Phase II Environmental Site Assessment Former Key Bank Property 1000 NE 45th Street Seattle, Washington

January 9, 2012

Submitted To: Mr. Mark Menard Sound Transit 401 South Jackson Street Seattle, Washington 98104-2826

> By: Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, Washington 98103

> > 21-1-16604-005

EXECUTIVE SUMMARY

Shannon & Wilson, Inc. has completed a Phase II Environmental Site Assessment (ESA) of the Key Bank Property for the Sound Transit North Link Corridor. The subject property is located at 1000 NE 45th Street in Seattle, Washington. Sound Transit purchased the property in 2001. The site is developed with one building and paved parking and driveways that were related to the former bank with drive-through configuration. A north-south trending alley divides the property into a larger west side and the smaller east side.

The objective of this Phase II ESA was to evaluate whether current or former on- and off-site activities have affected the subject property. The Phase II ESA tasks included conducting a geophysical survey of the property, soil sampling from twelve geoprobes and three soil borings, installation of three groundwater monitoring wells, and groundwater sampling from one geoprobe and three installed wells. Based on analytical data for the geoprobe soil samples, an additional ten geoprobes were advanced on the east side of the property, to further assess contamination. Borings and monitoring well locations were chosen based on the findings of the anomalies identified during the geophysical survey and recognized environmental conditions at the site.

The Phase I ESA conducted in 2000 identified that the site was first developed in 1922, with a building located on the south side, west of the alley (Building A) (White Shield Inc., 2000). In addition, a service station operated on the west side of the property from at least 1938 to 1956 (Building B). In 1926, a building was constructed in the southeast corner of the property (Building C), and in 1943 a laundromat and café occupied the building. Building C was demolished in 1963 and the other buildings were demolished in approximately 1971. A bank building was constructed near the footprint of the former service station (Building B). In 2000, gasoline and related volatile organic compounds (VOCs) were encountered in explorations conducted on the west side of the site.

The geophysical survey was conducted in September 2011to evaluate the presence of potential underground storage tanks (USTs) associated with the former service station and other buildings. The survey identified four large unknown metal objects that may be USTs and seven smaller unknown metal objects. Geoprobes were advanced in the vicinity of the anomalies and other select areas of the site. Following receipt of analytical data, three monitoring well locations and ten additional geoprobes were selected to further evaluate site soil and groundwater.

Soil and groundwater samples collected from the probes, soil borings, and monitoring wells were analyzed for petroleum hydrocarbons (gasoline, diesel, and oil ranges), metals, and VOCs. Select soil samples were also analyzed for polychlorinated biphenyls because of elevated oil concentrations. Two samples were analyzed for Toxicity Characteristic Leaching Procedure (TCLP) for tetrachloroethene (PCE) for disposal characterization.

Two contaminated areas have been identified on the property. They each are likely associated with historical activities that occurred on that part of the property. On the west side of the property, petroleum and related VOCs were detected west to southwest of two adjacent potential USTs likely associated with the former service station. On the east side of the property, PCE and other halogenated VOCs (HVOCs) were encountered in the east-southeast portion of the site, north of the former location of Building C, and adjacent to a large anomaly. Based on the nature and distribution of contaminants, it appears that the former laundromat also provided dry cleaning services.

The gasoline contamination is located west of the current building, which was constructed near the former service station building (Building B) footprint. Two soil samples contained gasoline at concentrations above Washington State Department of Ecology Model Toxics Control Act (MTCA) Method A unrestricted criteria. Gasoline, above MTCA Method A cleanup levels, was also detected in groundwater collected from GP-3, located adjacent to the potential USTs; MW-1, likely downgradient of the suspected USTs; and MW-3 located downgradient/crossgradient of the USTs. Two HVOCs were detected in groundwater collected from probe GP-3, with the concentration of PCE exceeding the MTCA Method A cleanup level. The presence of HVOCs appears to be unrelated to contamination on the east side of the property that is approximately 120 feet downgradient of the probe. However, if HVOC concentrations in groundwater at the source are sufficiently elevated, the radius of influence where the contaminant disperses at the molecular level could be large enough to impact groundwater and soil upgradient of the source. Low levels of lubricating oil were detected in soil at four locations across the site, at concentrations well below the MTCA Method A cleanup level. Chromium, the only metal detected in soil, was detected well below the MTCA Method A cleanup level.

It appears, based on analytical results, that soil adjacent to the former service station is contaminated with gasoline at levels above MTCA Method A cleanup levels for soil. Concentrations of gasoline in soil are below cleanup levels at the southern boundary and likely downgradient of the potential USTs. However, gasoline concentrations in groundwater at the southern boundary of the site on the west side are above MTCA Method A cleanup levels. Benzene, as well as other gasoline related VOCs, are present at a concentration below MTCA,

Method A cleanup levels. The concentration of gasoline in groundwater on the east side is below MTCA.

Elevated concentrations of PCE were detected on the east side of the property, about 30 feet north of the former Building C footprint. The highest concentrations appear to be adjacent to a large anomaly located in the middle of the east side. Localized petroleum contamination was also encountered in two samples near the anomaly. Soil and groundwater samples collected from MW-2, north of the anomaly, indicate that the source of the PCE was not from off-site, rather that the contamination is moving off-site, as supported by data from MW-3. The highest concentration of PCE in soil from MW-3 is about twice the MTCA Method A cleanup level, while the concentration in groundwater is more than an order of magnitude above the cleanup level.

Based on historical evidence and analytical results, it appears that the laundromat also operated a drycleaner. The large metal anomaly north of Building C could be another UST. Because this side of the site is associated with a former dry cleaning operation, handling and disposal of soil and water generated during site investigation and remediation will require compliance with the Resource Conservation Recovery Act. All soil, groundwater, and rinse water generated in this portion of the site that contains HVOCs will carry a F002 code, as a spent solvent, and be designated a listed Dangerous Waste. A unique site identification number has been provided by Ecology so disposal of waste containing HVOCs can be tracked and reported to the state, as required under RCRA.

TABLE OF CONTENTS

			Page
EXE	ECUTI	VE SUMMARY	i
1.0	INTR	RODUCTION	1
	1.1	Authorization	1
	1.2	Objective	
2.0	SITE	BACKGROUND	2
	2.1	Site Description	2
	2.2	Site History	2
	2.3	Phase I Environmental Site Assessment (ESA) Results	3
3.0	SITE	GEOLOGY AND HYDROGEOLOGY	3
	3.1	Geology	3
	3.2	Hydrogeology	4
4.0	FIEL	D EXPLORATIONS	
	4.1	Geophysical Survey	4
	4.2	Geoprobes	
	4.3	Soil Borings and Monitoring Wells	5
	4.4	Soil and Groundwater Sampling	6
	4.5	Analytical Methods	6
	4.6	Analytical Results	7
		4.6.1 Soil Results - West Side of Property	7
		4.6.2 Groundwater Results - West Side of Property	8
		4.6.3 Soil Results - East Side of Property	8
		4.6.4 Groundwater Results - East Side of Property	
	4.7	Disposal of Investigation-derived Waste (IDW)	9
5.0	CON	CLUSIONS	10
	5.1	West Side of Property	10
	5.2	East Side of Property	11
6.0	LIMI	TATIONS	11
7.0	REFE	ERENCES	13

2 3

4

TABLES

1	Sample Summary, Key Bank Property (2 pages)
2	Detected Analytes in Soil (6 pages)
3	Detected Analytes in Groundwater
	FIGURES
1	Vicinity Map
2	Site and Exploration Plan

APPENDICES

Analytical Results Petroleum and VOCs West Side of Property Analytical Results Petroleum and VOCs East Side of Property

A	Standard Field Methods and Boring Logs
В	Geophysical Subcontractor Underground Storage Tank Locate Report
C	Analytical Laboratory Reports
D	Disposal Documentation
E	Important Information About Your Geotechnical/Environmental Report

ACRONYMS AND ABBREVIATIONS

bgs below ground surface
DCE cis -1,2- dichloroethene

Ecology Washington State Department of Ecology EPA U.S. Environmental Protection Agency

ESA environmental site assessment

HVOCs halogenated volatile organic compounds

μg/L micrograms per liter
 mg/kg milligrams per kilogram
 MTCA Model Toxics Control Act

NWTPH-G Northwest Total Petroleum Hydrocarbons-Gasoline

NWTPH-Dx Northwest Total Petroleum Hydrocarbons-Diesel Extended

PCBs polychlorinated biphenyls

PCE tetrachloroethene

RCRA Resource Conservation Recovery Act RECs recognized environmental conditions

TCE trichloroethene

TCLP Toxicity Characteristic Leaching Procedure

USTs underground storage tanks

White Shield White Shield, Inc.

VOCs volatile organic compounds

PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER KEY BANK PROPERTY 1000 NE 45th STREET SEATTLE, WASHINGTON

1.0 INTRODUCTION

1.1 Authorization

Shannon & Wilson, Inc. has completed a Phase II Environmental Site Assessment (ESA) for the Key Bank Property located at 1000 NE 45th Street, Seattle, Washington (Figure 1). This work was conducted under contract RTA/LR 164-09C with Sound Transit, in general accordance with Work Directive No. 4, authorized by Mr. Kent Melton of Sound Transit on September 6, 2011, and Modification 1, authorized on October 10, 2011. We understand this work is being requested to support potential remedial actions to be completed during the North Link Stations Site Preparation or Construction Contract.

1.2 Objective

The objective of this Phase II ESA was to evaluate whether current or former on- and off-site activities have affected the subject property. Borings and monitoring well locations were chosen based on the findings of the anomalies identified during the geophysical survey and recognized environmental conditions (RECs) observed inside the building. The scope of this investigation included the following tasks:

- Completion of a geophysical survey to look for buried objects, such as underground storage tanks (USTs).
- Advancement of 22 geoprobes to collect soil and groundwater samples for chemical analysis.
- Advancement of three soil borings using hollow-stem auger drilling methods to collect soil samples for chemical analysis.
- Analysis of up to two soil samples from each geoprobe and boring for contaminants of concern.
- Installation of three monitoring wells to assess depths to groundwater and collect groundwater samples for chemical analysis.
- Analysis of groundwater samples from each well and one geoprobe boring for contaminants of concern.

- Coordination of investigation-derived waste disposal.
- Preparation of this report.

The scope of work focused on identifying and evaluating environmental concerns with significant potential to contaminate the subject property identified during a previous investigation conducted at the site. The field sampling was intended to assess the vertical and lateral extent of soil and groundwater contamination encountered during the investigation.

2.0 SITE BACKGROUND

2.1 Site Description

The Key Bank Site, located at 1000 NE 45th Street, in Seattle, Washington, is occupied by a one-story building with canopies located on the north and south sides of the building. The property encompasses an area of about 18,034 square feet and is surrounded by a paved parking lot. A north-south-trending alley divides the parcel into two parts, an east side and a west side. The west side is the larger of the two and contains the existing former bank building. The parking lot extends to the area east of the alley. Numerous subsurface utilities are located in the alley. The site is located at the south end of the city block and is bordered by Roosevelt Way to the west, NE 45th Street to the south, and NE 11th Street to the east. The site is currently leased as a pay parking lot. A map of the project site and adjacent streets is provided in Figure 2.

2.2 Site History

The first documented site use occurred in 1922, when a building (Building "A"), heated by a stove, was constructed on the south side of the property, west of the alley (Figure 2). By 1926, the building was divided into two retail businesses and a barbershop. Between 1938 and 1956, a service station (Building "B") also operated on the west side of the site. A third building (Building C) was constructed in the southeast corner of the property in1926. This building was also divided into three businesses, and in 1943 it was occupied by a café and a laundromat. From 1953 until 1961, a used car dealership operated on the entire site, and from 1961 until 1971, a drive-in restaurant occupied the site. Building C was demolished in 1963, and by 1971 buildings on the west side of the property were demolished. A new bank building with drive-through teller configuration and parking was constructed and was last occupied by Key Bank. The property was sold to Sound Transit in 2001.

2.3 Phase I Environmental Site Assessment (ESA) Results

As part of the property purchase documentation, a Phase I ESA was prepared for Sound Transit (White Shield Inc., 2000). RECs were identified that could potentially impact site soils and groundwater. Specific findings and conclusions included:

- The site was occupied by a service station from approximately 1938 until 1956. A used car lot occupied the site from 1953 to 1961. Potential contaminants derived from these businesses could include petroleum hydrocarbons from fuels, hydraulic fluids, waste oils, solvents, and miscellaneous wastes.
- An autobody and paint shop, located adjacent to the north, operated since at least 1930. It is still operating as of 2011. Potential contaminants include metals and petroleum-derived products including fuels, lubricants, and solvents.
- In 2000, an autobody shop was located within ½ mile north and potentially upgradient of the site and posed potential risk of contamination by waste oils, solvent, acids, paint, waste hydraulic fluids, and miscellaneous cutting oils.
- Former adjacent auto dealerships located on the west side Roosevelt Way, and on the east side of 11th Avenue NE, pose potential risk of contamination by waste oils, solvents, and miscellaneous wastes. These sites are potentially upgradient of the subject parcel.

3.0 SITE GEOLOGY AND HYDROGEOLOGY

3.1 Geology

Subsurface conditions at the site have been interpreted from available geoprobe and boring logs completed during this investigation. The boring logs for the Phase II ESA study are included in Appendix A.

Fill soils comprised primarily of dense, gravelly, fine to medium sand and containing scattered debris overlie much of the site, ranging from 4.5 to 14 feet thick in the probes and borings. This fill overlies a thick sequence of Vashon glacial till and diamict (till-like) deposits. In nearby borings south of the site this till-like layer extends to depths of approximately 36 to 47 feet. These glacial sediments consists of very dense, slightly silty to silty sand with gravels and scattered cobbles. Interspersed within these sediments are interbeds of cleaner fine to medium sand. A hard, silty clay to clay (glaciolacustrine clay) underlies the glacial deposits. Based on nearby borings, the clay layer is discontinuous but can be up to about 20 feet thick.

3.2 Hydrogeology

The depth to the water table measured on the property during the Phase II ESA explorations ranged from approximately 13 feet to 18 feet below ground surface (bgs). Groundwater encountered in geoprobe GP-3 at a depth of approximately 12.5 feet bgs is likely associated with the coarse backfill surrounding the UST. Groundwater was not encountered in any other probes. Shallow groundwater was detected in MW-1 at 14 feet (estimated elevation of 61.7 feet), MW-2 at 19 feet (estimated elevation 54.7), and MW-3 at 33 feet (estimated elevation of 38.5 feet). The well in was completed below the shallow groundwater zone, where wet soil in MW-3 was also encountered at approximately 18 feet bgs (estimated elevation of 54.1 feet). Elevations are approximate and are with respect to a datum of 80 feet in the northwest corner of the site. Groundwater flow direction may fluctuate in response to seasonal changes across the site. In the fall, the groundwater appears to flow east- southeast.

The monitoring wells completed for this Phase II ESA were installed in the glacial sediments directly overlying the low-permeability glaciolacustrine clay. In nearby borings the data suggest that groundwater flow of the shallow aquifer in the vicinity of the site is to the east-southeast. In nearby wells, installed in a deeper aquifer, the groundwater gradient also slopes gently toward the south at about 40 feet bgs (Shannon & Wilson, Inc., 2005).

4.0 FIELD EXPLORATIONS

An exploration program was developed to investigate RECs identified in the White Shield. Phase I ESA and potential gasoline contamination previously identified on the property. The program included conducting a geophysical survey, and collecting soil and groundwater samples from geoprobes, soil borings, and monitoring wells. Our rationale and results for each of the elements of the exploration program are summarized below.

4.1 Geophysical Survey

A geophysical survey of the property was conducted on September 16, 2011, by Global Geophysics of Monroe, Washington, under subcontract to Shannon & Wilson, Inc. The geophysical survey was conducted to evaluate the presence of buried objects, such as USTs from the former services station. The survey identified 11 buried anomalies on the property. Results of the survey are included in the geophysical report provided in Appendix B. The anomalies identified from the geophysical survey are approximately shown in Figure 2.

4.2 Geoprobes

After evaluating the results of the geophysical survey, we advanced a total of 22 geoprobes (Figure 2) at the subject property during two rounds of sampling. During the initial round of sampling conducted on September 22, 2011, 12 geoprobes (GP-1 through GP-12) were advanced by Cascade Drilling of Woodinville, Washington. On October 14, 2011, an additional ten geoprobes (GP-13 through GP-22) were advanced by ESN Northwest of Olympia, Washington.

Geoprobes GP-1 and GP-2 were advanced along the northern property boundary next to an existing auto dealership and an anomaly identified during the geophysical survey on the west side of the property.

Geoprobes GP-3 through GP-9 were advanced on the west side of the property in an area where a former gasoline service station was previously identified and two side-by-side anomalies were identified during the geophysical survey. The identified anomalies may potentially be abandoned USTs that were associated with the historic service station.

Three additional geoprobes (GP-10 through GP-12) were advanced on the east side of the property, during the initial round of sampling. Probes were located adjacent to anomalies identified during the geophysical survey.

Based on the results of the initial round of sampling, nine additional "step-out" geoprobe borings (GP-13 through GP-21) were advanced on the east side of the property and one additional step geoprobe boring (GP-22) was advanced on the west side of the property, adjacent to the alley. The geoprobes were advanced to assess the lateral extent of PCE-contaminated soil encountered during the initial round of sampling. Samples were collected at various depths to identify the interval with the highest concentration. The geoprobe locations are shown in Figure 2.

4.3 Soil Borings and Monitoring Wells

Following evaluation of analytical data from the initial round of geoprobe sampling, three locations were selected for monitoring well installation. On October 6 and 7, 2011, three monitoring wells were installed, monitoring well MW-1 on the west side of the property, and monitoring wells MW-2 and MW-3 on the east side of the property. Monitoring well MW-1 was placed in the southwest corner of the property to assess if contamination associated with the anomaly identified as a potential USTs could have impacted groundwater and potentially migrated off-site.

Monitoring well MW-2 was placed in the northeast corner of the parking lot, along the northern property line. The location was selected to evaluate the potential of contaminated groundwater migrating on-site from potentially contaminated sites located adjacent and upgradient. The first attempt, which was approximately 5 feet west of the finished well, hit an obstruction at a depth of approximately 5 feet.

Monitoring well MW-3 was placed in the southeast corner of the parking lot, potentially downgradient of a buried anomaly discovered during the geophysical survey. This location was selected to further evaluate elevated PCE concentrations detected in soil from probes GP-10, GP-11, and GP-12. Monitoring well locations are shown in Figure 2.

4.4 Soil and Groundwater Sampling

A total of 43 soil samples were collected from the geoprobe and boring locations at the site for chemical analysis. The soil samples were selected for chemical analysis based on field screening results, the estimated depths to the bottom of potential USTs/debris, and/or depth to groundwater. Groundwater samples were collected for analytical testing from the three installed wells and one geoprobe boring where water was encountered. The purpose of each sampling location, sample names and depths, well screen intervals, and chemical analyses selected for each sample are summarized in Table 1. The field methodology used during this investigation and the boring logs summarizing field observations are presented in Appendix A.

4.5 Analytical Methods

Analytical testing for soil and groundwater included the following:

- Gasoline-range hydrocarbons by Method Northwest Total Petroleum Hydrocarbons as Gasoline (NWTPH-Gx)
- Diesel- and oil-range hydrocarbons by Method Northwest Total Petroleum Hydrocarbons as Diesel-extended (NWTPH-Dx)
- Polychlorinated biphenyls (PCBs) by U.S. Environmental Protection Agency (EPA)
 Method 8082
- Volatile organic compounds (VOCs) or halogenated VOCs (HVOCs) by EPA Method 8260B
- Model Toxics Control Act (MTCA) metals (including arsenic, cadmium, chromium, lead, mercury) by EPA Methods 6000/7000 series (soil) and 200.8 (total and dissolved in groundwater)

Based on elevated PCE concentrations, two soil samples were also analyzed for Toxicity Characteristic Leaching Procedure (TCLP) PCE by EPA Method 1311/8260B. Table 2 summarizes the analytical results and Table 3 summarized the analytical results for groundwater. Analytical results for the primary contaminants are also shown in Figures 3 and 4. Analytical laboratory reports are contained in Appendix C.

4.6 Analytical Results

Two contaminated areas have been identified on the property. Petroleum and related VOCs were detected west to southwest of potential USTs associated with the former service station. The contamination is located west of the current building, which was constructed near the former service station building (Building B) footprint. The second area of contamination consisted of PCE and other HVOCs encountered on the east-southeast side of the site, north of the former Building C. The source of contaminants for the east side is also likely a UST associated with the former laundromat/dry cleaner.

4.6.1 Soil Results - West Side of Property

Petroleum and related VOCs were detected west to southwest of potential USTs associated with the former service station. The contamination is located west of the current building, which was constructed near the former service station building (Building B) footprint.

Diesel- and oil-range petroleum hydrocarbons were detected in four soil samples collected from the geoprobes and soil borings at the site. None of the oil-range detections exceeded their corresponding MTCA Method A cleanup criterion of 2,000 milligrams per kilogram (mg/kg). Gasoline was detected in five samples, of which two, located near the potential USTs, exceed MTCA cleanup criteria of 100 mg/kg. Benzene was not detected; however, other petroleum-related VOCs were detected in geoprobes. VOCs in this part of the site were detected at concentrations below MTCA Method A cleanup criteria. Field indication of contamination (petroleum odor and staining) was observed in these soil samples. A single HVOC (cis-1,2-dichloroethene [DCE]) was detected in one soil sample, in the vicinity of the potential USTs on the west side (GP-3). Its presence appears to be unrelated to contaminants on the east side of the property. However, soil could be impacted if HVOC concentrations in groundwater are sufficiently elevated, as discussed below.

The concentrations of chromium, the only MTCA metal detected in soil, were well below the MTCA Method A cleanup level, and within the range of concentrations typically encountered in Washington (Dragun and Chaisson, 1991).

4.6.2 Groundwater Results - West Side of Property

Groundwater was only encountered in a single probe, GP-3, which was located adjacent to the potential USTs on the west side of the property. Gasoline and petroleum-related compounds were detected in this sample at concentrations well above the MTCA Method A cleanup levels. HVOCs, PCE, TCE, and DCE were also detected above MTCA Method A cleanup levels. The presence of these HVOCs does not appear to be correlated to contamination on the east side of the property since it was only encountered in soil from GP-3. However, if HVOC concentrations in groundwater at the source are sufficiently elevated, the radius of influence where the contaminant disperses at the molecular level could be large enough to impact groundwater and soil upgradient of the source.

Gasoline was also detected in a groundwater sample collected from MW-1, located downgradient/cross gradient of the potential USTs associated with the former service station. The concentration at 1,100 μ g/L (micrograms per liter) was slightly above the cleanup level of 800 μ g/L. The lower cleanup level is applicable because benzene was also detected in the sample at 0.63 μ g/L, well below its MTCA Method A cleanup level of 5 μ g/L.

Metals arsenic, chromium, and lead were detected in MW-1. The concentrations of total arsenic and chromium in MW-1 were higher than MTCA Method A cleanup levels, but the elevated concentrations are likely attributable to a slightly turbid sample. These elements were not detected in the dissolved phase.

4.6.3 Soil Results - East Side of Property

Elevated concentrations of PCE were detected in every boring or probe advanced on the east side of the site, except MW-2. Trichloroethene (TCE), a breakdown product of PCE, was detected in about half of the samples and vinyl chloride was detected in only one sample (GP-15:12). The highest concentrations of PCE appear to be adjacent to the large anomaly located in the middle of the east side of the site. The concentrations decreased by orders of magnitude further from the anomaly.

In GP-16, located adjacent south of the anomaly, PCE was detected at 98 mg/kg at a depth of 8 feet bgs. Fifty feet southwest of GP-16, on the west side of the alley, PCE was detected at a concentration below the MTCA Method A cleanup level of 0.05 mg/kg (GP-22). In GP-19, located on the east property boundary, it was detected at a concentration slightly above the MTCA criteria. Localized low-level petroleum contamination was encountered in two locations sample near the anomaly on the east parking lot (GP-11 and GP-16).

HVOCs were not detected in soil samples collected from MW-2, located at the northeast property boundary. The concentrations of PCE also appear to be higher at depths greater than 6 feet, which correlates with the typical depth of a small UST.

In MW-3, located at the south property boundary, PCE was detected in every sample to a depth of 35 feet, at the bottom of the boring (0.033 mg/kg). The highest concentration of PCE in MW-3, encountered in a wetter zone at a depth of 18 feet bgs, was about twice the MTCA Method A cleanup level.

Because of the elevated PCE concentration in one particular soil sample (GP-16:8). The sample was analyzed by TCLP for PCE to evaluate whether the soil would have Dangerous Waste characteristics. A sample of the spoils from the second probe study was also analyzed for total and TCLP PCE for disposal characterization. Based on the analyses, the samples did not contain leachable PCE in excess of Dangerous Waste criteria.

4.6.4 Groundwater Results - East Side of Property

No organic contaminants were identified in the sample collected from MW-2, upgradient/cross gradient of the potential USTs on the west side, and the anomaly identified on the east side.

PCE in MW-3, was detected at 130 μ g/L, well above the MTCA Method A cleanup criterion of 5 μ g/L. TCE was detected at 1.8 μ g/L, well below its MTCA criterion. Gasoline was also detected in a sample from MW-3 (160 μ g/L), but no other petroleum related VOCs were detected. Metals arsenic, chromium, and lead were detected in MW-2 at concentrations below MTCA. There was insufficient water in MW-3 to collect a sample for metals analysis. MW-3 is likely downgradient of the potential USTs on the west side of the property, and within 50 feet, and likely down/cross gradient, of the anomaly on the east side. It is also located approximately 10 feet from the south property boundary.

4.7 Disposal of Investigation-derived Waste (IDW)

Soil cuttings and development/purge/rinse water generated during the field activities were placed into 55-gallon drums and temporarily stored on site pending disposal. Shannon & Wilson, Inc. contracted with Emerald Services of Seattle, Washington, to pick up and dispose of this material. Petroleum impacted soil was disposed at a RCRA Subtitle D landfill under a bill of lading.

Disposal of HVOCs impacted soil and water must comply with the Resource Conservation and Recovery Act (RCRA) requirements for disposal of spent solvents from a dry cleaning operation (former laundromat). This investigation-derived waste was designated an F002 listed dangerous waste. A RCRA Site ID was obtained by Sound Transit from the Washington State Department of Ecology (Ecology). The drums containing F002 soil were disposed at US Ecology RCRA Subtitle C landfill in Idaho, under a dangerous waste manifest. Disposal documentation is contained in Appendix D.

5.0 CONCLUSIONS

Based on the above data, we offer the following conclusions for the subject property based on affected area.

5.1 West Side of Property

- The geophysical survey identified several buried anomalies (potential USTs and metallic debris) that may be related to the former service station. Two adjacent anomalies are likely USTs associated with the former service station. No closure documentation of the former service station tanks have been discovered. Closure of these tanks should be accomplished prior to site development.
- Gasoline and petroleum-related VOCs were detected above their respective Method A cleanup criteria in soil samples collected from the vicinity of a potential USTs located west of the current building, on the west side of the property. To meet the MTCA cleanup criteria in the near future, a removal action of the contaminated soil would be required.
- Benzene was detected in the groundwater sample, consequently the cleanup level for gasoline is lower than if the groundwater did not contain benzene. Gasoline was detected in MW-1 at concentrations above MTCA and appears to move off site. Concentrations of other VOCs in MW-1 appear to be below MTCA criteria. Gasoline was detected in MW-3 at a concentration below MTCA. No petroleum related VOCs were detected. This well is downgradient of the potential USTs and MW-1.
- Low concentrations of lubricating oil were detected in the some of the soil samples collected in the vicinity of buried anomalies identified during the geophysical survey. PCBs were not detected in these samples. This contamination may reflect releases from these anomalies. If so, higher concentrations could be anticipated. Alternatively, the detections may reflect variability within the fill material that is not associated with on-site releases.
- Elevated concentrations of PCE and TCE were detected in groundwater collected adjacent to the potential USTs on the west side of the property. The source is unknown. Shallow groundwater may be present in this area because of the coarse

- backfill that is typically used to backfill a UST installation. This area would be addressed during tank removal activities.
- Concentrations of total arsenic and chromium in groundwater collected from MW-1 exceeded MTCA Method A cleanup levels. However, it is likely that these low exceedances could be attributed to turbidity because these elements were not detected in the dissolved phase.

5.2 East Side of Property

- Elevated concentrations of PCE were encountered adjacent to the large anomaly. The anomaly is located on the east side of the property, approximately 50 feet north of the former Building C. PCE concentrations decrease further from the anomaly, indicating that it is a potential source. Because a laundromat occupied Building C in 1943, the source of the HVOCs is likely from a dry cleaning operation, within the laundromat. No tanks were documented for the business. Closure of the tank should be accomplished prior to site development
- PCE concentrations in groundwater and soil at the east and southeast property boundaries indicate that the contaminant is likely migrating off site, at levels that exceed MTCA Method A cleanup levels.
- The PCE does not appear to have degraded, as only low concentrations of breakdown analytes (TCE, DCE, and vinyl chloride) have been detected in soil and groundwater.
- Future site remediation activities on the east side of the property must comply with RCRA. Because the PCE is likely associated with dry cleaning operations, soil excavated from the site, as well as other solid waste contaminated with HVOCs including the likely UST, would be designated a listed Dangerous Waste F002 (spent solvent, under RCRA).

6.0 LIMITATIONS

Within the limitations of scope, schedule, and budget, Shannon & Wilson, Inc. has prepared this report in a professional manner, using that level of skill and care normally exercised for similar projects under similar conditions by reputable and competent environmental consultants currently practicing in this area.

The scope of work was intended to address only those environmental concerns with significant potential to result in contamination of the subject property. The sampling effort was considered limited in extent and served as a screening effort only. It was not intended to assess the lateral or vertical extent of soil and/or groundwater contamination.

The data presented in this report are based on limited research and sampling at the site and should be considered representative at the time of our observations. Other areas of contamination that were not obvious during our site work could be present at the site. Shannon & Wilson, Inc. is not responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time the report was prepared. We also note that the facts and conditions referenced in this report may change over time, and that the conclusions and recommendations set forth here are applicable to the facts and conditions as described only at the time of this report. We believe that the conclusions stated here are factual, but no guarantee is made or implied.

This report was prepared for the exclusive use of Sound Transit and their representatives, and in no way guarantees that any agency or its staff will reach the same conclusions as Shannon & Wilson, Inc. To help you and others in understanding the limitations of our report, Shannon & Wilson, Inc. has prepared Appendix E, "Important Information About Your Geotechnical/ Environmental Report."

Muchael R. Way

Michael R. Warfel, L.G., L.H.

Vice President

SHANNON & WILSON, INC.

Dawn Wulf

Senior Principal Hydrogeologist

DBW:DJR:ACT:MRW/djr

DawnWulf

21-1-16604-005-R1.docx/wp/lkn 21-1-16604-005

7.0 REFERENCES

- Dragun, J., and Chaisson, A., 1991, Elements in North American soils: Prepared by Charles Dragun and Andrew Chaisson for Hazardous Materials Control Resources Institute, Greenbelt, Md.
- Shannon & Wilson, Inc., 2005, Advanced conceptual engineering, geotechnical data report, Sound Transit, North Link Light Rail: Report prepared by Shannon & Wilson, Inc., Seattle, Wash., for Central Puget Sound Regional Transit Authority, Wash., 2 v., project no. 21-1-08109-070, April.
- Washington State Department of Ecology (Ecology), 2001, Model Toxics Control Act cleanup regulation, chapter 173-340 Washington Administration Code (WAC): Olympia, Wash., Washington State Department of Ecology, publication No. 94-06, amended February 12.
- White Shield, Inc. (White Shield), 2000, Phase I environmental site assessment, site location Key Bank, 1000 NE 45th Street, Seattle, Washington: Prepared by White Shield, 1620 140th Avenue NE, Suite 100, Bellevue, Washington, for Universal Field Services, Inc., September 22.

TABLE 1 SAMPLE SUMMARY KEY BANK PROPERTY

Boring/ Well Designation	Tag ID#	Sample ID	Depth	Well Screen Interval	Media	Date Sampled	Purpose of Sampling	Metals/ EPA 200.8	PCBs/ SW8082	Diesel/Oil/ NWTPH-Dx	Gasoline/ NWTPH-Gx	VOCs- HVOCS/ SW8260B	TCLP- VOCs
West Side/Buil	ding and Par	king Lot - Vicinity of	former serv	rice station (Bu	ilding B)								
GP-1		GP-1-11:10	10.0		Soil	09/22/11	Evaluate potential releases to soil from adjacent/upgradient property (existing/historic dealership autobody and paintshop)	X	X	X	X	X	
GP-2		GP-2-11:9	9.0		Soil	09/22/11	Evaluate potential releases to soil from subsurface anomalies and upgradient properties	X		X	X	X	
GP-3		GP-3-11:13	13.0		Soil	09/22/11	Evaluate potential releases to soil from subsurface anomalies (USTs)	X		X	X	X	
		GP-3-11:GW			Water	09/22/11	Evaluate potential releases to water from subsurface anomalies (USTs)				X	X	
GP-4		GP-4-11:9.5	9.5		Soil	09/22/11	Evaluate potential releases to soil from subsurface anomalies (USTs)	X		X	X	X	
GP-5		GP-5-11:13	13.0		Soil	09/22/11	Evaluate potential releases to soil from subsurface anomalies (USTs)	X	X	X	X	X	
GP-6		GP-6-11:13	13.0		Soil	09/22/11	Evaluate potential releases to soil from subsurface anomalies (USTs)	X	X	X	X	X	
GP-7		GP-7-11:14	14.0		Soil	09/22/11	Evaluate potential releases to soil from subsurface anomalies (USTs)	X		X	X	X	
GP-8		GP-8-11:14	14.0		Soil	09/22/11	Evaluate potential releases to soil from subsurface anomalies (USTs)	X		X	X	X	
GP-9		GP-9-11:13	13.0		Soil	09/22/11	Evaluate potential releases to soil from subsurface anomalies (USTs)	X		X	X	X	
MW-1	BHJ-554	SW-MW1-11:13	13.0		Soil	10/06/11	Evaluate potential releases to soil from subsurface anomalies (USTs) and confirmed onsite soil petroleum contamination	X		X	X	X	
		SW-MW1-11:25	25.0		Soil		Evaluate potential releases to soil and/or groundwater from subsurface anomalies (USTs) and confirmed onsite soil petroleum contamination	X		X	X	X	
		MW-1		5'-25'	Water	10/13/11	Evaluate potential releases to groundwater from subsurface anomalies (USTs) and confirmed onsite soil petroleum contamination	X		X	X	X	
East Side/Park	ing Lot - Nor	th of former Building	A										ļ
GP-10	9	GP-10-11:10	10.0		Soil	09/22/11	Evaluate potential releases to soil from subsurface anomaly	X		X	X	X	
GP-11		GP-11-11:10	10.0		Soil		Evaluate potential releases to soil from subsurface anomaly	X		X	X	X	
GP-12		GP-12-11:10	10.0		Soil		Evaluate potential releases to soil from subsurface anomaly	X	X	X	X	X	
GP-13		GP-13:4.5	4.5		Soil	10/14/11	Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
		GP-13:10.0	10.0		Soil	10/14/11	Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
GP-14		GP-14:5.5	5.5		Soil	10/14/11	Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
		GP-14:10.5	10.5		Soil	10/14/11	Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
GP-15		GP-15:5.0	5.0		Soil	10/14/11	Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
		GP-15:12.0	12.0		Soil		Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
GP-16		GP-16:8.0	8.0		Soil	10/14/11	Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	X
		GP-16:11.5	11.5		Soil	10/14/11	Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
GP-17		GP-17:6.0	6.0		Soil	10/14/11	Evaluate potential releases to soil from subsurface anomaly and evaluate the western extent of HVOC contamination discovered in adjacent geoprobes					X	
		GP-17:14.0	14.0		Soil	10/14/11	Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
GP-18		GP-18:11.0	11.0		Soil	10/14/11	Evaluate potential releases to soil from subsurface anomaly and evaluate the eastern extent of HVOC contamination discovered in adjacent geoprobes (east side of alley)					X	
GP-19		GP-19:11.0	11.0		Soil	10/14/11	Evaluate potential releases to soil from subsurface anomaly and evaluate the eastern extent of HVOC contamination discovered in adjacent geoprobes					X	

TABLE 1 SAMPLE SUMMARY KEY BANK PROPERTY

Boring/ Well			Sample	Well Screen		Date		Metals/	PCBs/	Diesel/Oil/	Gasoline/	VOCs- HVOCS/	TCLP-
Designation GP-20	Tag ID#	Sample ID GP-20:4.0	Depth 4.0	Interval	Media Soil	Sampled	Purpose of Sampling Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination	EPA 200.8	SW8082	NWTPH-Dx	NWTPH-Gx		VOCs
GP-20		GP-20:4.0	4.0		5011		discovered in adjacent geoprobes					X	
		GP-20:9.0	9.0		Soil		Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
GP-21		GP-21:6.0	6.0		Soil	10/14/11	Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
		GP-21:12.0	12.0		Soil		Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
GP-22		GP-22:5.5	5.5		Soil		Evaluate potential releases to soil from subsurface anomaly and evaluate the western extent of HVOC contamination discovered in adjacent geoprobes (west side of alley)					X	
		GP-22:13.0	13.0		Soil		Evaluate potential releases to soil from subsurface anomaly and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
STKP		STKP:1	1.0		Soil		Determine if soil in drum of spoils from the geoprobes was a characteristic Dangerous Waste based on the results of the TCLP					X	X
MW-2	ВНЈ-555	SW-MW2-11:5	5.0		Soil		Evaluate potential releases to soil from adjacent/upgradient properties (autobody shops and used car dealerships)					X	
		SW-MW2-11:10	10.0		Soil		Evaluate potential releases to soil from adjacent/upgradient properties (autobody shops and used car dealerships)					X	
		SW-MW2-11:16.5	16.5		Soil		Evaluate potential releases to soil from adjacent/upgradient properties (autobody shops and used car dealerships)	X		X	X	X	
		SW-MW2-11:20	20.0		Soil		Evaluate potential releases to soil and/or groundwater from adjacent/upgradient properties (autobody shops and used car dealerships)					X	
		SW-MW2-11:25	25.0		Soil		Evaluate potential releases to soil and/or groundwater from adjacent/upgradient properties (autobody shops and used car dealerships)	X		X	X	X	
		MW-2		15'-25'	Water		Evaluate potential releases to groundwater from adjacent/upgradient properties	X		X	X	X	
MW-3	ВНЈ-556	SW-MW3-11:5	5.0		Soil		Evaluate potential releases to soil from subsurface anomaly / upgradient properties and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
		SW-MW3-11:10	10.0		Soil		Evaluate potential releases to soil from subsurface anomaly / upgradient properties and evaluate extent of HVOC contamination discovered in adjacent geoprobes	X		X	X	X	
		SW-MW3-11:18	18.0		Soil		Evaluate potential releases to soil from subsurface anomaly / upgradient properties and evaluate extent of HVOC contamination discovered in adjacent geoprobes	X		X	X	X	
		SW-MW3-11:25	25.0		Soil		Evaluate potential releases to soil from subsurface anomaly / upgradient properties and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
		SW-MW3-11:30	30.0		Soil		Evaluate potential releases to soil from subsurface anomaly / upgradient properties and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
		SW-MW3-11:35	35.0		Soil		Evaluate potential releases to soil from subsurface anomaly / upgradient properties and evaluate extent of HVOC contamination discovered in adjacent geoprobes					X	
		MW-3		25'-35'	Water	10/13/11	Evaluate potential releases to groundwater from subsurface anomaly / upgradient properties and evaluate extent of HVOC contamination discovered in adjacent geoprobes				X	X	
Trip Blank		Trip Blank				10/13/11					X	X	

Notes:

DOE = Department of Ecology

EPA = Environmental Protection Agency

ID = identification

HVOCs = halogenated volatile organic compounds

NWTPH-Dx = Northwest Total Petroleum hydrocarbons - diesel extended

NWTPH-Gx = Northwest Total Petroleum Hydrocarbons - gasoline

PCBs = polychlorinated biphenyls

TCLP = Toxicity Characteristic Leaching Procedure

UST = underground storage tank VOCs = volatile organic compounds

TABLE 2
DETECTED ANALYTES IN SOIL

Area						West Side				
Exploration Designation:	MTCA	GP-1	GP-2	GP-3	GP-4	GP-5	GP-6	GP-7	GP-8	GP-9
Sample Number	Method A	GP-1-11:10	GP-2-11:9	GP-3-11:13	GP-4-11:9.5	GP-5-11:13	GP-6-11:13	GP-7-11:14	GP-8-11:14	GP-9-11:13
Sample Depth (feet)	Cleanup	10	9	13	9.5	13	13	14	14	13
ANALYTE	Level									
Petroleum Hydrocarbons	(mg/kg)									
Gasoline Range Organics	100	6.3 U	6.4 U	830	7.6 U	410	6.2 U	60	50	6.2 U
Lube Oil	2000	660	57 U	58 U	61 U	77	330	58 U	57 U	55 U
VOCs (mg/kg)										
Acetone		0.0068 U	0.0067 U	0.0067 U	0.007 U	0.36 U	0.0061 U	0.32 U	0.0066 U	0.0087 U
Carbon Disulfide		0.0014 U	0.0013 U	0.0013 U	0.0014 U	0.072 U	0.0012 U	0.064 U	0.0013 U	0.0017 U
Ethylbenzene	6	0.0014 U	0.0013 U	0.022	0.0014 U	0.072 U	0.0012 U	0.092	0.2	0.0017 U
m, p-Xylene	9	0.0027 U	0.0027 U	0.061	0.0028 U	0.14 U	0.0024 U	0.13 U	0.21	0.0035 U
o-Xylene	9	0.0014 U	0.0013 U	0.021	0.0014 U	0.072 U	0.0012 U	0.064 U	0.0042	0.0017 U
Isopropylbenzene		0.0014 U	0.0013 U	0.0032	0.0014 U	0.076	0.0012 U	0.075	0.23	0.0017 U
n-Propylbenzene		0.0014 U	0.0013 U	0.0051	0.0014 U	0.12	0.0012 U	0.098	0.17	0.0017 U
1,3,5-Trimethylbenzene		0.0014 U	0.0013 U	0.011	0.0014 U	0.17	0.0012 U	0.16	0.25	0.0017 U
1,2,4-Trimethylbenzene		0.0014 U	0.0013 U	0.033	0.0014 U	0.25	0.0012 U	0.34	0.14	0.0017 U
Sec-Butylbenzene		0.0014 U	0.0013 U	0.0017	0.0014 U	0.12	0.0012 U	0.064 U	0.095	0.0017 U
p-Isopropyltoluene		0.0014 U	0.0013 U	0.0018	0.0014 U	0.12	0.0012 U	0.064 U	0.12	0.0017 U
Naphthalene	5	0.0014 U	0.0013 U	0.015	0.0014 U	0.072 U	0.0012 U	0.064 U	0.083	0.0017 U
Tetrachloroethene	0.05	0.0014 U	0.0013 U	0.0013 U	0.0014 U	0.072 U	0.0012 U	0.064 U	0.0013 U	0.0017 U
Trichloroethene	0.03	0.0014 U	0.0013 U	0.0013 U	0.0014 U	0.072 U	0.0012 U	0.064 U	0.0013 U	0.0017 U
Vinyl Chloride		0.0014 U	0.0013 U	0.0013 U	0.0014 U	0.072 U	0.0012 U	0.064 U	0.0013 U	0.0017 U
1,1-Dichloroethene		0.0014 U	0.0013 U	0.0013 U	0.0014 U	0.072 U	0.0012 U	0.064 U	0.0013 U	0.0017 U
cis-1,2-Dichloroethene		0.0014 U	0.0013 U	0.0013	0.0014 U	0.072 U	0.0012 U	0.064 U	0.0013 U	0.0017 U
Metals (mg/kg)										
Chromium	2,000	47	37	30	54	53	45	38	45	38

TABLE 2
DETECTED ANALYTES IN SOIL

Area		East Side										
Exploration Designation:	MTCA	GP-10	GP-11	GP-12	GP	-13	GP	-14				
Sample Number	Method A	GP-10-11:10	GP-11-11:10	GP-12-11:10	GP-13:4.5	GP-13:10.0	GP-14:5.5	GP-14:10.5				
Sample Depth (feet)	Cleanup	10	10	10	4.5	10	5.5	10.5				
ANALYTE	Level											
Petroleum Hydrocarbons	(mg/kg)											
Gasoline Range Organics	100	7.2 U	15	7.8 U	NA	NA	NA	NA				
Lube Oil	2000	61 U	60 U	59	NA	NA	NA	NA				
VOCs (mg/kg)												
Acetone		0.0074 U	0.0086 U	0.0082 U	NA	NA	NA	NA				
Carbon Disulfide		0.0015 U	0.0017 U	0.0016 U	NA	NA	NA	NA				
Ethylbenzene	6	0.0015 U	0.0017 U	0.0016 U	NA	NA	NA	NA				
m, p-Xylene	9	0.003 U	0.0034 U	0.0033 U	NA	NA	NA	NA				
o-Xylene	9	0.0015 U	0.0017 U	0.0016 U	NA	NA	NA	NA				
Isopropylbenzene		0.0015 U	0.0017 U	0.0016 U	NA	NA	NA	NA				
n-Propylbenzene		0.0015 U	0.0017 U	0.0016 U	NA	NA	NA	NA				
1,3,5-Trimethylbenzene		0.0015 U	0.0017 U	0.0016 U	NA	NA	NA	NA				
1,2,4-Trimethylbenzene		0.0015 U	0.0017 U	0.0016 U	NA	NA	NA	NA				
Sec-Butylbenzene		0.0015 U	0.0017 U	0.0016 U	NA	NA	NA	NA				
p-Isopropyltoluene		0.0015 U	0.0017 U	0.0016 U	NA	NA	NA	NA				
Naphthalene	5	0.0015 U	0.0017 U	0.0016 U	NA	NA	NA	NA				
Tetrachloroethene	0.05	0.027	15	0.1	0.029	0.22	0.021	0.75				
Trichloroethene	0.03	0.0015 U	0.0021	0.0016 U	0.00058 U	0.0023	0.00059 U	0.0016				
Vinyl Chloride		0.0015 U	0.0017 U	0.0016 U	0.00058 U	0.00058 U	0.00059 U	0.00059 U				
1,1-Dichloroethene		0.0015 U	0.0017 U	0.0016 U	0.00058 U	0.00058 U	0.00059 U	0.00059 U				
cis-1,2-Dichloroethene		0.0015 U	0.0017 U	0.0016 U	0.00058 U	0.00058 U	0.00059 U	0.00059 U				
Metals (mg/kg)												
Chromium	2,000	59	56	56	NA	NA	NA	NA				

TABLE 2
DETECTED ANALYTES IN SOIL

Area				East Side								
Exploration Designation:	MTCA	GP	-15	GP	P-16	GI	P-17	GP-18	GP-19	GP-20		
Sample Number	Method A	GP-15:5.0	GP-15:12.0	GP-16:8.0	GP-16:11.5	GP-17:6.0	GP-17:14.0	GP-18:11.0	GP-19:11.0	GP-20:4.0		
Sample Depth (feet)	Cleanup	5	12	8	11.5	6	14	11	11	4		
ANALYTE	Level											
Petroleum Hydrocarbons	(mg/kg)											
Gasoline Range Organics	100	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Lube Oil	2000	NA	NA	NA	NA	NA	NA	NA	NA	NA		
VOCs (mg/kg)												
Acetone		NA	NA	0.0023 U	NA	NA	NA	NA	NA	NA		
Carbon Disulfide		NA	NA	0.00046 U	NA	NA	NA	NA	NA	NA		
Ethylbenzene	6	NA	NA	0.00046 U	NA	NA	NA	NA	NA	NA		
m, p-Xylene	9	NA	NA	0.00092 U	NA	NA	NA	NA	NA	NA		
o-Xylene	9	NA	NA	0.00046 U	NA	NA	NA	NA	NA	NA		
Isopropylbenzene		NA	NA	0.00046 U	NA	NA	NA	NA	NA	NA		
n-Propylbenzene		NA	NA	0.00046 U	NA	NA	NA	NA	NA	NA		
1,3,5-Trimethylbenzene		NA	NA	0.0046	NA	NA	NA	NA	NA	NA		
1,2,4-Trimethylbenzene		NA	NA	0.0013	NA	NA	NA	NA	NA	NA		
Sec-Butylbenzene		NA	NA	0.0021	NA	NA	NA	NA	NA	NA		
p-Isopropyltoluene		NA	NA	0.014	NA	NA	NA	NA	NA	NA		
Naphthalene	5	NA	NA	0.00046 U	NA	NA	NA	NA	NA	NA		
Tetrachloroethene	0.05	0.13	8.4	98	4.5	1.1	0.032	0.019	0.064	0.0092		
Trichloroethene	0.03	0.00061 U	0.075	0.002	0.04	0.0017	0.00066 U	0.00059 U	0.00058 U	0.00048 U		
Vinyl Chloride		0.00061 U	0.00099	0.00046 U	0.00097 U	0.00054 U	0.00066 U	0.00059 U	0.00058 U	0.00048 U		
1,1-Dichloroethene		0.00061 U	0.0013	0.00046 U	0.00097 U	0.00054 U	0.00066 U	0.00059 U	0.00058 U	0.00048 U		
cis-1,2-Dichloroethene		0.00061 U	0.001	0.00046 U	0.00097 U	0.00054 U	0.00059 U	0.00059 U	0.00058 U	0.00048 U		
Metals (mg/kg)												
Chromium	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA		

TABLE 2
DETECTED ANALYTES IN SOIL

Area				East S	Side			West Side			
Exploration Designation:	MTCA	GP-20	GP	-21	GP	P-22		MV	V-1		
Sample Number	Method A	GP-20:9.0	GP-21:6.0	GP-21:12.0	GP-22:5.5	GP-22:13.0	STKP:1	SW-MW1-11:13	SW-MW1-11:25		
Sample Depth (feet)	Cleanup	9	6	12	5.5	13	grab	13	25		
ANALYTE	Level										
Petroleum Hydrocarbons	(mg/kg)										
Gasoline Range Organics	100	NA	NA	NA	NA	NA	NA	5.6 U	6.3 U		
Lube Oil	2000	NA	NA	NA	NA	NA	NA	54 U	58 U		
VOCs (mg/kg)											
Acetone		NA	NA	NA	NA	NA	NA	0.0092	0.0058 U		
Carbon Disulfide		NA	NA	NA	NA	NA	NA	0.0014	0.0012 U		
Ethylbenzene	6	NA	NA	NA	NA	NA	NA	0.0012 U	0.0012 U		
m, p-Xylene	9	NA	NA	NA	NA	NA	NA	0.0023 U	0.0023 U		
o-Xylene	9	NA	NA	NA	NA	NA	NA	0.0012 U	0.0012 U		
Isopropylbenzene		NA	NA	NA	NA	NA	NA	0.0012 U	0.0012 U		
n-Propylbenzene		NA	NA	NA	NA	NA	NA	0.0012 U	0.0012 U		
1,3,5-Trimethylbenzene		NA	NA	NA	NA	NA	NA	0.003	0.0012 U		
1,2,4-Trimethylbenzene		NA	NA	NA	NA	NA	NA	0.004	0.0012 U		
Sec-Butylbenzene		NA	NA	NA	NA	NA	NA	0.0012 U	0.0012 U		
p-Isopropyltoluene		NA	NA	NA	NA	NA	NA	0.0012	0.0012 U		
Naphthalene	5	NA	NA	NA	NA	NA	NA	0.0012 U	0.0012 U		
Tetrachloroethene	0.05	0.036	0.18	1	0.0036	0.0023	0.017	0.0012 U	0.0012 U		
Trichloroethene	0.03	0.00063 U	0.00053 U	0.0011	0.00065 U	0.0019	0.00054 U	0.0012 U	0.0012 U		
Vinyl Chloride		0.00063 U	0.00053 U	0.00058 U	0.00065 U	0.00057 U	0.00054 U	0.0012 U	0.0012 U		
1,1-Dichloroethene		0.00063 U	0.00053 U	0.00058 U	0.00065 U	0.00057 U	0.00054 U	0.0012 U	0.0012 U		
cis-1,2-Dichloroethene		0.00063 U	0.00053 U	0.00058 U	0.00065 U	0.00057 U	0.00054 U	0.0012 U	0.0012 U		
Metals (mg/kg)											
Chromium	2,000	NA	NA	NA	NA	NA	NA	33	28		

TABLE 2
DETECTED ANALYTES IN SOIL

Area				East Side		
Exploration Designation:	MTCA			MW-2		
Sample Number	Method A	SW-MW2-11:5	SW-MW2-11:10	SW-MW2-11:16.5	SW-MW2-11:20	SW-MW2-11:25
Sample Depth (feet)	Cleanup	5	10	16.5	20	25
ANALYTE	Level					
Petroleum Hydrocarbons	(mg/kg)					
Gasoline Range Organics	100	NA	NA	6.1 U	NA	6.3 U
Lube Oil	2000	NA	NA	58 U	NA	61 U
VOCs (mg/kg)						
Acetone		NA	NA	0.025	NA	0.007 U
Carbon Disulfide		NA	NA	0.0018	NA	0.0014 U
Ethylbenzene	6	NA	NA	0.0015 U	NA	0.0014 U
m, p-Xylene	9	NA	NA	0.003 U	NA	0.0028 U
o-Xylene	9	NA	NA	0.0015 U	NA	0.0014 U
Isopropylbenzene		NA	NA	0.0015 U	NA	0.0014 U
n-Propylbenzene		NA	NA	0.0015 U	NA	0.0014 U
1,3,5-Trimethylbenzene		NA	NA	0.0015 U	NA	0.0014 U
1,2,4-Trimethylbenzene		NA	NA	0.0015 U	NA	0.0014 U
Sec-Butylbenzene		NA	NA	0.0015 U	NA	0.0014 U
p-Isopropyltoluene		NA	NA	0.0015 U	NA	0.0014 U
Naphthalene	5	NA	NA	0.0015 U	NA	0.0014 U
Tetrachloroethene	0.05	0.00089 U	0.0012 U	0.0015 U	0.0017 U	0.0014 U
Trichloroethene	0.03	0.00089 U	0.0012 U	0.0015 U	0.0017 U	0.0014 U
Vinyl Chloride		0.00089 U	0.0012 U	0.0015 U	0.0017 U	0.0014 U
1,1-Dichloroethene		0.00089 U	0.0012 U	0.0015 U	0.0017 U	0.0014 U
cis-1,2-Dichloroethene		0.00089 U	0.0012 U	0.0015 U	0.0017 U	0.0014 U
Metals (mg/kg)						
Chromium	2,000	NA	NA	30	NA	35

TABLE 2
DETECTED ANALYTES IN SOIL

Area		East Side									
Exploration Designation:	MTCA			MW	-3						
Sample Number	Method A	SW-MW3-11:5	SW-MW3-11:10	SW-MW3-11:18	SW-MW3-11:25	SW-MW3-11:30	SW-MW3-11:35				
Sample Depth (feet)	Cleanup	5	10	18	25	30	35				
ANALYTE	Level										
Petroleum Hydrocarbons	(mg/kg)										
Gasoline Range Organics	100	NA	6.6 U	6.3 U	NA	NA	NA				
Lube Oil	2000	NA	60 U	59 U	NA	NA	NA				
VOCs (mg/kg)											
Acetone		NA	0.0093	0.0068 U	NA	NA	NA				
Carbon Disulfide		NA	0.0028	0.0014 U	NA	NA	NA				
Ethylbenzene	6	NA	0.001 U	0.0014 U	NA	NA	NA				
m, p-Xylene	9	NA	0.0021 U	0.0027 U	NA	NA	NA				
o-Xylene	9	NA	0.001 U	0.0014 U	NA	NA	NA				
Isopropylbenzene		NA	0.001 U	0.0014 U	NA	NA	NA				
n-Propylbenzene		NA	0.001 U	0.0014 U	NA	NA	NA				
1,3,5-Trimethylbenzene		NA	0.001 U	0.0014 U	NA	NA	NA				
1,2,4-Trimethylbenzene		NA	0.001 U	0.0014 U	NA	NA	NA				
Sec-Butylbenzene		NA	0.001 U	0.0014 U	NA	NA	NA				
p-Isopropyltoluene		NA	0.001 U	0.0014 U	NA	NA	NA				
Naphthalene	5	NA	0.001 U	0.0014 U	NA	NA	NA				
Tetrachloroethene	0.05	0.014	0.025	0.096	0.048	0.038	0.033				
Trichloroethene	0.03	0.0013 U	0.0032	0.0014 U	0.0013 U	0.0016 U	0.0025 U				
Vinyl Chloride		0.0013 U	0.001 U	0.0014 U	0.0013 U	0.0016 U	0.0025 U				
1,1-Dichloroethene		0.0013 U	0.001 U	0.0014 U	0.0013 U	0.0016 U	0.0025 U				
cis-1,2-Dichloroethene		0.0013 U	0.001 U	0.0014 U	0.0013 U	0.0016 U	0.0025 U				
Metals (mg/kg)											
Chromium	2,000	NA	47	36	NA	NA	NA				

Notes: MTCA = Model Toxics Control Act

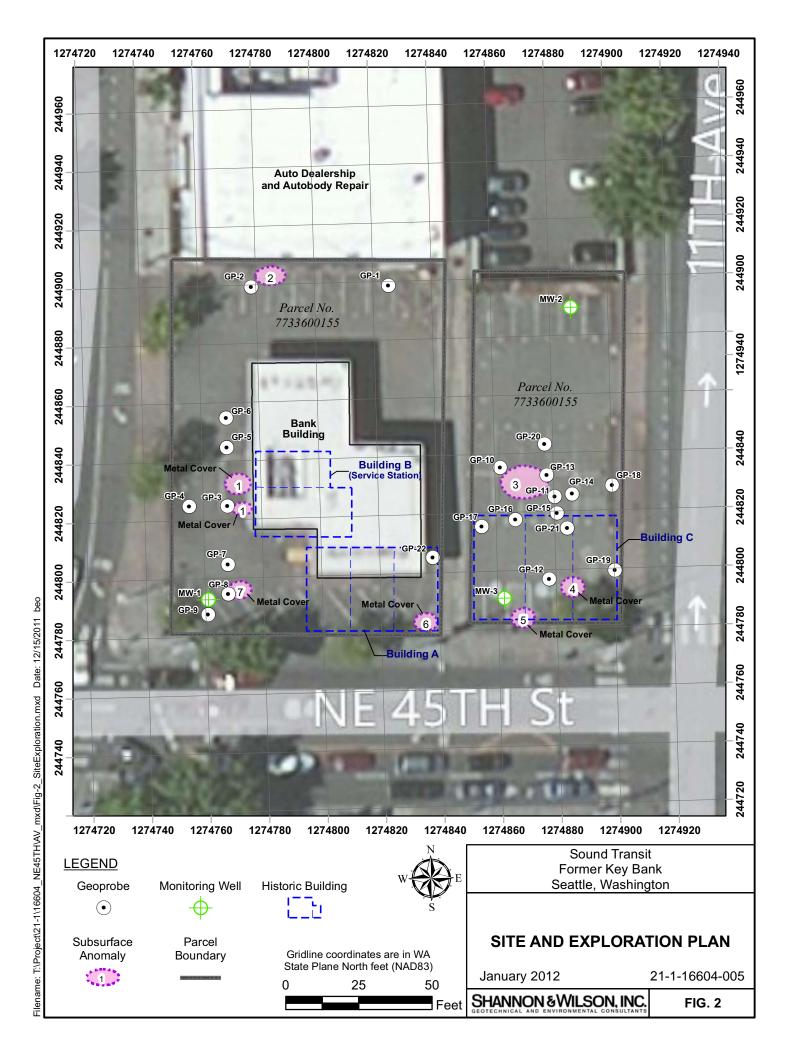
 $mg/kg = milligrams \ per kilogram$ $VOCs = volatile \ organic \ compounds$ $U = not \ detected \ at \ the \ reporting \ limit$

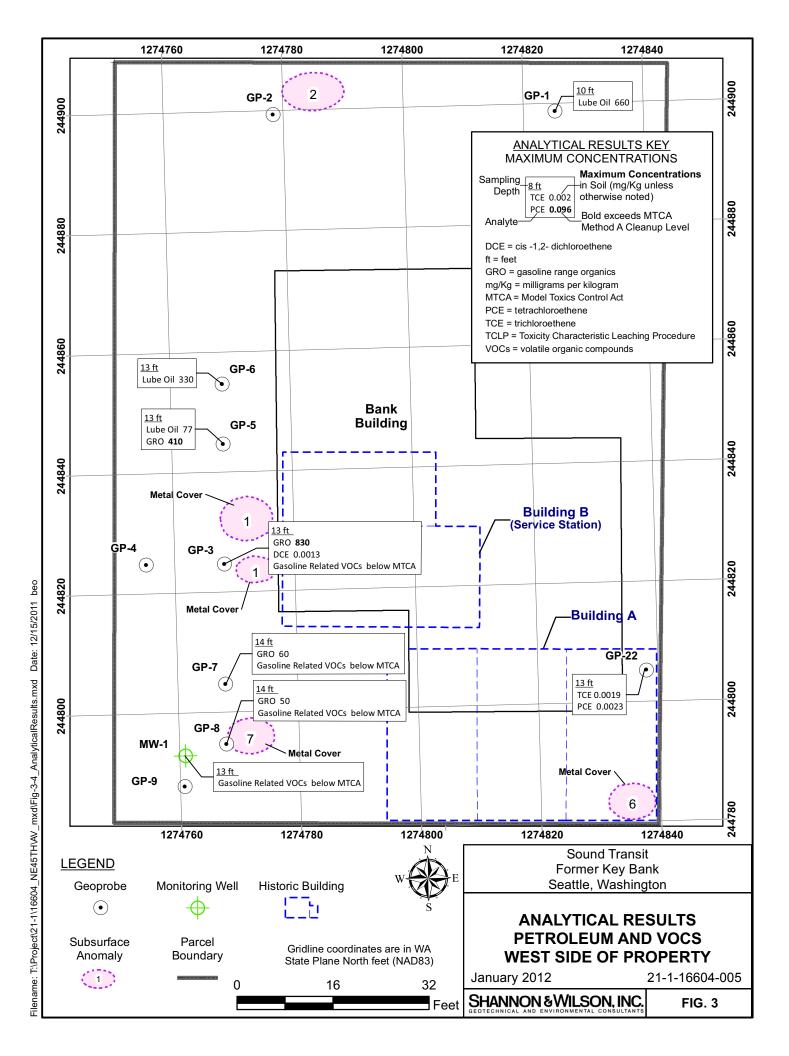
NA = not analyzed

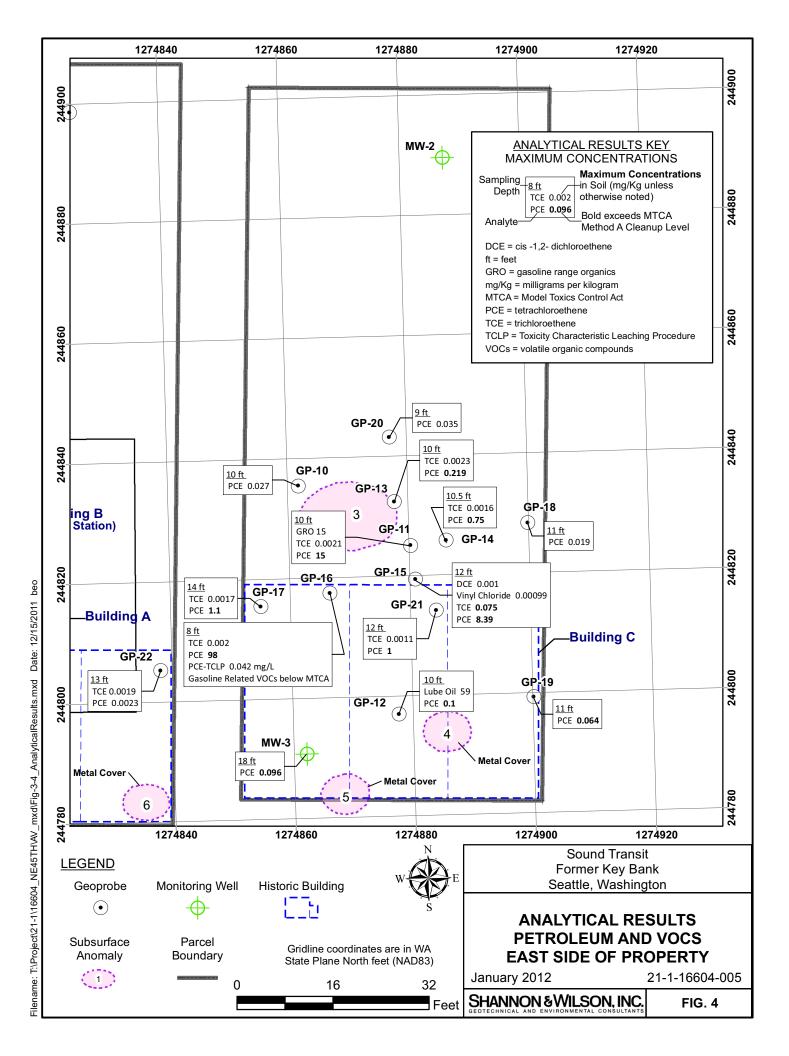
Bold = Exceeds MTCA Method A cleanup criteria

TABLE 3 DETECTED ANALYTES IN GROUNDWATER

Area		West	Side	East	Side
Exploration Designation:	MTCA	GP-3	MW-1	MW-2	MW-3
Sample Number		GP-3-11:GW	MW-1	MW-2	MW-3
Sample Depth	Cleanup	G1-5-11.GW	141 44 - 1	141 44 -2	141 44 -3
ANALYTE	Level				
Petroleum Hydrocarbons					
Gasoline Range Organics	800	54000	1100	400 U	160
VOCs (ug/L)	000	2-1000	1100	100 6	100
Chloroform		10 U	0.22	0.37	1 U
Ethylbenzene	700	1100	17	0.2 U	1 U
m, p-Xylene	1,000	3000	11	0.4 U	2 U
o-Xylene	1,000	990	1.1	0.2 U	1 U
Isopropylbenzene		95	8.5	0.2 U	1 U
n-Propylbenzene		130	3.7	0.2 U	1 U
1,3,5-Trimethylbenzene		260	22	0.2 U	1 U
1,2,4-Trimethylbenzene		910	15	0.2 U	1 U
Sec-Butylbenzene		14	2.9	0.2 U	1 U
tert-Butylbenzene		10 U	1	0.2 U	1 U
p-Isopropyltoluene		20	2.3	0.2 U	1 U
Naphthalene	160	320	2.2	1 U	5 U
Toluene	1,000	150	1 U	1 U	5 U
Tetrachloroethene	5	11	0.2 U	0.2 U	130
Trichloroethene	5	10 U	0.2 U	0.2 U	1.8
cis-1,2-Dichloroethene		44	0.2 U	0.2 U	1 U
Metals (ug/L)					
Arsenic (total)	5	NA	9.9	4.6	NA
Chromium (total)	50	NA	78	32	NA
Lead (total)	15	NA	10	5.2	NA


Notes: MTCA = Model Toxics Control Act


 $ug/L = micrograms\ per\ Liter$


VOCs = volatile organic compounds U = not detected at the reporting limit

 $NA = not \ analyzed$

Bold = Exceeds MTCA Method A cleanup criteria

APPENDIX A STANDARD FIELD METHODS AND BORING LOGS

APPENDIX A

STANDARD FIELD METHODS AND BORING LOGS

TABLE OF CONTENTS

		Page
A.1	PRE-SAMPLING ACTIVITIES	A-1
A.2	SAMPLE COLLECTION	A-1
	A.2.1 General Soil Sampling Procedure	
	A.2.2 GeoProbe Sampling	
	A.2.3 Hollow-stem Auger and Limited Access Dri	
	A.2.4 Sampling	
	A.2.5 Monitoring Well Installation and Construction	
	A.2.6 Well Development	
	A.2.7 Groundwater Sampling	
A.3	SAMPLE HANDLING	A-5
A.4	FIELD SCREENING METHODS	A-5
	A.4.1 Photoionization Detector (PID) Measuremen	nts A-5
	A.4.2 Visual Observations	A-6
	A.4.3 Odors	
	A.4.4 Field Screening Documentation	A-6
A.5	ANALYTICAL METHODS	A-6
A.6	DECONTAMINATION METHODS	A-6
	A.6.1 Probe Rig, Drill Rig, and Downhole Drill/Au	
	A.6.2 Sampling Equipment	
A.7	INVESTIGATION-DERIVED WASTE (IDW)	A-7

FIGURES

A-1	Soil Classification and Log Key (2 sheets)	
	West Side of Property	
A-2	Log of Geoprobe GP-1	
A-3	Log of Geoprobe GP-2	
A-4	Log of Geoprobe GP-3	
A-5	Log of Geoprobe GP-4	
A-6	Log of Geoprobe GP-5	
A-7	Log of Geoprobe GP-6	
A-8	Log of Geoprobe GP-7	
A-9	Log of Geoprobe GP-8	
	East Side of Property	
A-10	Log of Geoprobe GP-9	
A-11	Log of Geoprobe GP-10	
A-12	Log of Geoprobe GP-11	
A-13	Log of Geoprobe GP-12	
A-14	Log of Geoprobe GP-13	
A-15	Log of Geoprobe GP-14	
A-16	Log of Geoprobe GP-15	
A-17	Log of Geoprobe GP-16	
A-18	Log of Geoprobe GP-17	
A-19	Log of Geoprobe GP-18	
A-20	Log of Geoprobe GP-19	
A-21	Log of Geoprobe GP-21	
A-22	Log of Geoprobe GP-22	
A-22	Log of Geoprobe GP-23	
	West Side of Property	
A-23	Log of Boring SW-MW-1 (2 sheets)	
	East Side of Property	
A-24	Log of Boring SW-MW-2 (2 sheets)	
A-25	Log of Boring SW-MW-3 (2 sheets)	

APPENDIX A

STANDARD FIELD METHODS AND BORING LOGS

This document provides descriptions of Shannon & Wilson's standard field methods. The subject property is located at 1000 NE 45th Street in Seattle, Washington. The project consisted of performing a Phase II Environmental Site Assessment to assess potential soil and groundwater contamination.

Standard investigation methods, including sample collection, field screening, documentation procedures, and selected analyses, are described briefly in the following subsections. Sample collection and documentation were completed in accordance with Shannon & Wilson's standard operating procedures.

A.1 PRE-SAMPLING ACTIVITIES

Prior to sampling, a Shannon & Wilson representative notified the Underground Utilities Location Center (1-800-424-5555) at least 48 hours before the start of subsurface work at the site, and subcontracted a private service to locate utilities within a 20-foot radius of each proposed location. We also coordinated with Mr. Steve Sawyer (Sound Transit) for site access and control.

A.2 SAMPLE COLLECTION

The investigation consisted of advancing twenty-two geoprobes (Figures A-2 through A-22) and three soil borings (Figures A-23 through A-25), and installing three groundwater monitoring wells at the site. Twelve geoprobes were advanced on September 22, 2011, and the remaining ten were advanced on October 14, 2011. The soil borings and monitoring well installation activities occurred on October 6 and 7, 2011, using a standard truck-mounted hollow-stem auger drill rig. Cascade Drilling of Woodinville, Washington, conducted the initial probe study and borings/monitoring wells under subcontract to Shannon & Wilson, Inc. ESN Northwest (Olympia, Washington) conducted the second probe study, also under subcontract to Shannon & Wilson, Inc. The three new wells were developed on October 11, 2011, and then groundwater samples were collected on October 13, 2011.

During site work, soil samples were collected to evaluate the potential for soil and groundwater contamination. Sample handling procedures are summarized in Section A.3. Field screening procedures are presented in Section A.4.

A.2.1 General Soil Sampling Procedure

All soil was visually described using Shannon & Wilson's soil classification procedure, which is a modified version of the Unified Soil Classification System (Figure A-1). The soil descriptions were recorded on boring field logs. When a soil sample was selected for chemical analysis, the soil sample was placed into laboratory-supplied glassware using disposable, stainless steel spoons or disposable plastic syringes. Subsurface soil sampling was conducted using a geoprobe rig and hollow-stem auger drilling rig, as discussed below.

A.2.2 GeoProbe Sampling

Subsurface soil sampling was accomplished using a truck-mounted geoprobe rig. A geoprobe is a direct push boring rig that advances a 2-inch-diameter, 4-foot-long probe sampler using percussive force. Soil samples were collected continuously from ground surface to the total depth of the boring. Soil samples were collected by driving the probe sampler into undisturbed soil. The probe sampler was fitted with removable plastic sampling (sleeves) tubes that were advanced into the subsurface and retrieved. Upon retrieval of the soil sample, the plastic tube was sliced open and the soil was field-screened for contaminants. Soil samples were collected with clean, disposable, stainless steel spoons or disposable syringes and placed into laboratory-supplied containers. Soil cuttings and other investigation-derived waste (IDW) were collected in drums.

A.2.3 Hollow-stem Auger and Limited Access Drilling

Subsurface soil sampling was also accomplished using a truck-mounted hollow-stem auger, machine-driven drill rig equipped with 4½-inch inside-diameter auger. Soil samples were collected using Standard Penetration Test procedures (ASTM International D 1586-84), modified by using a 3-inch outside-diameter, split-spoon sampler, and a 300-pound drop hammer. In MW-2, an obstruction was encountered at a depth of approximately 5 feet below ground surface (bgs). The boring was shifted approximately 5 feet east, to its current location.

Pertinent information, such as the number of blow counts and drilling action, were recorded on the boring logs. At each exploration, soil samples were collected at 2.5- or 5-foot intervals to the bottom of the boring for lithologic description and field screening. Soil cuttings and other IDW were collected in drums during drilling.

A.2.4 Sampling

In each borehole, soil samples were collected using a stainless steel, split-spoon sampler equipped with a sample catcher. Analytical samples were selected based on field screening results, sample depth, and depth to water. Soil samples for chemical analysis were recovered from the center portion of the soil in the sampler, unless contamination was noted in the top or bottom portions of the soil. Sample collection and handling is discussed in Section A.3.

A.2.5 Monitoring Well Installation and Construction

The three borings (SW-MW-1, SW-MW-2, and SW-MW-3) were completed as monitoring wells, in compliance with the Washington State standards for resource protection wells (Washington Administrative Code 173-162). The monitoring wells were constructed of new, commercially fabricated, threaded, flush-joint, polyvinyl chloride (PVC) with a minimum inner diameter of 2 inches. The riser pipe used in each well was Schedule 40 PVC, with each section joined by threaded, flush-joint couplings to form a watertight seal. The well screen in each well consisted of new, commercially fabricated, threaded, 10-foot-long, flush-joint, 2-inch-diameter, 0.01-inch machine-slotted screen. A threaded 0.5-inch PVC cap was provided for the bottom of each well. The top of each well was completed with a 2-inch expandable locking cap secured with a lock. No organic solvents or glue was used in joining the pipes. The well screen and riser pipe were installed through the augers with the screen positioned to intercept the water table and allow for seasonal fluctuation.

Following installation of the well cap and screen, a silica sand filter pack, appropriately graded for the screened interval, was poured in the annular space between the boring and the well screen to 2 to 3 feet above the screen. The augers were withdrawn incrementally as the sand was poured into the well. The 2 to 3 feet of filter pack above the top of the screen allows for some settlement of the filter pack and buffer between the top of the well intake and annular seal. The depth to the top of the filter pack was sounded with a weighted measuring tape to confirm the depth to the sand pack and to assure that bridging had not occurred in the borehole.

A bentonite seal was placed in the annulus above the filter pack to within 2 feet of the surface. The bentonite was installed in lifts, with each lift allowed to hydrate before placing the next lift. The bentonite was hydrated with clean, potable water as it was placed in the annular space.

The wells were completed flush with the elevation of the site by placing an 8-inch, flush-mounted, steel monument over the top of the borehole. The metal covers were set in place using

concrete. The seal around the cover was sloped away from the monitoring well to allow free draining of surface water.

A.2.6 Well Development

Water level measurements were obtained from the monitoring wells using a cleaned, electric water level indicator and the water level in the well and the total well depth were measured to calculate the volume of water present prior to well development. All measurements were taken from the north side of the casings.

Each monitoring well was developed by field personnel using a pump and surge method, using a surge block and a submersible pump. The static water level was measured both before and after development. Before development, each well was inspected for the presence of a floating free-product layer. Neither well had a floating free-product layer.

Development was considered complete when the entire screened interval had been surged, and little to no sediment remained at the bottom of the well (when the bottom of the well felt hard when measured with a tagline). Development water was drummed at the site.

A.2.7 Groundwater Sampling

Groundwater sampling was initiated approximately 24 hours after well development. Before sampling, the wells were again inspected for the presence of a floating free-product layer. No free-product layers were present, and each well was purged with a submersible pump to remove standing water so that a representative sample of groundwater could be collected. Purging was completed when field parameters measured during the purge had stabilized. Field parameters included pH, specific conductivity, salinity, temperature, total dissolved solids, turbidity, dissolved oxygen, and oxidation reduction potential. Purge water was drummed with the development water.

Monitoring wells SW-MW-1 and SW-MW-2 were sampled after purging was completed, with a submersible pump and disposable tubing. Field parameters were measured before purging and immediately before analytical sample collection. Because groundwater in SW-MW-3 did not significantly recharge after purging, a peristaltic pump was used to collect the groundwater sample. Samples submitted to the analytical laboratory were handled in accordance with procedures described in Section A.3.

A.3 SAMPLE HANDLING

New nitrile gloves were worn by the sample handler during collection of each sample. All non-disposable sampling equipment was decontaminated between sample locations to prevent cross contamination. Field notes document site conditions and sample collection activities.

Samples collected for laboratory analysis were placed into laboratory-provided glassware. Samples were collected and containerized sequentially with the most volatile target analyte collected first. The preferred collection order for some of the more common analytes is:

(a) volatile organics and petroleum and (b) metals. The sample container labels were completed using indelible ink. The samples were sealed in plastic bags, and then placed into a cooler and maintained at 4°C (+ 2°C) with "blue ice."

Sample information was recorded on chain-of-custody forms. These forms accompanied the samples to the laboratory. Samples were maintained under chain-of-custody until delivered to the analytical laboratory, OnSite Environmental, Inc. (OnSite), of Redmond, Washington.

A.4 FIELD SCREENING METHODS

Field screening was performed on all samples to help evaluate the potential presence of contamination. Typically, at a non-hazardous waste site, the most likely locations to encounter contamination are in fill, at the water table interface, in the water table smear (fluctuation) zone, at fill/native soil contacts, and at pronounced changes in permeability. However, the location of contamination, if any, is site-dependent.

Field screening methods consisted of:

- Photoionization detector (PID) measurements
- Visual observations
- Olfactory observations

All three methods were used for the site. New nitrile gloves were worn by the field personnel during the screening.

A.4.1 Photoionization Detector (PID) Measurements

PID measurements were collected on soil samples to screen for volatile organic vapors such as gasoline and solvents. Typically, decaying organics can elevate PID measurements, and diesel and oil can rarely be detected with the PID. PID measurements were obtained by passing the instrument directly over the soil or by performing a headspace measurement.

A.4.2 Visual Observations

Visual observations were made of soil samples and cuttings and recorded on the boring log or in the field logbook.

A.4.3 Odors

Unusual odors were recorded when noted during drilling or sampling. Soil was not intentionally smelled for contamination and was not tasted for classification purposes.

A.4.4 Field Screening Documentation

For all screening methods, the following items were recorded:

- Type of measurement/observation
- Depth
- Time of measurement or observation
- Possible source
- What the odor smells like (petroleum, decaying organics, creosote, cedar, etc.)

A.5 ANALYTICAL METHODS

Selected soil and groundwater samples were analyzed for one or more of the following: Method Northwest Total Petroleum Hydrocarbons as Diesel – Extended; Method Northwest Total Petroleum Hydrocarbons as Gasoline– Extended; Model Toxics Control Act Five metals (arsenic, cadmium, chromium, lead, and mercury) by U.S. Environmental Protection Agency (EPA) Method 6010B/7000A series; polychlorinated biphenyls by EPA Method 8082; volatile organic compounds by EPA Method SW 8260B; and Toxicity Characteristic Leaching Procedure for tetrachloroethene by EPA Method 1311/SW8260.

Analytical work was performed by OnSite in accordance with their in-house Quality Assurance/Quality Control Plan. Sample analyses were performed in compliance with EPA analytical methods and Washington State Department of Ecology guidelines. Samples were analyzed within specified holding times.

A.6 DECONTAMINATION METHODS

The primary objective of the decontamination process is to prevent the accidental introduction of contaminants to non-contaminated areas or samples. This section describes the methods associated with decontamination of field equipment.

A.6.1 Probe Rig, Drill Rig, and Downhole Drill/Auger Tools

All equipment used during probing and drilling activities was steam-cleaned prior to use and kept off the ground surface. Equipment decontaminated included rods, augers, casing, samplers, and cables. Downhole samplers used during drilling activities were also cleaned between each use. The probe rig and drill rig were decontaminated at the site.

A.6.2 Sampling Equipment

All non-disposable groundwater and soil sampling equipment was cleaned prior to use in the field. Wherever possible, sampling equipment was dedicated to a single location to minimize potential cross-contamination. Dedicated tubing was used for each sampling location. All other non-dedicated sampling equipment, including all split-barrel samplers, spoons, and other stainless steel equipment used for field activities, was decontaminated as follows:

- Remove gross contamination and particulate matter.
- Wash thoroughly with Alconox TM, or similar non-phosphate detergent plus tap water or designated decontamination water supply source.
- Rinse equipment thoroughly with distilled or deionized water.

A.7 INVESTIGATION-DERIVED WASTE (IDW)

IDW is waste generated during sampling activities. IDW generated during these sampling activities included soil cuttings, development and purge water, and decontamination fluids, and was contained in 55-gallon drums. Drums were labeled with the exploration, date, and contents as shown in Appendix D. IDW will be disposed of by Emerald Services under subcontract to Shannon & Wilson, Inc. Drums containing IDW generated from borings located on the east side of the property will be disposed of as a listed Dangerous Waste, F002, under the Resource Conservation and Recovery Act (RCRA) Site Identification (ID) number WAH000039609. The site-specific RCRA site identification number was obtained by Sound Transit. Based on site history and analytical results, it appears that a dry cleaning operation occurred on the east side of the site. To comply with RCRA, all IDW contaminated with tetrachloroethene, associated with investigating the area, is required to be classified as spent solvents from a dry cleaning operation. Copies of the manifests are included in Appendix D (to be appended when disposal is complete).

IDW resulting from explorations on the west side of the site were disposed of as petroleum-contaminated soil and water. Disposal documentation for drums generated from explorations performed on the western part of the property is provided in Appendix D (to be appended when disposal is complete).

Miscellaneous IDW consisted of used personal protective equipment (PPE); disposable sampling equipment (spoons, tubing, etc.); and other wastes that originated from site activities. This IDW was placed in doubled, heavy-duty plastic bags. The waste PPE and disposable sampling were disposed of in a dumpster at the drilling subcontractor's facility.

Shannon & Wilson, Inc. (S&W), uses a soil classification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following page. Soil descriptions are based on visual-manual procedures (ASTM D 2488-93) unless otherwise noted.

S&W CLASSIFICATION OF SOIL CONSTITUENTS

- MAJOR constituents compose more than 50 percent, by weight, of the soil. Major consituents are capitalized (i.e., SAND).
- Minor constituents compose 12 to 50 percent of the soil and precede the major constituents (i.e., silty SAND). Minor constituents preceded by "slightly" compose 5 to 12 percent of the soil (i.e., slightly silty SAND).
- Trace constituents compose 0 to 5 percent of the soil (i.e., slightly silty SAND, trace of gravel).

MOISTURE CONTENT DEFINITIONS

Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, from below water table

GRAIN SIZE DEFINITION

DESCRIPTION	SIEVE NUMBER AND/OR SIZE
FINES	< #200 (0.08 mm)
SAND* - Fine - Medium - Coarse	#200 to #40 (0.08 to 0.4 mm) #40 to #10 (0.4 to 2 mm) #10 to #4 (2 to 5 mm)
GRAVEL* - Fine - Coarse	#4 to 3/4 inch (5 to 19 mm) 3/4 to 3 inches (19 to 76 mm)
COBBLES	3 to 12 inches (76 to 305 mm)
BOULDERS	> 12 inches (305 mm)

^{*} Unless otherwise noted, sand and gravel, when present, range from fine to coarse in grain size.

RELATIVE DENSITY / CONSISTENCY

COARSE-GR	AINED SOILS	FINE-GRAINED SOILS							
N, SPT, BLOWS/FT.	RELATIVE DENSITY	N, SPT, BLOWS/FT.	RELATIVE CONSISTENCY						
0 - 4	Very loose	Under 2	Very soft						
4 - 10	Loose	2 - 4	Soft						
10 - 30	Medium dense	4 - 8	Medium stiff						
30 - 50	Dense	8 - 15	Stiff						
Over 50	Very dense	15 - 30	Very stiff						
		Over 30	Hard						

ABBREVIATIONS

ATD	At Time of Drilling
Elev.	Elevation
ft	feet
FeO	Iron Oxide
MgO	Magnesium Oxide
HSA	Hollow Stem Auger
ID	Inside Diameter
in	inches
lbs	pounds
Mon.	Monument cover
N	Blows for last two 6-inch increments
NA	Not applicable or not available
NP	Non plastic
OD	Outside diameter
OVA	Organic vapor analyzer
PID	Photo-ionization detector
ppm	parts per million
PVC	Polyvinyl Chloride
SS	Split spoon sampler
SPT	Standard penetration test
USC	Unified soil classification
WOH	Weight of hammer
WOR	Weight of drill rods
WLI	Water level indicator

WELL AND OTHER SYMBOLS

Bent. Cement Grout	**************************************	Surface Cement Seal
Bentonite Grout		Asphalt or Cap
Bentonite Chips		Slough
Silica Sand		Bedrock
PVC Screen		
Vibrating Wire		

Sound Transit Former Key Bank Seattle, Washington

SOIL CLASSIFICATION AND LOG KEY

January 2012

21-1-16604-005

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. A-1 Sheet 1 of 2

		SOIL CLASSIF			
	MAJOR DIVISIONS	3	GROUP/ SYN	GRAPHIC IBOL_	TYPICAL DESCRIPTION
		Clean Gravels	GW		Well-graded gravels, gravels, gravel/sand mixtures, little or no fines.
	Gravels (more than 50%	(less than 5% fines)	GP		Poorly graded gravels, gravel-sand mixtures, little or no fines
	of coarse fraction retained on No. 4 sieve)	Gravels with Fines	GM		Silty gravels, gravel-sand-silt mixtures
COARSE- GRAINED SOILS		(more than 12% fines)	GC		Clayey gravels, gravel-sand-clay mixtures
(more than 50% retained on No. 200 sieve)		Clean Sands	sw		Well-graded sands, gravelly sands, little or no fines
	Sands (50% or more of	(less than 5% fines)	SP		Poorly graded sand, gravelly sands, little or no fines
	coarse fraction passes the No. 4 sieve)	Sands with Fines	SM		Silty sands, sand-silt mixtures
		(more than 12% fines)	sc		Clayey sands, sand-clay mixtures
		Inorganic	ML		Inorganic silts of low to medium plasticity, rock flour, sandy silts, gravelly silts, or clayey silts with slight plasticity
	Silts and Clays (liquid limit less than 50)		CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
FINE-GRAINED SOILS (50% or more		Organic	OL		Organic silts and organic silty clays of low plasticity
passes the No. 200 sieve)		Inorgania	МН		Inorganic silts, micaceous or diatomaceous fine sands or silty soils, elastic silt
	Silts and Clays (liquid limit 50 or more)	Inorganic	СН		Inorganic clays of medium to high plasticity, sandy fat clay, or gravelly fat clay
		Organic	ОН		Organic clays of medium to high plasticity, organic silts
HIGHLY- ORGANIC SOILS		c matter, dark in organic odor	PT		Peat, humus, swamp soils with high organic content (see ASTM D 4427)

NOTE: No. 4 size = 5 mm; No. 200 size = 0.075 mm

NOTES

- Dual symbols (symbols separated by a hyphen, i.e., SP-SM, slightly sitty fine SAND) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.
- 2. Borderline symbols (symbols separated by a slash, i.e., CL/ML, silty CLAY/clayey SILT; GW/SW, sandy GRAVEL/gravelly SAND) indicate that the soil may fall into one of two possible basic groups.

Sound Transit Former Key Bank Seattle, Washington

SOIL CLASSIFICATION AND LOG KEY

January 2012

21-1-16604-005

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 2 of 2

			LOG OF GEOP	RO	BE							
Date	Started	9/22/11	Location 1000 NE 45th Street, Seattle, Washingto	on	G	round	d Ele	evation	: Approx.	183.0 feet		
Date	Comple	eted 9/22/11			T	ypica	Ru	n Leng	th 4 feet			
Total	Depth	(ft) 13.0	Drilling Company: Cascade Drilling		Н	lole D	iame	eter:	2 inches	2 inches		
Depth (ft)	Probe Run	and probing me approximate i	Soil Description on text for a proper understanding of the subsurface materia ethods. The stratification lines indicated below represent the boundaries between soil types. Actual boundaries may be t if soil shifted inside sample tubes during extraction.	ls	Depth, ft.	Symbol	PID, ppm	Ground Water	Desc	Number, (‡)		
_	R-1	ASPHALT		0					-			
L		Dark brown, s	lightly silty, gravelly SAND; moist; SP-SM.	1	.0		l					
		Brown, silty, g SM.	ravelly SAND; moist; iron-oxide staining throughou				0					
_ 5 	R-2	Brown to gray SM.	, silty, gravelly, medium to coarse SAND; moist;	5.	10.0	5.0	5.0		0	None Observed During Drilling		5
- - 10 - - 	R-3	Gray, silty SA	ND; dry; SM.	10			0	None	GP-1-11:10	10		
_ _ _ _ 15 _ _			REFUSAL AT 13 FEET COMPLETED 9/22/2011	1.	3.0					15		
- -			NOTES									
1. In some cases where recovery was low in the upper part of the run, the soil sample may have slid down in the tube prior to removal from the ground. 2. Groundwater level, if indicated above, was estimated during probing and should be considered approximate. 3. Refer to KEY for definitions and explanation of symbols.									n			
4.	CT = cor	rosion test sample;	TR = thermal resistivity sample; EN = environmental sample; AR = archeological sample.						EOPROE			
3	2" Pla	stic Tube - No Soi	<u>LEGEND</u> I Recovery	Ja	nua	ary 20)12		2	1-1-16604-005		
	2" Pla: - <i>Run N</i>	stic Tube with Soil Io.	Recovery	SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. 7								

			LOG OF GEO	PRO	BE			-			
Date	Started	9/22/11	Location 1000 NE 45th Street, Seattle, Washing	gton	(round	Ele	evation	: Approx.	184.0 feet	
Date	Complet	ed 9/22/11			7	ypica	l Ru	n Leng	th <i>4 feet</i>		
Total	Depth (f	t) 12.0	Drilling Company: Cascade Drilling		F	lole D	iame	eter:	2 inches		
Depth (ft)	Probe Run	and probing me approximate l	Soil Description out text for a proper understanding of the subsurface mate without. The stratification lines indicated below represent in coundaries between soil types. Actual boundaries may be tif soil shifted inside sample tubes during extraction.	he	Depth, ft.	Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ft)
-510	R-1	Brown to gray dry; SM.	y gravelly, silty, fine to medium SAND; dry; SM. , silty, fine to medium SAND, iron-oxide staining; gravelly, silty SAND; dry; SM. ND; dry; SM. REFUSAL AT 12 FEET COMPLETED 9/22/2011		8.0 9.0 10.0		0	None Observed During Drilling	GP-2-11:9		5-
2. · 3. 4. ·	may have : Groundwat considered Refer to KI CT = corro	slid down in the tu er level, if indicate I approximate. EY for definitions a sion test sample;	NOTES Ty was low in the upper part of the run, the soil sample be prior to removal from the ground. The above, was estimated during probing and should be and explanation of symbols. The athermal resistivity sample; EN = environmental ample; AR = archeological sample.			_OG	_	Form Seattle	ind Transit er Key Bank e, Washingto		15-
Т	on =-	.	<u>LEGEND</u>		Janu	ary 20	012		2	1-1-16604 - 0	05
3	2" Plastic Tube - No Soil Recovery 2" Plastic Tube with Soil Recovery 2" Plastic Tube with Soil Recovery Estimated Water Level SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-3										
	- Run No				Geotech	nnical an	d Env	vironment	el Consultants	rig. A-	·

			-	-		L	OG OF	GEOPR	OBI	Ξ			_			
Date	Started		9/22/11	L	ocation 1000 N		eet, Seattle, I				d Ele	evation	: Appro	ox. 1	82.0 feet	t
Date	Comple	eted	9/22/11						1	Гуріса	i Ru	n Leng	th 4 feet			
Tota	l Depth	(ft)	14.0	D	Orilling Compa	ny: Cascade	e Drilling		ŀ	lole D	Diame	eter:	2 inch	2 inches		
Depth (ft)	Probe Run		nd probing m approximate	ort t etho		escription understanding ation lines ind a soil types. A	n g of the subsurf dicated below re Actual boundari	epresent the ies may be	Depth, ft.	Symbol	PID, ppm	Ground Water	De	escri	Number, ption, esults	Depth (ft)
	R-1	A:	SPHALT						0.4	111	<u> </u>		 			
	R-	sli	ight hydroca	arbo	rown, silty, gra- on odor; SM. ilty SAND; dry) medium SA	ND; dry;	2.5		5					-
5 5 	R-2		ray to brown		silty, fine to me or; SM.	dium SAND); moist; sligh	nt -	5.0							5-
		Gray, fine to medium SAND, hydrocarbon odor; moist; SP. Gray to brown, silty, fine SAND, trace of gravel, hydrocarbon		23.5					-							
											114					-
<u>-</u> -			for; SM.	11, 3	sity, inte SANC	, liace of g	raver, riyuroc	arbon					ı I			-
— 10 - - - -	R-3		ra y , silty, gr ⁄drocarbon		elly, fine to med or; SM.	dium SAND	r; moist to we	et;	10.0		340					10-
- - - - - 15		_			BOTTOM C	DF GEOPRI TED 9/22/20			14.0			During Drilling	GP-3-11:13 GP-3:GW	3		15-
												-				-
_												<u> </u>				
	may hav Groundv	e slid <i>r</i> ater l	down in the to	ube	NOTES was low in the up prior to removal f above, was estim	from the grour	nd.					Form	und Trans er Key Ba e, Washing	ınk		
3.				and	d explanation of s	ymbols.		<u> </u>			_			_		
4.	CT = cor sample;	rosior GE =	n test sample; geotechnical	TR sam	t = thermal resistiv nple; AR = arched	vity sample; E ological sample	:N = environme e.	ntal	ì	LOC	3 C	F G	EOPRO	BI	∃ GP-	-3
	∫ 2" Pla	stic T	ube - No So	il R	<u>LEGEND</u>				Janu	ary 2	012			21-	-1-1660	4-005
	ł	stic T	ube with Soi	•	.1	SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-4						A-4				

						LOG O	F GEOPR	OE	3E					_		
Date	Started	9/22/11	Loca	ition 1000	NE 45th S	Street, Seat	tle, Washington		G	iroun	d Ele	vation		x. 182.0	feet	
Date	Comple	eted 9/22/11							T	ypica	I Ru	n Leng	th 4 feet			
Total	Depth (ft) 10.0	Drilli	ng Comp	any: Casca	ade Drilling			Н	ole D	iame	eter:	2 inches			
Depth (ft)	Probe Run	and probing me approximate	Soil Description r to the report text for a proper understanding of a probing methods. The stratification lines indicate opproximate boundaries between soil types. Actualifierent if soil shifted inside sample tubes de				e subsurface materials d below represent the boundaries may be			Symbol	PID, ppm	Ground Water	De	ole Numi scriptior d Result	١,	Depth (ft)
	R-1	ASPHALT						0.4	- Deptn, π.				-			_
-		Dark brown, ç	gravelly	ravelly, fine to medium SAN		AND; dry; S	> .									-
- - -		Dark brown to iron-oxide sta		-	-	to medium	SAND, some	2.5	5		0					
- 5 - 	R-2	Brown, silty S moist; SM.	SAND, (trace of g	ravel, iron	-oxide staini	ng throughout;	5.0)			g Drilling				5-
- - - - - - - 10	THE COLUMN TO TH				AL AT 10 I			10.	.0		0	None Observed During	GP-4-11:9.5			10-
1 1 1 1								1								
—15 - -																15-
-																-
									_					_	_	_
				NOTES			_									
2.	 In some cases where recovery was low in the upper part of the run, the soil sample may have slid down in the tube prior to removal from the ground. Groundwater level, if indicated above, was estimated during probing and should be considered approximate. 											Form	und Transi er Key Bai e, Washing	nk		
4.	CT = corr	KEY for definitions osion test sample; BE = geotechnical	TR = th	ermal resist	tivity sample	e; EN = enviro nple.	nmental		L	.OG	60	F G	EOPRO	BE G	iP-4	
	2" Plas	tic Tube - No Soi		LEGEND erv				Jar	านส	ary 20	012			21-1-16	6604-0	05
	2" Plas Run No	.evel	SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-5					5								

			_		LOG OF	GEOPR	OI	BE				·			
Date 5	Started	9/22/11	Locati	ion 1000 NE 45ti	h Street, Seattle	e, Washington	_	G	Froun	d Ele	evation	: Appro	x. 182.5 feet		
Date (Complet	ed 9/22/11				•		Т	ypica	l Ru	n Leng	th 4 feet		-	
Total	Depth (f	t) 13.0	Drillin	g Company: Cas	scade Drilling			Н	iole D	iame	eter:	2 inch	2 inches		
Depth (ft)	Probe Run	and probing m approximate	ort text fo ethods. T boundarie	Soil Descrip r a proper understa The stratification lines between soil typ inifted inside sample	ption anding of the subs les indicated below les. Actual bound	v represent the laries may be		Depth, ft.	Symbol	PID, ppm	Ground Water	De	ple Number, scription, d Results	Depth (ft)	
		ASPHALT					0.		11:				_	-	
	R-2	iron-oxide sta	v, silty S	silty, gravelly S M. AND; moist; slig dium SAND; mo	iht hydrocarbon bist; strong hydr	odor; SM.	9.			0 13.5	None Observed During Drilling	GP-5-11:13		5-	
- - - 15 - - - - - -				COMPLETED 9/										15 - - - -	
1. li r 2. (c 3. F 4. (c s				<u>NOTES</u>		_									
1. li r	n some ca nay have	ises where recovisiid down in the ti	ery was lo ube prior t	w in the upper part o removal from the	of the run, the soi	l sample						und Transit er Key Bai			
		ter level, if indicat I approximate.	ed above	, was estimated du	ring probing and sl	nould be				:		e, Washing			
3. F 4. (Refer to KEY for definitions and explanation of symbols. CT = corrosion test sample; TR = thermal resistivity sample; EN = environments sample; GE = geotechnical sample; AR = archeological sample. 							L	_00	G 0	F G	EOPRO	BE GP-5	<u> </u>	
	On Die	a Tuka Na O		EGEND		1	January 2012					21-1-16604-005			
3		c Tube - No So ic Tube with Soi		•	imated Water Le	vel		_			WILS	SON, INC.		FIG. A-6	

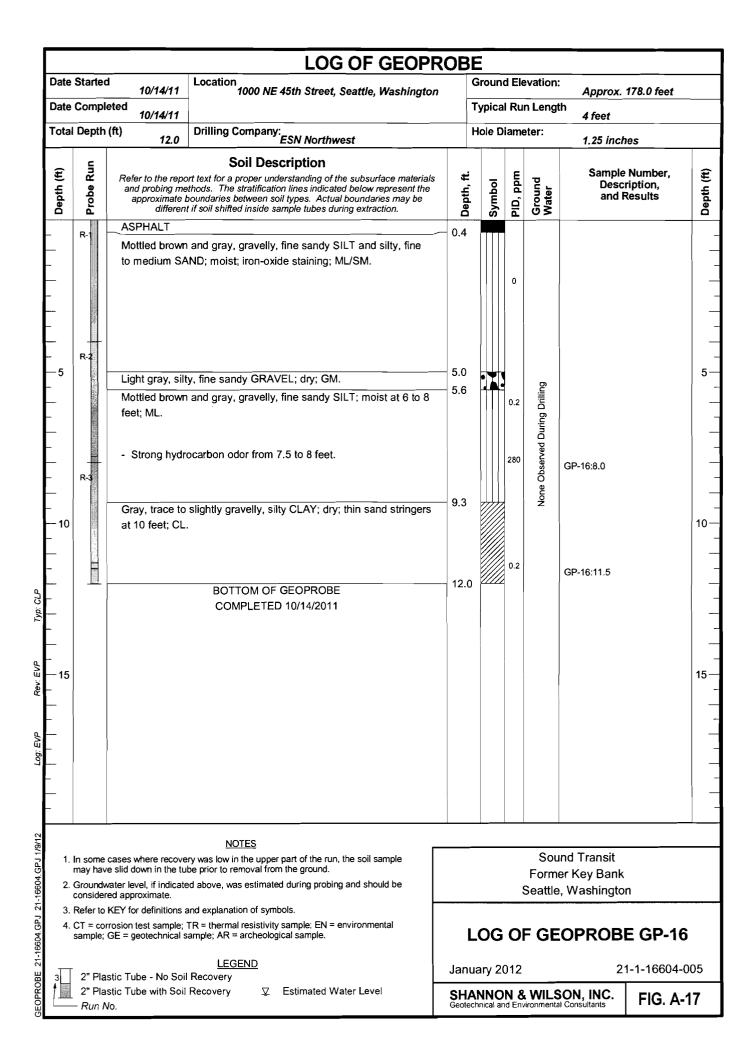
		_		LOG OF GEOF	RO	BE					<u> </u>	
Date	Started	9/22/11	Location 1000 NE 45ti	h Street, Seattle, Washingt	on	G	round	d Ele	evation	: Approx.	182.5 feet	
Date	Comple	eted 9/22/11				T	ypica	Rui	n Leng	th 4 feet		_
Tota	Depth	(ft)14.0	Drilling Company:	cade Drilling		H	lole D	iame	eter:	2 inches		
Depth (ft)	Probe Run	and probing me approximate t	Soil Descrip In text for a proper understa thods. The stratification lin oundaries between soil typ if soil shifted inside sample	ils e	Depth, ft.	Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ff)	
_ _ _ _	R-1	ASPHALT Brown, silty, fi	ne to medium SAND, tr	ace of gravel; moist; SM.	0.	4						
- - - - -		Brown, clayey	SAND, iron-oxide stair	ing; moist; SC.	4. 5.			0				- - - - 5-
- - - - -	R-2	Brown to gray Iens at 7.5 fee		gravel, medium dense san		Ü		0	served During Drilling			- - - -
- - - 10 - - -	R-3	Gray, silty, fin	e to medium SAND; mo	sist; hard, clayey sand layer	9.	0			None Observed			10-
			REFUSAL AT 1 COMPLETED 9/		14	4 .0		0		GP-6-11:13		
			NOTES									
2.	may have Groundw	e slid down in the tu	of the run, the soil sample ground. ring probing and should be					Form	und Transit er Key Bank e, Washingto			
3. 4.	CT = cor	rosion test sample;	Ind explanation of symbols. FR = thermal resistivity same ample; AR = archeological s	ple; EN = environmental sample.		L	_OG	0	F G	EOPROE	BE GP-6	
	2" Plas	stic Tube - No Soil	<u>LEGEND</u> Recovery		Ja	nua	ary 20	012		2	1-1-16604-0	05
3 3		stic Tube with Soil	imated Water Level	SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-7						7		

			LOG OF GEOPR	<u>O</u> B	E						
Date Started	9/22/1	,	Location 1000 NE 45th Street, Seattle, Washington		Gro	unc	l Ele	vation	: Approx.	181.0 feet	
Date Comple	eted 9/22/1	1		ĺ	Тур	ical	Ru	n Leng	th 4 feet		
Total Depth	(ft) 14.0	,	Drilling Company: Cascade Drilling		Hol	e Di	iame	eter:	2 inches		
Depth (ft) Probe Run	and probing approximat	met e b	Soil Description It text for a proper understanding of the subsurface materials hods. The stratification lines indicated below represent the oundaries between soil types. Actual boundaries may be if soil shifted inside sample tubes during extraction.	Depth, ft.		Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ft)
R-1	ASPHALT	_		0.4		11.	_				+=
- ``	Dark brown SP-SM.	, sli	ightly silty, gravelly, fine to medium SAND; moist;								
- - - - - - - - - -	Brown, silty cobbles; mo		ne to medium SAND, trace of gravel and some; SM.	2.5			0 0	Drilling			5-
- - - - - -10 -	-		e to medium SAND, trace of cobbles; moist to weting hydrocarbon odor; SM.	9.0			56	None Observed During Drilling			10-
 - - - - - - - - - - - -	_		REFUSAL AT 14 FEET COMPLETED 9/23/2011	14.0			396		GP-7-11:14		
- - - - - -											-
may have 2. Groundw considere 3. Refer to F 4. CT = corr	e slid down in the ater level, if indiced approximate. KEY for definition rosion test sample	tub ateo ns a e; T	NOTES y was low in the upper part of the run, the soil sample ee prior to removal from the ground. d above, was estimated during probing and should be and explanation of symbols. R = thermal resistivity sample; EN = environmental ample; AR = archeological sample.)G		Form Seattle	und Transit er Key Bank e, Washingto		
	<u> </u>	-	LEGEND					. .			205
A 155.00	stic Tube - No S		Recovery	Jan	uary	/ 20)12		2	1-1-16604-0 	005
2" Plas	stic Tube with S	oil l	Recovery	SH/ Geote	ANN	10	N &	WILS	SON, INC. al Consultants	FIG. A	-8

		LOG OF GEOP	ROE	_						
Date Starte	ed 9/22/11	Location 1000 NE 45th Street, Seattle, Washingto	n	G	round	d Ele	evation	: Approx.	180.5 feet	_
Date Comp	leted 9/22/11			Ty	/pica	Ru	n Leng	th <i>4 f</i> eet	<u> </u>	
Total Depti	1 (ft) 14.0	Drilling Company: Cascade Drilling		Н	ole Di	iame	eter:	2 inches		
Depth (ft) Probe Run	and probing me approximate	Soil Description ont text for a proper understanding of the subsurface material ethods. The stratification lines indicated below represent the boundaries between soil types. Actual boundaries may be t if soil shifted inside sample tubes during extraction.	s #	Deptn, π.	Symbol	PID, ppm	Ground Water	Desc	Number, ription, tesults	Depth (ft)
R-1	ASPHALT	· · · · · · · · · · · · · · · · · · ·	0.4		<i>(</i>)	-				
-	Dark brown, s SP-SM.	lightly silty, gravelly, fine to medium SAND; dry;								_
-		gray, silty, fine to medium SAND, trace of gravel, de staining and mottling; SM.	2.5	5		0				-
-5 R-2						0	erved During Drilling			5-
-10 R-3	1	e to medium SAND, trace of gravel; moist; strong odor at 14 feet; SM.	8.5	5		'	None Observed			10-
-15		REFUSAL AT 14 FEET COMPLETED 9/22/2011	14.	.0		328		GP-8-11:14		15-
-										-
may ha 2. Ground	ve slid down in the tu water level, if indicat	NOTES Bry was low in the upper part of the run, the soil sample libe prior to removal from the ground. Bed above, was estimated during probing and should be	-		_		Form	ınd Transit er Key Bank e, Washingto		
 Refer to CT = co 	orrosion test sample;	and explanation of symbols. TR = thermal resistivity sample; EN = environmental sample; AR = archeological sample.		L	OG		_	EOPROB		
3 2" PI	astic Tube - No Soi	<u>LEGEND</u> Recovery	Jar	nua	ry 20)12		2	I-1-16604-(005
4 100	astic Tube with Soi	•	SH	IAN	INO	N &	WILS	SON, INC.	FIG. A	.9

	_			LOG OF GEOPR	Ol	3E					_	
Date	Started	d 9/22/1	1	Location 1000 NE 45th Street, Seattle, Washington		G	round	d Ele	vation	: Approx.	180.5 feet	
Date	Compl	eted 9/22/1	1	-		T	ypica	Ru	n Leng	th 4 feet		
Total	Depth	(ft) 13.	0	Drilling Company: Cascade Drilling		Н	ole D	iame	eter:	2 inches		
Depth (ft)	Probe Run	and probing approxima	me ite b	Soil Description In text for a proper understanding of the subsurface materials thods. The stratification lines indicated below represent the boundaries between soil types. Actual boundaries may be if soil shifted inside sample tubes during extraction.		Depth, ft.	Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ft)
- - - - - - - - - -	R-1	SM.		brown, silty, gravelly, fine to medium SAND; dry; ravelly, fine to medium SAND; dry; SM.	3.			0	ing Drilling			5-
 - - - - -10	R.3	Gray, silty, at 13 feet;		e to medium SAND; moist; slight hydrocarbon odor	9.	5		0	None Observed During [10-
- - - - - - - -				REFUSAL AT 13 FEET COMPLETED 9/22/2011	13	3.0		25		GP-9-11:13		15-
2. 3. 4.	may hav Groundv consider Refer to CT = co	ve slid down in the water level, if indi red approximate. KEY for definition rosion test samp	e tul cate ns a ole;	NOTES Try was low in the upper part of the run, the soil sample be prior to removal from the ground. It above, was estimated during probing and should be and explanation of symbols. TR = thermal resistivity sample; EN = environmental ample; AR = archeological sample.				 O	Form Seattle	und Transit er Key Bank e, Washingto	E GP-9	
3	2" Pla	istic Tube - No	Soil	LEGEND Recovery	Ja	nua	ary 20)12		2	1-1-16604-	005
		stic Tube with S		· –	Sł	IAI	VNO	N 8	WILS	SON, INC.	FIG. A-	10

		LOG OF GEOPF	ROE	3E	:					
Date Starte	d 9/22/11	Location 1000 NE 45th Street, Seattle, Washington		_		d Ele	evation	: Approx.	178.0 feet	
Date Comp	leted 9/22/11			Ty	pica	l Ru	n Leng			
Total Depth		Drilling Company: Cascade Drilling		Н	ole D	iame	eter:	2 inches		
Depth (ft) Probe Run	and probing mapproximate	Soil Description out text for a proper understanding of the subsurface materials ethods. The stratification lines indicated below represent the boundaries between soil types. Actual boundaries may be not if soil shifted inside sample tubes during extraction.	4	Jepui, it.	Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ft)
- R-1	ASPHALT		0.4							† -
- - - - - - - - - -	Dark brown t SM.	o brown, silty, gravelly, fine to medium SAND; dry;				0				
R-2	Brown, slight dry; SP-SM/S	ly silty to silty, fine to medium SAND, gray mottling; SM.	5.0	•		0	None Observed During Drilling			5
		REFUSAL AT 10 FEET COMPLETED 9/22/2011	10.	.0		0	None	GP-10-11:10		10
										-
- 15 										15-
										- - -
		NOTES ery was low in the upper part of the run, the soil sample ube prior to removal from the ground.		_				und Transit er Key Bank		
conside 3. Refer to 4. CT = co	red approximate. KEY for definitions prrosion test sample	ted above, was estimated during probing and should be and explanation of symbols. TR = thermal resistivity sample; EN = environmental sample; AR = archeological sample.		L	og		Seattle	e, Washingto	<u>n</u>	
3 2" Pi:	astic Tube - No Sc	LEGEND il Recovery	Jar	nua	ry 20	012		2	1-1-16604-0	005
	astic Tube with So		SH	IAN	NNO	N 8	WILS	SON, INC. ai Consultants	FIG. A-	 11


					LOG	OF GEO	PRO	DBE						_
Date	Started	9/22/11	Loc	ation 1000 NE	45th Street, S	eattle, Washin	gton	(Groun	d Ele	vation	Approx.	178.0 feet	
Date	Compl	leted 9/22/11						1	ypica	l Ru	n Leng	th 4 feet		
Total	Depth	(ft) 10.0	Dril	ling Company	: Cascade Drill	ing	_	ŀ	lole D	iame	ter:	2 inches	i	
Depth (ft)	Probe Run	and probing mapproximate	ort text ethods bound	Soil Des for a proper und . The stratification	cription lerstanding of the on lines indicated ill types. Actual l	e subsurface mate I below represent boundaries may b	the	Depth, ff.	Symbol	PID, ppm	Ground Water	Desc	e Number, cription, Results	Depth (ft)
	R-1	ASPHALT						0.4						
_ - _		Dark brown to SM.	o brov	vn, silty, gravel	ly, fine to med	ium SAND; dry	,							-
- - -		Brown, silty, o	gravel	ly SAND; SM.				2.5		O				
—5 ⊢ —	R-2	Brown, silty, 1	fine S	AND; dry; SM.				5.0			Drilling			5-
_ _ _		Gray, silty SA	ND; o	dry; SM.				6.5			None Observed During I			-
_ _ _ _ _ 10				REFUSAL A	NT 10 FEET			10.0		0	None C	GP-11-11:10		10-
- - - :				COMPLETE	D 9/22/2011									
- 15 - 														15-
- - -														-
_														_
				<u>NOTES</u>			_							
1. 2.	may hav Groundv consider	cases where recovery slid down in the toward level, if indicated approximate.	ube prio ed abo	or to removal fron	n the ground. d during probing					;	Form	ind Transit er Key Bank , Washingto		
4.	CT = co	KEY for definitions rrosion test sample; GE = geotechnical	TR = 1	hermal resistivity	sample; EN = en	nvironmental		L	.OG	OI	GE	OPROB	E GP-11	
3	2" Pla	astic Tube - No So	il Reco	<u>LEGEND</u> overv				Janu	ary 20	012		2	1-1-16604-0	005
		stic Tube with Soi		•	Estimated Wat	ter Level		SHA Geotec	NNO hnical ar	N &	WILS	SON, INC. al Consultants	FIG. A-	12

				_	LOG OF GEO	OPRO	OBE						
Date	Started	i	9/22/11	Location 100	O NE 45th Street, Seattle, Washi				d Ele	evation	: Approx.	 177.5 feet	
Date	Comple	eted	9/22/11				T	Гуріса	l Ru	n Leng			
Total	Depth	(ft)	10.0	Drilling Com	pany: Cascade Drilling	_	F	lole D	iame	eter:	2 inches		
Depth (ft)	Probe Run	ı	and probing approximat	Soil eport text for a promethods. The street beaundaries bet	Description oper understanding of the subsurface r attification lines indicated below repres ween soil types. Actual boundaries m inside sample tubes during extraction.	sent the	Depth, ft.	Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ft)
		A	SPHALT				0.4	0.19.	_				1 _
	<u> </u>	_			e of gravel; dry; SM.		1.0						-
-	R-1	SI	P-SM.	·	nedium SAND, trace of gravel; dr	y;	4.0						-
- -5 - - -	R-2	Br	own, silty, f	ine to medium	SAND, trace of gravel; dry; SM.		4.0			ved During Drilling			5
- - - -10	R-3	Ві	own, silty S	AND; dry; SM.	SAL AT 10 FEET		10.0			None Observed	GP-12:11:10		10-
	1				ETED 9/22/2011					l			
15 									1				15
- - -													
2.	may hav Groundv	e slid vater l	down in the tu	be prior to remov	upper part of the run, the soil sample al from the ground. imated during probing and should be					Form	und Transit er Key Bank e, Washingto		
4.	CT = cor	rosior	test sample;	sample; AR = arch	stivity sample; EN = environmental seological sample.					_	OPROB		
3			ube - No Soi	•	2		Janu	ary 20	012		2	1-1-16604-0)05
	2" Pla <i>Run</i> Λ		ube with Soil	Recovery	∑ Estimated Water Level		SHA Geoteci	NNO hnical ar	N 8	WILS vironment	SON, INC. al Consultants	FIG. A-	13

Γ							LOG C	F GEOPF	ROE	3E					_	
Di	ate	Started		10/14/11	Location	1000 NE 4	5th Street, Sea	ttle, Washington		G	roun	d Ek	evation	: Approx.	178.0 feet	_
Da	ate	Comple	eted	10/14/11						T	ypica	l Ru	n Leng	th <i>4 f</i> eet		
To	otal	Depth	(ft)	16.0	Drilling (company: 	SN Northwest			H	ole D	iam	eter:	1.25 incl	nes	
Doneth (ft)	Deptn (π)	Probe Run	and	l probing me pproximate b	rt text for a , thods. The oundaries t	oil Desci proper under stratification petween soil i	ription standing of the st	ubsurface materials elow represent the undaries may be	;	Depth, ft.	Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ft)
//P //////////////////////////////////	10	R R R	Bro to 1	4 feet; woo	aining from	n the upper	feet: ML/SM		14 16	0		0 0	None Observed During Drilling	GP-13:10.0		5
GEOPROBE 21-16604.GPJ 21-16604.GPJ 1/9/12	2.	may have Groundw consider	e slid do rater lev ed appr	own in the tul el, if indicate oximate.	ry was low ir oe prior to re d above, wa	moval from t	during probing and					:	Form	und Transit er Key Bank e, Washingto		_
1-16604.GPJ	4.	CT = cor	rosion 1	est sample;	ΓR = therma ample; AR =	l resistivity sa archeologica	ample; EN = envir	onmental		L	OG	0	F GE	OPROB	E GP-13	
)BE 21	3	2" Plas	stic Tul	be - No Soil		END			Ja	nua	ry 2	012		2	1-1-16604-0	05
SEOPR.		2" Plas - <i>Run N</i>		oe with Soil	Recovery	Ā E	Stimated Water	Level	Sh Geo	IAN otechr	NNO nical ar	N 8	k WILS	SON, INC. al Consultants	FIG. A-1	14

						LC	G OF G	EOPR	ОВ	E						
Date	Started		10/14/11	Lo	ocation 1000	NE 45th Stre	et, Seattle, W	ashington		Gro	une	d Ele	vation	Approx.	178.0 feet	
Date	Comple	ted	10/14/11							Тур	ica	I Ru	n Leng	th <i>4 f</i> ee <i>t</i>		
Total	Depth (ft)	12.0	Dr	rilling Compa	any: ESN Nort	thwest			Hole	e D	iame	eter:	1.25 incl	nes	
Depth (ft)	Probe Run	ar	nd probing me approximate	ort te ethod bour	Soil D ext for a proper ds. The stratific ndaries between	Description understanding cation lines indi n soil types. Ac		resent the may be	Depth, ft.		Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ft)
	R R R	Bri me gra	edium SAN avel; ML/SN ad-brown, si M.	D; п	GRAVEL; mo	ds of fine to r	BE	and	10.0 10.5 12.0			0.2	None Observed During Drilling	GP-14:5.5		5
2.	may have	slid o ater le	down in the tu vel, if indicate	ıbe p	prior to removal	from the ground	run, the soil sam d. obing and should				_		Form	und Transit er Key Bank e, Washingto		
4.	CT = corr	osion	test sample;	TR =	ole; AR = arche	-	¶ = environmenta	al					F GE	OPROB		
3			ıbe - No Soi		•				Janu	ıary	/ 20	012		2	1-1-16604-0)05
	2" Plas Run Ne		ube with Soil	Re	covery	⊈ Estimated	i Water Level		SHA Geoted	NN chnica	VO al an	N &	WILS	SON, INC. al Consultants	FIG. A-	15

					LOG OF GE	OPRO	OBE	=					
Date	Started		10/14/11	Location 1000 NE 4	5th Street, Seattle, Was	-			d Ele	evation	Approx.	178.0 feet	
Date	Comple	eted	10/14/11				T	ypica	l Ru	n Leng	th 4 feet		
Total	Depth	(ft)	12.0	Drilling Company:	SN Northwest		H	lole D	iame	eter:	1.25 inch	es	
Depth (ft)	Probe Run	and	d probing me pproximate l	Soil Desc ort text for a proper under thods. The stratification boundaries between soil		sent the nay be	Depth, ft.	Symbol	PID, ppm	Ground Water	Desci	Number, ription, tesults	Depth (ft)
	R-1	AS	PHALT		·		0.4	0)					
	S. (1995)	me	_	D; dry; layer of gravel	andy SILT to silty, fine to and red brick fragment	I			0				
5 	R-2		ay, silty CL l) CL/ML.	AY to clayey SILT; dr	y; thin, fine sand stringe	ers;	4.5		0	None Observed During Drilling	GP-15:5.0		5-
- - - 10 - - - -	R-3			BOTTOM OF G	SEOPROBE		12.0		0.2	None Ob	GP-15:12.0		10-
_ _ _ _ _ _ 15				COMPLETED									15
—15 - - - - - - -													
				NOTES									
2.	may hav	e slid d ⁄ater lev	own in the tu /el, if indicate	ry was low in the upper p be prior to removal from t	art of the run, the soil sampl the ground. during probing and should b	ł				Form	ind Transit er Key Bank e, Washingto	n	
3. 4.	CT = cor	rosion t	est sample;	and explanation of symbo TR = thermal resistivity s ample; AR = archeologic	ample; EN = environmental		L	OG	Ol	F GE	OPROBI	E GP-15)
3 	2" Pla	stic Tu	be - No Soil	<u>LEGEND</u> Recovery			Janua	ary 2	012		2′	I-1-16604-0)05
		stic Tu	be with Soil	-	Estimated Water Level		SHA Geotech	NNO	N &	WILS	SON, INC.	FIG. A-	16

					LOG OF GEOPR	OE	3E						-
Date	Started	1	10/14/11	I	ocation 1000 NE 45th Street, Seattle, Washington		G	rour	d Ek	evation	: Approx.	178.0 feet	_
Date	Compl	eted	10/14/11				T	ypica	al Ru	n Leng	th 4 feet		
Tota	l Depth	(ft)	14.0	1	Orilling Company: ESN Northwest		Н	ole [Diam	eter:	1.25 inch	es	
Depth (ft)	Probe Run	a	nd probing me approximate t	ort ethi	Soil Description text for a proper understanding of the subsurface materials ods. The stratification lines indicated below represent the undaries between soil types. Actual boundaries may be soil shifted inside sample tubes during extraction.		Depth, ff.	Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ft)
	R-1	_ A	SPHALT			0.4			<u> </u>				-
- - - - -	N-	(F	ill) ML/SM.		velly, fine sandy SILT to silty, fine SAND; moist;		•		0.2				
- -5 - - - -	R-2	-	non-oxide s	oldi	ning from 4 to 5 feet.				0	ved During Drilling	GP-17:6:0		5
- - - - -10	R-3		J		ts at 8.0 feet. ning from 10.0 to 11.0 feet.			1 .	0	None Observed			10-
	R-4	G	ray, gravelly	/, f	ne to medium sandy SILT; moist; (Fill) ML.	- 11 - 11	.0 5						-
7yp: CLP		(F	iii) CL.		velly, fine to medium, sandy, silty CLAY; moist;	13							
Rev: EVP 73		G	ray, gravelly	/, s 	BOTTOM OF GEOPROBE COMPLETED 10/14/2011	14			0.3		GP-17:14:0		15—
Log: EVP													
12	1				NOTES	1		1					1
9. P.	may hav Groundv	e slid vater k	down in the tu	ıbe	NOTES was low in the upper part of the run, the soil sample prior to removal from the ground. above, was estimated during probing and should be		_		,	Form	und Transit er Key Bank e, Washingto	n	
3. 4.	. CT = coi	rosior	n test sample;	TF	d explanation of symbols. = thermal resistivity sample; EN = environmental nple; AR = archeological sample.		L	OG	0	F GE	:OPROB	E GP-17	
² 3E 21-	2" Pla	stic T	ube - No Soil	l R	<u>LEGEND</u> ecovery	Ja	nua	ary 2	012		2	1-1-16604-0	05
EOPROI	4	stic T	ube with Soil		The state of the s	Sh	IA tech	NNC nical a	N 8	k WILS	SON, INC. al Consultants	FIG. A-1	18

			LOG OF GEOPI	ROI	3E	:					
Date Starte	d	10/14/11	Location 1000 NE 45th Street, Seattle, Washington		_		d Ele	evation	: Approx.	178.0 feet	
Date Comp	leted	10/14/11			T	уріса	l Ru	n Leng	th 4 feet		
Total Depth	n (ft)	11.0	Drilling Company: ESN Northwest		Н	lole D	iame	eter:	1.25 inch	ies	
Depth (ff) Probe Run	an	d probing me approximate t	Soil Description ort text for a proper understanding of the subsurface materials thods. The stratification lines indicated below represent the boundaries between soil types. Actual boundaries may be t if soil shifted inside sample tubes during extraction.		Depth, ft.	Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ft)
- R-1	AS	PHALT		0.					_		+-
	fine		own, silty, fine to medium GRAVEL, gravelly, silty, n SAND and gravelly, fine to medium, sandy SILT; SM/ML.				0.1				
- R-2			ravelly, fine to medium sandy SILT; moist at 5 to 6 sand stringers; (Fill) ML.	4.	0		0.3	ed During Drilling			5-
R-3		-	ravelly, silty, fine to medium SAND; wet at 8 to 9 oughout; (Till) SM.	8.9	.0		0.2	None Observed			10-
-15 			BOTTOM OF GEOPROBE COMPLETED 10/14/2011		.0				GP-18:11.0		15
may ha 2. Ground	ve slid d Iwater le	lown in the tu	NOTES ry was low in the upper part of the run, the soil sample be prior to removal from the ground. ed above, was estimated during probing and should be					Form	und Transit er Key Bank e, Washingto		
4. CT = 00	orrosion	test sample;	and explanation of symbols. TR = thermal resistivity sample: EN = environmental ample; AR = archeological sample.		L	og	0	F GE	OPROB	E GP-18	
3 2" PI	astic Tu	ıbe - No Soil	<u>LEGEND</u> Recovery	Ja	nu	ary 2	012		2	1-1-16604-0)05
· 🗀	astic Tu	be with Soil	· · · · · · · · · · · · · · · · · · ·	Sh	IA otech	NNO	N 8	k WILS	SON, INC. al Consultants	FIG. A-	—— 19

			LOG OF GEOPR	OE	3E						
Date Star	rted	10/14/11	Location 1000 NE 45th Street, Seattle, Washington		G	roun	d Ele	evation	: Арргох.	177.5 feet	
Date Con	nplete	d 10/14/11			Ту	/pica	ıl Ru	n Leng	th 4 feet		_
Total Dep	pth (ft)	11.0	Drilling Company: ESN Northwest		Н	ole C	iam	eter:	1.25 inch	ies	
Depth (ft) Probe Run	F	and probing me approximate i	Soil Description ort text for a proper understanding of the subsurface materials thods. The stratification lines indicated below represent the poundaries between soil types. Actual boundaries may be tif soil shifted inside sample tubes during extraction.	Denth #	, i.i.	Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ft)
- R-1			ravelly, fine to medium, sandy SILT; wet at 3.0 and oxide staining throughout; (Till at 8.0 feet) ML. BOTTOM OF GEOPROBE COMPLETED 10/14/2011	- 0.4			0.2	None Observed During Drilling	GP-19:11.0		10-
may 2. Grou cons 3. Refe 4. CT =	have sli undwate sidered a er to KE corrosi	id down in the turn level, if indicate approximate. Y for definitions are to test sample;	NOTES Try was low in the upper part of the run, the soil sample be prior to removal from the ground. Try was estimated during probing and should be and explanation of symbols. Try = thermal resistivity sample; EN = environmental ample; AR = archeological sample.		L	 		Form Seattle	und Transit er Key Bank e, Washingto	-	
	D		LEGEND			ry 2				1-1-16604-0	
∱∏ 2"		Tube - No Soil Tube with Soil						WILS	SON, INC.	FIG. A-	

						LOG	OF GEO	PRO	OBE	=				_		
Date	Started	l	10/14/11	Locat	ion 1000 NE 4		eattle, Washing				d Ele	evation	: Approx.	178.0 feet		
Date	Comple	eted	10/14/11				•		T	Гуріса	I Rui	n Leng				
Total	l Depth ((ft)	9.0	Drillin	ig Company:	y: ESN Northwest					iame	eter:	1.25 inches			
Depth (ft)	Probe Run	ar	nd probing me approximate i	ort text fo ethods. T	Soil Desc or a proper unde The stratification ies between soil	cription erstanding of the In lines indicated	e subsurface mate I below represent t boundaries may be	he	Depth, ft.	Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ft)	
	R-1	ASPHALT								711					 - -	
- - - -				ilty, fine to medium SAND; moist; SM. taining at 2.0 feet.											-	
 5 	R-2										0.2	During Drilling	GP-20:4.0		5-	
- - - - - - 10	R-3	-	Interbeds of	В	OTTOM OF COMPLETED	GEOPROBE			9.0		0.2	None Observed Du	GP-20:9.0		10	
5																
2.	NOTES 1. In some cases where recovery was low in the upper part of the run, the soil sample may have slid down in the tube prior to removal from the ground. 2. Groundwater level, if indicated above, was estimated during probing and should be considered approximate.								Sound Transit Former Key Bank Seattle, Washington							
4.	CT = corr	rosion	test sample;	TR = the sample; A	anation of symbo ermal resistivity s AR = archeologic LEGEND	sample; EN = en	vironmental						OPROB			
3			ube - No Soi	Recove	ery				Janu:	ary 20)12		2	1-1-16604-0 	·05	
	2" Plastic Tube with Soil Recovery ☑ Estimated Water Level Run No.								SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-21							

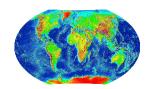
					LOG OF GEOPI	RC	B												
Date	Started		10/14/11		Location 1000 NE 45th Street, Seattle, Washington		Groun	d El	evation	: Approx.	178.0 feet								
Date	Comple	ted	10/14/11				1	Typical Run Length 4 feet											
Total	Depth ((ft)	13.0		Drilling Company: ESN Northwest	ng Company: ESN Northwest						Hole Diameter: 1.25 inches							
Depth (ft)	Probe Run	ar	nd probing m approximate	oort neth	Soil Description text for a proper understanding of the subsurface materials ands. The stratification lines indicated below represent the bundaries between soil types. Actual boundaries may be foil shifted inside sample tubes during extraction.	,	Depth, ft.	Symbol	PID, ppm	Ground Water	Desc	Number, ription, Results	Depth (ft)						
	R-1	AS	SPHALT	_		\dashv	0.4					_	+-						
 - 			own, silty, II) GM.	saı	ndy GRAVEL; dry; brick fragments at 1.3 feet;				0										
_	R-2			-	avelly, fine to medium, sandy SILT and silty, fine to		4.0						-						
—5 - - -		me	edium SAN	10;	ML/SM.				0.2	During Drilling	GP-21:6.0		5						
- - - - -10	R-3	- (Ory from 9 Moist from	to 9.	9.5 feet. 5 to 10. feet. 0 to 12.0 feet.				0	None Observed During			10-						
- - - - -			ay, silty Cl ingers; (Til		Y to clayey SILT; dry; fine to medium sand CL/ML. BOTTOM OF GEOPROBE COMPLETED 10/14/2011		12.0 13.0		0		GP-21:12.0								
- 15 													15—						
- - - -																			
2.	may have	e slid o ater le	down in the to evel, if indica	ube	NOTES was low in the upper part of the run, the soil sample e prior to removal from the ground. above, was estimated during probing and should be				-	Form	und Transit er Key Bank e, Washingto	n							
4.	CT = corr	rosion	test sample	; TF	id explanation of symbols. R = thermal resistivity sample; EN = environmental mple; AR = archeological sample.		L	.OG	0	F GE	OPROB	E GP-21							
3	2" Plas	tic Tu	ube - No So	oil F	<u>LEGEND</u> Recovery	,	lanu	ary 2	012		2	1-1-16604-0)05						
	2" Plastic Tube with Soil Recovery ☑ Estimated Water Level Run No.								SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-22										

		LOG OF GEOPF	ROE	BE					
Date Started	10/14/11	Location 1000 NE 45th Street, Seattle, Washington		Gr	oun	d Ele	evation	: Approx. 177.5 fee	et
Date Compl	eted 10/14/11			Ту	pica	l Ru	n Leng		
Total Depth	(ft) 13.0	Drilling Company: ESN Northwest		Но	le D	iame	eter:	1.25 inches	
Depth (ft) Probe Run	and probing me approximate l	Soil Description ort text for a proper understanding of the subsurface materials orthods. The stratification lines indicated below represent the boundaries between soil types. Actual boundaries may be tif soil shifted inside sample tubes during extraction.	Don'th #	dpui, it.	Symbol	PID, ppm	Ground Water	Sample Number Description, and Results	Depth (ft)
	ASPHALT		0.4		S	<u> </u>			
£.	Brown/gray, g	ravelly, silty, fine to medium SAND; SM.	0.4			0.2			-
R-2 5	- Moist from 8	5.5 to 6.0 feet.				0	uring Drilling	GP-22 :5.5	5
R- 3		y gravelly, fine to medium sandy, clayey SILT and y; thin, fine sand stringers throughout; (Till) ML/CL.	7.0			0	None Observed During Drilling		10-
15		BOTTOM OF GEOPROBE COMPLETED 10/14/2011	13.	0 -		0.2		GP-22:13.0	- - - - - 15—
						-			-
may hav 2. Groundv consider 3. Refer to 4. CT = cor	re slid down in the tu water level, if indicate red approximate. KEY for definitions a rrosion test sample;	NOTES ry was low in the upper part of the run, the soil sample be prior to removal from the ground. ed above, was estimated during probing and should be and explanation of symbols. TR = thermal resistivity sample; EN = environmental					Form Seattle	er Key Bank e, Washington	22
sample;	G⊏ = geotechnical s	sample; AR = archeological sample.		L	JG	U	- GE	OPROBE GP-	·
3 2" Pla	stic Tube - No Soil	LEGEND Recovery	Jar	nua	ry 20)12		21-1-1660	04-005
4 2720	stic Tube with Soil	· · · · · · · · · · · · · · · · · · ·	SH	AN	NO	N 8	WILS	SON, INC. al Consultants FIG.	A-23

	Total Depth: 37 ft. Northing: Top Elevation: ~180.7 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill I	ng C Rig E	lethod: ompany Equipments	y: ent: _	Cascade	Drilling Ro	le Diam.: d Diam.: mmer Typ	8 in. 3"/2.5 I.D. e:
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Water Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
	ASPHALT Medium dense, brown to gray, slightly silty, gravelly, fine to medium SAND, iron-oxide stains; moist; SP-SM.	0.4			1 D	**************************************	2 4			
	Dense to very dense, dark gray, silty, fine to medium SAND, trace of cobbles and gravel; moist to wet; hydrocarbon odor starting at 11.5 feet; SM.	8.0		20	3 D		10			
	- Collected environmental sample: SW-MW1-11:13.			250	5 D	During Drilling (14			
DUN NEV. DUN 199. CEN	Medium dense, brown, fine to medium SAND, trace of silt; wet; some iron-oxide staining; SP.	15.5		158	6 D		16			
Š.	CONTINUED NEXT SHEET		.::::							40
21/10/12	E Environmental Sample Obtained Bent 3.25" O.D. Split Spoon Sample Bent	cometer tonite-C tonite C tonite G	ement of hips/Pe	Grout	Sand Filt	ter			% Fines (< % Water (
PJ SHAIN VIIL.	<u>notes</u>	ter Leve		D		_		Transit (ey Bank /ashingto		
1. Refer to KEY for explanation of symbols, codes, abbreviations and 2. Groundwater level, if indicated above, is for the date specified and 3. USCS designation is based on visual-manual classification and se				ary.	sting.			G OF BOR		
ER LO						-	January SHANN			1-1-16604-005 FIG. A-24
AS							Geotechnic	NON & WILSON al and Environmental Cor	nsultants	Sheet 1 of 2

	Total Depth: 37 ft. Northing:		Drilliı Drill l	ng Co Rig E	ethod: ompany quipme mments	/: ent:	Cas <u>cade</u>	Stem Auger e Drilling	Rod Diam.:	8 in. 3"/2.5 I.D. e:
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	l l	Symbol	PID, ppm	Samples	Ground	water Depth, ft.	PENETRA A Hammer		ANCE (blows/foot) 40 //bs / 30 inches
	Very dense, brown, gravelly, coarse SAND to coarse SAND, trace of gravel; wet; SP.	20.0		83	8 D			The second secon		
	Gray, silty, fine to medium SAND lens at 20 feet; moist.						22	2		
							24	1		
	- Collected environmental sample: SW-MW1-11:25.				9 DE	H	26	3		50/672
					\top		28			
					10 0					50/6*2
					11 D		30			50/6**
							32	2		
					12 🗅		34	1		50/6*2
CLP					13 D		3 3€	5		50/6*4
Rev: DJR Typ: Cl	BOTTOM OF BORING COMPLETED 10/6/2011	37.0								
Log: DJR Rev	0 0 m						38			
oj L								0	20	40 60
JT 1/10/12	* Sample Not Recovered P E Environmental Sample Obtained B 3.25" O.D. Split Spoon Sample B B	iezometer entonite-C entonite C entonite C	Cement Chips/Pe	Grout	Sand Filte	er			% Fines (● % Water (
MASTER LOG E 21-16604.GPJ SHAN WIL.GDT 1/10/12	∑ G	round Wa		el ATC)			For	ound Transit mer Key Bank de, Washingto	n
21-16604.GPJ	NOTES 1. Refer to KEY for explanation of symbols, codes, abbrev 2. Groundwater level, if indicated above, is for the date sp 3. USCS designation is based on visual-manual classificat	ecified an	d may v	ary.	sting.		L(ORING SI	
LOG E 2							Janua	ry 2012	2	1-1-16604-005
MASTER							SHAN Geotechn	INON & WIL	SON, INC.	FIG. A-24 Sheet 2 of 2

	Total Depth: 26.5 ft. Northing: Top Elevation: ~178.6 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:	Drill Drill	illing C ill Rig l	Method: Company Equipme omments	y: <u>C</u> ent:	Cascad <u>e L</u>	<i>Drilling</i> Ro	ole Diam.: od Diam.: ammer Type	8 in. 3"/2.5' e:
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches
	ASPHALT Medium dense to dense, brown to gray, slightly silty, gravelly, fine to medium SAND to silty, gravelly, fine to medium SAND, trace of cobbles; moist; SP-SM/SM.	0.4		1 D	<u> </u>	2			
	- Collected environmental sample: SW-MW2-11:5.			2 D		6			
	- Collected environmental sample: SW-MW2-11:10.			4 DE		10			50/6*.
	Very stiff, gray, slightly sandy CLAY (till), trace of cobbles; moist; CL.	12.5		5 🗖		14			50/6*2
Log: DJR Rev: DJR Typ: CLP	Dense, gray, fine to medium SAND, trace of silt and gravel; moist to wet; SP. - Collected environmental sample: SW-MW2-11:16.	15.5		6 D E	During Drilling ' C	18			
8	CONTINUED NEXT SHEET				<u> [.] </u>	<u> </u>	0 20		40 60
GDT 1/10/12	* Sample Not Recovered	e-Cemen e Chips/F	nt Grout	ut	er 	·	♦	% Fines (< % Water 0	0.075mm)
3PJ SHAN WIL.GDT 1/10/12							Former I	l Transit Key Bank Vashingtor	n
G E 21-16604.GPJ	Refer to KEY for explanation of symbols, codes, abbreviations a Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and	and may	y vary.				G OF BOR		
AASTER LOG E						January SHANN Geotechnica	V 2012 NON & WILSOI al and Environmental Co	N, INC.	FIG. A-25 Sheet 1 of 2


	Total Depth: 26.5 ft. Northing: Top Elevation: ~ 178.6 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:	Dri Dri	lling C II Rig I	fethod: Company Equipments	/: ent: _	Hollow Ste Cascade i		3"/2.5'		
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	water Depth, ft.	PENETRATION RES ▲ Hammer Wt. & Drop			
	- Collected environmental sample: SW-MW2-11:20.	22.5		8 D		22				
	Dense, gray to brown, medium to coarse SAND, trace of gravel; wet; SP.	22.5		9 D		24				
	- Collected environmental sample: SW-MW2-11:25. BOTTOM OF BORING COMPLETED 10/6/2011	26.5		10 D E		26				
	COMPLETED 10/6/2011					28				
				Š		30				
						34				
Тур: СLР						36				
JR Rev: DJR						38				
Log: DJR										
SDT 1/10/12	* Sample Not Recovered □□□□ Piezome E Environmental Sample Obtained □□□□ Bentonit 3.25" O.D. Split Spoon Sample □□□□ Bentonit	e-Cemei e Chips/	nt Grou	Sand Filt it	er			40 60 es (<0.075mm) er Content		
MASTER_LOG_E 21-16604.GPJ SHAN WIL.GDT 1/10/12	∑ Ground <u>NOTES</u>					Sound Trans Former Key Ba Seattle, Washin	ank			
E 21-16604.C	 Refer to KEY for explanation of symbols, codes, abbreviations Groundwater level, if indicated above, is for the date specified USCS designation is based on visual-manual classification and 	and may	vary.				OG OF BORING SW-MW-2			
TER_LOC						January SHANN	/ 2012 NON & WILSON, INC	21-1-16604-005 FIG. A-25		
MAS						Geotechnica	al and Environmental Consultants	Sheet 2 of 2		

Total Depth: 35.5 ft. Northing: Top Elevation: ~ 177.1 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:	Dri	lling Co	ethod: ompany: Equipmer mments:	Cas	cade	tem Auger Hole Diam.: 8 in. Drilling Rod Diam.: 3"/2.5 l.D. Hammer Type:
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60
ASPHALT Medium dense to dense, brown, slightly silty to silty, fine to medium SAND, trace of gravel, interbedded with gray SAND starting at 5 feet; moist; iron-oxide staining throughout; SM. - Collected environmental sample: SW-MW3-11:5.	0.4		1 D		2	
Very stiff, gray, sandy CLAY (till), trace of	- 10.0		3 D		8	50/6*/
gravel; moist; CL. - Collected environmental sample: SW-MW3-11:10. Dense, brown, silty, fine to medium SAND, trace of gravel to slightly silty, medium to coarse SAND, trace of cobbles; moist to wet, wet at 18 feet; SM.	11.5		5 D		12 14	
- Collected environmental sample: SW-MW3-11:15. - Collected environmental sample: SW-MW3-11:18.			F 6 D F Suijiud		16 18	
CONTINUED NEXT SHEET			During			0 20 40 60
E Environmental Sample Obtained S Bentonit	te-Cemer te Chips/	nt Grout	Sand Filter t			♦ % Fines (<0.075mm) • % Water Content
Notes	Water Le		D		•	Sound Transit Former Key Bank Seattle, Washington
1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification and	and may	y vary.	sting.		LO	OG OF BORING SW-MW-3
				SI	IAN	y 2012 21-1-16604-005 NON_& WILSON, INC. FIG. A-26
<u>8</u>				Geo	otechnic	cal and Environmental Consultants Sheet 1 of 2

	Total Depth: 35.5 ft. Northing: Top Elevation: ~ 177.1 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:	Dri Dri	lling C II Rig I	lethod: company Equipments	r: <u>Ca</u> ent:	asc <u>ade</u> i	em Auger Drilling	Hole Diam.: Rod Diam.: Hammer Typ	8 in. 3"/2.5 l.D. e:
ľ	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches
	Dense, brown, silty, fine to medium SAND to sandy SILT, trace of gravel; moist to dry; SM/ML.	20.0		8 D E		22			
	- Collected environmental sample: SW-MW3-11:20.	- 25.0		9 D		24			
	Dense, brown, fine to medium SAND; moist to wet, wet at 30 feet; SP. - Collected environmental sample:	25.0		10 D E		26			634
	SW-MW3-11:25.					28			
	- Collected environmental sample: SW-MW3-11:30.			11 D E		30			
						34			
Typ: CLP	BOTTOM OF BORING COMPLETED 10/7/2011	35.0		12 DE		36			
Rev: DJR	- Collected environmental sample: SW-MW3-11:35.					38			
Log. DJR	LEGEND						0		
DT 1/10/12		te-Ceme te Chips/	nt Grou	Sand Filt	er			% Fines (Water 0	
MASTER_LOG_E 21-16604.GPJ SHAN WIL.GDT 1/10/12	∑ Ground <u>NOTES</u>	Water L					Forn	und Transit ner Key Bank e, Washingto	n
E 21-16604.G	Refer to KEY for explanation of symbols, codes, abbreviations Groundwater level, if indicated above, is for the date specified USCS designation is based on visual-manual classification and	and may	у vагу.			LO	G OF B	ORING SI	W-MW-3
STER LOG					s	anuary SHANN	ION & WIL	SON, INC.	1-1-16604-005 FIG. A-26
ğΨ					G G	eotecnnica	al and Environmer	itai Consultants	Sheet 2 of 2

APPENDIX B

GEOPHYSICAL SUBCONTRACTOR UNDERGROUND STORAGE TANK LOCATE REPORT

September 20, 2011 Our ref: 101-0712.000

Shannon & Wilson, Inc. 400 N. 34th Street, Suite 100 Seattle, WA 98103-8636, USA

Attention: Ms. Dawn Wulf

RE: REPORT FOR UST LOCATE AT THE NE CORNER OF NE 45TH STREET AND ROOSEVELT WAY, SEATTLE, WASHINGTON

This letter report presents the results of the geophysical survey performed by Global Geophysics on September 16th, 2011 at the NE corner of NE 45th Street and Roosevelt Way, Seattle, WA. The objective of the geophysical test was to attempt to locate potential underground storage tanks.

METHODOLOGY, INSTRUMENTATION AND FIELD PROCEDURES

Electromagnetics was used as the primary method. Ground penetrating radar was used on the drive-through concrete pads.

Time Domain Electromagnetic (TDEM)

The time-domain electromagnetic system is capable of detecting buried metal objects. It transmits a pulsed electromagnetic field into the ground, which induces eddy currents in buried metallic objects. These eddy currents generate secondary electromagnetic fields that are detected by the system. The time duration or decay rate, of the secondary EM field is related to the electrical conductivity characteristics of the buried object.

A four-channel (gate) high sensitivity metal detector, Geonics EM61 Mk2A, was used to collect the data along the same traverses as the GPR. The low channel number (1) represents anomalies produced by shallow objects and the high channel number (4) represents anomalies produced by deeper objects. The data was stored digitally and downloaded after the survey for analysis and mapping

Ground Penetrating Radar

The GPR method uses electromagnetic pulses, emitted at regular intervals by an antenna to map subsurface features. The electromagnetic pulses are reflected where changes in electrical properties of materials occur such as changes in lithology or where

underground utilities are present. The reflected electromagnetic energy is received by an antenna, converted into an electrical signal, and recorded on the GPR unit. The data is recorded and viewed in real time on a graphical display that depicts a continuous profile or cross-section image of the subsurface directly beneath the path of the antenna.

The depth of penetration of the GPR signal varies according to antenna frequency and the conductivity of the subsurface material. The depth of subsurface penetration with GPR decreases with an increase in the frequency of the antenna and an increase in soil conductivity. Low frequency antennas (50 to 500 MHz) provide the best compromise between obtaining good subsurface penetration and resolution.

The data at this site were collected using Geophysical Survey Systems, Inc. (GSSI) SIR 2000 GPR system with antennas having center frequencies of 200 and 400 MHz. The data were digitally recorded for post processing.

RESULTS

EM61

The EM61 data (all four gates) are presented in Figure 1. Besides the surface metal objects, there are some buried metal objects are identified:

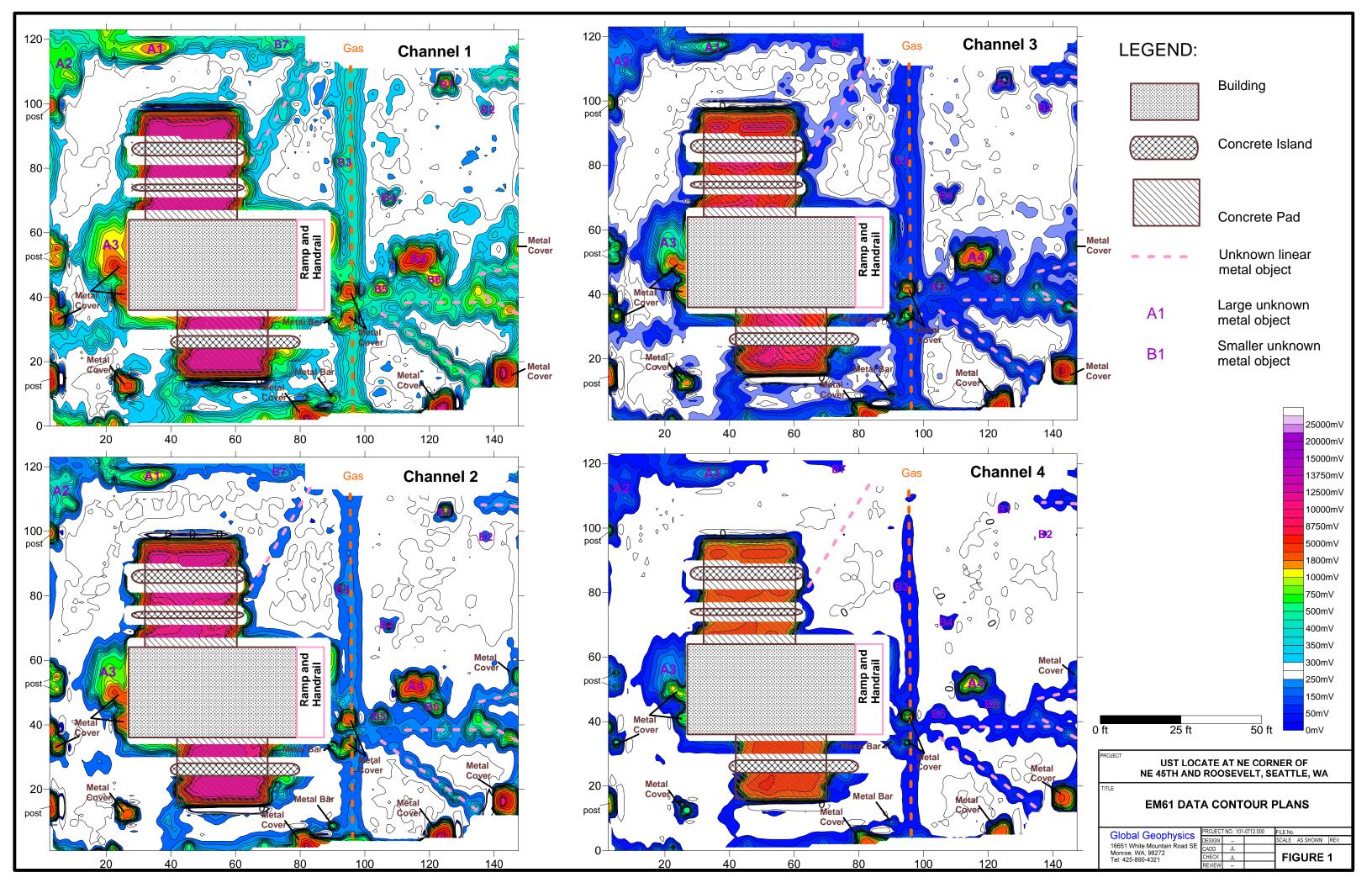
- Linear EM anomalies may be indicative of buried steel pipes;
- Large EM anomalies (A1-A4) may suggest large single metal objects or a cluster of smaller metal objects;
- Smaller EM anomalies (B1-B7) are interpreted single small metal objects.

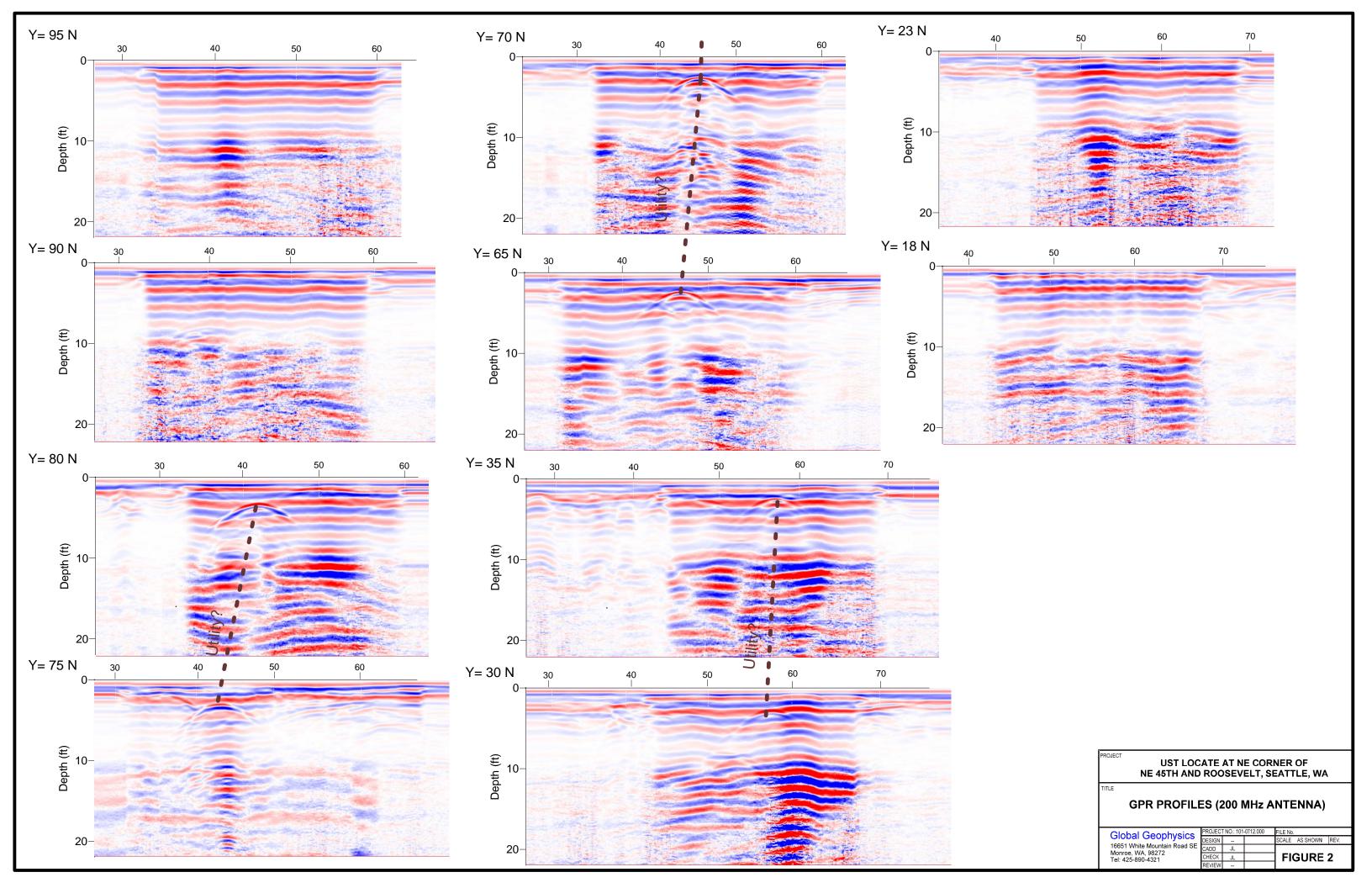
Ground Penetration Radar

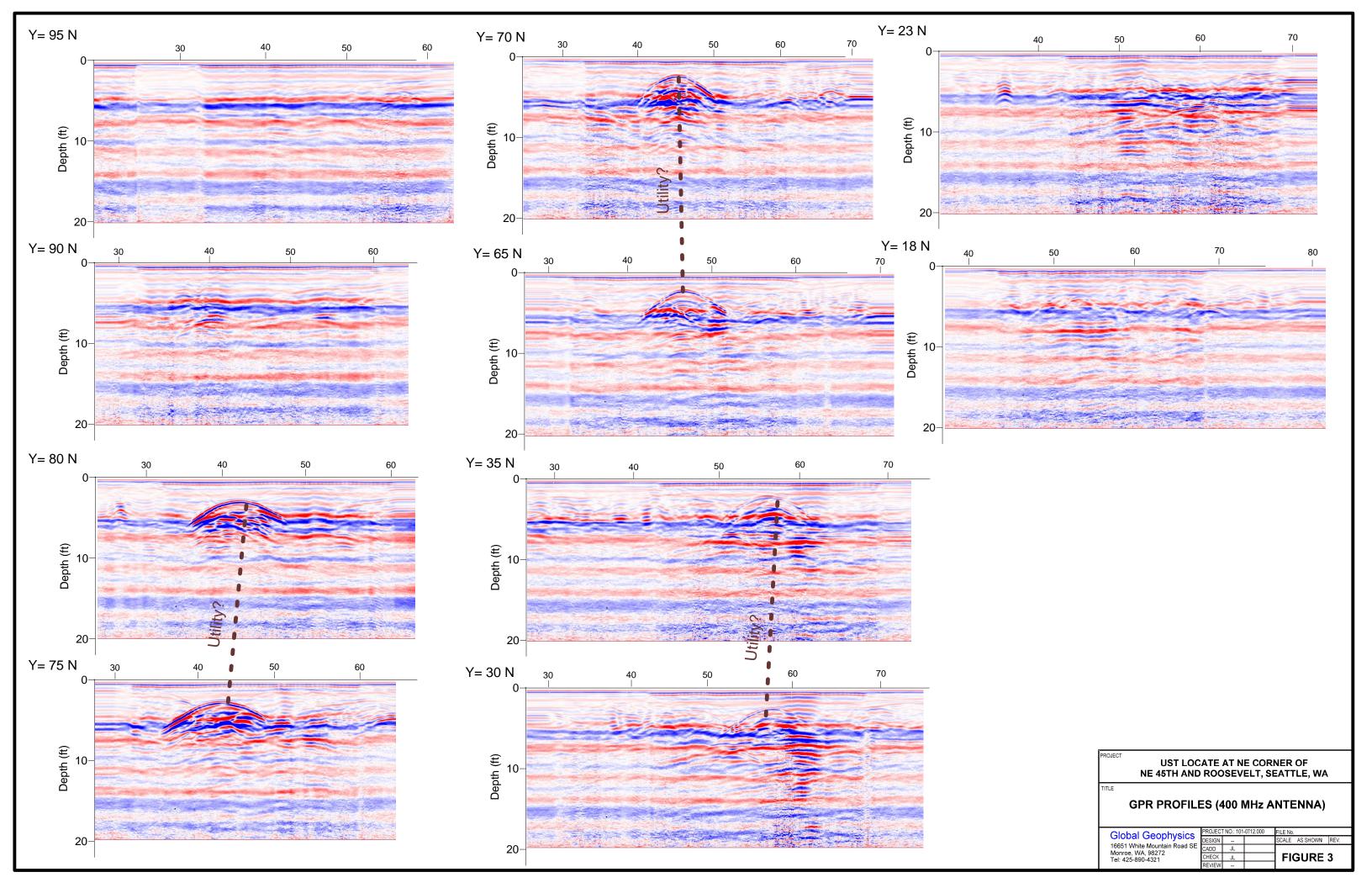
The drive-through concrete pad areas were scanned with both 200 MHz and 400 MHz antennas. The GPR profiles collected with 200 MHz antenna are presented in Figure 2, while The GPR profiles collected with 400 MHz antenna are presented in Figure 3. The linear GPR anomaly is probably buried utilities. However, further ground truthing is recommended to verify the nature of the GPR anomalies.

LIMITATIONS

Global Geophysics's services are conducted in a manner consistent with the level of care and skill ordinarily exercised by other members of the geophysical community currently practicing under similar conditions subject to the time limits and financial and physical constraints applicable to the services. EM and ground penetrating radar (GPR) are remote sensing geophysical methods that may not detect all subsurface objects. Furthermore, it is possible that geophysical anomalies that are interpreted to be USTs may upon intrusive sampling prove to be misinterpreted.


If you have any questions or require additional information, please contact us at 425-890-4321.


Sincerely,


Global Geophysics

John Liu, Ph.D.

Principal Geophysicist

SHANNON & WILSON, INC.

APPENDIX C ANALYTICAL LABORATORY REPORTS

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 4, 2011

Dawn Wulf Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-16604-003

Laboratory Reference No. 1109-146

Dear Dawn:

Enclosed are the analytical results and associated quality control data for samples submitted on September 23, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 4, 2011

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

Case Narrative

Samples were collected on September 22, 2011 and received by the laboratory on September 23, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The gasoline result for sample GP-11-11:10 is attributed to a single peak; refer to 8260 results.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Some MTCA Method A cleanup levels are non-achievable for samples GP-5-11:13 and GP-7-11:14 due to the necessary dilution of the samples.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Laboratory Reference: 1109-146

Project: 21-1-16604-003

NWTPH-Gx

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-11:10					
Laboratory ID:	09-146-01					
Gasoline	ND	6.3	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	68-124				
Client ID:	GP-2-11:9					
Laboratory ID:	09-146-02					
Gasoline	ND	6.4	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	68-124				
Client ID:	GP-3-11:13					
Laboratory ID:	09-146-03					
Gasoline	830	11	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	68-124				
Client ID:	GP-4-11:9.5					
Laboratory ID:	09-146-04					
Gasoline	ND	7.6	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	68-124				
Client ID:	GP-5-11:13					
Laboratory ID:	09-146-05					
Gasoline	410	6.4	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	68-124				
Client ID:	GP-6-11:13					
Laboratory ID:	09-146-06					
Gasoline	ND	6.2	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	68-124				

Samples Submitted: September 23, 2011 Laboratory Reference: 1109-146

Project: 21-1-16604-003

NWTPH-Gx

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-7-11:14					
Laboratory ID:	09-146-07					
Gasoline	60	13	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	68-124				
Client ID:	GP-8-11:14					
Laboratory ID:	09-146-08					
Gasoline	50	13	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	68-124				
Client ID:	GP-9-11:13					
Laboratory ID:	09-146-09					
Gasoline	ND	6.2	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	68-124				
Client ID:	GP-10-11:10					
Laboratory ID:	09-146-10					
Gasoline	ND	7.2	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	68-124				
Client ID:	GP-11-11:10					
Laboratory ID:	09-146-11					
Gasoline	15	6.7	NWTPH-Gx	9-26-11	9-26-11	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	68-124				
Client ID:	GP-12-11:10					
Laboratory ID:	09-146-12					
Gasoline	ND	7.8	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	68-124				

Laboratory Reference: 1109-146

Project: 21-1-16604-003

NWTPH-Gx QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0926S2					
Gasoline	ND	5.0	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	68-124				
Laboratory ID:	MB0926S3					
Gasoline	ND	5.0	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				·
Fluorobenzene	106	68-124				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-14	16-02									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						103	108	68-12 <i>4</i>			
Laboratory ID:	09-14	16-04									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:		•	•				•		•		
Fluorobenzene						109	113	68-124			

Laboratory Reference: 1109-146

Project: 21-1-16604-003

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-11:10					
Laboratory ID:	09-146-01		NIM/TOLL Dec	0.07.44	0.00.44	
Diesel Range Organics	ND cco	58	NWTPH-Dx	9-27-11	9-28-11	
Lube Oil	Parant Passuanu	120 Control Limits	NWTPH-Dx	9-27-11	9-28-11	
Surrogate: o-Terphenyl	Percent Recovery 64	50-150				
0-Terprierryi	04	30-130				
Client ID:	GP-2-11:9					
Laboratory ID:	09-146-02					
Diesel Range Organics	ND	28	NWTPH-Dx	9-27-11	9-27-11	
Lube Oil Range Organics	ND	57	NWTPH-Dx	9-27-11	9-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
, .						
Client ID:	GP-3-11:13					
Laboratory ID:	09-146-03					
Diesel Range Organics	ND	89	NWTPH-Dx	9-27-11	9-27-11	U1
Lube Oil Range Organics	ND	58	NWTPH-Dx	9-27-11	9-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				
Olisert IDs	OD 4.44-0.5					
Client ID:	GP-4-11:9.5					
Laboratory ID: Diesel Range Organics	09-146-04 ND	30	NWTPH-Dx	9-29-11	9-29-11	
Lube Oil Range Organics	ND ND	30 61	NWTPH-DX	9-29-11	9-29-11	
Surrogate:	Percent Recovery	Control Limits	INVV I F III-DX	9-29-11	9-29-11	
o-Terphenyl	113	50-150				
0-Terprierryi	113	30-130				
Client ID:	GP-5-11:13					
Laboratory ID:	09-146-05					
Diesel Range Organics	ND	38	NWTPH-Dx	9-27-11	9-28-11	U1
Lube Oil	77	58	NWTPH-Dx	9-27-11	9-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	67	50-150				
Client ID:	GP-6-11:13					
Laboratory ID:	09-146-06					
Diesel Range Organics	ND	29	NWTPH-Dx	9-27-11	9-27-11	
Lube Oil	330	58	NWTPH-Dx	9-27-11	9-27-11	
Surrogate: o-Terphenyl	Percent Recovery 86	Control Limits 50-150				

Laboratory Reference: 1109-146

Project: 21-1-16604-003

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-7-11:14					
Laboratory ID:	09-146-07		A DA CEROLL D	2.27.44	0.00.44	
Diesel Range Organics	ND	300	NWTPH-Dx	9-27-11	9-28-11	U1
Lube Oil Range Organics	ND 15	58	NWTPH-Dx	9-27-11	9-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	<i>7</i> 5	50-150				
Client ID:	GP-8-11:14					
Laboratory ID:	09-146-08					
Diesel Range Organics	ND	540	NWTPH-Dx	9-27-11	9-28-11	U1
Lube Oil Range Organics	ND	57	NWTPH-Dx	9-27-11	9-28-11	0.
Surrogate:	Percent Recovery	Control Limits			<u> </u>	
o-Terphenyl	81	50-150				
с . с.рсу.	•	00 .00				
Client ID:	GP-9-11:13					
Laboratory ID:	09-146-09					
Diesel Range Organics	ND	27	NWTPH-Dx	9-27-11	9-27-11	
Lube Oil Range Organics	ND	55	NWTPH-Dx	9-27-11	9-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
0" . ID	00.40.44.40					
Client ID:	GP-10-11:10					
Laboratory ID:	09-146-10		NIM/TOLL D	0.07.44	0.07.44	
Diesel Range Organics	ND	30	NWTPH-Dx	9-27-11	9-27-11	
Lube Oil Range Organics	ND D	61	NWTPH-Dx	9-27-11	9-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	GP-11-11:10					
Laboratory ID:	09-146-11					
Diesel Range Organics	ND	30	NWTPH-Dx	9-27-11	9-27-11	
Lube Oil Range Organics	ND	60	NWTPH-Dx	9-27-11	9-27-11	
Surrogate:	Percent Recovery	Control Limits		-	-	
o-Terphenyl	91	50-150				
, ,						
Client ID:	GP-12-11:10					
Laboratory ID:	09-146-12					
Diesel Range Organics	ND	29	NWTPH-Dx	9-27-11	9-27-11	
Lube Oil	59	59	NWTPH-Dx	9-27-11	9-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl						

Laboratory Reference: 1109-146

Project: 21-1-16604-003

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0927S1					
Diesel Range Organics	ND	25	NWTPH-Dx	9-27-11	9-27-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-27-11	9-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Laboratory ID:	MB0929S1					
Diesel Range Organics	ND	25	NWTPH-Dx	9-29-11	9-29-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-29-11	9-29-11	
Surrogate:	Percent Recovery	Control Limits	•		•	
- T I I	447	FO 450				

o-Terphenyl 117 50-150

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	09-14	46-02						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			100	91	50-150			
Laboratory ID:	09-14	46-06						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil	285	252				12	NA	
Surrogate:								
o-Terphenyl			86	91	50-150			
Laboratory ID:	09-19	94-14						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o Torphonyl			120	120	50 150			

o-Terphenyl 120 120 50-150

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-11:10					
Laboratory ID:	09-146-01					
CFC-12	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Chloromethane	ND	0.0068	EPA 8260	9-26-11	9-26-11	
Vinyl Chloride	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Bromomethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Chloroethane	ND	0.0068	EPA 8260	9-26-11	9-26-11	
CFC-11	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Acetone	ND	0.0068	EPA 8260	9-26-11	9-26-11	
Methyl Iodide	ND	0.0068	EPA 8260	9-26-11	9-26-11	
Carbon Disulfide	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Methylene Chloride	ND	0.0068	EPA 8260	9-26-11	9-26-11	
Trans-1,2-Dichloroethene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Methyl t-Butyl Ether	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Vinyl Acetate	ND	0.0068	EPA 8260	9-26-11	9-26-11	
2,2-Dichloropropane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Cis-1,2-Dichloroethene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
2-Butanone	ND	0.0068	EPA 8260	9-26-11	9-26-11	
Bromochloromethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Chloroform	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,1,1-Trichloroethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Carbon Tetrachloride	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,1-Dichloropropene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Benzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2-Dichloroethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Trichloroethene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2-Dichloropropane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Dibromomethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Dichlorobromomethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
2-Chloroethylvinylether	ND	0.0068	EPA 8260	9-26-11	9-26-11	
Cis-1,3-Dichloropropene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Methyl Isobutyl Ketone	ND	0.0068	EPA 8260	9-26-11	9-26-11	
Toluene	ND	0.0068	EPA 8260	9-26-11	9-26-11	
Trans-1,3-Dichloropropene	ND	0.0014	EPA 8260	9-26-11	9-26-11	

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-11:10					
Laboratory ID:	09-146-01					
1,1,2-Trichloroethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Tetrachloroethene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,3-Dichloropropane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
2-Hexanone	ND	0.0068	EPA 8260	9-26-11	9-26-11	
Dibromochloromethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Ethylene dibromide	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Chlorobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,1,1,2-Tetrachloroethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Ethylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
m,p-Xylene	ND	0.0027	EPA 8260	9-26-11	9-26-11	
o-Xylene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Styrene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Bromoform	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Isopropylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Bromobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,1,2,2-Tetrachloroethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichloropropane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
n-Propylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
2-Chlorotoluene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
4-Chlorotoluene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,3,5-Trimethylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
tert-Butylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2,4-Trimethylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
sec-Butylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,3-Dichlorobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
p-Isopropyltoluene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,4-Dichlorobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2-Dichlorobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
n-Butylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2-Dibromo-3-chloropropane	ND	0.0068	EPA 8260	9-26-11	9-26-11	
1,2,4-Trichlorobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Hexachlorobutadiene	ND	0.0068	EPA 8260	9-26-11	9-26-11	
Naphthalene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichlorobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
	Percent Recovery	Control Limits				
Dibromofluoromethane	106	63-127				

 Dibromofluoromethane
 106
 63-127

 Toluene-d8
 103
 65-129

 Benzene, 1-bromo-4-fluoro 92
 55-121

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
GP-2-11:9					
09-146-02					
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0067	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0067	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0067	EPA 8260	9-26-11	9-26-11	
ND	0.0067	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0067	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0067	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0067	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0067	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
ND	0.0067	EPA 8260	9-26-11	9-26-11	
ND	0.0067	EPA 8260	9-26-11	9-26-11	
ND	0.0013	EPA 8260	9-26-11	9-26-11	
	GP-2-11:9 09-146-02 ND ND ND ND ND ND ND ND ND N	GP-2-11:9 09-146-02 0.0013 ND 0.0067 ND 0.0013 ND 0.0013 ND 0.0013 ND 0.0067 ND 0.0067 ND 0.0067 ND 0.0013 ND 0.0067 ND 0.0013 ND <td>GP-2-11:9 09-146-02 0.0013 EPA 8260 ND 0.0067 EPA 8260 ND 0.0013 EPA 8260 ND 0.0013 EPA 8260 ND 0.0067 EPA 8260 ND 0.0013 EPA 8260 ND 0.0067 EPA 8260 ND 0.0067 EPA 8260 ND 0.0067 EPA 8260 ND 0.0067 EPA 8260 ND 0.0013 EPA 8260</td> <td>Result PQL Method Prepared GP-2-11:9 09-146-02 9-26-11 ND 0.0013 EPA 8260 9-26-11 ND 0.0067 EPA 8260 9-26-11 ND 0.0013 EPA 8260 9-26-11 ND 0.0067 EPA 8260 9-26-11 ND 0.0013 EPA 8260 9-26-11 ND 0.0067 EPA 8260 9-26-11 ND 0.0067 EPA 8260 9-26-11 ND 0.0067 EPA 8260 9-26-11 ND 0.0013 EPA 8260 9-26-11</td> <td>Result PQL Method Prepared Analyzed GP-2-11:9 09-146-02 9-146-02 9-26-11 9-26-11 9-26-11 ND 0.0067 EPA 8260 9-26-11 9-26-11 ND ND 0.0013 EPA 8260 9-26-11 9-26-11 ND 26-11 ND</td>	GP-2-11:9 09-146-02 0.0013 EPA 8260 ND 0.0067 EPA 8260 ND 0.0013 EPA 8260 ND 0.0013 EPA 8260 ND 0.0067 EPA 8260 ND 0.0013 EPA 8260 ND 0.0067 EPA 8260 ND 0.0067 EPA 8260 ND 0.0067 EPA 8260 ND 0.0067 EPA 8260 ND 0.0013 EPA 8260	Result PQL Method Prepared GP-2-11:9 09-146-02 9-26-11 ND 0.0013 EPA 8260 9-26-11 ND 0.0067 EPA 8260 9-26-11 ND 0.0013 EPA 8260 9-26-11 ND 0.0067 EPA 8260 9-26-11 ND 0.0013 EPA 8260 9-26-11 ND 0.0067 EPA 8260 9-26-11 ND 0.0067 EPA 8260 9-26-11 ND 0.0067 EPA 8260 9-26-11 ND 0.0013 EPA 8260 9-26-11	Result PQL Method Prepared Analyzed GP-2-11:9 09-146-02 9-146-02 9-26-11 9-26-11 9-26-11 ND 0.0067 EPA 8260 9-26-11 9-26-11 ND ND 0.0013 EPA 8260 9-26-11 9-26-11 ND 26-11 ND

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 2 of 2

Client ID: GP-2-11:9 Laboratory ID: 09-146-02 1,1,2-Trichloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Tetrachloroethene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,3-Dichloropropane ND 0.0013 EPA 8260 9-26-11 9-26-11 2-Hexanone ND 0.0067 EPA 8260 9-26-11 9-26-11 Dibromochloromethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylene dibromide ND 0.0013 EPA 8260 9-26-11 9-26-11 Chlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11					Date	Date	
Laboratory ID: 09-146-02 1,1,2-Trichloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Tetrachloroethene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,3-Dichloropropane ND 0.0013 EPA 8260 9-26-11 9-26-11 2-Hexanone ND 0.0067 EPA 8260 9-26-11 9-26-11 Dibromochloromethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylene dibromide ND 0.0013 EPA 8260 9-26-11 9-26-11 Chlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
1,1,2-Trichloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Tetrachloroethene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,3-Dichloropropane ND 0.0013 EPA 8260 9-26-11 9-26-11 2-Hexanone ND 0.0067 EPA 8260 9-26-11 9-26-11 Dibromochloromethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylene dibromide ND 0.0013 EPA 8260 9-26-11 9-26-11 Chlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	Client ID:	GP-2-11:9					
Tetrachloroethene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,3-Dichloropropane ND 0.0013 EPA 8260 9-26-11 9-26-11 2-Hexanone ND 0.0067 EPA 8260 9-26-11 9-26-11 Dibromochloromethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylene dibromide ND 0.0013 EPA 8260 9-26-11 9-26-11 Chlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	Laboratory ID:	09-146-02					
1,3-Dichloropropane ND 0.0013 EPA 8260 9-26-11 9-26-11 2-Hexanone ND 0.0067 EPA 8260 9-26-11 9-26-11 Dibromochloromethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylene dibromide ND 0.0013 EPA 8260 9-26-11 9-26-11 Chlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	1,1,2-Trichloroethane	ND	0.0013	EPA 8260	9-26-11	9-26-11	
2-Hexanone ND 0.0067 EPA 8260 9-26-11 9-26-11 Dibromochloromethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylene dibromide ND 0.0013 EPA 8260 9-26-11 9-26-11 Chlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	Tetrachloroethene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
Dibromochloromethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylene dibromide ND 0.0013 EPA 8260 9-26-11 9-26-11 Chlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	1,3-Dichloropropane	ND	0.0013	EPA 8260	9-26-11	9-26-11	
Ethylene dibromide ND 0.0013 EPA 8260 9-26-11 9-26-11 Chlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	2-Hexanone	ND	0.0067	EPA 8260	9-26-11	9-26-11	
Chlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11 1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	Dibromochloromethane	ND	0.0013	EPA 8260	9-26-11	9-26-11	
1,1,1,2-Tetrachloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11 Ethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	Ethylene dibromide	ND	0.0013	EPA 8260	9-26-11	9-26-11	
Ethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	Chlorobenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
<i>,</i>	1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260	9-26-11	9-26-11	
m.p-Xylene ND 0.0027 FPA 8260 9-26-11 9-26-11	Ethylbenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
,,	m,p-Xylene	ND	0.0027	EPA 8260	9-26-11	9-26-11	
o-Xylene ND 0.0013 EPA 8260 9-26-11 9-26-11	o-Xylene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
Styrene ND 0.0013 EPA 8260 9-26-11 9-26-11	Styrene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
Bromoform ND 0.0013 EPA 8260 9-26-11 9-26-11	Bromoform	ND	0.0013	EPA 8260	9-26-11	9-26-11	
Isopropylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	Isopropylbenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
Bromobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	Bromobenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
1,1,2,2-Tetrachloroethane ND 0.0013 EPA 8260 9-26-11 9-26-11	1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichloropropane ND 0.0013 EPA 8260 9-26-11 9-26-11	1,2,3-Trichloropropane	ND	0.0013	EPA 8260	9-26-11	9-26-11	
n-Propylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	n-Propylbenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
2-Chlorotoluene ND 0.0013 EPA 8260 9-26-11 9-26-11	2-Chlorotoluene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
4-Chlorotoluene ND 0.0013 EPA 8260 9-26-11 9-26-11	4-Chlorotoluene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
1,3,5-Trimethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	1,3,5-Trimethylbenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
tert-Butylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	tert-Butylbenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
1,2,4-Trimethylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	1,2,4-Trimethylbenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
sec-Butylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	sec-Butylbenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
1,3-Dichlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	1,3-Dichlorobenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
p-Isopropyltoluene ND 0.0013 EPA 8260 9-26-11 9-26-11	p-Isopropyltoluene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
1,4-Dichlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	1,4-Dichlorobenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
1,2-Dichlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	1,2-Dichlorobenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
n-Butylbenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	n-Butylbenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
1,2-Dibromo-3-chloropropane ND 0.0067 EPA 8260 9-26-11 9-26-11	1,2-Dibromo-3-chloropropane	e ND	0.0067	EPA 8260	9-26-11	9-26-11	
1,2,4-Trichlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
Hexachlorobutadiene ND 0.0067 EPA 8260 9-26-11 9-26-11	Hexachlorobutadiene	ND	0.0067	EPA 8260	9-26-11	9-26-11	
Naphthalene ND 0.0013 EPA 8260 9-26-11 9-26-11	Naphthalene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichlorobenzene ND 0.0013 EPA 8260 9-26-11 9-26-11	1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260	9-26-11	9-26-11	
Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane 107 63-127	Dibromofluoromethane	107	63-127				
Toluene-d8 104 65-129	Toluene-d8	104	65-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

91

Benzene, 1-bromo-4-fluoro-

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

Office. Hig/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-11:13					
Laboratory ID:	09-146-03					
CFC-12	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Chloromethane	ND	0.0067	EPA 8260	9-27-11	9-27-11	
Vinyl Chloride	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Bromomethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Chloroethane	ND	0.0067	EPA 8260	9-27-11	9-27-11	
CFC-11	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,1-Dichloroethene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Acetone	ND	0.0067	EPA 8260	9-27-11	9-27-11	
Methyl Iodide	ND	0.0067	EPA 8260	9-27-11	9-27-11	
Carbon Disulfide	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Methylene Chloride	ND	0.0067	EPA 8260	9-27-11	9-27-11	
Trans-1,2-Dichloroethene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Methyl t-Butyl Ether	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,1-Dichloroethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Vinyl Acetate	ND	0.0067	EPA 8260	9-27-11	9-27-11	
2,2-Dichloropropane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Cis-1,2-Dichloroethene	0.0013	0.0013	EPA 8260	9-27-11	9-27-11	
2-Butanone	ND	0.0067	EPA 8260	9-27-11	9-27-11	
Bromochloromethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Chloroform	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Carbon Tetrachloride	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,1-Dichloropropene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Benzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,2-Dichloroethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Trichloroethene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,2-Dichloropropane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Dibromomethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Dichlorobromomethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
2-Chloroethylvinylether	ND	0.0067	EPA 8260	9-27-11	9-27-11	
Cis-1,3-Dichloropropene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Methyl Isobutyl Ketone	ND	0.0067	EPA 8260	9-27-11	9-27-11	
Toluene	ND	0.0067	EPA 8260	9-27-11	9-27-11	
Trans-1,3-Dichloropropene	ND	0.0013	EPA 8260	9-27-11	9-27-11	

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-11:13					
Laboratory ID:	09-146-03					
1,1,2-Trichloroethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Tetrachloroethene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,3-Dichloropropane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
2-Hexanone	ND	0.0067	EPA 8260	9-27-11	9-27-11	
Dibromochloromethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Ethylene dibromide	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Chlorobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Ethylbenzene	0.022	0.0013	EPA 8260	9-27-11	9-27-11	
m,p-Xylene	0.061	0.0027	EPA 8260	9-27-11	9-27-11	
o-Xylene	0.021	0.0013	EPA 8260	9-27-11	9-27-11	
Styrene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Bromoform	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Isopropylbenzene	0.0032	0.0013	EPA 8260	9-27-11	9-27-11	
Bromobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
n-Propylbenzene	0.0051	0.0013	EPA 8260	9-27-11	9-27-11	
2-Chlorotoluene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
4-Chlorotoluene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,3,5-Trimethylbenzene	0.011	0.0013	EPA 8260	9-27-11	9-27-11	
tert-Butylbenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,2,4-Trimethylbenzene	0.033	0.0013	EPA 8260	9-27-11	9-27-11	
sec-Butylbenzene	0.0017	0.0013	EPA 8260	9-27-11	9-27-11	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
p-Isopropyltoluene	0.0018	0.0013	EPA 8260	9-27-11	9-27-11	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
n-Butylbenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,2-Dibromo-3-chloropropane	. ND	0.0067	EPA 8260	9-27-11	9-27-11	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Hexachlorobutadiene	ND	0.0067	EPA 8260	9-27-11	9-27-11	
Naphthalene	0.015	0.0013	EPA 8260	9-27-11	9-27-11	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Surrogate:	Percent Recovery	Control Limits				
Dibramafluaramathana	100	62 127				

Surrogate: Percent Recovery Control Limi
Dibromofluoromethane 102 63-127
Toluene-d8 103 65-129
Benzene, 1-bromo-4-fluoro- 88 55-121

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

Offits. Hig/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-4-11:9.5					
Laboratory ID:	09-146-04					
CFC-12	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Chloromethane	ND	0.0070	EPA 8260	9-26-11	9-26-11	
Vinyl Chloride	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Bromomethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Chloroethane	ND	0.0070	EPA 8260	9-26-11	9-26-11	
CFC-11	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Acetone	ND	0.0070	EPA 8260	9-26-11	9-26-11	
Methyl Iodide	ND	0.0070	EPA 8260	9-26-11	9-26-11	
Carbon Disulfide	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Methylene Chloride	ND	0.0070	EPA 8260	9-26-11	9-26-11	
Trans-1,2-Dichloroethene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Methyl t-Butyl Ether	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Vinyl Acetate	ND	0.0070	EPA 8260	9-26-11	9-26-11	
2,2-Dichloropropane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Cis-1,2-Dichloroethene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
2-Butanone	ND	0.0070	EPA 8260	9-26-11	9-26-11	
Bromochloromethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Chloroform	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,1,1-Trichloroethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Carbon Tetrachloride	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,1-Dichloropropene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Benzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2-Dichloroethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Trichloroethene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2-Dichloropropane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Dibromomethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Dichlorobromomethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
2-Chloroethylvinylether	ND	0.0070	EPA 8260	9-26-11	9-26-11	
Cis-1,3-Dichloropropene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Methyl Isobutyl Ketone	ND	0.0070	EPA 8260	9-26-11	9-26-11	
Toluene	ND	0.0070	EPA 8260	9-26-11	9-26-11	
Trans-1,3-Dichloropropene	ND	0.0014	EPA 8260	9-26-11	9-26-11	

Laboratory Reference: 1109-146

Project: 21-1-16604-003

Benzene, 1-bromo-4-fluoro-

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-4-11:9.5					
Laboratory ID:	09-146-04					
1,1,2-Trichloroethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Tetrachloroethene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,3-Dichloropropane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
2-Hexanone	ND	0.0070	EPA 8260	9-26-11	9-26-11	
Dibromochloromethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Ethylene dibromide	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Chlorobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,1,1,2-Tetrachloroethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Ethylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
m,p-Xylene	ND	0.0028	EPA 8260	9-26-11	9-26-11	
o-Xylene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Styrene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Bromoform	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Isopropylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Bromobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,1,2,2-Tetrachloroethane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichloropropane	ND	0.0014	EPA 8260	9-26-11	9-26-11	
n-Propylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
2-Chlorotoluene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
4-Chlorotoluene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,3,5-Trimethylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
tert-Butylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2,4-Trimethylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
sec-Butylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,3-Dichlorobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
p-Isopropyltoluene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,4-Dichlorobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2-Dichlorobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
n-Butylbenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2-Dibromo-3-chloropropane	. ND	0.0070	EPA 8260	9-26-11	9-26-11	
1,2,4-Trichlorobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Hexachlorobutadiene	ND	0.0070	EPA 8260	9-26-11	9-26-11	
Naphthalene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichlorobenzene	ND	0.0014	EPA 8260	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	63-127				
Toluene-d8	120	65-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

95

Date of Report: October 4, 2011

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-5-11:13					
Laboratory ID:	09-146-05					
CFC-12	ND	0.072	EPA 8260	9-26-11	9-26-11	
Chloromethane	ND	0.36	EPA 8260	9-26-11	9-26-11	
Vinyl Chloride	ND	0.072	EPA 8260	9-26-11	9-26-11	
Bromomethane	ND	0.072	EPA 8260	9-26-11	9-26-11	
Chloroethane	ND	0.36	EPA 8260	9-26-11	9-26-11	
CFC-11	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethene	ND	0.072	EPA 8260	9-26-11	9-26-11	
Acetone	ND	0.36	EPA 8260	9-26-11	9-26-11	
Methyl Iodide	ND	0.36	EPA 8260	9-26-11	9-26-11	
Carbon Disulfide	ND	0.072	EPA 8260	9-26-11	9-26-11	
Methylene Chloride	ND	0.36	EPA 8260	9-26-11	9-26-11	
Trans-1,2-Dichloroethene	ND	0.072	EPA 8260	9-26-11	9-26-11	
Methyl t-Butyl Ether	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethane	ND	0.072	EPA 8260	9-26-11	9-26-11	
Vinyl Acetate	ND	0.36	EPA 8260	9-26-11	9-26-11	
2,2-Dichloropropane	ND	0.072	EPA 8260	9-26-11	9-26-11	
Cis-1,2-Dichloroethene	ND	0.072	EPA 8260	9-26-11	9-26-11	
2-Butanone	ND	0.36	EPA 8260	9-26-11	9-26-11	
Bromochloromethane	ND	0.072	EPA 8260	9-26-11	9-26-11	
Chloroform	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,1,1-Trichloroethane	ND	0.072	EPA 8260	9-26-11	9-26-11	
Carbon Tetrachloride	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,1-Dichloropropene	ND	0.072	EPA 8260	9-26-11	9-26-11	
Benzene	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,2-Dichloroethane	ND	0.072	EPA 8260	9-26-11	9-26-11	
Trichloroethene	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,2-Dichloropropane	ND	0.072	EPA 8260	9-26-11	9-26-11	
Dibromomethane	ND	0.072	EPA 8260	9-26-11	9-26-11	
Dichlorobromomethane	ND	0.072	EPA 8260	9-26-11	9-26-11	
2-Chloroethylvinylether	ND	0.36	EPA 8260	9-26-11	9-26-11	
Cis-1,3-Dichloropropene	ND	0.072	EPA 8260	9-26-11	9-26-11	
Methyl Isobutyl Ketone	ND	0.36	EPA 8260	9-26-11	9-26-11	
Toluene	ND	0.36	EPA 8260	9-26-11	9-26-11	
Trans-1,3-Dichloropropene	ND	0.072	EPA 8260	9-26-11	9-26-11	

Laboratory Reference: 1109-146 Project: 21-1-16604-003

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-5-11:13					
Laboratory ID:	09-146-05					
1,1,2-Trichloroethane	ND	0.072	EPA 8260	9-26-11	9-26-11	
Tetrachloroethene	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,3-Dichloropropane	ND	0.072	EPA 8260	9-26-11	9-26-11	
2-Hexanone	ND	0.36	EPA 8260	9-26-11	9-26-11	
Dibromochloromethane	ND	0.072	EPA 8260	9-26-11	9-26-11	
Ethylene dibromide	ND	0.072	EPA 8260	9-26-11	9-26-11	
Chlorobenzene	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,1,1,2-Tetrachloroethane	ND	0.072	EPA 8260	9-26-11	9-26-11	
Ethylbenzene	ND	0.072	EPA 8260	9-26-11	9-26-11	
m,p-Xylene	ND	0.14	EPA 8260	9-26-11	9-26-11	
o-Xylene	ND	0.072	EPA 8260	9-26-11	9-26-11	
Styrene	ND	0.072	EPA 8260	9-26-11	9-26-11	
Bromoform	ND	0.072	EPA 8260	9-26-11	9-26-11	
Isopropylbenzene	0.076	0.072	EPA 8260	9-26-11	9-26-11	
Bromobenzene	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,1,2,2-Tetrachloroethane	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichloropropane	ND	0.072	EPA 8260	9-26-11	9-26-11	
n-Propylbenzene	0.12	0.072	EPA 8260	9-26-11	9-26-11	
2-Chlorotoluene	ND	0.072	EPA 8260	9-26-11	9-26-11	
4-Chlorotoluene	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,3,5-Trimethylbenzene	0.17	0.072	EPA 8260	9-26-11	9-26-11	
tert-Butylbenzene	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,2,4-Trimethylbenzene	0.25	0.072	EPA 8260	9-26-11	9-26-11	
sec-Butylbenzene	0.12	0.072	EPA 8260	9-26-11	9-26-11	
1,3-Dichlorobenzene	ND	0.072	EPA 8260	9-26-11	9-26-11	
p-Isopropyltoluene	0.12	0.072	EPA 8260	9-26-11	9-26-11	
1,4-Dichlorobenzene	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,2-Dichlorobenzene	ND	0.072	EPA 8260	9-26-11	9-26-11	
n-Butylbenzene	0.099	0.072	EPA 8260	9-26-11	9-26-11	
1,2-Dibromo-3-chloropropane	e ND	0.36	EPA 8260	9-26-11	9-26-11	
1,2,4-Trichlorobenzene	ND	0.072	EPA 8260	9-26-11	9-26-11	
Hexachlorobutadiene	ND	0.36	EPA 8260	9-26-11	9-26-11	
Naphthalene	ND	0.072	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichlorobenzene	ND	0.072	EPA 8260	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	07	63-127				

Surrogate: Percent Recovery Control Limit
Dibromofluoromethane 97 63-127
Toluene-d8 96 65-129
Benzene, 1-bromo-4-fluoro- 88 55-121

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-11:13					
Laboratory ID:	09-146-06					
CFC-12	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Chloromethane	ND	0.0061	EPA 8260	9-26-11	9-26-11	
Vinyl Chloride	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Bromomethane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Chloroethane	ND	0.0061	EPA 8260	9-26-11	9-26-11	
CFC-11	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Acetone	ND	0.0061	EPA 8260	9-26-11	9-26-11	
Methyl lodide	ND	0.0061	EPA 8260	9-26-11	9-26-11	
Carbon Disulfide	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Methylene Chloride	ND	0.0061	EPA 8260	9-26-11	9-26-11	
Trans-1,2-Dichloroethene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Methyl t-Butyl Ether	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Vinyl Acetate	ND	0.0061	EPA 8260	9-26-11	9-26-11	
2,2-Dichloropropane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Cis-1,2-Dichloroethene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
2-Butanone	ND	0.0061	EPA 8260	9-26-11	9-26-11	
Bromochloromethane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Chloroform	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Carbon Tetrachloride	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,1-Dichloropropene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Benzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,2-Dichloroethane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Trichloroethene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,2-Dichloropropane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Dibromomethane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Dichlorobromomethane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
2-Chloroethylvinylether	ND	0.0061	EPA 8260	9-26-11	9-26-11	
Cis-1,3-Dichloropropene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Methyl Isobutyl Ketone	ND	0.0061	EPA 8260	9-26-11	9-26-11	
Toluene	ND	0.0061	EPA 8260	9-26-11	9-26-11	
Trans-1,3-Dichloropropene	ND	0.0012	EPA 8260	9-26-11	9-26-11	

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-6-11:13					
Laboratory ID:	09-146-06					
1,1,2-Trichloroethane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Tetrachloroethene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,3-Dichloropropane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
2-Hexanone	ND	0.0061	EPA 8260	9-26-11	9-26-11	
Dibromochloromethane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Ethylene dibromide	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Chlorobenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Ethylbenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
m,p-Xylene	ND	0.0024	EPA 8260	9-26-11	9-26-11	
o-Xylene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Styrene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Bromoform	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Isopropylbenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Bromobenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260	9-26-11	9-26-11	
n-Propylbenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
2-Chlorotoluene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
4-Chlorotoluene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,3,5-Trimethylbenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
tert-Butylbenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,2,4-Trimethylbenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
sec-Butylbenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
p-Isopropyltoluene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
n-Butylbenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,2-Dibromo-3-chloropropane	. ND	0.0061	EPA 8260	9-26-11	9-26-11	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Hexachlorobutadiene	ND	0.0061	EPA 8260	9-26-11	9-26-11	
Naphthalene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	63-127				

 Dibromofluoromethane
 107
 63-127

 Toluene-d8
 104
 65-129

 Benzene, 1-bromo-4-fluoro 92
 55-121

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-7-11:14					
Laboratory ID:	09-146-07					
CFC-12	ND	0.064	EPA 8260	9-26-11	9-27-11	
Chloromethane	ND	0.32	EPA 8260	9-26-11	9-27-11	
Vinyl Chloride	ND	0.064	EPA 8260	9-26-11	9-27-11	
Bromomethane	ND	0.064	EPA 8260	9-26-11	9-27-11	
Chloroethane	ND	0.32	EPA 8260	9-26-11	9-27-11	
CFC-11	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,1-Dichloroethene	ND	0.064	EPA 8260	9-26-11	9-27-11	
Acetone	ND	0.32	EPA 8260	9-26-11	9-27-11	
Methyl Iodide	ND	0.32	EPA 8260	9-26-11	9-27-11	
Carbon Disulfide	ND	0.064	EPA 8260	9-26-11	9-27-11	
Methylene Chloride	ND	0.32	EPA 8260	9-26-11	9-27-11	
Trans-1,2-Dichloroethene	ND	0.064	EPA 8260	9-26-11	9-27-11	
Methyl t-Butyl Ether	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,1-Dichloroethane	ND	0.064	EPA 8260	9-26-11	9-27-11	
Vinyl Acetate	ND	0.32	EPA 8260	9-26-11	9-27-11	
2,2-Dichloropropane	ND	0.064	EPA 8260	9-26-11	9-27-11	
Cis-1,2-Dichloroethene	ND	0.064	EPA 8260	9-26-11	9-27-11	
2-Butanone	ND	0.32	EPA 8260	9-26-11	9-27-11	
Bromochloromethane	ND	0.064	EPA 8260	9-26-11	9-27-11	
Chloroform	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,1,1-Trichloroethane	ND	0.064	EPA 8260	9-26-11	9-27-11	
Carbon Tetrachloride	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,1-Dichloropropene	ND	0.064	EPA 8260	9-26-11	9-27-11	
Benzene	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,2-Dichloroethane	ND	0.064	EPA 8260	9-26-11	9-27-11	
Trichloroethene	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,2-Dichloropropane	ND	0.064	EPA 8260	9-26-11	9-27-11	
Dibromomethane	ND	0.064	EPA 8260	9-26-11	9-27-11	
Dichlorobromomethane	ND	0.064	EPA 8260	9-26-11	9-27-11	
2-Chloroethylvinylether	ND	0.32	EPA 8260	9-26-11	9-27-11	
Cis-1,3-Dichloropropene	ND	0.064	EPA 8260	9-26-11	9-27-11	
Methyl Isobutyl Ketone	ND	0.32	EPA 8260	9-26-11	9-27-11	
Toluene	ND	0.32	EPA 8260	9-26-11	9-27-11	
Trans-1,3-Dichloropropene	ND	0.064	EPA 8260	9-26-11	9-27-11	

Date of Report: October 4, 2011 Samples Submitted: September 23, 2011 Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-7-11:14					
Laboratory ID:	09-146-07					
1,1,2-Trichloroethane	ND	0.064	EPA 8260	9-26-11	9-27-11	
Tetrachloroethene	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,3-Dichloropropane	ND	0.064	EPA 8260	9-26-11	9-27-11	
2-Hexanone	ND	0.32	EPA 8260	9-26-11	9-27-11	
Dibromochloromethane	ND	0.064	EPA 8260	9-26-11	9-27-11	
Ethylene dibromide	ND	0.064	EPA 8260	9-26-11	9-27-11	
Chlorobenzene	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,1,1,2-Tetrachloroethane	ND	0.064	EPA 8260	9-26-11	9-27-11	
Ethylbenzene	0.092	0.064	EPA 8260	9-26-11	9-27-11	
m,p-Xylene	ND	0.13	EPA 8260	9-26-11	9-27-11	
o-Xylene	ND	0.064	EPA 8260	9-26-11	9-27-11	
Styrene	ND	0.064	EPA 8260	9-26-11	9-27-11	
Bromoform	ND	0.064	EPA 8260	9-26-11	9-27-11	
Isopropylbenzene	0.075	0.064	EPA 8260	9-26-11	9-27-11	
Bromobenzene	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,1,2,2-Tetrachloroethane	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,2,3-Trichloropropane	ND	0.064	EPA 8260	9-26-11	9-27-11	
n-Propylbenzene	0.098	0.064	EPA 8260	9-26-11	9-27-11	
2-Chlorotoluene	ND	0.064	EPA 8260	9-26-11	9-27-11	
4-Chlorotoluene	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,3,5-Trimethylbenzene	0.16	0.064	EPA 8260	9-26-11	9-27-11	
tert-Butylbenzene	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,2,4-Trimethylbenzene	0.34	0.064	EPA 8260	9-26-11	9-27-11	
sec-Butylbenzene	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,3-Dichlorobenzene	ND	0.064	EPA 8260	9-26-11	9-27-11	
p-Isopropyltoluene	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,4-Dichlorobenzene	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,2-Dichlorobenzene	ND	0.064	EPA 8260	9-26-11	9-27-11	
n-Butylbenzene	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,2-Dibromo-3-chloropropane	. ND	0.32	EPA 8260	9-26-11	9-27-11	
1,2,4-Trichlorobenzene	ND	0.064	EPA 8260	9-26-11	9-27-11	
Hexachlorobutadiene	ND	0.32	EPA 8260	9-26-11	9-27-11	
Naphthalene	ND	0.064	EPA 8260	9-26-11	9-27-11	
1,2,3-Trichlorobenzene	ND	0.064	EPA 8260	9-26-11	9-27-11	
Surrogate:	Percent Recovery	Control Limits				
Dibramafluaramathana	102	62 127				

Surrogate: Percent Recovery Control Limit Dibromofluoromethane 103 63-127
Toluene-d8 96 65-129
Benzene, 1-bromo-4-fluoro- 87 55-121

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-8-11:14					
Laboratory ID:	09-146-08					
CFC-12	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Chloromethane	ND	0.0066	EPA 8260	9-27-11	9-27-11	
Vinyl Chloride	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Bromomethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Chloroethane	ND	0.0066	EPA 8260	9-27-11	9-27-11	
CFC-11	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,1-Dichloroethene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Acetone	ND	0.0066	EPA 8260	9-27-11	9-27-11	
Methyl Iodide	ND	0.0066	EPA 8260	9-27-11	9-27-11	
Carbon Disulfide	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Methylene Chloride	ND	0.0066	EPA 8260	9-27-11	9-27-11	
Trans-1,2-Dichloroethene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Methyl t-Butyl Ether	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,1-Dichloroethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Vinyl Acetate	ND	0.0066	EPA 8260	9-27-11	9-27-11	
2,2-Dichloropropane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Cis-1,2-Dichloroethene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
2-Butanone	ND	0.0066	EPA 8260	9-27-11	9-27-11	
Bromochloromethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Chloroform	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Carbon Tetrachloride	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,1-Dichloropropene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Benzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,2-Dichloroethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Trichloroethene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,2-Dichloropropane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Dibromomethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Dichlorobromomethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
2-Chloroethylvinylether	ND	0.0066	EPA 8260	9-27-11	9-27-11	
Cis-1,3-Dichloropropene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Methyl Isobutyl Ketone	ND	0.0066	EPA 8260	9-27-11	9-27-11	
Toluene	ND	0.0066	EPA 8260	9-27-11	9-27-11	
Trans-1,3-Dichloropropene	ND	0.0013	EPA 8260	9-27-11	9-27-11	

Laboratory Reference: 1109-146

Project: 21-1-16604-003

Toluene-d8

Benzene, 1-bromo-4-fluoro-

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-8-11:14					
Laboratory ID:	09-146-08					
1,1,2-Trichloroethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Tetrachloroethene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,3-Dichloropropane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
2-Hexanone	ND	0.0066	EPA 8260	9-27-11	9-27-11	
Dibromochloromethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Ethylene dibromide	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Chlorobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Ethylbenzene	0.20	0.0013	EPA 8260	9-27-11	9-27-11	
m,p-Xylene	0.21	0.0026	EPA 8260	9-27-11	9-27-11	
o-Xylene	0.0042	0.0013	EPA 8260	9-27-11	9-27-11	
Styrene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Bromoform	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Isopropylbenzene	0.23	0.0013	EPA 8260	9-27-11	9-27-11	
Bromobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260	9-27-11	9-27-11	
n-Propylbenzene	0.17	0.0013	EPA 8260	9-27-11	9-27-11	
2-Chlorotoluene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
4-Chlorotoluene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,3,5-Trimethylbenzene	0.25	0.0013	EPA 8260	9-27-11	9-27-11	
tert-Butylbenzene	0.0076	0.0013	EPA 8260	9-27-11	9-27-11	
1,2,4-Trimethylbenzene	0.14	0.077	EPA 8260	9-26-11	9-27-11	
sec-Butylbenzene	0.095	0.0013	EPA 8260	9-27-11	9-27-11	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
p-Isopropyltoluene	0.12	0.0013	EPA 8260	9-27-11	9-27-11	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
n-Butylbenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
1,2-Dibromo-3-chloropropane	. ND	0.0066	EPA 8260	9-27-11	9-27-11	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Hexachlorobutadiene	ND	0.0066	EPA 8260	9-27-11	9-27-11	
Naphthalene	0.083	0.0013	EPA 8260	9-27-11	9-27-11	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260	9-27-11	9-27-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	63-127				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

65-129

55-121

100

111

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-9-11:13					
Laboratory ID:	09-146-09					
CFC-12	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Chloromethane	ND	0.0087	EPA 8260	9-27-11	9-27-11	
Vinyl Chloride	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Bromomethane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Chloroethane	ND	0.0087	EPA 8260	9-27-11	9-27-11	
CFC-11	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,1-Dichloroethene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Acetone	ND	0.0087	EPA 8260	9-27-11	9-27-11	
Methyl Iodide	ND	0.0087	EPA 8260	9-27-11	9-27-11	
Carbon Disulfide	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Methylene Chloride	ND	0.0087	EPA 8260	9-27-11	9-27-11	
Trans-1,2-Dichloroethene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Methyl t-Butyl Ether	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,1-Dichloroethane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Vinyl Acetate	ND	0.0087	EPA 8260	9-27-11	9-27-11	
2,2-Dichloropropane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Cis-1,2-Dichloroethene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
2-Butanone	ND	0.0087	EPA 8260	9-27-11	9-27-11	
Bromochloromethane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Chloroform	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,1,1-Trichloroethane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Carbon Tetrachloride	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,1-Dichloropropene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Benzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,2-Dichloroethane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Trichloroethene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,2-Dichloropropane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Dibromomethane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Dichlorobromomethane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
2-Chloroethylvinylether	ND	0.0087	EPA 8260	9-27-11	9-27-11	
Cis-1,3-Dichloropropene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Methyl Isobutyl Ketone	ND	0.0087	EPA 8260	9-27-11	9-27-11	
Toluene	ND	0.0087	EPA 8260	9-27-11	9-27-11	
Trans-1,3-Dichloropropene	ND	0.0017	EPA 8260	9-27-11	9-27-11	

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-9-11:13					
Laboratory ID:	09-146-09					
1,1,2-Trichloroethane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Tetrachloroethene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,3-Dichloropropane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
2-Hexanone	ND	0.0087	EPA 8260	9-27-11	9-27-11	
Dibromochloromethane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Ethylene dibromide	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Chlorobenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,1,1,2-Tetrachloroethane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Ethylbenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
m,p-Xylene	ND	0.0035	EPA 8260	9-27-11	9-27-11	
o-Xylene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Styrene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Bromoform	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Isopropylbenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Bromobenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,1,2,2-Tetrachloroethane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,2,3-Trichloropropane	ND	0.0017	EPA 8260	9-27-11	9-27-11	
n-Propylbenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
2-Chlorotoluene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
4-Chlorotoluene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,3,5-Trimethylbenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
tert-Butylbenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,2,4-Trimethylbenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
sec-Butylbenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,3-Dichlorobenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
p-Isopropyltoluene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,4-Dichlorobenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,2-Dichlorobenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
n-Butylbenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,2-Dibromo-3-chloropropane	ND	0.0087	EPA 8260	9-27-11	9-27-11	
1,2,4-Trichlorobenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
Hexachlorobutadiene	ND	0.0087	EPA 8260	9-27-11	9-27-11	
Naphthalene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
1,2,3-Trichlorobenzene	ND	0.0017	EPA 8260	9-27-11	9-27-11	
	Percent Recovery	Control Limits				
Dibromofluoromethane	109	63-127				

 Dibromofluoromethane
 109
 63-127

 Toluene-d8
 106
 65-129

 Benzene, 1-bromo-4-fluoro 93
 55-121

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-10-11:10					
Laboratory ID:	09-146-10					
CFC-12	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Chloromethane	ND	0.0074	EPA 8260	9-26-11	9-26-11	
Vinyl Chloride	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Bromomethane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Chloroethane	ND	0.0074	EPA 8260	9-26-11	9-26-11	
CFC-11	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Acetone	ND	0.0074	EPA 8260	9-26-11	9-26-11	
Methyl Iodide	ND	0.0074	EPA 8260	9-26-11	9-26-11	
Carbon Disulfide	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Methylene Chloride	ND	0.0074	EPA 8260	9-26-11	9-26-11	
Trans-1,2-Dichloroethene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Methyl t-Butyl Ether	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Vinyl Acetate	ND	0.0074	EPA 8260	9-26-11	9-26-11	
2,2-Dichloropropane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Cis-1,2-Dichloroethene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
2-Butanone	ND	0.0074	EPA 8260	9-26-11	9-26-11	
Bromochloromethane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Chloroform	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,1,1-Trichloroethane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Carbon Tetrachloride	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,1-Dichloropropene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Benzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,2-Dichloroethane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Trichloroethene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,2-Dichloropropane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Dibromomethane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Dichlorobromomethane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
2-Chloroethylvinylether	ND	0.0074	EPA 8260	9-26-11	9-26-11	
Cis-1,3-Dichloropropene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Methyl Isobutyl Ketone	ND	0.0074	EPA 8260	9-26-11	9-26-11	
Toluene	ND	0.0074	EPA 8260	9-26-11	9-26-11	
Trans-1,3-Dichloropropene	ND	0.0015	EPA 8260	9-26-11	9-26-11	

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-10-11:10					
Laboratory ID:	09-146-10					
1,1,2-Trichloroethane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Tetrachloroethene	0.027	0.0015	EPA 8260	9-26-11	9-26-11	
1,3-Dichloropropane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
2-Hexanone	ND	0.0074	EPA 8260	9-26-11	9-26-11	
Dibromochloromethane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Ethylene dibromide	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Chlorobenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Ethylbenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
m,p-Xylene	ND	0.0030	EPA 8260	9-26-11	9-26-11	
o-Xylene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Styrene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Bromoform	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Isopropylbenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Bromobenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,1,2,2-Tetrachloroethane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichloropropane	ND	0.0015	EPA 8260	9-26-11	9-26-11	
n-Propylbenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
2-Chlorotoluene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
4-Chlorotoluene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,3,5-Trimethylbenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
tert-Butylbenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,2,4-Trimethylbenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
sec-Butylbenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,3-Dichlorobenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
p-Isopropyltoluene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,4-Dichlorobenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,2-Dichlorobenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
n-Butylbenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,2-Dibromo-3-chloropropane	ND	0.0074	EPA 8260	9-26-11	9-26-11	
1,2,4-Trichlorobenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
Hexachlorobutadiene	ND	0.0074	EPA 8260	9-26-11	9-26-11	
Naphthalene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichlorobenzene	ND	0.0015	EPA 8260	9-26-11	9-26-11	
	Percent Recovery	Control Limits				
Dibromofluoromethane	99	63-127				

Surrogate: Percent Recovery Control Limi
Dibromofluoromethane 99 63-127
Toluene-d8 103 65-129
Benzene, 1-bromo-4-fluoro- 88 55-121

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

Omio. mg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-11-11:10					
Laboratory ID:	09-146-11					
CFC-12	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Chloromethane	ND	0.0086	EPA 8260	9-26-11	9-26-11	
Vinyl Chloride	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Bromomethane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Chloroethane	ND	0.0086	EPA 8260	9-26-11	9-26-11	
CFC-11	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Acetone	ND	0.0086	EPA 8260	9-26-11	9-26-11	
Methyl Iodide	ND	0.0086	EPA 8260	9-26-11	9-26-11	
Carbon Disulfide	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Methylene Chloride	ND	0.0086	EPA 8260	9-26-11	9-26-11	
Trans-1,2-Dichloroethene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Methyl t-Butyl Ether	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Vinyl Acetate	ND	0.0086	EPA 8260	9-26-11	9-26-11	
2,2-Dichloropropane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Cis-1,2-Dichloroethene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
2-Butanone	ND	0.0086	EPA 8260	9-26-11	9-26-11	
Bromochloromethane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Chloroform	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,1,1-Trichloroethane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Carbon Tetrachloride	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,1-Dichloropropene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Benzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,2-Dichloroethane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Trichloroethene	0.0021	0.0017	EPA 8260	9-26-11	9-26-11	
1,2-Dichloropropane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Dibromomethane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Dichlorobromomethane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
2-Chloroethylvinylether	ND	0.0086	EPA 8260	9-26-11	9-26-11	
Cis-1,3-Dichloropropene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Methyl Isobutyl Ketone	ND	0.0086	EPA 8260	9-26-11	9-26-11	
Toluene	ND	0.0086	EPA 8260	9-26-11	9-26-11	
Trans-1,3-Dichloropropene	ND	0.0017	EPA 8260	9-26-11	9-26-11	

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-11-11:10					
Laboratory ID:	09-146-11					
1,1,2-Trichloroethane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Tetrachloroethene	15	0.16	EPA 8260	9-27-11	9-27-11	
1,3-Dichloropropane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
2-Hexanone	ND	0.0086	EPA 8260	9-26-11	9-26-11	
Dibromochloromethane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Ethylene dibromide	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Chlorobenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,1,1,2-Tetrachloroethane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Ethylbenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
m,p-Xylene	ND	0.0034	EPA 8260	9-26-11	9-26-11	
o-Xylene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Styrene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Bromoform	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Isopropylbenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Bromobenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,1,2,2-Tetrachloroethane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichloropropane	ND	0.0017	EPA 8260	9-26-11	9-26-11	
n-Propylbenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
2-Chlorotoluene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
4-Chlorotoluene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,3,5-Trimethylbenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
tert-Butylbenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,2,4-Trimethylbenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
sec-Butylbenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,3-Dichlorobenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
p-Isopropyltoluene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,4-Dichlorobenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,2-Dichlorobenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
n-Butylbenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,2-Dibromo-3-chloropropane	ND	0.0086	EPA 8260	9-26-11	9-26-11	
1,2,4-Trichlorobenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
Hexachlorobutadiene	ND	0.0086	EPA 8260	9-26-11	9-26-11	
Naphthalene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichlorobenzene	ND	0.0017	EPA 8260	9-26-11	9-26-11	
	Percent Recovery	Control Limits				
Dibromofluoromethane	110	63-127				
Taluana de	102	65 120				

 Dibromofluoromethane
 110
 63-127

 Toluene-d8
 103
 65-129

 Benzene, 1-bromo-4-fluoro 93
 55-121

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

Onits. Trig/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-12-11:10					
Laboratory ID:	09-146-12					
CFC-12	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Chloromethane	ND	0.0082	EPA 8260	9-26-11	9-26-11	
Vinyl Chloride	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Bromomethane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Chloroethane	ND	0.0082	EPA 8260	9-26-11	9-26-11	
CFC-11	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Acetone	ND	0.0082	EPA 8260	9-26-11	9-26-11	
Methyl Iodide	ND	0.0082	EPA 8260	9-26-11	9-26-11	
Carbon Disulfide	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Methylene Chloride	ND	0.0082	EPA 8260	9-26-11	9-26-11	
Trans-1,2-Dichloroethene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Methyl t-Butyl Ether	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Vinyl Acetate	ND	0.0082	EPA 8260	9-26-11	9-26-11	
2,2-Dichloropropane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Cis-1,2-Dichloroethene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
2-Butanone	ND	0.0082	EPA 8260	9-26-11	9-26-11	
Bromochloromethane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Chloroform	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,1,1-Trichloroethane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Carbon Tetrachloride	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,1-Dichloropropene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Benzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,2-Dichloroethane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Trichloroethene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,2-Dichloropropane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Dibromomethane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Dichlorobromomethane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
2-Chloroethylvinylether	ND	0.0082	EPA 8260	9-26-11	9-26-11	
Cis-1,3-Dichloropropene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Methyl Isobutyl Ketone	ND	0.0082	EPA 8260	9-26-11	9-26-11	
Toluene	ND	0.0082	EPA 8260	9-26-11	9-26-11	
Trans-1,3-Dichloropropene	ND	0.0016	EPA 8260	9-26-11	9-26-11	

Laboratory Reference: 1109-146 Project: 21-1-16604-003

Benzene, 1-bromo-4-fluoro-

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-12-11:10					
Laboratory ID:	09-146-12					
1,1,2-Trichloroethane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Tetrachloroethene	0.10	0.0016	EPA 8260	9-26-11	9-26-11	
1,3-Dichloropropane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
2-Hexanone	ND	0.0082	EPA 8260	9-26-11	9-26-11	
Dibromochloromethane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Ethylene dibromide	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Chlorobenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,1,1,2-Tetrachloroethane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Ethylbenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
m,p-Xylene	ND	0.0033	EPA 8260	9-26-11	9-26-11	
o-Xylene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Styrene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Bromoform	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Isopropylbenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Bromobenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,1,2,2-Tetrachloroethane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichloropropane	ND	0.0016	EPA 8260	9-26-11	9-26-11	
n-Propylbenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
2-Chlorotoluene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
4-Chlorotoluene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,3,5-Trimethylbenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
tert-Butylbenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,2,4-Trimethylbenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
sec-Butylbenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,3-Dichlorobenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
p-Isopropyltoluene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,4-Dichlorobenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,2-Dichlorobenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
n-Butylbenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,2-Dibromo-3-chloropropane	. ND	0.0082	EPA 8260	9-26-11	9-26-11	
1,2,4-Trichlorobenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Hexachlorobutadiene	ND	0.0082	EPA 8260	9-26-11	9-26-11	
Naphthalene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichlorobenzene	ND	0.0016	EPA 8260	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	63-127				
Toluene-d8	105	65-129				
_ ,, , ,						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

92

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/kg

Offics. Hig/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0926S1					
CFC-12	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Chloromethane	ND	0.0050	EPA 8260	9-26-11	9-26-11	
Vinyl Chloride	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Bromomethane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Chloroethane	ND	0.0050	EPA 8260	9-26-11	9-26-11	
CFC-11	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Acetone	ND	0.0050	EPA 8260	9-26-11	9-26-11	
Methyl Iodide	ND	0.0050	EPA 8260	9-26-11	9-26-11	
Carbon Disulfide	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Methylene Chloride	ND	0.0050	EPA 8260	9-26-11	9-26-11	
Trans-1,2-Dichloroethene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Vinyl Acetate	ND	0.0050	EPA 8260	9-26-11	9-26-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Cis-1,2-Dichloroethene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
2-Butanone	ND	0.0050	EPA 8260	9-26-11	9-26-11	
Bromochloromethane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Chloroform	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Benzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Trichloroethene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Dibromomethane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Dichlorobromomethane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
2-Chloroethylvinylether	ND	0.0050	EPA 8260	9-26-11	9-26-11	
Cis-1,3-Dichloropropene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	9-26-11	9-26-11	
Toluene	ND	0.0050	EPA 8260	9-26-11	9-26-11	
Trans-1,3-Dichloropropene	ND	0.0010	EPA 8260	9-26-11	9-26-11	

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0926S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Tetrachloroethene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
2-Hexanone	ND	0.0050	EPA 8260	9-26-11	9-26-11	
Dibromochloromethane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Ethylene dibromide	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Chlorobenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Ethylbenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
m,p-Xylene	ND	0.0020	EPA 8260	9-26-11	9-26-11	
o-Xylene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Styrene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Bromoform	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Isopropylbenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Bromobenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	9-26-11	9-26-11	
n-Propylbenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
n-Butylbenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,2-Dibromo-3-chloropropane	. ND	0.0050	EPA 8260	9-26-11	9-26-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	9-26-11	9-26-11	
Naphthalene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 108 63-127
Toluene-d8 104 65-129
Benzene, 1-bromo-4-fluoro- 91 55-121

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/kg

Offits. Hig/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0927S1					
CFC-12	ND ND	0.0010	EPA 8260	9-27-11	9-27-11	
Chloromethane	ND	0.0050	EPA 8260	9-27-11	9-27-11	
Vinyl Chloride	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Bromomethane	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Chloroethane	ND	0.0050	EPA 8260	9-27-11	9-27-11	
CFC-11	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Acetone	ND	0.0050	EPA 8260	9-27-11	9-27-11	
Methyl lodide	ND	0.0050	EPA 8260	9-27-11	9-27-11	
Carbon Disulfide	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Methylene Chloride	ND	0.0050	EPA 8260	9-27-11	9-27-11	
Trans-1,2-Dichloroethene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Vinyl Acetate	ND	0.0050	EPA 8260	9-27-11	9-27-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Cis-1,2-Dichloroethene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
2-Butanone	ND	0.0050	EPA 8260	9-27-11	9-27-11	
Bromochloromethane	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Chloroform	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Benzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Trichloroethene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Dibromomethane	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Dichlorobromomethane	ND	0.0010	EPA 8260	9-27-11	9-27-11	
2-Chloroethylvinylether	ND	0.0050	EPA 8260	9-27-11	9-27-11	
Cis-1,3-Dichloropropene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	9-27-11	9-27-11	
Toluene	ND	0.0050	EPA 8260	9-27-11	9-27-11	
Trans-1,3-Dichloropropene	ND	0.0010	EPA 8260	9-27-11	9-27-11	

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
_aboratory ID:	MB0927S1					
1,1,2-Trichloroethane	ND ND	0.0010	EPA 8260	9-27-11	9-27-11	
Tetrachloroethene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	9-27-11	9-27-11	
2-Hexanone	ND	0.0050	EPA 8260	9-27-11	9-27-11	
Dibromochloromethane	ND	0.0030	EPA 8260	9-27-11	9-27-11	
Ethylene dibromide	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Chlorobenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
	ND ND				-	
1,1,1,2-Tetrachloroethane	ND ND	0.0010 0.0010	EPA 8260	9-27-11 9-27-11	9-27-11	
Ethylbenzene			EPA 8260	_	9-27-11	
m,p-Xylene	ND	0.0020	EPA 8260	9-27-11	9-27-11	
o-Xylene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Styrene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Bromoform 	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Isopropylbenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Bromobenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	9-27-11	9-27-11	
n-Propylbenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
n-Butylbenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260	9-27-11	9-27-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	9-27-11	9-27-11	
Naphthalene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	9-27-11	9-27-11	
Surrogate:	Percent Recovery	Control Limits			<u> </u>	
D'' " " "	100	22				

 Dibromofluoromethane
 103
 63-127

 Toluene-d8
 103
 65-129

 Benzene, 1-bromo-4-fluoro 91
 55-121

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	Recovery Limits		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	26S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0544	0.0578	0.0500	0.0500	109	116	70-130	6	19	
Benzene	0.0534	0.0527	0.0500	0.0500	107	105	70-125	1	15	
Trichloroethene	0.0527	0.0514	0.0500	0.0500	105	103	70-122	2	14	
Toluene	0.0509	0.0510	0.0500	0.0500	102	102	73-120	0	16	
Chlorobenzene	0.0458	0.0458	0.0500	0.0500	92	92	74-109	0	12	
Surrogate:										
Dibromofluoromethan	ne				100	104	63-127			
Toluene-d8					96	100	65-129			
Benzene, 1-bromo-4-	fluoro-				88	90	55-121			

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	Recovery Limits		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	927S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0539	0.0559	0.0500	0.0500	108	112	70-130	4	19	
Benzene	0.0534	0.0524	0.0500	0.0500	107	105	70-125	2	15	
Trichloroethene	0.0497	0.0530	0.0500	0.0500	99	106	70-122	6	14	
Toluene	0.0500	0.0534	0.0500	0.0500	100	107	73-120	7	16	
Chlorobenzene	0.0454	0.0454	0.0500	0.0500	91	91	74-109	0	12	
Surrogate:										
Dibromofluoromethan	е				97	105	63-127			
Toluene-d8					94	102	65-129			
Benzene, 1-bromo-4-	fluoro-				85	89	55-121			

Samples Submitted: September 23, 2011

Soil

Laboratory Reference: 1109-146

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A

Matrix:

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-146-01 GP-1-11:10					
Arsenic	ND	12	6010B	9-28-11	9-29-11	
Cadmium	ND	0.58	6010B	9-28-11	9-29-11	
Chromium	47	0.58	6010B	9-28-11	9-29-11	
Lead	ND	5.8	6010B	9-28-11	9-29-11	
Mercury	ND	0.29	7471A	9-26-11	9-26-11	
Lab ID:	09-146-02 GP-2-11:9					
Arsenic	ND	11	6010B	9-28-11	9-29-11	
Cadmium	ND	0.57	6010B	9-28-11	9-29-11	
Chromium	37	0.57	6010B	9-28-11	9-29-11	
Lead	ND	5.7	6010B	9-28-11	9-29-11	
Mercury	ND	0.28	7471A	9-26-11	9-26-11	
Lab ID: Client ID:	09-146-03 GP-3-11:13					
Arsenic	ND	12	6010B	9-28-11	9-29-11	
Cadmium	ND	0.58	6010B	9-28-11	9-29-11	
Chromium	30	0.58	6010B	9-28-11	9-29-11	
Lead	ND	5.8	6010B	9-28-11	9-29-11	
Mercury	ND	0.29	7471A	9-26-11	9-26-11	

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Offics.	під/ку (рріп)				. .	
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-146-04					
Client ID:	GP-4-11:9.5					
Arsenic	ND	12	6010B	9-28-11	9-29-11	
Cadmium	ND	0.61	6010B	9-28-11	9-29-11	
Chromium	54	0.61	6010B	9-28-11	9-29-11	
Lead	ND	6.1	6010B	9-28-11	9-29-11	
Mercury	ND	0.3	7471A	9-26-11	9-26-11	
Lab ID:	09-146-05					
Client ID:	GP-5-11:13					
Arsenic	ND	12	6010B	9-28-11	9-29-11	
Cadmium	ND	0.58	6010B	9-28-11	9-29-11	
Chromium	53	0.58	6010B	9-28-11	9-29-11	
Lead	ND	5.8	6010B	9-28-11	9-29-11	
Mercury	ND	0.29	7471A	9-26-11	9-26-11	
Lab ID:	09-146-06					
Client ID:	GP-6-11:13					
Arsenic	ND	12	6010B	9-28-11	9-29-11	
Cadmium	ND	0.58	6010B	9-28-11	9-29-11	
Chromium	45	0.58	6010B	9-28-11	9-29-11	
Lead	ND	5.8	6010B	9-28-11	9-29-11	
Mercury	ND	0.29	7471A	9-26-11	9-26-11	

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Offics.	під/ку (рріп)				. .	
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-146-07					
Client ID:	GP-7-11:14					
Arsenic	ND	12	6010B	9-28-11	9-29-11	
Cadmium	ND	0.58	6010B	9-28-11	9-29-11	
Chromium	38	0.58	6010B	9-28-11	9-29-11	
Lead	ND	5.8	6010B	9-28-11	9-29-11	
Mercury	ND	0.29	7471A	9-26-11	9-26-11	
Lab ID:	09-146-08					
Client ID:	GP-8-11:14					
Arsenic	ND	11	6010B	9-28-11	9-29-11	
Cadmium	ND	0.57	6010B	9-28-11	9-29-11	
Chromium	45	0.57	6010B	9-28-11	9-29-11	
Lead	ND	5.7	6010B	9-28-11	9-29-11	
Mercury	ND	0.28	7471A	9-26-11	9-26-11	
Lab ID:	09-146-09					
Client ID:	GP-9-11:13					
Arsenic	ND	11	6010B	9-28-11	9-29-11	
Cadmium	ND	0.55	6010B	9-28-11	9-29-11	
Chromium	38	0.55	6010B	9-28-11	9-29-11	
Lead	ND	5.5	6010B	9-28-11	9-29-11	
Mercury	ND	0.27	7471A	9-26-11	9-26-11	
Mercury	ND	0.27	7471A	9-26-11	9-26-11	

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Offics.	тід/кд (рріті)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-146-10					
Client ID:	GP-10-11:10					
Arsenic	ND	12	6010B	9-28-11	9-29-11	
Cadmium	ND	0.61	6010B	9-28-11	9-29-11	
Chromium	59	0.61	6010B	9-28-11	9-29-11	
Lead	ND	6.1	6010B	9-28-11	9-29-11	
Mercury	ND	0.3	7471A	9-26-11	9-26-11	
Lab ID:	09-146-11					
Client ID:	GP-11-11:10					
Arsenic	ND	12	6010B	9-28-11	9-29-11	
Cadmium	ND	0.60	6010B	9-28-11	9-29-11	
Chromium	56	0.60	6010B	9-28-11	9-29-11	
Lead	ND	6.0	6010B	9-28-11	9-29-11	
Mercury	ND	0.30	7471A	9-26-11	9-26-11	
Lab ID:	09-146-12					
Client ID:	GP-12-11:10					
Arsenic	ND	12	6010B	9-28-11	9-29-11	
Cadmium	ND	0.59	6010B	9-28-11	9-29-11	
Chromium	56	0.59	6010B	9-28-11	9-29-11	
Lead	ND	5.9	6010B	9-28-11	9-29-11	
Mercury	ND	0.29	7471A	9-26-11	9-26-11	

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted: 9-28-11
Date Analyzed: 9-29-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0928S1

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

TOTAL METALS EPA 7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 9-26-11
Date Analyzed: 9-26-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0926S2

Analyte Method Result PQL

Mercury 7471A **ND** 0.25

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 9-28-11
Date Analyzed: 9-29-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-148-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	0.601	ND	NA	0.50	
Chromium	36.5	36.1	1	0.50	
Lead	10.3	8.84	15	5.0	

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

TOTAL METALS EPA 7471A DUPLICATE QUALITY CONTROL

Date Extracted: 9-26-11
Date Analyzed: 9-26-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-148-01

Sample Duplicate

Analyte Result Repl PQL Flags

Mercury ND ND NA 0.25

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted: 9-28-11
Date Analyzed: 9-29-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-148-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	98.4	98	101	101	3	
Cadmium	50.0	49.2	97	50.3	99	2	
Chromium	100	132	96	135	98	2	
Lead	250	248	95	252	97	2	

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

TOTAL METALS EPA 7471A MS/MSD QUALITY CONTROL

Date Extracted: 9-26-11
Date Analyzed: 9-26-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 09-148-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.500	0.533	107	0.543	109	2	

Samples Submitted: September 23, 2011

Laboratory Reference: 1109-146

Project: 21-1-16604-003

% MOISTURE

Date Analyzed: 9-26-11

Client ID	Lab ID	% Moisture
GP-1-11:10	09-146-01	13
GP-2-11:9	09-146-02	12
GP-3-11:13	09-146-03	13
GP-4-11:9.5	09-146-04	18
GP-5-11:13	09-146-05	13
GP-6-11:13	09-146-06	13
GP-7-11:14	09-146-07	14
GP-8-11:14	09-146-08	12
GP-9-11:13	09-146-09	8
GP-10-11:10	09-146-10	18
GP-11-11:10	09-146-11	16
GP-12-11:10	09-146-12	15

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.
- Z The gasoline result is attributed to a single peak; refer to EPA 8260B results.
- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- **RPD Relative Percent Difference**

OnSite Environmental Inc.

Chain of Custody

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		naround Requ n working days			La	abo	rat	ory	Nu	ımk	er:										0	9 -	14	6
Phone: (425) 883-3881 • www.onsite-env.com Company:		(Check One)																						
SHANNON ₹ WILSON Project Number:	San	me Day	1 Day				1	-1							SIM		ne)			-				
21-1-16604-003 Project Name:	2 Da	ays	3 Days											81A	3270D/	151A	ircle o			METALLS				
Project Name: KEY BANK	Star	ndard (7 Days)								260B	5	evel)		es 80	sides 8	ides 8	tals)(c		364	Z E				
Project Manager:	(TP	H analysis 5 Da	ays)	iners						iles 8%	D/SIN	ow-le		esticid	Pestic	Herbici	A Me		se) 16	5				
DAWN WULF Sampled by: DJR				Conta		втех			30B	Volat	s 827(el PAH	WIS/		ine Pe	phorus	Acid F		(0)	d grea	DISS MTCA				
DOR		(other)		er of	H-HC	H-Gx/	H-Gx	H-Dx	es 826	natec	olatile ow-lev	3270C	8082	ochlor	soydo	nated	ICRA	Metal	oil and	1 55				sture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA (MTCA Metals)(circle one)	TCLP Metals	HEM (oil and grease) 1664	ā				% Moisture
1 GP-1-11:10	9/22/1	0820	Soil	5	•		X	X	X								X							8
2 GP-2-11:9	9/22/19	0855	SOIL	5	•		X	X	X							,	X							
2 GP-2-11:9 3 GP-3-11:13 4 1-P-4-11:95	1	0930	<u> </u>	5			X	X	X								Ł							
0. 1.3		0955		5			X	X	X								Y							
5 GP-5-11:13		1035		5			X	X	X								X							
6 ap-6-11:13		1120		5			×	X	X								X							
6 GP-6-11:13 7 GP-7-11:14		1155		5			X	X	X								X							
8 61-8-11:14		1295		5			X	λ	x								X							
9 01-9-11:13		1325		5			x	X	X								X							
10 GP-10-11:10	1	1350	b	5			X	X	X								X							4
Signature	C	ompany				Date	-		Time			Com	ment	s/Sp	ecial	Instru	ection	S					Angele Lie	
Relinquished		Stw			•	ع	AP2	5/1/	4	91.	5													
Received Omai Zamora		Speed	4			0	9(2	13	(0 31	6													
Relinquished		1	/				+1		(1:0	15													
Received		08	3		<u></u>	7/2	3/1	1	10	45	5													
Relinquished																								
Received																								
Reviewed/Date		Reviewed/Dat										Chro	matog	rams	with f	inal re	port [
D	ata Package:	Level III 🗌 Le	evel IV E	lectror	ic Data	a Deli	verab	les (E	DDs)															

OnSite Environmental Inc.

Chain of Custody

Page 2 of Z

14648 NE 95th Street • Redmond, WA 98052		around Requ working day			La	abc	rat	ory	Νι	ımk	oer:									US	1 -	14	0					
Phone: (425) 883-3881 • www.onsite-env.com Company:		(Check One)																										
Project Number:	Sam	e Day	1 Day												SIM		(əu											
Project Number: 21-1-16609-003	2 Da	ays	3 Days											81A	8270D/8	3151A	MTCA Metals (circle one)											
Project Number: 21-1-16604-003 Project Name: KEY BANK		dard (7 Days)		S						8260B	M	-level)		ides 80	ticides	icides 8	leta)		1664									
Project Manager: DAWN WULF		(TPH analysis 5 Days)		(TEN analysis 5 Days)		H analysis 5 Days)		ontaine		EX				olatiles	270D/S PAHs)	M (low	MOI) IN		rus Pes	d Herb	TCAN		rease)					
Sampled by:		(other)		r of Co	HCID	I-Gx/BT	-Gx	-DX	Volatiles 8260B	Halogenated Volatiles 8260B	latiles 8	PAHs 8270D/SIM (low-level)	082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	CRA /	/etals	HEM (oil and grease) 1664				ture)				
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatile	Haloger	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8	PCBs 8082	Organo	Organo	Chlorin	Total RCRA /	TCLP Metals	HEM (o				% Moisture	10 11.0/				
11 69-11-11:10	9(22/11	1420	Soil	5			4	+	X								4						X	Ç				
12 GP-12-11:10	9/22/11	1445	MOIL	5			+	7	1								X						1					
											-												+					
																				+			-	_				
																				_			_	_				
																							_					
Signature	Co	ompany				Date		A majorije.	Time	9		Cor	mmer	ts/Sp	ecial	Instru	uction	15										
Relinquished	-	StW				8	12	3/4	0	81	5																	
Received Onar Tamora		Speed	Ly			9	2	3	lo	1. (0																	
Relinquished		"					1		(0) 1	45																	
Received	(08/	E			96	231	11	K	24	5																	
Relinquished																												
Received																								_				
Reviewed/Date		Reviewed/Da	ite									Chro	omato	grams	s with	final re	eport											
Di	ata Package: I	ackage: Level III Level IV Electronic Data Deliverables (EDDs)								\square																		

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 18, 2011

Dawn Wulf Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-16604-003 Laboratory Reference No. 1109-146B

Dear Dawn:

Enclosed are the analytical results and associated quality control data for samples submitted on September 23, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 21-1-16604-003

Case Narrative

Samples were collected on September 22, 2011 and received by the laboratory on September 23, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 21-1-16604-003

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

Amalada	Decell	DOL	Made ad	Date	Date	F 1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-1-11:10					
Laboratory ID:	09-146-01					
Aroclor 1016	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1221	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1232	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1242	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1248	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1254	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1260	ND	0.058	EPA 8082	10-9-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	73	42-123				
Client ID:	GP-5-11:13					
Laboratory ID:	09-146-05					
Aroclor 1016	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1221	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1232	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1242	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1248	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1254	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1260	ND	0.058	EPA 8082	10-9-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	76	42-123				
Client ID:	GP-6-11:13					
Laboratory ID:	09-146-06					
Aroclor 1016	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1221	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1232	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1242	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1248	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1254	ND	0.058	EPA 8082	10-9-11	10-10-11	
Aroclor 1260	ND	0.058	EPA 8082	10-9-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	66	42-123				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 21-1-16604-003

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	GP-12-11:10						
Laboratory ID:	09-146-12						
Aroclor 1016	ND	0.059	EPA 8082	10-9-11	10-10-11		
Aroclor 1221	ND	0.059	EPA 8082	10-9-11	10-10-11		
Aroclor 1232	ND	0.059	EPA 8082	10-9-11	10-10-11		
Aroclor 1242	ND	0.059	EPA 8082	10-9-11	10-10-11		
Aroclor 1248	ND	0.059	EPA 8082	10-9-11	10-10-11		
Aroclor 1254	ND	0.059	EPA 8082	10-9-11	10-10-11		
Aroclor 1260	ND	0.059	EPA 8082	10-9-11	10-10-11		

Surrogate: Percent Recovery Control Limits DCB 74 42-123

Project: 21-1-16604-003

PCBs by EPA 8082 QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1009S1					
Aroclor 1016	ND	0.050	EPA 8082	10-9-11	10-10-11	
Aroclor 1221	ND	0.050	EPA 8082	10-9-11	10-10-11	
Aroclor 1232	ND	0.050	EPA 8082	10-9-11	10-10-11	
Aroclor 1242	ND	0.050	EPA 8082	10-9-11	10-10-11	
Aroclor 1248	ND	0.050	EPA 8082	10-9-11	10-10-11	
Aroclor 1254	ND	0.050	EPA 8082	10-9-11	10-10-11	
Aroclor 1260	ND	0.050	EPA 8082	10-9-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits			•	

Surrogate: Percent Recovery Control Limits
DCB 76 42-123

Analyte	Re	sult	Spike	Level	Source Result		rcent covery	Recovery Limits	RPD	RPD Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-1	46-12									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.422	0.436	0.500	0.500	ND	84	87	44-125	3	15	
Surrogate: DCB						70	75	42-123			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.
- Z The gasoline result is attributed to a single peak; refer to EPA 8260B results.
- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

October 17, 2011

Mr. David Baumeister OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052

Dear Mr. Baumeister,

On October 6th, 1 sample was received by our laboratory and assigned our laboratory project number 1110027. The project was identified as your Proj #21-1-16604-003 / Lab Ref #09-146. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Rick Bagan

Laboratory Director

CERTIFICATE OF ANALYSIS

CLIENT: OnSite Environmental Inc. DATE: 10/17/2011

14648 NE 95th Street ALS JOB#: 1110027

COLLECTION DATE:

9/22/2011 09:30

Redmond, WA 98052 ALS SAMPLE#: -01

CLIENT CONTACT: David Baumeister DATE RECEIVED: 10/6/2011

CLIENT PROJECT: Proj #21-1-16604-003 / Lab Ref #09-146 **CLIENT SAMPLE ID** GP-3-11:13 WDOE ACCREDITATION: C601

<u> </u>										
DATA RESULTS										
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS A	ANALYSIS BY			
Methyl T-Butyl Ether	EPA-8021	U	0.50	1	MG/KG	10/07/2011	DLC			
Benzene	EPA-8021	0.53	0.50	1	MG/KG	10/07/2011	DLC			
Toluene	EPA-8021	U	0.50	1	MG/KG	10/07/2011	DLC			
Ethylbenzene	EPA-8021	6.1	0.50	1	MG/KG	10/07/2011	DLC			
M & P- Xylenes	EPA-8021	11	0.50	1	MG/KG	10/07/2011	DLC			
O-Xylene	EPA-8021	5.9	0.50	1	MG/KG	10/07/2011	DLC			
C5-C6 Aliphatics	NWVPH	14	5.0	1	MG/KG	10/07/2011	DLC			
>C6-C8 Aliphatics	NWVPH	200	5.0	1	MG/KG	10/07/2011	DLC			
>C8-C10 Aliphatics	NWVPH	80	5.0	1	MG/KG	10/07/2011	DLC			
>C10-C12 Aliphatics	NWVPH	190	5.0	1	MG/KG	10/07/2011	DLC			
>C8-C10 Aromatics	NWVPH	230	5.0	1	MG/KG	10/07/2011	DLC			
>C10-C12 Aromatics	NWVPH	250	5.0	1	MG/KG	10/07/2011	DLC			
>C12-C13 Aromatics	NWVPH	57	5.0	1	MG/KG	10/07/2011	DLC			
Hexane	NWVPH	4.3	0.20	1	MG/KG	10/07/2011	DLC			
						ANALYSIS A	ANALYSIS BY			
SURROGATE	METHOD	%REC								
TFT	EPA-8021	96.0				10/07/2011	DLC			
TFT - Aliphatic	NWVPH	89.0				10/07/2011	DLC			
TFT - Aromatic	NWVPH	98.0				10/07/2011	DLC			
TFT - Hexane	NWVPH	90.0				10/07/2011	DLC			

U - Analyte analyzed for but not detected at level above reporting limit.

CERTIFICATE OF ANALYSIS

CLIENT: OnSite Environmental Inc.

DATE: 10/17/2011

14648 NE 95th Street Redmond, WA 98052 ALS SDG#: 1110027 WDOE ACCREDITATION: C601

CLIENT CONTACT: David Baumeister

CLIENT PROJECT: Proj #21-1-16604-003 / Lab Ref #09-146

LABORATORY BLANK RESULTS

MBLK-1072011 - Batch R75078 - Soil by EPA-8021

			REPORTING	DILUTION		ANALYSIS ANALYSI		S	
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY		
Methyl T-Butyl Ether	EPA-8021	U	0.50	1	MG/KG	10/07/2011	DLC		
Benzene	EPA-8021	U	0.50	1	MG/KG	10/07/2011	DLC		
Toluene	EPA-8021	U	0.50	1	MG/KG	10/07/2011	DLC		
Ethylbenzene	EPA-8021	U	0.50	1	MG/KG	10/07/2011	DLC		
M & P- Xylenes	EPA-8021	U	0.50	1	MG/KG	10/07/2011	DLC		
O-Xylene	EPA-8021	U	0.50	1	MG/KG	10/07/2011	DLC		

MBLK-1072011 - Batch R75077 - Soil by NWVPH

			REPORTING	DILUTION		ANALYSIS A	ANALYSIS
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY
C5-C6 Aliphatics	NWVPH	U	5.0	1	MG/KG	10/07/2011	DLC
>C6-C8 Aliphatics	NWVPH	U	5.0	1	MG/KG	10/07/2011	DLC
>C8-C10 Aliphatics	NWVPH	U	5.0	1	MG/KG	10/07/2011	DLC
>C10-C12 Aliphatics	NWVPH	U	5.0	1	MG/KG	10/07/2011	DLC
>C8-C10 Aromatics	NWVPH	U	5.0	1	MG/KG	10/07/2011	DLC
>C10-C12 Aromatics	NWVPH	U	5.0	1	MG/KG	10/07/2011	DLC
>C12-C13 Aromatics	NWVPH	U	5.0	1	MG/KG	10/07/2011	DLC
Hexane	NWVPH	U	0.20	1	MG/KG	10/07/2011	DLC

CERTIFICATE OF ANALYSIS

CLIENT: OnSite Environmental Inc.

DATE: 10/17/2011

14648 NE 95th Street Redmond, WA 98052 ALS SDG#: 1110027 WDOE ACCREDITATION: C601

CLIENT CONTACT: David Baumeister

CLIENT PROJECT: Proj #21-1-16604-003 / Lab Ref #09-146

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R75078 - Soil by EPA-8021

SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	ANALYSIS DATE	ANALYSIS BY	
Methyl T-Butyl Ether - BS	EPA-8021	89.0			10/07/2011	DLC	
Methyl T-Butyl Ether - BSD	EPA-8021	94.0	5		10/07/2011	DLC	
Benzene - BS	EPA-8021	107			10/07/2011	DLC	
Benzene - BSD	EPA-8021	110	3		10/07/2011	DLC	
Toluene - BS	EPA-8021	105			10/07/2011	DLC	
Toluene - BSD	EPA-8021	108	3		10/07/2011	DLC	
Ethylbenzene - BS	EPA-8021	101			10/07/2011	DLC	
Ethylbenzene - BSD	EPA-8021	104	3		10/07/2011	DLC	
M & P- Xylenes - BS	EPA-8021	103			10/07/2011	DLC	
M & P- Xylenes - BSD	EPA-8021	107	4		10/07/2011	DLC	
O-Xylene - BS	EPA-8021	105			10/07/2011	DLC	
O-Xylene - BSD	EPA-8021	110	5		10/07/2011	DLC	

ALS Test Batch ID: R75077 - Soil by NWVPH

					ANALYSIS	ANALYSIS
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	DATE	BY
C5-C6 Aliphatics - BS	NWVPH	87.0			10/07/2011	DLC
C5-C6 Aliphatics - BSD	NWVPH	88.0	1		10/07/2011	DLC
>C6-C8 Aliphatics - BS	NWVPH	90.0			10/07/2011	DLC
>C6-C8 Aliphatics - BSD	NWVPH	92.0	2		10/07/2011	DLC
>C8-C10 Aliphatics - BS	NWVPH	90.0			10/07/2011	DLC
>C8-C10 Aliphatics - BSD	NWVPH	99.0	10		10/07/2011	DLC
>C10-C12 Aliphatics - BS	NWVPH	82.0			10/07/2011	DLC
>C10-C12 Aliphatics - BSD	NWVPH	98.0	18		10/07/2011	DLC
>C8-C10 Aromatics - BS	NWVPH	104			10/07/2011	DLC
>C8-C10 Aromatics - BSD	NWVPH	111	7		10/07/2011	DLC
>C10-C12 Aromatics - BS	NWVPH	92.0			10/07/2011	DLC
>C10-C12 Aromatics - BSD	NWVPH	107	15		10/07/2011	DLC
>C12-C13 Aromatics - BS	NWVPH	84.0			10/07/2011	DLC
>C12-C13 Aromatics - BSD	NWVPH	99.0	16		10/07/2011	DLC
Hexane - BS	NWVPH	86.0			10/07/2011	DLC
Hexane - BSD	NWVPH	85.0	1		10/07/2011	DLC

CERTIFICATE OF ANALYSIS

APPROVED BY

Laboratory Director

	- 1		- 1	1
Page		of	!	!

A. OnSite Environmental Inc.

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881		
S. A. antweet Laboratory: ALS Environmental	Turnaround Request:	

Subcontract Laboratory: ALS Environmental

Attention: Rick Bagan

8620 Holly Drive Everett, WA 98208

Phone Number: (425) 356-2600

Date/Time:

Laboratory Reference #:	09-146
Project Manager:	David Baumeister

email: dbaumeister@onsite-env.com

Project Number: 21-1-16604-003

Project Name:

Lab ID	Sample Identification GP-3-11:13	Date Sampled		Matrix S	# of Cont.	Requested Analysis
						HOLD TIME 10/6 0930
Relino	Signature quished by:	OSE.	mpany Com		Date 10611	Time Comments/Special Instructions 1300 14 13 % MOISTURE
Reline Recei	ved s).	seen (Cour		10/6/11	EDDS

2 Day

Standard

1 Day

Other:

3 Day

OnSite Environmental Inc.

Chain of Custody

Page _ 1 _ of _ Z

	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		naround Requ working day		Laboratory Number:												09-146			6					
Compa	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		(Check One)					,		,															
Project	SHANNOH & WILSON Number:	Sam		1 Day				1	,	,					A	Organophosphorus Pesticides 8270D/SIM	14 14	(e one)			574				
Project	21-1-16604-003 Name:	2 Da									OB OB		<u></u>		8081	es 827	8 815	Scirc		-	METALS				
	KEY BANK	Star (TP)	ndard (7 Days) H analysis 5 Da	ays)	SIC						s 826(SIM	w-leve		cides	esticide	bicide	Metal		1664					
	Manager: DAWN WULF		,		ntaine		X				olatiles	270D/ 27HS)	M (lov		Pesti	rus Pe	d Her	TCA		ease	5				
Sample	DAWN WULF DOR		(other)		of Cor	CID	X/BT	×	×	260B	od Vo	iles 8% evel F	IS/Q0	N	lorine	oydsc	d Aci	≥	tals	and gr	Σ	_			e e
704600 514061	MIC	Dete			Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082	Organochlorine Pesticides 8081A	nopho	Chlorinated Acid Herbicides 8151A	Total RCRA (MTCA Metals)(circle	TCLP Metals	HEM (oil and grease) 1664	DISS MTCA	HA			% Moisture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Nun	LWN LWN	LWN LWN	LWN LWN	L N	Vola	Halo	Sem (with	PAH		Orga	Orga	Chlo	Tota	TCL	HEN	4				% N
1	GP-1-11:10	9/22/1	0820	Soil	5			X	X	X				\otimes				X							Ó
2 3 4	GP-2-11:9	9/22/1	0855	Soil	5	-		X	X	X								X							
3	CP-3-11:13		0930	1	5		1	X	X	X								t				8	4		
4	68-4-11:95		0955	-	5			X	X	X								\searrow							
5	GP-5-11:13		1035		5			X	X	X				\otimes				X							
6	GP-6-11:13		1120		5			×	X	X				\otimes				×							
67	GP-7-11:14		1155		5			X	X	X								X							
8	69-8-11:14		1295		5			X	χ	k								X							
9	61-9-11:13		1325		5			x	λ	X								X							
10	CP-10-11:10	V	1350	4	5			X	X	X								X							1
67/165	Signature	Co	ompany				Date	,		Time	,		Cor					uction							
Relin	quished		Stw				9	Ap.	3/11	a	91.	5		,	2	Λ	1	1.	1/	-07	. (s:	TA)		
Rece	ved Omar Zamora		speed	4			0	916	23	(03	(0)		(2(1	40	OL	d'91	9/11	. Yn	- (0)	(1)			
Relin	quished			/				+1		(0.0	15													
Rece	ived		(D)	3		(7/2	3/1	1	10	45	5													
Relin	quished																								
Rece	ived																								
Revie	wed/Date		Reviewed/Dat										Chro	omato	grams	with	final r	eport							
	Da	ata Package:	Level III 🗌 Le	evel IV 🗌 E	lectro	nic Da	ta Del	iverab	les (E	DDs)															

OnSite Environmental Inc.

Chain of Custody

Page 2 of Z

Company: SHandow & Vicuo		ronmental inc. 95th Street • Redmond, WA 98052	Turn (in	around Requ working day	iest rs)		La	abo	orato	ory	Nu	mb	er:	Correction to				Min-tra				787.7.39	0	9 -	1	46	
Received Received Received Received Received Received Reviewed/Date Stw 912314 0815 A123 10:0 A123 1	Project Number: 21 - 1 - 10 Project Name: VEY Project Manager: DAWN Sampled by: Lab ID CP-11	BANK WULF Sample Identification -11:10	Date Sampled	e Day [ys [dard (7 Days) H analysis 5 D (other) Time Sampled	3 Days Pays) Matrix	5	NWTPH-HCID	NWTPH-Gx/BTEX	4	+	4	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)			Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	→ Total RCRA /	TCLP Metals	HEM (oil and grease) 1664						% Moisture
On one and the control of the contro	Received Relinquished Received Relinquished Received			Stw Speed	DE .			8	12	3/14	0	81.	15		0	Ad	dde	d	10/6	6/1	1.	DB	(51	(n)			
	Reviewed/Date	n				lectro	nic Dat	ta Del	liverabl	les (E	DDs)			Chro	matog	grams	with 1	final re	eport								

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 28, 2011

Dawn Wulf Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-16604-003

Laboratory Reference No. 1109-147

Dear Dawn:

Enclosed are the analytical results and associated quality control data for samples submitted on September 23, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Laboratory Reference: 1109-147

Project: 21-1-16604-003

Case Narrative

Samples were collected on September 22, 2011 and received by the laboratory on September 23, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Laboratory Reference: 1109-147

Project: 21-1-16604-003

NWTPH-Gx

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-11:GW					
Laboratory ID:	09-147-01					
Gasoline	54000	2000	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	73-121				
Client ID:	Trip Blank					
Laboratory ID:	09-147-03					
Gasoline	ND	100	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits			_	
Fluorobenzene	88	73-121				

Laboratory Reference: 1109-147

Project: 21-1-16604-003

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0926W2					
Gasoline	ND	100	NWTPH-Gx	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	73-121				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-1	54-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						87 87	73-121			

Fluorobenzene 73-121

Laboratory Reference: 1109-147

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-11:GW					
Laboratory ID:	09-147-01					
CFC-12	ND	10	EPA 8260	9-26-11	9-26-11	
Chloromethane	ND	50	EPA 8260	9-26-11	9-26-11	
Vinyl Chloride	ND	10	EPA 8260	9-26-11	9-26-11	
Bromomethane	ND	10	EPA 8260	9-26-11	9-26-11	
Chloroethane	ND	50	EPA 8260	9-26-11	9-26-11	
CFC-11	ND	10	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethene	ND	10	EPA 8260	9-26-11	9-26-11	
Acetone	ND	250	EPA 8260	9-26-11	9-26-11	
Methyl Iodide	ND	50	EPA 8260	9-26-11	9-26-11	
Carbon Disulfide	ND	10	EPA 8260	9-26-11	9-26-11	
Methylene Chloride	ND	50	EPA 8260	9-26-11	9-26-11	
Trans-1,2-Dichloroethene	ND	10	EPA 8260	9-26-11	9-26-11	
Methyl t-Butyl Ether	ND	10	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethane	ND	10	EPA 8260	9-26-11	9-26-11	
Vinyl Acetate	ND	100	EPA 8260	9-26-11	9-26-11	
2,2-Dichloropropane	ND	10	EPA 8260	9-26-11	9-26-11	
Cis-1,2-Dichloroethene	44	10	EPA 8260	9-26-11	9-26-11	
2-Butanone	ND	250	EPA 8260	9-26-11	9-26-11	
Bromochloromethane	ND	10	EPA 8260	9-26-11	9-26-11	
Chloroform	ND	10	EPA 8260	9-26-11	9-26-11	
1,1,1-Trichloroethane	ND	10	EPA 8260	9-26-11	9-26-11	
Carbon Tetrachloride	ND	10	EPA 8260	9-26-11	9-26-11	
1,1-Dichloropropene	ND	10	EPA 8260	9-26-11	9-26-11	
Benzene	ND	10	EPA 8260	9-26-11	9-26-11	
1,2-Dichloroethane	ND	10	EPA 8260	9-26-11	9-26-11	
Trichloroethene	ND	10	EPA 8260	9-26-11	9-26-11	
1,2-Dichloropropane	ND	10	EPA 8260	9-26-11	9-26-11	
Dibromomethane	ND	10	EPA 8260	9-26-11	9-26-11	
Dichlorobromomethane	ND	10	EPA 8260	9-26-11	9-26-11	
2-Chloroethylvinylether	ND	50	EPA 8260	9-26-11	9-26-11	
Cis-1,3-Dichloropropene	ND	10	EPA 8260	9-26-11	9-26-11	
Methyl Isobutyl Ketone	ND	100	EPA 8260	9-26-11	9-26-11	
Toluene	150	50	EPA 8260	9-26-11	9-26-11	
Trans-1,3-Dichloropropene	ND	10	EPA 8260	9-26-11	9-26-11	

Laboratory Reference: 1109-147 Project: 21-1-16604-003

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-3-11:GW					
Laboratory ID:	09-147-01					
1,1,2-Trichloroethane	ND	10	EPA 8260	9-26-11	9-26-11	
Tetrachloroethene	11	10	EPA 8260	9-26-11	9-26-11	
1,3-Dichloropropane	ND	10	EPA 8260	9-26-11	9-26-11	
2-Hexanone	ND	100	EPA 8260	9-26-11	9-26-11	
Dibromochloromethane	ND	10	EPA 8260	9-26-11	9-26-11	
Ethylene dibromide	ND	10	EPA 8260	9-26-11	9-26-11	
Chlorobenzene	ND	10	EPA 8260	9-26-11	9-26-11	
1,1,1,2-Tetrachloroethane	ND	10	EPA 8260	9-26-11	9-26-11	
Ethylbenzene	1100	10	EPA 8260	9-26-11	9-26-11	
m,p-Xylene	3000	20	EPA 8260	9-26-11	9-26-11	
o-Xylene	990	10	EPA 8260	9-26-11	9-26-11	
Styrene	ND	10	EPA 8260	9-26-11	9-26-11	
Bromoform	ND	50	EPA 8260	9-26-11	9-26-11	
Isopropylbenzene	95	10	EPA 8260	9-26-11	9-26-11	
Bromobenzene	ND	10	EPA 8260	9-26-11	9-26-11	
1,1,2,2-Tetrachloroethane	ND	10	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichloropropane	ND	10	EPA 8260	9-26-11	9-26-11	
n-Propylbenzene	130	10	EPA 8260	9-26-11	9-26-11	
2-Chlorotoluene	ND	10	EPA 8260	9-26-11	9-26-11	
4-Chlorotoluene	ND	10	EPA 8260	9-26-11	9-26-11	
1,3,5-Trimethylbenzene	260	10	EPA 8260	9-26-11	9-26-11	
tert-Butylbenzene	ND	10	EPA 8260	9-26-11	9-26-11	
1,2,4-Trimethylbenzene	910	10	EPA 8260	9-26-11	9-26-11	
sec-Butylbenzene	14	10	EPA 8260	9-26-11	9-26-11	
1,3-Dichlorobenzene	ND	10	EPA 8260	9-26-11	9-26-11	
p-Isopropyltoluene	20	10	EPA 8260	9-26-11	9-26-11	
1,4-Dichlorobenzene	ND	10	EPA 8260	9-26-11	9-26-11	
1,2-Dichlorobenzene	ND	10	EPA 8260	9-26-11	9-26-11	
n-Butylbenzene	ND	10	EPA 8260	9-26-11	9-26-11	
1,2-Dibromo-3-chloropropane	ND	50	EPA 8260	9-26-11	9-26-11	
1,2,4-Trichlorobenzene	ND	10	EPA 8260	9-26-11	9-26-11	
Hexachlorobutadiene	ND	10	EPA 8260	9-26-11	9-26-11	
Naphthalene	320	50	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichlorobenzene	ND	10	EPA 8260	9-26-11	9-26-11	
Surrogate:	Parcent Pacayary	Control Limits				

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 79 68-120
Toluene-d8 81 73-120
Benzene, 1-bromo-4-fluoro- 78 65-120

Laboratory Reference: 1109-147

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	09-147-03					
CFC-12	ND	0.20	EPA 8260	9-26-11	9-26-11	
Chloromethane	ND	1.0	EPA 8260	9-26-11	9-26-11	
Vinyl Chloride	ND	0.20	EPA 8260	9-26-11	9-26-11	
Bromomethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Chloroethane	ND	1.0	EPA 8260	9-26-11	9-26-11	
CFC-11	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Acetone	ND	5.0	EPA 8260	9-26-11	9-26-11	
Methyl Iodide	ND	1.0	EPA 8260	9-26-11	9-26-11	
Carbon Disulfide	ND	0.20	EPA 8260	9-26-11	9-26-11	
Methylene Chloride	ND	1.0	EPA 8260	9-26-11	9-26-11	
Trans-1,2-Dichloroethene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Vinyl Acetate	ND	2.0	EPA 8260	9-26-11	9-26-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Cis-1,2-Dichloroethene	ND	0.20	EPA 8260	9-26-11	9-26-11	
2-Butanone	ND	5.0	EPA 8260	9-26-11	9-26-11	
Bromochloromethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Chloroform	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Benzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Trichloroethene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Dibromomethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Dichlorobromomethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
2-Chloroethylvinylether	ND	1.0	EPA 8260	9-26-11	9-26-11	
Cis-1,3-Dichloropropene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	9-26-11	9-26-11	
Toluene	ND	1.0	EPA 8260	9-26-11	9-26-11	
Trans-1,3-Dichloropropene	ND	0.20	EPA 8260	9-26-11	9-26-11	

Laboratory Reference: 1109-147

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	09-147-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Tetrachloroethene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	9-26-11	9-26-11	
2-Hexanone	ND	2.0	EPA 8260	9-26-11	9-26-11	
Dibromochloromethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Ethylene dibromide	ND	0.20	EPA 8260	9-26-11	9-26-11	
Chlorobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Ethylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
m,p-Xylene	ND	0.40	EPA 8260	9-26-11	9-26-11	
o-Xylene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Styrene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Bromoform	ND	1.0	EPA 8260	9-26-11	9-26-11	
Isopropylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Bromobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	9-26-11	9-26-11	
n-Propylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
2-Chlorotoluene	ND	0.20	EPA 8260	9-26-11	9-26-11	
4-Chlorotoluene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
tert-Butylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
sec-Butylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
n-Butylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260	9-26-11	9-26-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Naphthalene	ND	1.0	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Surrogate:	Percent Recovery	Control Limits				

Dibromofluoromethane 68-120 83 73-120 Toluene-d8 83 Benzene, 1-bromo-4-fluoro-81 65-120

Laboratory Reference: 1109-147

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Water Units: ug/L

Offits. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0926W1					
CFC-12	ND	0.20	EPA 8260	9-26-11	9-26-11	
Chloromethane	ND	1.0	EPA 8260 EPA 8260	9-26-11	9-26-11	
Vinyl Chloride	ND	0.20	EPA 8260 EPA 8260	9-26-11	9-26-11	
Bromomethane	ND	0.20	EPA 8260 EPA 8260	9-26-11	9-26-11	
Chloroethane	ND	1.0		9-26-11	9-26-11	
CFC-11		0.20	EPA 8260	9-26-11		
	ND		EPA 8260		9-26-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Acetone	ND	5.0	EPA 8260	9-26-11	9-26-11	
Methyl lodide	ND	1.0	EPA 8260	9-26-11	9-26-11	
Carbon Disulfide	ND	0.20	EPA 8260	9-26-11	9-26-11	
Methylene Chloride	ND	1.0	EPA 8260	9-26-11	9-26-11	
Trans-1,2-Dichloroethene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Vinyl Acetate	ND	2.0	EPA 8260	9-26-11	9-26-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Cis-1,2-Dichloroethene	ND	0.20	EPA 8260	9-26-11	9-26-11	
2-Butanone	ND	5.0	EPA 8260	9-26-11	9-26-11	
Bromochloromethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Chloroform	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Benzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Trichloroethene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Dibromomethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Dichlorobromomethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
2-Chloroethylvinylether	ND	1.0	EPA 8260	9-26-11	9-26-11	
Cis-1,3-Dichloropropene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	9-26-11	9-26-11	
Toluene	ND	1.0	EPA 8260	9-26-11	9-26-11	
Trans-1,3-Dichloropropene	ND	0.20	EPA 8260	9-26-11	9-26-11	
rians-1,3-Dichloropropene	שאו	0.20	EFA 0200	3-20-11	3-20-11	

Laboratory Reference: 1109-147

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

Analysta	Result	PQL	Method	Date Prepared	Date	Flore
Analyte	Result	PQL	Wethou	Prepared	Analyzed	Flags
Laboratory ID:	MB0926W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Tetrachloroethene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	9-26-11	9-26-11	
2-Hexanone	ND	2.0	EPA 8260	9-26-11	9-26-11	
Dibromochloromethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Ethylene dibromide	ND	0.20	EPA 8260	9-26-11	9-26-11	
Chlorobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
Ethylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
m,p-Xylene	ND	0.40	EPA 8260	9-26-11	9-26-11	
o-Xylene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Styrene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Bromoform	ND	1.0	EPA 8260	9-26-11	9-26-11	
Isopropylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Bromobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	9-26-11	9-26-11	
n-Propylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
2-Chlorotoluene	ND	0.20	EPA 8260	9-26-11	9-26-11	
4-Chlorotoluene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
tert-Butylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
sec-Butylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
n-Butylbenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260	9-26-11	9-26-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	9-26-11	9-26-11	
Naphthalene	ND	1.0	EPA 8260	9-26-11	9-26-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	9-26-11	9-26-11	
	Percent Recovery				· · · · · · · · · · · · · · · · · · ·	

Surrogate:Percent RecoveryControl LimitsDibromofluoromethane8468-120Toluene-d88373-120Benzene, 1-bromo-4-fluoro-8165-120

Laboratory Reference: 1109-147

Project: 21-1-16604-003

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	26W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.50	9.32	10.0	10.0	95	93	70-130	2	11	
Benzene	9.54	9.31	10.0	10.0	95	93	75-123	2	8	
Trichloroethene	10.5	10.1	10.0	10.0	105	101	80-113	4	9	
Toluene	10.0	9.69	10.0	10.0	100	97	80-113	3	8	
Chlorobenzene	10.5	10.0	10.0	10.0	105	100	80-111	5	8	
Surrogate:										
Dibromofluoromethane	Э				82	81	68-120			
Toluene-d8					84	79	73-120			
Benzene, 1-bromo-4-fi	luoro-				83	78	65-120			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

Page _____ of ____

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052	Turn (in	around Requ working day	est s)		L	abo	orat	ory	Nu	mb	er:										0	9 -	1	47	7
14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		(Check One)							,																
40211W \$ HOHNAH 2	Sam	e Day	1 Day				1	1							Organophosphorus Pesticides 8270D/SIM	А	Metals (circle one)			5					
21-1-16604-003 Project Name:	2 Da	ys	3 Days							m				081A	8270	8151,	(circle			METALS					
Project Name: KEY BANK		dard (7 Days)		S						3260E	Σ	level)		des 8	ticides	cides	etal		1664						
Project Manager:	(TPI	ł analysis 5 D	ays)	ainer		×				atiles	70D/S (Hs)	-wol) I		estici	is Pes	Herbi	N A		ase)	MECA					
Dand Sampled by:		10 10 100		Cont		/BTE			809	d Vola	ss 827 vel PA	D/SIM		rine F	phoru	Acid	4	S	nd gre	MA					
Sampled by:		(other)		oer of	H-HC	H-G	H-G	XQ-H	les 82	Halogenated Volatiles 8260B	ow-le	8270	PCBs 8082	Organochlorine Pesticides 8081A	soydo	Chlorinated Acid Herbicides 8151A	Total RCRA / MTC	TCLP Metals	HEM (oil and grease) 1664						% Moisture
ab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	-	Halog	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs	PCBs	Organ	Organ	Chlori	Total	TCLP	HEM	DISS					W W
1 CP-3-11:GW		1255					Q)	+																
2 GP-7-11:GW 3 Trip Black	9/22/11	1305	WATER	.2				_	X	= (ai	~@	E)	60											
3 Trip Black				1			X)	X)															
1																								*	
* **																									
					a red to	Doto	\$1150Ez		Time			Con	amon	e/Sn	ocial	Inetr	uction	ne .							
Signature		ompany				Date			-		_														
Relinquished		itw.					[23]				5		(X)	7	de	600	d	9	123	14	B	,			
Received Omar Zamola		Speed	24			1	(2	3			0	-													
Relinquished		200	1			-	100	1.			45	-													
Received		a	50			16	23	[[]	u	99	15														
Relinquished																									
Received																									
Reviewed/Date		Reviewed/Da										Chro	matog	jrams	with	final r	eport								
Da	ata Package:	_evel III 🗌 L	evel IV 🗌 El	ectror	nic Da	ta De	liverab	les (E	DDs)																

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

November 2, 2011

Dawn Wulf Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-16604-010

Laboratory Reference No. 1110-150

Dear Dawn:

Enclosed are the analytical results and associated quality control data for samples submitted on October 21, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 21-1-16604-010

Case Narrative

Samples were collected on October 21, 2011 and received by the laboratory on October 21, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 21-1-16604-010

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

ome. mg/ng				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	STKP:1					
Laboratory ID:	10-150-01					
CFC-12	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Chloromethane	ND	0.0027	EPA 8260	10-25-11	10-25-11	
Vinyl Chloride	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Bromomethane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Chloroethane	ND	0.0027	EPA 8260	10-25-11	10-25-11	
CFC-11	0.0020	0.00054	EPA 8260	10-25-11	10-25-11	
1,1-Dichloroethene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Methyl Iodide	ND	0.0027	EPA 8260	10-25-11	10-25-11	
Methylene Chloride	0.0077	0.0027	EPA 8260	10-25-11	10-25-11	Н
Trans-1,2-Dichloroethene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
1,1-Dichloroethane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
2,2-Dichloropropane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Cis-1,2-Dichloroethene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Bromochloromethane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Chloroform	ND	0.00054	EPA 8260	10-25-11	10-25-11	
1,1,1-Trichloroethane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Carbon Tetrachloride	ND	0.00054	EPA 8260	10-25-11	10-25-11	
1,1-Dichloropropene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
1,2-Dichloroethane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Trichloroethene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
1,2-Dichloropropane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Dibromomethane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Dichlorobromomethane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
2-Chloroethylvinylether	ND	0.0027	EPA 8260	10-25-11	10-25-11	
Cis-1,3-Dichloropropene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Trans-1,3-Dichloropropene	ND	0.00054	EPA 8260	10-25-11	10-25-11	

Project: 21-1-16604-010

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	STKP:1					
Laboratory ID:	10-150-01					
1,1,2-Trichloroethane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Tetrachloroethene	0.017	0.00054	EPA 8260	10-25-11	10-25-11	
1,3-Dichloropropane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Dibromochloromethane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Ethylene dibromide	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Chlorobenzene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
1,1,1,2-Tetrachloroethane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Bromoform	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Bromobenzene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
1,1,2,2-Tetrachloroethane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
1,2,3-Trichloropropane	ND	0.00054	EPA 8260	10-25-11	10-25-11	
2-Chlorotoluene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
4-Chlorotoluene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
1,3-Dichlorobenzene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
1,4-Dichlorobenzene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
1,2-Dichlorobenzene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
1,2-Dibromo-3-chloropropane	e ND	0.0027	EPA 8260	10-25-11	10-25-11	
1,2,4-Trichlorobenzene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Hexachlorobutadiene	ND	0.0027	EPA 8260	10-25-11	10-25-11	
1,2,3-Trichlorobenzene	ND	0.00054	EPA 8260	10-25-11	10-25-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	86	63-127				
Toluene-d8	91	65-129				
Benzene, 1-bromo-4-fluoro-	83	55-121				

Project: 21-1-16604-010

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/kg

Office. Hig/Rg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025S1					
CFC-12	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Chloromethane	ND	0.0050	EPA 8260	10-25-11	10-25-11	
Vinyl Chloride	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Bromomethane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Chloroethane	ND	0.0050	EPA 8260	10-25-11	10-25-11	
CFC-11	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Methyl Iodide	ND	0.0050	EPA 8260	10-25-11	10-25-11	
Methylene Chloride	ND	0.0050	EPA 8260	10-25-11	10-25-11	
Trans-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Cis-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Bromochloromethane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Chloroform	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Trichloroethene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Dibromomethane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Dichlorobromomethane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
2-Chloroethylvinylether	ND	0.0050	EPA 8260	10-25-11	10-25-11	
Cis-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Trans-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-25-11	10-25-11	

Project: 21-1-16604-010

HALOGENATED VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Tetrachloroethene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Dibromochloromethane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Ethylene dibromide	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Chlorobenzene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Bromoform	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Bromobenzene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	10-25-11	10-25-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
1,2-Dibromo-3-chloropropane	. ND	0.0050	EPA 8260	10-25-11	10-25-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	10-25-11	10-25-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	10-25-11	10-25-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	63-127				
Toluene-d8	95	65-129				
Benzene, 1-bromo-4-fluoro-	93	55-121				

Project: 21-1-16604-010

HALOGENATED VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	25S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0460	0.0438	0.0500	0.0500	92	88	70-130	5	19	
Benzene	0.0443	0.0442	0.0500	0.0500	89	88	70-125	0	15	
Trichloroethene	0.0456	0.0442	0.0500	0.0500	91	88	70-122	3	14	
Toluene	0.0447	0.0479	0.0500	0.0500	89	96	73-120	7	16	
Chlorobenzene	0.0429	0.0435	0.0500	0.0500	86	87	74-109	1	12	
Surrogate:										
Dibromofluoromethane	Э				88	77	63-127			
Toluene-d8					93	95	65-129			
Benzene, 1-bromo-4-fi	luoro-				86	85	55-121			

Project: 21-1-16604-010

TCLP HALOGENATED VOLATILES EPA 1311/8260B

page 1 of 2

Matrix: TCLP Extract

Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	STKP:1					
Laboratory ID:	10-150-01					
CFC-12	ND	2.0	EPA 8260	10-25-11	11-1-11	
Chloromethane	ND	10	EPA 8260	10-25-11	11-1-11	
Vinyl Chloride	ND	2.0	EPA 8260	10-25-11	11-1-11	
Bromomethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Chloroethane	ND	10	EPA 8260	10-25-11	11-1-11	
CFC-11	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,1-Dichloroethene	ND	2.0	EPA 8260	10-25-11	11-1-11	
Methyl Iodide	ND	10	EPA 8260	10-25-11	11-1-11	
Methylene Chloride	ND	10	EPA 8260	10-25-11	11-1-11	
Trans-1,2-Dichloroethene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,1-Dichloroethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
2,2-Dichloropropane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Cis-1,2-Dichloroethene	ND	2.0	EPA 8260	10-25-11	11-1-11	
Bromochloromethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Chloroform	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,1,1-Trichloroethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Carbon Tetrachloride	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,1-Dichloropropene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,2-Dichloroethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Trichloroethene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,2-Dichloropropane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Dibromomethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Dichlorobromomethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
2-Chloroethylvinylether	ND	10	EPA 8260	10-25-11	11-1-11	
Cis-1,3-Dichloropropene	ND	2.0	EPA 8260	10-25-11	11-1-11	
Trans-1,3-Dichloropropene	ND	2.0	EPA 8260	10-25-11	11-1-11	

Project: 21-1-16604-010

TCLP HALOGENATED VOLATILES EPA 1311/8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	STKP:1					
Laboratory ID:	10-150-01					
1,1,2-Trichloroethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Tetrachloroethene	4.4	2.0	EPA 8260	10-25-11	11-1-11	
1,3-Dichloropropane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Dibromochloromethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Ethylene dibromide	ND	2.0	EPA 8260	10-25-11	11-1-11	
Chlorobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,1,1,2-Tetrachloroethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Bromoform	ND	10	EPA 8260	10-25-11	11-1-11	
Bromobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,1,2,2-Tetrachloroethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,2,3-Trichloropropane	ND	2.0	EPA 8260	10-25-11	11-1-11	
2-Chlorotoluene	ND	2.0	EPA 8260	10-25-11	11-1-11	
4-Chlorotoluene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,3-Dichlorobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,4-Dichlorobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,2-Dichlorobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,2-Dibromo-3-chloropropane	e ND	10	EPA 8260	10-25-11	11-1-11	
1,2,4-Trichlorobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
Hexachlorobutadiene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,2,3-Trichlorobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate:	Percent Recovery	Control Limi
Dibromofluoromethane	83	68-120
Toluene-d8	85	73-120
Benzene, 1-bromo-4-fluoro-	86	65-120

Project: 21-1-16604-010

TCLP HALOGENATED VOLATILES EPA 1311/8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: TCLP Extract

Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025T2					
CFC-12	ND	2.0	EPA 8260	10-25-11	11-1-11	
Chloromethane	ND	10	EPA 8260	10-25-11	11-1-11	
Vinyl Chloride	ND	2.0	EPA 8260	10-25-11	11-1-11	
Bromomethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Chloroethane	ND	10	EPA 8260	10-25-11	11-1-11	
CFC-11	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,1-Dichloroethene	ND	2.0	EPA 8260	10-25-11	11-1-11	
Methyl Iodide	ND	10	EPA 8260	10-25-11	11-1-11	
Methylene Chloride	ND	10	EPA 8260	10-25-11	11-1-11	
Trans-1,2-Dichloroethene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,1-Dichloroethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
2,2-Dichloropropane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Cis-1,2-Dichloroethene	ND	2.0	EPA 8260	10-25-11	11-1-11	
Bromochloromethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Chloroform	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,1,1-Trichloroethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Carbon Tetrachloride	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,1-Dichloropropene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,2-Dichloroethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Trichloroethene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,2-Dichloropropane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Dibromomethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Dichlorobromomethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
2-Chloroethylvinylether	ND	10	EPA 8260	10-25-11	11-1-11	
Cis-1,3-Dichloropropene	ND	2.0	EPA 8260	10-25-11	11-1-11	
Trans-1,3-Dichloropropene	ND	2.0	EPA 8260	10-25-11	11-1-11	

Project: 21-1-16604-010

TCLP HALOGENATED VOLATILES EPA 1311/8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025T2					
1,1,2-Trichloroethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Tetrachloroethene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,3-Dichloropropane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Dibromochloromethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Ethylene dibromide	ND	2.0	EPA 8260	10-25-11	11-1-11	
Chlorobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,1,1,2-Tetrachloroethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
Bromoform	ND	10	EPA 8260	10-25-11	11-1-11	
Bromobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,1,2,2-Tetrachloroethane	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,2,3-Trichloropropane	ND	2.0	EPA 8260	10-25-11	11-1-11	
2-Chlorotoluene	ND	2.0	EPA 8260	10-25-11	11-1-11	
4-Chlorotoluene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,3-Dichlorobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,4-Dichlorobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,2-Dichlorobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,2-Dibromo-3-chloropropane	ND	10	EPA 8260	10-25-11	11-1-11	
1,2,4-Trichlorobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
Hexachlorobutadiene	ND	2.0	EPA 8260	10-25-11	11-1-11	
1,2,3-Trichlorobenzene	ND	2.0	EPA 8260	10-25-11	11-1-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 87 68-120
Toluene-d8 87 73-120
Benzene, 1-bromo-4-fluoro-84 65-120

Project: 21-1-16604-010

TCLP HALOGENATED VOLATILES EPA 1311/8260B SB/SBD QUALITY CONTROL

Matrix: TCLP Extract

Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										_
Laboratory ID:	SB11	01T1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.33	9.49	10.0	10.0	93	95	70-130	2	11	
Benzene	8.48	8.90	10.0	10.0	85	89	75-123	5	8	
Trichloroethene	9.13	9.19	10.0	10.0	91	92	80-113	1	9	
Toluene	8.86	9.32	10.0	10.0	89	93	80-113	5	8	
Chlorobenzene	9.37	9.59	10.0	10.0	94	96	80-111	2	8	
Surrogate:										
Dibromofluoromethane)				<i>7</i> 5	77	68-120			
Toluene-d8					80	80	73-120			
Benzene, 1-bromo-4-fl	uoro-				76	79	65-120			

Project: 21-1-16604-010

% MOISTURE

Date Analyzed: 10-25-11

Client ID Lab ID % Moisture

STKP:1 10-150-01 12

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

Page _____ of ____

14648 RE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		working day			La	abo	rato	ory	Nu	mb	er:		No. Con	NSW L				10		15	U	augusii M	A second	e la video in	5,63
14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com Company: Shannon & Vilson Project Number: 21-1-16604-010 Project Name: Format Key Bank Project Manager: DBW Sampled by: EVP Lab ID Sample Identification	San 2 Da	(Check One) ne Day	1 Day 3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX		XQ-HALDX		90B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	de one)	1700.			TOLP HVOCS			O Moidure	% Moisture
1 STKP: 1	10/21/11		Soil	5						X)							X		(\hat{X}				X
	,																								
																									_
																									_
				- 13																					
Signature		ompany	Bankan			Date	GLI VA	ABO	Time			Com	ment	s/Spe	ecial I	nstru	iction	S							
Relinquished		5 ₹ W				10	21/	"	15	30)				501	. 1		4.55		1 5	J				
Received D.A. Pong	N.	- Speci	dy missin	544		10/	21/11		125	57					30	-CA	N	SIN))	+				
Relinquished Purple		SPENDA SPENDA	messens	en	,	10/	21/1	1	2:/		on:						01	1		1 -					
Received	_ (JE21	Y6	1-		101	zili	((14	15					de	>W	e :	Shal	NUI	1.00	- S	S	TA		
Relinquished												(\varnothing	A	dd	2C	9 1	0/2	25	(7/-	シチ	>			
Received		9247 - 102 - 10 - 10 - 10 - 10 - 10 - 10 - 1																							
Reviewed/Date		Reviewed/Da		200			- 10	N WHEN	-			Chro	matog	rams	with fi	nal re	port [
Da	ata Package:	Level III L	evel IV 🗌 E	Electron	nic Dat	ta Deli	iverable	es (E	DDs)																

OnSite Environmental Inc.

Chain of Custody

	1	1
Page	of	1

14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Turnarou (in work	Nui	mb	er: 10-150																			
Project Number: 21-1-16604-010 Project Name: Format Key Bon K Project Manager: D BW Sampled by: EVP Sample Identification	Same Day 2 Days Standard (TPH ana	3 Days	Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA / MTCA Metals (circle one)	TCLP Metals	HEM (oil and grease) 1664				% Moisture	
ab ID Sample Identification 57KP: 1	10/21/11 09		5	2						0,0		ш.	0	0	0		X						
																				+		_	
																							-
									5								1.00						-
		3																					
																						+	
Signature , A	Compa	ny			Date)	12 5	Time			Com	ment	s/Sp	ecial	Instru	uction	ıs						
Relinquished	5.	\$W			10	/21/	100	12	30)									, -	-10			
Received D.A. Pang	11	Speedy missi	-34		10/	21/11	•	125	57					Je	rel	N	RW		15	70	1		
Received D. A. Parg	5	Speedy misses	en	m ₁	10/	21/1	1	2:/	15										1.00				
Received) DE	rito	1-1	į.	10	lzıl	(_	14	15	>				d	bW	e	Shal	NUVI	.00				
Relinquished																							
Received																							_
Reviewed/Date	Revie	ewed/Date									Chror	matog	rams	with f	inal re	eport							_

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 14, 2011

Dawn Wulf Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-16604-003

Laboratory Reference No. 1110-053

Dear Dawn:

Enclosed are the analytical results and associated quality control data for samples submitted on October 7, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 21-1-16604-003

Case Narrative

Samples were collected on October 6, 2011 and received by the laboratory on October 7, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx and Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 21-1-16604-003

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW1-11:13					
Laboratory ID:	10-053-01					
Diesel Range Organics	ND	27	NWTPH-Dx	10-12-11	10-12-11	
Lube Oil Range Organics	ND	54	NWTPH-Dx	10-12-11	10-12-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				
Client ID:	SW-MW1-11:25					
Laboratory ID:	10-053-02					
Diesel Range Organics	ND	29	NWTPH-Dx	10-12-11	10-12-11	
Lube Oil Range Organics	ND	58	NWTPH-Dx	10-12-11	10-12-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	SW-MW2-11:16.5					
Laboratory ID:	10-053-05					
Diesel Range Organics	ND	29	NWTPH-Dx	10-12-11	10-12-11	
Lube Oil Range Organics	ND	58	NWTPH-Dx	10-12-11	10-12-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	SW-MW2-11:25					
Laboratory ID:	10-053-07					
Diesel Range Organics	ND	31	NWTPH-Dx	10-12-11	10-12-11	
Lube Oil Range Organics	ND	61	NWTPH-Dx	10-12-11	10-12-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
·						

Project: 21-1-16604-003

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB1012S1					
Diesel Range Organics	ND	25	NWTPH-Dx	10-12-11	10-12-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-12-11	10-12-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	116	50-150				

			Percer	nt Recovery		RPD	
Analyte	Result		Recove	ry Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	10-0	53-01					
	ORIG	DUP					
Diesel Range Organics	ND	ND			NA	NA	
Lube Oil Range Organics	ND	ND			NA	NA	
Surrogate:							
a Tamahamul			440	100 50 450			

o-Terphenyl 112 123 50-150

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW1-11:13					
Laboratory ID:	10-053-01					
CFC-12	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0058	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Acetone	0.0092	0.0058	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Carbon Disulfide	0.0014	0.0012	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Methyl t-Butyl Ether	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Vinyl Acetate	ND	0.0058	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
2-Butanone	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Benzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Trichloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Methyl Isobutyl Ketone	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Toluene	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	ND	0.0012	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

Benzene, 1-bromo-4-fluoro-

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW1-11:13					
Laboratory ID:	10-053-01					
1,1,2-Trichloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Tetrachloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,3-Dichloropropane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
2-Hexanone	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Chlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Ethylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
m,p-Xylene	ND	0.0023	EPA 8260	10-10-11	10-10-11	
o-Xylene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Styrene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Bromoform	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Isopropylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Bromobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
n-Propylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
4-Chlorotoluene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,3,5-Trimethylbenzene	0.0030	0.0012	EPA 8260	10-10-11	10-10-11	
tert-Butylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2,4-Trimethylbenzene	0.0040	0.0012	EPA 8260	10-10-11	10-10-11	
sec-Butylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
p-Isopropyltoluene	0.0012	0.0012	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
n-Butylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane	ND	0.0058	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Naphthalene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	63-127				
Toluene-d8	110	65-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

108

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW1-11:25					
Laboratory ID:	10-053-02					
CFC-12	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0058	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Acetone	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Carbon Disulfide	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Methyl t-Butyl Ether	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Vinyl Acetate	ND	0.0058	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
2-Butanone	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Benzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Trichloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Methyl Isobutyl Ketone	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Toluene	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	ND	0.0012	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

Benzene, 1-bromo-4-fluoro-

VOLATILES by EPA 8260B page 2 of 2

Client ID:					Date	Date	
Laboratory ID:	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
1,1,2-Trichloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 Tetrachloroethene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 2-Hexanone ND 0.0012 EPA 8260 10-10-11 10-10-11 Dibromochloromethane ND 0.0012 EPA 8260 10-10-11 10-10-11 Ehlylene dibromide ND 0.0012 EPA 8260 10-10-11 10-10-11 Chlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Chlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Litylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Ethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 O-Vylene ND 0.0012 EPA 8260 10-10-11 10-10-11 O-Vylene ND 0.0012 EPA 8260 10-10-11	Client ID:	SW-MW1-11:25					
Tetrachloroethene	Laboratory ID:	10-053-02					
1,3-Dichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 2-Hexanone ND 0.0058 EPA 8260 10-10-11 10-10-11 Dibromochloromethane ND 0.0012 EPA 8260 10-10-11 10-10-11 Ethylene dibromide ND 0.0012 EPA 8260 10-10-11 10-10-11 Chlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Lin,1,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 Lin,1,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 Lin,1,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 mp-Xylene ND 0.0012 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.0012 EPA 8260 10-10-11 10-10-11 Isopropylbenzene ND 0.0012 EPA 8260	1,1,2-Trichloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
2-Hexanone ND 0.0058 EPA 8260 10-10-11 10-10-11 Dibromochloromethane ND 0.0012 EPA 8260 10-10-11 10-10-11 Ethylene dibromide ND 0.0012 EPA 8260 10-10-11 10-10-11 Chlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,1,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,1,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 Ethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Ethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 0-Xylene ND 0.0012 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 2-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,2-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,1-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,2-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,2-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0088 EPA 8260 10-10-11 10-10-11 1,2,2-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,2-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11	Tetrachloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane ND 0.0012 EPA 8260 10-10-11 10-10-11 Ethylene dibromide ND 0.0012 EPA 8260 10-10-11 10-10-11 Chlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,1,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 Ethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Ethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Carylene ND 0.0012 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.0012 EPA 8260 10-10-11 10-10-11 Isornophylenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Tridolropropane ND 0.0012 EPA 8260 10-10-11	1,3-Dichloropropane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide ND 0.0012 EPA 8260 10-10-11 10-10-11 Chlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,1,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 Ethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 mp-Xylene ND 0.0023 EPA 8260 10-10-11 10-10-11 o-Xylene ND 0.0012 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.0012 EPA 8260 10-10-11 10-10-11 Isopropylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.0012 EPA 8260 10-10-11 10-10-11 Isopropylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropopane ND 0.0012 EPA 8260 10-10-11 <	2-Hexanone	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Chlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 Ethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 m,p-Xylene ND 0.0012 EPA 8260 10-10-11 10-10-11 o-Xylene ND 0.0012 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,2-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,2-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11<	Dibromochloromethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 Ethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 m,p-Xylene ND 0.0023 EPA 8260 10-10-11 10-10-11 o-Xylene ND 0.0012 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.0012 EPA 8260 10-10-11 10-10-11 Isopropylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloroptane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,2-Tritorloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Portoroluene ND 0.0012 EPA 8260 <td< td=""><td>Ethylene dibromide</td><td>ND</td><td>0.0012</td><td>EPA 8260</td><td>10-10-11</td><td>10-10-11</td><td></td></td<>	Ethylene dibromide	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Ethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 m,p-Xylene ND 0.0023 EPA 8260 10-10-11 10-10-11 o-Xylene ND 0.0012 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.0012 EPA 8260 10-10-11 10-10-11 Isopropylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloropropane ND 0.0012 EPA 8260 <	Chlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
mp-Xylene ND 0.0023 EPA 8260 10-10-11 10-10-11 o-Xylene ND 0.0012 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.0012 EPA 8260 10-10-11 10-10-11 Isopropylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Isopropylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 <td>1,1,1,2-Tetrachloroethane</td> <td>ND</td> <td>0.0012</td> <td>EPA 8260</td> <td>10-10-11</td> <td>10-10-11</td> <td></td>	1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
o-Xylene ND 0.0012 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.0012 EPA 8260 10-10-11 10-10-11 Isopropylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 <t< td=""><td>Ethylbenzene</td><td>ND</td><td>0.0012</td><td>EPA 8260</td><td>10-10-11</td><td>10-10-11</td><td></td></t<>	Ethylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Styrene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.0012 EPA 8260 10-10-11 10-10-11 Isopropylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Bromobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,-2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,-2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3,5-Trimethylbenzene ND 0.0012 E	m,p-Xylene	ND	0.0023	EPA 8260	10-10-11	10-10-11	
Bromoform ND	o-Xylene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Sopropylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 10-10-11 11-10-11	Styrene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Bromobenzene ND	Bromoform	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 n-Propylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 2-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012	Isopropylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 n-Propylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 2-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0012	Bromobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
n-Propylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 2-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.00	1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 tert-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11	1,2,3-Trichloropropane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
4-Chlorotoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 tert-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 sec-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 p-Isopropyltoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 p-Isopropyltoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 n-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0058 <td>n-Propylbenzene</td> <td>ND</td> <td>0.0012</td> <td>EPA 8260</td> <td>10-10-11</td> <td>10-10-11</td> <td></td>	n-Propylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 tert-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 sec-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 p-Isopropyltoluene ND 0.0012	2-Chlorotoluene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
tert-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 sec-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 p-Isopropyltoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 n-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0058 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0058 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Surrogate: Percent Recovery Control Limits	4-Chlorotoluene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 sec-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 p-Isopropyltoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 n-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0058 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 </td <td>1,3,5-Trimethylbenzene</td> <td>ND</td> <td>0.0012</td> <td>EPA 8260</td> <td>10-10-11</td> <td>10-10-11</td> <td></td>	1,3,5-Trimethylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
sec-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 p-Isopropyltoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 n-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0058 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 2,3-Trichlorobenzene ND 0.0012 <td>tert-Butylbenzene</td> <td>ND</td> <td>0.0012</td> <td>EPA 8260</td> <td>10-10-11</td> <td>10-10-11</td> <td></td>	tert-Butylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 p-Isopropyltoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 n-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0058 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Surrogate: Percent Recovery Control Limits	1,2,4-Trimethylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
p-Isopropyltoluene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 10-10-11 n-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0058 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11	sec-Butylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 n-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0012 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Surrogate: Percent Recovery Control Limits	1,3-Dichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2-Dichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 n-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0058 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Surrogate: Percent Recovery Control Limits	p-Isopropyltoluene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
n-Butylbenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0058 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Surrogate: Percent Recovery Control Limits	1,4-Dichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0058 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Surrogate: Percent Recovery Control Limits	1,2-Dichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0058 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Surrogate: Percent Recovery Control Limits	n-Butylbenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene ND 0.0058 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Surrogate: Percent Recovery Control Limits	1,2-Dibromo-3-chloropropane	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Naphthalene ND 0.0012 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Surrogate: Percent Recovery Control Limits	1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 10-10-11 10-10-11 Surrogate: Percent Recovery Control Limits	Hexachlorobutadiene	ND	0.0058	EPA 8260	10-10-11	10-10-11	
Surrogate: Percent Recovery Control Limits	Naphthalene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
,	1,2,3-Trichlorobenzene	ND_	0.0012	EPA 8260	10-10-11	10-10-11	
	Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane 108 63-127	Dibromofluoromethane	108	63-127				
Toluene-d8 105 65-129	Toluene-d8	105	65-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

103

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW2-11:5					
Laboratory ID:	10-053-03					
CFC-12	ND	0.00089	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0044	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.00089	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.00089	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0044	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.00089	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.00089	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0044	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0044	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.00089	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.00089	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.00089	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.00089	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.00089	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.00089	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.00089	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.00089	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.00089	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.00089	EPA 8260	10-10-11	10-10-11	
Trichloroethene	ND	0.00089	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.00089	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.00089	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.00089	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0044	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.00089	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	ND	0.00089	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

Date Date Analyte Result **PQL** Method **Prepared** Analyzed Flags **Client ID:** SW-MW2-11:5 Laboratory ID: 10-053-03 1,1,2-Trichloroethane ND 0.00089 EPA 8260 10-10-11 10-10-11 Tetrachloroethene ND 0.00089 **EPA 8260** 10-10-11 10-10-11 1,3-Dichloropropane ND 0.00089 **EPA 8260** 10-10-11 10-10-11 Dibromochloromethane ND 0.00089 EPA 8260 10-10-11 10-10-11 Ethylene dibromide ND 0.00089 EPA 8260 10-10-11 10-10-11 ND Chlorobenzene 0.00089 EPA 8260 10-10-11 10-10-11 ND 1,1,1,2-Tetrachloroethane 0.00089 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.00089 EPA 8260 10-10-11 10-10-11 Bromobenzene ND 0.00089 **EPA 8260** 10-10-11 10-10-11 1,1,2,2-Tetrachloroethane ND 0.00089 EPA 8260 10-10-11 10-10-11 ND 1,2,3-Trichloropropane 0.00089 EPA 8260 10-10-11 10-10-11 2-Chlorotoluene ND 0.00089 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.00089 EPA 8260 10-10-11 10-10-11 1.3-Dichlorobenzene ND 0.00089 **EPA 8260** 10-10-11 10-10-11 1.4-Dichlorobenzene ND 0.00089 **EPA 8260** 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.00089 EPA 8260 10-10-11 10-10-11 ND 1,2-Dibromo-3-chloropropane 0.0044 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.00089 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0044 EPA 8260 10-10-11 10-10-11 1,2,3-Trichlorobenzene ND 0.00089 EPA 8260 10-10-11 10-10-11 Control Limits Surrogate: Percent Recovery

Surrogate: Percent Recovery Control Limit Dibromofluoromethane 105 63-127 Toluene-d8 102 65-129 Benzene, 1-bromo-4-fluoro- 100 55-121

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW2-11:10					
Laboratory ID:	10-053-04					
CFC-12	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0060	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0060	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0060	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0060	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Trichloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0060	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	ND	0.0012	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW2-11:10					
Laboratory ID:	10-053-04					
1,1,2-Trichloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Tetrachloroethene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,3-Dichloropropane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Chlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Bromoform	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Bromobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
4-Chlorotoluene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane	e ND	0.0060	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene	ND	0.0060	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260	10-10-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	63-127				
Toluene-d8	109	65-129				

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW2-11:16.5					
Laboratory ID:	10-053-05					
CFC-12	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0075	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0075	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Acetone	0.025	0.0075	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0075	EPA 8260	10-10-11	10-10-11	
Carbon Disulfide	0.0018	0.0015	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0075	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Methyl t-Butyl Ether	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Vinyl Acetate	ND	0.0075	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
2-Butanone	ND	0.0075	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Benzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Trichloroethene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0075	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Methyl Isobutyl Ketone	ND	0.0075	EPA 8260	10-10-11	10-10-11	
Toluene	ND	0.0075	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	e ND	0.0015	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

Toluene-d8

Benzene, 1-bromo-4-fluoro-

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW2-11:16.5					
Laboratory ID:	10-053-05					
1,1,2-Trichloroethane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Tetrachloroethene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,3-Dichloropropane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
2-Hexanone	ND	0.0075	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Chlorobenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Ethylbenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
m,p-Xylene	ND	0.0030	EPA 8260	10-10-11	10-10-11	
o-Xylene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Styrene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Bromoform	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Isopropylbenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Bromobenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane	ND	0.0015	EPA 8260	10-10-11	10-10-11	
n-Propylbenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
4-Chlorotoluene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,3,5-Trimethylbenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
tert-Butylbenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,2,4-Trimethylbenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
sec-Butylbenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
p-Isopropyltoluene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,2-Dichlorobenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
n-Butylbenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane		0.0075	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene	ND	0.0075	EPA 8260	10-10-11	10-10-11	
Naphthalene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichlorobenzene	ND	0.0015	EPA 8260	10-10-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	63-127				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

65-129

55-121

107

106

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
SW-MW2-11:20					
10-053-06					
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0084	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0084	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0084	EPA 8260	10-10-11	10-10-11	
ND	0.0084	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0084	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
ND	0.0017	EPA 8260	10-10-11	10-10-11	
	SW-MW2-11:20 10-053-06 ND	SW-MW2-11:20 10-053-06 0.0017 ND 0.0084 ND 0.0017 ND 0.0017 ND 0.0084 ND 0.0017 ND 0.0017 ND 0.0084 ND 0.0084 ND 0.0017 ND	SW-MW2-11:20 10-053-06 0.0017 EPA 8260 ND 0.0084 EPA 8260 ND 0.0017 EPA 8260 ND 0.0017 EPA 8260 ND 0.0084 EPA 8260 ND 0.0017 EPA 8260 ND 0.0017 EPA 8260 ND 0.0084 EPA 8260 ND 0.0084 EPA 8260 ND 0.0017 EPA 8260 <	Result PQL Method Prepared SW-MW2-11:20 10-053-06 10-10-53-06 ND 0.0017 EPA 8260 10-10-11 ND 0.0084 EPA 8260 10-10-11 ND 0.0017 EPA 8260 10-10-11 ND 0.0084 EPA 8260 10-10-11 ND 0.0084 EPA 8260 10-10-11 ND 0.0017 EPA 8260 10-10-11<	Result PQL Method Prepared Analyzed SW-MW2-11:20 10-053-06 Beauty 10-10-11 10-10-11 10-10-11 ND 0.0017 EPA 8260 10-10-11 10-10-11 ND 0.0017 EPA 8260 10-10-11 10-10-11 ND 0.0017 EPA 8260 10-10-11 10-10-11 ND 0.0084 EPA 8260 10-10-11 10-10-11 ND 0.0017 EPA 8260 10-10-11 10-10-11 ND 0.0084 EPA 8260 10-10-11 10-10-11 ND 0.0017 EPA 8260 10-10-11 10-10-11 ND 0.0017 EPA 8260 10-10-11 10-10-11 ND 0.0017 EPA 8260 10-10-11 10-10-11

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW2-11:20					
Laboratory ID:	10-053-06					
1,1,2-Trichloroethane	ND	0.0017	EPA 8260	10-10-11	10-10-11	
Tetrachloroethene	ND	0.0017	EPA 8260	10-10-11	10-10-11	
1,3-Dichloropropane	ND	0.0017	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane	ND	0.0017	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide	ND	0.0017	EPA 8260	10-10-11	10-10-11	
Chlorobenzene	ND	0.0017	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane	ND	0.0017	EPA 8260	10-10-11	10-10-11	
Bromoform	ND	0.0017	EPA 8260	10-10-11	10-10-11	
Bromobenzene	ND	0.0017	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane	ND	0.0017	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane	ND	0.0017	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene	ND	0.0017	EPA 8260	10-10-11	10-10-11	
4-Chlorotoluene	ND	0.0017	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene	ND	0.0017	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene	ND	0.0017	EPA 8260	10-10-11	10-10-11	
1,2-Dichlorobenzene	ND	0.0017	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane	ND	0.0084	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene	ND	0.0017	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene	ND	0.0084	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichlorobenzene	ND	0.0017	EPA 8260	10-10-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	63-127				
Toluene-d8	100	65-129				

Toluene-d8 100 65-129 99 Benzene, 1-bromo-4-fluoro-55-121

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW2-11:25					
Laboratory ID:	10-053-07					
CFC-12	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0070	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0070	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Acetone	ND	0.0070	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0070	EPA 8260	10-10-11	10-10-11	
Carbon Disulfide	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0070	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Methyl t-Butyl Ether	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Vinyl Acetate	ND	0.0070	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
2-Butanone	ND	0.0070	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Benzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Trichloroethene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0070	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Methyl Isobutyl Ketone	ND	0.0070	EPA 8260	10-10-11	10-10-11	
Toluene	ND	0.0070	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	ND	0.0014	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

Benzene, 1-bromo-4-fluoro-

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW2-11:25					
Laboratory ID:	10-053-07					
1,1,2-Trichloroethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Tetrachloroethene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,3-Dichloropropane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
2-Hexanone	ND	0.0070	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Chlorobenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Ethylbenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
m,p-Xylene	ND	0.0028	EPA 8260	10-10-11	10-10-11	
o-Xylene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Styrene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Bromoform	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Isopropylbenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Bromobenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
n-Propylbenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
4-Chlorotoluene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,3,5-Trimethylbenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
tert-Butylbenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2,4-Trimethylbenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
sec-Butylbenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
p-Isopropyltoluene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2-Dichlorobenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
n-Butylbenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane	ND	0.0070	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene	ND	0.0070	EPA 8260	10-10-11	10-10-11	
Naphthalene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichlorobenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	63-127				
Toluene-d8	107	65-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

106

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1010S2					
CFC-12	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0050	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Acetone	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Carbon Disulfide	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Vinyl Acetate	ND	0.0050	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
2-Butanone	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Benzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Trichloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Toluene	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

Benzene, 1-bromo-4-fluoro-

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1010S2					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Tetrachloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
2-Hexanone	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Chlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Ethylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
m,p-Xylene	ND	0.0020	EPA 8260	10-10-11	10-10-11	
o-Xylene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Styrene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Bromoform	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Isopropylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Bromobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
n-Propylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
n-Butylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Naphthalene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits	-			
Dibromofluoromethane	114	63-127				
Toluene-d8	108	65-129				

55-121

107

Project: 21-1-16604-003

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Reco	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	10S2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0597	0.0611	0.0500	0.0500	119	122	70-130	2	19	
Benzene	0.0517	0.0532	0.0500	0.0500	103	106	70-125	3	15	
Trichloroethene	0.0528	0.0521	0.0500	0.0500	106	104	70-122	1	14	
Toluene	0.0518	0.0508	0.0500	0.0500	104	102	73-120	2	16	
Chlorobenzene	0.0525	0.0505	0.0500	0.0500	105	101	74-109	4	12	
Surrogate:										
Dibromofluoromethan	е				108	112	63-127			
Toluene-d8					106	109	65-129			
Benzene, 1-bromo-4-f	luoro-				106	108	55-121			

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Units: mg/kg (ppm)

	9 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	10-053-01 SW-MW1-11:13					
Arsenic	ND	11	6010B	10-11-11	10-12-11	
Cadmium	ND	0.54	6010B	10-11-11	10-12-11	
Chromium	33	0.54	6010B	10-11-11	10-12-11	
Lead	ND	5.4	6010B	10-11-11	10-12-11	
Mercury	ND	0.27	7471A	10-11-11	10-11-11	
Lab ID: Client ID:	10-053-02 SW-MW1-11:25					
Arsenic	ND	12	6010B	10-11-11	10-12-11	
Cadmium	ND	0.58	6010B	10-11-11	10-12-11	
Chromium	28	0.58	6010B	10-11-11	10-12-11	
Lead	ND	5.8	6010B	10-11-11	10-12-11	
Mercury	ND	0.29	7471A	10-11-11	10-11-11	
Lab ID: Client ID:	10-053-05 SW-MW2-11:16.5					
Arsenic	ND	12	6010B	10-11-11	10-12-11	
Cadmium	ND	0.58	6010B	10-11-11	10-12-11	
Chromium	30	0.58	6010B	10-11-11	10-12-11	
Lead	ND	5.8	6010B	10-11-11	10-12-11	
Mercury	ND	0.29	7471A	10-11-11	10-11-11	

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-053-07					
Client ID:	SW-MW2-11:25					
Arsenic	ND	12	6010B	10-11-11	10-12-11	
Cadmium	ND	0.61	6010B	10-11-11	10-12-11	
Chromium	35	0.61	6010B	10-11-11	10-12-11	
Lead	ND	6.1	6010B	10-11-11	10-12-11	
Mercury	ND	0.3	7471A	10-11-11	10-11-11	

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 10-11-11
Date Analyzed: 10-11-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB1011S1&MB1011S2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 10-11-11 Date Analyzed: 10-11-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 10-058-04

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	ND	ND	NA	0.50	
Chromium	27.5	27.7	1	0.50	
Lead	19.5	20.1	3	5.0	
Mercury	ND	ND	NA	0.25	

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 10-11-11
Date Analyzed: 10-11-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 10-058-04

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	97.8	98	99.1	99	1	
Cadmium	50.0	48.2	96	48.5	97	1	
Chromium	100	116	89	117	90	1	
Lead	250	246	91	248	92	1	
Mercury	0.500	0.468	94	0.474	95	1	

Project: 21-1-16604-003

NWTPH-Gx

Matrix: Soil

Units: mg/kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
SW-MW1-11:13					
10-053-01					
ND	5.6	NWTPH-Gx	10-13-11	10-13-11	
Percent Recovery	Control Limits				
100	68-124				
SW-MW1-11:25					
10-053-02					
ND	6.3	NWTPH-Gx	10-13-11	10-13-11	
Percent Recovery	Control Limits				
100	68-124				
SW-MW2-11:16.5					
10-053-05					
ND	6.1	NWTPH-Gx	10-13-11	10-13-11	
Percent Recovery	Control Limits				
102	68-124				
SW-MW2-11:25					
10-053-07					
ND	6.3	NWTPH-Gx	10-13-11	10-13-11	
Percent Recovery	Control Limits				
102	68-124				
	SW-MW1-11:13	SW-MW1-11:13 10-053-01 5.6 Percent Recovery 100 Control Limits 68-124 SW-MW1-11:25 Control Limits 10-053-02 Control Limits ND 6.3 Percent Recovery 100 Control Limits SW-MW2-11:16.5 Control Limits ND 6.1 Percent Recovery 102 Control Limits 68-124 SW-MW2-11:25 Control Limits ND 6.3 Percent Recovery Control Limits	SW-MW1-11:13 10-053-01 ND 5.6 NWTPH-Gx Percent Recovery 100 Control Limits 68-124 NWTPH-Gx SW-MW1-11:25 ND 6.3 NWTPH-Gx Percent Recovery 100 Control Limits 68-124 NWTPH-Gx SW-MW2-11:16.5 ND 6.1 NWTPH-Gx Percent Recovery 102 Control Limits 68-124 68-124 SW-MW2-11:25 10-053-07 ND 6.3 NWTPH-Gx Percent Recovery Percent Recovery Control Limits Control Limits NWTPH-Gx	Result PQL Method Prepared SW-MW1-11:13 10-053-01 10-053-01 ND 5.6 NWTPH-Gx 10-13-11 Percent Recovery 100 68-124 10-13-11 SW-MW1-11:25 10-053-02 ND 6.3 NWTPH-Gx 10-13-11 Percent Recovery 100 68-124 5W-MW2-11:16.5 10-053-05 10-13-11 Percent Recovery 102 Control Limits 68-124 68-124 10-13-11 SW-MW2-11:25 10-053-07 ND 6.3 NWTPH-Gx 10-13-11 Percent Recovery 100 Control Limits 10-13-11 10-13-11	Result PQL Method Prepared Analyzed SW-MW1-11:13 10-053-01 ND 5.6 NWTPH-Gx 10-13-11 10-13-11 Percent Recovery 100 Control Limits 68-124 10-13-11 10-13-11 10-13-11 Percent Recovery 100 Control Limits 68-124 10-13-11 10-13-11 10-13-11 Percent Recovery 102 Control Limits 68-124 10-13-11 10-13-11 10-13-11 SW-MW2-11:25 10-053-07 ND 6.3 NWTPH-Gx 10-13-11 10-13-11 Percent Recovery ND 6.3 NWTPH-Gx 10-13-11 10-13-11 Percent Recovery Control Limits Control Limits 10-13-11 10-13-11

Project: 21-1-16604-003

NWTPH-Gx QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1013S1					
Gasoline	ND	5.0	NWTPH-Gx	10-13-11	10-13-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	68-124				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-05	53-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						100 99	68-124			

Project: 21-1-16604-003

% MOISTURE

Date Analyzed: 10-10&11-11

Client ID	Lab ID	% Moisture
SW-MW1-11:13	10-053-01	7
SW-MW1-11:25	10-053-02	13
SW-MW2-11:5	10-053-03	10
SW-MW2-11:10	10-053-04	8
SW-MW2-11:16.5	10-053-05	13
SW-MW2-11:20	10-053-06	12
SW-MW2-11:25	10-053-07	18

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- **RPD Relative Percent Difference**

OnSite Environmental Inc.

Chain of Custody

Page ____of ___

LIIVII UIIIIGIILAI IIIG.		(in worki			La	boı	ato	ry	Nui	mbe	er:								1	U.	-U	53)	
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	k One)									Re	eque	ste	d Ar	naly	sis							
HODZIW & GONGHE	☐ San	ne Day		1 Day														d	7				T	1
Project Number: 21 - 1 - 1 6 6 0 4 - 003	☐ 2 D	ay		3 Day					8260B									META!						
Project Name: ST - KEY BANK	XIStar Star	ndard (7 w	orking da	ays)					by	QO	_				3)			4	Lex -					
Project Manager:		H analysis				X		OB	latile	8270D	/ SIM		81A	151A	tals (1	7					
Sampled by:			E2*		CID	x/BTI	×	826	oV be	es by	270D	082	by 80	by 8	A Mer	SIS	164	4	10					
DJR		(oth	ner)		H-H	P-H-G	G-H	es b)	enate	olatil	by 8%	by 8	ides	sides	3CR/	Meta	by 16	CT	MWTPH				isture	
ab ID Sample Identification S	Date ampled	Time Sampled	Matrix	# of Cont.	NWTPH-HG	NWTPH-Gx/BT	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles	Semivolatiles by	PAHs by 8270D	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	Z	2				% Moisture	
1 SW-MW1-11:13	16/2011	0835	Sore				X	X										X	X				X	
		1020		6			XX	X										X	X					4
	0/6/2011	1415	Suil	E					X															1
	16/2011	1422		4					X															
5 SW-MW2-11: 15.5 10		1431		6			X	X										X	X				\top	
6 SW-MWZ -11:20 11		1440		4					X										X	- WY	_			
	16kon	1450	Sort	6			X	X										X	X				1	
																		•						
																								4
Signature		Company				Date			Time			Com	ments	Spec	cial In	struc	tions:							200
Relinquished by		Stu	J			10	15	11	8	13	6													
Received by mar Zanda		Speci	Ly			10	12/	(1	8:	15														
Relinquished by		(. /			(. ((: (\$)													
Received by	_	Oft	5			101	7/1	1	11	115	5													
Relinquished by																								
Received by																								
Reviewed by/Date		Reviewed b	by/Date									Chr	omat	ogra	ms v	vith f	final	repoi	rt 🗌					

OnSite Environmental Inc.

Chain of Custody

Page	of	

Environmental inc.	NAME OF	(in working days) Laboratory Number:																						
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	One)						1		197	Re	que	stec	d An	alys	sis		-	1			561	
Stul	□ Sar	ne Day		1 Day														4	-	4				
Project Number:									0B									~						
21-1-16604-003 Project Name:	☐ 2 D	ay		3 Day					826									1		- 1	- 1			
IT - KEY BANK		ndard (7 wo			-				s by	70D	Σ			_	(8)			A	+					
Project Manager:	(TP	'H analysis	5 workir	ng days)		X		0B	latile	827	ls/)81A	151	tals (į						
Sampled by:					吕	/BT	Ų	826	oV b	se by	70D	382	y 8(by 8	Me.	S	64	5	X					
DSR		(oth	er)		H H	H-G)	H-D	s ph	nate	olatile	3y 82	by 8(des l	ides	CR/	Meta	y 16	1	+					sture
Lab ID Sample Identification S	Date Sampled	Time Sampled	Matrix	# of Cont.	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by 8260B	Semivolatiles by 8270D	PAHs by 8270D / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	N	4					% Moisture
SW-MW3-11:5	0/7/11	0858	Soil						X															
SW-MW3-11:10 pm		0405					X	X										X	X					
(SIN-MW3-11:15) HOLD		0915							X															
SU- MW3- (1:18		0918					X	X										X	X			- 1		
(SW-MW3-11:20) HOLD		0922							X															
SW- MW3-11:25		0931							X									5						H
5W-MW3-11:30		0945							X					1111										
SW-MW3-11:35	4	1005	4						X															
	_																							
			-																		-			
Signature	1912	Company				Date			Time			Com	ment	s/Spe	cial In	struc	tions	10.00					HB.	
Relinquished by		StW				101	41	11	1	34	5													
Received by		1400	e 2 4			- 2/	7.	A	- 61	77.	0													
Relinquished by																								
Received by																								
Relinquished by			-10%																					
Received by		Daviewed h	100		-															4:	4			
Reviewed by/Date		Reviewed b	by/Date			+	Mi.	A.				Chr	oma	togra	ıms v	with 1	final	repo	rt 🗌				J.	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 14, 2011

Dawn Wulf Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-16604-003

Laboratory Reference No. 1110-057

Dear Dawn:

Enclosed are the analytical results and associated quality control data for samples submitted on October 7, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 21-1-16604-003

Case Narrative

Samples were collected on October 7, 2011 and received by the laboratory on October 7, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx and Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 21-1-16604-003

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:10					
Laboratory ID:	10-057-02					
Diesel Range Organics	ND	30	NWTPH-Dx	10-12-11	10-12-11	
Lube Oil Range Organics	ND	60	NWTPH-Dx	10-12-11	10-12-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	SW-MW3-11:18					
Laboratory ID:	10-057-04					
Diesel Range Organics	ND	30	NWTPH-Dx	10-12-11	10-12-11	
Lube Oil Range Organics	ND	59	NWTPH-Dx	10-12-11	10-12-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

Project: 21-1-16604-003

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analvzed	Flags
METHOD BLANK		· · · · · · · · · · · · · · · · · · ·				
Laboratory ID:	MB1012S1					
Diesel Range Organics	ND	25	NWTPH-Dx	10-12-11	10-12-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-12-11	10-12-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	116	50-150				

			Percent	Recovery		RPD	
Analyte	Res	sult	Recovery	Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	10-0	53-01					
	ORIG	DUP					
Diesel Range Organics	ND	ND			NA	NA	
Lube Oil Range Organics	ND	ND			NA	NA	
Surrogate:					•	•	

o-Terphenyl 112 123 50-150

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:5					
Laboratory ID:	10-057-01					
CFC-12	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0066	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0066	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0066	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0066	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Trichloroethene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0066	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	ND	0.0013	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:5					
Laboratory ID:	10-057-01					
1,1,2-Trichloroethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Tetrachloroethene	0.014	0.0013	EPA 8260	10-10-11	10-10-11	
1,3-Dichloropropane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Chlorobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Bromoform	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Bromobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
4-Chlorotoluene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane	ND	0.0066	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene	ND	0.0066	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits	_	_	_	
Dibromofluoromethane	105	63-127				
Toluene-d8	108	65-129				

Toluene-d8 108 65-129 Benzene, 1-bromo-4-fluoro-105 55-121

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:10					
Laboratory ID:	10-057-02					
CFC-12	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0052	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0052	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Acetone	0.0093	0.0052	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0052	EPA 8260	10-10-11	10-10-11	
Carbon Disulfide	0.0028	0.0010	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0052	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Vinyl Acetate	ND	0.0052	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
2-Butanone	ND	0.0052	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Benzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Trichloroethene	0.0032	0.0010	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0052	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Methyl Isobutyl Ketone	ND	0.0052	EPA 8260	10-10-11	10-10-11	
Toluene	ND	0.0052	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

Benzene, 1-bromo-4-fluoro-

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:10					
Laboratory ID:	10-057-02					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Tetrachloroethene	0.025	0.0010	EPA 8260	10-10-11	10-10-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
2-Hexanone	ND	0.0052	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Chlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Ethylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
m,p-Xylene	ND	0.0021	EPA 8260	10-10-11	10-10-11	
o-Xylene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Styrene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Bromoform	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Isopropylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Bromobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
n-Propylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
n-Butylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane	ND	0.0052	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene	ND	0.0052	EPA 8260	10-10-11	10-10-11	
Naphthalene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	63-127				
Toluene-d8	103	65-129				
Danasa A huana A fire	404	EE 404				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

101

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:18					
Laboratory ID:	10-057-04					
CFC-12	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0068	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0068	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Acetone	ND	0.0068	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0068	EPA 8260	10-10-11	10-10-11	
Carbon Disulfide	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0068	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Methyl t-Butyl Ether	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Vinyl Acetate	ND	0.0068	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
2-Butanone	ND	0.0068	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Benzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Trichloroethene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0068	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Methyl Isobutyl Ketone	ND	0.0068	EPA 8260	10-10-11	10-10-11	
Toluene	ND	0.0068	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	ND	0.0014	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 2 of 2

Analyte Result PQL Method Prepared Analyzed					Date	Date	
Laboratory ID:		Result	PQL	Method	Prepared	Analyzed	Flags
1,1,2-Trichloroethane	SV	N-MW3-11:18					
Tetrachloroethene 0.096 0.0014 EPA 8260 10-10-11 10-10-11 1,3-Dichloropropane ND 0.0014 EPA 8260 10-10-11 10-10-11 10-10-11 12-Hexanone ND 0.0068 EPA 8260 10-10-11 1	y ID:	10-057-04					
1,3-Dichloropropane ND 0.0014 EPA 8260 10-10-11 10-10-11 2-Hexanone ND 0.0068 EPA 8260 10-10-11 10-10-11 Dibiromochloromethane ND 0.0014 EPA 8260 10-10-11 10-10-11 Ethylene dibromide ND 0.0014 EPA 8260 10-10-11 10-10-11 Chlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 Chlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 Ethylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 D-Xylene ND 0.0027 EPA 8260 10-10-11 10-10-11 D-Xylene ND 0.0014 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0014 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0014 EPA 8260 10-10-11 10-10-11 Bromobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 <td>hloroethane</td> <td>ND</td> <td>0.0014</td> <td>EPA 8260</td> <td>10-10-11</td> <td>10-10-11</td> <td></td>	hloroethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
ND 0.0068 EPA 8260 10-10-11 10-10-	roethene	0.096	0.0014	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane ND	ropropane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide ND 0.0014 EPA 8260 10-10-11 10-10-11 Chlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,1,1,2-Tetrachloroethane ND 0.0014 EPA 8260 10-10-11 10-10-11 Ethylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 mp-Xylene ND 0.0027 EPA 8260 10-10-11 10-10-11 bo-Xylene ND 0.0014 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0014 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0014 EPA 8260 10-10-11 10-10-11 Bromobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 Bromobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloroethane ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2,2-Titrachloropropane ND 0.0014 EPA 8260 10-10-11	ne	ND	0.0068	EPA 8260	10-10-11	10-10-11	
Chlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,1,1,2-Tetrachloroethane ND 0.0014 EPA 8260 10-10-11 10-	hloromethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane	dibromide	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Ethylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 m,p-Xylene ND 0.0027 EPA 8260 10-10-11 10-10-11 Do-Xylene ND 0.0014 EPA 8260 10-10-11 10-10-11 Styrene ND 0.0014 EPA 8260 10-10-11 10-10-11 Bromoform ND 0.0014 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloroethane ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0014 EPA 8260 10-10-11 10-10-11	nzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Np. Xylene	etrachloroethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Documents No. Documents	ene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
Styrene ND 0.0014 EPA 8260 10-10-11 10-10-1	ie	ND	0.0027	EPA 8260	10-10-11	10-10-11	
Bromoform ND 0.0014 EPA 8260 10-10-11 10-10		ND	0.0014	EPA 8260	10-10-11	10-10-11	
Sepropylbenzene ND 0.0014 EPA 8260 10-10-11		ND	0.0014	EPA 8260	10-10-11	10-10-11	
Stomobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,1,2,2-Tetrachloroethane ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0014 EPA 8260 10-10-11	m	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2,3-Trichloropropane ND 0.0014 EPA 8260 10-10-11 10-10-11 n-Propylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 2-Chlorotoluene ND 0.0014 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,3,5-Trimethylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0014	penzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
ND 0.0014 EPA 8260 10-10-11 10-10-	nzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane	etrachloroethane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene ND 0.0014 EPA 8260 10-10-11 10-10-11 4-Chlorotoluene ND 0.0014 EPA 8260 10-10-11 10-10-11 10-10-11 1,3,5-Trimethylbenzene ND 0.0014 EPA 8260 10-10-11	hloropropane	ND	0.0014	EPA 8260	10-10-11	10-10-11	
A-Chlorotoluene ND 0.0014 EPA 8260 10-10-11 10-10-11 10-10-11 12,3,5-Trimethylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-	enzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,3,5-Trimethylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 tert-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 sec-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 n-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0068 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0068 EPA 8260 10-10-11 10-10-11 ND 0.0068 EPA 8260	oluene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
tert-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 sec-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10	oluene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
tert-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2,4-Trimethylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 10-10-11 10-10-11 11,2-Dibromo-3-chloropropane ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0068 EPA 8260 10-10-11 10-10-11 10-10-11 11-10-10-11 10-10-11	nethylbenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2,4-Trimethylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 sec-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 p-Isopropyltoluene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 n-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0068 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0068 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0014 EPA 8260 10-10-11 10-10-11		ND	0.0014	EPA 8260	10-10-11	10-10-11	
sec-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,3-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0068 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0068 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0014 EPA 8260 10-10-11 10-10-11		ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 n-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0068 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0068 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0014 EPA 8260 10-10-11 10-10-11		ND	0.0014	EPA 8260	10-10-11	10-10-11	
p-Isopropyltoluene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,4-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0068 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0068 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0068 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0014 EPA 8260 10-10-11 10-10-11		ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 n-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0068 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0068 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0014 EPA 8260 10-10-11 10-10-11		ND	0.0014	EPA 8260	10-10-11	10-10-11	
n-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0068 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0068 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0014 EPA 8260 10-10-11 10-10-11	<u>-</u>	ND	0.0014	EPA 8260	10-10-11	10-10-11	
n-Butylbenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 1,2-Dibromo-3-chloropropane ND 0.0068 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0068 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0014 EPA 8260 10-10-11 10-10-11	orobenzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane ND 0.0068 EPA 8260 10-10-11 10-10-11 1,2,4-Trichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0068 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0014 EPA 8260 10-10-11 10-10-11	nzene	ND	0.0014	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene ND 0.0014 EPA 8260 10-10-11 10-10-11 Hexachlorobutadiene ND 0.0068 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0014 EPA 8260 10-10-11 10-10-11		ND	0.0068	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene ND 0.0068 EPA 8260 10-10-11 10-10-11 Naphthalene ND 0.0014 EPA 8260 10-10-11 10-10-11							
Naphthalene ND 0.0014 EPA 8260 10-10-11 10-10-11	robutadiene						
•							
			0.0014				
Surrogate: Percent Recovery Control Limits							
Dibromofluoromethane 100 63-127		-					
Toluene-d8 101 65-129							

Benzene, 1-bromo-4-fluoro-101 55-121

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

Office. Hig/Ng				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:25			•	-	
Laboratory ID:	10-057-06					
CFC-12	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0067	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0067	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0067	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0067	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Trichloroethene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0067	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	ND	0.0013	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:25					
Laboratory ID:	10-057-06					
1,1,2-Trichloroethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Tetrachloroethene	0.048	0.0013	EPA 8260	10-10-11	10-10-11	
1,3-Dichloropropane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Chlorobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Bromoform	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Bromobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
4-Chlorotoluene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane	e ND	0.0067	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene	ND	0.0067	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260	10-10-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	63-127				
Toluene-d8	107	65-129				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

orme. mg/ng				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:30					
Laboratory ID:	10-057-07					
CFC-12	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0080	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0080	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0080	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0080	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Trichloroethene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0080	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	ND	0.0016	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:30					
Laboratory ID:	10-057-07					
1,1,2-Trichloroethane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Tetrachloroethene	0.038	0.0016	EPA 8260	10-10-11	10-10-11	
1,3-Dichloropropane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Chlorobenzene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Bromoform	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Bromobenzene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane	ND	0.0016	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
4-Chlorotoluene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,2-Dichlorobenzene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane	ND	0.0080	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene	ND	0.0080	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichlorobenzene	ND	0.0016	EPA 8260	10-10-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	63-127				
Toluene-d8	106	65-129				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

orme. mg/ng				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:35	_				
Laboratory ID:	10-057-08					
CFC-12	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Chloromethane	ND	0.013	EPA 8260	10-10-11	10-11-11	
Vinyl Chloride	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Bromomethane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Chloroethane	ND	0.013	EPA 8260	10-10-11	10-11-11	
CFC-11	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,1-Dichloroethene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Methyl Iodide	ND	0.013	EPA 8260	10-10-11	10-11-11	
Methylene Chloride	ND	0.013	EPA 8260	10-10-11	10-11-11	
Trans-1,2-Dichloroethene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,1-Dichloroethane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
2,2-Dichloropropane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Cis-1,2-Dichloroethene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Bromochloromethane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Chloroform	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,1,1-Trichloroethane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Carbon Tetrachloride	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,1-Dichloropropene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,2-Dichloroethane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Trichloroethene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,2-Dichloropropane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Dibromomethane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Dichlorobromomethane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
2-Chloroethylvinylether	ND	0.013	EPA 8260	10-10-11	10-11-11	
Cis-1,3-Dichloropropene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Trans-1,3-Dichloropropene	ND	0.0025	EPA 8260	10-10-11	10-11-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:35					
Laboratory ID:	10-057-08					
1,1,2-Trichloroethane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Tetrachloroethene	0.033	0.0025	EPA 8260	10-10-11	10-11-11	
1,3-Dichloropropane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Dibromochloromethane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Ethylene dibromide	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Chlorobenzene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,1,1,2-Tetrachloroethane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Bromoform	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Bromobenzene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,1,2,2-Tetrachloroethane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,2,3-Trichloropropane	ND	0.0025	EPA 8260	10-10-11	10-11-11	
2-Chlorotoluene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
4-Chlorotoluene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,3-Dichlorobenzene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,4-Dichlorobenzene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,2-Dichlorobenzene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
1,2-Dibromo-3-chloropropane	ND	0.013	EPA 8260	10-10-11	10-11-11	
1,2,4-Trichlorobenzene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Hexachlorobutadiene	ND	0.013	EPA 8260	10-10-11	10-11-11	
1,2,3-Trichlorobenzene	ND	0.0025	EPA 8260	10-10-11	10-11-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	63-127				
Toluene-d8	107	65-129				

I oluene-d8 107 65-129 Benzene, 1-bromo-4-fluoro-106 55-121

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1010S2					
CFC-12	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Chloromethane	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Vinyl Chloride	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Bromomethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Chloroethane	ND	0.0050	EPA 8260	10-10-11	10-10-11	
CFC-11	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Acetone	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Methyl Iodide	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Carbon Disulfide	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Methylene Chloride	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Trans-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Vinyl Acetate	ND	0.0050	EPA 8260	10-10-11	10-10-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Cis-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
2-Butanone	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Bromochloromethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Chloroform	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Benzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Trichloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Dibromomethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Dichlorobromomethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
2-Chloroethylvinylether	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Cis-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Toluene	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Trans-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-10-11	10-10-11	

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1010S2					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Tetrachloroethene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
2-Hexanone	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Dibromochloromethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Ethylene dibromide	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Chlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Ethylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
m,p-Xylene	ND	0.0020	EPA 8260	10-10-11	10-10-11	
o-Xylene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Styrene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Bromoform	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Isopropylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Bromobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	10-10-11	10-10-11	
n-Propylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
n-Butylbenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2-Dibromo-3-chloropropane	e ND	0.0050	EPA 8260	10-10-11	10-10-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	10-10-11	10-10-11	
Naphthalene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	10-10-11	10-10-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	63-127				
Toluene-d8	108	65-129				
Benzene, 1-bromo-4-fluoro-	107	55-121				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 21-1-16604-003

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB1010S2									
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0597	0.0611	0.0500	0.0500	119	122	70-130	2	19	
Benzene	0.0517	0.0532	0.0500	0.0500	103	106	70-125	3	15	
Trichloroethene	0.0528	0.0521	0.0500	0.0500	106	104	70-122	1	14	
Toluene	0.0518	0.0508	0.0500	0.0500	104	102	73-120	2	16	
Chlorobenzene	0.0525	0.0505	0.0500	0.0500	105	101	74-109	4	12	
Surrogate:										
Dibromofluoromethane)				108	112	63-127			
Toluene-d8					106	109	65-129			
Benzene, 1-bromo-4-fi	luoro-				106	108	55-121			

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	10-057-02 SW-MW3-11:10					
Arsenic	ND	12	6010B	10-11-11	10-12-11	
Cadmium	ND	0.60	6010B	10-11-11	10-12-11	
Chromium	47	0.60	6010B	10-11-11	10-12-11	
Lead	ND	6.0	6010B	10-11-11	10-12-11	
Mercury	ND	0.30	7471A	10-11-11	10-11-11	
Lab ID:	10-057-04 SW-MW3-11:18					
Arsenic	ND	12	6010B	10-11-11	10-12-11	
Cadmium	ND	0.59	6010B	10-11-11	10-12-11	
Chromium	36	0.59	6010B	10-11-11	10-12-11	
Lead	ND	5.9	6010B	10-11-11	10-12-11	
Mercury	ND	0.30	7471A	10-11-11	10-11-11	

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 10-11-11
Date Analyzed: 10-11-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB1011S1&MB1011S2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 10-11-11
Date Analyzed: 10-11-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 10-058-04

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	ND	ND	NA	0.50	
Chromium	27.5	27.7	1	0.50	
Lead	19.5	20.1	3	5.0	
Mercury	ND	ND	NA	0.25	

Project: 21-1-16604-003

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 10-11-11
Date Analyzed: 10-11-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 10-058-04

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	97.8	98	99.1	99	1	
Cadmium	50.0	48.2	96	48.5	97	1	
Chromium	100	116	89	117	90	1	
Lead	250	246	91	248	92	1	
Mercury	0.500	0.468	94	0.474	95	1	

Project: 21-1-16604-003

NWTPH-Gx

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW-MW3-11:10					_
Laboratory ID:	10-057-02					
Gasoline	ND	6.6	NWTPH-Gx	10-13-11	10-13-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	68-124				
Client ID:	SW-MW3-11:18					
Laboratory ID:	10-057-04					
Gasoline	ND	6.3	NWTPH-Gx	10-13-11	10-13-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	68-12 <i>4</i>				

Project: 21-1-16604-003

NWTPH-Gx QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1013S2					
Gasoline	ND	5.0	NWTPH-Gx	10-13-11	10-13-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	68-124				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-0	53-02								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Eluorobonzono						100 09	69 121			

68-124 Fluorobenzene

Project: 21-1-16604-003

% MOISTURE

Date Analyzed: 10-10&11-11

Client ID	Lab ID	% Moisture
SW-MW3-11:5	10-057-01	9
SW-MW3-11:10	10-057-02	16
SW-MW3-11:18	10-057-04	15
SW-MW3-11:25	10-057-06	13
SW-MW3-11:30	10-057-07	13
SW-MW3-11:35	10-057-08	13

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

	1)
Page	of	

Environmental Inc.		Turnaround (in workin			La	bor	ato	ry I	Nur	nbe	er:								1	0 -	05	57	
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	-	(Check	One)				,	F	1			Re	que	stec	l An	naly	sis	1	1				
StW	☐ Sar	me Day		1 Day														4					
Project Number: 21-1-16604 - 003	☐ 2 D	-		3 Day					8260B									NETALS					
Project Name:									by 82									1/2					
ST-KEY BANK		ndard (7 wo							es p	70D	Σ		A	A	(8)			5					
Project Manager:	(IP	H analysis	5 WORKIN	ig days)	25	EX		60B	olati	y 82	S/0	1000	3081	8151	etals				×				
Sampled by:	10_	(atla	١٥٣)		SD	Зх/В	×	y 82	ted V	iles t	3270	3082	by 8	s by	IA M	als	664	A	S.				e l
DSR		(oth	ier)		主	PH-C	F	les b	jena	volat	by 8	s by 8	cides	cide	RCF	Me	by 1	MCTA	TPH.		2	2	% Moisture
Lab ID Sample Identification S	Date Sampled	Time Sampled	Matrix	# of Cont.	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles	Semivolatiles by 8270D	PAHs by 8270D / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals	TCLP Metals	HEM by 1664	2	F		HOLD	2	W %
SW-MW 3-11:5	0/7/1	0858		4					X												- Q		X
2 SW-MW3-11:10	1	0905	1	6			X	X										X	X				X
3 SW-MW3-11:15		0915		4					X									'			X		
4 SW-MW3-11:18	41	0918		6			X	X										X	X				X
4 SW-MW3-11:18 5 SW-MW3-11:20		0922		4					X												X		
6 SW- MW3-11; 25		0931							X														X
7 SW-MW3-11:30		0945							X														
8 sw-mw3-11:35	1	1005	-	V					X														V
4																							
Signature		Company				Date	1 1	1	Time	_	-	Comi	ments	/Spec	cial In	struc	tions:	1998	1961				
Relinquished by		Stw				10/	7/	//	1	34	2												
Received by		Stw	edy			10	71	4	1	11.0	0												
Relinquished by			1	0.8			1		15	5:1	0												
Received by	_	0	86			101-	7/1	1	1	51(0												
Relinquished by				F																			
Received by			- 11	5																			
Reviewed by/Date		Reviewed b	oy/Date									Chr	omat	ogra	ms v	with :	final	repor	t 🗆				

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 21, 2011

Dawn Wulf Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-16604-004

Laboratory Reference No. 1110-106

Dear Dawn:

Enclosed are the analytical results and associated quality control data for samples submitted on October 14, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 21-1-16604-004

Case Narrative

Samples were collected on October 13, 2011 and received by the laboratory on October 14, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx Analysis

The gasoline result for sample MW-3 is attributed to a single peak; refer to EPA 8260B results.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 21-1-16604-004

NWTPH-Gx

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3					
Laboratory ID:	10-106-01					
Gasoline	160	100	NWTPH-Gx	10-18-11	10-18-11	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	73-121				
Client ID:	MW-2					
Laboratory ID:	10-106-02					
Gasoline	ND	400	NWTPH-Gx	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	73-121				
Client ID:	MW-1					
Laboratory ID:	10-106-03					
Gasoline	1100	100	NWTPH-Gx	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	73-121				

Project: 21-1-16604-004

NWTPH-Gx QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1018W2					
Gasoline	ND	100	NWTPH-Gx	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	73-121				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-09	91-02									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N/	4	NA	NA	30	
Surrogate:	•				•	•					
Fluorobenzene						91	87	73-121			

Project: 21-1-16604-004

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water
Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2					
Laboratory ID:	10-106-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	10-17-11	10-17-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				
Client ID:	MW-1					
Laboratory ID:	10-106-03					
Diesel Range Organics	ND	0.29	NWTPH-Dx	10-17-11	10-17-11	
Lube Oil Range Organics	ND	0.46	NWTPH-Dx	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits	•		•	•

Project: 21-1-16604-004

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1017W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	10-17-11	10-17-11	_
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				

			Perc	ent	Recovery		RPD	
Analyte	Res	sult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	10-10	08-01						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			93	92	50-150			

Project: 21-1-16604-004

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3					
Laboratory ID:	10-106-01					
CFC-12	ND	1.0	EPA 8260	10-18-11	10-18-11	
Chloromethane	ND	5.0	EPA 8260	10-18-11	10-18-11	
Vinyl Chloride	ND	1.0	EPA 8260	10-18-11	10-18-11	
Bromomethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Chloroethane	ND	5.0	EPA 8260	10-18-11	10-18-11	
CFC-11	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Acetone	ND	25	EPA 8260	10-18-11	10-18-11	
Methyl Iodide	ND	5.0	EPA 8260	10-18-11	10-18-11	
Carbon Disulfide	ND	1.0	EPA 8260	10-18-11	10-18-11	
Methylene Chloride	ND	5.0	EPA 8260	10-18-11	10-18-11	
Trans-1,2-Dichloroethene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Methyl t-Butyl Ether	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Vinyl Acetate	ND	10	EPA 8260	10-18-11	10-18-11	
2,2-Dichloropropane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Cis-1,2-Dichloroethene	ND	1.0	EPA 8260	10-18-11	10-18-11	
2-Butanone	ND	25	EPA 8260	10-18-11	10-18-11	
Bromochloromethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Chloroform	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,1,1-Trichloroethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Carbon Tetrachloride	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,1-Dichloropropene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Benzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,2-Dichloroethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Trichloroethene	1.8	1.0	EPA 8260	10-18-11	10-18-11	
1,2-Dichloropropane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Dibromomethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Dichlorobromomethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
2-Chloroethylvinylether	ND	5.0	EPA 8260	10-18-11	10-18-11	
Cis-1,3-Dichloropropene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Methyl Isobutyl Ketone	ND	10	EPA 8260	10-18-11	10-18-11	
Toluene	ND	5.0	EPA 8260	10-18-11	10-18-11	
Trans-1,3-Dichloropropene	ND	1.0	EPA 8260	10-18-11	10-18-11	

Project: 21-1-16604-004

VOLATILES by EPA 8260B page 2 of 2

A I . d .	D #	201		Date	Date	-1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3					
Laboratory ID:	10-106-01					
1,1,2-Trichloroethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Tetrachloroethene	130	1.0	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	1.0	EPA 8260	10-18-11	10-18-11	
2-Hexanone	ND	10	EPA 8260	10-18-11	10-18-11	
Dibromochloromethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Ethylene dibromide	ND	1.0	EPA 8260	10-18-11	10-18-11	
Chlorobenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,1,1,2-Tetrachloroethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Ethylbenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
m,p-Xylene	ND	2.0	EPA 8260	10-18-11	10-18-11	
o-Xylene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Styrene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Bromoform	ND	5.0	EPA 8260	10-18-11	10-18-11	
Isopropylbenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Bromobenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,1,2,2-Tetrachloroethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichloropropane	ND	1.0	EPA 8260	10-18-11	10-18-11	
n-Propylbenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
2-Chlorotoluene	ND	1.0	EPA 8260	10-18-11	10-18-11	
4-Chlorotoluene	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,3,5-Trimethylbenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
tert-Butylbenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,2,4-Trimethylbenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
sec-Butylbenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,3-Dichlorobenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
p-Isopropyltoluene	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,4-Dichlorobenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,2-Dichlorobenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
n-Butylbenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,2-Dibromo-3-chloropropane		5.0	EPA 8260	10-18-11	10-18-11	
1,2,4-Trichlorobenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Hexachlorobutadiene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Naphthalene	ND	5.0	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichlorobenzene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Dibromofluoromethane 83 68-120 Toluene-d8 84 73-120 Benzene, 1-bromo-4-fluoro-85 65-120

Project: 21-1-16604-004

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2					
Laboratory ID:	10-106-02					
CFC-12	ND	0.20	EPA 8260	10-18-11	10-18-11	
Chloromethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Vinyl Chloride	ND	0.20	EPA 8260	10-18-11	10-18-11	
Bromomethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Chloroethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
CFC-11	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Acetone	ND	5.0	EPA 8260	10-18-11	10-18-11	
Methyl Iodide	ND	1.0	EPA 8260	10-18-11	10-18-11	
Carbon Disulfide	ND	0.20	EPA 8260	10-18-11	10-18-11	
Methylene Chloride	ND	1.0	EPA 8260	10-18-11	10-18-11	
Trans-1,2-Dichloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Vinyl Acetate	ND	2.0	EPA 8260	10-18-11	10-18-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Cis-1,2-Dichloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
2-Butanone	ND	5.0	EPA 8260	10-18-11	10-18-11	
Bromochloromethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Chloroform	0.37	0.20	EPA 8260	10-18-11	10-18-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Benzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Trichloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Dibromomethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Dichlorobromomethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
2-Chloroethylvinylether	ND	1.0	EPA 8260	10-18-11	10-18-11	
Cis-1,3-Dichloropropene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	10-18-11	10-18-11	
Toluene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Trans-1,3-Dichloropropene	ND	0.20	EPA 8260	10-18-11	10-18-11	

Project: 21-1-16604-004

VOLATILES by EPA 8260B page 2 of 2

A I . d .	D #	201	BB . d 1	Date	Date	-1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2					
Laboratory ID:	10-106-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Tetrachloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	10-18-11	10-18-11	
2-Hexanone	ND	2.0	EPA 8260	10-18-11	10-18-11	
Dibromochloromethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Ethylene dibromide	ND	0.20	EPA 8260	10-18-11	10-18-11	
Chlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Ethylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
m,p-Xylene	ND	0.40	EPA 8260	10-18-11	10-18-11	
o-Xylene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Styrene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Bromoform	ND	1.0	EPA 8260	10-18-11	10-18-11	
Isopropylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Bromobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	10-18-11	10-18-11	
n-Propylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
2-Chlorotoluene	ND	0.20	EPA 8260	10-18-11	10-18-11	
4-Chlorotoluene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
tert-Butylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
sec-Butylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
n-Butylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260	10-18-11	10-18-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Naphthalene	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits

Dibromofluoromethane 88 68-120

Toluene-d8 86 73-120

Benzene, 1-bromo-4-fluoro- 84 65-120

Project: 21-1-16604-004

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	10-106-03					
CFC-12	ND	0.20	EPA 8260	10-18-11	10-18-11	
Chloromethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Vinyl Chloride	ND	0.20	EPA 8260	10-18-11	10-18-11	
Bromomethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Chloroethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
CFC-11	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Acetone	ND	5.0	EPA 8260	10-18-11	10-18-11	
Methyl Iodide	ND	1.0	EPA 8260	10-18-11	10-18-11	
Carbon Disulfide	ND	0.20	EPA 8260	10-18-11	10-18-11	
Methylene Chloride	ND	1.0	EPA 8260	10-18-11	10-18-11	
Trans-1,2-Dichloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Vinyl Acetate	ND	2.0	EPA 8260	10-18-11	10-18-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Cis-1,2-Dichloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
2-Butanone	ND	5.0	EPA 8260	10-18-11	10-18-11	
Bromochloromethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Chloroform	0.22	0.20	EPA 8260	10-18-11	10-18-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Benzene	0.63	0.20	EPA 8260	10-18-11	10-18-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Trichloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Dibromomethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Dichlorobromomethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
2-Chloroethylvinylether	ND	1.0	EPA 8260	10-18-11	10-18-11	
Cis-1,3-Dichloropropene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	10-18-11	10-18-11	
Toluene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Trans-1,3-Dichloropropene	ND	0.20	EPA 8260	10-18-11	10-18-11	

Project: 21-1-16604-004

VOLATILES by EPA 8260B page 2 of 2

Amaluta	Desult	DOL	Mathad	Date	Date	Flores
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1					
Laboratory ID:	10-106-03	0.00	EDA 0000	40.40.44	40.40.44	
1,1,2-Trichloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Tetrachloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	10-18-11	10-18-11	
2-Hexanone	ND	2.0	EPA 8260	10-18-11	10-18-11	
Dibromochloromethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Ethylene dibromide	ND	0.20	EPA 8260	10-18-11	10-18-11	
Chlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Ethylbenzene	17	0.20	EPA 8260	10-18-11	10-18-11	
m,p-Xylene	11	0.40	EPA 8260	10-18-11	10-18-11	
o-Xylene	1.1	0.20	EPA 8260	10-18-11	10-18-11	
Styrene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Bromoform	ND	1.0	EPA 8260	10-18-11	10-18-11	
Isopropylbenzene	8.5	0.20	EPA 8260	10-18-11	10-18-11	
Bromobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	10-18-11	10-18-11	
n-Propylbenzene	3.7	0.20	EPA 8260	10-18-11	10-18-11	
2-Chlorotoluene	ND	0.20	EPA 8260	10-18-11	10-18-11	
4-Chlorotoluene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,3,5-Trimethylbenzene	22	0.20	EPA 8260	10-18-11	10-18-11	
tert-Butylbenzene	1.0	0.20	EPA 8260	10-18-11	10-18-11	
1,2,4-Trimethylbenzene	15	0.20	EPA 8260	10-18-11	10-18-11	
sec-Butylbenzene	2.9	0.20	EPA 8260	10-18-11	10-18-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
p-Isopropyltoluene	2.3	0.20	EPA 8260	10-18-11	10-18-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
n-Butylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260	10-18-11	10-18-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Naphthalene	2.2	1.0	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits

Dibromofluoromethane 87 68-120

Toluene-d8 97 73-120

Benzene, 1-bromo-4-fluoro-85 65-120

Project: 21-1-16604-004

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1018W1					
CFC-12	ND	0.20	EPA 8260	10-18-11	10-18-11	
Chloromethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
Vinyl Chloride	ND	0.20	EPA 8260	10-18-11	10-18-11	
Bromomethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Chloroethane	ND	1.0	EPA 8260	10-18-11	10-18-11	
CFC-11	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Acetone	ND	5.0	EPA 8260	10-18-11	10-18-11	
Methyl Iodide	ND	1.0	EPA 8260	10-18-11	10-18-11	
Carbon Disulfide	ND	0.20	EPA 8260	10-18-11	10-18-11	
Methylene Chloride	ND	1.0	EPA 8260	10-18-11	10-18-11	
Trans-1,2-Dichloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Vinyl Acetate	ND	2.0	EPA 8260	10-18-11	10-18-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Cis-1,2-Dichloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
2-Butanone	ND	5.0	EPA 8260	10-18-11	10-18-11	
Bromochloromethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Chloroform	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Benzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Trichloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Dibromomethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Dichlorobromomethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
2-Chloroethylvinylether	ND	1.0	EPA 8260	10-18-11	10-18-11	
Cis-1,3-Dichloropropene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	10-18-11	10-18-11	
Toluene	ND	1.0	EPA 8260	10-18-11	10-18-11	
Trans-1,3-Dichloropropene	ND	0.20	EPA 8260	10-18-11	10-18-11	

Project: 21-1-16604-004

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

Analysia	Decult	DOL	Mathad	Date	Date	Flore
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1018W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Tetrachloroethene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	10-18-11	10-18-11	
2-Hexanone	ND	2.0	EPA 8260	10-18-11	10-18-11	
Dibromochloromethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Ethylene dibromide	ND	0.20	EPA 8260	10-18-11	10-18-11	
Chlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
Ethylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
m,p-Xylene	ND	0.40	EPA 8260	10-18-11	10-18-11	
o-Xylene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Styrene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Bromoform	ND	1.0	EPA 8260	10-18-11	10-18-11	
Isopropylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Bromobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	10-18-11	10-18-11	
n-Propylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
2-Chlorotoluene	ND	0.20	EPA 8260	10-18-11	10-18-11	
4-Chlorotoluene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
tert-Butylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
sec-Butylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
n-Butylbenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	10-18-11	10-18-11	
Naphthalene	ND	1.0	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	10-18-11	10-18-11	
	Percent Recovery				-	

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 89 68-120
Toluene-d8 91 73-120
Benzene, 1-bromo-4-fluoro-90 65-120

Project: 21-1-16604-004

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

	Result				Per	Percent		RPD		
Analyte			Spike Level		Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB1018W1									
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	11.6	11.4	10.0	10.0	116	114	70-130	2	11	
Benzene	10.3	10.3	10.0	10.0	103	103	75-123	0	8	
Trichloroethene	10.1	9.75	10.0	10.0	101	98	80-113	4	9	
Toluene	10.4	10.1	10.0	10.0	104	101	80-113	3	8	
Chlorobenzene	10.5	10.1	10.0	10.0	105	101	80-111	4	8	
Surrogate:										
Dibromofluoromethane					81	90	68-120			
Toluene-d8					86	90	73-120			
Benzene, 1-bromo-4-fluoro-					83	89	65-120			

Project: 21-1-16604-004

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	10-106-02 MW-2					
Arsenic	4.6	3.3	200.8	10-20-11	10-20-11	
Cadmium	ND	4.4	200.8	10-20-11	10-20-11	
Chromium	32	11	200.8	10-20-11	10-20-11	
Lead	5.2	1.1	200.8	10-20-11	10-20-11	
Mercury	ND	0.50	7470A	10-19-11	10-19-11	
Lab ID: Client ID:	10-106-03 MW-1					
Arsenic	9.9	3.3	200.8	10-20-11	10-20-11	
Cadmium	ND	4.4	200.8	10-20-11	10-20-11	
Chromium	78	11	200.8	10-20-11	10-20-11	
Lead	10	1.1	200.8	10-20-11	10-20-11	
Mercury	ND	0.50	7470A	10-19-11	10-19-11	

Project: 21-1-16604-004

TOTAL METALS EPA 200.8/7470A METHOD BLANK QUALITY CONTROL

Date Extracted: 10-19&20-11
Date Analyzed: 10-19&20-11

Matrix: Water Units: ug/L (ppb)

Lab ID: MB1019W2&MB1020W2

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.3
Cadmium	200.8	ND	4.4
Chromium	200.8	ND	11
Lead	200.8	ND	1.1
Mercury	7470A	ND	0.50

Project: 21-1-16604-004

TOTAL METALS EPA 200.8/7470A DUPLICATE QUALITY CONTROL

Date Extracted: 10-19&20-11 Date Analyzed: 10-19&20-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: 10-105-07

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.3	
Cadmium	ND	ND	NA	4.4	
Chromium	16.6	14.9	11	11	
Lead	1.94	1.95	0	1.1	
Mercury	ND	ND	NA	0.50	

Project: 21-1-16604-004

TOTAL METALS EPA 200.8/7470A MS/MSD QUALITY CONTROL

Date Extracted: 10-19&20-11 Date Analyzed: 10-19&20-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: 10-105-07

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	111	108	97	107	97	0	
Cadmium	111	105	95	107	96	2	
Chromium	111	117	90	121	94	4	
Lead	111	108	95	111	98	3	
Mercury	12.5	12.0	96	11.5	92	4	

Project: 21-1-16604-004

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	10-106-02 MW-2					
Arsenic	ND	3.0	200.8		10-18-11	
Cadmium	ND	4.0	200.8		10-18-11	
Chromium	ND	10	200.8		10-18-11	
Lead	ND	1.0	200.8		10-18-11	
Mercury	ND	0.50	7470A		10-19-11	
Lab ID: Client ID:	10-106-03 MW-1					
Arsenic	ND	3.0	200.8		10-18-11	
Cadmium	ND	4.0	200.8		10-18-11	
Chromium	ND	10	200.8		10-18-11	
Lead	ND	1.0	200.8		10-18-11	
Mercury	ND	0.50	7470A		10-19-11	

Project: 21-1-16604-004

DISSOLVED METALS EPA 200.8/7470A METHOD BLANK QUALITY CONTROL

Date Analyzed: 10-18&19-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: MB1018D1&MB1019D1

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.50

Project: 21-1-16604-004

DISSOLVED METALS EPA 200.8/7470A DUPLICATE QUALITY CONTROL

Date Analyzed: 10-18&19-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: 10-105-07

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.0	
Cadmium	ND	ND	NA	4.0	
Chromium	ND	ND	NA	10	
Lead	ND	ND	NA	1.0	
Mercury	ND	ND	NA	0.50	

Project: 21-1-16604-004

DISSOLVED METALS EPA 200.8/7470A MS/MSD QUALITY CONTROL

Date Analyzed: 10-18&19-11

Matrix: Water
Units: ug/L (ppb)

Lab ID: 10-105-07

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	200	199	99	198	99	0	
Cadmium	200	197	98	195	98	1	
Chromium	200	189	94	189	95	0	
Lead	200	196	98	195	98	0	
Mercury	12.5	12.0	96	11.9	95	1	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.
- Z The gasoline response is attributed to a single peak; refer to EPA 8260B results.
- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

Page _____ of ____

Environmental Inc.	Turnaround (in workin		Lab	orato	ry	Nur	nbe	er:						1	0 -	-10	16
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	(Check	One)							Req	ueste	d An	alys	is				
Shanon & Wilson Inc. Project Number: 21-1-16604-004	Same Day	☐ 1 Day	2//0/			60B					345	mTG45					
Project Name: For wer key Bank Project Manager: Dawn Wulf Sampled by: 206.695.6704	Standard (7 w (TPH analysis		NWTPH-HCID		Volatiles by 8260B	Halogenated Volatiles by 8260B	Semivolatiles by 8270D	PAHs by 8270D / SIM	PCBs by 8082 Pesticides by 8081A	Herbicides by 8151A	Total HOFF Metals (8) MTCA	SOLVED	1664				ture
	Date Time	# of	WTPH	NWTPH-Dx	olatiles	aloger	emivol	AHs by	CBs by	erbicid	otal 🗝	A 4 10	HEM by 1664				% Moisture
a k	Sampled Sampled	Matrix Cont.	ZZ	/ Z	X	I	S	В	<u>a</u> a	I	W	<u>F</u>	I				%
7 10	2//	GW 9		XX	$\langle \rangle$						X	X					
	1/3/11 1310	GW 9	5	XX	X						X	X					
Signatur/ , A /	Company		D	ate		Time			Comme	nts/Sp	ecial In	struct	ions:				
Relinquished by Received by	SAN Speed	da		10/14/			00	-		PL	t a Se		call	W	144		
Relinquished by Received by	- 5000 - 5000			0/14)/5)(5			1				tion			
Relinquished by				,													
Received by																	
Reviewed by/Date	Reviewed	by/Date							Chron	natogr	ams v	vith fi	nal rep	ort 🗌			

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 19, 2011

Dawn Wulf Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-16604-003

Laboratory Reference No. 1110-112

Dear Dawn:

Enclosed are the analytical results and associated quality control data for samples submitted on October 14, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 21-1-16604-003

Case Narrative

Samples were collected on October 14, 2011 and received by the laboratory on October 14, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

ormo. mg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-13:4.5			-	-	
Laboratory ID:	10-112-01					
CFC-12	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Chloromethane	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Vinyl Chloride	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromomethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Chloroethane	ND	0.0029	EPA 8260	10-17-11	10-17-11	
CFC-11	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Methyl Iodide	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Methylene Chloride	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Trans-1,2-Dichloroethene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
2,2-Dichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Cis-1,2-Dichloroethene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromochloromethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Chloroform	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1,1-Trichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Carbon Tetrachloride	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1-Dichloropropene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Trichloroethene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Dibromomethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Dichlorobromomethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
2-Chloroethylvinylether	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Cis-1,3-Dichloropropene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Trans-1,3-Dichloropropene	ND	0.00058	EPA 8260	10-17-11	10-17-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-13:4.5					
Laboratory ID:	10-112-01					
1,1,2-Trichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Tetrachloroethene	0.029	0.0012	EPA 8260	10-17-11	10-17-11	
1,3-Dichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Ethylene dibromide	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1,1,2-Tetrachloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1,2,2-Tetrachloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
2-Chlorotoluene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
4-Chlorotoluene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,3-Dichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,4-Dichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dibromo-3-chloropropane	e ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,2,4-Trichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Hexachlorobutadiene	ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	63-127				
Toluene-d8	105	65-129				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Client ID:	ome. mg/ng				Date	Date	
Client ID:	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
ND	Client ID:	GP-13:10.0					
Chloromethane ND 0.0029 EPA 8260 10-17-11 10-17-11 Vinyl Chloride ND 0.00058 EPA 8260 10-17-11 10-17-11 Bromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroethane ND 0.0029 EPA 8260 10-17-11 10-17-11 Chloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 I,1-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 Methyl lodide ND 0.0029 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Irans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 I,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,1-Tichloroethane ND 0.00058 EPA 82	Laboratory ID:	10-112-02					
ND	CFC-12	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Stromomethane ND 0.00058 EPA 8260 10-17-11	Chloromethane	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Chloroethane ND 0.0029 EPA 8260 10-17-11 10-17-11 CFC-11 ND 0.00058 EPA 8260 10-17-11 10-17-11 I,1-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 Methyl lodide ND 0.0029 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Frans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 I,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroforma ND 0.00058 EPA 8260 <	Vinyl Chloride	ND	0.00058	EPA 8260	10-17-11	10-17-11	
ND	Bromomethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethene	Chloroethane	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Methyl Iodide ND 0.0029 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Frans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 I,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 I,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloroethane ND 0.00058	CFC-11	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Grans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichloropropane ND 0	1,1-Dichloroethene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Trans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichloropropane ND <t< td=""><td>Methyl Iodide</td><td>ND</td><td>0.0029</td><td>EPA 8260</td><td>10-17-11</td><td>10-17-11</td><td></td></t<>	Methyl Iodide	ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethane	Methylene Chloride	ND	0.0029	EPA 8260	10-17-11	10-17-11	
2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2-Chloroethylvinylether ND	Trans-1,2-Dichloroethene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Cis-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 I,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 I,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dibromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,3-Dichloropropene ND 0.	1,1-Dichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 I,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 I,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dibromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2-Chloroethylvinylether ND 0.0029 EPA 8260 10-17-11 10-17-11 Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	2,2-Dichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 1,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dibromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2-Chloroethylvinylether ND 0.0029 EPA 8260 10-17-11 10-17-11 Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	Cis-1,2-Dichloroethene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
I,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 I,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dibromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2-Chloroethylvinylether ND 0.0029 EPA 8260 10-17-11 10-17-11 Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	Bromochloromethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 I,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Irichloroethene 0.0023 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dibromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2-Chloroethylvinylether ND 0.0029 EPA 8260 10-17-11 10-17-11 Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	Chloroform	ND	0.00058	EPA 8260	10-17-11	10-17-11	
I,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Trichloroethene 0.0023 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dibromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2-Chloroethylvinylether ND 0.0029 EPA 8260 10-17-11 10-17-11 Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	1,1,1-Trichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
I,2-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Frichloroethene 0.0023 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dibromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2-Chloroethylvinylether ND 0.0029 EPA 8260 10-17-11 10-17-11 Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	Carbon Tetrachloride	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Frichloroethene 0.0023 0.00058 EPA 8260 10-17-11 10-17-11 I,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dibromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2-Chloroethylvinylether ND 0.0029 EPA 8260 10-17-11 10-17-11 Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	1,1-Dichloropropene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dibromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2-Chloroethylvinylether ND 0.0029 EPA 8260 10-17-11 10-17-11 Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	1,2-Dichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Dibromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2-Chloroethylvinylether ND 0.0029 EPA 8260 10-17-11 10-17-11 Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	Trichloroethene	0.0023	0.00058	EPA 8260	10-17-11	10-17-11	
Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2-Chloroethylvinylether ND 0.0029 EPA 8260 10-17-11 10-17-11 Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	1,2-Dichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
2-Chloroethylvinylether ND 0.0029 EPA 8260 10-17-11 10-17-11 Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	Dibromomethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	Dichlorobromomethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
	2-Chloroethylvinylether	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Frans-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	Cis-1,3-Dichloropropene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
	Trans-1,3-Dichloropropene	ND	0.00058	EPA 8260	10-17-11	10-17-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-13:10.0					
Laboratory ID:	10-112-02					
1,1,2-Trichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Tetrachloroethene	0.22	0.14	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Ethylene dibromide	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1,1,2-Tetrachloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1,2,2-Tetrachloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
2-Chlorotoluene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
4-Chlorotoluene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,3-Dichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,4-Dichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dibromo-3-chloropropane	ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,2,4-Trichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Hexachlorobutadiene	ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	63-127				
Toluene-d8	103	65-129				
Benzene, 1-bromo-4-fluoro-	104	55-121				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-14:5.5					
Laboratory ID:	10-112-03					
CFC-12	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Chloromethane	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Vinyl Chloride	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Bromomethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Chloroethane	ND	0.0029	EPA 8260	10-17-11	10-17-11	
CFC-11	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Methyl Iodide	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Methylene Chloride	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Trans-1,2-Dichloroethene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
2,2-Dichloropropane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Cis-1,2-Dichloroethene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Bromochloromethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Chloroform	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1,1-Trichloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Carbon Tetrachloride	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1-Dichloropropene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2-Dichloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Trichloroethene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2-Dichloropropane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Dibromomethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Dichlorobromomethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
2-Chloroethylvinylether	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Cis-1,3-Dichloropropene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Trans-1,3-Dichloropropene	ND	0.00059	EPA 8260	10-17-11	10-17-11	

Project: 21-1-16604-003

Benzene, 1-bromo-4-fluoro-

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-14:5.5					
Laboratory ID:	10-112-03					
1,1,2-Trichloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Tetrachloroethene	0.021	0.0012	EPA 8260	10-17-11	10-17-11	
1,3-Dichloropropane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Ethylene dibromide	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1,1,2-Tetrachloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1,2,2-Tetrachloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichloropropane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
2-Chlorotoluene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
4-Chlorotoluene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,3-Dichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,4-Dichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2-Dichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2-Dibromo-3-chloropropane	e ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,2,4-Trichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Hexachlorobutadiene	ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	63-127				
Toluene-d8	101	65-129				

55-121

103

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-14:10.5					
Laboratory ID:	10-112-04					
CFC-12	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Chloromethane	ND	0.0030	EPA 8260	10-17-11	10-17-11	
Vinyl Chloride	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Bromomethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Chloroethane	ND	0.0030	EPA 8260	10-17-11	10-17-11	
CFC-11	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Methyl Iodide	ND	0.0030	EPA 8260	10-17-11	10-17-11	
Methylene Chloride	ND	0.0030	EPA 8260	10-17-11	10-17-11	
Trans-1,2-Dichloroethene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
2,2-Dichloropropane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Cis-1,2-Dichloroethene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Bromochloromethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Chloroform	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1,1-Trichloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Carbon Tetrachloride	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1-Dichloropropene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2-Dichloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Trichloroethene	0.0016	0.00059	EPA 8260	10-17-11	10-17-11	
1,2-Dichloropropane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Dibromomethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Dichlorobromomethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
2-Chloroethylvinylether	ND	0.0030	EPA 8260	10-17-11	10-17-11	
Cis-1,3-Dichloropropene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Trans-1,3-Dichloropropene	ND	0.00059	EPA 8260	10-17-11	10-17-11	

Project: 21-1-16604-003

Benzene, 1-bromo-4-fluoro-

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-14:10.5					
Laboratory ID:	10-112-04					
1,1,2-Trichloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Tetrachloroethene	0.75	0.12	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Ethylene dibromide	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1,1,2-Tetrachloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1,2,2-Tetrachloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichloropropane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
2-Chlorotoluene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
4-Chlorotoluene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,3-Dichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,4-Dichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2-Dichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2-Dibromo-3-chloropropane	e ND	0.0030	EPA 8260	10-17-11	10-17-11	
1,2,4-Trichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Hexachlorobutadiene	ND	0.0030	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	63-127				
Toluene-d8	103	65-129				

55-121

104

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-15:5.0					
Laboratory ID:	10-112-05					
CFC-12	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Chloromethane	ND	0.0031	EPA 8260	10-17-11	10-17-11	
Vinyl Chloride	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Bromomethane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Chloroethane	ND	0.0031	EPA 8260	10-17-11	10-17-11	
CFC-11	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Methyl lodide	ND	0.0031	EPA 8260	10-17-11	10-17-11	
Methylene Chloride	ND	0.0031	EPA 8260	10-17-11	10-17-11	
Trans-1,2-Dichloroethene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
2,2-Dichloropropane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Cis-1,2-Dichloroethene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Bromochloromethane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Chloroform	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,1,1-Trichloroethane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Carbon Tetrachloride	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,1-Dichloropropene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,2-Dichloroethane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Trichloroethene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,2-Dichloropropane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Dibromomethane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Dichlorobromomethane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
2-Chloroethylvinylether	ND	0.0031	EPA 8260	10-17-11	10-17-11	
Cis-1,3-Dichloropropene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Trans-1,3-Dichloropropene	ND	0.00061	EPA 8260	10-17-11	10-17-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-15:5.0					
Laboratory ID:	10-112-05					
1,1,2-Trichloroethane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Tetrachloroethene	0.13	0.0012	EPA 8260	10-17-11	10-17-11	
1,3-Dichloropropane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Ethylene dibromide	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,1,1,2-Tetrachloroethane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,1,2,2-Tetrachloroethane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichloropropane	ND	0.00061	EPA 8260	10-17-11	10-17-11	
2-Chlorotoluene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
4-Chlorotoluene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,3-Dichlorobenzene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,4-Dichlorobenzene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,2-Dichlorobenzene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
1,2-Dibromo-3-chloropropane	e ND	0.0031	EPA 8260	10-17-11	10-17-11	
1,2,4-Trichlorobenzene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Hexachlorobutadiene	ND	0.0031	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichlorobenzene	ND	0.00061	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	63-127				
Toluene-d8	103	65-129				
Benzene, 1-bromo-4-fluoro-	106	55-121				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Analyte Result PQL Method Prepared Analyzed Client ID: GP-15:12.0 Laboratory ID: 10-112-06 CFC-12 ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloromethane ND 0.0029 EPA 8260 10-17-11 10-17-11 Vinyl Chloride 0.00099 0.00058 EPA 8260 10-17-11 10-17-11 Bromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 CFC-11 ND 0.0029 EPA 8260 10-17-11 10-17-11 CFC-11 ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethene 0.0013 0.00058 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Trans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 <	Flags
Laboratory ID: 10-112-06 CFC-12 ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloromethane ND 0.0029 EPA 8260 10-17-11 10-17-11 Vinyl Chloride 0.00099 0.00058 EPA 8260 10-17-11 10-17-11 Bromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroethane ND 0.0029 EPA 8260 10-17-11 10-17-11 CFC-11 ND 0.00058 EPA 8260 10-17-11 10-17-11 1,-Dichloroethene 0.0013 0.00058 EPA 8260 10-17-11 10-17-11 Methyl Iodide ND 0.0029 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Trans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene <th></th>	
CFC-12 ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloromethane ND 0.0029 EPA 8260 10-17-11 10-17-11 Vinyl Chloride 0.00099 0.00058 EPA 8260 10-17-11 10-17-11 Bromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroethane ND 0.0029 EPA 8260 10-17-11 10-17-11 CFC-11 ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethene 0.0013 0.00058 EPA 8260 10-17-11 10-17-11 Methyl lodide ND 0.0029 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Trans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloroethene 0.0010 0.00058 EPA 8260	
Chloromethane ND 0.0029 EPA 8260 10-17-11 10-17-11 Vinyl Chloride 0.00099 0.00058 EPA 8260 10-17-11 10-17-11 Bromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroethane ND 0.0029 EPA 8260 10-17-11 10-17-11 CFC-11 ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethene 0.0013 0.00058 EPA 8260 10-17-11 10-17-11 Methyl lodide ND 0.0029 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Trans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethane ND 0.00058 EPA 82	
Vinyl Chloride 0.00099 0.00058 EPA 8260 10-17-11 10-17-11 Bromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroethane ND 0.0029 EPA 8260 10-17-11 10-17-11 CFC-11 ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethene 0.0013 0.00058 EPA 8260 10-17-11 10-17-11 Methyl lodide ND 0.0029 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Trans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene 0.0010 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA	
Bromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroethane ND 0.0029 EPA 8260 10-17-11 10-17-11 CFC-11 ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethene 0.0013 0.00058 EPA 8260 10-17-11 10-17-11 Methyl lodide ND 0.0029 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Trans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene 0.0010 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8	
Chloroethane ND 0.0029 EPA 8260 10-17-11 10-17-11 CFC-11 ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethene 0.0013 0.00058 EPA 8260 10-17-11 10-17-11 Methyl lodide ND 0.0029 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Trans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene 0.0010 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058	
CFC-11 ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethene 0.0013 0.00058 EPA 8260 10-17-11 10-17-11 Methyl lodide ND 0.0029 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Trans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene 0.0010 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-1-Tichloropropene ND 0.00058 <td></td>	
1,1-Dichloroethene0.00130.00058EPA 826010-17-1110-17-11Methyl lodideND0.0029EPA 826010-17-1110-17-11Methylene ChlorideND0.0029EPA 826010-17-1110-17-11Trans-1,2-DichloroetheneND0.00058EPA 826010-17-1110-17-111,1-DichloroethaneND0.00058EPA 826010-17-1110-17-112,2-DichloropropaneND0.00058EPA 826010-17-1110-17-11Cis-1,2-Dichloroethene0.00100.00058EPA 826010-17-1110-17-11BromochloromethaneND0.00058EPA 826010-17-1110-17-11ChloroformND0.00058EPA 826010-17-1110-17-111,1,1-TrichloroethaneND0.00058EPA 826010-17-1110-17-11Carbon TetrachlorideND0.00058EPA 826010-17-1110-17-111,1,1-DichloropropeneND0.00058EPA 826010-17-1110-17-11	
Methyl lodide ND 0.0029 EPA 8260 10-17-11 10-17-11 Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Trans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene 0.0010 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	
Methylene Chloride ND 0.0029 EPA 8260 10-17-11 10-17-11 Trans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene 0.0010 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	
Trans-1,2-Dichloroethene ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene 0.0010 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	
1,1-Dichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 2,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11 Cis-1,2-Dichloroethene 0.0010 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	
2,2-DichloropropaneND0.00058EPA 826010-17-1110-17-11Cis-1,2-Dichloroethene0.00100.00058EPA 826010-17-1110-17-11BromochloromethaneND0.00058EPA 826010-17-1110-17-11ChloroformND0.00058EPA 826010-17-1110-17-111,1,1-TrichloroethaneND0.00058EPA 826010-17-1110-17-11Carbon TetrachlorideND0.00058EPA 826010-17-1110-17-111,1-DichloropropeneND0.00058EPA 826010-17-1110-17-11	
Cis-1,2-Dichloroethene 0.0010 0.00058 EPA 8260 10-17-11 10-17-11 Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	
Bromochloromethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	
Chloroform ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	
1,1,1-Trichloroethane ND 0.00058 EPA 8260 10-17-11 10-17-11 Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	
Carbon Tetrachloride ND 0.00058 EPA 8260 10-17-11 10-17-11 1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	
1,1-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	
,	
1.2-Dichloroethane ND 0.00058 FPA 8260 10-17-11 10-17-11	
1,2 Distribution 10-17-11 10-17-11 10-17-11	
Trichloroethene 0.075 0.00058 EPA 8260 10-17-11 10-17-11	
1,2-Dichloropropane ND 0.00058 EPA 8260 10-17-11 10-17-11	
Dibromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11	
Dichlorobromomethane ND 0.00058 EPA 8260 10-17-11 10-17-11	
2-Chloroethylvinylether ND 0.0029 EPA 8260 10-17-11 10-17-11	
Cis-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	
Trans-1,3-Dichloropropene ND 0.00058 EPA 8260 10-17-11 10-17-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-15:12.0					
Laboratory ID:	10-112-06					
1,1,2-Trichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Tetrachloroethene	8.4	0.66	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Ethylene dibromide	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1,1,2-Tetrachloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1,2,2-Tetrachloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
2-Chlorotoluene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
4-Chlorotoluene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,3-Dichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,4-Dichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dibromo-3-chloropropane	ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,2,4-Trichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Hexachlorobutadiene	ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	63-127				
Toluene-d8	103	65-129				
Benzene, 1-bromo-4-fluoro-	104	55-121				

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-16:8.0					
Laboratory ID:	10-112-07					
CFC-12	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Chloromethane	ND	0.0023	EPA 8260	10-17-11	10-17-11	
Vinyl Chloride	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Bromomethane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Chloroethane	ND	0.0023	EPA 8260	10-17-11	10-17-11	
CFC-11	ND	0.00046	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Acetone	ND	0.0023	EPA 8260	10-17-11	10-17-11	
Methyl Iodide	ND	0.0023	EPA 8260	10-17-11	10-17-11	
Carbon Disulfide	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Methylene Chloride	ND	0.0023	EPA 8260	10-17-11	10-17-11	
Trans-1,2-Dichloroethene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Methyl t-Butyl Ether	ND	0.00046	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Vinyl Acetate	ND	0.0023	EPA 8260	10-17-11	10-17-11	
2,2-Dichloropropane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Cis-1,2-Dichloroethene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
2-Butanone	ND	0.0023	EPA 8260	10-17-11	10-17-11	
Bromochloromethane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Chloroform	ND	0.00046	EPA 8260	10-17-11	10-17-11	
1,1,1-Trichloroethane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Carbon Tetrachloride	ND	0.00046	EPA 8260	10-17-11	10-17-11	
1,1-Dichloropropene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Benzene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
1,2-Dichloroethane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Trichloroethene	0.0020	0.00046	EPA 8260	10-17-11	10-17-11	
1,2-Dichloropropane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Dibromomethane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Dichlorobromomethane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
2-Chloroethylvinylether	ND	0.0023	EPA 8260	10-17-11	10-17-11	
Cis-1,3-Dichloropropene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Methyl Isobutyl Ketone	ND	0.0023	EPA 8260	10-17-11	10-17-11	
Toluene	ND	0.0023	EPA 8260	10-17-11	10-17-11	
Trans-1,3-Dichloropropene	ND	0.00046	EPA 8260	10-17-11	10-17-11	

Project: 21-1-16604-003

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-16:8.0					
Laboratory ID:	10-112-07					
1,1,2-Trichloroethane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Tetrachloroethene	98	1.2	EPA 8260	10-18-11	10-19-11	
1,3-Dichloropropane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
2-Hexanone	ND	0.0023	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Ethylene dibromide	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
1,1,1,2-Tetrachloroethane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Ethylbenzene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
m,p-Xylene	ND	0.00092	EPA 8260	10-17-11	10-17-11	
o-Xylene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Styrene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Isopropylbenzene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
1,1,2,2-Tetrachloroethane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichloropropane	ND	0.00046	EPA 8260	10-17-11	10-17-11	
n-Propylbenzene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
2-Chlorotoluene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
4-Chlorotoluene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
1,3,5-Trimethylbenzene	0.0046	0.00046	EPA 8260	10-17-11	10-17-11	
tert-Butylbenzene	0.0020	0.00046	EPA 8260	10-17-11	10-17-11	
1,2,4-Trimethylbenzene	0.0013	0.00046	EPA 8260	10-17-11	10-17-11	
sec-Butylbenzene	0.0021	0.00046	EPA 8260	10-17-11	10-17-11	
1,3-Dichlorobenzene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
p-Isopropyltoluene	0.014	0.00046	EPA 8260	10-17-11	10-17-11	
1,4-Dichlorobenzene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
1,2-Dichlorobenzene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
n-Butylbenzene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
1,2-Dibromo-3-chloropropane	e ND	0.0023	EPA 8260	10-17-11	10-17-11	
1,2,4-Trichlorobenzene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Hexachlorobutadiene	ND	0.0023	EPA 8260	10-17-11	10-17-11	
Naphthalene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichlorobenzene	ND	0.00046	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	63-127				
Toluene-d8	99	65-129				

Benzene, 1-bromo-4-fluoro-100 55-121

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-16:11.5					
Laboratory ID:	10-112-08					
CFC-12	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Chloromethane	ND	0.0048	EPA 8260	10-17-11	10-17-11	
Vinyl Chloride	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Bromomethane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Chloroethane	ND	0.0048	EPA 8260	10-17-11	10-17-11	
CFC-11	ND	0.00097	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Methyl Iodide	ND	0.0048	EPA 8260	10-17-11	10-17-11	
Methylene Chloride	ND	0.0048	EPA 8260	10-17-11	10-17-11	
Trans-1,2-Dichloroethene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
2,2-Dichloropropane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Cis-1,2-Dichloroethene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Bromochloromethane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Chloroform	ND	0.00097	EPA 8260	10-17-11	10-17-11	
1,1,1-Trichloroethane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Carbon Tetrachloride	ND	0.00097	EPA 8260	10-17-11	10-17-11	
1,1-Dichloropropene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
1,2-Dichloroethane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Trichloroethene	0.040	0.00097	EPA 8260	10-17-11	10-17-11	
1,2-Dichloropropane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Dibromomethane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Dichlorobromomethane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
2-Chloroethylvinylether	ND	0.0048	EPA 8260	10-17-11	10-17-11	
Cis-1,3-Dichloropropene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Trans-1,3-Dichloropropene	ND	0.00097	EPA 8260	10-17-11	10-17-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-16:11.5					
Laboratory ID:	10-112-08					
1,1,2-Trichloroethane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Tetrachloroethene	4.5	0.28	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Ethylene dibromide	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
1,1,1,2-Tetrachloroethane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
1,1,2,2-Tetrachloroethane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichloropropane	ND	0.00097	EPA 8260	10-17-11	10-17-11	
2-Chlorotoluene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
4-Chlorotoluene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
1,3-Dichlorobenzene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
1,4-Dichlorobenzene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
1,2-Dichlorobenzene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
1,2-Dibromo-3-chloropropane	e ND	0.0048	EPA 8260	10-17-11	10-17-11	
1,2,4-Trichlorobenzene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Hexachlorobutadiene	ND	0.0048	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichlorobenzene	ND	0.00097	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	63-127				
Toluene-d8	100	65-129				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-17-6.0					
Laboratory ID:	10-112-09					
CFC-12	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Chloromethane	ND	0.0033	EPA 8260	10-17-11	10-17-11	
Vinyl Chloride	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Bromomethane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Chloroethane	ND	0.0033	EPA 8260	10-17-11	10-17-11	
CFC-11	ND	0.00066	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Methyl Iodide	ND	0.0033	EPA 8260	10-17-11	10-17-11	
Methylene Chloride	ND	0.0033	EPA 8260	10-17-11	10-17-11	
Trans-1,2-Dichloroethene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
2,2-Dichloropropane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Cis-1,2-Dichloroethene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Bromochloromethane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Chloroform	ND	0.00066	EPA 8260	10-17-11	10-17-11	
1,1,1-Trichloroethane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Carbon Tetrachloride	ND	0.00066	EPA 8260	10-17-11	10-17-11	
1,1-Dichloropropene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
1,2-Dichloroethane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Trichloroethene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
1,2-Dichloropropane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Dibromomethane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Dichlorobromomethane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
2-Chloroethylvinylether	ND	0.0033	EPA 8260	10-17-11	10-17-11	
Cis-1,3-Dichloropropene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Trans-1,3-Dichloropropene	ND	0.00066	EPA 8260	10-17-11	10-17-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
nalyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-17-6.0					
aboratory ID:	10-112-09					
,1,2-Trichloroethane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
etrachloroethene	0.032	0.0013	EPA 8260	10-17-11	10-17-11	
,3-Dichloropropane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
thylene dibromide	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
,1,1,2-Tetrachloroethane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
,1,2,2-Tetrachloroethane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
,2,3-Trichloropropane	ND	0.00066	EPA 8260	10-17-11	10-17-11	
-Chlorotoluene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
-Chlorotoluene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
,3-Dichlorobenzene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
,4-Dichlorobenzene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
,2-Dichlorobenzene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
,2-Dibromo-3-chloropropane	e ND	0.0033	EPA 8260	10-17-11	10-17-11	
,2,4-Trichlorobenzene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
lexachlorobutadiene	ND	0.0033	EPA 8260	10-17-11	10-17-11	
,2,3-Trichlorobenzene	ND	0.00066	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	63-127				
oluene-d8	102	65-129				
Benzene, 1-bromo-4-fluoro-	106	55-121				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

ormo. mg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-17-14.0			-	-	
Laboratory ID:	10-112-10					
CFC-12	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Chloromethane	ND	0.0027	EPA 8260	10-17-11	10-17-11	
Vinyl Chloride	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Bromomethane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Chloroethane	ND	0.0027	EPA 8260	10-17-11	10-17-11	
CFC-11	ND	0.00054	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Methyl Iodide	ND	0.0027	EPA 8260	10-17-11	10-17-11	
Methylene Chloride	ND	0.0027	EPA 8260	10-17-11	10-17-11	
Trans-1,2-Dichloroethene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
2,2-Dichloropropane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Cis-1,2-Dichloroethene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Bromochloromethane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Chloroform	ND	0.00054	EPA 8260	10-17-11	10-17-11	
1,1,1-Trichloroethane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Carbon Tetrachloride	ND	0.00054	EPA 8260	10-17-11	10-17-11	
1,1-Dichloropropene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
1,2-Dichloroethane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Trichloroethene	0.0017	0.00054	EPA 8260	10-17-11	10-17-11	
1,2-Dichloropropane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Dibromomethane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Dichlorobromomethane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
2-Chloroethylvinylether	ND	0.0027	EPA 8260	10-17-11	10-17-11	
Cis-1,3-Dichloropropene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Trans-1,3-Dichloropropene	ND	0.00054	EPA 8260	10-17-11	10-17-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

					Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-17-14.0					
Laboratory ID:	10-112-10					
1,1,2-Trichloroethane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Tetrachloroethene	1.1	0.079	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Ethylene dibromide	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
1,1,1,2-Tetrachloroethane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
1,1,2,2-Tetrachloroethane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichloropropane	ND	0.00054	EPA 8260	10-17-11	10-17-11	
2-Chlorotoluene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
4-Chlorotoluene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
1,3-Dichlorobenzene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
1,4-Dichlorobenzene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
1,2-Dichlorobenzene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
1,2-Dibromo-3-chloropropane	ND	0.0027	EPA 8260	10-17-11	10-17-11	
1,2,4-Trichlorobenzene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Hexachlorobutadiene	ND	0.0027	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichlorobenzene	ND	0.00054	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	63-127				
Toluene-d8	100	65-129				
Benzene, 1-bromo-4-fluoro-	103	55-121				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-18:11.0					
Laboratory ID:	10-112-11					
CFC-12	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Chloromethane	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Vinyl Chloride	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Bromomethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Chloroethane	ND	0.0029	EPA 8260	10-17-11	10-17-11	
CFC-11	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Methyl lodide	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Methylene Chloride	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Trans-1,2-Dichloroethene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
2,2-Dichloropropane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Cis-1,2-Dichloroethene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Bromochloromethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Chloroform	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1,1-Trichloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Carbon Tetrachloride	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1-Dichloropropene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2-Dichloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Trichloroethene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2-Dichloropropane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Dibromomethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Dichlorobromomethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
2-Chloroethylvinylether	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Cis-1,3-Dichloropropene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Trans-1,3-Dichloropropene	ND	0.00059	EPA 8260	10-17-11	10-17-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-18:11.0					
Laboratory ID:	10-112-11					
1,1,2-Trichloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Tetrachloroethene	0.019	0.0012	EPA 8260	10-17-11	10-17-11	
1,3-Dichloropropane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Ethylene dibromide	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1,1,2-Tetrachloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,1,2,2-Tetrachloroethane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichloropropane	ND	0.00059	EPA 8260	10-17-11	10-17-11	
2-Chlorotoluene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
4-Chlorotoluene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,3-Dichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,4-Dichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2-Dichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
1,2-Dibromo-3-chloropropand	e ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,2,4-Trichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Hexachlorobutadiene	ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichlorobenzene	ND	0.00059	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	63-127				
Toluene-d8	104	65-129				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-19:11.0					
Laboratory ID:	10-112-12					
CFC-12	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Chloromethane	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Vinyl Chloride	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromomethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Chloroethane	ND	0.0029	EPA 8260	10-17-11	10-17-11	
CFC-11	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Methyl lodide	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Methylene Chloride	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Trans-1,2-Dichloroethene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
2,2-Dichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Cis-1,2-Dichloroethene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromochloromethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Chloroform	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1,1-Trichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Carbon Tetrachloride	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1-Dichloropropene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Trichloroethene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Dibromomethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Dichlorobromomethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
2-Chloroethylvinylether	ND	0.0029	EPA 8260	10-17-11	10-17-11	
Cis-1,3-Dichloropropene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Trans-1,3-Dichloropropene	ND	0.00058	EPA 8260	10-17-11	10-17-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-19:11.0					
Laboratory ID:	10-112-12					
1,1,2-Trichloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Tetrachloroethene	0.064	0.0012	EPA 8260	10-17-11	10-17-11	
1,3-Dichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Ethylene dibromide	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1,1,2-Tetrachloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,1,2,2-Tetrachloroethane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichloropropane	ND	0.00058	EPA 8260	10-17-11	10-17-11	
2-Chlorotoluene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
4-Chlorotoluene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,3-Dichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,4-Dichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
1,2-Dibromo-3-chloropropane	e ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,2,4-Trichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Hexachlorobutadiene	ND	0.0029	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichlorobenzene	ND	0.00058	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	63-127				
Toluene-d8	102	65-129				
Benzene, 1-bromo-4-fluoro-	103	55-121				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

Analyte Result PQL Method Prepared Analyzed Client ID: GP-20:4.0 Laboratory ID: 10-112-13 CFC-12 ND 0.00048 EPA 8260 10-18-11 10-18-11 Chloromethane ND 0.00048 EPA 8260 10-18-11 10-18-11 Vinyl Chloride ND 0.00048 EPA 8260 10-18-11 10-18-11 Bromomethane ND 0.00048 EPA 8260 10-18-11 10-18-11 Chloroethane ND 0.00048 EPA 8260 10-18-11 10-18-11 CFC-11 ND 0.00048 EPA 8260 10-18-11 10-18-11 1,1-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11 Methylene Chloride ND 0.0024 EPA 8260 10-18-11 10-18-11 Trans-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11 1,1-Dichloroethane ND 0.00048 EPA 8260 10-18-11 10-18-	
Laboratory ID: 10-112-13 CFC-12 ND 0.00048 EPA 8260 10-18-11 10-18-11 Chloromethane ND 0.0024 EPA 8260 10-18-11 10-18-11 Vinyl Chloride ND 0.00048 EPA 8260 10-18-11 10-18-11 Bromomethane ND 0.00048 EPA 8260 10-18-11 10-18-11 Chloroethane ND 0.0024 EPA 8260 10-18-11 10-18-11 CFC-11 ND 0.00048 EPA 8260 10-18-11 10-18-11 1,1-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11 Methyl lodide ND 0.0024 EPA 8260 10-18-11 10-18-11 Methylene Chloride ND 0.0024 EPA 8260 10-18-11 10-18-11 Trans-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	Flags
CFC-12 ND 0.00048 EPA 8260 10-18-11 10-18-11 Chloromethane ND 0.0024 EPA 8260 10-18-11 10-18-11 Vinyl Chloride ND 0.00048 EPA 8260 10-18-11 10-18-11 Bromomethane ND 0.00048 EPA 8260 10-18-11 10-18-11 Chloroethane ND 0.0024 EPA 8260 10-18-11 10-18-11 CFC-11 ND 0.00048 EPA 8260 10-18-11 10-18-11 1,1-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11 Methyl lodide ND 0.0024 EPA 8260 10-18-11 10-18-11 Methylene Chloride ND 0.0024 EPA 8260 10-18-11 10-18-11 Trans-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	
Chloromethane ND 0.0024 EPA 8260 10-18-11 10-18-11 Vinyl Chloride ND 0.00048 EPA 8260 10-18-11 10-18-11 Bromomethane ND 0.00048 EPA 8260 10-18-11 10-18-11 Chloroethane ND 0.0024 EPA 8260 10-18-11 10-18-11 CFC-11 ND 0.00048 EPA 8260 10-18-11 10-18-11 1,1-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11 Methyl lodide ND 0.0024 EPA 8260 10-18-11 10-18-11 Methylene Chloride ND 0.0024 EPA 8260 10-18-11 10-18-11 Trans-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	
Vinyl Chloride ND 0.00048 EPA 8260 10-18-11 10-18-11 Bromomethane ND 0.00048 EPA 8260 10-18-11 10-18-11 Chloroethane ND 0.0024 EPA 8260 10-18-11 10-18-11 CFC-11 ND 0.00048 EPA 8260 10-18-11 10-18-11 1,1-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11 Methyl lodide ND 0.0024 EPA 8260 10-18-11 10-18-11 Methylene Chloride ND 0.0024 EPA 8260 10-18-11 10-18-11 Trans-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	
Bromomethane ND 0.00048 EPA 8260 10-18-11 10-18-11 Chloroethane ND 0.0024 EPA 8260 10-18-11 10-18-11 CFC-11 ND 0.00048 EPA 8260 10-18-11 10-18-11 1,1-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11 Methyl lodide ND 0.0024 EPA 8260 10-18-11 10-18-11 Methylene Chloride ND 0.0024 EPA 8260 10-18-11 10-18-11 Trans-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	
Chloroethane ND 0.0024 EPA 8260 10-18-11 10-18-11 CFC-11 ND 0.00048 EPA 8260 10-18-11 10-18-11 1,1-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11 Methyl lodide ND 0.0024 EPA 8260 10-18-11 10-18-11 Methylene Chloride ND 0.0024 EPA 8260 10-18-11 10-18-11 Trans-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	
CFC-11 ND 0.00048 EPA 8260 10-18-11 10-18-11 1,1-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11 Methyl lodide ND 0.0024 EPA 8260 10-18-11 10-18-11 Methylene Chloride ND 0.0024 EPA 8260 10-18-11 10-18-11 Trans-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	
1,1-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11 Methyl lodide ND 0.0024 EPA 8260 10-18-11 10-18-11 Methylene Chloride ND 0.0024 EPA 8260 10-18-11 10-18-11 Trans-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	
Methyl lodide ND 0.0024 EPA 8260 10-18-11 10-18-11 Methylene Chloride ND 0.0024 EPA 8260 10-18-11 10-18-11 Trans-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	
Methylene Chloride ND 0.0024 EPA 8260 10-18-11 10-18-11 Trans-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	
Trans-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	
·	
1.1-Dichloroethane ND 0.00048 FPA 8260 10-18-11 10-18-11	
1,1 Didition of the 11 10 10 11	
2,2-Dichloropropane ND 0.00048 EPA 8260 10-18-11 10-18-11	
Cis-1,2-Dichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	
Bromochloromethane ND 0.00048 EPA 8260 10-18-11 10-18-11	
Chloroform ND 0.00048 EPA 8260 10-18-11 10-18-11	
1,1,1-Trichloroethane ND 0.00048 EPA 8260 10-18-11 10-18-11	
Carbon Tetrachloride ND 0.00048 EPA 8260 10-18-11 10-18-11	
1,1-Dichloropropene ND 0.00048 EPA 8260 10-18-11 10-18-11	
1,2-Dichloroethane ND 0.00048 EPA 8260 10-18-11 10-18-11	
Trichloroethene ND 0.00048 EPA 8260 10-18-11 10-18-11	
1,2-Dichloropropane ND 0.00048 EPA 8260 10-18-11 10-18-11	
Dibromomethane ND 0.00048 EPA 8260 10-18-11 10-18-11	
Dichlorobromomethane ND 0.00048 EPA 8260 10-18-11 10-18-11	
2-Chloroethylvinylether ND 0.0024 EPA 8260 10-18-11 10-18-11	
Cis-1,3-Dichloropropene ND 0.00048 EPA 8260 10-18-11 10-18-11	
Trans-1,3-Dichloropropene ND 0.00048 EPA 8260 10-18-11 10-18-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-20:4.0					
Laboratory ID:	10-112-13					
1,1,2-Trichloroethane	ND	0.00048	EPA 8260	10-18-11	10-18-11	
Tetrachloroethene	0.0092	0.00096	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.00048	EPA 8260	10-18-11	10-18-11	
Dibromochloromethane	ND	0.00048	EPA 8260	10-18-11	10-18-11	
Ethylene dibromide	ND	0.00048	EPA 8260	10-18-11	10-18-11	
Chlorobenzene	ND	0.00048	EPA 8260	10-18-11	10-18-11	
1,1,1,2-Tetrachloroethane	ND	0.00048	EPA 8260	10-18-11	10-18-11	
Bromoform	ND	0.00048	EPA 8260	10-18-11	10-18-11	
Bromobenzene	ND	0.00048	EPA 8260	10-18-11	10-18-11	
1,1,2,2-Tetrachloroethane	ND	0.00048	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichloropropane	ND	0.00048	EPA 8260	10-18-11	10-18-11	
2-Chlorotoluene	ND	0.00048	EPA 8260	10-18-11	10-18-11	
4-Chlorotoluene	ND	0.00048	EPA 8260	10-18-11	10-18-11	
1,3-Dichlorobenzene	ND	0.00048	EPA 8260	10-18-11	10-18-11	
1,4-Dichlorobenzene	ND	0.00048	EPA 8260	10-18-11	10-18-11	
1,2-Dichlorobenzene	ND	0.00048	EPA 8260	10-18-11	10-18-11	
1,2-Dibromo-3-chloropropane	ND	0.0024	EPA 8260	10-18-11	10-18-11	
1,2,4-Trichlorobenzene	ND	0.00048	EPA 8260	10-18-11	10-18-11	
Hexachlorobutadiene	ND	0.0024	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichlorobenzene	ND	0.00048	EPA 8260	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	63-127				
Toluene-d8	99	65-129				
Benzene, 1-bromo-4-fluoro-	98	55-121				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-20:9.0					
Laboratory ID:	10-112-14					
CFC-12	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Chloromethane	ND	0.0031	EPA 8260	10-18-11	10-18-11	
Vinyl Chloride	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Bromomethane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Chloroethane	ND	0.0031	EPA 8260	10-18-11	10-18-11	
CFC-11	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Methyl Iodide	ND	0.0031	EPA 8260	10-18-11	10-18-11	
Methylene Chloride	ND	0.0031	EPA 8260	10-18-11	10-18-11	
Trans-1,2-Dichloroethene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
2,2-Dichloropropane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Cis-1,2-Dichloroethene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Bromochloromethane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Chloroform	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,1,1-Trichloroethane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Carbon Tetrachloride	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,1-Dichloropropene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,2-Dichloroethane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Trichloroethene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,2-Dichloropropane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Dibromomethane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Dichlorobromomethane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
2-Chloroethylvinylether	ND	0.0031	EPA 8260	10-18-11	10-18-11	
Cis-1,3-Dichloropropene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Trans-1,3-Dichloropropene	ND	0.00063	EPA 8260	10-18-11	10-18-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-20:9.0					
Laboratory ID:	10-112-14					
1,1,2-Trichloroethane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Tetrachloroethene	0.036	0.0013	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Dibromochloromethane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Ethylene dibromide	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Chlorobenzene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,1,1,2-Tetrachloroethane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Bromoform	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Bromobenzene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,1,2,2-Tetrachloroethane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichloropropane	ND	0.00063	EPA 8260	10-18-11	10-18-11	
2-Chlorotoluene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
4-Chlorotoluene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,3-Dichlorobenzene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,4-Dichlorobenzene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,2-Dichlorobenzene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
1,2-Dibromo-3-chloropropane	ND	0.0031	EPA 8260	10-18-11	10-18-11	
1,2,4-Trichlorobenzene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Hexachlorobutadiene	ND	0.0031	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichlorobenzene	ND	0.00063	EPA 8260	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	63-127				
Toluene-d8	105	65-129				
Benzene, 1-bromo-4-fluoro-	104	55-121				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-21:6.0					
Laboratory ID:	10-112-15					
CFC-12	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Chloromethane	ND	0.0027	EPA 8260	10-18-11	10-18-11	
Vinyl Chloride	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Bromomethane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Chloroethane	ND	0.0027	EPA 8260	10-18-11	10-18-11	
CFC-11	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Methyl Iodide	ND	0.0027	EPA 8260	10-18-11	10-18-11	
Methylene Chloride	ND	0.0027	EPA 8260	10-18-11	10-18-11	
Trans-1,2-Dichloroethene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
2,2-Dichloropropane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Cis-1,2-Dichloroethene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Bromochloromethane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Chloroform	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,1,1-Trichloroethane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Carbon Tetrachloride	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,1-Dichloropropene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,2-Dichloroethane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Trichloroethene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,2-Dichloropropane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Dibromomethane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Dichlorobromomethane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
2-Chloroethylvinylether	ND	0.0027	EPA 8260	10-18-11	10-18-11	
Cis-1,3-Dichloropropene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Trans-1,3-Dichloropropene	ND	0.00053	EPA 8260	10-18-11	10-18-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-21:6.0					
Laboratory ID:	10-112-15					
1,1,2-Trichloroethane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Tetrachloroethene	0.18	0.11	EPA 8260	10-19-11	10-19-11	
1,3-Dichloropropane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Dibromochloromethane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Ethylene dibromide	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Chlorobenzene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,1,1,2-Tetrachloroethane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Bromoform	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Bromobenzene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,1,2,2-Tetrachloroethane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichloropropane	ND	0.00053	EPA 8260	10-18-11	10-18-11	
2-Chlorotoluene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
4-Chlorotoluene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,3-Dichlorobenzene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,4-Dichlorobenzene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,2-Dichlorobenzene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
1,2-Dibromo-3-chloropropane	e ND	0.0027	EPA 8260	10-18-11	10-18-11	
1,2,4-Trichlorobenzene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Hexachlorobutadiene	ND	0.0027	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichlorobenzene	ND	0.00053	EPA 8260	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	63-127				
Toluene-d8	105	65-129				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

ormo. mg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-21:12.0			•	-	
Laboratory ID:	10-112-16					
CFC-12	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Chloromethane	ND	0.0029	EPA 8260	10-18-11	10-18-11	
Vinyl Chloride	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Bromomethane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Chloroethane	ND	0.0029	EPA 8260	10-18-11	10-18-11	
CFC-11	ND	0.00058	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Methyl Iodide	ND	0.0029	EPA 8260	10-18-11	10-18-11	
Methylene Chloride	ND	0.0029	EPA 8260	10-18-11	10-18-11	
Trans-1,2-Dichloroethene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
2,2-Dichloropropane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Cis-1,2-Dichloroethene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Bromochloromethane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Chloroform	ND	0.00058	EPA 8260	10-18-11	10-18-11	
1,1,1-Trichloroethane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Carbon Tetrachloride	ND	0.00058	EPA 8260	10-18-11	10-18-11	
1,1-Dichloropropene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
1,2-Dichloroethane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Trichloroethene	0.0011	0.00058	EPA 8260	10-18-11	10-18-11	
1,2-Dichloropropane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Dibromomethane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Dichlorobromomethane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
2-Chloroethylvinylether	ND	0.0029	EPA 8260	10-18-11	10-18-11	
Cis-1,3-Dichloropropene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Trans-1,3-Dichloropropene	ND	0.00058	EPA 8260	10-18-11	10-18-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-21:12.0					
Laboratory ID:	10-112-16					
1,1,2-Trichloroethane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Tetrachloroethene	1.0	0.26	EPA 8260	10-19-11	10-19-11	
1,3-Dichloropropane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Dibromochloromethane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Ethylene dibromide	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Chlorobenzene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
1,1,1,2-Tetrachloroethane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Bromoform	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Bromobenzene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
1,1,2,2-Tetrachloroethane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichloropropane	ND	0.00058	EPA 8260	10-18-11	10-18-11	
2-Chlorotoluene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
4-Chlorotoluene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
1,3-Dichlorobenzene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
1,4-Dichlorobenzene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
1,2-Dichlorobenzene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
1,2-Dibromo-3-chloropropane	, ND	0.0029	EPA 8260	10-18-11	10-18-11	
1,2,4-Trichlorobenzene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Hexachlorobutadiene	ND	0.0029	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichlorobenzene	ND	0.00058	EPA 8260	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	63-127				
Toluene-d8	105	65-129				
Benzene, 1-bromo-4-fluoro-	103	55-121				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

ome. mg/ng				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-22:5.5			_		
Laboratory ID:	10-112-17					
CFC-12	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Chloromethane	ND	0.0032	EPA 8260	10-18-11	10-18-11	
Vinyl Chloride	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Bromomethane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Chloroethane	ND	0.0032	EPA 8260	10-18-11	10-18-11	
CFC-11	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Methyl Iodide	ND	0.0032	EPA 8260	10-18-11	10-18-11	
Methylene Chloride	ND	0.0032	EPA 8260	10-18-11	10-18-11	
Trans-1,2-Dichloroethene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
2,2-Dichloropropane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Cis-1,2-Dichloroethene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Bromochloromethane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Chloroform	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,1,1-Trichloroethane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Carbon Tetrachloride	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,1-Dichloropropene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,2-Dichloroethane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Trichloroethene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,2-Dichloropropane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Dibromomethane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Dichlorobromomethane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
2-Chloroethylvinylether	ND	0.0032	EPA 8260	10-18-11	10-18-11	
Cis-1,3-Dichloropropene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Trans-1,3-Dichloropropene	ND	0.00065	EPA 8260	10-18-11	10-18-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-22:5.5					
Laboratory ID:	10-112-17					
1,1,2-Trichloroethane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Tetrachloroethene	0.0036	0.0013	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Dibromochloromethane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Ethylene dibromide	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Chlorobenzene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,1,1,2-Tetrachloroethane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Bromoform	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Bromobenzene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,1,2,2-Tetrachloroethane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichloropropane	ND	0.00065	EPA 8260	10-18-11	10-18-11	
2-Chlorotoluene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
4-Chlorotoluene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,3-Dichlorobenzene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,4-Dichlorobenzene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,2-Dichlorobenzene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
1,2-Dibromo-3-chloropropane	e ND	0.0032	EPA 8260	10-18-11	10-18-11	
1,2,4-Trichlorobenzene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Hexachlorobutadiene	ND	0.0032	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichlorobenzene	ND	0.00065	EPA 8260	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	63-127				
Toluene-d8	100	65-129				
Benzene, 1-bromo-4-fluoro-	99	55-121				

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-22:13.0					
Laboratory ID:	10-112-18					
CFC-12	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Chloromethane	ND	0.0028	EPA 8260	10-18-11	10-18-11	
Vinyl Chloride	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Bromomethane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Chloroethane	ND	0.0028	EPA 8260	10-18-11	10-18-11	
CFC-11	ND	0.00057	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Methyl Iodide	ND	0.0028	EPA 8260	10-18-11	10-18-11	
Methylene Chloride	ND	0.0028	EPA 8260	10-18-11	10-18-11	
Trans-1,2-Dichloroethene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
2,2-Dichloropropane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Cis-1,2-Dichloroethene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Bromochloromethane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Chloroform	ND	0.00057	EPA 8260	10-18-11	10-18-11	
1,1,1-Trichloroethane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Carbon Tetrachloride	ND	0.00057	EPA 8260	10-18-11	10-18-11	
1,1-Dichloropropene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
1,2-Dichloroethane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Trichloroethene	0.0019	0.00057	EPA 8260	10-18-11	10-18-11	
1,2-Dichloropropane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Dibromomethane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Dichlorobromomethane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
2-Chloroethylvinylether	ND	0.0028	EPA 8260	10-18-11	10-18-11	
Cis-1,3-Dichloropropene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Trans-1,3-Dichloropropene	ND	0.00057	EPA 8260	10-18-11	10-18-11	

Project: 21-1-16604-003

HALOGENATED VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-22:13.0					
Laboratory ID:	10-112-18					
1,1,2-Trichloroethane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Tetrachloroethene	0.0023	0.0011	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Dibromochloromethane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Ethylene dibromide	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Chlorobenzene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
1,1,1,2-Tetrachloroethane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Bromoform	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Bromobenzene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
1,1,2,2-Tetrachloroethane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichloropropane	ND	0.00057	EPA 8260	10-18-11	10-18-11	
2-Chlorotoluene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
4-Chlorotoluene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
1,3-Dichlorobenzene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
1,4-Dichlorobenzene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
1,2-Dichlorobenzene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
1,2-Dibromo-3-chloropropane	e ND	0.0028	EPA 8260	10-18-11	10-18-11	
1,2,4-Trichlorobenzene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Hexachlorobutadiene	ND	0.0028	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichlorobenzene	ND	0.00057	EPA 8260	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	63-127				
Toluene-d8	98	65-129				

Benzene, 1-bromo-4-fluoro-

97

55-121

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1017S1					
CFC-12	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Chloromethane	ND	0.0050	EPA 8260	10-17-11	10-17-11	
Vinyl Chloride	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Bromomethane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Chloroethane	ND	0.0050	EPA 8260	10-17-11	10-17-11	
CFC-11	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Acetone	ND	0.0050	EPA 8260	10-17-11	10-17-11	
Methyl Iodide	ND	0.0050	EPA 8260	10-17-11	10-17-11	
Carbon Disulfide	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Methylene Chloride	ND	0.0050	EPA 8260	10-17-11	10-17-11	
Trans-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Vinyl Acetate	ND	0.0050	EPA 8260	10-17-11	10-17-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Cis-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
2-Butanone	ND	0.0050	EPA 8260	10-17-11	10-17-11	
Bromochloromethane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Chloroform	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Benzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Trichloroethene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Dibromomethane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Dichlorobromomethane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
2-Chloroethylvinylether	ND	0.0050	EPA 8260	10-17-11	10-17-11	
Cis-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	10-17-11	10-17-11	
Toluene	ND	0.0050	EPA 8260	10-17-11	10-17-11	
Trans-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-17-11	10-17-11	

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

Analysis	Dooult	DOI	Mathad	Date	Date	Flama
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1017S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Tetrachloroethene	ND	0.0020	EPA 8260	10-17-11	10-17-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
2-Hexanone	ND	0.0050	EPA 8260	10-17-11	10-17-11	
Dibromochloromethane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Ethylene dibromide	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Chlorobenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Ethylbenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
m,p-Xylene	ND	0.0020	EPA 8260	10-17-11	10-17-11	
o-Xylene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Styrene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Bromoform	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Isopropylbenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Bromobenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	10-17-11	10-17-11	
n-Propylbenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
n-Butylbenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,2-Dibromo-3-chloropropane		0.0050	EPA 8260	10-17-11	10-17-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	10-17-11	10-17-11	
Naphthalene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	10-17-11	10-17-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	63-127				

Surrogate: Percent Recovery Control Limits

Dibromofluoromethane 113 63-127

Toluene-d8 109 65-129

Benzene, 1-bromo-4-fluoro- 109 55-121

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

Offits. Hig/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1018S1					
CFC-12	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Chloromethane	ND	0.0050	EPA 8260	10-18-11	10-18-11	
Vinyl Chloride	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Bromomethane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Chloroethane	ND	0.0050	EPA 8260	10-18-11	10-18-11	
CFC-11	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Acetone	ND	0.0050	EPA 8260	10-18-11	10-18-11	
Methyl Iodide	ND	0.0050	EPA 8260	10-18-11	10-18-11	
Carbon Disulfide	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Methylene Chloride	ND	0.0050	EPA 8260	10-18-11	10-18-11	
Trans-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Vinyl Acetate	ND	0.0050	EPA 8260	10-18-11	10-18-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Cis-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
2-Butanone	ND	0.0050	EPA 8260	10-18-11	10-18-11	
Bromochloromethane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Chloroform	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Benzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Trichloroethene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Dibromomethane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Dichlorobromomethane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
2-Chloroethylvinylether	ND	0.0050	EPA 8260	10-18-11	10-18-11	
Cis-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	10-18-11	10-18-11	
Toluene	ND	0.0050	EPA 8260	10-18-11	10-18-11	
Trans-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-18-11	10-18-11	

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1018S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Tetrachloroethene	ND	0.0020	EPA 8260	10-18-11	10-18-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
2-Hexanone	ND	0.0050	EPA 8260	10-18-11	10-18-11	
Dibromochloromethane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Ethylene dibromide	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Chlorobenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Ethylbenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
m,p-Xylene	ND	0.0020	EPA 8260	10-18-11	10-18-11	
o-Xylene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Styrene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Bromoform	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Isopropylbenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Bromobenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	10-18-11	10-18-11	
n-Propylbenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
n-Butylbenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260	10-18-11	10-18-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	10-18-11	10-18-11	
Naphthalene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	10-18-11	10-18-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limit
Dibromofluoromethane 106 63-127
Toluene-d8 106 65-129
Benzene, 1-bromo-4-fluoro- 105 55-121

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

Offics. Hig/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1019S1					
CFC-12	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Chloromethane	ND	0.0050	EPA 8260	10-19-11	10-19-11	
Vinyl Chloride	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Bromomethane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Chloroethane	ND	0.0050	EPA 8260	10-19-11	10-19-11	
CFC-11	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Acetone	ND	0.0050	EPA 8260	10-19-11	10-19-11	
Methyl Iodide	ND	0.0050	EPA 8260	10-19-11	10-19-11	
Carbon Disulfide	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Methylene Chloride	ND	0.0050	EPA 8260	10-19-11	10-19-11	
Trans-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Vinyl Acetate	ND	0.0050	EPA 8260	10-19-11	10-19-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Cis-1,2-Dichloroethene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
2-Butanone	ND	0.0050	EPA 8260	10-19-11	10-19-11	
Bromochloromethane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Chloroform	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Benzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Trichloroethene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Dibromomethane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Dichlorobromomethane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
2-Chloroethylvinylether	ND	0.0050	EPA 8260	10-19-11	10-19-11	
Cis-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	10-19-11	10-19-11	
Toluene	ND	0.0050	EPA 8260	10-19-11	10-19-11	
Trans-1,3-Dichloropropene	ND	0.0010	EPA 8260	10-19-11	10-19-11	

Project: 21-1-16604-003

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

A 1	D 16	DOL		Date	Date	- 1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1019S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Tetrachloroethene	ND	0.0020	EPA 8260	10-19-11	10-19-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
2-Hexanone	ND	0.0050	EPA 8260	10-19-11	10-19-11	
Dibromochloromethane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Ethylene dibromide	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Chlorobenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Ethylbenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
m,p-Xylene	ND	0.0020	EPA 8260	10-19-11	10-19-11	
o-Xylene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Styrene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Bromoform	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Isopropylbenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Bromobenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	10-19-11	10-19-11	
n-Propylbenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
n-Butylbenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,2-Dibromo-3-chloropropane		0.0050	EPA 8260	10-19-11	10-19-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	10-19-11	10-19-11	
Naphthalene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	10-19-11	10-19-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	63-127				

Dibromofluoromethane 109 63-127
Toluene-d8 106 65-129
Benzene, 1-bromo-4-fluoro- 108 55-121

Project: 21-1-16604-003

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Analyta					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	17S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0640	0.0641	0.0500	0.0500	128	128	70-130	0	19	
Benzene	0.0572	0.0568	0.0500	0.0500	114	114	70-125	1	15	
Trichloroethene	0.0555	0.0558	0.0500	0.0500	111	112	70-122	1	14	
Toluene	0.0541	0.0541	0.0500	0.0500	108	108	73-120	0	16	
Chlorobenzene	0.0516	0.0523	0.0500	0.0500	103	105	74-109	1	12	
Surrogate:										
Dibromofluoromethane)				112	109	63-127			
Toluene-d8					107	107	65-129			
Benzene, 1-bromo-4-fl	uoro-				108	109	55-121			

Project: 21-1-16604-003

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

					Per	Percent F			RPD	
Analyte	Res	sult	Spike	Level	Reco	Recovery		RPD	Limit	Flags
SPIKE BLANKS						-				
Laboratory ID:	SB10	18S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0517	0.0510	0.0500	0.0500	103	102	70-130	1	19	
Benzene	0.0470	0.0464	0.0500	0.0500	94	93	70-125	1	15	
Trichloroethene	0.0498	0.0484	0.0500	0.0500	100	97	70-122	3	14	
Toluene	0.0478	0.0471	0.0500	0.0500	96	94	73-120	1	16	
Chlorobenzene	0.0495	0.0487	0.0500	0.0500	99	97	74-109	2	12	
Surrogate:										
Dibromofluoromethane					103	102	63-127			
Toluene-d8					104	103	65-129			
Benzene, 1-bromo-4-flu	ioro-				104	103	55-121			

Project: 21-1-16604-003

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Analyto					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	19S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0523	0.0512	0.0500	0.0500	105	102	70-130	2	19	
Benzene	0.0475	0.0465	0.0500	0.0500	95	93	70-125	2	15	
Trichloroethene	0.0491	0.0477	0.0500	0.0500	98	95	70-122	3	14	
Toluene	0.0478	0.0462	0.0500	0.0500	96	92	73-120	3	16	
Chlorobenzene	0.0485	0.0472	0.0500	0.0500	97	94	74-109	3	12	
Surrogate:										
Dibromofluoromethane	е				106	104	63-127			
Toluene-d8					105	102	65-129			
Benzene, 1-bromo-4-fi	luoro-				106	103	55-121			

Project: 21-1-16604-003

% MOISTURE

Date Analyzed: 10-17-11

Client ID	Lab ID	% Moisture
GP-13:4.5	10-112-01	9
GP-13:10.0	10-112-02	16
GP-14:5.5	10-112-03	9
GP-14:10.5	10-112-04	12
GP-15:5.0	10-112-05	11
GP-15:12.0	10-112-06	16
GP-16:8.0	10-112-07	10
GP-16:11.5	10-112-08	17
GP-17-6.0	10-112-09	10
GP-17-14.0	10-112-10	13
GP-18:11.0	10-112-11	13
GP-19:11.0	10-112-12	12
GP-20:4.0	10-112-13	9
GP-20:9.0	10-112-14	12
GP-21:6.0	10-112-15	8
GP-21:12.0	10-112-16	12
GP-22:5.5	10-112-17	17
GP-22:13.0	10-112-18	14

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- **RPD** Relative Percent Difference

OnSite Environmental Inc.

Chain of Custody

Page _____ of ____

Envir	Environmental Inc. Phone: (425) 883-3881 • Fax: (425) 885-4603			d Reques	it	La	bor	ato	ry l	Nur	nbe	er:									0	-1	12	2
	5) 883-3881 • Fax: (425) 885-4603		(Check									HE S	Re	que	stec	d Ar	naly	sis						The
Company:	+ WISON INC.	Sar	me Day		1 Day													1151						
Project Number:		2 D	15.		3 Day					8260B									S					
Project Name:	6604-003	-								oy 82								FULL	2					
Former	Key Bank		ındard (7 w PH analysis						_	iles	8270D	SIM		4	14	s (8)		3	-					
Project Manager:	Key Bank WUS / Agres Time		Tr ariary ore	O WOTTER	ig dayo,		STEX		3260E	Volai	by 8	/ Q0	22	808	y 815	Metal		4	2					
Sampled by:	pl-: . ii		(otl	her)		NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by	PAHs by 8270D / SIM	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM by 1664	- Contract	2				% Moisture
Lab ID S	ample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.	NWT	NWT	NWT	Volati	Halog	Semi	PAHs	PCBs	Pestic	Herbi	Total	TCLF	HEM	1					% W
1 .6	P1:45 GP-13:4.5	10/14/11	0912	50:1	5														X					0
2 6	P-1:10.0 GP-13:10.0	10/14/11	0925	Soil	5										0				X					1
3 6	P-2: 5,5 GP-14:5.5	10/14/11	1000	Soil	5														X					
			1012	Seil	5														X					1
5 6	2-3:5.0 GP-15:5.0	10/14/11	1035		5		100												X					\perp
	3: R.O - GP-15:12.0		1045	Soil	5					,	-								X					
7 6	P-4:8.0 GP-16:8.0	19/14/11	1100	Soil	5														X					
8 6	P-4:11.5 GP-16:11.5	10/14/11	1110	Soil	5														X					
9 6	P-5:6.0 GP-17:6.0	10/14/11	1135	soil	5														X					
10 6	P-5: 14.0 GP-17:141	19/11/11	1145	Soil	5														X					6
SPECIFICAL PROPERTY.	Signature		Company	7			Date		Int	Time			Com	ment	s/Spe	cial II	nstru	ctions:				Mary Service		-
Relinquished by	Capana		5dV	· .			1	114	/**	1	53	Ų.							2					
Received by	Van		50	edy			10/1	4/1	1	18	3	٥												
Relinquished by	Van		-	11			10	14/1	1	11	(1)													
Received by	na	**************************************	0	100			101	1411	13_	16	15													
Relinquished by																								
Received by																				100				
Reviewed by/Date			Reviewed	by/Date									Chr	oma	togra	ams	with	final	repo	rt 🗌				

OnSite Environmental Inc.

Chain of Custody

Page 2 of 2

7	Envir		Turnaroun (in worki			La	Laboratory Number:										1	0 -	1	1 2	>				
Compar		883-3881 • Fax: (425) 885-4603		(Chec	k One)									Re	eque	ste	d Aı	naly	sis				198	20584	
	Shan	von & wilson	□ Sa	me Day		1 Day														3					
Project	21-1-1660	4-003	2 [Day		3 Day					8260B									<u>88</u>					
Project	Name:	Key Bank		andard (7 w								8270D	SIM		4	A	(8)		SY	400					
Project	Manager:	wilf lagues Timo	(11	PH analysis	5 5 Work	ing days)	٥	BTEX		3260B	Volatil	by 82	S/Q0	22	8081	y 8151	Metals		4	1					
Sample	EVP			(ot	her)		H-HCI	NWTPH-Gx/BTEX	H-Dx	Volatiles by 8260B	enated	olatiles	oy 827	by 808	des by	id səbi	CRA	Metals	HEM by 1664					28	sture
Lab ID	Sa	mple Identification	Date Sampled	Time Sampled	Matrix	# of Cont.	NWTPH-HCID	NWTP	NWTPH-Dx	Volatile	Halogenated Volatiles by	Semivolatiles by	PAHs by 8270D /	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	TCLP Metals	HEM b	1					% Moisture
11		:11.0 GP-18:11.0	16/14/11	1210	soil	5														X				(X
12		:11.0 GP-19:11.0	10/14/11		Soil	5														X					
13		: 4.0 GP-20:4.0			sail	5														X					
14	GP-8	:9.0 - GP-20:9.0	10/14/11	1345	Soil															X					
15	GP-9	6.0 GP-21:6.0	10/14/11	1\$05	Soil															X					
16	GP-9	12.0 GP - 21:12.0	10/14/11	1425	Soil															X					
17	GP-16	15.5 GP-22:5.0	10/4/11	1453	soil	5														X					
18	GP-16	1:13.0 GP-22:13.0	- Inter	1510	soil	5														X					U
		×.																							
Reling	uished by	Signature	11	Company 54 Y	1		000	Date	14	11	Time	53	2	Com	ıment	s/Spe	cial li	nstru	ctions						
Receiv	ved by	Van			peed)er		. \	4/1			-3	-												
Relinq	uished by	Van -			1	-		10	14	11	1.3	115													
Receiv	ed by	n		02/	E			10	141	111	1	31	5												
Relinq	uished by											,													
Receiv	ved by																								
Review	ved by/Date			Reviewed	by/Date									Chr	oma	togra	ams	with	final	repor	t 🗆				

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

November 2, 2011

Dawn Wulf Shannon & Wilson, Inc. 400 N 34th Street, Suite 100 Seattle, WA 98103

Re: Analytical Data for Project 21-1-16604-003

Laboratory Reference No. 1110-112B

Dear Dawn:

Enclosed are the analytical results and associated quality control data for samples submitted on October 14, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 21-1-16604-003

Case Narrative

Samples were collected on October 14, 2011 and received by the laboratory on October 14, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 21-1-16604-003

TCLP TETRACHLOROETHYLENE EPA 1311/8260B

Matrix: TCLP Extract

Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GP-16:8.0					
Laboratory ID:	10-112-07					
Tetrachloroethene	42	2.0	EPA 8260	10-25-11	11-1-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	78	68-120				
Toluene-d8	82	73-120				
Benzene, 1-bromo-4-fluoro-	- 79	65-120				

Project: 21-1-16604-003

TCLP TETRACHLOROETHYLENE EPA 1311/8260B METHOD BLANK QUALITY CONTROL

Matrix: TCLP Extract

Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1025T2					
Tetrachloroethene	ND	2.0	EPA 8260	10-25-11	11-1-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	87	68-120				
Toluene-d8	87	73-120				
Benzene, 1-bromo-4-fluoro-	- 84	65-120				

Project: 21-1-16604-003

TCLP TETRACHLOROETHYLENE EPA 1311/8260B SB/SBD QUALITY CONTROL

Matrix: TCLP Extract

Units: ug/L

					Per	cent	Recovery		RPD		
Analyte	Res	sult	Spike Level		Recovery		Limits	RPD	Limit	Flags	
SPIKE BLANKS										_	
Laboratory ID:	SB11	01T1									
	SB	SBD	SB	SBD	SB	SBD					
1,1-Dichloroethene	9.33	9.49	10.0	10.0	93	95	70-130	2	11		
Benzene	8.48	8.90	10.0	10.0	85	89	75-123	5	8		
Trichloroethene	9.13	9.19	10.0	10.0	91	92	80-113	1	9		
Toluene	8.86	9.32	10.0	10.0	89	93	80-113	5	8		
Chlorobenzene	9.37	9.59	10.0	10.0	94	96	80-111	2	8		
Surrogate:											
Dibromofluoromethane)				<i>7</i> 5	77	68-120				
Toluene-d8					80	80	73-120				
Benzene, 1-bromo-4-fl	uoro-				76	79	65-120				

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

Chain of Custody

Page	
of _	

Received by	Relinquished by	Received by	Relinquished by	Received by Jan Spooly 1	Relinquished by	0	10 6P-5:14.0 6P-17:14510/19/19 1145 soil 5	9 6P-5:6.0 GP-17:6.0 10/11/11 1135 soil 5	8 GP-4:11.5 GP-16:11.5 10/11/11 1110 Soil 5	7 GP-4:8:0 GP-16:8:0 100 100 50:1 5	6 GP-3:12.0-GP-15:12.0 10/11/11/1045 Soil 5	5 GP 3:5.0 GP-15:5.0 10/11/11 1035 Soil 5	4 GP210.5 GP-14-10.5 10/14/11/012 511 5	3 6P-2:5,5 GP-14:5.5 19/11/11/1000 5011 5	2 GPT-100 GP-13:10,0 1/11/11 0925 Soil 5	CAT: 4.5 CP-13:4.5 10/11/11		Sampled by: (other)	ID	Standard (7 working days)	2(- - 16604 - 003	Shannon & Wilson Inc. Same Day 1 Day	Phone: (425) 883-3881 • Fax: (425) 885-4603 (Check One)	Environmental Inc. Turnaround Request (in working days) Lab
		1615	10/14/11/101	10/14/11 1530	10/14/11 1530	Date Time				×							NWTF Volatil Halog	olatile/	8260E d Volat s by 8	iles by	8260E	3		Laboratory Number:
Or and the state of the state o					@Added 10/20/11.23(STA)	Comments/Special Instructions:	×			8	×			×			Pestic Herbid Total I TCLP HEM	by 800 cides becides to RCRA Metall by 1660 by 1660 bisture	y 808 Metal Metal 54	1A s (8) voch!	1000 1000	1054 N	Requested Analysis	10-112

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Chain of Custody

Page

N

1	1		1 1	1	1		1610		-	_	-				_			To . 100		_	-				
Revie	Rece	Relin	Rece	Relin	Rece	Relin			C	N	الــ	0	2	7	نن	٧	_	ab ID	Sampled by:	roject	roject	roject	Company.		
Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by													2	Project Manager:	Project Name:	Project Number: 21~1~16604-003	, i		4
y/Date		d by		d by		d by				9	9	19	9	9	m	9	6		END	ber:	3	7 en	()	Ph	
									•	P	P	1	58-9:6.0	1	P	EP.	GP.		~	Dawa	3	2	Shamon & wilson	Phone: (425) 883-3881 • Fax: (425) 885-4603	Environmental Inc.
							(0			\$	10:	10	1:	000	do	4	1	Samp		3	F	04	3	25) 883	3
		5					Signati			0411	4	0.21:6-	3	9.0	7		7.0	Sample Identification		大	~	8	- SA	-3881	
			Y		,	Se de la constante de la const	ıre			_ 1 1	4	,	1	1			V	ntific		7	Bank	W	2	Fax: (4	
			0) an	Y			1	3	Sp	30	-95	190	2	1-1	p-1	ation		2	大		N	25) 885	
			MS	2	3	2				CD-22:13.0	CP-22:5.0	GP-21:12.0	GP-21:6.0	CP-20:9.0	GP-20:4.0	69-19:11.0	GP-18:11.0				-		بخ	4603	ij
			1	3							3	12	0	20	4.0	0.0	0,0			Ä					
			1	\				,	.								U ST		:÷					-	
										0	101	hio	10	14/01	12/01	10/	10/2	Date Sampled		<u> </u>	M			\perp	100
									•	3	=	The same	14/10	-	3	3	2	te pled	ĺ		Sta	2 Day	Sai		
B			0			3.4	Cor			HN 1510	H53	/a 1425		W	1330	w	T	Ti San		2	Standard (7 working days))ay	Same Day		Turn: (in
eviewe					0.1	N BS	Company			O	W	y	S041	1345	8	1315	OIC	Time Sampled	(0)	alyon	d (7 v		ay	(Chec	aroun
Reviewed by/Date			3	6	8	2				8	3.08	0:	8	10:	B.	501	201	Ma	(other)	(vorkir			(Check One)	Turnaround Request (in working days)
ate					B					cannot	~		-	-				Matrix			ng day			9	quest ays)
				1	7					U	of	N	N	d	N	a	M	# of Cont		(11 11 dialysis o worming adys)	/s)	3 Day	1 Day		
																		NWTF	PH-HC		2				Г
			2	0	10	5	Date											NWT	PH-Gx	/BTEX					Laboratory
			N/h	7	1/1/4/	14	ō _											NWT	PH-Dx						rato
			11	_	=	=												Volati	les by	8260E					S 200
				=	7		Time											Halog	enate	d Volat	iles by	8260E	3		Nur
			219	1/5	on	N														s by 8					Number:
			7		0	0														70D / :	SIM				
Chro							Comm											PCBs	8		1 /		_	Req	
mato							ents/S													by 808			_	Requested	
gram							specia									-				Metal			-		
Chromatograms with final report							Comments/Special Instructions:	-				-							Meta					Analysis	
า fina							uction											HEM	by 16	64	DB			/sis	
l repo							s:			×	X	X	X	X	X	X	×	#	1	de	Voc	5 8	160)		
ort																			Ho	ilusev	1a-leo	1			
																									7
																									0-
															-										-
									(90)	2							~	7% M	oisture	,			_		2
							1			1	-												- 1		

SHANNON & WILSON, INC.

APPENDIX D DISPOSAL DOCUMENTATION

Disposal Documentation will be submitted as an addendum.

APPENDIX E

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Attachment to and part of Report 21-1-16604-005

Date: January 9, 2012
To: Mr. Mark Menard

Sound Transit

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 1/2012

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 1/2012