10 2.9 ug/Kg ☆ ND 10 2.4 ug/Kg ☆ S.9 JB 10 2.4 ug/Kg ☆ 55 43-120 59 56-120 75 74-136	ND 10 3.3 ug/Kg	ND 10 3.3 ug/Kg 04/21/20 13:26 04/21/20 20:32 ND 10 2.5 ug/Kg 04/21/20 13:26 04/21/20 20:32 ND 10 2.2 ug/Kg 04/21/20 13:26 04/21/20 20:32 4.8 J 10 3.7 ug/Kg 04/21/20 13:26 04/21/20 20:32 4.8 J 10 2.0 ug/Kg 04/21/20 13:26 04/21/20 20:32 9.8 JB 10 2.5 ug/Kg 04/21/20 13:26 04/21/20 20:32 11 B 10 3.8 ug/Kg 04/21/20 13:26 04/21/20 20:32 5.9 J 10 2.1 ug/Kg 04/21/20 13:26 04/21/20 20:32 6.3 J 10 3.5 ug/Kg 04/21/20 13:26 04/21/20 20:32 8.3 J 10 3.5 ug/Kg 04/21/20 13:26 04/21/20 20:32 4.5 J 10 2.5 ug/Kg 04/21/20 13:26 04/21/20 20:32 8.3 J 10 3.5 ug/Kg 04/21/20 13:26 04/21/20 20:32 7.0 J 10 4.3 ug/Kg 04/21/20 13:26 04/21/20 20:32 3.8 J 10 3.0 ug/Kg 04/21/20 13:26 04/21/20 20:32 ND 10 2.9 ug/Kg 04/21/20 13:26 04/21/20 20:32 ND 10 2.9 ug/Kg 04/21/20 13:26 04/21/20 20:32 **Recovery Qualifier Limits Prepared Analyzed 04/21/20 20:32 59 56-120 04/21/20 13:26 04/21/20 20:32 59 56-120 04/21/20 13:26 04/21/20 20:32 75 74-136 04/21/20 13:26 04/21/20 20:32

Method. 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	14		1.1	0.42	mg/Kg	\	04/22/20 09:55	04/29/20 14:28	1

Eurofins TestAmerica, Spokane

Page 9 of 25 4/29/2020 Client: GeoEngineers Inc

Project/Site: Riverfront Park - Havermale Island

Client Sample ID: WH-5C(0-0.5)

Date Collected: 04/14/20 08:35 Date Received: 04/14/20 13:18 Lab Sample ID: 590-13048-5

Matrix: Solid

Percent Solids: 98.9

Job ID: 590-13048-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	55		1.1	0.28	mg/Kg	₩	04/22/20 09:55	04/29/20 14:28	1
Cadmium	0.10	J	0.85	0.050	mg/Kg	₩	04/22/20 09:55	04/29/20 14:28	1
Chromium	11		1.1	0.15	mg/Kg	₩	04/22/20 09:55	04/29/20 14:28	1
Lead	7.9		2.5	1.2	mg/Kg	₩	04/22/20 09:55	04/29/20 14:28	1
Selenium	ND		4.2	2.6	mg/Kg	₩	04/22/20 09:55	04/29/20 14:28	1
Silver	ND		1.1	0.11	mg/Kg		04/22/20 09:55	04/29/20 14:28	1

Method: 7471B - Mercury (CVAA) Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac 3.3 ug/Kg Hg ND 46

Client Sample ID: WH-6C(0-0.5)

Date Collected: 04/14/20 08:40

Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-6

Matrix: Solid Percent Solids: 95.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	6.1	J	10	2.2	ug/Kg	<u></u>	04/21/20 13:26	04/21/20 20:58	1
2-Methylnaphthalene	9.6	J	10	3.1	ug/Kg	☼	04/21/20 13:26	04/21/20 20:58	1
1-Methylnaphthalene	5.8	J	10	2.2	ug/Kg	☼	04/21/20 13:26	04/21/20 20:58	1
Acenaphthylene	12		10	3.4	ug/Kg	φ.	04/21/20 13:26	04/21/20 20:58	1
Acenaphthene	3.0	J	10	2.6	ug/Kg	☼	04/21/20 13:26	04/21/20 20:58	1
Fluorene	2.3	J	10	2.2	ug/Kg	₩	04/21/20 13:26	04/21/20 20:58	1
Phenanthrene	34		10	3.7	ug/Kg	₩	04/21/20 13:26	04/21/20 20:58	1
Anthracene	18		10	2.0	ug/Kg	☼	04/21/20 13:26	04/21/20 20:58	1
Fluoranthene	62	В	10	2.5	ug/Kg	₩	04/21/20 13:26	04/21/20 20:58	1
Pyrene	64	В	10	3.9	ug/Kg	₩	04/21/20 13:26	04/21/20 20:58	1
Benzo[a]anthracene	38		10	2.2	ug/Kg	☼	04/21/20 13:26	04/21/20 20:58	1
Chrysene	51		10	1.5	ug/Kg	☼	04/21/20 13:26	04/21/20 20:58	1
Benzo[b]fluoranthene	67		10	3.5	ug/Kg	₩	04/21/20 13:26	04/21/20 20:58	1
Benzo[k]fluoranthene	23		10	2.5	ug/Kg	☼	04/21/20 13:26	04/21/20 20:58	1
Benzo[a]pyrene	50		10	4.3	ug/Kg	☼	04/21/20 13:26	04/21/20 20:58	1
Indeno[1,2,3-cd]pyrene	30		10	3.0	ug/Kg		04/21/20 13:26	04/21/20 20:58	1
Dibenz(a,h)anthracene	9.8	J	10	2.9	ug/Kg	☼	04/21/20 13:26	04/21/20 20:58	1
Benzo[g,h,i]perylene	39	В	10	2.4	ug/Kg	₽	04/21/20 13:26	04/21/20 20:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrohenzene-d5	56		43 120				04/21/20 13:26	04/21/20 20:58	

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	56	43 - 120	04/21/20 13:26	04/21/20 20:58	1
2-Fluorobiphenyl (Surr)	63	56 - 120	04/21/20 13:26	04/21/20 20:58	1
p-Terphenyl-d14	73 X	74 - 136	04/21/20 13:26	04/21/20 20:58	1

Method: 6	6010D - N	letals (ICP)
			,

metriod. 00 10D - metals (101)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	13		1.1	0.45	mg/Kg	≎	04/22/20 09:55	04/29/20 14:31	1
Barium	66		1.1	0.30	mg/Kg	≎	04/22/20 09:55	04/29/20 14:31	1
Cadmium	0.31	J	0.90	0.053	mg/Kg	₩	04/22/20 09:55	04/29/20 14:31	1
Chromium	9.2		1.1	0.16	mg/Kg	₽	04/22/20 09:55	04/29/20 14:31	1
Lead	110		2.7	1.3	mg/Kg	≎	04/22/20 09:55	04/29/20 14:31	1
Selenium	ND		4.5	2.7	mg/Kg	≎	04/22/20 09:55	04/29/20 14:31	1
Silver	ND		1.1	0.12	mg/Kg	₩	04/22/20 09:55	04/29/20 14:31	1

Eurofins TestAmerica, Spokane

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13048-1

Project/Site: Riverfront Park - Havermale Island

Client Sample ID: WH-6C(0-0.5)

Lab Sample ID: 590-13048-6 Date Collected: 04/14/20 08:40 **Matrix: Solid**

Date Received: 04/14/20 13:18 Percent Solids: 95.7

Method: 7471B - Mercury (CVA	AA)									
Analyte	Result C	Qualifier	RL	MDL	Unit	D	1	Prepared	Analyzed	Dil Fac
Hg	82		49	3.5	ug/Kg	<u> </u>	-	04/22/20 09:45	04/24/20 15:14	1

Client Sample ID: WH-7C(0-0.5) Lab Sample ID: 590-13048-7

Date Collected: 04/14/20 08:45 **Matrix: Solid** Date Received: 04/14/20 13:18 Percent Solids: 94.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	22		21	4.4	ug/Kg	<u> </u>	04/21/20 13:26	04/21/20 21:25	
2-Methylnaphthalene	38		21	6.4	ug/Kg	≎	04/21/20 13:26	04/21/20 21:25	2
1-Methylnaphthalene	19	J	21	4.6	ug/Kg	☼	04/21/20 13:26	04/21/20 21:25	2
Acenaphthylene	37		21	6.8	ug/Kg	φ.	04/21/20 13:26	04/21/20 21:25	:
Acenaphthene	25		21	5.2	ug/Kg	☼	04/21/20 13:26	04/21/20 21:25	:
Fluorene	22		21	4.6	ug/Kg	☼	04/21/20 13:26	04/21/20 21:25	
Phenanthrene	280		21	7.5	ug/Kg	₽	04/21/20 13:26	04/21/20 21:25	
Anthracene	86		21	4.1	ug/Kg	☼	04/21/20 13:26	04/21/20 21:25	:
Fluoranthene	400	В	21	5.1	ug/Kg	☼	04/21/20 13:26	04/21/20 21:25	
Pyrene	420	В	21	7.8	ug/Kg	₽	04/21/20 13:26	04/21/20 21:25	
Benzo[a]anthracene	200		21	4.4	ug/Kg	☼	04/21/20 13:26	04/21/20 21:25	:
Chrysene	240		21	3.1	ug/Kg	≎	04/21/20 13:26	04/21/20 21:25	:
Benzo[b]fluoranthene	300		21	7.2	ug/Kg		04/21/20 13:26	04/21/20 21:25	
Benzo[k]fluoranthene	120		21	5.1	ug/Kg	≎	04/21/20 13:26	04/21/20 21:25	
Benzo[a]pyrene	240		21	8.7	ug/Kg	≎	04/21/20 13:26	04/21/20 21:25	
Indeno[1,2,3-cd]pyrene	120		21	6.1	ug/Kg		04/21/20 13:26	04/21/20 21:25	
Dibenz(a,h)anthracene	37		21	5.8	ug/Kg	☼	04/21/20 13:26	04/21/20 21:25	:
Benzo[g,h,i]perylene	140	В	21	4.8	ug/Kg	₩	04/21/20 13:26	04/21/20 21:25	:
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	81		43 - 120				04/21/20 13:26	04/21/20 21:25	
2-Fluorobiphenyl (Surr)	82		56 - 120				04/21/20 13:26	04/21/20 21:25	
p-Terphenyl-d14	86		74 - 136				04/21/20 13:26	04/21/20 21:25	
Method: 6010D - Metals (ICP)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	10		2.2	0.87	0 0	<u>₩</u>	04/22/20 09:55	04/29/20 14:35	
Barium	87		2.2	0.59	mg/Kg	*		04/29/20 14:35	
Cadmium	0.90	J	1.8		mg/Kg			04/29/20 14:35	
Chromium	11		2.2		mg/Kg	₽		04/29/20 14:35	
Lead	300		5.3	2.6	mg/Kg	₽		04/29/20 14:35	
Selenium	ND		8.8		mg/Kg			04/29/20 14:35	
Silver	ND		2.2	0.24	mg/Kg	₩	04/22/20 09:55	04/29/20 14:35	
Method: 7471B - Mercury (CVA									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

4/29/2020

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13048-1

Project/Site: Riverfront Park - Havermale Island

Client Sample ID: WH-8C(0-0.5)

Date Collected: 04/14/20 08:50

Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-8

Matrix: Solid

Percent Solids: 95.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	13		10	2.2	ug/Kg	<u> </u>	04/21/20 13:26	04/21/20 21:51	1
2-Methylnaphthalene	16		10	3.2	ug/Kg	₩	04/21/20 13:26	04/21/20 21:51	1
1-Methylnaphthalene	17		10	2.3	ug/Kg	☼	04/21/20 13:26	04/21/20 21:51	1
Acenaphthylene	90		10	3.4	ug/Kg		04/21/20 13:26	04/21/20 21:51	1
Acenaphthene	34		10	2.6	ug/Kg	☼	04/21/20 13:26	04/21/20 21:51	1
Fluorene	42		10	2.2	ug/Kg	☼	04/21/20 13:26	04/21/20 21:51	1
Phenanthrene	480		10	3.7	ug/Kg		04/21/20 13:26	04/21/20 21:51	1
Anthracene	180		10	2.0	ug/Kg	₩	04/21/20 13:26	04/21/20 21:51	1
Fluoranthene	840	В	10	2.5	ug/Kg	₩	04/21/20 13:26	04/21/20 21:51	1
Pyrene	870	В	10	3.9	ug/Kg	₩	04/21/20 13:26	04/21/20 21:51	1
Benzo[a]anthracene	480		10	2.2	ug/Kg	☼	04/21/20 13:26	04/21/20 21:51	1
Chrysene	490		10	1.5	ug/Kg	☼	04/21/20 13:26	04/21/20 21:51	1
Benzo[b]fluoranthene	620		10	3.6	ug/Kg	☼	04/21/20 13:26	04/21/20 21:51	1
Benzo[k]fluoranthene	240		10	2.5	ug/Kg	☼	04/21/20 13:26	04/21/20 21:51	1
Benzo[a]pyrene	490		10	4.3	ug/Kg	₩	04/21/20 13:26	04/21/20 21:51	1
Indeno[1,2,3-cd]pyrene	210		10	3.0	ug/Kg	₩	04/21/20 13:26	04/21/20 21:51	1
Dibenz(a,h)anthracene	71		10	2.9	ug/Kg	₩	04/21/20 13:26	04/21/20 21:51	1
Benzo[g,h,i]perylene	230	В	10	2.4	ug/Kg	₩	04/21/20 13:26	04/21/20 21:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	69		43 - 120				04/21/20 13:26	04/21/20 21:51	1
2-Fluorobiphenyl (Surr)	77		56 - 120				04/21/20 13:26	04/21/20 21:51	1
p-Terphenyl-d14	84		74 - 136				04/21/20 13:26	04/21/20 21:51	1
Method: 6010D - Metals (ICP)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	11		1.0	0.41	mg/Kg		04/22/20 09:55	04/29/20 14:39	1
Barium	74		1.0	0.27	mg/Kg	₩	04/22/20 09:55	04/29/20 14:39	1
Cadmium	0.53	J	0.82	0.048	mg/Kg	₩	04/22/20 09:55	04/29/20 14:39	1
Chromium	9.4		1.0	0.14	mg/Kg	₩	04/22/20 09:55	04/29/20 14:39	1
Lead	160		2.5	1.2	mg/Kg	₩	04/22/20 09:55	04/29/20 14:39	1
Selenium	ND		4.1	2.5	mg/Kg	₩	04/22/20 09:55	04/29/20 14:39	1
Silver	ND		1.0	0.11	mg/Kg	₽	04/22/20 09:55	04/29/20 14:39	1
Method: 7471B - Mercury (CVA	AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	220		48	2 -	ug/Kg	\	0.4/00/00 00 45	04/24/20 15:19	1

2

Δ

6

8

10

11

Job ID: 590-13048-1 Project/Site: Riverfront Park - Havermale Island

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

MR MR

Lab Sample ID: MB 590-27247/1-A

Matrix: Solid

Analysis Batch: 27246

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27247

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
2-Methylnaphthalene	ND		10	3.1	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
1-Methylnaphthalene	ND		10	2.2	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Acenaphthylene	ND		10	3.3	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Acenaphthene	ND		10	2.5	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Fluorene	ND		10	2.2	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Phenanthrene	ND		10	3.6	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Anthracene	ND		10	2.0	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Fluoranthene	4.02	J	10	2.5	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Pyrene	4.75	J	10	3.8	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Benzo[a]anthracene	ND		10	2.1	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Chrysene	ND		10	1.5	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Benzo[b]fluoranthene	ND		10	3.5	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Benzo[k]fluoranthene	ND		10	2.5	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Benzo[a]pyrene	ND		10	4.2	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Indeno[1,2,3-cd]pyrene	ND		10	3.0	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Dibenz(a,h)anthracene	ND		10	2.8	ug/Kg		04/21/20 13:26	04/21/20 15:43	1
Benzo[g,h,i]perylene	7.57	J	10	2.4	ug/Kg		04/21/20 13:26	04/21/20 15:43	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	61		43 - 120	04/21/20 13:26	04/21/20 15:43	1
2-Fluorobiphenyl (Surr)	67		56 - 120	04/21/20 13:26	04/21/20 15:43	1
p-Terphenyl-d14	82		74 - 136	04/21/20 13:26	04/21/20 15:43	1

Lab Sample ID: LCS 590-27247/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 27246	Spike	LCS	LCS				Prep Batch: 27247 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	267	167		ug/Kg		63	39 - 120
2-Methylnaphthalene	267	174		ug/Kg		65	48 - 120
1-Methylnaphthalene	267	170		ug/Kg		64	55 - 120
Acenaphthylene	267	194		ug/Kg		73	59 - 120
Acenaphthene	267	195		ug/Kg		73	53 - 120
Fluorene	267	194		ug/Kg		73	63 - 120
Phenanthrene	267	211		ug/Kg		79	65 - 121
Anthracene	267	221		ug/Kg		83	60 - 129
Fluoranthene	267	215		ug/Kg		81	63 - 127
Pyrene	267	211		ug/Kg		79	68 - 125
Benzo[a]anthracene	267	217		ug/Kg		81	61 - 125
Chrysene	267	214		ug/Kg		80	67 - 127
Benzo[b]fluoranthene	267	218		ug/Kg		82	67 - 127
Benzo[k]fluoranthene	267	216		ug/Kg		81	63 - 127
Benzo[a]pyrene	267	190		ug/Kg		71	60 - 120
Indeno[1,2,3-cd]pyrene	267	222		ug/Kg		83	63 - 128
Dibenz(a,h)anthracene	267	222		ug/Kg		83	60 - 128
Benzo[g,h,i]perylene	267	220		ug/Kg		83	58 - 129

Eurofins TestAmerica, Spokane

Page 13 of 25

4/29/2020

Client: GeoEngineers Inc Project/Site: Riverfront Park - Havermale Island

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-27247/2-A

Matrix: Solid

Analysis Batch: 27246

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 27247

LCS LCS Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 70 43 - 120 2-Fluorobiphenyl (Surr) 74 56 - 120 74 - 136 p-Terphenyl-d14 84

Lab Sample ID: 590-13048-1 MS Client Sample ID: WH-1C(0-0.5)

Matrix: Solid

Analysis Batch: 27246

Prep Type: Total/NA

Prep Batch: 27247

Sample	Sample	Snike	MS	MS				%Rec.
•	•	Added			Unit	D	%Rec	Limits
ND		259	155	-	ug/Kg	<u></u>	60	39 - 120
ND		259	167		ug/Kg	☼	65	48 - 120
ND	F1	259	164		ug/Kg	₩	63	55 ₋ 120
5.6	J	259	197		ug/Kg		74	59 - 120
ND		259	195		ug/Kg	₩	75	53 - 120
ND		259	200		ug/Kg	₩	77	63 - 120
8.9	J	259	209		ug/Kg	₩	77	65 - 121
11		259	227		ug/Kg	☼	84	60 - 129
24	В	259	228		ug/Kg	☼	79	63 - 127
32	В	259	228		ug/Kg	₩.	76	68 - 125
30		259	224		ug/Kg	☼	75	61 - 125
44	F2	259	224		ug/Kg	☼	69	67 - 127
70	F1 F2	259	227	F1	ug/Kg	₩.	60	67 - 127
26		259	217		ug/Kg	☼	74	63 - 127
53		259	214		ug/Kg	₽	62	60 - 120
30		259	231		ug/Kg		78	63 - 128
	Result ND ND ND 5.6 ND ND 8.9 11 24 32 30 44 70 26 53	ND ND F1 5.6 J ND ND 8.9 J 11 24 B 32 B 30 44 F2 70 F1 F2 26 53	Result Qualifier Added ND 259 ND 259 ND F1 5.6 J ND 259 ND 259 ND 259 8.9 J 259 11 259 24 B 259 32 B 259 30 259 44 F2 259 70 F1 F2 259 53 259	Result Qualifier Added Result ND 259 155 ND 259 167 ND F1 259 164 5.6 J 259 197 ND 259 200 8.9 J 259 209 11 259 227 24 B 259 228 30 259 224 44 F2 259 224 70 F1 F2 259 227 26 259 217 53 259 214	Result Qualifier Added Result Qualifier ND 259 155 ND 259 167 ND F1 259 164 5.6 J 259 197 ND 259 290 ND 259 200 8.9 J 259 209 11 259 227 24 B 259 228 32 B 259 228 30 259 224 44 F2 259 224 70 F1 F2 259 227 F1 26 259 217 259 214	Result Qualifier Added Result Qualifier Unit ND 259 155 ug/Kg ND 259 167 ug/Kg ND F1 259 164 ug/Kg 5.6 J 259 197 ug/Kg ND 259 195 ug/Kg ND 259 200 ug/Kg 8.9 J 259 209 ug/Kg 11 259 227 ug/Kg 24 B 259 228 ug/Kg 32 B 259 228 ug/Kg 30 259 224 ug/Kg 44 F2 259 224 ug/Kg 70 F1 F2 259 227 F1 ug/Kg 26 259 217 ug/Kg 53 259 214 ug/Kg	Result Qualifier Added Result Qualifier Unit D ND 259 155 ug/Kg \$\frac{1}{2}\$ ND 259 167 ug/Kg \$\frac{1}{2}\$ ND F1 259 197 ug/Kg \$\frac{1}{2}\$ ND 259 195 ug/Kg \$\frac{1}{2}\$ ND 259 200 ug/Kg \$\frac{1}{2}\$ 8.9 J 259 209 ug/Kg \$\frac{1}{2}\$ 11 259 227 ug/Kg \$\frac{1}{2}\$ 24 B 259 228 ug/Kg \$\frac{1}{2}\$ 30 259 228 ug/Kg \$\frac{1}{2}\$ 44 F2 259 224 ug/Kg \$\frac{1}{2}\$ 70 F1 F2 259 227 F1 ug/Kg \$\frac{1}{2}\$ 26 259 217 ug/Kg \$\frac{1}{2}\$ 53 259 214 ug/Kg \$\frac{1}{2	Result Qualifier Added Result Qualifier Unit D %Rec ND 259 155 ug/Kg 60 ND 259 167 ug/Kg 65 ND F1 259 164 ug/Kg 63 5.6 J 259 197 ug/Kg 74 ND 259 195 ug/Kg 75 ND 259 200 ug/Kg 77 8.9 J 259 209 ug/Kg 77 11 259 227 ug/Kg 78 32 B 259 228 ug/Kg 76 30 259 228 ug/Kg 75 44 F2 259 224 ug/Kg 75 44 F2 259 224 ug/Kg 69 70 F1 F2 259 227 F1 ug/Kg 60 26 259 2

259

259

221

229

ug/Kg

ug/Kg

₩

81

74

37 B MS MS

11

Surrogate	%Recovery Qualifier	Limits
Nitrobenzene-d5	76	43 - 120
2-Fluorobiphenyl (Surr)	84	56 - 120
p-Terphenyl-d14	83	74 ₋ 136

Lab Sample ID: 590-13048-1 MSD

Matrix: Solid

Dibenz(a,h)anthracene

Benzo[g,h,i]perylene

Analysis Batch: 27246

Client Sample ID: WH-1C(0-0.5) Prep Type: Total/NA

60 - 128

58 - 129

Prep Batch: 27247

								i icp L	Jacon. 2	-14-1
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
ND		272	130		ug/Kg	<u> </u>	48	39 - 120	17	35
ND		272	142		ug/Kg	₩	52	48 - 120	16	30
ND	F1	272	146	F1	ug/Kg	₩	54	55 - 120	11	24
5.6	J	272	184		ug/Kg	₩	66	59 - 120	7	20
ND		272	173		ug/Kg	₩	63	53 - 120	12	17
ND		272	190		ug/Kg	₩	70	63 - 120	5	21
8.9	J	272	225		ug/Kg	₩	79	65 - 121	7	18
11		272	242		ug/Kg	₩	85	60 - 129	6	18
24	В	272	245		ug/Kg	₩	81	63 - 127	7	18
32	В	272	250		ug/Kg	₩	80	68 - 125	9	16
	Result ND ND Solution ND Solution ND ND ND ND ND ND ND 8.9 11 24	ND ND F1 5.6 J ND ND 8.9 J	Result Qualifier Added ND 272 ND 272 ND F1 272 5.6 J 272 ND 272 ND 272 8.9 J 272 11 272 24 B 272	Result Qualifier Added Result ND 272 130 ND 272 142 ND F1 272 146 5.6 J 272 184 ND 272 173 ND 272 190 8.9 J 272 225 11 272 242 24 B 272 245	Result Qualifier Added Result Qualifier ND 272 130 ND 272 142 ND 51 272 146 F1 5.6 J 272 184 Added ND 272 173 Added ND 272 190 Added Added	Result Qualifier Added Result Qualifier Unit ND 272 130 ug/Kg ND 272 142 ug/Kg ND F1 272 146 F1 ug/Kg 5.6 J 272 184 ug/Kg ND 272 173 ug/Kg ND 272 190 ug/Kg 8.9 J 272 225 ug/Kg 11 272 242 ug/Kg 24 B 272 245 ug/Kg	Result Qualifier Added Result Qualifier Unit D ND 272 130 ug/Kg ** ND 272 142 ug/Kg ** ND F1 272 146 F1 ug/Kg ** ND 272 184 ug/Kg ** ND 272 173 ug/Kg ** ND 272 190 ug/Kg ** 8.9 J 272 225 ug/Kg ** 11 272 242 ug/Kg ** 24 B 272 245 ug/Kg **	Result ND Qualifier Added Added Result Qualifier Qualifier Unit Ug/Kg D %Rec Wg/Kg % 48 ND 272 142 ug/Kg 52 ND F1 272 146 F1 ug/Kg 54 5.6 J 272 184 ug/Kg 66 ND 272 173 ug/Kg 63 ND 272 190 ug/Kg 70 8.9 J 272 225 ug/Kg 79 11 272 242 ug/Kg 85 24 B 272 245 ug/Kg 81	Sample Result Result Qualifier Added Added Added Result Qualifier Qualifier Unit Unit Unit Unit Unit Unit Unit Unit	Result ND Qualifier Added Added Result Qualifier Unit Ug/Kg D %Rec Walt Wg/Kg Limits All Mark Walt Wg/Kg RPD ND 272 130 ug/Kg ★ 48 39 - 120 17 ND 272 142 ug/Kg ★ 52 48 - 120 16 ND F1 272 146 F1 ug/Kg ★ 54 55 - 120 11 5.6 J 272 184 ug/Kg ★ 66 59 - 120 7 ND 272 173 ug/Kg ★ 63 53 - 120 12 ND 272 190 ug/Kg ★ 70 63 - 120 5 8.9 J 272 225 ug/Kg ★ 79 65 - 121 7 11 272 242 ug/Kg ★ 85 60 - 129 6 24 B 272 245 ug/Kg ★ 81 63 - 127 7

Eurofins TestAmerica, Spokane

Page 14 of 25

4/29/2020

Project/Site: Riverfront Park - Havermale Island

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 590-13048-1 MSD Client Sample ID: WH-1C(0-0.5)

Matrix: Solid

Analysis Batch: 27246

Client: GeoEngineers Inc

Prep Type: Total/NA Prep Batch: 27247

Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
30		272	247		ug/Kg	<u> </u>	80	61 - 125	10	16
44	F2	272	274	F2	ug/Kg	☼	84	67 - 127	20	15
70	F1 F2	272	285	F2	ug/Kg	₽	79	67 - 127	23	16
26		272	230		ug/Kg	₩	75	63 - 127	6	16
53		272	261		ug/Kg	₩	76	60 - 120	20	20
30		272	256		ug/Kg	₩.	83	63 - 128	10	18
11		272	225		ug/Kg	☼	79	60 - 128	2	18
37	В	272	263		ug/Kg	₩	83	58 - 129	14	17
	Result 30 44 70 26 53 30 11	44 F2 70 F1 F2 26 53 30 11	Result Qualifier Added 30 272 44 F2 272 70 F1 F2 272 26 272 53 272 30 272 11 272	Result Qualifier Added Result 30 272 247 44 F2 272 274 70 F1 F2 272 285 26 272 230 53 272 261 30 272 256 11 272 225	Result Qualifier Added Result Qualifier 30 272 247 44 F2 272 274 F2 70 F1 F2 272 285 F2 26 272 230 261 30 272 256 11 272 225	Result Qualifier Added Result Qualifier Unit 30 272 247 ug/Kg 44 F2 272 274 F2 ug/Kg 70 F1 F2 272 285 F2 ug/Kg 26 272 230 ug/Kg 53 272 261 ug/Kg 30 272 256 ug/Kg 11 272 225 ug/Kg	Result Qualifier Added Result Qualifier Unit D 30 272 247 ug/Kg ** 44 F2 272 274 F2 ug/Kg ** 70 F1 F2 272 285 F2 ug/Kg ** 26 272 230 ug/Kg ** 53 272 261 ug/Kg ** 30 272 256 ug/Kg ** 11 272 225 ug/Kg **	Result Qualifier Added Added Result Qualifier Unit Ug/Kg D %Rec 30 272 247 ug/Kg \$\frac{1}{2}\$ 80 44 F2 272 274 F2 ug/Kg \$\frac{1}{2}\$ 84 70 F1 F2 272 285 F2 ug/Kg \$\frac{1}{2}\$ 79 26 272 230 ug/Kg \$\frac{1}{2}\$ 75 53 272 261 ug/Kg \$\frac{1}{2}\$ 76 30 272 256 ug/Kg \$\frac{1}{2}\$ 83 11 272 225 ug/Kg \$\frac{1}{2}\$ 79	Result Qualifier Added Result Qualifier Unit Ug/Kg D %Rec WRec Limits 30 272 247 ug/Kg \$\frac{1}{2}\$ 80 61 - 125 44 F2 272 274 F2 ug/Kg \$\frac{1}{2}\$ 84 67 - 127 70 F1 F2 272 285 F2 ug/Kg \$\frac{1}{2}\$ 75 63 - 127 26 272 230 ug/Kg \$\frac{1}{2}\$ 75 63 - 127 53 272 261 ug/Kg \$\frac{1}{2}\$ 76 60 - 120 30 272 256 ug/Kg \$\frac{1}{2}\$ 83 63 - 128 11 272 225 ug/Kg \$\frac{1}{2}\$ 79 60 - 128	Result Qualifier Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit

MSD MSD

ND

Surrogate	%Recovery Qualifier	Limits
Nitrobenzene-d5	59	43 - 120
2-Fluorobiphenyl (Surr)	68	56 - 120
p-Terphenyl-d14	82	74 - 136

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-27256/2-A

Matrix: Solid

Analysis Batch: 27324

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 27256

MB MB Result Qualifier RL MDL Unit Dil Fac **Analyte** Prepared Analyzed Arsenic $\overline{\mathsf{ND}}$ 1.3 0.50 mg/Kg 04/22/20 09:48 04/29/20 13:43 Barium ND 1.3 0.34 mg/Kg 04/22/20 09:48 04/29/20 13:43 Cadmium ND 1.0 0.059 mg/Kg 04/22/20 09:48 04/29/20 13:43 Chromium ND 1.3 0.18 mg/Kg 04/22/20 09:48 04/29/20 13:43 ND Lead 3.0 1.5 mg/Kg 04/22/20 09:48 04/29/20 13:43 Selenium ND 5.0 3.0 mg/Kg 04/22/20 09:48 04/29/20 13:43

1.3

0.13 mg/Kg

Lab Sample ID: LCS 590-27256/1-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Silver

Analysis Batch: 27324

Prep Type: Total/NA Prep Batch: 27256

04/22/20 09:48 04/29/20 13:43

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic		109		mg/Kg		109	80 - 120	
Barium	100	117		mg/Kg		117	80 - 120	
Cadmium	50.0	55.4		mg/Kg		111	80 - 120	
Chromium	50.0	55.5		mg/Kg		111	80 - 120	
Lead	50.0	55.7		mg/Kg		111	80 - 120	
Selenium	100	114		mg/Kg		114	80 - 120	
Silver	5.00	5.40		mg/Kg		108	80 - 120	

Lab Sample ID: 590-13048-1 MS Client Sample ID: WH-1C(0-0.5)

Matrix: Solid

Analysis Batch: 27324

Prep Type: Total/NA Prep Batch: 27256

Alialysis Datcil. 21324									i ieb r	Jaton. 21230
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	7.0		102	104		mg/Kg	<u> </u>	95	75 - 125	
Barium	34		102	147		mg/Kg	☼	111	75 ₋ 125	

Eurofins TestAmerica, Spokane

Page 15 of 25

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 590-13048-1 MS

Matrix: Solid

Analysis Batch: 27324

Client Sample ID: WH-1C(0-0.5)

Prep Type: Total/NA Prep Batch: 27256

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	0.070	J	51.0	47.5	-	mg/Kg	<u> </u>	93	75 - 125	
Chromium	7.5		51.0	55.1		mg/Kg	₩	93	75 - 125	
Lead	13		51.0	59.4		mg/Kg	₩	91	75 - 125	
Selenium	ND		102	97.2		mg/Kg	₩	95	75 - 125	
Silver	ND		5.10	4.40		mg/Kg	₩.	86	75 - 125	

Lab Sample ID: 590-13048-1 MSD Client Sample ID: WH-1C(0-0.5) Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 27324									Prep E	Batch: 2	27256
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	7.0		103	102		mg/Kg	₩	92	75 - 125	2	20
Barium	34		103	147		mg/Kg	☼	110	75 - 125	0	20
Cadmium	0.070	J	51.5	47.2		mg/Kg	₩	92	75 - 125	1	20
Chromium	7.5		51.5	55.9		mg/Kg	₩.	94	75 - 125	1	20
Lead	13		51.5	66.8		mg/Kg	₩	105	75 - 125	12	20
Selenium	ND		103	96.3		mg/Kg	☼	94	75 - 125	1	20
Silver	ND		5.15	4.31		mg/Kg	₩.	84	75 - 125	2	20

Lab Sample ID: 590-13048-1 DU Client Sample ID: WH-1C(0-0.5) **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 27324					Prep Batch: 2	27256		
•	Sample	Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	7.0		7.74		mg/Kg	*		20
Barium	34		38.7		mg/Kg	₩	14	20
Cadmium	0.070	J	0.0753	J	mg/Kg	₽	7	20
Chromium	7.5		7.87		mg/Kg	₩	5	20
Lead	13		11.6		mg/Kg	₩	11	20
Selenium	ND		ND		mg/Kg	₩	NC	20
Silver	ND		ND		mg/Kg		NC	20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 590-27255/9-A

Matrix: Solid

Analysis Batch: 27288

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 27255 MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 50 04/22/20 09:44 04/24/20 14:49 Hg ND 3.6 ug/Kg

Lab Sample ID: LCS 590-27255/8-A

V

Matrix: Solid							Prep Ty	pe: Total/NA
Analysis Batch: 27288							Prep I	Batch: 27255
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg	200	215		ug/Kg		108	80 - 120	

Eurofins TestAmerica, Spokane

Client Sample ID: Lab Control Sample

QC Sample Results

Client: GeoEngineers Inc Job ID: 590-13048-1

Project/Site: Riverfront Park - Havermale Island

Lab Sample ID: 590-13048-1 DU

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: 590-13048-	1 MS						Cli	ent Sar	•	VH-1C(0-0.5)
Matrix: Solid									Prep Tyl	pe: Total/NA
Analysis Batch: 27288									Prep B	Batch: 27255
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg	14	J	202	213		ug/Kg	☼	99	80 - 120	

Lab Sample ID: 590-13048- Matrix: Solid Analysis Batch: 27288	1 MSD						Cli	ent Sar	nple ID: W Prep Tyl Prep B	pe: Tot	al/NÁ
, ,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hg	14	J	202	243		ug/Kg	\	114	80 - 120	13	20

Matrix: Solid							Prep Typ	pe: Tot	al/NA
Analysis Batch: 27288							Prep B	atch: 2	27255
•	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Hg	14	\overline{J}	 17.3	J F5	ug/Kg	₩	 	25	20

3

4

6

7

8

9

10

Client Sample ID: WH-1C(0-0.5)

11

048-1

Client: GeoEngineers Inc

Project/Site: Riverfront Park - Havermale Island

Client Sample ID: WH-1C(0-0.5)

Date Collected: 04/14/20 08:15 Date Received: 04/14/20 13:18 Lab Sample ID: 590-13048-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27223	04/17/20 14:20	AMB	TAL SPK

Client Sample ID: WH-1C(0-0.5)

Date Collected: 04/14/20 08:15

Date Received: 04/14/20 13:18

I ah Sampla	ID: 500	120/0 1
04/17/20 14:20	AMB	TAL SPK

Matrix: Solid Percent Solids: 97.1

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.13 g	2 mL	27247	04/21/20 13:26	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27246	04/21/20 17:54	NMI	TAL SPK
Total/NA	Prep	3050B			1.20 g	50 mL	27256	04/22/20 09:55	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27324	04/29/20 13:46	AMB	TAL SPK
Total/NA	Prep	7471B			0.53 g	50 mL	27255	04/22/20 09:45	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27288	04/24/20 14:51	AMB	TAL SPK

Client Sample ID: WH-2C(0-0.5)

Date Collected: 04/14/20 08:20

Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27223	04/17/20 14:20	AMB	TAL SPK

Client Sample ID: WH-2C(0-0.5)

Date Collected: 04/14/20 08:20

Date Received: 04/14/20 13:18

Lab Sample	ID:	590-13048-2
		Matrix: Solid

Percent Solids: 97.9

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.74 g	2 mL	27247	04/21/20 13:26	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27246	04/21/20 19:13	NMI	TAL SPK
Total/NA	Prep	3050B			1.22 g	50 mL	27256	04/22/20 09:55	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27324	04/29/20 14:00	AMB	TAL SPK
Total/NA	Prep	7471B			0.54 g	50 mL	27255	04/22/20 09:45	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27288	04/24/20 15:00	AMB	TAL SPK

Client Sample ID: WH-3C(0-0.5)

Date Collected: 04/14/20 08:25

Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-3
Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture					27223	04/17/20 14:20	AMB	TAL SPK

Client: GeoEngineers Inc

Project/Site: Riverfront Park - Havermale Island

Client Sample ID: WH-3C(0-0.5)

Date Collected: 04/14/20 08:25 Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-3 **Matrix: Solid**

Percent Solids: 91.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.46 g	2 mL	27247	04/21/20 13:26	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		2			27246	04/21/20 19:39	NMI	TAL SPK
Total/NA	Prep	3050B			1.25 g	50 mL	27256	04/22/20 09:55	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27324	04/29/20 14:10	AMB	TAL SPK
Total/NA	Prep	7471B			0.56 g	50 mL	27255	04/22/20 09:45	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27288	04/24/20 15:03	AMB	TAL SPK

Client Sample ID: WH-4C(0-0.5)

Date Collected: 04/14/20 08:30

Lab Sample ID: 590-13048-4 **Matrix: Solid**

Date Received: 04/14/20 13:18

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27223	04/17/20 14:20	AMB	TAL SPK

Client Sample ID: WH-4C(0-0.5)

Date Collected: 04/14/20 08:30 Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-4 **Matrix: Solid**

Percent Solids: 93.9

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.63 g	2 mL	27247	04/21/20 13:26	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27246	04/21/20 20:06	NMI	TAL SPK
Total/NA	Prep	3050B			1.37 g	50 mL	27256	04/22/20 09:55	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27324	04/29/20 14:24	AMB	TAL SPK
Total/NA	Prep	7471B			0.54 g	50 mL	27255	04/22/20 09:45	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27288	04/24/20 15:05	AMB	TAL SPK

Client Sample ID: WH-5C(0-0.5)

Date Collected: 04/14/20 08:35

Date Received: 04/14/20 13:18

Lab Sample	ID: 590-13048-5
	Matrix: Solid

Dil Initial Batch Batch Final Batch Prepared Method **Prep Type** Type **Factor Amount Amount** Number or Analyzed Analyst Run Lab Total/NA Analysis Moisture 27223 04/17/20 14:20 AMB TAL SPK

Client Sample ID: WH-5C(0-0.5)

Date Collected: 04/14/20 08:35

Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-5 Matrix: Solid

Percent Solids: 98.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.07 g	2 mL	27247	04/21/20 13:26	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27246	04/21/20 20:32	NMI	TAL SPK
Total/NA	Prep	3050B			1.19 g	50 mL	27256	04/22/20 09:55	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27324	04/29/20 14:28	AMB	TAL SPK
Total/NA	Prep	7471B			0.55 g	50 mL	27255	04/22/20 09:45	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27288	04/24/20 15:07	AMB	TAL SPK

Eurofins TestAmerica, Spokane

Page 19 of 25

4/29/2020

Client Sample ID: WH-6C(0-0.5)

Date Collected: 04/14/20 08:40

Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-6

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27223	04/17/20 14:20	AMB	TAL SPK

Client Sample ID: WH-6C(0-0.5)

Date Collected: 04/14/20 08:40 Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-6 **Matrix: Solid** Percent Solids: 95.7

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.51 g	2 mL	27247	04/21/20 13:26	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27246	04/21/20 20:58	NMI	TAL SPK
Total/NA	Prep	3050B			1.16 g	50 mL	27256	04/22/20 09:55	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27324	04/29/20 14:31	AMB	TAL SPK
Total/NA	Prep	7471B			0.53 g	50 mL	27255	04/22/20 09:45	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27288	04/24/20 15:14	AMB	TAL SPK

Client Sample ID: WH-7C(0-0.5)

Date Collected: 04/14/20 08:45

Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27223	04/17/20 14:20	AMB	TAL SPK

Client Sample ID: WH-7C(0-0.5)

Date Collected: 04/14/20 08:45

Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-7
Matrix: Solid
Percent Solids: 94 8

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.37 g	2 mL	27247	04/21/20 13:26	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		2			27246	04/21/20 21:25	NMI	TAL SPK
Total/NA	Prep	3050B			1.20 g	50 mL	27256	04/22/20 09:55	AMB	TAL SPK
Total/NA	Analysis	6010D		2			27324	04/29/20 14:35	AMB	TAL SPK
Total/NA	Prep	7471B			0.55 g	50 mL	27255	04/22/20 09:45	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27288	04/24/20 15:16	AMB	TAL SPK

C

Date Received: 04/14/20 13:18

Client Sample ID: WH-8C(0-0.5)	Lab Sample ID: 590-13048-8
Date Collected: 04/14/20 08:50	Matrix: Solid
Data Bassiyadı 04/44/20 42:49	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27223	04/17/20 14:20	AMB	TAL SPK

Lab Chronicle

Client: GeoEngineers Inc Job ID: 590-13048-1

Project/Site: Riverfront Park - Havermale Island

Client Sample ID: WH-8C(0-0.5)

Date Received: 04/14/20 13:18

Lab Sample ID: 590-13048-8 Date Collected: 04/14/20 08:50 **Matrix: Solid**

Percent Solids: 95.6

Batch Batch Dil Initial Final Batch Prepared Factor Method **Prep Type** Type Run Amount **Amount** Number or Analyzed Analyst Lab Total/NA 27247 Prep 3550C 15.42 g 2 mL 04/21/20 13:26 NMI TAL SPK Total/NA 8270E SIM Analysis 27246 04/21/20 21:51 NMI TAL SPK 1 Total/NA 3050B TAL SPK Prep 1.28 g 50 mL 27256 04/22/20 09:55 AMB Total/NA Analysis 6010D 27324 04/29/20 14:39 AMB TAL SPK 1 Total/NA Prep 7471B 0.54 g 50 mL 27255 04/22/20 09:45 AMB TAL SPK Total/NA Analysis 7471B 27288 04/24/20 15:19 AMB TAL SPK 1

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13048-1

Project/Site: Riverfront Park - Havermale Island

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-21

- 5

4

5

_

ŏ

J

4 4

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park - Havermale Island

Method	Method Description	Protocol	Laboratory
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
6010D	Metals (ICP)	SW846	TAL SPK
7471B	Mercury (CVAA)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3050B	Preparation, Metals	SW846	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK
7471B	Preparation, Mercury	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13048-1

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 509-924-9200 FAX 924-9290 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 503-906-9200 FAX 906-9210 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

					CHAIN	OF	CUSTOI	DY REPO	RT			W	ork C	rder#	:		
CLIENT: GE					INVOIC	E TO:									ROUND REQUEST	ľ	
REPORT TO: JR Sugalski ADDRESS: 523 E 2nd Ave, spokane, WA				102		same							In Business Days * Organic & Inorganic Analyses 10 7 5 4 3 2 1 <1				
PHONE: (509) 363-3125	FAX:				P.O. NUN	MBER:						57	TD.	7	Hydrocarbon Analyses	a	
PROJECT NAME: RUN Front	Park-	Havermale Island					PRESER	VATIVE	-	1		-	STI	D. 4	3 2 1 <	1]	
PROJECT NUMBER: O 110 -1	48-6	90					REQUESTED	ANALYSES					0	THER	Specify:		
SAMPLED BY: Justice O	51		*				REQUESTED	ATALISES				* Tu			ss than standard may incur l	Rush Charges.	
CLIENT SAMPLE IDENTIFICATION		SAMPLING DATE/TIME	metalsh	PAHS									ATRIX V, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID	
WH-16(0-0.5)	4-14	1.20/0815	×	X											*Assenic,		
WH-ZC(0-0.5)		0820	×	×											barran,		
, WH-3C(0-0.5)		0825	×	×											Cadnium,		
WH-4C(0-05)		0830	×	X											lead, mercur	()	
, wH-5 ((00.5)		0835	X	×				- 10000000	wa w	ma te manen					Silver		
· WH-6((0~5)		0840	×	X									_				
, WH-7C (0-0.5)		0845	×	×				590-1304	8 Chain of 0								
* w H - 8 C (0-0.5)		0 850	×	×				0001004	o chair or c	Lustody		-					
9																	
10						dut					A	rat	7		nure/)	14/20	
PRINT NAME JUSTINO	4	FIRM: C	EI		DATE:	4/14/		PRINT NAME	Linde	^	mat	()	FIRM	TAS	TIME	027	
RELEASED BY. PRINT NAME.		FIRM:			DATE:			PRINT NAME:	4	,	0.		FIRM		DATE	- 1	
ADDITIONAL REMARKS:														1	2.4°C PAGE	1/	
	-													-	Oca TAL-II	000 (0714)	

Client: GeoEngineers Inc

Job Number: 590-13048-1

Login Number: 13048

List Source: Eurofins TestAmerica, Spokane

List Number: 1

Creator: Arrington, Randee E

Creator. Arrington, Nandee L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13087-1

Client Project/Site: Riverfront Park (0110-148-06)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by:

4/30/2020 2:06:12 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

5

7

8

1 0

11

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06) Laboratory Job ID: 590-13087-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	9
Chronicle	14
Certification Summary	16
Method Summary	17
Chain of Custody	18
Receint Checklists	

5

4

7

0

10

11

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Job ID: 590-13087-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 4/24/2020 11:05 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 9.9° C.

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: RFPNB-12C (4-4.5) (590-13087-1), RFPNB-13C (4-4.5) (590-13087-2) and RFPNB-14C (4-4.5) (590-13087-3). The samples are considered acceptable since they were collected and submitted to the laboratory on the same day and there is evidence that the chilling process has begun.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method 6010D: The low level continuing calibration verification (CCVL) associated with batch 590-27334 recovered above the upper control limit for Lead. The samples associated with this CCV were >10x for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 590-13087-1

3

4

8

9

4 4

Sample Summary

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-13087-1	RFPNB-12C (4-4.5)	Solid	04/24/20 08:55	04/24/20 11:05	
590-13087-2	RFPNB-13C (4-4.5)	Solid	04/24/20 09:00	04/24/20 11:05	
590-13087-3	RFPNB-14C (4-4.5)	Solid	04/24/20 09:10	04/24/20 11:05	

Job ID: 590-13087-1

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13087-1

Project/Site: Riverfront Park (0110-148-06)

Qualifiers

GC/MS Semi VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
۸	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
F1	MS and/or MSD recovery exceeds control limits.
F3	Duplicate RPD exceeds the control limit
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Clossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC:	Decision Level Concentration (Radiochemistry)

DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
100	Limit of Quantitation (DoD/DOE)	

LOQ	Elilit of Quantitation (Bob/Boc)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

MDC	Willimum Detectable Concentration (R
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

Quality Control QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Page 5 of 19

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-12C (4-4.5)

Lab Sample ID: 590-13087-1 Date Collected: 04/24/20 08:55

Matrix: Solid Date Received: 04/24/20 11:05 Percent Solids: 96.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg	<u> </u>	04/28/20 12:47	04/28/20 16:25	1
2-Methylnaphthalene	ND		10	3.2	ug/Kg	☼	04/28/20 12:47	04/28/20 16:25	1
1-Methylnaphthalene	ND		10	2.3	ug/Kg	☼	04/28/20 12:47	04/28/20 16:25	1
Acenaphthylene	ND		10	3.4	ug/Kg	₽	04/28/20 12:47	04/28/20 16:25	1
Acenaphthene	ND		10	2.6	ug/Kg	☼	04/28/20 12:47	04/28/20 16:25	1
Fluorene	ND		10	2.3	ug/Kg	☼	04/28/20 12:47	04/28/20 16:25	1
Phenanthrene	ND		10	3.7	ug/Kg	₽	04/28/20 12:47	04/28/20 16:25	1
Anthracene	ND		10	2.0	ug/Kg	☼	04/28/20 12:47	04/28/20 16:25	1
Fluoranthene	6.2	J	10	2.5	ug/Kg	☼	04/28/20 12:47	04/28/20 16:25	1
Pyrene	5.9	J	10	3.9	ug/Kg	₽	04/28/20 12:47	04/28/20 16:25	1
Benzo[a]anthracene	4.9	J	10	2.2	ug/Kg	☼	04/28/20 12:47	04/28/20 16:25	1
Chrysene	4.1	J	10	1.5	ug/Kg	☼	04/28/20 12:47	04/28/20 16:25	1
Benzo[b]fluoranthene	7.0	J	10	3.6	ug/Kg	₽	04/28/20 12:47	04/28/20 16:25	1
Benzo[k]fluoranthene	3.4	J	10	2.5	ug/Kg	☼	04/28/20 12:47	04/28/20 16:25	1
Benzo[a]pyrene	5.3	J	10	4.3	ug/Kg	☼	04/28/20 12:47	04/28/20 16:25	1
Indeno[1,2,3-cd]pyrene	3.4	J	10	3.0	ug/Kg	₽	04/28/20 12:47	04/28/20 16:25	1
Dibenz(a,h)anthracene	ND		10	2.9	ug/Kg	☼	04/28/20 12:47	04/28/20 16:25	1
Benzo[g,h,i]perylene	4.6	J	10	2.4	ug/Kg	☼	04/28/20 12:47	04/28/20 16:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	63		43 - 120				04/28/20 12:47	04/28/20 16:25	1
2-Fluorobiphenyl (Surr)	70		56 - 120				04/28/20 12:47	04/28/20 16:25	1
p-Terphenyl-d14	80		74 - 136				04/28/20 12:47	04/28/20 16:25	1

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.9		0.92	0.37	mg/Kg	<u> </u>	04/28/20 07:15	04/29/20 18:26	1
Barium	39	F1	0.92	0.25	mg/Kg	☼	04/28/20 07:15	04/29/20 18:26	1
Cadmium	0.37	J	0.74	0.044	mg/Kg	₩	04/28/20 07:15	04/29/20 18:26	1
Chromium	6.9		0.92	0.13	mg/Kg	₽	04/28/20 07:15	04/29/20 18:26	1
Lead	76		2.2	1.1	mg/Kg	☼	04/28/20 07:15	04/29/20 18:26	1
Selenium	ND		3.7	2.2	mg/Kg	☼	04/28/20 07:15	04/29/20 18:26	1
Silver	ND		0.92	0.099	mg/Kg	₩	04/28/20 07:15	04/29/20 18:26	1

Method: 7471B - Mercury (CVAA	.)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Hg	55	48	3.4 ug/Kg	\	04/28/20 08:04	04/29/20 12:28	1

Lab Sample ID: 590-13087-2 Client Sample ID: RFPNB-13C (4-4.5) Date Collected: 04/24/20 09:00 **Matrix: Solid**

Date Received: 04/24/20 11:05 Percent Solids: 92.7

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	<u> </u>	11	2.3	ug/Kg	<u> </u>	04/28/20 12:47	04/28/20 17:44	1
2-Methylnaphthalene	25	11	3.3	ug/Kg	☼	04/28/20 12:47	04/28/20 17:44	1
1-Methylnaphthalene	17	11	2.4	ug/Kg	₽	04/28/20 12:47	04/28/20 17:44	1
Acenaphthylene	12	11	3.6	ug/Kg	φ.	04/28/20 12:47	04/28/20 17:44	1
Acenaphthene	4.9 J	11	2.7	ug/Kg	☼	04/28/20 12:47	04/28/20 17:44	1
Fluorene	4.1 J	11	2.4	ug/Kg	☼	04/28/20 12:47	04/28/20 17:44	1
Phenanthrene	73	11	3.9	ug/Kg		04/28/20 12:47	04/28/20 17:44	1

Eurofins TestAmerica, Spokane

Page 6 of 19

2

Job ID: 590-13087-1

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-13C (4-4.5)

Lab Sample ID: 590-13087-2

Date Collected: 04/24/20 09:00

Matrix: Solid

Date Received: 04/24/20 11:05

Percent Solids: 92.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	15		11	2.1	ug/Kg	<u> </u>	04/28/20 12:47	04/28/20 17:44	1
Fluoranthene	140		11	2.7	ug/Kg	☼	04/28/20 12:47	04/28/20 17:44	1
Pyrene	140		11	4.1	ug/Kg	₽	04/28/20 12:47	04/28/20 17:44	1
Benzo[a]anthracene	73		11	2.3	ug/Kg	☼	04/28/20 12:47	04/28/20 17:44	1
Chrysene	92		11	1.6	ug/Kg	☼	04/28/20 12:47	04/28/20 17:44	1
Benzo[b]fluoranthene	120		11	3.8	ug/Kg	₽	04/28/20 12:47	04/28/20 17:44	1
Benzo[k]fluoranthene	45		11	2.7	ug/Kg	☼	04/28/20 12:47	04/28/20 17:44	1
Benzo[a]pyrene	88		11	4.5	ug/Kg	☼	04/28/20 12:47	04/28/20 17:44	1
Indeno[1,2,3-cd]pyrene	63		11	3.2	ug/Kg	₽	04/28/20 12:47	04/28/20 17:44	1
Dibenz(a,h)anthracene	19		11	3.0	ug/Kg	☼	04/28/20 12:47	04/28/20 17:44	1
Benzo[g,h,i]perylene	79		11	2.5	ug/Kg	₩	04/28/20 12:47	04/28/20 17:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	74		43 - 120				04/28/20 12:47	04/28/20 17:44	1
2-Fluorobiphenyl (Surr)	81		56 - 120				04/28/20 12:47	04/28/20 17:44	1
p-Terphenyl-d14	85		74 - 136				04/28/20 12:47	04/28/20 17:44	1

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	22		5.5	2.2	mg/Kg	<u> </u>	04/28/20 07:15	04/30/20 12:45	5
Barium	140		5.5	1.5	mg/Kg	₩	04/28/20 07:15	04/30/20 12:45	5
Cadmium	3.8	J	4.4	0.26	mg/Kg	₩	04/28/20 07:15	04/30/20 12:45	5
Chromium	6.7		5.5	0.78	mg/Kg	₽	04/28/20 07:15	04/30/20 12:45	5
Lead	3600	^	13	6.5	mg/Kg	₩	04/28/20 07:15	04/30/20 12:45	5
Selenium	ND		22	13	mg/Kg	₩	04/28/20 07:15	04/30/20 12:45	5
Silver	3.3	J	5.5	0.59	mg/Kg	₽	04/28/20 07:15	04/30/20 12:45	5

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	1900		270	19	ug/Kg	₽	04/28/20 08:04	04/29/20 13:00	5

Client Sample ID: RFPNB-14C (4-4.5)

 Date Collected: 04/24/20 09:10
 Matrix: Solid

 Date Received: 04/24/20 11:05
 Percent Solids: 97.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		9.8	2.1	ug/Kg	<u> </u>	04/28/20 12:47	04/28/20 18:10	1
2-Methylnaphthalene	ND		9.8	3.1	ug/Kg	☼	04/28/20 12:47	04/28/20 18:10	1
1-Methylnaphthalene	ND		9.8	2.2	ug/Kg	☼	04/28/20 12:47	04/28/20 18:10	1
Acenaphthylene	ND		9.8	3.3	ug/Kg		04/28/20 12:47	04/28/20 18:10	1
Acenaphthene	ND		9.8	2.5	ug/Kg	☼	04/28/20 12:47	04/28/20 18:10	1
Fluorene	ND		9.8	2.2	ug/Kg	☼	04/28/20 12:47	04/28/20 18:10	1
Phenanthrene	ND		9.8	3.6	ug/Kg	₽	04/28/20 12:47	04/28/20 18:10	1
Anthracene	ND		9.8	2.0	ug/Kg	☼	04/28/20 12:47	04/28/20 18:10	1
Fluoranthene	ND		9.8	2.4	ug/Kg	☼	04/28/20 12:47	04/28/20 18:10	1
Pyrene	ND		9.8	3.7	ug/Kg	₽	04/28/20 12:47	04/28/20 18:10	1
Benzo[a]anthracene	ND		9.8	2.1	ug/Kg	☼	04/28/20 12:47	04/28/20 18:10	1
Chrysene	ND		9.8	1.5	ug/Kg	₩	04/28/20 12:47	04/28/20 18:10	1
Benzo[b]fluoranthene	ND		9.8	3.4	ug/Kg		04/28/20 12:47	04/28/20 18:10	1
Benzo[k]fluoranthene	ND		9.8	2.5	ug/Kg	≎	04/28/20 12:47	04/28/20 18:10	1

Eurofins TestAmerica, Spokane

Lab Sample ID: 590-13087-3

Page 7 of 19

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13087-1

Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-14C (4-4.5)

Lab Sample ID: 590-13087-3 Date Collected: 04/24/20 09:10

Matrix: Solid

ate Received: 04/24/20 1	1:05							Percent Solid	s: 97.9
Method: 8270E SIM - Ser Analyte	_	c Compou Qualifier	nds (GC/MS RL		ontinued Unit) D	Prepared	Analyzed	Dil Fa
Benzo[a]pyrene	ND		9.8	4.2	ug/Kg	<u> </u>	04/28/20 12:47	04/28/20 18:10	
Indeno[1,2,3-cd]pyrene	ND		9.8	2.9	ug/Kg	φ.	04/28/20 12:47	04/28/20 18:10	
Dibenz(a,h)anthracene	ND		9.8	2.8		₩	04/28/20 12:47	04/28/20 18:10	
Benzo[g,h,i]perylene	ND		9.8	2.3	ug/Kg	₽	04/28/20 12:47	04/28/20 18:10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	73		43 - 120				04/28/20 12:47	04/28/20 18:10	
2-Fluorobiphenyl (Surr)	75		56 - 120				04/28/20 12:47	04/28/20 18:10	
p-Terphenyl-d14	86		74 - 136				04/28/20 12:47	04/28/20 18:10	
Method: 6010D - Metals	(ICP)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	9.8	· -	0.98	0.39	mg/Kg	₩	04/28/20 07:15	04/29/20 18:51	
Barium	44		0.98	0.26	mg/Kg	☼	04/28/20 07:15	04/29/20 18:51	
Cadmium	0.059	J	0.79	0.046	mg/Kg	☼	04/28/20 07:15	04/29/20 18:51	
Chromium	8.2		0.98	0.14	mg/Kg		04/28/20 07:15	04/29/20 18:51	
Lead	7.1		2.4	1.2	mg/Kg	☼	04/28/20 07:15	04/29/20 18:51	
Selenium	ND		3.9		mg/Kg	₩	04/28/20 07:15	04/29/20 18:51	
Silver	ND		0.98	0.11	mg/Kg	₽	04/28/20 07:15	04/29/20 18:51	
Method: 7471B - Mercury	y (CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Hg	ND		50	3.6	ug/Kg	<u> </u>	04/28/20 08:04	04/29/20 12:51	

Client: GeoEngineers Inc Job ID: 590-13087-1

Project/Site: Riverfront Park (0110-148-06)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-27308/1-A

Matrix: Solid

Analysis Batch: 27306

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27308

	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
2-Methylnaphthalene	ND		10	3.1	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
1-Methylnaphthalene	ND		10	2.2	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Acenaphthylene	ND		10	3.3	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Acenaphthene	ND		10	2.5	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Fluorene	ND		10	2.2	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Phenanthrene	ND		10	3.6	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Anthracene	ND		10	2.0	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Fluoranthene	ND		10	2.5	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Pyrene	ND		10	3.8	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Benzo[a]anthracene	ND		10	2.1	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Chrysene	ND		10	1.5	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Benzo[b]fluoranthene	ND		10	3.5	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Benzo[k]fluoranthene	ND		10	2.5	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Benzo[a]pyrene	ND		10	4.2	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Indeno[1,2,3-cd]pyrene	ND		10	3.0	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Dibenz(a,h)anthracene	ND		10	2.8	ug/Kg		04/28/20 12:47	04/28/20 14:40	1
Benzo[g,h,i]perylene	ND		10	2.4	ug/Kg		04/28/20 12:47	04/28/20 14:40	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	74		43 - 120	04/28/20 12:47	04/28/20 14:40	1
2-Fluorobiphenyl (Surr)	77		56 - 120	04/28/20 12:47	04/28/20 14:40	1
p-Terphenyl-d14	88		74 - 136	04/28/20 12:47	04/28/20 14:40	1

Lab Sample ID: LCS 590-27308/2-A

Matrix: Solid

Client Sample	ID:	Lab	Contro	ol Samp	le
		Prep	Type:	Total/N	Α
		Pr	en Bate	h: 2730	18

Analysis Batch: 27306	• "						Prep Batch: 27308
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	267	151		ug/Kg		57	39 - 120
2-Methylnaphthalene	267	155		ug/Kg		58	48 - 120
1-Methylnaphthalene	267	152		ug/Kg		57	55 - 120
Acenaphthylene	267	188		ug/Kg		71	59 - 120
Acenaphthene	267	172		ug/Kg		65	53 - 120
Fluorene	267	192		ug/Kg		72	63 - 120
Phenanthrene	267	197		ug/Kg		74	65 - 121
Anthracene	267	207		ug/Kg		77	60 - 129
Fluoranthene	267	200		ug/Kg		75	63 - 127
Pyrene	267	193		ug/Kg		72	68 - 125
Benzo[a]anthracene	267	205		ug/Kg		77	61 - 125
Chrysene	267	198		ug/Kg		74	67 - 127
Benzo[b]fluoranthene	267	203		ug/Kg		76	67 - 127
Benzo[k]fluoranthene	267	200		ug/Kg		75	63 - 127
Benzo[a]pyrene	267	185		ug/Kg		69	60 - 120
Indeno[1,2,3-cd]pyrene	267	210		ug/Kg		79	63 - 128
Dibenz(a,h)anthracene	267	210		ug/Kg		79	60 - 128
Benzo[g,h,i]perylene	267	206		ug/Kg		77	58 - 129

Eurofins TestAmerica, Spokane

Page 9 of 19

Project/Site: Riverfront Park (0110-148-06)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-27308/2-A

Matrix: Solid

Analysis Batch: 27306

Client: GeoEngineers Inc

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 27308

LCS LCS Surrogate %Recovery Qualifier

 Nitrobenzene-d5
 59
 43 - 120

 2-Fluorobiphenyl (Surr)
 71
 56 - 120

 p-Terphenyl-d14
 81
 74 - 136

Lab Sample ID: 590-13087-1 MS Client Sample ID: RFPNB-12C (4-4.5)

Limits

Matrix: Solid

Analysis Batch: 27306

Prep Type: Total/NA

Prep Batch: 27308

Sample Sample MS MS Spike %Rec. Result Qualifier Result Qualifier %Rec Analyte Added Unit D Limits ₩ Naphthalene ND 266 166 ug/Kg 62 39 - 120 2-Methylnaphthalene ND 266 180 ug/Kg ₩ 68 48 - 120 ND 266 1-Methylnaphthalene 176 ug/Kg 66 55 - 120 ₩ Acenaphthylene ND 266 203 ug/Kg 76 59 - 120 266 195 ₩ Acenaphthene ND 73 53 - 120 ug/Kg Ö Fluorene ND 266 205 ug/Kg 77 63 - 120

₩ ND 266 211 79 65 - 121 Phenanthrene ug/Kg ₩ Anthracene ND 266 233 ug/Kg 88 60 - 129 Fluoranthene 6.2 J 266 219 ug/Kg ₩ 80 63 - 127₩ 79 Pyrene 266 216 5.9 ug/Kg 68 - 125 ₩ 61 - 125 Benzo[a]anthracene 4.9 J 266 223 ug/Kg 82 266 ₩ മറ 67 - 127 Chrysene 4.1 J 218 ug/Kg Ö Benzo[b]fluoranthene 7.0 266 225 82 67 - 127 ug/Kg 266 Benzo[k]fluoranthene 3.4 J 224 83 ug/Kg 63 - 127

266

217

₩ Indeno[1,2,3-cd]pyrene 34 J 266 232 ug/Kg 86 63 - 128₩ Dibenz(a,h)anthracene ND 266 232 ug/Kg 87 60 - 128 ₩ 266 86 58 - 129 Benzo[g,h,i]perylene 4.6 J 234 ug/Kg MS MS

 Surrogate
 %Recovery
 Qualifier
 Limits

 Nitrobenzene-d5
 73
 43 - 120

 2-Fluorobiphenyl (Surr)
 81
 56 - 120

 p-Terphenyl-d14
 87
 74 - 136

5.3 J

Lab Sample ID: 590-13087-1 MSD

Matrix: Solid

Benzo[a]pyrene

Analysis Batch: 27306

Client Sample ID: RFPNB-12C (4-4.5) Prep Type: Total/NA

60 - 120

∜

79

ug/Kg

Prep Batch: 27308

, , , , , , , , , , , , , , , , , , , ,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	ND		268	166		ug/Kg	<u></u>	62	39 - 120	0	35
2-Methylnaphthalene	ND		268	172		ug/Kg	☼	64	48 - 120	5	30
1-Methylnaphthalene	ND		268	166		ug/Kg	☼	62	55 - 120	6	24
Acenaphthylene	ND		268	204		ug/Kg		76	59 - 120	0	20
Acenaphthene	ND		268	179		ug/Kg	☼	67	53 - 120	8	17
Fluorene	ND		268	205		ug/Kg	≎	77	63 - 120	0	21
Phenanthrene	ND		268	208		ug/Kg	\$	78	65 - 121	2	18
Anthracene	ND		268	217		ug/Kg	☼	81	60 - 129	7	18
Fluoranthene	6.2	J	268	210		ug/Kg	₩	76	63 - 127	4	18
Pyrene	5.9	J	268	208		ug/Kg	₽	75	68 - 125	4	16

Eurofins TestAmerica, Spokane

Page 10 of 19

-

3

<u>۾</u>

10

11

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 590-13087-1 MSD

Matrix: Solid

Analysis Batch: 27306

Client Sample ID: RFPNB-12C (4-4.5) Prep Type: Total/NA

Prep Batch: 27308

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[a]anthracene	4.9	J	268	214		ug/Kg	<u> </u>	78	61 - 125	4	16
Chrysene	4.1	J	268	204		ug/Kg	₩	75	67 - 127	7	15
Benzo[b]fluoranthene	7.0	J	268	218		ug/Kg	₩	79	67 - 127	3	16
Benzo[k]fluoranthene	3.4	J	268	214		ug/Kg	₩	79	63 - 127	5	16
Benzo[a]pyrene	5.3	J	268	203		ug/Kg	₩	74	60 - 120	6	20
Indeno[1,2,3-cd]pyrene	3.4	J	268	220		ug/Kg	₩	81	63 - 128	5	18
Dibenz(a,h)anthracene	ND		268	218		ug/Kg	₩	81	60 - 128	7	18
Benzo[g,h,i]perylene	4.6	J	268	221		ug/Kg	₩	81	58 - 129	5	17

MSD MSD

Surrogate	%Recovery Qualif	ier Limits
Nitrobenzene-d5	68	43 - 120
2-Fluorobiphenyl (Surr)	78	56 - 120
p-Terphenyl-d14	82	74 - 136

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-27296/2-A

Matrix: Solid

Analysis Batch: 27328

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27296

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.3	0.50	mg/Kg		04/28/20 07:15	04/29/20 17:23	1
Barium	ND		1.3	0.34	mg/Kg		04/28/20 07:15	04/29/20 17:23	1
Cadmium	ND		1.0	0.059	mg/Kg		04/28/20 07:15	04/29/20 17:23	1
Chromium	ND		1.3	0.18	mg/Kg		04/28/20 07:15	04/29/20 17:23	1
Lead	ND		3.0	1.5	mg/Kg		04/28/20 07:15	04/29/20 17:23	1
Selenium	ND		5.0	3.0	mg/Kg		04/28/20 07:15	04/29/20 17:23	1
Silver	ND		1.3	0.13	mg/Kg		04/28/20 07:15	04/29/20 17:23	1

Lab Sample ID: LCS 590-27296/1-A

Matrix: Solid

Analysis Batch: 27328

Client Sample ID: Lab Control Sample

Prep Batch: 27296

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
Arsenic	100	100		mg/Kg	100	80 - 120
Barium	100	110		mg/Kg	110	80 - 120
Cadmium	50.0	49.5		mg/Kg	99	80 - 120
Chromium	50.0	51.8		mg/Kg	104	80 - 120
Lead	50.0	51.4		mg/Kg	103	80 - 120
Selenium	100	101		mg/Kg	101	80 - 120
Silver	5.00	4 99		ma/Ka	100	80 - 120

Lab Sample ID: 590-13087-1 MS

Matrix: Solid

Analysis Batch: 27328

Client Sample ID: RFPNB-12C (4-4.5) Prep Type: Total/NA

Prep Batch: 27296

4/30/2020

Alialysis Dalcii. 21320									Liehr	Jaicii. <i>212</i>	290
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Arsenic	5.9		99.6	95.0		mg/Kg	₩	89	75 - 125		
Barium	39	F1	99.6	145		mg/Kg	₩	106	75 - 125		

Eurofins TestAmerica, Spokane

Page 11 of 19

Prep Type: Total/NA

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06)

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 590-13087-1 MS

Matrix: Solid

Analysis Batch: 27328

Client Sample ID: RFPNB-12C (4-4.5)

Prep Type: Total/NA Prep Batch: 27296

Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier **Analyte** Added Unit D %Rec Limits ℧ Cadmium 0.37 49.8 44.6 89 75 - 125 mg/Kg . ₩ Chromium 6.9 49.8 52.3 mg/Kg 91 75 - 125 Lead 76 49.8 121 mg/Kg ₩ 90 75 - 125 Selenium ND 99.6 89.1 ₩ 89 mg/Kg 75 - 125 Ö Silver ND 4.98 4.39 mg/Kg 88 75 - 125

Lab Sample ID: 590-13087-1 MSD

Matrix: Solid

Analysis Batch: 27328

Client Sample ID: RFPNB-12C (4-4.5)

Prep Type: Total/NA Prep Batch: 27296

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	5.9		97.7	95.9		mg/Kg	☼	92	75 - 125	1	20
Barium	39	F1	97.7	177	F1	mg/Kg	☼	141	75 - 125	20	20
Cadmium	0.37	J	48.9	43.8		mg/Kg	≎	89	75 - 125	2	20
Chromium	6.9		48.9	53.7		mg/Kg	₩.	96	75 - 125	3	20
Lead	76		48.9	119		mg/Kg	≎	87	75 - 125	2	20
Selenium	ND		97.7	87.8		mg/Kg	☼	90	75 - 125	1	20
Silver	ND		4.89	4.18		mg/Kg	₩.	86	75 - 125	5	20

Lab Sample ID: 590-13087-1 DU

Matrix: Solid

Client Sample ID: RFPNB-12C (4-4.5)

Prep Type: Total/NA

Analysis Batch: 27328							Prep Batch: 2	27296
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	5.9		8.76	F3	mg/Kg	\(\pi \)	39	20
Barium	39	F1	50.4	F3	mg/Kg	₩	25	20
Cadmium	0.37	J	0.426	J	mg/Kg	₩	14	20
Chromium	6.9		6.87		mg/Kg	₩	0	20
Lead	76		76.5		mg/Kg	₩	0.8	20
Selenium	ND		ND		mg/Kg	₩	NC	20
Silver	ND		ND		mg/Kg	\$	NC	20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 590-27299/9-A

Matrix: Solid

Analysis Batch: 27323

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27299

MB MB Result Qualifier RI **MDL** Unit Dil Fac **Analyte** Prepared Analyzed 50 04/28/20 08:04 04/29/20 11:56 Hg ND 3.6 ug/Kg

Lab Sample ID: LCS 590-27299/8-A

Matrix: Solid

Analysis Batch: 27323

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 27299

4/30/2020

LCS LCS Spike %Rec. Added Result Qualifier **Analyte** Unit D %Rec Limits 200 202 101 80 - 120 Hg ug/Kg

Eurofins TestAmerica, Spokane

QC Sample Results

Client: GeoEngineers Inc Job ID: 590-13087-1

Project/Site: Riverfront Park (0110-148-06)

Hg

Method: 7471B - Mercury (CVAA) (Continued)

55

Lab Sample ID: 590-13087-1	I MS						Client Sa	•	D: RFPNB-12C (4-4.5)
Matrix: Solid Analysis Batch: 27323									Prep Type: Total/NA Prep Batch: 27299
•	Sample	Sample	Spike	MS	MS				%Rec.
Δnalvto	Regult	Qualifier	habbΔ	Regult	Qualifier	Unit	n	%Rec	l imite

300

ug/Kg

119

80 - 120

Lab Sample ID: 590-13087- Matrix: Solid Analysis Batch: 27323	1 MSD					Cli	ent Sa	ample I	ID: RFPNB-12C (4-4.5) Prep Type: Total/NA Prep Batch: 27299		
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hg	55		207	272		ug/Kg	₩	105	80 - 120	10	20

Hg	55	207	272		ug/Kg	₩	105	80 - 120	10	20
Lab Sample ID: 590-130	87-1 DU				Cli	ent Sar	nple l	D: RFPNE	•	•
Matrix: Solid Analysis Batch: 27323								Prep Tyl Prep B		
_	Sample Sample		DU	DU						RPD
Analyte	Result Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Hg	55		63.8		ug/Kg				15	20

Client Sample ID: RFPNB-12C (4-4.5)

Date Collected: 04/24/20 08:55 Date Received: 04/24/20 11:05 Lab Sample ID: 590-13087-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 92.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27297	04/28/20 07:48	AMB	TAL SPK

Client Sample ID: RFPNB-12C (4-4.5)

Date Collected: 04/24/20 08:55

Date Received: 04/24/20 11:05

nber	or Analyzed	Analyst	Lab	
97	04/28/20 07:48	AMB	TAL SPK	

Lab Sample ID: 590-13087-1 **Matrix: Solid** Percent Solids: 96.5

Lab Sample ID: 590-13087-2

Lab Sample ID: 590-13087-2

Lab Sample ID: 590-13087-3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.26 g	2 mL	27308	04/28/20 12:47	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27306	04/28/20 16:25	NMI	TAL SPK
Total/NA	Prep	3050B			1.40 g	50 mL	27296	04/28/20 07:15	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27328	04/29/20 18:26	JSP	TAL SPK
Total/NA	Prep	7471B			0.54 g	50 mL	27299	04/28/20 08:04	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27323	04/29/20 12:28	AMB	TAL SPK

Client Sample ID: RFPNB-13C (4-4.5)

Date Collected: 04/24/20 09:00

Date Received: 04/24/20 11:05

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27297	04/28/20 07:48	AMB	TAL SPK

Client Sample ID: RFPNB-13C (4-4.5)

Date Collected: 04/24/20 09:00

Date Received: 04/24/20 11:05

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.10 g	2 mL	27308	04/28/20 12:47	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27306	04/28/20 17:44	NMI	TAL SPK
Total/NA	Prep	3050B			1.22 g	50 mL	27296	04/28/20 07:15	AMB	TAL SPK
Total/NA	Analysis	6010D		5			27334	04/30/20 12:45	JSP	TAL SPK
Total/NA	Prep	7471B			0.50 g	50 mL	27299	04/28/20 08:04	AMB	TAL SPK
Total/NA	Analysis	7471B		5			27323	04/29/20 13:00	AMB	TAL SPK

Client Sample ID: RFPNB-14C (4-4.5)

Date Collected: 04/24/20 09:10

Date Received: 04/24/20 11:05

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27297	04/28/20 07:48	AMB	TAL SPK

Eurofins TestAmerica, Spokane

Lab Chronicle

Client: GeoEngineers Inc Job ID: 590-13087-1

Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-14C (4-4.5)

Lab Sample ID: 590-13087-3

Date Collected: 04/24/20 09:10

Date Received: 04/24/20 11:05

Matrix: Solid
Percent Solids: 97.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.60 g	2 mL	27308	04/28/20 12:47	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27306	04/28/20 18:10	NMI	TAL SPK
Total/NA	Prep	3050B			1.30 g	50 mL	27296	04/28/20 07:15	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27328	04/29/20 18:51	JSP	TAL SPK
Total/NA	Prep	7471B			0.51 g	50 mL	27299	04/28/20 08:04	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27323	04/29/20 12:51	AMB	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

5

7

ŏ

11

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13087-1

Project/Site: Riverfront Park (0110-148-06)

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-21

3

4

5

8

9

10

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Method	Method Description	Protocol	Laboratory
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
6010D	Metals (ICP)	SW846	TAL SPK
7471B	Mercury (CVAA)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3050B	Preparation, Metals	SW846	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK
7471B	Preparation, Mercury	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13087-1

3

4

5

6

Q

9

10

11

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ADDRESS: 523 E 2nd Avenue Spokens, WA 99202

SAMPLED BY:

03

24-45 (4-45)

(5-12-12-14-45)

4/24/20

\$580/

X

4/24/20

10900

X

CLIENT SAMPLE IDENTIFICATION

SAMPLING DATE/TIME

RCRA8 metals

PAHI

(W.S.O)

OF

COMMENTS

WOID

M M

M

Page 18 of 19

Turnaround Requests less than standard may incur Rush Charges

OTHER Specify:

RFPNB-140(4.5%)

4/24/20/0910

X

PROJECT NUMBER: 0110-147-06

PROJECT NAME: Riverfront Park - Env. + GT

PHONE: (509) 363-3175 FAX:

P.O. NUMBER:

PRESERVATIVE

REQUESTED ANALYSES

INVOICE TO:

Sar

CLIENT: Ort

CHAIN OF CUSTODY REPORT 11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200 503-906-9200 907-563-9200

Work Order #:

TURNAROUND REQUEST

in Business Days *

10 STD.

7 S 4 3 2
Petroleum Hydrocartion Analyses

1

Organic & Inorganie Analyses

5 4

FAX 924-9290 FAX 906-9210 FAX 563-9210

TAL-1000 (0714) OF

- CHEMP

RELEASED BY

with

ADDITIONAL REMARKS PRINT NAME RELEASED BY PRINT NAME

FIRM

CEI

DATE

RECEIVED BY

PRINT NAME:

Mayla whole

FIRM TASPO

DATE SOLI BINIL DATE 4/74/20

TIME

PRINT NAME

FIRM

RECEIVED BY

590-13087 Chain of Custody

TIME

TIME OF DATE 4/24/20

4/30/2020

Job Number: 590-13087-1

Login Number: 13087

List Number: 1 Creator: O'Toole, Maria C List Source: Eurofins TestAmerica, Spokane

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	N/A	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13087-2

Client Project/Site: Riverfront Park (0110-148-06)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by: 5/5/2020 4:00:19 PM

Randee Arrington, Project Manager II (509)924-9200

Langue trington

randee.arrington@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Riverfront Park (0110-148-06)

Laboratory Job ID: 590-13087-2

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	
Client Sample Results	6
QC Sample Results	7
Chronicle	8
Certification Summary	9
Method Summary	10
Chain of Custody	11
Receipt Checklists	12

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Job ID: 590-13087-2

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 4/24/2020 11:05 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 9.9° C.

Receipt Exceptions

The following sample was activated for TCLP Lead analysis by the client on 05/04/20: RFPNB-13C (4-4.5) (590-13087-2). This analysis was not originally requested on the chain-of-custody (COC).

The following sample was logged in for Method 80-12 Part A on hold pending TCLP Lead analysis by the client on 05/04/20: RFPNB-13C (4-4.5) (590-13087-2). This analysis was not originally requested on the chain-of-custody (COC).

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 590-13087-2

Eurofins TestAmerica, Spokane 5/5/2020

Sample Summary

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-13087-2	RFPNB-13C (4-4.5)	Solid	04/24/20 09:00	04/24/20 11:05	

Job ID: 590-13087-2

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13087-2

Project/Site: Riverfront Park (0110-148-06)

Glossary

DL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDI	Estimated Detection Limit (Discuis)

Detection Limit (DoD/DOE)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

Minimum Detectable Activity (Radiochemistry) MDA Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit MLMinimum Level (Dioxin) Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13087-2

Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-13C (4-4.5)

Lab Sample ID: 590-13087-2

Date Received: 04/24/20 11:05

 Method: 6010D - Metals (ICP) - TCLP

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Lead
 3.2
 0.060
 0.0051
 mg/L
 05/05/20 07:19
 05/05/20 12:30
 1

4

6

0

9

10

QC Sample Results

Client: GeoEngineers Inc Job ID: 590-13087-2

Project/Site: Riverfront Park (0110-148-06)

Method: 6010D - Metals (ICP)

Lab Sample ID: LCS 590-27359/1-A

Matrix: Solid

Analysis Batch: 27364

Spike

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 27359

Rec.

 Analyte
 Added
 Result Dead
 Qualifier Qualifier Tead
 Unit Mig/L
 Description
 WRec Dead
 Limits Note Tead

 Lead
 1.00
 1.15
 mg/L
 115
 80 - 120

Lab Sample ID: LB 590-27352/1-B

Client Sample ID: Method Blank

Matrix: Solid

Prep Type: TCLP

Matrix: Solid
Analysis Batch: 27364

LB LB

Prep Type: TCLP
Prep Batch: 27359

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Lead
 ND
 0.060
 0.0051
 mg/L
 05/05/20 07:19
 05/05/20 12:03
 1

3

4

5

7

0

9

10

11

Lab Chronicle

Client: GeoEngineers Inc Job ID: 590-13087-2

Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-13C (4-4.5)

Lab Sample ID: 590-13087-2

Date Collected: 04/24/20 09:00 Matrix: Solid

Date Received: 04/24/20 11:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.01 g	2000.08 mL	27352	05/04/20 07:58	AMB	TAL SPK
TCLP	Prep	3010A			50 mL	50 mL	27359	05/05/20 07:19	AMB	TAL SPK
TCLP	Analysis	6010D		1			27364	05/05/20 12:30	JSP	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

4

6

8

46

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13087-2

Project/Site: Riverfront Park (0110-148-06)

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

	Authority	Program	Identification Number	Expiration Date
١	Washington	State	C569	01-06-21

40007.0

3

4

5

7

Q

10

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Method **Method Description** Protocol Laboratory 6010D Metals (ICP) SW846 TAL SPK TCLP Extraction TAL SPK SW846 1311 3010A Preparation, Total Metals SW846 TAL SPK

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13087-2

6

9

10

44

estAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ADDRESS: 523 E 2nd Avenue Spokens, WA 99202

SAMPLED BY:

03

25PNB-13C (4-45)

(5-12-12-14-45)

4/24/20

\$580/

X

4/24/20

10900

X

CLIENT SAMPLE IDENTIFICATION

SAMPLING DATE/TIME

RCRA8 metals

PAHI

(W.S.O)

OF

COMMENTS

WOID

M M

M

Page 11 of 12

Turnaround Requests less than standard may incur Rush Charges

OTHER Specify:

RFPNB-140(4.5%)

4/24/20/0910

X

PROJECT NUMBER: 0110-147-06

PROJECT NAME: Riverfront Park - Env. + GT

PHONE: (509) 363-3175 FAX:

CLIENT: Ort

CHAIN OF CUSTODY REPORT

INVOICE TO:

Sar

P.O. NUMBER:

PRESERVATIVE

REQUESTED ANALYSES

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

Work Order #:

TURNAROUND REQUEST

in Business Days *

10 STD.

7 S 4 3 2
Petroleum Hydrocartion Analyses

1

Organic & Inorganie Analyses

5 4

509-924-9200 503-906-9200 907-563-9200

FAX 924-9290 FAX 906-9210 FAX 563-9210

TAL-1000 (0714) OF

- CHEMP

RELEASED BY

with

ADDITIONAL REMARKS PRINT NAME RELEASED BY PRINT NAME

FIRM

CEI

DATE TIME:

RECEIVED BY

PRINT NAME:

Mayla whole

FIRM TASPO

DATE SOLI BINIL DATE 4/74/20

TIME

PRINT NAME

FIRM

TIME

DATE 4/24/20

RECEIVED BY

590-13087 Chain of Custody

Job Number: 590-13087-2

Login Number: 13087

List Number: 1 Creator: O'Toole, Maria C List Source: Eurofins TestAmerica, Spokane

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	N/A	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13092-1

Client Project/Site: Riverfront Park (0110-148-14)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

dance trington

Authorized for release by: 5/8/2020 12:59:41 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Riverfront Park (0110-148-14)

Laboratory Job ID: 590-13092-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	
Client Sample Results	6
QC Sample Results	13
Chronicle	18
Certification Summary	22
Method Summary	23
Chain of Custody	24
Receipt Checklists	25

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Job ID: 590-13092-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 4/28/2020 4:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.6° C.

GC/MS Semi VOA

Method 8270E SIM: The following samples were diluted due to the nature of the sample matrix: RFPNB-19C(0-0.5) (590-13092-5) and RFPNB-20C(0-0.5) (590-13092-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method 6010D: The matrix spike duplicate (MSD) recoveries for preparation batch 590-27341 and analytical batch 590-27374 were outside control limits. Sample non homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 6010D: The sample duplicate (DUP) precision for preparation batch 590-27341 and analytical batch 590-27391 was outside control limits. Sample matrix interference is suspected.

Method 6010D: The matrix spike / matrix spike duplicate (MS/MSD) precision for preparation batch 590-27341 and analytical batch 590-27391 was outside control limits. Sample non-homogeneity is suspected.

Method 6010D: The low level initial calibration verification (ICVL) associated with batch 590-27392 recovered above the upper control limit for Selenium. The samples associated with this ICV were non-detects for the affected analytes; therefore, the data have been reported.

Method 7471B: The matrix spike (MS) recoveries for preparation batch 590-27376 and analytical batch 590-27400 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 590-13092-1

Sample Summary

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-13092-1	RFPNB-15C(0-0.5)	Solid	04/28/20 06:58	04/28/20 16:10	
590-13092-2	RFPNB-16C(0-0.5)	Solid	04/28/20 07:03	04/28/20 16:10	
590-13092-3	RFPNB-17C(0-0.5)	Solid	04/28/20 07:07	04/28/20 16:10	
590-13092-4	RFPNB-18C(0-0.5)	Solid	04/28/20 07:10	04/28/20 16:10	
590-13092-5	RFPNB-19C(0-0.5)	Solid	04/28/20 07:15	04/28/20 16:10	
590-13092-6	RFPNB-20C(0-0.5)	Solid	04/28/20 07:38	04/28/20 16:10	
590-13092-7	RFPNB-21C(0-0.5)	Solid	04/28/20 07:43	04/28/20 16:10	
590-13092-8	RFPNB-22C(0-0.5)	Solid	04/28/20 07:54	04/28/20 16:10	

Job ID: 590-13092-1

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13092-1

Project/Site: Riverfront Park (0110-148-14)

Qualifiers

	i VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
F3	Duplicate RPD exceeds the control limit
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the absolute difference is less than the RL.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) Method Quantitation Limit MQL

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL **Practical Quantitation Limit**

Quality Control QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF** TEQ Toxicity Equivalent Quotient (Dioxin)

Page 5 of 25

Client Sample ID: RFPNB-15C(0-0.5) Lab Sample ID: 590-13092-1

Date Collected: 04/28/20 06:58 **Matrix: Solid** Date Received: 04/28/20 16:10 Percent Solids: 94.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	2.3	J	10	2.2	ug/Kg	<u></u>	05/04/20 12:23	05/04/20 15:04	1
2-Methylnaphthalene	4.2	J	10	3.1	ug/Kg	☼	05/04/20 12:23	05/04/20 15:04	1
1-Methylnaphthalene	2.7	J	10	2.2	ug/Kg	☼	05/04/20 12:23	05/04/20 15:04	1
Acenaphthylene	5.8	J	10	3.3	ug/Kg	₽	05/04/20 12:23	05/04/20 15:04	1
Acenaphthene	ND		10	2.5	ug/Kg	≎	05/04/20 12:23	05/04/20 15:04	1
Fluorene	2.2	J	10	2.2	ug/Kg	☼	05/04/20 12:23	05/04/20 15:04	1
Phenanthrene	23		10	3.7	ug/Kg	₽	05/04/20 12:23	05/04/20 15:04	· · · · · · · · ·
Anthracene	8.0	J	10	2.0	ug/Kg	≎	05/04/20 12:23	05/04/20 15:04	1
Fluoranthene	57		10	2.5	ug/Kg	≎	05/04/20 12:23	05/04/20 15:04	1
Pyrene	62		10	3.8	ug/Kg	₽	05/04/20 12:23	05/04/20 15:04	1
Benzo[a]anthracene	33		10	2.1	ug/Kg	₩	05/04/20 12:23	05/04/20 15:04	1
Chrysene	41		10	1.5	ug/Kg	₩	05/04/20 12:23	05/04/20 15:04	1
Benzo[b]fluoranthene	45		10	3.5	ug/Kg	₽	05/04/20 12:23	05/04/20 15:04	1
Benzo[k]fluoranthene	20		10	2.5	ug/Kg	₩	05/04/20 12:23	05/04/20 15:04	1
Benzo[a]pyrene	39		10	4.3	ug/Kg	☼	05/04/20 12:23	05/04/20 15:04	•
Indeno[1,2,3-cd]pyrene	25		10	3.0	ug/Kg	₽	05/04/20 12:23	05/04/20 15:04	1
Dibenz(a,h)anthracene	8.2	J	10	2.9	ug/Kg	☼	05/04/20 12:23	05/04/20 15:04	•
Benzo[g,h,i]perylene	33		10	2.4	ug/Kg	₩	05/04/20 12:23	05/04/20 15:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	77		43 - 120				05/04/20 12:23	05/04/20 15:04	
2-Fluorobiphenyl (Surr)	89		56 - 120				05/04/20 12:23	05/04/20 15:04	1
p-Terphenyl-d14	87		74 - 136				05/04/20 12:23	05/04/20 15:04	1
Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	10		5.0	2.0	mg/Kg	<u> </u>	05/01/20 08:43	05/06/20 16:32	
Barium	78		5.0	1.4	mg/Kg	₩	05/01/20 08:43	05/06/20 16:32	į
Cadmium	0.67	J	4.0	0.24	mg/Kg	₩	05/01/20 08:43	05/06/20 16:32	į
Chromium	11		5.0	0.71	mg/Kg	₽	05/01/20 08:43	05/06/20 16:32	5
Lead	180	F1 F2	12	5.9	mg/Kg	₩	05/01/20 08:43	05/06/20 16:32	Ę

Analyte	, Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	10	5.0	2.0	mg/Kg	<u></u>	05/01/20 08:43	05/06/20 16:32	5
Barium	78	5.0	1.4	mg/Kg	₩	05/01/20 08:43	05/06/20 16:32	5
Cadmium	0.67 J	4.0	0.24	mg/Kg	₩	05/01/20 08:43	05/06/20 16:32	5
Chromium	11	5.0	0.71	mg/Kg	₩	05/01/20 08:43	05/06/20 16:32	5
Lead	180 F1 F2	12	5.9	mg/Kg	₩	05/01/20 08:43	05/06/20 16:32	5
Selenium	ND	20	12	mg/Kg	≎	05/01/20 08:43	05/06/20 16:32	5
Silver	ND	5.0	0.54	mg/Kg	₩	05/01/20 08:43	05/06/20 16:32	5
_								

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	150	F1	49	3.5	ug/Kg	\	05/06/20 10:35	05/08/20 08:57	1

Client Sample ID: RFPNB-16C(0-0.5) Lab Sample ID: 590-13092-2 Date Collected: 04/28/20 07:03 **Matrix: Solid** Date Received: 04/28/20 16:10 Percent Solids: 95.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	6.9	J	10	2.2	ug/Kg	<u></u>	05/04/20 12:23	05/04/20 16:23	1
2-Methylnaphthalene	13		10	3.2	ug/Kg	☼	05/04/20 12:23	05/04/20 16:23	1
1-Methylnaphthalene	6.6	J	10	2.3	ug/Kg	☼	05/04/20 12:23	05/04/20 16:23	1
Acenaphthylene	16		10	3.4	ug/Kg	φ.	05/04/20 12:23	05/04/20 16:23	1
Acenaphthene	3.1	J	10	2.6	ug/Kg	☼	05/04/20 12:23	05/04/20 16:23	1
Fluorene	7.0	J	10	2.3	ug/Kg	☼	05/04/20 12:23	05/04/20 16:23	1
Phenanthrene	30		10	3.7	ug/Kg		05/04/20 12:23	05/04/20 16:23	1

Eurofins TestAmerica, Spokane

Page 6 of 25

Client: GeoEngineers Inc Job ID: 590-13092-1

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-16C(0-0.5)

Lab Sample ID: 590-13092-2 Date Collected: 04/28/20 07:03 **Matrix: Solid**

Date Received: 04/28/20 16:10 Percent Solids: 95.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	19		10	2.1	ug/Kg	<u> </u>	05/04/20 12:23	05/04/20 16:23	1
Fluoranthene	91		10	2.6	ug/Kg	☼	05/04/20 12:23	05/04/20 16:23	1
Pyrene	110		10	3.9	ug/Kg	₽	05/04/20 12:23	05/04/20 16:23	1
Benzo[a]anthracene	67		10	2.2	ug/Kg	☼	05/04/20 12:23	05/04/20 16:23	1
Chrysene	85		10	1.6	ug/Kg	☼	05/04/20 12:23	05/04/20 16:23	1
Benzo[b]fluoranthene	130		10	3.6	ug/Kg	₽	05/04/20 12:23	05/04/20 16:23	1
Benzo[k]fluoranthene	17		10	2.6	ug/Kg	☼	05/04/20 12:23	05/04/20 16:23	1
Benzo[a]pyrene	78		10	4.4	ug/Kg	☼	05/04/20 12:23	05/04/20 16:23	1
Indeno[1,2,3-cd]pyrene	54		10	3.1	ug/Kg	₽	05/04/20 12:23	05/04/20 16:23	1
Dibenz(a,h)anthracene	17		10	2.9	ug/Kg	☼	05/04/20 12:23	05/04/20 16:23	1
Benzo[g,h,i]perylene	63		10	2.4	ug/Kg	≎	05/04/20 12:23	05/04/20 16:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	78		43 - 120				05/04/20 12:23	05/04/20 16:23	1
2-Fluorobiphenyl (Surr)	87		56 - 120				05/04/20 12:23	05/04/20 16:23	1
p-Terphenyl-d14	90		74 - 136				05/04/20 12:23	05/04/20 16:23	1

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	20		1.0	0.40	mg/Kg	<u> </u>	05/01/20 08:43	05/05/20 16:07	1
Barium	65		1.0	0.27	mg/Kg	₩	05/01/20 08:43	05/05/20 16:07	1
Cadmium	0.28	J	0.82	0.048	mg/Kg	☼	05/01/20 08:43	05/05/20 16:07	1
Chromium	9.8		1.0	0.14	mg/Kg	₽	05/01/20 08:43	05/05/20 16:07	1
Lead	51		2.4	1.2	mg/Kg	☼	05/01/20 08:43	05/05/20 16:07	1
Selenium	ND		4.1	2.5	mg/Kg	☼	05/01/20 08:43	05/05/20 16:07	1
Silver	0.14	J	1.0	0.11	mg/Kg	₽	05/01/20 08:43	05/05/20 16:07	1

Method: 7471B - Mercury (CVA)	4)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	120		49	3.5	ug/Kg	₩	05/06/20 10:35	05/08/20 09:07	1

Client Sample ID: RFPNB-17C(0-0.5) Lab Sample ID: 590-13092-3 Date Collected: 04/28/20 07:07 **Matrix: Solid**

Date Received: 04/28/20 16:10 Percent Solids: 94.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	3.8	J	9.9	2.1	ug/Kg	<u> </u>	05/04/20 12:23	05/04/20 16:49	1
2-Methylnaphthalene	7.4	J	9.9	3.1	ug/Kg	₩	05/04/20 12:23	05/04/20 16:49	1
1-Methylnaphthalene	5.4	J	9.9	2.2	ug/Kg	₩	05/04/20 12:23	05/04/20 16:49	1
Acenaphthylene	8.8	J	9.9	3.3	ug/Kg		05/04/20 12:23	05/04/20 16:49	1
Acenaphthene	3.0	J	9.9	2.5	ug/Kg	₩	05/04/20 12:23	05/04/20 16:49	1
Fluorene	ND		9.9	2.2	ug/Kg	₩	05/04/20 12:23	05/04/20 16:49	1
Phenanthrene	19		9.9	3.6	ug/Kg	₽	05/04/20 12:23	05/04/20 16:49	1
Anthracene	9.3	J	9.9	2.0	ug/Kg	₩	05/04/20 12:23	05/04/20 16:49	1
Fluoranthene	44		9.9	2.5	ug/Kg	₩	05/04/20 12:23	05/04/20 16:49	1
Pyrene	48		9.9	3.8	ug/Kg	₩	05/04/20 12:23	05/04/20 16:49	1
Benzo[a]anthracene	29		9.9	2.1	ug/Kg	₩	05/04/20 12:23	05/04/20 16:49	1
Chrysene	36		9.9	1.5	ug/Kg	₩	05/04/20 12:23	05/04/20 16:49	1
Benzo[b]fluoranthene	50		9.9	3.5	ug/Kg	₩	05/04/20 12:23	05/04/20 16:49	1
Benzo[k]fluoranthene	18		9.9	2.5	ug/Kg	₩	05/04/20 12:23	05/04/20 16:49	1

Eurofins TestAmerica, Spokane

Page 7 of 25 5/8/2020

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-17C(0-0.5)

Date Collected: 04/28/20 07:07

Date Received: 04/28/20 16:10

Lab Sample ID: 590-13092-3

Matrix: Solid

Job ID: 590-13092-1

Percent Solids: 94.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	37		9.9	4.2	ug/Kg	<u> </u>	05/04/20 12:23	05/04/20 16:49	1
Indeno[1,2,3-cd]pyrene	21		9.9	2.9	ug/Kg	₽	05/04/20 12:23	05/04/20 16:49	1
Dibenz(a,h)anthracene	7.2	J	9.9	2.8	ug/Kg	☼	05/04/20 12:23	05/04/20 16:49	1
Benzo[g,h,i]perylene	25		9.9	2.3	ug/Kg	₩	05/04/20 12:23	05/04/20 16:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	73		43 - 120				05/04/20 12:23	05/04/20 16:49	1
2-Fluorobiphenyl (Surr)	77		56 - 120				05/04/20 12:23	05/04/20 16:49	1
p-Terphenyl-d14	88		74 - 136				05/04/20 12:23	05/04/20 16:49	1

Method: 6010D - Metals (ICP)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	11	0.95	0.38	mg/Kg	₩	05/01/20 08:43	05/05/20 16:10	1
Barium	79	0.95	0.25	mg/Kg	☼	05/01/20 08:43	05/05/20 16:10	1
Cadmium	0.95	0.76	0.045	mg/Kg	☼	05/01/20 08:43	05/05/20 16:10	1
Chromium	12	0.95	0.13	mg/Kg	₽	05/01/20 08:43	05/05/20 16:10	1
Lead	330	2.3	1.1	mg/Kg	☼	05/01/20 08:43	05/05/20 16:10	1
Selenium	ND	3.8	2.3	mg/Kg	☼	05/01/20 08:43	05/05/20 16:10	1
Silver	0.98	0.95	0.10	mg/Kg	₩	05/01/20 08:43	05/05/20 16:10	1

Method: /4/1B - Mercury (CVAA))							
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	140	45	3.2	ug/Kg		05/06/20 10:35	05/08/20 09:11	1

Client Sample ID: RFPNB-18C(0-0.5)

Date Collected: 04/28/20 07:10

Lab Sample ID: 590-13092-4

Matrix: Solid

Date Received: 04/28/20 16:10 Percent Solids: 95.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	14		9.9	2.1	ug/Kg	₩	05/04/20 12:23	05/04/20 17:15	1
2-Methylnaphthalene	24		9.9	3.1	ug/Kg	≎	05/04/20 12:23	05/04/20 17:15	1
1-Methylnaphthalene	18		9.9	2.2	ug/Kg	≎	05/04/20 12:23	05/04/20 17:15	1
Acenaphthylene	13		9.9	3.3	ug/Kg	\$	05/04/20 12:23	05/04/20 17:15	1
Acenaphthene	21		9.9	2.5	ug/Kg	☼	05/04/20 12:23	05/04/20 17:15	1
Fluorene	14		9.9	2.2	ug/Kg	≎	05/04/20 12:23	05/04/20 17:15	1
Phenanthrene	190		9.9	3.6	ug/Kg	₽	05/04/20 12:23	05/04/20 17:15	1
Anthracene	58		9.9	2.0	ug/Kg	☼	05/04/20 12:23	05/04/20 17:15	1
Fluoranthene	290		9.9	2.5	ug/Kg	☼	05/04/20 12:23	05/04/20 17:15	1
Pyrene	340		9.9	3.8	ug/Kg	₽	05/04/20 12:23	05/04/20 17:15	1
Benzo[a]anthracene	160		9.9	2.1	ug/Kg	≎	05/04/20 12:23	05/04/20 17:15	1
Chrysene	180		9.9	1.5	ug/Kg	☼	05/04/20 12:23	05/04/20 17:15	1
Benzo[b]fluoranthene	220		9.9	3.5	ug/Kg	₽	05/04/20 12:23	05/04/20 17:15	1
Benzo[k]fluoranthene	90		9.9	2.5	ug/Kg	₽	05/04/20 12:23	05/04/20 17:15	1
Benzo[a]pyrene	180		9.9	4.2	ug/Kg	☼	05/04/20 12:23	05/04/20 17:15	1
Indeno[1,2,3-cd]pyrene	65		9.9	2.9	ug/Kg	φ.	05/04/20 12:23	05/04/20 17:15	1
Dibenz(a,h)anthracene	22		9.9	2.8	ug/Kg	☼	05/04/20 12:23	05/04/20 17:15	1
Benzo[g,h,i]perylene	70		9.9	2.3	ug/Kg	≎	05/04/20 12:23	05/04/20 17:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	78	-	43 - 120				05/04/20 12:23	05/04/20 17:15	1

Eurofins TestAmerica, Spokane

Page 8 of 25 5/8/2020

Client: GeoEngineers Inc Job ID: 590-13092-1

Project/Site: Riverfront Park (0110-148-14)

Arsenic

Client Sample ID: RFPNB-18C(0-0.5)

Lab Sample ID: 590-13092-4 Date Collected: 04/28/20 07:10 **Matrix: Solid**

Date Received: 04/28/20 16:10 Percent Solids: 95.5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	81		56 - 120	05/04/20 12:23	05/04/20 17:15	1
p-Terphenyl-d14	92		74 - 136	05/04/20 12:23	05/04/20 17:15	1

Method: 6010D - Metals (ICP) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	10	0.98	0.39	mg/Kg	<u></u>	05/01/20 08:43	05/05/20 16:13	1
Barium	81	0.98	0.26	mg/Kg	☼	05/01/20 08:43	05/05/20 16:13	1
Cadmium	1.4	0.79	0.046	mg/Kg	₩	05/01/20 08:43	05/05/20 16:13	1
Chromium	23	0.98	0.14	mg/Kg	₩.	05/01/20 08:43	05/05/20 16:13	1
Lead	270	2.4	1.2	mg/Kg	₩	05/01/20 08:43	05/05/20 16:13	1
Selenium	ND	3.9	2.4	mg/Kg	₩	05/01/20 08:43	05/05/20 16:13	1
Silver	0.68 J	0.98	0.11	mg/Kg	₽	05/01/20 08:43	05/05/20 16:13	1

Method: 7471B - Mercury (CVA	(A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	360		43	3.1	ug/Kg	\	05/06/20 10:35	05/08/20 09:13	1

Client Sample ID: RFPNB-19C(0-0.5) Lab Sample ID: 590-13092-5

Date Collected: 04/28/20 07:15 **Matrix: Solid** Date Received: 04/28/20 16:10 Percent Solids: 98.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	6.6	J	20	4.3	ug/Kg	₩	05/04/20 12:23	05/04/20 17:42	2
2-Methylnaphthalene	12	J	20	6.2	ug/Kg	≎	05/04/20 12:23	05/04/20 17:42	2
1-Methylnaphthalene	7.7	J	20	4.4	ug/Kg	≎	05/04/20 12:23	05/04/20 17:42	2
Acenaphthylene	ND		20	6.6	ug/Kg	\$	05/04/20 12:23	05/04/20 17:42	2
Acenaphthene	5.2	J	20	5.0	ug/Kg	☼	05/04/20 12:23	05/04/20 17:42	2
Fluorene	4.8	J	20	4.4	ug/Kg	≎	05/04/20 12:23	05/04/20 17:42	2
Phenanthrene	41		20	7.2	ug/Kg	₽	05/04/20 12:23	05/04/20 17:42	2
Anthracene	11	J	20	4.0	ug/Kg	☼	05/04/20 12:23	05/04/20 17:42	2
Fluoranthene	66		20	4.9	ug/Kg	☼	05/04/20 12:23	05/04/20 17:42	2
Pyrene	86		20	7.5	ug/Kg	₽	05/04/20 12:23	05/04/20 17:42	2
Benzo[a]anthracene	37		20	4.2	ug/Kg	☼	05/04/20 12:23	05/04/20 17:42	2
Chrysene	81		20	3.0	ug/Kg	☼	05/04/20 12:23	05/04/20 17:42	2
Benzo[b]fluoranthene	64		20	6.9	ug/Kg	φ.	05/04/20 12:23	05/04/20 17:42	2
Benzo[k]fluoranthene	19	J	20	4.9	ug/Kg	☼	05/04/20 12:23	05/04/20 17:42	2
Benzo[a]pyrene	44		20	8.4	ug/Kg	☼	05/04/20 12:23	05/04/20 17:42	2
Indeno[1,2,3-cd]pyrene	17	J	20	5.9	ug/Kg	φ.	05/04/20 12:23	05/04/20 17:42	2
Dibenz(a,h)anthracene	9.1	J	20	5.6	ug/Kg	☼	05/04/20 12:23	05/04/20 17:42	2
Benzo[g,h,i]perylene	24		20	4.7	ug/Kg	₩	05/04/20 12:23	05/04/20 17:42	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	85		43 - 120				05/04/20 12:23	05/04/20 17:42	2
2-Fluorobiphenyl (Surr)	93		56 - 120				05/04/20 12:23	05/04/20 17:42	2
p-Terphenyl-d14	97		74 - 136				05/04/20 12:23	05/04/20 17:42	2
Method: 6010D - Metals (ICP) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

1.7

0.67 mg/Kg

Eurofins TestAmerica, Spokane

□ 5/01/20 08:43 □ 5/06/20 16:50 □ 05/06/20 □ 05/0

Page 9 of 25 5/8/2020

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-19C(0-0.5)

Date Collected: 04/28/20 07:15 Date Received: 04/28/20 16:10

Lab Sample ID: 590-13092-5 **Matrix: Solid** Percent Solids: 98.3

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	<u></u>	1.7	0.45	mg/Kg	<u> </u>	05/01/20 08:43	05/06/20 16:50	2
Cadmium	0.21 J	1.4	0.080	mg/Kg	₩	05/01/20 08:43	05/06/20 16:50	2
Chromium	6.7	1.7	0.24	mg/Kg	₩	05/01/20 08:43	05/06/20 16:50	2
Lead	70	4.1	2.0	mg/Kg	₩	05/01/20 08:43	05/06/20 16:50	2
Selenium	ND	6.8	4.1	mg/Kg	₩	05/01/20 08:43	05/06/20 16:50	2
Silver	ND	1.7	0.18	mg/Kg	.	05/01/20 08:43	05/06/20 16:50	2

Method: 7471B - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac □ 5/06/20 10:35 □ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ 05/08/20 09:16
□ Hg 36 J 48 3.4 ug/Kg

Client Sample ID: RFPNB-20C(0-0.5)

Lab Sample ID: 590-13092-6 Date Collected: 04/28/20 07:38 **Matrix: Solid** Date Received: 04/28/20 16:10 Percent Solids: 96.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	19	J	51	11	ug/Kg	<u> </u>	05/04/20 12:23	05/04/20 18:08	5
2-Methylnaphthalene	37	J	51	16	ug/Kg	₩	05/04/20 12:23	05/04/20 18:08	5
1-Methylnaphthalene	25	J	51	11	ug/Kg	₩	05/04/20 12:23	05/04/20 18:08	5
Acenaphthylene	ND		51	17	ug/Kg	₩	05/04/20 12:23	05/04/20 18:08	5
Acenaphthene	ND		51	13	ug/Kg	₩	05/04/20 12:23	05/04/20 18:08	5
Fluorene	ND		51	11	ug/Kg	₩	05/04/20 12:23	05/04/20 18:08	5
Phenanthrene	60		51	19	ug/Kg	₽	05/04/20 12:23	05/04/20 18:08	5
Anthracene	23	J	51	10	ug/Kg	☼	05/04/20 12:23	05/04/20 18:08	5
Fluoranthene	83		51	13	ug/Kg	☼	05/04/20 12:23	05/04/20 18:08	5
Pyrene	110		51	20	ug/Kg	₽	05/04/20 12:23	05/04/20 18:08	5
Benzo[a]anthracene	52		51	11	ug/Kg	☼	05/04/20 12:23	05/04/20 18:08	5
Chrysene	90		51	7.8	ug/Kg	☼	05/04/20 12:23	05/04/20 18:08	5
Benzo[b]fluoranthene	97		51	18	ug/Kg		05/04/20 12:23	05/04/20 18:08	5
Benzo[k]fluoranthene	37	J	51	13	ug/Kg	₩	05/04/20 12:23	05/04/20 18:08	5
Benzo[a]pyrene	72		51	22	ug/Kg	☼	05/04/20 12:23	05/04/20 18:08	5
Indeno[1,2,3-cd]pyrene	34	J	51	15	ug/Kg	φ.	05/04/20 12:23	05/04/20 18:08	5
Dibenz(a,h)anthracene	18	J	51	15	ug/Kg	☼	05/04/20 12:23	05/04/20 18:08	5
Benzo[g,h,i]perylene	51		51	12	ug/Kg	≎	05/04/20 12:23	05/04/20 18:08	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	80		43 - 120				05/04/20 12:23	05/04/20 18:08	5
2-Fluorobiphenyl (Surr)	84		56 - 120				05/04/20 12:23	05/04/20 18:08	5
p-Terphenyl-d14	90		74 - 136				05/04/20 12:23	05/04/20 18:08	5

Method: 6010D - Metals	(ICP)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.4	1.9	0.76	mg/Kg	₩	05/01/20 08:43	05/06/20 16:53	2
Barium	120	1.9	0.52	mg/Kg	₽	05/01/20 08:43	05/06/20 16:53	2
Cadmium	1.3 J	1.5	0.091	mg/Kg	₽	05/01/20 08:43	05/06/20 16:53	2
Chromium	11	1.9	0.27	mg/Kg	₽	05/01/20 08:43	05/06/20 16:53	2
Lead	600	4.6	2.3	mg/Kg	₩	05/01/20 08:43	05/06/20 16:53	2
Selenium	ND	7.7	4.6	mg/Kg	☼	05/01/20 08:43	05/06/20 16:53	2
Silver	1.1 J	1.9	0.21	mg/Kg		05/01/20 08:43	05/06/20 16:53	2

Eurofins TestAmerica, Spokane

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13092-1

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-20C(0-0.5)

Lab Sample ID: 590-13092-6

Date Collected: 04/28/20 07:38 **Matrix: Solid** Date Received: 04/28/20 16:10 Percent Solids: 96.1

Method: 7471B - Mercury (CVAA	()								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	240		48	3.4	ug/Kg	₩	05/06/20 10:35	05/08/20 09:22	1

Client Sample ID: RFPNB-21C(0-0.5)

Lab Sample ID: 590-13092-7 Date Collected: 04/28/20 07:43 **Matrix: Solid** Date Received: 04/28/20 16:10 Percent Solids: 95.8

Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	9.8 15 12 16 16 13 160 48 250 290	J	10 10 10 10 10 10 10	2.3 3.4 2.6 2.3 3.7	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	05/04/20 12:23 05/04/20 12:23 05/04/20 12:23 05/04/20 12:23 05/04/20 12:23 05/04/20 12:23	05/04/20 18:34	1 1 1
1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	12 16 16 13 160 48 250		10 10 10 10 10	2.3 3.4 2.6 2.3 3.7	ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	05/04/20 12:23 05/04/20 12:23 05/04/20 12:23	05/04/20 18:34 05/04/20 18:34 05/04/20 18:34	·
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	16 16 13 160 48 250		10 10 10 10	3.4 2.6 2.3 3.7	ug/Kg ug/Kg ug/Kg	\$ \$ \$	05/04/20 12:23 05/04/20 12:23	05/04/20 18:34 05/04/20 18:34	
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	16 13 160 48 250		10 10 10	2.6 2.3 3.7	ug/Kg ug/Kg	‡	05/04/20 12:23	05/04/20 18:34	1
Fluorene Phenanthrene Anthracene Fluoranthene	13 160 48 250		10 10	2.3 3.7	ug/Kg	₩			
Phenanthrene Anthracene Fluoranthene	160 48 250		10	3.7			05/04/20 12:23	05/04/20 18:34	
Anthracene Fluoranthene	48 250				ug/Kg			00.0 = 0 . 0.0 .	•
Fluoranthene	250		10			₩	05/04/20 12:23	05/04/20 18:34	•
				2.1	ug/Kg	☼	05/04/20 12:23	05/04/20 18:34	•
Pyrene	290		10	2.6	ug/Kg	☼	05/04/20 12:23	05/04/20 18:34	•
			10	3.9	ug/Kg	φ.	05/04/20 12:23	05/04/20 18:34	1
Benzo[a]anthracene	130		10	2.2	ug/Kg	☼	05/04/20 12:23	05/04/20 18:34	1
Chrysene	150		10	1.6	ug/Kg	☼	05/04/20 12:23	05/04/20 18:34	1
Benzo[b]fluoranthene	200		10	3.6	ug/Kg	₽	05/04/20 12:23	05/04/20 18:34	1
Benzo[k]fluoranthene	77		10	2.6	ug/Kg	☼	05/04/20 12:23	05/04/20 18:34	1
Benzo[a]pyrene	150		10	4.3	ug/Kg	☼	05/04/20 12:23	05/04/20 18:34	1
Indeno[1,2,3-cd]pyrene	54		10	3.0	ug/Kg	\$	05/04/20 12:23	05/04/20 18:34	1
Dibenz(a,h)anthracene	18		10	2.9	ug/Kg	☼	05/04/20 12:23	05/04/20 18:34	1
Benzo[g,h,i]perylene	59		10	2.4	ug/Kg	₩	05/04/20 12:23	05/04/20 18:34	1
Surrogate %	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	77		43 - 120				05/04/20 12:23	05/04/20 18:34	
2-Fluorobiphenyl (Surr)	81		56 - 120				05/04/20 12:23	05/04/20 18:34	
p-Terphenyl-d14	97		74 - 136				05/04/20 12:23	05/04/20 18:34	•
Method: 6010D - Metals (ICP)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	9.5		0.89	0.35	mg/Kg	-	05/01/20 08:43	05/05/20 16:23	1
Barium	79		0.89	0.24	mg/Kg	₩	05/01/20 08:43	05/05/20 16:23	1
Cadmium	1.0		0.71		mg/Kg	₩	05/01/20 08:43	05/05/20 16:23	
Chromium	12		0.89	0.13	mg/Kg	₽	05/01/20 08:43	05/05/20 16:23	•
Lead	330		2.1	1.0	mg/Kg	☼	05/01/20 08:43	05/05/20 16:23	•
Selenium	ND		3.6	2.1	mg/Kg	₩	05/01/20 08:43	05/05/20 16:23	
Silver	0.65	J	0.89	0.095	mg/Kg	☼	05/01/20 08:43	05/05/20 16:23	,
Method: 7471B - Mercury (CVAA									
Analyte Hg	Result 150	Qualifier			Unit ug/Kg	— D <u>☆</u>	Prepared 05/06/20 10:35	Analyzed 05/08/20 09:25	Dil Fac

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13092-1

Project/Site: Riverfront Park (0110-148-14)

Hg

Client Sample ID: RFPNB-22C(0-0.5)

Lab Sample ID: 590-13092-8

Date Collected: 04/28/20 07:54

Date Received: 04/28/20 16:10

Matrix: Solid
Percent Solids: 93.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	23		10	2.2	ug/Kg	₩	05/04/20 12:23	05/04/20 19:01	1
2-Methylnaphthalene	48		10	3.2	ug/Kg	≎	05/04/20 12:23	05/04/20 19:01	1
1-Methylnaphthalene	37		10	2.3	ug/Kg	☼	05/04/20 12:23	05/04/20 19:01	1
Acenaphthylene	9.8	J	10	3.4	ug/Kg	₽	05/04/20 12:23	05/04/20 19:01	1
Acenaphthene	25		10	2.6	ug/Kg	☼	05/04/20 12:23	05/04/20 19:01	1
Fluorene	14		10	2.3	ug/Kg	☼	05/04/20 12:23	05/04/20 19:01	1
Phenanthrene	230		10	3.7	ug/Kg	φ.	05/04/20 12:23	05/04/20 19:01	1
Anthracene	56		10	2.0	ug/Kg	☼	05/04/20 12:23	05/04/20 19:01	1
Fluoranthene	260		10	2.6	ug/Kg	☼	05/04/20 12:23	05/04/20 19:01	1
Pyrene	300		10	3.9	ug/Kg	₽	05/04/20 12:23	05/04/20 19:01	1
Benzo[a]anthracene	120		10	2.2	ug/Kg	☼	05/04/20 12:23	05/04/20 19:01	1
Chrysene	150		10	1.6	ug/Kg	☼	05/04/20 12:23	05/04/20 19:01	1
Benzo[b]fluoranthene	180		10	3.6	ug/Kg	₽	05/04/20 12:23	05/04/20 19:01	1
Benzo[k]fluoranthene	71		10	2.6	ug/Kg	≎	05/04/20 12:23	05/04/20 19:01	1
Benzo[a]pyrene	140		10	4.3	ug/Kg	≎	05/04/20 12:23	05/04/20 19:01	1
Indeno[1,2,3-cd]pyrene	47		10	3.0	ug/Kg	ф.	05/04/20 12:23	05/04/20 19:01	1
Dibenz(a,h)anthracene	16		10	2.9	ug/Kg	≎	05/04/20 12:23	05/04/20 19:01	1
Benzo[g,h,i]perylene	52		10	2.4	ug/Kg	₩	05/04/20 12:23	05/04/20 19:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	60		43 - 120				05/04/20 12:23	05/04/20 19:01	
2-Fluorobiphenyl (Surr)	70		56 - 120				05/04/20 12:23	05/04/20 19:01	1
p-Terphenyl-d14	87		74 - 136				05/04/20 12:23	05/04/20 19:01	1
Method: 6010D - Metals (ICP	')								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	44		9.8	3.9	mg/Kg	₩	05/01/20 08:45	05/06/20 16:56	10
Barium	170		9.8	2.6	mg/Kg	≎	05/01/20 08:45	05/06/20 16:56	10
Cadmium	5.6	J	7.8	0.46	mg/Kg	≎	05/01/20 08:45	05/06/20 16:56	10
Chromium	8.3	J	9.8	1.4	mg/Kg	₽	05/01/20 08:45	05/06/20 16:56	10
Lead	6500		47	23	mg/Kg	₩	05/01/20 08:45	05/07/20 14:54	20
Selenium	ND		39	24	mg/Kg	₩	05/01/20 08:45	05/06/20 16:56	10
Silver	6.8	J	9.8	1.0	mg/Kg	₩	05/01/20 08:45	05/06/20 16:56	10
Method: 7471B - Mercury (C	VAA)								
Analyte	Pocult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

 ☼
 05/06/20 10:35
 05/08/20 10:06

240

17 ug/Kg

1700

2

3

<u>0</u>

8

10

11

12

Job ID: 590-13092-1 Project/Site: Riverfront Park (0110-148-14)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

MR MR

Lab Sample ID: MB 590-27358/1-A

Matrix: Solid

Analysis Batch: 27357

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 27358

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
2-Methylnaphthalene	ND		10	3.1	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
1-Methylnaphthalene	ND		10	2.2	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Acenaphthylene	ND		10	3.3	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Acenaphthene	ND		10	2.5	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Fluorene	ND		10	2.2	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Phenanthrene	ND		10	3.6	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Anthracene	ND		10	2.0	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Fluoranthene	ND		10	2.5	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Pyrene	ND		10	3.8	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Benzo[a]anthracene	ND		10	2.1	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Chrysene	ND		10	1.5	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Benzo[b]fluoranthene	ND		10	3.5	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Benzo[k]fluoranthene	ND		10	2.5	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Benzo[a]pyrene	ND		10	4.2	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Indeno[1,2,3-cd]pyrene	ND		10	3.0	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Dibenz(a,h)anthracene	ND		10	2.8	ug/Kg		05/04/20 12:23	05/04/20 13:45	1
Benzo[g,h,i]perylene	ND		10	2.4	ug/Kg		05/04/20 12:23	05/04/20 13:45	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	67	43 - 120	05/04/20 12:23	05/04/20 13:45	1
2-Fluorobiphenyl (Surr)	67	56 - 120	05/04/20 12:23	05/04/20 13:45	1
p-Terphenyl-d14	84	74 - 136	05/04/20 12:23	05/04/20 13:45	1

Lab Sample ID: LCS 590-27358/2-A

Matrix: Solid

Client Sample ID:	Lab Control Sample	į
	Prep Type: Total/NA	

Analysis Batch: 27357							Prep Batch: 27358
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	267	153		ug/Kg		57	39 - 120
2-Methylnaphthalene	267	153		ug/Kg		57	48 - 120
1-Methylnaphthalene	267	154		ug/Kg		58	55 - 120
Acenaphthylene	267	184		ug/Kg		69	59 - 120
Acenaphthene	267	176		ug/Kg		66	53 - 120
Fluorene	267	182		ug/Kg		68	63 - 120
Phenanthrene	267	192		ug/Kg		72	65 - 121
Anthracene	267	211		ug/Kg		79	60 - 129
Fluoranthene	267	201		ug/Kg		75	63 - 127
Pyrene	267	199		ug/Kg		75	68 - 125
Benzo[a]anthracene	267	207		ug/Kg		78	61 - 125
Chrysene	267	212		ug/Kg		80	67 - 127
Benzo[b]fluoranthene	267	214		ug/Kg		80	67 - 127
Benzo[k]fluoranthene	267	210		ug/Kg		79	63 - 127
Benzo[a]pyrene	267	194		ug/Kg		73	60 - 120
Indeno[1,2,3-cd]pyrene	267	223		ug/Kg		84	63 - 128
Dibenz(a,h)anthracene	267	224		ug/Kg		84	60 - 128
Benzo[g,h,i]perylene	267	220		ug/Kg		82	58 - 129

Project/Site: Riverfront Park (0110-148-14)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-27358/2-A

Matrix: Solid

Analysis Batch: 27357

Client: GeoEngineers Inc

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 27358

Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 43 - 120 66 2-Fluorobiphenyl (Surr) 73 56 - 120 p-Terphenyl-d14 84 74 - 136

LCS LCS

Lab Sample ID: 590-13092-1 MS

Matrix: Solid

Analysis Batch: 27357

Client Sample ID: RFPNB-15C(0-0.5)

Prep Type: Total/NA

Prep Batch: 27358

Analysis Batch. 27357	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	2.3	J	278	178		ug/Kg	<u></u>	63	39 - 120
2-Methylnaphthalene	4.2	J	278	190		ug/Kg	≎	67	48 - 120
1-Methylnaphthalene	2.7	J	278	189		ug/Kg	≎	67	55 - 120
Acenaphthylene	5.8	J	278	239		ug/Kg	☆	84	59 - 120
Acenaphthene	ND		278	207		ug/Kg	≎	74	53 - 120
Fluorene	2.2	J	278	230		ug/Kg	☆	83	63 - 120
Phenanthrene	23		278	248		ug/Kg	₩	81	65 - 121
Anthracene	8.0	J	278	254		ug/Kg	☆	89	60 - 129
Fluoranthene	57		278	283		ug/Kg	☆	81	63 - 127
Pyrene	62		278	286		ug/Kg	₩	81	68 - 125
Benzo[a]anthracene	33		278	271		ug/Kg	☆	85	61 - 125
Chrysene	41		278	261		ug/Kg	≎	79	67 - 127
Benzo[b]fluoranthene	45		278	274		ug/Kg	₩.	82	67 - 127
Benzo[k]fluoranthene	20		278	255		ug/Kg	≎	85	63 - 127
Benzo[a]pyrene	39		278	268		ug/Kg	≎	82	60 - 120
Indeno[1,2,3-cd]pyrene	25		278	230		ug/Kg	₩.	74	63 - 128
Dibenz(a,h)anthracene	8.2	J	278	219		ug/Kg	≎	76	60 - 128

278

219

ug/Kg

MS MS

33

Surrogate	%Recovery Qualifier	Limits
Nitrobenzene-d5	68	43 - 120
2-Fluorobiphenyl (Surr)	85	56 - 120
p-Terphenyl-d14	87	74 - 136

Lab Sample ID: 590-13092-1 MSD

Matrix: Solid

Benzo[g,h,i]perylene

Analysis Batch: 27357

Client Sam	ple ID: RF	FPNB-15C	(0-0.5)
-------------------	------------	----------	---------

58 _ 129

67

Prep Type: Total/NA Prep Batch: 27358

MSD MSD Sample Sample Spike %Rec. **RPD** Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D ₩ Naphthalene 2.3 J 276 161 ug/Kg 57 39 - 120 10 35 176 4.2 J 276 ₩ 2-Methylnaphthalene ug/Kg 62 48 - 120 8 30 1-Methylnaphthalene 2.7 J 276 175 ug/Kg ₩ 62 55 - 120 8 24 Acenaphthylene 276 203 ₩ 71 20 5.8 J 59 - 120 16 ug/Kg Ö Acenaphthene ND 276 186 ug/Kg 67 53 - 120 17 Fluorene 276 201 73 2.2 J ug/Kg 63 - 12014 21 ₩ Phenanthrene 23 276 232 ug/Kg 76 65 - 121 6 18 ☼ Anthracene 8.0 J 276 240 ug/Kg 84 60 - 129 6 18 ₩ Fluoranthene 57 276 270 ug/Kg 77 63 - 1275 18 Pyrene 62 276 274 ug/Kg 68 - 125 16

Eurofins TestAmerica, Spokane

Page 14 of 25

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 590-13092-1 MSD Client Sample ID: RFPNB-15C(0-0.5) **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 27357

Prep Batch: 27358 Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Result Qualifier %Rec Limits RPD Limit Analyte Added Unit D ℧ Benzo[a]anthracene 33 276 254 80 61 - 125 6 ug/Kg ☼ 67 - 127 Chrysene 41 276 245 ug/Kg 74 6 15 Benzo[b]fluoranthene 45 276 257 ug/Kg ₩ 77 67 - 127 16 Benzo[k]fluoranthene 20 276 241 ₩ a۸ 63 - 127 6 16 ug/Kg Benzo[a]pyrene 39 276 250 ug/Kg ď÷ 76 60 - 120 20 25 276 218 70 Indeno[1,2,3-cd]pyrene 63 - 128 18 ug/Kg ₩ Dibenz(a,h)anthracene 8.2 J 276 210 ug/Kg 73 60 - 128 18 33 276 209 58 - 129 Benzo[g,h,i]perylene ug/Kg 5 17

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	62		43 - 120
2-Fluorobiphenyl (Surr)	74		56 - 120
p-Terphenyl-d14	83		74 - 136

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-27341/2-A

Matrix: Solid

Analysis Batch: 27374

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27341

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.3	0.50	mg/Kg		05/01/20 08:41	05/05/20 15:34	1
Barium	ND		1.3	0.34	mg/Kg		05/01/20 08:41	05/05/20 15:34	1
Cadmium	ND		1.0	0.059	mg/Kg		05/01/20 08:41	05/05/20 15:34	1
Chromium	ND		1.3	0.18	mg/Kg		05/01/20 08:41	05/05/20 15:34	1
Lead	ND		3.0	1.5	mg/Kg		05/01/20 08:41	05/05/20 15:34	1
Selenium	ND		5.0	3.0	mg/Kg		05/01/20 08:41	05/05/20 15:34	1
Silver	ND		1.3	0.13	mg/Kg		05/01/20 08:41	05/05/20 15:34	1

Lab Sample ID: LCS 590-27341/1-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 27374

Prep Type: Total/NA Prep Batch: 27341

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	100	99.6		mg/Kg		100	80 - 120	
Barium	100	99.2		mg/Kg		99	80 - 120	
Cadmium	50.0	51.5		mg/Kg		103	80 - 120	
Chromium	50.0	57.2		mg/Kg		114	80 - 120	
Lead	50.0	54.4		mg/Kg		109	80 - 120	
Selenium	100	107		mg/Kg		107	80 - 120	
Silver	5.00	5.18		mg/Kg		104	80 - 120	

Lab Sample ID: 590-13092-1 MS Client Sample ID: RFPNB-15C(0-0.5)

Matrix: Solid									Prep Ty	pe: Total/NA
Analysis Batch: 27391									Prep I	Batch: 27341
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	10		105	104		mg/Kg	<u> </u>	90	75 - 125	
Barium	78		105	175		ma/Ka	≎	93	75 - 125	

Eurofins TestAmerica, Spokane

5/8/2020

Page 15 of 25

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 590-13092-1 MS

Matrix: Solid

Analysis Batch: 27391

Client Sample ID: RFPNB-15C(0-0.5)

Prep Type: Total/NA

Prep Batch: 27341

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	0.67	J	52.4	52.1	-	mg/Kg	<u> </u>	98	75 - 125	
Chromium	11		52.4	65.4		mg/Kg	₩	105	75 - 125	
Lead	180	F1 F2	52.4	275	F1	mg/Kg	₩	180	75 - 125	
Selenium	ND		105	99.8		mg/Kg	₩	95	75 - 125	
Silver	ND		5.24	5.11	J	mg/Kg	₩.	97	75 - 125	

Lab Sample ID: 590-13092-1 MSD

Matrix: Solid

Analysis Batch: 27391

Client Sample ID: RFPNB-15C(0-0.5)

Prep Type: Total/NA

Prep Batch: 27341

7 thaifeld Baton, 27 co										Jucoiii 2	
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	10		106	107		mg/Kg	<u> </u>	92	75 - 125	3	20
Barium	78		106	190		mg/Kg	☼	106	75 - 125	8	20
Cadmium	0.67	J	52.9	53.3		mg/Kg	₩	99	75 - 125	2	20
Chromium	11		52.9	65.9		mg/Kg	₩	105	75 - 125	1	20
Lead	180	F1 F2	52.9	1380	F1 F2	mg/Kg	☼	2271	75 - 125	134	20
Selenium	ND		106	101		mg/Kg	☼	96	75 - 125	1	20
Silver	ND		5.29	6.27	J	mg/Kg	₩	119	75 - 125	20	20

Lab Sample ID: 590-13092-1 DU

Matrix: Solid

Analysis Batch: 27391

Client Sample ID: RFPNB-15C(0-0.5)

Prep Type: Total/NA

Prep Batch: 27341

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit D RPD Limit Arsenic 10 8.48 F5 mg/Kg Ö 21 20 ₩ Barium 78 82.4 mg/Kg 6 20 24 Cadmium 0.67 J 0.505 JF5 mg/Kg 28 20 2 Chromium 11 10.4 mg/Kg 20 Lead 180 F1 F2 mq/Kq 30 20 134 F3 Selenium ND ND 20 mg/Kg NC Silver ND ND mg/Kg NC 20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 590-27376/9-A

Matrix: Solid

Analysis Batch: 27400

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27376

Result Qualifier RL**MDL** Unit Dil Fac **Analyte** Prepared Analyzed 50 05/06/20 10:35 05/08/20 08:55 Hg ND 3.6 ug/Kg

Lab Sample ID: LCS 590-27376/8-A

Matrix: Solid

Analysis Batch: 27400

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec.

Prep Batch: 27376

LCS LCS Spike Added Result Qualifier Limits **Analyte** Unit %Rec 200 205 ug/Kg 103 80 - 120 Hg

MB MB

Eurofins TestAmerica, Spokane

QC Sample Results

Client: GeoEngineers Inc Job ID: 590-13092-1

Project/Site: Riverfront Park (0110-148-14)

Hg

Method: 7471B - Mercury (CVAA) (Continued)

150 F1

Lab Sample ID: 590-13092-1 MS						Client S	ample	ID: RFPNB-15C(0-0.5)
Matrix: Solid								Prep Type: Total/NA
Analysis Batch: 27400								Prep Batch: 27376
Samı	le Sample	Spike	MS	MS				%Rec.
Analyto Pos	ult Ouglific	r Addad	Pocult	Qualifier	Unit	n	%Pac	Limite

408 F1

ug/Kg

121

80 - 120

212

Lab Sample ID: 590-13092- Matrix: Solid	1 MSD						Client S	ample	ID: RFPNI Prep Tyl	oe: Tot	al/NÁ
Analysis Batch: 27400	Sample	Sample	Spike	MSD	MSD				Prep B %Rec.	atch: 2	27376 RPD
Analyte Hg	Result 150	Qualifier F1	207 Added	Result 389	Qualifier	Unit ug/Kg	D	%Rec 114	80 - 120	RPD 5	Limit 20

Lig	150	г	207	309		ug/itg	77	114	00 - 120	5	20
Lab Sample ID: 590-13092- Matrix: Solid Analysis Batch: 27400	-1 DU						Client Sa	mple	ID: RFPNI Prep Tyl Prep B	pe: Tot	al/NA
	Sample	Sample		DU	DU				•		RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Hg	150	F1		169		ug/Kg	₩ -			11	20

5/8/2020

3

4

6

7

0

10

11

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-15C(0-0.5)

Date Collected: 04/28/20 06:58 Date Received: 04/28/20 16:10 Lab Sample ID: 590-13092-1

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27342	05/01/20 09:05	AMB	TAL SPK

Client Sample ID: RFPNB-15C(0-0.5)

Date Collected: 04/28/20 06:58 Date Received: 04/28/20 16:10 Lab Sample ID: 590-13092-1 Matrix: Solid

Percent Solids: 94.5

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.77 g	2 mL	27358	05/04/20 12:23	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27357	05/04/20 15:04	NMI	TAL SPK
Total/NA	Prep	3050B			1.31 g	50 mL	27341	05/01/20 08:43	AMB	TAL SPK
Total/NA	Analysis	6010D		5			27391	05/06/20 16:32	JSP	TAL SPK
Total/NA	Prep	7471B			0.54 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27400	05/08/20 08:57	AMB	TAL SPK

Client Sample ID: RFPNB-16C(0-0.5)

Date Collected: 04/28/20 07:03

Date Received: 04/28/20 16:10

Lab Sample ID: 590-13092-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27342	05/01/20 09:05	AMB	TAL SPK

Client Sample ID: RFPNB-16C(0-0.5)

Date Collected: 04/28/20 07:03

Date Received: 04/28/20 16:10

Lab Sample ID: 590-13092-2

Matrix: Solid
Percent Solids: 95.0

Batch Batch Dil Initial Final **Batch** Prepared Type **Prep Type** Method **Factor** Amount Number or Analyzed Run **Amount** Analyst Lab Total/NA Prep 3550C 27358 05/04/20 12:23 NMI TAL SPK 15.29 g 2 mL Total/NA 8270E SIM Analysis 1 27357 05/04/20 16:23 NMI TAL SPK Total/NA Prep 3050B 27341 05/01/20 08:43 AMB TAL SPK 1.29 g 50 mL Total/NA 6010D Analysis 1 27374 05/05/20 16:07 JSP TAL SPK Total/NA Prep 7471B 27376 05/06/20 10:35 AMB TAL SPK 0.54 g50 mL Total/NA Analysis 7471B 27400 TAL SPK 1 05/08/20 09:07 AMB

Initial

Amount

Final

Amount

27342

Dil

Factor

Run

Client Sample ID: RFPNB-17C(0-0.5)

Batch

Type

Analysis

Batch

Method

Moisture

Date Collected: 04/28/20 07:07

Date Received: 04/28/20 16:10

Prep Type

Total/NA

Lab Sample	ID:	590-13092-3
		Matrix: Solid

Batch	Prepared			
Number	or Analyzed	Analyst	Lab	

05/01/20 09:05 AMB

Eurofins TestAmerica, Spokane

TAL SPK

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-17C(0-0.5)

Date Collected: 04/28/20 07:07 Date Received: 04/28/20 16:10

Lab Sample ID: 590-13092-3

Matrix: Solid

Matrix: Solid

Percent Solids: 94.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.95 g	2 mL	27358	05/04/20 12:23	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27357	05/04/20 16:49	NMI	TAL SPK
Total/NA	Prep	3050B			1.39 g	50 mL	27341	05/01/20 08:43	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27374	05/05/20 16:10	JSP	TAL SPK
Total/NA	Prep	7471B			0.58 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27400	05/08/20 09:11	AMB	TAL SPK

Client Sample ID: RFPNB-18C(0-0.5) Lab Sample ID: 590-13092-4

Date Collected: 04/28/20 07:10 Date Received: 04/28/20 16:10

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method Amount Amount Number or Analyzed Analyst Type Run **Factor** Lab 27342 05/01/20 09:05 AMB Total/NA Analysis Moisture TAL SPK

Client Sample ID: RFPNB-18C(0-0.5)

Date Received: 04/28/20 16:10

Lab Sample ID: 590-13092-4 Date Collected: 04/28/20 07:10 **Matrix: Solid** Percent Solids: 95.5

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.93 g	2 mL	27358	05/04/20 12:23	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27357	05/04/20 17:15	NMI	TAL SPK
Total/NA	Prep	3050B			1.33 g	50 mL	27341	05/01/20 08:43	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27374	05/05/20 16:13	JSP	TAL SPK
Total/NA	Prep	7471B			0.61 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27400	05/08/20 09:13	AMB	TAL SPK

Client Sample ID: RFPNB-19C(0-0.5)

Date Collected: 04/28/20 07:15

Date Received: 04/28/20 16:10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27342	05/01/20 09:05	AMB	TAL SPK

Client Sample ID: RFPNB-19C(0-0.5)

Date Collected: 04/28/20 07:15

Date Received: 04/28/20 16:10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.41 g	2 mL	27358	05/04/20 12:23	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		2			27357	05/04/20 17:42	NMI	TAL SPK
Total/NA	Prep	3050B			1.50 g	50 mL	27341	05/01/20 08:43	AMB	TAL SPK
Total/NA	Analysis	6010D		2			27391	05/06/20 16:50	JSP	TAL SPK
Total/NA	Prep	7471B			0.53 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27400	05/08/20 09:16	AMB	TAL SPK

Eurofins TestAmerica, Spokane

Page 19 of 25

Lab Sample ID: 590-13092-5

Matrix: Solid

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-20C(0-0.5)

Date Collected: 04/28/20 07:38

Date Received: 04/28/20 16:10

Lab Sample ID: 590-13092-6

Lab Sample ID: 590-13092-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Job ID: 590-13092-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27342	05/01/20 09:05	AMB	TAL SPK

Client Sample ID: RFPNB-20C(0-0.5)

Date Collected: 04/28/20 07:38 Date Received: 04/28/20 16:10

Lab Sample ID: 590-13092-6 **Matrix: Solid** Percent Solids: 96.1

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.17 g	2 mL	27358	05/04/20 12:23	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		5			27357	05/04/20 18:08	NMI	TAL SPK
Total/NA	Prep	3050B			1.35 g	50 mL	27341	05/01/20 08:43	AMB	TAL SPK
Total/NA	Analysis	6010D		2			27391	05/06/20 16:53	JSP	TAL SPK
Total/NA	Prep	7471B			0.54 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27400	05/08/20 09:22	AMB	TAL SPK

Client Sample ID: RFPNB-21C(0-0.5)

Date Collected: 04/28/20 07:43

Date Received: 04/28/20 16:10

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture					27342	05/01/20 09:05	AMB	TAL SPK

Client Sample ID: RFPNR-21C(0-0-5)

Client Sample ID: RFPNB-21C(0-0.5)	Lab Sample ID: 590-13092-7
Date Collected: 04/28/20 07:43	Matrix: Solid
Date Received: 04/28/20 16:10	Percent Solids: 95.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.27 g	2 mL	27358	05/04/20 12:23	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27357	05/04/20 18:34	NMI	TAL SPK
Total/NA	Prep	3050B			1.47 g	50 mL	27341	05/01/20 08:43	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27374	05/05/20 16:23	JSP	TAL SPK
Total/NA	Prep	7471B			0.54 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27400	05/08/20 09:25	AMB	TAL SPK

Client Sample ID: RFPNB-22C(0-0.5)

Date Collected: 04/28/20 07:54

Date Received: 04/28/20 16:10

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27342	05/01/20 09:05	AMB	TAL SPK

Lab Sample ID: 590-13092-8

Lab Chronicle

Client: GeoEngineers Inc Job ID: 590-13092-1

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-22C(0-0.5)

Lab Sample ID: 590-13092-8

Date Collected: 04/28/20 07:54

Date Received: 04/28/20 16:10

Matrix: Solid
Percent Solids: 93.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.70 g	2 mL	27358	05/04/20 12:23	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27357	05/04/20 19:01	NMI	TAL SPK
Total/NA	Prep	3050B			1.37 g	50 mL	27341	05/01/20 08:45	AMB	TAL SPK
Total/NA	Analysis	6010D		10			27391	05/06/20 16:56	JSP	TAL SPK
Total/NA	Prep	3050B			1.37 g	50 mL	27341	05/01/20 08:45	AMB	TAL SPK
Total/NA	Analysis	6010D		20			27394	05/07/20 14:54	JSP	TAL SPK
Total/NA	Prep	7471B			0.55 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		5			27400	05/08/20 10:06	AMB	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

O -

8

g

10

4 4

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13092-1

Project/Site: Riverfront Park (0110-148-14)

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-21

3

6

8

9

10

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Method	Method Description	Protocol	Laboratory
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
6010D	Metals (ICP)	SW846	TAL SPK
7471B	Mercury (CVAA)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3050B	Preparation, Metals	SW846	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK
7471B	Preparation, Mercury	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13092-1

3

4

5

40

lestAmerico

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200 503-906-9200 907-563-9200

FAX 924-9290 FAX 906-9210 FAX 563-9210

PROJECT NUMBER: OILO-148-OL ADDRESS: 523 E 2nd Ave PROJECT NAME: Pluver Port Park - Construction PHONE: (509)363913 FAX: CLIENT: GF RELEASED BY SAMPLED BY:) USTIN OTT ADDITIONAL REMARKS RELEASED BY PRINT NAME R+PNB-200,000.5 RFPNB-15C/00.5) RFPNB-170(00.5 RTPNB-1000 REPNB-ZIC/0005 RFPNB-18Clous RFPNB-1740-05 REPUBLIEC (ODS) IDENTIFICATION 4-28-2020 Phave Env. +G SAMPLING DATE/TIME 230 062 2443 2)40 4040 0703 88to 070 FIRM RCRAZ Metals PAHS CHAIN OF CUSTODY REPORT P.O. NUMBER INVOICE TO: DATE TIME 0702-27-4- AND 610 REQUESTED ANALYSES 590-13092 Chain of Custody PRESERVATIVE PRINT NAME YOU'S RECEIVED BY: PRINT NAME RECEIVED BY 350 Work Order #: (W, S, O) *Turnaround Requests less than standard may incur Rush Charge: 10 A FIRM: FIRM: FAS 4 7 5 4 3 2 Petroleum Hydrocarbon Analyses OTHER TURNAROUND REQUEST Organic & Inorganic Analyses CONT. 3 2 in Business Days * Specify: COMMENTS TROVAL-1000 (0714) TEMP: (of Leval _ DATE TIME 9191 amil DATE 4 12836 -WOID ^_

Client: GeoEngineers Inc

Job Number: 590-13092-1

Login Number: 13092

List Source: Eurofins TestAmerica, Spokane

List Number: 1

Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13122-1

Client Project/Site: Riverfront Park (0110-148-14)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

taraut trington

Authorized for release by: 5/8/2020 3:01:23 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GeoEngineers Inc

Laboratory Job ID: 590-13122-1 Project/Site: Riverfront Park (0110-148-14)

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	12
Chronicle	14
Certification Summary	17
Method Summary	18
Chain of Custody	19
Receipt Checklists	21

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Job ID: 590-13122-1

Job ID: 590-13122-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 5/5/2020 4:26 PM; the samples arrived in good condition, properly preserved, and where required, on ice. The temperature of the cooler at receipt time was 14.4°C

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: RFPNB-23C (7-7.5) (590-13122-1), RFPNB-24C (4-4.5) (590-13122-2), RFPNB-25C (3.5-4) (590-13122-3), RFPNB-26C (4-4.5) (590-13122-4), RFPNB-27C (4-4.5) (590-13122-5), RFPNB-28C (3-3.5) (590-13122-6) and RFPNB-29C (3-3.5) (590-13122-7). The sample(s) is considered acceptable since it was collected and submitted to the laboratory on the same day and there is evidence that the chilling process has begu

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method 6010D: The low level initial calibration verification (ICVL) associated with batch 590-27392 recovered above the upper control limit for Selenium. The samples associated with this ICV were non-detects for the affected analytes; therefore, the data have been reported.

Method 6010D: The low level initial calibration verification (ICVL) associated with batch 590-27393 recovered above the upper control limit for Selenium. The samples associated with this ICV were non-detects for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-13122-1	RFPNB-23C (7-7.5)	Solid	05/05/20 13:45	05/05/20 16:26	
590-13122-2	RFPNB-24C (4-4.5)	Solid	05/05/20 13:50	05/05/20 16:26	
590-13122-3	RFPNB-25C (3.5-4)	Solid	05/05/20 13:55	05/05/20 16:26	
590-13122-4	RFPNB-26C (4-4.5)	Solid	05/05/20 14:00	05/05/20 16:26	
590-13122-5	RFPNB-27C (4-4.5)	Solid	05/05/20 14:05	05/05/20 16:26	
590-13122-6	RFPNB-28C (3-3.5)	Solid	05/05/20 14:40	05/05/20 16:26	
590-13122-7	RFPNB-29C (3-3.5)	Solid	05/05/20 14:45	05/05/20 16:26	

Job ID: 590-13122-1

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13122-1

Project/Site: Riverfront Park (0110-148-14)

Qualifiers

GC/MS Semi VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description** ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

Quality Control QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF** Toxicity Equivalent Quotient (Dioxin) **TEQ**

Job ID: 590-13122-1

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-23C (7-7.5)

Lab Sample ID: 590-13122-1 Date Collected: 05/05/20 13:45

Matrix: Solid Date Received: 05/05/20 16:26 Percent Solids: 95.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg	<u> </u>	05/06/20 12:38	05/06/20 17:24	1
2-Methylnaphthalene	ND		10	3.2	ug/Kg	☼	05/06/20 12:38	05/06/20 17:24	1
1-Methylnaphthalene	ND		10	2.3	ug/Kg	☼	05/06/20 12:38	05/06/20 17:24	1
Acenaphthylene	ND		10	3.4	ug/Kg	₽	05/06/20 12:38	05/06/20 17:24	1
Acenaphthene	ND		10	2.6	ug/Kg	☼	05/06/20 12:38	05/06/20 17:24	1
Fluorene	ND		10	2.3	ug/Kg	☼	05/06/20 12:38	05/06/20 17:24	1
Phenanthrene	5.1	J	10	3.7	ug/Kg	₽	05/06/20 12:38	05/06/20 17:24	1
Anthracene	2.5	J	10	2.1	ug/Kg	☼	05/06/20 12:38	05/06/20 17:24	1
Fluoranthene	10		10	2.6	ug/Kg	☼	05/06/20 12:38	05/06/20 17:24	1
Pyrene	9.2	J	10	3.9	ug/Kg	₽	05/06/20 12:38	05/06/20 17:24	1
Benzo[a]anthracene	5.6	J	10	2.2	ug/Kg	☼	05/06/20 12:38	05/06/20 17:24	1
Chrysene	5.5	J	10	1.6	ug/Kg	☼	05/06/20 12:38	05/06/20 17:24	1
Benzo[b]fluoranthene	8.3	J	10	3.6	ug/Kg	₽	05/06/20 12:38	05/06/20 17:24	1
Benzo[k]fluoranthene	4.1	J	10	2.6	ug/Kg	☼	05/06/20 12:38	05/06/20 17:24	1
Benzo[a]pyrene	6.1	J	10	4.4	ug/Kg	☼	05/06/20 12:38	05/06/20 17:24	1
Indeno[1,2,3-cd]pyrene	4.2	J	10	3.1	ug/Kg	₽	05/06/20 12:38	05/06/20 17:24	1
Dibenz(a,h)anthracene	ND		10	2.9	ug/Kg	☼	05/06/20 12:38	05/06/20 17:24	1
Benzo[g,h,i]perylene	5.3	J	10	2.4	ug/Kg	☼	05/06/20 12:38	05/06/20 17:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	80		43 - 120				05/06/20 12:38	05/06/20 17:24	1
2-Fluorobiphenyl (Surr)	81		56 - 120				05/06/20 12:38	05/06/20 17:24	1
p-Terphenyl-d14	92		74 - 136				05/06/20 12:38	05/06/20 17:24	1

Method: 6010D - Metals (ICP) Analyte	Result Qualifi	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	5.1	2.0	mg/Kg	<u> </u>	05/06/20 10:40	05/07/20 14:32	5
Barium	59	5.1	1.4	mg/Kg	₩	05/06/20 10:40	05/07/20 14:32	5
Cadmium	ND	4.0	0.24	mg/Kg	₽	05/06/20 10:40	05/07/20 14:32	5
Chromium	1.1 J	5.1	0.72	mg/Kg		05/06/20 10:40	05/07/20 14:32	5
Lead	24	12	5.9	mg/Kg	₽	05/06/20 10:40	05/07/20 14:32	5
Selenium	ND ^	20	12	mg/Kg	₽	05/06/20 10:40	05/07/20 14:32	5
Silver	ND	5.1	0.54	mg/Kg	☼	05/06/20 10:40	05/07/20 14:32	5

Method: 7471B - Mercury (CVAA	a)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Hg	30 J	48	3.4 ug/Kg	₩	05/06/20 10:35	05/08/20 09:43	1

Client Sample ID: RFPNB-24C (4-4.5)

Date Collected: 05/05/20 13:50 **Matrix: Solid** Date Received: 05/05/20 16:26 Percent Solids: 91.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	4.3	J –	10	2.2	ug/Kg	<u></u>	05/06/20 12:38	05/06/20 17:51	1
2-Methylnaphthalene	8.8	J	10	3.3	ug/Kg	☼	05/06/20 12:38	05/06/20 17:51	1
1-Methylnaphthalene	6.6	J	10	2.3	ug/Kg	☼	05/06/20 12:38	05/06/20 17:51	1
Acenaphthylene	5.5	J	10	3.5	ug/Kg	φ.	05/06/20 12:38	05/06/20 17:51	1
Acenaphthene	ND		10	2.6	ug/Kg	☼	05/06/20 12:38	05/06/20 17:51	1
Fluorene	ND		10	2.3	ug/Kg	☼	05/06/20 12:38	05/06/20 17:51	1
Phenanthrene	19		10	3.8	ug/Kg		05/06/20 12:38	05/06/20 17:51	1

Eurofins TestAmerica, Spokane

Lab Sample ID: 590-13122-2

Page 6 of 21 5/8/2020

Job ID: 590-13122-1

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-24C (4-4.5)

Date Collected: 05/05/20 13:50 Date Received: 05/05/20 16:26

Client: GeoEngineers Inc

Lab Sample ID: 590-13122-2

Matrix: Solid
Parcent Solids: 91 4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	7.3	J	10	2.1	ug/Kg	<u> </u>	05/06/20 12:38	05/06/20 17:51	1
Fluoranthene	36		10	2.6	ug/Kg	☼	05/06/20 12:38	05/06/20 17:51	1
Pyrene	38		10	4.0	ug/Kg	₩	05/06/20 12:38	05/06/20 17:51	1
Benzo[a]anthracene	22		10	2.2	ug/Kg	☼	05/06/20 12:38	05/06/20 17:51	1
Chrysene	30		10	1.6	ug/Kg	☼	05/06/20 12:38	05/06/20 17:51	1
Benzo[b]fluoranthene	44		10	3.7	ug/Kg	₩.	05/06/20 12:38	05/06/20 17:51	1
Benzo[k]fluoranthene	15		10	2.6	ug/Kg	☼	05/06/20 12:38	05/06/20 17:51	1
Benzo[a]pyrene	30		10	4.4	ug/Kg	₩	05/06/20 12:38	05/06/20 17:51	1
Indeno[1,2,3-cd]pyrene	22		10	3.1	ug/Kg		05/06/20 12:38	05/06/20 17:51	1
Dibenz(a,h)anthracene	7.2	J	10	3.0	ug/Kg	☼	05/06/20 12:38	05/06/20 17:51	1
Benzo[g,h,i]perylene	26		10	2.5	ug/Kg	≎	05/06/20 12:38	05/06/20 17:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	84		43 - 120				05/06/20 12:38	05/06/20 17:51	1
2-Fluorobiphenyl (Surr)	86		56 - 120				05/06/20 12:38	05/06/20 17:51	1
p-Terphenyl-d14	93		74 - 136				05/06/20 12:38	05/06/20 17:51	1

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.8		1.0	0.41	mg/Kg	\	05/06/20 10:40	05/06/20 17:50	1
Barium	83		1.0	0.28	mg/Kg	₩	05/06/20 10:40	05/06/20 17:50	1
Cadmium	0.89		0.83	0.049	mg/Kg	₩	05/06/20 10:40	05/06/20 17:50	1
Chromium	4.8		1.0	0.15	mg/Kg	₽	05/06/20 10:40	05/06/20 17:50	1
Lead	250		2.5	1.2	mg/Kg	₩	05/06/20 10:40	05/06/20 17:50	1
Selenium	ND		4.2	2.5	mg/Kg	₩	05/06/20 10:40	05/06/20 17:50	1
Silver	0.52	J	1.0	0.11	mg/Kg	₽	05/06/20 10:40	05/06/20 17:50	1

Method: 7471B - Mercury (CVAA	()								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	240		51	3.6	ug/Kg	\	05/06/20 10:35	05/08/20 09:45	1

Client Sample ID: RFPNB-25C (3.5-4)

Lab Sample ID: 590-13122-3 Date Collected: 05/05/20 13:55 **Matrix: Solid** Date Received: 05/05/20 16:26 Percent Solids: 92.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		11	2.3	ug/Kg	<u> </u>	05/06/20 12:38	05/06/20 18:17	1
2-Methylnaphthalene	3.4	J	11	3.4	ug/Kg	☼	05/06/20 12:38	05/06/20 18:17	1
1-Methylnaphthalene	ND		11	2.4	ug/Kg	☼	05/06/20 12:38	05/06/20 18:17	1
Acenaphthylene	ND		11	3.6	ug/Kg	φ.	05/06/20 12:38	05/06/20 18:17	1
Acenaphthene	ND		11	2.7	ug/Kg	₩	05/06/20 12:38	05/06/20 18:17	1
Fluorene	ND		11	2.4	ug/Kg	☼	05/06/20 12:38	05/06/20 18:17	1
Phenanthrene	ND		11	3.9	ug/Kg	₩	05/06/20 12:38	05/06/20 18:17	1
Anthracene	2.4	J	11	2.2	ug/Kg	₩	05/06/20 12:38	05/06/20 18:17	1
Fluoranthene	9.0	J	11	2.7	ug/Kg	☼	05/06/20 12:38	05/06/20 18:17	1
Pyrene	9.5	J	11	4.1	ug/Kg	₩	05/06/20 12:38	05/06/20 18:17	1
Benzo[a]anthracene	6.0	J	11	2.3	ug/Kg	₩	05/06/20 12:38	05/06/20 18:17	1
Chrysene	5.8	J	11	1.6	ug/Kg	☼	05/06/20 12:38	05/06/20 18:17	1
Benzo[b]fluoranthene	8.8	J	11	3.8	ug/Kg	₩	05/06/20 12:38	05/06/20 18:17	1
Benzo[k]fluoranthene	4.4	J	11	2.7	ug/Kg	₩	05/06/20 12:38	05/06/20 18:17	1

Eurofins TestAmerica, Spokane

Page 7 of 21 5/8/2020 Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-25C (3.5-4)

Lab Sample ID: 590-13122-3

Date Collected: 05/05/20 13:55

Matrix: Solid

Date Received: 05/05/20 16:26

Percent Solids: 92.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	6.9	J	11	4.6	ug/Kg	<u></u>	05/06/20 12:38	05/06/20 18:17	1
Indeno[1,2,3-cd]pyrene	4.8	J	11	3.2	ug/Kg	\$	05/06/20 12:38	05/06/20 18:17	1
Dibenz(a,h)anthracene	ND		11	3.1	ug/Kg	☼	05/06/20 12:38	05/06/20 18:17	1
Benzo[g,h,i]perylene	6.2	J	11	2.5	ug/Kg	≎	05/06/20 12:38	05/06/20 18:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	70		43 - 120				05/06/20 12:38	05/06/20 18:17	1
2-Fluorobiphenyl (Surr)	78		56 - 120				05/06/20 12:38	05/06/20 18:17	1
p-Terphenyl-d14	89		74 - 136				05/06/20 12:38	05/06/20 18:17	1

Method: 6010D - Metals (ICP)									
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.0		1.1	0.42	mg/Kg	₽	05/06/20 10:40	05/06/20 17:53	1
Barium	69		1.1	0.28	mg/Kg	☼	05/06/20 10:40	05/06/20 17:53	1
Cadmium	0.14 J	l	0.85	0.050	mg/Kg	☼	05/06/20 10:40	05/06/20 17:53	1
Chromium	2.7		1.1	0.15	mg/Kg	₽	05/06/20 10:40	05/06/20 17:53	1
Lead	25		2.5	1.2	mg/Kg	≎	05/06/20 10:40	05/06/20 17:53	1
Selenium	ND		4.2	2.6	mg/Kg	₩	05/06/20 10:40	05/06/20 17:53	1
Silver	0.13 J		1.1	0.11	mg/Kg	₩	05/06/20 10:40	05/06/20 17:53	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	290		48	3.5	ug/Kg	 ‡	05/06/20 10:35	05/08/20 09:48	1

Client Sample ID: RFPNB-26C (4-4.5)

Date Collected: 05/05/20 14:00

Lab Sample ID: 590-13122-4

Matrix: Solid

Date Received: 05/05/20 16:26 Matrix: Solid Date Received: 05/05/20 16:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	3.8	J	11	2.3	ug/Kg	₩	05/06/20 12:38	05/06/20 18:43	1
2-Methylnaphthalene	6.5	J	11	3.3	ug/Kg	≎	05/06/20 12:38	05/06/20 18:43	1
1-Methylnaphthalene	4.7	J	11	2.3	ug/Kg	≎	05/06/20 12:38	05/06/20 18:43	1
Acenaphthylene	8.2	J	11	3.5	ug/Kg	\$	05/06/20 12:38	05/06/20 18:43	1
Acenaphthene	4.7	J	11	2.7	ug/Kg	₽	05/06/20 12:38	05/06/20 18:43	1
Fluorene	3.4	J	11	2.3	ug/Kg	☼	05/06/20 12:38	05/06/20 18:43	1
Phenanthrene	57		11	3.8	ug/Kg	₽	05/06/20 12:38	05/06/20 18:43	1
Anthracene	25		11	2.1	ug/Kg	₽	05/06/20 12:38	05/06/20 18:43	1
Fluoranthene	200		11	2.6	ug/Kg	☼	05/06/20 12:38	05/06/20 18:43	1
Pyrene	190		11	4.0	ug/Kg	\$	05/06/20 12:38	05/06/20 18:43	1
Benzo[a]anthracene	110		11	2.3	ug/Kg	☼	05/06/20 12:38	05/06/20 18:43	1
Chrysene	120		11	1.6	ug/Kg	₽	05/06/20 12:38	05/06/20 18:43	1
Benzo[b]fluoranthene	150		11	3.7	ug/Kg	φ.	05/06/20 12:38	05/06/20 18:43	1
Benzo[k]fluoranthene	52		11	2.6	ug/Kg	☼	05/06/20 12:38	05/06/20 18:43	1
Benzo[a]pyrene	120		11	4.5	ug/Kg	☼	05/06/20 12:38	05/06/20 18:43	1
Indeno[1,2,3-cd]pyrene	67		11	3.1	ug/Kg	φ.	05/06/20 12:38	05/06/20 18:43	1
Dibenz(a,h)anthracene	21		11	3.0	ug/Kg	☼	05/06/20 12:38	05/06/20 18:43	1
Benzo[g,h,i]perylene	70		11	2.5	ug/Kg	≎	05/06/20 12:38	05/06/20 18:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	83		43 - 120				05/06/20 12:38	05/06/20 18:43	1

Eurofins TestAmerica, Spokane

Job ID: 590-13122-1

Page 8 of 21 5/8/2020

Client: GeoEngineers Inc Job ID: 590-13122-1

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-26C (4-4.5)

Lab Sample ID: 590-13122-4 Date Collected: 05/05/20 14:00 **Matrix: Solid**

Date Received: 05/05/20 16:26 Percent Solids: 93.3

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	89		56 - 120	05/06/20 12:38	05/06/20 18:43	1
p-Terphenyl-d14	94		74 - 136	05/06/20 12:38	05/06/20 18:43	1

Method: 6010D - Metals (ICP) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.2	1.1	0.42	mg/Kg	<u></u>	05/06/20 10:40	05/06/20 17:55	1
Barium	75	1.1	0.28	mg/Kg	₩	05/06/20 10:40	05/06/20 17:55	1
Cadmium	0.57 J	0.85	0.050	mg/Kg	☼	05/06/20 10:40	05/06/20 17:55	1
Chromium	3.0	1.1	0.15	mg/Kg	*	05/06/20 10:40	05/06/20 17:55	1
Lead	180	2.6	1.3	mg/Kg	☼	05/06/20 10:40	05/06/20 17:55	1
Selenium	ND	4.3	2.6	mg/Kg	₩	05/06/20 10:40	05/06/20 17:55	1
Silver	0.34 J	1.1	0.11	mg/Kg	₩.	05/06/20 10:40	05/06/20 17:55	1

Method: 7471B - Mercury (CVA	(A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	260		47	3.4	ug/Kg	\	05/06/20 10:35	05/08/20 09:55	1

Client Sample ID: RFPNB-27C (4-4.5) Lab Sample ID: 590-13122-5

Date Collected: 05/05/20 14:05 **Matrix: Solid** Date Received: 05/05/20 16:26 Percent Solids: 94.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	3.1	J	10	2.1	ug/Kg	\	05/06/20 12:38	05/06/20 19:09	1
2-Methylnaphthalene	6.4	J	10	3.1	ug/Kg	☼	05/06/20 12:38	05/06/20 19:09	1
1-Methylnaphthalene	5.1	J	10	2.2	ug/Kg	☼	05/06/20 12:38	05/06/20 19:09	1
Acenaphthylene	4.4	J	10	3.3	ug/Kg	₽	05/06/20 12:38	05/06/20 19:09	1
Acenaphthene	ND		10	2.5	ug/Kg	≎	05/06/20 12:38	05/06/20 19:09	1
Fluorene	ND		10	2.2	ug/Kg	≎	05/06/20 12:38	05/06/20 19:09	1
Phenanthrene	13		10	3.6	ug/Kg	\$	05/06/20 12:38	05/06/20 19:09	1
Anthracene	5.4	J	10	2.0	ug/Kg	☼	05/06/20 12:38	05/06/20 19:09	1
Fluoranthene	26		10	2.5	ug/Kg	☼	05/06/20 12:38	05/06/20 19:09	1
Pyrene	27		10	3.8	ug/Kg	\$	05/06/20 12:38	05/06/20 19:09	1
Benzo[a]anthracene	16		10	2.1	ug/Kg	☼	05/06/20 12:38	05/06/20 19:09	1
Chrysene	23		10	1.5	ug/Kg	₽	05/06/20 12:38	05/06/20 19:09	1
Benzo[b]fluoranthene	33		10	3.5	ug/Kg	\$	05/06/20 12:38	05/06/20 19:09	1
Benzo[k]fluoranthene	12		10	2.5	ug/Kg	☼	05/06/20 12:38	05/06/20 19:09	1
Benzo[a]pyrene	23		10	4.2	ug/Kg	₽	05/06/20 12:38	05/06/20 19:09	1
Indeno[1,2,3-cd]pyrene	15		10	3.0	ug/Kg	₽	05/06/20 12:38	05/06/20 19:09	1
Dibenz(a,h)anthracene	5.3	J	10	2.8	ug/Kg	☼	05/06/20 12:38	05/06/20 19:09	1
Benzo[g,h,i]perylene	19		10	2.3	ug/Kg	☼	05/06/20 12:38	05/06/20 19:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	77		43 - 120				05/06/20 12:38	05/06/20 19:09	1
2-Fluorobiphenyl (Surr)	84		56 - 120				05/06/20 12:38	05/06/20 19:09	1
p-Terphenyl-d14	89		74 - 136				05/06/20 12:38	05/06/20 19:09	1

Method. 6010D - Metals (ICP)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	14	10	4.0	mg/Kg	₩	05/06/20 10:40	05/07/20 14:35	10

Eurofins TestAmerica, Spokane

Page 9 of 21 5/8/2020 Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-27C (4-4.5)

Date Collected: 05/05/20 14:05

Lab Sample ID: 590-13122-5

Matrix: Solid Percent Solids: 94.9

Date Received: 05/05/20 16:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	120		10	2.7	mg/Kg	₽	05/06/20 10:40	05/07/20 14:35	10
Cadmium	4.3	J	8.1	0.48	mg/Kg	☼	05/06/20 10:40	05/07/20 14:35	10
Chromium	9.6	J	10	1.4	mg/Kg	₽	05/06/20 10:40	05/07/20 14:35	10
Lead	5000		49	24	mg/Kg	☼	05/06/20 10:40	05/08/20 14:08	20
Selenium	ND	٨	41	24	mg/Kg	☼	05/06/20 10:40	05/07/20 14:35	10
Silver	6.0	J	10	1.1	mg/Kg	₽	05/06/20 10:40	05/07/20 14:35	10

RL

49

MDL Unit

3.5 ug/Kg

Result Qualifier

320

Client Sample ID: RFPNB-28C (3-3.5)

Date Collected: 05/05/20 14:40 Date Received: 05/05/20 16:26

Analyte

Hg

© 05/06/20 10:35 05/08/20 09:57 1 **Lab Sample ID: 590-13122-6**

Analyzed

Dil Fac

Prepared

Matrix: Solid Percent Solids: 99.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.1	ug/Kg	<u> </u>	05/06/20 12:38	05/06/20 19:36	1
2-Methylnaphthalene	ND		10	3.1	ug/Kg	☼	05/06/20 12:38	05/06/20 19:36	1
1-Methylnaphthalene	ND		10	2.2	ug/Kg	☼	05/06/20 12:38	05/06/20 19:36	1
Acenaphthylene	ND		10	3.3	ug/Kg	φ.	05/06/20 12:38	05/06/20 19:36	1
Acenaphthene	ND		10	2.5	ug/Kg	☼	05/06/20 12:38	05/06/20 19:36	1
Fluorene	ND		10	2.2	ug/Kg	☼	05/06/20 12:38	05/06/20 19:36	1
Phenanthrene	ND		10	3.6	ug/Kg	₽	05/06/20 12:38	05/06/20 19:36	1
Anthracene	ND		10	2.0	ug/Kg	₽	05/06/20 12:38	05/06/20 19:36	1
Fluoranthene	ND		10	2.5	ug/Kg	☼	05/06/20 12:38	05/06/20 19:36	1
Pyrene	ND		10	3.8	ug/Kg	\$	05/06/20 12:38	05/06/20 19:36	1
Benzo[a]anthracene	ND		10	2.1	ug/Kg	☼	05/06/20 12:38	05/06/20 19:36	1
Chrysene	ND		10	1.5	ug/Kg	₽	05/06/20 12:38	05/06/20 19:36	1
Benzo[b]fluoranthene	ND		10	3.5	ug/Kg	₽	05/06/20 12:38	05/06/20 19:36	1
Benzo[k]fluoranthene	ND		10	2.5	ug/Kg	☼	05/06/20 12:38	05/06/20 19:36	1
Benzo[a]pyrene	ND		10	4.2	ug/Kg	₽	05/06/20 12:38	05/06/20 19:36	1
Indeno[1,2,3-cd]pyrene	ND		10	3.0	ug/Kg	₽	05/06/20 12:38	05/06/20 19:36	1
Dibenz(a,h)anthracene	ND		10	2.8	ug/Kg	☼	05/06/20 12:38	05/06/20 19:36	1
Benzo[g,h,i]perylene	ND		10	2.3	ug/Kg	₩	05/06/20 12:38	05/06/20 19:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	80	43 - 120	05/06/20 12:38 0	5/06/20 19:36	1
2-Fluorobiphenyl (Surr)	84	56 - 120	05/06/20 12:38 0	5/06/20 19:36	1
p-Terphenyl-d14	91	74 - 136	05/06/20 12:38 0	5/06/20 19:36	1

Method: 6010D - Metals (ICP)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.5	1.0	0.40	mg/Kg	<u> </u>	05/06/20 10:40	05/06/20 18:02	1
Barium	33	1.0	0.27	mg/Kg	☼	05/06/20 10:40	05/06/20 18:02	1
Cadmium	0.064 J	0.80	0.047	mg/Kg	₽	05/06/20 10:40	05/06/20 18:02	1
Chromium	7.1	1.0	0.14	mg/Kg	₽	05/06/20 10:40	05/06/20 18:02	1
Lead	7.4	2.4	1.2	mg/Kg	₽	05/06/20 10:40	05/06/20 18:02	1
Selenium	ND	4.0	2.4	mg/Kg	₩	05/06/20 10:40	05/06/20 18:02	1
Silver	ND	1.0	0.11	mg/Kg		05/06/20 10:40	05/06/20 18:02	1

Eurofins TestAmerica, Spokane

Client Sample ID: RFPNB-28C (3-3.5)

Lab Sample ID: 590-13122-6 Date Collected: 05/05/20 14:40 **Matrix: Solid**

Date Received: 05/05/20 16:26 Percent Solids: 99.6

Method: 7471B - Mercury (CVA	(A)									
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Hg	9.5	J	42	3.0	ug/Kg		[05/06/20 10:35	05/08/20 09:59	1

Client Sample ID: RFPNB-29C (3-3.5)

Lab Sample ID: 590-13122-7 Date Collected: 05/05/20 14:45 **Matrix: Solid** Date Received: 05/05/20 16:26 Percent Solids: 99.1

Acenaphthylene ND 10 3.3 ug/Kg	alyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1-Methylnaphthalene	phthalene	4.5	J	10	2.1	ug/Kg	<u> </u>	05/06/20 12:38	05/06/20 20:02	-
Acenaphthylene ND 10 3.3 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Acenaphthene ND 10 2.5 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleorene ND 10 2.2 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleorene ND 10 2.2 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleorent ND 10 3.6 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Anthracene ND 10 2.0 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleoranthrene ND 10 2.0 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleoranthrene ND 10 3.6 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleoranthrene ND 10 3.8 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Plyrene ND 10 3.8 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Plyrene 2.5 J 10 2.1 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Plyrene 2.2 J 10 1.5 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleoratolipifluoranthene 4.0 J 10 3.5 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleoratolipifluoranthene ND 10 3.5 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleoratolipifluoranthene ND 10 3.5 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleoratolipifluoranthene ND 10 4.2 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleoratolipifluoranthene ND 10 3.0 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleoratolipifluoranthene ND 10 3.0 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleoratolipifluoranthene ND 10 2.8 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleoratoliphenyl (surr) Pleoratoliphenyl Service Service ND 10 2.8 ug/Kg 0 05/06/20 12:38 05/06/20 20:02 Pleoratoliphenyl (surr) 82 56 - 120 05/06/20 12:38 05/06/20 20:02 Pleoratoliphenyl (surr) 82 56 - 120 05/06/20 12:38 05/06/20 20:02 Pleoratoliphenyl (surr) 82 56 - 120 05/06/20 12:38 05/06/20 20:02 Pleoratoliphenyl (surr) 82 56 - 120 05/06/20 12:38 05/06/20 20:02 Pleoratoliphenyl (surr) 82 56 - 120 05/06/20 12:38 05/06/20 20:02 Dleoratoliphenyl (surr) 82 56 - 120 05/06/20 12:38 05/06/20 20:02 Dleoratoliphenyl (surr) 82 56 - 120 05/06/20 12:38 05/06/20 20:02 Dleoratoliphenyl (surr) 82 56 - 120 05/06/20 12:38 05/06/20 12:38 05/06/20 20:02 Dleoratoliphenyl (surr) 82 56 05/06/20 12:38 05/06/20 12:38 05/06/20 12:38 05/06/20 12:38 05/06/20 12:38 05/06/20 12:38 05/06/20 12:38 05/06/20 12:38 05/06/20 12:38 05/06	Methylnaphthalene	9.0	J	10	3.1	ug/Kg	≎	05/06/20 12:38	05/06/20 20:02	
Acenaphthene ND 10 2.5 ug/Kg 05/06/20 12:38 05/06/20 20:02 Pluorene ND 10 3.6 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prenanthrene ND 10 3.6 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prenanthrene ND 10 3.6 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene ND 10 2.5 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene ND 10 3.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene ND 10 3.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene ND 10 3.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene ND 10 3.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene ND 10 3.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene 2.2 J 10 15 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene 2.2 J 10 1.5 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene 2.2 J 10 1.5 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene 1.0 J 10 3.5 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene ND 10 3.5 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene ND 10 3.5 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusene ND 10 4.2 ug/Kg 05/06/20 12:38 05/06/20 20:02 Indeno[1,2,3-cd]pyrene ND 10 4.2 ug/Kg 05/06/20 12:38 05/06/20 20:02 Indeno[1,2,3-cd]pyrene ND 10 4.2 ug/Kg 05/06/20 12:38 05/06/20 20:02 Indeno[1,2,3-cd]pyrene ND 10 2.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Indeno[1,2,3-cd]pyrene ND 10 2.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Indeno[1,2,3-cd]pyrene ND 10 2.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Indeno[1,2,3-cd]pyrene ND 10 2.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusenzo[g,h,i]perylene ND 10 2.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusenzo[g,h,i]perylene ND 10 2.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusenzo[d,h,i]perylene ND 10 2.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusenzo[d,h,i]perylene ND 10 2.8 ug/Kg 05/06/20 12:38 05/06/20 20:02 Prusenzo[d,h,i]perylene ND 05/06/20 12:38 05/06/20 20:02 Drusenzo[d,h,i]perylene ND 05/06/20 12:38 05/06/20 20:02 Drusenzo[d,h,i]perylene ND 05/06/20 12:38 05/06/20 20:02 Drusenzo	Methylnaphthalene	6.1	J	10	2.2	ug/Kg	☼	05/06/20 12:38	05/06/20 20:02	
Fluorene ND	enaphthylene	ND		10	3.3	ug/Kg	φ.	05/06/20 12:38	05/06/20 20:02	
Phenanthrene	enaphthene	ND		10	2.5	ug/Kg	☼	05/06/20 12:38	05/06/20 20:02	
Anthracene ND 10 2.0 ug/Kg	orene	ND		10	2.2	ug/Kg	☼	05/06/20 12:38	05/06/20 20:02	
Fluoranthene	enanthrene	ND		10	3.6	ug/Kg	₽	05/06/20 12:38	05/06/20 20:02	
Pyrene	hracene	ND		10	2.0	ug/Kg	☼	05/06/20 12:38	05/06/20 20:02	
Benzo[a]anthracene	oranthene	3.5	J	10	2.5	ug/Kg	☼	05/06/20 12:38	05/06/20 20:02	
Chrysene 2.2 J 10 1.5 ug/kg 20/60/20 12:38 05/06/20 20:02 Benzo[b]fluoranthene 4.0 J 10 3.5 ug/kg 20/50/6/20 12:38 05/06/20 20:02 Benzo[k]fluoranthene ND 10 2.5 ug/kg 20/50/6/20 12:38 05/06/20 20:02 Benzo[a]pyrene ND 10 4.2 ug/kg 20/50/6/20 12:38 05/06/20 20:02 Ideno[1,2,3-cd]pyrene ND 10 3.0 ug/kg 20/50/6/20 12:38 05/06/20 20:02 Dibenz(a,h)anthracene ND 10 2.8 ug/kg 05/06/20 12:38 05/06/20 20:02 Benzo[g,h,i]perylene 2.6 J 10 2.8 ug/kg 05/06/20 12:38 05/06/20 20:02 Surrogate %Recovery Qualifier Limits Prepared Analyzed Nitrobenzene-d5 78 43 - 120 05/06/20 12:38 05/06/20 20:02 2-Filworobiphenyl (Surr) 82 56 - 120 05/06/20 12:38 05/06/20 12:38 05/06/20 20:02	rene	ND		10	3.8	ug/Kg	φ.	05/06/20 12:38	05/06/20 20:02	· · · · · · · · ·
Benzo b fluoranthene	nzo[a]anthracene	2.5	J	10	2.1	ug/Kg	☼	05/06/20 12:38	05/06/20 20:02	
Benzo[k]fluoranthene	rysene	2.2	J	10	1.5	ug/Kg	☼	05/06/20 12:38	05/06/20 20:02	
Benzo[k]fluoranthene	nzo[b]fluoranthene	4.0	J	10	3.5	ug/Kg	ф.	05/06/20 12:38	05/06/20 20:02	· · · · · · · · ·
Indeno[1,2,3-cd]pyrene		ND		10	2.5	ug/Kg	☼	05/06/20 12:38	05/06/20 20:02	
Dibenz(a,h)anthracene ND 10 2.8 ug/Kg □ 05/06/20 12:38 05/06/20 20:02 Benzo[g,h,i]perylene 2.6 J 10 2.3 ug/Kg □ 05/06/20 12:38 05/06/20 20:02 Surrogate %Recovery Qualifier Limits Prepared Analyzed Nitrobenzene-d5 78 43 - 120 05/06/20 12:38 05/06/20 20:02 2-Fluorobiphenyl (Surr) 82 56 - 120 05/06/20 12:38 05/06/20 20:02 y-Terphenyl-d14 92 74 - 136 05/06/20 12:38 05/06/20 20:02 Method: 6010D - Metals (ICP) Result Qualifier RL MDL Unit D Prepared Analyzed Arsenic 5.6 0.96 0.38 mg/Kg □ 05/06/20 10:40 05/06/20 18:04 Barium 57 0.96 0.26 mg/Kg □ 05/06/20 10:40 05/06/20 18:04 Cadmium 0.10 J 0.76 0.045 mg/Kg □ 05/06/20 10:40 05/06/20 18:04 Chromium 8.5 0.96 0.14 mg/Kg	nzo[a]pyrene	ND		10	4.2	ug/Kg	☼	05/06/20 12:38	05/06/20 20:02	
Benzo[g,h,i]perylene 2.6 J 10 2.3 ug/Kg □ 05/06/20 12:38 05/06/20 20:02 Surrogate %Recovery Nitrobenzene-d5 78 43.120 Prepared 05/06/20 12:38 Analyzed 05/06/20 20:02 2-Fluorobiphenyl (Surr) 82 56.120 05/06/20 12:38 05/06/20 20:02 P-Terphenyl-d14 92 74.136 Discount Nitrobenzene Nitrobenzenen	eno[1,2,3-cd]pyrene	ND		10	3.0	ug/Kg	ф.	05/06/20 12:38	05/06/20 20:02	•
Surrogate %Recovery Qualifier Limits 43 - 120 05/06/20 12:38 05/06/20 20:02	enz(a,h)anthracene	ND		10	2.8	ug/Kg	☼	05/06/20 12:38	05/06/20 20:02	
Nitrobenzene-d5 78 43.120 05/06/20 12:38 05/06/20 20:02 2-Fluorobiphenyl (Surr) 82 56 - 120 05/06/20 12:38 05/06/20 20:02 p-Terphenyl-d14 92 74 - 136 05/06/20 12:38 05/06/20 20:02 Method: 6010D - Metals (ICP) Result Analyte Result Qualifier RL MDL Unit D Prepared Pre	nzo[g,h,i]perylene	2.6	J	10	2.3	ug/Kg	₩	05/06/20 12:38	05/06/20 20:02	•
2-Fluorobiphenyl (Surr) 82 56 - 120 05/06/20 12:38 05/06/20 20:02 p-Terphenyl-d14 92 74 - 136 05/06/20 12:38 05/06/20 20:02	rogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Method: 6010D - Metals (ICP) Result Arsenic Qualifier RL MDL Unit D Prepared O5/06/20 10:40 Analyzed O5/06/20 18:04 Barium 57 0.96 0.26 mg/Kg 05/06/20 10:40 05/06/20 18:04 Cadmium 0.10 J 0.76 0.045 mg/Kg 05/06/20 10:40 05/06/20 18:04 Chromium 8.5 0.96 0.14 mg/Kg 05/06/20 10:40 05/06/20 18:04 Lead 13 2.3 1.1 mg/Kg 05/06/20 10:40 05/06/20 18:04 Selenium ND 3.8 2.3 mg/Kg 05/06/20 10:40 05/06/20 18:04 Method: 7471B - Mercury (CVAA) ND 0.96 0.10 mg/Kg 05/06/20 10:40 05/06/20 18:04	obenzene-d5	78		43 - 120				05/06/20 12:38	05/06/20 20:02	
Method: 6010D - Metals (ICP) Result Qualifier RL MDL Unit D Prepared Prepared Analyzed Arsenic 5.6 0.96 0.38 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Barium 57 0.96 0.26 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Cadmium 0.10 J 0.76 0.045 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Chromium 8.5 0.96 0.14 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Lead 13 2.3 1.1 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Selenium ND 3.8 2.3 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Method: 7471B - Mercury (CVAA) ND 0.96 0.10 mg/Kg © 05/06/20 10:40 05/06/20 18:04	luorobiphenyl (Surr)	82		56 - 120				05/06/20 12:38	05/06/20 20:02	
Analyte Result Arsenic Qualifier RL MDL MDL MINION Unit D MPrepared Display (CVAA) Analyzed Analyzed (CVAA) Arsenic 5.6 0.96 0.38 mg/Kg ™ 05/06/20 10:40 05/06/20 18:04 05/06/20 18:04 05/06/20 18:04 05/06/20 10:40 05/06/20 18:04 05/06/20 10:40 05/06/20 18:04 05/06/20 10:40 05/06/20 18:04 05/06/20 10:40 05/06/20 18:04 05/06/20 10:40 05/06/20 18:04 05/06/20 10:40 05/06/20 18:04 05/06/20 10:40 05/06/20 18:04 05/06/20 10:40 05/06/20 18:04 05/06/20 10:40 05/06/20 18:04 05/06/20 10:40 05/06/20 18:04 05/06/20 10:40 05/06/20 10:40 05/06/20 18:04 05/06/20 10:40 05/06/20 10:40 05/06/20 18:04 05/06/20 10:40 <	erphenyl-d14	92		74 - 136				05/06/20 12:38	05/06/20 20:02	
Arsenic 5.6 0.96 0.38 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Barium 57 0.96 0.26 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Cadmium 0.10 J 0.76 0.045 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Chromium 8.5 0.96 0.14 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Lead 13 2.3 1.1 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Selenium ND 3.8 2.3 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Silver ND 0.96 0.10 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Method: 7471B - Mercury (CVAA)	thod: 6010D - Metals (ICP)									
Barium 57 0.96 0.26 mg/Kg Gotodad 10:40 05/06/20 18:04 05/06/20 18:04 Cadmium 0.10 J 0.76 0.045 mg/Kg Gotodad 10:40 05/06/20 18:04 05/06/20 18:04 Chromium 8.5 0.96 0.14 mg/Kg 05/06/20 10:40 05/06/20 18:04 Lead 13 2.3 1.1 mg/Kg 05/06/20 10:40 05/06/20 18:04 Selenium ND 3.8 2.3 mg/Kg 05/06/20 10:40 05/06/20 18:04 Silver ND 0.96 0.10 mg/Kg 05/06/20 10:40 05/06/20 18:04 Method: 7471B - Mercury (CVAA)	alyte	Result	Qualifier	RL	MDL	Unit		Prepared	Analyzed	Dil Fa
Cadmium 0.10 J 0.76 0.045 mg/Kg mg/Kg 505/06/20 10:40 05/06/20 18:04 Chromium 8.5 0.96 0.14 mg/Kg 0.5/06/20 10:40 05/06/20 18:04 Lead 13 2.3 1.1 mg/Kg 05/06/20 10:40 05/06/20 18:04 Selenium ND 3.8 2.3 mg/Kg 05/06/20 10:40 05/06/20 18:04 Silver ND 0.96 0.10 mg/Kg 05/06/20 10:40 05/06/20 18:04 Method: 7471B - Mercury (CVAA)	enic	5.6		0.96			₩	05/06/20 10:40	05/06/20 18:04	•
Chromium 8.5 0.96 0.14 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Lead 13 2.3 1.1 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Selenium ND 3.8 2.3 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Silver ND 0.96 0.10 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Method: 7471B - Mercury (CVAA)	rium	57		0.96			₩	05/06/20 10:40	05/06/20 18:04	•
Lead 13 2.3 1.1 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Selenium ND 3.8 2.3 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Silver ND 0.96 0.10 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Method: 7471B - Mercury (CVAA)	dmium	0.10	J	0.76	0.045	mg/Kg	☼	05/06/20 10:40	05/06/20 18:04	•
Selenium ND 3.8 2.3 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Silver ND 0.96 0.10 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Method: 7471B - Mercury (CVAA)	romium	8.5		0.96	0.14	mg/Kg	₽	05/06/20 10:40	05/06/20 18:04	
Silver ND 0.96 0.10 mg/Kg © 05/06/20 10:40 05/06/20 18:04 Method: 7471B - Mercury (CVAA)	ad	13		2.3	1.1	mg/Kg	₩	05/06/20 10:40	05/06/20 18:04	•
Method: 7471B - Mercury (CVAA)	enium	ND		3.8	2.3	mg/Kg	₩	05/06/20 10:40	05/06/20 18:04	
	er	ND		0.96	0.10	mg/Kg	☼	05/06/20 10:40	05/06/20 18:04	
	thod: 7471B - Mercury (CVA	A)								
Analyte Result Hg Qualifier Unit RL VIII MDL Unit Ug/Kg D Verpared Displayed Analyzed Displayed Displayed	alyte	Result		RL			D	Prepared	Analyzed	Dil Fa

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Job ID: 590-13122-1

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

MB MB

Lab Sample ID: MB 590-27384/1-A

Matrix: Solid

Analysis Batch: 27372

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27384

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
2-Methylnaphthalene	ND		10	3.1	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
1-Methylnaphthalene	ND		10	2.2	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Acenaphthylene	ND		10	3.3	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Acenaphthene	ND		10	2.5	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Fluorene	ND		10	2.2	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Phenanthrene	ND		10	3.6	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Anthracene	ND		10	2.0	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Fluoranthene	ND		10	2.5	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Pyrene	ND		10	3.8	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Benzo[a]anthracene	ND		10	2.1	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Chrysene	ND		10	1.5	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Benzo[b]fluoranthene	ND		10	3.5	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Benzo[k]fluoranthene	ND		10	2.5	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Benzo[a]pyrene	ND		10	4.2	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Indeno[1,2,3-cd]pyrene	ND		10	3.0	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Dibenz(a,h)anthracene	ND		10	2.8	ug/Kg		05/06/20 12:38	05/06/20 13:09	1
Benzo[g,h,i]perylene	ND		10	2.4	ug/Kg		05/06/20 12:38	05/06/20 13:09	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	65		43 - 120	05/06/20 12:38	05/06/20 13:09	1
2-Fluorobiphenyl (Surr)	69		56 - 120	05/06/20 12:38	05/06/20 13:09	1
p-Terphenyl-d14	83		74 - 136	05/06/20 12:38	05/06/20 13:09	1

Lab Sample ID: LCS 590-27384/2-A

Matrix: Solid

Client Sample	ID: Lab Contro	l Sample
	Prep Type:	Total/NA

Analysis Batch: 27372	Spike	LCS	LCS				Prep Batch: 27384 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	267	159		ug/Kg		59	39 - 120
2-Methylnaphthalene	267	168		ug/Kg		63	48 - 120
1-Methylnaphthalene	267	167		ug/Kg		63	55 - 120
Acenaphthylene	267	188		ug/Kg		70	59 - 120
Acenaphthene	267	170		ug/Kg		64	53 - 120
Fluorene	267	186		ug/Kg		70	63 - 120
Phenanthrene	267	211		ug/Kg		79	65 - 121
Anthracene	267	224		ug/Kg		84	60 - 129
Fluoranthene	267	216		ug/Kg		81	63 - 127
Pyrene	267	202		ug/Kg		76	68 - 125
Benzo[a]anthracene	267	217		ug/Kg		82	61 - 125
Chrysene	267	208		ug/Kg		78	67 - 127
Benzo[b]fluoranthene	267	213		ug/Kg		80	67 - 127
Benzo[k]fluoranthene	267	213		ug/Kg		80	63 - 127
Benzo[a]pyrene	267	200		ug/Kg		75	60 - 120
Indeno[1,2,3-cd]pyrene	267	225		ug/Kg		84	63 - 128
Dibenz(a,h)anthracene	267	232		ug/Kg		87	60 - 128
Benzo[g,h,i]perylene	267	222		ug/Kg		83	58 ₋ 129

Eurofins TestAmerica, Spokane

Page 12 of 21

Client: GeoEngineers Inc Job ID: 590-13122-1

Project/Site: Riverfront Park (0110-148-14)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-27384/2-A

Matrix: Solid

Analysis Batch: 27372

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 27384

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	76		43 - 120
2-Fluorobiphenyl (Surr)	75		56 - 120
p-Terphenyl-d14	91		74 - 136

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-27378/2-A

Matrix: Solid

Analysis Batch: 27391

Client	Samp	le ID:	Meth	od E	Blank
		D	T	T - 4	- 1/N I A

Prep Type: Total/NA

Prep Batch: 27378

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.3	0.50	mg/Kg		05/06/20 10:39	05/06/20 17:12	1
Barium	ND		1.3	0.34	mg/Kg		05/06/20 10:39	05/06/20 17:12	1
Cadmium	ND		1.0	0.059	mg/Kg		05/06/20 10:39	05/06/20 17:12	1
Chromium	ND		1.3	0.18	mg/Kg		05/06/20 10:39	05/06/20 17:12	1
Lead	ND		3.0	1.5	mg/Kg		05/06/20 10:39	05/06/20 17:12	1
Selenium	ND		5.0	3.0	mg/Kg		05/06/20 10:39	05/06/20 17:12	1
Silver	ND		1.3	0.13	mg/Kg		05/06/20 10:39	05/06/20 17:12	1

Lab Sample ID: LCS 590-27378/1-A

Matrix: Solid

Analysis Batch: 27391

Client Sample	ID:	Lab	Control	Sample
		Prep	Type:	Total/NA

Pren Batch: 27378

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 590-27376/9-A

Matrix: Solid

Analysis Batch: 27400

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 27376

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Hg ND 50 3.6 ug/Kg 05/06/20 10:35 05/08/20 08:55

Lab Sample ID: LCS 590-27376/8-A

Matrix: Solid

Analysis Batch: 27400

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 27376

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 200 Hg 205 ug/Kg 103 80 - 120

Eurofins TestAmerica, Spokane

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-23C (7-7.5)

Date Collected: 05/05/20 13:45 Date Received: 05/05/20 16:26

Lab Sample ID: 590-13122-1 **Matrix: Solid**

Batch Batch Dil Initial Final **Batch** Prepared Method **Prep Type** Type Run **Factor** Amount Amount Number or Analyzed Analyst Lab 27375 Total/NA 05/06/20 10:33 AMB Analysis Moisture TAL SPK

Client Sample ID: RFPNB-23C (7-7.5)

Lab Sample ID: 590-13122-1 Date Collected: 05/05/20 13:45 **Matrix: Solid** Date Received: 05/05/20 16:26 Percent Solids: 95.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.21 g	2 mL	27384	05/06/20 12:38	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27372	05/06/20 17:24	NMI	TAL SPK
Total/NA	Prep	3050B			1.29 g	50 mL	27378	05/06/20 10:40	AMB	TAL SPK
Total/NA	Analysis	6010D		5			27393	05/07/20 14:32	JSP	TAL SPK
Total/NA	Prep	7471B			0.54 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27400	05/08/20 09:43	AMB	TAL SPK

Client Sample ID: RFPNB-24C (4-4.5)

Lab Sample ID: 590-13122-2 Date Collected: 05/05/20 13:50 **Matrix: Solid**

Date Received: 05/05/20 16:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27375	05/06/20 10:33	AMB	TAL SPK

Client Sample ID: RFPNB-24C (4-4.5)

Lab Sample ID: 590-13122-2 Date Collected: 05/05/20 13:50 **Matrix: Solid** Date Received: 05/05/20 16:26 Percent Solids: 91.4

Batch		Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.68 g	2 mL	27384	05/06/20 12:38	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27372	05/06/20 17:51	NMI	TAL SPK
Total/NA	Prep	3050B			1.31 g	50 mL	27378	05/06/20 10:40	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27391	05/06/20 17:50	JSP	TAL SPK
Total/NA	Prep	7471B			0.54 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27400	05/08/20 09:45	AMB	TAL SPK

Client Sample ID: RFPNB-25C (3.5-4)

Lab Sample ID: 590-13122-3 Date Collected: 05/05/20 13:55 **Matrix: Solid**

Date Received: 05/05/20 16:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27375	05/06/20 10:33	AMB	TAL SPK

Job ID: 590-13122-1

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-25C (3.5-4)

Date Collected: 05/05/20 13:55 Date Received: 05/05/20 16:26 Lab Sample ID: 590-13122-3

Matrix: Solid Percent Solids: 92.1

Batch		Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.06 g	2 mL	27384	05/06/20 12:38	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27372	05/06/20 18:17	NMI	TAL SPK
Total/NA	Prep	3050B			1.28 g	50 mL	27378	05/06/20 10:40	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27391	05/06/20 17:53	JSP	TAL SPK
Total/NA	Prep	7471B			0.56 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27400	05/08/20 09:48	AMB	TAL SPK

Client Sample ID: RFPNB-26C (4-4.5)

Date Collected: 05/05/20 14:00 Date Received: 05/05/20 16:26 Lab Sample ID: 590-13122-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27375	05/06/20 10:33	AMB	TAL SPK

Client Sample ID: RFPNB-26C (4-4.5)

Date Collected: 05/05/20 14:00 Date Received: 05/05/20 16:26

Lab Sample ID: 590-13122-4

Matrix: Solid Percent Solids: 93.3

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 3550C 8270E SIM	Run	Dil Factor	Initial Amount 15.21 g	Final Amount 2 mL	Batch Number 27384 27372	Prepared or Analyzed 05/06/20 12:38 05/06/20 18:43		Lab TAL SPK
Total/NA Total/NA	Prep Analysis	3050B 6010D		1	1.26 g	50 mL	27378 27391	05/06/20 10:40 05/06/20 17:55	AMB	TAL SPK TAL SPK
Total/NA Total/NA	Prep Analysis	7471B 7471B		1	0.57 g	50 mL	27376 27400	05/06/20 10:35 05/08/20 09:55		TAL SPK TAL SPK

Client Sample ID: RFPNB-27C (4-4.5)

Date Collected: 05/05/20 14:05 **Date**

Prep Type

Total/NA

Type

Analysis

te Received: 05/05/20 16	:26						
Batch	Batch	Dil	Initial	Final	Batch	Prepared	

Amount

Amount

Number

27375

Client Sample ID: RFPNB-27C (4-4.5)

Method

Moisture

Run

Factor

Date Collected: 05/05/20 14:05

Date Received: 05/05/20 16:26

Lab Sample ID: 590-13122	-5
Matrix: So	lid

or Analyzed Analyst

05/06/20 10:33 AMB

Lab Sample ID: 590-13122-5

Percent Solids: 94.9

Matrix: Solid

Lab

TAL SPK

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.88 g	2 mL	27384	05/06/20 12:38	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27372	05/06/20 19:09	NMI	TAL SPK
Total/NA	Prep	3050B			1.30 g	50 mL	27378	05/06/20 10:40	AMB	TAL SPK
Total/NA	Analysis	6010D		20			27402	05/08/20 14:08	AMB	TAL SPK
Total/NA	Prep	3050B			1.30 g	50 mL	27378	05/06/20 10:40	AMB	TAL SPK
Total/NA	Analysis	6010D		10			27393	05/07/20 14:35	JSP	TAL SPK
Total/NA	Prep	7471B			0.54 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27400	05/08/20 09:57	AMB	TAL SPK

Eurofins TestAmerica, Spokane

Page 15 of 21

5/8/2020

4

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-28C (3-3.5)

Date Collected: 05/05/20 14:40 Date Received: 05/05/20 16:26 Lab Sample ID: 590-13122-6

Matrix: Solid

Batch Batch Dil Initial Final **Batch Prepared** Method **Prep Type** Type Run **Factor** Amount **Amount** Number or Analyzed Analyst Lab 27375 Total/NA 05/06/20 10:33 AMB Analysis Moisture TAL SPK

Client Sample ID: RFPNB-28C (3-3.5)

Date Collected: 05/05/20 14:40 Date Received: 05/05/20 16:26 Lab Sample ID: 590-13122-6

Matrix: Solid Percent Solids: 99.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.08 g	2 mL	27384	05/06/20 12:38	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27372	05/06/20 19:36	NMI	TAL SPK
Total/NA	Prep	3050B			1.26 g	50 mL	27378	05/06/20 10:40	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27391	05/06/20 18:02	JSP	TAL SPK
Total/NA	Prep	7471B			0.60 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27400	05/08/20 09:59	AMB	TAL SPK

Client Sample ID: RFPNB-29C (3-3.5)

Date Collected: 05/05/20 14:45 Date Received: 05/05/20 16:26 Lab Sample ID: 590-13122-7

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27375	05/06/20 10:33	AMB	TAL SPK

Client Sample ID: RFPNB-29C (3-3.5)

Date Collected: 05/05/20 14:45

Date Received: 05/05/20 16:26

Lab Sample ID: 590-13122-7
Matrix: Solid

Percent Solids: 99.1

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.15 g	2 mL	27384	05/06/20 12:38	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27372	05/06/20 20:02	NMI	TAL SPK
Total/NA	Prep	3050B			1.32 g	50 mL	27378	05/06/20 10:40	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27391	05/06/20 18:04	JSP	TAL SPK
Total/NA	Prep	7471B			0.57 g	50 mL	27376	05/06/20 10:35	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27400	05/08/20 10:01	AMB	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13122-1

Project/Site: Riverfront Park (0110-148-14)

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-21

1

3

4

5

7

9

10

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Method	Method Description	Protocol	Laboratory
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
6010D	Metals (ICP)	SW846	TAL SPK
7471B	Mercury (CVAA)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3050B	Preparation, Metals	SW846	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK
7471B	Preparation, Mercury	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

5

7

8

1 0

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 509-924-9200 FAX 924-9290 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 503-906-9200 FAX 906-9210 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

					CHAIN OF	CUSTOR	Y REPORT		Work C	rder#	:			
REPORT TO: JR Sugalsk ADDRESS \$23 E Z. Spokane, u	i d Ave				INVOICE TO:	e					BOUND REQUEST a Business Pays * k Inorpanic Analyses 4 3 2 1			
PHONE 509) 363-3125 F PROJECT NAME RIVER FRONT PO	AX:				P.O. NUMBER:	PRESERV	ATIVE		STD.	STD. Petroleum Hydrocarbon Analyses 5 4 3 2 1 <1				
PROJECT NUMBER: 0110-15	36.13/10/	es				REQUESTED			577	OTHER Specify:				
SAMPLED BY: Justin O		V	n		REQUESTED	TOTAL STORES		* Turnaround	Requests le	ss than standard may incur R	Rush Char			
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME		KCK	24 Hz					MATRIX (W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO		
RFPNB-13C(7-7.5)	5/5/20 1	345	X	X					S	1	A=Metals			
RFPNB-246 (4-4.5)		1350	X	×						la	APAHs on 3	day		
REPNB-750 3.5-4			X	X						1	TAT			
RF7NB-26C(4-45)	(1400	×	×						1		-		
RFPNB-270(4-4.5)		1405	X	×				MANAN		1	* = Metals on 3-day T	4T		
RFPNB2RC(3-3.5)		1440	×	×						1	PAHs on 10	day		
RFPNB-290 (3-3.5)		1445	×	X		13122	Chain of Custody		1	1	17	1		
8						590-13122				-				
3					+++									
RELEASED BY PRINT NAME: JUSTIN OF	я	TRM: (El		DATE: 5/S	12020		ave a 0700ll	FIRM	TA	DATE 5			
RELEASED BY: PRINT NAME: FIRM:					DATE: TIME:		PRINT NAME:		FIRM	i .	DATE:			
ADDITIONAL REMARKS:				all	mutal	s on	3 day				TEMP:			

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

CHAIN OF CUSTODY REPORT Work Order #: INVOICE TO: TURNAROUND REQUEST REPORT TO: JR Sugalski ADDRESS: 523 E 2nd Ave Spokane, WA 99202 Same PROJECT NAME RIVER FRONT PARK- GT + EAV. P.O. NUMBER PRESERVATIVE SERVICES PROJECT NUMBER: 0110-148-06 REQUESTED ANALYSES SAMPLED BY: Justin Or Turnaround Requests less than standard may incur Rush Charges. # LOCATION/ SAMPLING MATRIX CLIENT SAMPLE Z (W, S, O) CONT. COMMENTS WOID DATE/TIME IDENTIFICATION 8 = Metals XRFPNB-13C(7-7.5) 5/5/20 345 and PAHs on 3da RFPNB-246 (4-4.5 TAT 1400 X 1405 PAHS on 10 X 1445 RECEIVED BY RELEASED BY PRINT NAMEN QVE a 57000 PRINT NAME DATE RECEIVED BY RELEASED BY TIME PRINT NAME FIRM: PRINT NAME TEMP: ADDITIONAL REMARKS: all multasc 14.4

1, 6, 7 on 3day for PAH'S

TAL-1000 (0714)

3 day

Client: GeoEngineers Inc

Job Number: 590-13122-1

List Source: Eurofins TestAmerica, Spokane

Login Number: 13122

r: 13122 .

List Number: 1

Creator: O'Toole, Maria C

Creator. O 1001e, Maria C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	N/A	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Eurofins TestAmerica, Spokane

Page 21 of 21

5/8/2020

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13122-3

Client Project/Site: Riverfront Park (0110-148-06)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Langue trington

Authorized for release by: 6/1/2020 9:36:53 AM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06) Laboratory Job ID: 590-13122-3

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	7
Chronicle	8
Certification Summary	9
Method Summary	10
Chain of Custody	11
Receint Checklists	13

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Droinet/Site: Diverfront Bark (0110 148 06)

Job ID: 590-13122-3

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 5/5/2020 4:26 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 14.4° C.

Receipt Exceptions

The following sample was activated for TCLP Lead analysis by the client on 05/28/20: RFPNB-27C (4-4.5) (590-13122-5). This analysis was not originally requested on the chain-of-custody (COC).

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 590-13122-3

2

3

6

Ö

10

11

Sample Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received
 Asset ID

 590-13122-5
 RFPNB-27C (4-4.5)
 Solid
 05/05/20 14:05
 05/05/20 16:26
 Asset ID

Job ID: 590-13122-3

3

4

5

0

9

10

11

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13122-3

Project/Site: Riverfront Park (0110-148-06)

Qualifiers

Metals

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

- -

4

5

7

8

46

10

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13122-3

Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-27C (4-4.5)

Lab Sample ID: 590-13122-5

Date Collected: 05/05/20 14:05

Matrix: Solid

Date Received: 05/05/20 16:26

Method: 6010D - Metals (ICP) - TCLP										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Lead	0.50	F1	0.060	0.0051	ma/l		05/29/20 08:15	05/29/20 12:11	1

4

5

6

8

9

11

. .

QC Sample Results

Client: GeoEngineers Inc Job ID: 590-13122-3

Project/Site: Riverfront Park (0110-148-06)

Method: 6010D - Metals (ICP)

Lab Sample ID: LCS 590-27656/1-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 27660** Prep Batch: 27656

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Lead 1.00 1.04 104 80 - 120 mg/L

Lab Sample ID: LB 590-27652/1-B Client Sample ID: Method Blank **Matrix: Solid Prep Type: TCLP**

Analysis Batch: 27660 Prep Batch: 27656 LB LB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 05/29/20 08:15 05/29/20 12:07 0.060 Lead ND 0.0051 mg/L

Lab Sample ID: 590-13122-5 MS Client Sample ID: RFPNB-27C (4-4.5) **Matrix: Solid Prep Type: TCLP**

Analysis Batch: 27660 Prep Batch: 27656 Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Limits Unit %Rec 0.50 F1 1.00 124 75 - 125 Lead 1.74 mg/L

Lab Sample ID: 590-13122-5 MSD Client Sample ID: RFPNB-27C (4-4.5) **Prep Type: TCLP**

Matrix: Solid

Analysis Batch: 27660 Prep Batch: 27656 Sample Sample Spike MSD MSD %Rec. **RPD**

Result Qualifier Added Analyte Result Qualifier D %Rec Limits RPD Limit Unit Lead 0.50 F1 1.00 1.81 F1 mg/L 131 75 - 125

Lab Sample ID: 590-13122-5 DU Client Sample ID: RFPNB-27C (4-4.5) Prep Type: TCLP

Matrix: Solid

Analysis Batch: 27660 Prep Batch: 27656

Sample Sample DU DU **RPD** Result Qualifier RPD **Analyte** Result Qualifier Unit D Limit 0.50 F1 0.523 20 Lead mg/L

6/1/2020

Lab Chronicle

Client: GeoEngineers Inc Job ID: 590-13122-3

Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-27C (4-4.5)

Lab Sample ID: 590-13122-5

Date Collected: 05/05/20 14:05 Matrix: Solid

Date Received: 05/05/20 16:26

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100.03 g	2000.63 mL	27652	05/28/20 10:49	AMB	TAL SPK
TCLP	Prep	3010A			50 mL	50 mL	27656	05/29/20 08:15	AMB	TAL SPK
TCLP	Analysis	6010D		1			27660	05/29/20 12:11	AMB	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

3

4

6

8

46

11

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13122-3

Project/Site: Riverfront Park (0110-148-06)

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Washington	State	C569	01-06-21	

-00 10100 0

3

4

5

9

10

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Method	Method Description	Protocol	Laboratory	
6010D	Metals (ICP)	SW846	TAL SPK	
1311	TCLP Extraction	SW846	TAL SPK	
3010A	Preparation, Total Metals	SW846	TAL SPK	

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13122-3

6

0

9

10

11

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 509-924-9200 FAX 924-9290 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 503-906-9200 FAX 906-9210 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 907-563-9200 FAX 563-9210

					CHAIR	OF	CUSTO	DY REF	PORT		Work	Orde	er#:		
CLIENT: GEL					INVOI	CE TO:								REQUEST	
REPORT TO: JR Sugalsk ADDRESS: \$23 & ZN Spokane, W	d 4ve				≤	sam	e				See	Orga Orga	in Business anic & Inomanic	Analyses 3 2 1	<1
PHONE \$09) 312-\$125 FA	X:				P.O. NU	IMBER:					STD.	Petr	oleum Hydrocar		
PROJECT NAME RIVER FOOT PO	rt- GT + Env.	.					PRESER	VATIVE				5	4 3	2 1 <1	
PROJECT NUMBER: 010-14	8-06 Services	2				1	n HOLICOTTO	ANIAL MEDE			-	OTHE	R Specify:		
SAMPLED BY: Justin O		×1	r	n	1		REQUESTE	ANALYSES			* Turnare		- Promoto	dard may incur R	tush Char
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	RCK	300	五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五							MATE (W, S,			CATION/ MMENTS	TA WO I
RFPNB-13C(7-7.5)	5/5/20 13		X	Х							3	5	1 \$=	Metals	
RFPNB-24C (4-4.5)		250	X	X									1 and PA	Hs on 3.	day
REPNB-75C (4-45)			X	X									1 TA	T	
RFPNB-26C(4-45)		100	×	×									1		
2FPNB-27C(4-4.5)			X	×			,	, q= 40 + 40					1 *= 3	metals day T	4T
RFPNB-28C (3-3.5)		440	×	×									1 PAH	on la	day
RFPNB-290(3-3.5)	1	445	X	X				2 Chain of C	custody		1	-	1	TA	
8		-					590-1312	2 Chair of S				+			
9															to to
PRINT NAME JUSTIN OF	FIRM	M. CrE	21	•	TIME	162	2020		AMEN G	Ma07000	E	TRM:	UASPU	DATE 5	
RELEASED BY:	FIRM	4.			DATE			PRINT N			F	TRM:		TIME	
PRINT NAME: ADDITIONAL REMARKS:	FIRM	YI.		all	wit		on		day					MP:	OF

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave., Spokane WA 99206-5302 9405 SW Nimbus Ave., Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

				CHAIN OF	CUSTOD	Y REPORT	Work C	rder#	:	
REPORT TO: JR Sugalsk ADDRESS: \$23 E ZI Spokane, u	id Ave			INVOICE TO:	_		See		ROUND REQUEST a Business Pays a Inormany Analyses 4 3 2 1	<1
PHONE 509) 363-3125 F PROJECT NAME RIVER FRONT PR	AX:			P.O. NUMBER:			STD.		Hydrocarbon Analyses	
	SA.MILLA				PRESERV	ATIVE	ST.	4	3 2 1 <1	
PROJECT NUMBER: 0110-19 SAMPLED BY: Justin 0	18-01	A	2		REQUESTED A	ANALYSES		THER Requests le	Specify: ss than standard may incur Rus	sh Charg
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	RCK	安井玄				MATRIX (W, S, O)	# OF CONT,	LOCATION/ COMMENTS	TA WO I
RFPNB-13C(7-7.5)			У				S	1	#=Metals	
2RFPNB-24C (4-4.5)	1350	X	X					la	APAHs on 30	lay
REPNB-250 3:5-4	1365		X					1	TAT	
RFPNB-26C(4-45)	(400	×	X					1		
3 FPNB-270(4-4.5)	1405	X	×					1	* = Metals on 3-day TA	T
RFPNB-28C (3-3.5)	1440	X	X					1	PAHs on 100	tay
RFPNB-290 (3-3.5)	1445	X	X			Chain of Custody	1	1	TAT	
8				-	590-13122	nam or care				
9										
PRINT NAME JUSTIN OF	FIRM: (E1		DATE: 5/5/ TIME: / 62		RECEIVED BY: PRINT NAME WAY a UTOOL	FIRM	TAS		
RELEASED BY: PRINT NAME:	FIRM:			DATE:		RECEIVED BY: PRINT NAME:	FIRM		DATE	
ADDITIONAL REMARKS:	rian.		all	mutass	on	3 day	,,,,,,		TEMP:	OF

Job Number: 590-13122-3

Login Number: 13122

List Source: Eurofins TestAmerica, Spokane

List Number: 1

Creator: O'Toole, Maria C

Creator. O 1001e, maria C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	N/A	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13171-1

Client Project/Site: Riverfront Park (0110-148-14)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

Authorized for release by: 5/15/2020 4:47:35 PM Ashley Worthy, Project Manager I (253)248-4965 ashley.worthy@testamericainc.com

Designee for

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14) Laboratory Job ID: 590-13171-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	9
Chronicle	11
Certification Summary	12
Method Summary	13
Chain of Custody	14
Receint Checklists	15

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Job ID: 590-13171-1

Job ID: 590-13171-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Job Narrative 590-13171-1

Receipt

The samples were received on 5/12/2020 3:54 PM; the samples arrived in good condition, properly preserved, and where required, on ice. The temperature of the cooler at receipt time was 20.8°C

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: RFPNB-30C (4.5-5) (590-13171-1), RFPNB-31C (4.5-5) (590-13171-2), RFPNB-32C (4.5-5) (590-13171-3), RFPNB-33C (1-1.5) (590-13171-4), RFPNB-34C (1-1.5) (590-13171-5), RFPNB-35C (1-1.5) (590-13171-6), RFPNB-36C (3.5-4) (590-13171-7) and RFPNB-37C (3.5-4) (590-13171-8). The sample(s) is considered acceptable since it was collected and submitted to the laboratory on the same day and there is evidence that the chilling process has begun.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-13171-4	RFPNB-33C (1-1.5)	Solid	05/12/20 14:10	05/12/20 15:54	
590-13171-5	RFPNB-34C (1-1.5)	Solid	05/12/20 14:15	05/12/20 15:54	
590-13171-6	RFPNB-35C (1-1.5)	Solid	05/12/20 14:20	05/12/20 15:54	
590-13171-7	RFPNB-36C (3.5-4)	Solid	05/12/20 14:25	05/12/20 15:54	
590-13171-8	RFPNB-37C (3.5-4)	Solid	05/12/20 14:30	05/12/20 15:54	

Job ID: 590-13171-1

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13171-1

Project/Site: Riverfront Park (0110-148-14)

Qualifiers

GC/MS Semi VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

- 5

5

_

7

8

9

10

11

6

5

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-33C (1-1.5)

Lab Sample ID: 590-13171-4 Date Collected: 05/12/20 14:10 Matrix: Solid Date Received: 05/12/20 15:54 Percent Solids: 96.1

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) Dil Fac Analyte Result Qualifier **MDL** Unit D Prepared Analyzed 50 ₩ 05/13/20 14:50 05/13/20 23:48 Naphthalene $\overline{\mathsf{ND}}$ 11 ug/Kg 2-Methylnaphthalene ND 50 05/13/20 14:50 05/13/20 23:48 5 ug/Kg 15 5 1-Methylnaphthalene ND 50 05/13/20 14:50 05/13/20 23:48 ug/Kg Acenaphthylene 17 J 50 16 ug/Kg 05/13/20 14:50 05/13/20 23:48 5 Acenaphthene ND 50 05/13/20 14:50 05/13/20 23:48 5 ug/Kg 50 5 Fluorene ND 11 ug/Kg 05/13/20 14:50 05/13/20 23:48 50 05/13/20 14:50 05/13/20 23:48 5 **Phenanthrene** 86 18 ug/Kg 50 5 **Anthracene** 29 9.9 ug/Kg 05/13/20 14:50 05/13/20 23:48 5 50 05/13/20 14:50 05/13/20 23:48 12 ug/Kg **Fluoranthene** 160 50 05/13/20 14:50 05/13/20 23:48 5 **Pyrene** 170 19 ug/Kg 5 Benzo[a]anthracene 50 ug/Kg 05/13/20 14:50 05/13/20 23:48 89 11 50 ug/Kg 05/13/20 14:50 05/13/20 23:48 5 Chrysene 110 50 05/13/20 14:50 05/13/20 23:48 5 Benzo[b]fluoranthene 17 ug/Kg 130 Benzo[k]fluoranthene 48 50 12 ug/Kg 05/13/20 14:50 05/13/20 23:48 5 50 21 ug/Kg 05/13/20 14:50 05/13/20 23:48 5 Benzo[a]pyrene 120 50 5 Indeno[1,2,3-cd]pyrene 59 ug/Kg 05/13/20 14:50 05/13/20 23:48 23 50 14 ug/Kg 05/13/20 14:50 05/13/20 23:48 5 Dibenz(a,h)anthracene Benzo[g,h,i]perylene 82 50 12 ug/Kg 05/13/20 14:50 05/13/20 23:48 5 Limits Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac Nitrobenzene-d5 78 43 - 120 05/13/20 14:50 05/13/20 23:48 5 2-Fluorobiphenyl (Surr) 79 56 - 120 05/13/20 14:50 05/13/20 23:48 5

Client Sample ID: RFPNB-34C (1-1.5)

82

p-Terphenyl-d14

Lab Sample ID: 590-13171-5 Date Collected: 05/12/20 14:15 **Matrix: Solid** Date Received: 05/12/20 15:54 Percent Solids: 95.2

74 - 136

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	18	10	2.2	ug/Kg	₩	05/13/20 14:50	05/14/20 00:14	1
2-Methylnaphthalene	19	10	3.1	ug/Kg	₩	05/13/20 14:50	05/14/20 00:14	1
1-Methylnaphthalene	16	10	2.2	ug/Kg	☼	05/13/20 14:50	05/14/20 00:14	1
Acenaphthylene	22	10	3.4	ug/Kg	φ.	05/13/20 14:50	05/14/20 00:14	1
Acenaphthene	32	10	2.6	ug/Kg	☼	05/13/20 14:50	05/14/20 00:14	1
Fluorene	28	10	2.2	ug/Kg	☼	05/13/20 14:50	05/14/20 00:14	1
Phenanthrene	280	10	3.7	ug/Kg	₩.	05/13/20 14:50	05/14/20 00:14	1
Anthracene	78	10	2.0	ug/Kg	☼	05/13/20 14:50	05/14/20 00:14	1
Fluoranthene	360	10	2.5	ug/Kg	☼	05/13/20 14:50	05/14/20 00:14	1
Pyrene	340	10	3.8	ug/Kg	₽	05/13/20 14:50	05/14/20 00:14	1
Benzo[a]anthracene	180	10	2.1	ug/Kg	☼	05/13/20 14:50	05/14/20 00:14	1
Chrysene	190	10	1.5	ug/Kg	☼	05/13/20 14:50	05/14/20 00:14	1
Benzo[b]fluoranthene	220	10	3.5	ug/Kg	₽	05/13/20 14:50	05/14/20 00:14	1
Benzo[k]fluoranthene	31	10	2.5	ug/Kg	☼	05/13/20 14:50	05/14/20 00:14	1
Benzo[a]pyrene	130	10	4.3	ug/Kg	₩	05/13/20 14:50	05/14/20 00:14	1
Indeno[1,2,3-cd]pyrene	88	10	3.0	ug/Kg		05/13/20 14:50	05/14/20 00:14	1
Dibenz(a,h)anthracene	28	10	2.9	ug/Kg	₩	05/13/20 14:50	05/14/20 00:14	1
Benzo[g,h,i]perylene	100	10	2.4	ug/Kg	₩	05/13/20 14:50	05/14/20 00:14	1

Eurofins TestAmerica, Spokane

5/15/2020

05/13/20 14:50 05/13/20 23:48

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-34C (1-1.5)

Date Collected: 05/12/20 14:15

Lab Sample ID: 590-13171-5 **Matrix: Solid** Date Received: 05/12/20 15:54 Percent Solids: 95.2

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	77		43 - 120	05/13/20 14:50	05/14/20 00:14	1
2-Fluorobiphenyl (Surr)	83		56 - 120	05/13/20 14:50	05/14/20 00:14	1
p-Terphenyl-d14	93		74 - 136	05/13/20 14:50	05/14/20 00:14	1

Client Sample ID: RFPNB-35C (1-1.5)

Date Collected: 05/12/20 14:20 Date Received: 05/12/20 15:54 Lab Sample ID: 590-13171-6 **Matrix: Solid** Percent Solids: 96.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	7.2	J	10	2.1	ug/Kg	<u> </u>	05/13/20 14:50	05/14/20 00:41	1
2-Methylnaphthalene	12		10	3.1	ug/Kg	☼	05/13/20 14:50	05/14/20 00:41	1
1-Methylnaphthalene	9.3	J	10	2.2	ug/Kg	☼	05/13/20 14:50	05/14/20 00:41	1
Acenaphthylene	6.2	J	10	3.3	ug/Kg		05/13/20 14:50	05/14/20 00:41	1
Acenaphthene	4.9	J	10	2.5	ug/Kg	☼	05/13/20 14:50	05/14/20 00:41	1
Fluorene	3.4	J	10	2.2	ug/Kg	☼	05/13/20 14:50	05/14/20 00:41	1
Phenanthrene	52		10	3.6	ug/Kg	₽	05/13/20 14:50	05/14/20 00:41	1
Anthracene	14		10	2.0	ug/Kg	☼	05/13/20 14:50	05/14/20 00:41	1
Fluoranthene	90		10	2.5	ug/Kg	☼	05/13/20 14:50	05/14/20 00:41	1
Pyrene	96		10	3.8	ug/Kg	₽	05/13/20 14:50	05/14/20 00:41	1
Benzo[a]anthracene	54		10	2.1	ug/Kg	☼	05/13/20 14:50	05/14/20 00:41	1
Chrysene	65		10	1.5	ug/Kg	☼	05/13/20 14:50	05/14/20 00:41	1
Benzo[b]fluoranthene	86		10	3.5	ug/Kg		05/13/20 14:50	05/14/20 00:41	1
Benzo[k]fluoranthene	31		10	2.5	ug/Kg	☼	05/13/20 14:50	05/14/20 00:41	1
Benzo[a]pyrene	66		10	4.2	ug/Kg	₩	05/13/20 14:50	05/14/20 00:41	1
Indeno[1,2,3-cd]pyrene	28		10	3.0	ug/Kg	φ.	05/13/20 14:50	05/14/20 00:41	1
Dibenz(a,h)anthracene	11		10	2.8	ug/Kg	☼	05/13/20 14:50	05/14/20 00:41	1
Benzo[g,h,i]perylene	35		10	2.3	ug/Kg	☼	05/13/20 14:50	05/14/20 00:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	82		43 - 120				05/13/20 14:50	05/14/20 00:41	1
2-Fluorobiphenyl (Surr)	85		56 - 120				05/13/20 14:50	05/14/20 00:41	1
p-Terphenyl-d14	94		74 - 136				05/13/20 14:50	05/14/20 00:41	1

Client Sample ID: RFPNB-36C (3.5-4)

Date Collected: 05/12/20 14:25 Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-7 **Matrix: Solid** Percent Solids: 94.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	5.3	J	11	2.3	ug/Kg	<u> </u>	05/13/20 14:50	05/14/20 01:07	1
2-Methylnaphthalene	8.3	J	11	3.3	ug/Kg	₩	05/13/20 14:50	05/14/20 01:07	1
1-Methylnaphthalene	6.2	J	11	2.4	ug/Kg	₩	05/13/20 14:50	05/14/20 01:07	1
Acenaphthylene	8.9	J	11	3.5	ug/Kg		05/13/20 14:50	05/14/20 01:07	1
Acenaphthene	ND		11	2.7	ug/Kg	₩	05/13/20 14:50	05/14/20 01:07	1
Fluorene	2.7	J	11	2.3	ug/Kg	₩	05/13/20 14:50	05/14/20 01:07	1
Phenanthrene	34		11	3.9	ug/Kg	₽	05/13/20 14:50	05/14/20 01:07	1
Anthracene	11		11	2.1	ug/Kg	₩	05/13/20 14:50	05/14/20 01:07	1
Fluoranthene	74		11	2.6	ug/Kg	₩	05/13/20 14:50	05/14/20 01:07	1
Pyrene	78		11	4.0	ug/Kg	₩	05/13/20 14:50	05/14/20 01:07	1
Benzo[a]anthracene	46		11	2.3	ug/Kg	☼	05/13/20 14:50	05/14/20 01:07	1

Eurofins TestAmerica, Spokane

Page 7 of 15

5/15/2020

Job ID: 590-13171-1

Client Sample ID: RFPNB-36C (3.5-4)

Lab Sample ID: 590-13171-7 Date Collected: 05/12/20 14:25 **Matrix: Solid**

Date Received: 05/12/20 15:54 Percent Solids: 94.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	57		11	1.6	ug/Kg	☼	05/13/20 14:50	05/14/20 01:07	1
Benzo[b]fluoranthene	72		11	3.7	ug/Kg	φ.	05/13/20 14:50	05/14/20 01:07	1
Benzo[k]fluoranthene	25		11	2.7	ug/Kg	☼	05/13/20 14:50	05/14/20 01:07	1
Benzo[a]pyrene	56		11	4.5	ug/Kg	₽	05/13/20 14:50	05/14/20 01:07	1
Indeno[1,2,3-cd]pyrene	27		11	3.2	ug/Kg	φ.	05/13/20 14:50	05/14/20 01:07	1
Dibenz(a,h)anthracene	8.6	J	11	3.0	ug/Kg	₽	05/13/20 14:50	05/14/20 01:07	1
Benzo[g,h,i]perylene	31		11	2.5	ug/Kg	☼	05/13/20 14:50	05/14/20 01:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	62		43 - 120				05/13/20 14:50	05/14/20 01:07	1
2-Fluorobiphenyl (Surr)	73		56 ₋ 120				05/13/20 14:50	05/14/20 01:07	1
p-Terphenyl-d14	91		74 - 136				05/13/20 14:50	05/14/20 01:07	1

Client Sample ID: RFPNB-37C (3.5-4)

Lab Sample ID: 590-13171-8 Date Collected: 05/12/20 14:30 **Matrix: Solid** Date Received: 05/12/20 15:54 Percent Solids: 93.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg	₽	05/13/20 14:50	05/14/20 01:33	1
2-Methylnaphthalene	ND		10	3.2	ug/Kg	☼	05/13/20 14:50	05/14/20 01:33	1
1-Methylnaphthalene	ND		10	2.3	ug/Kg	☼	05/13/20 14:50	05/14/20 01:33	1
Acenaphthylene	ND		10	3.4	ug/Kg	₽	05/13/20 14:50	05/14/20 01:33	1
Acenaphthene	ND		10	2.6	ug/Kg	☼	05/13/20 14:50	05/14/20 01:33	1
Fluorene	ND		10	2.3	ug/Kg	☼	05/13/20 14:50	05/14/20 01:33	1
Phenanthrene	7.4	J	10	3.7	ug/Kg	₽	05/13/20 14:50	05/14/20 01:33	1
Anthracene	2.6	J	10	2.1	ug/Kg	☼	05/13/20 14:50	05/14/20 01:33	1
Fluoranthene	18		10	2.6	ug/Kg	₩	05/13/20 14:50	05/14/20 01:33	1
Pyrene	18		10	3.9	ug/Kg		05/13/20 14:50	05/14/20 01:33	1
Benzo[a]anthracene	12		10	2.2	ug/Kg	☼	05/13/20 14:50	05/14/20 01:33	1
Chrysene	12		10	1.6	ug/Kg	☼	05/13/20 14:50	05/14/20 01:33	1
Benzo[b]fluoranthene	16		10	3.6	ug/Kg	φ.	05/13/20 14:50	05/14/20 01:33	1
Benzo[k]fluoranthene	6.9	J	10	2.6	ug/Kg	☼	05/13/20 14:50	05/14/20 01:33	1
Benzo[a]pyrene	15		10	4.3	ug/Kg	☼	05/13/20 14:50	05/14/20 01:33	1
Indeno[1,2,3-cd]pyrene	6.9	J	10	3.1	ug/Kg	₽	05/13/20 14:50	05/14/20 01:33	1
Dibenz(a,h)anthracene	ND		10	2.9	ug/Kg	☼	05/13/20 14:50	05/14/20 01:33	1
Benzo[g,h,i]perylene	7.6	J	10	2.4	ug/Kg	☼	05/13/20 14:50	05/14/20 01:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	60		43 - 120				05/13/20 14:50	05/14/20 01:33	1
2-Fluorobiphenyl (Surr)	66		56 - 120				05/13/20 14:50	05/14/20 01:33	1
p-Terphenyl-d14	84		74 - 136				05/13/20 14:50	05/14/20 01:33	1

	%Recov	ery Qualifier	Limits	Prepared	Analyzed	Dil Fac	
Nitrobenze	ne-d5	60	43 - 120	05/13/20 14:50	05/14/20 01:33	1	
2-Fluorobi	ohenyl (Surr)	66	56 - 120	05/13/20 14:50	05/14/20 01:33	1	
p-Terphen	yl-d14	84	74 - 136	05/13/20 14:50	05/14/20 01:33	1	

Project/Site: Riverfront Park (0110-148-14)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

MR MR

Lab Sample ID: MB 590-27454/1-A **Matrix: Solid**

Analysis Batch: 27453

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 27454

Job ID: 590-13171-1

	IVID IVID	•						
Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	10	2.2	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
2-Methylnaphthalene	ND	10	3.1	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
1-Methylnaphthalene	ND	10	2.2	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Acenaphthylene	ND	10	3.3	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Acenaphthene	ND	10	2.5	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Fluorene	ND	10	2.2	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Phenanthrene	ND	10	3.6	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Anthracene	ND	10	2.0	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Fluoranthene	ND	10	2.5	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Pyrene	ND	10	3.8	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Benzo[a]anthracene	ND	10	2.1	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Chrysene	ND	10	1.5	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Benzo[b]fluoranthene	ND	10	3.5	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Benzo[k]fluoranthene	ND	10	2.5	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Benzo[a]pyrene	ND	10	4.2	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Indeno[1,2,3-cd]pyrene	ND	10	3.0	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Dibenz(a,h)anthracene	ND	10	2.8	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
Benzo[g,h,i]perylene	ND	10	2.4	ug/Kg		05/13/20 14:50	05/13/20 20:44	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	62	43 - 120	05/13/20 14:50	05/13/20 20:44	1
2-Fluorobiphenyl (Surr)	66	56 - 120	05/13/20 14:50	05/13/20 20:44	1
p-Terphenyl-d14	85	74 - 136	05/13/20 14:50	05/13/20 20:44	1

Lab Sample ID: LCS 590-27454/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 27453							Prep Batch: 27454
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	267	190		ug/Kg		71	39 - 120
2-Methylnaphthalene	267	192		ug/Kg		72	48 - 120
1-Methylnaphthalene	267	195		ug/Kg		73	55 - 120
Acenaphthylene	267	214		ug/Kg		80	59 - 120
Acenaphthene	267	212		ug/Kg		80	53 - 120
Fluorene	267	222		ug/Kg		83	63 - 120
Phenanthrene	267	235		ug/Kg		88	65 - 121
Anthracene	267	231		ug/Kg		87	60 - 129
Fluoranthene	267	244		ug/Kg		91	63 - 127
Pyrene	267	235		ug/Kg		88	68 - 125
Benzo[a]anthracene	267	250		ug/Kg		94	61 - 125
Chrysene	267	239		ug/Kg		89	67 - 127
Benzo[b]fluoranthene	267	247		ug/Kg		93	67 - 127
Benzo[k]fluoranthene	267	243		ug/Kg		91	63 - 127
Benzo[a]pyrene	267	248		ug/Kg		93	60 - 120
Indeno[1,2,3-cd]pyrene	267	240		ug/Kg		90	63 - 128
Dibenz(a,h)anthracene	267	245		ug/Kg		92	60 - 128
Benzo[g,h,i]perylene	267	243		ug/Kg		91	58 - 129

Eurofins TestAmerica, Spokane

Page 9 of 15

5/15/2020

QC Sample Results

Client: GeoEngineers Inc Job ID: 590-13171-1

Project/Site: Riverfront Park (0110-148-14)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-27454/2-A

Matrix: Solid

Analysis Batch: 27453

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 27454

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	72		43 - 120
2-Fluorobiphenyl (Surr)	73		56 - 120
p-Terphenyl-d14	89		74 - 136

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-33C (1-1.5)

Date Collected: 05/12/20 14:10

Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-4

Matrix: Solid

Percent Solids: 96.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.70 g	2 mL	27454	05/13/20 14:50	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		5			27453	05/13/20 23:48	NMI	TAL SPK

Client Sample ID: RFPNB-34C (1-1.5)

Date Collected: 05/12/20 14:15 Date Received: 05/12/20 15:54 Lab Sample ID: 590-13171-5

Matrix: Solid Percent Solids: 95.2

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.61 g	2 mL	27454	05/13/20 14:50	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27453	05/14/20 00:14	NMI	TAL SPK

Client Sample ID: RFPNB-35C (1-1.5)

Date Collected: 05/12/20 14:20 Date Received: 05/12/20 15:54 Lab Sample ID: 590-13171-6

Matrix: Solid
Percent Solids: 96.0

Batch Dil Initial Final Batch Batch Prepared **Prep Type** Туре Method Run Factor **Amount** Amount Number or Analyzed Analyst Lab 27454 Total/NA 3550C 05/13/20 14:50 NMI TAL SPK Prep 15.69 g 2 ml Analysis Total/NA 8270E SIM 1 27453 05/14/20 00:41 NMI TAL SPK

Client Sample ID: RFPNB-36C (3.5-4)

Date Collected: 05/12/20 14:25 Date Received: 05/12/20 15:54 Lab Sample ID: 590-13171-7

Matrix: Solid

Percent Solids: 94.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.04 g	2 mL	27454	05/13/20 14:50	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27453	05/14/20 01:07	NMI	TAL SPK

Client Sample ID: RFPNB-37C (3.5-4)

Date Collected: 05/12/20 14:30

Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-8

Matrix: Solid
Percent Solids: 93.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.66 g	2 mL	27454	05/13/20 14:50	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27453	05/14/20 01:33	NMI	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13171-1

Project/Site: Riverfront Park (0110-148-14)

Laboratory: Eurofins TestAmerica, Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pre	ogram	Identification N	lumber	Expiration Date	
Washington	Sta	ate	C569		01-06-21	
The following analytes the agency does not do	•	ort, but the laboratory is n	ot certified by the governing a	uthority. T	This list may include a	analytes for wh

3

4

6

Q

9

4 4

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

MethodMethod DescriptionProtocolLaboratory8270E SIMSemivolatile Organic Compounds (GC/MS SIM)SW846TAL SPK3550CUltrasonic ExtractionSW846TAL SPK

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13171-1

4

5

7

8

10

1 1 1

GeoEngineers 523 EAST SECOND AVE. SPOKANE, WASHINGTON 99202 (509) 363-3125	Jineers COND AVE IINGTON 9 3-3125	9202	1	emp.	18mp. 20,8°C		PAGE / OF / LAB Test America
PROJECT NAME/LOCATION (Project	Switch Park				AN	ANALYSIS REQUIRED	NOTES/COMMENTS
PROJECT NUMBER 0110-148-06	2-8	(0600-02)		li .			(Preserved, filtered, etc.)
PROJECT MANAGER	TR Sugalist.			Meta			
SAMPLE IDENTIFICATION	MPLE	LECTION	# OF				
LAB GEOENGINEERS	DATE TIME	MATRIX	JARS	RUR			
-	0		1->	×			D=motal, + PAHs on
-		/		×			
RFPNB-32445-5)	1 1350	/		×			
RFPNB-33C(1-1.5)	1410			×			* = mobals on 3-day
RFPN13-3441-15)	1415			×			J PAIL ON 10
RFP ND 350/457	1 1/420			×			
RFPNB-361/3.59	1425			×			
RFPNB-37435-8	V 143	4	V	×		590-13171 Chain of Custody	
RELINQUISHED BY	FIRM GET	RELINQUISHED BY	HED BY	-	FIRM	RELINQUISHED BY	FIRM
2		SIGNATURE	m			SIGNATURE	
PHINTED NAME YOU LON	TIME / SO	PHINIED NAME	AME	TIME		PHINTED NAME	TIME
1		RECEIVED BY	ВУ		FIRM	RECEIVED BY	FIRM
\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		SIGNATURE	m			SIGNATURE	
PRINTED NAME MANIA (17000	100	PRINTED NAME	AME			PRINTED NAME	
1	TIME (5:30)	DATE		TIME		DATE	TIME
ADDITIONAL COMMENTS:							

Job Number: 590-13171-1

Login Number: 13171

List Source: Eurofins TestAmerica, Spokane

List Number: 1 Creator: O'Toole, Maria C

Ougetion

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	N/A	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Eurofins TestAmerica, Spokane

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13171-2

Client Project/Site: Riverfront Park (0110-148-14)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

dance trington Authorized for release by:

5/15/2020 5:26:17 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Riverfront Park (0110-148-14)

Laboratory Job ID: 590-13171-2

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	
Client Sample Results	6
QC Sample Results	11
Chronicle	
Certification Summary	20
Method Summary	21
Chain of Custody	22
Receipt Checklists	

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Job ID: 590-13171-2

Job ID: 590-13171-2

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The samples were received on 5/12/2020 3:54 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 20.8° C.

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: RFPNB-30C (4.5-5) (590-13171-1). RFPNB-31C (4.5-5) (590-13171-2), RFPNB-32C (4.5-5) (590-13171-3), RFPNB-33C (1-1.5) (590-13171-4), RFPNB-34C (1-1.5) (590-13171-5), RFPNB-35C (1-1.5) (590-13171-6), RFPNB-36C (3.5-4) (590-13171-7) and RFPNB-37C (3.5-4) (590-13171-8). The sample are considered acceptable since they were collected and submitted to the laboratory on the same day and there is evidence that the chilling process has begun.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method 6010D: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for preparation batch 590-27434 and analytical batch 590-27459 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

Method 7471B: The matrix spike (MS) recoveries for preparation batch 590-27435 and analytical batch 590-27458 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
590-13171-1	RFPNB-30C (4.5-5)	Solid	05/12/20 13:25	05/12/20 15:54	
590-13171-2	RFPNB-31C (4.5-5)	Solid	05/12/20 13:40	05/12/20 15:54	
590-13171-3	RFPNB-32C (4.5-5)	Solid	05/12/20 13:50	05/12/20 15:54	
590-13171-4	RFPNB-33C (1-1.5)	Solid	05/12/20 14:10	05/12/20 15:54	
590-13171-5	RFPNB-34C (1-1.5)	Solid	05/12/20 14:15	05/12/20 15:54	
590-13171-6	RFPNB-35C (1-1.5)	Solid	05/12/20 14:20	05/12/20 15:54	
590-13171-7	RFPNB-36C (3.5-4)	Solid	05/12/20 14:25	05/12/20 15:54	
590-13171-8	RFPNB-37C (3.5-4)	Solid	05/12/20 14:30	05/12/20 15:54	

Job ID: 590-13171-2

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13171-2

Project/Site: Riverfront Park (0110-148-14)

Qualifiers

	Semi	

Qualifier	Qualifier Description
-----------	-----------------------

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD recovery exceeds control limits.
F3	Duplicate RPD exceeds the control limit
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the absolute difference is less than the RL.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossarv

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

Quality Control QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF **TEQ** Toxicity Equivalent Quotient (Dioxin)

Job ID: 590-13171-2

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-30C (4.5-5)

Lab Sample ID: 590-13171-1

Date Collected: 05/12/20 13:25 **Matrix: Solid** Date Received: 05/12/20 15:54 Percent Solids: 94.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	3.3	J	10	2.2	ug/Kg	<u> </u>	05/13/20 14:50	05/13/20 21:37	1
2-Methylnaphthalene	4.6	J	10	3.2	ug/Kg	☼	05/13/20 14:50	05/13/20 21:37	1
1-Methylnaphthalene	3.8	J	10	2.3	ug/Kg	☼	05/13/20 14:50	05/13/20 21:37	1
Acenaphthylene	7.5	J	10	3.4	ug/Kg	φ.	05/13/20 14:50	05/13/20 21:37	1
Acenaphthene	ND		10	2.6	ug/Kg	☼	05/13/20 14:50	05/13/20 21:37	1
Fluorene	ND		10	2.3	ug/Kg	☼	05/13/20 14:50	05/13/20 21:37	1
Phenanthrene	18		10	3.8	ug/Kg	₽	05/13/20 14:50	05/13/20 21:37	1
Anthracene	7.9	J	10	2.1	ug/Kg	☼	05/13/20 14:50	05/13/20 21:37	1
Fluoranthene	41		10	2.6	ug/Kg	☼	05/13/20 14:50	05/13/20 21:37	1
Pyrene	45		10	3.9	ug/Kg	₽	05/13/20 14:50	05/13/20 21:37	1
Benzo[a]anthracene	28		10	2.2	ug/Kg	☼	05/13/20 14:50	05/13/20 21:37	1
Chrysene	36		10	1.6	ug/Kg	☼	05/13/20 14:50	05/13/20 21:37	1
Benzo[b]fluoranthene	55		10	3.6	ug/Kg	₩	05/13/20 14:50	05/13/20 21:37	1
Benzo[k]fluoranthene	18		10	2.6	ug/Kg	☼	05/13/20 14:50	05/13/20 21:37	1
Benzo[a]pyrene	43		10	4.4	ug/Kg	☼	05/13/20 14:50	05/13/20 21:37	1
Indeno[1,2,3-cd]pyrene	29		10	3.1	ug/Kg	₽	05/13/20 14:50	05/13/20 21:37	1
Dibenz(a,h)anthracene	9.1	J	10	2.9	ug/Kg	☼	05/13/20 14:50	05/13/20 21:37	1
Benzo[g,h,i]perylene	37		10	2.4	ug/Kg	₩	05/13/20 14:50	05/13/20 21:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	63		43 - 120				05/13/20 14:50	05/13/20 21:37	1
2-Fluorobiphenyl (Surr)	73		56 - 120				05/13/20 14:50	05/13/20 21:37	1
p-Terphenyl-d14	86		74 - 136				05/13/20 14:50	05/13/20 21:37	1
Method: 6010D - Metals (IC	:P)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	9.5		5.0	2.0	mg/Kg	<u> </u>	05/13/20 09:03	05/13/20 17:20	5
Barium	100	F1	5.0	1.3	mg/Kg	☼	05/13/20 09:03	05/13/20 17:20	5
Cadmium	1.0	J	4.0	0.24	mg/Kg	☼	05/13/20 09:03	05/13/20 17:20	5

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	9.5		5.0	2.0	mg/Kg	<u> </u>	05/13/20 09:03	05/13/20 17:20	5
Barium	100	F1	5.0	1.3	mg/Kg	₩	05/13/20 09:03	05/13/20 17:20	5
Cadmium	1.0	J	4.0	0.24	mg/Kg	₩	05/13/20 09:03	05/13/20 17:20	5
Chromium	7.4		5.0	0.71	mg/Kg	φ.	05/13/20 09:03	05/13/20 17:20	5
Lead	1400		12	5.9	mg/Kg	₩	05/13/20 09:03	05/13/20 17:20	5
Selenium	ND		20	12	mg/Kg	₩	05/13/20 09:03	05/13/20 17:20	5
Silver	ND		5.0	0.54	mg/Kg	₩.	05/13/20 09:03	05/13/20 17:20	5

	Method: 7471B - Mercury (CVAA	•	0 1161	ъ.	MDI	1124	_	D	A I	D!! E
	Analyte	Result	Qualifier	RL	MDL	Unit	ט	Prepared	Analyzed	Dil Fac
l	Hg	140	F1	46	3.3	ug/Kg	₩	05/13/20 09:06	05/13/20 15:30	1

Lab Sample ID: 590-13171-2 Client Sample ID: RFPNB-31C (4.5-5) Date Collected: 05/12/20 13:40 **Matrix: Solid**

Date Received: 05/12/20 15:54 Percent Solids: 95.6

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND —	10	2.2	ug/Kg	<u> </u>	05/13/20 14:50	05/13/20 22:56	1
2-Methylnaphthalene	ND	10	3.2	ug/Kg	☼	05/13/20 14:50	05/13/20 22:56	1
1-Methylnaphthalene	ND	10	2.3	ug/Kg	₩	05/13/20 14:50	05/13/20 22:56	1
Acenaphthylene	ND	10	3.4	ug/Kg	φ.	05/13/20 14:50	05/13/20 22:56	1
Acenaphthene	ND	10	2.6	ug/Kg	₩	05/13/20 14:50	05/13/20 22:56	1
Fluorene	ND	10	2.3	ug/Kg	☼	05/13/20 14:50	05/13/20 22:56	1
Phenanthrene	7.2 J	10	3.8	ug/Kg	.	05/13/20 14:50	05/13/20 22:56	1

Eurofins TestAmerica, Spokane

Page 6 of 23 5/15/2020

Job ID: 590-13171-2

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-31C (4.5-5)

Date Collected: 05/12/20 13:40 Date Received: 05/12/20 15:54 Lab Sample ID: 590-13171-2

Matrix: Solid Percent Solids: 95.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	ND		10	2.1	ug/Kg	₩	05/13/20 14:50	05/13/20 22:56	1
Fluoranthene	22		10	2.6	ug/Kg	₩	05/13/20 14:50	05/13/20 22:56	1
Pyrene	21		10	4.0	ug/Kg	₽	05/13/20 14:50	05/13/20 22:56	1
Benzo[a]anthracene	11		10	2.2	ug/Kg	₩	05/13/20 14:50	05/13/20 22:56	1
Chrysene	12		10	1.6	ug/Kg	₩	05/13/20 14:50	05/13/20 22:56	1
Benzo[b]fluoranthene	16		10	3.6	ug/Kg	☆	05/13/20 14:50	05/13/20 22:56	1
Benzo[k]fluoranthene	6.7	J	10	2.6	ug/Kg	☼	05/13/20 14:50	05/13/20 22:56	1
Benzo[a]pyrene	14		10	4.4	ug/Kg	≎	05/13/20 14:50	05/13/20 22:56	1
Indeno[1,2,3-cd]pyrene	8.2	J	10	3.1	ug/Kg	☆	05/13/20 14:50	05/13/20 22:56	1
Dibenz(a,h)anthracene	ND		10	2.9	ug/Kg	☼	05/13/20 14:50	05/13/20 22:56	1
Benzo[g,h,i]perylene	10		10	2.4	ug/Kg	₩	05/13/20 14:50	05/13/20 22:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	47		43 - 120				05/13/20 14:50	05/13/20 22:56	1
2-Fluorobiphenyl (Surr)	56		56 - 120				05/13/20 14:50	05/13/20 22:56	1
p-Terphenyl-d14	85		74 - 136				05/13/20 14:50	05/13/20 22:56	1

Method: 6010D - Metals (ICP) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.4			mg/Kg		05/13/20 09:03		1
Barium	58	1.0		mg/Kg	₩	05/13/20 09:03	05/13/20 17:47	1
Cadmium	0.22 J	0.84		mg/Kg	₩	05/13/20 09:03	05/13/20 17:47	1
Chromium	0.25 J	1.0	0.15	mg/Kg		05/13/20 09:03	05/13/20 17:47	1
Lead	3.3	2.5	1.2	mg/Kg	₩	05/13/20 09:03	05/13/20 17:47	1
Selenium	ND	4.2	2.5	mg/Kg	☼	05/13/20 09:03	05/13/20 17:47	1
Silver	ND	1.0	0.11	mg/Kg	₩	05/13/20 09:03	05/13/20 17:47	1

Method: 7471B - Mercury (CVA)	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	20	J	41	3.0	ug/Kg	\	05/13/20 09:06	05/13/20 15:39	1

Client Sample ID: RFPNB-32C (4.5-5)

Date Collected: 05/12/20 13:50 **Matrix: Solid** Date Received: 05/12/20 15:54 Percent Solids: 94.0

Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND		2.2	ug/Kg	<u> </u>	05/13/20 14:50	05/13/20 23:22	1
2-Methylnaphthalene	ND	10	3.1	ug/Kg	☼	05/13/20 14:50	05/13/20 23:22	1
1-Methylnaphthalene	ND	10	2.2	ug/Kg	☼	05/13/20 14:50	05/13/20 23:22	1
Acenaphthylene	ND	10	3.3	ug/Kg	φ.	05/13/20 14:50	05/13/20 23:22	1
Acenaphthene	ND	10	2.6	ug/Kg	₩	05/13/20 14:50	05/13/20 23:22	1
Fluorene	ND	10	2.2	ug/Kg	☼	05/13/20 14:50	05/13/20 23:22	1
Phenanthrene	ND	10	3.7	ug/Kg	₽	05/13/20 14:50	05/13/20 23:22	1
Anthracene	ND	10	2.0	ug/Kg	₩	05/13/20 14:50	05/13/20 23:22	1
Fluoranthene	6.4 J	10	2.5	ug/Kg	☼	05/13/20 14:50	05/13/20 23:22	1
Pyrene	6.0 J	10	3.8	ug/Kg	₽	05/13/20 14:50	05/13/20 23:22	1
Benzo[a]anthracene	3.7 J	10	2.1	ug/Kg	☼	05/13/20 14:50	05/13/20 23:22	1
Chrysene	3.3 J	10	1.5	ug/Kg	₩	05/13/20 14:50	05/13/20 23:22	1
Benzo[b]fluoranthene	5.1 J	10	3.5	ug/Kg		05/13/20 14:50	05/13/20 23:22	1
Benzo[k]fluoranthene	ND	10	2.5	ug/Kg	≎	05/13/20 14:50	05/13/20 23:22	1

Eurofins TestAmerica, Spokane

Page 7 of 23

Lab Sample ID: 590-13171-3

Job ID: 590-13171-2 Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-32C (4.5-5)

Lab Sample ID: 590-13171-3 Date Collected: 05/12/20 13:50 **Matrix: Solid**

Date Received: 05/12/20 15:54 Percent Solids: 94.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	ND		10	4.3	ug/Kg	<u></u>	05/13/20 14:50	05/13/20 23:22	1
Indeno[1,2,3-cd]pyrene	ND		10	3.0	ug/Kg		05/13/20 14:50	05/13/20 23:22	1
Dibenz(a,h)anthracene	ND		10	2.9	ug/Kg	☼	05/13/20 14:50	05/13/20 23:22	1
Benzo[g,h,i]perylene	3.4	J	10	2.4	ug/Kg	₩	05/13/20 14:50	05/13/20 23:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	49		43 - 120				05/13/20 14:50	05/13/20 23:22	1
2-Fluorobiphenyl (Surr)	60		56 - 120				05/13/20 14:50	05/13/20 23:22	1
p-Terphenyl-d14	80		74 - 136				05/13/20 14:50	05/13/20 23:22	1

Method: 6010D - Metals (IC	(P)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.52 J	1.0	0.41	mg/Kg	\	05/13/20 09:03	05/13/20 17:50	1
Barium	58	1.0	0.27	mg/Kg	☼	05/13/20 09:03	05/13/20 17:50	1
Cadmium	0.12 J	0.82	0.048	mg/Kg	☼	05/13/20 09:03	05/13/20 17:50	1
Chromium	0.17 J	1.0	0.14	mg/Kg	₽	05/13/20 09:03	05/13/20 17:50	1
Lead	7.0	2.5	1.2	mg/Kg	☼	05/13/20 09:03	05/13/20 17:50	1
Selenium	ND	4.1	2.5	mg/Kg	☼	05/13/20 09:03	05/13/20 17:50	1
Silver	ND	1.0	0.11	mg/Kg	\$	05/13/20 09:03	05/13/20 17:50	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	36	J	44	3.2	ug/Kg		05/13/20 09:06	05/13/20 15:41	1

Client Sample ID: RFPNB-33C (1-1.5) Lab Sample ID: 590-13171-4 Date Collected: 05/12/20 14:10 **Matrix: Solid**

Date Received: 05/12/20 15:54 Percent Solids: 96.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	9.5		1.1	0.42	mg/Kg		05/13/20 09:03	05/13/20 17:53	1
Barium	100		1.1	0.28	mg/Kg	₩	05/13/20 09:03	05/13/20 17:53	1
Cadmium	0.72	J	0.85	0.050	mg/Kg	₩	05/13/20 09:03	05/13/20 17:53	1
Chromium	9.8		1.1	0.15	mg/Kg	₽	05/13/20 09:03	05/13/20 17:53	1
Lead	330		2.5	1.2	mg/Kg	₩	05/13/20 09:03	05/13/20 17:53	1
Selenium	ND		4.2	2.5	mg/Kg	₩	05/13/20 09:03	05/13/20 17:53	1
Silver	ND		1.1	0.11	mg/Kg	ф.	05/13/20 09:03	05/13/20 17:53	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	200		47	3.4	ug/Kg		05/13/20 09:06	05/13/20 15:43	1

Client Sample ID: RFPNB-34C (1-1.5) Lab Sample ID: 590-13171-5

Date Collected: 05/12/20 14:15 **Matrix: Solid** Date Received: 05/12/20 15:54 Percent Solids: 95.2

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	12		1.0	0.41	mg/Kg	₩	05/13/20 09:03	05/13/20 17:57	1
Barium	110		1.0	0.27	mg/Kg	₽	05/13/20 09:03	05/13/20 17:57	1
Cadmium	2.8		0.82	0.048	mg/Kg	₩	05/13/20 09:03	05/13/20 17:57	1

Eurofins TestAmerica, Spokane

Page 8 of 23 5/15/2020

Job ID: 590-13171-2

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-34C (1-1.5)

Date Collected: 05/12/20 14:15 Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-5

Matrix: Solid Percent Solids: 95.2

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	<u> </u>	1.0	0.15	mg/Kg	<u></u>	05/13/20 09:03	05/13/20 17:57	1
Lead	530	12	6.0	mg/Kg	₽	05/13/20 09:03	05/15/20 16:00	5
Selenium	ND	4.1	2.5	mg/Kg	☼	05/13/20 09:03	05/13/20 17:57	1
Silver	0.39 J	1.0	0.11	mg/Kg		05/13/20 09:03	05/13/20 17:57	1

Method: 7471B - Mercury (CVAA) RL Analyte Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac © 05/13/20 09:06 05/13/20 15:46 49 3.5 ug/Kg Hg 240

Client Sample ID: RFPNB-35C (1-1.5)

Date Collected: 05/12/20 14:20 Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-6

Matrix: Solid Percent Solids: 96.0

Method: 6010D - Metals (ICP) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	13	0.99	0.39	mg/Kg	<u></u>	05/13/20 09:03	05/13/20 18:01	1
Barium	78	0.99	0.27	mg/Kg	☼	05/13/20 09:03	05/13/20 18:01	1
Cadmium	0.82	0.79	0.047	mg/Kg	☼	05/13/20 09:03	05/13/20 18:01	1
Chromium	8.6	0.99	0.14	mg/Kg	φ.	05/13/20 09:03	05/13/20 18:01	1
Lead	310	2.4	1.2	mg/Kg	☼	05/13/20 09:03	05/13/20 18:01	1
Selenium	ND	4.0	2.4	mg/Kg	☼	05/13/20 09:03	05/13/20 18:01	1
Silver	ND	0.99	0.11	mg/Kg	₽	05/13/20 09:03	05/13/20 18:01	1

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	120		44	3.2	ug/Kg	₩	05/13/20 09:06	05/13/20 15:53	1

Client Sample ID: RFPNB-36C (3.5-4)

Date Collected: 05/12/20 14:25 Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-7

Matrix: Solid Percent Solids: 94.0

Method: 6010D - Metals (ICP) Analyte	Rosult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	8.8	- Qualifier	1.1		mg/Kg	— =		05/13/20 18:05	1
Barium	75		1.1		mg/Kg	₩		05/13/20 18:05	1
Cadmium	0.63	J	0.85		mg/Kg	₩	05/13/20 09:03	05/13/20 18:05	1
Chromium	7.0		1.1	0.15	mg/Kg		05/13/20 09:03	05/13/20 18:05	1
Lead	310		2.6	1.3	mg/Kg	₩	05/13/20 09:03	05/13/20 18:05	1
Selenium	ND		4.3	2.6	mg/Kg	☼	05/13/20 09:03	05/13/20 18:05	1
Silver	ND		1.1	0.11	mg/Kg	₽	05/13/20 09:03	05/13/20 18:05	1

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	140	-	49	3.5	ug/Kg	\	05/13/20 09:06	05/13/20 15:55	1

Client Sample ID: RFPNB-37C (3.5-4)

Date Collected: 05/12/20 14:30 Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-8

Matrix: Solid Percent Solids: 93.2

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.6		0.99	0.39	mg/Kg	\	05/13/20 09:03	05/13/20 18:08	1

Eurofins TestAmerica, Spokane

Page 9 of 23

5/15/2020

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13171-2

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-37C (3.5-4)

Lab Sample ID: 590-13171-8 Date Collected: 05/12/20 14:30 **Matrix: Solid**

Date Received: 05/12/20 15:54 Percent Solids: 93.2

Analyte	Result Qı	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	63		0.99	0.26	mg/Kg	<u> </u>	05/13/20 09:03	05/13/20 18:08	1
Cadmium	0.090 J		0.79	0.047	mg/Kg	₩	05/13/20 09:03	05/13/20 18:08	1
Chromium	8.8		0.99	0.14	mg/Kg	₽	05/13/20 09:03	05/13/20 18:08	1
Lead	27		2.4	1.2	mg/Kg	₩	05/13/20 09:03	05/13/20 18:08	1
Selenium	ND		3.9	2.4	mg/Kg	₩	05/13/20 09:03	05/13/20 18:08	1
Silver	ND		0.99	0.11	mg/Kg	φ.	05/13/20 09:03	05/13/20 18:08	1
Method: 7471B - Mercur	y (CVAA)								
Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	120		42	3.0	ug/Kg	<u> </u>	05/13/20 09:06	05/13/20 15:57	1

Project/Site: Riverfront Park (0110-148-14)

Job ID: 590-13171-2

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

MB MB

Lab Sample ID: MB 590-27454/1-A

Matrix: Solid

Analysis Batch: 27453

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27454

Result Qualific	a DI						
	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		2.2	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	3.1	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	2.2	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	3.3	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	2.5	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	2.2	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	3.6	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	2.0	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	2.5	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	3.8	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	2.1	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	1.5	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	3.5	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	2.5	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	4.2	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	3.0	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	2.8	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
ND	10	2.4	ug/Kg		05/13/20 14:50	05/13/20 20:44	1
	ND N	ND 10 ND 10	ND 10 3.1 ND 10 2.2 ND 10 3.3 ND 10 2.5 ND 10 3.6 ND 10 3.6 ND 10 2.5 ND 10 3.8 ND 10 3.8 ND 10 3.5 ND 10 1.5 ND 10 3.5 ND 10 2.5 ND 10 4.2 ND 10 3.0 ND 10 3.0 ND 10 2.8	ND 10 3.1 ug/Kg ND 10 2.2 ug/Kg ND 10 3.3 ug/Kg ND 10 2.5 ug/Kg ND 10 2.2 ug/Kg ND 10 3.6 ug/Kg ND 10 2.0 ug/Kg ND 10 2.5 ug/Kg ND 10 3.8 ug/Kg ND 10 2.1 ug/Kg ND 10 1.5 ug/Kg ND 10 3.5 ug/Kg ND 10 2.5 ug/Kg ND 10 4.2 ug/Kg ND 10 3.0 ug/Kg ND 10 3.0 ug/Kg ND 10 2.8 ug/Kg	ND 10 3.1 ug/kg ND 10 2.2 ug/kg ND 10 3.3 ug/kg ND 10 2.5 ug/kg ND 10 2.2 ug/kg ND 10 3.6 ug/kg ND 10 2.0 ug/kg ND 10 2.5 ug/kg ND 10 3.8 ug/kg ND 10 3.8 ug/kg ND 10 1.5 ug/kg ND 10 3.5 ug/kg ND 10 2.5 ug/kg ND 10 4.2 ug/kg ND 10 3.0 ug/kg ND 10 3.0 ug/kg ND 10 2.8 ug/kg	ND 10 3.1 ug/Kg 05/13/20 14:50 ND 10 2.2 ug/Kg 05/13/20 14:50 ND 10 3.3 ug/Kg 05/13/20 14:50 ND 10 2.5 ug/Kg 05/13/20 14:50 ND 10 2.2 ug/Kg 05/13/20 14:50 ND 10 2.2 ug/Kg 05/13/20 14:50 ND 10 3.6 ug/Kg 05/13/20 14:50 ND 10 2.0 ug/Kg 05/13/20 14:50 ND 10 2.5 ug/Kg 05/13/20 14:50 ND 10 3.8 ug/Kg 05/13/20 14:50 ND 10 3.8 ug/Kg 05/13/20 14:50 ND 10 10 3.8 ug/Kg 05/13/20 14:50 ND 10 1.5 ug/Kg 05/13/20 14:50 ND 10 1.5 ug/Kg 05/13/20 14:50 ND 10 3.5 ug/Kg 05/13/20 14:50 ND 10 3.5 ug/Kg 05/13/20 14:50 ND 10 2.5 ug/Kg 05/13/20 14:50 ND 10 3.5 ug/Kg 05/13/20 14:50 ND 10 3.5 ug/Kg 05/13/20 14:50 ND 10 3.5 ug/Kg 05/13/20 14:50 ND 10 3.0 ug/Kg 05/13/20 14:50	ND 10 3.1 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 2.2 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 3.3 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 2.5 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 2.5 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 2.2 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 3.6 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 2.0 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 2.5 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 2.5 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 3.8 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 3.8 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 1.5 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 1.5 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 3.5 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 2.5 ug/Kg 05/13/20 14:50 05/13/20 20:44 ND 10 3.0 ug/Kg 05/13/20 14:50 05/13/20 20:44

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	62		43 - 120	05/13/20 14:50	05/13/20 20:44	1
2-Fluorobiphenyl (Surr)	66		56 - 120	05/13/20 14:50	05/13/20 20:44	1
p-Terphenyl-d14	85		74 - 136	05/13/20 14:50	05/13/20 20:44	1

Lab Sample ID: LCS 590-27454/2-A

Matrix: Solid

Client Sample ID:	Lab (Contro	ol S	ample
	Prep	Type	: To	tal/NA
	_			0-4-4

Analysis Batch: 27453							Prep Batch: 27454
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	267	190		ug/Kg		71	39 - 120
2-Methylnaphthalene	267	192		ug/Kg		72	48 - 120
1-Methylnaphthalene	267	195		ug/Kg		73	55 - 120
Acenaphthylene	267	214		ug/Kg		80	59 - 120
Acenaphthene	267	212		ug/Kg		80	53 - 120
Fluorene	267	222		ug/Kg		83	63 - 120
Phenanthrene	267	235		ug/Kg		88	65 - 121
Anthracene	267	231		ug/Kg		87	60 - 129
Fluoranthene	267	244		ug/Kg		91	63 - 127
Pyrene	267	235		ug/Kg		88	68 - 125
Benzo[a]anthracene	267	250		ug/Kg		94	61 - 125
Chrysene	267	239		ug/Kg		89	67 - 127
Benzo[b]fluoranthene	267	247		ug/Kg		93	67 - 127
Benzo[k]fluoranthene	267	243		ug/Kg		91	63 - 127
Benzo[a]pyrene	267	248		ug/Kg		93	60 - 120
Indeno[1,2,3-cd]pyrene	267	240		ug/Kg		90	63 - 128
Dibenz(a,h)anthracene	267	245		ug/Kg		92	60 - 128
Benzo[g,h,i]perylene	267	243		ug/Kg		91	58 - 129

Eurofins TestAmerica, Spokane

5/15/2020

Project/Site: Riverfront Park (0110-148-14)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-27454/2-A

Lab Sample ID: 590-13171-1 MS

Matrix: Solid

Matrix: Solid

Benzo[a]pyrene

Indeno[1,2,3-cd]pyrene

Dibenz(a,h)anthracene

Lab Sample ID: 590-13171-1 MSD

Benzo[g,h,i]perylene

Matrix: Solid

Analysis Batch: 27453

Analysis Batch: 27453

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 27454

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	72		43 - 120
2-Fluorobiphenyl (Surr)	73		56 - 120
p-Terphenyl-d14	89		74 - 136

Client Sample ID: RFPNB-30C (4.5-5)

Prep Type: Total/NA

Prep Batch: 27454

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier %Rec Unit D Limits ₩ Naphthalene 3.3 J 281 174 ug/Kg 61 39 - 120 2-Methylnaphthalene 4.6 J 281 187 ug/Kg ₩ 65 48 - 120 55 - 120 1-Methylnaphthalene 3.8 J 281 194 ug/Kg 67 ₩ Acenaphthylene 7.5 281 241 ug/Kg 83 59 - 120 Acenaphthene ND 281 234 83 ug/Kg 53 - 120Ö Fluorene ND 281 249 ug/Kg 88 63 - 120. ₩ 18 281 263 87 Phenanthrene ug/Kg 65 - 121 ₩ Anthracene 7.9 281 260 ug/Kg 90 60 - 129 Fluoranthene 41 281 306 ug/Kg ₩ 94 63 - 127₩ Pyrene 45 281 100 324 ug/Kg 68 - 125 Benzo[a]anthracene ₩ 28 281 312 ug/Kg 101 61 - 125281 ₩ 92 Chrysene 36 296 ug/Kg 67 - 127Benzo[b]fluoranthene 55 281 324 ď 95 67 - 127 ug/Kg Benzo[k]fluoranthene 18 281 278 92 ug/Kg 63 - 127

281

281

281

281

319

290

271

302

MS MS

43

29

9.1

37

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	54		43 - 120
2-Fluorobiphenyl (Surr)	68		56 - 120
p-Terphenyl-d14	89		74 - 136

Client Sample ID: RFPNB-30C (4.5-5)

∜

₩

₩

98

93

93

94

60 - 120

63 - 128

60 - 128

58 - 129

ug/Kg

ug/Kg

ug/Kg

ug/Kg

Prep Type: Total/NA Prep Batch: 27454

Analysis Batch: 27453									Prep E	Batch: 2	27454
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	3.3	J	276	157		ug/Kg	<u> </u>	56	39 - 120	10	35
2-Methylnaphthalene	4.6	J	276	173		ug/Kg	☼	61	48 - 120	8	30
1-Methylnaphthalene	3.8	J	276	174		ug/Kg	☼	62	55 - 120	11	24
Acenaphthylene	7.5	J	276	228		ug/Kg		80	59 - 120	6	20
Acenaphthene	ND		276	220		ug/Kg	☼	80	53 - 120	6	17
Fluorene	ND		276	235		ug/Kg	☼	85	63 - 120	6	21
Phenanthrene	18		276	264		ug/Kg	₽	89	65 - 121	0	18
Anthracene	7.9	J	276	237		ug/Kg	☼	83	60 - 129	9	18
Fluoranthene	41		276	301		ug/Kg	☼	94	63 - 127	2	18
Pyrene	45		276	309		ug/Kg	₩	96	68 - 125	5	16
. ,				000		~g/. \g		•		·	

Eurofins TestAmerica, Spokane

Page 12 of 23

5/15/2020

Job ID: 590-13171-2

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 590-13171-1 MSD

Matrix: Solid

Analysis Batch: 27453

Client Sample ID: RFPNB-30C (4.5-5)

Prep Type: Total/NA Prep Batch: 27454

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[a]anthracene	28		276	283	-	ug/Kg	<u> </u>	92	61 - 125	10	16
Chrysene	36		276	283		ug/Kg	₩	89	67 - 127	4	15
Benzo[b]fluoranthene	55		276	297		ug/Kg	₩	87	67 - 127	9	16
Benzo[k]fluoranthene	18		276	264		ug/Kg	₩	89	63 - 127	5	16
Benzo[a]pyrene	43		276	299		ug/Kg	₩	93	60 - 120	6	20
Indeno[1,2,3-cd]pyrene	29		276	266		ug/Kg	₩.	86	63 - 128	9	18
Dibenz(a,h)anthracene	9.1	J	276	244		ug/Kg	₩	85	60 - 128	11	18
Benzo[g,h,i]perylene	37		276	271		ug/Kg	☆	85	58 - 129	11	17

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	53		43 - 120
2-Fluorobiphenyl (Surr)	66		56 - 120
p-Terphenyl-d14	84		74 - 136

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-27434/2-A

Matrix: Solid

Analysis Batch: 27459

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27434

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.3	0.50	mg/Kg		05/13/20 09:03	05/13/20 17:02	1
Barium	ND		1.3	0.34	mg/Kg		05/13/20 09:03	05/13/20 17:02	1
Cadmium	ND		1.0	0.059	mg/Kg		05/13/20 09:03	05/13/20 17:02	1
Chromium	ND		1.3	0.18	mg/Kg		05/13/20 09:03	05/13/20 17:02	1
Lead	ND		3.0	1.5	mg/Kg		05/13/20 09:03	05/13/20 17:02	1
Selenium	ND		5.0	3.0	mg/Kg		05/13/20 09:03	05/13/20 17:02	1
Silver	ND		1.3	0.13	mg/Kg		05/13/20 09:03	05/13/20 17:02	1

Lab Sample ID: LCS 590-27434/1-A

Matrix: Solid

Analysis Batch: 27459

Client Sample ID: Lab Control Sample

Prep Batch: 27434

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D '	%Rec	Limits
Arsenic		101		mg/Kg		101	80 - 120
Barium	100	106		mg/Kg		106	80 - 120
Cadmium	50.0	51.9		mg/Kg		104	80 - 120
Chromium	50.0	53.1		mg/Kg		106	80 - 120
Lead	50.0	53.1		mg/Kg		106	80 - 120
Selenium	100	102		mg/Kg		102	80 - 120
Silver	5.00	5.00		ma/Ka		100	80 - 120

Lab Sample ID: 590-13171-1 MS

Matrix: Solid

Analysis Batch: 27459

Client Sample ID: RFPNB-30C (4.5-5) Prep Type: Total/NA

Prep Batch: 27434

Analysis Daton. 21400									i icp i	Juton. Er 404
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	9.5		106	97.4		mg/Kg	<u> </u>	83	75 - 125	
Barium	100	F1	106	170	F1	mg/Kg	₩	63	75 ₋ 125	

Eurofins TestAmerica, Spokane

Page 13 of 23

Prep Type: Total/NA

Job ID: 590-13171-2

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Method: 6010D - Metals (ICP) (Continued)

ND

MB MB

Lab Sample ID: 590-13171-1 MS

Matrix: Solid

Analysis Batch: 27459

Client Sample ID: RFPNB-30C (4.5-5)

75 - 125

Prep Type: Total/NA Prep Batch: 27434

Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier Analyte Added Unit %Rec Limits ℧ Cadmium 1.0 53.0 46.6 86 75 - 125 mg/Kg . ₩ Chromium 7.4 53.0 53.9 88 75 - 125 mg/Kg Lead 1400 53.0 302 4 mg/Kg -1984 75 - 125 Selenium ND 106 88.9 ₩ 84 mg/Kg 75 - 125 Silver ND 5.30 4.38 mg/Kg 83 75 - 125

Lab Sample ID: 590-13171-1 MSD Client Sample ID: RFPNB-30C (4.5-5)

Silver

Matrix: Solid Analysis Batch: 27459									Prep Ty		
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	9.5		106	99.8		mg/Kg	₩	85	75 - 125	2	20
Barium	100	F1	106	171	F1	mg/Kg	₩	64	75 - 125	0	20
Cadmium	1.0	J	53.0	47.2		mg/Kg	☼	87	75 - 125	1	20
Chromium	7.4		53.0	53.8		mg/Kg	₩	87	75 - 125	0	20
Lead	1400		53.0	328	4	mg/Kg	☼	-1934	75 - 125	8	20
Selenium	ND		106	91.5		mg/Kg	₩	86	75 - 125	3	20

Client Sample ID: RFPNB-30C (4.5-5) Lab Sample ID: 590-13171-1 DU **Matrix: Solid** Prep Type: Total/NA

4.44

5.30

Analysis Batch: 27459							Prep Batch: 2	27434
•	Sample	Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	9.5		8.50		mg/Kg	\		20
Barium	100	F1	62.5	F3	mg/Kg	₩	49	20
Cadmium	1.0	J	0.735	J F5	mg/Kg	₩	33	20
Chromium	7.4		5.55	F3	mg/Kg	\$	29	20
Lead	1400		269	F3	mg/Kg	₩	134	20
Selenium	ND		ND		mg/Kg	₩	NC	20
Silver	ND		ND		mg/Kg		NC	20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 590-27435/9-A

Matrix: Solid

Analysis Batch: 27458

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 27435

mg/Kg

Result Qualifier RL **MDL** Unit Dil Fac **Analyte** Prepared Analyzed 50 05/13/20 09:05 05/13/20 15:27 Hg ND 3.6 ug/Kg

Lab Sample ID: LCS 590-27435/8-A

Matrix: Solid

Analyte Hg

Analysis Batch: 27458

						Prep Type Prep Bat	: Total/NA tch: 27435
Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
200	196		ua/Ka		98	80 - 120	

Eurofins TestAmerica, Spokane

5/15/2020

QC Sample Results

Client: GeoEngineers Inc Job ID: 590-13171-2

Project/Site: Riverfront Park (0110-148-14)

Hg

Method: 7471B - Mercury (CVAA) (Continued)

140 F1

Lab Sample ID: 590-13171-1 MS					C	lient Sa	ample I	D: RFPNB-30C (4.5-5)
Matrix: Solid								Prep Type: Total/NA
Analysis Batch: 27458								Prep Batch: 27435
Sample	Sample	Spike	MS	MS				%Rec.
Analyte Resul	t Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits

409 F1

ug/Kg

137

80 - 120

200

Lab Sample ID: 590-13171- Matrix: Solid Analysis Batch: 27458			Cli	ient Sa	ample I	D: RFPNE Prep Tyl Prep B	pe: Tot	al/NÁ			
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hg	140	F1	193	366		ug/Kg	<u></u>	120	80 - 120	11	20

Hg	140	F1	193	366		ug/Kg	\$	120	80 - 120	11	20
Lab Sample ID: 590-13171	1-1 DU					Cli	ent Sar	nple l	D: RFPNE	•	•
Matrix: Solid Analysis Batch: 27458									Prep Tyl Prep B		
	Sample	Sample		DU	DU				•		RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Hg	140	F1		122		ug/Kg	- ∓ -			11	20

9

Ω

9

10

11

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-30C (4.5-5)

Date Collected: 05/12/20 13:25 Date Received: 05/12/20 15:54 Lab Sample ID: 590-13171-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27436	05/13/20 09:07	AMB	TAL SPK

Client Sample ID: RFPNB-30C (4.5-5)

Date Collected: 05/12/20 13:25 Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-1 **Matrix: Solid**

Lab Sample ID: 590-13171-2

Percent Solids: 94.3

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.37 g	2 mL	27454	05/13/20 14:50	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27453	05/13/20 21:37	NMI	TAL SPK
Total/NA	Prep	3050B			1.32 g	50 mL	27434	05/13/20 09:03	AMB	TAL SPK
Total/NA	Analysis	6010D		5	10 mL	10 mL	27459	05/13/20 17:20	JSP	TAL SPK
Total/NA	Prep	7471B			0.57 g	50 mL	27435	05/13/20 09:06	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27458	05/13/20 15:30	AMB	TAL SPK

Client Sample ID: RFPNB-31C (4.5-5)

Date Collected: 05/12/20 13:40 Date Received: 05/12/20 15:54

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27436	05/13/20 09:07	AMB	TAL SPK

Client Sample ID: RFPNB-31C (4.5-5)

Lab Sample ID: 590-13171-2 Date Collected: 05/12/20 13:40 **Matrix: Solid** Date Received: 05/12/20 15:54 Percent Solids: 95.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.12 g	2 mL	27454	05/13/20 14:50	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27453	05/13/20 22:56	NMI	TAL SPK
Total/NA	Prep	3050B			1.25 g	50 mL	27434	05/13/20 09:03	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27459	05/13/20 17:47	JSP	TAL SPK
Total/NA	Prep	7471B			0.63 g	50 mL	27435	05/13/20 09:06	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27458	05/13/20 15:39	AMB	TAL SPK

Client Sample ID: RFPNB-32C (4.5-5)

Date Collected: 05/12/20 13:50

Date Received: 05/12/20 15:54

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27436	05/13/20 09:07	AMB	TAL SPK

Eurofins TestAmerica, Spokane

Lab Sample ID: 590-13171-3

Matrix: Solid

2

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-32C (4.5-5)

Date Collected: 05/12/20 13:50 Date Received: 05/12/20 15:54 Lab Sample ID: 590-13171-3

Matrix: Solid

Percent Solids: 94.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.82 g	2 mL	27454	05/13/20 14:50	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27453	05/13/20 23:22	NMI	TAL SPK
Total/NA	Prep	3050B			1.30 g	50 mL	27434	05/13/20 09:03	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27459	05/13/20 17:50	JSP	TAL SPK
Total/NA	Prep	7471B			0.60 g	50 mL	27435	05/13/20 09:06	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27458	05/13/20 15:41	AMB	TAL SPK

Client Sample ID: RFPNB-33C (1-1.5)

Date Collected: 05/12/20 14:10 Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27436	05/13/20 09:07	AMB	TAL SPK

Client Sample ID: RFPNB-33C (1-1.5)

Date Collected: 05/12/20 14:10 Date Received: 05/12/20 15:54 Lab Sample ID: 590-13171-4

Matrix: Solid
Percent Solids: 96.1

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 3050B 6010D	Run	Pactor 1	Initial Amount 1.23 g	Final Amount 50 mL	Batch Number 27434 27459	Prepared or Analyzed 05/13/20 09:03 05/13/20 17:53	 Lab TAL SPK TAL SPK
Total/NA Total/NA	Prep Analysis	7471B 7471B		1	0.55 g	50 mL	27435 27458	05/13/20 09:06 05/13/20 15:43	 TAL SPK TAL SPK

Client Sample ID: RFPNB-34C (1-1.5)

Date Collected: 05/12/20 14:15

Date Received: 05/12/20 15:54

Lab Sample ID:	590-13171-5
	Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27436	05/13/20 09:07	AMB	TAL SPK

Client Sample ID: RFPNB-34C (1-1.5)

Date Collected: 05/12/20 14:15 Date Received: 05/12/20 15:54 Lab Sample ID: 590-13171-5

Matrix: Solid Percent Solids: 95.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.28 g	50 mL	27434	05/13/20 09:03	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27459	05/13/20 17:57	JSP	TAL SPK
Total/NA	Prep	3050B			1.28 g	50 mL	27434	05/13/20 09:03	AMB	TAL SPK
Total/NA	Analysis	6010D		5			27492	05/15/20 16:00	AMB	TAL SPK
Total/NA	Prep	7471B			0.54 g	50 mL	27435	05/13/20 09:06	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27458	05/13/20 15:46	AMB	TAL SPK

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-35C (1-1.5)

Date Collected: 05/12/20 14:20 Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-6

Matrix: Solid

Job ID: 590-13171-2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27436	05/13/20 09:07	AMB	TAL SPK

Client Sample ID: RFPNB-35C (1-1.5)

Date Collected: 05/12/20 14:20 Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-6 **Matrix: Solid**

Percent Solids: 96.0

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 3050B 6010D	Run	Dil Factor	Initial Amount 1.31 g	Final Amount 50 mL	Batch Number 27434 27459	Prepared or Analyzed 05/13/20 09:03 05/13/20 18:01	 Lab TAL SPK TAL SPK
Total/NA Total/NA	Prep Analysis	7471B 7471B		1	0.59 g	50 mL	27435 27458	05/13/20 09:06 05/13/20 15:53	 TAL SPK TAL SPK

Client Sample ID: RFPNB-36C (3.5-4)

Date Collected: 05/12/20 14:25 Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-7 **Matrix: Solid**

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run **Factor Amount** Amount Number or Analyzed Analyst Total/NA Analysis Moisture 27436 05/13/20 09:07 AMB TAL SPK

Client Sample ID: RFPNB-36C (3.5-4)

Date Collected: 05/12/20 14:25 Date Received: 05/12/20 15:54

Lab Sample ID: 590-13171-7 **Matrix: Solid** Percent Solids: 94.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.25 g	50 mL	27434	05/13/20 09:03	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27459	05/13/20 18:05	JSP	TAL SPK
Total/NA	Prep	7471B			0.54 g	50 mL	27435	05/13/20 09:06	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27458	05/13/20 15:55	AMB	TAL SPK

Client Sample ID: RFPNB-37C (3.5-4)

Lab Sample ID: 590-13171-8 Date Collected: 05/12/20 14:30 **Matrix: Solid** Date Received: 05/12/20 15:54

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27436	05/13/20 09:07	AMB	TAL SPK

Client Sample ID: RFPNB-37C (3.5-4)

Lab Sample ID: 590-13171-8 Date Collected: 05/12/20 14:30 Matrix: Solid Date Received: 05/12/20 15:54 Percent Solids: 93.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.36 g	50 mL	27434	05/13/20 09:03	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27459	05/13/20 18:08	JSP	TAL SPK
Total/NA	Prep	7471B			0.64 g	50 mL	27435	05/13/20 09:06	AMB	TAL SPK
Total/NA	Analysis	7471B		1			27458	05/13/20 15:57	AMB	TAL SPK

Eurofins TestAmerica, Spokane

Lab Chronicle

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13171-2

3

__

6

8

9

10

11

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13171-2

Project/Site: Riverfront Park (0110-148-14)

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-21

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Method	Method Description	Protocol	Laboratory
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
6010D	Metals (ICP)	SW846	TAL SPK
7471B	Mercury (CVAA)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3050B	Preparation, Metals	SW846	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK
7471B	Preparation, Mercury	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13171-2

3

4

5

7

8

4.6

10

GeoEngineers 523 EAST SECOND AVE. SPOKANE, WASHINGTON 99202 (509) 363-3125	ineers COND AVE. INGTON 9:	9202	1	EMP.	7.8°C2.dW71		PAGE / OF / LAB Test America
PROJECT NAME/LOCATION	without Park				A	ANALYSIS REQUIRED	NOTES/COMMENTS
PROJECT NUMBER 0110-148-06	10-148-06	(0600-02		13			(Preserved, filtered, etc.)
PROJECT MANAGER SAMPLED BY	IR Sugalski			Meto			
SAMPLE IDENTIFICATION	SAMPLE COLLECTION	ECTION	# OF	_			
	DATE TIME	MATRIX	JARS	RCR			
-	0	8	1->	×			D=metals + PAHs on
14.5-5)	1	/	1	×			TAT
RFPNB-32445-5)	1 1350	1		×			
RFPNB-33c(1-1.5)	1410			×		1.1.1.1.1.1	*= Mobils on 3-day
RFPNI3-3441-15)	1415			×			and PAH on 10-d., T
RIPMS 356/55	1430			×			
RFPNB-36(13.59)	1425			×			
RFP/11B-37435-18	V 1430	4	V	×		590-13171 Chain of Custody	
RELINQUISHED BY F	FIRM GET	RELINQUISHED BY	HED BY		FIRM	RELINQUISHED BY	FIRM
		SIGNATURE	m			SIGNATURE	
DATE 5 -12-2000	TIME /S SO	DATE		TIME		DATE	TIME
VED BY \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FIRM	RECEIVED BY	ВҮ		FIRM	RECEIVED BY	FIRM
PRINTED NAME INTO THE TROOP	C	SIGNATURE NAME	E			PRINTED NAME	
12/21	TIME (5:30)	DATE		TIME		DATE	TIME
ADDITIONAL COMMENTS:							

Client: GeoEngineers Inc

Job Number: 590-13171-2

Login Number: 13171

List Number: 1 Creator: O'Toole, Maria C List Source: Eurofins TestAmerica, Spokane

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	N/A	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Eurofins TestAmerica, Spokane

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13195-1

Client Project/Site: Riverfront Park - GT & Env Services

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

tarous trington

Authorized for release by: 5/18/2020 3:03:14 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GeoEngineers Inc Project/Site: Riverfront Park - GT & Env Services Laboratory Job ID: 590-13195-1

Table of Contents	
Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	7
Chronicle	8
Certification Summary	9
Method Summary	10
Chain of Custody	11
Receipt Checklists	

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park - GT & Env Services

Job ID: 590-13195-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The sample was received on 5/15/2020 10:32 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 6.5° C.

Metals

Method 6010D: The low level continuing calibration verification (CCVL) and initial calibration verification (ICVL) associated with batch 590-27491 recovered above the upper control limit for Arsenic. The samples associated with this CCV either >10x or were non-detects for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 590-13195-1

Sample Summary

Client: GeoEngineers Inc

590-13195-1

Project/Site: Riverfront Park - GT & Env Services

Client Sample ID Lab Sample ID Matrix Collected Received Asset ID RFPNB-SP1(0.-0.5) 05/15/20 09:15 05/15/20 10:32

Solid

Job ID: 590-13195-1

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13195-1

Project/Site: Riverfront Park - GT & Env Services

Qualifiers

Metals

Qualifier Qualifier Description

^ ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

3

Δ

5

5

Q

9

10

11

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13195-1

Project/Site: Riverfront Park - GT & Env Services

Client Sample ID: RFPNB-SP1(0.-0.5)

Lab Sample ID: 590-13195-1

Date Collected: 05/15/20 09:15

Date Received: 05/15/20 10:32

Matrix: Solid
Percent Solids: 93.3

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	12	٨	0.99	0.39	mg/Kg	\	05/15/20 10:51	05/15/20 15:49	1
Cadmium	1.4		0.79	0.047	mg/Kg	₩	05/15/20 10:51	05/15/20 15:49	1
Lead	530		2.4	1.2	mg/Kg	₽	05/15/20 10:51	05/15/20 15:49	1

4

_

R

9

4 4

Н

QC Sample Results

Job ID: 590-13195-1 Client: GeoEngineers Inc

Project/Site: Riverfront Park - GT & Env Services

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-27476/2-A

Matrix: Solid

Analysis Batch: 27491

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	^	1.3	0.50	mg/Kg		05/15/20 08:56	05/15/20 14:14	1
Cadmium	ND		1.0	0.059	mg/Kg		05/15/20 08:56	05/15/20 14:14	1
Lead	ND		3.0	1.5	mg/Kg		05/15/20 08:56	05/15/20 14:14	1

Lab Sample ID: LCS 590-27476/1-A

Matrix: Solid

Analysis Batch: 27491							Prep E	Batch: 2747	Ì
_	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Arsenic	100	98.4	۸	mg/Kg		98	80 - 120		
Cadmium	50.0	50.7		mg/Kg		101	80 - 120		
Lead	50.0	52.2		mg/Kg		104	80 - 120		

Prep Batch: 27476

Prep Type: Total/NA

Lab Chronicle

Client: GeoEngineers Inc Job ID: 590-13195-1

Project/Site: Riverfront Park - GT & Env Services

Lab Sample ID: 590-13195-1 Client Sample ID: RFPNB-SP1(0.-0.5)

Date Collected: 05/15/20 09:15 **Matrix: Solid**

Date Received: 05/15/20 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27477	05/15/20 10:55	AMB	TAL SPK

Client Sample ID: RFPNB-SP1(0.-0.5)

Lab Sample ID: 590-13195-1 Date Collected: 05/15/20 09:15 **Matrix: Solid** Date Received: 05/15/20 10:32 Percent Solids: 93.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.35 g	50 mL	27476	05/15/20 10:51	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27491	05/15/20 15:49	AMB	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Eurofins TestAmerica, Spokane

5/18/2020

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13195-1

Project/Site: Riverfront Park - GT & Env Services

Laboratory: Eurofins TestAmerica, Spokane The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-21

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park - GT & Env Services

Method **Method Description** Protocol Laboratory 6010D Metals (ICP) SW846 TAL SPK TAL SPK Percent Moisture EPA Moisture 3050B Preparation, Metals SW846 TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13195-1

3

4

10

1 0

	0	h	
fundament.		0	
	Z CCCCCC	00000	

	Regulatory Program: Project Manager: 5. 4. 5 Tel/Fax: Analysis Turnarou CALENDAR DAYS	Iatory Program: DW NPDES Ianager: S. R. Sugelsk: Analysis Turnaround Time DAR DAYS WORKING DAYS IT if different from Below	Lat	013770 Date: Carrier:	THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. TAL-8210 (0713) COC No: Of COCs Sampler: For Lab Use Only: Walk-in Client:
1721 Spkone, 100 09-363-3125	CALENDAR DAYS TAT if different	from Below 2 weeks 1 week 2 days 1 day	mple (Y/N) S/MSD (Y/N)		For Lab Use Only: Walk-in Client: Lab Sampling: Job / SDG No.:
Sample Identification	Sample Sample Date Time	Sample Type (C=Comp, G=Grab) Matrix Cont.			Sample Specific Notes:
RFNB-SPI(00.5)	5-15-20 0915	C So.: 1	×		
			590-13195 CI	590-13195 Chain of Custody	
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH; 6= Other				
	se List any EPA Was	te Codes for the sample in t		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ined longer than 1 month)
Non-Hazard Flammable Skin Irritant	Paison B	Unknown	Return to Client	Disposal by Lab	orMonths
Special Instructions/QC Requirements & Comments;					
Custody Seals Intact: Yes No	Custody Seat No.:		Cooler Temp. ("C): Obs'd:	Obsid: Wis Corrid: Way	Therm ID No.: WOOL
Relinguished by:	Company:	Date/Time: \$~/5-20 k	Received by:	Company	Date/Time: \$ 115/20 (0:32
Relinquished by:	Company:		Re	Company	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	Company:	Date/Time:

Client: GeoEngineers Inc

Job Number: 590-13195-1

Login Number: 13195

List Number: 1

List Source: Eurofins TestAmerica, Spokane

Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	N/A	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Not present
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13217-1

Client Project/Site: Riverfront Park (0110-148-14)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

tarous trington

Authorized for release by: 5/21/2020 4:18:27 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-14) Laboratory Job ID: 590-13217-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	
Definitions	5
Client Sample Results	6
QC Sample Results	7
Chronicle	8
Certification Summary	9
Method Summary	10
Chain of Custody	11
Receipt Checklists	12

6

4

e

0

9

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Job ID: 590-13217-1

Job ID: 590-13217-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The sample was received on 5/19/2020 3:34 PM; the sample arrived in good condition. The temperature of the cooler at receipt was 14.1° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received
 Asset ID

 590-13217-1
 RFPNB-38C (4-4.5)
 Solid
 05/19/20 14:15
 05/19/20 15:34

Job ID: 590-13217-1

3

4

5

8

9

4 4

11

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13217-1

Project/Site: Riverfront Park (0110-148-14)

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Faa	Dilution Footon

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

Minimum Detectable Activity (Radiochemistry) MDA Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit MLMinimum Level (Dioxin) Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13217-1

Project/Site: Riverfront Park (0110-148-14)

Client Sample ID: RFPNB-38C (4-4.5)

Lab Sample ID: 590-13217-1

Date Collected: 05/19/20 14:15

Date Received: 05/19/20 15:34

Matrix: Solid
Percent Solids: 94.3

Method: 6010D - Metals (ICP)										
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Lead	500		13	6.1	mg/Kg		[05/20/20 08:12	05/21/20 14:24	5

E

6

8

9

QC Sample Results

Client: GeoEngineers Inc Job ID: 590-13217-1

Project/Site: Riverfront Park (0110-148-14)

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-27552/2-A

Lab Sample ID: LCS 590-27552/1-A

Analysis Batch: 27577

Analysis Batch: 27577

Matrix: Solid

Matrix: Solid

Analyte

Lead

MB MB

Analyte **Result Qualifier**

Lead ND

RL 3.0

Spike

Added

50.0

MDL Unit 1.5 mg/Kg

LCS LCS

54.5

Result Qualifier

Unit

mg/Kg

Prepared

D %Rec

109

Analyzed <u>05/20/20 08:11</u> <u>05/21/20 12:16</u>

Client Sample ID: Method Blank

Dil Fac

Prep Type: Total/NA Prep Batch: 27552

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 27552

%Rec.

Limits

80 - 120

Lab Chronicle

Client: GeoEngineers Inc Job ID: 590-13217-1

Project/Site: Riverfront Park (0110-148-14)

Lab Sample ID: 590-13217-1 Client Sample ID: RFPNB-38C (4-4.5)

Date Collected: 05/19/20 14:15 **Matrix: Solid**

Date Received: 05/19/20 15:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27555	05/20/20 09:19	AMB	TAL SPK

Client Sample ID: RFPNB-38C (4-4.5)

Lab Sample ID: 590-13217-1 Date Collected: 05/19/20 14:15 **Matrix: Solid** Date Received: 05/19/20 15:34 Percent Solids: 94.3

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.27 g	50 mL	27552	05/20/20 08:12	AMB	TAL SPK
Total/NA	Analysis	6010D		5			27579	05/21/20 14:24	JSP	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13217-1

Project/Site: Riverfront Park (0110-148-14)

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-21

. .

3

A

6

8

9

10

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-14)

Method **Method Description** Protocol Laboratory 6010D Metals (ICP) SW846 TAL SPK TAL SPK Percent Moisture EPA Moisture 3050B Preparation, Metals SW846 TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13217-1

3

6

10

	Migha here follow up on	DATE SIMMIZU TIME IS SM DATE		SIGNATURE MAYING COLL SIGNATURE	T) CO IIME DAS	D NAME Jedichen Sugar		RELINQUISHED BY 2, 503 but FIRM CC F RELINQUISHED BY	PANB-38 (4-47) 2/4 1115 8:11	LAB GEOENGINEERS DATE TIME MATRIX JAKS	IPLE IDENTIFICATION SAMPLE COLLECTION	PROJECT NUMBER 0110-148-06	PROJECT NAME/LOCATION DIVERSITY PORT	E. 99202
Jemp: 14.	the Dependent	TIME		rinw	IME			FIRM	590-13217 Chain of Custody	Ē	ď		ANALY	CHAIN OF CUSTODY RECORE
4.1%	upon lead	DATE	PRINTED NAME	SIGNATURE	DECEIVED BY	PRINTED NAME	SIGNATURE	RELINQUISHED BY					ANALYSIS REQUIRED	ORD
	Concardados	TIME		FINN	IME			FIRM			9.1	(Preserved, filtered, etc.)	NOTES/COMMENTS	DATE 5/19/20 PAGE OF LAB

Client: GeoEngineers Inc

Job Number: 590-13217-1

Login Number: 13217

List Number: 1 Creator: O'Toole, Maria C List Source: Eurofins TestAmerica, Spokane

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	N/A	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13239-1

Client Project/Site: Riverfront Park (0110-148-06)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

dance trington

Authorized for release by: 5/27/2020 2:30:51 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06) Laboratory Job ID: 590-13239-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	
Client Sample Results	6
QC Sample Results	7
Chronicle	8
Certification Summary	9
Method Summary	10
Chain of Custody	11
Receipt Checklists	

2

4

9

10

11

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Job ID: 590-13239-1

Job ID: 590-13239-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The sample was received on 5/26/2020 9:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.8° C.

Metals

Method 6010D: The sample duplicate (DUP) precision for preparation batch 590-27608 and analytical batch 590-27636 was outside control limits. Sample non-homogeneity is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received
 Asset ID

 590-13239-1
 RFPNB-39C(4.5-5)
 Solid
 05/26/20 08:20
 05/26/20 09:00
 Asset ID

Job ID: 590-13239-1

3

4

Q

9

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13239-1

Project/Site: Riverfront Park (0110-148-06)

Qualifiers

n n	^+^	-
IVI	ши	
	-cu	••

Qualifier **Qualifier Description**

F5 Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the

absolute difference is less than the RL.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery

CFL Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13239-1

Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-39C(4.5-5)

Lab Sample ID: 590-13239-1

Method: 6010D - Metals (ICP)										
Analyte	Result	Qualifier	RL	MDL	Unit	0)	Prepared	Analyzed	Dil Fac
Lead	8.0		2.4	1.2	mg/Kg	7	¥	05/26/20 09:34	05/27/20 10:06	1

2

4

5

7

8

10

11

QC Sample Results

Client: GeoEngineers Inc Job ID: 590-13239-1

RL

3.0

Spike

Added

Sample Sample

Sample Sample

Sample Sample

8.0

Result Qualifier

8.0

Result Qualifier

50.0

Spike

Added

52.9

Spike

Added

51.4

MDL Unit

LCS LCS

MS MS

MSD MSD

DU DU

9.84 F5

Result Qualifier

57.7

Result Qualifier

58.6

Result Qualifier

53.7

Result Qualifier

1.5 mg/Kg

Unit

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Project/Site: Riverfront Park (0110-148-06)

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-27608/2-A

Analysis Batch: 27636

Matrix: Solid

MB MB

Analyte Result Qualifier Lead ND

Lab Sample ID: LCS 590-27608/1-A **Matrix: Solid**

Analysis Batch: 27636

Analyte Lead

Lab Sample ID: 590-13239-1 MS **Matrix: Solid**

Analysis Batch: 27636

Analyte

Lead

Lab Sample ID: 590-13239-1 MSD **Matrix: Solid**

Analysis Batch: 27636

Analyte

Lead

Lab Sample ID: 590-13239-1 DU **Matrix: Solid**

Analysis Batch: 27636

Result Qualifier **Analyte** Lead 8.0

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 27608

Prepared Analyzed Dil Fac 05/26/20 09:34 05/27/20 10:03

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 27608

%Rec.

D %Rec Limits 107 80 - 120

Client Sample ID: RFPNB-39C(4.5-5)

Prep Type: Total/NA

Prep Batch: 27608

%Rec.

Limits %Rec

D ₩ 96 75 - 125

> D %Rec ₩

D

77

97

Client Sample ID: RFPNB-39C(4.5-5)

Prep Type: Total/NA Prep Batch: 27608

%Rec. **RPD**

Limits RPD Limit 75 - 125

Client Sample ID: RFPNB-39C(4.5-5)

Prep Type: Total/NA

Prep Batch: 27608 **RPD**

RPD Limit

21 20

5/27/2020

Lab Chronicle

Client: GeoEngineers Inc Job ID: 590-13239-1

Project/Site: Riverfront Park (0110-148-06)

Lab Sample ID: 590-13239-1 Client Sample ID: RFPNB-39C(4.5-5)

Date Collected: 05/26/20 08:20 **Matrix: Solid**

Date Received: 05/26/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			27603	05/26/20 09:36	AMB	TAL SPK

Client Sample ID: RFPNB-39C(4.5-5)

Lab Sample ID: 590-13239-1 Date Collected: 05/26/20 08:20 **Matrix: Solid** Date Received: 05/26/20 09:00 Percent Solids: 94.5

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			1.30 g	50 mL	27608	05/26/20 09:34	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27636	05/27/20 10:06	AMB	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13239-1

Project/Site: Riverfront Park (0110-148-06)

Laboratory: Eurofins TestAmerica, Spokane

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C569	01-06-21

___.

3

4

6

0

9

10

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Method **Method Description** Protocol Laboratory 6010D Metals (ICP) SW846 TAL SPK TAL SPK Percent Moisture EPA Moisture 3050B Preparation, Metals SW846 TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13239-1

3

6

_

10

4 4

CHAIN OF CUSTODY RECORD

GeoEngineers **523 EAST SECOND AVE.** SPOKANE, WASHINGTON 99202 (509) 363-3125

DATE 5/26/20 PAGE LAB LAB NO.

PROJ	PROJECT NAME/LOCATION RIVERSIONA PORTA							AN	ALYSI	S REQUIR	RED		NOTES/COMMENTS
	PROJECT NUMBER												(Preserved, filtered, etc.)
	PROJECT MANAGER							1		1 1	1 1 2		
	SAMPLED BY	18	Sunc	154						1 1			71
SAME	PLE IDENTIFICATION		LE COLLE	CTION	# OF		1						ZUTAT
LAB	GEOENGINEERS		1		JARS	PS							
	REPUB-39C(4,5-		0820	5	1	X							
											-		
					-	1		-	-	-			
						+++			+	++			
							-	1	-		590-	13239 Chai	n of Custody
			-		_	-	-		-	+	+		
			-			+-+	-	-	-	+-+-	1		
RELING	DUISHED BY	FIRM		RELINQUI	SHED BY	,	FIRM	কা (p-8-	RELINQ	UISHED BY		FIRM
SIGNAT	TURE MULL	-		SIGNATUR						SIGNAT			
PRINTE	DNAME Section	Suga	15 W	PRINTED		ry Pe	0000	-	EIE	PRINTE	D NAME		TIME
			7903	RECEIVED	5/26/25	IIME	FIRM			RECEIV	FD BY		FIRM
RECEIV		FIRM		SIGNATUR			111111			SIGNAT			
SIGNAT	D NAME		-	PRINTED						PRINTE			
DATE TIME DATE					TIME				DATE			TIME	
	TIONAL COMMENTS:												
7													

Client: GeoEngineers Inc

Job Number: 590-13239-1

Login Number: 13239

List Source: Eurofins TestAmerica, Spokane

List Number: 1

Creator: Arrington, Randee E

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Comment</td>	N/A	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13239-2

Client Project/Site: Riverfront Park (0110-148-06)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

dance trington Authorized for release by:

6/8/2020 10:50:07 AM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06) Laboratory Job ID: 590-13239-2

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	7
Chronicle	10
Certification Summary	11
Method Summary	12
Chain of Custody	13
Receint Checklists	14

q

4

7

9

10

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Job ID: 590-13239-2

Job ID: 590-13239-2

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The sample was received on 5/26/2020 9:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.8° C.

Receipt Exceptions

The following sample was activated for 6010D Arsenic & Cadmium and 8270E PAH analysis by the client on 05/28/20: RFPNB-39C(4.5-5) (590-13239-1). This analysis was not originally requested on the chain-of-custody (COC).

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method 6010D: The low level continuing calibration verification (CCVL) associated with batch 590-27722 recovered above the upper control limit for Arsenic. The samples associated with this CCVL were >10x or non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: (LCS 590-27707/1-A) and (MB 590-27707/2-A).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received
 Asset ID

 590-13239-1
 RFPNB-39C(4.5-5)
 Solid
 05/26/20 08:20
 05/26/20 09:00
 Telephone

Job ID: 590-13239-2

3

4

5

8

9

10

11

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13239-2

Project/Site: Riverfront Park (0110-148-06)

Qualifiers

GC/MS Semi VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals Qualifier

Qualifier Description ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits. J

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	ese commonly used abbreviations may or may not be present in this report.					
n	Listed under the "D" column to designate that the result is reported on a dry weight basis					
%R	Percent Recovery					
CFL	Contains Free Liquid					
CNF	Contains No Free Liquid					
DER	Duplicate Error Ratio (normalized absolute difference)					

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

Quality Control QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF** Toxicity Equivalent Quotient (Dioxin) **TEQ**

6/8/2020

Page 5 of 14

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13239-2

Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-39C(4.5-5)

Lab Sample ID: 590-13239-1

Date Collected: 05/26/20 08:20

Matrix: Solid

Date Received: 05/26/20 09:00

Percent Solids: 94.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg	<u> </u>	06/04/20 12:26	06/04/20 15:13	1
2-Methylnaphthalene	ND		10	3.2	ug/Kg	☼	06/04/20 12:26	06/04/20 15:13	1
1-Methylnaphthalene	ND		10	2.3	ug/Kg	☼	06/04/20 12:26	06/04/20 15:13	1
Acenaphthylene	3.4	J	10	3.4	ug/Kg	₽	06/04/20 12:26	06/04/20 15:13	1
Acenaphthene	ND		10	2.6	ug/Kg	₽	06/04/20 12:26	06/04/20 15:13	1
Fluorene	ND		10	2.3	ug/Kg	☼	06/04/20 12:26	06/04/20 15:13	1
Phenanthrene	25		10	3.7	ug/Kg	₽	06/04/20 12:26	06/04/20 15:13	1
Anthracene	7.9	J	10	2.1	ug/Kg	☼	06/04/20 12:26	06/04/20 15:13	1
Fluoranthene	59		10	2.6	ug/Kg	₽	06/04/20 12:26	06/04/20 15:13	1
Pyrene	61		10	3.9	ug/Kg	₽	06/04/20 12:26	06/04/20 15:13	1
Benzo[a]anthracene	29		10	2.2	ug/Kg	₽	06/04/20 12:26	06/04/20 15:13	1
Chrysene	34		10	1.6	ug/Kg	☼	06/04/20 12:26	06/04/20 15:13	1
Benzo[b]fluoranthene	31		10	3.6	ug/Kg	₽	06/04/20 12:26	06/04/20 15:13	1
Benzo[k]fluoranthene	12		10	2.6	ug/Kg	☼	06/04/20 12:26	06/04/20 15:13	1
Benzo[a]pyrene	28		10	4.3	ug/Kg	☼	06/04/20 12:26	06/04/20 15:13	1
Indeno[1,2,3-cd]pyrene	13		10	3.0	ug/Kg	₽	06/04/20 12:26	06/04/20 15:13	1
Dibenz(a,h)anthracene	4.4	J	10	2.9	ug/Kg	☼	06/04/20 12:26	06/04/20 15:13	1
Benzo[g,h,i]perylene	16		10	2.4	ug/Kg	₩	06/04/20 12:26	06/04/20 15:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	68		43 - 120				06/04/20 12:26	06/04/20 15:13	1
2-Fluorobiphenyl (Surr)	73		56 - 120				06/04/20 12:26	06/04/20 15:13	1
p-Terphenyl-d14	95		74 - 136				06/04/20 12:26	06/04/20 15:13	1
Method: 6010D - Metals (I	CP)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.0		1.1	0.42	mg/Kg	\	06/04/20 10:00	06/05/20 14:25	1
Cadmium	0.050	J	0.85	0.050	mg/Kg	☼	06/04/20 10:00	06/04/20 17:38	1

3

5

8

10

11

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Job ID: 590-13239-2

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

MB MB

Lab Sample ID: MB 590-27712/1-A

Matrix: Solid

Analysis Batch: 27711

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27712

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		10	2.2	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
2-Methylnaphthalene	ND		10	3.1	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
1-Methylnaphthalene	ND		10	2.2	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Acenaphthylene	ND		10	3.3	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Acenaphthene	ND		10	2.5	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Fluorene	ND		10	2.2	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Phenanthrene	ND		10	3.6	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Anthracene	ND		10	2.0	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Fluoranthene	ND		10	2.5	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Pyrene	ND		10	3.8	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Benzo[a]anthracene	ND		10	2.1	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Chrysene	ND		10	1.5	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Benzo[b]fluoranthene	ND		10	3.5	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Benzo[k]fluoranthene	ND		10	2.5	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Benzo[a]pyrene	ND		10	4.2	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Indeno[1,2,3-cd]pyrene	ND		10	3.0	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Dibenz(a,h)anthracene	ND		10	2.8	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
Benzo[g,h,i]perylene	ND		10	2.4	ug/Kg		06/04/20 12:26	06/04/20 13:03	1
					-				

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	86		43 - 120	06/04/20 12:26	06/04/20 13:03	1
2-Fluorobiphenyl (Surr)	83		56 - 120	06/04/20 12:26	06/04/20 13:03	1
p-Terphenyl-d14	113		74 - 136	06/04/20 12:26	06/04/20 13:03	1

Lab Sample ID: LCS 590-27712/2-A

Matrix: Solid

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 27711	Spike	LCS	LCS				Prep Batch: 27712 %Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Naphthalene	267	195	-	ug/Kg		73	39 - 120
2-Methylnaphthalene	267	199		ug/Kg		74	48 - 120
1-Methylnaphthalene	267	196		ug/Kg		74	55 - 120
Acenaphthylene	267	229		ug/Kg		86	59 - 120
Acenaphthene	267	237		ug/Kg		89	53 - 120
Fluorene	267	231		ug/Kg		87	63 - 120
Phenanthrene	267	242		ug/Kg		91	65 - 121
Anthracene	267	227		ug/Kg		85	60 - 129
Fluoranthene	267	249		ug/Kg		94	63 - 127
Pyrene	267	257		ug/Kg		96	68 - 125
Benzo[a]anthracene	267	271		ug/Kg		102	61 - 125
Chrysene	267	261		ug/Kg		98	67 - 127
Benzo[b]fluoranthene	267	265		ug/Kg		99	67 - 127
Benzo[k]fluoranthene	267	248		ug/Kg		93	63 - 127
Benzo[a]pyrene	267	263		ug/Kg		99	60 - 120
Indeno[1,2,3-cd]pyrene	267	256		ug/Kg		96	63 - 128
Dibenz(a,h)anthracene	267	262		ug/Kg		98	60 - 128
Benzo[g,h,i]perylene	267	258		ug/Kg		97	58 - 129

Page 7 of 14

6/8/2020

Job ID: 590-13239-2

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-27712/2-A

Matrix: Solid

Analysis Batch: 27711

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 27712

LCS LCS

Surrogate	%Recovery Qualif	ier Limits
Nitrobenzene-d5	76	43 - 120
2-Fluorobiphenyl (Surr)	78	56 - 120
p-Terphenyl-d14	101	74 - 136

Lab Sample ID: 590-13239-1 MS Client Sample ID: RFPNB-39C(4.5-5)

Matrix: Solid

Analysis Batch: 27711

Prep Type: Total/NA

Prep Batch: 27712

7 mary old Batom 21711									Trop Batom 277 II
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	ND		275	185		ug/Kg		67	39 - 120
2-Methylnaphthalene	ND		275	192		ug/Kg	₩	70	48 - 120
1-Methylnaphthalene	ND		275	194		ug/Kg	₩	70	55 ₋ 120
Acenaphthylene	3.4	J	275	234		ug/Kg		85	59 - 120
Acenaphthene	ND		275	214		ug/Kg	₩	78	53 - 120
Fluorene	ND		275	230		ug/Kg	₩	84	63 - 120
Phenanthrene	25		275	229		ug/Kg	₩	74	65 - 121
Anthracene	7.9	J	275	228		ug/Kg	₩	80	60 - 129
Fluoranthene	59		275	252		ug/Kg	₩	70	63 - 127
Pyrene	61		275	260		ug/Kg	₩	72	68 - 125
Benzo[a]anthracene	29		275	273		ug/Kg	₩	89	61 - 125
Chrysene	34		275	265		ug/Kg	₩	84	67 ₋ 127
Benzo[b]fluoranthene	31		275	268		ug/Kg	₩	86	67 - 127
Benzo[k]fluoranthene	12		275	240		ug/Kg	₩	83	63 - 127
Benzo[a]pyrene	28		275	260		ug/Kg	₩	84	60 - 120

275

275

275

Spike

Added

276

276

276

276

276

276

276

276

276

276

251

253

252

MSD MSD

174

180

176

218

214

232

223

221

236

248

Result Qualifier

MS MS

Sample Sample

ND

ND

ND

3.4

ND

ND

25

7.9

59

61

Result Qualifier

13

4.4

16

Surrogate	%Recovery Qualifier	Limits
Nitrobenzene-d5	54	43 - 120
2-Fluorobiphenyl (Surr)	70	56 - 120
p-Terphenyl-d14	97	74 - 136

Lab Sample ID: 590-13239-1 MSD

Matrix: Solid

Analyte

Naphthalene

2-Methylnaphthalene

1-Methylnaphthalene

Acenaphthylene

Acenaphthene

Phenanthrene

Anthracene

Pyrene

Fluoranthene

Fluorene

Indeno[1,2,3-cd]pyrene

Dibenz(a,h)anthracene

Benzo[g,h,i]perylene

Analysis Batch: 27711

Client San	nple ID:	RFPN	B-39C	(4.5-5
------------	----------	------	-------	--------

%Rec.

63 - 128

60 - 128

58 - 129

₩

₩

D ₩

₩

₩

₩

Ö

₩

☼

₩

77

64

68

87

90

86

ug/Kg

ug/Kg

ug/Kg

Unit

ug/Kg

Prep Type: Total/NA Prep Batch: 27712

%Rec Limits RPD Limit 63 39 - 120 6 35 30 65 48 - 120 6 64 55 - 120 10 24 79 20 59 - 120 78 53 - 120 17 84 63 - 12021 72 65 - 121 18

Eurofins TestAmerica, Spokane

60 - 129

63 - 127

68 - 125

Page 8 of 14

RPD

18

3 18 16

6/8/2020

Client: GeoEngineers Inc Job ID: 590-13239-2

Project/Site: Riverfront Park (0110-148-06)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 590-13239-1 MSD

Matrix: Solid

Analysis Batch: 27711

Client Sample ID: RFPNB-39C(4.5-5)

Prep Type: Total/NA

Prep Batch: 27712

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[a]anthracene	29		276	256		ug/Kg	<u> </u>	82	61 - 125	6	16
Chrysene	34		276	254		ug/Kg	₩	80	67 - 127	4	15
Benzo[b]fluoranthene	31		276	250		ug/Kg	₩	79	67 - 127	7	16
Benzo[k]fluoranthene	12		276	233		ug/Kg	₩	80	63 - 127	3	16
Benzo[a]pyrene	28		276	252		ug/Kg	₩	81	60 - 120	3	20
Indeno[1,2,3-cd]pyrene	13		276	235		ug/Kg	₩	80	63 - 128	7	18
Dibenz(a,h)anthracene	4.4	J	276	239		ug/Kg	₩	85	60 - 128	5	18
Benzo[g,h,i]perylene	16		276	237		ug/Kg	₩	80	58 - 129	6	17

MSD MSD

Surrogate	%Recovery Qualifier	Limits
Nitrobenzene-d5	58	43 - 120
2-Fluorobiphenyl (Surr)	65	56 - 120
p-Terphenyl-d14	91	74 - 136

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-27707/2-A

Matrix: Solid

Analysis Batch: 27722

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27707

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	٨	1.3	0.50	mg/Kg		06/04/20 10:00	06/04/20 16:41	1
Cadmium	ND		1.0	0.059	mg/Kg		06/04/20 10:00	06/04/20 16:41	1

Lab Sample ID: LCS 590-27707/1-A

Matrix: Solid

Analysis Batch: 27722

Client Sample ID: La	b Control Sample
Pre	ep Type: Total/NA
P	rep Batch: 27707

	Spike	LUS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	 100	100	٨	mg/Kg		100	80 - 120	
Cadmium	50.0	50.8		mg/Kg		102	80 - 120	

Eurofins TestAmerica, Spokane

Page 9 of 14

6/8/2020

Lab Chronicle

Client: GeoEngineers Inc Job ID: 590-13239-2

Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-39C(4.5-5)

Lab Sample ID: 590-13239-1

Date Collected: 05/26/20 08:20

Date Received: 05/26/20 09:00

Matrix: Solid
Percent Solids: 94.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.47 g	2 mL	27712	06/04/20 12:26	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27711	06/04/20 15:13	NMI	TAL SPK
Total/NA	Prep	3050B			1.24 g	50 mL	27707	06/04/20 10:00	JSP	TAL SPK
Total/NA	Analysis	6010D		1			27722	06/04/20 17:38	AMB	TAL SPK
Total/NA	Prep	3050B			1.24 g	50 mL	27707	06/04/20 10:00	JSP	TAL SPK
Total/NA	Analysis	6010D		1			27727	06/05/20 14:25	AMB	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

4

5

Q

9

10

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13239-2

Project/Site: Riverfront Park (0110-148-06)

Laboratory: Eurofins TestAmerica, Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pre	ogram	Identification N	lumber	Expiration Date	
Washington	Sta	ate	C569		01-06-21	
The following analytes the agency does not do	•	ort, but the laboratory is n	ot certified by the governing a	uthority. T	This list may include a	analytes for wh

/

4

6

8

9

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Method **Method Description** Protocol Laboratory 8270E SIM Semivolatile Organic Compounds (GC/MS SIM) SW846 TAL SPK 6010D Metals (ICP) SW846 TAL SPK 3050B Preparation, Metals SW846 TAL SPK 3550C Ultrasonic Extraction SW846 TAL SPK

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13239-2

3

4

7

8

10

10

CHAIN OF CUSTODY RECORD

GeoEngineers 523 EAST SECOND AVE. SPOKANE, WASHINGTON 99202 (509) 363-3125

DATE 5/	26/20
PAGE	OF
LAB	
LAB NO.	

PROJ	ECT NAME/LOCATION	Dinec	Ann 2	PROJECT NAME/LOCATION PINECEMA POCK						IS REQUIR	ED	NOTES/COMMENTS
11100	PROJECT NUMBER	0110	-148-	-06								(Preserved, filtered, etc.)
	PROJECT MANAGER	JR	Sug	156:							1 1 1 1	
	SAMPLED BY	18	Suc	1561						1 1 1 1		
SAME	PLE IDENTIFICATION		LE COLLE				1					ZUTAT
LAB	GEOENGINEERS	DATE	TIME	MATRIX	JARS	PS						
	RFPNB-39C14,5-	5)5/26	0820	5	1	X						
			-				-					
			-		-							
											590-13239 Ch	nain of Custody
RELING	DUISHED BY	FIRM		RELINQUIS	0-1	,	FIRM	কা	Sp.K-		UISHED BY	FIRM
SIGNA	TURE MULL	5		SIGNATUR		. 0	-			SIGNAT		
	D NAME Sediction	TIME C	19 LL	PRINTED N		TIME	0000	(-	FIC	DATE	DINAME	TIME
RECEIV	5/26/20	FIRM	7905	RECEIVED		THINE	FIRM			RECEIV	ED BY	FIRM
SIGNAT		1.31.40		SIGNATUR	RE					SIGNAT		
PRINTE	D NAME			PRINTED	NAME					PRINTE	D NAME	
DATE		TIME		DATE		TIME		-		DATE		TIME
ADDI	TIONAL COMMENTS:									-		
			-	_								
-												

Client: GeoEngineers Inc

Job Number: 590-13239-2

Login Number: 13239

List Source: Eurofins TestAmerica, Spokane

List Number: 1

Creator: Arrington, Randee E

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ANALYTICAL REPORT

Eurofins TestAmerica, Spokane 11922 East 1st Ave Spokane, WA 99206 Tel: (509)924-9200

Laboratory Job ID: 590-13394-1

Client Project/Site: Riverfront Park (0110-148-06)

For:

GeoEngineers Inc 523 East Second Ave Spokane, Washington 99202

Attn: JR Sugalski

dance trington

Authorized for release by: 6/30/2020 4:59:19 PM

Randee Arrington, Project Manager II (509)924-9200

randee.arrington@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GeoEngineers Inc Project/Site: Riverfront Park (0110-148-06) Laboratory Job ID: 590-13394-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Definitions	5
Client Sample Results	6
QC Sample Results	7
Chronicle	10
Certification Summary	11
Method Summary	12
Chain of Custody	13
Receipt Checklists	14

Case Narrative

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Job ID: 590-13394-1

Job ID: 590-13394-1

Laboratory: Eurofins TestAmerica, Spokane

Narrative

Receipt

The sample was received on 6/23/2020 2:03 PM; the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.7° C.

Receipt Exceptions

The following sample was received outside of holding time for 8270E SIM PAHs and 7471 Hg: RFPNB-40C (7-8) (590-13394-1).

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method 6010D: The low level continuing calibration verification (CCVL) associated with batch 590-27981 recovered above the upper control limit for Barium. The sample results associated with this CCV were 10x the spike amount for the affected analytes; therefore, the data have been reported.

Method 7471B: The method blank for preparation batch 590-27964 and analytical batch 590-28007 contained Hg above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received
 Asset ID

 590-13394-1
 RFPNB-40C (7-8)
 Solid
 04/28/20 09:00
 06/23/20 14:03

Job ID: 590-13394-1

3

4

0

9

10

11

Definitions/Glossary

Client: GeoEngineers Inc Job ID: 590-13394-1

Project/Site: Riverfront Park (0110-148-06)

Qualifiers

GC/MS Semi VOA

H3 Sample was received and analyzed past holding time.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier Qualifier Description

ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.

B Compound was found in the blank and sample.

F5 Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL.

H3 Sample was received and analyzed past holding time.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
	Listed under the "D" column to designed that the requit is reported an a dry weight be

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

_

4

5

J

b

8

10

11

Client Sample Results

Client: GeoEngineers Inc Job ID: 590-13394-1

Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-40C (7-8)

Lab Sample ID: 590-13394-1 Date Collected: 04/28/20 09:00 **Matrix: Solid**

Date Received: 06/23/20 14:03 Percent Solids: 96.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	H3	9.8	2.1	ug/Kg	<u> </u>	06/24/20 10:47	06/24/20 15:36	
2-Methylnaphthalene	ND	H3	9.8	3.1	ug/Kg	☼	06/24/20 10:47	06/24/20 15:36	•
1-Methylnaphthalene	ND	H3	9.8	2.2	ug/Kg	☼	06/24/20 10:47	06/24/20 15:36	•
Acenaphthylene	ND	H3	9.8	3.3	ug/Kg	₩	06/24/20 10:47	06/24/20 15:36	
Acenaphthene	ND	H3	9.8	2.5	ug/Kg	☼	06/24/20 10:47	06/24/20 15:36	•
Fluorene	ND	H3	9.8	2.2	ug/Kg	☼	06/24/20 10:47	06/24/20 15:36	
Phenanthrene	ND	H3	9.8	3.6	ug/Kg		06/24/20 10:47	06/24/20 15:36	
Anthracene	ND	H3	9.8	2.0	ug/Kg	☼	06/24/20 10:47	06/24/20 15:36	
Fluoranthene	ND	H3	9.8	2.4	ug/Kg	☼	06/24/20 10:47	06/24/20 15:36	
Pyrene	ND	H3	9.8	3.7	ug/Kg		06/24/20 10:47	06/24/20 15:36	
Benzo[a]anthracene	ND	H3	9.8	2.1	ug/Kg	☼	06/24/20 10:47	06/24/20 15:36	
Chrysene	ND	H3	9.8	1.5	ug/Kg	☼	06/24/20 10:47	06/24/20 15:36	
Benzo[b]fluoranthene	ND	H3	9.8	3.4	ug/Kg		06/24/20 10:47	06/24/20 15:36	
Benzo[k]fluoranthene	ND	H3	9.8	2.5	ug/Kg	☼	06/24/20 10:47	06/24/20 15:36	
Benzo[a]pyrene	ND	H3	9.8	4.1	ug/Kg	☼	06/24/20 10:47	06/24/20 15:36	
Indeno[1,2,3-cd]pyrene	ND	H3	9.8	2.9	ug/Kg		06/24/20 10:47	06/24/20 15:36	
Dibenz(a,h)anthracene	ND	H3	9.8	2.8	ug/Kg	₩	06/24/20 10:47	06/24/20 15:36	
Benzo[g,h,i]perylene	ND	H3	9.8	2.3	ug/Kg	₽	06/24/20 10:47	06/24/20 15:36	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5	61		43 - 120				06/24/20 10:47	06/24/20 15:36	
2-Fluorobiphenyl (Surr)	66		56 - 120				06/24/20 10:47	06/24/20 15:36	
p-Terphenyl-d14	99		74 - 136				06/24/20 10:47	06/24/20 15:36	•
Method: 6010D - Metals (ICP)		o				_			
Analyte		Qualifier	RL		Unit	— D	Prepared	Analyzed	Dil Fac
Arsenic	4.6		0.88		mg/Kg		06/24/20 11:46		•
Barium	35	^	0.88		mg/Kg	☆		06/24/20 16:54	•
Cadmium	0.070		0.70		mg/Kg			06/24/20 16:54	
Chromium	8.9		0.88		mg/Kg	₩.		06/24/20 16:54	•
Lead	6.3		2.1		mg/Kg			06/24/20 16:54	•
Selenium	ND		3.5			<u>.</u>		06/24/20 16:54	
Silver	ND		0.88	0.094	mg/Kg	₩	06/24/20 11:46	06/24/20 16:54	•
Method: 7471B - Mercury (CVA Analyte	•	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac

6/30/2020

Client: GeoEngineers Inc Job ID: 590-13394-1

Project/Site: Riverfront Park (0110-148-06)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

ND

ND

MB MB

107

Lab Sample ID: MB 590-27963/1-A

Matrix: Solid

Analyte

Naphthalene

2-Methylnaphthalene

Benzo[b]fluoranthene

Analysis Batch: 27961

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 27963 MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 10 2.2 ug/Kg 06/24/20 10:47 06/24/20 12:06 $\overline{\mathsf{ND}}$ ND 10 3.1 ug/Kg 06/24/20 10:47 06/24/20 12:06 ND 10 2.2 ug/Kg 06/24/20 10:47 06/24/20 12:06 ND 10 3.3 ug/Kg 06/24/20 10:47 06/24/20 12:06

1-Methylnaphthalene Acenaphthylene Acenaphthene ND 10 2.5 ug/Kg 06/24/20 10:47 06/24/20 12:06 2.2 ug/Kg Fluorene 9.32 J 10 06/24/20 10:47 06/24/20 12:06 ND 10 Phenanthrene 3.6 ug/Kg 06/24/20 10:47 06/24/20 12:06 ND 10 2.0 06/24/20 10:47 06/24/20 12:06 Anthracene ug/Kg 10 Fluoranthene ND 2.5 ug/Kg 06/24/20 10:47 06/24/20 12:06 Pyrene ND 10 3.8 ug/Kg 06/24/20 10:47 06/24/20 12:06 Benzo[a]anthracene ND 10 06/24/20 10:47 06/24/20 12:06 2.1 ug/Kg Chrysene ND 10 1.5 ug/Kg 06/24/20 10:47 06/24/20 12:06

Benzo[k]fluoranthene 2.5 06/24/20 10:47 06/24/20 12:06 ug/Kg Benzo[a]pyrene ND 10 4.2 ug/Kg 06/24/20 10:47 06/24/20 12:06 ND 10 3.0 ug/Kg 06/24/20 10:47 06/24/20 12:06 Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene ND 10 2.8 ug/Kg 06/24/20 10:47 06/24/20 12:06 Benzo[g,h,i]perylene ND 10 2.4 ug/Kg 06/24/20 10:47 06/24/20 12:06

74 - 136

10

10

3.5 ug/Kg

Qualifier Surrogate %Recovery Limits Nitrobenzene-d5 76 43 - 120 2-Fluorobiphenyl (Surr) 74 56 - 120

Prepared Analyzed Dil Fac 06/24/20 10:47 06/24/20 12:06 06/24/20 10:47 06/24/20 12:06 1 06/24/20 10:47 06/24/20 12:06

06/24/20 10:47 06/24/20 12:06

Lab Sample ID: LCS 590-27963/2-A

Matrix: Solid

p-Terphenyl-d14

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 27961	Spike	LCS	LCS				Prep Batch: 27963 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	267	187		ug/Kg		70	39 - 120
2-Methylnaphthalene	267	185		ug/Kg		69	48 - 120
1-Methylnaphthalene	267	185		ug/Kg		69	55 - 120
Acenaphthylene	267	219		ug/Kg		82	59 - 120
Acenaphthene	267	194		ug/Kg		73	53 - 120
Fluorene	267	219		ug/Kg		82	63 - 120
Phenanthrene	267	221		ug/Kg		83	65 - 121
Anthracene	267	211		ug/Kg		79	60 - 129
Fluoranthene	267	243		ug/Kg		91	63 - 127
Pyrene	267	247		ug/Kg		93	68 - 125
Benzo[a]anthracene	267	264		ug/Kg		99	61 - 125
Chrysene	267	253		ug/Kg		95	67 - 127
Benzo[b]fluoranthene	267	255		ug/Kg		96	67 - 127
Benzo[k]fluoranthene	267	238		ug/Kg		89	63 - 127
Benzo[a]pyrene	267	252		ug/Kg		94	60 - 120
Indeno[1,2,3-cd]pyrene	267	246		ug/Kg		92	63 - 128
Dibenz(a,h)anthracene	267	251		ug/Kg		94	60 - 128
Benzo[g,h,i]perylene	267	246		ug/Kg		92	58 - 129

6/30/2020

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-27963/2-A

Matrix: Solid

Analysis Batch: 27961

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 590-13394-1

Prep Batch: 27963

LCS LCS

%Recovery Qualifier Limits Surrogate Nitrobenzene-d5 73 43 - 120 2-Fluorobiphenyl (Surr) 74 56 - 120 p-Terphenyl-d14 100 74 - 136

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-27966/2-A

Matrix: Solid

Analysis Batch: 27981

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 27966

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.3	0.50	mg/Kg		06/24/20 11:45	06/24/20 15:48	1
Barium	ND		1.3	0.34	mg/Kg		06/24/20 11:45	06/24/20 15:48	1
Cadmium	ND		1.0	0.059	mg/Kg		06/24/20 11:45	06/24/20 15:48	1
Chromium	ND		1.3	0.18	mg/Kg		06/24/20 11:45	06/24/20 15:48	1
Lead	ND		3.0	1.5	mg/Kg		06/24/20 11:45	06/24/20 15:48	1
Selenium	ND		5.0	3.0	mg/Kg		06/24/20 11:45	06/24/20 15:48	1
Silver	ND		1.3	0.13	mg/Kg		06/24/20 11:45	06/24/20 15:48	1

Lab Sample ID: LCS 590-27966/1-A

Matrix: Solid

Analysis Batch: 27981

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 27966

LCS LCS Spike %Rec. **Analyte** Added Result Qualifier Unit %Rec Limits Arsenic 100 101 mg/Kg 101 80 - 120 Barium 100 99.5 80 - 120 mg/Kg 99 Cadmium 50.0 52.2 mg/Kg 104 80 - 120 Chromium 50.0 58.6 mg/Kg 117 80 - 120 Lead 50.0 53.4 mg/Kg 107 80 - 120 100 105 105 Selenium mg/Kg 80 - 120 Silver 5.00 5.18 mg/Kg 104 80 - 120

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 590-27964/9-A

Matrix: Solid

Analysis Batch: 28007

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 27964

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 5.50 J 50 3.6 ug/Kg 06/24/20 11:01 06/30/20 15:07 Hg

Lab Sample ID: LCS 590-27964/8-A

Matrix: Solid

Analysis Batch: 28007

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 27964

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 200 215 ug/Kg 108 80 - 120 Hg

Eurofins TestAmerica, Spokane

6/30/2020

QC Sample Results

Client: GeoEngineers Inc Job ID: 590-13394-1

Project/Site: Riverfront Park (0110-148-06)

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: 590-13394-1 MS Matrix: Solid							Client	Sample		NB-40C (7-8)
Matrix: Solid									Prep 1y	pe: Total/NA
Analysis Batch: 28007									Prep E	Batch: 27964
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg	8.7	J H3 B	186	210		ug/Kg	\	108	80 - 120	

Mat	Sample ID: 590-13394-1 MSD rix: Solid alysis Batch: 28007				Client	Sample	ID: RFPI Prep Ty Prep E	pe: Tot	aÌ/NÁ		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Anal	yte Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hg	8.7	J H3 B	183	201	-	ug/Kg	\	105	80 - 120	4	20

l	Hg _	8.7	J H3 B	183	201		ug/Kg	Đ.	105	80 - 120	4	20
	Lab Sample ID: 590-13394-4 Matrix: Solid	1 DU						Client S		ID: RFPN Prep Typ	e: Tot	aÌ/NÁ
	Analysis Batch: 28007	Sample	Sample		DU	DU				Prep Ba	aten: 2	RPD
	Analyte		Qualifier			Qualifier	Unit	D			RPD	Limit
	Hg	8.7	J H3 B		10.9	J F5	ug/Kg	☼			22	20

6/30/2020

9

4

5

7

0

10

11

Lab Chronicle

Client: GeoEngineers Inc Job ID: 590-13394-1

Project/Site: Riverfront Park (0110-148-06)

Client Sample ID: RFPNB-40C (7-8) Lab Sample ID: 590-13394-1

Date Collected: 04/28/20 09:00 **Matrix: Solid** Date Received: 06/23/20 14:03

Batch Batch Dil Initial Final **Batch** Prepared Factor Method or Analyzed **Prep Type** Type Run **Amount Amount** Number Analyst Lab 27962 Total/NA 06/24/20 10:31 NMI Analysis Moisture TAL SPK

Client Sample ID: RFPNB-40C (7-8)

Lab Sample ID: 590-13394-1 Date Collected: 04/28/20 09:00 **Matrix: Solid** Date Received: 06/23/20 14:03 Percent Solids: 96.0

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.93 g	2 mL	27963	06/24/20 10:47	NMI	TAL SPK
Total/NA	Analysis	8270E SIM		1			27961	06/24/20 15:36	NMI	TAL SPK
Total/NA	Prep	3050B			1.48 g	50 mL	27966	06/24/20 11:46	AMB	TAL SPK
Total/NA	Analysis	6010D		1			27981	06/24/20 16:54	AMB	TAL SPK
Total/NA	Prep	7471B			0.52 g	50 mL	27964	06/24/20 11:01	AMB	TAL SPK
Total/NA	Analysis	7471B		1			28007	06/30/20 15:14	JSP	TAL SPK

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: GeoEngineers Inc Job ID: 590-13394-1

Project/Site: Riverfront Park (0110-148-06)

Laboratory: Eurofins TestAmerica, Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Washington		Program State	Identification Number C569	Expiration Date 01-06-21		
The following analytes the agency does not do	•	port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which		
Analysis Method	Prep Method	Matrix	Analyte			
Moisture		Solid	Percent Moisture			
Moisture		Solid	Percent Solids			

3

4

7

9

10

11

Method Summary

Client: GeoEngineers Inc

Project/Site: Riverfront Park (0110-148-06)

Method	Method Description	Protocol	Laboratory
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL SPK
6010D	Metals (ICP)	SW846	TAL SPK
7471B	Mercury (CVAA)	SW846	TAL SPK
Moisture	Percent Moisture	EPA	TAL SPK
3050B	Preparation, Metals	SW846	TAL SPK
3550C	Ultrasonic Extraction	SW846	TAL SPK
7471B	Preparation, Mercury	SW846	TAL SPK

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SPK = Eurofins TestAmerica, Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Job ID: 590-13394-1

3

4

5

6

Я

9

10

11

Page 13 of 14

GeoEngineers 523 East Second Avenue Spokane, Washington 99202 (509) 363-3125

PAGE OF LAB NO.

PROJECT NAME/LOCATION RIVERGENT Park						ANALYSIS REQUIRED NOTES/COMMENTS							
PROJECT NUMBER	0110-	-148-	000								(P		iltered, etc.)
PROJECT MANAGER SAMPLED BY	1,5	12/2/21			48	Hs					a	AM	,
SAMPLE IDENTIFICATION	SAMP DATE	TIME		# OF CONTAINERS	2cn4	PA					3	owe /	
RFPNB-40C(7-8)	4/28/20	0900	Sail		X	X							
								., .,					
												-	
								590-13	3394 Chai	n of Custoo	dy .	_	
RELINQUISHED BY SIGNATURE	FIRM GE		RELINQUIS SIGNATUR		8		FIRM C	Ex	_	ELINQUI IGNATUI			FIRM
PRINTED NAME JUSTIN ON			PRINTED N	AME) e Ai	dict	2	Sugals	1		RINTED	NAME		
DATE 6/23/2020	TIME 13	18	DATE 6/	73/7070		TIME	134	6-201		ATE		TIME	
RECEIVED BY SIGNATURE ARE STATEMENT	FIRM CE	_	RECEIVED SIGNATUR	. // A //			FIRM T	48 No		ECEIVED IGNATUR			FIRM
PRINTED NAME Jeel : Cho	Suguls	W.	PRINTED N	AME was	acr	1000	l		F	RINTED	NAME		
DATE 6/23/70	TIME 13	118	DATE V	123/20		TIME	1403	5		DATE		TIME	
ADDITIONAL COMMENTS:													

CHAIN OF CUSTODY RECORD

Client: GeoEngineers Inc

Job Number: 590-13394-1

Login Number: 13394

List Source: Eurofins TestAmerica, Spokane

List Number: 1

Creator: O'Toole, Maria C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

APPENDIX BPCS Disposal Records

Date	Profile #	Manifest #	Ticket #	Materia	al Facility	Carrier	Vehicle	Tons/Tonnes	Mat. Quantity		
03/02/20201	15058WA	115058WA	607747	Special Waste Solid Other	Graham T Road R Landfill	LA IVIERE	MARK	27.31	27.31	TON 🗸	/
03/02/2020 1	15058WA	115058WA	<u>607753</u>	Special Waste Solid Other	Graham T Road R Landfill	LA IVIERE	JOEY	32.07	32.07	TON V	-
03/02/2020 1	15058WA	115058WA	607772	Special Waste Solid Other	Graham T Road R Landfill	LA IVIERE	MARK	28.92	28.92	TON V	/
03/02/2020 1	15058WA	115058WA	607780	Special Waste Solid Other	Graham T Road Landfill R	LA IVIERE	JOEY	29.62	29.62	TON	-
03/02/2020 11	15058WA	115058WA	607794	Special Waste Solid Other	Graham T Road R Landfill R	LA IVIERE	MARK	23.37	23.37	TON ${\cal U}$	_
03/02/2020 11	15058WA	115058WA	607797	Special Waste Solid Other	Graham Road Landfill		STEVE	28.99	28.99	TON V	,
03/02/2020 11	15058WA	115058WA	607798	Special Waste Solid Other	Graham T Road Landfill R	LA IVIERE	BRYCE	28.92	28.92	TON 🗸	/
03/02/2020 11	15058WA	115058WA	607805	Special Waste Solid Other	Graham T Road R Landfill R	LA IVIERE	JOEY	26.79	26.79	TON /	
03/02/2020 11	5058WA	115058wa	607826	Special Waste Solid Other	Graham T Road R Landfill R	LA IVIERE	MARK	22.86	22.86	TON	/
03/02/202011	5058WA	115058WA	607830	Special Waste Solid Other	Graham T Road R Landfill	LA IVIERE	BRYCE	27.7	27.70	TON ('
03/02/202011	5058WA	115058WA	607833	Special Waste Solid Other	Graham Road Landfill		STEVE	31.16	31.16	TON V	/
03/02/202011	5058WA	115058WA	607839	Special Waste Solid Other	Graham T Road R Landfill	LA IVIERE	JOEY	27.08	27.08	TON 🗸	<u>.</u>
03/02/202011	5058WA	0	607858	Special Waste Solid Other	Graham T Road RI Landfill	IVIERE	MARK	23.43	23.43	TON.	/
03/02/202011	5058WA	0	<u>607861</u>	Special Waste Solid Other	Graham T Road Rl Landfill	LA IVIERE	BRYCE	28.95	28.95	TON 🗸	/
03/02/2020 11	5058WA	0	607862	Special Waste			steve	26.67	26.67	TON V	

Date	Profile #	Manifest #	Ticket#	Materia	l Facility Carrier	Vehicle Tons/Tonno	Mat. S Quantity	Mat. Unit
				Solid Other	Graham Road Landfill			
03/02/20201	15058WA	0	<u>607864</u>	Special Waste Solid Other	Graham T LA Road RIVIERE Landfill	JOEY 32.3	32.30	TON V
03/02/2020 1	15058WA	0	607865	Special Waste Solid Other	Graham WLK Road JOINT Landfill VENTURI	taylor 31.89	31.89	TON
03/02/2020 1	15058WA	115058wa	<u>607881</u>	Special Waste Solid Other	Graham T LA Road RIVIERE Landfill	MARK 26	26.00	TON
03/02/2020 1	15058WA	0	607887	Special Waste Solid Other	Graham T LA Road RIVIERE Landfill	BRYCE31.93	31.93	TON V
03/02/2020 1	15058WA	0	607889	Special Waste Solid Other	Graham T LA Road RIVIERE Landfill	JOEY 31.05	31.05	TON
03/02/2020 11	15058WA	0	607890	Special Waste Solid Other	Graham Road Landfill	steve 29.11	29.11	TON V
03/03/2020 11	15058WA	115058wa	607898	Special Waste Solid Other	Graham Road Landfill	steve 26.07	26.07	TON
03/03/2020 11	15058WA	115058wa	607900	Special Waste Solid Other	Graham T LA Road RIVIERE Landfill	MARK 22.51	22.51	TON V
03/03/2020 11	5058WA	115058wa	607901	Special Waste Solid Other	Graham T LA Road RIVIERE Landfill	ED 17.67	17.67	TON 🗸
03/03/202011	5058WA	115058wa	607903	Special Waste Solid Other	Graham _{T LA} Road RIVIERE Landfill	BRYCE 27.85	27.85	TON V

Date	Profile #	Manifest #	Ticket #	Materia	al Facility Carrier	Vehicle	Tons/Tonne	Mat. ^s Quantit	
03/03/20201	15058WA	115058WA	607927	Special Waste Solid Other	Graham Road Landfill	STEVE	28.11	28.11	TON V
03/03/2020 1	15058WA	115058WA	607928	Special Waste Solid Other	Graham _T LA Road RIVIERI Landfill	_E MARK	15.83	15.83	TON
03/03/2020 1	15058WA	115058WA	607929	Special Waste Solid Other	Graham _T LA Road RIVIERI Landfill	ED	22.73	22.73	TON /
03/03/202011	15058WA	115058WA	607933	Special Waste Solid Other	Graham _T LA Road RIVIERE Landfill	BRYCE	28.14	28.14	TON V
03/24/2020 11	5058WA	115058WA	609585	Special Waste Solid Other	Graham Road Landfill	KIRKLANI	O 18.12	18.12	TON V
03/24/202011	5058WA	115058WA	609597	Special Waste Solid Other	Graham Road Landfill	KIRKLANI	D16	16.00	TON V

Graham Road Facility Reprint 1820 S. Graham Road Ticket# 607865

Ph: (509)244-0151 Medical Lake, WA, 99022

Customer Name LARIVIERE INC LARIVIERE Carrier WLK WLK JOINT VENTURE

Vehicle# taylor

Ticket Date 03/02/2020 Payment Type Credit Account Container Manual Ticket# Driver Route Check#

Hauling Ticket# Billing# 0001803

Destination Grid

Manifest 0

115058WA (LF01-Fuel Oil Impacted Soil/Debris) Profile

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Scale Operator Inbound 106040 lb Gross In 03/02/2020 14:01:24 Scale1 42260 lb dbrook18 Tare Out 03/02/2020 14:14:11 Scale1 dbrook18 Net 63780 lb Tons 31.89

Comments

Prod	luct	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		31.89	Tons %			SPOKANE SPOKANE
3	SRHD1-Spokane Regional	100	31.89	Tons			SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original Ticket# 607933

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/03/2020 Payment Type Credit Account

Vehicle# BRYCE

BRYCE

Manual Ticket#

Container

Driver

Check#

Billing# 0001803

Destination Grid

Manifest 115058WA

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE_809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Hauling Ticket#

Time 03/03/2020 03/03/2020	 	Operator ashield2 ashield2	Inbound	Gross Tare Net Tons	96160 11 39880 11 56280 11 28.1	b b
				Tons	28.14	4

Comments

Route

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100	28.14 28.14	Tons % Tons			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original Ticket# 607903

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier

Ticket Date 03/03/2020 Payment Type Credit Account

T LA RIVIERE T LA RIVIERE Vehicle# BRYCE

Container

Driver

Route Hauling Ticket#

Manual Ticket#

BRYCE Check#

Billing# 0001803 Grid

Destination Manifest 115058wa

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)
Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Time In 03/03/2020 07:39:21 Out 03/03/2020 07:50:54		Operator ashield2 ashield2	Inbound	Gross Tare Net Tons	95660 lb 39960 lb 55700 lb 27.85
---	--	----------------------------------	---------	------------------------------	---

Comments

Pro	duct 	LD%	Qty	MOU	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environn SRHD1-Spokane Regional	100	27.85 27.85	જ			SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original Ticket# 607929

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Driver

Check#

Vehicle# ED Container

ED

Billing# 0001803

Customer Name LARIVIERE INC LARIVIERE Carrier

Ticket Date 03/03/2020 Payment Type Credit Account

Manual Ticket#

Route

Hauling Ticket#

Destination

Manifest 115058WA

115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201 PO#

Grid

Time Scale Operator 80540 lb Inbound Gross In 03/03/2020 08:52:59 Scale1 ashield2 35080 lb Tare Out 03/03/2020 09:06:51 Scale1 ashield2 Net 45460 lb 22.73 Tons

Comments

Prod	uct	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin	
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100	22.73 22.73	ક		. — — — — — — — — — —	SPOKANE	

Total Tax/Fees Total Ticket

Driver`s Signature

Original

Ticket# 607901

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/03/2020 Payment Type Credit Account

T LA RIVIERE T LA RIVIERE Vehicle# ED Container

Driver ΕD

Check#

Billing# 0001803

Grid

Destination Manifest 115058wa

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Manual Ticket#

Hauling Ticket#

Route

Time Scale Operator In 03/03/2020 07:34:32 Scale1 ashield2 Out 03/03/2020 07:49:52 Scale1 ashield2	Inbound	Gross Tare Net Tons	70420 lb 35080 lb 35340 lb 17.67
--	---------	------------------------------	---

Comments

Prod	uct	LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100	17.67 17.67	Tons % Tons		500 St.		SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original Ticket# 607928

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/03/2020
Payment Type Credit Account

Manual Ticket#

Route

Hauling Ticket#

Destination

Vehicle# MARK Container Driver MARK

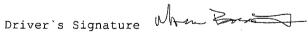
Check#

Billing# 0001803

Grid

Manifest 115058WA Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201


PO# 2334

Scale Operator Inbound 69000 lb Gross In 03/03/2020 08:51:24 Scale1 ashield2 37340 lb Tare Out 03/03/2020 09:05:59 Scale1 ashield2 Net 31660 lb Tons 15.83

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environs SRHD1-Spokane Regional	100	15.83 15.83	Tons % Tons			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Graham Road Facility 1820 S. Graham Road Medical Lake, WA, 99022 Ph: (509)244-0151

Original Ticket# 607900

T LA RIVIERE T LA RIVIERE

Driver

Check#

Grid

Vehicle# MARK Container

Billing# 0001803

MARK

Customer Name LARIVIERE INC LARIVIERE Carrier

Ticket Date 03/03/2020 Payment Type Credit Account

Manual Ticket#

Route

Hauling Ticket#

Destination

Manifest 115058wa Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

PO# 2334

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

Time Scale Operator Inbound Gross 82360 lb In 03/03/2020 07:30:01 Scale1 ashield2 Tare 37340 lb Out 03/03/2020 07:45:36 Scale1 ashield2 45020 lb Net Tons 22.51

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	n 100	22.51	Tons % Tons			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Mare Bress of

Reprint

Ticket# 607927

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/03/2020 Payment Type Credit Account

TRI STATE Vehicle# STEVE

Manual Ticket#

Container Driver Check#

Route Hauling Ticket#

Billing# 0001803

Destination

Grid

Manifest 115058WA

115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Stepe S.

Profile Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

	Time		Scale	Operator	Inbound	Gross	93840 lb)
In	03/03/2020	08:50:35	Scale1	ashield2		Tare	37620 lb)
Out	03/03/2020	08:59:50	Scale1	ashield2		Net	56220 lb)
						Tons	28.11	

Comments

Prod	Product		Qty	MOU	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100	28.11	ક			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original Ticket# 607898

TRI STATE

Ph: (509)244-0151

Driver

Check#

Grid

Vehicle# steve Container

Billing# 0001803

Customer Name LARIVIERE INC LARIVIERE Carrier

Ticket Date 03/03/2020 Payment Type Credit Account

Manual Ticket# Route Hauling Ticket#

Destination

Manifest 115058wa
Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

Out 03/03/2020 07:41:29 Scale1 ashield2 Net 52:	Time In 03/03/2020	ubilitaz	Inbound Gr Ta	oss 89740 re 37600	
	Out 03/03/2020	calel ashield2			1b

Comments

Prod	Product		Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100	26.07 26.07	Tons % Tons			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original Ticket# 609585

Ph: (509) 244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/24/2020 Payment Type Credit Account

TRI STATE Vehicle# KIRKLAND Container

Manual Ticket#

Driver Check#

Route Hauling Ticket#

Billing# 0001803

Destination

Grid

Manifest 115058WA

115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE_809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Time 03/24/2020 03/24/2020		Operator ASHIELD2 ASHIELD2	Inbound	Gross Tare Net	63200 26960 36240	lb lb
				Tons	18.	12

Comments

Pro	Product		Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environ SRHD1-Spokane Regional	n 100	18.12 18.12	ક			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

AS for kirkland

Original Ticket# 609597

TRI STATE

Vehicle# KIRKLAND

Billing# 0001803

Ph: (509)244-0151

Container

Driver

Check#

Customer Name LARIVIERE INC LARIVIERE Carrier

Ticket Date 03/24/2020 Payment Type Credit Account

Manual Ticket# Route

Hauling Ticket#

Destination

Manifest 115058WA

115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

Grid

PO# 2334

Time Scale Operator Inbound Gross 58880 lb In 03/24/2020 12:34:54 Scale1 ASHIELD2 Tare 26880 lb Out 03/24/2020 12:46:00 Scale1 ASHIELD2 32000 lb Net Tons 16.00

Comments

Proc	Product		Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional		16.00 16.00	Tons % Tons				SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original Ticket# 607890

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/02/2020 Vehicle#

Ticket Date 03/02/2020
Payment Type Credit Account
Manual Ticket#

Carrier TRI STATE Vehicle# steve Container

Driver Check#

Billing# 0001803

Grid

Destination Manifest 0

Route

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Hauling Ticket#

	Time		Scale	Operator	Inbound	Gross	95940 1	.b
	03/02/2020			fbaxter		Tare	37720 1	.b
Out	03/02/2020	15:38:18	Scale1	ashield2		Net	58220 1	.b
						Tons	29.1	.1

Comments

Pro	duct	LD%	Qty	MOU	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	n 100	29.11	용			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

The total amount includes fees and taxes that may not all be listed on this ticket due to technical limitation.

Stere / Sanders

Original Ticket# 607862

TRI STATE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier

Manual Ticket#

Ticket Date 03/02/2020 Payment Type Credit Account

Route Hauling Ticket# Destination

Vehicle# steve Container Driver Check#

Billing# 0001803

Grid

Manifest 0

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Son Santon

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO#

	Time		Scale	Operator	Inbound	Gross	91160	lb
	03/02/2020			dbrook18		Tare	37820	lb
Out	03/02/2020	14:09:57	Scale1	dbrook18		Net	53340	lb
						Tons	26.	67

Comments

Pro	duct	LD%	Qty	UOM	R	ate	Tax/Fee	Amount	Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		26.67	Tons %					SPOKANE SPOKANE
3	SRHD1-Spokane Regional	100	26.67	Tons					SPOKANE

Total Tax/Fees Total Ticket

Original Ticket# 607833

TRI STATE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/02/2020 Payment Type Credit Account

Manual Ticket#

Route Hauling Ticket# Destination

Vehicle# STEVE Container Driver Check#

Billing# 0001803

Grid

Manifest 115058WA

115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

2334

	Time		Scale	Operator	Inbound	Gross	100160	1b
	03/02/2020			ASHIELD2		Tare	37840	lb
Out	03/02/2020	12:50:22	Scalel	ASHIELD2		Net	62320	lb
						Tons	31.	16

Comments

Prod	uct	LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100	31.16	ક				SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Sure

Reprint

Ticket# 607797

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/02/2020 Payment Type Credit Account

Manual Ticket#

TRI STATE Vehicle# STEVE Container

Driver Check#

Billing# 0001803

Destination Grid

Manifest 115058WA Profile 115058WA

Hauling Ticket#

115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Time Scale Operator Inbound Gross 95880 lb In 03/02/2020 11:04:20 Scale1 ASHIELD2 37900 lb Tare Out 0.3/02/2020 11:23:12 Scale1 ASHIELD2 Net 57980 lb Tons 28.99

Comments

Route

Prod	luct 	LD%	Qty	MOU	Rate Tax/Fee Amount Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm	100	28.99	Tons %	SPOKANE SPOKANE
3	SRHD1-Spokane Regional	100	28.99	Tons	SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original

Ticket# 607887

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/02/2020 Payment Type Credit Account

Manual Ticket#

Route

Hauling Ticket# Destination

Vehicle# BRYCE Container

Driver BRYCE Check#

Billing# 0001803

Grid

Manifest 0

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)
Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE_809 N WASHINGTON, SPOKANE WA 99201

	Time		Scale	Operator	Inbound	Gross	103600 lb*
Ιn	03/02/2020	15:21:22	Scale1	fbaxter		Tare	39740 lb
Out	03/02/2020	15:28:08	Scale1	fbaxter		Net	63860 lb
				* Manual Weigh	.t	Tons	31.93

Comments

Prod	luct	LD%	Qty	MOU	Rate	Tax/Fee	Amount Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		31.93	Tons			SPOKANE
3	SRHD1-Spokane Regional	100	31.93	Tons			

Total Tax/Fees Total Ticket

Driver`s Signature

Graham Road Facility 1820 S. Graham Road

Original

Ticket# 607861

T LA RIVIERE T LA RIVIERE

Medical Lake, WA, 99022 Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier

Vehicle# BRYCE

Ticket Date 03/02/2020 Payment Type Credit Account

Container

Manual Ticket#

Route

BRYCE Driver

Hauling Ticket#

Check#

Destination

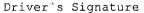
Billing# 0001803

Grid

Manifest 0 Profile

115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201


PO#

	Time		Scale	Operator	Inbound	Gross	97720	lb
In	03/02/2020	13:50:42	Scale1	dbrook18		Tare	39820	1b
Out	03/02/2020	14:06:50	Scale1	dbrook18		Net	57900	lb
						Tons	28.	95

Comments

Prod	uct	LD%	Qty	UOM	Rate 5	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100	28.95 28.95	용			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Original

Ticket# 607830

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier

Vehicle# BRYCE

Ticket Date 03/02/2020 Payment Type Credit Account

Container

Manual Ticket#

Driver BRYCE

Route

Check#

Hauling Ticket#

Billing# 0001803

Destination

Grid

Manifest 115058WA

115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Time Scale Operator Inbound 95240 lb Gross In 03/02/2020 12:32:17 Scale1 39840 lb ASHIELD2 Tare Out 03/02/2020 12:45:47 Scale1 ASHIELD2 55400 lb Net 27.70 Tons

Comments

Prod	luct	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100		Tons % Tons			SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original

0001803

Ticket# 607798

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/02/2020 Payment Type Credit Account

Vehicle# BRYCE

Manual Ticket# Route

Hauling Ticket# Destination

Container BRYCE

Driver

Check#

Billing#

Grid

Manifest 115058WA

115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Time Scale Operator Inbound Gross 97780 lb In 03/02/2020 11:09:38 Scale1 ASHIELD2 39940 lb Tare Out 03/02/2020 11:26:02 Scale1 ASHIELD2 57840 lb Net Tons 28.92

Comments

Product	LD%	Qty	UOM	Rate Tax/Fee Amount Origin
<pre>Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional</pre>	100	28.92	ક	SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original Ticket# 607881

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Driver

Check#

Vehicle# MARK Container

Billing# 0001803

MARK

Customer Name LARIVIERE INC LARIVIERE Carrier

Ticket Date 03/02/2020 Payment Type Credit Account

Manual Ticket# Route

Hauling Ticket#

Destination

Manifest 115058wa Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO#

Time Scale Operator Inbound Gross 88760 lb 36760 lb In 03/02/2020 14:56:00 Scale1 ashield2 Tare Out 03/02/2020 15:22:36 Scale1 52000 lb fbaxter Net Tons 26.00

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		26.00	Tons			SPOKANE SPOKANE
3	SRHD1-Spokane Regional	100	26,00	Tons			SPOKANE

Total Tax/Fees Total Ticket

Original Ticket# 607858

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier

T LA RIVIERE T LA RIVIERE Vehicle# MARK

Ticket Date 03/02/2020 Payment Type Credit Account

Container

Manual Ticket#

Driver

Route

MARK

Hauling Ticket# Destination

Check# Billing# 0001803

Manifest 0

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

Time Scale Operator 83660 lb Inbound Gross In 03/02/2020 13:42:27 Scale1 dbrook18 Tare 36800 lb Out 03/02/2020 13:58:53 Scale1 dbrook18 46860 lb Net Tons 23.43

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		23.43	Tons %			SPOKANE SPOKANE
3	SRHD1-Spokane Regional	100	23.43	Tons			SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature Mann Poron

Original

Ticket# 607826

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier

T LA RIVIERE T LA RIVIERE

Ticket Date 03/02/2020 Payment Type Credit Account

Vehicle# MARK

Manual Ticket#

Container Driver

MARK

Route Hauling Ticket#

Check# Billing# 0001803

Destination

Grid

Manifest 115058wa

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Time 82540 lb Scale Operator Inbound Gross In 03/02/2020 12:27:04 Scale1 36820 lb 45720 lb ASHIELD2 Tare Out 03/02/2020 12:44:22 Scale1 ASHIELD2 Net 22.86 Tons

Comments

Prod	duct	LD%	Qty	UOM	Rate Tax/	Fee Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100	22.86 22.86	90		SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Original Ticket# 607794

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier

Ticket Date 03/02/2020
Payment Type Credit Account

Manual Ticket#

Route Hauling Ticket#

Destination

T LA RIVIERE T LA RIVIERE

Vehicle# MARK

Container

Driver MARK Check#

Billing# 0001803

Grid

Manifest 115058WA

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Time Scale Operator Inbound 83600 lb Gross In 03/02/2020 10:53:33 Scale1 ASHIELD2 Tare 36860 lb Out 03/02/2020 11:08:26 Scale1 ASHIELD2 46740 lb Net Tons 23.37

Comments

Pro	duct	LD%	Qty	MOU	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environs SRHD1-Spokane Regional	n 100	23.37 23.37	Tons % Tons			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Mon Ban

Original Ticket# 607772

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier

Vehicle# MARK

Ticket Date 03/02/2020 Payment Type Credit Account

Container

Manual Ticket#

Driver

Route Hauling Ticket#

MARK Check# Billing# 0001803

Destination

Grid

Manifest 115058WA

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Man Boss

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Time Scale Inbound 94760 lb Operator Gross In 03/02/2020 09:46:12 Scale1 ASHIELD2 Tare 36920 lb Out 03/02/2020 10:01:00 Scale1 57840 lb ASHIELD2 Net 28.92 Tons

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		28.92	Tons			SPOKANE SPOKANE
3	SRHD1-Spokane Regional	100	28.92	Tons			SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original Ticket# 607747

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/02/2020 Vehicle# Payment Type Credit Account Container

T LA RIVIERE T LA RIVIERE Vehicle# MARK

Container

MARK

Manual Ticket# Route Hauling Ticket# Driver Check#

Billing# 0001803

Destination

Grid

Manifest 115058WA

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

· PO# 2334

	Time 03/02/2020 03/02/2020			Operator ASHIELD2 ASHIELD2	Inbound	Gross Tare Net	91580 36960 54620	1b
Out	03/02/2020	00.43.47	scarer	ASHIELDZ		Net	54620	ΤÞ
						Tons	27.	.31

Comments

Pro	duct 	LD%	Qty	UOM	Rate Tax/Fee Amount Origin	
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100	27.31 27.31	ક	SPOKANE	

Total Tax/Fees Total Ticket

Driver's Signature

Original

Ticket# 607889

0

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/02/2020 Payment Type Credit Account

Vehicle# JOEY

Container

Manual Ticket# Route

Driver Check#

Billing# 0001803

Grid

Destination Manifest 0

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

Hauling Ticket#

	Time		Scale	Operator	Inbound	Gross	103540	1b
	03/02/2020			fbaxter		Tare	41440	1b
Out	03/02/2020	15:33:08	Scale1	ashield2		Net	62100	lb
						Tons	31.	. 05

Comments

Product	LD% 	Qty 	UOM	Rate	Tax/Fee	Amount	Origin
1 Spwaste Solid Oth-Tons- 2 EVF-P-Standard Environm 3 SRHD1-Spokane Regional	100	31.05	Tons % Tons				SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original

Ticket# 607864

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 03/02/2020 Payment Type Credit Account

Vehicle# JOEY

Manual Ticket#

Container Driver Check#

Route

Billing# 0001803

Hauling Ticket# Destination

Grid

Manifest 0

Profile 115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

2334

	Time		Scale	Operator	Inbound	Gross	106140	1b
Ιn	03/02/2020	14:00:19	Scalel	dbrook18		Tare	41540	lb
Out	03/02/2020	14:12:38	Scalel	dbrook18		Net	64600	lb
						Tons	32.	.30

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environ		32.30	Tons			SPOKANE SPOKANE
3	SRHD1-Spokane Regional		32.30	Tons			SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original Ticket# 607839

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier

Ticket Date 03/02/2020
Payment Type Credit Account

Vehicle# JOEY

T LA RIVIERE T LA RIVIERE

Container

Driver Check#

Billing# 0001803

Grid

Manifest 115058WA

115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Manual Ticket#

Hauling Ticket#

Destination

Profile

Route

	Time		Scale	Operator	Inbound	Gross	95740	lb
	03/02/2020			ASHIELD2		Tare	41580	lb
Out	03/02/2020	13:01:49	Scalel	ASHIELD2		Net	54160	lb
						Tons	27.	.08

Comments

Prod	uct	LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100	27.08 27.08	Tons % Tons				SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Original Ticket# 607780

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier

Vehicle# JOEY

Ticket Date 03/02/2020 Payment Type Credit Account

Container Driver

Manual Ticket# Route

Check#

Hauling Ticket#

Billing# 0001803

Destination

Grid

Manifest 115058WA

115058WA (LF01-Fuel Oil Impacted Soil/Debris) Profile

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE_809 N WASHINGTON, SPOKANE WA 99201

PO#

100940 lb Time Scale Inbound Gross Operator In 03/02/2020 10:16:03 Scale1 41700 lb ASHIELD2 Tare Out 03/02/2020 10:27:38 Scale1 ASHIELD2 Net 59240 lb 29.62 Tons

Comments

Prod	luct	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100	29.62 29.62	ક			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original

Ticket# 607753

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier

T LA RIVIERE T LA RIVIERE Vehicle# JOEY

Ticket Date 03/02/2020
Payment Type Credit Account Manual Ticket#

Container Driver Check#

Route Hauling Ticket#

Billing# 0001803

Destination

Profile

Grid

Manifest 115058WA

115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

	Time		Scale	Operator	Inbound	Gross	105900	lb
	03/02/2020			ASHIELD2		Tare	41760	lb
Out	03/02/2020	09:09:56	Scale1	ASHIELD2		Net	64140	lb
						Tons	32.	.07

Comments

Prod	uct	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100	32.07 32.07	Tons % Tons			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Original

Ticket# 607805

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier

Ticket Date 03/02/2020
Payment Type Credit Account

Manual Ticket# Route

Hauling Ticket#

Destination

Profile

Vehicle# JOEY Container Driver Check#

Billing# 0001803

Grid

Manifest 115058WA

115058WA (LF01-Fuel Oil Impacted Soil/Debris)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

Time Scale Operator Inbound Gross 95240 lb In 03/02/2020 11:30:24 Scale1 ASHIELD2 Tare 41660 lb 53580 lb Out 03/02/2020 11:41:36 Scale1 ASHIELD2 Net 26.79 Tons

Comments

Product	LD%	Qty	UOM	Rate	Tax/Fee	Amount Origin
Spwaste Solid Oth-TonsEVF-P-Standard EnvironSRHD1-Spokane Regional	m 100	26.79 26.79	8			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

APPENDIX C Lead Contaminated Soil Disposal Records

Reprint

Ticket# 611489

T LA RIVIERE T LA RIVIERE

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 05/01/2020
Payment Type Credit Account
Manual Ticket#

Vehicle# ED Container

Driver ED Check#

Billing# 0001803 Grid

Destination

Manifest 115154wa

Hauling Ticket#

Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

	Time		Scale	Operator	Inbound	Gross	78960	lb
In	05/01/2020	08:06:18	Scalel	ashield2		Tare	34960	1b
Out	05/01/2020	08:22:49	Scalel	ashield2		Net	44000	lb
						Tons	22.	.00

Comments

Route

Product		LD%	Qty	MOM	Rate	Tax/Fee	Amount	Origin
1	Spwaste Solid Oth-Tons-	100	22.00	Tons				SPOKANE
2	EVF-P-Standard Environm	100		8				SPOKANE
3	SRHD1-Spokane Regional	100	22.00	Tons				SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Graham Road Facility 1820 S. Graham Road Medical Lake, WA, 99022 Ph: (509)244-0151

Reprint

ED

Billing# 0001803

Ticket# 611502

T LA RIVIERE T LA RIVIERE

Container

Driver

Check#

Customer Name LARIVIERE INC LARIVIERE Carrier Vehicle# ED

Ticket Date 05/01/2020 Payment Type Credit Account Manual Ticket#

Route Hauling Ticket#

Destination

Manifest 115154wa

Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

Grid

2334

Operator ashield2 78780 lb Scale Inbound Gross In 05/01/2020 09:26:51 Scale1 34960 lb Tare Out 05/01/2020 09:42:33 Scale1 ashield2 Net 43820 lb Tons 21.91

Comments

Product		LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		21.91	Tons				SPOKANE
3	SRHD1-Spokane Regional	100	21.91	Tons				

Total Tax/Fees Total Ticket

Driver's Signature

Reprint Ticket# 611519

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier T LA RIVIERE T LA RIVIERE Ticket Date 05/01/2020 Payment Type Credit Account Manual Ticket#

Vehicle# ED Container Driver ED Check#

Billing# 0001803 Grid

Destination

Manifest 115154wa

Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Hauling Ticket#

	Time		Scale	Operator	Inbound	Gross	79240	1b
In	05/01/2020	10:57:29	Scalel	ashield2		Tare	34740	1b
Out	05/01/2020	11:14:27	Scalel	ashield2		Net	44500	1b
						Tons	22	.25

Comments

Route

Product		LD%	Qty	MOU	Rate	Tax/Fee	Amount	Origin
1	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		22.25	Tons				SPOKANE SPOKANE
3	SRHD1-Spokane Regional	70.00	22.25	Tons				SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Date	Profile #	Manifest #	Ticket	Materia	l Facility Ca	rrier	Vehicle	Tons/Tonnes	Mat. Quantity	Mat. Unit
07/09/2020	0 115154WA	115154wa	616686	Special Waste Solid Other	Graham T LA Road RIV Landfill	A IERE ^l	BRYCE	11.09		TON
07/09/2020	0115154WA	115154WA	616687	Special Waste Solid Other	Graham T LA Road RIV Landfill	A IERE ^I	JOEY	10.83	10.83	TON
07/09/2020) 115154WA	115154WA	616710	Special Waste Solid Other	Graham T LA Road RIV Landfill	A IERE I	BRYCE	12.06	12.06	TON
07/09/2020) 115154WA	115154WA	616718	Special Waste Solid Other	Graham T LA Road RIV Landfill	A IERE ^J	OEY	12.85	12.85	TON
07/09/2020)115154WA	115154wa	616732	Special Waste Solid Other	Graham T LA Road RIVI Landfill	A IERE ^E	BRYCE	12.58	12.58	TON
07/09/2020	115154WA	115154WA	<u>616772</u>	Special Waste Solid Other	Graham T LA Road RIVI Landfill	A IERE ^E	BRYCE	12.65	12.65	TON
07/09/2020	115154WA	115154wa	<u>616791</u>	Special Waste Solid Other	Graham T LA Road RIVI Landfill	ERE E	BRYCE	15	15.00	TON
07/09/2020	115154WA	115154WA	<u>616797</u>	Special Waste Solid Other	Graham T LA Road RIVI Landfill	ERE ^J	OEY	13.55	13.55	TON
07/09/2020	115154WA	115154WA	CION CONTRACTOR	Calid	Graham T LA Road Landfill RIVI	ERE B	RYCE	13.2	13.20	TON
07/09/2020	115154WA	115154wa	010811	bilo2	Graham T LA Road RIVI Landfill		OEY	13.55	13.55	TON
07/10/2020	115154WA	115154WA	616855	Solid	Graham Road Landfill	D	ARREN	18.61	18.61	TON
07/10/2020	115154WA	115154WA	616856	Special Waste	Graham Road Landfill	J	YDC	19.79	19.79	ION

Date	Profile #	Manifest #	Ticket #	Materia	l Facility	Carrier	Vehicle	Tons/Tonnes	Mat. Quantity	Mat. Unit
07/10/2020	115154WA	115154WA	<u>616879</u>	Special Waste Solid Other	Graham Road Landfill		DARREN	23.2	23.20	TON
07/10/2020	115154WA	115154WA	<u>616884</u>	Special Waste Solid Other	Graham Road Landfill		JODY	24.13	24.13	TON
07/10/2020	115154WA	115154WA	A EL TERNA	Special Waste Solid Other	Graham Road Landfill		DARREN	23.46	23.46	TON

Reprint Ticket# 616686

BRYCE

BRYCE

Billing# 0001803

Ph: (509)244-0151

Vehicle#

Container

Driver

Check#

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 07/09/2020

Payment Type Credit Account Manual Ticket#

Route

Hauling Ticket# Destination

Manifest 115154wa Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

Grid

Time Scale In 07/09/2020 07:54:35 Scale1 Out 07/09/2020 08:03:56 Scale1

Operator ashield2 ashield2 Inbound

T LA RIVIERE T LA RIVIERE

Gross

Tare

Net Tons

46380 lb 24200 lb 22180 lb 11.09

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1	Spwaste Solid Oth-Tons-	100	11.09	Tons				SPOKANE
2	EVF-P-Standard Environm	100		%				SPOKANE
3	SRHD1-Spokane Regional	100	11.09	Tons				SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Reprint Ticket# 616687

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier T LA RIVIERE T LA RIVIERE Ticket Date 07/09/2020 Payment Type Credit Account Manual Ticket#

Vehicle# JOEY

Driver

Container

Route Hauling Ticket#

Check# Billing# 0001803

Destination

Grid

Manifest 115154WA

Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

	Time 07/09/2020 07/09/2020			Operator ashield2 ashield2	Inbound	Gross Tare Net Tons	45480 23820 21660	lb	
--	----------------------------------	--	--	----------------------------------	---------	------------------------------	-------------------------	----	--

Comments

Pro	duct	LD%	Qty	иом	Rate	Tax/Fee	Amount	Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		10.83	Tons				SPOKANE SPOKANE
3	SRHD1-Spokane Regional	100	10.83	Tons				SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Reprint

Ticket# 616710

Customer Name LARIVIERE INC LARIVIERE Carrier T LA RIVIERE T LA RIVIERE Ticket Date 07/09/2020

Vehicle# BRYCE

Payment Type Credit Account

Container BRYCE

Manual Ticket# Route

Driver Check#

Billing# 0001803

Hauling Ticket# Destination

Grid

Manifest 115154WA

Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

Time Scale Inbound Operator Gross 48260 lb In 07/09/2020 09:01:33 Scale1 ashield2 Tare 24140 1b* Out 07/09/2020 09:11:00 Scale1 ASHIELD2 Net 24120 lb * Manual Weight 12.06 Tons

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		12.06	Tons				SPOKANE
3	SRHD1-Spokane Regional	100	12.06	Tons				

Total Tax/Fees Total Ticket

Driver's Signature

Reprint Ticket# 616718

Ph: (509)244-0151

Driver

Check#

Billing#

Vehicle# JOEY Container

Customer Name LARIVIERE INC LARIVIERE Carrier T LA RIVIERE T LA RIVIERE

Ticket Date 07/09/2020 Payment Type Credit Account Manual Ticket#

Route Hauling Ticket# Destination

Manifest 115154WA

Grid Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO#

Time Scale In 07/09/2020 09:10:28 Scale1 Out 07/09/2020 09:18:28 Scale1

Operator ASHIELD2 ashield2 * Manual Weight

Inbound

Net

0001803

Gross 49540 1b* 23840 lb 25700 lb Tare Tons 12.85

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		12.85	Tons				SPOKANE SPOKANE
3	SRHD1-Spokane Regional	100	12.85	Tons				SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Reprint

Ticket# 616732

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 07/09/2020 Payment Type Credit Account

Vehicle# BRYCE

T LA RIVIERE T LA RIVIERE

Container

Manual Ticket# Route

Driver

Hauling Ticket#

BRYCE Check#

Destination

Billing# 0001803

Grid

Manifest 115154wa

Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

Time 07/09/2020 07/09/2020		Operator ashield2 ashield2	Inbound	Gross Tare Net	49260 24100 25160	1b
				Tons	12.	.58

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		12.58	Tons				SPOKANE
3	SRHD1-Spokane Regional	100	12.58	Tons				

Total Tax/Fees Total Ticket

Driver's Signature

Manual Ticket#

Reprint Ticket# 616772

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 07/09/2020 Payment Type Credit Account

Vehicle# BRYCE

T LA RIVIERE T LA RIVIERE

Container

BRYCE

Driver Check#

Billing# 0001803

Destination

Grid

Manifest 115154WA

Hauling Ticket#

Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Time 07/09/2020 07/09/2020		Operator ashield2 ashield2	Inbound	Gross Tare Net	49360 24060 25300	lb lb
				Tons	12.	. 65

Comments

Route

Proc	luct	LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional		12.65 12,65	Tons % Tons				SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Reprint

Ticket# 616791

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 07/09/2020 Payment Type Credit Account

Vehicle#

T LA RIVIERE T LA RIVIERE BRYCE

Container

Manual Ticket# Route

Driver BRYCE Check#

Hauling Ticket#

Billing# 0001803

Destination

Grid

Manifest 115154wa

115154WA (LF01-Lead Impacted Soil)

Profile Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

2334

Time Scale Operator Inbound 54040 lb Gross In 07/09/2020 13:41:06 Scale1 ashield2 24040 lb Tare Out 07/09/2020 13:50:34 Scale1 ashield2 30000 lb Net Tons 15.00

Comments

Pro	duct	LD%	Qty	MOM	Rate	Tax/Fee	Amount	Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm	100	15.00	Tons				SPOKANE SPOKANE
3	SRHD1-Spokane Regional	100	15.00	Tons				SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Reprint Ticket# 616797

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 07/09/2020 Payment Type Credit Account Manual Ticket#

Vehicle# JOEY

T LA RIVIERE T LA RIVIERE

Container Driver

Check# Billing# 0001803

Hauling Ticket# Destination

Manifest 115154WA

Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201 2334

Time In 07/09/2020 13:54:52 Out 07/09/2020 14:02:45		Operator ashield2 ashield2	Inbound	Gross Tare Net Tons	50920 23820 27100 13	lb
---	--	----------------------------------	---------	------------------------------	-------------------------------	----

Comments

Route

Pro	duct	LD%	Qty	MOU	Rate	Tax/Fee	Amount Origin
1	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		13.55	Tons			SPOKANE
3	그 사람들은 보다보다 보다 보다 하고 있는 사람들이 되었다. 그는 사람들은 그리고 있는 사람들이 하는 것이다.	100	13.55	Tons			SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Reprint Ticket# 616810

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 07/09/2020 Payment Type Credit Account Manual Ticket#

Vehicle# BRYCE

T LA RIVIERE T LA RIVIERE

Container

BRYCE

Driver Check#

Billing# 0001803

Grid

Destination Manifest 115154WA

Hauling Ticket#

Profile 115154WA (LF01-Lead Impacted Soil)
Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201 2334

	Time 07/09/2020 07/09/2020			Operator ashield2 fbaxter	Inbound	Gross Tare Net Tons	50440 24040 26400 13	1b
--	----------------------------------	--	--	---------------------------------	---------	------------------------------	-------------------------------	----

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional		13.20 13.20	Tons % Tons				SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Reprint Ticket# 616811

Customer Name LARIVIERE INC LARIVIERE Carrier T LA RIVIERE T LA RIVIERE Ticket Date 07/09/2020 Payment Type Credit Account

Vehicle# JOEY

Manual Ticket#

Container Driver

Check#

Hauling Ticket# Destination

Route

Billing# 0001803 Grid

Manifest 115154wa

Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

2334

Time Scale In 07/09/2020 15:06:39 Scale1 Out 07/09/2020 15:14:43 Scale1

Operator fbaxter fbaxter

Inbound

50840 lb 23740 lb 27100 lb Gross Tare Net

Tons 13.55

Comments

Pro	duct	LD%	Qty	MOU	Rate	Tax/Fee	Amount	Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		13.55	Tons				SPOKANE SPOKANE
3	SRHD1-Spokane Regional	100	13.55	Tons				SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Reprint

Ticket# 616855

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 07/10/2020 Payment Type Credit Account

RMK Vehicle# DARREN Container

Manual Ticket# Route

Driver Check#

Billing# 0001803

Hauling Ticket# Destination

Manifest 115154WA

Grid

Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

	Time 07/10/2020 07/10/2020			Operator ashield2 ashield2	Inbound	Gross Tare Net Tons	71200 33980 37220	lb lb
--	----------------------------------	--	--	----------------------------------	---------	------------------------------	-------------------------	----------

Comments

Pro	duct	LD%	Qty	MOU	Rate	Tax/Fee	Amount	Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm		18.61	Tons				SPOKANE SPOKANE
3		100	18.61	Tons				SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Reprint Ticket# 616856

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 07/10/2020 Payment Type Credit Account Manual Ticket# Route

RMK Vehicle# JODY Container Driver

Check#

Billing# 0001803

Destination

Manifest 115154WA

Hauling Ticket#

Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

Time 07/10/2020 07/10/2020		Operator ashield2 ashield2	Inbound	Gross Tare Net	71880 32300 39580	lb
	The state of the state of	3,3110,3300		Tons		.79

Comments

Proc	duct	LD%	Qty	MOU	Rate	Tax/Fee	Amount Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional		19.79 19.79	Tons % Tons			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Reprint Ticket# 616879

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier RMK Ticket Date 07/10/2020 Payment Type Credit Account Manual Ticket#

Vehicle# DARREN Container

Driver Check#

Billing# 0001803

Grid

Destination Manifest 115154WA

Hauling Ticket#

Profile 115154WA (LF01-Lead Impacted Soil)

Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

2334

In Out	Time 07/10/2020 07/10/2020	09:42:46 09:53:54	Scale Scale1 Scale1	Operator ashield2 ashield2	Inbound	Gross Tare Net Tons	80300 33900 46400 23	lb lb
-----------	----------------------------------	----------------------	---------------------------	----------------------------------	---------	------------------------------	-------------------------------	----------

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional	100 100 100	23.20 23.20	Tons % Tons				SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

Reprint

Ticket# 616884

Ph: (509)244-0151

Customer Name LARIVIERE INC LARIVIERE Carrier RMK Ticket Date 07/10/2020
Payment Type Credit Account

Vehicle# JODY Container

Manual Ticket#

Driver Check#

Billing# 0001803

Destination

Route

Grid

Manifest 115154WA

Hauling Ticket#

Profile 115154WA (LF01-Lead Impacted Soil)
Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

	Time 07/10/2020 07/10/2020			Operator ashield2 ashield2	Inbound	Gross Tare Net Tons	80440 32180 48260 24	lb lb
--	----------------------------------	--	--	----------------------------------	---------	------------------------------	-------------------------------	----------

Comments

Product		LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2 3	Spwaste Solid Oth-Tons- EVF-P-Standard Environm SRHD1-Spokane Regional		24.13 24.13	Tons % Tons	~~~~~~			SPOKANE SPOKANE SPOKANE

Total Tax/Fees Total Ticket

Driver`s Signature

Reprint

Ticket# 616902

Customer Name LARIVIERE INC LARIVIERE Carrier Ticket Date 07/10/2020 Payment Type Credit Account

RMK Vehicle# DARREN Container

Manual Ticket# Route

Driver

Check#

Billing# 0001803

Destination

Manifest 115154WA

Hauling Ticket#

Profile 115154WA (LF01-Lead Impacted Soil) Generator WA-CITY OF SPOKANE 809 CITY OF SPOKANE 809 N WASHINGTON, SPOKANE WA 99201

PO# 2334

Time 07/10/2020 07/10/2020		Operator ashield2 ashield2	Inbound	Gross Tare Net	80760 33840 46920	16
				Tons	23	.46

Comments

Product		LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
1 2	Spwaste Solid Oth-Tons- EVF-P-Standard Environm	100	23.46	Tons				SPOKANE SPOKANE
3	SRHD1-Spokane Regional	100	23.46	Tons				SPOKANE

Total Tax/Fees Total Ticket

Driver's Signature

