Contaminated Media Management Plan

701 South Jackson Street Seattle, Washington

for 701 South Jackson Partners, LLC c/o Housing Diversity Corp

May 16, 2023

Contaminated Media Management Plan

701 South Jackson Street Seattle, Washington

for 701 South Jackson Partners, LLC c/o Housing Diversity Corp

May 16, 2023

2101 4th Avenue, Suite 950 Seattle, Washington 206.728.2674

Contaminated Media Management Plan

701 South Jackson Street Seattle, Washington

File No. 24504-001-01

May 16, 2023

Prepared for:

701 S Jackson Partners, LLC c/o Housing Diversity Corp 159 South Jackson Street Seattle, Washington 98104

Attention: Brad Padden

Prepared by:

GeoEngineers, Inc. 2101 4th Avenue, Suite 950 Seattle, Washington 98121 206.728.2674

Robert S. Trahan, LG Senior Environmental Scientist

Jersen

Tim L. Syverson, LHG Associate

RST:TLS:ch

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRODUCTION	1
2.0	BACKGROUND	2
2.2. 2.3. 2	Location and Description Historical Land Use Geology and Hydrogeology 2.3.1. Local Geology 2.3.2. Local Hydrogeology Environmental Conditions	2 2 2 3
2.5.	Regulatory Framework	3
3.0	MATERIAL MANAGEMENT DURING CONSTRUCTION	4
3.2. 3 3 3	General Excavation Approach Material Management Units	4 5 6
3.4. 3.5. 3.6. 3.7.	Recommendations for Soil Handling and Disposal Recommendations for Equipment Decontamination Recommendations for Construction Dewatering Effluent Handling Recommendations for Buried Debris Recommendations for Monitoring/Water Resource Well Decommissioning Recommendations for Health and Safety	7 8 8 8
4.0	SOIL SAMPLING AND ANALYSIS	9
4.2. 4.3. 4 4.4. 4.4. 4.5. 4.6.	Confirmation Sampling – Category 3 Soil Additional Soil Characterization Field Screening Procedures I.3.1. Visual Screening I.3.2. Water Sheen Screening I.3.3. Headspace Vapor Screening Sample Collection and Decontamination Procedures Sample Containers and Labeling Chain-of-Custody Records	10 11 11 11 12 12 12
	DISCOVERY OF PREVIOUSLY UNIDENTIFIED ENVIRONMENTAL CONDITIONS	
5.2. 5.3. 5.4.	Discovery of Potentially Contaminated Soil Discovery of a Previously Undocumented UST Discovery of Unexpected Construction Wastewater Inadvertent Discovery of Cultural Resources Contact Information for Key Project Personnel	13 13 14
6.0	LIMITATIONS	14
7.0	REFERENCES	15

LIST OF TABLES

- Table 1. Summary of Soil Investigation Chemical Analytical Data
- Table 2. Summary of Groundwater Investigation Chemical Analytical Data
- Table 3. Summary of Sub-Slab Soil Gas Investigation Chemical Analytical Data

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Environmental Investigation Sampling Locations
- Figure 3. Fill Soil Conditions
- Figure 4. Native Soil Conditions
- Figure 5. Groundwater Conditions
- Figure 6. Soil Vapor Conditions
- Figure 7. Soil Management Elevation 105' to 100'
- Figure 8. Soil Management Elevation 100' to 95'
- Figure 9. Soil Management Elevation 95' to 90'
- Figure 10. Soil Management Elevation 90' to 85'
- Figure 11. Soil Management Elevation 85' to 80'
- Figure 12. Soil Management Elevation 80' to 75'

APPENDICES

Appendix A. Exploration Logs

- Appendix B. Site-Specific Health and Safety Plan
- Appendix C. Inadvertent Discovery Plan
- Appendix D. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This document presents the Contaminated Media Management Plan (CMMP) to be utilized for the Seventh Avenue Service Site (Site) during upcoming earthwork activities associated with the redevelopment of the 0.31-acre property located at 701 South Jackson Street (Property) in the Chinatown-International District neighborhood of Seattle, Washington. Redevelopment plans for the Property include a new eight-story building with affordable housing and ground level commercial retail space. As part of the redevelopment, the existing buildings and structures will be demolished followed by Property-line to Property-line excavation of subsurface soils to a depth of approximately 15 to 20 feet below ground surface (bgs; Elevation 85 to 80 feet¹) and subsequent construction of the new building.

Based on environmental investigations conducted between 1992 and 2022, soil in the central and western portions of the Property contain gasoline-range total petroleum hydrocarbons, benzene, toluene, ethylbenzene, and xylenes (BTEX) and naphthalene at concentrations greater than the Model Toxics Control Act (MTCA) cleanup levels (CULs) associated with the former gasoline service station and garage that historically operated at the Property between the 1930s and 1970s. Additionally, localized areas of the shallow fill soil imported to the Property during construction for the existing structures contain lead and carcinogenic polycyclic aromatic hydrocarbons (cPAHs) at concentrations greater than the MTCA CULs. As part of the selected cleanup action for the Site, contaminant containing soil will be removed from the Property during redevelopment for permitted off-Site disposal followed by confirmation sampling to document soil conditions at the final construction excavation limit. Because residual soil contamination will remain in place beneath portions of the 7th Avenue South and South Jackson Street Rights-of-Way (ROW) following construction, a vapor barrier will be included in the project design to prevent vapor intrusion by residual contaminants into the occupied spaces of the new building and protect the future residents and retail space workers. To facilitate cleanup as part of project construction, 701 S Jackson Partners, LLC (South Jackson Partners) entered a Prospective Purchaser Consent Decree (PPCD) No. 22-2-15886-7 SEA with the Washington State Department of Ecology (Ecology), and the Assistant Attorney General, Ecology Division (the AGO), to facilitate cleanup as part of project construction.

This CMMP has been developed to provide guidance for the construction team to recognize and manage known or potentially contaminated media that may be encountered during construction excavation. The CMMP also provides recommended handling and disposal procedures for this material. Data and observations during construction excavation, including additional subsurface characterization (as needed), will be used to ensure the proper management of generated materials. At the completion of the soil cleanup action, a Cleanup Action Report will be prepared to document the remedial actions completed and soil conditions at the final construction excavation limits.

The Property is shown relative to other surrounding physical features on the Vicinity Map, Figure 1. The layout of the Property and the proposed construction excavation area in relation to previous explorations locations are shown on Environmental Investigation Sampling Locations, Figure 2.

¹ Elevations in this document are referenced to North American Vertical Datum 1988 (NAVD88).

2.0 BACKGROUND

2.1. Location and Description

The Property is bounded by South Jackson Street to the north, 7th Avenue South to the west, a mixed-use retail and apartment building (currently vacant) to the south, and a restaurant building (House of Hong) to the east (Figure 2). The Property is currently developed with two single-story structures, including a former gasoline station building in the northwest portion and an "L"-shaped automobile repair garage along the east and south Property boundaries, and paved parking and drive areas. A small building on the southwest corner of the Property is currently used for a storage room for "New Century Tea Gallery". Other buildings on Property are currently vacant.

Surface grades at the Property range from an elevation of approximately 106 feet to approximately 93 feet. Surface grades slope toward the southwest.

2.2. Historical Land Use

Since redevelopment following the Jackson Street regrading project in 1927, the Property has been used for automobile repair and fueling services. During redevelopment, the large "L"-shaped building was constructed along the southern and eastern portions of the Property. As early as 1932, a gasoline service station was added to the northwest portion of the Property until sales of gasoline ceased in the 1970s. The former gasoline service station operations included two gasoline underground storage tanks (USTs) and an associated fuel dispenser/pump island, and vehicle service/repair. In 2010, the gasoline USTs associated with the service station were decommissioned and removed from the Property.

2.3. Geology and Hydrogeology

2.3.1. Local Geology

Soil encountered at the Site consists of fill overlying pre-Vashon deposits consisting of interbedded sand, gravel, silt, and poorly sorted mixtures that are of unspecified age and origin (Troost, et al. 2005). Based on the previous investigations completed at the Property, summarized in the Revised Remedial Investigation and Feasibility Study (RI/FS; GeoEngineers 2022), soil conditions at the Property generally consist of:

- Fill Surficial fill was encountered in each exploration. The fill is approximately 4 to 7 feet thick, although fill may extend to depths of up to 10 feet bgs (elevation ranging from approximately 96 to 85 feet) at some exploration locations. The fill consisted primarily of silty fine to fine sand with silt containing occasional debris (concrete, plastic, metal and brick debris).
- Glacial Deposits Interbedded fine sand with silt and clayey silt is present beneath the fill deposits to a depth of approximately 12 feet bgs. Fine to medium silty sand and sand with trace silt underlies the interbedded silt and clayey silt deposits to an approximate depth of 20 feet bgs (approximately Elevation 77 feet). Deposits from approximately 20 feet to the maximum depth explored (76.5 feet bgs; Elevation 22 feet) consist of fine sand with varying amounts of silt and clayey silt.

Exploration logs for the investigations completed at the Property detailing soil types encountered are presented in Appendix A.

2.3.2. Local Hydrogeology

Moist and/or wet soil interpreted as shallow perched groundwater was observed in 5 of the 25 explorations completed at the Site at depths ranging from approximately 12 to 20 feet (approximately Elevation 90 to 75 feet). Based on the investigation results, shallow perched groundwater may be present at the Property and surrounding area; however, the occurrence of this unit is likely discontinuous and not widespread.

The deep regional groundwater is present beneath the Property at a depth ranging from approximately 61 to 69 feet bgs (Elevation 31 to 34 feet NAVD88), based on depths to groundwater measured in one deep temporary monitoring well in the central portion of the Property, and two deep monitoring wells within the west adjacent ROW. Based on the proximity of the Property to surrounding surface water bodies (i.e., Puget Sound) and local topography, the inferred groundwater flow direction is to the west-southwest.

2.4. Environmental Conditions

Soil, groundwater and soil gas conditions based on the results of the previous environmental investigation activities indicate that soil in the central and western portions of the Property contain gasoline-range total petroleum hydrocarbons, BTEX, and naphthalene at concentrations greater than MTCA CULs between approximately 5 and 20 feet bgs (approximately Elevation 95 to 80 feet NAVD88). Additionally, localized areas of the shallow fill soil imported to the Property during construction for the existing structures contain lead (GEI-6) and carcinogenic polycyclic aromatic hydrocarbons (cPAHs; GEI-4) at concentrations greater than MTCA CULs at a depth of approximately 2.5 feet bgs. Other contaminants of potential concern including diesel- and heavy oil-range total petroleum hydrocarbons, volatile organic compounds (VOCs; not including BTEX), halogenated VOCs (HVOCs), metals (not including lead) and polychlorinated biphenyls (PCBs) either were not detected at concentrations greater than the laboratory reporting limits or were detected at concentrations less than the corresponding MTCA CULs.

Analytical results for groundwater samples collected from the deep regional groundwater unit (GEI-1, GEI-11 and GEI-12) indicate that contaminants either were not detected at concentrations greater than the laboratory reporting limits or were detected at concentrations less than the MTCA CULs.

The concentrations of total petroleum hydrocarbons (sum of EC5-8 aliphatics, EC9-12 aliphatics and EC9-10 aromatics) detected in shallow sub-slab vapor samples at locations SSV-1 and SSV-2 and deep sub-slab vapor sample locations SSV-2 and SSV-3 were greater than the MTCA Method B soil gas screening levels. In addition, the benzene, 1,2-Dibromoethane (EDB) and naphthalene concentrations were greater than the MTCA Method B soil gas screening values in shallow soil in the northern and southwestern portions of the Property.

Chemical analytical results for soil, groundwater and soil gas samples are summarized in Tables 1 through 3, respectively.

2.5. Regulatory Framework

The Site is listed by Ecology with Facility/Site No. 99187287 and Cleanup Site ID No. 11348 and has been identified as a Leaking Underground Storage Tank (LUST) site (LUST Release No. 592055) for benzene, naphthalene, and gasoline-range petroleum hydrocarbons confirmed in soil at concentrations greater than the MTCA CULs. As part of the planned redevelopment, South Jackson Partners entered a PPCD No. 22-2-15886-7 SEA with Ecology, and the AGO, to facilitate cleanup as part of project construction.

Prior to initiating the PPCD process, the Site was enrolled in Ecology's Voluntary Cleanup Program (VCP) to receive Ecology's technical advice and assistance on the independent RI/FS. The Site entered into the Expedited VCP on April 23, 2021 and was assigned a VCP No. XS0009. Ecology issued an Opinion Letter on May 25, 2022 on the independent RI/FS. Upon initiating the PPCD process, the VCP agreement governing No. XS0009 was terminated.

3.0 MATERIAL MANAGEMENT DURING CONSTRUCTION

Guidelines for material management during construction were developed based on the results of the previous investigations completed at the Site and are intended to provide guidance for the construction team for the recognition and management of known or previously unidentified contamination that may be encountered during construction excavation. The following sections (Sections 3.1 through 3.6) describe the recommended excavation approach, health and safety considerations, recommendations for the proper management of excavated soil for off-property disposal, and recommendations for equipment decontamination and construction stormwater management.

3.1. General Excavation Approach

Standard earthwork technologies will be used for demolition and removal of existing surface features and utilities (where occurring), as well as the installation of new utilities, building foundations and landscape features. Materials generated during construction, including soil, will be transported from the Property to facilities permitted to receive such waste streams.

Construction excavation at the Property will include removal of soil in stages as excavation activities proceed. Excavated soil is planned to be directly loaded into trucks for off-site disposal or temporarily stockpiled pending off-site disposal. The General Contractor will be responsible for developing means and methods for soil and stormwater management, equipment decontamination, and tracking waste streams during construction. During construction, GeoEngineers will assist with material management (see Section 3.2) based on existing chemical analytical data and physical evidence of contamination including color, staining, sheen and/or headspace vapors measured using a photoionization detector (PID). Confirmation soil sampling and field screening methods are further described in Section 4.0.

As noted above, recommendations in this plan are based on the results of the environmental investigations conducted to date, historical land use and geologic and hydrogeologic conditions at the Property as described in Section 2.0.

3.2. Material Management Units

Based on previous environmental investigation results, three material management units are identified to guide the General Contractor and/or Earthwork Contractor (collectively "Contractor") during soil excavation activities to ensure the proper handling and disposal of each waste stream to comply with applicable solid waste regulations. Each management unit corresponds to a different soil category (i.e., Category 1 through 3) with specific handling and disposal protocols. The protocols for each category are summarized in the following sections (Sections 3.2.1 through 3.2.3).

The distinction between the materials management units for construction excavation is based on the results of environmental investigations performed at the Property to date. The materials management areas are shown graphically on Figures 3 through 12.

3.2.1. Category 1 Soil

Category 1 soil is recommended for transport and disposal to an owner-approved fill location following the protocols presented in Section 3.3. Soil in Category 1 has each of the following characteristics:

- Physical evidence of contamination (sheen, odor, staining, etc.) is <u>not</u> observed;
- Contaminant concentrations are not detected except for metals; and
- Metals are detected at concentrations that are less than natural background concentrations for Puget Sound region (Natural Background; Ecology 1994).

Soil classified as Category 1 does not require special handling and may be re-used on site or transported and disposed of at an owner-approved fill site. The Contractor should provide information regarding the environmental conditions at the Category 1 receiving facility to the owner with sufficient time for document/records review of the facility to determine if the proposed Category 1 receiving facility is acceptable for use for the 701 South Jackson Street redevelopment project. In addition, the owner of the fill site will provide a written confirmation to accept the material as-is with an acknowledgement that the soil may contain contaminants such as low concentrations of metals at or below background levels.

The Contractor will identify and implement Best Management Practices (BMPs) to minimize the potential for cross-contamination of Category 1 soil with other soil categories during excavation, handling, stockpiling, loading and transport. At a minimum, these practices should include minimizing the tracking of construction equipment between areas of different soil categories, and minimizing contact between excavated Category 2 and/or 3 soils (further discussed below). If temporary soil stockpiles are required to manage excavated Category 2 and/or 3 soil, plastic sheeting will be used to provide a contact/visual barrier beneath the load-out piles when there is a potential for cross-contaminating Category 1 soil. In the event that Category 2 and/or 3 soil comes into contact with the underlying Category 1 soil, the Contractor will over-excavate these areas in coordination with field guidance provided by GeoEngineers and dispose of the soil at an appropriate permitted disposal facility.

3.2.2. Category 2 Soil

Category 2 soil contains residual contaminants at concentrations greater than Natural Background levels but less than MTCA CULs. Category 2 soil will be transported to a controlled and permitted landfill such as Cadman in Everett, Washington, and/or other owner-approved landfill following the protocols presented in Section 3.3. Soil defined by Category 2 has the following characteristics:

- Physical evidence of contamination (sheen, odor, staining, etc.) is <u>not</u> observed;
- Metals are detected at concentrations that are greater than Natural Background (Ecology 1994); and
- Contaminant concentrations are <u>less</u> than MTCA CULs.

Special handling and end-use considerations are required for soil classified as a Category 2 soil, including:

- Soil Excavation and Segregation Soil classified by this category should be segregated by the Contractor from other soil categories to prevent co-mingling of Category 2 soil with other soil categories.
- Loading and/or Temporary Stockpiling of Category 2 Soil Category 2 soil may either be loaded directly into trucks for off-site permitted disposal or may be temporarily stockpiled on asphalt surfaces

or plastic sheeting (Visqueen or similar) to separate this material from other soil categories while pending end-use/disposal. Plastic sheeting or other BMPs (as necessary) should be employed to prevent wind erosion, water erosion and/or the off-site release of stockpiled material.

- Transport and Disposal Facilities Category 2 soil that is generated from the Property must be transported to the selected disposal facility following applicable state and federal regulations. The Contractor must employ BMPs to prevent the tracking of Category 2 soil off Property. Prior to transport from the Property, waste disposal acceptance must be obtained from the receiving facility.
- Off-Site Reuse Alternative to Disposal Excavated Category 2 soil can be transported to a receiving facility that is prequalified by the owner and has been provided with the chemical analytical results and agrees in writing to accept the material as-is with an acknowledgement that the soil may contain contaminants at low concentrations, less than MTCA CULs.

3.2.3. Category 3 Soil

Category 3 soils contain residual contamination at concentrations greater than MTCA CULs. Material under this category is subject to permitted disposal at a landfill following the protocols presented in Section 3.3 and has the following characteristics:

- Physical evidence of contamination (sheen, odor, staining, etc.) may or may not be present; and
- Contains one or more contaminants with a detected concentration greater than the MTCA CULs.

Special handling and end-use considerations are required for the excavation and disposal of Category 3 soil, including:

- Soil Excavation and Segregation A GeoEngineers' representative will be present to oversee Category 3 soil excavation activities to field screen soil and assist the General Contractor and/or Earthwork Contractor in soil segregation. Field screening methods are described in Section 4.2. The Contractor must employ BMPs to prevent cross-contamination with other soil categories as identified above.
- Loading and/or Temporary Stockpiling of Category 3 Soil Category 3 soil may either be loaded directly into trucks for off-site permitted disposal or may be temporarily stockpiled on asphalt surfaces or plastic sheeting (Visqueen or similar) to separate this material from other soil categories while pending end-use/disposal. Plastic sheeting or other BMPs (as necessary) should be employed to prevent wind erosion, and/or water erosion and/or the off-site release of stockpiled material.
- Transport and Disposal Facilities Category 3 soil that is generated from the Property must be transported to the selected disposal facility in accordance with applicable solid waste regulations. The Contractor must employ BMPs to prevent the tracking of Category 3 soil off the Property. Prior to transport from the Property, waste disposal acceptance must be obtained from the receiving facility. Potential disposal facilities appropriate to receive Category 3 soil include but are not limited to:
 - Waste Management's Columbia Ridge Landfill in Arlington, Oregon. Waste Management operates a transfer station (Alaska Street Transfer Station) for this landfill in Seattle, Washington.
 - Republic Service's Rabanco-Roosevelt Subtitle D Landfill located in Klickitat County, Washington via local transfer stations.

Confirmation Soil Sampling – As discussed in Section 4.1, confirmation soil samples will be obtained from the excavation base and sidewalls to verify the removal of Category 3 soil. Soil samples will be submitted for laboratory chemical analysis on a rush (2-business-day) turnaround time (TAT). In general, sidewall confirmation soil samples will be collected at a minimum frequency of one per approximately 40 linear feet of excavation sidewall. If the perimeter of the excavation sidewall is less than 40 linear feet, a minimum of one confirmation sample will be collected from each sidewall. Base confirmation samples will be collected at a minimum frequency 625 square feet. The confirmation soil samples will be analyzed to verify the removal of soil with concentrations of the contaminants of concern, including gasoline-range total petroleum hydrocarbons (TPH-G), BTEX, lead, naphthalenes and/or cPAHs, greater than the MTCA CULs.

3.3. Recommendations for Soil Handling and Disposal

The recommendations that follow pertain to Category 2 and 3 soil and have been established for soil that will be generated during construction to ensure proper handling and disposal. To track these waste streams leaving the Property, the Contractor will be required to develop and maintain procedures and protocols to track Category 2 and 3 soil loads transported from the Property for disposal. Trucking records must include:

- Trucking company;
- Truck number;
- Solo or truck and trailer loaded;
- Driver name;
- Name of disposal facility; and
- Material Management Unit being transported.

The Contractor will also be required to provide documentation of delivery of all generated materials to the selected disposal facility(s).

It is generally anticipated that soil will be transported to the disposal facilities without stockpiling or performing additional chemical testing before transport off-site (i.e., dig and haul approach). However, opportunities to conduct additional soil characterization during construction will be evaluated to potentially recategorize materials generated by excavation in areas not previously sampled or where existing soil data are limited. Additionally, soil characterization will be performed during construction if previously unidentified physical evidence of soil contamination is encountered within a material management unit. Previously unidentified soil with physical evidence of contamination must remain on the Property (i.e., contained within a soil stockpile or remain in-place and undisturbed) so that soil sampling and chemical analyses can be completed to characterize the waste stream and to ensure proper material handling.

3.4. Recommendations for Equipment Decontamination

The Contractor will be required to decontaminate equipment that has come into contact with Category 2 and 3 soil to prevent cross-contamination between the material management units. Equipment decontamination shall include, at a minimum, removing (by brushing or shaking) residual soil which exhibits odors, staining or sheen from excavation equipment. If free product (i.e., diesel, oil, gasoline, etc.) is encountered during excavation, equipment decontamination shall include pressure-washing with collection

and containment of all washing liquids. Decontamination fluids shall be contained by the Contractor and tested prior to discharge to the sewer or off-site treatment/disposal facility. Decontamination of trucks leaving the Property and proper disposal of decontamination fluids are the responsibility of the Contractor.

3.5. Recommendations for Construction Dewatering Effluent Handling

Discontinuous lenses of perched water were observed in previous environmental explorations at depths ranging from approximately 12 to 20 feet (approximately Elevation 90 to 75 feet NAVD88). Additionally, deep regional groundwater was encountered in previous explorations GEI-1, GEI-11 and GEI-12 at depths greater than 61 feet bgs (approximately Elevation 31 to 34 feet NAVD88; see Table 2). Based on the measured groundwater elevations of the deep regional groundwater unit relative to the planned construction excavation subgrade elevation, this groundwater unit will not be encountered.

If the seepage of groundwater or accumulation of stormwater requires removal during construction, we assume that the Contractor will obtain the necessary discharge permits to the City of Seattle (City) sanitary sewer and that if needed, have a system/equipment on site to store, test, and treat water prior to discharge into the sanitary sewer as required by the discharge permit.

If groundwater and/or stormwater comes into contact with contaminated soil, we recommend that water samples from the influent (upstream) and effluent (discharge) ends of the system be obtained for chemical analytical testing to document analyte/contaminant concentrations in both untreated (upstream) water and settled/treated water prior to the point of discharge to the sewer system. Water quality testing results will need to be compared to the specific discharge limits that will be listed in the discharge authorization for the project. It is the Contractor's responsibility to check and verify that the settled/treated dewatering effluent complies with all limits listed in the discharge authorization.

3.6. Recommendations for Buried Debris

Structures associated with the former service station and garage will be demolished and removed from the Property prior to excavation. However, foundations associated with these structures may still be present. If encountered, these foundations must be broken into manageable-sized pieces, stockpiled and transported from the Property to a recycling facility permitted to receive such material only if the material does not exhibit evidence of contamination (i.e., staining) and is free of excess soil. If evidence of contamination (i.e., staining) is present or the concrete debris cannot be efficiently cleaned of excess soil, the debris must be transported from the Property for permitted disposal in accordance with the protocols established in Section 3.2.

Additionally, wood and/or other debris (i.e., brick, metal, glass, etc.) encountered during construction that is not suitable for recycling must be removed from the Property for permitted disposal.

3.7. Recommendations for Monitoring/Water Resource Well Decommissioning

Monitoring wells GEI-11 and GEI-12 are located in the west adjacent right-of-way (west of the construction excavation area) and must be protected in-place. If these wells cannot be protected in-place, they must be decommissioned by a Washington-licensed driller in accordance with Ecology requirements (WAC 173-160-460) prior to any disturbance. If these wells are decommissioned, replacement wells will be installed at or near the current well locations to facilitate future groundwater monitoring.

3.8. Recommendations for Health and Safety

Occupational and Safety Health Act (OSHA; 29 CFR 1910, 1926) and the Washington Industrial Safety and Health Act (WISHA; RCW 49.17) are applicable to personnel coming into contact with contaminated (i.e., Category 3) soil. These regulations include requirements that workers are to be protected from exposure to contaminants. In addition, personnel working in these areas shall meet requirements for Hazardous Waste Operations and Emergency Response (HAZWOPER) Training in accordance with WAC 296-843.

Based on the nature of the contaminants present at the Site and Property (i.e., volatile organics including gasoline and benzene), an air monitoring plan should be developed by the Contractor for all project phases with shoring, excavation, trenching, and demolition in soils known to contain volatiles to ensure that no employees or surrounding residence are exposed to airborne concentrations above permissible exposure levels. If air monitoring determines that employees or the community are exposed to airborne concentrations at or above the permissible exposure levels, work should be halted, work/safety procedures modified as appropriate, and the activity associated with the exposure re-engineered to lower the threat of exposure.

A site-specific Health and Safety Plan (HASP) describing actions that will be taken to protect the health and safety of GeoEngineers personnel (South Jackson Partners' environmental construction oversight consultant) is presented as Appendix B. A separate HASP should be developed by the Contractor, specifically for, and limited to, the portions of the project in which known contaminated soil is present. The Contractor's HASP should be used consistent with their health and safety program and those of their subcontractors, and as the foundation for training personnel on site. The GeoEngineers and Contractor HASPs should be considered as "living" documents and should be re-evaluated and updated periodically as needed in light of work progression and changing conditions.

4.0 SOIL SAMPLING AND ANALYSIS

4.1. Confirmation Sampling – Category 3 Soil

Soil confirmation samples will be collected by GeoEngineers field personnel from the base and sidewalls of the remedial excavation to verify the removal of Category 3 soil (i.e., soil in which pre-construction data and/or field screening indicate evidence of the presence of one or more contaminants at a concentration greater than the MTCA CUL). Soil samples from the base of the excavation will be collected at a minimum frequency of one sample per approximately 625 square feet. If the area of the base is less than 625 square feet, a minimum of one base sample will be obtained. Sidewall samples will be collected at a minimum frequency of one sample per approximately 40 linear feet of sidewall along the perimeter of the excavation. If the perimeter of the excavation sidewall is less than 40 linear feet, then one confirmation sample will be collected from each sidewall of the excavation. Sidewall samples will be collected at a depth where field screening evidence of contamination is the highest, and/or based on depths of previous soil sample results. Field screening procedures are presented in Section 4.3. If the sidewall does not have field screening evidence of contamination, the sidewall will be collected at the midpoint depth. If a sidewall or base confirmation soil sample within the property boundary contains one or more contaminants at a concentration greater than the MTCA CUL (see Table 1), additional excavation will be performed to remove soil represented by that sample and a new confirmation sidewall or base sample obtained to verify compliance with the cleanup levels. Additional excavation to remove soil containing contaminants at

concentrations greater than the MTCA CUL will not be performed beyond the property boundary (i.e., into portions of the South Jackson Street and 7th Avenue ROWs).

Soil samples will be collected by GeoEngineers' field personnel using a clean pair of nitrile gloves and placed in clean laboratory provided containers for chemical analysis. Reusable sampling equipment (if used) will be decontaminated prior to sample collection at each location (Section 4.4). Each sample container will be securely capped, labeled, and placed in a cooler with ice immediately upon collection. Samples for volatile analyses (NWTPH-Gx and Environmental Protection Agency [EPA] Method 8260) will be collected as discrete samples at a minimum of 6 inches below the surface of the base or sidewall in accordance with EPA 5035A sampling methods. Samples for non-volatile analysis will be collected from a minimum of 6 inches below the surface and homogenized prior to placing into the laboratory container. GeoEngineers' field representative will visually classify the soils in accordance with ASTM International (ASTM) Method D 2488 (Standard Practice for Description and Identification of Soils [Visual Manual Procedure]) and record soil descriptions and other relevant field screening details (e.g., staining, debris, odors, etc.) in the field log. Sample container, labeling, and handling procedures are described in Sections 4.5 and 4.6.

Chemical analysis will be performed at an Ecology accredited laboratory. Chain-of-custody forms will be used to document the transfer of samples during transport and submittal of samples to the laboratory. The following analysis will be performed on confirmation soil samples to verify the removal of petroleum-related contaminants resulting from historical gasoline service station operations:

- Gasoline-range total petroleum hydrocarbons (TPH) by EPA Method NWTPH-Gx
- BTEX by EPA Method 8260
- Naphthalenes by EPA Method 8270

In addition, confirmation soil samples will be collected to verify the removal of lead-containing soil previously identified in fill at location GEI-4 at an approximate depth of 2.5 feet bgs, and to verify the removal of cPAHs previously identified in fill soil at location GEI-6 at an approximate depth of 2.5 feet bgs. Lead will be analyzed by EPA 6000/7000 method series and cPAHs will be analyzed by EPA Method 8270 SIM.

Confirmation soil samples collected to document contaminant conditions that will be left in place within the South Jackson Street and/or 7th Avenue ROW will be analyzed at a standard (7 to 10 days) turn-around-time (TAT) or as determined based on field conditions. Confirmation soil samples collected to verify compliance with MTCA CULs will be analyzed on an expedited 2-day TAT to support decision-making in the field concerning any additional excavation that may be required to achieve compliance with the cleanup levels. Confirmation soil samples will be subject to an EPA defined Stage 2B data validation and submitted to Ecology's Environmental Information Management (EIM) database.

4.2. Additional Soil Characterization

Additional characterization will be conducted during construction to verify the contact with the native soil beneath the base of the fill (i.e., Category 2 Soil) to document the vertical and/or lateral extent of Category 2 soil for proper material management as necessary to support construction, or if areas of previously unidentified suspect contaminant-containing soil are discovered. Characterization will include collection of

soil samples from the base and/or sidewalls of the excavation areas completed to remove these materials. Soil samples will be analyzed for a combination of the following as appropriate:

- Gasoline-range TPH by method NWTPH-Gx
- Diesel- and oil-range TPH by method NWTPH-Dx
- BTEX by EPA method 8260
- Naphthalenes and cPAHs by EPA method 8270
- Metals by EPA 6000/7000 series

To the extent practicable, the samples will be analyzed on a short turnaround (i.e., 2-day or less) basis to allow timely decision-making regarding the need for further excavation to verify the presence and potential removal of the impacted soil.

4.3. Field Screening Procedures

The potential presence of contamination in soil samples will be evaluated using field screening techniques. Field screening results will be recorded on the field logs and the results will be used as a general guideline to delineate areas of possible contamination and/or to segregate soil. In addition, screening results will be used as a basis for selecting soil samples for chemical analysis. The following screening methods will be used: (1) visual screening; (2) water sheen screening; and (3) headspace vapor screening.

4.3.1. Visual Screening

The soil will be observed for unusual color and stains and/or odor indicative of possible contamination.

4.3.2. Water Sheen Screening

This is a qualitative field screening method that can help identify the presence or absence of petroleum hydrocarbons. A portion of the soil sample will be placed in a pan containing distilled water. The water surface will be observed for signs of sheen. The following sheen classifications will be used:

Classification	Identifier	Description
No Sheen	NS	No visible sheen on the water surface
Slight Sheen	SS	Light, colorless, dull sheen; spread is irregular, no rapid; sheen dissipates rapidly
Moderate Sheen	MS	Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on the water surface
Heavy Sheen	HS	Heavy sheen with color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on the water surface

4.3.3. Headspace Vapor Screening

This is a semi-quantitative field screening method that can help identify the presence or absence of VOCs in soil samples. A portion of the soil sample will be placed in a resealable plastic bag. The bag will then be sealed capturing air in the bag. The bag is then shaken gently to expose the soil to the air trapped in the bag. The bag will remain closed for approximately 5 minutes at ambient temperature before the headspace vapors are measured. Vapors present within the sample bag's headspace will be measured by inserting the

probe of a PID through a small opening in the bag, taking care not to clog the probe with soil. The maximum PID reading (in parts per million [ppm]) and the ambient air temperature will be recorded on the field log for each sample. The PID will be calibrated daily to 100 ppm isobutylene in accordance with the manufacturer's recommendations. No portions of a soil sample used for headspace screening will be submitted to the laboratory for chemical analysis.

4.4. Sample Collection and Decontamination Procedures

Soil samples will be collected using excavation equipment (i.e., backhoe or excavator), and/or hand tools including stainless steel spoons. Reusable sampling equipment that comes in contact with soil will be decontaminated before each use. Decontamination procedures for this equipment will consist of the following:

- 1. Washing with a brush and non-phosphate detergent solution (e.g., Liqui-Nox and distilled water); and
- 2. Rinsing with distilled water

Field personnel will limit cross-contamination by changing gloves between sampling locations.

4.5. Sample Containers and Labeling

Soil samples will be placed in appropriate laboratory-prepared containers. Sample containers will be labeled with the following information at the time of sample collection:

- Project name and number;
- Type of sample preservative used (where applicable);
- Sample name, which will include a reference to date and sampling depth (if applicable); and
- Date and time of collection.

4.6. Chain-of-Custody Records

Chain-of custody (COC) forms will be completed for each group of samples being shipped to the laboratory. Information to be included on the COC form includes:

- Project name and number;
- Sample identifications;
- Date and time of sampling;
- Sample matrix (soil and groundwater), preservative and number of containers for each sample;
- Analyses to be performed;
- Names of sampling personnel;
- Project manager name and contact information including phone number; and
- Shipping information including shipping container number, if applicable.

The original COC form will be signed by a member of the field team. Field personnel will retain copies and place the original and remaining copies in a plastic bag. The plastic bag containing the COC form will be placed in the cooler before sealing the cooler for transport to the laboratory.

5.0 DISCOVERY OF PREVIOUSLY UNIDENTIFIED ENVIRONMENTAL CONDITIONS

5.1. Discovery of Potentially Contaminated Soil

Excavated soil encountered at any location on the Property will be considered to be contaminated if it exhibits one or more of the following physical characteristics:

- Staining;
- Petroleum hydrocarbon odors;
- Produces a sheen when coming into contact with water; and/or
- Contains significant concentrations of organic vapors detected using headspace field screening methods.

If soil exhibiting one or more of the above characteristics is discovered in portions of the Property not previously characterized, the Contractor should stop excavation and key personnel identified in Section 5.4 notified so that the nature and extent of the discovery can be evaluated, and the soil characterized for disposal.

5.2. Discovery of a Previously Undocumented UST

If an undocumented UST is encountered at the Property, excavation activities should be halted, and the key personnel identified in Section 5.4 notified so that the contents of the UST can be evaluated, and the surrounding soil evaluated for evidence of a release.

If encountered, UST removal activities will generally consist of the following:

- The Contractor will subcontract a Washington State Certified UST Removal subcontractor to complete the UST testing and removals.
- The subcontracted UST removal contractor will complete and submit the required 30-day Notification and Request for a Waiver paperwork to Ecology. The Request for Waiver paperwork will be completed so the UST can be removed as soon as the construction schedule allows, prior to the 30-day waiting period following discovery required by Ecology.
- A GeoEngineers' environmental representative registered as a Washington State UST Site Assessor will observe and document the removal of the USTs in general accordance with WAC 173-360 and Ecology's "Guidance for Site Checks and Site Assessments for Underground Storage Tanks" dated February 1991 and revised in January 2021.
- GeoEngineers will obtain soil samples for field screening and chemical analysis to evaluate soil conditions, determine if a release has occurred, and characterize the contents of the UST.

5.3. Discovery of Unexpected Construction Wastewater

Based on the limited and discontinuous nature of perched groundwater at the Property, it is assumed that excavation dewatering will not be conducted for construction purposes. However, if perched groundwater seeps into the excavation at volumes that require removal from the excavation for on-site containment before discharge/disposal, the Contractor shall coordinate and obtain the necessary wastewater discharge permits with local agencies as described in Section 3.5.

5.4. Inadvertent Discovery of Cultural Resources

An Inadvertent Discovery Plan (IDP) has been prepared using Ecology's IDP form to outline procedures that will be followed in the event that cultural materials or human remains are discovered during the earthwork activities associated with the Property. The IDP is presented in Appendix C.

5.5. Contact Information for Key Project Personnel

If potentially contaminated soil previously not identified, undocumented USTs, or potentially contaminated construction wastewater is encountered during construction, it is the Contractor's responsibility to notify key project personnel as soon as practicable.

The following table presents contact information for key personnel for the 701 South Jackson Street redevelopment project.

Name	Title	Phone	Email
GeoEngineers, Inc.			
Robert Trahan	Environmental Project Manager – Primary Contact	206.240.2300 (c) 206.239.3253 (o)	rtrahan@geoengineers.com
Tim Syverson	Environmental Associate	206.605.9236 (c) 206.448.4197 (o)	tsyverson@geoengineers.com
South Jackson Partne	ers		
Brad Padden	Founder and CEO	425.209.8774 (o)	brad@housingdiversity.com
Robert Tiscareno	Real Estate Analyst	206.915.9702 (o)	robertt@housingdiversity.com
STS Construction Ser	vices		
Craig Haveson	General Contractor	206.439.6343 (o) 206.510.8787 (c)	craigh@stsconst.com
Washington State De	partment of Ecology		
Jing Song	Site Manager	425.229.2565 (o)	jing.song@ecy.wa.gov
Andrew Imke	UST Inspector	425.457.3142 (o)	andrew.imke@ecy.wa.gov

KEY PROJECT CONTACTS

6.0 LIMITATIONS

This CMMP has been prepared for use by 701 S Jackson Partners, LLC and their authorized agents. Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to Appendix D, titled "Report Limitations and Guidelines for Use," for additional information pertaining to use of this report.

7.0 REFERENCES

- GeoEngineers Inc. (GeoEngineers) 2022. Remedial Investigation/Feasibility Study, 701 South Jackson Property, Seattle, Washington. prepared for 701 S Jackson Partners, LLC c/o Housing Diversity Corp. September 19, 2022.
- Washington State Department of Ecology (Ecology). 1997. Natural Background Soil Metals Concentrations in Washington State. Publication No. 94-115. October.

Seattle, Washington

Sample Location ¹			H-1	H-2	H-3	Б	-1	в	-3	в	-4
Sample Location	-		U-1	п-2	п- э	В	-1	В	-3	В	-4
Sample Identification			H-1-12.5	H-2-7.5	H-3-7.5	B-1-5	B-1-12.5	B-3-10	B-3-12.5	B-4-9	B-4-14
Sampled By	МТСА		GeoGroup	GeoGroup	GeoGroup	GeoGroup	GeoGroup	GeoGroup	GeoGroup	GeoGroup	GeoGroup
Sample Date	Cleanup	Natural	08/03/92	08/03/92	08/03/92	02/01/06	02/01/06	02/01/06	02/01/06	02/02/06	02/02/06
Sample Depth (feet bgs)	Levels ³	Background ⁴	12.5	7.5	7.5	5.0	12.5	10.0	12.5	9.0	14.0
Petroleum Hydrocarbons by NWPTH-G	Sx/NWTPH-Dx (mg/k	(g)								-	
Gasoline-Range	30	NE	6,000	1.6	1,400	16	12,000	1,300	13 U	10 U	8,300
Diesel-Range	2,000	NE				28 U	560	30 U	27 U	28 U	280
Lube Oil-Range	2,000	NE				57 U	62 U	60 U	54 U	55 U	62 U
Volatile Organic Compounds (VOCs) by	y EPA 8021/8260 (mg/kg)									
Benzene	0.03	NE	4	0.05 U	0.31	0.020 U	17	1.8	0.093	0.38	15
Toluene	7	NE	55	0.05 U	1.9	0.047 U	7.2	4.5	0.39	0.21	35
Ethylbenzene	6	NE	66	0.05 U	6.2	0.047 U	210	12	0.19	0.12	100
Total Xylenes	9	NE	330	0.05 U	16	0.061	860	35.4	1.08	0.19	440
1,2 Dibromoethane (EDB)	0.005	NE							0.057 U		1.1 U
1,2 Dichloroethane (EDC)	1	NE							0.057 U		1.1 U
Methyl tertiary-butyl ether (MTBE)	0.1	NE							0.057 U		1.1 U
other VOCs ⁵	varies	NE							Detected		Detected
Total Metals by EPA 6000 series (mg/	/kg)										
Arsenic	20	7									
Barium	16,000	NE									
Cadmium	2	1									
Total Chromium	2,000	48									
Lead	250	24	1.5	2.2	3.8						
Mercury	2	0.07									
Selenium	400	NE									
Silver	400	NE									
Polycyclic Aromatic Hydrocarbons (PA	Hs) by EPA 8270D/	SIM (mg/kg)									
Acenaphthene	4,800	NE									_
Acenaphthylene	NE	NE									-
Anthracene	24,000	NE									
Benzo[a]anthracene	NE	NE									
Benzo(a)pyrene	0.1	NE									
Benzo(b)fluoranthene	NE	NE									
Benzo(g,h,i)perylene	NE	NE									
Benzo(k)fluoranthene	NE	NE									
Chrysene	NE	NE									-
Dibenzo(a,h)anthracene	NE	NE									
Fluoranthene	3,200	NE		-	-						-
Fluorene	3,200	NE		-							
Indeno(1,2,3-cd)pyrene	NE	NE	_	-							
Naphthalenes	5	NE									
Phenanthrene	NE	NE	-	-							
Pyrene	2,400	NE									
cPAHs TEQ ⁶	0.1	NE	_								-
Polychlorinated Biphenyls (PCBs) by E		146									-
Aroclor 1016	NA	NE		-							-
Aroclor 1221	NA	NE	_	_							-
Aroclor 1221 Aroclor 1232	NA	NE	-								
Aroclor 1242	NA	NE									
Aroclor 1242 Aroclor 1248	NA	NE									
Aroclor 1248 Aroclor 1254	NA	NE									
	NA	NE									
Aroclor 1260 Total PCBs	1.0										
TULAI PUDS	1.U	NE						-			

Notes:

¹ Approximate exploration locations shown on Figure 2.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when

Method A cleanup level has not been established.

⁴ Natural Background soil concentration per Ecology Publication 94-115 (Ecology 1994).

⁵ Refer to Appendix B for a full list of compounds analyzed and their results.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

bgs = below ground surface

mg/kg = milligram per kilogram

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established

"--" = not tested

ND = Not Detected

 ${\sf U}$ = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration greater than the Natural Background but less than MTCA soil cleanup level.

Table 1 Summary of Soil Investigation Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹	1				T-1				T-2		B-1-11
Sample Location	_		UST-1-	UST-1-	UST-1-	UST-1-	UST-2-	UST-2-	UST-2-	UST-2-	D-1-11
Sample Identification			B-12	N-8/W-6	S-8/E-8	031-1- 0B	B-12	031-2- 0B	N-8/W-6	S-8/E-8	B-1 S-5
Sampled By	мтол		EAI	EAI	EAI	EAI	EAI	EAI	EAI	EAI	Landau
Sample Date	MTCA Cleanup	Natural	11/02/10	11/02/10	11/02/10	11/02/10	11/02/10	11/02/10	11/02/10	11/02/10	11/11/11
Sample Depth (feet bgs)	Levels ³	Background ⁴	12.0	6	8.0	Stockpile	12.0	Stockpile	6	8.0	12.5
Petroleum Hydrocarbons by NWPTH-G		Ĩ	12.0	ů	0.0	Otoexplic	12.0	Otoexpile	Ū	0.0	12.0
Gasoline-Range	30	NE	110	2 U	37	2 U	2 U	2 U	2 U	2 U	24,000
Diesel-Range	2,000	NE		- 20							120 U
Lube Oil-Range	2,000	NE									50 U
Volatile Organic Compounds (VOCs) by	,							_		_	50 0
Benzene	0.03	NE	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	110
Toluene	7	NE	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	1,700
Ethylbenzene	6	NE	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	470
Total Xylenes	9	NE	0.02 0	0.02 U 0.06 U	1.4	0.02 U 0.06 U	0.02 U 0.06 U	0.02 U	0.02 U 0.06 U	0.02 U	2,400
1,2 Dibromoethane (EDB)	0.005	NE									2,400
1,2 Dichloroethane (EDC)	1	NE								-	-
Methyl tertiary-butyl ether (MTBE)	0.1	NE									
other VOCs ⁵	varies	NE	-								_
Total Metals by EPA 6000 series (mg/				1	1	1	1	1	L	1	
Arsenic	20	7									-
Barium	16,000	NE									
Cadmium	2	1									
Total Chromium	2,000	48									
Lead	250	24			-						8.9
Mercury	2	0.07			-						
Selenium	400	NE									
Silver	400	NE									
Polycyclic Aromatic Hydrocarbons (PA					I	I					
Acenaphthene	4,800	NE									
Acenaphthylene	NE	NE		_							
Anthracene	24,000	NE									
Benzo[a]anthracene	NE	NE									
Benzo(a)pyrene	0.1	NE									
Benzo(b)fluoranthene	NE	NE									
Benzo(g,h,i)perylene	NE	NE									
Benzo(k)fluoranthene	NE	NE									
Chrysene	NE	NE									
Dibenzo(a,h)anthracene	NE	NE									-
Fluoranthene	3,200	NE									
Fluorene	3,200	NE								-	
Indeno(1,2,3-cd)pyrene	NE	NE									
Naphthalenes	5	NE									
Phenanthrene	NE	NE									
Pyrene	2,400	NE									
cPAHs TEQ ⁶	0.1	NE									
Polychlorinated Biphenyls (PCBs) by E	PA 8082 (mg/kg)			-	-	-	-	-	-	-	
Aroclor 1016	NA	NE									-
Aroclor 1221	NA	NE									
Aroclor 1232	NA	NE									-
Aroclor 1242	NA	NE									
Aroclor 1248	NA	NE									
Aroclor 1254	NA	NE									
Aroclor 1260	NA	NE									
Total PCBs	1.0	NE					-				

Notes:

¹ Approximate exploration locations shown on Figure 2.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when

Method A cleanup level has not been established.

⁴ Natural Background soil concentration per Ecology Publication 94-115 (Ecology 1994).

⁵ Refer to Appendix B for a full list of compounds analyzed and their results.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

bgs = below ground surface

mg/kg = milligram per kilogram

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established

"--" = not tested

ND = Not Detected

 ${\sf U}$ = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration greater than the Natural Background but less than MTCA soil cleanup level.

Seattle, Washington

Sample Location ¹			B-1-11	B-2	2-11	B-3	8-11	B-4	-11	B-5-11	B-6-11
Sample Identification			B-1 S-7	B-2 S-4	B-2 S-6	B-3 S-4	B-3 S-6	B-4 S-2	B-4 S-6	B-5 S-8	B-6 S-6
Sampled By			Landau								
Sample Date	MTCA	National	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/11/11	11/14/11	11/04/11
Sample Depth (feet bgs)	Cleanup	Natural	17.5	11/11/11	17.5	11/11/11	17.5	5.0	11/11/11	20.0	11/04/11
	Levels ³	Background ⁴	17.5	12.5	17.5	12.5	17.5	5.0	15.0	20.0	15.0
Petroleum Hydrocarbons by NWPTH-G					4.4	100		40		0.0.11	0.0.11
Gasoline-Range	30	NE	14	14	11	420	6.6	10	26	3.0 U	3.0 U
Diesel-Range	2,000	NE	25 U								
Lube Oil-Range	2,000	NE	50 U								
Volatile Organic Compounds (VOCs) by				0.0444	0.0=4	0.004.0				0.000.11	0.000.11
Benzene	0.03	NE	0.12	0.044 U	0.051	0.024 U	0.06	0.14	0.38	0.030 U	0.030 U
Toluene	7	NE	0.51	0.36	0.4	1.0	0.36	0.43	1.0	0.050 U	0.050 U
Ethylbenzene	6	NE	0.3	0.078	0.08	7.3	0.076	0.12	0.38	0.050 U	0.050 U
Total Xylenes	9	NE	1.3	0.32	0.32	32	0.39	0.58	2.2	0.20 U	0.20 U
1,2 Dibromoethane (EDB)	0.005	NE									
1,2 Dichloroethane (EDC)	1	NE									
Methyl tertiary-butyl ether (MTBE) other VOCs ⁵	0.1	NE								-	
	varies	NE	-								
Total Metals by EPA 6000 series (mg/		7									
Arsenic	20										
Barium	16,000	NE	-	-		-				-	
Cadmium	2	1									
Total Chromium	2,000	48		-		-				-	
Lead	250	24				7.4					
Mercury	2	0.07									
Selenium	400	NE			-						
Silver	400	NE				-					
Polycyclic Aromatic Hydrocarbons (PA				1		1	1			1	
Acenaphthene	4,800	NE									-
Acenaphthylene	NE	NE	-	-							
Anthracene	24,000	NE	-								
Benzo[a]anthracene	NE	NE									
Benzo(a)pyrene	0.1	NE									
Benzo(b)fluoranthene	NE	NE		-	-					-	
Benzo(g,h,i)perylene	NE	NE		-		-					-
Benzo(k)fluoranthene	NE	NE									-
Chrysene	NE	NE									
Dibenzo(a,h)anthracene	NE	NE	-								-
Fluoranthene	3,200	NE			-						
Fluorene	3,200	NE									
Indeno(1,2,3-cd)pyrene	NE	NE	-	-							-
Naphthalenes	5	NE									
Phenanthrene	NE	NE									
Pyrene	2,400	NE									
cPAHs TEQ ⁶	0.1	NE									
Polychlorinated Biphenyls (PCBs) by EF						1					
Aroclor 1016	NA	NE									-
Aroclor 1221	NA	NE									-
Aroclor 1232	NA	NE									
Aroclor 1242	NA	NE									
Aroclor 1248	NA	NE									
Aroclor 1254	NA	NE									
Aroclor 1260	NA	NE									
Total PCBs	1.0	NE									

Notes:

¹ Approximate exploration locations shown on Figure 2.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when

Method A cleanup level has not been established.

⁴ Natural Background soil concentration per Ecology Publication 94-115 (Ecology 1994).

⁵ Refer to Appendix B for a full list of compounds analyzed and their results.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

bgs = below ground surface

mg/kg = milligram per kilogram

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established

"--" = not tested

ND = Not Detected

 ${\sf U}$ = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration greater than the Natural Background but less than MTCA soil cleanup level.

Seattle, Washington

1			B 0.44								FB-5 ²
Sample Location ¹			B-6-11		F1	B-3			FB-4		FB-5
Sample Identification			B-6 S-7	FB-3-10.0	FB-3-15.0	FB-3-20.0	FB-3-40.0	FB-4-6.0	FB-4-10.0	FB-4-15.0	FB-5-11.0
Sampled By	МТСА		Landau	Farallon	Farallon	Farallon	Farallon	Farallon	Farallon	Farallon	Farallon
Sample Date	Cleanup	Natural	11/04/11	10/31/19	10/31/19	10/31/19	10/31/19	11/01/19	11/01/19	11/01/19	11/01/19
Sample Depth (feet bgs)	Levels ³	Background ⁴	20.0	10.0	15.0	20.0	40.0	6.0	10.0	15.0	4.6
Petroleum Hydrocarbons by NWPTH-G	x/NWTPH-Dx (mg/k	(g)		•	•		•				
Gasoline-Range	30	NE	4.6	1,300	5.2 U	5.6 U	5.0 U	86	450	1,700	17
Diesel-Range	2,000	NE	25 U	980 U						31 U	33 U
Lube Oil-Range	2,000	NE	50 U	570						61 U	66 U
Volatile Organic Compounds (VOCs) by	EPA 8021/8260 (I	ng/kg)		1							
Benzene	0.03	NE	0.030 U	0.021 U	0.060	0.020 U	0.020 U	0.020 U	0.032	1.3	0.020 U
Toluene	7	NE	0.050 U	0.17	0.052 U	0.056 U	0.050 U	0.055 U	0.053 U	21	0.071 U
Ethylbenzene	6	NE	0.078	4.6	0.29	0.056 U	0.050 U	0.12	2.2	21	0.095
Total Xylenes	9	NE	0.20 U	11.2	0.104 U	0.112 U	0.10 U	0.1	2.99	129	0.087
1,2 Dibromoethane (EDB)	0.005	NE		0.050 U							
1,2 Dichloroethane (EDC)	1	NE		0.050 U							
Methyl tertiary-butyl ether (MTBE)	0.1	NE		0.050 U							
other VOCs ⁵	varies	NE		ND							
Total Metals by EPA 6000 series (mg/	kg)							8		8	
Arsenic	20	7									
Barium	16,000	NE									
Cadmium	2	1									
Total Chromium	2,000	48									
Lead	250	24		5.7 U							
Mercury	2	0.07									
Selenium	400	NE									
Silver	400	NE									
Polycyclic Aromatic Hydrocarbons (PA	Hs) by EPA 8270D/	SIM (mg/kg)									
Acenaphthene	4,800	NE		0.022							
Acenaphthylene	NE	NE		0.0076							
Anthracene	24,000	NE		0.025							
Benzo[a]anthracene	NE	NE		0.028							_
Benzo(a)pyrene	0.1	NE		0.027							_
Benzo(b)fluoranthene	NE	NE		0.028							_
Benzo(g,h,i)perylene	NE	NE		0.022							_
Benzo(k)fluoranthene	NE	NE		0.0076 U							_
Chrysene	NE	NE		0.029							
Dibenzo(a,h)anthracene	NE	NE		0.0076 U							
Fluoranthene	3,200	NE		0.057							
Fluorene	3,200	NE		0.03							
Indeno(1,2,3-cd)pyrene	NE	NE		0.019							
Naphthalenes	5	NE	_	10.5							
Phenanthrene	NE	NE		0.098							
Pyrene	2,400	NE	_	0.063							
cPAHs TEQ ⁶	0.1	NE	-	0.039							-
Polychlorinated Biphenyls (PCBs) by El				01000			I	I		I	
Aroclor 1016	NA	NE		0.057 U							
Aroclor 1221	NA	NE	_	0.057 U		-					
Aroclor 1221 Aroclor 1232	NA	NE		0.057 U							
Aroclor 1242	NA	NE		0.057 U							
Aroclor 1248	NA	NE	-	0.057 U							
Aroclor 1254	NA	NE	-	0.057 U							
Aroclor 1254 Aroclor 1260	NA	NE	_	0.057 U	-						
Total PCBs	1.0	NE		0.057 U 0.399 U							
I ULAI FUDS	1.0	INE		0.399.0							-

Notes:

¹ Approximate exploration locations shown on Figure 2.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when

Method A cleanup level has not been established.

⁴ Natural Background soil concentration per Ecology Publication 94-115 (Ecology 1994).

⁵ Refer to Appendix B for a full list of compounds analyzed and their results.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

bgs = below ground surface

mg/kg = milligram per kilogram

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established

"--" = not tested

ND = Not Detected

 ${\sf U}$ = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration greater than the Natural Background but less than MTCA soil cleanup level.

Seattle, Washington

Sample Location ¹			FB	-5 ²		FE	3-6		FE	3-7	GEI-1
											-
Sample Identification			FB-5-17.0	FB-5-25.0	FB-6-10.0	FB-6-18.0	FB-6-21.0	FB-6-24.0	FB-7-2.5	FB-7-8.0	GEI-1-5.0
Sampled By	МТСА		Farallon	Farallon	Farallon	Farallon	Farallon	Farallon	Farallon	Farallon	GEI
Sample Date	Cleanup	Natural	11/01/19	11/01/19	11/01/19	11/01/19	11/01/19	11/01/19	10/30/19	10/30/19	05/18/21
Sample Depth (feet bgs)	Levels ³	Background ⁴	7.2	10.6	10.0	18.0	21.0	24.0	2.5	8.0	5.0
Petroleum Hydrocarbons by NWPTH-G	ix/NWTPH-Dx (mg/b	(g)									
Gasoline-Range	30	NE	4,800	5.9 U	4.7 U	28	6.5 U	5.8 U	5.2 U	5.7 U	5.02 U
Diesel-Range	2,000	NE	590	32 U		30 U		31 U	31 U	31 U	54.4 U
Lube Oil-Range	2,000	NE	57 U	63 U		61 U		63 U	170	78	109 U
Volatile Organic Compounds (VOCs) by	/ EPA 8021/8260 (I	ng/kg)									
Benzene	0.03	NE	1.6	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U	0.0201 U
Toluene	7	NE	18	0.059 U	0.047 U	0.051 U	0.065 U	0.058 U	0.052 U	0.057 U	0.0251 U
Ethylbenzene	6	NE	89	0.059 U	0.047 U	1.2	0.065 U	0.058 U	0.052 U	0.057 U	0.0301 U
Total Xylenes	9	NE	420	0.118 U	0.094 U	0.55	0.13 U	0.068	0.104 U	0.114 U	0.0502 U
1,2 Dibromoethane (EDB)	0.005	NE	1.1 U			0.00089 U				_	_
1,2 Dichloroethane (EDC)	1	NE	1.1 U			0.00089 U					
Methyl tertiary-butyl ether (MTBE)	0.1	NE									
other VOCs ⁵	varies	NE	ND			ND					
Total Metals by EPA 6000 series (mg/	íkg)					-		-		-	-
Arsenic	20	7									1.53
Barium	16,000	NE									40.1
Cadmium	2	1									0.171 U
Total Chromium	2,000	48									27.6
Lead	250	24							-		1.57
Mercury	2	0.07									0.264 U
Selenium	400	NE									1.01
Silver	400	NE									0.129 U
Polycyclic Aromatic Hydrocarbons (PA	Hs) by EPA 8270D/	SIM (mg/kg)		-	-	•		•	-	•	•
Acenaphthene	4,800	NE	0.025			0.0081 U					0.0209 U
Acenaphthylene	NE	NE	0.025			0.0081 U					0.0209 U
Anthracene	24,000	NE	0.016			0.0081 U					0.0419 U
Benzo[a]anthracene	NE	NE	0.0083	-		0.0081 U					0.0209 U
Benzo(a)pyrene	0.1	NE	0.0076 U			0.0081 U					0.0209 U
Benzo(b)fluoranthene	NE	NE	0.0076 U	-		0.0081 U					0.0209 U
Benzo(g,h,i)perylene	NE	NE	0.0076 U	-		0.0081 U					0.0419 U
Benzo(k)fluoranthene	NE	NE	0.0076 U	-		0.0081 U					0.0209 U
Chrysene	NE	NE	0.0076 U			0.0081 U					0.0419 U
Dibenzo(a,h)anthracene	NE	NE	0.0076 U			0.0081 U					0.0419 U
Fluoranthene	3,200	NE	0.012			0.0081 U					0.0419 U
Fluorene	3,200	NE	0.053			0.0081 U					0.0209 U
Indeno(1,2,3-cd)pyrene	NE	NE	0.0076 U			0.0081 U					0.0419 U
Naphthalenes	5	NE	12.8			0.66					0.0209 U
Phenanthrene	NE	NE	0.078			0.0081 U					0.0419 U
Pyrene	2,400	NE	0.019			0.0081 U					0.0419 U
cPAHs TEQ ⁶	0.1	NE	0.005			0.006 U					0.016 U
Polychlorinated Biphenyls (PCBs) by El											
Aroclor 1016	NA	NE	0.057 U			0.061 U					
Aroclor 1221	NA	NE	0.057 U			0.061 U					
Aroclor 1232	NA	NE	0.057 U			0.061 U					
Aroclor 1242	NA	NE	0.057 U			0.061 U					
						0.061 U					
Aroclor 1248	NA	NE	0.0570			0.001.0					
Aroclor 1248 Aroclor 1254	NA NA	NE	0.057 U 0.057 U	-							
Aroclor 1248 Aroclor 1254 Aroclor 1260	NA NA NA	NE NE NE	0.057 U 0.057 U 0.057 U			0.061 U 0.061 U 0.061 U					

Notes:

¹ Approximate exploration locations shown on Figure 2.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when

Method A cleanup level has not been established.

⁴ Natural Background soil concentration per Ecology Publication 94-115 (Ecology 1994).

⁵ Refer to Appendix B for a full list of compounds analyzed and their results.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

bgs = below ground surface

mg/kg = milligram per kilogram

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established

"--" = not tested

ND = Not Detected

 ${\sf U}$ = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration greater than the Natural Background but less than MTCA soil cleanup level.

Seattle, Washington

Sample Location ¹			GE	9-1		GEI-2			GEI-3		GEI-4
Sample Identification			GEI-1-12.5	GEI-1-17.5	GEI-2-10.0	GEI-2-15.0	GEI-2-17.5	GEI-3-5.0	GEI-3-15.0	GEI-3-17.5	GEI-4-2.5
Sampled By			GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI
Sample Date	MTCA Cleanup	Natural	05/18/21	05/18/21	05/19/21	05/19/21	05/19/21	05/19/21	05/19/21	05/19/21	12/29/21
Sample Depth (feet bgs)	Levels ³	Background ⁴	12.5	17.5	10.0	15.0	17.5	5.0	15.0	17.5	2.5
Petroleum Hydrocarbons by NWPTH-G			12.0	11.0	10.0	10.0	11.0	0.0	10.0	11.0	2.0
	30	NE	57.9	4.94 U	1,970	361	5.59 U	4.27.11	10 500	5.80 U	5.17 U
Gasoline-Range Diesel-Range	2,000	NE	51.8 U	4.94 U 53.6 U			- 5.59 0	4.37 U 	10,500		58.1 U
Lube Oil-Range	2,000	NE	104 U	107 U							116 U
Volatile Organic Compounds (VOCs) by	,		104 0	107.0							110.0
Benzene	0.03	NE	0.0197 U	0.0198 U	0.0207 U	0.100	0.0224 U	0.0175 U	12.0	0.232 U	0.0207 U
	0.03	NE				0.129	0.0224 U 0.0279 U		13.2 97.2		
Toluene			0.92	0.0247 U	0.347	2.21		0.0219 U		0.0290 U	0.0310 U
Ethylbenzene	6 9	NE	0.124	0.0297 U	0.0311 U	0.104	0.0335 U	0.0262 U	87.8	0.0348 U	0.0258 U
Total Xylenes	-	NE	3.252	0.0494 U	0.686	1.315	0.0559 U	0.0437 U	554	0.0580 U	0.0517 U
1,2 Dibromoethane (EDB)	0.005	NE			-						-
1,2 Dichloroethane (EDC)	1	NE									
Methyl tertiary-butyl ether (MTBE) other VOCs ⁵	0.1	NE									
	varies	NE									
Total Metals by EPA 6000 series (mg/l		7	1.00	2.50	1	1	1	1	1	1	0.05
Arsenic	20	NE	1.60	3.58 36.1							8.35
Barium	16,000		32.0								0.614
Cadmium	2	1	0.177 U	0.185 U							0.451
Total Chromium	2,000	48	26.6	27.2							53.6
Lead	250	24	1.62	1.64							340
Mercury	2	0.07	0.279 U	0.284 U	-				-		0.288 U
Selenium	400	NE	1.07	0.805					-		1.33
Silver	400	NE	0.132 U	0.139 U							0.165
Polycyclic Aromatic Hydrocarbons (PA			0.010.4.11	0.0000.11			1			1	0.0004.11
Acenaphthene	4,800	NE	0.0194 U	0.0202 U						-	0.0234 U
Acenaphthylene	NE	NE	0.0194 U	0.0202 U							0.0234 U
Anthracene	24,000	NE	0.0389 U	0.0404 U						-	0.0234 U
Benzo[a]anthracene	NE	NE	0.0194 U	0.0202 U							0.0458
Benzo(a)pyrene	0.1	NE	0.0194 U	0.0202 U						-	0.044
Benzo(b)fluoranthene	NE	NE	0.0194 U	0.0202 U					-		0.0453
Benzo(g,h,i)perylene	NE	NE	0.0389 U	0.0202 U							0.0538
Benzo(k)fluoranthene	NE	NE	0.0194 U	0.0202 U					-		0.0403
Chrysene	NE	NE	0.0389 U	0.0404 U					-		0.0476
Dibenzo(a,h)anthracene	NE	NE	0.0389 U	0.0404 U					-	-	0.0469 U
Fluoranthene	3,200	NE	0.0389 U	0.0404 U							0.0458
Fluorene	3,200	NE	0.0194 U	0.0202 U							0.0234 U
Indeno(1,2,3-cd)pyrene	NE	NE	0.0389 U	0.0404 U					-		0.0469 U
Naphthalenes	5	NE	0.0596	0.0202 U							0.0234 U
Phenanthrene	NE	NE	0.0389 U	0.0404 U							0.0234 U
Pyrene	2,400	NE	0.0389 U	0.0404 U							0.0792
cPAHs TEQ ⁶	0.1	NE	0.015 U	0.015 U							0.059 U
Polychlorinated Biphenyls (PCBs) by EF											
Aroclor 1016	NA	NE									-
Aroclor 1221	NA	NE									-
Aroclor 1232	NA	NE									
Aroclor 1242	NA	NE									
Aroclor 1248	NA	NE									
Aroclor 1254	NA	NE									
Aroclor 1260	NA	NE									
Total PCBs	1.0	NE									

Notes:

¹ Approximate exploration locations shown on Figure 2.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when

Method A cleanup level has not been established.

⁴ Natural Background soil concentration per Ecology Publication 94-115 (Ecology 1994).

⁵ Refer to Appendix B for a full list of compounds analyzed and their results.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

bgs = below ground surface

mg/kg = milligram per kilogram

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established

"--" = not tested

ND = Not Detected

 ${\sf U}$ = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration greater than the Natural Background but less than MTCA soil cleanup level.

Seattle, Washington

Sample formitality Field 6H-2 6H-2<												,
Sample Dis Sample Dis Sample Dis Sample Dis Disple Disple Di	Sample Location ¹			GEI-4	GE	El-5	GE	El-6	GEI-7	GE	El-7	GEI-8
<table-container>Sample May by Market Sample Sample</table-container>	Sample Identification			GEI-4-12.5	GEI-5-2.5	GEI-5-10.0	GEI-6-2.5	GEI-6-10.0	GEI-7-2.5	GEI-7-7.5	GEI-7-14.0	GEI-8-12.5
Sample Depth (betph (betph (betph 2)) Lows Background (b) Sample (b)	Sampled By	МТСА		GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI
Petroleum Individuations In VMPH Gr. (VMPH Gr. (VMPH Gr. (VMPH Gr. (VMPH Gr. (VMPH Gr. VMPH Gr. (VMPH Gr. VMPH GR.	Sample Date	-	Natural	12/29/21	12/29/21	05/19/21	12/29/21	05/19/21	12/29/21	05/19/21	05/19/21	04/04/22
Gascine/Forge 30 NE 6.5.7 4.80 5.5.7 5.5.7 5.7.8 5.4.8 1.4.2 0.2.00 NE 5.6.8 55.1 0.5.7 4.8.8 1.1.7 - - Lube Onlyange 2.000 NE 1.1.4 1.0.01 1.2.01 6.89 1.2.2 4.48 1.3.9 1.1.7 - Bername 7 NE 0.03111 0.01971 0.02921 0.03314 0.02731 0.011 0.01501 0.0171 0.01501 0.0171 0.01501 0.0171 0.01501 0.0171 0.01501 0.0171 0.01501 0.0171 0.01501 0.0171 0.01501 0.0171 0.01501 0.0171 0.01501 0.0171 0.01501 0.01	Sample Depth (feet bgs)	Levels ³	Background ⁴	12.5	2.5	10.0	2.5	10.0	2.5	7.5	14.0	12.5
Description2.000NE65.8.050.1.050.2.054.4.067.0.067.0.068.5.0.0.Valati0.2000NE0.2010.1000.0024.00.0224.00.0224.00.0221.00.0217.00.0050.0International Constructional	Petroleum Hydrocarbons by NWPTH-G	x/NWTPH-Dx (mg/k	(g)			•	•	•		•	•	
Lube Orientinge2.00NE11.4 U10.0 U1000	Gasoline-Range	30	NE	5.27 U	4.93 U	4.86 U	5.35 U	5.57 U	4.86 U	5.46 U	1,370	9.14 U
Vesistie Organic Compounds (V0Gs) by EPA 0021/28200 (mg/kg) NE 0.0211 0.0211 0.0214 0.0224 U 0.0214 U 0.0217 U	Diesel-Range	2,000	NE	56.8 U	50.1 U	60.2 U	54.4 U	61 U	57 U	64.7 U	58.5 U	
Benemin 0.03 MI 0.0211 0.02191 0.02210 0.021401 0.023210 0.021401 0.023210 0.023101 0.023610 0.023610 0.023210 0.023101 </td <td>Lube Oil-Range</td> <td>2,000</td> <td>NE</td> <td>114 U</td> <td>100 U</td> <td>120 U</td> <td>689</td> <td>122 U</td> <td>448</td> <td>129 U</td> <td>117 U</td> <td></td>	Lube Oil-Range	2,000	NE	114 U	100 U	120 U	689	122 U	448	129 U	117 U	
Tokene 7 NE 0.03210 0.0279 U 0.03210 0.03210 0.02710 </td <td>Volatile Organic Compounds (VOCs) by</td> <td>EPA 8021/8260 (I</td> <td>mg/kg)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Volatile Organic Compounds (VOCs) by	EPA 8021/8260 (I	mg/kg)									
Employment P 6 NE 0.0281U 0.0281U 0.0281U 0.0281U 0.0281U 0.0481U 0.0181U 0.018U 0.018U 0.018U 0.018U 0.018U 0.018U 0.018U 0.018U 0.018U 0.028U 0.021U 0.0	Benzene	0.03	NE	0.0211 U	0.0197 U	0.0195 U	0.0214 U	0.0223 U	0.0194 U	0.0218 U	0.15	0.0365 U
Total Nervenes 9 NE 0.0493 U 0.0486 U 0.0357 U 0.0486 U 0.0486 U 0.0466 U 0.0406 U 0.0106 U 1.2 Divonsembrane (EDC) 1 NE - - - - 0.0057 U 0.0251 U 0.0216 U - Inder VOC3* varials NE - - - - 0.0251 U 0.0231 U 0.0231 U 0.0318 U - Inder VOC3* varials NE - - - - 0.0327 U 0.0321 U 0.0331 U - Total Metals by EPA 6000 entex (mg/ vg) - - - - - - 0.032 U 0.0325 U 0.031 U 0.159 U - Gatimim 15.000 NE 86.1 185 U 1.77 8.21 S5.2 0.23 U 0.28 U	Toluene	7	NE	0.0316 U	0.0296 U	0.0292 U	0.0321 U	0.0334 U	0.0291 U	0.0327 U	0.177	0.0548 U
1.2 Direktoresethane (EDB) 0.005 ME 0.0109U 0.0106U 1.2 Direktoresthane (EDC) 1 NE 0.0327U 0.0318U Other VOGS* variate NE ND Detected Total Metals by EPA 6000 senic (mg/kg) ND Detected Ansanic 20 7 3.01 7.52 1.77 8.21 5.7 4.34 5.55 7.07 Total Advances (mg/kg) ND Detected ND ND Detected ND ND ND DD	Ethylbenzene	6	NE	0.0263 U	0.0247 U	0.0243 U	0.0267 U	0.0278 U	0.0243 U	0.0273 U	17.1	0.0457 U
1.2 Dicktoresthane (EDC) 1 NE - - - - - 0.0251 U 0.0244 U - other VOCs ⁵ varies NE - - - - - 0.0352 U 0.0318 U - Total Metals by EPA 6000 series (mg/Vg) - - - - - - ND Detected - Ansenic 20 7 3.01 7.52 1.17 8.21 5.7 4.34 5.85 7.07 - Berium 18.000 NE 88.1 185 43.7 195 1.30 1.34 122 - Cedmium 2 1 0.184 U 3.53 37.4 2.59 3.55 6.52 2.04 .28 Cod 250 2.4 3.28 3.83 2.14 2.59 0.32.1 0.328 U 0.328 U <t< td=""><td>Total Xylenes</td><td>9</td><td>NE</td><td>0.0527 U</td><td>0.0493 U</td><td>0.0486 U</td><td>0.0535 U</td><td>0.0557 U</td><td>0.0486 U</td><td>0.0546 U</td><td>39.08</td><td>0.0914 U</td></t<>	Total Xylenes	9	NE	0.0527 U	0.0493 U	0.0486 U	0.0535 U	0.0557 U	0.0486 U	0.0546 U	39.08	0.0914 U
Methy loritary-buly diver (MTEE) 0.1 NE - - - - - - 0 0.0327 0.0318 U - Total Metals by EPA 6000 series (mg/kg) - - - - - ND Detected - Ansenic 200 7 3.01 7.52 1.77 8.21 5.7 4.34 5.85 7.07 - Garmian 16.000 NE 86.4 185 4.37 195 3.82 5.45 64.1 52.2 - Countrium 2.000 48 39.3 7.74 2.59 3.82 53.5 4.82 6.06 - Metruy 2 0.07 0.284 U 0.284 U 0.284 U 0.284 U 0.284 U 0.180 U 0.302 U 0.284 U 0.328 U	1,2 Dibromoethane (EDB)	0.005	NE							0.0109 U	0.0106 U	-
other VOG5 ^h verine NE NE NE NE NE NE NE Total Metals by EPA 6000 series (m/// VE 20 7 3.01 7.82 1.17 8.21 5.7 4.34 5.85 7.07 - Barrun 16.000 NE 86.1 185 4.37 1.30 1.06 1.34 1.25 0.200 0.184 0.355 0.201 0.255 0.201 0.255 0.201 0.255 0.201 0.255 0.201 0.281	1,2 Dichloroethane (EDC)	1	NE							0.0251 U	0.0244 U	
Total Metals by EPA 6000 series (mg/kg) 0	Methyl tertiary-butyl ether (MTBE)	0.1	NE							0.0327 U	0.0318 U	
Arsenic 20 7 3.01 7.52 1.77 8.21 5.7 4.34 5.85 7.07 - Barlum 16,000 NE 86.1 195 43.7 195 130 160 134 125 - Catimium 2 1 0.184 U 0.355 0.21 U 0.255 0.203 U 0.128 U - Lead 250 24 3.28 93.8 2.04 243 4.79 59.5 4.82 6.06 - Merouy 2 0.07 0.286 U 0.287 U 0.281 U 0.282 U 0.228 U 0.281 U 0.282 U 0.226 U 0.821 U 0.140 U 0.152 U 0.141 U - Selenium 400 NE 0.0232 U 0.0228 U 0.0225 U 0.0250 U 0.0221 U 0.0241 U<	other VOCs 5	varies	NE	-						ND	Detected	_
Barnom 16.000 NE 96.1 15.01 91.02 13.0	Total Metals by EPA 6000 series (mg/	kg)										
Cadmium 2 1 0.184 U 0.355 0.199 U 0.635 0.21 U 0.255 0.203 U 0.189 Total Chromium 2.000 48 39.3 27.4 25.9 38.2 59.2 34.5 64.1 52.2 Macuay 2 0.07 0.286 U 0.287 U 0.320 0.287 U 0.300 0.294 U Selenium 400 NE 1.08 0.861 0.169 U 0.32 U 0.327 U 0.320 U 0.421 U 0.152 U 0.141 U 0.152 U 0.141 U 0.152 U 0.410 U 0.152 U 0.410 U 0.224 U 0.421 U 0.0224 U 0.421 U 0.0241 U 0	Arsenic	20	7	3.01	7.52	1.77	8.21	5.7	4.34	5.85	7.07	
Total Chromium 2.000 48 39.3 27.4 2.59 38.2 59.2 34.5 64.1 52.2 Lead 250 24 3.28 33.8 2.04 243 4.79 59.5 4.82 6.06 Merciny 2 0.07 0.286 U 0.267 U 0.281 U 0.295 U 0.321 U 0.287 U 0.294 U Selentum 400 NE 1.05 0.864 U 0.691 U 1.16 1.45 1 1.62 1.42 U Sherr 400 NE 0.130 U 0.130 U 0.140 U 0.14 U 0.024 U -	Barium	16,000	NE	86.1	185	43.7	195	130	160	134	125	_
Lead 250 24 3.28 93.8 2.04 243 4.79 59.5 4.82 6.06 Meroury 2 0.07 0.286 U 0.267 U 0.281 U 0.321 U 0.287 U 0.328 U 0.329 U 0.294 U Silver 400 NE 0.138 U 0.130 U 0.149 U 0.25 U 0.321 U 0.021 U 0.024 U Acenaphthylene NE NE 0.023 U 0.022 U 0.022 U 0.025 U 0.0221 U 0.024 U 0.024 U Anthracene AE NE 0.023 U 0.022 U 0.025 U 0.022 U 0.024 U 0.024 U 0.024 U 0.044 U 0.044 U 0.044 U 0.044 U 0.045 U 0.025 U 0.022 U 0.022 U 0.022 U 0.021 U 0.021 U 0.024 U 0.024 U 0.024 U 0.044 U 0.045 U 0.025 U<	Cadmium	2		0.184 U	0.355	0.199 U	0.635	0.21 U	0.255	0.203 U	0.189	-
Mercury 2 0.07 0.286 U 0.287 U 0.281 U 0.287 U 0.380 0.294 U - Selenium 400 NE 0.15 0.861 0.691 1.16 1.45 1 1.62 1.42 - Silver 400 NE 0.138 U 0.138 U 0.149 U 0.256 0.158 U 0.152 U 0.141 U - Polycyclic Aromatic Hydrocarbons (PAHs) by EPA 8270D/SIM (mg/kg)	Total Chromium	2,000	48	39.3	27.4	25.9	38.2	59.2	34.5	64.1	52.2	_
Selentum 400 NE 105 0.861 0.691 1.16 1.45 1 1.62 1.42 Silver 400 NE 0.138 U 0.014 U 0.25 0.15 U 0.14 U 0.15 U 0.14 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.024 U 0.0224 U 0.0225 U 0.0221 U 0.024 U 0.0249 U Acenaphthylene NE NE 0.0223 U 0.0225 U 0.0256 U 0.0221 U 0.0241 U 0.0249 U Anthracene NE NE 0.0232 U 0.0226 U 0.0229 U 1.12 0.026 U 0.0241 U <td>Lead</td> <td>250</td> <td>24</td> <td>3.28</td> <td>93.8</td> <td>2.04</td> <td>243</td> <td>4.79</td> <td>59.5</td> <td>4.82</td> <td>6.06</td> <td>_</td>	Lead	250	24	3.28	93.8	2.04	243	4.79	59.5	4.82	6.06	_
Silver 400 NE 0.138 U 0.139 U 0.149 U 0.25 0.158 U 0.14 U 0.152 U 0.141 U Polycelic Aromatic Hydrocarhos (PHS) VEP 82700/SIM (mg/kg) V V V V Acenaphthylene NE 0.0232 U 0.0228 U 0.0229 U 0.0256 U 0.0221 U 0.0241 U 0.0249 U Acenaphthylene NE 0.0232 U 0.0228 U 0.0229 U 0.0250 U 0.0221 U 0.0241 U 0.0241 U 0.0248 U Benzolajnthracene NE 0.0232 U 0.0226 U 0.0229 U 1.32 0.0256 U 0.0211 U 0.0241 U <td>Mercury</td> <td>2</td> <td>0.07</td> <td>0.286 U</td> <td>0.267 U</td> <td>0.281 U</td> <td>0.295 U</td> <td>0.32 U</td> <td>0.287 U</td> <td>0.309</td> <td>0.294 U</td> <td></td>	Mercury	2	0.07	0.286 U	0.267 U	0.281 U	0.295 U	0.32 U	0.287 U	0.309	0.294 U	
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA 8270D/SIM (mg/kg) Image: Constraint of the image im	Selenium	400	NE	1.05	0.861	0.691	1.16	1.45	1	1.62	1.42	
Acenaphthene 4,800 NE 0.0232 U 0.0226 U 0.0229 U 0.0226 U 0.0221 U 0.0221 U 0.0211 U 0.0214 U 0.0249 U Acenaphthylene NE NE 0.0232 U 0.0226 U 0.0228 U 0.0226 U 0.0221 U 0.0241 U 0.0241 U 0.0249 U Anthracene 24,000 NE 0.0464 U 0.0458 U 0.075 C 0.0512 U 0.0241 U 0.0249 U Benzo(a)phranchene NE NE 0.0232 U 0.0226 U 0.0229 U 1.12 0.026 U 0.0221 U 0.0241 U 0.0249 U Benzo(b)furoanthene NE NE 0.0232 U 0.0226 U 0.0229 U 0.856 U 0.0221 U 0.0241 U 0.0249 U Benzo(b)furoanthene NE NE 0.0232 U 0.0226 U 0.0229 U 0.856 U 0.0221 U 0.0241 U 0.0424 U 0.0428 U Dibenzo(a,h)anthracene NE NE 0.0464 U 0.0451 U 0.0458 U	Silver	400	NE	0.138 U	0.130 U	0.149 U	0.25	0.158 U	0.14 U	0.152 U	0.141 U	
Acenaphthylene NE NE 0.0232 U 0.0228 U 0.0228 U 0.0228 U 0.0228 U 0.0221 U 0.0241 U 0.0248 U - Antracene 24,000 NE 0.0464 U 0.0451 U 0.0458 U 0.0767 0.0512 U 0.0221 U 0.0241 U 0.0249 U - Benzo(a)pyrene 0.1 NE 0.0232 U 0.0226 U 0.0229 U 1.12 0.0256 U 0.0221 U 0.0241 U 0.0241 U 0.0249 U - Benzo(a)pyrene 0.1 NE 0.0232 U 0.0226 U 0.0229 U 0.825 U 0.0221 U 0.0241 U 0.0464 U 0.0451 U 0.0458 U	Polycyclic Aromatic Hydrocarbons (PA	Hs) by EPA 8270D/	SIM (mg/kg)		-	_	-	_	-	-	_	
Anthracene 24,000 NE 0.0464 U 0.0451 U 0.0458 U 0.767 0.0512 U 0.0424 U 0.0482 U 0.0249 U Benzo[a]enthracene NE NE 0.0232 U 0.0226 U 0.0226 U 0.0256 U 0.0221 U 0.0241 U 0.0249 U Benzo[h]uoranthene NE NE 0.0232 U 0.0226 U 0.0229 U 0.0256 U 0.0221 U 0.0241 U 0.0249 U Benzo[h]uoranthene NE NE 0.0232 U 0.0226 U 0.0229 U 0.483 0.0256 U 0.0221 U 0.0241 U 0.0249 U Benzo[h]uoranthene NE NE 0.0232 U 0.0226 U 0.0229 U 0.483 0.0256 U 0.0221 U 0.0241 U 0.0249 U Benzo[h]uoranthene NE NE 0.0464 U 0.0458 U 1.15 0.0512 U 0.0442 U 0.0498 U Dibenzo[h]unanthracene NE NE 0.0464 U 0.0451 U 0.0458 U 0.021 U 0.0422 U <	Acenaphthene	4,800	NE	0.0232 U	0.0226 U	0.0229 U	0.0327	0.0256 U	0.0221 U	0.0241 U	0.0249 U	
Benzo[a]anthracene NE NE 0.0232 U 0.0226 U 0.0229 U 1.32 0.0256 U 0.0221 U 0.0241 U 0.0249 U Benzo[a)pyrene 0.1 NE 0.0232 U 0.0226 U 0.0229 U 1.12 0.0256 U 0.0221 U 0.0241 U 0.0249 U Benzo[a,h]perylene NE NE 0.0232 U 0.0226 U 0.0229 U 0.485 0.0256 U 0.0221 U 0.0241 U 0.0249 U Benzo[a,h]perylene NE NE 0.0232 U 0.0226 U 0.0229 U 0.485 0.0256 U 0.0221 U 0.0241 U 0.0249 U Benzo[a,h]merylene NE NE 0.0424 U 0.0451 U 0.0452 U 0.0422 U 0.0482 U 0.0482 U 0.0449 U Chrysene NE NE 0.0464 U 0.0451 U 0.0451 U 0.0442 U 0.0482 U 0.0498 U Fluoranthene 3.200 NE 0.0226 U 0.0229 U 0.253 U 0.0251 U 0.0421 U	Acenaphthylene	NE	NE	0.0232 U	0.0226 U	0.0229 U	0.289	0.0256 U	0.0221 U	0.0241 U	0.0249 U	
Benzo(a)pyrene 0.1 NE 0.023 U 0.022 U 0.0229 U 0.025 U 0.0251 U 0.021 U 0.024 U 0.024 U 0.024 U 0.0221 U 0.021 U 0.021 U 0.021 U 0.021 U 0.024 U 0.024 U 0.0223 U 0.0223 U 0.022 U 0.023 U 0.031 U 0.044 U 0.044 U 0.045 U 0.051 U 0.045 U 0.042 U 0.045 U 0.045 U	Anthracene	24,000		0.0464 U	0.0451 U	0.0458 U	0.767	0.0512 U	0.0442 U	0.0482 U	0.0498 U	
Benzo(b)/luoranthene NE NE 0.0232 U 0.0226 U 0.0229 U 0.825 0.0256 U 0.0211 U 0.0241 U 0.0249 U Benzo(g), h)perylene NE NE 0.0232 U 0.0226 U 0.0229 U 0.483 0.0256 U 0.0211 U 0.0241 U 0.0249 U Benzo(g), h)perylene NE NE 0.0232 U 0.0226 U 0.0229 U 0.856 0.0256 U 0.0211 U 0.0241 U 0.0249 U Chrysene NE 0.0464 U 0.0451 U 0.0458 U 1.15 0.0512 U 0.0442 U 0.0482 U 0.0498 U Fluoranthene 3.200 NE 0.0464 U 0.0451 U 0.0458 U 0.0251 U 0.0422 U 0.0482 U 0.0498 U Fluorene 3.200 NE 0.0220 U 0.0221 U 0.021 U 0.0221 U 0.0241 U 0.0482 U 0.0498 U Indenci1.2,3-cd)pyrene NE 0.0464 U 0.0451 U 0.0458 U 0.0251 U 0.0421 U	Benzo[a]anthracene	NE	NE	0.0232 U	0.0226 U	0.0229 U	1.32	0.0256 U	0.0221 U	0.0241 U	0.0249 U	
Benzo(g,h.j)perylene NE NE 0.0232 U 0.0226 U 0.0229 U 0.483 0.0256 U 0.0221 U 0.0241 U 0.0249 U Benzo(k)fluoranthene NE NE 0.0232 U 0.0226 U 0.0229 U 0.056 U 0.0221 U 0.0241 U 0.0249 U Chrysene NE NE 0.0464 U 0.0451 U 0.0458 U 1.15 0.0512 U 0.0422 U 0.0482 U	Benzo(a)pyrene						1.12	0.0256 U	0.0221 U	0.0241 U		
Benzok/fluoranthene NE NE 0.0232 U 0.0228 U 0.0229 U 0.0856 0.0226 U 0.021 U 0.0241 U 0.0249 U Chrysene NE NE 0.0464 U 0.0451 U 0.0458 U 1.15 0.0512 U 0.0442 U 0.0482 U 0.0498 U Dibenzo(a,h)anthracene NE NE 0.0464 U 0.0451 U 0.0458 U 0.231 0.0512 U 0.0442 U 0.0482 U 0.0498 U Fluoranthene 3,200 NE 0.0226 U 0.0229 U 0.251 0.0251 U 0.0442 U 0.0482 U 0.0498 U Indeno(1,2,3-cd)pyrene NE 0.0464 U 0.0451 U 0.0458 U 0.0473 0.0512 U 0.0442 U 0.0482 U 0.0498 U Naphthalenes 5 NE 0.0221 U 0.0251 U 0.0442 U 0.0482 U 0.0498 U Pyrene 2,400 NE 0.0464 U 0.0451 U 0.0458 U 2.65 0.512 U 0.0442 U 0.0482 U	Benzo(b)fluoranthene						0.825					
Chrysene NE NE 0.0464 U 0.0451 U 0.0458 U 1.15 0.0512 U 0.042 U 0.0482 U 0.0498 U Dibenzo(a,h)anthracene NE NE 0.0464 U 0.0451 U 0.0458 U 0.0512 U 0.042 U 0.0482 U 0.0498 U Fluoranthene 3.200 NE 0.0232 U 0.022 U 0.0251 U 0.0421 U 0.0482 U 0.0498 U Fluorene 3.200 NE 0.0232 U 0.022 U 0.0251 U 0.0212 U 0.021 U 0.0482 U 0.0498 U Indeno(1,2.3-cd)pyrene NE NE 0.0461 U 0.0451 U 0.0451 U 0.0250 U 0.021 U 0.041 U 0.0498 U Naphthalenes 5 NE 0.0220 U 0.0250 U 0.021 U 0.042 U 0.048 U 0.498 U Pyrene 2.400 NE 0.0451 U 0.0458 U 2.02 U 0.0512 U 0.042 U 0.048 U Pyrene 2.400				0.0232 U	0.0226 U	0.0229 U	0.483	0.0256 U	0.0221 U	0.0241 U	0.0249 U	
Dibenzo(a,h)anthracene NE NE 0.0464 U 0.0451 U 0.0458 U 0.231 0.0512 U 0.0442 U 0.0482 U 0.0498 U Fluoranthene 3,200 NE 0.0464 U 0.0451 U 0.0458 U 2.84 0.0512 U 0.0442 U 0.0482 U 0.0498 U Fluorene 3,200 NE 0.022 U 0.0229 U 0.251 0.0250 U 0.0221 U 0.0241 U 0.0482 U 0.0498 U Indeno(1,2,3-cd)pyrene NE NE 0.0464 U 0.0451 U 0.0458 U 0.473 0.0512 U 0.0241 U 0.0498 U Naphthalenes 5 NE 0.023 U 0.0226 U 0.0256 U 0.021 U 0.0482 U 0.0498 U Nemathracene NE NE 0.0464 U 0.0451 U 0.0458 U 2.02 0.0512 U 0.0442 U 0.0482 U 0.0482 U 0.0498 U Pyrene 2.400 NE 0.0464 U 0.0451 U 0.0458 U 2.051 U 0.	Benzo(k)fluoranthene	NE	NE	0.0232 U	0.0226 U	0.0229 U	0.856	0.0256 U	0.0221 U	0.0241 U	0.0249 U	
Fluoranthene 3,200 NE 0.0464 U 0.0451 U 0.0458 U 2.84 0.0512 U 0.0482 U 0.0488 U Fluorene 3,200 NE 0.0232 U 0.0226 U 0.0229 U 0.251 U 0.0221 U 0.0241 U 0.0241 U 0.0249 U Indeno(1,2,3-cd)pyrene NE NE 0.0464 U 0.0451 U 0.0458 U 0.0512 U 0.0442 U 0.0482 U 0.0482 U 0.0488 U Naphthalenes 5 NE 0.0232 U 0.0226 U 0.0258 U 0.0251 U 0.0442 U 0.0482 U 0.0482 U 0.0488 U Phenanthrene NE NE 0.0464 U 0.0451 U 0.0458 U 2.02 0.0512 U 0.0442 U 0.0482 U 0.0488 U Pyrene 2,400 NE 0.0464 U 0.0451 U 0.047 U 0.017 U 0.017 U 0.017 U 0.0482 U 0.048 U </td <td>Chrysene</td> <td>NE</td> <td>NE</td> <td>0.0464 U</td> <td>0.0451 U</td> <td>0.0458 U</td> <td>1.15</td> <td></td> <td>0.0442 U</td> <td>0.0482 U</td> <td>0.0498 U</td> <td></td>	Chrysene	NE	NE	0.0464 U	0.0451 U	0.0458 U	1.15		0.0442 U	0.0482 U	0.0498 U	
Fluorene 3,200 NE 0.0232 U 0.0226 U 0.0229 U 0.0251 U 0.0221 U 0.0241 U 0.0249 U Indeno(1,2,3-cd)pyrene NE NE 0.0464 U 0.0451 U 0.0458 U 0.0512 U 0.0442 U 0.0482 U 0.0482 U 0.0482 U 0.0498 U Naphthalenes 5 NE 0.0232 U 0.022 U 0.0229 U 0.02537 U 0.0261 U 0.0442 U 0.0482 U 0.0498 U Phenanthrene NE NE 0.0464 U 0.0451 U 0.0458 U 2.02 0.0512 U 0.0482 U 0.0498 U Pyrene 2,400 NE 0.0464 U 0.0451 U 0.0458 U 2.02 0.0512 U 0.0482 U 0.0498 U CPAHs TEQ ⁶ 0.1 NE 0.017 U <	Dibenzo(a,h)anthracene	NE	NE	0.0464 U	0.0451 U	0.0458 U	0.231	0.0512 U	0.0442 U	0.0482 U	0.0498 U	
Indeno(1,2,3-cd)pyrene NE NE 0.0464 U 0.0451 U 0.0473 0.0512 U 0.0442 U 0.0482 U 0.0498 U Naphthalenes 5 NE 0.0232 U 0.0226 U 0.0229 U 0.2537 0.0256 U 0.021 U 0.021 U 0.0442 U 0.0482 U 0.0498 U Phenanthrene NE NE 0.0464 U 0.0451 U 0.0458 U 2.02 0.0512 U 0.0442 U 0.0482 U 0.0498 U Pyrene 2,400 NE 0.0464 U 0.0451 U 0.0458 U 2.65 0.0512 U 0.0442 U 0.0482 U 0.0498 U cPAHs TEQ ⁶ 0.1 NE 0.018 U 0.017 U 0.017 U 0.018 U 0.017 U -	Fluoranthene	3,200		0.0464 U	0.0451 U	0.0458 U	2.84	0.0512 U	0.0442 U	0.0482 U	0.0498 U	
Naphthalenes 5 NE 0.0232 U 0.0226 U 0.0229 U 0.2537 0.0256 U 0.0221 U 0.0241 U 0.556 22.1 U Phenanthrene NE NE NE 0.0464 U 0.0451 U 0.0458 U 2.02 0.0512 U 0.0442 U 0.0482 U 0.0498 U Pyrene 2,400 NE 0.0464 U 0.0451 U 0.0458 U 2.65 0.0512 U 0.0442 U 0.0482 U 0.0498 U cPAHs TEQ ⁶ 0.1 NE 0.018 U 0.017 U 0.017 U 0.018 U 0.017 U 0.018 U 0.017 U 0.018 U 0.017 U	Fluorene										0.0249 U	
Phenanthrene NE NE 0.0464 U 0.0451 U 0.0458 U 2.02 0.0512 U 0.0422 U 0.0482 U 0.0498 U Pyrene 2,400 NE 0.0464 U 0.0451 U 0.0458 U 2.65 0.0512 U 0.0442 U 0.0482 U 0.0498 U cPAHs TEQ ⁶ 0.1 NE 0.017 U 0.	Indeno(1,2,3-cd)pyrene		NE				0.473	0.0512 U		0.0482 U	0.0498 U	
Pyrene2,400NE0.0464 U0.0451 U0.0458 U2.650.0512 U0.042 U0.0482 U0.0482 U $$ $cPAHs TEQ^6$ 0.1NE0.018 U0.017 U0.017 U0.017 U0.017 U0.017 U $$ Polychlorinated Biphenyls (PCBs) by ± 8082 (mg/sq)MANE $$	Naphthalenes		NE	0.0232 U	0.0226 U	0.0229 U	0.2537	0.0256 U	0.0221 U	0.0241 U	0.556	22.1 U
$CPAHS TEQ^6$ 0.1 NE $0.018 U$ $0.017 U$ $0.017 U$ $0.018 U$ $0.017 U$	Phenanthrene	NE	NE	0.0464 U	0.0451 U	0.0458 U	2.02		0.0442 U	0.0482 U	0.0498 U	
Polychlorinated Biphenyls (PCBs) by EPA 8082 (mg/kg) Image: Constraint of the system of												
Aroclor 1016 NA NE 0.0596 U 0.061 U Aroclor 1221 NA NE 0.0596 U 0.061 U Aroclor 1232 NA NE 0.0596 U 0.061 U Aroclor 1232 NA NE 0.0596 U 0.061 U Aroclor 1242 NA NE 0.0596 U 0.061 U Aroclor 1248 NA NE 0.0596 U 0.061 U Aroclor 1254 NA NE 0.0596 U 0.061 U Aroclor 1260 NA NE 0.0596 U 0.061 U			NE	0.018 U	0.017 U	0.017 U	0.74	0.018 U	0.017 U	0.017 U	0.017 U	
Aroclor 1221 NA NE 0.0596 U 0.061 U Aroclor 1232 NA NE 0.0596 U 0.061 U Aroclor 1232 NA NE 0.0596 U 0.061 U Aroclor 1242 NA NE 0.0596 U 0.061 U Aroclor 1248 NA NE 0.0596 U 0.061 U Aroclor 1254 NA NE 0.0596 U 0.061 U Aroclor 1254 NA NE 0.0596 U 0.061 U Aroclor 1260 NA NE 0.0596 U 0.061 U	Polychlorinated Biphenyls (PCBs) by El	PA 8082 (mg/kg)										
Aroclor 1232 NA NE 0.0596 U 0.061 U Aroclor 1242 NA NE 0.0596 U 0.061 U Aroclor 1248 NA NE 0.0596 U 0.061 U Aroclor 1254 NA NE 0.0596 U 0.061 U Aroclor 1260 NA NE 0.0596 U 0.061 U												
Aroclor 1242 NA NE 0.0596 U 0.061 U Aroclor 1248 NA NE 0.0596 U 0.061 U Aroclor 1254 NA NE 0.0596 U 0.061 U Aroclor 1260 NA NE 0.0596 U 0.061 U												
Aroclor 1248 NA NE 0.0596 U 0.061 U Aroclor 1254 NA NE 0.0596 U 0.061 U Aroclor 1260 NA NE 0.0596 U 0.061 U		NA										
Aroclor 1254 NA NE 0.0596 U 0.061 U Aroclor 1260 NA NE 0.0596 U 0.061 U	Aroclor 1242	NA	NE							0.0596 U	0.061 U	
Aroclor 1260 NA NE 0.0596 U 0.061 U		NA										
Total PCBs 1.0 NE 0.0596 U 0.061 U												
	Total PCBs	1.0	NE							0.0596 U	0.061 U	-

Notes:

¹ Approximate exploration locations shown on Figure 2.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when

Method A cleanup level has not been established.

⁴ Natural Background soil concentration per Ecology Publication 94-115 (Ecology 1994).

⁵ Refer to Appendix B for a full list of compounds analyzed and their results.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

bgs = below ground surface

mg/kg = milligram per kilogram

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established

"--" = not tested

ND = Not Detected

 ${\sf U}$ = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration greater than the Natural Background but less than MTCA soil cleanup level.

Seattle, Washington

2			051.0	0.0		05	140	05		05	10
Sample Location ¹			GEI-8	GE	EI-9	GE	1-10 I	GE	-11 	GE	-12
Sample Identification			GEI-8-17.0	GEI-9-12.5	GEI-9-17.5	GEI-10-12.5	GEI-10-17.0	GEI-11-15.0	GEI-11-35.0	GEI-12-15.0	GEI-11-40.0
Sampled By	МТСА		GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI	GEI
Sample Date	Cleanup	Natural	04/04/22	04/04/22	04/04/22	04/04/22	04/04/22	04/04/22	04/04/22	04/04/22	04/04/22
Sample Depth (feet bgs)	Levels ³	Background ⁴	17.0	12.5	17.5	12.5	17.0	15.0	35.0	15.0	40.0
Petroleum Hydrocarbons by NWPTH-G											
Gasoline-Range	30	NE	5.74 U	6.5 U	6.25 U	5.64 U	5.76 U	41.1	5.88 U	3,220	6.05 U
Diesel-Range	2,000	NE									
Lube Oil-Range	2,000	NE							-		
Volatile Organic Compounds (VOCs) by	EPA 8021/8260 (I	ng/kg)									
Benzene	0.03	NE	0.0230 U	0.0260 U	0.0250 U	0.0228 U	0.0230 U	1.42	0.0235 U	0.739	0.0242 U
Toluene	7	NE	0.0348 U	0.0390 U	0.0375 U	0.0328 U	0.0346 U	0.418	0.0353 U	0.0403 U	0.0363 U
Ethylbenzene	6	NE	0.0287 U	0.0325 U	0.0312 U	0.0282 U	0.0288 U	1.03	0.0294 U	13	0.0303 U
Total Xylenes	9	NE	0.0574 U	0.0650 U	0.0625 U	0.0564 U	0.0576 U	3.482	0.0588 U	2.39	0.0605 U
1,2 Dibromoethane (EDB)	0.005	NE									
1,2 Dichloroethane (EDC)	1	NE	-	-						-	-
Methyl tertiary-butyl ether (MTBE)	0.1	NE					-			-	
other VOCs ⁵	varies	NE							-		
Total Metals by EPA 6000 series (mg/				1		•	•	1	1	1	
Arsenic	20	7									
Barium	16,000	NE									
Cadmium	2	1									
Total Chromium	2,000	48									
Lead	250	24									
Mercury	2	0.07									
Selenium	400	NE									
Silver	400	NE									
Polycyclic Aromatic Hydrocarbons (PA	Hs) by EPA 8270D/	SIM (mg/kg)									
Acenaphthene	4,800	NE		_							_
Acenaphthylene	NE	NE									_
Anthracene	24,000	NE									
Benzo[a]anthracene	NE	NE									
Benzo(a)pyrene	0.1	NE									_
Benzo(b)fluoranthene	NE	NE									
Benzo(g,h,i)perylene	NE	NE									
Benzo(k)fluoranthene	NE	NE									
Chrysene	NE	NE									_
Dibenzo(a,h)anthracene	NE	NE									
Fluoranthene	3,200	NE									
Fluorene	3,200	NE									
Indeno(1,2,3-cd)pyrene	NE	NE									
Naphthalenes	5	NE	24.5 U	21.2 U	24.8 U	22.3 U	24.1 U	571.6	20.1 U	4,375	18.9 U
Phenanthrene	NE	NE	-	-							-
Pyrene	2,400	NE									
cPAHs TEQ ⁶	0.1	NE									
Polychlorinated Biphenyls (PCBs) by El				1	1	1	1	1	1	1	
Aroclor 1016	NA	NE									
Aroclor 1221	NA	NE									
Aroclor 1232	NA	NE									
Aroclor 1242	NA	NE									
Aroclor 1248	NA	NE									
Aroclor 1254	NA	NE									
Aroclor 1260	NA	NE									
Total PCBs	1.0	NE									
IUIDI FUDS	1.0	INE					-				

Notes:

¹ Approximate exploration locations shown on Figure 2.

² Boring Advanced at an angle of 25 digress from vertical.

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses. MTCA Method B cleanup level used when

Method A cleanup level has not been established.

⁴ Natural Background soil concentration per Ecology Publication 94-115 (Ecology 1994).

⁵ Refer to Appendix B for a full list of compounds analyzed and their results.

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

bgs = below ground surface

mg/kg = milligram per kilogram

Farallon = Farallon Consulting

Landau = Landau Associates

EAI = Environmental Associates, Inc.

GeoGroup = GEO Group Northwest, Inc.

GEI = GeoEngineers Inc.

NA = Not Applicable

NE = Not Established

"--" = not tested

ND = Not Detected

 ${\sf U}$ = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

Shading indicates analyte was detected at a concentration greater than the Natural Background but less than MTCA soil cleanup level.

Table 2

Summary of Groundwater Investigation Chemical Analytical Data

701 South Jackson Street

Seattle, Washington

Sample Location ¹	GEI-1	GEI-11	GEI-12	
Sample Identification	GEI-1-20210518	GEI-11-W-041122	GEI-12-W-041122	
Sample Date	05/18/21	04/11/22	04/11/22	MTCA
Depth To Groundwater (feet bgs)	64.1	61.3	68.8	Cleanup
Groundwater Elevation ² (feet NAVD88)	33.9	32.7	31.2	Level ³
Petroleum Hydrocarbons by NWTPH-G/Dx (µg/L)				
Gasoline-Range Petroleum Hydrocarbons	54.6	694	142	800/1,000 ⁴
Diesel-Range Petroleum Hydrocarbons	176	117 U	117 U	500
Heavy Oil-Range Petroleum Hydrocarbons	98.2 U	117 U	117 U	500
Volatile Organic Compounds (VOCs) by EPA 8260D (µ	g/L)			
Benzene	0.440 U	2.06	0.440 U	5
Toluene	0.750	9.89	0.750 U	100
Ethylbenzene	0.980	8.28	1.06	700
Total Xylenes	3.274	48.9	1.2	1,000
Total Metals by EPA 200.8/245.1 (µg/L)				
Arsenic	6.75	2.94	2.85	8 ⁵
Cadmium	0.247	0.200 U	0.200 U	5
Total Chromium	8.39	1.00 U	1.10	50
Lead	4.61	0.500 U	0.500 U	15
Mercury	0.304	0.100 U	0.100 U	2
Dissolved Metals by EPA 200.8/245.1 (µg/L)				
Arsenic	1.23	2.95	2.91	5
Cadmium	0.125 U	0.125 U	0.125 U	5
Total Chromium	0.750 U	0.750 U	0.752	50
Lead	0.500 U	0.500 U	0.500 U	15
Mercury	0.100 U	0.100 U	0.100 U	2
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA 827	'0 (μg/L)			
1-Methylnaphthalene	0.105	0.156	0.620	1.5
2-Methylnaphthalene	0.170	0.259	0.799	32
Acenaphthene	0.0994 U	0.099 U	0.0997 U	960
Acenaphthylene	0.0994 U	0.099 U	0.0997 U	NE
Anthracene	0.0994 U	0.099 U	0.0997 U	4,800
Benzo[a]anthracene	0.0994 U	0.099 U	0.0997 U	NE
Benzo(a)pyrene	0.0994 U	0.099 U	0.0997 U	NE
Benzo(b)fluoranthene	0.0994 U	0.099 U	0.0997 U	NE
Benzo(g,h,i)perylene	0.0994 U	0.099 U	0.0997 U	NE
Benzo(k)fluoranthene	0.0994 U	0.099 U	0.0997 U	0.1
Chrysene	0.0994 U	0.099 U	0.0997 U	NE
Dibenzo(a,h)anthracene	0.0994 U	0.099 U	0.0997 U	NE
Fluoranthene	0.0994 U	0.099 U	0.0997 U	640
Fluorene	0.0994 U	0.099 U	0.0997 U	640
Indeno(1,2,3-cd)pyrene	0.0994 U	0.099 U	0.0997 U	NE
Naphthalene	0.263	0.759	0.521	160
Phenanthrene	0.0994 U	0.099 U	0.0997 U	NE
Pyrene	0.0994 U	0.099 U	0.0997 U	480
Total cPAHs TEQ ⁶	0.0994 U	0.099 U	0.0997 U	0.1

Notes:

¹Approximate sample locations are shown on Figures 1 through 3.

² Groundwater elevation referenced to the approximate ground surface elevation (North American Vertical Datum 1988 [NAVD88]).

³ Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method A Groundwater Cleanup Levels. MTCA Method B cleanup level used when Method A cleanup level has not been established.

⁴ When benzene is present, the gasoline range cleanup level is 800 µg/L. When benzene is not present the gasoline range cleanup level is 1,000 µg/L.

 $^{\rm 5}$ Natural background concentration for Puget Sound groundwater (Ecology 2021).

⁶ Total carcinogenic PAHs (cPAHs) calculated using the toxicity equivalency (TEQ) methodology in WAC 173-340-708(8). Non-detections were assigned half the reporting limit for these calculations.

bgs = below ground surface

 μ g/L = micrograms per liter

MTCA = Model Toxics Cleanup Act

EPA = United States Environmental Protection Agency

 U = chemical of concern not detected greater than the laboratory reporting limit shown

– = not analyzedNE = not established

- = not analyzed

- NE = not established
- NA = not applicable

Bold font type indicates the chemical of concern was detected.

Yellow shading indicates analyte was detected at a concentration greater than the MTCA cleanup level.

Chemical analytical testing by Fremont Analytical of Seattle, Washington.

Table 3

Summary of Sub-Slab Soil Vapor Investigation Chemical Analytical Data

701 South Jackson Street Seattle, Washington

Sample Location ¹	SSV-1		SSV-2		SSV-3			
Sample Identification	SSV-1-S	SSV-1-D	SSV-2-S	SSV-2-D	SSV-3-S	SSV-3-D	Shallow	Deep
Sampled By	GEI	GEI	GEI	GEI	GEI	GEI	Sub-Slab	Sub-Slab
Sample Date	12/28/21	12/28/21	12/28/21	12/28/21	12/28/21	12/28/21	Soil Gas	Soil Gas
Sample Depth (feet bgs)	5 - 10	20 - 25	5 - 10	20 - 25	5 - 10	20 - 25	Screening Level ²	Screening Level ³
Helium by Modified ASTM D-1496								
Helium (percent)	0.4 U		0.4 U	2.04	0.4 U	0.6 U	NE	NE
Petroleum Hydrocarbons by Modified T0-15 (µg/m ³)								
Aliphatic Hydrocarbons (EC5-8)	112,000		18,500	>28,600	608	1,180 U	NE	NE
Aliphatic Hydrocarbons (EC9-12)	7,970		1,090	2,410	294 U	252 U	NE	NE
Aromatic Hydrocarbons (EC9-10)	3,590		409,000	>13,200,000	62.9 U	2,280,000	NE	NE
Total Petroleum Hydrocarbons (TPH)	123,560		428,590	>13,231,010	608	2,280,000	4,700	14,000
Volatile Organic Compounds (VOCs) by TO	D-15 (μg/m³)							
Benzene	153		67.8 U	1,360 U	8.19	203 U	11	32
Toluene	957		1,640 U	32,800 U	16.4 U	4,910 U	76,000	230,000
Ethylbenzene	695 U		25.6 U	511 U	0.256 U	76.7 U	15,000	46,000
Xylenes	1,232		231 U	4,620 U	2.31 U	693 U	1,500	4,600
(MEK) 2-Butanone	472 U		1,740 U	34,700 U	17.4 U	5,210 U	76,000	230,000
1,2-Dibromoethane (EDB)	17.7		2.29 U	45.9 U	0.0229 U	6.88 U	0.14	0.42
1,2-Dichloroethane (EDC)	16.2 U		1,410 U	28,200 U	14.1 U	4,230 U	3.2	9.6
Methyl tert-butyl ether (MTBE)	72.1 U		39.7 U	793 U	0.397 U	119 U	320	960
Naphthalene	99.9		247 U	4,950 U	2.97	742 U	2.5	7.4
n-Hexane	3,120		383 U	7,660 U	3.83 U	1,150 U	11,000	32,000

Notes:

¹ Approximate exploration locations shown on Figure 3.

² Washington State Model Toxic Control Act Cleanup Regulation (MTCA) Method B soil gas screening level (lowest of carcinogenic and non-carcinogenic).

³ Washington State MTCA Method B deep soil gas screening level (lowest of carcinogenic and non-carcinogenic).

bgs = below ground surface

 $\mu g/m^3$ = micrograms per cubic meter

GEI = GeoEngineers Inc.

NE = Not Established

"--" = not tested

U = Analyte not detected above the reported sample quantization limit

Bold indicates analyte was detected.

Date Exported: 02/26/21 Project\24504001_Project.aprx\2450400100_F01_VicinityMap \24\24504001\GIS\24504001_

FB-3 - �	Hollow Stem Auger Boring by Farallon Consulting, 2019
FB-4 -	Direct Push Boring by Farallon Consulting, 2019
FB-5 - 	Direct Push Boring by Farallon Consulting, 2019 Completed at 25 degrees to horizontal
B-1-11 -	Hollow Stem Auger Boring by Landau Associates, 2011
в-1 -ф-	Hollow Stem Auger Boring by GEO Group Northwest, 2006
ℍ℩Ҿ	Hollow Stem Auger Boring by GEO Group Northwest, 1992
GEI-1 💓	Hollow Stem Auger Boring by GeoEngineers, 2021/2022
GEI-4 💓	Direct Push Boring by GeoEngineers, 2021/2022
SSV-1 🕱	Soil Vapor Boring by GeoEngineers, 2021

Notes:

- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/26/2018. Lidar from Puget Sound Lidar Consortium dated 2016.

FB-5 - O--

(7')

FB-4 - Investigation Sampling Location

Investigation sampling location completed at 25 degrees to horizontal

One or More Contaminants Detected at a Concentration Greater Than the MTCA CUL

One or More Contaminants Detected at a Concentration Greater than Natural Background but Less than the MTCA CUL

Contaminants Not Detected or Detected Less than Natural Background

Not Analyzed

Depth below ground surface to Fill/Native Soil Contact (Approximate)

Natural Background = Natural Background soil metals for Puget Sound (Ecology Publication 94-115) MTCA = Model Toxics Control Act

CUL = Cleanup Level (see Table 1)

Notes:

1.

The locations of all features shown are approximate. This drawing is for information purposes. It is intended to assist in showing 2. features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/26/2018. Lidar from Puget Sound Lidar Consortium dated 2016.

FB-4 - Investigation Sampling Location

Investigation sampling location completed at 25 degrees to horizontal

One or More Contaminants Detected at a Concentration Greater Than the MTCA CUL

FB-5 -**Ò-**-|

Concentration Greater than Natural Background but Less than the MTCA CUL

One or More Contaminants Detected at a

Contaminants Not Detected or Detected Less than Natural Background

Not Analyzed

Natural Background = Natural Background soil metals for Puget Sound (Ecology Publication 94-115) MTCA = Model Toxics Control Act

CUL = Cleanup Level (see Table 1)

Notes:

1.

The locations of all features shown are approximate. This drawing is for information purposes. It is intended to assist in showing 2. features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/26/2018. Lidar from Puget Sound Lidar Consortium dated 2016.

GEI-1 O Monitoring Well / Grab Groundwater Sampling Location

One or More Contaminants Detected at a Concentration Greater Than the MTCA CUL

Contaminants Not Detected or Detected Less than Natural Background

Not Analyzed

Measured Groundwater Elevation (NAVD 88)

Inferred Groundwater Flow Direction

Natural Background = Natural Background soil metals for Puget Sound (Ecology Publication 94-115) MTCA = Model Toxics Control Act

- CUL = Cleanup Level (see Table 1)

Notes:

- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/26/2018. Lidar from Puget Sound Lidar Consortium dated 2016.

SSV-1 X Soil Vapor Sampling Location

One or More Contaminants Detected at a Concentration Greater Than the MTCA Sub-Slab Soil Gas Screening Level

Contaminants Not Detected or Detected Less than the MTCA Sub-Slab Soil Gas Screening Level

Not Analyzed

MTCA = Model Toxics Control Act

Notes:

- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/26/2018. Lidar from Puget Sound Lidar Consortium dated 2016.

FB-4 - Investigation Sampling Location

Investigation sampling location completed at 25 degrees to horizontal

Soil Management Units

Category 1 Soil - COCs either not detected or detected at a concentrations less than Natural Background. Category 1 Soil does not require special handling and is suitible for transport and disposal to an owner approved fill site.

Category 2 Soil - One or more COCs detected at a concentration greater than Natural Background but less than the MTCA CUL. Category 2 Soil is suitable for transport and disposal to an owner approved facility permitted to receive such material.

FB-5--

Category 3 Soil - One or more COCs detected at a concentration greater than the MTCA CUL. Category 3 Soil is suitable for transport and disposal to an owner approved landfill.

Natural Background = Natural Background soil metals for Puget Sound (Ecology Publication 94-115)

- (Ecology Publication 94-1) MTCA = Model Toxics Control Act
- CUL = Cleanup Level (see Table 1)
- COC = Contaminant of Concern

Notes:

- 1. The locations of all features shown are approximate.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/26/2018. Lidar from Puget Sound Lidar Consortium dated 2016.

FB-4 - Investigation Sampling Location

Investigation sampling location completed at 25 degrees to horizontal

Soil Management Units

Category 1 Soil - COCs either not detected or detected at a concentrations less than Natural Background. Category 1 Soil does not require special handling and is suitible for transport and disposal to an owner approved fill site.

Category 2 Soil - One or more COCs detected at a concentration greater than Natural Background but less than the MTCA CUL. Category 2 Soil is suitable for transport and disposal to an owner approved facility permitted to receive such material.

FB-5-**Ò**--|

Category 3 Soil - One or more COCs detected at a concentration greater than the MTCA CUL. Category 3 Soil is suitable for transport and disposal to an owner approved landfill.

Natural Background = Natural Background soil metals for Puget Sound (Ecology Publication 94-115)

- (Ecology Publication 94-1) MTCA = Model Toxics Control Act
- CUL = Cleanup Level (see Table 1)
- COC = Contaminant of Concern

Notes:

- 1. The locations of all features shown are approximate.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/26/2018. Lidar from Puget Sound Lidar Consortium dated 2016.

FB-4 - Investigation Sampling Location

Investigation sampling location completed at 25 degrees to horizontal

Soil Management Units

Category 1 Soil - COCs either not detected or detected at a concentrations less than Natural Background. Category 1 Soil does not require special handling and is suitible for transport and disposal to an owner approved fill site.

Category 2 Soil - One or more COCs detected at a concentration greater than Natural Background but less than the MTCA CUL. Category 2 Soil is suitable for transport and disposal to an owner approved facility permitted to receive such material.

FB-5--

Category 3 Soil - One or more COCs detected at a concentration greater than the MTCA CUL. Category 3 Soil is suitable for transport and disposal to an owner approved landfill.

Natural Background = Natural Background soil metals for Puget Sound (Ecology Publication 94-115)

- (Ecology Publication 94-1 MTCA = Model Toxics Control Act
- CUL = Cleanup Level (see Table 1)
- COC = Contaminant of Concern

Notes:

- 1. The locations of all features shown are approximate.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/26/2018. Lidar from Puget Sound Lidar Consortium dated 2016.

FB-4 - Investigation Sampling Location

Investigation sampling location completed at 25 degrees to horizontal

Soil Management Units

Category 1 Soil - COCs either not detected or detected at a concentrations less than Natural Background. Category 1 Soil does not require special handling and is suitible for transport and disposal to an owner approved fill site.

Category 2 Soil - One or more COCs detected at a concentration greater than Natural Background but less than the MTCA CUL. Category 2 Soil is suitable for transport and disposal to an owner approved facility permitted to receive such material.

FB-5--

Category 3 Soil - One or more COCs detected at a concentration greater than the MTCA CUL. Category 3 Soil is suitable for transport and disposal to an owner approved landfill.

Natural Background = Natural Background soil metals for Puget Sound (Ecology Publication 94-115)

- (Ecology Publication 94-1 MTCA = Model Toxics Control Act
- CUL = Cleanup Level (see Table 1)
- COC = Contaminant of Concern

Notes:

- 1. The locations of all features shown are approximate.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/26/2018. Lidar from Puget Sound Lidar Consortium dated 2016.

FB-4 - Investigation Sampling Location

Investigation sampling location completed at 25 degrees to horizontal

Soil Management Units

Category 1 Soil - COCs either not detected or detected at a concentrations less than Natural Background. Category 1 Soil does not require special handling and is suitible for transport and disposal to an owner approved fill site.

Category 2 Soil - One or more COCs detected at a concentration greater than Natural Background but less than the MTCA CUL. Category 2 Soil is suitable for transport and disposal to an owner approved facility permitted to receive such material.

FB-5--

Category 3 Soil - One or more COCs detected at a concentration greater than the MTCA CUL. Category 3 Soil is suitable for transport and disposal to an owner approved landfill.

Natural Background = Natural Background soil metals for Puget Sound (Ecology Publication 94-115)

- (Ecology Publication 94-1 MTCA = Model Toxics Control Act
- CUL = Cleanup Level (see Table 1)
- COC = Contaminant of Concern

Notes:

- 1. The locations of all features shown are approximate.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/26/2018. Lidar from Puget Sound Lidar Consortium dated 2016.

FB-4 - Investigation Sampling Location

Investigation sampling location completed at 25 degrees to horizontal

Soil Management Units

Category 1 Soil - COCs either not detected or detected at a concentrations less than Natural Background. Category 1 Soil does not require special handling and is suitible for transport and disposal to an owner approved fill site.

Category 2 Soil - One or more COCs detected at a concentration greater than Natural Background but less than the MTCA CUL. Category 2 Soil is suitable for transport and disposal to an owner approved facility permitted to receive such material.

FB-5--

Category 3 Soil - One or more COCs detected at a concentration greater than the MTCA CUL. Category 3 Soil is suitable for transport and disposal to an owner approved landfill.

Natural Background = Natural Background soil metals for Puget Sound (Ecology Publication 94-115)

- (Ecology Publication 94-1) MTCA = Model Toxics Control Act
- CUL = Cleanup Level (see Table 1)
- COC = Contaminant of Concern

Notes:

- 1. The locations of all features shown are approximate.
- This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from Google Earth Pro dated 5/26/2018. Lidar from Puget Sound Lidar Consortium dated 2016.

APPENDIX A Exploration Logs

		BORING	NO. 1				· (Parte DG4P100.70.5)
Lo	ogged By:	DH Date Drilled:	8/3/92			e Elev.	N/A
Depth ft.	USCS	Soil Description		Sample Type No.	SPT(N) Blows per ft.	Water Content %	Other Test
	·	Asphalt and gravel base					
- 5 -	CL	Gray CLAY, very stiff, moist (FILL)			21		
10	SM	Gray silty fine SAND, dense, gasoline o	lor (FILL)] 2	41		CA
		Interlayered with clay Gasoline odor		<u>]</u> 3	46		CA
20	CL	Gray silty CLAY, very stiff, no gasoline	odor.	4	34		
 25		End of Boring @ 17.5 feet NOTES:					
		USCS = Unified Soil Classification Syst CA = Chemical Analysis Test Results:	Sample @12.5 Ft				
		WTPH-G (ppm)2.2Benzene (ppm)NDToluene (ppm)NDEthyl-Benzene (ppm)ND	6,000 4 55 66				
35 <u> </u>		Xylene (ppm) 0.1 Lead (ppm) ND ND=Not Detectable	330 1.5		~		
40 -							
LEGEN			ATION WELL:]seal ∑meas]well tip		evel on da	te indicated
Geote	echnical Eng 13240 NE 20th	Difference Street, Suite 12 Street, Suite 12 Bellevue, WA 98005 Say (205) 549-8758	70	1 SOUT	RING I TH JACKS LE, WASH	ON STRE	
	^o hone (206) 6	49-8757 Fax (206) 649-8758	JOB NO. E-0260)	DATE	9/16/92	PLATE 3

(नियम	BOREL	.03.23.5)	

		BORING	F NO. 2							
Log	ged By:	DH Date Drilled	: 8/3/92		Surfac	e Elev.	N/A			
Depth			Sa	mple	SPT(N)	Water	· · · · · · · · · · · · · · · · · · ·			
	USCS	Soil Description			Blows	Content	Other Test			
ft.			Туре	Ho.	per ft.	~				
	·	Asphalt and gravel base Gray CLAY, stiff, moist, no gasoline of								
	CL	Gray CLA I, Shin, moist, no gasonne (1	12					
-				1 .	12					
5		Gray CLAY with red brick debris and	gravel,	-						
		no gasoline odor (FILL)								
		· · · · · · · · · · · · · · · · · · ·								
	SM	Gray silty fine SAND, very dense, no g	asoline odor (FILL)	2	51		CA			
10 -										
10		GRAVEL with fine sand, no gasoline		3	75 per 3"					
					10 101 0					
		End of Boring @ 10 feet								
		~								
15										
· _]						
20 -		•								
		NOTES:								
		No hydrocarbon odor or evidence of hy	drocarbon							
		contamination found in Boring	-							
25		USCS = Unified Soil Classification Sys	stem, See Plate 6							
_		CA = Chemical Analysis								
_		Test Results: Sample	-							
		@ 7.5 Ft								
30 -		WTPH-G (ppm) 1.6	-							
		Benzene (ppm) ND								
		Toluene (ppm) ND								
		Ethyl-Benzene (ppm) ND								
		Xylene (ppm) ND								
35		Lead (ppm) 2.2								
		The Fron Detectable								
						1				
				ļ						
40					:					
LEGEND:	T 2" 0	.D. Split-Spoon Sample	GROUNDWATER 🛛 seal			I				
		.O. Shelby-Tube Sample OBSER			ed water le	vel on dat	e indicated			
	C. 3" D	.O. California-Sampler Sample	ti well	tip (screen)					
~	<u> </u>				RING L	00				
Geo	o Gro	up Northwest, Inc.								
		eers, Geologists & Environmental Scientists			JACKSO		=1			
1004		tmot Suite 12 Bollow WA 00005	SE/	AITLE	E, WASHI	NGTON				
	ne (206) 649	treet, Suite 12 Bellevue, WA 98005 -8757 Fax (206) 649-8758								
	JOB NO. <u>E-0260</u> DATE <u>8/3/92</u> PLATE <u>4</u>									

.

	<u>,</u> =	BORIN	G NO. <u>3</u>				(Fenz BORELDOXLE)
1	Logged By	: <u>DH</u> Date Drille	ed: <u>8/3/92</u>			e Elev	N/A
Depth ft.	USC			e No.	SPT(N) Blows per ft.	Water Content %	Other Test
	CL	Asphalt and gravel base Gray CLAY with gravel, medium so unknown odor (FILL)		1	5		
	SM	Gray silty fine SAND, dense, stinks	1	2	33		CA
		unkown odor	I	3	34		
 15 		End of Boring @ 12.5 feet		- 4	50		
20 <u>-</u>							
 25		NOTES: USCS = Unified Soil Classification S CA = Chemical Analysis Test Results: Sample @ 7.5 f	-				
30		WTPH-G (ppm)1,400Benzene (ppm)0.31Toluene (ppm)1.9Ethyl-Benzene (ppm)6.2Xylene (ppm)16		:			
35		Lead (ppm) 3.8 Heavier Oil (ppm) 1,800 ND=Not Detectable					
40 LEGE	T I	" O.D. Split-Spoon Sample " O.D. Shelby-Tube Sample OBS " O.D. California-Sampler Sample	1	Zmeasu	ired water 1 (screen)	evel on data	e indicated
Geo	technicai E	roup Northwest, Inc. ngineers, Geologists & Environmental Scientists 21h Street, Suite 12 Bellevue, WA 98005 649-8757 Fax (206) 649-8758		SOUT	.E, WASH	ON STREE	ET PLATE 5

			MODIFIE	D UNIFI	ED CLASSI	FICA	ON SYSTEM FO	R SOILS			
	MAJOR	DIVISION	GROUP	LSYMBO	DL CODE		YPICAL DESCR	PTION		ABORATORY ASSIFICATION CRITERIA	
	ž*	CLEAN GRAVELS	GW	D.o.o.	2 · A	WĘ FIN	GRADED GRAVELS, L	ITTLE OR NO	$C_{11} = \frac{D_{60}}{D_{10}} > $	$4 C_{C} = \frac{(D_{10})^{2}}{D_{10} \times D_{10}} = 1 $ in	
* 14,14 9	VEL5 HALI CDA AGLR FHA.	LUTTLE OR HO FINES	GP	0.000	D C RED		Y GRADEO GRAVELS, MIXTURES, LITTLE OR F		ABC	NOT MEETING DVE REOUREMENTS	
2115	G#AVELS G#AVELS HOHL 1444 HAL4 C#AM5 LADGLA [HAL4 H2 4 SILV[DIRIY GRAVELS	БМ		1.		GRAVELS, GRAVEL-SA RES	ND-SILT	CONTENT OF FINES	ATTERBERG LIMITS BELOW "A" LINE OR P1 LESS THAN 4	
AINEO 50 Hi largei	1	(WITH 50WE TINES)	GC		YELLOW		Y GRAVELS, GRAVEL-S MIXTURES	AND-	EXCEEDS 12%	ATTERBERG LIMITS ABOVE "A" LINE P1 MORE THAN 7	
COARSE-GRAINED SOILS HALF BY #EEHI LARGEN IMAH 200 SIEVE		CLEAN SANDS	sw		RED		GRADED SANDS, GRAU OR NO FINES	VELLY SANDS,	$C_{U} = \frac{D_{60}}{D_{10}} > 6 C_{C} = \frac{10_{30}^{2}}{0_{10} \times 0_{50}^{2}} = 1 10^{-2}$		
	HI H		SP		RED	PO FIN	Y GRADED SANDS, L	ITTLE OR NO	ABC	NOT MEETING DVE REQUIREMENTS	
140R[]HAN	SANDS MUHL IAAN HALI THH CHANS SAALLER HAAN NO 4 SEEVE	DIRTY SANDS (WITH SOME FINES)	5M		YELLOW	511.1	SANDS, SAND-SILT MI	XTURES	ATTERBERG LIMITS CONTENT BELOW "A" LINE OF FINES PI LESS THAN 4		
			sc		YELLOW	CL4 MD	res	r	EXCEEDS 12%	ATTERBERG LIMITS ABOVE "A" LINE P.I. MORE THAN 7	
_	SILTS SILTS * * 11H1 61101414 HEAMIC DN14M1	₩ _L < 50 %.	ML		GREEN		ANIC SILTS AND VERY LOUR, SILTY SANDS OF LITY		CLASSIFICATION IS BASED UPON		
1 JA JIS 002	SILTS SILTS BILD 4 11 NECTOR	W _L > 50 %	мң		BLUE	MA	ANIC SILTS, MICACEOL JUS, FINE SANDY OR S	ILTY SOILS		ASTICITY CHART	
FINE-GRAINED SOILS	ы 11 НАНТ ПСАНС	۳, ⊂ ۵۵ %	C1		GREEN		ANIC CLAYS OF LOW LLY, SANDY, OR SILTY				
CRAINED BT WFICH	CLAYS 2404 A 1141 14 Plasticit Chant Michologi (196440	³⁰ % < W _L < 50%	CI		GREEN. BLUE		ANIC CLAYS OF MED LIT CLATS	Ιυμ Ριαζη.			
FINE-I THAN HAL		w _د > 50 %.	СН		BLUÉ	INO FAT	ANIC CLAYS OF HIGH	Ριαστισιτη			
HI JROW	ORGANIC SILTS A CLAYS LLDH A LINI LLDH A LINI	₩ ₁ < 50 %	OL		GREEN		IC SILTS AND ORG	ANIC SILTY	CONTENT HA	THE NATURE OF THE FINE IS NOT BEEN DETERMINED ITED BY THE LETTER "F", E G URE OF SAND WITH-SILT OR	
		W _L > 50 %	ОН		BLUE	ORG	C CLAYS OF HIGH PL	ASTICITY	CLAT		
	HIGHLY OR	GANIC SOILS	۴ı	2 4 1 1 2 2 4 2 4 2 1 4 7 1 2 5 1 4 1 4 7 1 2 5 1 4 1 4 1 4	ORANGE	PEAT		GANIC SOILS	STRONG COLI FIBROUS TEXT	OR OR ODDR AND OFTEN URE	
		SPECIAL	SYMBOL	LS			50	•••••	↓		
		BEDROCK (Undifferentiated)		VOLCAN	ИС АБН		4D	ICITY CHART FOR NG NO 40 SIE	VE	CH	
<u>,7 ***,</u>		SOIL COMP					30	C1		МН	
FR ,	ACTION	U S STANDARD SIEVE SIZE	PERC	FINING RA ENTAGE BY	WEIGHT OF		70		\nearrow	Он	
		PASSING RETAINED	PERCE		DESCRIPT	DR	10		· 01		
	L Course Vine	76 mm, 19 mm 19 mm, No. 4	50 -	35	and			~	0 50	60 70 8D ×	
	coarse medium fine	4.75 mm 2.00 mm 2.00 mm 425 ym 425 m 75 ym				E 11	NTIONED ON TH		U.S. STANDARD, A S T M		
01	plastic)	75 ym	. 10 •		lloca		GROUPS ARE GIVEN	I COMBINED GR	OUP SYMBOLS	RACTERISTICS OF TWO 6, E.G. GW-GC 15 A WELL NDER BETWEEN 5% AND	
		OVERSIZE M	ATERIAL	<u>1</u>							
C08	ded or eubro BLES 76 m LOERS >	m to 203 mm		ded AGMENTS > 0.76 cl				Geotechnica		west, Inc. Geologists & Cientists	

:

· · · · · ·

_

plate <u>6</u>

LEGEND FOR SOIL CLASSIFICATION AND PENETRATION TEST DATA

l				1		CLASSIFIC			· · · · · · · · · · · · · · · · · · ·		·····
 	AJOR	DIVISION		GROUP SYMBOL	ת	PICAL DESCR	NOTTON	LABORA	TORY CLAS	SIFICATION C	RITERIA
			CLEAN GRAVELS	GW ::	WELL GRADE	D.GRAVELS, GRAV	VEL-SAND MIXTURE, INES	CONTENT	Cc = (D)	r = (D80 / D10) grea 30) ² / (D10 * D80) b	ter than 4 etween 1 and 3
COARSE-GRAINE	(More Coarsi	RAVELS Than Half e Fraction Is		GP	POORLY GR MIX	ADED GRAVELS, A TURES LITTLE OR	ND GRAVEL-SAND NO FINES	OF FINES BELOW 5%	CLEAN	GRAVELS NOT ME REQUIREMEN	ETING ABOVE
		'Than No. 4 Sieve)	DIRTY GRAVELS	ĠM≁	SILTY GRAV	els, gravel-sam	ID-SILT MIXTURES	CONTENT OF FINES EXCEEDS	GM: ATTERBERG LIMITS BELOW "A" or P.I. LESS THAN 4		
			(with some. fines)	GC	CLAYEY GRAV	/ELS, GRAVEL-SAI	ND-CLAY MIXTURES	12%	GC: AT	TERBERG LIMITS A of P.L MORE TH	
		ANDS Than Half	CLEAN SANDS	sw	WELL GRADED	SANDS, GRAVELL NO FINES	Y SANDS, LITTLE OR			= (D80 / D10) great 0) ² / (D10 * D60) be	erthan 8 twoen 1 and 3
More Than Half by Weight Larger That	Coarse Smaller	Fraction Is Than No. 4 illovo)	(ittie or no fines)	5P	POORLY GRAD	ED SANDS, GRAVI OR NO FINES	ELLY SANDS, LITTLE	OF FINES BELOW 5%	CLEAN	SANDS NOT MEET REQUIREMENT	ING ABOVE S
No. 200 Sieve			DIRTY SANDS	SM	SILTY :	SANDS, SAND-SILT	MOCTURES	CONTENT OF FINES	ATTER	BERG LIMITS BEL with P.I. LESS 174	
••••••••••••••••••••••••••••••••••••••			(with some fines)	sc	CLAYEY	SANDS, SAND-CL/	Y MIXTURES	EXCEEDS 12%	ATTE	RBERG LIMITS ABO WILL P.I. MORE TH	
	(Below	ILTS A-Line on Sty Chart,	Liquid Limit < 50%	ML.	INORGANIC SI	LTS, ROCK FLOUR SLIGHT PLASTIC	R, SANDY SILTS OF			U-Line	
Fine-grained Soils		le Organics)	Liquid Limit > 50%	MCH	INORGANIC SIL FIN	TS, MICACEOUS O LE SANDY OR SILT	R DIATOMACEDUS, Y SOIL	50 FOR SOIL F 40 S	ASSING NO.		
	(Above	LAYS A-Line on ity Chart,	Liquid Limit < 50%	. CL.	INORGANIC CL/ SANDY, C	AYS OF LOW PLAS OR SILTY CLAYS, C	TICITY, GRAVELLY, LEAN CLAYS				ALIng
Lessa Than Half by		a Organica)	Liquid Limit > 50% ·	сн	INORGANIC CLA	YS OF HIGH PLAS	TICITY, FAT CLAYS		11		
Weight Larger Than No. 200 Sleve	CL	C SILTS & AYS A-Line on	Liquid Limit < 50%	oL	ORGANIC SILTS	AND ORGANIC SIL PLASTICITY	TY CLAYS OF LOW		/ a	MHort	н
		ity Chart)	Liquid Limit > 50%	но	ORGANIC	CLAYS OF HIGH	PLASTICITY				
HiG	LY ORGA	NIC SOILS		Pť	PEAT AND I	other highly of	IGANIC SOILS	0 10 20		50 80 70 LIMIT (%)	80 80 100
	SOIL	PARTICLE	E SIZE		GENERAL GU	IDANCE FOR EN	GINEERING PROP	ERTIES OF SOILS, B	ASED ON ST	ANDARD PENET	RATION TEST
			ANDARD SIEV	E·				(SPT) DATA	-	· · · · · · · · · · · · · · ·	· .
FRACTION		sing Size	Retair	ned Size		SAL	IDY SOILS		SIL	TY & CLAYEY SO	DILS
SILT / CLAY	Siove #200	(mm) 0.075	Sieve	(mm)	Blow Counts N	Relative Density, %	Friction Anglo ¢, degroes	Description	Blow Counts N	Unconfined Strength Qu. ist	Description
SAND		<u> </u>			0-4	0 -15	<u> </u>			•	
Fine	#40	0,425	#200	0.075	4-10	15 - 35	25 - 30	Very Loose	<2	< 0.25	Very soft
MEDIUM	#10	2,00	#40	0.425	to - 30	35-65	26 - 35	Loosa Medium Densa	2-4	0.25 - 0.50	Soft
COARSE	#4	4,75	#10	2.00	30 - 50	85 - 85	35-42	Denso	4'-8 B-15	0.50 - 1.00 1.00 - 2.00	Medium Stiff Stiff
GRAVEL					> 50	85 - 100	38 - 48.	Very Dance	. 15-30	2.00 - 2.00	Very Stilf
FINE	0.76	19 ·	#4	4.75					> 30	>4.00	Hard
COARSE	3"	76	0.75	19						<u> </u>	
COBBLES			m to 203 mm		GEC	Gro	ip Nor	thwest	Inc		
BOULDERS		×	203 mm			Group Northwest, Inc. Geotechnical Engineers, Geologists, G					
CK FRAGMENTS			► 78 mm			13240 NE 20th	Environmentai Sbeel, Sulla 10	Scientists Bolovue, WA 9		1	
ROCK	>0.76 cubic mater in volume Phone (425) 648-8757 Fax (425) 640-0759							758	PLATE	Al	

BORING NO. B-1

	DORUNG NO. B-1 Page 1 of 2											
	.ogg	ed By:	KJ Date Drill	ed: <u>2/1/06</u>				Sur	face Elev.		89 feet	-
Depth ft.	El. ft.	USCS Code	Description			Sam	-	Blow Counts per 6"	Water Content %		Comment	ts
-	16.		Asphalt (2" thick) over concrete (5" to 6"	thick).	T	уре	No.			╞		•
5		ML ML	" Olive gray SILT, damp, medium dense, ra some oxidation stain (NATIVE SOIL). Gray SILT, damp, medium dense, moist s of sample, hydrocarbon odor.		_		S1 52	2,7,9 N=16 5,14,10 N=24	28.2 28.4			
10	80 [°]	ML/ SP	Olive gray SILT and SAND, interbedded, trace oxidation stain in sand, thickly interb odor.	damp, medium den bedded, hydrocarbor	ie,		S3	5,15,13 N=28	4.7			
15		SP ML/	Gray SAND, damp to moist, dense, occasi oxidation stain, hydrocarhon odor. Olive gray SILT and gray SAND, interbec			_	S4 S5	7,16,19 N=35 5,11,22	17.2 28.6			
-		SP	dense, weak hydrocarbon odor.					N=33	Luit			
20 _ 	70	ML	Olive SILT, damp to moist, medium dense zones, occasional thin silty sand layers, no	, 50me very fine san hydrocarbon odor.	^{dy}		S6	4,8,13 N=21	27.8			
- 25 _ - -	-	ML/ SM	As above but interbedded with olive gray S SAND, damp, medium dense, sand is most some silt layers contain lesser sand.	SILTY SAND and ly very fine grained,		-	S 7	4,10,14 N=24	19.8			
30 - - - - -	60	SM	Olive gray SILTY SAND, damp, medium of fine and fine grained, light oxidation stain, laminae.	dense, sand is very occasional clean sar	.d]	-	S8	8,11,13 N=24	24.1			
35 _		SP- SM	Olive to brownish gray SAND to SILTY S. dense, thinly bedded, sand is very fine and occasional silty sand lenses, minor oxidatio	fine grained,		-	59	8,22,31 N=53	17.1			
40	50		Light brown gray SAND, damp, dense, very grained, trace oxidation stain.	fine and fine		- s	\$10	9,20,21 N=41	7.5			
LEGEN	D:	<u> </u>	" O.D. Split-Spoon Sampler " O.D. Dames & Moore Sampler 25" O.D. Dames & Moore Sampler		SPT V			Penetration Te el during drilli				
G	EO		roup Northwest, Inc. eotechnical Engineers, Geologists, & Environmental Scientists	JOB NO	SE	VE1 701	NTH A S. JA(NG LO AVENUE SI CKSON STR WASHING DATE	ERVICE REET		PLATE	A2

			BORIN	G NO. B-1					Page 2 of 2
L	oggo	ed By:	KJ Date Drill	ed: <u>2/1/06</u>			Sur	face Elev.	89 feet
Depth			Description		Sar	nple	Blow Counts per	Water Content	Comments
ft.	ft.	Code			Туре	No.	6"	%	
45			:: Bottom of boring: 40.5 feet. Drilling Method: Hollow-stem auger. Sampling Method: 2-inch-O.D. SPT sam lb. hammer with a 30-inch drop.						
- - 50			Groundwater not encountered during dril encountered.	ling. No fill					
									İ
55 									
60 _ _ _									
65 _ - -									
- 70 _ - -									
- 75 _ -									
80 -									
LEGEN	ĮD:	₃	" O.D. Split-Spoon Sampler " O.D. Dames & Moore Sampler .25" O.D. Dames & Moore Sampler				Penetration Te		
G	EO	-	roup Northwest, Inc. eatechnical Engineers, Geologists, & Environmental Scientists		SEVI 701	ENTH S. JA	NG LO AVENUE SI CKSON ST E, WASHING	ERVICE REET	
				JOB NO. G-0	260		DATE	2/13/06	PLATE A3

			BORIN	łG	NO.	B-2					Page 1 of 2
	Logg	ed By:	KJ Date Dri	lled:	2/1/06				Su	face Elev.	93 feet
Depth ft.	El. ft.	USCS Code					Sa Type	mple	Blow Counts per 6"	Water Conlent %	Comments
5	90	MI.	Asphalt (2" thick) over concrete (5" to 6 .: Olive gray SILT with little sand and gra crumbly, some oxidation stain (DISTUR	vel, da	unp, loose.	OL).		SI	2,3,4 N=7	22.6	
-		MI.	Gray SILT, damp, medium dense, conta medium grained sand lens 2" thick, (NA	ins an TIVE	olive gray SOIL).	fine and		S2	4,9,12 N=21	30.1	
10		SM/ SP	Olive brown SILTY SAND and SAND, dense, trace oxidation stain in sand, sand grained.	interb is fin	edded, dan e and medi	յ թ, սու		S 3	7,12,18 N=30	8.6	
-	80	SM/ SP	As above, thickly interbedded.					S4	9,16,18 N=34	12.8	
15		SP	Olive gray SAND, damp, dense, medium fines.	and f	ine grained	, по		\$ 5	8,16,19 N=35	8.6	
-		SP	As above.					S 6	7,16,23 N=39	9.3	
20	70	ML/ SP	Gray SILT and olive gray SAND, interba dense, sand is fine and medium grained, s to silty sand.	edded, some s	damp, med and layers	lium grade		S7	8,10,20 N=30	30.0	
25 		ML/ SM	As above but also interbedded with olive damp to moist, dense, moist to wet sand 1 grained.	gruy S ens 3"	SILTY SAN thick, sand	VD, is fine	T	58	6,14,22 N=36	26.5	
30 _ - -	60	SM	Gray SILTY SAND, damp to moist, dens fine grained.	e, 6an(d is very fir	ie and	T	S9	8,17,26 N≃43	24.9	
35		SM	Olive SILTY SAND, as above.				T	S10	6,11,20 N=31	25.2	-
40 LEGEN	(D: 	3	" O.D. Split-Spoon Sampler " O.D. Dames & Moore Sampler 25" O.D. Dames & Moore Sampler			_	_		Penetration Te el during drill		
	EO		roup Northwest, Inc. eotechnical Engineers, Geologists, & Environmental Scientists](OB NO.	G-026	SEVE 701 SEA	NTH A S. JAC	NG LO AVENUE SI CKSON STI , WASHING DATE	ERVICE REET	PLATE A4

BORING NO. B-2 Page Logged By: KJ Date Drilled: 2/1/06 Surface Flam 03 for											
	logg	ed By:	KJ	Date Drille	ed: <u>2/1/06</u>				Su	face Elev.	93 feet
Depth ft.	El. ft.	USCS Code		Description			Sап Туре	- r	Blow Counts per 6"	Water Content %	Comments
- - 45		SM/ SP	sand predomina occasional silt l Bottom of boring:	and SAND, interbedded ates, sand is very fine and enses, minor oxidation s 41.5 feet.	d fine grained.	silty		S11	9,20,25 N≕45	17.7	
-			Sampling Method lb. hammer with a	Hollow-stem auger. : 2-inch-O.D. SPT samp : 30-inch drop. encountered during drilli		g n 140					
50 			encountered.	encountered during arith	mg. No III						
55 _											
60	. 1										
- 65 _ -											
70 _								-			
75		-									
- - 80											
LEGEN	D: -	<u></u> з"	O.D. Split-Spoon San O.D. Dames & Moon 25" O.D. Dames & Mo	e Sampler		SP V			enetration Te		
G	10		Oup Northy sotechnical Engineers, G Environmental Scie	ealogists, &	JOB NO.		SEVEN 701 S SEAT	TH A S. JAC TTLE,	NG LO VENUE SE KSON STR WASHING	RVICE EET STON	
		_		-	<u>G-0260</u>	<u>) </u>]	DATE 2	/13/06	PLATE A5	

			BORINO					Page 1 of 2	
L	ogge	d By:	KJ Date Drilled	i: <u>2/1/06</u>			Sur	face Elev.	89 feet
Depth	El.	USCS	Description		San	nple	Blow Counts per	Water Content	Comments
ft.	ft.	Code			Туре	No.	6"	%	
-			Asphalt (2" thick) over broken concrete (3"	to 4" thick).					
5		ML	Olive SILT, damp, medium dense, some mi sand, occasional brown clean sand lens (NA			SI	3,8,9 N=17	32.9	
-		SM- SP	Olive brown SAND to SILTY SAND, dam is fine and medium grained, occasional thin			S2	7,13,16 N≕29	14.0	
- 10	80	ML/ SP	Olive gray to gray SILT and SAND, interbe trace oxidation stain, sand is very fine and f			83	6,16,19 N=35	22.1	
-		ML/ SP	As above, medium dense, weak hydrocarbo	n odor.		S 4	6,10,18 N=28	28.1	
- 15 -		MIL/ SP	As above, but predominantly sand, fine and hydrocarbon odor.	l medium grained,		S5	9,16,28 N=44	9.0	
		ML/ SP	As above, dense, frequent olive to olive gra hydrocarbon odor.	у silt layers,		Só	8,17,25 N=42	17.5	
20 	70	ML/ SM	Olive to olive gray SILT and SILTY SAND to moist, dense, sand is fine and medium gra layers do not contain fines, light oxidation s	ained, some sand	T	S 7	5,14,22 N=36	19.4	
- 25 _ - -		ML/ SM	As above, sand is fine grained, wet lens of c		T	S8	10,16,22 N=38	30.2	
30 _ - -	60	SM	Olive to olive brown SILTY SAND, damp, stain, sand is very fine grained.	dense, trace oxidation		S 9	6,13,19 N=32	26.6	
35	50	ML/ SM	Olive brown and olive gray SILT and SILT dense, sand is fine grained, light oxidation s grained sand lenses 1" thick.			S10	8,22,25 N=47	19.9	
40									
LEGEN	D:	<u> </u>	2" O.D. Split-Spoon Sampler 5" O.D. Dames & Moore Sampler 5.25" O.D. Dames & Moore Sampler				l Penetration T vel during dril		
	E		Geotechnical Engineers, Geologists, & Environmental Scientisus		SEVI 70 SE	ENTH 1 S. JA	ING L AVENUE S ACKSON ST E, WASHIN	ERVICE TREET IGTON	
			•	JOB NO. <u>G-02</u>	.00		DATE _	2/13/06	_ PLATE _A6

			BORI	ING NO.	B-3				Page 2	of 2
	ogg	ed By:	KJ Date D	Drilled: 2/1/06	<u>.</u>		Sur	face Elev.	89 feet	
Depth ft.	El. ft.	USCS Code	F	1		Sample Type No.	Blow Counts per 6"	Water Content %	Comment	5
-		SM	Olive SILTY SAND, damp, very de and fine grained.	ense, sand is very fi	ne	S11	11,26,32 N=58	19.2		
45	•		Bottom of boring: 41 feet. Drilling Method: Hollow-stem auger Sampling Method: 2-inch-O.D. SPT lb. hammer with a 30-inch drop.	sampler driven usi	ng a 140					
50 _ - - -			Groundwater not encountered during encountered.	drilling. No fill						
55 										
60 										
65 _ - - -										
70 - - -										
75										
80] LEGEN	D: :	<u></u> [[3"	" O.D. Split-Spoon Sampler ' O.D. Dames & Moore Sampler 25" O.D. Dames & Moore Sampler		S	PT = Standard water lev	Penetration Te vel during drilli		A	
G	Ξ Ο	_	roup Northwest, Inc. eatechnical Engineers, Geologists, & Environmental Scientists	JOB NO.	G-026	SEVENTH 701 S. JA SEATTLI	CKSON STI L, WASHING	RVICE REET	PLATE	A7

			BORING NO.	B-4					Page 1 of 2
I	logg	ed By:	KJ Date Drilled: 2/2/06				Sur	face Elev.	85 feet
Depth ft.	El. ft.	USCS Code	Description		San Туре	nple No.	Blow Counts per 6"	Water Content %	Comments
			Asphalt (3" to 4" thick), concrete slab exposed in boreho	le side.	Type	INU,			
5	80	ML/ SM	Olive brown SILT and SILTY SAND, damp to moist, lo occas. gravel in sample (DISTURBED NATIVE SOIL). As above, damp, medium dense, mostly silty sand layers	•	I	SI	1,2,1 N=3	26.8	
-		ML/ SM	fine and medium grained, occasional clean sand lenses (SOIL).	NATIVE		S2	2,5,8 N=13	14.1	
- 10		SM/ SP	Olive brown SILTY SAND and gray SAND, interbedde to moist, medium dense, trace oxidation stain, sand is fin medium grained, hydrocarbon odor.			S3	4,11,18 N=29	13.3	
-		ML/ SP	Gray SILT and SAND, interbedded, damp, dense, sand and medium grained, hydrocarbon odor.	s fine		S4	4,12,19 N=31		
15	70	ML	Gray SILT, damp dense, occasional fine sand laminae ar lenses, weak hydrocarbon odor.		Ţ	S5	5,10,18 N=28	29.6	
-		ML/ SM	Gray SILT and SILTY SAND, interbedded, damp, dens sand layers, sand is fine grained, weak hydrocarbon odor	e, lesser	<u> </u>	S6	5,10,11 N=21	22.5	
20		MIL	Gray SILT, damp, medium dense, occasional fine sand h and thin lenses, no hydrocarbon odor.	minae		S7	5,10,15 N=25	24.6	
25 _ - - -	60	ML/ SM	Olive gray SANDY SILT and SILTY SAND, thinly inte damp, medium dense, sand is very fine and fine grained, oxidation stain, rare clean sand lenses 2" thick, no hydro odor.	brace	T	S 8	8,12,17 N=29	22.3	
- 30 _ -		SM/ SP	Olive SILTY SAND and SAND, interbedded, damp, ver sand is very fine and fine grained.	y dense,		S9	5,22,33 N=55	16.8	
35	50	SP	Olive gray SAND, dry to damp, dense, fine grained, mass	ive.	T	S10	8,19,21 N=40	3.5	
- 40		SP	As above, but with some very fine grained sand.			S 11	7,17,17 N=34	3.6	
LEGEN	₩D;	<u> </u>	" O.D. Split-Spoon Sampler " O.D. Dames & Moore Sampler .25" O.D. Dames & Moore Sampler	_			Penetration Te /el during drill		
	EO	-	roup Northwest, Inc.		SEVE	NTH.	NG LO AVENUE SI CKSON ST	ERVICE	
		C	Geotechnical Engineers, Geologists, & JOB NO.	G-02	SE/		E, WASHIN		PLATE A8

т	0'arr	C he	BORI					_		Page 2 of 2
[⊥]	logg(ed By:	KJ Date Dri	illed: 2/2/0	<u> </u>	1			face Elev.	85 feet
Depth	El.	uscs	Description			Samp	ole	Blow Counts per	Water Content	Comments
ft.	ft.	Code				Туре	No.	6"	%	
- - 45 _ -			Bottom of boring: 39.5 feet. Drilling Method: Hollow-stem auger. Sampling Method: 2-inch-O.D. SPT sa lb. hammer with a 30-inch drop. Groundwater not encountered during dr encountered.		nsing a 140					
50 _ - -	•									
- 55 _ -										
- 60 _ -										
65 _ -			,							
- 70 -	-									
75										:
80			- 							
LEGEN	D:	<u> </u>	" O.D. Split-Spoon Sampler " O.D. Dames & Moore Sampler 25" O.D. Dames & Moore Sampler					Penetration Te el during drilli		
C	EO		roup Northwest, Inc. cotechnical Engineers, Geologists, & Environmental Scientists	JOB NO). G-02	SEVEN 701 S SEAT	· VTH / S. JA(NG LO AVENUE SH CKSON STI , WASHING DATE	ERVICE REET	PLATE A9

	MAJOR DIVISIONS		SYMBOL	USCS LETTER SYMBOL ⁽¹⁾	DE	TYPICAL ESCRIPTIONS ⁽²⁾⁽³⁾
	GRAVEL AND	CLEAN GRAVEL			Well-graded grav	vel; gravel/sand mixture(s); little or no fines
SOIL rial is e size)	GRAVELLY SOIL	(Little or no fines)	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	GP	Poorly graded gr	avel; gravel/sand mixture(s); little or no fines
ED 3	(More than 50% of coarse fraction retained	GRAVEL WITH FINES	<u>Ê Ê Ê Ê Ê Ê</u>	GM	Silty gravel; grav	rel/sand/silt mixture(s)
of n 200 s	on No. 4 sieve)	(Appreciable amount of fines)	[][]]	GC	Clayey gravel; gr	ravel/sand/clay mixture(s)
COARSE-GRAINED (More than 50% of mate larger than No. 200 siew	SAND AND	CLEAN SAND		SW	Well-graded san	d; gravelly sand; little or no fines
than than	SANDY SOIL	(Little or no fines)		SP	Poorly graded sa	and; gravelly sand; little or no fines
COARSE-GRAINED SOIL (More than 50% of material is larger than No. 200 sieve size)	(More than 50% of coarse fraction passed	SAND WITH FINES (Appreciable amount of		SM	Silty sand; sand/	silt mixture(s)
	through No. 4 sieve)	fines)		SC		nd/clay mixture(s)
sOIL of r than ize)	SILT A	ND CLAY	IIIII	ML		d very fine sand; rock flour; silty or clayey fine ilt with slight plasticity
e size	(Liquid limi	t less than 50)		CL		low to medium plasticity; gravelly clay; sandy an clay
FINE-GRAINED (More than 50% material is smalle No. 200 sieve s)	<u> </u>	OL		anic, silty clay of low plasticity
-INE-GRAINED SOIL (More than 50% of material is smaller than No. 200 sieve size)	SILT A	ND CLAY		MH		caceous or diatomaceous fine sand
No N	(Liquid limit	greater than 50)		СН		high plasticity; fat clay
<u>u.</u>				OH PT	· · ·	nedium to high plasticity; organic silt
	HIGHLY O	RGANIC SOIL	<u> </u>	FI	Peat, numus, sw	amp soil with high organic content
	OTHER MAT	ERIALS	-	LETTER SYMBOL	ТҮРК	CAL DESCRIPTIONS
	PAVEM	ENT	•	AC or PC	Asphalt concrete	e pavement or Portland cement pavement
	ROCI	κ		RK	Rock (See Rock	Classification)
	WOO	D	KATTA A			
		_	<u> Marian</u>	WD	Wood, lumber, w	vood chips
(e.(cla: 2. Soil	DEBR CS letter symbols correspo g., SP-SM for sand or grav- ssifications. descriptions are based on	IS nd to symbols used by the Ur el) indicate soil with an estima the general approach preser	ated 5-15% fine	DB sification System es. Multiple letter ndard Practice fo	Construction det n and ASTM classif symbols (e.g., ML or Description and I	ris, garbage fication methods. Dual letter symbols /CL) indicate borderline or multiple soil Identification of Soils (Visual-Manual
(e.(cla: 2. Soil Pro Me 3. Soil as	DEBR CS letter symbols correspo g., SP-SM for sand or grav ssifications. (descriptions are based on bocedure), outlined in ASTM thod for Classification of S (description terminology is follows: Primary (Secondary C Additional C	IS nd to symbols used by the Ur el) indicate soil with an estimat the general approach preser D 2488. Where laboratory in bils for Engineering Purposes based on visual estimates (ir Constituent: > 500 onstituents: > 30% and ≤ 50 > 15% and ≤ 300 onstituents: > 5% and ≤ 15 ≤ 5	ated 5-15% fine ted in the Star dex testing has a soutlined in the absence of % - "GRAVEL, % - "very gravely," % - "gravelly," % - "with grave % - "with trace	DB sification System es. Multiple letter ndard Practice fo s been conducter ASTM D 2487. of laboratory test ," "SAND," "SILT elly," "very sand "sandy," "silty," of el," "with sand," " e gravel," "with tr	Construction det and ASTM classif symbols (e.g., ML or Description and I d, soil classification data) of the perce ," "CLAY," etc. ,/," "very silty," etc. etc. with silt," etc. ace sand," "with tra	ace silt," etc., or not noted.
(e. cla: 2. Soil Pro Me 3. Soil as	DEBR CS letter symbols correspo g., SP-SM for sand or grav- ssifications. I descriptions are based on ocedure), outlined in ASTM thod for Classification of S- description terminology is follows: Primary (Secondary C Additional C	IS nd to symbols used by the Ur el) indicate soil with an estimat the general approach preser D 2488. Where laboratory in bils for Engineering Purposes based on visual estimates (ir Constituent: > 500 onstituents: > 30% and ≤ 50 > 15% and ≤ 300 onstituents: > 5% and ≤ 15 ≤ 5	ated 5-15% fine ted in the Star dex testing has a soutlined in the absence of % - "GRAVEL, % - "very gravely," % - "gravelly," % - "with grave % - "with trace	DB sification System es. Multiple letter ndard Practice fo s been conducter ASTM D 2487. of laboratory test ," "SAND," "SILT elly," "very sand "sandy," "silty," of el," "with sand," " e gravel," "with tr	Construction det and ASTM classif symbols (e.g., ML or Description and I d, soil classification data) of the perce ," "CLAY," etc. ,/," "very silty," etc. etc. with silt," etc. ace sand," "with tra	bris, garbage fication methods. Dual letter symbols /CL) indicate borderline or multiple soil Identification of Soils (Visual-Manual hs are based on the Standard Test Intages of each soil type and is defined
(e. cla: 2. Soil Pro Me 3. Soil as	DEBR CS letter symbols correspo g., SP-SM for sand or grav ssifications. descriptions are based on ocedure), outlined in ASTM thod for Classification of S description terminology is follows: Primary of Secondary C Additional C density or consistency des iditions, field tests, and lab	IS Ind to symbols used by the Ur el) indicate soil with an estimation the general approach preser D 2488. Where laboratory in bils for Engineering Purposes based on visual estimates (ir Constituent: > 50 onstituents: > 30% and ≤ 50 > 15% and ≤ 15 ≤ 5% constituents: > 5% and ≤ 15 ≤ 5%	ated 5-15% fine the din the Star dex testing has , as outlined in h the absence of % - "GRAVEL, % - "very grave % - "very gravelly," % - "gravelly," % - "with grave % - "with trace ment using a c	DB sification System es. Multiple letter ndard Practice fo s been conducter ASTM D 2487. of laboratory test ," "SAND," "SILT elly," "very sand "sandy," "silty," of el," "with sand," " e gravel," "with tr	Construction deb and ASTM classif symbols (e.g., ML or Description and I d, soil classification data) of the perce ," "CLAY," etc. ," "CLAY," etc. etc. 'with silt," etc. ace sand," "with tra ampler penetration	ace silt," etc., or not noted.
(e. cla: 2. Soil Pro Me 3. Soil as	DEBR CS letter symbols correspo g., SP-SM for sand or grav ssifications. I descriptions are based on ocedure), outlined in ASTM thod for Classification of S description terminology is follows: Primary 4 Secondary C Additional C I density or consistency des additions, field tests, and lab Drilling a SAMPLER TYPE	IS Ind to symbols used by the Ur el) indicate soil with an estimation the general approach preser D 2488. Where laboratory in bils for Engineering Purposes based on visual estimates (ir Constituent: > 50 onstituents: > 30% and ≤ 50 > 15% and ≤ 30 onstituents: > 5% and ≤ 15 ≤ 55 scriptions are based on judge oratory tests, as appropriate. Ind Sampling Ke	ated 5-15% fine the din the Star dex testing has , as outlined in h the absence of % - "GRAVEL, % - "very grave % - "very gravelly," % - "gravelly," % - "with grave % - "with trace ment using a c	DB sification System es. Multiple letter hdard Practice for s been conducter a ASTM D 2487. of laboratory test ," "SAND," "SILT "sandy," "silty," el," "with sand," ' gravel," "with tra- combination of sa	Construction deb and ASTM classif symbols (e.g., ML or Description and I d, soil classification data) of the perce ," "CLAY," etc. ," "very silty," etc. etc. with silt," etc. ace sand," "with tra ampler penetration Fiel	bris, garbage fication methods. Dual letter symbols /CL) indicate borderline or multiple soil Identification of Soils (Visual-Manual is are based on the Standard Test intages of each soil type and is defined ace silt," etc., or not noted. blow counts, drilling or excavating Id and Lab Test Data
(e.(cla: 2. Soil Pro Me 3. Soil as 4. Soil cor	DEBR CS letter symbols correspo g., SP-SM for sand or grav ssifications. descriptions are based on ocedure), outlined in ASTM thod for Classification of S description terminology is follows: Primary C Secondary C Additional C density or consistency des ditions, field tests, and lab Drilling a	IS Ind to symbols used by the Ur el) indicate soil with an estimation the general approach preser D 2488. Where laboratory in bils for Engineering Purposes based on visual estimates (ir Constituent: > 30% and ≤ 50 > 15% and ≤ 30 onstituents: > 5% and ≤ 15 scriptions are based on judge oratory tests, as appropriate. Ind Sampling Ke SAMPLE N	ated 5-15% fine the din the Star dex testing has a soutlined in the absence of % - "GRAVEL, % - "very gravuly," % - "with grave % - "with trace ment using a c y	DB sification System es. Multiple letter hdard Practice for s been conducter a ASTM D 2487. of laboratory test ," "SAND," "SILT "sandy," "silty." el," "with sand," ' gravel," "with tra- combination of sa	Construction deb and ASTM classif symbols (e.g., ML or Description and I d, soil classification data) of the perce ," "CLAY," etc. ," "CLAY," etc. etc. 'with silt," etc. ace sand," "with tra ampler penetration	bris, garbage fication methods. Dual letter symbols //CL) indicate borderline or multiple soil Identification of Soils (Visual-Manual is are based on the Standard Test intages of each soil type and is defined ace silt," etc., or not noted. blow counts, drilling or excavating
(e. cla: 2. Soil Pro Me 3. Soil as 4. Soil cor Code a 3.25 b 2.00	DEBR CS letter symbols correspo g., SP-SM for sand or grav ssifications. descriptions are based on icedure), outlined in ASTM thod for Classification of S description terminology is follows: Primary G Secondary C Additional C density or consistency des diditions, field tests, and lab Drilling a SAMPLER TYPE Description 5-inch O.D., 2.42-inch I.D. 5	IS IS Ind to symbols used by the Ur el) indicate soil with an estimation the general approach preser D 2488. Where laboratory in bils for Engineering Purposes based on visual estimates (ir Constituent: > 50% and < 50 > 15% and < 30 onstituents: > 5% and < 15 < 5 scriptions are based on judge oratory tests, as appropriate. Ind Sampling Ke SAMPLE N	ated 5-15% fine ted in the Star dex testing has a soutlined in the absence of % - "GRAVEL, % - "very gravely," % - "with grave % - "with grave ment using a comparison y NUMBER & I	DB sification System es. Multiple letter hdard Practice for s been conducter a ASTM D 2487. of laboratory test ," "SAND," "SILT "sandy," "silty." el," "with sand," ' gravel," "with tra- combination of sa	Construction deb and ASTM classif r symbols (e.g., ML or Description and I d, soil classification a data) of the perce "," "CLAY," etc. y," "very silty," etc. ace sand," "with tra ampler penetration Fiel Code PP = 1.0 TV = 0.5	bris, garbage fication methods. Dual letter symbols //CL) indicate borderline or multiple soil Identification of Soils (Visual-Manual hs are based on the Standard Test intages of each soil type and is defined ace silt," etc., or not noted. blow counts, drilling or excavating Id and Lab Test Data Description Pocket Penetrometer, tsf Torvane, tsf
(e.(cla: 2. Soil Pro Me 3. Soil as 4. Soil cor Code a 3.25 b 2.00 c She d Gra	DEBR CS letter symbols correspo g., SP-SM for sand or grav- ssifications. I descriptions are based on ocedure), outlined in ASTM thod for Classification of S- idescription terminology is follows: Primary (Secondary C Additional C I density or consistency des- iditions, field tests, and lab Drilling a SAMPLER TYPE Description 5-inch O.D., 2.42-inch I.D. 3- iby Tube b Sample	IS IS Ind to symbols used by the Ur el) indicate soil with an estimation the general approach preser D 2488. Where laboratory in bils for Engineering Purposes based on visual estimates (ir Constituent: > 50% and < 50 > 15% and < 30 onstituents: > 5% and < 15 < 5 scriptions are based on judge oratory tests, as appropriate. Ind Sampling Ke SAMPLE N	ated 5-15% fine ted in the Star dex testing has a soutlined in the absence of % - "GRAVEL, % - "very gravel % - "with grave % - "with trace ment using a c y NUMBER & I Sample Identifi	DB sification System es. Multiple letter hdard Practice for s been conducter a ASTM D 2487. of laboratory test ," "SAND," "SILT "sandy," "silty," elly," "very sand," "sandy," silty," el," "with sand," a gravel," "with the combination of satisfies INTERVAL	Construction deb and ASTM classif r symbols (e.g., ML or Description and I d, soil classification d, soil classification data) of the perce "," "CLAY," etc. data) of the perce "," "CLAY," etc. acce sand," "with tra- ampler penetration Fiel PP = 1.0 TV = 0.5 PID = 100 W = 10	bris, garbage fication methods. Dual letter symbols //CL) indicate borderline or multiple soil identification of Soils (Visual-Manual is are based on the Standard Test intages of each soil type and is defined ace silt," etc., or not noted. blow counts, drilling or excavating Id and Lab Test Data Description Pocket Penetrometer, tsf Torvane, tsf Photoionization Detector VOC screening, ppm Moisture Content, %
(e.(cla: 2. Soil Pro Me 3. Soil as 4. Soil cor Code a 3.2(b 2.00 c She d Gra e Sing f Dou	DEBR CS letter symbols correspo g., SP-SM for sand or grav- ssifications. I descriptions are based on ocedure), outlined in ASTM thod for Classification of S- id description terminology is follows: Primary 4 Secondary C Additional C I density or consistency des- nditions, field tests, and lab Drilling a SAMPLER TYPE Description 5-inch O.D., 2.42-inch I.D. 5- iby Tube b Sample gle-Tube Core Barrel ible-Tube Core Barrel	IS Ind to symbols used by the Ur el) indicate soil with an estimation the general approach preser D 2488. Where laboratory in bils for Engineering Purposes based on visual estimates (ir Constituent: > 50 onstituents: > 30% and ≤ 50 > 15% and ≤ 10 > 15% and ≤ 10 Something the solution of the solution scriptions are based on judge oratory tests, as appropriate. Ind Sampling Ke SAMPLE M Split Spoon Split Spoon	ated 5-15% fine ted in the Star dex testing has a soutlined in the absence of % - "GRAVEL, % - "very gravely," % - "with grave % - "with grave % - "with trace ment using a c y NUMBER & I Sample Identifi — Recovery	DB sification System es. Multiple letter adard Practice for been conducter a ASTM D 2487. of laboratory test ," "SAND," "SILT "sandy," "silty,", el," "with sand," ' e gravel," "with tr. combination of sa INTERVAL fication Number	Construction deb and ASTM classif symbols (e.g., ML or Description and I d, soil classification data) of the perce ""CLAY," etc. "," "very silty," etc. etc. with silt," etc. ace sand," "with tra- ampler penetration Fiel Code PP = 1.0 TV = 0.5 PID = 100 W = 10 D = 120 -200 = 60	bris, garbage fication methods. Dual letter symbols //CL) indicate borderline or multiple soil Identification of Soils (Visual-Manual is are based on the Standard Test intages of each soil type and is defined ace silt," etc., or not noted. blow counts, drilling or excavating Id and Lab Test Data Description Pocket Penetrometer, tsf Torvane, tsf Photoionization Detector VOC screening, ppm Moisture Content, % Dry Density, pcf Material smaller than No. 200 sieve, %
(e.(cla: 2. Soil Pro Me 3. Soil as 4. Soil cor Code a 3.25 b 2.00 c She d Gra e Sing f Dou g 2.50 h 3.00 i Oth	DEBR CS letter symbols correspo g., SP-SM for sand or grav ssifications. I descriptions are based on ocedure), outlined in ASTM thod for Classification of S I description terminology is follows: Primary I Secondary C Additional C Additional C I density or consistency des diditions, field tests, and lab Drilling a SAMPLER TYPE Description 5-inch O.D., 2.42-inch I.D. 5 b-inch O.D., 1.50-inch I.D. 5 b-inch O.D., 2.42-inch I.D. 5 b-inch O.D., 2.00-inch I.D. 5 b-inch O.D., 2.00-inch I.D. 5 b-inch O.D., 2.00-inch I.D. 7 b-inch O.D., 2.375-inch I.D. cr - See text if applicable	IS IS Ind to symbols used by the Ur el) indicate soil with an estimation the general approach preser D 2488. Where laboratory in bils for Engineering Purposes based on visual estimates (ir Constituent: > 30% and 50 > 15% and 5 30 onstituents: > 30% and 50 > 15% and 5 30 onstituents: > 5% and 4 15 ≤ 55 scriptions are based on judge oratory tests, as appropriate. Ind Sampling Ke SAMPLE N Split Spoon Split Spoon Split Spoon Split Spoon Split Spoon Split Spoon Split Spoon MSDOT	ated 5-15% fine the din the Star dex testing has a soutlined in the absence of we - "GRAVEL, we - "very grav, we	DB sification System es. Multiple letter hdard Practice for s been conducter a ASTM D 2487. of laboratory test "SAND," "SILT elly," "very sand," "sandy," "silty," el," "with sand," ' e gravel," "with sand," ' a gravel," "with the combination of sa INTERVAL fication Number y Depth Interval	Construction deb and ASTM classif r symbols (e.g., ML or Description and I d, soil classification a data) of the perce ," "CLAY," etc. y," "very silty," etc. acce sand," "with sit," etc. acce sand," "with tra- ampler penetration Fiel Code PP = 1.0 TV = 0.5 PID = 100 W = 10 D = 120 -200 = 60 GS AL GT	bris, garbage fication methods. Dual letter symbols //CL) indicate borderline or multiple soil Identification of Soils (Visual-Manual is are based on the Standard Test intages of each soil type and is defined ace silt," etc., or not noted. blow counts, drilling or excavating Id and Lab Test Data Description Pocket Penetrometer, tsf Torvane, tsf Photoionization Detector VOC screening, ppm Moisture Content, % Dry Density, pcf Material smaller than No. 200 sieve, % Grain Size - See separate figure for data Atterberg Limits - See separate figure for data Other Geotechnical Testing
(e. cla: 2. Soil Pro Me 3. Soil as 4. Soil cor Code a 3.25 b 2.00 c She d Gra e Sing f Dou g 2.50 h 3.00 i Oth 1 300 2 140	DEBR CS letter symbols correspo g., SP-SM for sand or grav- ssifications. I descriptions are based on ocedure), outlined in ASTM thod for Classification of S- idescription terminology is follows: Primary (Secondary C Additional C I density or consistency des iditions, field tests, and lab Drilling a SAMPLER TYPE Description 5-inch O.D., 2.42-inch I.D. : biler Tube Core Barrel ble-Tube Core Barrel ble-Tube Core Barrel D-inch O.D., 2.00-inch I.D. : D-inch O.D., 2.375-inch I.D. -inch O.D., 2.375-inch I.D. -inch O.D., 2.375-inch I.D. -inch O.D., 2.375-inch I.D. -inch D.D., 2.00-inch Drop -lb Hammer, 30-inch Drop	IS Ind to symbols used by the Ur el) indicate soil with an estimation the general approach preser D 2488. Where laboratory in bils for Engineering Purposes based on visual estimates (ir Constituent: > 50 onstituents: > 30% and ≤ 50 > 15% and ≤ 30 onstituents: > 5% and ≤ 15 ≤ 5 scriptions are based on judge oratory tests, as appropriate. IND Sampling Ke Split Spoon Split Spoon Split Spoon MSDOT Mod. California	ated 5-15% fine the din the Star dex testing has a soutlined in the absence of we - "GRAVEL, we - "very grav, we	DB sification System es. Multiple letter adard Practice for s been conducter a ASTM D 2487. of laboratory test ," "SAND," "SILT "sandy," "SILT," el," "with sand," ' e gravel," "with tr combination of sa INTERVAL fication Number y Depth Interval ample Retained nive or Analysis	Construction deb and ASTM classif r symbols (e.g., ML or Description and I d, soil classification a data) of the perce ""CLAY," etc. y," "very silty," etc. acce sand," "with sit," etc. acce sand," "with tra- ampler penetration Fiel Code PP = 1.0 TV = 0.5 PID = 100 W = 10 D = 120 -200 = 60 GS AL	bris, garbage fication methods. Dual letter symbols //CL) indicate borderline or multiple soil Identification of Soils (Visual-Manual is are based on the Standard Test intages of each soil type and is defined ace silt," etc., or not noted. blow counts, drilling or excavating Id and Lab Test Data Description Pocket Penetrometer, tsf Torvane, tsf Photoionization Detector VOC screening, ppm Moisture Content, % Dry Density, pcf Material smaller than No. 200 sieve, % Grain Size - See separate figure for data Atterberg Limits - See separate figure for data
(e.(cla: 2. Soil Pro Me 3. Soil as 4. Soil cor cor d Gra e Sing f Dou g 2.50 h 3.00 i Oth 1 300 2 140 3 Pus 4 Vibr	DEBR CS letter symbols correspo g., SP-SM for sand or grav- ssifications. I descriptions are based on ocedure), outlined in ASTM thod for Classification of S- idescription terminology is follows: Primary (Secondary C Additional C I density or consistency des iditions, field tests, and lab Drilling a SAMPLER TYPE Description 5-inch O.D., 2.42-inch I.D. : biler Tube Core Barrel ble-Tube Core Barrel ble-Tube Core Barrel D-inch O.D., 2.00-inch I.D. : D-inch O.D., 2.375-inch I.D. -inch O.D., 2.375-inch I.D. -inch O.D., 2.375-inch I.D. -inch O.D., 2.375-inch I.D. -inch D.D., 2.00-inch Drop -lb Hammer, 30-inch Drop	IS IS Ind to symbols used by the Ur el) indicate soil with an estimation the general approach preser D 2488. Where laboratory in bils for Engineering Purposes based on visual estimates (ir Constituent: > 30% and ≤ 50 > 15% and ≤ 30 onstituents: > 5% and ≤ 15 > 15% and ≤ 15 Socriptions are based on judge oratory tests, as appropriate. Ind Sampling Ke SAMPLE N Split Spoon Split Spoon Split Spoon Mod. California e) Engli Spoon Mod. California	ated 5-15% fine the din the Star dex testing has a soutlined in the absence of % - "GRAVEL, % - "very gravely," % - "with grave i% - "with trace ment using a c y NUMBER & I Sample Identiff — Recovery - Portion of Sa for Arch Froundwa proximate wate	DB sification System es. Multiple letter hdard Practice for s been conducter a ASTM D 2487. of laboratory test "SAND," "SILT "sandy," "silty," elly," "very sandy "sandy," "silty," elly," "with sand," ' gravel," "with sand," ' gravel," "with sand," ' gravel," "with sand," ' a gravel," "with tra- combination of sa INTERVAL fication Number y Depth Interval a Depth Interval ample Retained hive or Analysis ater er level at time o	Construction deb and ASTM classif r symbols (e.g., ML or Description and I d, soil classification adata) of the perce ""CLAY," etc. y," "very silty," etc. ace sand," "with tra- ampler penetration Fiel Code PP = 1.0 TV = 0.5 PID = 100 W = 10 D = 120 -200 = 60 GS AL GT CA	bris, garbage fication methods. Dual letter symbols //CL) indicate borderline or multiple soil Identification of Soils (Visual-Manual is are based on the Standard Test intages of each soil type and is defined ace silt," etc., or not noted. blow counts, drilling or excavating Id and Lab Test Data Description Pocket Penetrometer, tsf Torvane, tsf Photoionization Detector VOC screening, ppm Moisture Content, % Dry Density, pcf Material smaller than No. 200 sieve, % Grain Size - See separate figure for data Other Geotechnical Testing Chemical Analysis

		SAMPL	E DA	TA				SOIL PROFILE	GROUNDWATER
oDepth (ft)	Elevation	Sample Number & Interval	Sampler Type	Blows/Foot	Test Data	Graphic Symbol	USCS Symbol	Drilling Method: <u>Hollow-Stem Auger</u> Ground Elevation (ft): <u>96</u>	-
0	- 95 	S1	b2	13	PID=0	\prod	∖ <u>AC</u> / ML	Asphalt Pavement (thickness 0.1 feet) Light brown grading to gray, clayey SILT, with thin silt partings and occasional laminations (stiff to very stiff, damp to moist)	Groundwater not encountered.
5	_ _ 90	S2	b2	14	PID=0				
	- - - -	S3	b2	12	PID=0				
10	- 85	S4	b2	22	PID=0				
4-		S5	b2	28	PID=0		SP/ ML	Gray and light brown, clayey SILT, with thin laminations, and interbedded fine to fine to medium SAND with trace silt (very stiff and medium dense, damp to moist)	
15	80	S6	b2	27	PID=0		SP	Light brown, fine SAND with trace silt	_
20		S7	b2	35	PID=0			(dense, moist)	
25	75	S8	b2 b2	45 36	CA PID=0 PID=0		SM/ ML	Light brown, clayey SILT, with thin laminations, and interbedded fine SAND with silt (hard and dense, moist to wet) - becoming wet at 26 feet, with iron staining and interbedded silty, fine SAND	
30	- - - - - - - - - - - - - - - - - - -	S10	b2	47	PID=0		SM/ ML	Gray, SILT, with trace lamination and thin black organic layers and interbedded silty, fine SAND (hard and dense, moist to wet)	
35	60	S11	b2	44	PID=0		SM	Light brown, silty, fine SAND to fine SAND with silt, some iron staining (dense to very dense, moist to wet)	
40	_ _ _ _ 55	S12	b2	50	PID=0				
		Boring C Total Depth							
45	Notes	2. Refere	nce to	the tex	t of this re	port is r	necessa	pretations and are approximate. ry for a proper understanding of subsurface conditions. figure for explanation of graphics and symbols.	
		NDAU		7ti	n & Jac	kson	Stree	et Property Log of B	-5-11 Fig

		SAMPL	E DA	TA				SOIL PRO	FILE	GROUNDW	ATER
⊖Depth (ft)	Elevation	Sample Number & Interval	Sampler Type	Blows/Foot	Test Data	Graphic Symbol	USCS Symbol	Drilling Method: <u>Ho</u> Ground Elevation (ft)	llow-Stem Auger	-	
U	- 90 	S1	b2	12	PID=0		AC / SM ML	Asphalt Pavement (th Black, very silty, fine t brick, plastic, and me dense, moist)(FILL)	to medium SAND with	Groundwater not encounter	red.
5	- - - 85	S2	b2	24	PID=0			Light brown, clayey S fractures (stiff to hard	ILT with iron stained I, moist)		
		S3	b2	33	PID=0			- becoming hard and partings	thin lamination and silt		
10	- 80	S4	b2	52	PID=0		SM/	- high angle interbed SAND	of reddish brown, fine	_	
		S5	b2	49	PID=0		ML	Light brown, fine SAN interbedded clayey SI laminations of fine sa	ILT and very thin nd with silt. iron		
15	- - - 75 -	S6	b2	54	CA PID=0.3		SM	staining (dense to ver moist to wet) Light brown, silty, fine interbeds, thin lamina moist to wet)			
20	- 70	S7	b2	34	CA PID=1.9				lor and staining in soil eet		
25	- - - - - 65	S8	b2	50	PID=1.3		ML	Gray, SILT with thin in	nterbedded silty, fine	_	
30	- - - - 60	S9	b2	45	PID=0.3			SAND (hard, wet)	norboadd only, me		
35	- - - - - - - 55	S10	b2	51	PID=0		SM/ ML	Light brown, thin inter sandy SILT to silty, fir iron staining layers (h moist to wet)	ne SAND with some		
40		S11	b2	95/ 10""	PID=0		SM	Light brown and redd fine SAND (very dens			
		Boring C Total Depth									
45	Notes	2. Refere	nce to	the tex	t of this re	port is I	necessa	pretations and are approxim ry for a proper understandir figure for explanation of gra	ng of subsurface conditions.		
	LA	NDAU SSOCIAT		7tl	h & Jac	kson	Stree	et Property	Log of B	-6-11	Fig A

	1	FARALLON			Ug		5011	ng:	FB-3		Page 1 of 3	
Clie Pro Loc	jec	. entering e ererepinent e erer	Date/Time Started:10/31/19 @ 0910Date/Time Completed:10/31/19 @ 1035Equipment:D50Drilling Company:Holocene						Sampler Type: 1.5' D&M Drive Hammer (Ibs.): 140 Depth of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 41.5			
Far	rall	lon PN: 2194-001	Drilling Forem			Ortega			Total Well Dept	h (ft b	gs): NA	
Log	gge	ed By: Ryan Ostrom	Drilling Metho	od:	Holic	ow Stel	m Auge	r				
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	n	uscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details	
0		0.0-0.8': Concrete - cored. Vac cleared to 5.0' for uti	lities.	AC						П	Concrete	
		fine and coarse gravel, gray, moist, petroleum-like o	dor, sneen	7		<		74.5	FB-3-2.5 FB-3-5.0			
0	X	10.0-10.3': SILT with sand (80% silt, 10% sand, 10% sand, fine and coarse gravel, gray, moist, petroleum- present. 10.3-11.4': Poorly graded SAND (95% sand, 5% silt) medium dense, moist, petroleum-like odor. 11.4-11.5': No recovery.	like odor, sheen	J SF	<u>]]]]]</u> = = =	93	7, 14, 24	1,420	FB-3-10.0		Bentonite	

		Well Construction	on Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID:	

	-	FARALLON		L	og	of	Borii	ng:	FB-3		Page 2 of 3
Pro	ent ojec cati	et: 701 South Jackson Street	Date/Time Starte Date/Time Comp Equipment: Drilling Compan	leted	: 10/3 D50	1/19 (Sampler Type: [.] Drive Hammer (Depth of Water Total Boring De	lbs.): ATD (140 ft bgs): NE
-			Drilling Foreman Drilling Method:			Ortega ow Ste	ı em Augei		Total Well Dept	n (ft b	gs): NA
Depth (feet bgs.)	Sample Interval	Lithologic Description		USCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
		15.0-16.1': Silty SAND (85% sand, 15% silt), fine sand moist, petroleum-like odor, no sheen. 16.1-16.5': No recovery.	d, gray, dense,	SM		73	10, 16, 18	28.0	FB-3-15.0		
- - - -		20.0-21.5': SIlty SAND (70% sand, 30% silt), fine sand medium dense, moist, no odor, no sheen.	I, gray,	SM		100	5. 12, 22	0.1	FB-3-20.0		Bentonite
	X	25.0-26.5': SIlty SAND (70% sand, 30% silt), fine sand medium dense, moist, no odor, no sheen.	, gray,	SM		100	10, 15, 25	0.2	FB-3-25.0		
-											

		Well Construction	on Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID:	

Pro	ent: jec :ati	r on Ennig Borolopinon ooip.	Date/Time Sta Date/Time Cor Equipment: Drilling Comp	mpleted	: 10/3 D50	1/19 (Sampler Type: 1 Drive Hammer (I Depth of Water A Total Boring Dep	bs.): ATD (ft I	140 bgs): NE
	-	on PN: 2194-001 d By: Ryan Ostrom	Drilling Forem Drilling Metho			Ortega ow Ste	ı em Augei		Total Well Depth	(ft bgs): NA
Depth (reet bgs.)	Sample Interval	Lithologic Description		uscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		Boring/Well construction Details
	X	30.0-31.5': Poorly graded SAND with silt (90% sand, sand, light brown, medium dense, moist, no odor, no	10% silt), fine sheen.	SP- SM		100	9, 15, 23	0.2	FB-3-30.0		
- 	X	35.0-36.4': Poorly graded SAND with silt (90% sand, sand, light brown, medium dense, moist, no odor, no 36.4-36.5': No recovery.	10% silt), fine sheen.	SP- SM		93	12, 20 24	0.3	FB-3-35.0		Bentonite
-	X	40.0-41.5': Poorly graded SAND (95% sand, 5% silt), medium dense, moist, no oodr, no sheen.	fine sand, gray,	SP		100	10, 15, 18	0.8	FB-3-40.0		

		Well Construction	on Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID:	

Clie Pro Loc	jec	ct: 701 South Jackson Street	Date/Time Completed:11/1/19 @ 1320IEquipment:Geoprobe 7822 DTI						Sampler Type: 3' Macrocore Drive Hammer (Ibs.): Auto Depth of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 15.0				
			Drilling Foreman: Chris Perva Drilling Method: Direct Push						Total Well Depti	n (ft b	ogs): NA		
Depth (feet bgs.)	Sample Interval	Lithologic Description		USCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details		
0		0.0-0.5': Concrete - cored. Vac CLeared for utilities to 3 0.5-3.0': Gravely SILT (70% silt, 20% gravel, 10% silt), fine and coarse gravel, gray, moist, no odor, no sheen, cobbles through out.	fine sand, concrete	CO ML ML		27		1.2	FB-4-2.5 Soil Screen @		Concrete		
5-	X	sheen. 3.8-6.0': No recovery. 6.0-7.4': SILT (100% silt), gray-brown, moist, no odor, r	no sheen.	ML		47		6.0	3.0' FB-4-6.0				
- 10	\mathbb{N}	7.4-9.0': No recovery. 9.0-10.2': Poorly graded SAND (100% sand), fine to me gray, moist, petroleum-like odor, no sheen. 10.2-12.0': Sandy SILT (60% silt, 40% sand), fine to me gray, moist, petroleum-like odor, no sheen.		SP		100		1,227	FB-4-10.0		Bentonite		
-		12.0-14.1': Poorly graded SAND (100% sand), fine to n gray, moist, petroleum-like odor, no sheen. 14.1-14.6': SILT (100% silt), gray-brown, moist, petrolet no sheen. 14.6-15.0': Poorly graded SAND (100% sand), fine to m	um-like odor,	SP ML SP		100		1,914	FB-4-15.0				

		Well Construction	on Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID:	

-	-	-	FARALLON	Lo	og o	f B	oriı	ng:	FB-5		Page 1 of 2
Pro	ent: oject: catior rallon	70 n: Se	ortLiving Development Corp. 11 South Jackson Street eattle, Washington 2194-001	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	11/1/1 Geop Holoc Chris	robe 7 ene	445 822 DT	Driv Dep Tot Tot	npler Type: ve Hammer (Ibs. oth of Water ATI al Boring Depth al Well Depth (fi ring Drilled at 25	D (ft bgs (ft bgs) t bgs):	Auto): 16.9 : 30.0 NA
Lo	gged	By:	Ryan Ostrom	Drining method.	Direct	rusn					
Linear feet Logged	Vertical Depth (feet bgs.)	Sample Interval	Lithologic Description	n	USCS	USCS Graphic	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details

	0.0-0.4': Asphalt. Vac Cleared for utilities to 5.0'.	AC				Alternation of the second of t
-	0.4-5.0': SILT (90% silt, 10% sand), fine sand, gray, moist, no odor, no sheen.	ML				Concrete
-				0.1	FB-5-2.5	
-5	5.0-5.8': SILT (100% silt), brown, moist, petroleum-like odor, no sheen, brick debris at 5.8'.	ML	66	0.0	FB-5-5.0	
-	5.8-8.3': Poorly graded SAND (100% sand), fine to medium sand, brown, moist, no odor, no sheen.	SP	1	1.4	FB-5-6.0	
	8.3-10.0': No recovery.					
- 10	10.0-11.5': Poorly graded SAND (100% sand), fine to medium sand, brown, moist, no odor, no sheen.	SP	100	680	FB-5-11.0	Bentonite
	11.5-12.3': SILT (100% silt), gray, moist, petroleum-like odor, no sheen.	ML				
	12.3-15.0': Poorly graded SAND (100% sand), fine to medium sand, gray, moist, petroleum-like odor, no sheen.	SP		0.8	Soil Screen @ 12'	
	15.0-16.1': Poorly graded SAND (100% sand), fine to medium sand, gray, moist, petroleum-like odor, no sheen.	SP	100	431	FB-5-15.0	

in the second		Well Construct	tion Information	Ground Surface Elevati		NA
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevati	on (it).	NA
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation	n (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location:	X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Heading: 177°		

1	-	~	FARALLON	L	og o	fΒ	ori	ng:	FB-5		Page 2 of 2
Pro Loc Fa		70 : Se PN:	ortLiving Development Corp. 1 South Jackson Street eattle, Washington 2194-001	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	11/1/ ¹ Geop Holoc Chris		445 822 DT	Dri Dej Tot Tot	mpler Type: 5 ve Hammer (Ibs.) oth of Water ATD al Boring Depth (al Well Depth (ft I ring Drilled at 25°	(ft bgs (ft bgs) bgs):	Auto): 16.9 : 30.0 NA
Lo	gged	By:	Ryan Ostrom	-							
Linear feet Logged	Vertical Depth (feet bgs.)	Sample Interval	Lithologic Description	n	uscs	USCS Graphic	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details

- 15	16.1-16.9': SILT (100% silt), gray-brown, moist, strong petroleum-like odor, no sheen.	ML				
	16.9-18.0': Poorly graded SAND (100% sand), fine to medium sand, brown, moist to wet, strong petroleum-like odor, no sheen.	SP		1,134	FB-5-17.0	Water Level
	18.0-20.0': SILT (95% silt, 5% sand), fine sand, gray, moist, petroleum-like odor, no sheen.	ML				
	20.0-21.0': Sandy SILT (60% silt, 40% sand), fine sand, gray, moist, petroleum-like odor, no sheen.	ML	100	154	FB-5-20.0	
1	21.0-21.8': SILT (90% silt, 10% sand), fine sand, gray, moist, no odor, no sheen.	ML	1			
20	21.8-22.5': Poorly graded SAND (100% sand), fine to medium sand, gray, moist, petroleum-like odor, no sheen.	SP				
	22.5-25.0': SILT (100% silt), gray-brown, moist, no odor, no sheen.	ML			S	
1-	25.0-25.5': Poorly graded SAND (100% sand), fine to medium sand, gray, wet to moist, no odor, no sheen.	SP ML	100	2.2	FB-5-25.0	Bentonite
25	25.5-30.0": SILT (100% silt), gray, moist to wet, no odor, no sheen.	ML				
				1.5	FB-5-30.0	

		Well Construct	tion Information	Country Conferent Flowethere (6)	
Monument Type: NA Casing Diameter (inches):		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Heading: 177°	

-		FARALLON		L	og	of I	Bori	ng:	FB-6		Page 1 of 2
Pro	ent: ojec cati	i onterning bororopinion oorp.	Date/Time Star Date/Time Com Equipment: Drilling Compa	pleted	l: 11/1 Geo			r	Sampler Type: 3 Drive Hammer (Depth of Water Total Boring De	lbs.) ATD	: Auto (ft bgs): NE
Fa	rall	lon PN: 2194-001	Drilling Forema	in:	Chri	is Perv	а		Total Well Dept	n (ft l	bgs): NA
Lo	gge	ed By: Ryan Ostrom	Drilling Method	:	Dire	ct Pus	h				
Depth (feet bgs.)	Sample Interval	Lithologic Description	n	uscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details

	0.0-0.8': Concrete - cored. Vac Cleared for utilities to 5.0'.	со		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Concrete
	0.8-5.0': SILT (90% silt, 10% sand), fine sand, gray, moist, no odor, no sheen.	ML						Conciete
	2					0.0	FB-6-2.5	
X	5.0-5.4': SILT (90% silt, 10% sand), fine sand, gray, moist, petroleum-like odor, no sheen.	ML		40		0.0	FB-6-5.0	
	5.4-6.0': No recovery. 6.0-8.4': SILT (100% silt), gray to brown at 8.2', moist, no odor, no sheen.	ML		100		0.0	FB-6-6.0	Bentonite
/	8.4-9.0': Poorly graded SAND (100% sand), fine to medium sand, brown, moist, no odor, no sheen.	SP			1			
\mathbb{N}	9.0-10.0': SILT (100% silt), gray, moist, wet from 9.3' to 9.6', no odor, no sheen.	ML		100				Water Leve
	10.0-12.0': Poorly graded SAND (100% sand), fine to medium sand, gray-brown, moist, no odor, no sheen.	SP				0.0	FB-6-10.0	
	12.0-12.2': SILT (100% silt), gray, moist, no odor, no sheen.	ML	ш	100				
\mathbb{N}	12.2-13.4': Poorly graded SAND (100% sand), fine to medium sand, gray-brown, moist, no odor, no sheen.	SP						
Ň	13.4-13.9": SILT (100%), gray, moist, no odor, no sheen.	ML	IIII					
	13.9-15.0': Poorly graded SAND (100% sand), fine to medium sand, gray-brown, moist, no odor, no sheen.	SP				11.1		

		Well Construction	on Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID:	

Clie Pro	ojec	i entering bereichinent eelp:	Date/Time Sta Date/Time Cor Equipment: Drilling Compa	mpleted	: 11/1 Geo	1.00		r	Sampler Type: 3 Drive Hammer (Depth of Water Total Boring De	lbs.): ATD	Auto (ft bgs): NE
		lon PN: 2194-001 ed By: Ryan Ostrom	Drilling Forem Drilling Metho			s Perv ct Pus			Total Well Dept	h (ft t	ogs): NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	n	uscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
		 15.0-15.3': Sandy SILT (60% silt, 40% sand), fine to gray-brown, moist, no odor, no sheen. 15.3-17.5': Poorly graded SAND (100% sand), fine to gray-brown, moist, no odor, no sheen, 2" silt lense a 17.5-18.0': SILT (100% silt), gray, moist, no odor, no sand lense at 18.0'. 18.0-20.4': Silty SAND (60% sand, 40% silt), fine to n wet, strong petroleum-like odor, no sheen. 	o medium sand, t 16.4'. r sheen, fine	ML SP ML SM		100		0.0	FB-6-15.0 FB-6-18.0		Bentonite
-		20.4-21.0': SILT (100%), gray, moist, strong petroleu sheen. 21.0-24.0': Silty SAND (60% sand, 40% silt), fine to r wet, strong petroleum-like odor, no sheen.		ML		100	1.1	30.1 83.0 16.5	FB-6-21.0 Soil Screen @ 22' FB-6-24.0		
25 —											

		Well Construction	on Information		1.1	
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA	
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA	
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA	
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID:		

1		1	FARALLON		L	og	of I	Bori	ng:	FB-7		Page 1 of 1
Client:PortLiving Development Corp.Project:701 South Jackson StreetLocation:Seattle, WashingtonFarallon PN: 2194-001			Date/Time Started:10/30/19 @ 1350Date/Time Completed:10/30/19 @ 1420Equipment:Hand AugerDrilling Company:HoloceneDrilling Foreman:Chris Perva			10/30/19 @ 1420 Hand Auger			Sampler Type: Grab Drive Hammer (Ibs.): NA Depth of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 8.0		: NA (ft bgs): NE	
						Total Well Depth (ft bgs): NA						
Lo	gge	d By:	Ryan Ostrom	Drilling Method	4:	Han	d Auge	ər				
Depth (feet bgs.)	Sample Interval		Lithologic Description	n	USCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details

0	0.0-0.8': Concrete - cored.	со			Concrete
	0.8-8.0': SILT with sand (80% silt, 20% sand), fine sand, gray, moist, no odor, no sheen, brick and concrete debris through out.	ML			Guidele
-		5	0.3	FB-7-2.5	
-		1	0.1	FB-7-5.0	Bentonite
-					
			0.1	FB-7-8.0	
10_					

		Well Construction	on Information					
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA			
Casing Diameter (inches):	NA	Surface Seal:	Concrete	Top of Casing Elevation (ft):	NA			
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA			
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite	Unique Well ID:				
R.# A			SYM	BOLS	TYPICAL	SYM	BOLS	
---	------------------------------------	--	--	---	--	---	---	---
	JOR DIVIS	10113	GRAPH	LETTER	DESCRIPTIONS	GRAPH	LETTER	1
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		AC	Asp
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		сс	Cer
	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		CR	Cru
FR	RACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES			Qua
E THAN 50%	CAND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS		SOD	Soc
TAINED ON 200 SIEVE	SAND AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND		TS	Тор
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		Groundv	vate
	RACTION PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES		Measured well, or pie	grou
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	-	Measured	
FINE	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		Graphic	Log
RAINED SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	_	Distinct co	
E THAN 50% ASSING 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	/	Approxima Materia	
200 SILVE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		Contact be	
			17	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		Contact be unit	etwe
HIG	GHLY ORGANIC	SOILS	h	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		Laborat	ory
 	Sal	ect-Push < or grab tinuous Coring ecorded for driv to advance sa n log for hamm	ool Desc parrel / Da tion Test (tion Test (s ven samp umpler 12 ner weigh	cription ames & (SPT) elers as t inches t and dr	IS Moore (D&M) he number of (or distance noted).	AL Att CA Cha CP Lat CS Coi DD Dry DS Dir HA Hyu MC Mo MD Mo MD Mo MO Mo MO Mo MO OC Org PM Pei PI Pla PI Pla PI Pla PP Poo SA Sie TX Tria UC Una UU Una VS Var	rcent grave erberg lim emical and poratory cd issolidation of density ect shear drometer a isture con isture con tisture cont trimeability sticity ind nt lead te cket penet exket penet axial comp confined c consolidat ne shear Sheen C	nits alysis ompa n tes analy tent tent tent or hy ex st trom is oress comp red u
			•	Ū	2			
	OH" indicate	es sampler pus	shed using	g the we	ight of the		Visible Sh ght Sheen	

TIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	SOD	Sod/Forest Duff
	TS	Topsoil

Groundwater Contact Measured groundwater level in exploration, well, or piezometer Measured free product in well or piezometer **Graphic Log Contact** Distinct contact between soil strata Approximate contact between soil strata **Material Description Contact** Contact between geologic units Contact between soil of the same geologic unit Laboratory / Field Tests rcent fines rcent gravel terberg limits emical analysis boratory compaction test nsolidation test y density rect shear drometer analysis pisture content pisture content and dry density ohs hardness scale ganic content rmeability or hydraulic conductivity asticity index oint lead test cket penetrometer eve analysis axial compression confined compression consolidated undrained triaxial compression ne shear **Sheen Classification** Visible Sheen ght Sheen

understanding of subsurface conditions. vere made; they are not warranted to be

Drilled	5/1	<u>Start</u> .8/2021	<u> </u> 5/18	End 3/2021 Dep	ll th (ft)	76.5	Logged By CJG Checked By RST	Driller Caso	ade Drilling LP			Drilling Method Hollow-stem Auger
Surfac Vertica		ation (ft) m		98 NAVD88			Hammer Data 14	Autohammer 40 (lbs) / 30 (in) l		Drilling Equipr		Truck Mounted Rig
Latituo Longiti				47.59894 -122.3234			System Datum	Decimal Degree WGS84	es	See "R	emark	s" section for groundwater observed
Notes												
			FIFI	D DATA								
et)		Î		1								
Elevation (feet)	o Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample Sample Name Testing	Graphic Log	Group Classification	DES	ATERIAL SCRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	-	-		S1-1	•	AC CR	Approximately 1 inch of Approximately 8 inches		e pavement /			
	-			51-1		SM	Gray silty fine to coarse brick debris (moist)		ravel and trace	_		
<u>_</u>	-	12	50/6"	GEI-1-2.5		: SM	_ Gray silty fine to mediu	m sand with occa	asional fine	NS	<1	
	-					SP	 Gray fine to medium sa silt (moist) 	and with coarse s	and and trace	-		
	5-	18	40	<u>S2-5</u> <u>GEI-1-5.0</u> CA			-			— ss -	<1	
90 20	-	18	50	GEI-1-7.5		SP	Gray medium sand with	n trace silt (moist))	ss	130	
	- 10 —	18	37	S3-10 GEI-1-10.0			-			- - ss -	3,600	
<u></u>		12	50/6"	<u>GEI-1-12.</u> CA	<u>5</u>	ML	- Brown silt with fine san	d (moist)		SS	>15,00	0
	-					SP	 Gray medium sand with 	n trace silt (moist))	-		
	15 -	18	42	S4-15 GEI-1-15.		ML/SP	Gray interbedded silt ar _ (moist)	nd gray fine to me	edium sand	SS	452	
<u></u>	-	18	69	<u>GEI-1-17.</u>		SP-SM	 Brown fine to medium s 	sand with silt (we	t)	- NS	<1	Perched water observed
		Д		CA			 Grades to brown mediu 		,	_		
	20 -	18	29	S5a-20 S5b -20 GEI-1-20.1		SM/SP		/ sand and fine sa	and (moist)	NS	<1	
<u>16</u>	-	18	70	GEI-1-22.	5	ML	Gray silt (moist) - Dark gray silt with fine s	sand (moist)		- NS	<1	
	25 -	18	27	S6-25 GEI-1-25.0		SP-SM	_ Gray-brown fine sand w _	vith silt (moist)		- ss	17.5	
<u>^</u> 0	-	18	69	GEI-1-27.	5	SM	Brown silty fine sand (n	noist)		- ss 	5.7	
Co	30 – ote: Se ordina ted 20	tes Data	C-1 for Source:	explanation Horizontal ap	of sym proxima	bols. ated base	d on North American Datum	1983 (NAD83). \	/ertical approxim	ated bas	sed on	LiDAR from Puget Sound LiDAR Consortiu
							Log of B	oring GEI	-1			
-	-		die:			-	Project: 701 S					
C	DE	OE	NG	INEEF	S	1	Project Location Project Number		-)		Figure C Sheet 1 of 3

Log of Boring GEI-1 (continued)

ate:1/11/22 Pat

Drilled		<u>Start</u> 9/2021		End 9/2021 Total Depth	n (ft)	56.5	Logged By CJG Checked By RST Driller Cascade Drilling LP				Drilling Method Hollow-stem Auger
	ce Eleva al Datu	ation (ft) m		98.5 NAVD88			Hammer Autohammer Data 140 (lbs) / 30 (in) Drop	Drill Equ		ent	Truck Mounted Rig
Latitu Longit				47.599053	1		System Decimal Degrees Datum WGS84	Gro	und	water	not observed at time of exploration
Notes					-						
			FICI	LD DATA							
et)				1	1	_					
Elevation (feet)	o Depth (feet) I	Interval Recovered (in)	Blows/foot	Collected Sample Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Source of the second se	sheen	Headspace Vapor (ppm)	REMARKS
	-	-				AC CC	Approximately ³ / ₄ inch of asphalt concrete pavement Approximately 6 inches of portland concrete cement				
	-	-				SP-SM	Brown fine to coarse sand with silt and fine gravel (moist)				
్రం	-	18	14	GEI-2-2.5		ML	Brown silt with fine sand lenses (moist)	N	۹S	<1	
	-							-			
	5 —	18	27	GEI-2-5.0		SP	Brown fine to medium sand with trace silt (moist)	s	s	<1	
	-	Д			ΪŤ.	ML	Gray silt (moist)				
	-	18	48	GEI-2-7.5	ļļ.	00	- Drown fing to modify an end with the set of the face is the		√s	<1	
<u></u>	-			GEP2-1.3		SP	 Brown fine to medium sand with trace silt (moist) 	1			
	-						F 	_1.		45.00	
	10 —	18	26	<u>GEI-2-10</u> CA GEI-2-10.5		SP	Gray fine sand (moist)	7	lS≯	15,000	<i>u</i>
	_			GL-2-10.3		ML SP	Silt and sand (moist) Brown fine sand				
4	_	18	26	GEI-2-12.5		SP	Gray fine to medium sand with trace silt (moist)	Н	is >	15,000	Strong petroleum like odor
<u></u>	-	Й				SP	Approximate 3-inch silt lens				
	15 -	18	57	GEI-2-15.0			Gray fine to medium sand with trace silt (moist) —	- н	is >	·15,000	Strong petroleum like odor
	-	M.		<u>GEI-2-15.0</u> CA			-	-			
	-						-		s	42.5	
<u>4</u> 0	-	18	42			SM SM/ML	Gray fine sand with silt (moist) Gray fine sand with interbedded silt lenses (moist)	` [~	-12.0	
	-	<u>r 1</u>		<u>GEI-2-19.0</u> CA		SP	Brown fine to medium sand with trace silt (moist)	~ -			
	20 —	18	24	GEI-2-20.0	। संस्थ	01/07		s	s	33.7	
	-	\square				SM/ML	 Gray/brown interbedded silty sand and silt (moist) 	-			
	-	18	33	GEI-2-22.5		ML	– – Gray sandy silt (moist)	N	۱s	13.8	
<u>1</u> 69	-	М					Gray sandy sin (moist) Grades to finer gray silt (moist)]			
	- 25							\	JS I	47.1	
	-	18	30	GEI-2-25.0		SM	Brown silty fine sand (moist) –				
	-						-	4			
<u>1</u> 0	-	18	41	GEI-2-27.5		SP-SM	Brown fine sand with silt (moist)	- N	۱s	1.2	
- `	-						 With interbedded silt 	-			
NZ	30 -	e Figuro	 C-1 for		: : svm		L				
Co	ordinat	es Data : 16.	Source:	: Horizontal appr	oxima	ted base	on North American Datum 1983 (NAD83). Vertical approx	imated t	base	ed on I	LiDAR from Puget Sound LiDAR Consortiu
							Log of Boring GEI-2				
(364	-F		INEER	c	1	Project: 701 South Jackson Street Project Location: Seattle, Washingto	on			
			U	INCER	5/		Project Number: 24504-001-01	~ • •			Figure C Sheet 1 of

Drille	ed 5/1	<u>Start</u> 9/2021		End 0/2021 Dept	l h (ft)	51.5	Logged By CJG Checked By RST Driller Cascade Drilling LF	>			Drilling Method Hollow-stem Auger
	ace Eleva cal Datu			95 NAVD88			Hammer Autohammer Data 140 (lbs) / 30 (in) Drop		illing quipm		Truck Mounted Rig
Latit Long	ude (itude			47.59887 -122.32361			System Decimal Degrees Datum WGS84	Gr	rounc	lwater	not observed at time of exploration
Note	es:										
$\overline{}$			FIEL	D DATA							
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION		Sheen	Headspace Vapor (ppm)	REMARKS
	0-					AC CR	Approximately 1 inch of asphalt concrete pavement Approximately 8 inches of base coarse/concrete				
-	-	-				SP-SM	Brown fine to medium sand with coarse sand and trac silt, occasional brick debris	ce _			
-	-	18	26	GEI-3-2.5		ML	_ Gray silt (moist)	_	NS	<1	
0	-						-	-			
	5-	18	40	<u>GEI-3-5.0</u> CA		SP	Brown fine to medium sand with trace silt (moist)		NS	1.3	
-	-						-	_			
-	-	18	35	GEI-3-7.5				_	HS :	>15,000	
- 	- 10 —					ML SP	Silt lens (moist) Gray fine to medium sand (moist)		HS :	15.000	
Ē	-01	18	31	GEI-3-10.0	T.T.T				п5 .	>15,000	J
-	-					SP/ML	Interbedded fine sand and silt (moist)	_	HS :	>15,000	
- 5	-	18	32	GEI-3-12.5			_	-	пэ .	215,000	u U
	 15		39	<u>GEI-3-15.0</u> CA			– Mostly sand with silt lenses –		HS :	>15,000	
	-	18	25	<u>GEI-3-17.5</u>		M			NS	89.7	
	-		20	CA		ML	Gray sandy silt (moist)	_			
\$ {	20 —	18	28	GEI-3-20.0			-	_	NS	130	
	-	Д				SP	Brown fine sand and trace silt (moist)				
	-	18	37	GEI-3-22.5		SM	Gray silty fine sand (moist)		NS	2,614	
	-	Й				SP-SM	_ Gray fine sand with silt (moist)	_			
	25 — - -	18	48	GEI-3-25.0			-	-	NS	3,420	
-	-						-	-			
- %	- 30 —]									
N C		e Figure es Data \$ 16.	C-1 for Source:	explanation of Horizontal app	of syml roxima	bols. ted based	d on North American Datum 1983 (NAD83). Vertical approx	ximated	d bas	ed on	LiDAR from Puget Sound LiDAR Consortium
							Log of Boring GEI-3				
/ 22 / 201	-				22	-	Project: 701 South Jackson Street				
77/11 (GE	DE	NG	INEER	SI		Project Location: Seattle, Washingto	on			Figure C-4

Project Number: 24504-001-01

Date:1/11/22 Path:Pr/24/24504001/GINT/2450400101.GP JBLIbranyf.lbranyf.lbranyf.lbranyf.goff GERS_DF_STD_JUNE_2017.GLB/GERS_ENVIRONMENTAL_STANDARD_NO_GW

Figure C-4 Sheet 1 of 2

\bigcap			FIE		DATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-	30 -	18	40		GEI-3-30.0		SP	Gray fine sand with trace silt (moist)	SS	2,750	
- - - - -	35 -	18	30		GEI-3-35.0			 	SS	3,200	
- - - -	40 -	18	40		GEI-3-40.0				NS	220	
- - -	45 -	18	59		GEI-3-45.0				NS	79.2	
STANDARD_NO_GW	50 -	18	44		S15-50			 	NS	<1	
P:/24/24504001/GINT/2450400101.GPJ DBLUray/Libray/GEOENGINEERS_DF_STD_US_UNE_2017.GLB/GERS_ENVIRONMENTAL											
n:P:\24\24504001\GINT\2450400101.GPJ								Log of Boring GEI-3 (continued)			
Date:1/11/22 Path	Ge	οE	NG	IN	EERS	5/	D	Project: 701 South Jackson Street Project Location: Seattle, Washington Project Number: 24504-001-01			Figure C-4 Sheet 2 of 2

Start Drilled 12/29/2021	<u>End</u> 12/29/2021	Total Depth (ft)	15	Logged By Checked By	NRS RST	Driller	Cascade Drilling LP		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum		95 /D88		Hammer Data		Pneum	natic	Drilling Equipment	Truck Mounted Rig
Latitude Longitude	47.59902SystemDecimal Degrees-122.3234DatumWGS84					Groundwate	r not observed at time of exploration		

\bigcap			FIEL	D D	ATA							
Elevation (feet)		Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
_	0	36						AC SM	Approximately 4 inches asphalt concrete Gray-brown silty fine to coarse sand with gravel (dry)	SS	<1	
- ~00	-			Ţ	<u>GEI-4-2.5</u> CA			ML	Brown-gray silt with sand (dry)	NS	<1	
-	5 —	60		I	GEI-4-5.0			ML	Gray silt (dry)	NS	<1	
- _్లో -	-				GEI-4-7.5			SM SP	Brown-gray silty fine to coarse sand (dry to moist) Brown fine to coarse sand (moist)	NS NS	<1 <1	
-	10 -	60		Ţ	GEI-4-10.0			ML	Brown silt (moist)	NS	<1	
- _% -	-				GEI-4-12.5 CA GEI-4-15.0			SM	Brown silty fine to coarse sand (moist)	NS	<1	
F	15 —						1:1:1		Refusal at 15 feet below ground surface			

GEOENGINEERS

Note: See Figure C-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on North American Datum 1983 (NAD83). Vertical approximated based on LiDAR from Puget Sound LiDAR Consortium dated 2016.

Log of Monitoring Well GEI-4

Start Drilled 12/29/2021	<u>End</u> 12/29/2021	Total Depth (ft)	15	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum		95 /D88		Hammer Data		Pneumatic	Drilling Equipment	Truck Mounted Rig
Latitude Longitude					[Decimal Degrees WGS84	Groundwate	r not observed at time of exploration

\bigcap			FIEL	D D	ATA							REMARKS
Elevation (feet)		Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-	0 -	26						AC SM	Approximately 3 inches asphalt concrete Dark brown silty fine to coarse sand with gravel (dry)	NS	2.4	
-	-			Ţ	<u>GEI-5-2.5</u> CA			SM SM	Brown silty fine to medium sand with gravel (moist) Black silty fine to coarse sand with gravel (moist)	SS	1.8	
	5	60			GEI-5-5.0			ML ML	Brown silt with sand (moist) Gray silt with sand (moist)	NS NS	<1 <1	
-	-			Ţ	GEI-5-7.5					NS	<1	
- % -	- 10	60		Ţ	<u>GEI-5-10.0</u> CA			ML	Gray silt with sand lens (moist)			
-	-				GEI-5-12.5			ML	Gray silt	NS	<1	
- _ళ్లం	15			Ţ	GEI-5-14.0		•••• ••••	SW	Gray-brown fine to coarse sand	NS	<1	

604001/GINT/2450400101.GPJ DBLibrary/Library.GEOENGINEERS_DF_STD_US_JUNE_2017.GLB/GEIS_ENVIRONMENTAL_WELL ate:1/11/22 Pai

GEOENGINEERS

Note: See Figure C-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on North American Datum 1983 (NAD83). Vertical approximated based on LiDAR from Puget Sound LiDAR Consortium dated 2016.

Log of Monitoring Well GEI-5

Start Drilled 12/29/2021	<u>End</u> 12/29/2021	Total Depth (ft)	15	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum		.03 VD88		Hammer Data		Pneumatic	Drilling Equipment	Tracked Rig
Latitude Longitude		System Datum	I	Decimal Degrees WGS84	Groundwate	r not observed at time of exploration		

Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	ATA Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
-	0 -	<u> </u>	B	ŏ	<u>ої</u> ції	9	AC SM	Approximately 3 inches asphalt concrete Dark brown silty fine to coarse sand (moist)	T NS	±ÿ <1	
- 700	-			Ţ	<u>GEI-6-2.5</u> CA		SM	Brick debris observed Black silty fine to coarse sand (moist)	NS	<1	
-	5-	60		1	GEI-6-5.0		ML	Gray silt with sand (dry to moist)	- NS	<1	
- - 	-				GEI-6-7.5						
-	-	60			<u>GEI-6-10.0</u> CA				-		
- - 	-				GEI-6-12.5	••••	SW	Light brown fine to coarse sand with brown silt lens (moist)	NS	<1	
- -	-				GEI-6-14.5	• • • • • • • • • • • •					

Note: See Figure C-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on North American Datum 1983 (NAD83). Vertical approximated based on LiDAR from Puget Sound LiDAR Consortium dated 2016.

Log of Boring GEI-6

Drilled 12/29/2021	<u>End</u> 12/29/2021	Total Depth (ft)	15	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum		.03 /D88		Hammer Data		Pneumatic	Drilling Equipment	Tracked Rig
Latitude Longitude	47.598852 -122.323388			System Datum		Decimal Degrees WGS84	Groundwate	r not observed at time of exploration

\bigcap			FIEL	D D	ATA	_						REMARKS
Elevation (feet)	⊃ Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	NEWANNO
-	-	43						AC SM	Approximately 3 inches asphalt cement Gray silty fine to medium sand with brick fragments (dry)	SS	1.4	
_ 				1	<u>GEI-7-2.5</u> CA			SM	Brown silty fine to coarse sand (dry)	NS	<1	
				┢	CA			SM	Gray silty fine to coarse sand (moist)	NS	<1	
-	5	60		Ţ	GEI-7-5.0			ML	Gray silt (moist)	NS	<1	
- %	-			Ţ	<u>GEI-7-7.5</u> CA			ML	Brown-gray silt (moist) Gray silt (moist)	NS	28.9	
-	-									NS	29.1	
-	10	60		Ţ	GEI-7-10.0			SM	Light gray silty fine to medium sand	NS	31.3	
_% ²	-			Ţ	GEI-7-12.5				_ Becomes gray _			
	- 15				<u>GEI-7-14.0</u> CA			ML	_ Gray silt _	NS	38.1	

004001\GINT\2450400101.GPJ DBLibrary/Library.GEOENGINEERS_DF_STD_US_JUNE_2017.GLB/GEI8_ENVIRONMENTAL_WELL ate:1/11/22 Pai

GEOENGINEERS

Note: See Figure C-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on North American Datum 1983 (NAD83). Vertical approximated based on LiDAR from Puget Sound LiDAR Consortium dated 2016.

Log of Monitoring Well GEI-7

			SYM	BOLS	TYPICAL	
ľ	MAJOR DIVIS	0113	GRAPH	LETTER	DESCRIPTIONS	G
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED SOILS	MORE THAN 50%	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
30123	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
10RE THAN 50%	SAND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS	<u>// \</u>
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	MORE THAN 50% OF COARSE FRACTION PASSING	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
IORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	/
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				OH	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
	HIGHLY ORGANIC	SOILS	·····	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	%F
bl Sc "F	2.4- Star She She Pist Dire Dire Con lowcount is re ows required ee exploration mindicates s	ect-Push < or grab tinuous Coring ecorded for dri to advance sa n log for hamn	barrel / D tion Test (tion Samp ampler 12 ner weigh d using th	ames & (SPT) elers as t inches t and dru e weight	Moore (D&M) he number of (or distance noted). op. t of the drill rig.	ALAPSDSACD
	ammer.	se sempler pu	usili,	B UIC WC	But of the	SS MS HS

TIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	SOD	Sod/Forest Duff
	TS	Topsoil

Groundwater Contact Measured groundwater level in exploration, well, or piezometer Measured free product in well or piezometer **Graphic Log Contact** Distinct contact between soil strata Approximate contact between soil strata **Material Description Contact** Contact between geologic units Contact between soil of the same geologic unit Laboratory / Field Tests rcent fines rcent gravel terberg limits emical analysis boratory compaction test nsolidation test y density rect shear drometer analysis pisture content pisture content and dry density ohs hardness scale ganic content rmeability or hydraulic conductivity asticity index int lead test cket penetrometer eve analysis axial compression confined compression consolidated undrained triaxial compression ne shear **Sheen Classification** Visible Sheen ght Sheen oderate Sheen eavy Sheen

understanding of subsurface conditions. vere made; they are not warranted to be

Start Drilled 4/4/2022	<u>End</u> 4/4/2022	Total Depth (ft)	25	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum		9.5 VD88		Hammer Data		Pneumatic	Drilling Equipment	Track-mounted probe
Latitude Longitude				System Datum		Decimal Degrees WGS84	Groundwate	r not observed at time of exploration

0ate:5/5/22 Path:P:\24\;

GEOENGINEERS

		FIEI	D D	ATA						
Elevation (feet) Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	28					CC GP GP SM ML SM ML	Approximately 6 inches of concrete cement Approximately 6 inches crushed asphalt cement with gravel and sand Approximately 6 inches crushed concrete cement Brown silty fine to coarse sand with occasional gravel (moist) Gray silt (moist) Gray silt (moist) Gray silt (moist)	SS NS NS NS	1.2 <1 <1 <1	
- 10-	- 39		Ţ	GEI-8-7.5		SM	Gray-brown silty fine to coarse sand (moist)	NS	<1 <1	
			Ţ	<u>GEI-8-12.5</u> CA		ML SM SM	Gray silt with sand lenses (moist) Gray silty fine to coarse sand (moist) Gray silty fine to coarse sand (moist)	NS NS NS	<1 <1 <1	
	49		Ì	<u>GEI-8-17.0</u> CA		ML SM ML ML SM	Brown silt (moist) Gray silty fine to coarse sand (moist) Gray silt with sand lenses (moist) Gray silt (moist) Brown silty fine to medium sand (moist)	NS SS NS NS	<1 1.8 <1 <1 <1	
-			Ì	GEI-8-22.5		— <u>—</u> — – ML	Gray silt (moist)	NS	<1	
Note: See Coordinar dated 20	tes Data S	-1 for e Source:	xplana Horizo	ation of syn ontal appro	nbols. ximat	ed based	on North American Datum 1983 (NAD83). Vertical approximate	ed bas	ed on L	LiDAR from Puget Sound LiDAR Consortium
dated 20	10.									

Log of Boring GEI-8

Start Drilled 4/4/2022	<u>End</u> 4/4/2022	Total Depth (ft)	25	Logged By Checked By	NRS RST	Driller	Cascade Drilling LP		Drilling Method	Direct Push
Surface Elevation (ft) Vertical Datum		2.5 VD88		Hammer Data		Pneum	atic	Drilling Equipment		Track-mounted probe
Latitude Longitude	47.59877 -122.3227			System Datum	I	Decimal D WGS&		Groundwate	r not obser	ved at time of exploration

Date:5/5/22 Path:F

GEOENGINEERS

				FIE	LD D							
	Elevation (feet)		Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
- - -	şo	0	39					AC Brick GP SM	Approximately 4 inches of asphalt concrete cement Approximately 2 inches brick Approximately 2 inches crushed concrete cement and gravel Brown silty fine to coarse sand (moist)	SS	1.2	
-		5	41					ML	Light brown-brown silt with sand lenses (moist) Brown silty fine to coarse sand with trace gravel (moist)	SS NS	3.8 <1	
	ş	-			Ţ	GEI-9-7.5		ML	Brown-tan silt with sand lenses (moist)	NS	<1	
		10-	50					ML	Gray silty (moist) Gray silty fine to coarse sand (moist)	NS NS	<1 <1	
-GW	^b o				Ţ	<u>GEI-9-12.5</u> CA			Becomes wet	NS	<1	
NTAL_STANDARD_NO		15 —	46					ML ML MI	Brown-tan silt with sand lenses (moist) Gray silt (moist) Brown silt (moist)	NS NS	<1 <1	
	(⁶)					<u>GEI-9-17.5</u> CA		ML	- Gray silt with sand lenses (moist) -	NS	<1	
DF_STD_US_JUNE_2017	10	20 — - -	48			GEI-9-22.5		ML		NS	<1	
24504001\(GINT\2450400101.GPJ DBLIbrary/Library:GE0ENGINEERS	Note	 25	Figure (explana	ation of syr	nbols.		on North American Datum 1983 (NAD83). Vertical approximate			
\24504001\	Coo date	ordinati ed 201	es Data .6.	Source	: Horiz	ontal appro	oximat	ed based	on North American Datum 1983 (NAD83). Vertical approximate Log of Boring GEI-9	ed bas	ed on L	JUAK Trom Puget Sound LIDAK Consortium

onng G **EI-3**

Drilled 4/	<u>Start</u> 4/2022	<u>End</u> 4/4/2022	Total Depth	(ft)	25	Logged By NRS Checked By RST	Driller Cascade Drilling LP			Drilling Method Direct Push
Surface Elev Vertical Datu		N	92.5 AVD88			Hammer Data	Pneumatic	Drilling Equipn		Track-mounted probe
Latitude Longitude			598907 2.323848	3		System I Datum	Decimal Degrees WGS84	Ground	dwatei	r not observed at time of exploration
-	ing cleared	l from the grou	ind surfa	ce to a	ipproxima	ately 7 feet below ground surf	ace (bgs) using an air knife.			
		FIELD DA	TA							
Elevation (feet)	Interval Recovered (in)	Blows/foot Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	DESC	TERIAL CRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
- - - - 5-	- - - - - -				AC Brick CC NR SM NR	Approximately 4 inches c Approximately 2 inches c Approximately 12 inches No recovery Brown silty fine to coarse No recovery	of concrete cement	NS	<1	
- _&	- -	Ţ G	El-10-7.5		SM	Brown silty fine to coarse	sand (moist)	- NS - NS	<1	
- - -	45 _				SM	 Gray silty fine to coarse s Gray silt (moist) 	and (moist)		<1	
 - 	- - - 60	<u> </u>	<u>EI-10-12.5</u> CA		SM ML SM ML	Brown silty fine to coarse Gray silt (moist) - Brown silty fine to mediu Gray-brown silt (moist)	e sand with silt lenses (moist) m sand (moist)		<1 <1 <1 <1	
(*) - - - (*) -	-	<u> </u>	EI-10-17.5 CA		SM	Brown silty fine to coarse Brown silty fine to coarse	sand (moist) sand with silt lenses (moist)	- NS - NS - NS 	<1	
Coordina dated 20	ates Data S 016.	1 for explanati Source: Horizor	ntal appro	oximat	6	Log of Bo Project: 701 Sc	983 (NAD83). Vertical approxin ring GEI-10 buth Jackson Street h: Seattle, Washington		ed on	LiDAR from Puget Sound LiDAR Consortium

Drille	d 4/5	<u>Start</u> /2022	<u>En</u> 4/5/	<u>d</u> 2022	Total Depth	(ft)	71.5	5	Logged By NRS Checked By RST	Driller	Cascade Drilling LP			Drilling Method	low-stem Auger
Hamr Data	ner				ammer 30 (in) Dro	р			illing Tru uipment Tru	ck-mounte	ed drill rig	DOE Wel A 2-in we			2022 to a depth of 70 ft.
	ce Eleva al Datur	. ,		N	94 JAVD88				p of Casing evation (ft)			Ground		Depth t <u>Water (</u>	
Latitu Longi					.598851 2.323695	,			HorizontalDecimal DegreesDate MeasuredDatumWGS844/5/2022					61.34	
Note	s:	Boring c	leared	from th	ne ground :	surfa	ice to a	Ipproxii	mately 7 feet below groun	d surface	(bgs) using an air knife.				
			FIEI	LD DA		\square								V	VELL LOG
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	M DES	ATERI/ SCRIPT		Sheen	Headspace Vapor (ppm)		Steel surface flush mount
- - - _% -	0 — - - 5 —	12	Ш					AC Brick GP NR SM NR	Approximately 4 inch Approximately 2 inch Approximately 2 inch and gravel (moist No recovery Brown silty fine to co No recovery	ies brick ies crushe t)	d concrete cement	- NS	<1	3'-	Concrete surface seal
- - _%	-	18	28	Ţ,	GEI-11-7.5			SM	Brown silty fine to co (medium dense,		with silt lenses	- - SS -	3.1		
-	10 -	18	26					SM	Gray silty fine to coar moist)	·		- NS	<1		Bentonite seal
- - _%	-	18	22	G	EI-11-12.5			ML	Gray-brown silt with s Gray silt with sand (s		ium sun, moist)	MS	31.4	00000000000000000000000000000000000000	
ONMENTAL_WELL	15 -	18	56		<u>GEI-11-15.0</u> CA				-			– нs -	41.8	00000000000000000000000000000000000000	2-inch Schedule 40 PVC well casing
2017.GLB/GEI8_ENVIR	-	18	33	G	Gel-11-17.5			SM	Brown silty fine to me stiff, moist)	edium sar	d with silt lens (very	SS 	<1		
INNE	20 -	18	44	G	GEI-11-20.0			ML	Gray silt with sand (v	ery stiff, m	ioist)	- NS	<1		
	-	18	38	G	GEI-11-22.5			SM	Brown-gray silty fine to (medium dense,		n sand with silt lens	NS -	<1	00000000000000000000000000000000000000	
24504001(sINT)2450400101.6PI DBLIbrary/Library/CECORONAINEERS_DF_STD_UIS	25 — - -	18	52									- NS	46	30000000000000000000000000000000000000	
0400101.G	-								-			_		2000 2000 2000 2000 2000 2000 2000 200	
04001/GINT/2450	30 — ote: See oordinat ated 20:	es Data S	-1 for e Source:	xplanat Horizo	tion of syn ontal appro	nbols nbols	l: []; s. ated ba	sed on	North American Datum 1	.983 (NAD	83). Vertical approxima	ted base	d on LiE	DAR from Puget	Sound LiDAR Consortium
P:\24/2450							Lo	og of	f Boring with N	Ionito	ring Well GEI	-11			
Date:5/5/22 Path:F	Geo	DEM	IG	INI	EERS	S,	0	Ī	Project: 701 So Project Location Project Number	n: Seat	tle, Washington				Figure A-5 Sheet 1 of 3

\square			FIEL	D D/	ATA							WELL LOG
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	
- _% -	70	18	61						 	NS	<1	70'
	Ł	_1 _1		<u>I</u>						I	<u> </u>	
					L	og	of	Borin	g with Monitoring Well GEI-11 (co	ntin	ued)	
								1	Project: 701 South Jackson Street Project Location: Seattle, Washington Project Number: 24504-001-01			Figure A-5 Sheet 3 of 3

Sheet 1 of 3

	FIE	LD DATA						WELL LOG
Elevation (feet) Depth (feet)	Interval Recovered (in) Blows/foot	Collected Sample Sample Name Testing	Water Level Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	
	18 42			SM	Gray silty fine to coarse sand (medium dense, wet)	NS	<1	···· ···· Sand backfill ···· ···· Sand backfill ···· ···· PVC screen, ···· ···· 0.010-inch slot ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ····

APPENDIX B Site-Specific Health and Safety Plan

Site-Specific Health & Safety Plan

701 South Jackson Street Seattle, Washington for GeoEngineers

May 16, 2023

2101 4th Avenue, Suite 950 Seattle, Washington 98121 206.728.2674

Site-Specific Health and Safety Plan

701 South Jackson Street Seattle, Washington

File No. 24504-001-03

May 16, 2023

Approved By: Date: 5/16/2023 Signature: for James Kohn James Kohn, Site-Safety Officer and Field Coordinator, GeoEngineers Signature: Date: 5/16/2023 Robert Trahan, LG, Project Manager, GeoEngineers Signature: Date: 5/16/2023 ONARA Tim L. Syverson, LHG , Associate, GeoEngineers Signature: Date: 5/16/2023 Lucas Miller, Health and Safety Program Manager, GeoEngineers

JK:RST:TLS:ch

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2023 by GeoEngineers, Inc. All rights reserved.

Table of Contents

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
2.1.	Problem Definition	1
2.2.	Property Description	2
2.3.	Historical Land Use	2
2.4.	Project Description and Schedule	2
2.5.	Site Map	3
3.0	WORK PLAN	4
4.0	CHAIN OF COMMAND	5
4.1.	Functional Responsibility	6
	1. Health and Safety Program Manager (HSM)	
4.1.2	2. Project Manager (PM)	6
4.1.3	3. Site Safety Officer (SSO)	6
4.1.4	4. Field Engineer/Geologist	7
4.1.5	5. Contractors Under GeoEngineers Supervision	7
5.0	EMERGENCY INFORMATION	8
5.1.	Emergency Response Preparedness	8
	Standard Emergency Procedures	
6.0	HAZARD ANALYSIS	9
6.1.	Job Hazard Analysis	10
6.2.	Physical Hazards	12
6.3.	Biological Hazards	14
6.4.	Ergonomic Hazards	15
6.5.	Chemical Hazards	16
	Summary of Selected Chemical Hazards	
6.6.2	1. Gasoline	16
6.6.2	2. Diesel Fuels	17
	3. Benzene	
	4. Lead	
	5. Polycyclic aromatic hydrocarbons (PAHs)	
6.7.	Documentation of Hazards	18
7.0	AIR MONITORING PLAN	21
7.1.	Action Levels for Volatile Organic Chemicals	21
8.0	SITE CONTROL PLAN	22
8.1.	Traffic or Vehicle Access Control Plans	23
8.2.	Site Work Zones	23
8.3.	Buddy System	23
	Site Communication Plan	
8.5.	Decontamination Procedures	24

8.6. Spill Containment Plan (Drum and Container Handling)	
8.7. Waste Disposal or Storage	
8.8. Sampling, Managing and Handling Drums and Containers	
8.9. Sanitation	
8.10.Lighting	
8.11. Entry Procedures for Tanks or Vaults (Confined Spaces)	
9.0 PERSONAL PROTECTIVE EQUIPMENT	
9.1. Personal Protective Clothing Inspections	
9.2. Respirator Selection, Use and Maintenance	
9.3. Respirator Cartridges	
9.4. Respirator Inspection and Cleaning	
10.0 PERSONNEL MEDICAL SURVEILLANCE	
11.0 DOCUMENTATION TO BE COMPLETED FOR HAZWOPER PROJECTS	

LIST OF FORMS

Form 1. Health and Safety Re-Engtry Briefing and Acknowledment of the Health and Safety Plan for GeoEngineers Emplyees.

Form 2. Safety Meeting Record

Form 3. Job Hazard Analysis Form

Form 4. Accident/Exposure Report Form

1.0 INTRODUCTION

This Health and Safety Plan (HASP) has been prepared for use at the Seventh Avenue Service Site (Site) during upcoming earthwork activities associated with the redevelopment of the 0.31-acre property located at 701 South Jackson Street (Property) in the Chinatown-International District neighborhood of Seattle, Washington. **This HASP is to be used in conjunction with the GeoEngineers, Inc. (GeoEngineers) Safety Programs.** Together, the written safety programs and this HASP constitute the site safety plan for this Site. This plan is to be used by GeoEngineers personnel on this site and must be available on Site. If the work entails potential exposures to other substances or unusual situations, additional safety and health information will be included, and the plan will need to be approved by the GeoEngineers Health and Safety Program Manager. All plans are to be used in conjunction with current standards and policies outlined in the GeoEngineers Health and Safety Programs.

Project Name	Seventh Avenue Service Site/701 South Jackson Street
Project Number	24504-001-03
Type of Project	Remedial excavation oversight during Property redevelopment and post- construction compliance groundwater monitoring.
Start/Completion	May 2023 through December 2024
Subcontractors	Fremont Analytical Cascade Drilling

GENERAL PROJECT INFORMATION

Liability Clause: If requested by subcontractors, this site HASP may be provided for informational purposes only. In this case, Form 1 shall be signed by the subcontractor. Please be advised that this site-specific HASP is intended for use by GeoEngineers employees only. Nothing herein shall be construed as granting rights to GeoEngineers' subcontractors or any other contractors working on this site to use or legally rely on this HASP. GeoEngineers specifically disclaims any responsibility for the health and safety of any person not employed by the company.

2.0 BACKGROUND

Detailed information regarding background information, including Site location, physical description, use history, summary of previous environmental investigations and identification of preliminary hazardous substances are presented in GeoEngineers' Contaminated Media Management Plan (CMMP) dated August 28, 2023 and are summarized below.

2.1. Problem Definition

Previous environmental investigations conducted at the Site by 701 S Jackson Partners, LLC (South Jackson Partners) and other parties have identified contaminants including gasoline-range total petroleum

hydrocarbons, benzene, toluene, ethylbenzene, and xylenes (BTEX) and naphthalene at concentrations greater than the Model Toxics Control Act (MTCA) cleanup levels (CULs) associated with the former gasoline service station and garage that historically operated at the Property between the 1930s and 1970s.

South Jackson Partners has entered into a Prospective Purchaser Consent Decree (PPCD No. 22-2-15886-7 SEA) with the Washington State Department of Ecology (Ecology), and the Assistant Attorney General, Ecology Division (the AGO), to facilitate cleanup as part of project construction for property redevelopment.

2.2. Property Description

The Property is bounded by South Jackson Street to the north, 7th Avenue South to the west, a mixed-use retail and apartment building (currently vacant) to the south, and a restaurant building (House of Hong) to the east. The Property is currently developed with two single-story structures, including a former gasoline station building in the northwest portion and an "L"-shaped automobile repair garage along the east and south Property boundaries, and paved parking and drive areas. A small building on the southwest corner of the Property is currently used for a storage room for "New Century Tea Gallery". Other buildings on Property are currently vacant.

2.3. Historical Land Use

Since redevelopment following the Jackson Street regarding project in 1927, the Property has been used for automobile repair and fueling services. During redevelopment, the large "L"-shaped building was constructed along the southern and eastern portions of the Property. As early as 1932, a gasoline service station was added to the northwest portion of the Property until sales of gasoline ceased in the 1970s. The former gasoline service station operations included two gasoline underground storage tanks (USTs) and an associated fuel dispenser/pump island, and vehicle service/repair. In 2010, the gasoline USTs associated with the service station were decommissioned and removed from the Property.

2.4. Project Description and Schedule

Remedial excavation activities will be completed concurrent with the construction for property redevelopment during the spring and summer months of 2023. Sampling and analysis will be performed to confirm the removal of soil containing contaminant concentrations greater than the MTCA cleanup levels (CULs). Construction excavation at the Property will include removal of soil in stages as excavation activities proceed. Excavated soil is planned to be directly loaded into trucks for off-site disposal or temporarily stockpiled pending off-site disposal. The General Contractor and/or Earthwork Contractor (collectively "Contractor") will be responsible for developing means and methods for soil and stormwater management, equipment decontamination, and tracking waste streams during construction. During construction, GeoEngineers will assist with material management based on existing chemical analytical data and physical evidence of contamination including color, staining, sheen and/or headspace vapors measured using a photoionization detector (PID). Material management, confirmation soil sampling and field screening methods are further described in the CMMP.

Post-construction groundwater water monitoring will then be performed to evaluate and verify that groundwater conditions remain below the MTCA CULs.

2.5. Site Map

The Site and surrounding features are shown in the Site Plan below.

3.0 WORK PLAN

Field activities will be completed to identify, oversee and verify the removal of contaminated soil generated from the Property during redevelopment sourcing from historical land use and operations. Based on previous environmental investigation results, three material management units are identified to guide the Contractor during soil excavation activities to ensure the proper handling and disposal of each waste stream to comply with applicable solid waste regulations. GeoEngineers specific activities will include:

- Document field activities during construction.
- Assist the Contractor in identifying and segregating individual material management units during construction based on field screening, previous environmental data and/or additional characterization data collected during construction (see the CMMP).
- Collection of soil samples to verify the contact beneath the base of the fill (i.e., Category 2 Soil), in native soil to define to the vertical and/or lateral extent of Category 2 soil for proper material management as necessary to support construction, vertical and lateral extent of Category 2 and/or 3 soil previously identified at the Property or if areas of previously unidentified suspect contamination are discovered.
- Collection of confirmation soil samples from the base and sidewalls of the remedial excavation to verify the removal of soil in which one or more contaminant was previously detected at a concentration exceeding the MTCA CULs.
- Installation of new monitoring well(s) and collection of groundwater samples from new and/or existing monitoring wells following construction to evaluate groundwater conditions and verify compliance with the MTCA CULs.
- Submittal of soil and groundwaters samples for a combination of the following:
 - Gasoline-range TPH by NWTPH-Gx
 - Diesel- and oil-range TPH by NWTPH-Dx
 - BTEX by EPA Method 8260
 - PAHs by EPA Method 8270
 - Lead by EPA 6000/7000 Method Series

ANTICIPATED FIELD ACTIVITIES

Field Activities (Check All Anticipated Field Activities to be Completed)		
oxtimes Pre-Entry Briefing and Acknowledgment - Form 1	UST Site Check/Site Assessment	
Safety Meeting Record - Form 2	□ UST Removal Observation	
☑ Job Hazard analyses (JHA) - Form 3	Product Sample collection	
⊠ Site Reconnaissance	Recovery of Free Product	
⊠ Surveying	⊠ Remedial Excavation	
⊠ Soil Sampling	Monitoring Well Installation	
☐ Groundwater Sampling	☑ Monitoring Well Development	
□ Vapor Sampling	\boxtimes Groundwater Depth and Free Product Measurement	

Field Activities (Check All Anticipated Field Activities to be Completed)		
Test Pit Exploration	Other: Click here to enter text.	
Direct Push Exploration	Other: Click here to enter text.	
☑ Hollow-Stem Auger Exploration	Other: Click here to enter text.	
☑ Construction Monitoring	Other: Click here to enter text.	

ANTICIPATED FIELD PERSONNEL AND TRAINING

Name of Employee	Level of HAZWOPER Training (24-/40-hr)	Date of 8-Hr Refresher Training	First Aid/ CPR Expiration
James Kohn	40-hr	July 2022	September 2022
Nathan Solomon	40-hr	March 2023	December 2023
Stuart Odekirk	40-hr	February 2019	March 2019
Jason Sanford	40-hr	March 2022	May 2022

4.0 CHAIN OF COMMAND

The chain of the command for the 701 South Jackson Street Site remedial excavation and construction project has been established to provide the hierarchical structure in which field personnel reports potential issues or concerns if working conditions change that may affect on-site and off-site health and safety. The project chain of command and functional responsibility for key individuals are presented below.

PROJECT CHAIN OF COMMAND AND CONTACT INFORMATION

Chain of Command	Title	Name	Telephone Numbers
1	Current Owner	Brad Padden Robert Tiscareno	425.209.8774 (o) 206.915.9702 (o)
2	Associate In Charge	Tim Syverson	206.605.9236 (c) 206.448.4197 (o)
3	Health and Safety Program Manager	Lucas Miller	509.209.2830 (o) 206.451.5307 (c)
4	Project Manager	Robert Trahan	206.240.2300 (c) 206.239.3253 (o)
5	Client Assigned Site Supervisor/Contractor	Craig Haveson	206.439.6343 (o) 206.510.8787 (c)
6	Site Safety Officer	James Kohn	847.521.0619 (c)
7	Field Engineer/Geologist	James Kohn Nathan Solomon Stuart Odekirk Jason Sanford	847.521.0619 (c) 206.437.6819 (c) 425.829.5304 (c) 206.261.4475 (c)
8	Fremont Analytical Cascade Drilling	Clair Griggs Kacey Globe	206.352.3790 (o) 425.527.9700 (o)

4.1. Functional Responsibility

The functional responsibility of individual roles within GeoEngineers health and safety program are described below.

4.1.1. Health and Safety Program Manager (HSM)

GeoEngineers' Health and Safety Program Manager (HSM) is responsible for implementing and promoting employee participation in the program. The HSM issues directives, advisories and information regarding health and safety to the technical staff. Additionally, the HSM has the authority to audit on-site compliance with HASPs, suspend work or modify work practices for safety reasons, and dismiss from the site any GeoEngineers or subcontractor employees whose conduct on the site endangers the health and safety of themselves or others.

4.1.2. Project Manager (PM)

A PM is assigned to manage the activities of various projects and is responsible to the principal-in-charge of the project. The PM is responsible for assessing the hazards present at a job site and incorporating the appropriate safety measures for field staff protection into the field briefing and/or Site Safety Plan. He or she is also responsible for assuring that appropriate HASPs are developed. The PM will provide a summary of chemical analysis to personnel completing the HASP. PMs shall also see that their project budgets consider health and safety costs. The PM shall keep the HSM informed of the project's health- and safety-related matters as necessary. The PM shall designate the project Site Safety Officer (SSO) and help the SSO implement the specifications of the HASP. The PM is responsible for communicating information in site safety plans and checklists to appropriate field personnel. Additionally, the PM and SSO shall hold a site safety briefing before any field activities begin. The PM is responsible for transmitting health and safety information to the Site Safety Officer (SSO) when appropriate.

4.1.3. Site Safety Officer (SSO)

The SSO will have the on-site responsibility and authority to modify and stop work or remove personnel from the site if working conditions change that may affect on-site and off-site health and safety. The SSO will be the main contact for any on-site emergency situation. The SSO is First Aid and CPR qualified and has current Hazardous Waste Operations and Emergency Response (HAZWOPER) training. The SSO is responsible for implementing and enforcing the project safety program and safe work practices during site activities. The SSO shall conduct daily safety meetings, perform air monitoring as required, conduct site safety inspections as required, coordinate emergency medical care, and ensure personnel are wearing the appropriate personal protective equipment (PPE). The SSO shall have advanced fieldwork experience and shall be familiar with health and safety requirements specific to the project. The SSO has the authority to suspend site activities if unsafe conditions are reported or observed.

Duties of the SSO include the following:

- Implementing the HASP in the field and monitoring compliance with its guidelines by staff.
- Being sure that all GeoEngineers field personnel have met the training and medical examination requirements. Advising other contractor employees of these requirements.
- Maintaining adequate and functioning safety supplies and equipment at the site.
- Setting up work zones, markers, signs and security systems, if necessary.

- Performing or supervising air quality measurements. Communicating information on these measurements to GeoEngineers field staff and subcontractor personnel.
- Communicating health and safety requirements and site hazards to field personnel, subcontractors and contractor employees, and site visitors.
- Directing personnel to wear PPE and guiding compliance with all health and safety practices in the field.
- Consulting with the PM regarding new or unanticipated site conditions, including emergency response activities. If monitoring detects concentrations of potentially hazardous substances at or above the established exposure limits, notify/consult with the PM. Consult with the PM and the HSM regarding new or unanticipated site conditions, including emergency response activities. If field monitoring indicates concentrations of potentially hazardous substances at or above the established exposure limits, the HSM must be notified, and corrective action taken.
- Documenting all site accidents, illnesses and unsafe activities or conditions, and reporting them to the PM and the HSM.
- Directing decontamination operations of equipment and personnel.

4.1.4. Field Engineer/Geologist

All GeoEngineers employees working on-site that have the potential of coming in contact with hazardous substances or physical hazards are responsible for participating in the health and safety program and complying with the site-specific health and safety plans. These employees are required to:

- Participate and be familiar with the health and safety program as described in this manual.
- Notify the SSO that when there is need to stop work to address an unsafe situation.
- Comply with the HASP and acknowledge understanding of the plan.
- Report to the SSO, PM or HSM any unsafe conditions and all facts pertaining to incidents or accidents that could result in physical injury or exposure to hazardous materials.
- Participate in health and safety training, including initial 40-hour Occupational Safety and Health Administration (OSHA) course, annual 8-hour HAZWOPER refresher, and First Aid/cardiopulmonary resuscitation (CPR) training.
- Participate in the medical surveillance program if applicable.
- Schedule and take a respirator fit test annually.
- Any field employee working onsite may stop work if the employee believes the work is unsafe.

4.1.5. Contractors Under GeoEngineers Supervision

Contractors working on the site under GeoEngineers supervision or direct control that have the potential of coming in contact with hazardous substances or physical hazards shall have their own health and safety program that is in line with the site-specific health and safety plan.

5.0 EMERGENCY INFORMATION

5.1. Emergency Response Preparedness

- Personnel on-site should use the "buddy system" (pairs).
- Visual contact should be maintained between "pairs" on site, with the team remaining in proximity to assist each other in case of emergencies.
- If any member of the field crew experiences any adverse exposure symptoms while on site, the entire field crew should immediately halt work and act according to the instructions provided by the SSO.
- Wind indicators visible to all on-site personnel should be provided by the SSO to indicate possible routes for upwind escape. Alternatively, the SSO may ask on-site personnel to observe the wind direction periodically during site activities.
- The discovery of any condition that would suggest the existence of a situation more hazardous than anticipated should result in the evacuation of the field team, contact of the PM, and re-evaluation of the hazard and the level of protection required.
- If an accident occurs, the SSO and the injured person are to complete, within 24 hours, an Accident Report (Form 4) for submittal to the PM, the HSPM, and HR. The PM should ensure that follow-up action is taken to correct the situation that caused the accident or exposure.

5.2. Standard Emergency Procedures

- Get help.
 - Send another worker to phone 9-1-1 (if necessary).
 - As soon as feasible, notify GeoEngineers' Project Manager.

Reduce risk to injured person.

- Turn off equipment.
- Move person from injury location (if in life-threatening situation only).
- Keep person warm.
- Perform First Aid and/or CPR (if necessary).
- Transport injured person to medical treatment facility (if necessary).
 - By ambulance (if necessary) or GeoEngineers vehicle.
 - Stay with person at medical facility.
 - Keep GeoEngineers Project Manager apprised of situation and notify Human Resources Manager of situation.

HOSPITAL AND DIRECTIONS

Hospital Name	Harborview Medical Center		
Hospital Address	325 9th Avenue, Seattle, WA 98104		
Phone Number (Hospital ER)	(206) 744-3000		
Driving Distance	0.8 Miles		
Driving Directions	 Take 7th Avenue to Jackson Street Turn left at cross street onto S Jackson Turn right onto 6th Avenue Turn right onto Yesler Way Turn left onto 8th Avenue Turn left onto 9th Avenue Turn left onto Alter Street Destination will be on the right 		
Driving Map	Image: Sector		

6.0 HAZARD ANALYSIS

A hazard analysis has been completed as part of preparation of this HASP. The hazard analysis was performed taking into account the known and potential hazards at the site and surrounding areas, as well as the planned work activities. The results of the hazard analysis are presented in this section. The hazard

assessment will be evaluated each day before beginning work. Updates will be made as necessary and documented in the Job Hazard Analyses (JHA) Form 3 or daily field log.

Known and/or anticipated hazards are discussed in the following sections.

6.1. Job Hazard Analysis

The following presents potential job hazards and mitigation procedures/steps should be followed prior to leaving to the job site, while enroute to the job site and following arrival to the job site to reduce/eliminate these hazards:

- Pre-Job Activities Potential hazards include unfamiliar locations, congestion, unpaved roads, mechanical failure, flat tires, vehicle fire, exhaust leaks, vehicle collision, internal projectiles.
 - Inspect the vehicle before departure:
 - Check for tire cuts, fluid leaks, flat tires, body damage, windshield cracks, and other damage.
 - Check lights, wipers, fluid levels, and seat belts.
 - Study the area maps, photos and use GPS and compass skills.
 - Use only vehicles appropriate for the work needs and the driving conditions expected.
 - Ensure the vehicle has a complete and current first aid kit and fire extinguisher.
 - Place heavy objects behind a secure safety cage if they must be carried in a passenger compartment.
 - Ensure vehicle has fuel to get to and from your destinations.
 - Identify the safest spot to park field vehicles.
 - Discuss potential biological, physical. Chemical and ergonomic hazards with Project Manager.
- Highway Driving Potential hazards include unfamiliar roads, mechanical failure, flat tires, vehicle fire, vehicle collision.
 - Inform your Project Manager of your destination and estimated time of return.
 - Carry extra food, water, and clothing.
 - Drive defensively.
 - Inspect vehicle prior to departure (see Pre-Job Activities)
- Driving on Unimproved Roads Potential hazards include encountering other vehicles on unfamiliar narrow/rough roads, animal/object collision, running/skidding off-road, icy/muddy conditions, flying debris (rocks, etc.), poor visibility, backing, run-away vehicle, roadway obstacles, Project Manager unaware of location.
 - Stay on the main roadway to the extent practicable.
 - Pull over on firm ground and avoid soft shoulders, if a stop is necessary.
 - Drive on maintained trails when possible.
 - Drive with care in tall brush and grass. Watch for wildlife, fallen trees, rocks, and other obstacles.
 - Slow down, especially on corners.

- Maintain a safe speed at all times.
- Follow from a safe distance.
- Know when and how to use 4WD.
- Use only vehicles appropriate to the road conditions.
- Inspect vehicle/location conditions prior to departure (see Pre-Job Activities).
- Traveling on Foot Potential hazards include falls, foot injuries, and stress and/or impact injuries, forest fires, lightning, personal safety.
 - Identify and use safe travel routes. Do not exceed physical abilities or equipment design.
 - Use pack equipment properly. Carry weight on hips, not back.
 - Warm up and stretch the appropriate muscle groups before and after hitting the trail.
 - Test and use secure footing. Move cautiously and deliberately. Never run.
 - In heavy undergrowth, particularly off-trail, slow down and watch carefully.
 - Carry tools on the downhill side.
 - Wear safety-toed boots with good, non-skid soles that are tall enough to support ankles.
 - Know basic first aid. Completion of a basic first aid course is required.
 - Use footwear appropriate to the terrain and load being carried.
 - Know how to fall. Roll, protect the head and neck, and do not extend arms to break the fall.
 - Wear fire retardant clothing.
 - Refer to GeoEngineers Personal Safety Program Never you're your personal safety. Leave the area and contact your Project Manager.
 - Travel on maintained trails when possible.
- **Slope Evaluation** Potential hazards include slips, trips and falls.
 - Travel on maintained trails when possible.
 - Take extra precautions when encountering steep, loose, wet trail conditions.
 - Always carry tools on your downhill side.
 - Use a rope for stability if needed/tie off to trees/have throw rope with on-shore buddy.
 - Take slow deliberate steps as conditions dictate.
 - Use a flashlight after dark.
 - Travel after dark only in an emergency.
 - Wear appropriate footwear for conditions.
- Unfamiliar Crew and Tasks Potential hazards include: crew does not notify site owner/manager, unaware of the job site hazards and steps to prevent injury, appropriate personnel protective equipment not worn.
 - Conduct a tailgate safety meeting discussing the jobs, the hazards and actions that will be taken to prevent injury.
 - Discuss "Stop Work Authority" as it applies to each site member.

- Discuss appropriate Personal Protection Equipment (PPE) including high visibility clothing such as reflective vest.
- Notify attendant and/or site owner/manager of work activities and location.
- Discuss appropriate PPE including high visibility clothing such as reflective vest.
- Set up exclusion zone surrounding work area.

Communication – Potential hazards include lack of cell phone coverage, use heavy equipment, large job site without clear address or entrance for emergency crews.

- Verify cell phone is working.
- Maintain communication with Project Manager throughout job task.
- Maintain communication and line of sight with heavy equipment operators.
- Verify location and contact numbers for emergency medical assistance or 911.
- Verify designated job site entrance/exit and job site emergency procedures.
- Review job site health and safety plan.

6.2. Physical Hazards

Physical hazards potentially at the Site and mitigation measures and/or procedures for addressing potential physical hazards are summarized below.

ANTICIPATED PHYSICAL HAZARDS

Physical Hazards (Check All Anticipated Hazards)	
☑ Drill rig and support truck	☑ Overhead hazards/power lines
⊠ Backhoe	☑ Tripping/puncture hazards (debris on-site, steep slopes or pits)
⊠ Trackhoe	Unusual traffic hazard – Construction Excavation and Street Traffic
⊠ Crane	⊠ Heat/Cold, Humidity
⊠ Front End Loader	☑ Utilities/ utility locate
\boxtimes Excavations/trenching (1:1 slopes for Type B soil)	⊠ Noise
\boxtimes Shored/braced excavation (greater than 4' deep)	\Box Other: Click here to enter text.

Measures to mitigate potential/anticipated physical hazards including the following:

- Work areas will be marked with reflective cones, barricades and/or caution tape. High-visibility vests will be worn by on-site personnel to ensure they can be seen by vehicle and equipment operators. Use proper lighting of the work areas.
- Field personnel will be aware at all times of the location and motion of heavy equipment in the area of work to ensure a safe distance between personnel and the equipment. Personnel will be visible to the operator at all times and will remain out of the swing and/or direction of the equipment apparatus. Personnel will approach operating heavy equipment only when they are certain the operator has indicated that it is safe to do so through hand signal or other acceptable means.

- Heavy equipment and/or vehicles used on this site will not work within 20 feet of overhead utility lines without first ensuring that the lines are not energized. This distance may be reduced to 10 feet, depending on the client and the use of a safety watch. Note: If it is later determined that overhead lines are a hazard on this job site, a copy the overhead lines safety section from the HASP Supplemental document shall be attached.
- Personnel will avoid tripping hazards, steep slopes, pits and other hazardous encumbrances. If it becomes necessary to work within 6 feet of the edge of a pit, slope or other potentially hazardous area, appropriate fall protection measures will be implemented by the Site Safety Officer in accordance with OSHA/DOSH regulations and the GeoEngineers Health and Safety Program.
- Personnel will wear appropriate hearing protection (see section on Personnel Protective Protection).
 - Excessive levels of noise (exceeding 85 decibels [dBA]) are anticipated. Personnel potentially exposed will wear ear plugs or muffs with a noise reduction rating of at least 25 dBA whenever it becomes difficult to carry on a conversation 6 feet away from a co-worker or whenever noise levels become bothersome. Increasing the distance from the source will decrease the noise level noticeably.
 - Personnel should be properly trained in the use, selection and the care of hearing protection.
 - Where practical, engineering and/or administrative controls should be utilized to maintain employees' exposure to noise levels below the PEL/TWA.
- No employee shall enter an excavation greater than 4 feet unless authorized by a Competent Person.
- Appropriate measures shall be taken to prevent entry of water in or around the excavation. No employee shall enter an excavation with accumulated water.
- Keep excavated soil and other materials and equipment at least 2 feet from edge of the excavation.
- Cold stress control measures will be implemented according to the GeoEngineers Health and Safety Program.
 - Working in cold environments presents many hazards to site personnel and can result in frost nip (superficial freezing of the skin), frost bite (deep tissue freezing), or hypothermia (lowering of the core body temperature).
 - The combination of wind and cold temperatures increases the degree of cold stress experienced by site personnel. Site personnel shall be trained on the signs and symptoms of cold-related illnesses, how the human body adapts to cold environments, and how to prevent the onset of cold-related illnesses. Heated break areas and warm beverages shall be provided during periods of cold weather.
- Heat stress control measures required for this site will be implemented according to GeoEngineers Health and Safety Program.
 - Site personnel shall be trained on the signs and symptoms of heat-related illnesses, how the human body adapts to hot environments, and how to prevent the onset of heat-related illnesses. When employee exposure is at or above an applicable temperature listed in the Heat Stress table below, Project Managers will ensure that:
 - A sufficient quantity of drinking water is readily accessible to employees at all times; and
 - All employees have the opportunity to drink at least one quart of drinking water per hour.
 - A cooled, shaded rest area should be available to workers.

HEAT STRESS

Type of Clothing	Outdoor Temperature Action Levels
Nonbreathing clothes including vapor barrier clothing or PPE such as chemical resistant suits	52°
Double-layer woven clothes including coveralls, jackets and sweatshirts	77°
All other clothing	89°

6.3. Biological Hazards

Biological hazards potentially at the Site and mitigation measures and/or procedures for addressing potential biological hazards are summarized below.

ANTICIPATED BIOLOGICAL HAZARDS

Biological Hazards (Check the Hazards Anticipated for the Project)
□ Wildlife (insects, snakes, etc.)
🖂 Human Waste
☑ Hypodermic needles or other infectious hazards
Poison Ivy or other vegetation
Other:

Measures to mitigate potential/anticipated biological hazards including the following:

- Wildlife Hazards:
 - Use insect repellant as necessary.
 - If employee has bee sting allergy, carry epi-pen.
 - Avoid bears when they are sited. Give wide berth.
 - Do not get in between a sow and cubs.
 - Have an armed bear guard (contracted by PLP) present in any areas where bears could occur.
 - Avoid areas where salmon carcasses accumulate or where bears are actively foraging.
 - Stay alert and a safe distance away from any other biological hazards (e.g. otters, seals, hunters).
 - Wear appropriate PPE including gloves, long sleeves and pants, mosquito hats and waders if probability of encountering biting or stinging insects.
- Human Waste:
 - Notify property owner of location and description. (It is not our job to handle waste).
 - Wear required PPE for job thick soled boots with lug tread, leather work gloves, long pants & long-sleeved shirt.
 - The exposure to blood, waste or other potentially infectious materials (OPIMs) can be avoided in the field by being aware of your surroundings and the potential hazards. Unlike first

responders or medical staff, GeoEngineers employees are not trained to handle bloodborne pathogens or OPIMs.

- If we encounter such materials, the best practice is notifying the property owner/client that disposal is required, and any other specific information we can provide (amount, type, location). If they are not aware of proper disposal procedures (such as using long-handled pincher type devices for pick up waste they can contact their local health department or city parks/maintenance staff for advice or assistance.
- Exposure to hypodermic needles other infectious hazards:
 - Wear heavy lug soled boots when working in the field (i.e. not soft soled office shoes). Around drill rigs, steel toed boots with high traction lug soles are typically required.
 - Do not pick up used needles.
 - Notify the property owner if their presence, location and amount. They should initiate disposal
 or flag area off from general pedestrian foot traffic not our job.
 - If working in remote or inner urban area clearing brush from ground area, use appropriate trimming tools and wear leather work gloves. Be aware of surroundings and notice any discarded syringes. Again, if present, notify property owner to collect / dispose of them.

6.4. Ergonomic Hazards

ANTICIPATED ERGONOMIC HAZARDS

Ergonomic Hazards (Check the Hazards Anticipated for the Project)	
🖂 Heavy Lifting	
Repetitive Motion	
Other:	

Measures to mitigate potential/anticipated ergonomic hazards including the following:

- Minimize reaching by keeping frequently used items within arm's reach, moving your whole body as close as possible to the object.
- Avoid overextending by standing up when retrieving objects on shelves.
- Keep your back in shape with regular stretching exercises.
- Get help from a coworker or use a hand truck if the load is too heavy or bulky to lift alone.
- Proper Lifting Techniques:
 - Face the load; don't twist your body. Stand in a wide stance with your feet close to the object.
 - Bend at the knees, keeping your back straight. Wrap your arms around the object.
 - Let your legs do the lifting.
 - Hold the object close to your body as you stand up straight. To set the load down, bend at the knees, not from the waist.

6.5. Chemical Hazards

ANTICIPATED CHEMICAL HAZARDS

Chemical Hazards	Concentrations	Media of Concern	MTCA Cleanup Level	Units
Gasoline-range hydrocarbons	1.6 - 24,000	Soil	30	mg/kg
Diesel-range hydrocarbons	280 - 590	Soil	2,000	mg/kg
Heavy Oil-range hydrocarbons	78 - 689	Soil	2,000	mg/kg
Total Petroleum Hydrocarbons	123,560 - >13,231,010	Soil Vapor	4,700	µg/m³
Benzene	0.032 - 110	Soil	0.03	mg/kg
Denzene	8.19 - 153	Soil Vapor	11	µg/m³
Ethylhonzono	0.076 - 470	Soil	6	mg/kg
Ethylbenzene	Less than 695	Soil Vapor	15,000	µg/m³
Toluene	0.17 - 1.7	Soil	7	mg/kg
Toluene	Up to 1,232 $\mu g/m^3$	Soil Vapor	76,000	µg/m³
Vulence	0.061 - 2,400	Soil	9	mg/kg
Xylenes	Up to 1,232	Soil Vapor	1,500	µg/m³
Lead	1.5 - 340	Soil	250	mg/kg
Naakthalaasa	0.0595 - 12.8	Soil	5	mg/kg
Naphthalenes	2.97 - 99.9	Soil Vapor	2.5	µg/m³
cPAHs	0.0053 - 0.74	Soil	0.1	mg/kg

6.6. Summary of Selected Chemical Hazards

6.6.1. Gasoline

Gasoline is a manufactured mixture that does not exist naturally in the environment. Gasoline is produced from petroleum in the refining process. Typically, gasoline contains more than 150 chemicals, including small amounts of benzene, toluene, xylene, and sometimes lead. How the gasoline is made determines which chemicals are present in the gasoline mixture and how much of each is present. The actual composition varies with the source of the crude petroleum, the manufacturer, and the time of year. The National Toxicology Program (NTP) coordinates research within the U.S. Department of Health and Human Services (DHHS) and has studied constituents of gasoline (such as tetraethyl lead), but has not classified the complex mixture of chemicals that combine to form gas a human carcinogen. The International Agency for Research on Cancer (IARC) classifies gasoline as possibly carcinogenic to humans (2B). The American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) for gasoline is 300 ppm, for an 8-hr Time Weighted Average (TWA); 500 ppm Short-Term Exposure Limit (STEL), usually 15 minutes.

Gasoline levels have previously been detected in low concentration in the project areas which fall underneath all known safety levels of concern. The outdoor setting of the project should further reduce the chance of exposure to hazardous or flammable levels of gasoline during projected activities.

6.6.2. Diesel Fuels

Diesel fuels are similar to fuel oils used for heating (fuel oils no. 1, no. 2 and no. 4). All fuel oils consist of complex mixtures of aliphatic and aromatic hydrocarbons. Diesel fuels predominantly contain a mixture of C10 through C19 hydrocarbons, which include approximately 64 percent aliphatic hydrocarbons, 1 to 2 percent olefinic hydrocarbons, and 35 percent aromatic hydrocarbons. Workers may be exposed to fuel oils through their skin without adequate protection, such as gloves, boots, coveralls, or other protective clothing. Breathing diesel fuel vapors for a long time may damage your kidneys, increase your blood pressure, or lower your blood's ability to clot. Constant skin contact (for example, washing) with diesel fuel may also damage your kidneys. The International Agency for Research on Cancer (IARC) has determined that residual (heavy) fuel oils and marine diesel fuel are possibly carcinogenic to humans (Group 2B classification). Residue from aged diesel fuel can irritate the skin, if left in contact for too long. Degraded fuel can irritate the skin and mucous membranes, if contact is made. Exercising good personal hygiene and cleaning off PPE post-work and prior to re-donning safety equipment will minimize potential contact. More on Total Petroleum Hydrocarbons health effects in the Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profile document here: https://www.atsdr.cdc.gov/ToxProfiles/ TP.asp?id=424&tid=75.

Diesel fume levels have previously been detected in low concentration in the project areas which fall underneath all known safety levels of concern. The outdoor setting of the project should further reduce the chance of exposure to hazardous or flammable levels of diesel during projected activities.

6.6.3. Benzene

Benzene is a natural constituent of crude oil and is one of the elementary petrochemicals. Due to the cyclic continuous pi bonds between the carbon atoms, benzene is classed as an aromatic hydrocarbon. Benzene is a colorless and highly flammable liquid with a sweet smell, and is partially responsible for the aroma around petrol (gasoline) stations. It is used primarily as a precursor to the manufacture of chemicals with more complex structure, such as ethylbenzene and cumene, of which billions of kilograms are produced annually. Although a major industrial chemical, benzene finds limited use in consumer items because of its toxicity. Historically detected levels of benzene on site fall below levels of concern for contamination exposure during projected activities. The source of benzene detected in soil samples on site has not yet been confirmed. However, the outdoor setting of the project should further reduce the chance of exposure to potential to benzene during project activities.

Benzene is a central nervous system depressant. Symptoms include headache, nausea, tremors, and fatigue, but these typically do not occur until exposure concentrations are in excess of 150 ppm. There is significant evidence that chronic exposures are carcinogenic causing a progressively malignant disease of the blood-forming organs. Contact with liquid benzene may cause blistering and dermatitis. In addition, benzene can be absorbed through unprotected skin and eye and mucous membranes. Benzene vapors can cause transient eye irritation. The mean air odor threshold for benzene is 34 ppm. Benzene's ionization potential (IP) is 9.25 eV and its vapor pressure is 75 mm Hg. Benzene has an ACGIG A1 designation, a Confirmed Human Carcinogen (leukemia). It also has a skin notation, indicating the potentially significant

contribution to the overall exposure by the cutaneous route, including mucous membranes and the eyes, by contact with vapors, liquids and solids.

6.6.4. Lead

Lead is a naturally occurring bluish-gray metal found in small amounts in the earth's crust. Lead can be found in all parts of our environment. Much of it comes from human activities including burning fossil fuels, mining, and manufacturing. Lead has many different uses. It is used in the production of batteries, ammunition, metal products (solder and pipes), and devices to shield X-rays. Because of health concerns, lead from gasoline, paints and ceramic products, caulking, and pipe solder has been dramatically reduced in recent years. Lead has both chronic and acute effects on the body, primarily as a central nervous system inhibitor. Lead is particularly dangerous when ingested by developing children as it may lead to brain development issues. Lead has been detected in TWA hazardous levels in site soil samples previously. Efforts at dust mitigation or monitoring should be made if dust generation is a possibility on site.

Monitor the site conditions for dust. If possible, work upwind during drilling and sample collection.

6.6.5. Polycyclic aromatic hydrocarbons (PAHs)

PAHs are a group of over 100 different chemicals that are formed during the incomplete burning of coal, oil and gas, garbage, or other organic substances like tobacco or charbroiled meat. PAHs are usually found as a mixture containing two or more of these compounds, such as soot. Some PAHs are manufactured. These pure PAHs usually exist as colorless, white, or pale yellow-green solids. PAHs are found in coal tar, crude oil, creosote, and roofing tar, but a few are used in medicines or to make dyes, plastics, and pesticides. PAHs are known carcinogens. Historical levels of PAHs on site fall below levels of concern for contamination exposure during projected activities. Monitor the site conditions for dust. If possible, work upwind during drilling and sample collection.

6.7. Documentation of Hazards

Update in Daily Report. Include evaluation of:

- Physical Hazards (excavations and shoring, equipment, traffic, tripping, heat stress, cold stress and others)
- Chemical Hazards (odors, spills, free product, airborne particulates and others present)
- Biological Hazards (snakes, spiders, other animals, discarded needles, poison ivy, pollen, bees/wasps and others present)

EXPOSURE LIMITS

Compound/ Description	OSHA PEL Exposure Limit	WA-DOSH PEL Exposure Limit	ACGIH TLV Exposure Limits	NIOSH REL Exposure Limits	Exposure Routes	Symptoms of Exposure
Gasoline- clear liquid with a characteristic odor. Motor fuel, motor spirits, natural gasoline. A complex mixture of volatile, hydrocarbons (paraffins, cycloparafinns and aromatics)	None established by OSHA	PEL: 300 ppm STEL: 500 ppm	TWA: 300 ppm STEL: 500 ppm		Inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin, mucous membrane; dermatitis, headache, lassitude (weakness, exhaustion), blurred vision, dizziness, slurred-speech, confusion, convulsions; chemical pneumonitis (aspiration liquid)
Diesel Fuel, black liquid with a characteristic odor	None established by OSHA		TLV-TWA = 100 mg/m3		Ingestion, inhalation, skin absorption, skin and eye contact	Irritated eyes, skin, and mucous membrane; fatigue; blurred vision; dizziness; slurred speech; confusion; convulsions; and headache, and dermatitis
Benzene, organic chemical compound that is colorless and highly flammable liquid with a sweet smell, and is partially responsible for the aroma of gasoline	PEL: 1 ppm STEL: 5 ppm	TWA: 1 ppm STEL: 5 ppm	TLV-TWA: 0.5 ppm TLV-STEL: 2.5 ppm	TWA 0.1 ppm STEL= 1 ppm	Inhalation, skin absorption, ingestion, skin and/or eye contact	Irritated eyes, skin, nose, respiratory system; dizziness; headache, nausea, staggered gait; anorexia, lassitude (weakness, exhaustion); dermatitis; bone marrow depression; [potential occupational carcinogen]
Ethylbenzene, highly flammable, colorless liquid with an odor similar to that of gasoline	PEL: 100 ppm	PEL 100 ppm STEL: 125 ppm	TLV-TWA: 100 ppm TLV-STEL 125 ppm	REL: 100 ppm IDLH: 800 ppm	Inhalation, skin absorption, ingestion, skin and/or eye contact	Eye and mucous membrane irritation, respiratory irritation, dermatitis
Toluene, colorless, water- insoluble liquid with the smell associated with paint thinners	PEL: 200 ppm	PEL: 100 ppm STEL: 150 ppm	TLV-TWA: 20 ppm	TWA: 100 ppm	Inhalation, skin absorption, ingestion, skin and/or eye contact	Fatigue, weakness, dizziness, headaches, eye and nose irritation, anxiety

Compound/ Description	OSHA PEL Exposure Limit	WA-DOSH PEL Exposure Limit	ACGIH TLV Exposure Limits	NIOSH REL Exposure Limits	Exposure Routes	Symptoms of Exposure
Xylenes, colorless, flammable, slightly greasy liquid	PEL: 100 ppm	PEL: 100 ppm STEL: 150 ppm	STEL: 100 ppm	TWA: 100 ppm	Inhalation, skin absorption, ingestion	Nausea, headaches, dizziness, weakness, irritability, confusion, loss of balance, sleepiness, loss of consciousness, death
Lead, soft heavy metal that is silvery with a hint of blue; it tarnishes to a dull gray color when exposed to air	PEL: 0.05 mg/m³ 50 μg/m³	AL: 30 μg/m³ PEL: 0.05 mg/m³ 50 μg/m³	TLV 0.05 mg/m ³	REL 0.05 mg/m3 IDLH 100 mg/m3	Inhalation, ingestion, skin and/or eye contact	Lassitude (weakness, exhaustion), insomnia, facial pallor, anorexia, weight loss, malnutrition, constipation, abdominal pain, colic, anemia, gingival lead line, tremor, wrist and ankle paralysis, encephalopathy, kidney disease, irritated eyes, hypotension
Naphthalene, white crystalline solid with a characteristic odor	PEL: 10 ppm	TWA: 10 ppm STEL: 15 ppm	TLV-TWA: 10 ppm TLV-STEL: 15 ppm	TWA: 10 ppm	Inhalation, skin absorption, ingestion, skin and/or eye contact	Destruction of red blood cells, confusion, nausea, diarrhea, blood in urine, jaundice
Carcinogenic Polycyclic Aromatic Hydrocarbons PAHs (cPAHs)* coal tar pitch volatiles	0.2 mg/m ³ (TWA)	0.2 mg/m ³ (TWA) 0.6 mg/m ³ (STEL)	0.2 mg/m ³ (TWA)	0.1 mg/m ³ (TWA) 80 mg/m ³ (IDLH)	Ingestion, inhalation, skin and/or eye contact	Dermatitis, bronchitis, potential carcinogen

Notes:

IDLH = immediately dangerous to life or health

OSHA = Occupational Safety and Health Administration

ACGIH = American Conference of Governmental Industrial Hygienists

mg/m³ = milligrams per cubic meter

TWA = time-weighted average (Over 8 hrs.)

PEL = permissible exposure limit

TLV = threshold limit value (over 10 hrs.)

STEL = short-term exposure limit (15 min)

ppm = parts per million

7.0 AIR MONITORING PLAN

An air monitoring plan has been prepared as part of development of this HASP. The air monitoring plan is based on the results of the chemical exposure assessment and the known and potential inhalation hazards on-site. The air monitoring plan addresses steps necessary to limit worker exposure. Non-occupational exposures are not addressed in this plan.

Work upwind if at all possible.

AIR MONITORING EQUIPMENT

Air Monitoring Equipment (Check the Anticipated Method for the Project)

□ Multi-Gas Detector (may include oxygen, carbon monoxide, hydrogen sulfide, lower explosive limit)

- $\hfill\square$ Dust Monitor
- ☑ Other (i.e., detector tubes or badges) Please specify: PID

AIR MONITORING FREQUENCY

Air Monitoring Equipment (Check the Anticipated Method for the Project)
☑ Continuous during soil disturbance activities or handling samples
15 minutes
□ 30 minutes
Hourly
Other: Click here to enter text.

7.1. Action Levels for Volatile Organic Chemicals

- The workspace will be monitored using a photoionization detector (PID). These instruments must be properly maintained, calibrated and charged (refer to the instrument manuals for details). Zero this meter in the same relative humidity as the area in which it will be used and allow at least a 10-minute warm-up prior to zeroing. Do not zero in a contaminated area.
- An initial vapor measurement survey of the site should be conducted to detect "hot spots" if contaminated soil is exposed at the surface. Vapor measurement surveys of the workspace should be conducted at least hourly or more often if persistent petroleum-related odors are detected. Additionally, if vapor concentrations exceed 5 parts per million (ppm) above background continuously for a 5-minute period as measured in the breathing zone, upgrade to Level C personal protective equipment (PPE) or move to a non-contaminated area.
- Standard industrial hygiene/safety procedure is to require that action be taken to reduce worker exposure to organic vapors when vapor concentrations exceed one-half the threshold limit value (TLV). Because of the variety of chemicals, the PID will not indicate exposure to a specific permissible exposure limit (PEL) and is therefore not a preferred tool for determining worker exposure to chemicals.

If odors are detected, then employees shall upgrade to respirators with Organic Vapor Cartridges and will contact the Health and Safety Program Manager for other sampling options.

Contaminant	Activity	Monitoring Device	Frequency of Monitoring Breathing Zone	Action Level	Action
				Between 0 and 1 ppm	Maintain Level D personal protective equipment (PPE) or move out of contaminated area and work upwind whenever possible.
Organic Vapors	Excavation and soil sampling.	PID	Continuous monitoring during soil disturbance activities or handling samples	>1 ppm for 5 minutes	Upgrade to Level C personal protective equipment (PPE) or move out of contaminated area and work upwind whenever possible.
				≥ 5 ppm for 5 minutes	Evacuate area seek guidance from H&S manager
Combustible	Excavation	ЫП	Continuous monitoring during	>10% LEL or >1,000 ppm	Depends on contaminant. The PEL is usually exceeded before the lower explosive limit (LEL).
Atmosphere / and soil PID gasoline sampling.		soil disturbance activities or handling samples	>10% LEL or >1,000 ppm	Stop work and evacuate the site. Contact Health and Safety Program Manager for guidance.	

8.0 SITE CONTROL PLAN

Work zones will be considered anywhere within the fenced construction boundary. Employees should work upwind machinery if possible. To the extent practicable, use the buddy system. Do not approach heavy equipment unless you are sure the operator sees you and has indicated it is safe to approach. All personnel from GeoEngineers and subcontractor(s) should be made aware of safety features during each morning's safety tailgate meeting (drill rig shutoff switch, location of fire extinguishers, cell phone numbers, etc.). For medical assistance, see Section 5.0 above.

8.1. Traffic or Vehicle Access Control Plans

No vehicle access is allowed within the construction boundary. The Contractor will develop a traffic control plan for use by the Contractor for permit authorization by the City of Seattle for the adjacent ROWs.

8.2. Site Work Zones

An exclusion zone, contamination reduction zone, and support zone will be established at the Property boundary prior to entering the construction excavation area. Personnel leaving the facility or on break should exit through designated entrance/exit points which will constitute the contamination reduction zone. At a minimum, the contaminant reduction zone should include garbage bags into which used PPE should be disposed and wash station for hands and boots.

During monitoring well installation and groundwater sampling, the hot zone/exclusion, contamination and decontamination zones will be established within 10 feet of the drill rig and/or monitoring well.

WORK ZONE DELINIATION

Method of delineation/excluding non-site personnel (Check the Anticipated Method for the Project)
Fence - Construction
Survey Tape
☐ Traffic Cones – Well Installation and Groundwater Sampling
Other: Click here to enter text.

8.3. Buddy System

Personnel on-site should use the buddy system (pairs), particularly whenever communication is restricted. If only one GeoEngineers employee is on site, a buddy system can be arranged with subcontractor/ contractor personnel.

8.4. Site Communication Plan

Positive communications (within sight and hearing distance or via radio) should be maintained between pairs on-site, with the pair remaining in proximity to assist each other in case of emergencies. The team should prearrange hand signals or other emergency signals for communication when voice communication becomes impaired (including cases of lack of radios or radio breakdown) and an agreed upon location for an emergency assembly area.

In instances where communication cannot be maintained, you should consider suspending work until it can be restored. If this is not an option, the following are some examples for communication:

- Hand gripping throat: Out of air, can't breathe.
- Gripping partner's wrist or placing both hands around waist: Leave area immediately, no debate.
- Hands on top of head: Need assistance.
- Thumbs up: Okay, I'm all right; or, I understand.
- Thumbs down: No, negative.

8.5. Decontamination Procedures

Decontamination, at a minimum, should include removing and disposing of PPE when exiting the exclusion zone; and washing your hands. Decontamination may also consist of removing outer protective gloves and washing soiled boots and gloves using bucket and brush provided on-site in the contamination reduction zone. If needed, inner gloves will then be removed, and respirator, hands and face will be washed in either a portable wash station or a bathroom facility at the site. Employees will perform decontamination procedures and wash before eating, drinking or leaving the site.

8.6. Spill Containment Plan (Drum and Container Handling)

- Ensure equipment is properly maintained and does not leak.
- Clean up environmental spills using spill pads to absorb the contaminated soil.
- Properly dispose of material following I.A.W. local and environmental requirements.
- Report spill if unable to fully clean up or I.A.W. client regulations.

The Contractor will develop a separate Spill Containment Plan for use during construction.

8.7. Waste Disposal or Storage

Used PPE is to be placed in a plastic bag for disposal. Wash water, drill cuttings and purge water generated will be stored in 55-gallon drums pending permitted off-site disposal.

WASTE DISPOSAL DISPOSAL/STORAGE

Disposal/Storage Method (Check the Anticipated Method for the Project)

- \boxtimes On site, pending analysis and further action
- Secured (list method): Drum
- Other (describe destination, responsible parties): Contractor will haul to landfill
- □ Other: Click here to enter text.

8.8. Sampling, Managing and Handling Drums and Containers

Drums and containers used during the drilling activities shall meet the appropriate Department of Transportation (DOT), OSHA and U.S. Environmental Protection Agency (EPA) regulations for the waste that they contain. Site operations shall be organized to minimize the number of drum or container movement. When practicable, drums and containers shall be inspected, and their integrity shall be ensured before they are moved. Unlabeled drums and containers shall be considered to contain hazardous substances and handled accordingly until the contents are positively identified and labeled. Before the drums or containers are moved, all employees involved in the transfer operation shall be warned of the potential hazards associated with the contents.

Drums or containers and suitable quantities of proper absorbent shall be kept available and used where spills, leaks or rupturing may occur. Where major spills may occur, a spill containment program shall be implemented to contain and isolate the entire volume of the hazardous substance being transferred. Fire extinguishing equipment shall be on hand and ready for use to control incipient fires.

8.9. Sanitation

Sanitary facilities are available on site or at adjacent properties.

8.10. Lighting

Work is anticipated to be performed during daylight hours. Work may extend slightly into the evening provided adequate lighting is used (e.g., portable flood lights).

8.11. Entry Procedures for Tanks or Vaults (Confined Spaces)

GeoEngineers' employees shall not enter confined spaces to perform work unless they have been properly trained and with hands-on experience in the use of retrieval equipment. If a project requires confined space entry, please include a copy of the confined space permit, and include the training documentation in this HASP.

Trenches greater than 4 feet in depth with the potential for buildup of a hazardous atmosphere are considered confined spaces.

9.0 PERSONAL PROTECTIVE EQUIPMENT

After the initial and/or daily hazard assessment has been completed the appropriate personal protective equipment (PPE) will be selected to ensure worker safety. Task-specific levels of PPE shall be reviewed with field personnel during the pre-work briefing conducted before the start of site operations. Task-specific levels of PPE shall be reviewed with field personnel during the pre-work briefing conducted before the start of site operations.

Site activities include handling and sampling solid subsurface material (material may potentially be saturated with contaminated materials and groundwater). Depth-to-groundwater measurements will be performed as well. Site hazards include potential exposure to hazardous materials, and physical hazards such as trips/falls, heavy equipment, and contaminant exposure.

Air monitoring will be conducted to determine the level of respiratory protection.

- Half-face combination organic vapor/high efficiency particulate air (HEPA) or P100 cartridge respirators must be available to be used on site as necessary. P100 cartridges are to be used only if PID measurements are below the site action limit. P100 cartridges are used for protection against dust, metals and asbestos, while the combination organic vapor/HEPA cartridges are protective against both dust and vapor. Ensure that the PID will detect the chemicals of concern on-site.
- Level D PPE, unless a higher level of protection is required, will be worn on the site. Potentially exposed personnel will wash gloves, hands, face and other pertinent items to prevent hand-to-mouth contact. This will be done prior to hand-to-mouth activities including eating, smoking, etc.
- Adequate personnel and equipment decontamination will be used to decrease potential ingestion and inhalation.

ANTICIPATED PERSONAL PROTECTION EQUIPMENT

Anticipated PPE for the Project (Check All That Apply)
PPE:
oxed Hardhat (if overhead hazards, or client requests)
oxed Steel-toed boots (if crushing hazards are a potential or if client requests)
oxtimes Safety glasses (if dust, particles, or other hazards are present or client requests)
Reflective vest (if working near traffic or equipment)
$oxedsymbol{\boxtimes}$ Hearing protection (if it is difficult to carry on a conversation 3 feet away)
⊠ Rubber boots (if wet conditions)
□ Other: Click here to enter text.
Gloves:
⊠ Nitrile
Latex
□ Other (specify) Click here to enter text.
Protective Clothing:
\Box Tyvek (if dry conditions are encountered, Tyvek is sufficient) (modified Level D or Level C)
\Box Saranex (personnel shall use Saranex if liquids are handled or splash may be an issue) (modified Level D or Level C)
⊠ Cotton (Level D)
🖾 Rain gear (as needed) (Level D)
□ Layered warm clothing (as needed) (Level D)
Other: Click here to enter text.
Inhalation Hazard Protection:
⊠ Level D (no respirator)
☑ Level C (respirators with organic vapor/HEPA P100 filters)
\Box Level B (Self Contained Breathing Apparatus– STOP, Consult the HSM)
Other: Click here to enter text.

9.1. Personal Protective Clothing Inspections

PPE clothing ensembles designated for use during site activities shall be selected to provide protection against known or anticipated hazards. However, no protective garment, glove or boot is entirely chemical-resistant, nor does any PPE provide protection against all types of hazards. To obtain optimum performance from PPE, site personnel shall be trained in the proper use and inspection of PPE. This training shall include the following:

- Inspect PPE before and during use for imperfect seams, non-uniform coatings, tears, poorly functioning closures or other defects. If the integrity of the PPE is compromised in any manner, proceed to the contamination reduction zone and replace the PPE.
- Inspect PPE during use for visible signs of chemical permeation such as swelling, discoloration, stiffness, brittleness, cracks, tears or other signs of punctures. If the integrity of the PPE is compromised in any manner, proceed to the contamination reduction zone and replace the PPE.
- Disposable PPE should not be reused after breaks unless it has been properly decontaminated.

9.2. Respirator Selection, Use and Maintenance

If respirators are required, site personnel shall be trained before use on the proper use, maintenance and limitations of respirators. Additionally, they must be medically qualified to wear respiratory protection in accordance with 29 CFR 1910.134. Site personnel who will use a tight-fitting respirator must have passed a qualitative or quantitative fit test conducted in accordance with an OSHA-accepted fit test protocol. Fit testing must be repeated annually or whenever a new type of respirator is used. Respirators will be stored in a protective container.

9.3. Respirator Cartridges

If the action levels identified in the Air Monitoring Action Levels Table in Section 5.0, are exceeded, site personnel should don respiratory protection appropriate for the known or suspected chemical of concern. For most sites, a half-face or full-face air purifying respirator with a National Institute for Occupational Safety and Health (NIOSH)-approved organic vapor/HEPA P100 combination cartridge (Level C), will be appropriate for the known or suspected chemicals of concern. Monitoring frequency should be continuous while using Level C respiratory protection. The SSO closely monitor personnel using respiratory protection, including observing for signs of fatigue or respiratory distress, the potential for cartridge breakthrough or increased resistance to inhalation, and the need for changes in the level of respiratory protection based on air monitoring. The frequency and duration of breaks should be increased for personnel working in respiratory protection. If at any time on-site air monitoring indicates Level B respiratory protection is warranted, personnel should leave the exclusion zone and consult with the HSM.

If site personnel are required to wear air-purifying respirators, the appropriate cartridges shall be selected to protect personnel from known or anticipated site contaminants. The respirator/cartridge combination shall be approved and NIOSH-certified. A cartridge change-out schedule shall be developed based on known site contaminants, anticipated contaminant concentrations and data supplied by the cartridge manufacturer related to the absorption capacity of the cartridge for specific contaminants. Site personnel shall be made aware of the cartridge change-out schedule prior to the initiation of site activities. Site personnel shall also be instructed to change respirator cartridges if they detect increased resistance during inhalation or detect vapor breakthrough by smell, taste or feel, although breakthrough is not an acceptable method of determining the change-out schedule.

9.4. Respirator Inspection and Cleaning

The Site Safety Officer shall periodically (weekly) inspect respirators at the project site. Site personnel shall inspect respirators prior to each use in accordance with the manufacturer's instructions. In addition, site personnel wearing a tight-fitting respirator shall perform a positive and negative pressure user seal check each time the respirator is donned, to ensure proper fit and function. User seal checks shall be performed

in accordance with the GeoEngineers respiratory protection program or the respirator manufacturer's instructions.

10.0 PERSONNEL MEDICAL SURVEILLANCE

GeoEngineers employees are not in a medical surveillance program because they do not fall into the category of "Employees Covered" in OSHA 1910.120(f)(2), which states that a medical surveillance program is required for the following employees:

- All employees who are or may be exposed to hazardous substances or health hazards at or above the permissible exposure limits or, if there is no permissible exposure limit, above the published exposure levels for these substances, without regard to the use of respirators, for 30 days or more a year;
- All employees who wear a respirator for 30 days or more a year or as required by state and federal regulations;
- All employees who are injured, become ill or develop signs or symptoms due to possible overexposure involving hazardous substances or health hazards from an emergency response or hazardous waste operation; and
- Members of HAZMAT teams.

11.0 DOCUMENTATION TO BE COMPLETED FOR HAZWOPER PROJECTS

- Daily Field Log
- FORM 1 Health and Safety Pre-Entry Briefing and Acknowledgment of Site Health and Safety Plan for use by employees, subcontractors and visitors
- FORM 2 Safety Meeting Record
- FORM 3 Job Hazard Analyses (JHA) Form (if new site hazards are identified)
- FORM 4 Accident/Exposure Report Form (within 24 hours of accident or exposure)

NOTE: The Field Log is to contain the following information:

- Updates on hazard assessments, field decisions, conversations with subcontractors, client or other parties, etc.;
- Air monitoring/calibration results, including: personnel, locations monitored, activity at the time of monitoring, etc.;
- Actions taken;
- Action level for upgrading PPE and rationale; and
- Meteorological conditions (temperature, wind direction, wind speed, humidity, rain, snow, etc.).

FORM 1

HEALTH AND SAFETY PRE-ENTRY BRIEFING AND ACKNOWLEDGEMENT OF THE SITE HEALTH AND SAFETY PLAN FOR GEOENGINEERS' EMPLOYEES, SUBCONTRACTORS AND VISITORS <u>701 SOUTH JACKSON STREET</u> FILE NO. 24504-001-03

Inform employees, contractors and subcontractors or their representatives about:

- The nature, level and degree of exposure to hazardous substances they're likely to encounter;
- All site-related emergency response procedures; and
- Any identified potential fire, explosion, health, safety or other hazards.

Conduct briefings for employees, contractors and subcontractors, or their representatives as follows:

- A pre-entry briefing before any site activity is started.
- Additional briefings, as needed, to make sure that the Site-specific HASP is followed.
- Make sure all employees working on the Site are informed of any risks identified and trained on how to protect themselves and other workers against the Site hazards and risks.
- Update all information to reflect current sight activities and hazards.
- All personnel participating in this project must receive initial health and safety orientation. Thereafter, brief tailgate safety meetings will be held as deemed necessary by the Site Safety Officer.
- The orientation and the tailgate safety meetings shall include a discussion of emergency response, site communications and site hazards.

(All of GeoEngineers' Site workers shall complete this form, which should remain attached to the HASP and be filed with other project documentation). Please be advised that this site-specific HASP is intended for use by GeoEngineers employees only. Nothing herein shall be construed as granting rights to GeoEngineers' subcontractors or any other contractors working on this site to use or legally rely on this HASP. GeoEngineers specifically disclaims any responsibility for the health and safety of any person not employed by the company.

I hereby verify that a copy of the current HASP has been provided by GeoEngineers, Inc., for my review and personal use. I have read the document completely and acknowledge an understanding of the safety procedures and protocol for my responsibilities on Site. I agree to comply with all required, specified safety regulations and procedures.

Print Name	Signature	Date

FORM 2 SAFETY MEETING RECORD 701 SOUTH JACKSON STREET FILE NO. 24504-001-03

Safety meetings should include a discussion of emergency response, site communications and site hazards.

Use in conjunction with the HASP and Job Hazard Analyses (JHA) Form 3 to help identify hazards.

Date:	Site Safety Officer (SSO):	
Topics:		
Attendees:		
Print Name	Signatura	
Print Name	Signature:	

FORM 3 JOB HAZARD ANALYSES (JHA) FORM <u>701 SOUTH JACKSON STREET</u> <u>FILE NO. 24504-001-03</u>

Project: 701 South Jackson File No: 24504-001-03		Date: date	Site Location 701 South Ja			1: Ickson, Seattle WA	
Development Team:	Position/Title:	1	Reviewe	d by:		Position/Title:	
James Kohn	Staff Geologist		Name			Position	
Name	Position		Name			Position	
Minimum Required Prote	ctive Equipment: (s	see critica	l actions for	task-specific	req	uirements)	
PPE	Equipment		Tools		Act	ions	
Hard Hat	Safety Beacons		Cell Phon	e/Satellite	\boxtimes	Stay Visible	
🛛 High Visibility Vest	⊠ Safety Cones		🗵 Digital Ca	mera	\boxtimes	Equipment Inspection	
Safety Shoes/Waders	⊠ First Aid Kit		□ Other:		\boxtimes	Work in Pairs	
⊠ Gloves	⊠ Fire Extinguisher		□ Other:		\boxtimes	Safety Control/Traffic Plan	
☑ Safety Glasses □ Other:	Eye Wash/ Drinkir	ng Water	□ Other:			□ Other:	
Required Control Measur	es: (check the box v	when com	plete)				
Perform a pre-work vehicle							
Drive defensively looking of	out for the other guy.						
Conduct a pre-work safety	meeting.						
□ Use a Safety Watch to mo	nitor equipment Minin	num Approa	ach Distance	(MAD) and to I	кеер	personnel clear if needed.	
Wear Personal Protective	Equipment (PPE).						
□ Ensure training is current	(First Aid, defensive di	riving, etc.).	•				
Conduct Task Safety Asses	ssments throughout th	he job.					
Hazard Assessment: (che	ck the box and desc	cribe if app	olicable)				
New Physical Hazard obse Describe:	rved and/or encounte	ered.					
New Biological Hazard obs Describe:	served and/or encoun	tered.					
New Ergonomic Hazard ob Describe:	served and/or encou	ntered.					
New Chemical Hazard obs Describe:	erved and/or encount	tered.					
Additional Health and Sa measures taken to address		1: (describ	e modificat	ions to PPE, o	critio	cal action and/or control	
Employee Signature:					Da	ate:	

FORM 4 ACCIDENT/EXPOSURE REPORT FORM <u>701 SOUTH JACKSON STREET</u> <u>FILE NO. 24504-001-03</u>

To (Supervisor):		From (Employee):	From (Employee):				
Telephone (with area code):							
Name of injured or ill employee:							
Date of accident:	Time of accident:	Exact location of acc	bident:				
Narrative descript	on of accident/exposure (ci	rcle one):					
Medical attention	given on site:						
Nature of illness or injury and part of body involved: Lost Time? Yes D No D							
Probably Disability							
Fatal	Lost work day with days away from work	Lost work day with days of restricted activity	No lost work day	First Aid only			
Corrective action t	aken by reporting unit and c	corrective action that remains	s to be taken (by whom	and when):			
Employee Signature: Date:							
Name of Supervise	or:						

APPENDIX C Inadvertent Discovery Plan

INADVERTENT DISCOVERY PLAN PLAN AND PROCEDURES FOR THE DISCOVERY OF CULTURAL RESOURCES AND HUMAN SKELETAL REMAINS

To request ADA accommodation, including materials in a format for the visually impaired, call Ecology at 360-407-6000 or visit https://ecology.wa.gov/accessibility. People with impaired hearing may call Washington Relay Service at 711. People with a speech disability may call TTY at 877-833-6341.

Site Name(s): Seventh Avenue Service Site Project Lead/Organization: 701 S Jackson Partners, LLC (South Jackson Partners)

Location: 701 South Jackson Street. Seattle Washington

County: King

1. INTRODUCTION

The IDP outlines procedures to perform in the event of a discovery of archaeological materials or human remains, in accordance with applicable state and federal laws. An IDP is required, as part of Agency Terms and Conditions for all grants and loans, for any project that creates disturbance above or below the ground. An IDP is not a substitute for a formal cultural resource review (Executive 05-05 or Section 106).

Once completed, the IDP shall always be kept at the project site during all project activities. All staff, contractors, and volunteers shall be familiar with its contents and know where to find it.

2. CULTURAL RESOURCE DISCOVERIES

A cultural resource discovery could be prehistoric or historic. Examples include (see images for further examples):

- An accumulation of shell, burned rocks, or other food related materials.
- Bones, intact or in small pieces.
- An area of charcoal or very dark stained soil with artifacts.
- Stone tools or waste flakes (for example, an arrowhead or stone chips).
- Modified or stripped trees, often cedar or aspen, or other modified natural features, such as rock drawings.
- Agricultural or logging materials that appear older than 50 years. These could include equipment, fencing, canals, spillways, chutes, derelict sawmills, tools, and many other items.
- Clusters of tin cans or bottles, or other debris that appear older than 50 years.
- Old munitions casings. *Always assume these are live and never touch or* move.
- Buried railroad tracks, decking, foundations, or other industrial materials. •
- Remnants of homesteading. These could include bricks, nails, household items, toys, food containers, and other items associated with homes or farming sites.

The above list does not cover every possible cultural resource. When in doubt, assume the material is a cultural resource.

3. ON-SITE RESPONSIBILITIES

If any employee, contractor, or subcontractor believes that they have uncovered cultural resources or human remains at any point in the project, take the following steps to *Stop-Protect-Notify*. If you suspect that the discovery includes human remains, also follow Sections 5 and 6.

STEP A: Stop Work.

All work must stop immediately in the vicinity of the discovery.

STEP B: Protect the Discovery.

Leave the discovery and the surrounding area untouched and create a clear, identifiable, and wide boundary (30 feet or larger) with temporary fencing, flagging, stakes, or other clear markings. Provide protection and ensure integrity of the discovery until cleared by the Department of Archaeological and Historical Preservation (DAHP) or a licensed, professional archaeologist.

Do not permit vehicles, equipment, or unauthorized personnel to traverse the discovery site. Do not allow work to resume within the boundary until the requirements of this IDP are met.

STEP C: Notify Project Archaeologist (if applicable).

- 1. The individual making the discovery will immediately notify the Project Lead.
- 2. The Project Lead will notify the Port of Anacortes Project Manager.
- 3. The Port's Project Manager will notify the Project Archaeologist. The Project Archaeologist will examine the discovery to determine if there is an archaeological find (See Sections 6 and 7).

Project Lead Contacts

Primary Contact Name: Robert Trahan Phone: (o) 206.239.3253 (c) 206.240.2300 Email: rtrahan@geoengineers.com

South Jackson Partners (Owner)

Name: Robert Tiscareno Phone: (o) 206.915.9702 Email: <u>robertt@housingdiversity.com</u> <u>Alternate Contact</u> Name: Tim Syverson Phone: (o) 206.448.4197 (c) 206.605.9236 Email: tsyverson@geoengineers.com

STS Construction Services (Contractor)

Name: Craig Haveson Phone: (o) 206.439.6343 (c) 206.510.8787 Email: craigh@stsconst.com

STEP D: Notify Project and Washington Department of Ecology (Ecology) contacts.

Ecology Contacts

Ecology Project Manager Name: Jing Song Program: Toxics Cleanup Phone: (o) 206.594.0000 (c) 425.229.2565 Email: jing.song@ecy.wa.gov Alternate or Cultural Resource ContactName:Josh MormanProgram:Toxics CleanupPhone:(o) 360.407.6991
(c) 360.480.3289Email:josh.morman@ecy.wa.gov

STEP E: Ecology will notify DAHP.

Once notified, the Ecology Cultural Resource Contact or the Ecology Project Manager will contact DAHP to report and confirm the discovery. **To avoid delay, the Project Lead/Organization will contact DAHP if they are not able to reach Ecology.**

DAHP will provide the steps to assist with identification. DAHP, Ecology, and Tribal representatives may coordinate a site visit following any necessary safety protocols. DAHP may also inform the Project Lead/Organization and Ecology of additional steps to further protect the site.

Do not continue work until DAHP has issued an approval for work to proceed in the area of, or near, the discovery.

DAHP Contact

Name: Rob Whitlam, PhD

Title: State Archaeologist

Phone: (o) 360.586.3065

(c) 360.890.2615

Email: <u>Rob.Whitlam@dahp.wa.gov</u>

Human Remains/Bones Contact

Name: Guy Tasa, PhD

Title: State Anthropologist

Phone: (c) 360.790.1633 (24/7)

Email: <u>Guy.Tasa@dahp.wa.gov</u>

4. TRIBAL CONTACTS

In the event cultural resources are discovered, the following tribes will be contacted. See Section 10 for Additional Resources.

Name:Mike CottenTitle:Northwest Region AdministratorPhone:206.440.4693Email:Mike.Cotten@wsdot.wa.govName:Mehrdad MoiniTitle:Northwest Region Tribal CoordinatorPhone:206.440.4734Email:Mehrdad.Moini@wsdot.wa.gov

Tribe: Muckleshoot Indian Tribe Name: Laura Murphy Title: Archaeologist, Cultural Resources Phone: 253.876.3272 Email: <u>laura.murphy@muckleshoot.nsn.us</u>

Please provide contact information for additional tribes within your project area, if needed, in Section 11.

5. FURTHER CONTACTS (if applicable)

There is no partnering federal or state agency to notify in the event of a discovery.

6. SPECIAL PROCEDURES FOR THE DISCOVERY OF HUMAN SKELETAL REMAINS

Any human skeletal remains, regardless of antiquity or ethnic origin, will at all times be treated with dignity and respect. Follow the steps under *Stop-Protect-Notify*. For specific instructions on how to handle a human remains discovery, see: <u>*RCW*</u> 68.50.645: Skeletal human remains—Duty to notify—Ground disturbing activities— Coroner determination—Definitions.

Suggestion: If you are unsure whether the discovery is human bone or not, contact Guy Tasa with DAHP, for identification and next steps. Do not pick up the discovery.

Name:Guy Tasa, PhDTitle:State AnthropologistPhone:(c) 360.790.1633 (24/7)Email:Guy.Tasa@dahp.wa.gov

For discoveries that are confirmed or suspected human remains, follow these steps:

1. Notify law enforcement and the Medical Examiner/Coroner using the contacts below. **Do not call 911** unless it is the only number available to you.

Enter contact information below (required):

- King County Medical Examiner 206.731.3232
- City of Seattle Police Department 206.625.5011
- Emergency phone number

Dial 911

2. The Medical Examiner/Coroner (with assistance of law enforcement personnel) will determine if the remains are human or if the discovery site constitutes a crime scene and will notify DAHP.

3. DO NOT speak with the media, allow photography or disturbance of the remains, or release any information about the discovery on social media.

4. If the remains are determined to be non-forensic, cover the remains with a tarp or other materials (not soil or rocks) for temporary protection and to shield them from being photographed by others or disturbed.

Further activities:

- Per <u>RCW 27.44.055</u>, <u>RCW 68.50</u>, and <u>RCW 68.60</u>, DAHP will have jurisdiction over non-forensic human remains. Ecology staff will participate in consultation. The Project Lead/Organization may also participate in consultation.
- Documentation of human skeletal remains and funerary objects will be agreed upon through the consultation process described in <u>RCW 27.44.055</u>, <u>RCW</u> <u>68.50</u>, and <u>RCW 68.60</u>.
- When consultation and documentation activities are complete, work in the discovery area may resume as described in Section 8.

If the project occurs on federal lands (such as a national forest or park or a military reservation) the provisions of the Native American Graves Protection and Repatriation Act of 1990 (NAGPRA) apply and the responsible federal agency will follow its provisions. Note that state highways that cross federal lands are on an easement and are not owned by the state.

If the project occurs on non-federal lands, the Project Lead/Organization will comply with applicable state and federal laws, and the above protocol.

7. DOCUMENTATION OF ARCHAEOLOGICAL MATERIALS

Archaeological resources discovered during construction are protected by state law <u>RCW 27.56</u> and assumed eligible for inclusion in the National Register of Historic

Places under Criterion D until a formal Determination of Eligibility is made.

The Project Lead/Organization must ensure that proper documentation and field assessments are made of all discovered cultural resources in cooperation with all parties: the federal agencies (if any), DAHP, Ecology, affected tribes, and the archaeologist.

An archaeologist will record all prehistoric and historic cultural material discovered during project construction on a standard DAHP archaeological site or isolate inventory form. They will photograph site overviews, features, and artifacts and prepare stratigraphic profiles and soil/sediment descriptions for minimal subsurface exposures. They will document discovery locations on scaled site plans and site location maps.

Cultural features, horizons, and artifacts detected in buried sediments may require the archaeologist to conduct further evaluation using hand-dug test units. They will excavate units in a controlled fashion to expose features, collect samples from undisturbed contexts, or to interpret complex stratigraphy. They may also use a test unit or trench excavation to determine if an intact occupation surface is present. They will only use test units when necessary to gather information on the nature, extent, and integrity of subsurface cultural deposits to evaluate the site's significance. They will conduct excavations using standard archaeological techniques to precisely document the location of cultural deposits, artifacts, and features.

The archaeologist will record spatial information, depth of excavation levels, natural and cultural stratigraphy, presence or absence of cultural material, and depth to sterile soil, regolith, or bedrock for each unit on a standard form. They will complete test excavation unit level forms, which will include plan maps for each excavation level and artifact counts and material types, number, and vertical provenience (depth below surface and stratum association where applicable) for all recovered artifacts. They will draw a stratigraphic profile for at least one wall of each test excavation unit.

The archaeologist will screen sediments excavated for purposes of cultural resources investigation through 1/8-inch mesh, unless soil conditions warrant 1/4-inch mesh.

The archaeologist will analyze, catalogue, and temporarily curate all prehistoric and historic artifacts collected from the surface and from probes and excavation units. The ultimate disposition of cultural materials will be determined in consultation with the federal agencies (if any), DAHP, Ecology, and the affected tribe(s).

Within 90 days of concluding fieldwork, the archaeologist will provide a technical report describing any and all monitoring and resultant archaeological excavations to the Project Lead/Organization, who will forward the report to Ecology, the federal agencies (if any), DAHP, and the affected tribe(s) for review and comment.

If assessment activities expose human remains (burials, isolated teeth, or bones), the archaeologist and Project Lead/Organization will follow the process described in **Section 6**.

8. PROCEEDING WITH WORK

The Project Lead/Organization shall work with the archaeologist, DAHP, and affected tribe(s) to determine the appropriate discovery boundary and where work can continue.

Work may continue at the discovery location only after the process outlined in this plan is followed and the Project Lead/Organization, DAHP, any affected tribe(s), Ecology, and the federal agencies (if any) determine that compliance with state and federal laws is complete.

9. ORGANIZATION RESPONSIBILITY

The Project Lead/Organization is responsible for ensuring:

- This IDP has complete and accurate information.
- This IDP is immediately available to all field staff at the site and available by request to any party.
- This IDP is implemented to address any discovery at the site.
- That all field staff, contractors, and volunteers are instructed on how to implement this IDP.

10. ADDITIONAL RESOURCES

Informative Video

Ecology recommends that all project staff, contractors, and volunteers view this informative video explaining the value of IDP protocol and what to do in the event of a discovery. The target audience is anyone working on the project who could unexpectedly find cultural resources or human remains while excavating or digging. The video is also posted on DAHP's inadvertent discovery language website.

• <u>Ecology's IDP Video</u> (https://www.youtube.com/watch?v=ioX-4cXfbDY)

Informational Resources

- DAHP (https://dahp.wa.gov)
- <u>Washington State Archeology (DAHP 2003)</u> (<u>https://dahp.wa.gov/sites/default/files/Field%20Guide%20to%20WA%20Arch_0.pdf)</u>
- <u>Association of Washington Archaeologists</u> (<u>https://www.archaeologyinwashington.com</u>)

Potentially Interested Tribes

- <u>Tribal Contacts: Interactive Map of Tribes by Area</u> (https://dahp.wa.gov/archaeology/tribal-consultation-information)
- <u>Tribal Contacts WSDOT Tribal Contact Website</u> (https://wsdot.wa.gov/tribal/TribalContacts.htm)

11. ADDITIONAL INFORMATION

There is no additional information in the event of a discovery. Procedures outlined in this IDP will be followed in the event of a discovery.

Chipped stone artifacts.

Examples are:

- Glass-like material.
- Angular material.
- "Unusual" material or shape for the area.
- Regularity of flaking.
- Variability of size.

Stone artifacts from Oregon.

Stone artifacts from Washington.

Biface-knife, scraper, or pre-form found in NE Washington. Thought to be a well knapped object of great antiquity. Courtesy of Methow Salmon Rec. Foundation.

Ground stone artifacts.

Examples are:

- Unusual or unnatural shapes or unusual stone.
- Striations or scratching.
- Etching, perforations, or pecking.
- Regularity in modifications.
- Variability of size, function, or complexity.

Above: Fishing Weight - credit <u>CRITFC</u> Treaty Fishing Rights website.

Artifacts from unknown locations (left and right images).

Bone or shell artifacts, tools, or beads.

Examples are:

- Smooth or carved materials.
- Unusual shape.
- Pointed as if used as a tool.
- Wedge shaped like a "shoehorn".
- Variability of size.
- Beads from shell (dentalium) or tusk.

Upper Left: Bone Awls from Oregon.

Upper Center: Bone Wedge from California.

Upper Right: Plateau dentalium choker and bracelet, from <u>Nez Perce</u> <u>National Historical Park</u>, 19th century, made using <u>Antalis pretiosa</u> shells Credit: Nez Perce - Nez Perce National Historical Park, NEPE 8762, <u>Public Domain</u>.

Above: Tooth Pendants. Right: Bone Pendants. Both from Oregon and Washington.

Culturally modified trees, fiber, or wood artifacts.

Examples are:

- Trees with bark stripped or peeled, carvings, axe cuts, de-limbing, wood removal, and other human modifications.
- Fiber or wood artifacts in a wet environment.
- Variability of size, function, and complexity.

Left and Below: *Culturally modified tree* and an old carving on an aspen (Courtesy of DAHP). These are examples of above ground cultural resources.

Right, Top to Bottom: *Artifacts from Mud Bay, Olympia: Toy war club, two strand cedar rope, wet basketry.*

ECY 070-560 (rev. 12/20)

Strange, different, or interesting looking dirt, rocks, or shells.

Human activities leave traces in the ground that may or may not have artifacts associated with them. Examples are:

- "Unusual" accumulations of rock (especially fire-cracked rock).
- "Unusual" shaped accumulations of rock (such as a shape similar to a fire ring).
- Charcoal or charcoal-stained soils, burnt-looking soils, or soil that has a "layer cake" appearance.
- Accumulations of shell, bones, or artifacts. Shells may be crushed.
- Look for the "unusual" or out of place (for example, rock piles in areas with otherwise few rocks).

Shell Midden pocket in modern fill discovered in sewer trench.

Underground oven. Courtesy of DAHP.

Hearth excavated near Hamilton, WA.

Historic period artifacts (historic archaeology considered older than 50 years).

Examples are:

- Agricultural or logging equipment. May include equipment, fencing, canals, spillways, chutes, derelict sawmills, tools, etc.
- Domestic items including square or wire nails, amethyst colored glass, or painted stoneware.

Left: Top to Bottom: *Willow pattern serving bowl* and slip joint pocket knife discovered during Seattle Smith Cove shantytown (45-KI-1200) excavation.

Right: Collections of historic artifacts discovered during excavations in eastern Washington cities.

ECY 070-560 (rev. 12/20)

Historic period artifacts (historic archaeology considered older than 50 years).

Examples are:

- Railway tokens, coins, and buttons.
- Spectacles, toys, clothing, and personal items.
- Items helping to understand a culture or identity.
- Food containers and dishware.

Main Image: Dishes, bottles, work boot found at the North Shore Japanese bath house (ofuro) site, Courtesy Bob Muckle, Archaeologist, Capilano University, B.C. This is an example of an above ground resource.

Right, from Top to Bottom: Coins, token, spectacles and Montgomery Ward pitchfork toy discovered during Seattle Smith Cove shantytown (45-KI-1200) excavation.

- Old munition casings if you see ammunition of any type *always assume they are live and never touch or move!*
- Tin cans or glass bottles with an older manufacturer's technique maker's mark, distinct colors such as turquoise, or an older method of opening the container.

Implement the IDP if you see... Historic foundations or buried structures. Examples are:

- Foundations.
- Railroad and trolley tracks.
- Remnants of structures.

Counter Clockwise, Left to Right: *Historic structure 45Kl924, in WSDOT right of way for SR99 tunnel. Remnants of Smith Cove shantytown (45-Kl-1200) discovered during Ecology CSO excavation, City of Spokane historic trolley tracks (above ground historic resources) uncovered during stormwater project, intact foundation of historic home that survived the Great Ellensburg Fire of July 4, 1889, uncovered beneath parking lot in Ellensburg.*

Potential human remains.

Examples are:

- Grave headstones that appear to be older than 50 years.
- Bones or bone tools--intact or in small pieces. It can be difficult to differentiate animal from human so they must be identified by an expert.
- These are all examples of animal bones and are not human.

Center: Bone wedge tool, courtesy of Smith Cove Shantytown excavation (45KI1200).

Other images (Top Right, Bottom Left, and Bottom) Center: Courtesy of DAHP.

Directly Above: *This is a real discovery at an Ecology sewer project site.*

What would you do if you found these items at a site? Who would be the first person you would call?

Hint: Read the plan!

APPENDIX D Report Limitations and Guidelines for Use

APPENDIX D REPORT LIMITATIONS AND GUIDELINES FOR USE²

This appendix provides information to help you manage your risks with respect to the use of this report.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of 701 S Jackson Partners, LLC (South Jackson Partners) and their authorized agents. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment or remedial action study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except the South Jackson Partners should rely on this plan without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report Is Based on a Unique Set of Project-Specific Factors

GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- Not prepared for you,
- Not prepared for your project,
- Not prepared for the specific site explored, or
- Completed before important project changes were made.

If important changes are made after the date of this remedial action plan, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

² Developed based on material provided by GBA, The GeoProfessional Business Association.

Reliance Conditions for Third Parties

No third party may rely on the product of our services unless GeoEngineers agrees in advance, and in writing to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions.

Environmental Regulations Are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Subsurface Conditions Can Change

This report is based on conditions that existed at the time our site studies were performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil and Groundwater End-Use

The cleanup levels (CULs) referenced in this report are site- and situation-specific. The CULs may not be applicable for other sites or for other on-Site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the Property soil and/or groundwater at detectable concentrations that are less than the referenced CULs. GeoEngineers should be contacted prior to the export of soil or groundwater from the Property or reuse of the affected media on the Property to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the Property to another location or its reuse on the Property in instances that we were not aware of or could not control.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Client desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.