

engineers | scientists | innovators

DRAFT WELL INSTALLATION COMPLETION REPORT

LOWER ISSAQUAH VALLEY ISSAQUAH, WASHINGTON

Prepared for

The City of Issaquah Issaquah, WA 98168

Prepared by

Geosyntec Consultants, Inc. 520 Pike Street, Suite 2600 Seattle, Washington 98101

Project Number: PNG0989

January 2023

Well Installation Completion Report

Lower Issaquah Valley Issaquah, Washington

Prepared for

City of Issaquah, Washington Issaquah, WA 98027

Prepared by

Geosyntec Consultants, Inc. 520 Pike Street, Suite 2600 Seattle, Washington 98101

Bob Anderson, LHG Senior Principal Hydrogeologist Cindy Bartlett, LG Principal Geologist

Project Number: PNG0989

January 2023

TABLE OF CONTENTS

1.	INTE	RODUCTION	1
2.	PRE	-FIELD ACTIVITIES	2
3.	DRII 3.1 3.2 3.3 3.4 3.5 3.6	LING, SAMPLING, AND MONITORING WELL INSTALLATION Drilling Groundwater and Soil Grab Sampling Monitoring Well Construction and Development Investigation Derived Waste Site Restoration Transducer Installation and Groundwater Monitoring	3 3 4 4 5 5
4.	RES 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.2 4.2.1 4.2.2	ULTS Geologic and Hydrogeologic Conditions Shallow Aquifer (0 – 64.7 feet bgs) A Zone Aquifer (64.7 – 134 feet bgs) Deep Aquitard (134 – 144 feet bgs) B Zone Aquifer (144 – 300 feet bgs) Analytical Results Groundwater Soil 8	6 6 7 7 8 8
5.	REF	ERENCES	8

LIST OF FIGURES

Figure 1: Site Location Map and Well Location

LIST OF TABLES

- Table 1:Monitoring Well Construction Details
- Table 2:
 Summary of PFAS Concentrations in Groundwater
- Table 3:Summary of PFAS Concentrations in Soil
- Table 4:Summary of Grain Size Analysis in Soil

Draft

LIST OF APPENDICES

- Appendix A: Draft Boring Log and Well Completion Diagram
- Appendix B: Photo Log
- Appendix C: Laboratory Analytical Reports
- Appendix D: IDW Disposal Receipts

ACRONYMS AND ABBREVIATIONS

CSM	conceptual site model
DOT	Department of Transportation
DTW	depth to water
Ecology	Washington State Department of Ecology
EFR	Eastside Fire and Rescue
Farallon	Farallon Consultants
ft bgs	feet below ground surface
Geosyntec	Geosyntec Consultants, Inc.
HASP	Health & Safety Plan
Holt	Holt Drilling, Inc.
IAA	interagency agreement
IDW	investigation-derived waste
LG	licensed geologist
LIV	Lower Issaquah Valley
NTUs	nephelometric turbidity units
PFAS	per- and polyfluoroalkyl substances
PID	photoionization detector
PVC	polyvinylchloride
Qa	shallow alluvium
Qva	Vashon Advance Outwash
Qvi	ice contact/lake
Qvr	recessional outwash
Qw	discontinuous wetland
USCS	United Soil Classification System
VOCs	volatile organic compounds

1. INTRODUCTION

Geosyntec Consultants, Inc. (Geosyntec) prepared this Well Completion Report (Report) to document installation of one monitoring well (COI-MW08) completed under the interagency agreement (IAA¹) between the City of Issaquah (City) and the Washington State Department of Ecology (Ecology). This Report summarizes the drilling and well installation activities and analytical testing results following the *Per-and Poly-Fluoroalkyl Substances Data Gaps Investigation Work Plan* (Farallon 2022) and the *Hydrogeological Characterization Work Plan Addendum # 1* (Geosyntec 2022a). The well was installed in the southeastern portion of the Salmon Run Nature Park at 5th Avenue NW and NW Juniper Street in Issaquah, Washington, and near existing monitoring wells COI-MW05, IES-MW07, and IES-MW12 (Figure 1; the "Site").

The objectives and scope of work included the following:

- Installation of one monitoring well to a depth of three-hundred (300) feet below ground surface (bgs). The rationale for the well location and conceptual site model (CSM) data gaps were described in the CSM Report (Geosyntec 2022b).
- Observation and sampling of the deeper portions of the A Zone Aquifer and Deep Aquitard (deep silt);
- Collection of grab-groundwater and grab-soil samples during drilling to characterize the vertical changes in PFAS concentrations in the deeper portion of the A Zone Aquifer and Deep Aquitard;
- Development of the newly installed monitoring well;
- Installation of a transducer and incorporation of the newly installed monitoring wells into the quarterly sampling schedule for the Lower Issaquah Valley (LIV) that is implemented by Farallon Consultants (Farallon) under a separate IAA with Eastside Fire and Rescue (EFR); and
- Coordination of investigation-derived waste (IDW) staging and characterization for eventual off-site disposal.

¹ IAA No. C2200183

2. PRE-FIELD ACTIVITIES

Before initiating the subsurface investigation, Geosyntec completed the following tasks:

- Conducted a site walk with representatives from the City to identify potential well locations. The well location was submitted to Ecology to share with the Tribes and the DAHP for their review of the proposed monitoring well location and general work area;
- Submitted a Washington State utility notification request (Ticket# 22500482) of the proposed drilling location. Coordinated with the City to identify private underground utilities and obtain concurrence on proposed drilling locations;
- Coordinated and identified with the analytical laboratory subcontractor, Eurofins of Sacramento, California, for the appropriate analytical methods, sample containers, reporting limits, and data reporting package;
- Arranged with the drilling subcontractor, Holt Services Inc (Holt) of Edgewood, Washington, the drilling schedule, staging, sequencing, and well construction specifications;
- Coordinated with the City to obtain relevant permitting and identify a temporary storage location for IDW during and after the investigation; and
- Reviewed and signed the site-specific health and safety plan (HASP) provided in the Work Plan.

3. DRILLING, SAMPLING, AND MONITORING WELL INSTALLATION

3.1 Drilling

Drilling of one monitoring well, COI-MW08, commenced on 29 November 2022, and the well was completed on 21 December 2022. Geosyntec supervised the drilling and monitoring well installation performed by Holt using a track-mounted SonicTM rig.

Geosyntec field personnel classified the soil cores using United Soil Classification System (USCS) visual-manual methods. Continuous soil core was obtained and field screened for volatile organic compounds (VOCs) using a photoionization detector (PID). Soil classification and field screening information were recorded on a field boring log, along with information from the driller (e.g., heaving sands, hard drilling conditions, etc.), and each core run was photographed.

Beginning 2 December 2022 at approximately 150 feet bgs, drilling progress slowed to approximately 20 feet or less per day due to excessive heaving up the casing. On 8 December 2022, after three days of little to no advancement and repeated cleanout due to heaving, water was used during drilling to stabilize the formation interval where heave was occurring. Water was intermittently used from 200 feet bgs to the target depth of 300 feet bgs.

Borehole logs are provided in Appendix A, and photographs of soil core taken during drilling are provided in Appendix B. A description of the drill core is provided in Section 4.1, below.

3.2 Groundwater and Soil Grab Sampling

Discrete depth grab groundwater samples were collected during drilling at depths of 150 and 170 feet bgs on 6 and 7 December 2022. Deeper groundwater samples were not collected as planned due to the use of water during drilling.

Holt personnel sampled the monitoring wells using a stainless-steel bailer. Several attempts using the temporary stainless steel well screen sampling method described in the work plan addendum were attempted, but very fine sediment silted up the screen, and the water sample was too turbid to flow. A second method was attempted using a sampling pump inserted directly into the drill casing; however, the water was too turbid to flow.

Soil grab samples were collected from the core between 2 and 7 December 2022 at depths of 134, 144, 152, 162, 167, 175, 185, and 195 feet bgs. Grab soil samples were collected directly from the drill core and placed into sample jars. Deeper samples were not collected due to the use of water during drilling.

Samples were collected in laboratory-supplied PFAS-free containers, labeled, placed into a cooler with ice, and shipped to the Eurofins laboratory using chain-of-custody procedures. The samples were submitted for PFAS analysis using EPA Method 537 Modified Client List (15 Analytes). Chains of custody and analytical laboratory reports are provided in Appendix C.

Soil samples were also selected for grain size analysis and submitted to AmTest Laboratory in Kirkland, Washington.

3.3 Monitoring Well Construction and Development

Monitoring well COI-MW08 was screened from 238 to 248 feet bgs. The well screen interval was determined based on field observations of a saturated, coarse-gravel unit, and in consultation with Ecology. The borehole was backfilled from 300 to 249 feet bgs using a bentonite grout slurry tremmied into the base of the borehole.

The monitoring well was constructed through the drill casing and consisted of four-inch diameter, schedule 40 polyvinyl chloride (PVC) casing, 10 feet of 10-slot (or 0.01-inch slotted) PVC screen, flush-threaded joints, and a flat-bottom cap. The monitoring well filter pack was constructed using 12/20 sized silica sand tremied to approximately 2.5 feet above the top of the well screen, followed by an annular seal of hydrated bentonite pellets up to 224 ft bgs. Following the placement of the annular seal, the annular space was filled with a bentonite grout slurry tremmied up to 7 ft bgs. The remainder of the borehole was filled with hydrated bentonite chips. The monitoring well was completed at the surface with a 12-inch diameter flush-mounted, traffic-rated monument and locking expandable gasket well cap. Monitoring well construction details are summarized in Table 1, and well construction logs and boring logs are provided in Appendix A.

The monitoring well was developed on 19 and 21 December 2022 by Holt under the supervision of Geosyntec personnel. The purpose of the well development was to remove the fine-grained materials inside the filter pack and casing and to stabilize the filter pack around the well screen. On 19 December 2022, well development consisted of pumping out a proportionate water volume to that used during drilling using a high-volume pump. On 21 December 2022, a smaller volume, PFAS-free pump was used to complete well development, and groundwater quality parameters (i.e., temperature, pH, specific conductance, dissolved oxygen, oxidation-reduction potential, and turbidity) were measured during the final stage of development. The turbidity of the purge water during well development on 21 December 2022 also was measured, and pumping continued until low-turbidity conditions were measured (<50 nephelometric turbidity units [NTUs]) and at least one full well volume was purged from the well. Field personnel did not use Teflon® tubing, other equipment made of Teflon®, or other potentially PFAS-containing materials for well development, in accordance with the work plan.

A surveyor (APEX Engineering) surveyed the monitoring well on 11 January 2023, including the top of casing, top of monument (ground surface), and the latitude and longitude. Well measurement and location coordinates are summarized in Table 1.

3.4 Investigation-Derived Waste

IDW consisted of soil cuttings and groundwater from well installation drilling, water used during drilling, and purge water generated during development. Soil and water IDW were segregated by type (soil, water, and soil/water mix) and placed into Department of Transportation (DOT)-rated labeled 55-gallon drums. The IDW drums were moved to City property pending a waste

designation determination and eventual off-site disposal. IDW disposal receipts will be provided to Ecology once completed. Disposal receipts will be provided as Appendix D once received.

3.5 Site Restoration

Following well development, Geosyntec personnel oversaw restoration of the work site impacted by drill rig and bobcat operations. On 2 January 2023, two yards of 3-way soil and one yard of 5/8 crushed gravel were delivered to the Site by Better Buys Topsoil. Following installation of soil and gravel, Geosyntec personnel reinstalled the fence that had been removed to gain access to the property. Photos of the work site before and during the project, as well as after restoration, are provided in Appendix B.

3.6 Transducer Installation and Groundwater Monitoring

A pressure transducer (Van Essen micro-diver) was installed in COI-MW08 in January 2023 for continuous water level monitoring (three-minute frequency). The transducer was affixed to the well cap with a polypropylene tether and stainless steel weights. Monitoring wells equipped with pressure transducers are shown in Figure 1.

Sampling of monitoring well COI-MW08 will be completed by Farallon in January 2023 and will be incorporated after that into the regular quarterly sampling schedule for the LIV.

4. **RESULTS**

4.1 Geologic and Hydrogeologic Conditions

Brief descriptions of the four major geologic units present in the COI-MW08 borehole are provided in the following sections. The borehole log is provided in Appendix A. A photolog is provided in Appendix B.

For reference, site and vicinity geology and hydrogeology were described in the Conceptual Hydrogeologic Model Report dated 30 December 2022 (Geosyntec, 2022b). The stratigraphy described below uses the nomenclature presented in that report.

4.1.1 Shallow Alluvium (0 – 64.7 feet bgs)

The shallow alluvium consisted primarily of grey to brown, loosely consolidated, fine to coarse sand with sub-angular to sub-rounded fine- to coarse-sized gravel with some cobbles. A gray, fine to coarse gravelly sand with small to medium gravel and trace wood debris predominated the upper 20.4 ft bgs. A loose, brown, fine to coarse sand with fine to coarse gravel and cobbles was encountered from approximately 20.4 ft bgs to 54.4 ft bgs. These two units are interpreted to be shallow alluvium (Qa) deposits. A 2.5 ft unit of dense, lean clay and sandy silt with trace organics was encountered at 25.5 ft bgs. This unit is interpreted to be a discontinuous wetland (Qw) deposit. At 7 ft bgs, the sand transitions from dry-to-moist to predominantly wet and remains wet from 7 ft bgs to 64.7 feet bgs (this unit is the Shallow Aquifer). Between 54.4 ft bgs and 64.7 ft bgs, a series of interbedded gray and brown, dense silty sand with brown sandy small to large gravel was encountered. This unit may represent the transition from the alluvium deposits to recessional outwash (Qvr).

4.1.2 A Zone Aquifer (64.7 – 134 feet bgs)

The A zone aquifer consists of brown to grayish brown, loosely consolidated, sands and gravels, and gray, loosely consolidated, fine to coarse sand with silt. A brown to grayish-brown, fine to coarse, wet, sub-angular to sub-rounded gravel with sand predominated from 64.7 ft bgs to 83.6 ft bgs. A brown, fine to coarse sand with trace small to coarse subrounded gravel was encountered from 83.6 ft bgs to 106.2 ft bgs. A gray, medium dense, fine to medium sand with silt was encountered from 106.2 ft bgs to 134 ft bgs. These three units are interpreted to be advance outwash (Qva) or recessional outwash (Qvr) deposits.

At 80.8 ft bgs, the sand transitions from wet to dry and remains dry from 80.8 ft bgs to 90.0 ft bgs. From 90.0 ft bgs to 134 ft bgs, the core is predominantly moist.

During drilling at approximately 120 to 130 feet bgs, significant heaving was encountered, with very fine silt and sand pushing up into the drill casing. Heaving continued through the Deep Aquitard unit and into the B Zone Aquifer.

4.1.3 Deep Aquitard (134 – 144 feet bgs)

The aquitard consists of gray, dense, lean clay, silts, and sandy silts. A gray, dense, lean clay was encountered from 134 ft bgs to 136 ft bgs. From 136 ft bgs to 144 ft bgs, a series of gray, dense, silts and sandy silts predominated and were interbedded with thinner units of gray, poorly-graded, fine to coarse sands. From 134 ft bgs to 144 ft bgs, the sand transitions between dry and moist. The silt, clay, and sandy silts are interpreted to be part of the older glacial (Qpff or Qpog) lacustrine deposits.

4.1.4 B Zone Aquifer (144 – 300 feet bgs)

The B zone aquifer consists of gray, dense, fine to coarse sands with silt and sandy silts, with a prominent water-bearing, gray, loosely consolidated, small to large sub-angular gravel unit from approximately 240 ft bgs to 245 ft bgs. The well was screened across this water-bearing gravel from 238 ft bgs to 248 ft bgs.

A gray, dense, fine to coarse sand with silt predominated from 144 ft bgs to approximately 240 ft bgs. At 161.3 ft bgs, the sand transitions from moist to wet and remains wet until 170.7 ft bgs. Heaving conditions were particularly problematic from approximately 170 to 200 ft bgs, with a very fine sand and silt pushing up to 85' into the casing. After 170 ft bgs, clean tap water was used during drilling to hold the hole open.

From 170.7 ft bgs to 200 ft bgs, the sand was dry before transitioning to dry to moist from 200 ft bgs to 240 bgs. The static depth to water (DTW) at a boring depth of 200 ft bgs was 57 ft bgs. This gray sand layer was interbedded with thinner units of gray, dense, sandy silt.

From approximately 240 ft bgs to 245 ft bgs, a water-bearing, gray, loosely consolidated, small to large sub-angular gravel was encountered. From 240 ft bgs to 245 ft bgs, the sand was wet before transitioning to moist at 245 ft bgs. At a boring depth of 240 ft bgs, the static DTW was 11.8 ft bgs.

From 245 ft bgs to 300 ft bgs, a gray, dense, poorly-graded, fine to medium sand with varying silt content predominated. At 249.6 ft bgs, the sand transitions from moist to dry-to-moist and remains dry to moist from 249.6 ft bgs to 300 ft bgs. At a boring depth of 300 ft bgs, the static DTW was 13.2 ft bgs. The units of the B zone aquifer are interpreted to be recessional to advance outwash, with the water-bearing gravel unit interpreted as channelized glacial (Qpog) deposits.

Two groundwater samples were collected in the B Zone during drilling when the casing was at 150 ft bgs and 170 ft bgs. Groundwater samples were collected before water was needed to stabilize the heaving conditions. The water sample at 150 ft bgs was collected from 120 ft bgs due to 30 ft of heave inside the casing; however, this sample was not analyzed due to uncertainty regarding the specific depth of the sample. The sample from 170 ft bgs was submitted for analytical testing, as described in Section 3.2 above.

4.2 Analytical Results

The analytical results from groundwater and soil sampling conducted during drilling are summarized in Tables 2 and 3 and are discussed below. Analytical laboratory reports are provided in Appendix C.

4.2.1 Groundwater

One groundwater sample was collected during drilling at 170 ft bgs and submitted for analysis of PFAS. PFAS were detected in the sample including perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS). PFOS and PFHxS were the highest concentrations, and the results are summarized in Table 2.

4.2.2 Soil

PFAS compounds were not detected in the core samples obtained during drilling (Table 3). Core samples were collected in both the aquifer and aquitard materials.

Grain size results are pending (Table 4), and the laboratory report will be provided in Appendix C.

5. **REFERENCES**

- Farallon Consulting, L.L.C. (Farallon), 2022. Per- And Poly-Fluoroalkyl Substances Data Gap Investigation Work Plan, Lower Issaquah Valley, 175 Newport Way Northwest, Issaquah, Washington, 15 July.
- Geosyntec, 2022a. Data Gaps Investigation Work Plan Addendum 1 Hydrogeological Characterization Well Installation, Lower Issaquah Valley, Issaquah, Washington. 22 November.

Geosyntec, 2022b. Regional Conceptual Hydrogeological Model Report. 30 December.

TABLES

Table 1Monitoring Well Construction DetailsIssaquah, WA

Well ID	Previous Monitoring Well ID	Well Owner	Ground Surface Elevation (feet NAVD88)	Top of Casing Elevation (feet NAVD88)	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	Screened Length (feet)	Screen Top Elevation (feet NAVD88)	Screen Bottom Elevation (feet NAVD88)	Latitude	Longitude	Aquifer Designation	
	Lower Issaquah Valley Regional Wells												
COI-MW08	MW08	City of Issaquah	70.22	69.85	238	248	10	-167.78	-177.78	199103.08	1341385.51	B Zone Aquifer	

NOTES:

bgs = below ground surface NAVD88 = vertical datum

Table 2Summary of PFAS Concentrations in GroundwaterIssaquah, WA

		Sample Identification	Sample Depth (ft bgs)			Anal	ytical Results (1	ng/L) ¹		
Sample Location	Sample Date			Perfluoro- hexanoic acid (PFHxA)	Perfluoro- heptanoic acid (PFHpA)	Perfluoro- octanoic acid (PFOA)	Perfluoro- nonanoic acid (PFNA)	Perfluoro- butane- sulfonic acid (PFBS)	Perfluoro- hexane- sulfonic acid (PFHxS)	Perfluoro- octane- sulfonic acid (PFOS)
	12/6/2022	MW-08-170-120622	170	16	6.9	6.3	8.5	19	51	98
COI-MW08	12/7/2022	Trip Blank-1		<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8
	12/7/2022	EB-120722		<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8
			10	9	345	65	15			

Notes:

ng/L = nanograms per liter

< = compound not detected above the laboratory reporting limit (RL) shown.

¹Analyzed by U.S. Environmental Protection (USEPA) Agency Method 537 Modified.

² Washington State Department of Health State Action Levels (SALs) for Drinking Water as finalized in Washington State Administrative Code (WAC) Chapter 246-290-315.

0.1 Highlighted results denote concentrations exceeding Washington State SALs for Drinking Water.

Table 3Summary of PFAS Concentrations in SoilIssaquah, WA

			Sample Depth (ft bgs)			Analy	tical Results (µg/kg) ¹		
Sample Location	Sample Date	Sample Identification		Perfluoro- hexanoic acid (PFHxA)	Perfluoro- heptanoic acid (PFHpA)	Perfluoro- octanoic acid (PFOA)	Perfluoro- nonanoic acid (PFNA)	Perfluoro- butane- sulfonic acid (PFBS)	Perfluoro- hexane- sulfonic acid (PFHxS)	Perfluoro- octane- sulfonic acid (PFOS)
	12/2/2022	MW-08-134	134	< 0.27	< 0.27	< 0.40	< 0.27	< 0.27	< 0.27	< 0.40
	12/2/2022	MW-08-144	144	< 0.23	< 0.23	< 0.35	< 0.23	< 0.23	< 0.23	< 0.35
	12/2/2022	MW-08-152	152	< 0.24	< 0.24	< 0.36	< 0.24	< 0.24	< 0.24	< 0.36
COL MW08	12/6/2022	MW-08-162	162	< 0.23	< 0.23	< 0.34	< 0.23	< 0.23	< 0.23	< 0.34
001-101 00 00	12/6/2022	MW-08-167	167	< 0.26	< 0.26	< 0.39	< 0.26	< 0.26	< 0.26	< 0.39
	12/6/2022	MW-08-175	175	< 0.25	< 0.25	< 0.38	< 0.25	< 0.25	< 0.25	< 0.38
	12/6/2022	MW-08-185	185	< 0.23	< 0.23	< 0.35	< 0.23	< 0.23	< 0.23	< 0.35
	12/7/2022	MW-08-195	195	<0.23	< 0.23	< 0.34	< 0.23	< 0.23	< 0.23	< 0.34

Notes:

 $\mu g/kg =$ micrograms per kilogram

<= compound not detected above the laboratory reporting limit (RL) shown.

¹Analyzed by U.S. Environmental Protection (USEPA) Agency Method 537 Modified.

Table 4							
Summary of Grain Size Analysis in Soil							
Issaquah, WA							

			Sample	Analytical Results						
Sample Location	Sample Date	Sample Identification	Depth (ft bgs)	Gravel % (2.0- 4.75 mm)	Sand % (0.063-1.00 mm)	Silt % (0.004- 0.032 mm)	Clay % (<0.001-0.002 mm)			
	12/7/2022	ML-137-139	137-139	0	44.3	36.1	19.6			
	12/7/2022	SP-146-148	146-148	3.9	90.8	3.5	1.8			
COI-IVI W 08	12/7/2022	ML-165-167	165-167	0	20.1	74.8	5.2			
	12/7/2022	SM-172-174	172-174	0	92	4.3	3.9			

Notes:

ft bgs = feet below ground surface

mm = millimeter

FIGURES

P:\CAD_GIS\Projects\PNG0714 - Issaquah\Projects\06_CSM Memo\Figure 1 COI-MW08 Well Installation Location\V2.mxd 1/13/2023 10:08:06 AM

APPENDIX A Draft Boring Log and Well Completion Diagram

111 GLB IRRARY GINTL DEFAULT PNW GPJ 22 ΠAH ISSAQU ЧО CITY SEATTLE

C	Consultants 520 Pike Street, Suite Seattle, Washington 9 Phone: 206.496.1450			BORING START DATE FINISH DATE PROJECT Cit	COI-N 11/29/2 12/16/2 y of Iss	IW08 022 022 aquah	Elevatio	on	SHEET 1 OF 12	
	GS FORM: CORE3 10/00 BOREHOLE L	_OG		J	LOCATION Sal	mon Ru BER F	un Natu PNG098	re Park 9		
		ŋ	tion		WELL		SAI	SAMPLES		
DEPTH	€ MATERIAL DESCRIPTION	SYMBOLIC LC	USCS Classifica	MELL LOG	WELL CONSTRUCTION MATERIAL	ТҮРЕ	% RECOVERY	SAMPLE ID	PID READING (ppm)	COMMENTS
	Dry, loose, dark grayish brown (10YR 4/2), TOPSOIL; with organics.	<u>x' 1/2</u> . <u>x' 1/2</u> 1/2 . <u>x' 1/2</u> . x	OPSOII			\mathbb{N}			0	
	Moist, loose, dark grayish brown (10YR 4/2), silty, subrounded GRAVEL; with well graded fine to medium sand and trace organics. @2 ft, becomes dry. Dry, loose, dark grayish brown (10YR 4/2), well graded fine to medium, SAND.		GM SM		0-3 ft bgs: cement.		100		0	
5	Dry, loose, dark grayish brown (10YR 4/2), poorly graded medium, SAND; with 30-40% charred wood (charcoal). @6.4 ft, becomes moist. Moist, medium stiff, dark grayish brown (10YR 4/2),		SP ML		3-7 ft bgs: 4, 50 lb bags Pel-Plug 3/8 in bentonite chips.		100		0.1	
	laminated/interbedded, sandy, SILT; with beds of charcoal and coarse grained sand (SW-SM).		GW-GM				100		0.1	
10	Wet, loose, poorly graded tine, dark grayish brown (10YR 4/2), subrounded, GRAVEL; with well graded medium to coarse sand and silt. Wet, loose, dark greenish gray (GLEY2 3/10G), well graded medium to coarse .SAND: with silt and one 5		GW-GM		4 inch Sch. 40				0.1	7.0-64.7 ft bgs: Shallow Aquifer
srary.glb 1/31/23	Inch piece of wood (branch). Wet, medium dense, dark greenish gray (GLEY2 3/10G), poorly graded coarse, subangular to subrounded, GRAVEL; with fine to coarse sand and trace organics (wood). Wet, loose, medium dense, dark greenish gray (GLEY2 3/10G), well graded medium to coarse, SAND; with silt, subangular to subrounded, fine, gravel, and wood (branches and roots).		SW-SM		PVC casing. Borehole diameter: 9 in to 150 ft bgs, 8 in to 300 ft bgs.		100		0	
15 NIT LIE	Moist medium dense, dark greenish grav (GLEY2		- <u>-</u> -						0	
J PNW DEFA	3/10G), well graded fine to coarse, silty, SAND. — @16-17.8 ft: trace gravel.				7-224 ft bgs: 12 bags,		100		0.1	
SSAQUAH_D2.GF	 Wet, loose, dark greenish gray (GLEY2 3/10G), well graded fine to coarse, subrounded to subangular, GRAVEL; with well graded fine to coarse sand. 		GW		Haliburton Grout (9.4 Ib/gal).				0.1	
VO ELEV CITY OF IS	Wet, medium dense, dark yellowish brown (10 YR 4/4), well graded fine to coarse, subangular to subrounded, GRAVEL; with silt and well graded medium to coarse sand.	7.07.0	GW-GM				100		0	
PLAND CORES 1	Wet, loose, dark yellowish brown (10 YR 4/4), well graded fine to coarse, SAND; with silt. Wet, loose, dark yellowish brown (10 YR 4/4), poorly graded coarse, SAND.		SW-SM						0	
	ONTRACTOR LATITUE QUIPMENT Sonic Drill Rig LONGITU RILL MTHD Sonic ANGLE AMETER 9 in to 150 ft, 8 in to 300 ft BEARING DGGER J. Traywick REVIEWER C. Bartlett PRINT		REMARKS: COORDINATE SYSTEM: SEE KEY SHEET FOR SYMBOLS AND ABBREVIATIONS							

G	eosyntec consultants			BORING START DATE FINISH DATE PROJECT Cit	COI-N 11/29/20 12/16/20	1W08 022 022	Elevatio	on	SHEET 2 OF 12		
	GS FORM: ORE3 10/00 B	OREHOLE L	.OG			LOCATION Sa PROJECT NUM	Imon Ru BER P	in Natu NG098	re Park 9		
DEPTH (ft)	MATERIAL DESCRIPTION	I	SYMBOLIC LOG	USCS Classification	MELL LOG	WELL	ТҮРЕ	% RECOVERY	APLES CI = JdWes	PID READING (ppm)	COMMENTS
Rupland cores no elev city of issaquat D2.GPJ PNW DEFAULT GINT LIBRARY.GLB 1/31/23 00 0 01 - 02 - 03 - 04 - 05 - 06 - 07 - 08 - 09 - 09 - 01 - 02 - 03 - 04 - 15 - 16 - 17 - 18 - 19 - 10 - 10 - 16 - 17 - 18 - 19 - 10 - 10 - 11 - 11 - 19 - 10 - 10 - 10 - 10 -	Moist, stiff, dark greenish gray (GLE (fine), lean, CLAY. Moist, stiff, dark greenish gray (GLE (fine), SILT; trace organics. Very wet (saturated), medium dense (GLEY1 3/5GY), well graded fine to to subrounded, GRAVEL; with silt ar Moist, firm, dark yellowish brown (10 SILT; with gravel. Wet, medium dense, dark yellowish well graded fine to coarse, subangul silty, GRAVEL; with well graded fine Wet, loose, dark yellowish brown (11 graded medium to coarse, SAND; w Very wet (saturated), medium dense brown (10YR 4/4), well graded fine to subrounded, silty, GRAVEL; with col graded fine to medium, sand. Wet, medium dense, dark yellowish well graded medium to coarse, SAN Very wet (saturated), medium dense brown (10YR 4/4), well graded fine to subrounded to subangular, GRAVEL sand, and silt. Wet, medium dense, dark yellowish well graded medium to coarse, SAN trace gravel. Wet, medium dense, dark yellowish well graded fine to coarse, subangul GRAVEL; with cobles, silt, and wel coarse sand. Wet, medium dense, dark yellowish well graded fine to coarse, subangul GRAVEL; with cobles, silt, and wel coarse sand. Wet, medium dense, dark yellowish well graded fine to coarse, subangul silty, GRAVEL; with cobles and we coarse sand. Wet, medium dense, dark yellowish well graded fine to coarse, subangul silty, cobles, and well graded medium cobles, and well graded medium well graded fine to coarse, subangul silty, cobles, and well graded medium well graded fine to coarse, subangul silty, cobles, and well graded medium moist, very dense, grayish brown (10 graded fine to medium, silty, SAND; Wet, medium dense, dark yellowish well graded fine to coarse, subround cobles, silt, and well graded fine to Gravel becomes wet, loose, subround cobles, silt, and well graded fine to Gravel becomes wet, loose, subround cobles, silt, and well graded fine to Gravel becomes wet, loose, subround cobles, silt, and well graded fine to Gravel becomes wet, loose, subround cobles, silt, and well graded fine to Gravel becomes wet, loose, subround cobles, s	Y1 3/5GY), sandy Y1 3/5GY), sandy y1 3/5GY), sandy y1 3/5GY), sandy y1 3/5GY), sandy y1 3/5GY, sandy y2 4/4), sandy, y2 4/4), sandy, y2 4/4), sandy, y2 4/4), well ith trace gravel. a, dark yellowish o coarse, bobles and well brown (10YR 4/4), D with trace gravel. a, dark yellowish o coarse, brown (10YR 4/4), D, with silt and brown (10YR 4/4), D; with silt and brown (10YR 4/4), ar to subrounded, I graded fine to brown (10YR 4/4), brown (10YR 4/4), ar to subrounded, I graded fine to brown (10YR 4/4), brown (10YR 4/4), ar to subrounded, I graded fine to brown (10YR 4/4), brown (10YR 4/4), to coarse. LATITUD		CL ML GW-GM ML GM SW-SM GW-GM GW-GM GW-GM GW-GM GW-GM		REMARKS:		100 100 100		0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	
	IPMENT Sonic Drill Rig L MTHD Sonic IETER 9 in to 150 ft, 8 in to GER J. Traywick REVIEWER C.	COORDINATE S		S AND ABI	BREVIATIONS						

G	Seosyntec 520 Pike Street, Suite 2600 Seattle Washington 98101					RING ART DATE	COI-N 11/29/2	IW08 022	Elevatio	on	SHEET 3 OF 12		
	Consultants Seattle, Washington Phone: 206.496.1450	98101			PROJECT City of Issaquah LOCATION Salmon Run Nature Park PROJECT NUMBER PNG0989								
<u> </u>					<u> </u>	NEL I		SAI	MPLES)		
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	USCS Classification	MELL LOG		WELL CONSTRUCTION MATERIAL	ТҮРЕ	% RECOVERY	SAMPLE ID	PID READING (ppm)	COMMENTS		
	Moist, very dense, dark gray (GLEY1 4/N), poorly graded fine, silty, SAND; with trace organics. @ 55 ft: Transitions to wet, dense, yellowish brown (10YR 5/4), well graded fine to medium, silty, SAND. @ 56.0 ft: grades to SW-SM. @ 56.2 ft: Transitions to wet, medium dense, yellowish brown (10YR 5/4), well graded fine to coarse, subrounded, gravel. @ 56.8 ft: Transitions to moist, dense, yellowish brown (10YR 5/4), well graded fine, silty, SAND. With well graded fine, silty, SAND. (10YR 5/4), poorly graded fine, silty, SAND. (10YR 5/4), poorly graded fine, silty, SAND. (10YR 5/4), poorly graded fine, so (10YR 5/4), well graded fine to coarse, subrounded, GRAVEL; with silt and well graded fine to coarse sand. Moist, dense, yellowish brown (10YR 5/4), well graded fine to coarse, subrounded to rounded, GRAVEL; with off and so (GRAVEL) with organics. Wet, medium dense, yellowish brown (10YR 5/4), well graded fine to coarse, subrounded to rounded, GRAVEL, with silt and well graded fine to coarse sand. Moist, dense, dark gray (GLEY1 4/N), poorly graded fine, silty, SAND; with trace gravel. @ 62.6 ft: thin interbedded organics. Wet, medium dense, yellowish brown (10YR 5/4), well graded fine to coarse sand. Moist, dense, dark gray (GLEY1 4/N), poorly graded fine, silty, SAND. Moist, dense, dark gray (GLEY1 4/N), poorly graded fine, silty, SAND. Moist, dense, dark gray (GLEY1 4/N), poorly graded fine, silty, SAND. Moist, de		GW-GM			MARKS:		100 100 100		0 0.1 0.3 0 0.1 0 0 1 0 0 0 0 0 0	64.7-134.0 ft bgs: Zone A Aquifer		
DRIL DIAN LOG	L MTHD Sonic ANGLE IETER 9 in to 150 ft, 8 in to 300 ft BEARIN GER J. Traywick REVIEWER C. Bartlett PRIN		CC	ORDINATE S	YSTEM SYMBOL	: S AND AB	BREVIATIONS						

G	Consultants S20 Pike Street, Suite Seattle, Washington Phone: 206.496.1450 BOREHOLE		BORINGCOI-MW08SHEETSTART DATE11/29/2022ElevationFINISH DATE12/16/2022PROJECTCity of IssaquahLOCATIONSalmon Run Nature ParkPROJECTNUMBERPNG0989							
			c		WELL		SA	MPLES		
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	USCS Classificatio	MELL LOG	WELL CONSTRUCTION MATERIAL	ТҮРЕ	% RECOVERY	SAMPLE ID	PID READING (ppm)	COMMENTS
	Dry to moist, loose, dark yellowish brown (10YR 4/4), well graded fine to coarse, SAND; with silt, cobbles, and well graded fine to coarse, subangular to subrounded, gravel. (2) 83.6 ft: Transitions to dry, dense, brown (10YR 5/3), well graded fine to medium, SAND; with silt and trace, very fine, gravel. (2) 86.5 ft: Transitions to dry, loose, brown (10YR 5/3), well graded fine to coarse, SAND; with silt and well graded fine to coarse, subangular to subrounded, gravel. (2) 87.8 ft: Transitions to dry, loose, brown (10YR 5/3), well graded fine to coarse, subrounded, gravel. (2) 89.7 ft: Transitions to dry, loose, brown (10YR 5/3), well graded fine to coarse, subrounded, gravel. (2) 89.2 ft: Transitions to dry, medium dense, brown (10YR 5/3), well graded fine to medium, SAND; with silt and trace, fine to coarse, subrounded, gravel. Wet, loose, brown (10YR 5/3), well graded fine to coarse, subangular to subrounded, GRAVEL; with silt and well graded medium to coarse sand. Wet, loose, brown (10YR 5/3), well graded medium to coarse, SAND; with silt and trace fine gravel. Moist, medium dense, brown (10YR 5/3), well graded fine to medium, SAND; with silt and trace fine gravel. (2) 92.5-96.3: trace fine gravel. (2) 94.4-96.3: some coarse sand. TRACTOR LATITUE		SW-SM		REMARKS:		100 100 100 100		0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	
DRIL DIAN LOG	L MTHD Sonic Drift Rig LONGI L MTHD Sonic ANGLE METER 9 in to 150 ft, 8 in to 300 ft BEARIN GER J. Traywick REVIEWER C. Bartlett PRINT		COORDINATE S	SYSTEM: R SYMBOLS	AND ABI	BREVIATIONS				

G	consultants				BORING START DATE FINISH DATE PROJECT CI	COI-N 11/29/20 12/16/20	1W08 022 022 022	Elevatio	on	SHEET 5 OF 12
	GS FORM: ORE3 10/00 BOREHOLE	LOG			LOCATION Sa PROJECT NUM	almon Ru IBER P	In Natu NG098	re Park 9		
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	USCS Classification	MELL LOG	WELL WELL CONSTRUCTION MATERIAL	ТҮРЕ	% RECOVERY	UPLES DI DI DI WVS	PID READING (ppm)	COMMENTS
	@100.6 ft: Transitions to moist, medium dense, brown (10/R 5/3), well graded fine to coarse, subrounded to subangular, gravel. @ 102.9 ft: Transitions to dry, medium dense, brown (10/R 5/3), well graded fine to medium, SAND; with silt Moist, medium dense, brown (10/R 5/3), well graded fine to coarse, SAND; with well graded fine to coarse, subangular, gravel. Moist, medium dense, brown (10/R 5/3), well graded fine to coarse, SAND; with well graded fine to coarse, subangular, gravel. Moist, medium dense, dark gray (GLEY1 4/N), poorly graded medium, SAND; with silt. Moist, dense, dark gray (GLEY1 4/N), poorly graded fine, silty, SAND. @110-112 ft: very wet (saturated) @112-112.7 ft: wet, trace, fine to coarse, gravel. Dry to moist, medium dense, dark gray (GLEY1 4/N), poorly graded medium, SAND; with silt. @117-118 ft: One nodule (elliptical sphere) of lean CLAY (CL); with sand. Intrustry (CL); with sand. Intrustry (CL); with sand.		SW SP-SM		REMARKS:		100 100 100	Grab groundwater sample at 120 ft bgs: MW-08-120- 120622	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
EQU DRIL DIAN LOG	IPMENT Sonic Drill Rig LONGIT L MTHD Sonic ANGLE IETER 9 in to 150 ft, 8 in to 300 ft BEARIN GER J. Traywick REVIEWER C. Bartlett PRINT	COORDINATE S	SYSTEM R SYMBOLS	: S AND ABI	BREVIATIONS					

G	Geosyntec consultants GS FORM: COPE3 10/00 BOREHOLE LOG					BORING COI-MW08 SHEET 6 OF 1 START DATE 11/29/2022 Elevation 1 FINISH DATE 12/16/2022 PROJECT City of Issaquah LOCATION Salmon Run Nature Park PROJECT NUMBER PNG0989					
				וו			SA	MPLES			
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	USCS Classification	WELL LOG	WELL CONSTRUCTION MATERIAL	ТҮРЕ	% RECOVERY	SAMPLE ID	PID READING (ppm)	COMMENTS	
	Moist, very firm, dark gray (GLEY1 4/N), lean, CLAY. Dry, very firm, dark gray (GLEY1 4/N), SILT. @ 136.7 ft: Transitions to moist, firm, dark gray (GLEY1 4/N), SILT; with interbedded layers of sand (SP-SM) <0.5 inch. Moist, dense, dark gray (GLEY1 4/N), poorly graded fine, silty, SAND. Dry to moist, very firm, dark gray (GLEY1 4/N), SILT; with sand. Moist, medium dense, dark gray (GLEY1 4/N), SILT; with sand. Moist, medium dense, dark gray (GLEY1 4/N), SILT; with poorly graded fine sand. Moist, dense, dark gray (GLEY1 4/N), SILT; with poorly graded fine sand. Moist, medium dense, dark gray (GLEY1 4/N), sandy (well graded fine to coarse, SAND; with silt. Moist, medium dense, dark gray (GLEY1 4/N), sandy (well graded fine to medium), SILT. Moist, medium dense, dark gray (GLEY1 4/N), well graded medium to coarse, SAND. Moist, dense, dark gray (GLEY1 4/N), poorly graded SAND; with silt. Moist, dense, dark gray (GLEY1 4/N), poorly graded SAND; with silt.		CL ML SP-SM ML SP-SM SP-SM				100 100 100 100	Grab soil sample at 134 ft bgs: MW-08-134 Grainsize Sample. ML-137-139 Grab soil sample at 144 ft bgs: MW-08-144 Graisize Sample. SP-146-148	0 0 0.1 0 0.1 0 0 0.1 0.1 0.1	134-144 ft bgs: Deep Aquitard	
EQUI DRIL DIAN LOG	PMENT Sonic Drill Rig LONGIT L MTHD Sonic ANGLE ETER 9 in to 150 ft, 8 in to 300 ft BEARIN GER J. Traywick REVIEWER C. Bartlett PRINT		COORDINATE S		: S AND AB	BREVIATIONS					

G	Geosyntec consultants 520 Pike Street, Suite 2600 Seattle, Washington 98101 Phone: 206.496.1450						BORING START DATE FINISH DATE PROJECT Cit	COI-N 11/29/20 12/16/20 ty of Iss	1W08 022 022 aquah	Elevatio	'n	SHEET 8 OF 12
	GS FORM: ORE3 10/00	٦Ľ	LOCATION Sa PROJECT NUM	lmon Ru BER P	un Natu NG098	re Park 9						
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	USCS Classification	MELL LOG	WELL WELL CONSTRUCTION MATERIAL	ТҮРЕ	% RECOVERY	MPLES DI HUNCE S	PID READING (ppm)	COMMENTS
	Dry, stiff, dark gra (well graded fine : @177.7 ft: 0.1 ft s medium. @177.7 ft: Transi 4/N), SILT; with fi Dry, dense, dark g medium, silty, SA Dry, stiff, dark gra graded fine sand. Dry, stiff, dark gra Dry, stiff, dark gra Dry, stiff, dark gra Dry, firm, dark gra Dry, firm, dark gra Dry, firm, dark gra 0 ft, stiff, stiff	y (GLEY1 4/N), interbedded to medium) and SILT. and layer (SM), well graded tions to dry, stiff, dark gray (ne sand. gray (GLEY1 4/N), well grade ND. y (GLEY1 4/N), fine sandy, S y (GLEY1 4/N), SILT; with p y (GLEY1 4/N), SILT; with fi gray (GLEY1 4/N), SILT; with fi gray (GLEY1 4/N), SILT; with fi gray (GLEY1 4/N), poorly gra omes very wet (saturated). Organic woody layer in sand	sand fine to GLEY1 ed fine to SILT. SILT. ne sand. (SM)		ML SM ML				100 100 100 100	Grab soil sample at 175 ft bgs: MW-08-175 Grab soil sample at 185 ft bgs: MW-08-185 sample at 195 ft bgs: MW-08-195	0 0 0 0 0 0	
CON EQUI DRIL DIAN LOG	I RACTOR IPMENT Son L MTHD Son IETER 9 in GER J. Traywick		KEMARKS: COORDINATE S SEE KEY SHEET FOR	SYSTEM	: S AND AB	BREVIATIONS						

G	Geosyntec consultants 520 Pike Street, Suite 2600 Seattle, Washington 98101 Phone: 206.496.1450					COI-N 11/29/20 12/16/20 ty of Issa	IW08 022 022 aquah	Elevatio	on	SHEET 9 OF 12
		OG		LOCATION Salmon Run Nature Park PROJECT NUMBER PNG0989						
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LOG	USCS Classification	WELL LOG	WELL WELL CONSTRUCTION MATERIAL	ТҮРЕ	% RECOVERY	MPLES CI SAMPLE ID	PID READING (ppm)	COMMENTS
205 — - 205 — - 210 — - 210 — - 215 — - 2215 — - 220 — - - 220 — - - - - - - - - - - - - - - - - - - -	Wet to moist, dense, dark gray (GLEY1 4/N), poorly graded fine, SAND; with silt. @ 204 ft: Transitions to dry to moist, dense, dark gray (GLEY1 4/N), well graded fine to medium, SAND; with silt. @ 204.7 ft: Transitions to dry to moist, dense, dark gray (GLEY1 4/N), poorly graded fine, SAND; with silt. @ 207.0-207.2 ft: some medium sand. Dry dense, dark gray (GLEY1 4/N), poorly graded fine, lisity, SAND. Dry to moist, medium dense, dark gray (GLEY1 4/N), well graded fine to medium, SAND; with silt. Dry to moist, dense, dark gray (GLEY1 4/N), well graded fine to medium, SAND; with silt. Dry to moist, medium dense, dark gray (GLEY1 4/N), well graded fine to medium, SAND; with silt. Dry to moist, medium dense, dark gray (GLEY1 4/N), Mell graded fine to medium, SAND; with silt.		SP-SW		REMARKS:		100 100 100 100		0 0 0 0 0	
DRIL DIAN LOG	IL MTHD Sonic Drill Rig LONGITI L MTHD Sonic ANGLE IETER 9 in to 150 ft, 8 in to 300 ft BEARING GER J. Traywick REVIEWER C. Bartlett PRINT	COORDINATE SYSTEM: SEE KEY SHEET FOR SYMBOLS AND ABBREVIATIONS								

\mathbf{C}	Coosymptoc							BORING COI-MW08				
U	Consultants 520 Pike Street, Suite 2600 Seattle, Washington 98101 Phone: 206 496 1450						TART DATE	11/29/2 12/16/2	022 022	Elevatio	on	
		┥╏╸	LOCATION Salmon Run Nature Park									
DEPTH (ft)		MATERIAL DESCRIPTION		SYMBOLIC LOG	USCS Classification	MELL LOG	WELL WELL CONSTRUCTION MATERIAL	ТҮРЕ	% RECOVERY	DI BIAMARS	PID READING (ppm)	COMMENTS
230	well graded fine to silt. Dry to moist, med well graded fine to silt and trace well gravel. Dry to moist, med well graded fine to Dry to moist, med well graded medit @229.5 ft: 0.1 ft la Dry, very stiff, darl Moist, loose, dark medium to coarse coarse rounded g	b medium (trace coarse), SAN ium dense, dark gray (GLEY' o medium (trace coarse), SAN graded fine to coarse, rounde ium dense, dark gray (GLEY' o coarse, SAND; with silt. ium dense, dark gray (GLEY' um to coarse, SAND; with silt ayer containing fine to coarse k gray (GLEY1 4/N), SILT. gray (GLEY1 4/N), SILT. gray (GLEY1 4/N), well grade , SAND; with silt and trace fir ravel.	ND; with 1 4/N), ND; with ed, 1 4/N), 1 4/N), gravel. ed ne to		<u>ML</u> SW-SM		224-235.5 ft bgs: 4, 50 lb bags Pel-Plug 3/8 in bentonite chips. 235.5-248 ft bgs: 12, 50 lb bags Gillibrand Industrial Sands, 12x20 size.		100		0	Sand and gravel material from core fell back down casing.
240 — 	Wet, loose, dark g coarse, subangula medium to coarse @ 241.8 ft: Trans 4/N), well graded subrounded, GRA work of the subrounded, GRA work of the subrounded, GRA (GLEY1 3/N), well and fine to coarse @246.5 ft: Trans (GLEY1 3/N), well and well graded fi Subrounded, grav @247.6 ft: Trans (GLEY1 3/N), well subrounded, grav @247.6 ft: Trans (GLEY1 3/N), well subrounded, grav	gray (GLEY1 4/N), well grade ar, GRAVEL; with silt and wel a, sand. itions to wet, loose, dark gray fine to coarse, subangular to VEL; with silt. nse, very dark gray (GLEY1 3 o coarse, SAND; with silt and ar, gravel. itions to moist, dense, very da I graded fine to coarse, SANE , subangular gravel. tions to moist, dense, very da I graded fine to coarse, SANE i graded fine to coarse, subangular to el. itions to moist, dense, very da I graded fine to medium, SAN gravel.	d fine to Il graded (GLEY1 3/N), well fine to ark gray D; with silt rk gray D; with silt		SW-GM		238-248 ft bgs: 10-slot well screen.		100		0 0.1 0 0	
	Isilt and trace fine gravel. Image: SP-SM CONTRACTOR LATITUDE CONTRACTOR LONGITUDE COUPMENT Sonic Drill Rig DRILL MTHD Sonic OIAMETER 9 in to 150 ft, 8 in to 300 ft BEARING OGGER J. Traywick REVIEWER C. Bartlett						EMARKS: OORDINATE S EE KEY SHEET FOR	SYSTEM	: S AND AB	BREVIATIONS		

G	Geosyntec consultants 520 Pike Street, Suite 2600 Seattle, Washington 98101 Phone: 206.496.1450					COI- 11/29/ 12/16/ sy of Is	MW08 2022 2022 saquah	Elevatio	on	SHEET 12 OF 12
	GS FORM: CORE3 10/00 BOREHOLE I	J	LOCATION Sa PROJECT NUM	lmon F BER	Run Natu PNG098	ıre Park 9				
		DG	ation		WELL		SA	MPLES		_
DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOLIC LO	USCS Classifica	MELL LOG	WELL CONSTRUCTION MATERIAL	ТҮРЕ	% RECOVERY	SAMPLE ID	PID READING (ppm)	COMMENTS
_	_					$\left \right $			0.1	
-	-						76		0	
-										Material fell out of soil
280 —	Drute majet dence dark gray (CLEV1.4/N) well	····*	SD SM							catcher.
-	graded fine to medium, SAND; with silt.		0F-0W			$\left \right\rangle$	/			
-							100			
-	-									
285 —	-									
-						$\left \right\rangle$	/			
-	@ 287.2 ft: Transitions to dry to moist, very dense, dark gray (GLEY1 4/N), poorly graded fine (trace medium),						100			
-	SAND; with silt. @ 288.5 ft: SAND contains trace well graded fine to coarse, subangular, gravel.									
290 —	@ 290 ft: Transitions to dry to moist, dense, dark gray									
_	silt and dense, trace subangular gravel.					$ \rangle$	/			
-	-						100			
-	-									
295 —	-						7			
	-					$ \rangle /$				
-							100			
-	End of boring @ 300 ft bgs.									
	TRACTOR LATITUE	DE UDE	I		REMARKS:			1	1	·
DRIL DIAN LOG	L MTHD Sonic ANGLE METER 9 in to 150 ft, 8 in to 300 ft BEARING GER J. Traywick REVIEWER C. Bartlett PRINT		COORDINATE SYSTEM: SEE KEY SHEET FOR SYMBOLS AND ABBREVIATIONS							

APPENDIX B Photo Log

APPENDIX B – PHOTOGRAPHIC RECORD

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 1.

Date: 29 November 2022

Direction: Southwest

View: Track-mounted sonic drill rig set up at well location (COI-MW-08).

PHOTOGRAPH 2.

Date: 29 November 2022

Direction: Southeast

View: Track-mounted sonic drill rig set up at well location (COI-MW-08).

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 3.

Date: 30 November 2022

Direction: Northeast

View: Worksite view from the corner of NW Juniper St and 5th Ave NW. Utility markings are visible and indicate a utility corridor beneath the gravel parking strip.

PHOTOGRAPH 4.

Date: 07 December 2022

Direction: East

View: Worksite in Salmon Run Nature Park.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 5.

Date: 14 December 2022

Direction: Southeast

View: Grout mixing during well installation.

PHOTOGRAPH 6.

Date: 21 December 2022

Direction: Southwest

View: Well development crane setting up at monitoring well for final well development.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 7.

Date: 21 December 2022

Direction: Northwest

View: Final well development pump set up.

PHOTOGRAPH 8.

Date: 7 December 2022

Direction: North

View: Impact on work site from operation of heavy equipment.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 11.

Date: 02 January 2023

Direction: West

View: View of rehabilitated work site (after drilling).

PHOTOGRAPH 12.

Date: 02 January 2023

Direction: East

View: View of rehabilitated work site (after drilling).

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 13.

Date: 29 November 2022

Direction: n/a

View: Sample at 14 ft bgs, representative of wellgraded SAND with silt and trace wood debris from Shallow Aquifer.

PHOTOGRAPH 14.

Date: 29 November 2022

Direction: n/a

View: Sample at 16 to 20 ft bgs, representative of silty SAND (right) and well-graded GRAVEL with sand from Shallow Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 15.

Date: 29 November 2022

Direction: n/a

View: Sample at 22 to 23 ft bgs, representative of well-graded gravel with silt and sand from Shallow Aquifer.

PHOTOGRAPH 16.

Date: 29 November 2022

Direction: n/a

View: Sharp contact between poorly graded SAND and Sandy Lean CLAY (Right) @ 25.5 ft bgs and Sandy SILT and well-graded gravel with silt and sand (Left) @ 27.2ft bgs from Shallow Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 17.

Date: 29 November 2022

Direction: n/a

View: Sample at 37 to 40 ft bgs, representative of well-graded GRAVEL with silt and sand from Shallow Aquifer.

PHOTOGRAPH 18.

Date: 29 November 2022

Direction: n/a

View: Sample at 50 to 52 ft bgs, representative of well-graded GRAVEL with silt and sand from Shallow Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 19.

Date: 29 November 2022

Direction: n/a

View: Sample at 55 to 60 ft bgs, representative of (right to left) silty SAND, silty SAND with gravel, well-graded GRAVEL with silt and sand, and silty SAND from Shallow Aquifer.

PHOTOGRAPH 20.

Date: 29 November 2022

Direction: n/a

View: Sample at 62 to 64 ft bgs, representative of (right to left) silty SAND, well-graded GRAVEL with silt and sand, and silty SAND from Shallow Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 21.

Date: 29 November 2022

Direction: n/a

View: Contact between silty Sand and well-graded GRAVEL with silt and sand at 64.7 ft bgs. Contact between Shallow Aquifer and A Zone Aquifer

PHOTOGRAPH 22.

Date: 29 November 2022

Direction: n/a

View: Sample at 66 to 68 ft bgs, representative of well-graded GRAVEL with silt and sand from A Zone Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 23.

Date: 29 November 2022

Direction: n/a

View: Sample at 72 to 75 ft bgs, representative of well-graded GRAVEL with silt and sand from A Zone Aquifer.

PHOTOGRAPH 24.

Date: 30 November 2022

Direction: n/a

View: Contact between well-graded SAND with silt and gravel and wellgraded SAND with silt at 83.6 ft bgs from A Zone Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 25.

Date: 30 November 2022

Direction: n/a

View: Sample at 96 to 98 ft bgs, representative of well-graded SAND with silt from A Zone Aquifer.

PHOTOGRAPH 26.

Date: 30 November 2022

Direction: n/a

View: Contact between well-graded SAND and poorly-graded SAND with silt at 106.2 ft bgs from A Zone Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 27.

Date: 30 November 2022

Direction: n/a

View: Sample at 121 to 123 ft bgs, representative of well-graded SAND with silt from A Zone Aquifer.

PHOTOGRAPH 28.

Date: 01 December 2022

Direction: n/a

View: Prominent contact between well-graded SAND with silt and lean CLAY at 134 ft bgs. Contact between A Zone Aquifer and Deep Aquitard.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 29.

Date: 02 December 2022

Direction: n/a

View: Sample at 138 to 140 ft bgs, representative of SILT with sand from Deep Aquitard.

PHOTOGRAPH 30.

Date: 02 December 2022

Direction: n/a

View: Sample at 140 to 142 ft bgs, representative of interbedded SILT with sand and poorly graded SAND of the Deep Aquitard.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 31.

Date: 02 December 2022

Direction: n/a

View: Sample at 145 to 147 ft bgs, representative of poorly-graded SAND from B Zone Aquifer.

PHOTOGRAPH 32.

Date: 02 December 2022

Direction: n/a

View: Sample at 160 to 161 ft bgs, representative sandy SILT from B Zone Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 33.

Date: 06 December 2022

Direction: n/a

View: Sample at 164 to 165 ft bgs, representative of SILT from B Zone Aquifer.

PHOTOGRAPH 34.

Date: 06 December 2022

Direction: n/a

View: Contact between SILT and poorly-graded SAND at 167.5 ft bgs from B Zone Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 35.

Date: 06 December 2022

Direction: n/a

View: Sample at 173 to 175 ft bgs, representative of silty SAND from B Zone Aquifer.

PHOTOGRAPH 36.

Date: 06 December 2022

Direction: n/a

View: Sample at 177.5 to 180 ft bgs, representative of (left to right) sandy SILT and silty SAND from B Zone Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 37.

Date: 07 December 2022

Direction: n/a

View: Sample at 192 to 195 ft bgs, representative of silty SAND from B Zone Aquifer.

PHOTOGRAPH 38.

Date: 09 December 2022

Direction: n/a

View: Sample at 210 to 212 ft bgs, representative of SAND with silt from B Zone Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 39.

Date: 09 December 2022

Direction: n/a

View: Sample at 230 to 234 ft bgs, representative of well-graded SAND with silt and trace gravel from B Zone Aquifer.

PHOTOGRAPH 40.

Date: 12 December 2022

Direction: n/a

View: Sample at 240 to 245 ft bgs, representative of well-graded GRAVEL with silt and sand and well-graded GRAVEL with silt from B Zone Aquifer. Screen set from 238 to 248 ft bgs across these water-bearing gravels.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 41.

Date: 12 December 2022

Direction: n/a

View: Sample at 245 to 250 ft bgs, representative of (left to right) well-graded SAND with silt and gravel, well-graded SAND with silt, and silty SAND from B Zone Aquifer.

PHOTOGRAPH 42.

Date: 12 December 2022

Direction: n/a

View: Sample at 250 to 252.5 ft bgs, representative of poorly-graded SAND with silt and trace gravel from B Zone Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 43.

Date: 12 December 2022

Direction: n/a

View: Sample at 262 to 265 ft bgs, representative of poorly-graded SAND with silt from B Zone Aquifer.

PHOTOGRAPH 44.

Date: 13 December 2022

Direction: n/a

View: Sample at 280 to 282.5 ft bgs, representative of poorly-graded SAND with silt from B Zone Aquifer.

SITE:Salmon Run Nature Park, Issaquah, WashingtonSUBJECT:Additional Well Installation Report – COI-MW08

PHOTOGRAPH 45.

Date: 13 December 2022

Direction: n/a

View: Sample at 288 to 290 ft bgs, representative of poorly-graded SAND with silt from B Zone Aquifer.

PHOTOGRAPH 46.

Date: 13 December 2022

Direction: n/a

View: Sample at 292.5 to 295 ft bgs, representative of poorly-graded SAND with silt from B Zone Aquifer.

APPENDIX C Laboratory Analytical Reports

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Olga Stewart Geosyntec Consultants, Inc. 110 W 38th Street, Suite 200A Anchorage, Alaska 99503 Generated 1/12/2023 9:20:26 AM

JOB DESCRIPTION

PFAS, Lower Issaquah Valley

JOB NUMBER

320-95123-1

Eurofins Sacramento 880 Riverside Parkway West Sacramento CA 95605

Eurofins Sacramento

Job Notes

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender and destroy this report immediately. This report shall not be reproduced except in full, without prior express written approval by the laboratory.

The data in the report relate to the field sample(s) as received by the laboratory and associated QC. All results have been reviewed and have been found to be compliant with laboratory and accreditation requirements, with the exception of the noted deviation(s). For questions, please contact the Project Manager.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northern California, LLC Project Manager.

Authorization

Authorized for release by Laura Turpen, Project Manager I Laura.Turpen@et.eurofinsus.com (916)374-4414 Generated 1/12/2023 9:20:26 AM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Isotope Dilution Summary	17
QC Sample Results	19
QC Association Summary	25
Lab Chronicle	27
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	34

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS, Lower Issaquah Valley

Job ID: 320-95123-1

Glossary		2
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	A
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8 N
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 320-95123-1

Laboratory: Eurofins Sacramento

Narrative

Job Narrative 320-95123-1

Comments

No additional comments.

Receipt

The samples were received on 12/9/2022 9:20 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.7° C.

LCMS

Method QSM B15: Due to the high concentration of Perfluorooctanoic acid (PFOA), the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 320-639741 and analytical batch 320-640136 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method QSM B15: The Isotope Dilution Analyte (IDA) recoveries associated with the following sample is below the method recommended limit: (MB 320-639741/1-A). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3535: Due to the excess amount of sediment, the following sample was decanted into new 250 mL container: MW-08-170-120622 (320-95123-8). After decanting, the sample was fortified with IDA and then extracted.

Method 3535: The following sample was light brown prior to extraction: MW-08-170-120622 (320-95123-8).

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 320-640633.

Method 3535: Elevated reporting limits are provided for the following sample due to limited sample provided for preparation: MW-08-170-120622 (320-95123-8).

Method 3535: The following sample contained floating particulates in the sample bottle prior to extraction: EB-120722 (320-95123-12).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Job ID: 320-95123-1

5

Client Sample ID: MW-08-134	l i				Lab Sa	mple ID:	320-95123-1		
No Detections.									
Client Sample ID: MW-08-144	l.				Lab Sa	mple ID:	320-95123-2		
No Detections.									
Client Sample ID: MW-08-152	2				Lab Sa	mple ID:	320-95123-3		
No Detections.									
Client Sample ID: MW-08-162	2				Lab Sa	mple ID:	320-95123-4		
No Detections.									
Client Sample ID: MW-08-167	1				Lab Sa	mple ID:	320-95123-5		
No Detections.									
Client Sample ID: MW-08-175	5				Lab Sa	mple ID:	320-95123-6		
No Detections.									
Client Sample ID: MW-08-18	5				Lab Sample ID: 320-95123-				
No Detections.									
Client Sample ID: MW-08-170)-120622				Lab Sa	mple ID:	320-95123-8		
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type		
Perfluorohexanoic acid (PFHxA)	16	5.3	1.5	ng/L	1	QSM B15	Total/NA		
Perfluoroheptanoic acid (PFHpA)	6.9	5.3	1.3	ng/L	1	QSM B15	Total/NA		
Perfluorooctanoic acid (PFOA)	6.3	5.3	1.5	ng/L	1	QSM B15	Total/NA		
Perfluorononanoic acid (PFNA)	8.5	5.3	1.5	ng/L	1	QSM B15	Total/NA		
Perfluorobutanesulfonic acid (PFBS)	19	5.3	0.90	ng/L	1	QSM B15	Total/NA		
Perfluorohexanesulfonic acid (PFHxS)	51	5.3	1.0	ng/L	1	QSM B15	Total/NA		
	98	5.3	1.5	ng/L	1	QSM B15	Iotal/NA		
Client Sample ID: MW-08-198	5				Lab Sa	mple ID:	320-95123-9		
No Detections.									
Client Sample ID: Trip Blank	-1				Lab Sar	nple ID: 3	20-95123-11		
No Detections.									
Client Sample ID: EB-120722					Lab Sar	nple ID: 3	20-95123-12		
No Detections.									

This Detection Summary does not include radiochemical test results.

Client: Geosyntec Consultants, Inc.

Project/Site: PFAS, Lower Issaquah Valley

Client: Geosyntec Consultants, Inc. Project/Site: PFAS, Lower Issaquah Valley

Client Sample ID: MW-08-134 Date Collected: 12/02/22 16:20 Date Received: 12/09/22 09:20

Lab Sample ID: 320-95123-1 Matrix: Solid

Percent Solids: 70.8

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.27	0.041	ug/Kg	<u></u>	12/13/22 20:34	12/14/22 20:44	1
Perfluoroheptanoic acid (PFHpA)	ND		0.27	0.050	ug/Kg	☆	12/13/22 20:34	12/14/22 20:44	1
Perfluorooctanoic acid (PFOA)	ND		0.40	0.070	ug/Kg	₽	12/13/22 20:34	12/14/22 20:44	1
Perfluorononanoic acid (PFNA)	ND		0.27	0.029	ug/Kg	¢	12/13/22 20:34	12/14/22 20:44	1
Perfluorodecanoic acid (PFDA)	ND		0.27	0.064	ug/Kg	¢	12/13/22 20:34	12/14/22 20:44	1
Perfluoroundecanoic acid (PFUnA)	ND		0.27	0.056	ug/Kg	¢	12/13/22 20:34	12/14/22 20:44	1
Perfluorododecanoic acid (PFDoA)	ND		0.27	0.040	ug/Kg	¢	12/13/22 20:34	12/14/22 20:44	1
Perfluorotridecanoic acid (PFTriA)	ND		0.27	0.028	ug/Kg	¢	12/13/22 20:34	12/14/22 20:44	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.27	0.049	ug/Kg	¢	12/13/22 20:34	12/14/22 20:44	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.27	0.050	ug/Kg	¢	12/13/22 20:34	12/14/22 20:44	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.27	0.038	ug/Kg	¢	12/13/22 20:34	12/14/22 20:44	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.40	0.057	ug/Kg	¢	12/13/22 20:34	12/14/22 20:44	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.27	0.064	ug/Kg	₽	12/13/22 20:34	12/14/22 20:44	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.27	0.030	ug/Kg	¢	12/13/22 20:34	12/14/22 20:44	1
HFPO-DA (GenX)	ND		0.27	0.054	ug/Kg	☆	12/13/22 20:34	12/14/22 20:44	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	66		50 - 150				12/13/22 20:34	12/14/22 20:44	1
13C4 PFHpA	68		50 - 150				12/13/22 20:34	12/14/22 20:44	1
13C4 PFOA	69		50 - 150				12/13/22 20:34	12/14/22 20:44	1
13C5 PFNA	71		50 - 150				12/13/22 20:34	12/14/22 20:44	1
13C2 PFDA	70		50 - 150				12/13/22 20:34	12/14/22 20:44	1
13C2 PFUnA	74		50 - 150				12/13/22 20:34	12/14/22 20:44	1
13C2 PFDoA	67		50 - 150				12/13/22 20:34	12/14/22 20:44	1
13C2 PFTeDA	74		50 - 150				12/13/22 20:34	12/14/22 20:44	1
13C3 PFBS	61		50 - 150				12/13/22 20:34	12/14/22 20:44	1
18O2 PFHxS	63		50 - 150				12/13/22 20:34	12/14/22 20:44	1
13C4 PFOS	65		50 - 150				12/13/22 20:34	12/14/22 20:44	1
d3-NMeFOSAA	65		50 - 150				12/13/22 20:34	12/14/22 20:44	1
d5-NEtFOSAA	73		50 - 150				12/13/22 20:34	12/14/22 20:44	1
13C3 HFPO-DA	61		50 - 150				12/13/22 20:34	12/14/22 20:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	29.2		0.1	0.1	%			12/12/22 11:17	1
Porcent Solids (ASTM D 2216)	70.8		0.1	0.1	%			12/12/22 11:17	1

Date Collected: 12/02/22 16:25 Date Received: 12/09/22 09:20

Method: DOD 5.3 QSM B15 - PFAS for QSM 5.3, Table B-15												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Perfluorohexanoic acid (PFHxA)	ND		0.23	0.036	ug/Kg	₽	12/13/22 20:34	12/14/22 20:54	1			
Perfluoroheptanoic acid (PFHpA)	ND		0.23	0.045	ug/Kg	¢	12/13/22 20:34	12/14/22 20:54	1			
Perfluorooctanoic acid (PFOA)	ND		0.35	0.062	ug/Kg	¢	12/13/22 20:34	12/14/22 20:54	1			
Perfluorononanoic acid (PFNA)	ND		0.23	0.026	ug/Kg	¢	12/13/22 20:34	12/14/22 20:54	1			
Perfluorodecanoic acid (PFDA)	ND		0.23	0.056	ug/Kg	¢	12/13/22 20:34	12/14/22 20:54	1			
Perfluoroundecanoic acid (PFUnA)	ND		0.23	0.049	ug/Kg	¢	12/13/22 20:34	12/14/22 20:54	1			

Eurofins Sacramento

Percent Solids: 82.6

Client Sample ID: MW-08-144 Date Collected: 12/02/22 16:25 Date Received: 12/09/22 09:20

Lab Sample ID: 320-95123-2 Matrix: Solid

Percent Solids: 82.6

5

6

Method: DOD 5.3 QSM B15 - F	FAS for QS	6M 5.3, Tab	le B-15 (Con	tinued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorododecanoic acid (PFDoA)	ND		0.23	0.035	ug/Kg	₽	12/13/22 20:34	12/14/22 20:54	1
Perfluorotridecanoic acid (PFTriA)	ND		0.23	0.025	ug/Kg	¢	12/13/22 20:34	12/14/22 20:54	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.23	0.043	ug/Kg	¢	12/13/22 20:34	12/14/22 20:54	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.23	0.045	ug/Kg	¢	12/13/22 20:34	12/14/22 20:54	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.23	0.034	ug/Kg	¢	12/13/22 20:34	12/14/22 20:54	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.35	0.051	ug/Kg	¢	12/13/22 20:34	12/14/22 20:54	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.23	0.056	ug/Kg	¢	12/13/22 20:34	12/14/22 20:54	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.23	0.027	ug/Kg	₽	12/13/22 20:34	12/14/22 20:54	1
HFPO-DA (GenX)	ND		0.23	0.048	ug/Kg	¢	12/13/22 20:34	12/14/22 20:54	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	75		50 - 150				12/13/22 20:34	12/14/22 20:54	1
13C4 PFHpA	76		50 - 150				12/13/22 20:34	12/14/22 20:54	1
13C4 PFOA	77		50 - 150				12/13/22 20:34	12/14/22 20:54	1
13C5 PFNA	81		50 - 150				12/13/22 20:34	12/14/22 20:54	1
13C2 PFDA	78		50 - 150				12/13/22 20:34	12/14/22 20:54	1
13C2 PFUnA	80		50 - 150				12/13/22 20:34	12/14/22 20:54	1
13C2 PFDoA	74		50 - 150				12/13/22 20:34	12/14/22 20:54	1
13C2 PFTeDA	76		50 - 150				12/13/22 20:34	12/14/22 20:54	1
13C3 PFBS	71		50 - 150				12/13/22 20:34	12/14/22 20:54	1
18O2 PFHxS	74		50 - 150				12/13/22 20:34	12/14/22 20:54	1
13C4 PFOS	70		50 - 150				12/13/22 20:34	12/14/22 20:54	1
d3-NMeFOSAA	73		50 - 150				12/13/22 20:34	12/14/22 20:54	1
d5-NEtFOSAA	79		50 - 150				12/13/22 20:34	12/14/22 20:54	1
13C3 HFPO-DA	69		50 - 150				12/13/22 20:34	12/14/22 20:54	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	17.4		0.1	0.1	%			12/12/22 11:17	1
Percent Solids (ASTM D 2216)	82.6		0.1	0.1	%			12/12/22 11:17	1
Client Sample ID: MW-08-	152					L	ab Sample	e ID: 320-95	5123-3
Date Collected: 12/02/22 16:30								Matrix	c: Solid

Date Collected: 12/02/22 16:30 Date Received: 12/09/22 09:20

Method: DOD 5.3 QSM B15 - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.24	0.037	ug/Kg	¢	12/13/22 20:34	12/14/22 21:04	1
Perfluoroheptanoic acid (PFHpA)	ND		0.24	0.045	ug/Kg	¢	12/13/22 20:34	12/14/22 21:04	1
Perfluorooctanoic acid (PFOA)	ND		0.36	0.063	ug/Kg	₽	12/13/22 20:34	12/14/22 21:04	1
Perfluorononanoic acid (PFNA)	ND		0.24	0.026	ug/Kg	¢	12/13/22 20:34	12/14/22 21:04	1
Perfluorodecanoic acid (PFDA)	ND		0.24	0.057	ug/Kg	₽	12/13/22 20:34	12/14/22 21:04	1
Perfluoroundecanoic acid (PFUnA)	ND		0.24	0.050	ug/Kg	¢	12/13/22 20:34	12/14/22 21:04	1
Perfluorododecanoic acid (PFDoA)	ND		0.24	0.036	ug/Kg	¢	12/13/22 20:34	12/14/22 21:04	1
Perfluorotridecanoic acid (PFTriA)	ND		0.24	0.025	ug/Kg	₽	12/13/22 20:34	12/14/22 21:04	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.24	0.044	ug/Kg	¢	12/13/22 20:34	12/14/22 21:04	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.24	0.045	ug/Kg	₽	12/13/22 20:34	12/14/22 21:04	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.24	0.035	ug/Kg	₽	12/13/22 20:34	12/14/22 21:04	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.36	0.051	ug/Kg	₽	12/13/22 20:34	12/14/22 21:04	1

Eurofins Sacramento

Percent Solids: 80.7

Client Sample ID: MW-08-152 Date Collected: 12/02/22 16:30 Date Received: 12/09/22 09:20

loh	ın	320	0-05	123.	.1
JOD	ID.	JZU	-95	123	- 1

Lab Sample ID: 320-95123-3 Matrix: Solid

Lab Sample ID: 320-95123-4

Matrix: Solid

Percent Solids: 81.8

Percent Solids: 80.7

5

6

13

Method: DOD 5.3 QSM B15 - F	PFAS for QS	5M 5.3, Tab	le B-15 (Con	tinued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.24	0.057	ug/Kg	☆	12/13/22 20:34	12/14/22 21:04	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.24	0.027	ug/Kg	₽	12/13/22 20:34	12/14/22 21:04	1
HFPO-DA (GenX)	ND		0.24	0.049	ug/Kg	¢	12/13/22 20:34	12/14/22 21:04	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	75		50 - 150				12/13/22 20:34	12/14/22 21:04	1
13C4 PFHpA	80		50 - 150				12/13/22 20:34	12/14/22 21:04	1
13C4 PFOA	76		50 - 150				12/13/22 20:34	12/14/22 21:04	1
13C5 PFNA	84		50 - 150				12/13/22 20:34	12/14/22 21:04	1
13C2 PFDA	79		50 - 150				12/13/22 20:34	12/14/22 21:04	1
13C2 PFUnA	85		50 - 150				12/13/22 20:34	12/14/22 21:04	1
13C2 PFDoA	77		50 - 150				12/13/22 20:34	12/14/22 21:04	1
13C2 PFTeDA	81		50 - 150				12/13/22 20:34	12/14/22 21:04	1
13C3 PFBS	77		50 - 150				12/13/22 20:34	12/14/22 21:04	1
18O2 PFHxS	75		50 - 150				12/13/22 20:34	12/14/22 21:04	1
13C4 PFOS	74		50 - 150				12/13/22 20:34	12/14/22 21:04	1
d3-NMeFOSAA	77		50 - 150				12/13/22 20:34	12/14/22 21:04	1
d5-NEtFOSAA	85		50 - 150				12/13/22 20:34	12/14/22 21:04	1
13C3 HFPO-DA	72		50 - 150				12/13/22 20:34	12/14/22 21:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	19.3		0.1	0.1	%			12/12/22 11:17	1
Percent Solids (ASTM D 2216)	80.7		0.1	0.1	%			12/12/22 11:17	1

Client Sample ID: MW-08-162

Date Collected: 12/06/22 11:45

Date Received: 12/09/22 09:20

Method: DOD 5.3 QSM B15 - F	PFAS for QSM 5.3, T	able B-15						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND	0.23	0.035	ug/Kg	¢	12/13/22 20:34	12/14/22 21:14	1
Perfluoroheptanoic acid (PFHpA)	ND	0.23	0.043	ug/Kg	⇔	12/13/22 20:34	12/14/22 21:14	1
Perfluorooctanoic acid (PFOA)	ND	0.34	0.060	ug/Kg	¢	12/13/22 20:34	12/14/22 21:14	1
Perfluorononanoic acid (PFNA)	ND	0.23	0.025	ug/Kg	¢	12/13/22 20:34	12/14/22 21:14	1
Perfluorodecanoic acid (PFDA)	ND	0.23	0.055	ug/Kg	₽	12/13/22 20:34	12/14/22 21:14	1
Perfluoroundecanoic acid (PFUnA)	ND	0.23	0.048	ug/Kg	¢	12/13/22 20:34	12/14/22 21:14	1
Perfluorododecanoic acid (PFDoA)	ND	0.23	0.034	ug/Kg	₽	12/13/22 20:34	12/14/22 21:14	1
Perfluorotridecanoic acid (PFTriA)	ND	0.23	0.024	ug/Kg	¢	12/13/22 20:34	12/14/22 21:14	1
Perfluorotetradecanoic acid (PFTeA)	ND	0.23	0.042	ug/Kg	₽	12/13/22 20:34	12/14/22 21:14	1
Perfluorobutanesulfonic acid (PFBS)	ND	0.23	0.043	ug/Kg	₽	12/13/22 20:34	12/14/22 21:14	1
Perfluorohexanesulfonic acid (PFHxS)	ND	0.23	0.033	ug/Kg	₽	12/13/22 20:34	12/14/22 21:14	1
Perfluorooctanesulfonic acid (PFOS)	ND	0.34	0.049	ug/Kg	⇔	12/13/22 20:34	12/14/22 21:14	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	0.23	0.055	ug/Kg	¢	12/13/22 20:34	12/14/22 21:14	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	0.23	0.026	ug/Kg	¢	12/13/22 20:34	12/14/22 21:14	1
HFPO-DA (GenX)	ND	0.23	0.047	ug/Kg	₽	12/13/22 20:34	12/14/22 21:14	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	79	50 - 150				12/13/22 20:34	12/14/22 21:14	1

Eurofins Sacramento

5

6

Lab Sample ID: 320-95123-4 Matrix: Solid Percent Solids: 81.8

Date Collected: 12/06/22 11:45 Date Received: 12/09/22 09:20

Client Sample ID: MW-08-162

isotope bilation	%Recovery	Qualifier	Limits	· · · ·			Prepared	Analyzed	Dil Fa
13C4 PFHpA	76		50 - 150				12/13/22 20:34	12/14/22 21:14	
13C4 PFOA	78		50 - 150				12/13/22 20:34	12/14/22 21:14	
13C5 PFNA	85		50 - 150				12/13/22 20:34	12/14/22 21:14	
13C2 PFDA	82		50 - 150				12/13/22 20:34	12/14/22 21:14	
13C2 PFUnA	82		50 - 150				12/13/22 20:34	12/14/22 21:14	
13C2 PFDoA	77		50 - 150				12/13/22 20:34	12/14/22 21:14	
13C2 PFTeDA	83		50 - 150				12/13/22 20:34	12/14/22 21:14	
13C3 PFBS	76		50 - 150				12/13/22 20:34	12/14/22 21:14	
18O2 PFHxS	81		50 ₋ 150				12/13/22 20:34	12/14/22 21:14	
13C4 PFOS	80		50 - 150				12/13/22 20:34	12/14/22 21:14	
d3-NMeFOSAA	80		50 - 150				12/13/22 20:34	12/14/22 21:14	
d5-NEtFOSAA	93		50 <u>-</u> 150				12/13/22 20:34	12/14/22 21:14	
13C3 HFPO-DA	71		50 - 150				12/13/22 20:34	12/14/22 21:14	
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil F
Percent Moisture (ASTM D 2216)	18.2		0.1	0.1	%			12/12/22 11:17	
Percent Solids (ASTM D 2216)	81.8		0.1	0.1	%			12/12/22 11:17	
lient Sample ID: MW-08-	167					L	ab Sample	e ID: 320-95	123
ate Collected: 12/06/22 11:50								Matrix	. Sol
ate Received: 12/09/22 09:20								Porcont Solid	e 73
Method: DOD 5.3 QSM B15 - F	PFAS for QS	M 5.3, Tab	le B-15						
Method: DOD 5.3 QSM B15 - F Analyte	PFAS for QS Result	M 5.3, Tab Qualifier	le B-15 RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA)	PFAS for QS Result ND	M 5.3, Tab Qualifier	le B-15 	MDL 0.041	Unit ug/Kg	D	Prepared 12/13/22 20:34	Analyzed	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA)	PFAS for QS Result ND ND	M 5.3, Tab Qualifier	le B-15 	MDL 0.041 0.050	Unit ug/Kg ug/Kg	D #	Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)	PFAS for QS Result ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26 0.26 0.39	MDL 0.041 0.050 0.070	Unit ug/Kg ug/Kg ug/Kg	<u>D</u> **	Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA)	PFAS for QS Result ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26 0.26 0.39 0.26	MDL 0.041 0.050 0.070 0.029	Unit ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA)	PFAS for QS Result ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 <u>RL</u> 0.26 0.26 0.39 0.26 0.26 0.26	MDL 0.041 0.050 0.070 0.029 0.063	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	D	Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA)	PFAS for QS Result ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 <u>RL</u> 0.26 0.26 0.39 0.26 0.26 0.26 0.26	MDL 0.041 0.050 0.070 0.029 0.063 0.055	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	D	Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA)	PFAS for QS Result ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 <u>RL</u> 0.26 0.26 0.39 0.26 0.26 0.26 0.26 0.26	MDL 0.041 0.050 0.070 0.029 0.063 0.055 0.039	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFDA) Perfluoroundecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA)	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 <u>RL</u> 0.26 0.26 0.39 0.26 0.26 0.26 0.26 0.26 0.26 0.26	MDL 0.041 0.050 0.070 0.029 0.063 0.055 0.039 0.028	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorotridecanoic acid (PFDA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA)	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26 0.26 0.39 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	MDL 0.041 0.050 0.070 0.029 0.063 0.055 0.039 0.028 0.049	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45	<u>Dil F</u>
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluorododecanoic acid (PFUA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS)	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26 0.26 0.39 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	MDL 0.041 0.050 0.070 0.029 0.063 0.055 0.039 0.028 0.049 0.050	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluorodecanoic acid (PFDA) Perfluorotridecanoic acid (PFDA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS)	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26	MDL 0.041 0.050 0.070 0.029 0.063 0.055 0.039 0.028 0.049 0.050 0.038	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFOA) Perfluorodecanoic acid (PFDA) Perfluorodecanoic acid (PFDA) Perfluorotridecanoic acid (PFDA) Perfluorotridecanoic acid (PFTrA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFOS)	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.39	MDL 0.041 0.050 0.070 0.029 0.063 0.055 0.039 0.028 0.049 0.050 0.038 0.057	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFOA) Perfluorodecanoic acid (PFDA) Perfluorodecanoic acid (PFDA) Perfluorodecanoic acid (PFDA) Perfluorotridecanoic acid (PFDA) Perfluorotetradecanoic acid (PFTeA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorobexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26	MDL 0.041 0.050 0.029 0.063 0.055 0.039 0.028 0.049 0.050 0.038 0.057 0.063	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45	<u>Dil F</u>
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFOA) Perfluorondecanoic acid (PFDA) Perfluorodecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorotridecanoic acid (PFDA) Perfluorotetradecanoic acid (PFTeA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorobutanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Perfluorooctanesulfonic acid (PFOS) V-ethylperfluorooctanesulfonamidoac stic acid (NEtFOSAA)	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26	MDL 0.041 0.050 0.029 0.063 0.055 0.039 0.028 0.049 0.050 0.038 0.057 0.063 0.030	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45	<u>Dil F</u>
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorononanoic acid (PFOA) Perfluorononanoic acid (PFOA) Perfluorondecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorotridecanoic acid (PFDA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) Verthylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) V-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA) IFPO-DA (GenX)	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26	MDL 0.041 0.050 0.070 0.029 0.063 0.055 0.039 0.028 0.049 0.050 0.038 0.057 0.063 0.030 0.030	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45	<u>Dil F</u>
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorotetradecanoic acid (PFDA) Perfluorotetradecanoic acid (PFTA) Perfluorotetradecanoic acid (PFTA) Perfluorotetradecanoic acid (PFTA) Perfluorobutanesulfonic acid (PFBS) Perfluorobutanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) HFPO-DA (GenX)	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26	MDL 0.041 0.050 0.070 0.029 0.063 0.055 0.039 0.028 0.049 0.050 0.038 0.057 0.063 0.030 0.030 0.054	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorooctanoic acid (PFOA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorotridecanoic acid (PFTrA) Perfluorotetradecanoic acid (PFTrA) Perfluorobutanesulfonic acid (PFBS) Perfluorobexanesulfonic acid (PFBS) Perfluoroctanesulfonic acid (PFDS) Perfluoroctanesulfonic acid (PFOS) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) HFPO-DA (GenX) Sotope Dilution	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26	MDL 0.041 0.050 0.029 0.063 0.055 0.039 0.028 0.049 0.050 0.038 0.057 0.063 0.030 0.054	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFOA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorotridecanoic acid (PFDA) Perfluorotridecanoic acid (PFTrA) Perfluorotridecanoic acid (PFTrA) Perfluorobutanesulfonic acid (PFBS) Perfluorobutanesulfonic acid (PFBS) Perfluoroctanesulfonic acid (PFDS) Perfluoroctanesulfonic acid (PFOS) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) HFPO-DA (GenX) Isotope Dilution 13C2 PFHxA 13C4 PFHpA	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26 0.50	MDL 0.041 0.050 0.070 0.029 0.063 0.055 0.039 0.028 0.049 0.050 0.038 0.057 0.063 0.030 0.054	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFOA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorotridecanoic acid (PFDA) Perfluorotridecanoic acid (PFTrA) Perfluorotridecanoic acid (PFTA) Perfluorobutanesulfonic acid (PFBS) Perfluorobutanesulfonic acid (PFBS) Perfluorotetradecanoic acid (PFDS) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) HFPO-DA (GenX) Sotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFOA	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26 0.50 50 - 150 50 - 150	MDL 0.041 0.050 0.070 0.029 0.063 0.055 0.039 0.028 0.049 0.050 0.038 0.057 0.063 0.030 0.054	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFOA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorotridecanoic acid (PFDA) Perfluorotridecanoic acid (PFTrA) Perfluorotetradecanoic acid (PFTA) Perfluorobutanesulfonic acid (PFBS) Perfluorobexanesulfonic acid (PFBS) Perfluoroctanesulfonic acid (PFDS) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) HFPO-DA (GenX) Motope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFOA	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26 0.50 50 - 150 50 - 150 50 - 150	MDL 0.041 0.050 0.070 0.029 0.063 0.055 0.039 0.028 0.049 0.050 0.038 0.057 0.063 0.030 0.054	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFOA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA) Perfluorotetradecanoic acid (PFTrA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorobexanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFOS) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) N-methylperfluorooctanesulfonamidoac cetic acid (NMeFOSAA) HFPO-DA (GenX) Isotope Dilution 13C2 PFHxA 13C4 PFOA 13C5 PFNA 13C2 PFDA	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26 0.50 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150	MDL 0.041 0.050 0.070 0.029 0.063 0.039 0.028 0.049 0.050 0.038 0.057 0.063 0.030 0.054	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45	Dil F
Method: DOD 5.3 QSM B15 - F Analyte Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFOA) Perfluorodecanoic acid (PFDA) Perfluorodecanoic acid (PFDA) Perfluorodecanoic acid (PFDA) Perfluorodecanoic acid (PFDA) Perfluorotetradecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorobexanesulfonic acid (PFOS) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) HFPO-DA (GenX) Isotope Dilution 13C2 PFHxA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFDA	PFAS for QS Result ND ND ND ND ND ND ND ND ND ND	M 5.3, Tab Qualifier	le B-15 RL 0.26 0.50 50 - 150 50 - 15	MDL 0.041 0.050 0.070 0.029 0.063 0.039 0.028 0.049 0.050 0.038 0.057 0.063 0.030 0.054	Unit ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:45 12/14/22 21:45	Dil Fi

Eurofins Sacramento

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: PFAS, Lower Issaquah Valley

Client Sample ID: MW-08-167 Date Collected: 12/06/22 11:50 Date Received: 12/09/22 09:20

loh	ın	320-	951	23-1	
JUD	ID.	520-	ອບເ	20-1	

Lab Sample ID: 320-95123-5 Matrix: Solid Percent Solids: 73.3

Isotope Dilution	%Recovery (Qualifier Limits	Prepared	Analyzed	Dil Fac
13C2 PFTeDA	75	50 - 150	12/13/22 20:34	12/14/22 21:45	1
13C3 PFBS	72	50 - 150	12/13/22 20:34	12/14/22 21:45	1
18O2 PFHxS	74	50 - 150	12/13/22 20:34	12/14/22 21:45	1
13C4 PFOS	75	50 - 150	12/13/22 20:34	12/14/22 21:45	1
d3-NMeFOSAA	75	50 - 150	12/13/22 20:34	12/14/22 21:45	1
d5-NEtFOSAA	82	50 - 150	12/13/22 20:34	12/14/22 21:45	1
13C3 HFPO-DA	75	50 - 150	12/13/22 20:34	12/14/22 21:45	1
General Chemistry					

Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	26.7	0.1	0.1	%			12/12/22 11:17	1
Percent Solids (ASTM D 2216)	73.3	0.1	0.1	%			12/12/22 11:17	1

RL

0.25

MDL Unit

0.039 ug/Kg

D

₩

Prepared

Client Sample ID: MW-08-175 Date Collected: 12/06/22 14:55

Method: DOD 5.3 QSM B15 - PFAS for QSM 5.3, Table B-15

Result Qualifier

ND

90

Date Received: 12/09/22 09:20

Perfluorohexanoic acid (PFHxA)

Analyte

d5-NEtFOSAA

Lab Sample ID: 320-95123-6

12/13/22 20:34 12/14/22 21:55

Analyzed

Matrix: Solid Percent Solids: 78.1

Dil Fac

1

6

Perfluoroheptanoic acid (PFHpA)	ND		0.25	0.048	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
Perfluorooctanoic acid (PFOA)	ND		0.38	0.067	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
Perfluorononanoic acid (PFNA)	ND		0.25	0.028	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
Perfluorodecanoic acid (PFDA)	ND		0.25	0.061	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
Perfluoroundecanoic acid (PFUnA)	ND		0.25	0.053	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
Perfluorododecanoic acid (PFDoA)	ND		0.25	0.038	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
Perfluorotridecanoic acid (PFTriA)	ND		0.25	0.027	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.25	0.047	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.25	0.048	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.25	0.037	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.38	0.055	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.25	0.061	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.25	0.029	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
	ND		0.25	0.052	ug/Kg	¢	12/13/22 20:34	12/14/22 21:55	1
	NB		0.20		0 0				
Isotope Dilution	%Recovery	Qualifier	Limits		0 0		Prepared	Analyzed	Dil Fac
Isotope Dilution 13C2 PFHxA	%Recovery 81	Qualifier	Limits 50 - 150		0 0		Prepared 12/13/22 20:34	Analyzed 12/14/22 21:55	Dil Fac
Isotope Dilution 13C2 PFHxA 13C4 PFHpA	%Recovery 81 84	Qualifier	Limits 50 - 150 50 - 150		0 0		Prepared 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:55 12/14/22 21:55	Dil Fac 1 1
Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFOA	%Recovery 9 81 84 77	Qualifier	Limits 50 - 150 50 - 150 50 - 150				Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55	Dil Fac 1 1 1
Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA	%Recovery 6 81 84 77 86	Qualifier	Limits 50 - 150 50 - 150 50 - 150 50 - 150				Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55	Dil Fac 1 1 1 1
Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA	%Recovery 6 81 84 77 86 85	Qualifier	Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150				Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55	Dil Fac 1 1 1 1 1 1
Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUA	%Recovery 6 81 84 77 86 85 86	Qualifier	Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150				Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55	Dil Fac 1 1 1 1 1 1 1
Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFUnA 13C2 PFDoA	%Recovery 6 81 84 77 86 85 86 79	Qualifier	Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150				Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55	Dil Fac 1 1 1 1 1 1 1 1
Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA	**************************************	Qualifier	Limits 50 - 150 50 - 150				Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55	Dil Fac 1 1 1 1 1 1 1 1 1 1
Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS	**************************************	Qualifier	Limits 50 - 150 50 - 150				Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55	Dil Fac 1 1 1 1 1 1 1 1 1 1 1
Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	%Recovery 81 84 77 86 85 86 79 83 80 82 82	Qualifier	Limits 50 - 150 50 - 150				Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55 12/14/22 21:55	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDoA 13C2 PFTeDA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS	%Recovery 81 84 77 86 85 86 79 83 80 82 79	Qualifier	Limits 50 - 150 50 - 150				Prepared 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34 12/13/22 20:34	Analyzed 12/14/22 21:55 12/14/22 21:55	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Eurofins Sacramento

12/13/22 20:34 12/14/22 21:55

50 - 150

1

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: PFAS, Lower Issaquah Valley

Client Sample ID: MW-08-175 Date Collected: 12/06/22 14:55

Date Received: 12/09/22 09:20

Date Received: 12/09/22 09:20								Percent Solid	s: 78.1
Mothod: DOD 5 3 OSM B15 - B	EAS for OS	M 5 3 Tab		tinued)					
Isotone Dilution	%Pocoverv	Ouglifior		unueu)			Proparad	Analyzod	Dil Eac
	76	Quaimer	50 150				12/13/22 20:34	12/14/22 21:55	
	70		001700				12/10/22 20:01	12/14/22 21:00	,
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	21.9		0.1	0.1	%			12/12/22 11:17	1
Percent Solids (ASTM D 2216)	78.1		0.1	0.1	%			12/12/22 11:17	1
	105						- h 0 h		400 7
Client Sample ID: WW-08-	185					L	ab Sample	D: 320-95	123-7
Date Collected: 12/06/22 15:00								Matrix	:: Solid
Date Received: 12/09/22 09:20								Percent Solid	s: 80.9
- Mothod: DOD 5 3 OSM B15 - B	EAS for OS	M 5 2 Tab	0 B-15						
Analyte	Result	Qualifier	RI	мы	Unit	р	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PEHxA)			0.23	0.036	ua/Ka		12/13/22 20:34	12/14/22 22:05	1
Perfluoroheptanoic acid (PEHpA)	ND		0.23	0.044	ua/Ka	-0- -0-	12/13/22 20:34	12/14/22 22:05	1
Perfluorooctanoic acid (PEOA)	ND		0.20	0.044	ug/Kg	÷.	12/13/22 20:34	12/14/22 22:00	1
Perfluorononanoic acid (PENA)	ND		0.00	0.026	ug/Kg		12/13/22 20:34	12/14/22 22:05	
Perfluorodecanoic acid (PEDA)	ND		0.23	0.056	ua/Ka	т ř	12/13/22 20:34	12/14/22 22:05	1
Perfluoroundecanoic acid (PELInA)			0.23	0.000	ug/Kg ug/Kg	~ т	12/13/22 20:34	12/14/22 22:05	1
Perfluorododecanoic acid (PEDoA)	ND		0.20	0.040	ug/Kg	···· · · · · · · · · · · · · · · · · ·	12/13/22 20:04	12/14/22 22:00	
Perfluorotridecanoic acid (PETriA)			0.23	0.000	ug/Kg	*	12/13/22 20:34	12/14/22 22:05	1
Perfluorotetradecanoic acid (PETeA)			0.23	0.023	ug/Kg ug/Kg	~ т	12/13/22 20:34	12/14/22 22:05	1
Perfluorobutanesulfonic acid (PEBS)	ND		0.23	0.043	ug/Kg	·····	12/13/22 20:34	12/14/22 22:05	
Perfluorobevanesulfonic acid (PEHyS)			0.23	0.044	ug/Kg	ж ж	12/13/22 20:34	12/14/22 22:05	1
Perfluorooctanesulfonic acid (PEOS)			0.25	0.054	ug/Kg	ж ж	12/13/22 20:34	12/14/22 22:05	1
N athylparfluoroactanosulfonamidaaa			0.33	0.050	ug/Kg	·····	12/13/22 20:34	12/14/22 22:05	
etic acid (NEtFOSAA)	ND		0.25	0.000	ug/itg	ж	12/13/22 20.34	12/14/22 22:05	
N-methylperfluorooctanesulfonamidoa	ND		0.23	0.027	ug/Kg	¢	12/13/22 20:34	12/14/22 22:05	1
cetic acid (NMeFOSAA)									
HFPO-DA (GenX)	ND		0.23	0.048	ug/Kg	¢	12/13/22 20:34	12/14/22 22:05	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	77		50 - 150				12/13/22 20:34	12/14/22 22:05	1
13C4 PFHpA	77		50 - 150				12/13/22 20:34	12/14/22 22:05	1
13C4 PFOA	78		50 - 150				12/13/22 20:34	12/14/22 22:05	1
13C5 PFNA	88		50 - 150				12/13/22 20:34	12/14/22 22:05	1
13C2 PFDA	76		50 - 150				12/13/22 20:34	12/14/22 22:05	1
13C2 PFUnA	85		50 - 150				12/13/22 20:34	12/14/22 22:05	1
13C2 PFDoA	79		50 - 150				12/13/22 20:34	12/14/22 22:05	1
13C2 PFTeDA	86		50 - 150				12/13/22 20:34	12/14/22 22:05	1
13C3 PFBS	78		50 - 150				12/13/22 20:34	12/14/22 22:05	1
18O2 PFHxS	79		50 - 150				12/13/22 20:34	12/14/22 22:05	1
13C4 PFOS	78		50 - 150				12/13/22 20:34	12/14/22 22:05	1
d3-NMeFOSAA	81		50 - 150				12/13/22 20:34	12/14/22 22:05	1
d5-NEtFOSAA	82		50 - 150				12/13/22 20:34	12/14/22 22:05	1
13C3 HFPO-DA	75		50 - 150				12/13/22 20:34	12/14/22 22:05	1
— —									
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	19.1		0.1	0.1	%			12/12/22 11:17	1
Percent Solids (ASTM D 2216)	80.9		0.1	0.1	%			12/12/22 11:17	1

Matrix: Solid

Lab Sample ID: 320-95123-6

5 6

Eurofins Sacramento

Client Sample ID: MW-08-170-120622 Date Collected: 12/06/22 10:50 Date Received: 12/09/22 09:20

Lab Sample ID: 320-95123-8 Matrix: Water

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	16		5.3	1.5	ng/L		12/16/22 13:18	01/10/23 14:14	1
Perfluoroheptanoic acid (PFHpA)	6.9		5.3	1.3	ng/L		12/16/22 13:18	01/10/23 14:14	1
Perfluorooctanoic acid (PFOA)	6.3		5.3	1.5	ng/L		12/16/22 13:18	01/10/23 14:14	1
Perfluorononanoic acid (PFNA)	8.5		5.3	1.5	ng/L		12/16/22 13:18	01/10/23 14:14	1
Perfluorodecanoic acid (PFDA)	ND		5.3	0.87	ng/L		12/16/22 13:18	01/10/23 14:14	1
Perfluoroundecanoic acid (PFUnA)	ND		5.3	1.9	ng/L		12/16/22 13:18	01/10/23 14:14	1
Perfluorododecanoic acid (PFDoA)	ND		5.3	1.1	ng/L		12/16/22 13:18	01/10/23 14:14	1
Perfluorotridecanoic acid (PFTriA)	ND		5.3	1.8	ng/L		12/16/22 13:18	01/10/23 14:14	1
Perfluorotetradecanoic acid (PFTeA)	ND		5.3	1.3	ng/L		12/16/22 13:18	01/10/23 14:14	1
Perfluorobutanesulfonic acid (PFBS)	19		5.3	0.90	ng/L		12/16/22 13:18	01/10/23 14:14	1
Perfluorohexanesulfonic acid (PFHxS)	51		5.3	1.0	ng/L		12/16/22 13:18	01/10/23 14:14	1
Perfluorooctanesulfonic acid (PFOS)	98		5.3	1.5	ng/L		12/16/22 13:18	01/10/23 14:14	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		13	0.90	ng/L		12/16/22 13:18	01/10/23 14:14	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		13	1.2	ng/L		12/16/22 13:18	01/10/23 14:14	1
HFPO-DA (GenX)	ND		11	1.8	ng/L		12/16/22 13:18	01/10/23 14:14	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	103		50 - 150				12/16/22 13:18	01/10/23 14:14	1
13C4 PFHpA	107		50 - 150				12/16/22 13:18	01/10/23 14:14	1
13C4 PFOA	102		50 - 150				12/16/22 13:18	01/10/23 14:14	1
13C5 PFNA	110		50 - 150				12/16/22 13:18	01/10/23 14:14	1
13C2 PFDA	109		50 - 150				12/16/22 13:18	01/10/23 14:14	1
13C2 PFUnA	111		50 - 150				12/16/22 13:18	01/10/23 14:14	1
13C2 PFDoA	81		50 - 150				12/16/22 13:18	01/10/23 14:14	1
13C2 PFTeDA	61		50 - 150				12/16/22 13:18	01/10/23 14:14	1
13C3 PFBS	94		50 - 150				12/16/22 13:18	01/10/23 14:14	1
18O2 PFHxS	100		50 ₋ 150				12/16/22 13:18	01/10/23 14:14	1
13C4 PFOS	95		50 - 150				12/16/22 13:18	01/10/23 14:14	1
d3-NMeFOSAA	95		50 - 150				12/16/22 13:18	01/10/23 14:14	1
d5-NEtFOSAA	109		50 - 150				12/16/22 13:18	01/10/23 14:14	1
13C3 HFPO-DA	98		50 - 150				12/16/22 13:18	01/10/23 14:14	1

Client Sample ID: MW-08-195 Date Collected: 12/07/22 13:00

Date Collected: 12/07/22 13:00 Date Received: 12/09/22 09:20

Method: DOD 5.3 QSM B15 - PFAS for QSM 5.3, Table B-15

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.23	0.035	ug/Kg	☆	12/12/22 18:00	01/05/23 18:21	1
Perfluoroheptanoic acid (PFHpA)	ND		0.23	0.043	ug/Kg	¢	12/12/22 18:00	01/05/23 18:21	1
Perfluorooctanoic acid (PFOA)	ND		0.34	0.060	ug/Kg	¢	12/12/22 18:00	01/05/23 18:21	1
Perfluorononanoic acid (PFNA)	ND		0.23	0.025	ug/Kg	¢	12/12/22 18:00	01/05/23 18:21	1
Perfluorodecanoic acid (PFDA)	ND		0.23	0.054	ug/Kg	¢	12/12/22 18:00	01/05/23 18:21	1
Perfluoroundecanoic acid (PFUnA)	ND		0.23	0.048	ug/Kg	¢	12/12/22 18:00	01/05/23 18:21	1
Perfluorododecanoic acid (PFDoA)	ND		0.23	0.034	ug/Kg	₽	12/12/22 18:00	01/05/23 18:21	1
Perfluorotridecanoic acid (PFTriA)	ND		0.23	0.024	ug/Kg	¢	12/12/22 18:00	01/05/23 18:21	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.23	0.042	ug/Kg	₽	12/12/22 18:00	01/05/23 18:21	1

Eurofins Sacramento

Matrix: Solid

Percent Solids: 81.5
Client Sample ID: MW-08-195 Date Collected: 12/07/22 13:00 Date Received: 12/09/22 09:20

Lab Sample ID: 320-95123-9 Matrix: Solid

Percent Solids: 81.5

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid (PFBS)	ND		0.23	0.043	ug/Kg	<u></u>	12/12/22 18:00	01/05/23 18:21	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.23	0.033	ug/Kg	¢	12/12/22 18:00	01/05/23 18:21	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.34	0.049	ug/Kg	¢	12/12/22 18:00	01/05/23 18:21	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.23	0.054	ug/Kg	¢	12/12/22 18:00	01/05/23 18:21	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.23	0.026	ug/Kg	¢	12/12/22 18:00	01/05/23 18:21	1
HFPO-DA (GenX)	ND		0.23	0.046	ug/Kg	¢	12/12/22 18:00	01/05/23 18:21	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	79		50 - 150				12/12/22 18:00	01/05/23 18:21	1
13C4 PFHpA	79		50 - 150				12/12/22 18:00	01/05/23 18:21	1
13C4 PFOA	79		50 - 150				12/12/22 18:00	01/05/23 18:21	1
13C5 PFNA	89		50 - 150				12/12/22 18:00	01/05/23 18:21	1
13C2 PFDA	78		50 - 150				12/12/22 18:00	01/05/23 18:21	1
13C2 PFUnA	84		50 - 150				12/12/22 18:00	01/05/23 18:21	1
13C2 PFDoA	74		50 - 150				12/12/22 18:00	01/05/23 18:21	1
13C2 PFTeDA	73		50 - 150				12/12/22 18:00	01/05/23 18:21	1
13C3 PFBS	75		50 - 150				12/12/22 18:00	01/05/23 18:21	1
18O2 PFHxS	79		50 - 150				12/12/22 18:00	01/05/23 18:21	1
13C4 PFOS	77		50 - 150				12/12/22 18:00	01/05/23 18:21	1
d3-NMeFOSAA	79		50 - 150				12/12/22 18:00	01/05/23 18:21	1
d5-NEtFOSAA	83		50 - 150				12/12/22 18:00	01/05/23 18:21	1
13C3 HFPO-DA	79		50 - 150				12/12/22 18:00	01/05/23 18:21	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture (ASTM D 2216)	18.5		0.1	0.1	%			12/12/22 11:17	1
Percent Solids (ASTM D 2216)	81.5		0.1	0.1	%			12/12/22 11:17	1

Client Sample ID: Trip Blank-1 Date Collected: 12/07/22 15:15 Date Received: 12/09/22 09:20

Lab Sample ID: 320-95123-11 Matrix: Water

Method: DOD 5.3 QSM B15 - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.50	ng/L		12/16/22 13:18	01/10/23 14:25	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.44	ng/L		12/16/22 13:18	01/10/23 14:25	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.51	ng/L		12/16/22 13:18	01/10/23 14:25	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.51	ng/L		12/16/22 13:18	01/10/23 14:25	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.30	ng/L		12/16/22 13:18	01/10/23 14:25	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.66	ng/L		12/16/22 13:18	01/10/23 14:25	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.38	ng/L		12/16/22 13:18	01/10/23 14:25	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.63	ng/L		12/16/22 13:18	01/10/23 14:25	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.46	ng/L		12/16/22 13:18	01/10/23 14:25	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.31	ng/L		12/16/22 13:18	01/10/23 14:25	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.34	ng/L		12/16/22 13:18	01/10/23 14:25	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.53	ng/L		12/16/22 13:18	01/10/23 14:25	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	0.31	ng/L		12/16/22 13:18	01/10/23 14:25	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	0.42	ng/L		12/16/22 13:18	01/10/23 14:25	1

Client Sample ID: Trip Blank-1 Date Collected: 12/07/22 15:15 Date Received: 12/09/22 09:20

d: 12/09/22 09:20

Method: DOD 5.3 QSM B15 - PFAS for QSM 5.3, Table B-15 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA (GenX)	ND		3.6	0.63	ng/L		12/16/22 13:18	01/10/23 14:25	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	95		50 - 150				12/16/22 13:18	01/10/23 14:25	1
13C4 PFHpA	97		50 - 150				12/16/22 13:18	01/10/23 14:25	1
13C4 PFOA	98		50 - 150				12/16/22 13:18	01/10/23 14:25	1
13C5 PFNA	107		50 - 150				12/16/22 13:18	01/10/23 14:25	1
13C2 PFDA	97		50 - 150				12/16/22 13:18	01/10/23 14:25	1
13C2 PFUnA	105		50 - 150				12/16/22 13:18	01/10/23 14:25	1
13C2 PFDoA	100		50 - 150				12/16/22 13:18	01/10/23 14:25	1
13C2 PFTeDA	107		50 - 150				12/16/22 13:18	01/10/23 14:25	1
13C3 PFBS	95		50 - 150				12/16/22 13:18	01/10/23 14:25	1
18O2 PFHxS	96		50 - 150				12/16/22 13:18	01/10/23 14:25	1
13C4 PFOS	93		50 - 150				12/16/22 13:18	01/10/23 14:25	1
d3-NMeFOSAA	82		50 - 150				12/16/22 13:18	01/10/23 14:25	1
d5-NEtFOSAA	90		50 - 150				12/16/22 13:18	01/10/23 14:25	1
13C3 HFPO-DA	99		50 - 150				12/16/22 13:18	01/10/23 14:25	1

Client Sample ID: EB-120722 Date Collected: 12/07/22 16:00 Date Received: 12/09/22 09:20

Method: DOD 5.3 QSM B15 - PFAS for QSM 5.3, Table B-15 Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac ND Perfluorohexanoic acid (PFHxA) 1.8 0.49 ng/L 12/16/22 13:18 01/10/23 14:35 Perfluoroheptanoic acid (PFHpA) ND 12/16/22 13:18 01/10/23 14:35 1.8 0.43 ng/L 1 Perfluorooctanoic acid (PFOA) ND 0.50 ng/L 1.8 12/16/22 13:18 01/10/23 14:35 1 Perfluorononanoic acid (PFNA) ND 0.50 12/16/22 13:18 01/10/23 14:35 1.8 ng/L ND 12/16/22 13:18 01/10/23 14:35 Perfluorodecanoic acid (PFDA) 1.8 0.29 ng/L 1 Perfluoroundecanoic acid (PFUnA) ND 1.8 0.65 ng/L 12/16/22 13:18 01/10/23 14:35 1 Perfluorododecanoic acid (PFDoA) ND 1.8 0.37 ng/L 12/16/22 13:18 01/10/23 14:35 1 Perfluorotridecanoic acid (PFTriA) ND 1.8 0.62 ng/L 12/16/22 13:18 01/10/23 14:35 1 Perfluorotetradecanoic acid (PFTeA) ND 1.8 0.45 ng/L 12/16/22 13:18 01/10/23 14:35 1 Perfluorobutanesulfonic acid (PFBS) ND 1.8 0.30 ng/L 12/16/22 13:18 01/10/23 14:35 1 Perfluorohexanesulfonic acid (PFHxS) ND 1.8 0.34 ng/L 12/16/22 13:18 01/10/23 14:35 1 Perfluorooctanesulfonic acid (PFOS) ND 0.52 ng/L 12/16/22 13:18 01/10/23 14:35 1.8 1 N-ethylperfluorooctanesulfonamidoac 12/16/22 13:18 01/10/23 14:35 ND 4.5 0.30 ng/L 1 etic acid (NEtFOSAA) N-methylperfluorooctanesulfonamidoa ND 0.41 ng/L 12/16/22 13:18 01/10/23 14:35 4.5 cetic acid (NMeFOSAA) 12/16/22 13:18 01/10/23 14:35 HFPO-DA (GenX) ND 3.6 0.62 ng/L 1 %Recovery Isotope Dilution Qualifier Limits Prepared Analyzed Dil Fac 13C2 PFHxA 95 50 - 150 12/16/22 13:18 01/10/23 14:35 1 13C4 PFHpA 96 50 - 150 12/16/22 13:18 01/10/23 14:35 1 12/16/22 13:18 01/10/23 14:35 13C4 PFOA 96 50 - 150 1 13C5 PFNA 111 50 - 150 12/16/22 13:18 01/10/23 14:35 1 13C2 PFDA 101 50 - 150 12/16/22 13:18 01/10/23 14:35 1 13C2 PFUnA 12/16/22 13:18 01/10/23 14:35 106 50 - 150 1 13C2 PFDoA 100 50 - 150 12/16/22 13:18 01/10/23 14:35 1 13C2 PFTeDA 112 50 - 150 12/16/22 13:18 01/10/23 14:35 1 13C3 PFBS 89 50 - 150 12/16/22 13:18 01/10/23 14:35 1

Eurofins Sacramento

Job ID: 320-95123-1

Lab Sample ID: 320-95123-11

Lab Sample ID: 320-95123-12

Matrix: Water

Matrix: Water

6

Job ID: 320-95123-1

Client Sample ID: EB-120722 Date Collected: 12/07/22 16:00 Date Received: 12/09/22 09:20

Lab Sample ID: 320-95123-12 Matrix: Water

Method: DOD 5.3 QSM	B15 - PFAS for QSM 5.3, Tab	le B-15 (Continued)			
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
18O2 PFHxS	96	50 - 150	12/16/22 13:18	01/10/23 14:35	1
13C4 PFOS	92	50 - 150	12/16/22 13:18	01/10/23 14:35	1
d3-NMeFOSAA	82	50 - 150	12/16/22 13:18	01/10/23 14:35	1
d5-NEtFOSAA	89	50 - 150	12/16/22 13:18	01/10/23 14:35	1
13C3 HFPO-DA	100	50 - 150	12/16/22 13:18	01/10/23 14:35	1

5

6

Client: Geosyntec Consultants, Inc. Project/Site: PFAS, Lower Issaquah Valley

Method: QSM B15 - PFAS for QSM 5.3, Table B-15 Matrix: Solid

Prep Type: Total/NA

Percent Isotope Dilution Recovery (Acceptance Limits)

	5
	7
	8
	9
	3

		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-95123-1	MW-08-134	66	68	69	71	70	74	67	74
320-95123-2	MW-08-144	75	76	77	81	78	80	74	76
320-95123-3	MW-08-152	75	80	76	84	79	85	77	81
320-95123-4	MW-08-162	79	76	78	85	82	82	77	83
320-95123-5	MW-08-167	78	76	78	83	78	80	75	75
320-95123-6	MW-08-175	81	84	77	86	85	86	79	83
320-95123-7	MW-08-185	77	77	78	88	76	85	79	86
320-95123-9	MW-08-195	79	79	79	89	78	84	74	73
LCS 320-639741/2-A	Lab Control Sample	82	83	83	93	91	91	85	91
LCS 320-639742/2-A	Lab Control Sample	81	83	80	91	78	81	76	70
MB 320-639741/1-A	Method Blank	76	80	79	84	79	81	75	84
MB 320-639742/1-A	Method Blank	81	81	81	90	78	79	73	81
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)		
320-95123-1	MW-08-134	61	63	65	65	73	61		
320-95123-2	MW-08-144	71	74	70	73	79	69		
320-95123-3	MW-08-152	77	75	74	77	85	72		
320-95123-4	MW-08-162	76	81	80	80	93	71		
320-95123-5	MW-08-167	72	74	75	75	82	75		
320-95123-6	MW-08-175	80	82	79	80	90	76		
320-95123-7	MW-08-185	78	79	78	81	82	75		
320-95123-9	MW-08-195	75	79	77	79	83	79		
LCS 320-639741/2-A	Lab Control Sample	83	87	85	94	97	77		
LCS 320-639742/2-A	Lab Control Sample	76	77	80	78	85	76		
MB 320-639741/1-A	Method Blank	77	80	78	84	85	73		
MB 320-639742/1-A	Method Blank	81	79	79	77	87	73		

Surrogate Legend

PFHxA = 13C2 PFHxA C4PFHA = 13C4 PFHpA PFOA = 13C4 PFOA PFNA = 13C5 PFNA PFDA = 13C2 PFDA PFUNA = 13C2 PFUNA PFDOA = 13C2 PFDOA PFTDA = 13C2 PFTeDA C3PFBS = 13C2 PFTeDA C3PFBS = 13C3 PFBS PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA

Isotope Dilution Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS, Lower Issaquah Valley

Method: QSM B15 - PFAS for QSM 5.3, Table B-15

Matrix: Water

PFNA = 13C5 PFNA PFDA = 13C2 PFDA PFUnA = 13C2 PFDoA PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA C3PFBS = 13C2 PFTeDA C3PFBS = 13C3 PFBS PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA

Prep Type: Total/NA

5

7

Lab Sample ID 320-95123-8 320-95123-11 320-95123-12 LCS 320-640633/2-A LCSD 320-640633/3-A MB 320-640633/1-A MB 320-640633/1-A			Percent Isotope Dilution Recovery (Acceptance Limits) PFHxA C4PFHA PFOA PFNA PFDA PFUA PFDoA (50-150) (50-150) (50-150) (50-150) (50-150) (50-150) (50-150) (50-150) (50-150) (50-150) (50-150) (50-150) (50-150) (50-150) 81 95 97 98 107 97 105 100 81 95 96 96 111 101 106 100 95 96 97 105 99 106 100 95 96 97 105 99 106 100 98 97 100 109 100 108 101 94 99 96 108 102 107 101 Percent Isotope Dilution Recovery (Acceptance Limits) C3PFBS PFHxS PFOS d3NMFOS d5NEFOS HFPODA (50-150) (50-150) (50-150)										
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA				
Lab Sample ID 320-95123-8 320-95123-11 320-95123-12 LCS 320-640633/2-A LCSD 320-640633/3-A MB 320-640633/1-A Lab Sample ID 320-95123-8 320-95123-11 320-95123-12 LCS 320-640633/2-A LCSD 320-640633/3-A MB 320-640633/1-A Surrogate Legend	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)				
320-95123-8	MW-08-170-120622	103	107	102	110	109	111	81	61				
320-95123-11	Trip Blank-1	95	97	98	107	97	105	100	107				
320-95123-12	EB-120722	95	96	96	111	101	106	100	112				
LCS 320-640633/2-A	Lab Control Sample	95	96	97	105	99	106	100	107				
LCSD 320-640633/3-A	Lab Control Sample Dup	98	97	100	109	100	108	101	104				
MB 320-640633/1-A	Method Blank	94	99	96	108	102	107	101	106				
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)					
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA						
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)						
320-95123-8	MW-08-170-120622	94	100	95	95	109	98						
320-95123-11	Trip Blank-1	95	96	93	82	90	99						
320-95123-12	EB-120722	89	96	92	82	89	100						
LCS 320-640633/2-A	Lab Control Sample	96	90	93	81	84	98						
LCSD 320-640633/3-A	Lab Control Sample Dup	97	94	90	79	88	105						
MB 320-640633/1-A	Method Blank	90	94	94	87	90	102						
Surrogate Legend													
PFHxA = 13C2 PFHxA													
C4PFHA = 13C4 PFHpA													
PFOA = 13C4 PFOA													

Method: QSM B15 - PFAS for QSM 5.3, Table B-15

Lab Sample ID: MB 320-639741/1-A Matrix: Solid Analysis Batch: 640136

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.20	0.031	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
Perfluoroheptanoic acid (PFHpA)	ND		0.20	0.038	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
Perfluorooctanoic acid (PFOA)	ND		0.30	0.053	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
Perfluorononanoic acid (PFNA)	ND		0.20	0.022	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
Perfluorodecanoic acid (PFDA)	ND		0.20	0.048	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
Perfluoroundecanoic acid (PFUnA)	ND		0.20	0.042	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
Perfluorododecanoic acid (PFDoA)	ND		0.20	0.030	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
Perfluorotridecanoic acid (PFTriA)	ND		0.20	0.021	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.20	0.037	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.20	0.038	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.20	0.029	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.30	0.043	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.20	0.048	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.20	0.023	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
HFPO-DA (GenX)	ND		0.20	0.041	ug/Kg		12/13/22 20:34	12/14/22 19:44	1
	MB	МВ							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	76		50 - 150				12/13/22 20:34	12/14/22 19:44	1
13C4 PFHpA	80		50 - 150				12/13/22 20:34	12/14/22 19:44	1
13C4 PFOA	79		50 - 150				12/13/22 20:34	12/14/22 19:44	1
13C5 PFNA	84		50 - 150				12/13/22 20:34	12/14/22 19:44	1
13C2 PFDA	79		50 - 150				12/13/22 20:34	12/14/22 19:44	1
13C2 PFUnA	81		50 - 150				12/13/22 20:34	12/14/22 19:44	1
13C2 PFDoA	75		50 - 150				12/13/22 20:34	12/14/22 19:44	1
13C2 PFTeDA	84		50 - 150				12/13/22 20:34	12/14/22 19:44	1
13C3 PFBS	77		50 - 150				12/13/22 20:34	12/14/22 19:44	1
18O2 PFHxS	80		50 - 150				12/13/22 20:34	12/14/22 19:44	1
13C4 PFOS	78		50 - 150				12/13/22 20:34	12/14/22 19:44	1
d3-NMeFOSAA	84		50 - 150				12/13/22 20:34	12/14/22 19:44	1
d5-NEtFOSAA	85		50 - 150				12/13/22 20:34	12/14/22 19:44	1
13C3 HFPO-DA	73		50 - 150				12/13/22 20:34	12/14/22 19:44	1

Lab Sample ID: LCS 320-639741/2-A Matrix: Solid Analysis Batch: 640136

Analysis Batch: 640136							Prep Batch: 639741
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)	2.00	2.16		ug/Kg		108	70 - 132
Perfluoroheptanoic acid (PFHpA)	2.00	2.37		ug/Kg		118	71 - 131
Perfluorooctanoic acid (PFOA)	2.00	2.27		ug/Kg		114	69 - 133
Perfluorononanoic acid (PFNA)	2.00	2.04		ug/Kg		102	72 - 129
Perfluorodecanoic acid (PFDA)	2.00	2.15		ug/Kg		107	69 - 133
Perfluoroundecanoic acid (PFUnA)	2.00	2.37		ug/Kg		118	64 - 136
Perfluorododecanoic acid (PFDoA)	2.00	2.37		ug/Kg		119	69 - 135
Perfluorotridecanoic acid (PFTriA)	2.00	2.44		ug/Kg		122	66 - 139

Job ID: 320-95123-1

Prep Type: Total/NA

Prep Batch: 639741

Client Sample ID: Method Blank

Eurofins Sacramento

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

QC Sample Results

5

8

Method: QSM B15 - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-6 Matrix: Solid Analysis Batch: 640136		Client Sample ID: Lab C Prep Prep						: Lab Control Sample Prep Type: Total/NA Prep Batch: 639741	
			Spike	LCS	LCS				%Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorotetradecanoic acid (PFTeA)			2.00	2.12		ug/Kg		106	69 - 133
Perfluorobutanesulfonic acid (PFBS)			1.78	1.93		ug/Kg		109	72 - 128
Perfluorohexanesulfonic acid (PFHxS)			1.82	1.89		ug/Kg		104	67 - 130
Perfluorooctanesulfonic acid (PFOS)			1.86	2.05		ug/Kg		110	68 - 136
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)			2.00	2.06		ug/Kg		103	61 - 139
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)			2.00	2.12		ug/Kg		106	63 - 144
HFPO-DA (GenX)			2.00	2.23		ug/Kg		112	85 - 123
	LCS	LCS							
Isotope Dilution	%Recovery	Qualifier	Limits						
13C2 PFHxA	82		50 - 150						
13C4 PFHpA	83		50 - 150						
13C4 PFOA	83		50 - 150						
13C5 PFNA	93		50 - 150						
13C2 PFDA	91		50 - 150						
13C2 PFUnA	91		50 - 150						
13C2 PFDoA	85		50 - 150						
13C2 PFTeDA	91		50 - 150						
13C3 PFBS	83		50 - 150						
1802 PFHxS	87		50 - 150						
13C4 PFOS	85		50 - 150						
d3-NMeFOSAA	94		50 - 150						
d5-NEtFOSAA	97		50 - 150						
13C3 HFPO-DA	77		50 - 150						

Lab Sample ID: MB 320-639742/1-A Matrix: Solid Analysis Batch: 644725

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.20	0.031	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
Perfluoroheptanoic acid (PFHpA)	ND		0.20	0.038	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
Perfluorooctanoic acid (PFOA)	ND		0.30	0.053	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
Perfluorononanoic acid (PFNA)	ND		0.20	0.022	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
Perfluorodecanoic acid (PFDA)	ND		0.20	0.048	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
Perfluoroundecanoic acid (PFUnA)	ND		0.20	0.042	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
Perfluorododecanoic acid (PFDoA)	ND		0.20	0.030	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
Perfluorotridecanoic acid (PFTriA)	ND		0.20	0.021	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.20	0.037	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.20	0.038	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.20	0.029	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.30	0.043	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.20	0.048	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
N-methylperfluorooctanesulfonamidoa	ND		0.20	0.023	ug/Kg		12/12/22 18:00	01/05/23 18:01	1

Eurofins Sacramento

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 639742

QC Sample Results

Prep Type: Total/NA

5

8

Method: QSM B15 - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: MB 320-639742/1-A Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 639742

Analysis Batch: 644725

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPO-DA (GenX)	ND		0.20	0.041	ug/Kg		12/12/22 18:00	01/05/23 18:01	1
	MB	МВ							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	81		50 - 150				12/12/22 18:00	01/05/23 18:01	1
13C4 PFHpA	81		50 - 150				12/12/22 18:00	01/05/23 18:01	1
13C4 PFOA	81		50 - 150				12/12/22 18:00	01/05/23 18:01	1
13C5 PFNA	90		50 - 150				12/12/22 18:00	01/05/23 18:01	1
13C2 PFDA	78		50 - 150				12/12/22 18:00	01/05/23 18:01	1
13C2 PFUnA	79		50 - 150				12/12/22 18:00	01/05/23 18:01	1
13C2 PFDoA	73		50 - 150				12/12/22 18:00	01/05/23 18:01	1
13C2 PFTeDA	81		50 - 150				12/12/22 18:00	01/05/23 18:01	1
13C3 PFBS	81		50 - 150				12/12/22 18:00	01/05/23 18:01	1
18O2 PFHxS	79		50 - 150				12/12/22 18:00	01/05/23 18:01	1
13C4 PFOS	79		50 - 150				12/12/22 18:00	01/05/23 18:01	1
d3-NMeFOSAA	77		50 - 150				12/12/22 18:00	01/05/23 18:01	1
d5-NEtFOSAA	87		50 - 150				12/12/22 18:00	01/05/23 18:01	1
13C3 HFPO-DA	73		50 - 150				12/12/22 18:00	01/05/23 18:01	1
Lab Sample ID: LCS 320	-639742/2-A					Clien	t Sample ID:	Lab Control S	Sample

Matrix: Solid Analysis Batch: 644725

Analysis Batch: 644725									Prep Batch: 639742
			Spike	LCS	LCS				%Rec
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)			2.00	2.10		ug/Kg		105	70 - 132
Perfluoroheptanoic acid (PFHpA)			2.00	2.12		ug/Kg		106	71 - 131
Perfluorooctanoic acid (PFOA)			2.00	2.15		ug/Kg		108	69 - 133
Perfluorononanoic acid (PFNA)			2.00	1.97		ug/Kg		99	72 - 129
Perfluorodecanoic acid (PFDA)			2.00	2.22		ug/Kg		111	69 - 133
Perfluoroundecanoic acid (PFUnA)			2.00	2.09		ug/Kg		105	64 - 136
Perfluorododecanoic acid (PFDoA)			2.00	2.33		ug/Kg		117	69 - 135
Perfluorotridecanoic acid (PFTriA)			2.00	2.20		ug/Kg		110	66 - 139
Perfluorotetradecanoic acid (PFTeA)			2.00	2.21		ug/Kg		111	69 - 133
Perfluorobutanesulfonic acid (PFBS)			1.78	1.94		ug/Kg		109	72 - 128
Perfluorohexanesulfonic acid (PFHxS)			1.82	1.97		ug/Kg		108	67 - 130
Perfluorooctanesulfonic acid (PFOS)			1.86	2.00		ug/Kg		107	68 - 136
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)			2.00	2.15		ug/Kg		108	61 - 139
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)			2.00	2.27		ug/Kg		113	63 - 144
HFPO-DA (GenX)	1.00	1.00	2.00	2.16		ug/Kg		108	85 - 123
Isotone Dilution	KRecovery	LUS Qualifier	l imite						
13C2 PEHxA	<u></u>	Quanner	50 - 150						
13C4 PEHpA	83		50 - 150						

Prep Type: Total/NA

Prep Batch: 639742

8

Method: QSM B15 - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-639742/2-A Matrix: Solid Analysis Batch: 644725

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFOA	80		50 - 150
13C5 PFNA	91		50 - 150
13C2 PFDA	78		50 - 150
13C2 PFUnA	81		50 - 150
13C2 PFDoA	76		50 - 150
13C2 PFTeDA	70		50 - 150
13C3 PFBS	76		50 - 150
18O2 PFHxS	77		50 - 150
13C4 PFOS	80		50 - 150
d3-NMeFOSAA	78		50 - 150
d5-NEtFOSAA	85		50 - 150
13C3 HFPO-DA	76		50 - 150

Lab Sample ID: MB 320-640633/1-A Matrix: Water Analysis Batch: 645707

.....

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 640633

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.55	ng/L		12/16/22 13:18	01/10/23 13:14	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.48	ng/L		12/16/22 13:18	01/10/23 13:14	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.56	ng/L		12/16/22 13:18	01/10/23 13:14	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.56	ng/L		12/16/22 13:18	01/10/23 13:14	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.33	ng/L		12/16/22 13:18	01/10/23 13:14	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.73	ng/L		12/16/22 13:18	01/10/23 13:14	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.42	ng/L		12/16/22 13:18	01/10/23 13:14	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.69	ng/L		12/16/22 13:18	01/10/23 13:14	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.51	ng/L		12/16/22 13:18	01/10/23 13:14	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.34	ng/L		12/16/22 13:18	01/10/23 13:14	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.38	ng/L		12/16/22 13:18	01/10/23 13:14	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.58	ng/L		12/16/22 13:18	01/10/23 13:14	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	0.34	ng/L		12/16/22 13:18	01/10/23 13:14	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	0.46	ng/L		12/16/22 13:18	01/10/23 13:14	1
HFPO-DA (GenX)	ND		4.0	0.69	ng/L		12/16/22 13:18	01/10/23 13:14	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	94		50 - 150				12/16/22 13:18	01/10/23 13:14	1
13C4 PFHpA	99		50 - 150				12/16/22 13:18	01/10/23 13:14	1
13C4 PFOA	96		50 - 150				12/16/22 13:18	01/10/23 13:14	1
13C5 PFNA	108		50 - 150				12/16/22 13:18	01/10/23 13:14	1
13C2 PFDA	102		50 - 150				12/16/22 13:18	01/10/23 13:14	1
13C2 PFUnA	107		50 - 150				12/16/22 13:18	01/10/23 13:14	1
13C2 PFDoA	101		50 - 150				12/16/22 13:18	01/10/23 13:14	1
13C2 PFTeDA	106		50 - 150				12/16/22 13:18	01/10/23 13:14	1
13C3 PFBS	90		50 - 150				12/16/22 13:18	01/10/23 13:14	1
18O2 PFHxS	94		50 - 150				12/16/22 13:18	01/10/23 13:14	1
13C4 PFOS	94		50 - 150				12/16/22 13:18	01/10/23 13:14	1
d3-NMeFOSAA	87		50 - 150				12/16/22 13:18	01/10/23 13:14	1

Page 22 of 34

Matrix: Water

Analysis Batch: 645707

QC Sample Results

8

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 640633 1 1 1 3

Method: QSM B15 - PFAS for QSM 5.3, Table B-15 (Continued)	
Lab Sample ID: MB 320-640633/1-A	

-	MB	B MB								
Isotope Dilution	%Recovery	Qualifier	Limits				Pi	repared	Analyzed	Dil Fa
d5-NEtFOSAA	90	5	50 - 150				12/1	6/22 13:18	01/10/23 13:14	
13C3 HFPO-DA	102	2	50 - 150				12/1	6/22 13:18	01/10/23 13:14	
- Lab Sample ID: LCS 320-6	40633/2-A					Clie	nt Sar	nple ID:	Lab Control S	Sample
Matrix: Water									Prep Type: To	otal/N/
Analysis Batch: 645707									Prep Batch:	64063
-			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)			40.0	39.4		ng/L		99	72 - 129	
Perfluoroheptanoic acid (PFHpA)			40.0	41.4		ng/L		104	72 - 130	
Perfluorooctanoic acid (PFOA)			40.0	41.8		ng/L		105	71 - 133	
Perfluorononanoic acid (PFNA)			40.0	39.0		ng/L		97	69 - 130	
Perfluorodecanoic acid (PFDA)			40.0	42.7		ng/L		107	71 - 129	
Perfluoroundecanoic acid (PFUnA)			40.0	40.1		ng/L		100	69 - 133	
Perfluorododecanoic acid (PFDoA)			40.0	44.7		ng/L		112	72 - 134	
Perfluorotridecanoic acid (PFTriA)			40.0	45.5		ng/L		114	65 - 144	
Perfluorotetradecanoic acid (PFTeA)			40.0	42.5		ng/L		106	71 - 132	
Perfluorobutanesulfonic acid (PFBS)			35.5	34.9		ng/L		98	72 - 130	
Perfluorohexanesulfonic acid (PFHxS)			36.5	36.8		ng/L		101	68 - 131	
Perfluorooctanesulfonic acid (PFOS)			37.2	36.9		ng/L		99	65 - 140	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)			40.0	38.6		ng/L		97	61 - 135	
N-methylperfluorooctanesulfona midoacetic acid (NMeEOSAA)			40.0	43.9		ng/L		110	65 - 136	
HFPO-DA (GenX)		c	40.0	41.3		ng/L		103	84 - 121	
lastona Dilution	V Basayary Ou	Julifiar	Limito							
			50 150							
	90		50 - 150							
13C4 PEOA	90		50 150							
13C5 BENA	105		50 150							
1303 FFNA	105		50 - 150							
	99 106		50 - 150							
13C2 REDoA	100		50 150							
	100		50 - 150							
1302 TT TEDA	107		50 - 150							
1902 DELLyS	90		50 - 150							
1002 FF1133	90		50 - 150							
	93		50 - 150							
	δ1 04		50 - 150							
	δ4		50 - 150							
1303 HEPO-DA	98		50 - 750							

5

Method: QSM B15 - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320- Matrix: Water Analysis Batch: 645707	640633/3-A	L .	Snike	LCSD		Client S	ample	ID: Lab	Control Prep Ty Prep Ba	Sample pe: Tot atch: 64	• Dup al/NA 40633
Analyte			Added	Result	Qualifier	Unit	р	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PEHxA)			40.0	39.4		_ <u></u>		98	72 - 129		
Perfluoroheptanoic acid (PFHpA)			40.0	41.2		ng/l		103	72 - 130	1	30
Perfluorooctanoic acid (PEOA)			40.0	41 7		ng/l		104	71 - 133	0	30
Perfluorononanoic acid (PENA)			40.0	38.5		ng/l		96	69 130		30
Perfluorodecanoic acid (PEDA)			40.0	42.6		ng/L		106	71 - 129	0	30
Perfluoroundecanoic acid			40.0	39.6		ng/L		99	69 - 133	1	30
Perfluorododecanoic acid (PEDoA)			40.0	41.8		ng/L		104	72 - 134	7	30
Perfluorotridecanoic acid (PFTriA)			40.0	44.5		ng/L		111	65 - 144	2	30
Perfluorotetradecanoic acid (PFTeA)			40.0	42.3		ng/L		106	71 - 132	0	30
Perfluorobutanesulfonic acid (PFBS)			35.5	34.0		ng/L		96	72 - 130	3	30
Perfluorohexanesulfonic acid (PFHxS)			36.5	34.9		ng/L		96	68 - 131	5	30
Perfluorooctanesulfonic acid (PFOS)			37.2	37.9		ng/L		102	65 - 140	3	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)			40.0	42.2		ng/L		105	61 - 135	9	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)			40.0	44.8		ng/L		112	65 - 136	2	30
HFPO-DA (GenX)			40.0	40.4		ng/L		101	84 - 121	2	30
	LCSD	LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C2 PFHxA	98		50 - 150								
13C4 PFHpA	97		50 - 150								
13C4 PFOA	100		50 - 150								
13C5 PFNA	109		50 - 150								
13C2 PFDA	100		50 - 150								
13C2 PFUnA	108		50 - 150								
13C2 PFDoA	101		50 - 150								
13C2 PFTeDA	104		50 - 150								
13C3 PFBS	97		50 - 150								
18O2 PFHxS	94		50 - 150								
13C4 PFOS	90		50 - 150								
d3-NMeFOSAA	79		50 - 150								
d5-NEtFOSAA	88		50 - 150								
13C3 HFPO-DA	105		50 - 150								

Method: D 2216 - Percent Moisture

Lab Sample ID: 320-95123 Matrix: Solid Analysis Batch: 639153	3-1 DU					Clie	nt Sample ID: MW-0 Prep Type: Tot	8-134 al/NA
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	29.2		31.0		%		6	20
Percent Solids	70.8		69.0		%		3	20

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Method

SHAKE

SHAKE

SHAKE

SHAKE

SHAKE

SHAKE

SHAKE

SHAKE

SHAKE

Method

SHAKE

SHAKE

SHAKE

Client: Geosyntec Consultants, Inc. Project/Site: PFAS, Lower Issaquah Valley

Client Sample ID

MW-08-134

MW-08-144

MW-08-152

MW-08-162

MW-08-167

MW-08-175

MW-08-185

Method Blank

Lab Control Sample

Client Sample ID

Lab Control Sample

MW-08-195

Method Blank

LCMS

Prep Batch: 639741

Lab Sample ID

320-95123-1

320-95123-2

320-95123-3

320-95123-4

320-95123-5

320-95123-6

320-95123-7

MB 320-639741/1-A

LCS 320-639741/2-A

Prep Batch: 639742

MB 320-639742/1-A

LCS 320-639742/2-A

Analysis Batch: 640136

Lab Sample ID

320-95123-9

Prep Batch

Prep Batch

7 8 9 10 11

Lab Sample ID **Client Sample ID** Method Prep Batch Prep Type Matrix 320-95123-1 MW-08-134 Total/NA Solid QSM B15 639741 320-95123-2 MW-08-144 Total/NA Solid QSM B15 639741 320-95123-3 MW-08-152 Total/NA Solid QSM B15 639741 320-95123-4 MW-08-162 Total/NA Solid QSM B15 639741 320-95123-5 MW-08-167 Total/NA Solid QSM B15 639741 320-95123-6 MW-08-175 Total/NA Solid QSM B15 639741 MW-08-185 Solid 320-95123-7 Total/NA QSM B15 639741 MB 320-639741/1-A Method Blank Total/NA Solid QSM B15 639741 LCS 320-639741/2-A Lab Control Sample Total/NA Solid QSM B15 639741

Prep Batch: 640633

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-95123-8	MW-08-170-120622	Total/NA	Water	3535	
320-95123-11	Trip Blank-1	Total/NA	Water	3535	
320-95123-12	EB-120722	Total/NA	Water	3535	
MB 320-640633/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-640633/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-640633/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 644725

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-95123-9	MW-08-195	Total/NA	Solid	QSM B15	639742
MB 320-639742/1-A	Method Blank	Total/NA	Solid	QSM B15	639742
LCS 320-639742/2-A	Lab Control Sample	Total/NA	Solid	QSM B15	639742

Analysis Batch: 645707

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-95123-8	MW-08-170-120622	Total/NA	Water	QSM B15	640633
320-95123-11	Trip Blank-1	Total/NA	Water	QSM B15	640633
320-95123-12	EB-120722	Total/NA	Water	QSM B15	640633
MB 320-640633/1-A	Method Blank	Total/NA	Water	QSM B15	640633
LCS 320-640633/2-A	Lab Control Sample	Total/NA	Water	QSM B15	640633
LCSD 320-640633/3-A	Lab Control Sample Dup	Total/NA	Water	QSM B15	640633

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS, Lower Issaquah Valley

General Chemistry

Analysis Batch: 639153

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-95123-1	MW-08-134	Total/NA	Solid	D 2216	
320-95123-2	MW-08-144	Total/NA	Solid	D 2216	
320-95123-3	MW-08-152	Total/NA	Solid	D 2216	
320-95123-4	MW-08-162	Total/NA	Solid	D 2216	
320-95123-5	MW-08-167	Total/NA	Solid	D 2216	
320-95123-6	MW-08-175	Total/NA	Solid	D 2216	
320-95123-7	MW-08-185	Total/NA	Solid	D 2216	
320-95123-9	MW-08-195	Total/NA	Solid	D 2216	
320-95123-1 DU	MW-08-134	Total/NA	Solid	D 2216	

Job ID: 320-95123-1

5 6

10

Lab Sample ID: 320-95123-1 Matrix: Solid

Date Collected: 12/02/22 16:20 Date Received: 12/09/22 09:20

Client Sample ID: MW-08-134

Bron Type	Batch	Batch Method	Pun	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared	Analvet	Lah
Total/NA	Analysis	_ D 2216		1	Amount	Amount	639153	$\frac{12/12/22}{12/12/22}$	TCS	
Client Sam		-08-13/						ah Samnlo	320 · JU	_05123_1
Data Collecto	d: 12/02/22 1	-UO-134 6.20					L .	an Sample	ID. 320	-33123-1 atrix: Solid
Date Conecte	d: 12/02/22 1 d: 12/09/22 0	0.20 9·20						P	orcont S	olide: 70 8
	u. 12/03/22 0	5.20							ercent o	01103. 70.0
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.33 g	10.0 mL	639741	12/13/22 20:34	PV	EET SAC
Total/NA	Analysis	QSM B15		1	1 mL	1 mL	640136	12/14/22 20:44	K1S	EET SAC
Client Sam	ple ID: MW	-08-144					L	ab Sample	ID: 320	-95123-2
Date Collecte	d: 12/02/22 1	6:25							Ма	atrix: Solid
Date Receive	d: 12/09/22 0	9:20								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			639153	12/12/22 11:17	TCS	EET SAC
Client Sam	ple ID: MW	-08-144					L	ab Sample	ID: 320	-95123-2
Date Collecte	d: 12/02/22 1	6:25							Ма	atrix: Solic
Date Receive	d: 12/09/22 0	9:20						Р	ercent S	olids: 82.6
Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.15 g	10.0 mL	639741	12/13/22 20:34	PV	EET SAC
Total/NA	Analysis	QSM B15		1	1 mL	1 mL	640136	12/14/22 20:54	K1S	EET SAC
Client Sam	ple ID: MW	-08-152					L	ab Sample	ID: 320	-95123-3
Date Collecte	d: 12/02/22 1	6:30							Ма	atrix: Solic
Date Receive	d: 12/09/22 0	9:20								
Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			639153	12/12/22 11:17	TCS	EET SAC
Client Sam	ple ID: MW	-08-152					L	ab Sample	ID: 320	-95123-3
Date Collecte	d: 12/02/22 1	6:30						-	Ма	atrix: Solid
Date Receive	d: 12/09/22 0	9:20						Р	ercent S	olids: 80.7
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.19 g	10.0 mL	639741	12/13/22 20:34	PV	EET SAC
Total/NA	Analysis	QSM B15		1	1 mL	1 mL	640136	12/14/22 21:04	K1S	EET SAC
Client Sam	ple ID: MW	-08-162					L	ab Sample	ID: 320	-95123-4
Date Collecte	d: 12/06/22 1	1:45						•	Ма	atrix: Solic
Date Receive	d: 12/09/22 0	9:20								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analvsis	D 2216		1			639153	12/12/22 11:17	TCS	EET SAC
		-							-	

Client: Geosyntec Consultants, Inc. Project/Site: PFAS, Lower Issaquah Valley

Client Sample ID: MW-08-162

Percent Solids: 81.8

Matrix: Solid

Lab

EET SAC

EET SAC

Matrix: Solid

Lab

EET SAC

Matrix: Solid

Lab

EET SAC

EET SAC

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 78.1

Percent Solids: 73.3

Lab Sample ID: 320-95123-4

Lab Sample ID: 320-95123-5

Lab Sample ID: 320-95123-5

Analyst

Lab Sample ID: 320-95123-6

Lab Sample ID: 320-95123-6

Lab Sample ID: 320-95123-7

Prepared

Prepared

Prepared

or Analyzed

12/13/22 20:34 PV

12/14/22 21:45 K1S

12/13/22 20:34 PV

12/14/22 21:14 K1S

or Analyzed Analyst

or Analyzed Analyst

12/12/22 11:17 TCS

10

	Batch	Batch		Dil	Initial	Final	Batch
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number
Total/NA	Prep	SHAKE			5.36 g	10.0 mL	639741
Total/NA	Analysis	QSM B15		1	1 mL	1 mL	640136
Client Sam Date Collecte Date Receive	ple ID: MW d: 12/06/22 1 d: 12/09/22 0	/ -08-167 1:50 9:20					
-	Batch	Batch		Dil	Initial	Final	Batch
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number
Total/NA	Analysis	D 2216		1			639153
Client Som	ple ID: MW	-08-167					- I
Date Collecte	d: 12/06/22 1 d: 12/09/22 0	1:50 9:20					
Date Collecte	d: 12/06/22 1 d: 12/09/22 0 Batch	1:50 9:20 Batch		Dil	Initial	Final	Batch
Date Collecte Date Receive Prep Type	d: 12/06/22 1 d: 12/09/22 0 Batch Type	1:50 9:20 Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number
Date Collecte Date Receive Prep Type Total/NA	d: 12/06/22 1 d: 12/09/22 0 Batch Type Prep	1:50 9:20 Batch <u>Method</u> SHAKE	Run	Dil Factor	Initial Amount 5.19 g	Final Amount 10.0 mL	Batch Number 639741
Date Collecte Date Receive	d: 12/06/22 1 d: 12/09/22 0 Batch Type	1:50 9:20 Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Bate Nun

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			639153	12/12/22 11:17	TCS	EET SAC

Client Sample ID: MW-08-175 Date Collected: 12/06/22 14:55

Date Received: 12/09/22 09:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.04 g	10.0 mL	639741	12/13/22 20:34	PV	EET SAC
Total/NA	Analysis	QSM B15		1	1 mL	1 mL	640136	12/14/22 21:55	K1S	EET SAC

Client Sample ID: MW-08-185 Date Collected: 12/06/22 15:00 Date Received: 12/09/22 09:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			639153	12/12/22 11:17	TCS	EET SAC

Initial

Amount

5.29 g

1 mL

Initial

Amount

94.6 mL

1 mL

Dil

1

Dil

1

Dil

1

Factor

Factor

Factor

Run

Run

Run

Batch

Type

Prep

Analysis

Batch

Туре

Prep

Client Sample ID: MW-08-195

Date Collected: 12/07/22 13:00

Date Received: 12/09/22 09:20

Analysis

Batch

Туре

Analysis

Client Sample ID: MW-08-170-120622

Batch

Method

SHAKE

Batch

3535

Batch

Method

D 2216

Method

QSM B15

QSM B15

Client Sample ID: MW-08-185

Date Collected: 12/06/22 15:00

Date Received: 12/09/22 09:20

Date Collected: 12/06/22 10:50

Date Received: 12/09/22 09:20

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA

Lab

EET SAC

EET SAC

Analyst

Analyst

SEY

ΡV

Lab Sample ID: 320-95123-7 Matrix: Solid Percent Solids: 80.9 Lab Sample ID: 320-95123-8 Matrix: Water 10

EET SAC Lab Sample ID: 320-95123-9

EET SAC

Matrix: Solid

Matrix: Solid

Matrix: Water

Matrix: Water

Percent Solids: 81.5

Lab Sample ID: 320-95123-11

Lab Sample ID: 320-95123-12

Lab

Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab	13
		639153	12/12/22 11:17 ab Sample	тсs	EET SAC	

Batch

Number

639741

640136

Batch

Number

640633

645707

Prepared

or Analyzed

12/13/22 20:34

Prepared

or Analyzed

12/16/22 13:18

01/10/23 14:14 D1R

12/14/22 22:05 K1S

Final

Amount

10.0 mL

1 mL

Final

Amount

10.0 mL

1 mL

Client Sample ID: MW-08-195

Date Collected: 12/07/22 13:00

Date Received: 12/09/22 09:20

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.42 g	10.0 mL	639742	12/12/22 18:00	FX	EET SAC
Total/NA	Analysis	QSM B15		1	1 mL	1 mL	644725	01/05/23 18:21	RS1	EET SAC

Client Sample ID: Trip Blank-1 Date Collected: 12/07/22 15:15 Date Received: 12/09/22 09:20

Pren Tyne	Batch	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	lah
Total/NA	Prep	3535			275.4 mL	10.0 mL	640633	12/16/22 13:18	SEY	EET SAC
Total/NA	Analysis	QSM B15		1	1 mL	1 mL	645707	01/10/23 14:25	D1R	EET SAC

Client Sample ID: EB-120722 Date Collected: 12/07/22 16:00

Date Received: 12/09/22 09:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			280.3 mL	10.0 mL	640633	12/16/22 13:18	SEY	EET SAC
Total/NA	Analysis	QSM B15		1	1 mL	1 mL	645707	01/10/23 14:35	D1R	EET SAC

Laboratory References:

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Laboratory: Eurofins Sacramento Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
ANAB	De	ept. of Defense ELAP	L2468	01-20-24
The following analyte the agency does not	es are included in this repo offer certification.	ort, but the laboratory is not o	certified by the governing authority.	This list may include analytes for which
Analysis Method	Pren Method	Matrix	Analyte	

 Analysis Method
 Prep Method
 Matrix
 Analyte

 D 2216
 Solid
 Percent Solids

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS, Lower Issaquah Valley

Method

D 2216

SHAKE

Protocol References:

Laboratory References:

3535

QSM B15

ci/Site	. PFAS, Lower Issaquan valley			
d	Method Description	Protocol	Laboratory	3
315	PFAS for QSM 5.3, Table B-15	DOD 5.3	EET SAC	- 1
6	Percent Moisture	ASTM	EET SAC	
	Solid-Phase Extraction (SPE)	SW846	EET SAC	5
E	Shake Extraction with Ultrasonic Bath Extraction	SW846	EET SAC	5
otocol R	leferences:			
ASTM =	ASTM International			
DOD 5.3	3 = Department of Defense Quality Systems Manual V5.3			
SW846	= "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edit	ion, November 1986 And Its Update	⊁S.	8
boratory	/ References:			
EET SA	C = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL	_ (916)373-5600		9

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS, Lower Issaquah Valley

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-95123-1	MW-08-134	Solid	12/02/22 16:20	12/09/22 09:20
320-95123-2	MW-08-144	Solid	12/02/22 16:25	12/09/22 09:20
320-95123-3	MW-08-152	Solid	12/02/22 16:30	12/09/22 09:20
320-95123-4	MW-08-162	Solid	12/06/22 11:45	12/09/22 09:20
320-95123-5	MW-08-167	Solid	12/06/22 11:50	12/09/22 09:20
320-95123-6	MW-08-175	Solid	12/06/22 14:55	12/09/22 09:20
320-95123-7	MW-08-185	Solid	12/06/22 15:00	12/09/22 09:20
320-95123-8	MW-08-170-120622	Water	12/06/22 10:50	12/09/22 09:20
320-95123-9	MW-08-195	Solid	12/07/22 13:00	12/09/22 09:20
320-95123-11	Trip Blank-1	Water	12/07/22 15:15	12/09/22 09:20
320-95123-12	EB-120722	Water	12/07/22 16:00	12/09/22 09:20

Job ID: 320-95123-1

Company Name: Cheving Alfred Address: 120 Sur b 4 4 5 Sume 60 City/State/Zip: PLTUAND 02- 19204	Regulatory Program:	DW/ NDDFC	DCDA Othos.		
Company Name: Chevroy 176C Address: 320 Sv b 4 9 16 Suber 60 City/State/Zip: PLTUAND 02 3704			LINE CONTERT		TAL-8210
Company Name: (Je 20 54 6 4 4 6 54 4 4 5 6 6 6 6 6 6 6 6 6 6	Project Manager: CNUV	but lett s	te Contact:	Date: 12/7/22	COC No:
Address: 920 Sur b 4- g ve Shune 60 City/State/Zip: pt-tunevo 02- 9724 Phone: 60, 333 4210	Tel/Email: Cloch/d	Ha Greenthe	ab Contract:	Carrier:	of COCs
City/State/Zip: prtury 0 p. 9204	Analysis Turnaro	Ind Time			Sampler: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Phone: Kno 233 ario	CALENDAR DAYS	WORKING DAYS			For Lab Use Only:
151-77 6m	TAT if different from Below				Walk-in Client:
Fax:	2 weeks	05			Lab Sampling:
Project Name: T559 QUAL	1 week	<u>y/ x</u>	7 ? 7		0
Site: Dalman Run Pach, Isserguah, WP	2 days	<u>) əlu</u>	M		Job / SDG No .: PN G0989-2
	1 day		/ / 51		
	Sample Sample Cecor	6 0 6 # 1 2 beret	وبر مرس W حکی کے بچ	•	
) Matrix Cont.	×		Sample Specific Notes:
MW-08-134	07:31 22/2/D	- 0	N ×		
MW- 08-144	1 52:31 22/24	-	×		
MW-00-150	12/1/2 11:30				
791- QO-MW	CH:11/2/19/21	-	×		
C71-22-MW	05:11 77/2/21	-	×		
211-20-MM	12/1/27-14:55	-	×		
201-1-20-125	11:10 11:10	-		320-95123 (Chain of Custody
OF THENO	DA CI -2/04				
MW - 0.8 - 49.60 + - 12.067	- 10:01 +19-11-1-		×		
MW-08-195 UNITE	12/7/22 13-00 67	- 5	×		
MW-08-120-120622	12/6/22 8:45 6	2 2	1×15+12/1/22		HALL
Trip Blank-1	121/122 15:15 6	2 2	×		
F.A- 126722	12/7/22 16:00 6	1			
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HN	03; 5=NaOH; 6= Other				
Possible Hazard Identification: Are any samples from a listed FPA Hazardous Waste? P	lease List any EDA Maste Codes	in the composite the	Sample Disposal (A fee m	ay be assessed if samples are retai	ned longer than 1 month)
Comments Section if the lab is to dispose of the sample.	וכמאה רואו מוול דו ע מאמה כטופא				
Non-Hazard Flammable Skin Irritan	t Doison B U	nknown	Return to Client	Disnosal hv Lah	Months
Special Instructions/QC Requirements & Comments:					
See work order for list	of PFAS amo	o unde			
Custody Seals Intact:	Custody Seal No.:	N.	Cooler Temp. (°C): Obs'd: 1.7 Corr'd: 1.7	Therm ID No.: L~03
Relinquished by:	Company:	Date/Time: 16:3	Received by:	Company:	Date/Time:
Relinquished by:	Company:	Date/Time	Received hv.	dev31v1 co	10.1.10
CC But	geosy wrec	12.9.22 11:20	To Period	Company.	
Relinguished by:	Company:	Date/Time:	Received in Laboratory by:	Company:	Date/Time:
			2	t t l Sal	02:60 22/6/21

Client: Geosyntec Consultants, Inc.

Login Number: 95123 List Number: 1 Creator: Guzman, Juan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-95123-1

List Source: Eurofins Sacramento

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664

Professional Analytical Services

Jan 17 2023 GEOSYNTEC 520 PIKE ST # 2600 SEATTLE, WA 98101 Attention: CINDY BARTLETT

Dear CINDY BARTLETT:

Enclosed please find the analytical data for your ISSAQUAH project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
ML-137-139	Soil	22-A021961	Grain Size, CONV
SP-146-148	Soil	22-A021962	Grain Size, CONV
ML-165-167	Soil	22-A021963	Grain Size, CONV
SM-172-174	Soil	22-A021964	Grain Size, CONV

Your samples were received on Thursday, December 22, 2022. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

aron W Aaron W. Young

Vice President

Project #: PNG0989

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients DEM=Demand

MIN=Minerals

Professional Analytical Services

ANALYSIS REPORT

Date Received: 12/22/22 Date Reported: 1/17/23

GEOSYNTEC 520 PIKE ST SEATTLE, WA 98101 Attention: CINDY BARTLETT Project Name: ISSAQUAH Project #: PNG0989 All results reported on a dry weight basis.

AMTEST Identification Number	22-A021961
Client Identification	ML-137-139
Sampling Date	12/07/22, 13:00

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	84.5	%		0.1	SM 2540G	SF	12/27/22

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
-2.25	4.75	< 0.1 %	GRAVEL	0.00	ASTM D422	SF	01/16/23
- 2	4.00	< 0.1 %			ASTM D422	SF	01/16/23
-1	2.00	< 0.1 %			ASTM D422	SF	01/16/23
0	1.00	0.30 %	SAND	44.3	ASTM D422	SF	01/16/23
+1	0.50	1.20 %			ASTM D422	SF	01/16/23
+ 2	0.25	15.5 %			ASTM D422	SF	01/16/23
+ 3	0.125	18.9 %			ASTM D422	SF	01/16/23
+ 4	0.063	8.40 %			ASTM D422	SF	01/16/23
+ 5	0.032	9.00 %	SILT	36.1	ASTM D422	SF	01/16/23
+ 6	0.016	9.60 %			ASTM D422	SF	01/16/23
+ 7	0.008	9.70 %			ASTM D422	SF	01/16/23
+ 8	0.004	7.80 %			ASTM D422	SF	01/16/23
+ 9	0.002	7.70 %	CLAY	19.6	ASTM D422	SF	01/16/23
+ 10	0.001	5.10 %			ASTM D422	SF	01/16/23
> + 10	< 0.001	6.80 %			ASTM D422	SF	01/16/23

Professional Analytical Services

ANALYSIS REPORT

Date Received: 12/22/22 Date Reported: 1/17/23

GEOSYNTEC 520 PIKE ST SEATTLE, WA 98101 Attention: CINDY BARTLETT Project Name: ISSAQUAH Project #: PNG0989 All results reported on a dry weight basis.

AMTEST Identification Number	22-A021962
Client Identification	SP-146-148
Sampling Date	12/07/22, 13:05

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	88.2	%		0.1	SM 2540G	SF	12/27/22

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
-2.25	4.75	1.10 %	GRAVEL	3.90	ASTM D422	SF	01/16/23
- 2	4.00	0.10 %			ASTM D422	SF	01/16/23
-1	2.00	2.70 %			ASTM D422	SF	01/16/23
0	1.00	18.2 %	SAND	90.8	ASTM D422	SF	01/16/23
+1	0.50	39.9 %			ASTM D422	SF	01/16/23
+ 2	0.25	27.8 %			ASTM D422	SF	01/16/23
+ 3	0.125	4.10 %			ASTM D422	SF	01/16/23
+ 4	0.063	0.80 %			ASTM D422	SF	01/16/23
+ 5	0.032	0.70 %	SILT	3.50	ASTM D422	SF	01/16/23
+ 6	0.016	1.10 %			ASTM D422	SF	01/16/23
+ 7	0.008	1.00 %			ASTM D422	SF	01/16/23
+ 8	0.004	0.70 %			ASTM D422	SF	01/16/23
+ 9	0.002	0.10 %	CLAY	1.80	ASTM D422	SF	01/16/23
+ 10	0.001	< 0.1 %			ASTM D422	SF	01/16/23
> + 10	< 0.001	1.70 %			ASTM D422	SF	01/16/23

Professional Analytical Services

ANALYSIS REPORT

Date Received: 12/22/22 Date Reported: 1/17/23

GEOSYNTEC 520 PIKE ST SEATTLE, WA 98101 Attention: CINDY BARTLETT Project Name: ISSAQUAH Project #: PNG0989 All results reported on a dry weight basis.

AMTEST Identification Number	22-A021963
Client Identification	ML-165-167
Sampling Date	12/07/22, 13:10

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	78.9	%		0.1	SM 2540G	SF	12/27/22

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
-2.25	4.75	< 0.1 %	GRAVEL	0.00	ASTM D422	SF	01/16/23
- 2	4.00	< 0.1 %			ASTM D422	SF	01/16/23
-1	2.00	< 0.1 %			ASTM D422	SF	01/16/23
0	1.00	0.10 %	SAND	20.1	ASTM D422	SF	01/16/23
+1	0.50	0.10 %			ASTM D422	SF	01/16/23
+ 2	0.25	0.60 %			ASTM D422	SF	01/16/23
+ 3	0.125	3.10 %			ASTM D422	SF	01/16/23
+ 4	0.063	16.2 %			ASTM D422	SF	01/16/23
+ 5	0.032	22.5 %	SILT	74.8	ASTM D422	SF	01/16/23
+ 6	0.016	34.4 %			ASTM D422	SF	01/16/23
+ 7	0.008	15.5 %			ASTM D422	SF	01/16/23
+ 8	0.004	2.40 %			ASTM D422	SF	01/16/23
+ 9	0.002	1.10 %	CLAY	5.20	ASTM D422	SF	01/16/23
+ 10	0.001	0.60 %			ASTM D422	SF	01/16/23
> + 10	< 0.001	3.50 %			ASTM D422	SF	01/16/23

Professional Analytical Services

ANALYSIS REPORT

Date Received: 12/22/22 Date Reported: 1/17/23

GEOSYNTEC 520 PIKE ST SEATTLE, WA 98101 Attention: CINDY BARTLETT Project Name: ISSAQUAH Project #: PNG0989 All results reported on a dry weight basis.

AMTEST Identification Number	22-A021964
Client Identification	SM-172-174
Sampling Date	12/07/22, 13:15

Conventionals

PARAMETER	RESULT	UNITS	Q D.L.		METHOD	ANALYST	DATE	
Total Solids	82.5	%		0.1	SM 2540G	SF	12/27/22	

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
-2.25	4.75	< 0.1 %	GRAVEL	0.00	ASTM D422	SF	01/16/23
- 2	4.00	< 0.1 %			ASTM D422	SF	01/16/23
-1	2.00	< 0.1 %			ASTM D422	SF	01/16/23
0	1.00	0.20 %	SAND	92.0	ASTM D422	SF	01/16/23
+1	0.50	0.50 %			ASTM D422	SF	01/16/23
+ 2	0.25	30.1 %			ASTM D422	SF	01/16/23
+ 3	0.125	49.1 %			ASTM D422	SF	01/16/23
+ 4	0.063	12.1 %			ASTM D422	SF	01/16/23
+ 5	0.032	1.30 %	SILT	4.30	ASTM D422	SF	01/16/23
+ 6	0.016	1.20 %			ASTM D422	SF	01/16/23
+ 7	0.008	0.50 %			ASTM D422	SF	01/16/23
+ 8	0.004	1.30 %			ASTM D422	SF	01/16/23
+ 9	0.002	1.10 %	CLAY	3.90	ASTM D422	SF	01/16/23
+ 10	0.001	0.60 %			ASTM D422	SF	01/16/23
> + 10	< 0.001	2.20 %			ASTM D422	SF	01/16/23

GEOSYNTEC Project Name: ISSAQUAH AmTest ID: 22-A021964

WV on. Aaron W. Young Vice President

QC Summary for sample numbers: 22-A021961 to 22-A021964

DUPLICATES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
22-A021962	Total Solids	%	88.2	87.8	0.45
22-A021962	Total Solids	%	88.2	88.6	0.45
22-A021962	Gravel	%	3.90	3.50	11.
22-A021962	Gravel	%	3.90	3.70	5.3
22-A021962	Sand	%	90.8	91.6	0.88
22-A021962	Sand	%	90.8	92.5	1.9
22-A021962	Silt	%	3.50	3.00	15.
22-A021962	Silt	%	3.50	2.20	46.
22-A021962	Clay	%	1.80	1.80	0.00
22-A021962	Clay	%	1.80	1.80	0.00

AmTest Chain of Custody Record 13600 NE 126th PL, Suite C, Kirkland, WA 98034 Ph (425) 885-1664 Fx (425) 820-0245 www.amtestlab.com

A B O R A T	ORIES	1664 .amtest	Fx (425) lab.com	820-0	245	C	hain of	Custo	dy No.	, 	.* ,				
Client Name & Address:					Invoice	e To:									
Becsyntec 1															
520 # 2600 Pike St, Saittle, WA, 98101										·					
Contact Person: Cindy Bastleft					Invoice Contact:										
Phone No: 503-505-4145					PO Number:										
Fax No:					Invoice Ph/Fax:										
E-mail: CBox Fletto avosuites i'm				COM	Invoice E-mail:										
Report Delive Mail /	ry: (Choose all that app Fax / Email /	oly) / Posted	Online		Data posted to online account: YES / NO Web Login ID:										
Special Instru	ictions:														
Requested TA	T: (Rush must be pre-a rd RUSH (5 Da	pproved by av / 3 Da	lab) y / 48 HR	24	HR)	Tem	peratur	e upon	Receip	ıt: 2,	9°C				
Project-Name: Lassa (ib ab):						S	Analysis Requested								
Project Number: $PNGOQ89$		<u>^</u>	npled	mplec	ix	itaine	1 X					ţ			
AmTest ID	Client ID (35 characters max)		Date Sar	Time Sa	Matr	No. of cor	2154145(Z								QA/QC
21961	MI137-13	4	2/7/22	_1 <u>3</u> :4) S	l	1								
21962	SP-146-148		2/7/22	13-0	<u>95</u>	1	$ \times $								
21963	ML-165-167		2/7/22	13:10	<u> </u>		×.		-						
. 21964	SM-172-174		2/7/22	. 13 1	62	Mar Arthur									
										<u>.</u> .					
													l 		<u> </u>
Collected/Relinquished By: Date		Time	Receiv	ved By: Date				Date	2 2	Time		ne			
Jobe Tray with 12/22		12/22/2	214.20		<u></u>	ςς α	L.				12	[22]	22/22 14:20		1.20
Relinquished E	Зу: /	Date	Time	Receiv	ved By:							3		• 10	ie.
Relinquished By: Date		Date	Time	Receiv	ved By:			•			Date	2		Tin	ne

APPENDIX D IDW Disposal Receipts

Placeholder for IDW Disposal Receipts (pending)