

September 18, 2016

TO: Cris Matthews (Ecology) **FROM:** Karen Mixon (URS)

CC: Mike Droppo (Kinder Morgan), Patrick Davis (Trans Mountain), Cary Brown (URS),

Demetrio Cabanillas (URS), Dan Heimbigner (Whatcom Environmental)

RE: URS Progress Report – April 1 to August 31, 2016

PROJECT: Cleanup Action

Consent Decree No. 14-2-01294-9 (effective 6-5-2014)

Laurel Station

1009 E. Smith Road, Bellingham, Washington

TRANS MOUNTAIN PM: Mike Droppo Cris Matthews URS PROJ NO: 60485368 Karen Mixon

Introduction:

This progress report is presented in accordance with Consent Decree 14-2-01294-9 (effective 6-5-2014) and is intended to present the information as noted under Section XI PROGRESS REPORTS in the Consent Decree. The period presented in this report extends past the quarter (April through June) to August 31, 2016 due to delay for the 2nd quarter report.

Work Accomplished During Reporting Period:

DPE System Operation

The DPE well locations are shown on attached Figure 2 Site Plan and DPE Well Locations. The DPE system operated in SVE mode during the period from April 1 through August 31, 2016. All 10 wells (DPE-1 through DPE-10) were operated in April through part of May. On May 17, 2016, wells DPE-4, -5, -9, and -10 were shutdown based on low mass removal at these locations. Ceasing operation at these 4 wells allowed increased flow at the six remaining wells to improve removal rates at DPE-1, -2, -3, -6, -7, and -8. At the end of this reporting period (August 2016), approximately 2,488 pounds of constituents of concern (COCs) have been removed since the system startup in July 2015 (13 months ago). Graphs showing the cumulative removal of COCs by the system are attached to this report and indicate ongoing strong performance. The pounds removed are based on calculations made using PID measurements at the combined vapor monitoring point prior to the vapor GAC system and flow measurements. No treated groundwater was discharged from the system during this reporting period. Approximately 30,339 gallons of water have been removed since the system was started in July 2015 with most of the volume removed during DPE mode operation in March 2016. No measureable product has been observed or recovered by the system to date.

Air monitoring using FID and PID field instruments was conducted by Whatcom Environmental twice weekly to monitor the vapor GAC treatment system from April through May. Based on carbon usage (carbon was changed out on March 29, 2016), a decision was made to reduce the monitoring to one-time weekly beginning in June. Sampling ports are located before the first carbon unit (pre-treatment), between the first and second units (mid-treatment), and after the 2nd

Tel: 206.438.2700 Fax: 866.495.5288 unit (post-treatment). The carbon was changed out if the PID measurements at the midtreatment location exceeded 50 ppm. During this reporting period the vapor GAC was changed out 3 times (June 6, July 8, and August 9, 2016).

Groundwater Monitoring

URS conducted the second quarter 2016 groundwater sample collection on June 27, 2016. The sample collection on June 27, 2016 was conducted consistent with the sampling events in December 2015 and March 2016 (see progress report dated April 11, 2016). The sampling program was revised from the plan presented in the Compliance Monitoring Plan (CMP, URS 2015) following a discussion with Cris Matthews on October 1, 2015. The revision was necessary to account for the change to the well installations for the DPE system and monitoring well network during the construction phase of the cleanup action. See attached **Figure 2 Site Plan and DPE Well Locations** for well locations. Wells MW-4, MW-6, MW-15, MW-16, and DPE-4 are intended to be sampled quarterly.

The DPE system was shut down on Friday June 24, 2016 to allow the groundwater to equilibrate before sample collection. On June 27, 2016, water levels were measured from wells MW-3, MW-4, MW-6, MW-8, MW-11 through MW-16, SW-1, SW-2, and SW-3. Well DPE-4 was gauged on June 23, 2016 and was dry. Wells MW-8 and MW-11 through MW-16 were also dry. Wells MW-3 and MW-4 had less than 1 foot of water present in each well. Wells MW-6, SW-1 and SW-2 had at least 8 feet of water present and well SW-3 was dry. Only well MW-6 of the wells scheduled to be sampled contained enough water to allow sample collection. A cumulative water elevation table summary from April 2015 through June 2016 is attached to this report.

The sample was collected using low-flow method with a portable bladder pump with sample intake set approximately 22 feet below top of casing. The well was purged approximately 1/2-hour while measuring pH, temperature, specific conductance, dissolved oxygen, and oxidation-reduction potential. All parameters were within the low flow criteria when purging was stopped. The sample and a field duplicate were collected directly into laboratory supplied containers for BTEX/NWTPH-Dx, and PAH analysis and submitted to Analytical Resources, Inc. the next day via Federal Express.

URS completed the data review for the first quarter and second quarter 2016 groundwater sample collection. The summary data table, data validation memos, and laboratory reports are attached to this progress report.

Additional Investigation

URS submitted a letter work plan to Ecology on July 11, 2016 for additional investigation in the Pump Station Area. The proposed investigation was to refine the lateral limits of petroleum hydrocarbons in soil previously identified at boring location SU1-B11 during the site remedial investigation (URS 2014). Ecology approved the work plan on July 13, 2016. The field work was completed on July 18, 2016 as described in the work plan. The data has been received. A letter report summarizing the field work and data will be submitted to Ecology in September 2016.

Submittals

- URS submitted two paper copies of the February 5, 2016 version of the DPE O&M
 manual for Ecology's project file during this period. Please note this document is
 considered a 'living' document and will be updated as necessary during the operation of
 the DPE system.
- Kinder Morgan submitted a letter on July 6, 2016 via email to Ecology providing the documentation for the Financial Assurance requirement in Article XXI of the consent decree.
- URS submitted a letter work plan on July 11, 2015 for additional investigation around boring SU1-B11.
- · The CMP update is in internal review at URS.
- The Completion Report is in internal review at URS.

Deviations to Approved Plans Not Previously Documented:

None

Deviation to Scope of Work and Schedule as Presented in the Cleanup Action Plan (Exhibit A of Consent Decree):

There were no changes from previous progress reports to the overall Scope of Work described in the Cleanup Action Plan (CAP).

Data Received During Reporting Period:

- Groundwater monitoring data collected on March 29 and June 27, 2016
- Soil data associated with SU1-B11 investigation completed on July 18, 2016

Plans for the Next Reporting Period:

The following are planned activities for the period from September 1 through December 31, 2016.

- Continue to operate and maintain the DPE system.
- Submit a letter report to Ecology summarizing the results of the field investigation to refine the limits of petroleum hydrocarbon contamination at previous boring SU1-B11 in the pump station area.
- Complete the supplement to the Compliance Monitoring Plan for air and NPDES monitoring associated with discharges from the DPE treatment systems.
- Submit the Completion Report for the cleanup action through DPE installation.
- Complete the 3rd quarter and 4th quarter 2016 groundwater sample collection in September and December 2016, respectively. Review data and prepare for submittal with progress report in January 2017.

 Present a draft Environmental Restrictive Covenant for the site as related to remaining TPH contamination.

Please contact Karen Mixon at (206) 438-2234 if you have any questions or comments regarding this progress report.

References:

URS Corporation, 2014. Final Remedial Investigation/Feasibility Study Report, Laurel Station, 1009 East Smith Road, Bellingham, Washington, June 2, 2014.

URS Corporation, 2015. Final Compliance Monitoring Plan, Laurel Station, 1009 East Smith Road, Bellingham, Washington, January 16, 2015.

URS Corporation, 2016. Letter Work Plan, Additional Investigation – SU1-B11, Laurel Station, 1009 East Smith Road, Bellingham, Washington, July 11, 2016.

Attachments:

Figure 2, Site Plan and DPE Well Locations (from the O&M Manual, February 5, 2016)
DPE System Performance Graphs, August 2016
Table – Monitoring Well Groundwater Elevation Data Summary
Table – Quarterly Groundwater Monitoring Results
Data Validation Report March 2016
ARI Lab Report AYK4
Data Validation Report June 2016
ARI Lab Report BCQ4

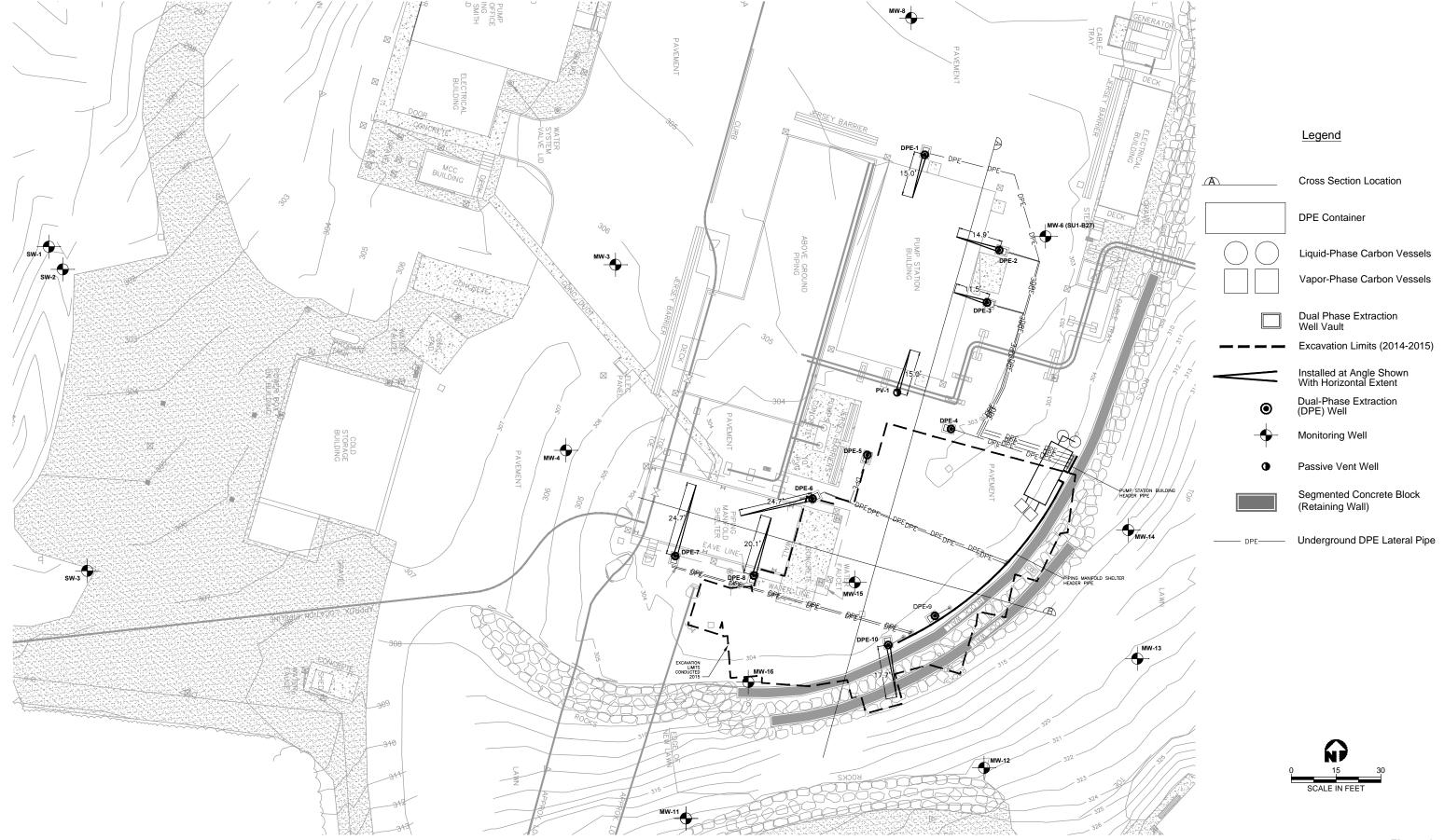
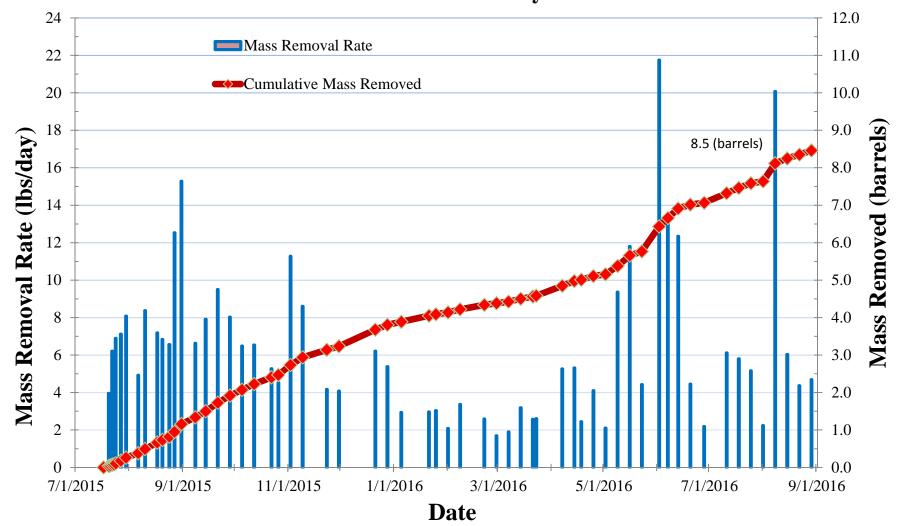
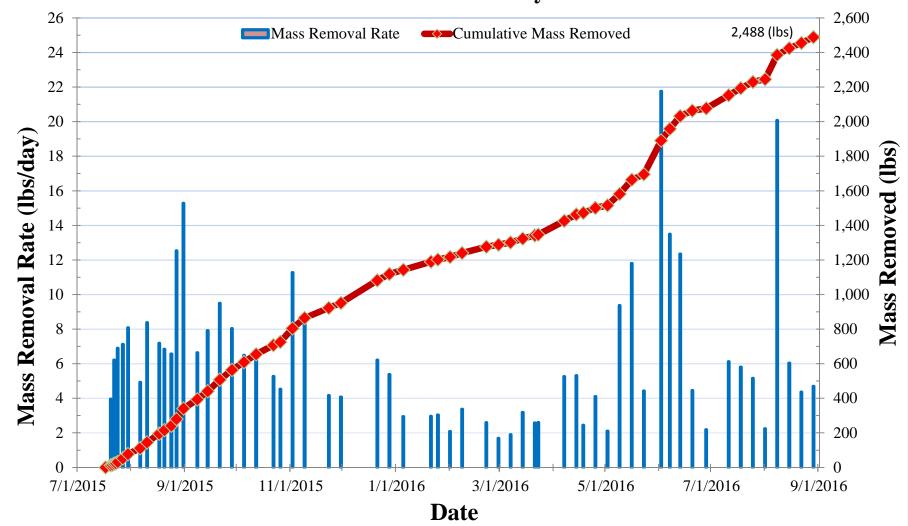



Figure 2 Site Plan and DPE Well Locations

Laurel Station DPE System

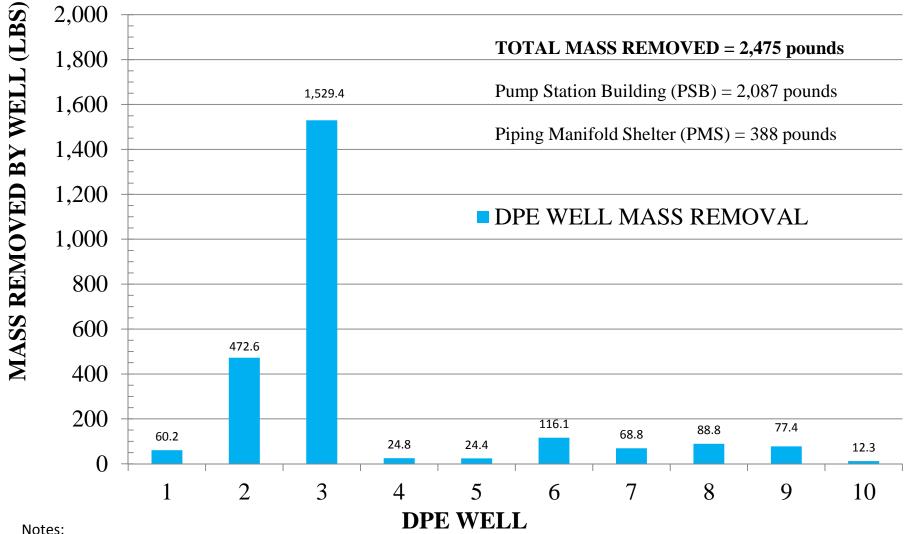


Notes:

- 1. Data shown from July 17, 2015 through August 29, 2016, after approximately 13 months of operation.
- 2. The Cumulative Mass Removed is based on data taken from the pre-treatment sampling port directly before carbon treatment.

COMBINED SYSTEM MASS REMOVAL DATA

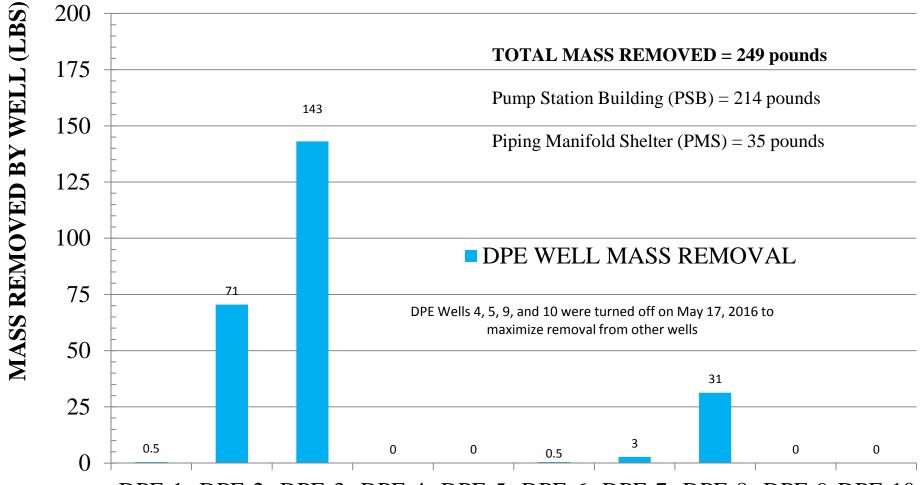
Laurel Station DPE System



Notes:

- 1. Data shown from July 17, 2015 through August 29, 2016, after approximately 13 months of operation.
- 2. The Cumulative Mass Removed is based on data taken from the pre-treatment sampling port directly before carbon treatment.

MASS REMOVAL DISTRIBUTION - Cumulative


Laurel Station DPE System

- 1. Estimated mass removal from July 17, 2015 through August 29, 2016
- 2. The TOTAL represents the sum of all 10 individual wells
- 3. Mass removed from the PSB and PMS were calculated based on the mass removed from individual wells
- 4. DPE-1 through 4 are PSB wells, DPE-5 through 10 are PMS wells.

MASS REMOVAL DISTRIBUTION - August 2016

Laurel Station DPE System

DPE-1 DPE-2 DPE-3 DPE-4 DPE-5 DPE-6 DPE-7 DPE-8 DPE-9 DPE-10 **DPE WELL**

Notes:

- 1. Estimated mass removal for August 2016
- 2. The TOTAL represents the sum of all 10 individual wells
- 3. Mass removed from the PSB and PMS was calculated based on the mass removed from individual wells
- 4. DPE-1 through 4 are PSB wells, DPE-5 through 10 are PMS wells.

Table Monitoring Well Groundwater Elevation Data Summary Laurel Station Cleanup Action Bellingham, Washington

Woll In	Data Macayand	Total Depth ^a (ft-TOC)	TOC Elevation ^b (ft-NAVD88)	Approximate Screen Interval	Approximate Screen Interval Elevation (ft-NAVD88)	Depth to Groundwater (ft-TOC)	Groundwater Elevation (ft-NAVD88)	Thickness of Water Column (ft)
Well ID SW-1	Date Measured 4/23/2015	(H-10C) 18.50	(II-NAVD88)	(ft-bgs)	(II-NA V D88)	4.30	(II-NAVD88) 296.34	(H) 14.20
5 1	12/14/2015	18.35				4.10	296.54	14.25
	1/25/2016	18.68				5.09	295.55	13.59
	2/22/2016	17.39				14.20	286.44	3.19
	3/21/2016	18.57	300.64	5 - 20	295.64 - 280.64	5.08	295.56	13.49
	4/25/2016	18.59				18.59	282.05	NC
	5/23/2016	18.62				18.62	282.02	NC
	6/27/2016	18.40				4.72	295.92	13.68
SW-2	4/23/2015	49.75				37.59	263.78	12.16
	2/22/2016	50.26	301.37	40 - 50	261.37 - 251.37	DRY	NC	NC
	3/21/2016	50.03				36.86	264.51	13.17
	4/25/2016	50.25				50.25	251.12	NC
	5/23/2016	50.15				50.15	251.22	NC
	6/27/2016	49.75				37.61	263.76	12.14
SW-3 ^c	4/23/2015	34.75				32.19	277.29	2.56
	12/14/2015	34.78				33.11	276.37	1.67
	1/25/2016	35.12				32.40	277.08	2.72
	2/22/2016	34.86				DRY	NC	NC
	3/21/2016	34.91	309.48	22 - 32	284.48 - 274.48	31.98	277.50	2.93
	4/25/2016	34.91				34.91	274.57	NC
	5/23/2016	35.03				35.03	274.45	NC
	6/27/2016	34.70				34.70	274.78	NC
DPE-4 ^d	4/23/2015	16.91		+		8.46	293.30	8.45
DIL.	10/26/2015	17.00				16.50	285.80	0.50
	12/14/2015	15.70				15.50	286.80	0.20
	1/25/2016	15.70				14.77	287.53	0.93
	2/22/2016	16.14	301.76	6.5 - 16.5	298.51 - 288.51	15.90	286.40	0.24
	3/21/2016	#REF!	301.70	0.5 10.5	270.01 200.01	14.95	287.35	0.14
	4/25/2016	15.14				15.14	287.16	NC
	5/23/2016	15.15				15.14	287.16	NC
	6/23/2016	15.13				15.13	287.17	NC
MW-3	4/23/2015	33.40				DRY	NC	NC
	12/14/2015	33.55				DRY	NC	NC
	1/25/2016	33.39				DRY	NC	NC
	2/22/2016	33.48				DRY	NC	NC
	3/21/2016	33.99	305.83	24 - 34	281.83 - 271.83	33.36	272.47	0.63
	4/25/2016	34.91				34.91	270.92	NC
	5/23/2016	33.86				33.86	271.97	NC
	6/23/2016	35.10				34.50	271.33	0.60
	6/27/2016	34.60				33.73	272.10	0.87
MW-4	4/23/2015	30.15				28.07	277.60	2.08
	12/14/2015	30.16				DRY	NC	NC
	1/25/2016	30.34				29.04	276.63	1.30
	2/22/2016	30.37				24.33	281.34	6.04
	3/21/2016	30.35	305.67	20 - 30	285.67 - 275.67	25.86	279.81	4.49
	4/25/2016	33.79				33.79	271.88	NC
	5/23/2016	30.47				30.47	275.20	NC
	6/23/2016 6/27/2016	30.15 30.12]		29.84 29.85	275.83 275.82	0.31
								0.27
MW-6	4/23/2015	26.55				16.51	286.27	10.04
	11/30/2015	NA				16.17	286.61	10.38
	12/14/2015	26.56				12.92	289.86	13.64
	1/25/2016	26.74				13.59	289.19	13.15
	2/22/2016	26.77	302.78	11 - 26	291.78 - 276.78	12.89	289.89	13.88
	3/21/2016 4/25/2016	26.65 26.73				26.73	289.76 276.05	13.63 NC
	5/23/2016	26.84				26.84	275.94	NC NC
	6/23/2016	26.78				19.17	283.61	7.61
	6/27/2016	26.70				18.52	284.26	8.18
MW-8	4/23/2015	37.10		+		DRY	NC	NC
	12/14/2015	37.10				DRY	NC NC	NC NC
	1/25/2016	37.28				DRY	NC NC	NC NC
	2/22/2016	37.13				36.91	265.33	0.22
	3/21/2016	37.45	302.24	23 - 38	279.24 - 264.24	37.00	265.24	0.45
	4/25/2016	37.41	302.24	25 - 50	2,,,57-204,54	37.41	264.83	NC
	5/23/2016	37.55				37.05	265.19	0.50
	6/23/2016	37.50				37.04	265.20	0.46
	6/27/2016	37.20				37.20	265.04	NC

Progress Rpt - GW Elev Summary.xlsx

Table Monitoring Well Groundwater Elevation Data Summary **Laurel Station Cleanup Action** Bellingham, Washington

MW-11 ^c	4/23/2015	48.15				DRY	NC	NC
	11/30/2015	NA				47.54	273.77	0.61
	12/14/2015	48.17				47.21	274.10	0.96
	1/25/2016	46.93				DRY	NC	NC
	2/22/2016	48.21	321.31	25 - 45	293.31 - 273.31	46.86	274.45	1.35
	3/21/2016	48.52	321.31	25 - 45	293.31 - 2/3.31	46.96	274.35	1.56
	4/25/2016	48.69				48.69	272.62	NC
	5/23/2016	48.73				48.73	272.58	NC
	6/27/2016	48.30				48.30	273.01	NC
MW-12 ^c	4/23/2015	51.60				DRY	NC	NC
	11/30/2015	NA				50.69	272.84	0.91
	12/14/2015	51.80				51.20	272.33	0.60
	1/25/2016	52.12				DRY	NC	NC
	2/22/2016	51.99	323.53	29 - 49	291.53 - 271.53	DRY	NC	NC
	3/21/2016	52.20				51.74	271.79	0.46
	4/25/2016	52.12				52.12	271.41	NC
	5/23/2016	52.22				52.22	271.31	NC
	6/27/2016	51.75				51.75	271.78	NC
MXX/ 12 ⁰								
MW-13 ^c	4/23/2015	62.45				DRY	NC NC	NC NG
	11/30/2015	NA				63.48	NC	NC
	12/14/2015	62.62				DRY	NC	NC
	1/25/2016	63.21				62.45	260.75	0.76
	2/22/2016	62.56	323.20	39 - 59	281.20 - 261.20	DRY	NC	NC
	3/21/2016	63.06				63.06	NC	NC
	4/25/2016	63.09				63.09	260.11	NC
	5/23/2016	63.11				63.11	260.09	NC
	6/27/2016	62.60				62.60	260.60	NC
MW-14	4/23/2015	50.75				DRY	NC	NC
	11/30/2015	NA				50.72	266.07	0.03
	12/14/2015	50.94				DRY	NC	NC
	1/25/2016	51.37				DRY	NC	NC
	2/22/2016	51.24	316.79	30 - 50	286.77 - 266.77	50.77	266.02	0.47
	3/21/2016	51.46				50.73	266.06	0.73
	4/25/2016	51.46				51.46	265.33	NC
	5/23/2016	51.12				51.12	265.67	NC
	6/27/2016	50.90				50.90	265.89	NC
MW-15	4/23/2015	34.25				DRY	NC	NC
14144-15	10/26/2015	33.76				33.72	269.40	0.04
	11/30/2015	NA				33.82	269.30	NC
	12/14/2015	34.24				33.79	269.33	0.45
	1/25/2016	35.15	303.12	25 - 35	278.12 - 268.12	33.80	269.32	1.35
	2/22/2016	33.39		1 33	2.0.12	33.19	269.93	0.20
	3/21/2016	34.82				33.78	269.34	1.04
	4/25/2016	34.71				34.71	268.41	NC
	5/23/2016	34.80				34.80	268.32	NC
	6/27/2016	33.52				33.52	269.60	NC
MW-16	4/23/2015	34.82				DRY	NC	NC
	10/26/2015	34.91				34.80	269.11	0.11
	12/14/2015	34.83				DRY	NC	NC
	1/25/2016	35.73				DRY	NC	NC
	2/22/2016	35.72	303.91	25 - 35	278.91 - 268.91	34.97	268.94	0.75
	3/21/2016	35.61	303.91	25 - 35	2/8.91 - 208.91	33.81	270.10	1.80
	4/25/2016	35.41				35.41	268.50	NC NC
	5/23/2016	35.58				35.58	268.33	NC NC
				Ī				
	6/27/2016	34.70				34.70	269.21	NC

^aTotal depth was measured by sounding the wells prior to sampling and may differ from total depth as installed.

Highlighted cells recorded a water column less than 0.7 foot. This is an indication that the well is dry and the water measured in the well is due to the collection of water in the bottom cap of the well.

Well is dry.

ft - foot

ft-TOC - feet below top of well casing

ft-NAVD88 - vertical elevation in feet relative to North American Vertical Datum of 1988

ft-bgs - feet below ground surface

NC - not calculated NM - not measured

^bSource of TOC elevations prior to 2011 is from Dames & Moore 1992a. Source of TOC elevations for 2011 is Larry Steele & Associates 2011. Vertical elevation datum prior to 2011 was National Geodetic Vertical Datum 29, and 2011 vertical elevation datum is NAVD 88 (ft).

^cStick-up well monument; Well MW-14 casing re-surveyed April 2015 as casing was cut during site work in 2014.

^dTOC elevation is an estimate as the measurement does not account for the additional length due to DPE well head installation.

Quarterly Groundwater Monitoring Results Laurel Station Cleanup Action Bellingham, Washington

Sample II	Groundwater	MW4				MW-6				PV-1	DPE-1	DPE-2	DPE-3	DPE-4	DPE-5	DPE-8
Sample Date	Cleanup Levels	4/23/15	4/23/15	4/23/15 (DUP)	12/14/15	3/29/16	3/29/16 (DUP)	6/27/16	6/27/16 (DUP)	4/24/15	4/24/15	4/24/15	4/23/15	4/24/15	4/24/15	4/23/15
Total Petroleum Hydrocarbons (mg/L)																
Gasoline-range (Gx)	0.8/1.0 a	0.25 U	0.25 U	0.25 U	0.25 U	0.10 U	0.10 U	0.10 U	0.10 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Diesel-range (Dx)	NE	0.94	0.10 U	0.13 U	0.12	0.10 U	0.10 U	0.11	0.10 U	0.38	2.1	0.59	0.86	0.14	0.46	0.60
Motor Oil-range	NE	0.47	0.20 U	0.25 U	0.22	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.54	0.23	0.82	0.20 U	0.20 U	0.20 U
Total TPH (Sum Dx, Oil-range, mg/L)	0.5	1.41	ND	ND	0.34	ND	ND	0.11	ND	0.38	2.64	0.82	1.68	0.14	0.46	0.60
BTEX (ug/L)																
Benzene	5	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Toluene	640	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.26	0.20 U	0.55	0.37	0.20 U	0.20 U	0.44
Ethylbenzene	700	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
m,p-Xylene	1,600	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U
o-Xylene	1,600	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Polycyclic Aromatic Hydrocarbons (ug/L)		37.	0.040.77		0.040.77	0.40.77	0.40.77	0.40.77	0.40.77	0.040.77	0.040.77	0.010	0.040	0.040.77	0.040.77	0.040.77
1-Methylnaphthalene	1.51	NA	0.010 U	NA	0.010 U	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010	0.019	0.010 U	0.010 U	0.010 U
2-Methylnaphthalene	32	NA	0.019	NA	0.010 U	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010 U	0.022	0.010 U	0.010 U	0.010 U
Acenaphthene	960	NA	0.010 U	NA	0.010 U	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Acenaphthylene	NE	NA	0.010 U	NA	0.010 U	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Anthracene	4,800	NA	0.010 U	NA	0.010 U	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Benzo(a)anthracene 1	0.12	NA	0.013	NA	0.010 U	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Benzo(b)fluoranthene 1	0.12	NA	0.011	NA	0.010 U	NA	NA	NA	NA	0.010 U	0.015	0.010 U	0.016	0.010 U	0.010 U	0.010 U
Benzo(k)fluoranthene 1	1.2	NA	0.010 U	NA	0.010 U	NA	NA	NA	NA	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Benzo(a)pyrene ¹	0.12	NA	0.012	NA	0.010 U	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Benzo(g,h,i)perylene	NE	NA	0.010 U	NA	0.010 U	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010 U	0.015	0.010 U	0.010 U	0.010 U
Chrysene 1	12	NA	0.015	NA	0.012	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.098	0.013	0.044	0.010 U	0.010 U	0.011
Dibenz(a,h)anthracene 1	0.012	NA	0.010 U	NA	0.010 U	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Dibenzofuran	16	NA	0.010 U	NA	0.010 U	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010 U	0.012	0.010 U	0.010 U	0.010 U
Fluoranthene	640	NA	0.017	NA	0.013	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Fluorene	640	NA	0.010 U	NA	0.010 U	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.018	0.012	0.010 U	0.027	0.010 U
Indeno(1,2,3-cd)pyrene 1	0.12	NA	0.010 U	NA	0.010 U	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Naphthalene	160	NA	0.010 U	NA	0.010 U	0.10 U	0.10 U	0.22	0.15	0.010 U	0.021 U	0.031 U	0.010 U	0.019 U	0.033 U	0.020 U
Phenanthrene	NE	NA	0.010 U	NA	0.010	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.010 U	0.010 U	0.013	0.010 U	0.010 U	0.010 U
Pyrene	480	NA	0.022	NA	0.014	0.10 U	0.10 U	0.10 U	0.10 U	0.010 U	0.057	0.020	0.031	0.010 U	0.010 U	0.012
Total Benzofluoranthenes 2	0.12	NA	0.024 J	NA	0.020 U	0.10 U	0.10 U	0.10 U	0.10 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U
TTEC	0.12	NA	0.015	NA	0.00012	NC	NC	NC	NC	NC	0.0025	0.00013	0.0020	NC	NC	0.00011

Notes:

Bolded values indicate that analyte was detected above the laboratory reporting limit.

Bolded and highlighted values exceed the project cleanup levels.

BTEX - benzene, toluene, ethylbenzene, and xylenes

J - estimated value

mg/L - milligram per liter

NA - not analyzed or not applicable

NC- not calculable

ND - not detected

NE - not established

TTEC - Total Toxicity Equivalent Concentration, reference WAC173-340-708

U - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. Reporting limit is an estimated value.

ug/L - microgram per liter

^a Gasoline with benzene present/without benzene present

¹This is considered a carcinogenic polycyclic aromatic hydrocarbon compound.

² Total benzofluoranthenes is the sum of the benzo(b)fluoranthene, benzo(j)fluoranthene, and benzo(k)fluoranthene isomers. The cleanup level of 0.12 ug/L is based on benzo(b)fluoranthene.

Memo

Century Square 1111 3rd Avenue, Suite 1600 Seattle, Washington 98101 206.438.2700 Telephone 206.438.2699 Fax

To: Karen Mixon, Project Manager Info: FINAL

Christine T. Gebel, Chemist April 28, 2016

From: Jennifer B. Garner, Chemist Date: Revised August 5, 2016

Data Quality Review

RE: Quarterly Groundwater Monitoring Samples – March 2016

Laurel Station Cleanup Action

The data quality review of 2 groundwater samples, one equipment blank, and one trip blank collected on March 29, 2016, has been completed. The samples were analyzed by Analytical Resources, Incorporated (ARI) located in Tukwila, Washington for benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene (BTEX) by EPA Method 8260C, total petroleum hydrocarbons (TPHs) by Washington State Department of Ecology (Ecology) Methods NWTPH-Gx (gasoline-range TPH) and NWTPH-Dx (diesel-range and motor oil-range TPH), and/or low-level polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270D modified by selected ion monitoring (SIM). Samples were analyzed for the chemical constituents as described in the *Final Compliance Monitoring Plan, Laurel Station, 1009 East Smith Road, Bellingham, Washington* dated January 16, 2015 (CMP). Due to changes in laboratory procedures, NWTPH-Gx analysis was performed using GC/MS instrumentation instead of GC/FID.

The analyses were performed in general accordance with methods specified in EPA's *Test Methods for Evaluating Solid Waste* (SW-846) and Ecology's *Analytical Methods for Petroleum Hydrocarbons*, June 1997. The laboratory provided a full data package containing sample results and associated QA/QC data. The following samples are associated with ARI group AYK4:

Sample ID	Laboratory ID	Requested Analyses
MW-6	AYK4A	BTEX, TPH-Gx, TPH-Dx, PAHs
Duplicate	AYK4B	BTEX, TPH-Gx, TPH-Dx, PAHs
Equipment Blank	AYK4C	Not applicable
Trip Blank	AYK4D	BTEX, TPH-Gx

The following comments refer to ARI's performance in meeting the quality control specifications described in the analytical methods. Data were qualified based on the method criteria and guidance provided in the EPA document *USEPA National Functional Guidelines for Superfund Organic Methods Data Review*, August 2014. Data qualifiers that may be assigned to data from this laboratory group include:

- · U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Multiple results reported from different analytical dates and/or dilutions. Value from another analysis should be used.

Sample Receipt

Upon receipt by ARI, the sample jar information was compared to the chain-of-custody (COC) and the cooler temperatures were recorded. No discrepancies relating to sample identification were noted by ARI and the coolers were received at temperatures within the EPA-recommended limits of greater than 0°C and less than or equal to 6°C.

An equipment blank was submitted to the laboratory and placed on hold at the request of URS Corporation. Only one well was sampled, so the equipment blank was determined to be not necessary for project purposes.

The laboratory noted that large air bubbles (>6 mm) were present in the 2 vials submitted for the trip blank. The results for VOCs in the trip blank were qualified as estimated and flagged 'UJ' based on the presence of large air bubbles in the sample vials.

Organic Analyses

Samples were analyzed for BTEX, TPHs, and/or PAHs by the methods identified in the introduction to this report.

- 1. Holding Times Acceptable
- 2. Instrument Performance Checks (GCMS Tunes) Acceptable
- 3. Initial and Continuing Calibrations Acceptable
- 4. Blanks Acceptable
- 5. Surrogates Acceptable
- 6. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Acceptable
- 7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Acceptable
 - General An MS/MSD was performed using MW-6 for all parameters. Results were acceptable.
- 8. Field Duplicates Acceptable
 - <u>General</u> A field duplicate was submitted for MW-6 and identified as Duplicate. Results were comparable for all parameters.
- 9. Reporting Limits Acceptable except as noted below:

<u>PAHs by Method 8270D-SIM</u> – The reporting limits for PAHs were elevated in MW-6 and Duplicate due to multiple communication errors between the field, laboratory, and URS office. The error was identified during review of the June 2016 groundwater sampling data. The elevated reporting limits meet the cleanup levels for all compounds except dibenzo(a,h)anthracene. The error does not affect the data use at this time. URS has implemented a corrective action to avoid similar issues during future sample collection starting with the September 2016 sampling event.

Overall Assessment of Data

The data reported in this laboratory group, as reported, are considered to be usable for meeting project objectives. The completeness for laboratory group AYK4 is 100%.

Table of Contents: ARI Job AYK4

Client: URS

Project: 60485368 Laurel Station

	Page From:	Page To:
Inventory Sheet	_	Č
Cover Letter	t	(
Chain of Custody Documentation	2	4
Case Narrative, Data Qualifiers, Control Limits	5	15
Volatile Analysis		
Report and Summary QC Forms	16	39
SIM PAH Analysis		
Report and Summary QC Forms	40	5%
TPHD Analysis		
Report and Summary QC Forms	59	73
Volatile Raw Data		
Initial Calibration	74	246
Run Logs, Continuing Calibrations, and Raw Data	247	3414
SIM PAH Raw Data		
Extractions Bench Sheets and Notes	345	348
Initial Calibration	349	400
Run Logs, Continuing Calibrations, and Raw Data	401	459
TPHD Raw Data		
Extractions Bench Sheets and Notes	460	463
Initial Calibration	464	514
Run Logs, Continuing Calibrations, and Raw Data	515	553

Signature

<u>April-14-2016</u> Date

April 14, 2016

Karen Mixon AECOM 1111 Third Avenue, Suite 1600 Seattle, WA 98101

RE: Laurel Station ARI Job: AYK4

Dear Karen:

Please find enclosed the original Chain-of-Custody (COC) records, sample receipt documentation, and the final data package for the project referenced above.

Sample receipt information and analytical details are addressed in the Case Narrative.

An electronic copy of this data package will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kelly Bottem

Client Services Manager

(206) 695-6211

kellyb@arilabs.com

www.arilabs.com

Chain of Custody Documentation

ARI Job ID: AYK4

AYKU: MMMBZ

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around Requested:			Page:	of			Analytica Analytica	Analytical Resources, Incorporated Analytical Chemists and Consultants
	Phone: 0	٥		Date:				4611 Sou	4611 South 134th Place, Suite 100
AECOM		Las 4/3 2700	740	3 29 16		Present? Yes		Tukwila, 7 206-695-	Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)
	MYEN (CHRITINE GEBEI	ring 6	-686L	No. of Coolers:	Cooler Temps:	Cooler A, H, F	V	www.arilabs.com	abs.com
,	MICEL STATE					Analysis Requested I	ested		Notes/Comments
Γ	Samplers: SN	Š		- Hd					
	Date Time	Matrix	No. Containers	NAT NAT NAT	1 4 d				
	3/29/16 1420	H20	13	XX	X				
	3/67/2	Hro	9	X X	X			:	
J	SOURMENT BLONK 329 (6 150	HZA	9	X X	X				HOLD
	3/29/6	62-11	7	X	X	,			
					•				
		\							
	Relinquished by: (Signature)	1	Received by: (Signature)	7		Relinquished by: (Signature)		Received by: (Signature)	
	Printed Name:	क्रिके	Printed Name:	Tyler Rankon	-	Printed Name:		Printed Name:	
	Company	-	Company:	4PI		Company:		Company:	
		600	Date & Time:	Date & Time: 5-50-16C (019		Date & Time:		Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or considered agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

Aecom	Project Name: Laure Startin
ARI Client:	Project Name: Lq we 1 station
COC No(s): NA	Delivered by Fed-Ex PS Courier Hand Delivered Other:
Assigned ARI Job No:	Tracking No: 8095 2432 8479 NA
Preliminary Examination Phase:	8095 2432 8468
Were intact, properly signed and dated custody seals attached	to the outside of to cooler?
Were custody papers included with the cooler?	NO VES NO
Were custody papers properly filled out (ink, signed, etc.)	
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for children:	
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID#: DOOS27(
Cooler Accepted by:	Date: 3-30~/6 Time: \019
	s and attach all shipping documents
Log-In Phase:	
Was a temperature blank included in the cooler?	
	ap Wet ce Gel Packs Baggies Foam Block Paper Other:
Was sufficient ice used (if appropriate)?	
Were all bottles sealed in individual plastic bags?	
Did all bottles arrive in good condition (unbroken)?	
Were all bottle labels complete and legible?	
Did the number of containers listed on COC match with the num	nber of containers received? NO
Did all bottle labels and tags agree with custody papers?	NO
Were all bottles used correct for the requested analyses?	VES NO
Do any of the analyses (bottles) require preservation? (attach p	preservation sheet, excluding VOCs) NA YES
Were all VOC vials free of air bubbles?	
Was sufficient amount of sample sent in each bottle?	
Date VOC Trip Blank was made at ARI	
Was Sample Split by ARI : (NA) YES Date/Time:	Equipment: Split by:
^	
Samples Logged by:Dat	te:
** Notify Project Manag	ger of discrepancies or concerns **
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle Sample ID on COC
1	
43	
Additional Notes, Discrepancies, & Resolutions:	
10+2 VOA vieds for sample	Equipment Blank" have ph" bubbles
2042 VOA vials to samp	ole " Top blank" have " bubbles.
By: TR Date: 3-30-16	Equipment Blank" have ph" bubbles ble " Top Blank" have 119" bubbles. ogged sumple MW-6 as Ms/MSD.
	Small → "sm" (<2 mm)
Small Air Bubbles Peabubbles LARGE Air Bubbles -2mm 2-4 mm > 4 mm	
	Peabubbles \Rightarrow "pb" (2 to < 4 mm)
0 0	Large → "lg" (4 to < 6 mm)
	Headspace → "hs" (>6 mm)

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: AYK4

AYKH: 00005

Sample Receipt:

Analytical Resources, Inc. (ARI) received three water samples and a trip blank on March 30, 2016 logged under ARI Sample Delivery Group (SDG) AYK4. The samples were analyzed for NWTPH-Dx, SIM PAHs and NWTPH-Gx plus BTEX. Select analyses were cancelled per AECOM.

SIM PAHs by 8270D SIM:

There were no anomalies associated with these samples.

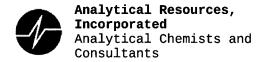
Diesel Range Organics by NWTPH-D Extended:

There were no anomalies associated with these samples.

Gasoline Range Organics by NWTPH-Gx plus BTEX by 8260C/NWTPHG:

There were no anomalies associated with these samples.

Sample ID Cross Reference Report


ARI Job No: AYK4
Client: URS

Project Event: 60485368
Project Name: Laurel Station

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	MW-6 Duplicate	AYK4A AYK4B	16-5191 16-5192	Water Water	03/29/16 14:20 03/29/16	03/30/16 10:19 03/30/16 10:19
3. 4.	Equipment Blank	AYK4C AYK4D	16-5192 16-5193 16-5194	Water Water Water	03/29/16 03/29/16 15:00 03/29/16	03/30/16 10:19 03/30/16 10:19 03/30/16 10:19

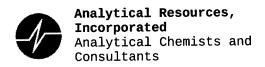
Printed 03/30/16 Page 1 of 1

ATK4: BEEDT

Data Reporting Qualifiers Effective 12/31/13

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

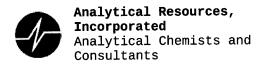

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

Laboratory Quality Assurance Plan

Page 1 of 3

Version 14-003 12/31/13



- Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- The analyte is not detected at or above the reported concentration.
 The reporting limit is raised due to chromatographic interference.
 The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Laboratory Quality Assurance Plan

Page 2 of 3

Version 14-003 12/31/13

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

Printed: 04/14/2016 12:58 pm

8260C VOA in Water (EPA 8260C)

Preservation: pH<2; HCL, Cool <6°C
Container: VOA Vial, Clear, 40 mL, HCL

Container: VOA Vial, Clear, 40 mL, HCL Amount Required: 120 mL Hold Time: 14 days

Container: VOA Viai, Cleai, 4	o me, nee			mount rec				/ -
Analyte	MDL	Reporting Limit	Surrogate %Rec	Duplicate RPD	Matrix %Rec	Spike RPD	Blank Spil %Rec	ke / LCS RPD
Chloromethane	0.0948	0.500 ug/L		30	59-134	30	59-134	30
Vinyl Chloride	0.0572	0.200 ug/L		30	70-130	30	70-130	30
Bromomethane	0.252	1.00 ug/L		30	52-142	30	52-142	30
Chloroethane	0.0861	0.200 ug/L		30	47-172	30	47-172	30
Trichlorofluoromethane	0.0375	0.200 ug/L		30	70-138	30	70-138	30
Acrolein	2.48	5.00 ug/L		30	45-144	30	45-144	30
	0.0429	0.200 ug/L		30	73-125	30	73-125	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	2.06	5.00 ug/L		30	46-157	30	46-157	30
Acetone	0.0540	0.200 ug/L		30	76-123	30	76-123	30
1,1-Dichloroethene	0.0340	0.200 ug/L		30	72-125	30	72-125	30
Bromoethane	0.0412	1.00 ug/L		30	46-143	30	46-143	30
Iodomethane		1.00 ug/L 1.00 ug/L		30	68-129	30	68-129	30
Methylene Chloride	0.485			30	65-124	30	65-124	30
Acrylonitrile	0.604	1.00 ug/L		30 30	69-129	30	69-129	30
Carbon Disulfide	0.0370	0.200 ug/L			72-124	30	72-124	30
trans-1,2-Dichloroethene	0.0485	0.200 ug/L		30	62-133	30	62-133	30
Vinyl Acetate	0.0688	0.200 ug/L		30		30	77-122	30
1,1-Dichloroethane	0.0533	0.200 ug/L		30	77-122		67-134	30
2-Butanone	0.814	5.00 ug/L		30	67-134	30	71-134	30
2,2-Dichloropropane	0.0518	0.200 ug/L		30	71-134	30		30
cis-1,2-Dichloroethene	0.0427	0.200 ug/L		30	79-120	30	79-120 77-123	
Chloroform	0.0273	0.200 ug/L		30	77-123	30		30
Bromochloromethane	0.0607	0.200 ug/L		30	77-120	30	77-120	30
1,1,1-Trichloroethane	0.0408	0.200 ug/L		30	78-124	30	78-124	30
1,1-Dichloropropene	0.0340	0.200 ug/L		30	78-120	30	78-120	30
Carbon tetrachloride	0.0439	0.200 ug/L		30	69-129	30	69-139	30
1,2-Dichloroethane	0.0717	0.200 ug/L		30	71-125	30	71-125	30
, Benzene	0.0266	0.200 ug/L		30	80-120	30	80-120	30
Trichloroethene	0.0489	0.200 ug/L		30	80-120	30	80-120	30
1,2-Dichloropropane	0.0352	0.200 ug/L		30	79-120	30	79-120	30
Bromodichloromethane	0.0506	0.200 ug/L		30	78-120	30	78-120	30
Dibromomethane	0.145	0.200 ug/L		30	77-120	30	77-120	30
2-Chloroethyl vinyl ether	0.250	1.00 ug/L		30	67-125	30	67-125	30
4-Methyl-2-Pentanone	0.974	5.00 ug/L		30	72-132	30	72-132	30
cis-1,3-Dichloropropene	0.0610	0.200 ug/L		30	79-124	30	79-124	30
Toluene	0.0399	0.200 ug/L		30	80-120	30	80-120	30
trans-1,3-Dichloropropene	0.0815	0.200 ug/L		30	77-126	30	77-126	30
2-Hexanone	0.902	5.00 ug/L		30	70-135	30	70-135	30
1,1,2-Trichloroethane	0.129	0.200 ug/L		30	77-120	30	77-120	30
1,3-Dichloropropane	0.0622	0.200 ug/L		30	80-120	30	80-120	30
Tetrachloroethene	0.0474	0.200 ug/L		30	80-120	30	80-120	30
Dibromochloromethane	0.0481	0.200 ug/L		30	74-121	30	74-121	30
1,2-Dibromoethane	0.0745	0.200 ug/L		30	79-120	30	79-120	30
Chlorobenzene	0.0230	0.200 ug/L		30	80-120	30	80-120	30
Ethylbenzene	0.0371	0.200 ug/L		30	78-122	30	78-122	30
1,1,1,2-Tetrachloroethane	0.0396	0.200 ug/L		30	76-123	30	76-123	30
	0.0522	0.400 ug/L		30	78-126	30	78-126	30
m,p-Xylene	0.0322	0.200 ug/L		30	76-127	30	76-127	30
o-Xylene	0.0349	0.600 ug/L		30	76-127	30	76-127	30
Xylenes, total	0.0671	0.000 ug/L 0.200 ug/L		30	79-129	30	79-129	30
Styrene	0.0454	0.200 ug/L 0.200 ug/L		30	57-131	30	57-131	30
Bromoform				30	73-120	30	73-120	30
1,1,2,2-Tetrachloroethane	0.0598	0.200 ug/L		30	69-127	30	69-127	30
1,2,3-Trichloropropane	0.131	0.500 ug/L			49-127	30	49-144	30
trans-1,4-Dichloro 2-Butene	0.324	1.00 ug/L		30 30	73-144 73-130	30 30	73-130	30
n-Propylbenzene	0.0235	0.200 ug/L		30	12-120	20	,3 130	50

Page 1 of 2 AYK4: 00011

Analytical Method Information (Continued)

Printed: 04/14/2016 12:58 pm

8260C VOA in Water (EPA 8260C) (Continued)

1,4-Dichlorobenzene-d4

Analyte	MDL	Reporting Limit	Surrogate %Rec	Duplicate RPD	Matrix %Rec	Spike RPD	Blank Spil %Rec	ke / LCS- RPD
Bromobenzene	0.0605	0.200 ug/L		30	79-120	30	79-120	30
Isopropyl Benzene	0.0212	0.200 ug/L		30	78-129	30	79-129	30
2-Chlorotoluene	0.0236	0.200 ug/L		30	80-121	30	80-121	30
4-Chlorotoluene	0.0159	0.200 ug/L		30	78-122	30	78-122	30
t-Butylbenzene	0.0256	0.200 ug/L		30	73-129	30	73-129	30
1,3,5-Trimethylbenzene	0.0150	0.200 ug/L		30	77-128	30	77-128	30
1,2,4-Trimethylbenzene	0.0243	0.200 ug/L		30	76-129	30	76-129	30
s-Butylbenzene	0.0237	0.200 ug/L		30	75-128	30	75-128	30
4-Isopropyl Toluene	0.0263	0.200 ug/L		30	74-131	30	74-121	30
1,3-Dichlorobenzene	0.0362	0.200 ug/L		30	79-120	30	79-120	30
1,4-Dichlorobenzene	0.0397	0.200 ug/L		30	77-120	30	77-120	30
n-Butylbenzene	0.0248	0.200 ug/L		30	73-130	30	73-130	30
1,2-Dichlorobenzene	0.0365	0.200 ug/L		30	78-120	30	78-120	30
1,2-Dibromo-3-chloropropane	0.366	0.500 ug/L		30	60-124	30	60-124	30
1,2,4-Trichlorobenzene	0.107	0.500 ug/L		30	54-131	30	54-131	30
Hexachloro-1,3-Butadiene	0.0734	0.500 ug/L		30	55-132	30	55-132	30
Naphthalene .	0.118	0.500 ug/L		30	50-135	30	50-135	30
1,2,3-Trichlorobenzene	0.110	0.500 ug/L		30	45-137	30	45-137	30
Dichlorodifluoromethane	0.0521	0.200 ug/L		30	41-159	30	41-159	30
Methyl tert-butyl Ether	0.0729	0.500 ug/L		30	74-127	30	74-127	30
n-Hexane	0.100	0.200 ug/L		30	70-130	30	70-130	30
2-Pentanone	5.00	5.00 ug/L		30	64-184	30	64-184	30
Surr: Dibromofluoromethane		<u>.</u>	80-120					
Surr: 1,2-Dichloroethane-d4			80-129					
Surr: Toluene-d8			80-120					
Surr: 4-Bromofluorobenzene			80-120					
Surr: 1,2-Dichlorobenzene-d4			80-120					
Pentafluorobenzene								
Chlorobenzene-d5								
1,4-Difluorobenzene								

Page 2 of 2 ATKLIOCOIZ

Analytical Method Information

Printed: 04/14/2016 12:58 pm

8260C Gas (NWTPH) in Water (NWTPHg)

Preservation: pH<2; HCL, Cool <6°C

Hold Time: 14 days Container: VOA Vial, Clear, 40 mL, HCL Amount Required: 120 mL

Analyte	MDL	Reporting Limit	Surrogate %Rec	Duplicate RPD	Matrix %Rec	Spike RPD	Blank Spi %Rec	ke / LCS RPD
Gasoline Range Organics (Tol-Nap)	9.06	100 ug/L		30	80-120	30	80-120	30
Gasoline Range Organics (2MP-TMB)	15.8	100 ug/L		30	80-120	30	80-120	30
Gasoline Range Organics (Tol-C12)	9.13	100 ug/L		30	80-120	30	80-120	30
Gasoline Range Organics (C6-C10)	16.8	100 ug/L		30	80-120	30	80-120	30
Gasoline Range Organics (C5-C12)		100 ug/L		30	30-160	30	30-160	30
Surr: 1,2-Dichloroethane-d4			80-128					
Surr: 1,2-Dichlorobenzene-d4			80-120					
Surr: Toluene-d8			80-120					
Surr: 4-Bromofluorobenzene			80-120					
Surr: Dibromofluoromethane			80-120					
Dentefluerehenzene								

Pentafluorobenzene Chlorobenzene-d5 1,4-Difluorobenzene 1,4-Dichlorobenzene-d4

Analytical Method Information

Printed: 04/14/2016 12:59 pm

8270D-SIM PAH (0.1 ug/L) in Water (EPA 8270D-SIM)

Preservation: Cool <6°C

Amount Required: 1000 Hold Time: 7 days Container: Glass NM, Amber, 500 mL

		Danadis	Surrogate	Dunlicato	Matrix	Sniko	Blank Spil	ka / 1 CS
Analyte	MDL	Reporting Limit	%Rec	RPD	%Rec	RPD	%Rec	RPD
Naphthalene	0.0296	0.100 ug/L		30	33-120	30	33-120	30
2-Methylnaphthalene	0.0302	0.100 ug/L		30	29-120	30	29-120	30
1-Methylnaphthalene	0.0289	0.100 ug/L		30	37-120	30	37-120	30
Biphenyl		<i>J.</i>		30	30-160	30	30-160	40
2,6-Dimethylnaphthalene				30	30-160	30	30-160	40
Acenaphthylene	0.0380	0.100 ug/L		30	32-120	30	32-120	30
Acenaphthene	0.0304	0.100 ug/L		30	38-120	30	38-120	30
Dibenzofuran	0.0280	0.100 ug/L		30	38-120	30	38-120	30
2,3,5-Trimethylnaphthalene	0.0223	<i>J,</i>		30				
Fluorene	0.0278	0.100 ug/L		30	41-120	30	41-120	30
Dibenzothiophene		2,		30				
Phenanthrene	0.0279	0.100 ug/L		30	49-120	30	49-120	30
Anthracene	0.0352	0.100 ug/L		30	39-120	30	39-120	30
Carbazole	•	3,		30	30-160	30	30-160	40
1-Methylphenanthrene				30	30-160	30	30-160	40
Fluoranthene	0.0347	0.100 ug/L		30	48-120	30	48-120	30
Pyrene	0.0434	0.100 ug/L		30	48-120	30	48-120	30
Benzo(a)anthracene	0.0399	0.100 ug/L		30	37-120	30	37-120	30
Chrysene	0.0321	0.100 ug/L		30	48-120	30	48-120	30
Benzo(b)fluoranthene	0.0417	0.100 ug/L		30	38-128	30	38-128	30
Benzo(k)fluoranthene	0.0433	0.100 ug/L		30	36-130	30	36-130	30
Benzo(j)fluoranthene	0.0376	0.100 ug/L		30	49-120	30	49-120	30
Benzo(e)pyrene	0.007	5 ,		30	30-160	30	30-160	30
Benzo(a)pyrene	0.0429	0.100 ug/L		30	25-120	30	25-120	30
Perylene	0.0420	0.100 ug/L		30	30-160	30	30-160	30
Indeno(1,2,3-cd)pyrene	0.0422	0.100 ug/L		30	32-120	30	32-120	30
Dibenzo(a,h)anthracene	0.0535	0.100 ug/L		30	21-120	30	21-120	30
Benzo(g,h,i)perylene	0.0388	0.100 ug/L		30	28-120	30	28-120	30
Benzofluoranthenes, Total	0.0850	0.200 ug/L		30	46-120	30	46-120	30
Surr: 2-Methylnaphthalene-d10	0.0050	0.200 -9/-	31-120					
Surr. 2-Metrymaphthalene-uro			10-125					

Surr: Dibenzo[a,h]anthracene-d14

Surr: Fluoranthene-d10

Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10

Chrysene-d12 Perylene-d12

10-125 46-121

Analytical Method Information

Printed: 04/14/2016 12:59 pm

TPH NW (Extractables) in Water (NWTPH-Dx)

Preservation: Cool <6°C

Amount Required: 1000 mL Hold Time: 7 days Container: Glass NM, Amber, 500 mL

Analyte	MDL	Reporting Limit	Surrogate %Rec	Duplicate RPD	Matrix %Rec	Spike RPD	Blank Spi %Rec	ke / LCS RPD
Diesel Range Organics (C12-C24)	0.0330	0.100 mg/L		30	70-120	30	70-120	30
Diesel Range Organics (C10-C25)	0.0390	0.100 mg/L		30	75-125	30	75-125	30
Diesel Range Organics (Tol-C18)		-		30	30-160	30	30-160	30
Diesel Range Organics (C10-24)				30	30-160	30	30-160	30
Diesel Range Organics (C10-C28)				30	30-160	30	30-160	30
Diesel Range Organics (C12-C22)		0.100 mg/L		30	30-160	30	30-160	30
Motor Oil Range Organics (C24-C38)	0.0560	0.200 mg/L		30		30	30-160	30
Motor Oil Range Organics (C25-C36)	0.0650	0.200 mg/L		30		30	60-120	30
Motor Oil Range Organics (C24-C40)		-		30		30	30-160	30
Residual Range Organics (C23-C32)		0.200 mg/L		30		30	30-160	30
Mineral Spirits Range Organics				30		30	30-160	30
(Tol-C12)								
Mineral Oil Range Organics (C16-C28)	0.100	0.200 mg/L		30		30	30-160	30
Kerosene Range Organics (Tol-C18)				30		30	30-160	30
JP8 Range Organics (C8-C18)				30		30	30-160	30
JP5 Range Organics (C10-C16)				30		30	30-160	30
JP4 Range Organics (Tol-C14)				30		30	30-160	30
Jet-A Range Organics (C10-C18)				30		30	30-160	30
Creosote Range Organics (C12-C22)				30		30	30-160	30
Bunker C Range Organics (C10-C38)				30		30	30-160	30
Stoddard Range Organics (C8-C12)				30		30	30-160	30
Transformer Oil Range Organics				30		30	30-160	30
(C12-C28)								
Surr: o-Terphenyl			50-150					
/			E0 4 E0					

50-150 Surr: n-Triacontane

> Page 1 of 1 A TOTAL TOTA

Volatile Analysis Report and Summary QC Forms

ARI Job ID: AYK4

AYK4: DODIE

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MW-6
SAMPLE

Lab Sample ID: AYK4A LIMS ID: 16-5191

Matrix: Water

Data Release Authorized:

Reported: 04/07/16

QC Report No: AYK4-URS

Project: Laurel Station

60485368

Date Sampled: 03/29/16 Date Received: 03/30/16

Instrument/Analyst: NT2/PKC Sample Amount: 10.0 mL Date Analyzed: 04/06/16 21:08 Purge Volume: 10.0 mL

CAS Number	Analyte	TOŌ	Result	Q	TPHG ID
71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	0.20 0.20 0.20 0.40 0.20	< 0.20 < 0.20 < 0.20 < 0.40 < 0.20	U U U	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	Ū	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	104%
Bromofluorobenzene	87.8%

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: Duplicate

SAMPLE

Lab Sample ID: AYK4B LIMS ID: 16-5192

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT2/PKC

Date Analyzed: 04/06/16 21:29

Reported: 04/07/16

QC Report No: AYK4-URS

Project: Laurel Station

60485368

Date Sampled: 03/29/16
Date Received: 03/30/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	0.20 0.20 0.20 0.40 0.20	< 0.20 < 0.20 < 0.20 < 0.40 < 0.20	U U U U	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	101%
Bromofluorobenzene	89.0%

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: Trip Blank SAMPLE

Lab Sample ID: AYK4D LIMS ID: 16-5194

Matrix: Water

QC Report No: AYK4-URS Project: Laurel Station

60485368

Date Sampled: 03/29/16

Data Release Authorized: Reported: 04/07/16

Date Received: 03/30/16

Instrument/Analyst: NT2/PKC Date Analyzed: 04/06/16 21:50 Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	0.20 0.20 0.20 0.40 0.20	< 0.20 < 0.20 < 0.20 < 0.40 < 0.20	n n n	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	102%
Bromofluorobenzene	88.2%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: AYK4-URS

Project: Laurel Station

60485368

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-040616A LCS-040616A LCSD-040616A AYK4A AYK4AMS AYK4AMSD AYK4B AYK4D	Method Blank Lab Control Lab Control Dup MW-6 MW-6 Duplicate Trip Blank	10 10 10 10 10 10 10	NA NA NA NA NA NA NA NA NA	96.0% 105% 108% 104% 108% 106% 101%	88.0% 92.2% 91.6% 87.8% 93.2% 93.2% 89.0% 88.2%	NA NA NA NA NA NA NA	0 0 0 0 0 0 0
SW8260C (DCE) = d4-1,2-Dichloroethane (TOL) = d8-Toluene (BFB) = Bromofluorobenzene (DCB) = d4-1,2-Dichlorobenzene		LCS,	/MB LIM (80-129 (80-120 (80-120 (80-120)))		QC LIMI (80-12 (80-12 (80-12 (80-12	9) 0) 0)

Prep Method: SW5030B

Log Number Range: 16-5191 to 16-5194

ATKI ZODZE

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: MW-6

Page 1 of 1 MATRIX SPIKE

Lab Sample ID: AYK4A

LIMS ID: 16-5191

Matrix: Water Data Release Authorized: *

Reported: 04/07/16

Instrument/Analyst MS: NT2/PKC

Date Analyzed MS: 04/06/16 22:11

QC Report No: AYK4-URS

Project: Laurel Station

60485368

Date Sampled: 03/29/16 Date Received: 03/30/16

Sample Amount MS: 10.0 mL

MSD: 10.0 mL

Purge Volume MS: 10.0 mL MSD: 10.0 mL

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Benzene	< 0.20 U	7.99	7.33	109%	7.94	7.33	108%	0.6%
Toluene	< 0.20 U	60.9	53.1	115%	58.2	53.1	110%	4.5%
Ethylbenzene	< 0.20 U	14.5	13.6	107%	14.2	13.6	104%	2.1%
m,p-Xylene	< 0.40 U	48.9	43.4	113%	47.2	43.4	109%	3.5%
o-Xylene	< 0.20 U	18.8	16.9	111%	18.6	16.9	110%	1.1%
		Report	ted in µg,	/L (ppb)				
Gasoline Range Hydrocarbons	< 0.10 U	0.93	1.00	93.0%	0.93	1.00	93.0%	0.0%

Reported in mg/L (ppm)

RPD calculated using sample concentrations per SW846.

MSD: NT2/PKC

MSD: 04/06/16 22:33

FORM III

AVKU: WWZI

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MW-6

MATRIX SPIKE

Lab Sample ID: AYK4A LIMS ID: 16-5191

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT2/PKC

Date Analyzed: 04/06/16 22:11

Reported: 04/07/16

QC Report No: AYK4-URS

Project: Laurel Station

60485368

Date Sampled: 03/29/16 Date Received: 03/30/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result Q
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene	0.20 0.20 0.20	
179601-23-1 95-47-6	m,p-Xylene o-Xylene	0.40 0.20	
	Reported in µg/L (ppb)		
86290-81-5	Gasoline Range Hydrocarbons	0.10	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	108%
Bromofluorobenzene	93.2%

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Sample ID: MW-6 Page 1 of 1 MATRIX SPIKE DUP

Lab Sample ID: AYK4A LIMS ID: 16-5191

Matrix: Water

Data Release Authorized: //

Instrument/Analyst: NT2/PKC

Date Analyzed: 04/06/16 22:33

Reported: 04/07/16

QC Report No: AYK4-URS

Project: Laurel Station

60485368

Date Sampled: 03/29/16 Date Received: 03/30/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result Q
71-43-2 108-88-3	Benzene Toluene	0.20 0.20	
100-41-4 179601-23-1 95-47-6	Ethylbenzene m,p-Xylene o-Xylene	0.20 0.40 0.20	
	Reported in µg/L (ppb)		
86290-81-5	Gasoline Range Hydrocarbons	0.10	
	Poportod in ma/I (nom)		

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	106%
Bromofluorobenzene	93.2%

ANALYTICAL RESOURCES **INCORPORATED**

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Sample ID: LCS-040616A Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-040616A

LIMS ID: 16-5191 Matrix: Water

Data Release Authorized:

Reported: 04/07/16

QC Report No: AYK4-URS

Project: Laurel Station

60485368

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT2/PKC

LCSD: NT2/PKC

Date Analyzed LCS: 04/06/16 15:26

LCSD: 04/06/16 15:48

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	7.25	7.33	98.9%	7.87	7.33	107%	8.2%
Toluene	53.1	53.1	100%	57.4	53.1	108%	7.8%
Ethylbenzene	12.7	13.6	93.4%	13.8	13.6	101%	8.3%
m,p-Xylene	43.0	43.4	99.1%	46.4	43.4	107%	7.6%
o-Xylene	16.6	16.9	98.2%	17.5	16.9	104%	5.3%
	Repor	cted in µg/	'L (ppb)				
Gasoline Range Hydrocarbons	0.80	1.00	80.0%	0.85	1.00	85.0%	6.1%
	_						

Reported in mg/L (ppm)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d8-Toluene	105%	108%
Bromofluorobenzene	92.28	91.6%

FORM III

ATKU: PZZZI

4A VOLATILE METHOD BLANK SUMMARY

MB0406

Lab Name: ANALYTICAL RESOURCES

Client: URS

ARI Job No: AYK4

Project: LAUREL STATION

Lab File ID: 04061609

Lab Sample ID: MB0406

Date Analyzed: 04/06/16

Time Analyzed: 1609

Instrument ID: NT2

Heated Purge: (Y/N) N

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=======================================	=========	=========	========
01	GICV	GICV	04061603	1401
02	GLCS	GLCS	04061607	1526
03	GLCS	GLCS	04061608	1548
04	MW-6	AYK4A	04061623	2108
05	DUPLICATE	AYK4B	04061624	2129
06	TRIP BLANK	AYK4D	04061625	2150
07	MW-6 MS	AYK4AMS	04061626	2211
80	MW-6 MSD	AYK4AMSD	04061627	2233
09	GCCV	GCCV	04061628	2254
10				******
11 12	4444			
13				
14				
15				
16	***************************************			
17				
18				
19				
20				
21		***************************************		
22				
23				
24				
25			77.4.16.11.11.11	
26				
27				
28				
29				
30				

COMMENTS:			

page 1 of 1

FORM IV VOA

OLM3.2M

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET
Volatiles by P&T GC/MS-Method SW8260C/NWTPHG
Page 1 of 1

M

METHOD BLANK

Sample ID: MB-040616A

Lab Sample ID: MB-040616A

LIMS ID: 16-5191 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT2/PKC

Date Analyzed: 04/06/16 16:09

Reported: 04/07/16

QC Report No: AYK4-URS

Project: Laurel Station

60485368

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	0.20 0.20 0.20 0.40 0.20	< 0.20 < 0.20 < 0.20 < 0.40 < 0.20	n n n	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	96.0%
Bromofluorobenzene	88.0%

AYKU: 20075

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: ANALYTICAL RESOURCES

Contract: URS

Lab Code: ARI Case No.: LAUREL STATION SDG No.: AYK4

Lab File ID: 03291602

BFB Injection Date: 03/29/16

Instrument ID: NT2

BFB Injection Time: 1131

GC Column: RTXVMS ID: 0.18 (mm)

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	18.3 48.9 100.0 7.3 0.0 (0.0)1 86.5 6.1 (7.1)1 82.3 (95.1)1 5.3 (6.5)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	7777			· · · · · · · · · · · · · · · · · · ·	
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	=========	=======	========	========
01	VSTD80	SEC0063-CAL8	03291610	03/29/16	1733
02	VSTD40	SEC0063-CAL7	03291611	03/29/16	1754
03	VSTD20	SEC0063-CAL6	03291612	03/29/16	1816
04	VSTD10	SEC0063-CAL5	03291613	03/29/16	1837
05	VSTD02	SEC0063-CAL4	03291614	03/29/16	1859
06	VSTD01	SEC0063-CAL3	03291615	03/29/16	1920
07	VSTD0.5	SEC0063-CAL2	03291616	03/29/16	1941
80	VSTD0.2	SEC0063-CAL1	03291617	03/29/16	2003
09	SCV	SEC0063-SCV1	03291618	03/29/16	2024
10	Gas 5.0	SEC0063-CALE	03291619	03/29/16	2045
11	Gas 2.5	SEC0063-CALD	03291620	03/29/16	2107
12	Gas 1.0	SEC0063-CALC	03291621	03/29/16	2128
13	Gas 0.5	SEC0063-CALB	03291622	03/29/16	2150
14	Gas 0.25	SEC0063-CALA	03291623	03/29/16	2211
15	Gas 0.10	SEC0063-CAL9	03291624	03/29/16	2232
16	Gas SCV	SEC0063-SCV2	03291625	03/29/16	2254
17					
18					
19					
20					

page 1 of 1

FORM V VOA

OLM3.2M

ATKUITOFZI

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: ANALYTICAL RESOURCES Contract: URS

Lab Code: ARI Case No.: LAUREL STATION SDG No.: AYK4

Lab File ID: 04061602 BFB Injection Date: 04/06/16

Instrument ID: NT2 BFB Injection Time: 1315

GC Column: RTXVMS ID: 0.18 (mm)

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176 177	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	22.2 54.8 100.0 7.0 0.0 (0.0)1 87.6 6.4 (7.4)1 85.5 (97.6)1 5.5 (6.4)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	===============	=========	=========	========	========
01	• •	GICV	04061603	04/06/16	1401
02	VICV	VICV	04061604	04/06/16	1423
03	GLCS	GLCS	04061607	04/06/16	1526
04	GLCS	GLCS	04061608	04/06/16	1548
05	1	MB0406	04061609	04/06/16	1609
06	MW-6	AYK4A	04061623	04/06/16	2108
07	DUPLICATE	AYK4B	04061624	04/06/16	2129
80	TRIP BLANK	AYK4D	04061625	04/06/16	2150
09	MW-6 MS	AYK4AMS	04061626	04/06/16	2211
10	MW-6 MSD	AYK4AMSD	04061627	04/06/16	2233
11	GCCV	GCCV	04061628	04/06/16	2254
12					
13					
14					
15					
16					
17					
18					
19					
20					

page 1 of 1 FORM V VOA OLM3.2M

FORM 6 VOLATILE INITIAL CALIBRATION DATA

Lab Name: ANALYTICAL RESOURCES

Client: URS

ARI Job No: AYK4

Project: LAUREL STATION

Instrument ID: NT2

Calibration Date: 03/29/16

LAB FILE ID: RF0.2: 03291617 RF0.5: 03291616 RF1: 03291615 RF2: 03291614 RF10: 03291613

COMPOUND	RF0.2	RF0.5	RF1	RF2	RF10
Benzene Toluene Ethyl Benzene m,p-xylene o-Xylene	1.320	1.365	1.452	1.401	1.382
	0.883	0.912	0.960	0.919	0.890
	0.542	0.592	0.610	0.615	0.627
	0.672	0.704	0.783	0.784	0.777
	0.551	0.640	0.728	0.736	0.741
d4-1,2-Dichloroethane d8-Toluene 4-Bromofluorobenzene d4-1,2-Dichlorobenzene Dibromofluoromethane	0.620	0.613	0.560	0.555	0.555
	1.174	1.182	1.199	1.173	1.146
	0.373	0.400	0.416	0.405	0.411
	0.954	0.956	0.967	0.941	0.956
	0.476	0.479	0.473	0.483	0.479

FORM VI VOA

FORM 6 VOLATILE INITIAL CALIBRATION DATA

Lab Name: ANALYTICAL RESOURCES

Client: URS

ARI Job No: AYK4

Project: LAUREL STATION

Instrument ID: NT2

Calibration Date: 03/29/16

	T		
COMPOUND	RF20	RF40	RF80
Benzene Toluene Ethyl Benzene m,p-xylene o-Xylene	1.437	1.314	1.062
	0.924	0.867	0.739
	0.625	0.594	0.543
	0.769	0.718	0.582
	0.737	0.705	0.622
d4-1,2-Dichloroethane d8-Toluene 4-Bromofluorobenzene d4-1,2-Dichlorobenzene Dibromofluoromethane	0.562	0.559	0.502
	1.212	1.192	1.195
	0.416	0.420	0.420
	0.963	0.963	0.948
	0.486	0.480	0.469

FORM VI VOA

ATT COST

FORM 6 VOLATILE INITIAL CALIBRATION DATA

Lab Name: ANALYTICAL RESOURCES

Client: URS

ARI Job No: AYK4

Project: LAUREL STATION

Instrument ID: NT2

Calibration Date: 03/29/16

COMPOUND	CURVE	AVE	%RSD
COMPOUND	TYPE	RF	OR R^2
_======================================	=====	=====	======
Benzene	AVRG	1.342	9.2
Toluene	AVRG	0.887	7.5
Ethyl Benzene	AVRG	0.594	5.7
m,p-xylene	AVRG	0.724	9.8
o-Xylene	AVRG	0.682	10.3
=======================================	=====	=====	======
d4-1,2-Dichloroethane	AVRG	0.566	6.5
d8-Toluene	AVRG	1.184	1.7
4-Bromofluorobenzene	AVRG	0.408	3.8
d4-1,2-Dichlorobenzene	AVRG	0.956	0.9
Dibromofluoromethane	AVRG	0.478	1.1
<- Indicated value outgi	2-00-1	1	

Indicates value outside QC limits: (%RSD < 20% or R^2 > 0.990)

FORM VI VOA

6a 8260 GAS INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC.

Client: URS

Instrument: NT2.I

Project: Laurel Station

Calibration Date: 29-MAR-2016

SDG No.: AYK4

 Gas Range 	RF1 0.1	RF2 0.25	RF3 0.5	RF4 1.0	RF5 2.5	RF6 5	Ave RF	%RSD
WA Gas AK Gas NW Gas 8015Gas	39259679	59116003 48930855	49111625 59473285 50264215 83743651	60464211 52493344	61192091	62329725	58706304	. • • •

<- Indicates %RSD outside limits Surrogate areas are not included in RF calculation. Surrogate calibration is from BETX curve files.

Quant Ranges:

WA Gas Toluene - nC12
AK Gas nC6 - nC10
NW Gas Toluene - Naphthalene
Cal Gas nC6 - nC12
8015 Gas 2-Methylpentane - 1,2,4-Trimethylbenzene

Gas Cal. Files	Analysis Time
03291624.D	29-MAR-2016 22:32
03291623.D	29-MAR-2016 22:11
03291622.D	29-MAR-2016 21:50
03291621.D	29-MAR-2016 21:28
03291620.D	29-MAR-2016 21:07
03291619.D	29-MAR-2016 20:45

p1 of 1

FORM VI-GAS

7a GAS CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC.

Client: URS

ICal Date: 29-MAR-2016

Project: Laurel Station

CCal Date: 06-APR-2016

SDG No.: AYK4

Lab File Name: 04061603.D

Inst: NT2.I

Gas Range	Area*	CalcAmt	NomAmt	%D
WAGas (Tol-C12)	44296658	0.92	1.0	-7.7
AKGas (C6-C10)	57222116	0.97	1.0	-2.5
NWGas (Tol-Nap)	45156845	0.92	1.0	-8.2
8015C (2MP-TMB)	80068621	0.96	1.0	-3.8

^{*} Surrogate areas are subtracted from Total Area <- Indicates an RPD outside QC limits

p1 of 1

FORM VII-GAS

7a GAS CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC.

Client: URS

ICal Date: 29-MAR-2016

Project: Laurel Station

CCal Date: 06-APR-2016

SDG No.: AYK4

Lab File Name: 04061628.D

Inst: NT2.I

Gas Range	Area*	CalcAmt	NomAmt	%D
WAGas (Tol-C12)	42296730	0.88	1.0	-11.9
AKGas (C6-C10)	50278964	0.86	1.0	-14.4
NWGas (Tol-Nap)	43231138	0.88	1.0	-12.1
8015C (2MP-TMB)	72063177	0.87	1.0	-13.4

^{*} Surrogate areas are subtracted from Total Area

p1 of 1

FORM VII-GAS

AYKI: OØZZI

<- Indicates an RPD outside QC limits

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: ANALYTICAL RESOURCES

Client: URS

ARI Job No: AYK4

Project: LAUREL STATION

Instrument ID: NT2

Cont. Calib. Date: 04/06/16

Init. Calib. Date: 03/29/16

Cont. Calib. Time: 1423

	CalAmt	CC Amt	MIN	CURVE	%D or
COMPOUND	or ARF	or RF	RRF	TYPE	Drift
	======	=====	====	=====	=====
Benzene	1.342	1.4525	0.010	AVRG	8.2
Toluene	0.887	0.8938	0.010	AVRG	0.8
Ethyl Benzene	0.594	0.5926			-0.2
m,p-xylene	0.724	0.7328	0.010	AVRG	1.2
o-Xylene		0.6844			0.4
	=====	=====	=====	=====	=====
d4-1,2-Dichloroethane	0.566	0.5992	0.010	AVRG	5.9
d8-Toluene	1.184	1.2448	0.010	AVRG	5.1
4-Bromofluorobenzene	0.408	0.3839	0.010	AVRG	-5.9
d4-1,2-Dichlorobenzene		0.9670			1.2
Dibromofluoromethane	0.478	0.5012	0.010	AVRG	4.8
Exceeds OC limit of OO! D					

<- Exceeds QC limit of 20% D
* RF less than minimum RF</pre>

FORM VII VOA

Lab Name: ANALYTICAL RESOURCES Client: URS

ARI Job No: AYK4 Project: LAUREL STATION

Instrument ID: NT2 Project Run Date: 03/29/16

		IS1(PFB) AREA #	RT #	IS2 (DFB) AREA #	RT #	IS3 (CLB) AREA #	RT #
	========	========	=======	========	======	AREA #	K1 #
	ICAL MIDPT UPPER LIMIT LOWER LIMIT	350375 700750	5.33 5.83	562526 1125052	5.72 6.22	502371 1004742	7.78 8.28
		175188	4.83	281263	5.22	251186	7.28
	Sample ID		=====	=======	======	========	======
01	SCV	333646	======	======================================	======	========	======
02	Gas 5.0	386746	5.33 5.33	527779	5.72	486532	7.78
03	Gas 2.5	366346	5.33	615798 580475	5.72	554896	7.78
04	Gas 1.0	356093	5.33	560609	5.72 5.72	530399 525882	7.78 7.78
05	Gas 0.5	335026	5.33	526989	5.72	495230	7.78
06	Gas 0.25	330180	5.33	523950	5.72	490395	7.78
07	Gas 0.10	303542	5.33	482197	5.72	459677	7.78
80	Gas SCV	347854	5.33	555254	5.72	518670	7.78
09							, , , ,
10							
11 12							
13							
14			·				
15							
16							
17							
18							
19						-	
20							
21 22]					
22							

IS1 (PFB) = Pentafluorobenzene
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (CLB) = d5-Chlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

page 1 of 2

FORM VIII VOA

OLM3.2M

ATKILERESS

Lab Name: ANALYTICAL RESOURCES Client: URS

ARI Job No: AYK4 Project: LAUREL STATION

Instrument ID: NT2 Project Run Date: 03/29/16

		IS4 (DCB)				1	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	=======	======	========	======	========	==
	ICAL MIDPT	277950	9.48				
	UPPER LIMIT	555900	9.98				i
	LOWER LIMIT	138975	8.98				
	========	========	======	========	======	========	======
	Sample ID						
	=========	=======	======	========	======	========	======
01	1	269269	9.48				İ
02	Gas 5.0	296516	9.48	_			
03	Gas 2.5	284779	9.48				
04	Gas 1.0	278120	9.48				
05	Gas 0.5	263670	9.48				
06	Gas 0.25	259889	9.48				
07	Gas 0.10	241501	9.48				
08 09	Gas SCV	276192	9.48				
10							
11							
12	·						
13							
14							
15							
16			———I				
17							
18							
19							
20							
21							
22				·			
1		l					

IS4 (DCB) = d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

page 2 of 2

FORM VIII VOA

OLM3.2M

Lab Name: ANALYTICAL RESOURCES Client: URS

ARI Job No: AYK4 Project: LAUREL STATION

Instrument ID: NT2 Project Run Date: 04/06/16

	1	TG1 (DTD)	,	==-/=			
		IS1 (PFB)		IS2 (DFB)	İ	IS3 (CLB)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	========	======	========	======	========	======
	ICAL MIDPT	350375	5.33	562526	5.72	502371	7.78
	UPPER LIMIT	700750	5.83	1125052	6.22	1004742	8.28
	LOWER LIMIT	175188	4.83	281263	5.22	251186	7.28
	=========	========	======	========	== == ==	=======	
	Sample ID						
	========	========	======	========	======		
01	GICV	275752	5.33	461198	5.72	430026	7.78
02	GLCS	252274	5.33	418651	5.72	383434	7.78
03	GLCS	249059	5.33	418366	5.72	390693	7.78
04	MB0406	230135	5.33	390532	5.72	338300	7.78
05	MW-6	253216	5.33	410802	5.72	378479	7.78
06	DUPLICATE	234513	5.33	382934	5.72	352013	1
07	TRIP BLANK	222571	5.33	365936	5.72	-	7.78
08	MW-6 MS	253264	5.33		,	333215	7.78
09	MW-6 MSD	254383	5.33	405547	5.72	383757	7.78
10	GCCV	253209		428189	5.72	390187	7.78
11	GCCV	253209	5.33	411525	5.72	377151	7.78
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
							'

IS1 (PFB) = Pentafluorobenzene IS2 (DFB) = 1,4-Difluorobenzene IS3 (CLB) = d5-Chlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

page 1 of 2

FORM VIII VOA

OLM3.2M

ATKU: BBBBB

Lab Name: ANALYTICAL RESOURCES Client: URS

ARI Job No: AYK4 Project: LAUREL STATION

Instrument ID: NT2 Project Run Date: 04/06/16

		IS4 (DCB)	1		T	T	T
		AREA #	RT #	AREA #	RT #	7 DE17 4	Dm 1/
	========	========	======		======	AREA #	RT #
	ICAL MIDPT	277950	9.48				======
	UPPER LIMIT	555900	9.98			l ————	
	LOWER LIMIT	138975	8.98			-	l
	=========	========	======	========			
	Sample ID						
	=========	=======	======	========	======	=======	
01		212968	9.49				
02	GLCS	197859	9.48				
03	GLCS	200329	9.48				l ———— [
04	MB0406	163729	9.48	****			
05	MW-6	187113	9.48				
06	DUPLICATE	174843	9.48				
07	TRIP BLANK	163986	9.48				[]
	MW-6 MS	202325	9.48				
	MW-6 MSD	195276	9.48				
10	GCCV	194894	9.48				
11							
12							
13							
14							
15			-				
16 17							
18							
19							
20					-		
21							
22							
22	i						

IS4 (DCB) = d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

page 2 of 2

FORM VIII VOA

OLM3.2M

AYKU PODJE

^{*} Values outside of QC limits.

SIM PAH Analysis Report and Summary QC Forms

ARI Job ID: AYK4

AYK! ZEGYE

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: AYK4A

LIMS ID: 16-5191 Matrix: Water

Data Release Authorized:

Date Extracted: 04/04/16

Instrument/Analyst: NT8/JZ

Date Analyzed: 04/07/16 23:27

Reported: 04/11/16

13

QC Report No: AYK4-URS

Project: Laurel Station

Sample ID: MW-6

SAMPLE

Event: 60485368 Date Sampled: 03/29/16

Date Received: 03/30/16

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	· ·	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8		0.10	< 0.10 U
120-12-7	Phenanthrene	0.10	< 0.10 U
206-44-0	Anthracene	0.10	< 0.10 U
· •	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	: · · · ·
132-64-9	Dibenzofuran		
TOTBFA	Total Benzofluoranthenes	0.10	< 0.10 U
	rocar Denzorruoranthenes	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-Fluoranthene	88.0%
d10-2-Methylnaphthalene	69.7%
d14-Dibenzo(a,h)anthracene	88.0%

FORM I

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: AYK4B LIMS ID: 16-5192

Matrix: Water

Data Release Authorized: Reported: 04/11/16

Date Extracted: 04/04/16
Date Analyzed: 04/08/16 00:44
Instrument/Analyst: NT8/JZ

Sample ID: Duplicate
SAMPLE

QC Report No: AYK4-URS

Project: Laurel Station

Event: 60485368
Date Sampled: 03/29/16
Date Received: 03/30/16

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
91-20-3 91-57-6 90-12-0 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 50-32-8 193-39-5 53-70-3 191-24-2 132-64-9 TOTBFA	Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Dibenzofuran Total Benzofluoranthenes	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	< 0.10 U < 0.10 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-Fluoranthene	90.7%
d10-2-Methylnaphthalene	70.0%
d14-Dibenzo(a,h)anthracene	100%

FORM I

AYKU: ZZZUZ

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water QC Report No: AYK4-URS
Project: Laurel Station

60485368

Client ID	FLN	MNP	DBA	TOT OUT
MB-040416 LCS-040416 LCSD-040416 MW-6 MW-6 MS MW-6 MSD Duplicate	95.3% 89.3% 88.7% 88.0% 84.3% 93.7% 90.7%	74.7% 71.3% 59.7% 69.7% 69.7% 75.0%	105% 90.7% 78.7% 88.0% 71.3% 71.3%	0 0 0 0 0

QC LIMITS

(FLN)	=	d10-Fluoranthene	(46-121)
(MNP)	=	d10-2-Methylnaphthalene	(31-120)
(DBA)	=	d14-Dibenzo(a,h)anthracene	(10-125)

Prep Method: SW3520C Log Number Range: 16-5191 to 16-5192

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page $\bar{1}$ of 1

ANALYTICAL RESOURCES INCORPORATED

Sample ID: MW-6

MATRIX SPIKE

Lab Sample ID: AYK4A LIMS ID: 16-5191 Matrix: Water

Data Release Authorized: Reported: 04/11/16

QC Report No: AYK4-URS

Project: Laurel Station

Event: 60485368 Date Sampled: 03/29/16 Date Received: 03/30/16

Sample Amount MS: 500 mL

MSD: 1.00

Date Extracted MS/MSD: 04/04/16 MSD: 500 mL Date Analyzed MS: 04/07/16 23:53 Final Extract Volume MS: 0.50 mL MSD: 04/08/16 00:19 MSD: 0.50 mL Instrument/Analyst MS: NT8/JZ Dilution Factor MS: 1.00 MSD: NT8/JZ

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenz(a,h) anthracene Benzo(g,h,i) perylene Dibenzofuran Total Benzofluoranthenes	< 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0.10 U < 0	1.88 2.03 1.95 2.06 2.07 2.41 2.38 2.41 2.58 2.42 2.44 2.33 2.34 2.23 2.16 2.18 2.25 7.70	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	62.7% 67.7% 65.0% 68.7% 69.0% 80.3% 79.3% 80.3% 80.7% 81.3% 77.7% 78.0% 74.3% 72.0% 75.0% 85.6%	2.05 2.24 2.20 2.28 2.23 2.58 2.65 2.70 2.82 2.73 2.78 2.65 2.75 2.45 2.27 2.45 2.40 9.07	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	68.3% 74.7% 73.3% 76.0% 74.3% 86.0% 88.3% 90.0% 91.0% 91.0% 91.7% 81.7% 81.7% 81.7% 81.7% 81.7%	8.7% 9.8% 12.0% 10.1% 7.4% 6.8% 10.7% 11.4% 8.9% 12.0% 13.0% 12.9% 16.1% 9.4% 5.0% 11.7% 6.5% 16.5% 16.3%
							~ 0 1 0	10.00

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

FORM III

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: AYK4A LIMS ID: 16-5191

Matrix: Water

Data Release Authorized:

Reported: 04/11/16

Date Extracted: 04/04/16
Date Analyzed: 04/07/16 23:53
Instrument/Analyst: NT8/JZ

Sample ID: MW-6
MATRIX SPIKE

QC Report No: AYK4-URS

Project: Laurel Station

Event: 60485368
Date Sampled: 03/29/16
Date Received: 03/30/16

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
91-20-3 91-57-6 90-12-0 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 50-32-8 193-39-5 53-70-3 191-24-2 132-64-9	Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Dibenzofuran	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Result
TOTBFA	Total Benzofluoranthenes	0.10 0.10	

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-Fluoranthene	84.3%
d10-2-Methylnaphthalene	69.7%
d14-Dibenzo(a,h)anthracene	71.3%

eyas: Paya

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Sample ID: MW-6

MATRIX SPIKE DUPLICATE

Page 1 of 1

Lab Sample ID: AYK4A

LIMS ID: 16-5191 Matrix: Water

Data Release Authorized: 6

Date Extracted: 04/04/16

Instrument/Analyst: NT8/JZ

Date Analyzed: 04/08/16 00:19

Reported: 04/11/16

QC Report No: AYK4-URS
Project: Laurel S
Event: 60485368

Project: Laurel Station Event: 60485368 Date Sampled: 03/29/16

Date Sampled: 03/29/16
Date Received: 03/30/16

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
91-20-3	Naphthalene	0.10	
91-57-6	2-Methylnaphthalene	0.10	-
90-12-0	1-Methylnaphthalene	0.10	
208-96-8	Acenaphthylene	0.10	
83-32-9	Acenaphthene	0.10	
86-73-7	Fluorene	0.10	
85-01-8	Phenanthrene	0.10	
120-12-7	Anthracene	0.10	
206-44-0	Fluoranthene	0.10	
129-00-0	Pyrene	0.10	
56-55-3	Benzo(a)anthracene	0.10	
218-01-9	Chrysene	0.10	
50-32-8	Benzo(a)pyrene	0.10	
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	
53-70-3	Dibenz(a,h)anthracene	0.10	
191-24-2	Benzo(g,h,i)perylene	0.10	
132-64-9	Dibenzofuran	0.10	
TOTBFA	Total Benzofluoranthenes	0.10	

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-Fluoranthene	93.7%
d10-2-Methylnaphthalene	75.0%
d14-Dibenzo(a,h)anthracene	71.3%

FORM I

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: LCS-040416

LAB CONTROL SAMPLE

Lab Sample ID: LCS-040416

LIMS ID: 16-5191 Matrix: Water

Data Release Authorized:

Reported: 04/11/16

QC Report No: AYK4-URS

Project: Laurel Station

Event: 60485368

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 04/04/16

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 04/07/16 18:42

Final Extract Volume LCS: 0.50 mL

e LCS: 0.50 mL LCSD: 0.50 mL

LCSD: 04/07/16 19:08 Instrument/Analyst LCS: NT8/JZ

LCSD: NT8/JZ

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Naphthalene	1.89	3.00	63.0%	1.58	3.00	52.7%	17.9%
2-Methylnaphthalene	2.02	3.00	67.3%	1.77	3.00	59.0%	13.2%
1-Methylnaphthalene	2.04	3.00	68.0%	1.81	3.00	60.3%	11.9%
Acenaphthylene	2.00	3.00	66.7%	1.60	3.00	53.3%	22.2%
Acenaphthene	2.11	3.00	70.3%	1.74	3.00	58.0%	19.2%
Fluorene	2.48	3.00	82.7%	2.14	3.00	71.3%	14.7%
Phenanthrene	2.55	3.00	85.0%	2.37	3.00	79.0%	7.3%
Anthracene	2.38	3.00	79.3%	2.24	3.00	74.7%	
Fluoranthene	2.69	3.00	89.7%	2.74	3.00	91.3%	6.1%
Pyrene	2.61	3.00	87.0%	2.68	3.00	89.3%	1.8%
Benzo(a)anthracene	2.60	3.00	86.7%	2.68	3.00	89.3%	2.6%
Chrysene	2.56	3.00	85.3%	2.58	3.00	86.0%	3.0%
Benzo(a)pyrene	2.58	3.00	86.0%	2.46	3.00		0.8%
Indeno(1,2,3-cd)pyrene	2.76	3.00	92.0%	2.46		82.0%	4.8%
Dibenz(a,h)anthracene	2.78	3.00	92.7%		3.00	85.3%	7.5%
Benzo(g,h,i)perylene	2.71	3.00		2.42	3.00	80.7%	13.8%
Dibenzofuran	2.71		90.3%	2.49	3.00	83.0%	8.5%
Total Benzofluoranthenes		3.00	75.7%	1.94	3.00	64.7%	15.7%
rocar benzorraoranchenes	9.26	9.00	103%	9.24	9.00	103%	0.2%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-Fluoranthene	89.3%	88.7%
d10-2-Methylnaphthalene	71.3%	59.7%
d14-Dibenzo(a.h)anthracene	9N 7%	78 7%

4B SEMIVOLATILE METHOD BLANK SUMMARY

AYK4MBW1

Lab Name: ARI

Client: URS

ARI Job No: AYK4

Project: LAUREAL STATION

Lab File ID: 16040703

Date Extracted: 04/04/16

Instrument ID: NT8

Date Analyzed: 04/07/16

Matrix: LIQUID

Time Analyzed: 1816

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	SAMPLE NO.	SAMPLE ID	LIDE ID	AMADIZED
01	AYK1LCSW1	AYK1LCSW1	1.040704	04/07/16
			16040704	04/07/16
02	AYK1LCSDW1	AYK1LCSDW1	16040705	04/07/16 04/07/16
03	MW-6	AYK4A	16040715	04/07/16
04	MW-6 MS	AYK4AMS	16040716	04/07/16
05	MW-6 MSD	AYK4AMSD	16040717	04/08/16
06	DUPLICATE	AYK4B	16040718	04/08/16
07				
80		-		
09				
10			-	
11		****		
12		-		·
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25		-		
26				
27				
28				
29				
30				

page 1 of 1

FORM IV SV

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: MB-040416

LIMS ID: 16-5191 Matrix: Water

Data Release Authorized:

Reported: 04/11/16

Date Extracted: 04/04/16
Date Analyzed: 04/07/16 18:16
Instrument/Analyst: NT8/JZ

Sample ID: MB-040416 METHOD BLANK

QC Report No: AYK4-URS

Project: Laurel Station

Event: 60485368

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91 - 57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86 - 73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129 - 00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(q,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U
TOTBFA	Total Benzofluoranthenes	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-Fluoranthene	95.3%
d10-2-Methylnaphthalene	74.7%
d14-Dibenzo(a,h)anthracene	105%

FORM I

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ARI Client: URS

Instrument ID: NT8 Project: LAUREAL STATION

DFTPP Injection Date: 01/08/16 DFTPP Injection Time: 1132

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		=======================================
51	10.0 - 80.0% of mass 198	23.6
68	Less than 2.0% of mass 69	0.9 (1.7)1
69	Mass 69 relative abundance	55.4
70	Less than 2.0% of mass 69	0.3 (0.5)1
127	10.0 - 80.0% of mass 198	55.3
197	Less than 2.0% of mass 198	0.6
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	7.7
275	10.0 - 60.0% of mass 198	36.2
365	Greater than 1.0% of mass 198	5.16
441	0.0 - 24.0% of mass 442	8.7 (14.7)2
442	50.0 - 200.0% of mass 198	59.5
443	15.0 - 24.0% of mass 442	12.3 (20.7)2
	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	1				
	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========				
01	IC25160108	SEA0017-CAL4	16010802	01/08/16	1154
02	IC01160108	SEA0017-CAL1	16010803	01/08/16	1219
03	IC05160801	SEA0017-CAL2	16010804	01/08/16	1245
04	IC1160108	SEA0017-CAL3	16010805	01/08/16	1311
05	IC5160108	SEA0017-CAL5	16010806	01/08/16	1336
06	IC10160108	SEA0017-CAL6	16010807	01/08/16	
	1				1402
07	SCV160108	SEA0017-SCV1	16010808	01/08/16	1428
80					
09					
10				 -	
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

page 1 of 1

FORM V SV

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ARI Client: URS

Instrument ID: NT8 Project: LAUREAL STATION

DFTPP Injection Date: 04/07/16 DFTPP Injection Time: 1736

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	10.0 - 80.0% of mass 198	10.4
68	Less than 2.0% of mass 69	18.4
69	Mass 69 relative abundance	0.8 (1.7)1
70	Less than 2.0% of mass 69	44.5
127	10.0 - 80.0% of mass 198	0.2 (0.5)1
197		50.1
1	Less than 2.0% of mass 198	0.7
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	7.3
275	10.0 - 60.0% of mass 198	38.6
365	Greater than 1.0% of mass 198	5.20
441	0.0 - 24.0% of mass 442	7.7 (15.4)2
442	50.0 - 200.0% of mass 198	50.2
443	15.0 - 24.0% of mass 442	10.0 (20.0)2
	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	1	1			
	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
					10001200
0.1	TOTAL CO. 4 OF				
01	ICV160407	ICV160407	16040702	04/07/16	1751
02	AYK1MBW1	AYK1MBW1	16040703	04/07/16	1816
03	AYK1LCSW1	AYK1LCSW1	16040704	04/07/16	1842
04	AYK1LCSDW1	AYK1LCSDW1	16040705	04/07/16	
					1908
05	MW-6	AYK4A	16040715	04/07/16	2327
06	MW-6 MS	AYK4AMS	16040716	04/07/16	2353
07	MW-6 MSD	AYK4AMSD	16040717	04/08/16	0019
08	DUPLICATE	AYK4B			
	DOPLICATE	AIN4D	16040718	04/08/16	0044
09					
10					
11			~~~		
12					
13					
14					
15					
16					
17					
18					
19	-		MW Liberture		
20					
20					

page 1 of 1

FORM V SV

6B SEMIVOLATILE 8270-D INITIAL CALIBRATION DATA

Lab Name: ARI Client: URS

ARI Job No: AYK4 Project: LAUREAL STATION

Instrument ID: NT8 Calibration Date: 01/08/16

LAB FILE ID: RRF0.1=16010803 RRF0.5=16010804 RRF1 =16010805 RRF2.5=16010802 RRF5 =16010806 RRF10 =16010807

	RRF	RRF	RRF	RRF	RRF	RRF		%RSD
COMPOUND	0.1	0.5	1	2.5	5	10	RRF	/R^2
77	======	======	!	!	1	1	!	1
Naphthalene	1.095	0.980		1	1		1	
2-Methylnaphthalene	0.565			•		•	1	
Acenaphthylene	1.723	•					1	1
Acenaphthene	1.135	1.062	1	1		!	1	
Dibenzofuran	1.760	!		•		1		
Fluorene	1.282		,	1				
Phenanthrene	1.025		•	•	!			4.7
Anthracene	0.976	!	!		•	0.870	0.915	5.3
Fluoranthene	1.218	!	I		1	1.012	1.108	6.2
Pyrene	1.046	1		0.991	1.000	0.924	0.974	5.0
Benzo(a) anthracene	0.983	•	,	1	1.020	0.954	0.975	3.2
Chrysene	1.126	0.934	0.976	0.973	0.992	0.915	0.986	7.5
Benzo(b) fluoranthene	1.044	0.987	1.014	1.026	1.077	1.010	1.026	3.0
Benzo(k)fluoranthene	1.088	0.986	1.037	1.039	1.084	1.018	1.042	3.7
Benzo(j)fluoranthene	1.042	0.896	0.873	0.923	0.964	0.919	0.936	6.4
Benzo(a)pyrene	1.056	0.902	0.968	0.970	1.042	0.980	0.986	5.7
Indeno(1,2,3-cd)pyrene	1.301	1.121	1.120	1.158	1.245	1.204	1.192	j 6.1
Dibenzo(a,h)anthracene	1.032	0.898	0.944	0.967	1.026	1.030		,
Benzo(g,h,i)perylene	1.177	1.007	0.968	1.016	1.057	1.016		
1-methylnaphthalene	0.563	0.512	0.519	0.533		!		5.2
Perylene	1.089	0.928	•	1			0.995	6.0
=======================================						=====	=====	=====
2-Methylnaphthalene-d10	0.558	0.548		0.582	0.598	0.552	0.571	3.7
Dibenzo(a,h)anthracene-d14	0.799	0.725	0.700	0.738	0.781	0.754	0.750	4.9
Fluoranthene-d10	1.059	0.933	0.976	0.992	1.015	0.948	0.987	4.7
	·				<u> </u>			
	·							
								

<- Outside QC limits: %RSD <20% or R^2 > 0.990

FORM VI SV-1

7B SEMIVOLATILE 8270-D CONTINUING CALIBRATION CHECK

Lab Name: ARI Client: URS

ARI Job No: AYK4 Project: LAUREAL STATION

Instrument ID: NT8 Cont. Calib. Date: 01/08/16

Init. Calib. Date: 01/08/16 Cont. Calib. Time: 1154

	CalAmt	1		CURVE	1
COMPOUND	or ARF		RRF	TYPE	Drift
77	======	=====		=====	=====
Naphthalene	0.980				-1.6
2-Methylnaphthalene	0.542				2.0
Acenaphthylene	1.689	1	1		3.6
Acenaphthene	1.075	i e		AVRG	-0.2
Dibenzofuran	1.565	1.546	0.800	AVRG	-1.2
Fluorene	1.234	1.243	0.900	AVRG	0.7
Phenanthrene	0.953	0.948	0.700	AVRG	-0.5
Anthracene	0.915	0.939	0.700	AVRG	2.6
Fluoranthene	1.108	1.087	0.600	AVRG	-1.9
Pyrene	0.974	0.991	0.600	AVRG	1.7
Benzo (a) anthracene	0.975	0.990	0.800	AVRG	1.5
Chrysene	0.986	0.973	0.700	AVRG	-1.3
Benzo (b) fluoranthene	1.026	1.026	0.700	AVRG	0.0
Benzo(k) fluoranthene	1.042	1.039	0.700	AVRG	-0.3
Benzo(j) fluoranthene	0.936	0.923	0.010	AVRG	-1.4
Benzo(a) pyrene	0.986	0.970	0.700	AVRG	-1.6
Indeno (1, 2, 3-cd) pyrene	1.192	1.158	0.500	AVRG	-2.8
Dibenzo(a,h)anthracene	0.983	0.967	0.400	AVRG	-1.6
Benzo(g,h,i)perylene	1.040	1.016			-2.3
1-methylnaphthalene	0.525	0.533	0.010	AVRG	1.5
Perylene	0.995	0.970		AVRG	-2.5
	=====	=====	=====	=====	=====
2-Methylnaphthalene-d10	0.571	0.582	0.010	AVRG	1.9
Dibenzo (a, h) anthracene $-\overline{d14}$	0.750				-1.6
Fluoranthene-d10	0.987	0.992	0.010		0.5
	i				

<- Exceeds QC limit of 20% D

FORM VII SV-1

^{*} RF less than minimum RF

7B SEMIVOLATILE 8270-D CONTINUING CALIBRATION CHECK

Lab Name: ARI Client: URS

ARI Job No: AYK4 Project: LAUREAL STATION

Instrument ID: NT8 Cont. Calib. Date: 04/07/16

Init. Calib. Date: 01/08/16 Cont. Calib. Time: 1751

	CalAmt	CC Amt	MIN	CURVE	%D or
COMPOUND	or ARF	or RF	RRF	TYPE	Drift
=======================================	=====	=====	=====	=====	=====
Naphthalene	0.980	0.911	0.700	AVRG	-7.0
2-Methylnaphthalene	0.542	0.572	0.400	AVRG	5.5
Acenaphthylene	1.689	1.622	0.900	AVRG	-4.0
Acenaphthene	1.075	1.058	0.900	AVRG	-1.6
Dibenzofuran	1.565	1.649	0.800	AVRG	5.4
Fluorene	1.234	1.311	0.900	AVRG	6.2
Phenanthrene	0.953	0.928	0.700	AVRG	-2.6
Anthracene	0.915	0.884	0.700	AVRG	-3.4
Fluoranthene	1.108	1.164	0.600	AVRG	5.0
Pyrene	0.974	0.907	0.600	AVRG	-6.9
Benzo(a) anthracene	0.975	0.920	0.800	AVRG	-5.6
Chrysene	0.986	0.924	0.700	AVRG	-6.3
Benzo (b) fluoranthene	1.026	0.999	0.700	AVRG	-2.6
Benzo(k) fluoranthene	1.042	1.032		AVRG	-1.0
Benzo(j) fluoranthene	0.936	0.896	0.010	AVRG	-4.3
Benzo(a)pyrene	0.986	0.927	0.700	AVRG	-6.0
Indeno(1,2,3-cd)pyrene	1.192	1.138	0.500	AVRG	-4.5
Dibenzo(a,h)anthracene	0.983	0.962	0.400	AVRG	-2.1
Benzo(g,h,i)perylene	1.040	0.952			-8.5
1-methylnaphthalene	0.525	0.547	0.010	AVRG	4.2
Perylene	0.995	0.950	0.010	AVRG	-4.5
	=====	=====	=====	=====	=====
2-Methylnaphthalene-d10	0.571	0.616	0.010	AVRG	7.9
Dibenzo (a, h) anthracene-d14_	0.750	0.672		AVRG	-10.4
Fluoranthene-d10	0.987	1.023	0.010	AVRG	3.6
- Francis OC limit of 20% D	l	l			

<- Exceeds QC limit of 20% D

FORM VII SV-1

^{*} RF less than minimum RF

Lab Name: ARI

Client: URS

ARI Job No: AYK4

Project: LAUREAL STATION

Ical Midpoint ID: 16010802

Ical Date: 01/08/16

Instrument ID: NT8

Cont. Cal Date: 01/08/16

		IS1 (NPT) AREA #	RT #	IS2 (ANT) AREA #	RT #	IS3 (PHN) AREA #	RT #
	ICAL MIDPT UPPER LIMIT LOWER LIMIT	340385 680770 170193	4.81	191651 383302 95826	7.09	360067 720134 180034	9.12
	CCAL UPPER LIMIT LOWER LIMIT	340385	4.81 5.31 4.31	191651	7.09 7.59 6.59	360067	9.12 9.62 8.62
01 02 03 04 05 06 07 08 09 10 11	SCV160108	344038	4.82	190622	7.09	366091	9.11
13 14 15 16 17							
18 19 20							

IS1 = Naphthalene-d8
IS2 = Acenaphthene-d10
IS3 = Phenanthrene-d10

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits.

page 1 of 2

FORM VIII SV-1

Lab Name: ARI Client: URS

ARI Job No: AYK4 Project: LAUREAL STATION

Instrument ID: NT8 Cont. Cal Date: 01/08/16

		IS4 (CRY) AREA #	RT #	IS5 (PRY) AREA #	RT #	AREA #	RT #
	ICAL MIDPT UPPER LIMIT LOWER LIMIT	412900 825800 206450	13.97	419317 838634 209659	17.82		
	CCAL UPPER LIMIT LOWER LIMIT	412900	13.97 14.47 13.47	419317	17.82 18.32 17.32		
01 02 03	SCV160108	414616	13.96	415814	17.82		
04 05 06 07							
08 09 10 11						-	
12 13 14 15							
16 17 18 19							
20							

IS4 = Chrysene-d12 IS5 = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits.

page 2 of 2

FORM VIII SV-2

Lab Name: ARI Client: URS

ARI Job No: AYK4 Project: LAUREAL STATION

Instrument ID: NT8 Cont. Cal Date: 04/07/16

		IS1 (NPT)		IS2 (ANT)		IS3 (PHN)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	ICAL MIDPT	240205	======	101651	======	260067	======
	UPPER LIMIT	340385 680770	4.81	191651 383302	7.09	360067 720134	9.12
	LOWER LIMIT	170193		95826		180034	
	========	========	======	=========	======	========	======
	CCAL	199730	4.61	124956	6.88	264596	8.91
	UPPER LIMIT		5.11		7.38		9.41
	LOWER LIMIT		4.11		6.38		8.41
01	AYK1MBW1	313881	4.60	186284	6.88	405385	8.91
02	AYK1LCSW1	332164	4.59	211122	6.88	435898	8.91
03	AYK1LCSDW1	328987	4.59	207944	6.88	427445	8.91
04	MW-6	343653	4.59	207493	6.88	437174	8.91
05 06	MW-6 MS MW-6 MSD	357975 344951	4.59 4.59	212619 211582	6.87	442626	8.91
07	DUPLICATE	344931	4.59	206224	6.88 6.88	442016 437951	8.91 8.91
08	301214112	310110	1.35	200224		437331	0.51
09				*****		-	
10							
11 12							
13							
14		AGRECA					
15							
16							
17							
18 19	**************************************						
20							
20	I						

IS1 = Naphthalene-d8
IS2 = Acenaphthene-d10
IS3 = Phenanthrene-d10

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits.

page 1 of 2

FORM VIII SV-1

ATKLIZEST

8B SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: ARI Client: URS

ARI Job No: AYK4 Project: LAUREAL STATION

Instrument ID: NT8 Cont. Cal Date: 04/07/16

		IS4 (CRY)		IS5 (PRY)			T
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	ICAL MIDPT UPPER LIMIT LOWER LIMIT	412900 825800 206450	13.97	419317 838634 209659	17.82		
	CCAL UPPER LIMIT LOWER LIMIT	347439	13.64 14.14 13.14	335326	17.44 17.94 16.94		
01 02 03 04	AYK1MBW1 AYK1LCSW1 AYK1LCSDW1 MW-6	484867 526795 515725 550116	13.63 13.63 13.63 13.63	389194 440952 452589 466572	17.43 17.44 17.44 17.44		
05 06 07	MW-6 MS MW-6 MSD DUPLICATE	553586 552721 532765	13.63 13.63 13.63	500453 482289 455897	17.44 17.44 17.43		
08 09 10 11							
12 13 14 15							
16 17 18 19							
20							

IS4 = Chrysene-d12 IS5 = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits.

page 2 of 2

FORM VIII SV-2

TPHD Analysis Report and Summary QC Forms

ARI Job ID: AYK4

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID

Extraction Method: SW3510C

Page 1 of 1

Matrix: Water

QC Report No: AYK4-URS

Project: Laurel Station

60485368

Date Received: 03/30/16

Data Release Authorized: DReported: 04/12/16

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DF	Range/Surrogate	RL	Result
MB-040416 16-5191	Method Blank HC ID:	04/04/16	04/08/16 FID3B	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10	< 0.10 U < 0.20 U 86.2%
AYK4A 16-5191	MW-6 HC ID:	04/04/16	04/08/16 FID3B	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 90.8%
AYK4B 16-5192	Duplicate HC ID:	04/04/16	04/08/16 FID3B	1.00 1.0	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 87.8%

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

FORM I

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: AYK4-URS

Project: Laurel Station

60485368

Client ID	OTER	TOT OUT
MB-040416	86.2%	0
LCS-040416	96.2%	Ō
LCSD-040416	92.0%	0
MW-6	90.8%	0
MW-6 MS	90.5%	0
MW-6 MSD	89.8%	0
Duplicate	87.8%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(50-150)

(50-150)

Prep Method: SW3510C

Log Number Range: 16-5191 to 16-5192

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: MW-6

MS/MSD

Lab Sample ID: AYK4A LIMS ID: 16-5191

Matrix: Water

Data Release Authorized: Reported: 04/12/16

QC Report No: AYK4-URS

Project: Laurel Station

60485368

Date Sampled: 03/29/16 Date Received: 03/30/16

Date Extracted MS/MSD: 04/04/16

Sample Amount MS: 500 mL

MSD: 500 mL

Date Analyzed MS: 04/08/16 13:34

MSD: 04/08/16 13:58 Instrument/Analyst MS: FID3B/ML

MSD: FID3B/ML

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	< 0.10 U	2.53	3.00	84.3%	2.63	3.00	87.7%	3.9%

TPHD Surrogate Recovery

MSD MS

o-Terphenyl

90.5% 89.8%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: LCS-040416

LCS/LCSD

Lab Sample ID: LCS-040416

LIMS ID: 16-5191 Matrix: Water

Data Release Authorized:

Reported: 04/12/16

QC Report No: AYK4-URS

Project: Laurel Station

60485368

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 04/04/16

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 04/08/16 12:21

LCSD: 04/08/16 12:45

Final Extract Volume LCS: 1.0 mL LCSD: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Spike LCS Spike LCSD Range LCS Added-LCS LCSD Added-LCSD Recovery Recovery RPD Diesel 2.61 3.00 87.0% 2.50 3.00 83.3% 4.3%

TPHD Surrogate Recovery

LCS LCSD

o-Terphenyl

96.2% 92.0%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: AYK4
Project: Laurel Station Matrix: Water

Date Received: 03/30/16 60485368

ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
16-5191-040416MB1 16-5191-040416LCS1 16-5191-040416LCSD1 16-5191-AYK4A 16-5191-AYK4AMS 16-5191-AYK4AMSD 16-5192-AYK4B	Method Blank Lab Control Lab Control Dup MW-6 MW-6 MW-6 Duplicate	500 mL 500 mL 500 mL 500 mL 500 mL 500 mL 500 mL	1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL	04/04/16 04/04/16 04/04/16 04/04/16 04/04/16 04/04/16

AYK4MBW1

Lab Name: ARI Client: URS

SDG No.: AYK4 Project No.: LAUREL STATION

Date Extracted: 04/04/16 Matrix: LIQUID

Time Analyzed: 1156

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	1		
	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
Λ1	A STEAT COLLS	77	========
01	AYK4LCSW1	AYK4LCSW1	04/08/16
02	AYK4LCSDW1	AYK4LCSDW1	04/08/16
03	MW-6	AYK4A	04/08/16
04	MW-6 MS	AYK4AMS	04/08/16
05	MW-6 MSD		04/00/16
	l	AYK4AMSD	04/08/16
06	DUPLICATE	AYK4B	04/08/16
07			
08		——————————————————————————————————————	
09			
10			
-			
11			
12			
13			
14			
15			
16			
17			
18			
19			· ———
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
301			

6a DIESEL INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC.

Client: URS

Instrument: FID3B.I

Project: Laurel Station

Calibration Date: 16-FEB-2016

SDG No.: AYK4

Diesel Range	RF1 50	RF2 100	RF3 250	RF4 500	RF5 1000	RF6 2500	Ave RF	%RSD
WA Diesel AK Diesel OR Diesel Cal Diesel o-Terph	17472 20123 20397 20000 22236	18025 21033 21258 20929 22485	17417 20460 20618 20381 22607	17374 20416 20534 20363	17079 20095 20221 20030	17524 20597 20717 20529 22596	17482 20454 20624 20372	1.8 1.7 1.7 1.7

<- Indicates %RSD outside limits
Surrogate areas are not included in Diesel RF calculation.</pre>

Quant	Ranges		AK D	iesel iesel iesel iesel	C10-C25 C10-C28	(4.389-8.242) (3.520-8.544) (3.520-9.403) (3.520-8.242)
-------	--------	--	------	----------------------------------	--------------------	--

Calibration Files	Analysis Time
f1	16-FEB-2016 17:14
f2	16-FEB-2016 17:38
f3	16-FEB-2016 18:02
f4	16-FEB-2016 18:26
f5	16-FEB-2016 18:50
f6	16-FEB-2016 19:13

6a NW MOTOR OIL RANGE INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC.

Client: URS

Instrument: FID3B.I

Project: Laurel Station

Calibration Date: 16-FEB-2016

SDG No.: AYK4

Product Range	RF1 100	RF2 250	RF3 500	RF4 1000	RF5 2500	RF6 5000	Ave RF	%RSD
WA M.Oil C24-C38	15459	14916	14626	14046	13988	13291	14388	5.4
Triac Surr	20088	20192	20004	19235	19170	18102	19465	4.1

<- Indicates %RSD outside limits
Surrogate areas are not included in Motor Oil RF calculation.</pre>

Calibration Files	Analysis Time
f1	16-FEB-2016 20:24
f2	16-FEB-2016 20:48
f3	16-FEB-2016 21:12
f4	16-FEB-2016 21:35
f5	16-FEB-2016 21:59
f6	16-FEB-2016 22:22

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: URS

ICal Date: 16-FEB-2016 Project: Laurel Station

CCal Date: 08-APR-2016 SDG No.: AYK4

Analysis Time: 11:03 Lab ID: DIESEL#1

Instrument: FID3B.I Lab File Name: 16040803.D

Diesel Range	Area*	CalcAmnt	NomAmnt	% D	
WADies(C12-C24) AK102 (C10-C25) ITDIES (C10-C24) Terphenyl	4626638 5398073 5371689 978228	264.7 263.9 263.7 43.2	250 250 250 250 45	5.9 5.6 5.5 -4.0	1

Surrogate areas are subtracted from range areas Indicates a %D outside QC limits

Quant Ranges: WA Diesel C12-C24 AK Diesel C10-C25

IT Diesel C10-C24

ATK4: 00056

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: URS

ICal Date: 16-FEB-2016 Project: Laurel Station

CCal Date: 08-APR-2016 SDG No.: AYK4

Analysis Time: 11:27 Lab ID: MOIL#1

Instrument: FID3B.I Lab File Name: 16040804.D

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38)	6314671	438.9	500	-12.2
AK103 (C25-C36)	5603789	399.2	500	-20.2
n-Triacontane	930527	47.8	45	6.2

Surrogate areas are subtracted from range areas Indicates a %D outside QC limits

Quant Ranges : WA M.Oil C24-C38 AK M.Oil C25-C36

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC.

Client: URS

ICal Date: 16-FEB-2016

Project: Laurel Station

CCal Date: 08-APR-2016

SDG No.: AYK4

Analysis Time: 15:36

Lab ID: DIESEL#2

Instrument: FID3B.I

Lab File Name: 16040814.D

Diesel Range	Area*	CalcAmnt	NomAmnt	% D	
WADies(C12-C24) AK102 (C10-C25) ITDIES (C10-C24) Terphenyl	4582311 5371156 5342634 990016	262.1 262.6 262.3 43.7	250 250 250 45	4.8 5.0 4.9 -2.8	1

^{*} Surrogate areas are subtracted from range areas- Indicates a %D outside QC limits

Quant Ranges: WA Diesel C12-C24

AK Diesel C10-C25 IT Diesel C10-C24

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: URS

ICal Date: 16-FEB-2016 Project: Laurel Station

CCal Date: 08-APR-2016 SDG No.: AYK4

Analysis Time: 16:00 Lab ID: MOIL#2

Instrument: FID3B.I Lab File Name: 16040815.D

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38)	6205499	431.3	500	-13.7
AK103 (C25-C36)	5523622	393.5	500	-21.3
n-Triacontane	929538	47.8	45	6.1

* Surrogate areas are subtracted from range areas
<- Indicates a %D outside QC limits</pre>

Quant Ranges: WA M.Oil C24-C38

AK M.Oil C25-C36

TPH ANALYTICAL SEQUENCE

Lab Name: ARI Client: URS

SDG No.: AYK4 Project: LAUREL STATION

Instrument ID: FID3B GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE 1 TERPH: 6.0			**************************************	 	
	CLIENT SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	TERPH RT #	TRIAC RT #
01	RT	RT	04/08/16	1015	6.60	10.06
02	IB	IB	04/08/16	1039	6.59	10.06
03	LAUREL STATI	DIESEL#1	04/08/16	1103	6.60	10.06
04	LAUREL STATI	MOIL#1	04/08/16	1127	6.60	10.07
05	AYK4MBW1	AYK4MBW1	04/08/16	1156	6.59	10.06
06	AYK4LCSW1	AYK4LCSW1	04/08/16	1221	6.60	10.06
07	AYK4LCSDW1	AYK4LCSDW1	04/08/16	1245	6.60	10.06
80	MW-6	AYK4A	04/08/16	1309	6.59	10.06
09	MW-6 MS	AYK4AMS	04/08/16	1334	6.60	10.06
10	MW-6 MSD	AYK4AMSD	04/08/16	1358	6.60	10.06
11	DUPLICATE	AYK4B	04/08/16	1423	6.59	10.06
12	LAUREL STATI	DIESEL#2	04/08/16	1536	6.60	10.06
13	LAUREL STATI	MOIL#2	04/08/16	1600	6.60	10.06

QC LIMITS (+/- 0.05 MINUTES) (+/- 0.05 MINUTES) TERPH = o-terph TRIAC = Triacon Surr

* Values outside of QC limits.

8 TPH ANALYTICAL SEQUENCE

Lab Name: ARI

Client: URS

SDG No.: AYK4

Project: Laurel Station

Instrument ID: FID3B

GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE 1 TERPH: 6.	RT FROM DAILY STA 50 TRIAC:	ANDARD 9.96			
	CIT TIME					
	CLIENT	LAB	DATE	TIME	TERPH	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01		SEB0024-IBL1	02/16/16	1606	=======	======
02		SEB0024-IBL2	02/16/16	1626	6.50	9.96
03		SEB0024-CAL1	02/16/16	1650	6.49	9.96
04		SEB0024-CAL2		1714	6.50	10.05
05		SEB0024-CAL2	02/16/16	1738	6.49	9.97
06		SEB0024-CAL3 SEB0024-CAL4	02/16/16	1802	6.50	9.96
07		SEB0024-CAL4 SEB0024-CAL5	02/16/16	1826	6.51	9.97
08			02/16/16	1850	6.52	9.97
09		SEB0024-CAL6	02/16/16	1913	6.55	9.97
10		SEB0024-SCV1	02/16/16	2001	6.50	9.97
11		SEB0024-CAL7	02/16/16	2024	6.56	9.94
		SEB0024-CAL8	02/16/16	2048	6.56	9.95
12		SEB0024-CAL9	02/16/16	2112	6.56	9.96
13		SEB0024-CALA	02/16/16	2135	6.56	9.98
14		SEB0024-CALB	02/16/16	2159	6.55	10.01*
15		SEB0024-CALC	02/16/16	2222	6.55	10.05*
16		SEB0024-SCV2	02/16/16	2310	6.55	9.96
ł						İ

TERPH = o-terph TRIAC = Triacon Surr QC LIMITS (+/- 0.05 MINUTES) (+/- 0.05 MINUTES)

page 1 of 1

FORM VIII TPH

^{*} Values outside of QC limits.

Memo

Century Square 1111 3rd Avenue, Suite 1600 Seattle, Washington 98101 206.438.2700 Telephone 206.438.2699 Fax

To: Karen Mixon, Project Manager Info: **FINAL**

Christine T. Gebel, Chemist

August 5, 2016 From: Date: Jennifer B. Garner, Chemist

Data Quality Review

RE: Quarterly Groundwater Monitoring Samples – June 2016

Laurel Station Cleanup Action

The data quality review of 2 groundwater samples collected on June 27, 2016, has been completed. The samples were analyzed by Analytical Resources, Incorporated (ARI) located in Tukwila, Washington for benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene (BTEX) by EPA Method 8260C, total petroleum hydrocarbons (TPHs) by Washington State Department of Ecology (Ecology) Methods NWTPH-Gx (gasoline-range TPH) and NWTPH-Dx (diesel-range and motor oil-range TPH), and low-level polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270D modified by selected ion monitoring (SIM). Samples were analyzed for the chemical constituents as described in the Final Compliance Monitoring Plan, Laurel Station, 1009 East Smith Road, Bellingham, Washington dated January 16, 2015 (CMP). Due to changes in laboratory procedures, NWTPH-Gx analysis was performed using GC/MS instrumentation instead of GC/FID.

The analyses were performed in general accordance with methods specified in EPA's Test Methods for Evaluating Solid Waste (SW-846) and Ecology's Analytical Methods for Petroleum Hydrocarbons, June 1997. The laboratory provided a full data package containing sample results and associated QA/QC data. The following samples are associated with ARI group BCQ4:

Sample ID	Laboratory ID	Requested Analyses
MW-6	BCQ4A	BTEX, TPH-Gx, TPH-Dx, PAHs
DUP (Duplicate of MW-6)	BCQ4B	BTEX, TPH-Gx, TPH-Dx, PAHs

The following comments refer to ARI's performance in meeting the quality control specifications described in the analytical methods. Data were qualified based on the method criteria and guidance provided in the EPA document USEPA National Functional Guidelines for Superfund Organic Methods Data Review, August 2014. Data qualifiers that may be assigned to data from this laboratory group include:

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Multiple results reported from different analytical dates and/or dilutions. Value from another analysis should be used.

Data Quality Review Groundwater Monitoring Samples – June 2016 Laurel Station Cleanup Action

Sample Receipt

Upon receipt by ARI, the sample jar information was compared to the chain-of-custody (COC) and the cooler temperature was recorded. No discrepancies relating to sample identification were noted by ARI and the cooler was received at a temperature within the EPA-recommended limits of greater than 0°C and less than or equal to 6°C.

Due to a laboratory oversight, the bottle order for this sampling event was not shipped from ARI to Laurel Station. Sample containers were obtained from an alternate analytical laboratory located in Bellingham, Washington.

Organic Analyses

Samples were analyzed for BTEX, TPHs, and PAHs by the methods identified in the introduction to this report.

- 1. Holding Times Acceptable
- 2. Instrument Performance Checks (GC/MS Tunes) Acceptable where applicable
- 3. Initial and Continuing Calibrations Acceptable
- 4. Blanks Acceptable except as noted below:

<u>BTEX</u> by Method 8260C-Modified and NWTPH-Gx – As noted above, sample containers were obtained from an alternate source. A trip blank was not provided in the bottle shipment; therefore, a trip blank was not analyzed with this data set.

- 5. Surrogates Acceptable
- 6. Internal Standards Acceptable where applicable
- 7. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Acceptable
- 8. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Acceptable

General – An MS/MSD was performed using MW-6 for all parameters. Results were acceptable.

9. Field Duplicate – Acceptable

<u>General</u> – A field duplicate was submitted for MW-6 and identified as DUP. Results were comparable for all parameters.

10. Reporting Limits – Acceptable except as noted below:

<u>PAHs by Method 8270D-SIM</u> – The reporting limits for PAHs were elevated in MW-6 and DUP due to multiple communication errors between the field, laboratory, and URS office. The error was identified during this quarterly sampling review. The elevated reporting limits meet the cleanup levels for all compounds except dibenzo(a,h)anthracene. The error does not affect the data use at this time. URS has implemented a corrective action to avoid similar issues during future sample collection starting with the September 2016 sampling event.

11. Other Items of Note:

 $\underline{\text{NWTPH-Dx}}$ – The laboratory indicated that the diesel-range TPH chromatogram for MW-6 did not match the laboratory standard chromatogram for diesel.

Data Quality Review Groundwater Monitoring Samples – June 2016 Laurel Station Cleanup Action

Overall Assessment of Data

The data reported in this laboratory group, as reported, are considered to be usable for meeting project objectives. The completeness for laboratory group BCQ4 is 100%.

Table of Contents: ARI Job BCQ4

Client: AECOM Project: # Laurel Station

	Page From:	Page To:
Inventory Sheet		•
Cover Letter		
Chain of Custody Documentation		
Case Narrative, Data Qualifiers, Control Limits	_5_	15
Volatile Analysis	.	20
Report and Summary QC Forms	16	<u> 38</u>
SIM PAH Analysis	0.0	C-7
Report and Summary QC Forms	<u> 39</u>	75
TPHD Analysis		71
Report and Summary QC Forms	_58	
Volatile Raw Data		
Initial Calibration	_15_	209
Run Logs, Continuing Calibrations, and Raw Data	205	_28 1
SIM PAH Raw Data		et C
Extractions Bench Sheets and Notes	<u> 285</u>	<u> 288 </u>
Initial Calibration	<u> 289</u>	<u>34Ø</u>
Run Logs, Continuing Calibrations, and Raw Data	341	403
TPHD Raw Data	X o X	• • •
Extractions Bench Sheets and Notes	404	<u>407</u>
Initial Calibration	408	481
Run Logs, Continuing Calibrations, and Raw Data	487	527

Signature

<u>July-13-2016</u> Date

July 13, 2016

Karen Mixon AECOM 1111 Third Avenue, Suite 1600 Seattle, WA 98101

RE: Laurel Station ARI Job: BCQ4

Dear Karen:

Please find enclosed the original Chain-of-Custody (COC) records, sample receipt documentation, and the final data package for the project referenced above.

Sample receipt information and analytical details are addressed in the Case Narrative.

An electronic copy of this data package will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

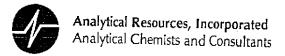
Kelly Bottem

Client Services Manager

(206) 695-6211

kellyb@arilabs.com

www.arilabs.com


Chain of Custody Documentation

ARI Job ID: BCQ4

Chain of Custody Record & Laboratory Analysis Request

AND CHERT Company. A ELEAN Prioris 206 473 2234 Degr 77716 Present Yes Comments Comm	AM Chemic Company: AM Chemic Company: AM Chemi	ARI Assigned Number BC & 4 Turn-around Requested:	Turn-aroun	d Requested:	5		Page:	_	 Jo			Anal Anal	Analytical Resources, Incorporated Analytical Chemists and Consultants	Incorporated od Consultant
Chemic Contact: Chapter Maxool Cookers: Cooke	Comments Special Instructions (1992) And (19		٤	Phone: ${\cal X}$	36 438	2234		91/tz		\e>		Tukw	3000) 13401 F140 711a, WA 98168 695-6200 206-60	.e, suite 100 85-6201 (fax)
Comments Special Institutions Simulations of State Comments Special Institutions Special Inst	Client Project Name: LAPLE Straton Samplers: Samplers: No. C MWJ - 6		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				No. of Coolers:		Cooler Temps: S	٩	T	www	.arilabs.com	77-0501 (18A)
Sample ID Date Time Matrix to common Conf. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sample 1D Date Time Matrix Nuclearance 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		7	R70rd						ysis Requester			Notes/Cc	mments
Sample ID Date Time Matrix Inconsister Fig. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sample ID Date Time Matrix iso Consistent Legis 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Samplers:	70			X 8	-49-	3	0 (
Miles 6 677 1730 450 141	Multi-G 6/27 1/250 May 144 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Sample ID	Date	Time	Matrix	No. Comainers	BUZI BUZI	747 (sx 1417	x0 .HA9	otib				
Dout Comments Special Instructions Period for Period Service Per	Comments Special Instructions (Separation of Prince Area) (A. 2) Comments Special Instructions (Separation of Prince Area) (A. 2) Comments standards for the inclusive of the ARI Comment of Separation of Comment of Separation of Comment of Separation of	9-7W	£219	1230	LF2X	h),	X	X	$\langle \rangle$	V			EMPLAN	S UME
Comments/Special Instructions Refinquented by: Comments/Special Instructions Printed Name	Comments/Special Instructions (September 5) Comments/Special Instructions (September 5) Comments/Special Instructions (September 5) Comments/Special Instructions (September 5) Comments/Special Instructions (September 5) Comments/Special Instructions (September 5) Comments/Special Instructions (September 5) Comments/Special Instructions (September 5) Comments/Special Instructions (September 5) Comments/Special Instructions (September 5) Comments/Special Instructions (September 5) Comments/Special Instructions (September 5) Comments/Special Instructions (September 5) Comments/September 5) Comments/Sep	d Da	22/9		Hza	1	X	χ	$\frac{1}{\lambda}$	∇			Walew	acul
Comments/Special Instructions Relativished by: Separation Separati	Comments Special Instructions (structions) (:	
Comments: Special Instructions Reinquished by Received by Received by Received by Signature) Finned Name: Finned Name: Printed Name: Printed Name: Company:	Comments: Special Instructions Pelenquered by Signature) Comments: Special Instructions Pelenquered by Signature) Find Almary Services in Signature) Company: Comp								 					
Comments/Special Instructions Reinquished by: Printed Name:	Comments/Special Instructions (Signature) Comments/Special Instructions (Signature) Final Nature													
Comments/Special Instructions Reinquished by: (Signature) Printed Name: Prin	Comments: Special Instructions Relinquished by Gonzules Printed Name Printed													
Comments/Special Instructions Reinquished by: (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by: (Signature) Recei	Comments/Special Instructions Reinquished by: Signature) Find Name: Find Name											•		
Comments/Special Instructions Reinquished by: (Signature) Received by: (Signature) <td< td=""><td>Comments/Special Instructions Reinquished by: (Signature) Received by: (Signature) Reseived by: (Signature) Received by</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Comments/Special Instructions Reinquished by: (Signature) Received by: (Signature) Reseived by: (Signature) Received by													
Comments/Special Instructions Relinquished by: (Signature) Received by: (Signature) Printed Name: (Comments/Special Instructions Reinquished by: (Signature)													
Comments/Special Instructions Relinquished by: (Signature)	Comments/Special Instructions Relinquished by: Received by: Received by: Signature Signatu													
Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Company: Accord Date & Time: Date & T	Printed Name: And Services Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Company: Comp	Comments/Special Instructions	Relinquished b		1	Received by: (Signature)	N.		Relinq (Signa	uished by: ture)		Receive (Signatu	J by: re)	
Company: Company: Date & Time: Date & Tim	Company: Company: Date & Time: Date & Time: Date & Time: Company: Date & Time: Date &	žwž.	Printed Name:	(Egner	Cent .	Printed Name:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Renkn		d Name:		Printed I	чате;	
Date & Ting: 6(27 (500	Date & Time: C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C - 28 - (C		Company	767		Company:	ART			any:		Compan	Ä	
	Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosioned agreement between ARI and the Client.	1 E a 2º	Date & Time	1 42	300	Date & Time:	8-1¢ (-	450 c	Date &	Time:		Date & 1	їте:	

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

1 eco	1	1 -1	1.	
ARI Client: Accom	Project Name: Laul	el St	Vian	
COC No(s): NA	Delivered by: Fed-Bx UPS Co	uries Hand Dal	ivered Othe	
Assigned ARI Job No: 300	Tracking No: _ 7834 S	8035		•
Preliminary Examination Phase:	Tracking No.		 _	NA
Were intact, properly signed and dated custody seals attached	ed to the outside of to cooler?	,		
Were custody papers included with the cooler?			JES)	NO
Were custody papers properly filled out (ink, signed, etc.)			Y S	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for of Time:	chemistry) 5.6		(YES	NO
If cooler temperature is out of compliance fill out form 00070F		Temp Gun II	- Doo	5276
Cooler Accepted by:	Date: 6 28 (6 Time	AGIL		
Complete custody forn	ms and attach all shipping documents	E	<u></u>	-
Log-In Phase:	and an amphone accommente	<u> </u>		
Was a temperature blank included in the cooler?				
Was a temperature blank included in the cooler?			YES	(NO)
Was sufficient ice used (if appropriate)?	Irap Wet Ica Gel Packs Baggies Foam		Other:	<u></u>
Were all bottles sealed in individual plastic bags?	** 151 ********************************	NA	CAE9	NO
Did all bottles arrive in good condition (unbroken)?			YES	(Ma)
Were all bottle labels complete and legible?			4ES	NO
Did the number of containers listed on COC match with the num	imbos of containers are also do		(FES)	. NO
Did all bottle labels and tags agree with custody papers?	ictibel of containers received?		SES	МО
Were all bottles used correct for the requested analyses?			ES	ИО
Do any of the analyses (bottles) require preservation? (attach p	preservation sheet evolution (///o-)	6	E 8	NO
Were all VOC vials free of air bubbles?	preservation street, excluding VOCs)	€	YES	NO
Was sufficient amount of sample sent in each bottle?		NA	© 3	NO
Date VOC Trip Blank was made at ARI		246	ES	МО
144 m 1 m 111 1 1 1 1 1 1 1 1 1 1 1 1 1	Equipment:	®	C-1:4 L	
	1 20 11	1/	Split by:_	
	ate: <u>6-28-16</u> Time: _	16:00	1	
** Notify Project Manag	ger of discrepancies or concerns **			
				
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle	Samp	ole ID on Co	oc
':				
Additional Notes, Discrepancies, & Resolutions:				
The state of the s	. :			
By: Date:				
Small Air Bubbles Feabubbles' LARGE Air Bubbles	Small → "sm" (<2 mm)	-		
2-4 mm > 4 mm	Peabubbles > "pb" (2 to < 4 mm)			
	Large → "lg" (4 to < 6 mm)			
	Headspace -> "hs" (>6 mm)			
				

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: BCQ4

Sample Receipt:

Analytical Resources, Inc. (ARI) received two water samples and on June 28, 2016 logged under ARI Sample Delivery Group (SDG) BCQ4. The samples were analyzed for NWTPH-Dx, SIM PAHs and NWTPH-Gx plus BTEX.

SIM PAHs by 8270D SIM:

There were no anomalies associated with these samples.

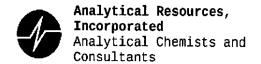
Diesel Range Organics by NWTPH-D Extended:

There were no anomalies associated with these samples.

Gasoline Range Organics by NWTPH-Gx plus BTEX by 8260C/NWTPHG:

There were no anomalies associated with these samples.

Sample ID Cross Reference Report



ARI Job No: BCQ4 Client: AECOM Project Event: N/A

Project Name: Laurel Station

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	MW-6	BCQ4A	16-9825	Water	06/27/16 12:30	06/28/16 09:41
2.	DUP	BCQ4B	16-9826	Water	06/27/16	06/28/16 09:41

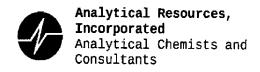
Printed 06/28/16 Page 1 of 1

Data Reporting Qualifiers

Effective 12/31/13

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

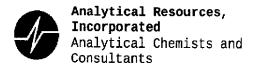

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

Laboratory Quality Assurance Plan

Page 1 of 3

Version 14-003 12/31/13



- Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Laboratory Quality Assurance Plan

Page 2 of 3

Version 14-003 12/31/13

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

BCQU: 00010

Analytical Method Information

Printed: 07/13/2016 12:16 pm

8260C Gas (NWTPH) in Water (NWTPHg)

Preservation: pH<2; HCL, Cool <6°C Container: VOA Vial, Clear, 40 mL, HCL

Amount Required: 120 mL Hold Time: 14 days

Analyte	MDL	Reporting Limit	Surrogate %Rec	Duplicate RPD	Matrix %Rec	Spike RPD	Blank Spi %Rec	ike / LCS- RPD
Gasoline Range Organics (Tol-Nap)	9.06	100 ug/L		30	80-120	30	80-120	30
Gasoline Range Organics (2MP-TMB)	15.8	100 ug/L		30	80-120	30	80-120	30
Gasoline Range Organics (Tol-C12)	9.13	100 ug/L		30	80-120	30	80-120	30
Gasoline Range Organics (C6-C10)	16.8	100 ug/L		30	80-120	30	80-120	30
Gasoline Range Organics (C5-C12)		100 ug/L		30	30-160	30	30-160	30
Surr: 1,2-Dichloroethane-d4			80-128					
Surr: 1,2-Dichlorobenzene-d4			80-120					
Surr: Toluene-d8			80-120					
Surr: 4-Bromofluorobenzene			80-120					
Surr: Dibromofluoromethane			80-120					
Pentafluorobenzene								

Pentafluorobenzene Chlorobenzene-d5 1,4-Difluorobenzene 1,4-Dichlorobenzene-d4

Page 1 of 1 BCQ4: 00011

Analytical Method Information

Printed: 07/13/2016 12:16 pm

8260C VOA in Water (EPA 8260C)

Preservation: pH<2; HCL, Cool <6°C
Container: VOA Vial, Clear, 40 mL, HCL

Amount Required: 120 mL Hold Time: 14 days Reporting Surrogate Duplicate ----Matrix Spike---- --Blank Spike / LCS--Analyte MDL Limit %Rec **RPD** %Rec **RPD RPD** %Rec Chloromethane 0.0948 0.500 ug/L 30 60-138 30 60-138 30 Vinyl Chloride 0.0572 0.200 ug/L 30 66-133 30 66-133 30 Bromomethane 0.252 1.00 ug/L 30 72-131 30 72-131 30 Chloroethane 0.0861 0.200 ug/L 30 60-155 30 60-155 30 Trichlorofluoromethane 0.0375 0.200 ug/L 30 80-129 30 30 80-129 Acrolein 2.48 5.00 ug/L 30 52-144 30 30 52-144 0.200 ug/L 1,1,2-Trichloro-1,2,2-Trifluoroethane 0.0429 30 76-129 30 76-129 30 Acetone 2.06 5.00 ug/L 30 58-142 30 58-142 30 1,1-Dichloroethene 0.0540 0.200 ug/L 30 30 69-135 69-135 30 Bromoethane 0.0412 0.200 ug/L 30 78-128 30 78-128 30 Iodomethane 0.227 1.00 ug/L 30 56-147 30 56-147 30 Methylene Chloride 0.485 1.00 ug/L 30 65-135 30 65-135 30 Acrylonitrile 0.604 1.00 ug/L 30 64-134 30 64-134 30 Carbon Disulfide 0.0370 0.200 ug/L 30 78-125 30 78-125 30 trans-1,2-Dichloroethene 0.0485 0.200 ug/L 30 78-128 30 78-128 30 Vinyl Acetate 0.0688 0.200 ug/L 30 55-138 30 55-138 30 1,1-Dichloroethane 0.0533 0.200 ug/L 30 76-124 30 76-124 30 2-Butanone 0.814 5.00 ug/L 30 61-140 30 61-140 30 2,2-Dichloropropane 0.0518 0.200 ug/L 30 78-125 30 78-125 30 cis-1,2-Dichloroethene 0.0427 0.200 ug/L 30 80-121 30 80-121 30 Chloroform 0.0273 0.200 ug/L 30 80-122 30 80-122 30 Bromochloromethane 0.0607 0.200 ug/L 30 80-121 30 80-121 30 1,1,1-Trichloroethane 0.0408 0.200 ug/L 30 79-123 30 30 79-123 1.1-Dichloropropene 0.0340 30 30 0.200 ug/L 80-120 80-120 30 Carbon tetrachloride 0.0439 0.200 ug/L 30 53-137 30 30 53-137 1,2-Dichloroethane 0.0717 0.200 ug/L 30 75-123 30 75-123 30 Benzene 0.0266 30 0.200 ug/L 80-120 30 80-120 30 Trichloroethene 0.0489 0.200 ug/L 30 80-120 30 80-120 30 0.200 ug/L 30 30 1.2-Dichloropropane 0.0352 80-120 80-120 30 Bromodichloromethane 0.0506 0.200 ug/L 30 80-121 30 80-121 30 Dibromomethane 0.145 0.200 ug/L 30 80-120 30 80-120 30 2-Chloroethyl vinyl ether 0.250 1.00 ug/L 30 74-127 30 74-127 30 4-Methyl-2-Pentanone 0.974 5.00 ug/L 30 67-133 30 67-133 30 cis-1,3-Dichloropropene 0.0610 0.200 ug/L 30 80-124 30 80-124 30 Toluene 30 0.0399 0.200 ug/L 80-120 30 80-120 30 trans-1,3-Dichloropropene 0.0815 0.200 ug/L 30 30 30 71-127 71-127 2-Hexanone 0.902 5.00 ug/L 30 69-133 30 30 69-133 1,1,2-Trichloroethane 0.129 30 30 0.200 ug/L 80-121 30 80-121 30 1,3-Dichloropropane 0.0622 0.200 ug/L 80-120 30 80-120 30 Tetrachloroethene 0.0474 0.200 ug/L 30 30 80-120 80-120 30 Dibromochloromethane 0.0481 0.200 ug/L 30 65-135 30 65-135 30 1,2-Dibromoethane 0.0745 0.200 ug/L 30 30 30 80-121 80-121 Chlorobenzene 0.0230 30 0.200 ug/L 80-120 30 80-120 30 Ethylbenzene 0.0371 0.200 ug/L 30 80-120 30 80-120 30 1,1,1,2-Tetrachloroethane 0.0396 0.200 ug/L 30 80-120 30 80-120 30 m,p-Xylene 0.0522 0.400 ug/L 30 80-121 30 80-121 30 o-Xylene 30 0.0349 0.200 ug/L 80-121 30 80-121 30 Xylenes, total 0.0871 0.600 ug/L 30 76-127 30 76-127 30 Styrene 0.0454 0.200 ug/L 30 80-124 30 80-124 30 Bromoform 0.0618 0.200 ug/L 30 51-134 30 51-134 30 1,1,2,2-Tetrachloroethane 30 77-123 0.0598 0.200 ug/L 30 77-123 30 1,2,3-Trichloropropane 0.131 0.500 ug/L 30 76-125 30 30 76-125 trans-1,4-Dichloro 2-Butene 0.324 1.00 ug/L 30 55-129 30 30 55-129 n-Propylbenzene 0.0235 0.200 ug/L 30 78-130 30 30 78-130

Page 1 of 2 BCQ4: 06012

Analytical Method Information(Continued)

Printed: 07/13/2016 12:16 pm

8260C VOA in Water (EPA 8260C) (Continued)

Analyte	MDL	Reporting Limit	Surrogate %Rec	Duplicate RPD	Matrix %Rec	Spike RPD	Blank Spi %Rec	ke / LCS RPD
Bromobenzene	0.0605	0.200 ug/L	······	30	80-120	30	80-120	30
Isopropyl Benzene	0.0212	0.200 ug/L		30	80-128	30	80-128	30
2-Chlorotoluene	0.0236	0.200 ug/L		30	78-122	30	78-122	30
4-Chlorotoluene	0.0159	0.200 ug/L		30	80-121	30	80-121	30
t-Butylbenzene	0.0256	0.200 ug/L		30	78-125	30	78-125	30
1,3,5-Trimethylbenzene	0.0150	0.200 ug/L		30	80-129	30	80-129	30
1,2,4-Trimethylbenzene	0.0243	0.200 ug/L		30	80-127	30	80-127	30
s-Butylbenzene	0.0237	0.200 ug/L		30	78-129	30	78-129	30
4-Isopropyl Toluene	0.0263	0.200 ug/L		30	79- 130	30	79-130	30
1,3-Dichlorobenzene	0.0362	0.200 ug/L		30	80-120	30	80-120	30
1,4-Dichlorobenzene	0.0397	0.200 ug/L		30	80-120	30	80-120	30
n-Butylbenzene	0.0248	0.200 ug/L		30	74-129	30	74-129	30
1,2-Dichlorobenzene	0.0365	0.200 ug/L		30	80-120	30	80-120	30
1,2-Dibromo-3-chloropropane	0.366	0.500 ug/L		30	62-123	30	62-123	30
1,2,4-Trichlorobenzene	0.107	0.500 ug/L		30	64-124	30	64-124	30
Hexachloro-1,3-Butadiene	0.0734	0.500 ug/L		30	58-123	30	58-123	30
Naphthalene	0.118	0.500 ug/L		30	50-134	30	50-134	30
1,2,3-Trichlorobenzene	0.110	0.500 ug/L		30	49-133	30	49-133	30
Dichlorodifluoromethane	0.0521	0.200 ug/L		30	48-147	30	48-147	30
Methyl tert-butyl Ether	0.0729	0.500 ug/L		30	71-132	30	71-132	30
n-Hexane	0.100	0.200 ug/L		30	70-130	30	70-130	30
2-Pentanone	5.00	5.00 ug/L		30	69-134	30	69-134	30
Surr: Dibromofluoromethane			80-120					
Surr: 1,2-Dichloroethane-d4			80-129					
Surr: Toluene-d8			80-120					
Surr: 4-Bromofluorobenzene			80-120					
Surr: 1,2-Dichlorobenzene-d4			80-120					

Pentafluorobenzene Chlorobenzene-d5 1,4-Difluorobenzene 1,4-Dichlorobenzene-d4

> Page 2 of 2 BCG4:00013

Analytical Method Information

TPH NW (Extractables) in Water (NWTPH-Dx)

Preservation: Cool <6°C

Container: Glass NM, Amber, 500 mL Amount Required: 1000 mL Hold Time: 7 days

Printed: 07/13/2016 12:17 pm

		Reporting	Surrogate	Duplicate	Matrix Spike		Blank Spike / LCS	
Analyte	MDL	Limit	%Rec	RPD	%Rec	RPD	%Rec	RPD
Diesel Range Organics (C12-C24)	0.0330	0.100 mg/L		30	70-120	30	70-120	30
Diesel Range Organics (C10-C25)	0.0390	0.100 mg/L		30	75-125	30	75-125	30
Diesel Range Organics (Tol-C18)	0.0500	0.100 mg/L		30	30-160	30	30-160	30
Diesel Range Organics (C10-24)	0.0500	0.100 mg/L		30	30-160	30	30-160	30
Diesel Range Organics (C10-C28)	0.0500	0.100 mg/L		30	30-160	30	30-160	30
Diesel Range Organics (C12-C22)	0.0500	0.100 mg/L		30	30-160	30	30-160	30
Motor Oil Range Organics (C24-C38)	0.0560	0.200 mg/L		30		30		30
Motor Oil Range Organics (C25-C36)	0.0650	0.200 mg/L		30		30		30
Motor Oil Range Organics (C24-C40)	0.100	0.200 mg/L		30		30		30
Residual Range Organics (C23-C32)	0.100	0.200 mg/L		30		30		30
Mineral Spirits Range Organics	0.100	0.200 mg/L		30		30		30
(Tol-C12)		<u></u>						
Mineral Oil Range Organics (C16-C28)	0.100	0.200 mg/L		30		30		30
Kerosene Range Organics (Tol-C18)	0.0500	0.100 mg/L		30		30		30
JP8 Range Organics (C8-C18)	0.0500	0.100 mg/L		30		30		30
JP5 Range Organics (C10-C16)	0.0500	0.100 mg/L		30		30		30
JP4 Range Organics (Tol-C14)	0.0500	0.100 mg/L		30		30		30
Jet-A Range Organics (C10-C18)	0.0500	0.100 mg/L		30		30		30
Creosote Range Organics (C12-C22)	0.0500	0.100 mg/L		30		30		30
Bunker C Range Organics (C10-C38)	0.0500	0.100 mg/L		30		30		30
Stoddard Range Organics (C8-C12)	0.0500	0.100 mg/L		30		30		30
Transformer Oil Range Organics	0.0500	0.100 mg/L		30		30		30
(C12-C28)		_						
Surr: o-Terphenyl			50-150					
Surr: n-Triacontane			50-150					

Page 1 of 1 BCQU: @@@1U

Analytical Method Information

Printed: 07/13/2016 12:17 pm

8270D-SIM PAH (0.1 ug/L or 5 ug/kg) in Water (EPA 8270D-SIM)

Preservation: Cool <6°C

Container: Glass NM, Amber, 500 mL **Amount Required: 1000** Hold Time: 7 days

	MBI	Reporting	Surrogate Duplic				ikeBlank Spike / LCS	
Analyte	MDL	Limit	%Rec	RPD	%Rec	RPD	%Rec	RPD
Naphthalene	0.0296	0.100 ug/L		30	33-120	30	33-120	30
2-Methylnaphthalene	0.0302	0.100 ug/L		30	29-120	30	29-120	30
1-Methylnaphthalene	0.0289	0.100 ug/L		30	37-120	30	37-120	30
Biphenyl				30	30-160	30	30-160	40
2,6-Dimethylnaphthalene				30	30-160	30	30-160	40
Acenaphthylene	0.0380	0.100 ug/L		30	32-120	30	32-120	30
Acenaphthene	0.0304	0.100 ug/L		30	38-120	30	38-120	30
Dibenzofuran	0.0280	0.100 ug/L		30	38-120	30	38-120	30
2,3,5-Trimethylnaphthalene				30				
Fluorene	0.0278	0.100 ug/L		30	41-120	30	41-120	30
Dibenzothiophene				30				
Phenanthrene	0.0279	0.100 ug/L		30	49-120	30	49-120	30
Anthracene	0.0352	0.100 ug/L		30	39-120	30	39-120	30
Carbazole				30	30-160	30	30-160	40
1-Methylphenanthrene				30	30-160	30	30-160	40
Fluoranthene	0.0347	0.100 ug/L		30	48-120	30	48-120	30
Pyrene	0.0434	0.100 ug/L		30	48-120	30	48-120	30
Benzo(a)anthracene	0.0399	0.100 ug/L		30	37-120	30	37-120	30
Chrysene	0.0321	0.100 ug/L		30	48-120	30	48-120	30
Benzo(b)fluoranthene	0.0417	0.100 ug/L		30	38-128	30	38-128	30
Benzo(k)fluoranthene	0.0433	0.100 ug/L		30	36-130	30	36-130	30
Benzo(j)fluoranthene	0.0376	0.100 ug/L		30	49-120	30	49-120	30
Benzo(e)pyrene				30	30-160	30	30-160	30
Benzo(a)pyrene	0.0429	0.100 ug/L		30	25-120	30	25-120	30
Perylene	0.0420	0.100 ug/L		30	30-160	30	30-160	30
Indeno(1,2,3-cd)pyrene	0.0422	0.100 ug/L		30	32-120	30	32-120	30
Dibenzo(a,h)anthracene	0.0535	0.100 ug/L		30	21-120	30	21-120	30
Benzo(g,h,i)perylene	0.0388	0.100 ug/L		30	28-120	30	28-120	30
Benzofluoranthenes, Total	0.0850	0.200 ug/L		30	46-120	30	46-120	30
Surr: 2-Methylnaphthalene-d10			31-120					
Surr: Dibenzo[a,h]anthracene-d14			10-125					

46-121

Surr: Fluoranthene-d10

Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12

BCQU: 00015

Volatile Analysis Report and Summary QC Forms

ARI Job ID: BCQ4

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: MW-6

Page 1 of 1 SAMPLE

Lab Sample ID: BCQ4A LIMS ID: 16-9825

Matrix: Water

Data Release Authorized: WW

Date Analyzed: 07/05/16 14:17

Reported: 07/08/16
Instrument/Analyst: NT2/ML

QC Report No: BCQ4-AECOM

Project: Laurel Station

#

Date Sampled: 06/27/16 Date Received: 06/28/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	U	
108-88-3	Toluene	0.20	< 0.20	U	
100-41-4	Ethylbenzene	0.20	< 0.20	U	
179601-23-1	m,p-Xylene	0.40	< 0.40	U	
95-47-6	o-Xylene	0.20	< 0.20	U	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene 93.0% Bromofluorobenzene 96.8%

FORM I BCQU: 00017

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: DUP
Page 1 of 1 SAMPLE

Lab Sample ID: BCQ4B LIMS ID: 16-9826

Matrix: Water

Data Release Authorized: WW

Date Analyzed: 07/05/16 14:37

Instrument/Analyst: NT2/ML

Reported: 07/08/16

· Mw

Date Sampled: 06/27/16 Date Received: 06/28/16

QC Report No: BCQ4-AECOM

Project: Laurel Station

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene	0.20 0.20 0.20	< 0.20 < 0.20 < 0.20	U U	
179601-23-1 95-47-6	m,p-Xylene o-Xylene	0.40 0.20	< 0.40 < 0.20	Ü	
	Reported in $\mu g/L$ (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	95.0%
Bromofluorobenzene	97.8%

FORM I BCQ4:00018

RESOURCES INCORPORATED

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water QC Report No: BCQ4-AECOM

(DCE) = d4-1, 2-Dichloroethane

(TOL) = d8-Toluene
(BFB) = Bromofluorobenzene
(DCB) = d4-1,2-Dichlorobenzene

(TOL) = d8-Toluene

Project: Laurel Station

(80-129)

(80-120)

(80-120)

(80-120)

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-070516A	Method Blank	10	NA	92.2%	96.6%	NA	0
LCS-070516A	Lab Control	10	NA	99.8%	100%	NA	0
LCSD-070516A	Lab Control Dup	10	NA	98.0%	101%	NA	Ö
BCQ4A	MW-6	10	NA	93.0%	96.8%	NA	0
BCQ4AMS	MW-6	10	NA	103%	98.8%	NA	0
BCQ4AMSD	MW-6	10	NA	98.4%	99.6%	NA	0
BCQ4B	DUP	10	NA	95.0%	97.8%	NA	0
		LCS	/MB LIM	ITS		QC LIMI	TS
SWB260C						-	

Prep Method: SW5030B

Log Number Range: 16-9825 to 16-9826

(80-129)

(80-120)

(80-120)

(80-120)

BCQU: 00019

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: MW-6
Page 1 of 1 MATRIX SPIKE

Lab Sample ID: BCQ4A

LIMS ID: 16-9825 Matrix: Water

Data Release Authorized:

Reported: 07/08/16

Instrument/Analyst MS: NT2/ML

MSD: NT2/ML

Date Analyzed MS: 07/05/16 17:01

MSD: 07/05/16 17:21

QC Report No: BCQ4-AECOM

Project: Laurel Station

#

Date Sampled: 06/27/16

Date Received: 06/28/16

Sample Amount MS: 10.0 mL

MSD: 10.0 mL

Purge Volume MS: 10.0 mL

MSD: 10.0 mL

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Benzene	< 0.20 U	7.85	7.33	107%	7.69	7.33	105%	2.1%
Toluene	< 0.20 U	58.7	53.1	111%	57.9	53.1	109%	1.4%
Ethylbenzene	< 0.20 U	14.5	13.6	107%	15.0	13.6	110%	3.4%
m,p-Xylene	< 0.40 U	48.4	43.4	112%	49.9	43.4	115%	3.1%
o-Xylene	< 0.20 U	19.2	16.9	114%	19.6	16.9	116%	2.1%
		Report	ted in µg,	/L (ppb)				
Gasoline Range Hydrocarbons	< 0.10 U	1.09	1.00	109%	1.06	1.00	106%	2.8%
		Donort	-od in ma	/T / nnm \				

Reported in mg/L (ppm)

RPD calculated using sample concentrations per SW846.

FORM III

BCQU: 00020

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: MW-6
Page 1 of 1 MATRIX SPIKE

Lab Sample ID: BCQ4A QC Report No: BCQ4-AECOM Project: Laurel Station

Matrix: Water

Data Release Authorized: Date Sampled: 06/27/16
Reported: 07/08/16
Date Received: 06/28/16

Instrument/Analyst: NT2/ML Sample Amount: 10.0 mL Date Analyzed: 07/05/16 17:01 Purge Volume: 10.0 mL

CAS Number	Analyte	roo	Result Q
71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	0.20 0.20 0.20 0.40 0.20	
	Reported in µg/L (ppb)		
86290-81-5	Gasoline Range Hydrocarbons	0.10	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene 103% Bromofluorobenzene 98.8%

FORM I BCQU: 00021

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1 MATRIX SPIKE DUP

Lab Sample ID: BCQ4A LIMS ID: 16-9825

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT2/ML

Date Analyzed: 07/05/16 17:21

Reported: 07/08/16

QC Report No: BCQ4-AECOM
Project: Laurel Station

- #

Date Sampled: 06/27/16 Date Received: 06/28/16

Sample ID: MW-6

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result Q
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene	0.20 0.20 0.20	
179601-23-1 95-47-6	m,p-Xylene o-Xylene	0.40 0.20	
	Reported in $\mu g/L$ (ppb)		
86290-81-5	Gasoline Range Hydrocarbons	0.10	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	98.4%
Bromofluorobenzene	99.6%

FORM I BCQU: 2222

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: LCS-070516A
Page 1 of 1
LAB CONTROL SAMPLE

Lab Sample ID: LCS-070516A

LIMS ID: 16-9825

Matrix: Water

Data Release Authorized: WW Reported: 07/08/16

Instrument/Analyst LCS: NT2/ML LCSD: NT2/ML

Date Analyzed LCS: 07/05/16 08:41 LCSD: 07/05/16 09:01

QC Report No: BCQ4-AECOM

Project: Laurel Station

#

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD	
Benzene	6.55	7.33	89.4%	7.20	7.33	98.2%	9.5%	_
Toluene	49.5	53.1	93.2%	53.7	53.1	101%	8.1%	
Ethylbenzene	12.7	13.6	93.4%	14.1	13.6	104%	10.4%	
m,p-Xylene	42.7	43.4	98.4%	46.7	43.4	108%	8.9%	
o-Xylene	16.9	16.9	100%	18.6	16.9	110%	9.6%	
	Repor	ted in µg/	'L (ppb)					
Gasoline Range Hydrocarbons	1.09	1.00	109%	1.11	1.00	111%	1.8%	
	Repor	ted in ma/	(I. (npm)					

7

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d8-Toluene	99.8%	98.0%
Bromofluorobenzene	100%	101%

FORM III

4A VOLATILE METHOD BLANK SUMMARY

MB0705

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Lab File ID: 07051607 Lab Sample ID: MB0705

Date Analyzed: 07/05/16 Time Analyzed: 1002

Instrument ID: NT2 Heated Purge: (Y/N) N

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	ı 			
	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	===========	=========	=========	========
01	scv	SEF0063-SCV1	06151612	1137
02	GICVLCS	GICV/LCS	07051603	0841
03	GLCSD	GLCSD	07051604	0901
04	MW-6	BCQ4A	07051619	1417
		DCQ4A		
05	DUP	BCQ4B	07051620	1437
	MW-6 MS	BCQ4AMS	07051627	1701
07	MW-6 MSD	BCQ4AMSD	07051628	1721
80				
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25			-	
26				
27				
28				
29				
30				

COMMENTS:		
	 * .	

page 1 of 1

FORM IV VOA

OLM3.2M

BEQU: 0002H

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: MB-070516A

Page 1 of 1 METHOD BLANK

Lab Sample ID: MB-070516A

LIMS ID: 16-9825

Matrix: Water

Data Release Authorized:

Reported: 07/08/16

Instrument/Analyst: NT2/ML Date Analyzed: 07/05/16 10:02 QC Report No: BCQ4-AECOM

Project: Laurel Station

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	TOŌ	Result	Q	TPHG ID
71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	0.20 0.20 0.20 0.40 0.20	< 0.20 < 0.20 < 0.20 < 0.40 < 0.20	U U U	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	92.2%
Bromofluorobenzene	96.6%

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: ARI Contract: AECOM

Lab File ID: 06151602 BFB Injection Date: 06/15/16

Instrument ID: NT2 BFB Injection Time: 0759

GC Column: RTXVMS ID: 0.18 (mm)

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	21.1 53.6 100.0 7.1 0.0 (0.0)1 85.2 6.4 (7.6)1 83.6 (98.0)1 5.7 (6.8)2
1	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	1	7.35	T 3 T3	73.70	TTT ATT
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		========	=========	========	=======
01	VSTD0.1	SEF0063-CAL1	06151603	06/15/16	0833
02	VSTD0.2	SEF0063-CAL2	06151604	06/15/16	0853
03	VSTD0.5	SEF0063-CAL3	06151605	06/15/16	0914
04	VSTD80	SEF0063-CAL9	06151606	06/15/16	0934
05	VSTD40	SEF0063-CAL8	06151607	06/15/16	0955
06	VSTD20	SEF0063-CAL7	06151608	06/15/16	1015
07	VSTD10	SEF0063-CAL6	06151609	06/15/16	1036
08	VSTD02	SEF0063-CAL5	06151610	06/15/16	1056
09	VSTD01	SEF0063-CAL4	06151611	06/15/16	1117
10	SCV	SEF0063-SCV1	06151612	06/15/16	1137
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

page 1 of 1 FORM V VOA OLM3.2M

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: ARI Contract: AECOM

Lab File ID: 07051602 BFB Injection Date: 07/05/16

Instrument ID: NT2 BFB Injection Time: 0759

GC Column: RTXVMS ID: 0.18 (mm)

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	22.6 53.2 100.0 7.2 0.2 (0.3)1 85.0 6.1 (7.2)1 81.8 (96.3)1 5.9 (7.2)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	=========	========	=========	=======
01	GICVLCS	GICV/LCS	07051603	07/05/16	0841
02	GICVLCS	GICV/LCS	07051603ICV	07/05/16	0841
03	GLCSD	GLCSD	07051604	07/05/16	0901
04	MB0705	MB0705	07051607	07/05/16	1002
05	MW-6	BCQ4A	07051619	07/05/16	1417
06	DUP	BCQ4B	07051620	07/05/16	1437
07	MW-6 MS	BCQ4AMS	07051627	07/05/16	1701
	MW-6 MSD	BCQ4AMSD	07051628	07/05/16	1721
09	GASCCV	GASCCV	07051631	07/05/16	1822
10					
11					
12					
13		<u> </u>	:		
14					
15					
16					
17					
18					
19					
20			·		

page 1 of 1 FORM V VOA OLM3.2M

BCQU: 00027

FORM 6 VOLATILE INITIAL CALIBRATION DATA

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT2 Calibration Date: 06/15/16

LAB FILE ID: RF0.2: 06151604 RF0.5: 06151605 RF1: 06151611

RF2: 06151610 RF10: 06151609

COMPOUND	RF0.2	RF0.5	RF1	RF2	RF10
Benzene	1.642	1.537 0.962	1.525 0.951	1.365	1.530
Ethyl Benzene m,p-xylene o-Xylene	0.594 0.703 0.648	0.593 0.694 0.612	0.618 0.759 0.687	0.558 0.686 0.635	0.657 0.808 0.753
d4-1,2-Dichloroethane d8-Toluene	0.475 1.205	0.498 1.212	0.507 1.161	0.511 1.153	0.508 1.167
4-Bromofluorobenzene d4-1,2-Dichlorobenzene Dibromofluoromethane	0.356 0.916 0.420	0.367 0.912 0.429	0.385 0.909 0.437		0.377 0.948 0.467
	0.420	0.42)	0.43/	0.437	0.407

FORM VI VOA

FORM 6 VOLATILE INITIAL CALIBRATION DATA

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT2 Calibration Date: 06/15/16

LAB FILE ID: RF20: 06151608 RF40: 06151607 RF80: 06151606

RF0.1: 06151603

1 2				
COMPOUND	RF20	RF40	RF80	RF0.1
	======	======	======	======
Benzene	1.525	1.399	1.478	
Toluene	0.954	0.881	0.996	
Ethyl Benzene	0.649	0.583	0.704	
m,p-xylene	0.807	0.736	0.801	
o-Xylene	0.755	0.675	0.793	
=======================================	======	======	======	======
d4-1,2-Dichloroethane	0.491	0.496	0.474	0.488
d8-Toluene	1.186	1.241	1.203	1.133
4-Bromofluorobenzene	0.374	0.368	0.347	0.353
d4-1,2-Dichlorobenzene	0.926	0.938	0.946	0.895
Dibromofluoromethane	0.468	0.487	0.498	0.440

FORM VI VOA

BCQU: Ø@@29

FORM 6 VOLATILE INITIAL CALIBRATION DATA

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT2 Calibration Date: 06/15/16

COMPOUND	CURVE TYPE	AVE RF	%RSD OR R^2
=======================================	=====	=====	======
Benzene	AVRG	1.500	5.8
Toluene	AVRG	0.948	6.2
Ethyl Benzene	AVRG	0.620	7.7
m,p-xylene	AVRG	0.749	7.0
o-Xylene	AVRG	0.695	9.4
	=====	======	======
d4-1,2-Dichloroethane	AVRG	0.494	2.8
d8-Toluene	AVRG	1.184	2.9
4-Bromofluorobenzene	AVRG	0.368	3.7
d4-1,2-Dichlorobenzene	AVRG	0.929	1.6
Dibromofluoromethane	AVRG	0.454	6.0
Tedicatos realiza sutai	<u> </u>	imita.	

FORM VI VOA

BCQ4: BBBBB

ба 8260 GAS INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: AECOM

Instrument: NT2.I Project: Laurel Station

Calibration Date: 29-MAR-2016 SDG No.: BCQ4

Gas Range	RF1 0.1	RF2 0.25	RF3 0.5	RF4 1.0	RF5 2.5	RF6 5	Ave RF	%RSD
WA Gas	38501187	48112079	49111625	51185622	51287480	49855104	48008849	10.0
AK Gas	49662511	59116003	59473285	60464211	61192091	62329725	58706304	7.8
NW Gas	39259679	48930855	50264215	52493344	52751277	51520615	49203331	10.3
8015Gas	71404863	82873502	83743651	85008808	87381849	88932569	83224207	7.5

<- Indicates %RSD outside limits Surrogate areas are not included in RF calculation. Surrogate calibration is from BETX curve files.

Quant Ranges :

WA Gas Toluene - nC12
AK Gas nC6 - nC10
NW Gas Toluene - Naphthalene
Cal Gas nC6 - nC12

8015 Gas 2-Methylpentane - 1,2,4-Trimethylbenzene

Gas Cal. Files	Analysis Time
03291624.D	29-MAR-2016 22:32
03291623.D	29-MAR-2016 22:11
03291622.D	29-MAR-2016 21:50
03291621.D	29-MAR-2016 21:28
03291620.D	29-MAR-2016 21:07
03291619.D	29-MAR-2016 20:45

p1 of 1

FORM VI-GAS

7A

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT2 Cont. Calib. Date: 07/05/16

Init. Calib. Date: 06/15/16 Cont. Calib. Time: 0841

	CalAmt CC Amt MIN CURVE %D or
COMPOUND	or ARF or RF RRF TYPE Drift
======================================	: ======
Benzene	7.327 6.554 0.010 AVRG -10.5
Toluene	53.08 49.520 0.010 AVRG -6.71
Ethyl Benzene	13.62 12.703 0.010 AVRG -6.76
m,p-xylene	43.36 42.728 0.010 AVRG -1.45
o-Xylene	16.87 16.944 0.010 AVRG .46
	===== ===== ===== =====
d4-1,2-Dichloroethane	0.494 0.5520 0.010 AVRG 11.7
d8-Toluene	1.184 1.1813 0.010 AVRG -0.2
4-Bromofluorobenzene	0.368 0.3680 0.010 AVRG 0.0
d4-1,2-Dichlorobenzene	0.925 0.9432 0.010 AVRG 2.0
Dibromofluoromethane	0.454 0.4612 0.010 AVRG 1.6
I	

<- Exceeds QC limit of 20% D

FORM VII VOA

^{*} RF less than minimum RF

7A

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT2 Cont. Calib. Date: 07/05/16

	CalAmt CC Amt MIN CURVE %D or
COMPOUND	or ARF or RF RRF TYPE Drift
=======================================	= ===== ===== ===== =====
Benzene	7.327 7.427 0.010 AVRG 1.37
Toluene	53.083 56.451 0.010 AVRG 6.34
Ethyl Benzene	- 13.623 13.292 0.010 AVRG -2.43
m,p-xylene	43.355 44.775 0.010 AVRG 3.27
o-Xylene	16.867 17.615 0.010 AVRG 4.44
======================================	- - - - - - - - - - - - - - - - - - -
d4-1,2-Dichloroethane	0.494 0.6031 0.010 AVRG 22.1 <
d8-Toluene	1.184 1.2570 0.010 AVRG 6.2
4-Bromofluorobenzene	0.368 0.3696 0.010 AVRG 0.4
d4-1,2-Dichlorobenzene	0.925 0.9303 0.010 AVRG 0.6
Dibromofluoromethane	_ 0.454 0.4729 0.010 AVRG 4.2
l	

<- Exceeds QC limit of 20% D

FORM VII VOA

^{*} RF less than minimum RF

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT2 Project Run Date: 06/15/16

	IS1(PFB) AREA #	RT #	IS2(DFB) AREA #	RT #	IS3(CLB) AREA #	RT #
ICAL MIDPT	247878	5.33	400954	5.71	354752	7.78
UPPER LIMIT	495756 123939	5.83 4.83	801908 200477	6.21 5.21	709504 177376	8.28 7.28
Sample ID						======
01 SCV 02	239851	5.33	396595	5.72	360400	7.78
03 04						
05 06						
07 08						
09						
11						
13						
15						
17			***************************************			
19						
21						
10						

IS1 (PFB) = Pentafluorobenzene IS2 (DFB) = 1,4-Difluorobenzene IS3 (CLB) = d5-Chlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

page 1 of 2

FORM VIII VOA OLM3.2M

BCOU: 00034

Lab Name: ARI

Client: AECOM

ARI Job No: BCO4

Project: LAUREL STATION

Ical Midpoint ID: 06151609

Ical Date: 06/15/16

Instrument ID: NT2

Project Run Date: 06/15/16

		IS4 (DCB)									-1
		AREA #	RT	#	AREA	#	RT	#	AREA #	RT :	#
	=======================================	=======	=====	==	=======	==	=====	==	========	=====	=
	ICAL MIDPT	191489	9.48	8				_			_
	UPPER LIMIT	382978	9.9								_
	LOWER LIMIT	95745	8.9	!				_			_[
		=======	=====	==	=======	==	=====	=	=======	=====	=
	Sample ID									•	
01	SCV	191196	9.4		=======	==	=====	=	==== ====	======	=
02	DCV	151150	J '	۱				_			-
03						—		_			-
04				_	-			_	-		-
05											
06						_		_			
07								_			_
08 09								_			_
10								_			-
11				-				_			-[
12				-					ļ — — — — — — — — — — — — — — — — — — —		-
13				-				_			-
14								_			-
15					-			_			_
16								_			_
17								_			_
18								_			_
19 20								_			-
21		-				—		_			-
22				-			-	_			-
			I	I						1	_

IS4 (DCB) = d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = -0.50 minutes of internal standard RT from Ical midpoint

page 2 of 2

FORM VIII VOA

OLM3.2M

BCQU: BQQB5

^{*} Values outside of QC limits.

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT2 Project Run Date: 07/05/16

1	ΤŦ	S1 (PFB)		IS2 (DFB)		IS3 (CLB)	
	1	AREA #	RT		# RT #		RT #
	_	=======	=====		= ======		======
ICAL MII)PT	247878	5.33	400954	5.71	354752	7.78
UPPER LI	I	495756	5.83	801908		709504	8.28
LOWER LI	TIM	123939	4.83	200477	5.21	177376	7.28
========	:=== ==	=======	=====	= =======	= ======	========	-
Sample I	D				ĺ		
========	- 1	======	=====	= =======	= ======	========	======
01 GICVLCS		324623	5.33	547772	5.72	490480	7.78
02 GLCSD		302791	5.33	519136	5.72	455968	7.78
03 MB0705		274823	5.33	487209		420963	7.78
04 MW-6		247319	5.33	443731	5.71	385625	7.78
05 DUP		237690	5.33	413785		371210	7.78
06 MW-6 MS		295310	5.33	489557	5.72	449582	7.78
07 MW-6 MSD		287993	5.33	494346	5.72	432033	7.78
08	_				_ -		·
09					_ -		
11	—— <u> </u> —						l -
12							ļ
13					_		
14				_	_		
15				_	_		
16							
17	_	·-			_		
18				-			
19							
20		·					
21							
22							

IS1 (PFB) = Pentafluorobenzene IS2 (DFB) = 1,4-Difluorobenzene IS3 (CLB) = d5-Chlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = -0.50 minutes of internal standard RT from Ical midpoint

* Values outside of QC limits.

page 1 of 2

FORM VIII VOA

OLM3.2M

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT2 Project Run Date: 07/05/16

		IS4 (DCB)			1	1	1
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	========	========	======	=======	======	========	=====
	ICAL MIDPT	191489	9.48				
	UPPER LIMIT	382978	9.98				
	LOWER LIMIT	95745	8.98		.		
	======================================	=======	======	=======	======	========	======
	Sample ID						
01	GICVLCS	249630	9.48	=======	======	=======	=====
02	GLCSD	238586	9.48		·	ļ	
03	MB0705	209386	9.48		·		
04	MW-6	190578	9.48				
05	DUP	182051	9.48				
	MW-6 MS	230139	9.48				
07	MW-6 MSD	211954	9.48		.		
80					.		
09				-	-		
10 11					-		
12					·		<u> </u>
13					-		
14							
15							
16					1		
17							
18							
19							
20					.[
21				-	.		
22					.	 	ll

IS4 (DCB) = d4-1,4-Dichlorobenzene

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Ical midpoint RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Ical midpoint

page 2 of 2

FORM VIII VOA OLM3.2M

^{*} Values outside of QC limits.

8 BETX/GAS ANALYTICAL SEQUENCE

Lab Name: ARI Client: AECOM

SDG No.: BCQ4 Project: Laurel Station

Instrument ID: NT2 GC Detector: RTXVMS

Run Date: 03/29/16

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	METHOD	SURROGATE RT	<u>.</u>	
	S1 : 8.65	S2 : 4.9	95	
	CLIENT	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED
	========	=======================================	=== == =====	
01	RTBFB0329	SEC0063-TUN1	03/29/16	1131
02	GSTD5	SEC0063-CALE	03/29/16	2045
03	GSTD2.5	SEC0063-CALD	03/29/16	2107
04	GSTD1	SEC0063-CALC	03/29/16	2128
05	GSTD0.5	SEC0063-CALB	03/29/16	2150
06	GSTD0.25	SEC0063-CALA	03/29/16	2211
07	GSTD0.1	SEC0063-CAL9	03/29/16	2232
80	GSCV	SEC0063-SCV2	03/29/16	2254

page 1 of 1

SIM PAH Analysis Report and Summary QC Forms

ARI Job ID: BCQ4

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: BCQ4A

LIMS ID: 16-9825

Matrix: Water Data Release Authorized:

Reported: 07/06/16

Date Extracted: 06/29/16

Date Analyzed: 07/01/16 19:29 Instrument/Analyst: NT8/JZ

Sample ID: MW-6 SAMPLE

QC Report No: BCQ4-AECOM

Project: Laurel Station

Event: NA

Date Sampled: 06/27/16 Date Received: 06/28/16

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
91-20-3	Naphthalene	0.10	0.22
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86 - 73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
50 - 32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U
TOTBFA	Total Benzofluoranthenes	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

" " " " " " " " " " " " " " " " " " " "	
d10-Fluoranthene	86.3%
d10-2-Methylnaphthalene	63.3%
d14-Dibenzo(a,h)anthracene	103%

FORM I BCOH: 00010

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: BCQ4B LIMS ID: 16-9826

Matrix: Water

Data Release Authorized: Reported: 07/06/16

B

QC Report No: BCQ4-AECOM
Project: Laurel Station

Sample ID: DUP

SAMPLE

Event: NA

Date Sampled: 06/27/16 Date Received: 06/28/16

Date Extracted: 06/29/16 Sample Amount: 500 mL
Date Analyzed: 07/01/16 20:47 Final Extract Volume: 0.5 mL
Instrument/Analyst: NT8/JZ Dilution Factor: 1.00

CAS Number	Analyte	ΓΟŌ	Result
91-20-3	Naphthalene	0.10	0.15
91 - 57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56 - 55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U
TOTBFA	Total Benzofluoranthenes	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-Fluoranthene	96.3%
d10-2-Methylnaphthalene	75.0%
d14-Dibenzo(a,h)anthracene	100%

FORM I BCQU: 000U1

SIM SW8270 SURROGATE RECOVERY SUMMARY

QC Report No: BCQ4-AECOM Project: Laurel Station Matrix: Water

Client ID	FLN	MNP	DBA	TOT OUT
MB-062916	96.3%	75.0%	119%	0
LCS-062916	90.0%	74.3%	110%	ŏ
LCSD-062916	84.3%	60.3%	103%	0
MW-6	86.3%	63.3%	103%	0
MW-6 MS	95.7%	77.7%	113%	0
MW-6 MSD	88.3%	72.0%	91.3%	0
DUP	96.3%	75.0%	100%	0

QC LIMITS

(FLN)	=	d10-Fluoranthene	(46-121)
(MNP)	=	d10-2-Methylnaphthalene	(31-120)
(DBA)	=	d14-Dibenzo(a,h)anthracene	(10-125)

Prep Method: SW3520C

Log Number Range: 16-9825 to 16-9826

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: BCQ4A

LIMS ID: 16-9825 Matrix: Water

Data Release Authorized:

Reported: 07/06/16

Date Extracted MS/MSD: 06/29/16

Date Analyzed MS: 07/01/16 19:55

MSD: 07/01/16 20:21

Instrument/Analyst MS: NT8/JZ

MSD: NT8/JZ

Sample ID: MW-6

MATRIX SPIKE

QC Report No: BCQ4-AECOM

Project: Laurel Station

Event: NA

Date Sampled: 06/27/16 Date Received: 06/28/16

Sample Amount MS: 500 mL

MSD: 500 mL

Final Extract Volume MS: 0.50 mL

MSD: 0.50 mL

Dilution Factor MS: 1.00

MSD: 1.00

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Naphthalene	0.22	2.55	3.00	77.7%	2.34	3.00	70.7%	8.6%
2-Methylnaphthalene	< 0.10 U	2.39	3.00	79.7%	2.15	3.00	71.7%	10.6%
1-Methylnaphthalene	< 0.10 U	2.46	3.00	82.0%	2.25	3.00	75.0%	8.9%
Acenaphthylene	< 0.10 U	2.42	3.00	80.7%	2.24	3.00	74.7%	7.7%
Acenaphthene	< 0.10 U	2.54	3.00	84.7%	2.34	3.00	78.0%	8.2%
Fluorene	< 0.10 U	2.62	3.00	87.3%	2.42	3.00	80.7%	7.9%
Phenanthrene	< 0.10 U	2.83	3.00	94.3%	2.69	3.00	89.7%	5.1%
Anthracene	< 0.10 U	2.80	3.00	93.3%	2.69	3.00	89.7%	4.0%
Fluoranthene	< 0.10 U	2.98	3.00	99.3%	2.84	3.00	94.7%	4.8%
Pyrene	< 0.10 U	3.04	3.00	101%	2.96	3.00	98.7%	2.7%
Benzo(a)anthracene	< 0.10 U	2.92	3.00	97.3%	2.69	3.00	89.7%	8.2%
Chrysene	< 0.10 U	2.94	3.00	98.0%	2.69	3.00	89.7%	8.9%
Benzo(a)pyrene	< 0.10 U	2.82	3.00	94.0%	2.52	3.00	84.0%	11.2%
Indeno(1,2,3-cd)pyrene	< 0.10 U	3.23	3.00	108%	2.65	3.00	88.3%	19.7%
Dibenz(a,h)anthracene	< 0.10 U	3.34	3.00	111%	2.75	3.00	91.7%	19.4%
Benzo(g,h,i)perylene	< 0.10 U	3.14	3.00	105%	2.62	3.00	87.3%	18.1%
Dibenzofuran	< 0.10 U	2.58	3.00	86.0%	2.34	3.00	78.0%	9.8%
Total Benzofluoranthenes	< 0.10 U	8.81	9.00	97.9%	7.68	9.00	85.3%	13.7%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

FORM III BCQ4:00043

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: BCQ4A

LIMS ID: 16-9825 Matrix: Water

Data Release Authorized:

Reported: 07/06/16

Date Extracted: 06/29/16

Date Analyzed: 07/01/16 19:55 Instrument/Analyst: NT8/JZ Sample ID: MW-6

MATRIX SPIKE

QC Report No: BCQ4-AECOM

Project: Laurel Station

Event: NA

Date Sampled: 06/27/16 Date Received: 06/28/16

Sample Amount: 500 mL

Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
91-20-3	Naphthalene	0.10	
91-57-6	2-Methylnaphthalene	0.10	
90-12-0	1-Methylnaphthalene	0.10	
208-96-8	Acenaphthylene	0.10	
83-32-9	Acenaphthene	0.10	
86-73-7	Fluorene	0.10	
85-01-8	Phenanthrene	0.10	
120-12-7	Anthracene	0.10	
206-44-0	Fluoranthene	0.10	
129-00-0	Pyrene	0.10	
56-55-3	Benzo(a)anthracene	0.10	
218 - 01-9	Chrysene	0.10	
50-32-8	Benzo(a)pyrene	0.10	
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	
53-70-3	Dibenz(a,h)anthracene	0.10	
191-24-2	Benzo(g,h,i)perylene	0.10	
132-64-9	Dibenzofuran	0.10	
TOTBFA	Total Benzofluoranthenes	0.10	

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-Fluoranthene	95.7%
d10-2-Methylnaphthalene	77.7%
d14-Dibenzo(a, h) anthracene	113%

FORM I 5CQ4:00044

MATRIX SPIKE DUPLICATE

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Data Release Authorized:

Page 1 of 1

Matrix: Water

LIMS ID: 16-9825

Reported: 07/06/16

Lab Sample ID: BCQ4A QC Report No: BCQ4-AECOM

Project: Laurel Station

Sample ID: MW-6

Event: NA

Date Sampled: 06/27/16 Date Received: 06/28/16

Date Extracted: 06/29/16 Sample Amount: 500 mL
Date Analyzed: 07/01/16 20:21 Final Extract Volume: 0.5 mL
Instrument/Analyst: NT8/JZ Dilution Factor: 1.00

CAS Number	Analyte	ΓΟŌ	Result
91-20-3	Naphthalene	0.10	
91-57-6	2-Methylnaphthalene	0.10	
90-12-0	1-Methylnaphthalene	0.10	
208-96 - 8	Acenaphthylene	0.10	
83-32-9	Acenaphthene	0.10	
86-73-7	Fluorene	0.10	
85-01-8	Phenanthrene	0.10	
120-12-7	Anthracene	0.10	
206-44-0	Fluoranthene	0.10	
129-00-0	Pyrene	0.10	
56-55-3	Benzo(a)anthracene	0.10	
218-01-9	Chrysene	0.10	
50-32-8	Benzo(a)pyrene	0.10	
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	
53-70 - 3	Dibenz(a,h)anthracene	0.10	
191-24-2	Benzo(g,h,i)perylene	0.10	
132-64-9	Dibenzofuran	0.10	
TOTBFA	Total Benzofluoranthenes	0.10	

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-Fluoranthene	88.3%
d10-2-Methylnaphthalene	72.0%
d14-Dibenzo(a,h)anthracene	91.3%

FORM I BCQU: 00045

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: LCS-062916

LAB CONTROL SAMPLE

Lab Sample ID: LCS-062916

LIMS ID: 16-9825

Matrix: Water Data Release Authorized:// Reported: 07/06/16

QC Report No: BCQ4-AECOM

Project: Laurel Station

Event: NA Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 06/29/16

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 07/01/16 18:37

Final Extract Volume LCS: 0.50 mL

LCSD: 07/01/16 19:03

LCSD: 0.50 mL Dilution Factor LCS: 1.00

Instrument/Analyst LCS: NT8/JZ

LCSD: 1.00

LCSD: NT8/JZ

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Naphthalene	2.25	3.00	75.0%	1.86	3.00	62.0%	10.00
2-Methylnaphthalene	2.23	3.00	76.0%	1.86	3.00		19.0%
1-Methylnaphthalene	2.26	3.00				62.0%	20.3%
2 4			78.3%	1.96	3.00	65.3%	18.1%
Acenaphthylene	2.24	3.00	74.7%	2.11	3.00	70.3%	6.0%
Acenaphthene	2.36	3.00	78.7%	2.20	3.00	73.3%	7.0%
Fluorene	2.51	3.00	83.7%	2.37	3.00	79.0%	5.7%
Phenanthrene	2.67	3,00	89.0%	2.60	3.00	B6.7%	2.7%
Anthracene	2.65	3.00	88.3%	2,42	3.00	80.7%	9.1%
Fluoranthene	2.85	3.00	95.0%	2.77	3.00	92.3%	2.8%
Pyrene	2.99	3,00	99.7%	2.80	3.00	93.3%	6.6%
Benzo(a)anthracene	2.80	3.00	93.3%	2.67	3.00	89.0%	4.8%
Chrysene	2.83	3.00	94.3%	2.75	3.00	91.7%	2.9%
Benzo(a)pyrene	2.59	3.00	86.3%	2.41	3.00	80.3%	7.2%
Indeno(1,2,3-cd)pyrene	3.13	3.00	104%	3.04	3.00	101%	2.9%
Dibenz(a,h)anthracene	3.25	3.00	108%	3,13	3.00	104%	3.8%
Benzo(g,h,i)perylene	3.07	3.00	102%	2.91	3.00	97.0%	5.4%
Dibenzofuran	2.40	3.00	80.0%	2.25	3.00	75.0%	6.5%
Total Benzofluoranthenes	8.59	9.00	95.4%	8.12	9.00	90.2%	5.6%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-Fluoranthene	90.0%	84.3%
d10-2-Methylnaphthalene	74.3%	60.3%
d14-Dibenzo(a,h)anthracene	110%	103%

BCGU: ØØØ46 FORM III

BCQ4MBW1

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Lab File ID: 16070113 Date Extracted: 06/29/16

Instrument ID: NT8 Date Analyzed: 07/01/16

Matrix: LIQUID Time Analyzed: 1812

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

- 1	SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
İ	=======================================	=======================================	========	=========
01	BCQ4LCSW1	BCQ4LCSW1	16070114	07/01/16
	BCQ4LCSDW1	BCQ4LCSDW1	16070115	07/01/16
	MW-6	BCQ4A	16070116	07/01/16
	MW-6 MS	BCQ4AMS	16070117	07/01/16
	MW-6 MSD	BCQ4AMSD	16070118	07/01/16 07/01/16 07/01/16
	DUP	BCQ4B	16070119	07/01/16
07				3., 32, 23
08				
09				
10				
11			111 11 11 11 11 11 11 11 11 11 11 11 11	
12				
13				
14				
15				
16				
17				
18				-
19				
20				
21				
22				
23				
24				
25				
26				
27			***************************************	
28				
29				
30				

page 1 of 1 FORM IV SV

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Extraction Method: SW3520C

Page 1 of 1

Lab Sample ID: MB-062916

LIMS ID: 16-9825

Matrix: Water Data Release Authorized: Reported: 07/06/16 QC Report No: BCQ4-AECOM
Project: Laurel Station
Event: NA

Date Sampled: NA Date Received: NA

Sample ID: MB-062916

METHOD BLANK

Date Extracted: 06/29/16 Sample Amount: 500 mL
Date Analyzed: 07/01/16 18:12 Final Extract Volume: 0.5 mL
Instrument/Analyst: NT8/JZ Dilution Factor: 1.00

CAS Number	Analyte	LOQ	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
90-12-0	1-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a)anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U
TOTBFA	Total Benzofluoranthenes	0.10	< 0.10 U

Reported in µg/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-Fluoranthene	96.3%
d10-2-Methylnaphthalene	75.0%
d14-Dibenzo(a,h)anthracene	119%

FORM I BCQ4:00048

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ARI Client: AECOM

Instrument ID: NT8 Project: LAUREL STATION

DFTPP Injection Date: 06/22/16 DFTPP Injection Time: 1224

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		
51	10.0 - 80.0% of mass 198	20.9
68	Less than 2.0% of mass 69	0.0 (0.0)1
69	Mass 69 relative abundance	44.8
70	Less than 2.0% of mass 69	0.3 (0.6)1
127	10.0 - 80.0% of mass 198	50.2
197	Less than 2.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	8.9
275	10.0 - 60.0% of mass 198	38.2
365	Greater than 1.0% of mass 198	4.54
441	0.0 - 24.0% of mass 442	10.6 (15.9)2
442	50.0 - 200.0% of mass 198	66.7
443	15.0 - 24.0% of mass 442	14.5 (21.7)2
	1 Value is 2 mags (0)	

1-Value is % mass 69 2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLĪENT	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	DAME DE 140.	DATE DO 10	1100 10	71141112111	111011111111111111111111111111111111111
	======================================	=======================================	===========	========	
01	IC25160622	SEF0117-CAL4	16062202	06/22/16	1328
02	IC01160622	SEF0117-CAL1	16062203	06/22/16	1354
			_ + +		
03	IC05160622	SEF0117-CAL2	16062204	06/22/16	1420
04	IC1160622	SEF0117-CAL3	16062205	06/22/16	1446
05	IC5160622	SEF0117-CAL5	16062206	06/22/16	1512
06	IC10160622	SEF0117-CAL6	16062207	06/22/16	1538
	C .	1 2 2	- * 		l l
07	SCV160622	SEF0117-SCV1	16062208	06/22/16	1737
80					
09					
10					
11					
12					
13					
14			[
15					
16					
17					
18					
19					
20		l	l		

page 1 of 1 FORM V SV

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: ARI Client: AECOM

Project: LAUREL STATION Instrument ID: NT8

DFTPP Injection Date: 07/01/16 DFTPP Injection Time: 1310

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442	10.0 - 80.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 10.0 - 80.0% of mass 198 Less than 2.0% of mass 198 Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 60.0% of mass 198 Greater than 1.0% of mass 198 0.0 - 24.0% of mass 442 50.0 - 200.0% of mass 198	22.2 0.4 (0.9)1 46.5 0.4 (0.8)1 51.4 0.5 100.0 9.0 39.5 4.70 11.2 (16.2)2 68.8
443	15.0 - 24.0% of mass 442	15.3 (22.3)2 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	========	===========	=======	========
01	ICV160701	ICV160701	16070102	07/01/16	1327
02	BCQ4MBW1	BCQ4MBW1	16070113	07/01/16	1812
03	BCQ4LCSW1	BCQ4LCSW1	16070114	07/01/16	1837
04	BCQ4LCSDW1	BCQ4LCSDW1	16070115	07/01/16	1903
05	MW-6	BCQ4A	16070116	07/01/16	1929
06	MW-6 MS	BCQ4AMS	16070117	07/01/16	1955
07	MW-6 MSD	BCQ4AMSD	16070118	07/01/16	2021
08	DUP	BCQ4B	16070119	07/01/16	2047
09					
10		-			
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

page 1 of 1

FORM V SV

BCQ4: QQQ5Q

6B SEMIVOLATILE 8270-D INITIAL CALIBRATION DATA

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT8 Calibration Date: 06/22/16

| LAB FILE ID: RRF0.1=16062203 RRF0.5=16062204 RRF1 =16062205 | RRF2.5=16062202 RRF5 =16062206 RRF10 =16062207

0.1 ===== 0.965 0.613 0.591 1.540 1.089 1.838 1.139	0.881 0.553 0.506 1.347 1.009	0.540 0.498 1.295 0.975	0.932 0.579 0.535 1.398	1.002 0.603 0.569	0.564 0.529 1.457	0.932 0.575 0.538	5.8 5.0 6.7
0.965 0.613 0.591 1.540 1.089 1.838 1.139	0.881 0.553 0.506 1.347 1.009	0.859 0.540 0.498 1.295 0.975	0.932 0.579 0.535 1.398	1.002 0.603 0.569	0.952 0.564 0.529 1.457	0.932 0.575 0.538	5.8 5.0 6.7
0.613 0.591 1.540 1.089 1.838 1.139 1.736	0.553 0.506 1.347 1.009	0.540 0.498 1.295 0.975	0.579 0.535 1.398	0.603 0.569 1.513	0.564 0.529 1.457	0.575 0.538	5.0 6.7
0.591 1.540 1.089 1.838 1.139 1.736	0.506 1.347 1.009 1.650	0.498 1.295 0.975	0.535 1.398	0.569 1.513	0.529 1.457	0.538	6.7
1.540 1.089 1.838 1.139 1.736	1.347 1.009 1.650	1.295 0.975	1.398	1.513	1.457		1
1.089 1.838 1.139 1.736	1.009 1.650	0.975	1	,	Į.	1.425	(
1.838 1.139 1.736	1.650	!	1.012	1 1 1 3 6		1	1
1.139 1.736	!	1.628		,			
1.736	0.999		1.746	1.890	1.778	1.755	5.5
_ '		0.964	1.064	1.159	1.105	1.072	7.3
1		1.450	1.540	1.652	1.554	1.569	6.8
_ 1.142	0.940		1	1.126		•	8.0
1.407	1.220	1.182	1.288	1.405	1.344	1.308	7.2
0.993	0.846	0.831	0.897	0.964	0.903	0.906	7.0
0.989	0.897	0.884	0.940	1.005	0.942	0.943	5.5
0.964	0.840	0.840	0.932	1.000	0.939	0.919	7.2
	0.715	0.683	0.796	0.875	0.850	0.794	9.5
0.828	0.698	0.704	0.755	0.825	0.797	0.768	7.6
1.200	1.043	1.022	1.115	1.209	1.122	1.118	6.9
1.118	1.002	0.986	1.082	1.185	1.095	1.078	6.5
1.147	0.988	0.931	1.080	1.178	1.126	1.075	9.0
1.159	0.928	0.940	1.031	1.141	1.077	1.046	9.4
1.180	0.940	0.926	1.046	1.208	1.164	1.077	11.6
1.108	0.904	0.927	1.045	1.222	1.142	1.058	11.8
1.056	0.868	0.838	0.938	1.079	1.021	0.967	10.4
1.138	0.929	0.910	1.005	1,139	1.098	1.036	10.0
1.003	0.861	0.835	0.974	1.128	1.082	0.980	11.9
1.003	0.869	0.854	0.982	1.128	1.090	0.988	11.3
1.087	0.954	0.953	1.088	1.270	1.248	1.100	12.5
0.878	0.720	0.742	0.878	1.012	1.007	0.873	14.3
1.000	0.833	0.834	0.948	1.103	1.082	0.967	12.
- =====	=====	=====	=====		=====	=====	=====
		0.544	0.594	0.628	0.599	0.587	4.9
1.084	0.943	0.938	1.017	1.109	1.059	1.025	7.0
0.627	0.538	0.544	0.660	0.778	0.788	0.656	16.6
.11							
							l
							l
	1.407 0.993 0.989 0.984 0.828 1.200 1.118 1.147 1.159 1.180 1.008 1.003 1.003 1.003 1.003 1.000 1.087 0.878 1.000 1.084	1.407 1.220 0.993 0.846 0.989 0.897 0.964 0.840 0.843 0.715 0.828 0.698 1.200 1.043 1.118 1.002 1.147 0.988 1.159 0.928 1.180 0.940 1.056 0.868 1.138 0.929 1.003 0.861 1.003 0.861 1.003 0.862 1.087 0.954 0.878 0.720 1.000 0.833 ====== ===== 0.589 0.566 1.084 0.943 0.944 0.943 0.944 0.9	1.407 1.220 1.182 0.993 0.846 0.831 0.989 0.897 0.884 0.964 0.840 0.840 0.843 0.715 0.683 0.828 0.698 0.704 1.200 1.043 1.022 1.118 1.002 0.986 1.147 0.988 0.931 1.159 0.928 0.940 1.180 0.940 0.926 1.108 0.904 0.927 1.056 0.868 0.838 1.138 0.929 0.910 1.003 0.861 0.835 1.003 0.861 0.835 1.087 0.954 0.953 0.878 0.720 0.742 1.000 0.833 0.834 1.282 0.589 0.566 0.544 1.084 0.943 0.938	1.407 1.220 1.182 1.288 0.993 0.846 0.831 0.897 0.989 0.897 0.884 0.940 0.964 0.840 0.932 0.843 0.715 0.683 0.796 0.828 0.698 0.704 0.755 1.200 1.043 1.022 1.115 1.118 1.002 0.986 1.082 1.147 0.988 0.931 1.080 1.159 0.928 0.940 1.031 1.180 0.940 0.926 1.046 1.108 0.904 0.927 1.045 1.056 0.868 0.838 0.938 1.138 0.929 0.910 1.005 1.003 0.861 0.835 0.974 1.003 0.869 0.854 0.982 1.087 0.954 0.953 1.088 0.878 0.720 0.742 0.878 0.878 0.720 0.742 0.878 1.000 0.833 0.834 0.948 0.94	1.407	1.407	1.407 1.220 1.182 1.288 1.405 1.344 1.308 0.993 0.846 0.831 0.897 0.964 0.903 0.906 0.989 0.897 0.884 0.940 1.005 0.942 0.943 0.964 0.840 0.840 0.932 1.000 0.939 0.919 0.843 0.715 0.683 0.796 0.875 0.850 0.794 0.828 0.698 0.704 0.755 0.825 0.797 0.768 1.200 1.043 1.022 1.115 1.209 1.122 1.118 1.118 1.002 0.986 1.082 1.185 1.095 1.078 1.147 0.988 0.931 1.080 1.178 1.126 1.075 1.159 0.928 0.940 1.031 1.141 1.077 1.046 1.180 0.940 0.926 1.046 1.208 1.164 1.077 1.108 0.904 0.927 1.045 1.222 1.142 1.058 1.056 0.868 0.838 0.938 1.079 1.021 0.967 1.138 0.929 0.910 1.005 1.139 1.098 1.036 1.003 0.861 0.835 0.974 1.128 1.082 0.980 1.003 0.869 0.854 0.982 1.128 1.090 0.988 1.087 0.954 0.953 1.088 1.270 1.248 1.100 0.878 0.720 0.742 0.878 1.012 1.007 0.873 1.000 0.833 0.834 0.948 1.103 1.082 0.967 1.000 0.833 0.834 0.948 1.103 1.082 0.967 1.004 0.878 0.566 0.544 0.594 0.628 0.599 0.587 1.084 0.943 0.938 1.017 1.109 1.059 1.025 1.025 1.084 0.943 0.938 1.017 1.109 1.059 1.025 1.085 1.084 0.943 0.938 1.017 1.109 1.059 1.025 1.085 1.084 0.943 0.938 1.017 1.109 1.059 1.025 1.025 1.084 0.943 0.938 1.017 1.109 1.059 1.025 1.085 1.084 0.943 0.938 1.017 1.109 1.059 1.025 1.085 1.084 0.943 0.938 1.017 1.109 1.059 1.025 1.025 1.08

<- Outside QC limits: %RSD <20% or R^2 > 0.990

FORM VI SV-1

7B SEMIVOLATILE 8270-D CONTINUING CALIBRATION CHECK

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT8 Cont. Calib. Date: 06/22/16

Init. Calib. Date: 06/22/16 Cont. Calib. Time: 1328

	CalAmt	CC Amt	MIN	CURVE	%D or
COMPOUND	or ARF	I	RRF	TYPE	Drift
=======================================	=====	======	=====	=====	=====
Naphthalene	0.932	0.932	0.700	AVRG	0.0
2-Methylnaphthalene	0.575	i .		1	0.7
Acenaphthylene	1.755	1.746	0.900	AVRG	-0.5
Acenaphthene	1.072	1.064	0.900	AVRG	-0.7
Dibenzofuran	1.569	1.540	0.800	AVRG	-1.8
Fluorene	1.308	1.288	0.900	AVRG	-1.5
Phenanthrene	0.943	0.940	0.700	AVRG	-0.3
Anthracene	0.919	0.932	0.700	AVRG	1.4
Fluoranthene	1.118	1.115	0.600	AVRG	-0.3
Pyrene	1.078	1.082	0.600	AVRG	0.4
Benzo (a) anthracene	1.075	I		AVRG	0.5
Chrysene	1.046		0.700	AVRG	-1.4
Benzo(b) fluoranthene	1.077		0.700	AVRG	-2.9
Benzo(k) fluoranthene	1.058	1.045	0.700	AVRG	-1.2
Benzo(j)fluoranthene	0.967	I		1	-3.0
Benzo(a)pyrene	0.980			I	-0.6
Indeno(1,2,3-cd)pyrene	1.100	I	0.500	I	-1.1
Dibenzo(a,h)anthracene	0.873	1		I	0.6
Benzo(g,h,i)perylene	0.967	I		1	-2.0
1-methylnaphthalene	0.538	I	0.010	I	-0.6
Perylene	0.988	0.982		AVRG	-0.6
=======================================	=====			=====	=====
2-Methylnaphthalene-d10	0.587	(1	1.2
Dibenzo(a,h)anthracene-d14	0.656	1	0.010	l	0.6
Fluoranthene-d10	1.025	1.017	0.010	AVRG	-0.8

<- Exceeds QC limit of 20% D
* RF less than minimum RF</pre>

FORM VII SV-1

7B SEMIVOLATILE 8270-D CONTINUING CALIBRATION CHECK

Lab Name: ARI Client: AECOM

Project: LAUREL STATION ARI Job No: BCQ4

Cont. Calib. Date: 07/01/16 Instrument ID: NT8

Init. Calib. Date: 06/22/16 Cont. Calib. Time: 1327

	CalAmt			CURVE	
COMPOUND	or ARF		RRF	TYPE	Drift
=======================================	=====		=====	=====	=====
Naphthalene	0.932			AVRG	1.4
2-Methylnaphthalene	0.575	0.585	0.400	AVRG	1.7
Acenaphthylene	1.755			AVRG	-0.2
Acenaphthene	1.072	1.077	0.900	AVRG	0.5
Dibenzofuran	1.569	1.549	0.800	AVRG	-1.3
Fluorene	1.308	1.322	0.900	AVRG	1.1
Phenanthrene	0.943	0.916	0.700	AVRG	-2.9
Anthracene	0.919	0.918	0.700	AVRG	-0.1
Fluoranthene	1.118	1.091	0.600	AVRG	-2.4
Pyrene	1.078	1.106	0.600	AVRG	2.6
Benzo (a) anthracene	1.075	1.049	0.800	AVRG	-2.4
Chrysene	1.046	1.031	0.700	AVRG	-1.4
Benzo(b) fluoranthene	1.077		0.700	AVRG	-2.5
Benzo(k) fluoranthene	1.058	1.013	0.700	AVRG	-4.2
Benzo(j) fluoranthene	0.967	0.938	0.010	AVRG	-3.0
Benzo (a) pyrene	0.980				-3.5
Indeno(1,2,3-cd)pyrene	1.100	1.144	0.500	AVRG	4.0
Dibenzo(a,h)anthracene	0.873	0.924			5.8
Benzo(g,h,i)perylene	0.967	0.994	0.500	AVRG	2.8
1-methylnaphthalene	0.538	0.564	0.010	AVRG	4.8
Perylene	0.988	0.965	0.010	AVRG	-2.3
	======	=====	=====	=====	=====
2-Methylnaphthalene-d10	0.587	0.609	0.010	AVRG	3.7
Dibenzo (a, h) anthracene-d14	0.656	0.723	0.010	AVRG	10.2
Fluoranthene-d10	1.025	1.003	0.010	AVRG	-2.1
	l				

⁻ Exceeds QC limit of 20% D
* RF less than minimum RF

FORM VII SV-1

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT8 Cont. Cal Date: 06/22/16

	IS1 (NPT) AREA #	RT #	IS2(ANT) AREA #	RT #	IS3 (PHN) AREA #	RT #
ICAL MIDPT UPPER LIMIT LOWER LIMIT	434515 869030 217258	4.84	252887 505774 126444	7.12	495801 991602 247901	9.16
CCAL UPPER LIMIT LOWER LIMIT	434515	4.84 5.34 4.34	252887	7.12 7.62 6.62	495801	9.16 9.66 8.66
01 SCV160622 02 03	375410	4.83	206987	7.12	402535	9.16

IS1 = Naphthalene-d8
IS2 = Acenaphthene-d10
IS3 = Phenanthrene-d10

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = -50% of internal standard area from Ical midpoint RT UPPER LIMIT = +0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = -0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits.

page 1 of 2

FORM VIII SV-1

BCQU: 0005U

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT8 Cont. Cal Date: 06/22/16

		IS4 (CRY)		IS5 (PRY)			
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	========	======	========	======	========	======
	ICAL MIDPT	522758	14.06	483534	17.94		
	UPPER LIMIT	1045516		967068			
	LOWER LIMIT	261379		241767		-	
	TOMER DIMIT	201373		241707			
	CCAL	522758	14.06	483534	17.94		
	UPPER LIMIT	322730	14.56	400004	18.44		
	LOWER LIMIT		13.56		17.44		
	0.0074 50 50 0	400005					
01	SCV160622	423086	14.06	389609	17.94		
02							
03							
04							
05							
06							
07							
80							
09							
10							
11							:
12							_
13							
14	-,, ,						
15							
16							
17							
18							
19							
20				-			
20						L	·

IS4 = Chrysene-d12
IS5 = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits.

page 2 of 2

FORM VIII SV-2

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT8 Cont. Cal Date: 07/01/16

		TO 1 /NIDON		TOO (3300)		TOO (DIDI)	<u> </u>
		IS1(NPT)	70m #	IS2 (ANT)	- Den 11	IS3 (PHN)	
	•	AREA #	RT #	AREA #	RT #	AREA #	RT #
	=======================================	========	======	=======	======	========	======
	ICAL MIDPT	434515	4.84	252887	7.12	495801	9.16
	UPPER LIMIT	869030		505774		991602	
	LOWER LIMIT	217258		126444		247901	
		========	======	========	======	========	======
	CCAL	467838	4.80	279143	7.08	566874	9.12
	UPPER LIMIT	107030	5.30	2/2113	7.58	500071	9.62
	LOWER LIMIT		4.30		6.58		8.62
	TOMER DIMIT		4.30		0.50		0.02
	D.G.G. 41 FD 171					462604	
01	BCQ4MBW1	398809	4.79	232242	7.08	463694	9.12
02	BCQ4LCSW1	439745	4.78	256796	7.08	500674	9.12
03	BCQ4LCSDW1	435520	4.78	250121	7.08	507216	9.12
04	MW-6	413622	4.79	242039	7.08	472194	9.12
05	MW-6 MS	421400	4.78	243027	7.08	483091	9.12
06	MW-6 MSD	440389	4.78	253254	7.08	488423	9.12
07	DUP	422078	4.78	243273	7.08	477858	9.12
08							
09							
10							
11							
12							
13							
14							
15							
16							
17							l
18							
19							
20	· · · · · · · · · · · · · · · · · · ·						
					l		I

IS1 = Naphthalene-d8
IS2 = Acenaphthene-d10
IS3 = Phenanthrene-d10

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits.

page 1 of 2

FORM VIII SV-1

BCQH: 00056

Lab Name: ARI Client: AECOM

ARI Job No: BCQ4 Project: LAUREL STATION

Instrument ID: NT8 Cont. Cal Date: 07/01/16

		IS4 (CRY)		IS5 (PRY)			
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	TCAT MIDDE		14 06	402524	17 04	========	=====
	ICAL MIDPT	522758	14.06	483534	17.94	·	<u></u>
	UPPER LIMIT	1045516		967068			
	LOWER LIMIT	261379		241767			
	CCAL	584847	14.00	551326	17.87		======
	UPPER LIMIT	301017	14.50	001020	18.37		
	LOWER LIMIT		13.50		17.37		<u> </u>
	DOMEK DIMIT		13.30		17.37	·	
01	BCQ4MBW1	462950	14.00	448750	17.87		
02	BCQ4LCSW1	504829	13.99	479633	17.87		
03	BCQ4LCSDW1	523892	13.99	476077	17.86		
04	MW-6	483906	13.99	445021	17.86		
05	MW-6 MS	515914	13.99	463752	17.86		
06	MW-6 MSD	505951	13.99	469030	17.86		
07			13.99		17.86		
	DUP	503293	13.99	463479	17.86]
80							
09							<u> </u>
10							
11							
12							
13							
14							
15				-,			
16							
17							
18							
19							
20							
							۱ <u></u> ۱

IS4 = Chrysene-d12
IS5 = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area from Ical midpoint AREA LOWER LIMIT = - 50% of internal standard area from Ical midpoint RT UPPER LIMIT = + 0.50 minutes of internal standard RT from Cont. Cal RT LOWER LIMIT = - 0.50 minutes of internal standard RT from Cont. Cal

* Values outside of QC limits.

page 2 of 2

FORM VIII SV-2

TPHD Analysis Report and Summary QC Forms

ARI Job ID: BCQ4

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID

Extraction Method: SW3510C

Page 1 of 1

Matrix: Water

QC Report No: BCQ4-AECOM

Project: Laurel Station

#

Date Received: 06/28/16

Data Release Authorized: WW Reported: 07/06/16

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DF	Range/Surrogate	RL	Result
MB-062916 16-9825	Method Blank HC ID:	06/29/16	07/01/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10	< 0.10 U < 0.20 U 75.9%
BCQ4A 16-9825	MW-6 HC ID: DRO	06/29/16	07/01/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	0.11 < 0.20 U 73.9%
BCQ4B 16-9826	DUP HC ID:	06/29/16	07/01/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 79.9%

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from Cl2 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water QC Report No: BCQ4-AECOM

Project: Laurel Station

#

Client ID	OTER	TOT OUT
•		
MB-062916	75.9%	0
LCS-062916	74.2%	0
LCSD-062916	85.8%	0
MW-6	73.9%	0
MW-6 MS	87.9%	0
MW-6 MSD	91.9%	0
DUP	79.9%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl (50-150)

Prep Method: SW3510C

Log Number Range: 16-9825 to 16-9826

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: LCS-062916

LCS/LCSD

Lab Sample ID: LCS-062916

LIMS ID: 16-9825

Matrix: Water

Data Release Authorized:

Reported: 07/06/16

QC Report No: BCQ4-AECOM

Project: Laurel Station

Date Sampled: NA

Date Received: NA

Date Extracted LCS/LCSD: 06/29/16

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 07/01/16 15:06

LCSD: 07/01/16 15:28

Final Extract Volume LCS: 1.0 mL

Instrument/Analyst LCS: FID4A/ML LCSD: FID4A/ML

LCSD: 1.0 mL Dilution Factor LCS: 1.00

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	2.25	3.00	75.0%	2.34	3.00	78.0%	3.9%

TPHD Surrogate Recovery

LCS LCSD

o-Terphenyl

74.2% 85.8%

Results reported in mq/L RPD calculated using sample concentrations per SW846.

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: BCQ4

Matrix: Water Project: Laurel Station

Date Received: 06/28/16

ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
16-9825-062916MB1 16-9825-062916LCS1 16-9825-062916LCSD1 16-9825-BCQ4A 16-9825-BCQ4AMS 16-9825-BCQ4AMSD 16-9826-BCQ4B	Method Blank Lab Control Lab Control Dup MW-6 MW-6 MW-6 DUP	500 mL 500 mL 500 mL 500 mL 500 mL 500 mL	1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL 1.00 mL	06/29/16 06/29/16 06/29/16 06/29/16 06/29/16 06/29/16

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: MW-6

MS/MSD

Lab Sample ID: BCQ4A LIMS ID: 16-9825

Matrix: Water

Data Release Authorized:

Reported: 07/13/16

Date Extracted MS/MSD: 06/29/16

Date Analyzed MS: 07/01/16 16:36 MSD: 07/01/16 16:59

Instrument/Analyst MS: FID4A/ML

MSD: FID4A/ML

QC Report No: BCQ4-AECOM

Project: Laurel Station

Date Sampled: 06/27/16 Date Received: 06/28/16

Sample Amount MS: 500 mL

MSD: 500 mL

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	0.11	2.45	3.00	78.0%	2.57	3.00	82.0%	4.8%

TPHD Surrogate Recovery

MS MSD o-Terphenyl 87.9% 91.9%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

BCQU: ØØØ63

BCO8MBW1

Lab Name: ARI Client: AECOM

SDG No.: BCQ4 Project No.: LAUREL STATION

Date Extracted: 06/29/16 Matrix: LIQUID

Time Analyzed: 1443

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	CLIENT	LAB	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED
	===========		========
01	BCO8LCSW1	BCO8LCSW1	07/01/16
02	BCO8LCSDW1	BCO8LCSDW1	07/01/16
03	MW-6	BCQ4A	07/01/16 07/01/16
	MW-6 MS	BCQ4AMS	07/01/16
05	MW-6 MSD	BCQ4AMSD	07/01/16
05	DUP		07/01/16
06	DOP	BCQ4B	0//01/10
80			
09			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23		·	
24			
25			
26			
27			
28			
29			
30			
			·

page 1 of 1

FORM IV TPH

6a DIESEL INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: AECOM

Instrument: FID4A.I Project: Laurel Station

Calibration Date: 09-MAR-2016 SDG No.: BCQ4

Diesel Range	RF1 50	RF2 100	RF3 250	RF4 500	RF5 1000	R F 6 2500	Ave RF	%RSD
WA Diesel AK Diesel OR Diesel Cal Diesel C12-C22	21551 26320 26426 26274 20997	22001 26113 26230 26058 21409	21272 25109 25247 25051 20671	20941 24721 24866 24647 20343	20168 24086 24235 24013 19568	18582 22017 22142 21946 18067	20753 24728 24858 24665 20176	5.9 6.4 6.3 6.4 6.0
o-Terph	28289	28560	28244	28653	27692	25723	27860	3.9

<- Indicates %RSD outside limits Surrogate areas are not included in Diesel RF calculation.

Quant Ranges : WA Diesel C12-C24 (3.837-7.652)

AK Diesel C10-C25 (3.024-7.950)
OR Diesel C10-C28 (3.024-8.771)
Cal Diesel C10-C24 (3.024-7.652)
C12-C22 C12-C22 (3.837-7.026)

Calibration Files	Analysis Time				
f1	09-MAR-2016 17:54				
f2	09-MAR-2016 18:16				
f3	09-MAR-2016 18:38				
f4	09-MAR-2016 19:01				
f5	09-MAR-2016 19:22				
f6	09-MAR-2016 19:45				

6a NW MOTOR OIL RANGE INITIAL CALIBRATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: AECOM

Instrument: FID4A.I Project: Laurel Station

Calibration Date: 15-MAR-2016 SDG No.: BCQ4

Product Range	RF1 100	RF2 250	RF3 500	RF4 1000	RF5 2500	RF6 5000	Ave RF	%RSD
WA M.Oil C24-C38	18714	16494	15831	16601	16112	13969	16287	9.4
CA M.Oil C23-C32	14807	12827	12602	13320	13142	11143	12973	9.13
AS Bunk C	14005	13041	12964	12626		12212	12969	5.13
Triac Surr	26860	24515	23872	24943	24499	22320	24502	6.0

<- Indicates %RSD outside limits Surrogate areas are not included in Motor Oil RF calculation.

Calibration Files	Analysis Time		
f1 f2	15-MAR-2016 11:54 15-MAR-2016 12:17		
f3	15-MAR-2016 12:39		
£4	15-MAR-2016 13:03		
£ 5	15-MAR-2016 13:26		
f6	15-MAR-2016 13:48		

DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: AECOM

ICal Date: 15-MAR-2016 Project: Laurel Station

CCal Date: 01-JUL-2016 SDG No.: BCQ4

Analysis Time: 10:37 Lab ID: DIESEL#1

Instrument: FID4A.I Lab File Name: 16070103.D

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24) AK102 (C10-C25) NASDies(C10-C24) Terphenyl Creos (C12-C22)	5170909	249.2	250	-0.3
	6166653	249.4	250	-0.2
	6144962	249.1	250	-0.3
	1119873	40.2	45	-10.7
	5007061	248.2	250	-0.7

^{*} Surrogate areas are subtracted from range areas <- Indicates a %D outside QC limits

p1 of 1

FORM VII-Diesel

ECQU: 09067

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: AECOM

ICal Date: 15-MAR-2016 Project: Laurel Station

CCal Date: 01-JUL-2016 SDG No.: BCQ4

Analysis Time: 10:59 Lab ID: MOIL#1

Instrument: FID4A.I Lab File Name: 16070104.D

M.oil Range	Area*	CalcAmnt	NomAmnt	% D
WAMoil(C24-C38) AK103 (C25-C36) OR MOIL(C28-C40) CRUDE(Tol-C40) n-Triacontane	7684736	471.8	500	-5.6
	6779692	470.3	500	-5.9
	5833004	772.3	500	54.5
	8837378	1170.1	500	134.0
	1077265	44.0	45	-2.3

^{*} Surrogate areas are subtracted from range areas <- Indicates a %D outside QC limits

pl of 1

FORM VII-Diesel

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: AECOM

ICal Date: 15-MAR-2016 Project: Laurel Station

CCal Date: 01-JUL-2016 SDG No.: BCQ4

Analysis Time: 12:06 Lab ID: DIESEL#2

Instrument: FID4A.I Lab File Name: 16070107.D

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24) AK102 (C10-C25) NASDies(C10-C24) Terphenyl Creos (C12-C22)	4842745 5692074 5655431 1128728 4654715	233.4 230.2 229.3 40.5 230.7	250 250 250 250 45 250	-6.7 -7.9 -8.3 -10.0 -7.7

^{*} Surrogate areas are subtracted from range areas <- Indicates a %D outside QC limits

p1 of 1

FORM VII-Diesel

RCON: GROSS

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: AECOM

ICal Date: 15-MAR-2016 Project: Laurel Station

CCal Date: 01-JUL-2016 SDG No.: BCQ4

Lab ID: MOIL#2 Analysis Time: 12:29

Instrument: FID4A.I Lab File Name: 16070108.D

M.oil Range	M.oil Range Area*		NomAmnt	% D
WAMoil(C24-C38) AK103 (C25-C36) OR MOIL(C28-C40) CRUDE(Tol-C40) n-Triacontane	8146772	500.2	500	0.0
	7159031	496.6	500	-0.7
	6240453	826.2	500	65.2
	9572593	1267.4	500	153.5
	1110674	45.3	45	0.7

^{*} Surrogate areas are subtracted from range areas <- Indicates a %D outside QC limits

pl of 1

FORM VII-Diesel

7a DIESEL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: AECOM

ICal Date: 15-MAR-2016 Project: Laurel Station

CCal Date: 01-JUL-2016 SDG No.: BCQ4

Analysis Time: 19:34 Lab ID: DIESEL#3

Instrument: FID4A.I Lab File Name: 16070127.D

Diesel Range	Area*	CalcAmnt	NomAmnt	% D
WADies(C12-C24) AK102 (C10-C25) NASDies(C10-C24) Terphenyl Creos (C12-C22)	4994201	240.6	250	-3.7
	5860222	237.0	250	-5.2
	5827315	236.3	250	-5.5
	1178048	42.3	45	-6.0
	4800973	238.0	250	-4.8

^{*} Surrogate areas are subtracted from range areas

p1 of 1

FORM VII-Diesel

<- Indicates a %D outside QC limits</p>

7a MOTOR OIL CONTINUING CALIBRATION VERIFICATION

Lab Name: ANALYTICAL RESOURCES, INC. Client: AECOM

ICal Date: 15-MAR-2016 Project: Laurel Station

CCal Date: 01-JUL-2016 SDG No.: BCQ4

Analysis Time: 19:57 Lab ID: MOIL#3

Instrument: FID4A.I Lab File Name: 16070128.D

M.oil Range Area*		CalcAmnt	NomAmnt	% D
WAMoil(C24-C38) AK103 (C25-C36) OR MOIL(C28-C40) CRUDE(Tol-C40) n-Triacontane	8232761	505.5	500	1.1
	7248455	502.8	500	0.6
	6156224	815.1	500	63.0
	9466915	1253.4	500	150.7
	1167515	47.7	45	5.9

^{*} Surrogate areas are subtracted from range areas

pl of 1

FORM VII-Diesel

<- Indicates a %D outside QC limits</p>

8 TPH ANALYTICAL SEQUENCE

Lab Name: ARI Client: AECOM

SDG No.: BCQ4 Project: LAUREL STATION

Instrument ID: FID4A GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

SURROGATE I					
TERPH: 5.7	74 TRIAC:	9.07	'		
		-			
	LAB	DATE	TIME	TERPH	TRIAC
SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
=========	==========	=======	========	==== ==	=======
RT	RT		0952	5.74	9.07
IB	IB		1014		9.07
LAUREL STATI	DIESEL#1		1037	5.74	9.09
LAUREL STATI	MOIL#1		1059	5.73	9.07
LAUREL STATI	DIESEL#2		1206	5.74	9.07
LAUREL STATI	MOIL#2		1229	5.74	9.10
BCO8MBW1	BCO8MBW1		1443	5.75	9.09
BCO8LCSW1	BCO8LCSW1		1506	5.75	9.08
BCO8LCSDW1	BCO8LCSDW1		1528	5.75	9.09
MW-6	BCQ4A		1614	5.75	9.09
MW-6 MS	BCQ4AMS	07/01/16	1636	5.75	9.09
MW-6 MSD	BCQ4AMSD	07/01/16	1659	5.75	9.09
DUP	BCQ4B	07/01/16	1720	5.75	9.09
LAUREL STATI	DIESEL#3	07/01/16	1934	5.75	9.07
LAUREL STATI	MOIL#3	07/01/16	1957	5.74	9.10
	TERPH: 5.* CLIENT SAMPLE NO. ===================================	CLIENT LAB SAMPLE NO. SAMPLE ID RT RT IB IB LAUREL STATI DIESEL#1 LAUREL STATI DIESEL#2 LAUREL STATI DIESEL#2 BCO8MBW1 BCO8LCSW1 BCO8LCSW1 BCO8LCSW1 BCO8LCSW1 BCO8LCSW1 BCO8LCSDW1 BCO8LCSDW1 MW-6 BCQ4A MW-6 MS BCQ4AMS MW-6 MSD BCQ4B LAUREL STATI DIESEL#3	TERPH: 5.74 TRIAC: 9.07 CLIENT LAB DATE SAMPLE NO. SAMPLE ID ANALYZED E====================================	CLIENT LAB DATE TIME SAMPLE NO. SAMPLE ID ANALYZED ANALYZED RT RT 07/01/16 0952 IB 07/01/16 1014 LAUREL STATI DIESEL#1 07/01/16 1037 LAUREL STATI MOIL#1 07/01/16 1206 LAUREL STATI DIESEL#2 07/01/16 1229 BCO8MBW1 BCO8MBW1 07/01/16 1506 BCO8LCSW1 BCO8LCSW1 07/01/16 1528 MW-6 BCQ4A 07/01/16 1614 MW-6 MS BCQ4AMS 07/01/16 1636 MW-6 MSD BCQ4AMSD 07/01/16 1659 DUP BCQ4B 07/01/16 1720 LAUREL STATI DIESEL#3 07/01/16 1934	CLIENT LAB DATE TIME TERPH SAMPLE NO. SAMPLE ID ANALYZED ANALYZED RT # RT 07/01/16 0952 5.74 IB 07/01/16 1014 5.74 LAUREL STATI DIESEL#1 07/01/16 1037 5.74 LAUREL STATI DIESEL#2 07/01/16 1059 5.73 LAUREL STATI DIESEL#2 07/01/16 1206 5.74 LAUREL STATI MOIL#2 07/01/16 1229 5.74 BCO8MBW1 BCO8MBW1 07/01/16 1443 5.75 5.75 BCO8LCSW1 BCO8LCSW1 07/01/16 1528 5.75 MW-6 BCQ4A 07/01/16 1614 5.75 MW-6 MS BCQ4AMS 07/01/16 1636 5.75 MW-6 MSD BCQ4AMSD 07/01/16 1659 5.75 DUP BCQ4B 07/01/16 1720 5.75 LAUREL STATI DIESEL#3 07/01/16 1934 5.75

QC LIMITS

TERPH = o-terph (+/- 0.05 MINUTES)TRIAC = Triacon Surr (+/- 0.05 MINUTES)

* Values outside of QC limits.

page 1 of 1

FORM VIII TPH

TPH ANALYTICAL SEQUENCE

Lab Name: ARI Client: AECOM

Project: Laurel Station SDG No.: BCQ4

Instrument ID: FID4A GC Column: RTX-1

THE ANALYTICAL SEQUENCE OF BLANKS, SAMPLES, AND STANDARDS, IS GIVEN BELOW:

	SURROGATE I					
	TERPH: 5.	92 TRIAC:	9.26			
	CLIENT	LAB	DATE	TIME	TERPH	TRIAC
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	
	SAMPLE NO.	SAMPLE ID	ANALIZED	ANALIZED	K1 #	RT #
01		SEC0025-IBL1	03/09/16	1710	5.92	9.26
02		SEC0025-IBL2	03/09/16	1732	5.92	9.26
03		SEC0025-IBB2	03/09/16	1754	5.90	9.24
04		SEC0025-CAL2	03/09/16	1816	5.90	9.24
05		SEC0025-CAL3	03/09/16	1838	5.91	9.24
06		SEC0025-CAL4	03/09/16	1901	5.92	9.24
07		SEC0025-CAL5	03/09/16	1922	5.94	9.24
08		SEC0025-CAL6	03/09/16	1945	5.97	9.23
09		SEC0025-SCV1	03/09/16	2006	5.91	9.23
10		SEQ-IBL1	03/15/16	1109	5.91	9.24
11		SEQ-IBL2	03/15/16	1130	5.91	9.24
12		SEO-CAL1	03/15/16	1154	5.90	9.23
13		SEQ-CAL2	03/15/16	1217	5.90	9.23
14		SEQ-CAL3	03/15/16	1239	5.92	9.24
15		SEQ-CAL4	03/15/16	1303	5.91	9.26
16		SEQ-CAL5	03/15/16	1326	5.88	9.30
17		SEQ-CAL6	03/15/16	1348	5.90	9.33*
18		SEQ-SCV1	03/15/16	1411	5.91	9.24
19		SEQ-CAL7	03/16/16	0342	5.87	9.22
20		SEQ-CAL8	03/16/16	0403	5.93	9.23
21		SEQ-CAL9	03/16/16	0424	5.93	9.24
22		SEQ-CALA	03/16/16	0447	5.92	9.25
23		SEQ-CALB	03/16/16	0508	5.92	9.25
24		SEQ-CALC	03/16/16	0529	5.92	9.31*
	·	·				

QC LIMITS

TERPH = o-terph TRIAC = Triacon Surr (+/- 0.05 MINUTES) (+/- 0.05 MINUTES)

page 1 of 1

FORM VIII TPH

^{*} Values outside of QC limits.