

51736-

July 13, 2006

DRAFT

Mr. Darrell Vange Dearborn Street Developers, LLC 2620 Second Avenue Seattle, Washington 98121

Re: Supplemental Phase II Subsurface Assessment
Goodwill Industries and Goodwill Storage Property
1400 South Lane Street and 1312 South Dearborn Street
Seattle, Washington
17250-00

Dear Mr. Vange:

This letter report presents the results of our Supplemental Phase II Subsurface Assessment at the Goodwill Industries and the Goodwill Storage property located in Seattle, Washington (Figure 1). Goodwill has operated from the subject property main building as a retail store, offices, and warehouse distribution center for approximately 50 years. They have owned and operated the storage building since the early 1980s.

The project scope of work was completed in general accordance with our scope of services dated September 8, 2005. Our Supplemental Phase II Subsurface Assessment provides additional information on the current conditions of soil and groundwater at the subject property to further assess potential impacts related to the historical operation of a dry cleaner and laundry facility, former spray-paint areas, and a machine shop within the subject property as well as the historical use of a large oil burner (heating), several fuel and gasoline underground storage tanks (USTs), and an existing tetrachloroethene (PCE) above-ground storage tank (AST) located in the basement near the former laundry room. Historical soil and groundwater sampling and analysis within the property were conducted in 2000 and 2004.

Our report begins with a Summary of Findings and Recommendations, which is followed by our:

- Scope of Work;
- Subject Property Description;
- Geology and Hydrogeology;
- Supplemental Phase II Subsurface Assessment; and
- Limitations.

DRAFT

17250-00 Page 2

Analytical results for soil and groundwater samples collected and analyzed during this assessment are summarized in Tables 1 and 2, respectively. Figure 1 is a Vicinity Map showing the location of the subject property. Figure 2 shows the relationship of the subject property to adjacent Goodwill sites in the vicinity. A Site and Exploration Plan showing subject property features and sampling locations is presented on Figure 3. Appendix A presents the field exploration procedures and copies of the exploration logs. Appendix B presents the chemical data quality review and the Advanced Analytical laboratory report and certificates of analysis.

SUMMARY OF FINDINGS AND RECOMMENDATIONS

Fourteen strataprobes and one hand probe were advanced within the Main Goodwill Industries building property boundary to depths of approximately 4 to 25.5 feet below the ground surface during our Supplemental Phase II Subsurface Assessment. In addition, seven strataprobes were advanced within the Goodwill storage building property to depths of approximately 14 to 16 feet below ground surface. Groundwater was encountered at depths of between 3 and 12 feet below grade within the Main Goodwill Industries building property, and between 9 and 11 feet below grade within the Goodwill storage building in eighteen of the twenty-two strataprobes advanced. Grab groundwater samples were collected from eight of the strataprobe explorations advanced throughout the subject property.

Analytical results of soil samples collected from the probe explorations during the Supplemental Phase II Subsurface Assessment indicated soil impacts primarily within the east and south border of the Main Goodwill Industries building. Gasoline- and diesel-range hydrocarbons above applicable MTCA cleanup levels were encountered mainly in strataprobes SP-5A and SP-6, both advanced near locations of former USTs. In addition, field screening and chemical results of soil samples indicated concentrations of several volatile organic compounds (VOCs) were present on this same area of the subject property. Except for PCE (in SP-5A), the remaining VOCs detected were below applicable MTCA cleanup levels.

Analytical results of the soil samples analyzed also indicate that lead, chromium, arsenic, copper, nickel, and zinc were detected in soil samples throughout the subject property. The metal concentrations detected were below applicable MTCA soil cleanup levels.

Detections in the eight grab groundwater samples collected were primarily of several VOCs and metals. The VOCs detected consisted of cis-1,2-dichloroethene, chloroform, trichloroethene (TCE), PCE, xylene, and toluene in groundwater samples collected in the general area of the former loading doc UST (SP-5A) and the former dry cleaning facility (SP-4). These VOCs are chlorinated solvents typically used in dry cleaning operations and as additives to gasoline. Except for PCE, the

DRAFT

17250-00 Page 3

chlorinated solvent concentrations detected were below applicable MTCA cleanup levels. In addition, low concentrations of lead, nickel, and zinc below applicable MTCA cleanup levels were detected in groundwater samples collected in this same general area of the Main Goodwill Industries building. No detectable concentrations of petroleum hydrocarbons were detected in these groundwater samples.

Based on our observations and the chemical data, no significant widespread petroleum-impacted soils appear to be present under the Goodwill Industries building or the Goodwill storage building property. However, some petroleum and PCE impacts are present in areas surrounding SP-5A, SP-4, and SP-6, as well as the previous sample locations (from previous 2004 investigation) G-7 and G-1 through G-4 (former PCE AST location). In addition, although low concentrations of metals including chromium (below applicable MTCA cleanup levels), were detected in some of the soil samples analyzed for both properties, the higher chromium concentrations in several of the soil samples collected from the Goodwill storage building were similar to the total chromium results from a couple of previous soil samples collected from the adjacent east parking lot collected in 2000 on the Goodwill property.

Recommendations

Since it is our understanding that future redevelopment efforts at the subject property and surrounding sites include the demolition of the current buildings and foundations and an excavation to accommodate a new building and underground parking areas, we recommend the following.

Potential Metal Impacts

As part of the overall preparation of a Cleanup Action Plan (CAP) for the entire development as part of the Prospective Purchaser Agreement (PPA), we recommend including the Goodwill storage building as well as the eastern portion of the adjacent Herzog Glass site be included in the grid-sampling for chromium and soil removal as appropriate.

Potential Petroleum and VOC Impacts

Following removal of the buildings, known areas of impacted soils should be removed and disposed of off site. These identified locations will be included in the revised and expanded CAP for the entire project area. This CAP will be approved by Ecology as part of the ongoing PPA for the entire project area. The CAP should also address the remediation and/or management of the impacted groundwater. In addition, during building excavation activities, subsurface conditions of soil and/or groundwater below the buildings should be monitored for appropriate soil and groundwater management and disposal as appropriate through a construction contingency plan.

DRAFT

17250-00 Page 4

A construction contingency plan includes the procedures to be followed if suspect environmental conditions are encountered during excavation and construction work. The construction contingency plan will outline the steps to manage potential impacted soil and/or groundwater or discovered unknown USTs. These are commonly used in the industry where potential contaminants may be encountered and assist in expeditiously managing and handling encountered impacted soil and groundwater with no or minimal disruption to construction activities.

SCOPE OF WORK

Our Supplemental Phase II Subsurface Assessment included:

- Conducting fourteen strataprobe and one hand probe explorations at select locations on the Main Goodwill Industries building and seven strataprobe explorations at select locations within the Goodwill storage building;
- Collecting shallow soil samples from the fourteen strataprobe and one hand probe explorations advanced on the Main Goodwill Industries building and the seven strataprobe explorations at select locations within the Goodwill storage building;
- Collecting groundwater samples from seven of the fifteen probe explorations advanced on Main Goodwill Industries building and one from the seven strataprobe explorations advanced within the Goodwill storage building;
- Chemically analyzing the soil and groundwater samples;
- Evaluating the chemical analytical results; and
- Preparing this letter report presenting the findings of our work.

As presented earlier, the purpose of the assessment was to collect supplemental information to further assess potential impacts related to the historical use of the property as a dry-cleaner/laundry facility, former spray-paint areas, a machine shop within the Main Goodwill Industries building, and historical operations as a storage area for a former truck body manufacturing and repair facility on the Goodwill storage building property.

DRAFT

17250-00 Page 5

SUBJECT PROPERTY DESCRIPTION

The subject property is approximately 3.3 acres and is divided in two parcels bounded by Rainier Avenue North to the east, South Weller Street to the north, South Lane Street and South Dearborn Street to the south, and commercial properties to the west. A portion of the subject property located at 1400 South Lane Street contains a 119,045-square-foot masonry, concrete, and wood-frame building. The building is currently owned by Goodwill Industries and has been used as its main retail, warehouse, and office space since construction. The building was constructed in a series of additions from the 1940s through the 1960s. The portion of the subject property located at 1312 South Dearborn Street includes one 7,700-square-foot masonry and concrete building constructed in 1948 and formerly used for storage by a former truck body manufacturer and later owned and used for storage by Goodwill since the early 1980s. The remainder of the subject property is covered with asphalt or gravel and is used for parking or storage. The parcel is relatively flat with a slight downward gradient to the southwest.

Previous work in 2000 at adjacent sites and in the adjacent South Lane Street identified PCE and TCE exceeding the MTCA Method A cleanup level of 5 μ g/L for both compounds in groundwater from well SP-7 located adjacent to the south of the subject property (Figure 3). At that time, PCE and TCE detections in nearby well SP-8 did not exceed the cleanup levels. However, both wells were re-sampled as part of our Supplemental Phase II Subsurface Assessment conducted by Hart Crowser in 2004, at which time PCE concentrations in both wells were greater than cleanup levels and greater than the concentrations detected for sampling conducted in 2000.

Most of the soil and some of the grab groundwater samples collected from within property boundaries in 2004 also contained PCE concentrations higher than applicable MTCA Method A cleanup levels. The highest PCE detection occurred in soil and groundwater samples from a probe near the existing PCE AST (G-3); however, PCE detections also occurred in soil and groundwater samples from a boring northwest of the building (G-7), and several hundred feet west of the boiler room (Figure 3). Based on the location of this boring in relationship to the PCE AST and the detections of other constituents, the source of the TCE detected in G-7 is likely not related to dry cleaning operations but are suspected to be a result of the former spray paint areas on the subject property. TCE concentrations in groundwater samples from G-3 and G-7 were also above MTCA Method A cleanup levels. Soil samples from G-7 also contained concentrations of mineral spirit/stoddard solvent and methylene chloride above MTCA Method A cleanup levels. Mineral spirit/stoddard solvent and heavy oil above MTCA Method A cleanup levels were also detected in groundwater from this location (Figure 3).

DRAFT

17250-00 Page 6

GEOLOGY AND HYDROGEOLOGY

The subject property is located at the base of a south-facing hill at the north end of the Rainier Valley. Beacon Hill is located a few hundred yards to the southwest. This hill was originally part of an unbroken ridge extending from First Hill to the north, to the City limits to the south. Between 1909 and 1912, the ridge was hydraulically cut 90 feet at Dearborn Street, connecting the Rainier Valley to the Elliott Bay tidelands. The subject property is relatively flat with an elevation of approximately 90 feet, and is covered with either paved parking areas or buildings. To the west of the subject property, across 13th Avenue, the ground surface rises steeply to the northwest.

Based on previous field explorations conducted on surrounding sites, four general soil units were identified in the vicinity of the subject property. Surface soils are characterized by silty, gravelly sandy fill, and a sandy, silty clay (with occasional peat) to depths of approximately 20 feet. Brick and ash were also encountered in fill areas toward Rainier Avenue South. These surface soils were underlain by a laterally continuous silty sand and gravel soil unit and were occasionally locally interbedded with sandy clay. This unit was generally encountered to between 20 to 50 feet below ground surface and was underlain by a clayey silt and clayey sand unit often encountered between 50 to 60 feet below ground surface. Generally, this zone thickens toward Dearborn Street and locally grades into fractured clayey silt to depths up to 102 feet below the ground surface. The deepest soil unit encountered was a dense to very dense gravelly sand, with zones of till-like gravelly, silty sand. This unit was generally first encountered at depths from about 50 to 60 feet below the ground surface in areas near South Dearborn Street. Till-like gravelly sand and silt lie closer to the surface beneath uphill areas in the vicinity closer to South Weller Street.

Based on data obtained during previous investigations in the vicinity of the subject property, typical depth to groundwater ranges from approximately 6 to 13 feet below ground surface, depending on location and ground surface elevation. Results from these investigations indicate that local shallow groundwater flow direction is to the southeast. However, regional groundwater flow is likely to the southwest and west, following Dearborn, toward Elliott Bay. Therefore, groundwater flow directions and gradients at the subject property and vicinity may vary based on location, season, and proximity to surface utilities.

SUPPLEMENTAL PHASE II SUBSURFACE ASSESSMENT

Soil Sampling and Analysis

Between May 25 through June 7, 2006, Hart Crowser advanced fourteen strataprobes (SP-1, SP-G-2-3, SP-4, SP-5A, SP-5B, SP-6A, SP-6B, and SP-7 through SP-12) and one hand probe

DRAFT

17250-00 Page 7

(HP-13) at locations throughout the subject property as shown on Figure 3. Strataprobes SP-G-2-3, SP-4, SP-5A, and SP-8 were advanced on the eastern area of the building near a former gasoline UST and the loading dock of the building (Figure 2). Strataprobes SP-1, SP-6, SP-6A, SP-6B, SP-7, SP-9, and SP-10 were advanced toward the central area of the building near the former boiler and laundry rooms, the former fuel USTs, and the existing PCE AST. Strataprobes SP-5B, SP-11, and SP-12, and one hand probe HP-13 were advanced on the northwest area of the building near a former spray paint area (Figure 2).

In addition to the strataprobes advanced within the main Goodwill Industry building, seven strataprobes (SP-14 through SP-20) were advanced within the Goodwill storage building historically used for storage by a former truck body manufacturer and a glass manufacturing facility (Figure 4). Stratraprobes SP-16B, SP-17, SP-18, and SP-20 were advanced within the building footprint while strataprobes SP-14, SP-15, and SP-19 were advanced in the parking area north of the building (Figure 4).

ESN NW completed the explorations by Strataprobe equipment or hand probe to depths of 4 to 25.5 feet below the grade. Groundwater was encountered in eighteen of the twenty-two probes advanced between depths of 3 and 12 feet below grade within the Main Goodwill Industries building, and between 9 and 11 feet below grade within the Goodwill storage building.

Soil samples were collected at 4-foot-depth intervals in the probes. A photoionization detector (PID) was used to screen the soil samples for VOCs indicative of petroleum hydrocarbons. Scattered low-level PID measurements (01 to 3.1) were encountered in several soil samples collected from several strataprobes advanced at the subject property. However, the highest PID readings (7.1 to 89) were encountered in soil samples collected from 0 to 15.5 feet below grade in SP-5A, and from 0 to approximately 8 feet below grade in SP-6, SP-6A, and SP-6B. Moderate to strong petroleum-like odors were noticed in the soil samples collected within these soil horizons in these four probes.

Soil samples were temporarily stored in Hart Crowser's locked refrigerators and were submitted for chemical analysis to Advanced Analytical, a chemical laboratory located in Redmond, Washington. Thirty-seven soil samples (from the Main Goodwill Industries building and the Goodwill storage building) were submitted for analysis of one or more of the following:

- Gasoline-range total petroleum hydrocarbons (TPH) and diesel- and heavy oil-range TPH (Ecology Method NWTPH-Gx and NWTPH-Dx);
- Benzene, toluene, ethylbenzene, and xylenes (BTEX compounds; EPA Method 8021);
- VOCs (EPA Method 8260); and

DRAFT

17250-00 Page 8

 Total Metals (lead, cadmium, chromium, arsenic, mercury, copper, nickel, and zinc); (EPA Method 7000 Series).

The analytical results for soil samples are summarized in Table 1. Laboratory analytical reports are presented in Appendix B.

Goodwill Industries Analytical Results

Gasoline-Range TPH and BTEX Compounds

Twenty-seven soil samples collected from the Goodwill Industries property were submitted for analysis of gasoline-range TPH and fifteen of them were submitted for analysis of BTEX compounds. Analytical results of the soil samples indicate that gasoline-range TPH was only detected in SP5A-S1, SP6-S1, and SP6B-S1. These samples were collected from two locations where gasoline USTs were formerly located. The gasoline-range TPH was detected at concentrations ranging from 110 to 180 mg/kg, above the applicable MTCA Method A cleanup level of 100 mg/kg for soil.

Ethylbenzene and xylenes were the only BTEX compound detected in the twenty-seven soil samples analyzed from the Main Goodwill Industries building. At a concentration of 760 $\mu g/kg$ (SP6B-S1) and 210 $\mu g/kg$ (SP6-S1), xylene was detected below the applicable MTCA cleanup level of 9,000 $\mu g/kg$. Ethylbenzene was detected in SP6B-S1 at a concentration of 100 $\mu g/kg$ below the applicable MTCA cleanup level of 6,000 $\mu g/kg$.

Diesel- and Heavy Oil-Range TPH

Twenty-seven soil samples collected from the Goodwill Industries building property were submitted for analysis of diesel- and heavy oil-range TPH. Diesel-range TPH was only detected in one soil sample analyzed from SP5A-SI at a concentration of 3,400 mg/kg. This concentration is above the applicable MTCA cleanup level of 2,000 mg/kg.

Heavy oil-range TPH was detected at concentrations ranging from 82 to 7,400 mg/kg in the soil samples analyzed from SP-5A, and SP-6B. Except for the sample collected from SP5A-SI, 7,400 mg/kg, the remaining heavy oil-range detections were below the applicable MTCA cleanup level of 2,000 mg/kg.

VOCs

Several VOCs were detected in a few soil samples, consisting of 2-chlorotoluene, PCE, xylene, isopropylbenzene, n-propylbenzene, tert-butylbenzene, 1,2,4-trimethylbenzene, sec-butylbenzene,

DRAFT

17250-00 Page 9

n-butylbenzene 1,2,4-trichlorobenzene, naphthalene, and 1,2,3-trichlorobenzene. Most of these were detected in the shallow soil samples collected from SP-5A and SP-6. Except for PCE (170 ug/kg from SP5A-S1), the remaining VOCs detected were below applicable MTCA cleanup levels or a cleanup level was not available.

Metals

Eleven of the twenty seven soil samples from the Goodwill Industries property also were submitted for analysis of metals. Analytical results of the soil samples analyzed during the Supplemental Phase II Subsurface Assessment indicate that lead (1 to 72 mg/kg), chromium (3.5 to 44 mg/kg), arsenic (2 to 11 mg/kg), copper (3.6 to 300 mg/kg), nickel (2.3 to 29 mg/kg), and zinc (2.9 to 180 mg/kg) were the only constituents detected in these samples at concentrations less than applicable MTCA cleanup levels and the natural soil background metal concentrations for the Puget Sound region. Cadmium and mercury were not detected in the soil samples analyzed.

Goodwill Storage Building Analytical Results

The analytical results for soil samples are summarized in Table 1. Laboratory analytical reports are presented in Appendix B.

Metals

Thirteen soil samples collected from the subject property were submitted for analysis of metals. Analytical results of the soil samples analyzed during the Supplemental Phase II Subsurface Assessment indicate that lead (1 to 8.6 mg/kg), chromium (8.1 to 170 mg/kg), and arsenic (2 to 4.4 mg/kg) were the only constituents detected in these samples at concentrations less than applicable MTCA cleanup levels. Cadmium and mercury were not detected in the soil samples analyzed.

Diesel-, Heavy Oil-, and Gasoline-Range TPH; BTEX; PAHs; and VOCs

Diesel-, heavy oil-, and gasoline-range TPH, as well as BTEX compounds and VOCs were not detected in any of the subsurface soil samples analyzed for these constituents (Table 1).

Grab Groundwater Sampling and Analysis

Between May 25 and June 6, 2006, Hart Crowser collected grab groundwater samples from seven of the strataprobe explorations advanced at the Goodwill Industries property (SP-1, SP-G-2-3, SP-4, SP-5A, SP-5B, SP-6A, and SP-11) and from one of the strataprobe explorations advanced on the Goodwill Storage building (SP-15).

DRAFT

17250-00 Page 10

The grab groundwater samples were temporarily stored in Hart Crowser's locked refrigerators and were submitted to the Advanced Analytical chemical laboratory in Redmond, Washington, for analysis. The grab groundwater samples were submitted for analysis of the following:

- Gasoline-range TPH and diesel- and heavy oil-range TPH (Ecology Method NWTPH-Gx and NWTPH-Dx);
- Total Metals (lead, cadmium, chromium, arsenic, and mercury, copper, nickel, zinc.(EPA Method 7000 Series); and
- VOCs (EPA Method 8260).

The analytical results for the grab groundwater samples are summarized in Table 2. Laboratory analytical reports are presented in Appendix B.

Goodwill Industries Analytical Results

Analytical results of the grab groundwater samples collected from the strataprobes indicated that VOCs and lead, nickel, and zinc were the only constituents detected in the samples collected. These VOCs included cis-1,2-dichloroethene, chloroform, TCE, PCE, toluene, and xylene. Except for PCE, the chlorinated solvent concentrations detected were below applicable MTCA cleanup levels. PCE was detected at $55 \,\mu\text{g/L}$ in groundwater collected from SP-5A above the MTCA method A cleanup level of $5 \,\mu\text{g/L}$.

Lead (0.002 mg/L), nickel (0.01 to 0.017 mg/L), and zinc (0.002 to 0.009 mg/L) were detected in the groundwater samples collected, and these concentrations were below applicable MTCA cleanup levels.

Gasoline-range, diesel-, and heavy oil-range TPH were not detected in the seven groundwater samples analyzed.

Goodwill Storage Building Analytical Results

Gasoline-range, diesel-, and heavy oil-range TPH, metals, and VOCs were not detected in the grab groundwater sample analyzed from this area of the subject property.

LIMITATIONS

Work for this project was performed, and this letter report prepared, in accordance with generally accepted professional practices for the nature and conditions of the work completed in the same or

DRAFT

17250-00 Page 11

similar localities, at the time the work was performed. It is intended for the exclusive use of Dearborn Street Developers, LLC, for specific application to the subject property. This report is not meant to represent a legal opinion. No other warranty, express or implied, is made.

Our work did not include sampling or testing of drinking water for lead content, sampling for indoor air quality and mold, assessment of sewer systems, sampling for radon vapor, a "good-faith" survey of asbestos and lead, and other items not the standard of practice for our time, unless otherwise noted herein.

Any questions regarding our work and this letter report, the presentation of the information, and the interpretation of the data are welcome and should be referred to the undersigned.

Sincerely,

HART CROWSER, INC.

SONIA FERNÁNDEZ

Project Environmental Scientist Sonia.fernandez@hartcrowser.com

JULIE K.W. WUKELIC

Senior Principal Engineer jkw@hartcrowser.com

Attachments:

Table 1 - Analytical Results for Soil Samples

Table 2 - Analytical Results for Grab Groundwater Samples

Figure 1 - Vicinity Map

Figure 2 - Subject Property Boundary Map

Figure 3 - Site and Exploration Plan Main Goodwill Industries Property

Figure 4 - Site and Exploration Plan Goodwill Storage Building Property

Appendix A - Field Explorations Methods and Analysis

Appendix B - Chemical Data Quality Review and

Certificates of Analysis

J:\jobs\1725000\Goodwill Phase II.doc

Sample ID	MTCA	SP1-S1	SP1-S3	SP-G-2-3-S2	SP4-S2	SP4-S5	SP5A-S1	SP5A-S3
Sampling Date	Method A	6/2/2006	6/2/2006	5/25/2006	6/5/2006	6/5/2006	5/30/2006	5/30/2006
Depth in Feet	Cleanup Level	0 to 4	8 to 12	4 to 8	4 to 8	16 to 20	0 to 4	8 to 11
Metals in mg/kg								
Lead	250		2.3	3.2	19		26	2.1
Chromium	19/2000(a)		10	44	8.1		3.5	8.8
Cadmium	2		1.0 U	1.0 U	1.0 U		1.0 U	1.0 U
Arsenic	20		2.0	5.6	2.0		2.0 U	2.0 U
Mercury	2		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Copper			8.2	17	8.6		10	13
Nickel			4.1	29	2.3		3.7	8.1
Zinc			55	2.9	6.9		19	13
NWTPH-Dx in mg/kg	K							
Kerosene/Jet fuel		20 U	20 U	20 U	20 U	20 U	20 U	20 U
Diesel/Fuel oil	2000	20 U	20 U	20 U	20 U	20 U	3400	20 U
Heavy oil	2000	50 U	50 U	50 U	50 U	50 U	7400	82
NWTPH-Gx in mg/kg								
Mineral spirits/Stoddard	100	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Gasoline	100/30(d)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	110	5.0 U
BTEX in µg/kg								
Benzene	30	20 U		20 U	20 U	20 U		20 U
Toluene	7000	50 U		50 U	50 U	50 U		50 U
Ethylbenzene	6000	50 U		50 U	50 U	50 U		50 U
Xylenes	9000	50 U		50 U	50 U	50 U		50 U

Sample ID	SP5A-S4	SP5B-S1	SP5B-S2	SP5B-S3	SP6-S1	SP6-S3	SP6B-S1	SP7-S2	
Sampling Date	5/30/2006	6/6/2006	6/6/2006	6/6/2006	5/30/2006	5/30/2006	5/30/2006	6/2/2006	
Depth in Feet	11 to 14	0 to 4	4 to 8	8 to 11	0 to 4	8 to 12	0 to 4	4 to 8	
Metals in mg/kg									
Lead	1.1	2.6			1.0 U				
Chromium	6.5	7.1			19				
Cadmium	1.0 U	1.0 U			1.0 U				
Arsenic	2.0 U	2.0 U			11				
Mercury	0.5 U	0.5 U			0.5 U				
Copper	4.2	4.2			300				
Nickel	3.6	3.1			24				
Zinc	20	15			180				
NWTPH-Dx in mg/kg									
Kerosene/Jet fuel	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	
Diesel/Fuel oil	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	
Heavy oil	50 U	50 U	50 U	50 U	1800	50 U	1400	50 U	
NWTPH-Gx in mg/kg									
Mineral spirits/Stoddard	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	
Gasoline	5.0 U	5.0 U	5.0 U	5.0 U	180	5.0 U	120	5.0 U	
BTEX in µg/kg									
Benzene	20 U					20 U	20 U	20 U	
Toluene	50 U					50 U	50 U	50 U	
Ethylbenzene	50 U					50 U	100	50 U	
Xylenes	50 U					50 U	760	50 U	
(3)									

Sample ID Sampling Date Depth in Feet	SP7-S5 6/2/2006 14 to 16	SP8-S1 6/2/2006 0 to 4	SP8-S3 6/2/2006 8 to 12	SP9-S1 6/2/2006 0 to 4	SP9-S3 6/2/2006 8 to 12	SP10-S2 6/6/2006 4 to 8	SP10-S4 6/6/2006 12 to 15	SP11-S2 6/6/2006 4 to 8
Metals in mg/kg								
Lead 250		72				1.0		1.9
Chromium 19/200	o	16				6.6		11
Cadmium		1.0 U				1.0 U		1.0 U
Arsenic		4.4				2.0 U		2.0 U
Mercury		0.5 U				0.5 U		0.5 U
Copper		31				3.6		3.8
Nickel		4.0				11		4.2
Zinc		38				16		13
NWTPH-Dx in mg/kg		3.5						
Kerosene/Jet fuel	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Diesel/Fuel oil	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Heavy oil	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
NWTPH-Gx in mg/kg								
Mineral spirits/Stoddard	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Gasoline	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
BTEX in µg/kg								
Benzene	20 U		20 U	20 U	20 U		20 U	
Toluene	50 U		50 U	50 U	50 U		50 U	
Ethylbenzene	50 U		50 U	50 U	50 U		50 U	
Xylenes	50 U		50 U	50 U	50 U		50 U	

Sample ID	SP11-S3	SP11-S4	SP12-S2	HP13-S3	SP14-S3	SP15-S3	SP16B-S2	SP16B-S4
Sampling Date Depth in Feet	6/6/2006 8 to 12	6/6/2006 12 to 16	6/7/2006 4 to 8	6/7/2006 7.5 to 10	6/7/2006 8 to 11	6/7/2006 8 to 12	6/7/2006 4 to 7	6/7/2006 10 to 12
Metals in mg/kg							9	
Lead					1.0		7.0	4.6
Chromium					1.0		7.9	4.6
					8.1		77	69
Cadmium					1.0 U		1.0 U	1.0 U
Arsenic					2.0 U		3.2	2.4
Mercury					0.5 U		0.5 U	0.5 U
Copper								
Nickel								
Zinc								
NWTPH-Dx in mg/kg								
Kerosene/Jet fuel	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Diesel/Fuel oil	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Heavy oil	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
NWTPH-Gx in mg/kg								
Mineral spirits/Stoddard	5.0 U	5.0 U	5.0 U	5.0 U		5.0 UJ		
Gasoline	5.0 U	5.0 U	5.0 U	5.0 U		5.0 UJ		
BTEX in µg/kg								
Benzene		20 U				20 UJ		
Toluene		50 U				50 UJ		
Ethylbenzene		50 U				50 UJ		
Xylenes		50 U				50 UJ		
,		00 0				00 00		

	April 1981 S					
Sample ID	SP17-S3	SP18-S2	SP18-S4	SP19-S3	SP20-S1	SP20-S3
Sampling Date	6/7/2006	6/7/2006	6/7/2006	6/7/2006	6/7/2006	6/7/2006
Depth in Feet	8 to 11	4 to 8	11 to 15	8 to 11	0.5 to 4	8 to 11
Metals in mg/kg						
Lead	8.6	8.1	3.8	1.8	3.4	7.0
Chromium	140	170	49	11	43	66
Cadmium	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Arsenic	4.3	4.4	2.4	2.0 U	2.0	2.3
Mercury	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Copper						
Nickel						
Zinc						
NWTPH-Dx in mg/kg						
Kerosene/Jet fuel	20 U	20 U	20 U	20 U	20 U	20 U
Diesel/Fuel oil	20 U	20 U	20 U	20 U	20 U	20 U
Heavy oil	50 U	50 U	50 U	50 U	50 U	50 U
NWTPH-Gx in mg/kg						
Mineral spirits/Stoddard			5.0 UJ	5.0 UJ		
Gasoline			5.0 UJ	5.0 UJ		
BTEX in µg/kg						
Benzene				20 UJ		
Toluene				50 UJ		
Ethylbenzene				50 UJ		
Xylenes	8			50 UJ		

Table 1 - Analytical Res	ults for Soil S	amples		AII			Sheet 6 of 11
Sample ID	MTCA	SP1-S3	SP4-S2	SP5A-S1	SP5B-S1	SP5B-S2	SP5B-S3
Sampling Date	Method A	6/2/2006	6/5/2006	5/30/2006	6/6/2006	6/6/2006	6/6/2006
Depth in Feet	Cleanup Level	8 to 12	4 to 8	0 to 4	0 to 4	4 to 8	8 to 11
Volatiles in µg/kg							
Dichlorodifluoromethane		50 U	50 U	50 U	50 U	50 U	50 U
Chloromethane		50 U	50 U	50 U	50 U	50 U	50 U
Vinyl chloride		50 U	50 U	50 U	50 U	50 U	50 U
Bromomethane		50 U	50 U	50 U	50 U	50 U	50 U
Chloroethane		50 U	50 U	50 U	50 U	50 U	50 U
Trichlorofluoromethane		50 U	50 U	50 U	50 U	50 U	50 U
1,1-Dichloroethene		50 U	50 U	50 U	50 U	50 U	50 U
Methylene chloride	20	20 U	20 U	20 U	20 U	20 U	20 U
trans-1,2-Dichloroethene		50 U	50 U	50 U	50 U	50 U	50 U
1,1-Dichloroethane		50 U	50 U	50 U	50 U	50 U	50 U
2,2-Dichloropropane		50 U	50 U	50 U	50 U	50 U	50 U
cis-1,2-Dichloroethene		50 U	50 U	50 U	50 U	50 U	50 U
Chloroform		50 U	50 U	50 U	50 U	50 U	50 U
1,1,1-Trichloroethane	2,000	50 U	50 U	50 U	50 U	50 U	50 U
Carbon tetrachloride		50 U	50 U	50 U	50 U	50 U	50 U
1,1-Dichloropropene		50 U	50 U	50 U	50 U	50 U	50 U
Benzene	30	50 U	50 U	50 U	50 U	50 U	50 U
1,2-Dichloroethane (EDC)		20 U	20 U	20 U	20 U	20 U	20 U
Trichloroethene	30	20 U	20 U	20 U	20 U	20 U	20 U
1,2-Dichloropropane		50 U	50 U	50 U	50 U	50 U	50 U
Dibromomethane		50 U	50 U	50 U	50 U	50 U	50 U
Bromodichloromethane	16,100(c)	50 U	50 U	50 U	50 U	50 U	50 U
cis-1,3-Dichloropropene	*	50 U	50 U	50 U	50 U	50 U	50 U
Toluene	7,000	50 U	50 U	50 U	50 U	50 U	50 U
trans-1,3-Dichloropropene	17,500(c)	50 U	50 U	50 U	50 U	50 U	50 U
1,1,2-Trichloroethane		50 U	50 U	50 U	50 U	50 U	50 U
Tetrachloroethene	50	50 U	50 U	(170)	50 U	50 U	50 U
1,3-Dichloropropane		50 U	50 U	50 U	50 U	50 U	50 U
Dibromochloromethane	5	20 U	20 U	20 U	20 U	20 U	20 U
1,2-Dibromoethane (EDB)	5	5 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U
1,1,1,2-Tetrachloroethane	33,300	50 U	50 U	50 U	50 U	50 U	50 U
Ethylbenzene	6,000	50 U	50 U	50 U	50 U	50 U	50 U
Xylenes	9,000	50 U	50 U	50 U	50 U	50 U	50 U
						4705000\ChD-II	Hart Crowser

1725000\ChemRsIts-Goodwill.xls - Soil-VOAs

Table 1 - Analytical Res	ults for Soil S	amples	7.670 A A A	F 14.0 B			Sheet 7 of 11
Sample ID	MTCA	SP1-S3	SP4-S2	SP5A-S1	SP5B-S1	SP5B-S2	SP5B-S3
Sampling Date	Method A	6/2/2006	6/5/2006	5/30/2006	6/6/2006	6/6/2006	6/6/2006
Depth in Feet	Cleanup Level	8 to 12	4 to 8	0 to 4	0 to 4	4 to 8	8 to 11
Styrene		50 U	50 U	50 U	50 U	50 U	50 U
Bromoform		50 U	50 U	50 U	50 U	50 U	50 U
Isopropylbenzene		50 U	50 U	50 U	50 U	50 U	50 U
1,2,3-Trichloropropane	3,200,000(c)	50 U	50 U	50 U	50 U	50 U	50 U
Bromobenzene		50 U	50 U	50 U	50 U	50 U	50 U
1,1,2,2-Tetrachloroethane	1,600,000(c)	50 U	50 U	50 U	50 U	50 U	50 U
n-Propylbenzene	4,000,000(c)	50 U	50 U	50 U	50 U	50 U	50 U
2-Chlorotoluene	3,200,000(c)	50 U	200	50 U	50 U	50 U	50 U
4-Chlorotoluene	4,000,000(c)	50 U	50 U	50 U	50 U	50 U	50 U
1,3,5-Trimethylbenzene	3,200,000(c)	50 U	50 U	50 U	50 U	50 U	50 U
tert-Butylbenzene		50 U	50 U	59	50 U	50 U	50 U
1,2,4-Trimethylbenzene	4,000,000(c)	50 U	50 U	50 U	50 U	50 U	50 U
sec-Butylbenzene		50 U	50 U	50 U	50 U	50 U	50 U
1,3-Dichlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U
Isopropyltoluene	3,200,000(c)	50 U	50 U	50 U	50 U	50 U	50 U
1,4-Dichlorobenzene		50 U	50 U	50 U	50 U	50 U	50 U
1,2-Dichlorobenzene	800,000(c)	50 U	50 U	50 U	50 U	50 U	50 U
n-Butylbenzene		50 U	50 U	82	50 U	50 U	50 U
1,2-Dibromo-3-Chloropropa	r 5,000	50 U	50 U	50 U	50 U	50 U	50 U
1,2,4-Trichlorobenzene	4,000,000(c)	50 U	50 U	59	50 U	50 U	50 U
Hexachloro-1,3-butadiene		50 U	50 U	50 U	50 U	50 U	50 U
Naphthalene	500	50 U	50 U	85	50 U	50 U	50 U
1,2,3-Trichlorobenzene		50 U	50 U	86	50 U	50 U	50 U

Table 1 - Analytical Resu	ılts for Soil S	amples		AFI			Sheet 8 of 11
Sample ID	SP6-S1	SP8-S1	SP10-S2	SP11-S2	SP11-S3	SP12-S2	HP13-S3
Sampling Date	5/30/2006	6/2/2006	6/6/2006	6/6/2006	6/6/2006	6/7/2006	6/7/2006
Depth in Feet	0 to 4	0 to 4	4 to 8	4 to 8	8 to 12	4 to 8	7.5 to 10
Volatiles in μg/kg							
Dichlorodifluoromethane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Chloromethane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Vinyl chloride	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Bromomethane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Chloroethane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Trichlorofluoromethane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,1-Dichloroethene	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Methylene chloride	20 U	20 U	20 U	20 U	20 U	20 U	20 U
trans-1,2-Dichloroethene	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,1-Dichloroethane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
2,2-Dichloropropane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
cis-1,2-Dichloroethene	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Chloroform	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,1,1-Trichloroethane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Carbon tetrachloride	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,1-Dichloropropene	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Benzene	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,2-Dichloroethane (EDC)	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Trichloroethene	20 U	20 U	20 U	20 U	20 U	20 U	20 U
1,2-Dichloropropane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Dibromomethane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Bromodichloromethane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
cis-1,3-Dichloropropene	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Toluene	50 U	50 U	50 U	50 U	50 U	50 U	50 U
trans-1,3-Dichloropropene	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,1,2-Trichloroethane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Tetrachloroethene	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,3-Dichloropropane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Dibromochloromethane	20 U	20 U	20 U	20 U	20 U	20 U	20 U
1,2-Dibromoethane (EDB)	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	50 U	50 U	50 U	50 U	50 U	50 U	50 U
1,1,1,2-Tetrachloroethane	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Ethylbenzene	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Xylenes	210	50 U	50 U Hart Crowser				

1725000\ChemRslts-Goodwill.xls - Soil-VOAs

Table 1 - Analytical Results for Soil Samples Sheet 9 of 11 Sample ID SP6-S1 SP8-S1 SP10-S2 SP11-S2 SP11-S3 SP12-S2 HP13-S3 Sampling Date 5/30/2006 6/2/2006 6/6/2006 6/6/2006 6/6/2006 6/7/2006 6/7/2006 Depth in Feet 0 to 4 0 to 4 4 to 8 4 to 8 8 to 12 4 to 8 7.5 to 10 Styrene 50 U Bromoform 50 U Isopropylbenzene 50 50 U 1,2,3-Trichloropropane 50 U Bromobenzene 50 U 1,1,2,2-Tetrachloroethane 50 U n-Propylbenzene 71 50 U 2-Chlorotoluene 50 U 50 U 50 U 50 U 50 U 50 U 4-Chlorotoluene 50 U 1,3,5-Trimethylbenzene 50 U tert-Butylbenzene 50 U 1,2,4-Trimethylbenzene 260 50 U 50 U sec-Butylbenzene 210 50 U 50 U 50 U 50 U 50 U 50 U 1,3-Dichlorobenzene 50 U Isopropyltoluene 50 U 1,4-Dichlorobenzene 50 U 1,2-Dichlorobenzene 50 U n-Butylbenzene 110 50 U 50 U 50 U 50 U 50 U 50 U 1,2-Dibromo-3-Chloropropar 50 U 1,2,4-Trichlorobenzene 50 U Hexachloro-1,3-butadiene 50 U Naphthalene 50 50 U 50 U 50 U 50 U 50 U 50 U

50 U

50 U

50 U

50 U

1,2,3-Trichlorobenzene

50 U

50 U

50 U

Table 1 - Analytical Results for Soil Samples Sheet 10 of 11 Sample ID SP14-S3 SP15-S3 SP16B-S4 SP17-S3 SP18-S4 SP19-S3 SP20-S3 6/7/2006 Sampling Date 6/7/2006 6/7/2006 6/7/2006 6/7/2006 6/7/2006 6/7/2006 Depth in Feet 8 to 11 8 to 12 10 to 12 8 to 11 11 to 15 8 to 11 8 to 11 Volatiles in µg/kg Dichlorodifluoromethane 50 UJ Chloromethane 50 UJ Vinyl chloride 50 UJ Bromomethane 50 UJ Chloroethane 50 UJ Trichlorofluoromethane 50 UJ 1.1-Dichloroethene 50 UJ 50 UJ 50 UJ 50 UJ 50 UJ 20 UJ Methylene chloride 20 UJ 20 UJ 20 UJ 20 UJ 20 UJ 20 UJ 50 UJ trans-1,2-Dichloroethene 50 UJ 50 UJ 50 UJ 50 UJ 50 UJ 50 UJ 1,1-Dichloroethane 50 UJ 2,2-Dichloropropane 50 UJ cis-1,2-Dichloroethene 50 UJ Chloroform 50 UJ 1,1,1-Trichloroethane 50 UJ Carbon tetrachloride 50 UJ 1,1-Dichloropropene 50 UJ Benzene 50 UJ 50 UJ 50 UJ 50 UJ 20 UJ 1,2-Dichloroethane (EDC) 20 UJ Trichloroethene 20 UJ 20 UJ 20 UJ 20 UJ 20 UJ 20 UJ 50 UJ 50 UJ 1,2-Dichloropropane 50 UJ 50 UJ 50 UJ 50 UJ 50 UJ Dibromomethane 50 UJ Bromodichloromethane 50 UJ 50 UJ 50 UJ 50 UJ 50 UJ cis-1,3-Dichloropropene 50 UJ Toluene 50 UJ trans-1,3-Dichloropropene 50 UJ 1,1,2-Trichloroethane 50 UJ Tetrachloroethene 50 UJ 1,3-Dichloropropane 50 UJ 50 UJ 50 UJ 50 UJ 50 UJ Dibromochloromethane 20 UJ 1,2-Dibromoethane (EDB) 5 UJ Chlorobenzene 50 UJ 1,1,1,2-Tetrachloroethane 50 UJ Ethylbenzene 50 UJ **Xylenes** 50 UJ 50 UJ 50 UJ 50 UJ 50 UJ 50 UJ 50 UJ

Hart Crowser 1725000\ChemRslts-Goodwill.xls - Soil-VOAs

Table 1 - Analytical Resu	Its for Soil S	Samples	1 1				She
Sample ID	SP14-S3	SP15-S3	SP16B-S4	SP17-S3	SP18-S4	SP19-S3	SP20-S3
Sampling Date	6/7/2006	6/7/2006	6/7/2006	6/7/2006	6/7/2006	6/7/2006	6/7/2006
Depth in Feet	8 to 11	8 to 12	10 to 12	8 to 11	11 to 15	8 to 11	8 to 11
Styrene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
Bromoform	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
Isopropylbenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
1,2,3-Trichloropropane	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
Bromobenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
1,1,2,2-Tetrachloroethane	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
n-Propylbenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
2-Chlorotoluene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
4-Chlorotoluene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
1,3,5-Trimethylbenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
tert-Butylbenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
1,2,4-Trimethylbenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
sec-Butylbenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
1,3-Dichlorobenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
Isopropyltoluene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
1,4-Dichlorobenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
1,2-Dichlorobenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
n-Butylbenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
1,2-Dibromo-3-Chloropropar	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
1,2,4-Trichlorobenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
Hexachloro-1,3-butadiene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
Naphthalene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
1,2,3-Trichlorobenzene	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ

Sample analysis conducted by Advanced Analytical Laboratory (Redmond, WA).

U = Not detected at reporting limit indicated.

J = Estimated value.

Detected concentrations are bolded.

Concentrations that exceed the screening criteria are boxed.

Blank indicates sample not analyzed for specific analyte or no MTCA cleanup level established.

- (a) MTCA Method A cleanup level for chromium VI is 19.
 - MTCA Method A cleanup level for chromium III is 2,000 mg/kg.
- (b) MTCA Method B soil direct contact cleanup level (ingestion only)
- (c) MTCA Method B cleanup level.
- (d) MTCA Method A cleanup level for gasoline mixtures without benzene is 30 mg/kg. MTCA Method A cleanup level for gasoline mixtures with benzene is 100 mg/kg.

Table 2 - Analytical Results for Grab Groundwater Samples

Sheet 1 of 4

Sample ID	MTCA	SP-1	SP-G-2-3	SP-4	SP-5A
Sampling Date	Method A	6/2/2006	5/25/2006	6/5/2006	5/30/2006
	Cleanup Level				
Metals in mg/kg					
Lead		0.002 U	0.002 U	0.002	0.002 U
Chromium		0.01 U	0.01 U	0.01 U	0.01 U
Cadmium		0.005 U	0.005 U	0.005 U	0.005 U
Arsenic		0.005 U	0.005 U	0.005 U	0.005 U
Mercury		0.001 U	0.001 U	0.001 U	0.001 U
Copper		0.01 U	0.01 U	0.01 U	0.01 U
Nickel		0.013	0.01 U	0.01 U	0.01 U
Zinc		0.009	0.002	0.005	0.003
NWTPH-Dx in mg/L					
Kerosene/Jet fuel		0.20 U	0.20 U	0.20 U	0.20 U
Diesel/Fuel oil	0.5	0.20 U	0.20 U	0.20 U	0.20 U
Heavy oil	0.5	0.50 U	0.50 U	0.50 U	0.50 U
NWTPH-Gx in mg/kg		2 32 9			
Mineral spirits/Stoddard		0.10 U	0.10 U	0.10 U	0.10 U
Gasoline	0.8	0.10 U	0.10 U	0.10 U	0.10 U
Volatiles in μg/L					
Dichlorodifluoromethane		1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane		1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	0.2	0.2 U	0.2 U	0.2 U	0.2 U
Bromomethane		1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane		1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane		1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	-	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	5	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene		1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane		1.0 U	1.0 U	1.0 U	1.0 U
2,2-Dichloropropane		1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
cis-1,2-Dichloroethene Chloroform		1.0 U	3.5	1.0 U	1.0 U
1,1,1-Trichloroethane	200	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	200	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloropropene		1.0 U	1.0 U	1.0 U	1.0 U
Benzene	5	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane (EDC)	5	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5	1.0 U	1.0 U	1.0 U	1.7
1,2-Dichloropropane	Ü	1.0 U	1.0 U	1.0 U	1.0 U
Dibromomethane		1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane		1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene		1.0 U	1.0 U	1.0 U	1.0 U
Toluene	1000	1.0	1.0 U	1.0	1.0 U
trans-1,3-Dichloropropene		1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	el .	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	5	90	1.0 U	1.0 U	55

Table 2 - Analytical Results for Grab Groundwater Samples

Sample ID	MTCA	SP-1	SP-G-2-3	SP-4	SP-5A
Sampling Date	Method A	6/2/2006	5/25/2006	6/5/2006	5/30/2006
	Cleanup Level				
1,3-Dichloropropane		1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane		1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane (EDB)	0.01	0.01 U	0.01 U	0.01 U	0.01 U
Chlorobenzene		1.0 U	1.0 U	1.0 U	1.0 U
1,1,1,2-Tetrachloroethane		1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	700	1.0 U	1.0 U	1.0 U	1.0 U
Xylenes	1000	1.0 U	1.0 U	1.8	1.6
Styrene		1.0 U	1.0 U	1.0 U	1.0 U
Bromoform		1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
1,2,3-Trichloropropane		1.0 U	1.0 U	1.0 U	1.0 U
Bromobenzene		1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane		1.0 U	1.0 U	1.0 U	1.0 U
n-Propylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorotoluene		1.0 U	1.0 U	1.0 U	1.0 U
4-Chlorotoluene		1.0 U	1.0 U	1.0 U	1.0 U
1,3,5-Trimethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
tert-Butylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trimethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
sec-Butylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene		1.0 U	1.0 U	1.0 U	1.0 U
Isopropyltoluene		1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene		1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene		1.0 U	1.0 U	1.0 U	1.0 U
n-Butylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-Chloropropar	ne	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene		1.0 U	1.0 U	1.0 U	1.0 U
Hexachloro-1,3-butadiene		1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene	160	1.0 U	1.0 U	1.0 U	1.0 U
1,2,3-Trichlorobenzene		1.0 U	1.0 U	1.0 U	1.0 U

Table 2 - Analytical Results for Grab Groundwater Samples

Sheet 3 of 4

Sample ID	SP-5B	SP-6A	SP-11	SP-15
Sampling Date	6/6/2006	5/30/2006	6/6/2006	6/7/2006
Metals in mg/kg				
Lead	0.002 U	0.002 U	0.002 U	0.002 U
Chromium	0.01 U	0.01 U	0.01 U	0.01 U
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U
Arsenic	0.005 U	0.005 U	0.005 U	0.005 U
Mercury	0.001 U	0.001 U	0.001 U	0.001 U
Copper	0.01 U	0.01 U	0.01 U	
Nickel	0.01	0.017	0.01 U	
Zinc	0.002	0.003	0.003	
NWTPH-Dx in mg/L				
Kerosene/Jet fuel	0.20 U	0.20 U	0.20 U	0.20 U
Diesel/Fuel oil	0.20 U	0.20 U	0.20 U	0.20 U
Heavy oil	0.50 U	0.50 U	0.50 U	0.50 U
NWTPH-Gx in mg/kg				2000
Mineral spirits/Stoddard	0.10 U	0.10 U	0.10 U	0.10 U
Gasoline	0.10 U	0.10 U	0.10 U	0.10 U
Volatiles in µg/L				
Dichlorodifluoromethane	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	0.2 U	0.2 U	0.2 U	0.2 U
Bromomethane	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
2,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	1.0 U	1.0 U	1.0	1.0 U
Chloroform	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
1,1-Dichloropropene	1.0 U 1.0 U	1.0 U		
Benzene	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
1,2-Dichloroethane (EDC)	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane Dibromomethane	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U
		1.0 U	1.0 U	
Toluene trans-1,3-Dichloropropene	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U 1.0 U
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U
renacificioentene	1.0 0	1.0 0	1.0 0	1.0 0

Table 2 - Analytical Results for Grab Groundwater Samples

Sheet 4 of 4

Carral ID	00.50			
Sample ID	SP-5B	SP-6A	SP-11	SP-15
Sampling Date	6/6/2006	5/30/2006	6/6/2006	6/7/2006
4.6.5				
1,3-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane (EDB)	0.01 U	0.01 U	0.01 U	0.01 U
Chlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
Xylenes	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
1,2,3-Trichloropropane	1.0 U	1.0 U	1.0 U	1.0 U
Bromobenzene	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U
n-Propylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorotoluene	1.0 U	1.0 U	1.0 U	1.0 U
4-Chlorotoluene	1.0 U	1.0 U	1.0 U	1.0 U
1,3,5-Trimethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
tert-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trimethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
sec-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
Isopropyltoluene	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
n-Butylbenzene	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-Chloropropan	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
Hexachloro-1,3-butadiene	1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene	1.0 U	1.0 U	1.0 U	1.0 U
1,2,3-Trichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U
1,2,0 11011010001120116	1.0 0	1.0 0	1.0 0	1.0 0

Sample analysis conducted by Advanced Analytical Laboratory (Redmond, WA).

U = Not detected at detection limit indicated.

Blank indicates no MTCA criteria available.

Detected concentrations are bolded.

DRAFT

Scale in Feet (Approximate)

HARTCROWSER

17250-00 7/06

Figure 1

Source: Base map prepared from Google Earth

0 200 400
Scale in Feet

HARTCROWSER
17250-00 7/06
Figure 2

9 SP-7

O G-2

2000 Mini Well

2004 Direct-Push Probe

17250-00

Figure 3

07/06

Approximate Location of Historical Feature

APPENDIX A FIELD EXPLORATIONS METHODS AND ANALYSIS

APPENDIX A FIELD EXPLORATIONS METHODS AND ANALYSIS

This appendix documents the processes Hart Crowser used in determining the nature of the soils underlying the subject property addressed by this report. The discussion includes information on the following subjects:

- Explorations and Their Location;
- The Use of Strataprobe Explorations;
- Soil Classification; and
- Groundwater Samples.

Explorations and Their Location

Subsurface explorations for this project include fifteen Strataprobe explorations advanced throughout the subject property and seven Strataprobe explorations advanced within the Goodwill storage building property. The exploration logs within this appendix show our interpretation of the drilling/probing, sampling, and testing data. They indicate the depth where the soils change. Note that the change may be gradual. In the field, we classified the samples taken from the explorations according to the methods presented on Figure A-1 - Key to Exploration Logs. This figure also provides a legend explaining the symbols and abbreviations used in the logs.

Location of Explorations. Figure 2 shows the location of explorations, located by hand taping or pacing from existing physical features.

The Use of Strataprobe Explorations

Fifteen strataprobes (SP-1, SP-G-2-3, SP4, SP-5A (FSP), SP-5B (LD), SP-6, SP-6A, SP-6B, and SP-7 through SP-12 and HP-13) were advanced between May 25 and 31, 2006 at the subject property. In addition, seven strataprobes (SP-14, SP-15, SP-16B, SP-17, SP-18, SP-19, and SP-20) were advanced on May 24, 25, and 30, 2006 at the Goodwill storage building. In the strataprobes a continuous 4-footlong, 2-inch-diameter sampler was pushed and samples were collected. Probes were completed to depths ranging from approximately 6 to 16 feet below ground surface. Hart Crowser Field Representatives (Ben Stanton and Bruce McDonald) logged soil descriptions and placed soil in pre-cleaned 4-ounce glass sample jars. Filled sample jars were stored in a cooler with blue ice. Soils were screened in the field for the presence of volatile organic compounds (VOCs) using a PID. The Hart Crowser project manager selected samples for chemical analysis at representative locations to assess soil quality based on observed signs

of potential contamination. Logs of these probes are presented on Figures A-2 through A-20.

Soil Classification

The Hart Crowser field representative visually classified the soil samples in general accordance with ASTM Method D 2488, prepared a log of soils encountered in the exploration, and recorded pertinent observations regarding conditions, types of soils encountered, and the depth to water. Soil descriptions include the following properties: relative density of sands and gravels/consistency of silts and clays, moisture, color, minor constituents, and major constituents. The presence of non-soil substances (e.g., debris etc.) and odors or visual observations such as sheen that may indicate contamination were also noted.

Groundwater Samples

Eight grab groundwater samples were collected from eight of the strataprobe explorations advanced at the subject property (SP-1, SP-4, SP-5A (FSP), SP-5B (LD), SP-6A, SP-11, and SP-G-2-3) and from one of the strataprobe exploration advanced the adjacent Goodwill Storage building (SP-15). These samples were collected using low-flow sampling techniques.

J:\jobs\1725000\Goodwill Phase II.doc

Key to Exploration Logs

Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remarks.

Hard

Density/Consistency Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits is estimated based on visual observation and is presented parenthetically on the test pit logs. Approximate SAND or GRAVEL Standard SILT or CLAY Standard Shear Strength Density Penetration Consistency Penetration Resistance (N) Resistance(N) in TSF in Blows/Foot in Blows/Foot Very loose Very soft <0.125 0.125 - 0.25 - 10 Soft Loose Medium stiff 0.25 - 0.5 Medium dense 10 30 - 1.0 Dense - 50 Stiff 0.5 - 15 - 2.0 Very dense Very stiff - 30 1.0 >50

Moisture											
Dry	Little perceptible moisture										
Damp	Some perceptible moisture, probably below optimum										
Moist	Probably near optimum moisture content										
Wet	Much perceptible moisture, probably above optimum										

Minor Constituents	Estimated Percentage
Not identified in description	0 - 5
Slightly (clayey, silty, etc.)	5 - 12
Clayey, silty, sandy, gravelly	12 - 30
Very (clayey, silty, etc.)	30 - 50

>2.0

>30

Legends

Sampling Test Symbols												
Boring	g Samples	<u>Test P</u>	it Samples									
\boxtimes	Split Spoon	\boxtimes	Grab (Jar)									
	Shelby Tube		Bag									
	Cuttings		Shelby Tube									
	Core Run											
*	No Sample Recovery											
Р	Tube Pushed, Not Driven		· · · · · · · · · · · · · · · · · · ·									

 Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00 Figure A-2

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Group descriptions.

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00 Figure A-3

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00

06/06

Figure A-4

2. Soil descriptions and stratum lines are interpretive and actual changes

may be gradual.

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00

06/06

Figure A-4

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00

05/06

Figure A-5

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00

06/06

Figure A-6

 Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00 Figure A-7

1. Refer to Figure A-1 for explanation of descriptions and symbols.
2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
3. Convention level if indicated in a third of deliver (ATD) and additional deliver.

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00 Figure A-8

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00 Figure A-9

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00 Figure A-10

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00

06/06

Figure A-11

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00 06/06 Figure A-12

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes

may be gradual.

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00

06/06

Figure A-13

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00

06/06

Figure A-13

 Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00 Figure A-14

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00 Figure A-15

Hard Probe Log HP-13

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-00 Figure A-16

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes

may be gradual.

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-02 Figure A-17

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-02 Figure A-18

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-02 Figure A-19

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-02 05/06 Figure A-20

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-02 Figure A-21

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes

3. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-02

05/06

Figure A-22

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

17250-02

05/06

Figure A-23

APPENDIX B
CHEMICAL DATA QUALITY REVIEW AND
CERTIFICATES OF ANALYSIS

APPENDIX B CHEMICAL DATA QUALITY REVIEW AND CERTIFICATES OF ANALYSIS

Thirty seven soil samples collected from May 25, through May 31, 2006, were submitted to Advanced Analytical Laboratory of Redmond, WA for analysis of one or more of the following:

- Total Metals Arsenic, Cadmium, Chromium, Lead, Mercury, Copper, nickel, and Zinc by EPA Method 7000 series;
- VOCs (EPA Method 8260B);
- BTEX (EPA Method 8021B);
- NWTPH-Gx; and
- NWTPH-Dx.

Eight groundwater samples collected from May 25, through May 31, 2006, were submitted to Advanced Analytical Laboratory of Redmond, WA for analysis of one or more of the following:

- Total Metals Arsenic, Cadmium, Chromium, Lead, Mercury, Copper, nickel, and Zinc by EPA Method 7000 series;
- VOCs (EPA Method 8260B);
- NWTPH-Gx; and
- NWTPH-Dx.

The following criteria were evaluated in the standard data quality review process for the results:

- Holding Times;
- Method Blanks;
- Surrogate Recoveries;
- Laboratory Control Sample (LCS) Recoveries;
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries; and
- Laboratory Duplicate Relative Percent Differences (RPDs).

Based on this review, the soil and groundwater data are acceptable for use as reported.

Soil Samples

Total Metals. The required holding times were met. No method blank contamination was detected. Laboratory duplicate RPDs were acceptable. Laboratory LCS recoveries were acceptable.

NWTPH-Dx. The required holding times were met. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits.

NWTPH-Gx. The required holding times were met. No method blank contamination was detected. Laboratory duplicate RPDs were acceptable. Surrogate recoveries, LCS recoveries, and MSD recoveries were within laboratory control limits.

BTEX. The required holding times were not met. No method blank contamination was detected. Laboratory duplicate RPDs were acceptable. Laboratory LCS recoveries were acceptable. Surrogate recoveries, LCS recoveries, and MS and MSD recoveries were within laboratory control limits.

VOCs. The required holding times were met. No method blank contamination was detected. Laboratory duplicate RPDs were acceptable. Surrogate recoveries, LCS recoveries, and MS and MS recoveries were within laboratory control limits.

Groundwater Samples

Total Metals. The required holding times were met. No method blank contamination was detected. Laboratory duplicate RPDs were acceptable. Laboratory LCS recoveries were acceptable.

NWTPH-Dx. The required holding times were met. No method blank contamination was detected. Laboratory duplicate RPDs were acceptable. Surrogate recoveries were within laboratory control limits.

NWTPH-Gx. The required holding times were met. No method blank contamination was detected. Laboratory duplicate RPDs were acceptable. Surrogate recoveries were within laboratory control limits.

VOCs. The required holding times were met. No method blank contamination was detected. Laboratory duplicate RPDs were acceptable. Surrogate recoveries, LCS recoveries, and MS and MSD recoveries were within laboratory control limits.

J:\jobs\1725000\Goodwill Phase II.doc

CERTIFICATES OF ANALYSIS ADVANCED ANALYTICAL LABORATORY

Environmental Testing Laboratory

June 23, 2006

Julie Wukelic Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, WA 98102

Dear Ms. Wukelic:

Please find enclosed the analytical data report for the *Dearborn/Goodwill*, 17250 (A60608-7) Project.

Samples were received on *June 08, 2006*. The results of the analyses are presented in the attached tables. Applicable reporting limits, QA/QC data and data qualifiers are included. A copy of the chain-of-custody and an invoice for the work is also enclosed.

ADVANCED ANALYTICAL LABORATORY appreciates the opportunity to provide analytical services for this project. Should there be any questions regarding this report, please contact me at (425) 497-0110.

It was a pleasure working with you, and we are looking forward to the next opportunity to work together.

Sincerely,

Val G. Ivanov, Ph.D.

1. Ivanov

Laboratory Manager

Samples Shipped to: All

06

HARTCROWSER

Seattle, Washington 98102-3699 Phone: 206-324-9530 FAX: 206-328-5581

JOB 17250-00 LAS NUMBER												REQUESTED ANALYSIS													
PROJECT NAME DEARBORN PROPERTY (Gorlink)									≾	93	(0)	, '\$ (·						.			CONTAINERS				
HART CROWSER CONTACT Jule workelie)	(8240)	Statem							Ì		ATN	OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS			
THAT CHOWSEN CONTACT											3	Z		 i	Ì						OF C	Commostrate instituctions			
SAMPLED BY:									MWTOH	Mw TPH	V.11.5	HZDY			÷						Į Š				
SAMPLED BY: BRUCE McDonneD									۲	Ž		7				_	1				1	·			
LAB NO.		PLE ID	DESCRIPTION		ATE	TIME		TRIX								_	_			_	<u> </u>				
Arside Geodwill Bidg.	5P-1		<u>s-l</u>	6-2	2-06		St	<u> </u>	1:	V -							_	_			4				
biad.		- 49	3-2			2140			<u> </u>				<u> </u>	•			_				11				
			5-3	_		2150		······································	√	√	<u>\(\cdot \).</u>	√	-					-	1		1				
			5-4			2200												-			1				
	SP-4		S-I	6.5	30-	2045			ļ - <u>,</u>				<u> </u>												
			S-2	<u> </u>		2051			<u>√</u> ,	1	√.	V					_	<u> </u> .			2				
	-		5-3		ļ	2102		ļ	ļ			<u> </u>					_				11				
<u> </u>			5-9	_	ļ	2110		 	ļ <u>.</u>				<u> </u>	<u> </u>				_	-		1				
	40.0		5-5	_	 	2230		<u> </u>	V	1/	17	1/									1				
	SP-4		· ·	_	<u> </u>	2145	WA	महार	N.	X	<u> </u>	<u> </u>					_		_ _		10				
									<u> </u>		 	<u> </u>	ļ.	<u>. </u>					_		_				
DELGION	ICUED D		2.75		-2 -	<u> </u>					<u> </u>		<u> </u>	<u> </u>	لبا										
RELINQU	IZHED R	Y	 	// /	ED BY	_/		ATE					ent f Irem			OR					50250	TOTAL NUMBER OF CONTAINERS			
SIGNATURI			6/0/06	IGNATI	Las	uv j	6/4	8/6	اڊ	UNA	GE N	EŲU	IVE (Á)	ICIA 12							SA C	MPCE RECEIRT INFORMATION UKTODY SEALS			
BRINT NAM	AL DON	HALL)	TIME		じか	no	TI	MF		•	•											USTÖDY SEALS YES □NO □N/A QOD GONDITION :			
PRINT NAM COMPANY				OMPAN	TH C		17	09							-							YES □NO##C EMPERATURE			
									-												S.	HIPMENT METHODS THAND.			
RELINQUISHED BY DATE RECEIVED BY DATE								ATE	-	OOLE	O NI	\ <u>.</u>				C-7	OD 4	GE LO	~	101	Į.	DOURIER CONTROL COVERNIGHT			
SIGNATURE SIGNATURE									الأرا	JULE	n Ni).:							JCAI	iun:	- 1	IRNAROUND TIME:			
TIME TIME PRINT NAME PRINT NAME								ME	-								 ,					☐ 24 HOURS ☐ 1 WEEK ☐ 48 HOURS ☐ STANDARD			
COMPANY													rder I ict Re	_							1	1 72 HOURS OTHER			
Waite and Yel		s to Lah	Pink to Project I			ab to Return W	ihita C-	inu to If-	1				to San			•				·		VIIII)			

Sample Custody Record

noce -7

1910 Fairview Avenue East Seattle, Washington 98102-3699 Phone: 206-324-9530 FAX: 206-328-5581

Samples Shipped to: HARTCROWSER

JOB 17250-00 LAB NUMBER									REQUESTED ANALYSIS												s l
			Boen Per			soul w	:1()	۷.	~ ~	100	Toke rate rate										OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS
HART CROWSER CONTACT Julie WUKELIC								13	- 6	S	7					ŀ					OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS
								MUTPH	PH	>	772										00-0
SAMPLED BY: BRUCE MCDIONID									MUSTON	000	7.										NO.
LAB NO.		MPLE ID	DESCRIPTION		ATE	TIME	MATRIX	1	1		1/->	<u> </u>					-	_		_	
Inside Goodwill		-5 9	S-1		-06	2045	Soil	1	1	/	1						+	-		-	1
Belg.	91		5-2	<u>ه می</u>	1	2100	3010		-	-	<u> </u>									\dashv	1
			s-3	_		2130	 	V	1			·\						\dashv			
			8-4			2150		<u> </u>	<u> </u>		-						1	1		+	
	SP.	-5	WATER			2115	WATER	<u> </u>	<u> </u>										4	-//	o (cee page 7)
	Pp.	8 .	5-1	6-2	-06	2020	Soil	V.	V	V	V									Ť	
	ļ	ļ	S-2			2030															<u> </u>
<u>-</u>			5-3		·	2544		V.	1/			<u> </u>								1.	
<u> </u>		<u> </u>	S-4			2100		<u> </u>	ļ	<u> </u>	<u> </u>										
	ļ								<u> </u>	<u> </u>			<u> </u>							_	
		****						₋	<u> </u>		<u> </u>		<u> </u>	ļ						_	
BCUNOU	ICUED	. tsi	DATE	OF CENT	*D DV			ļ	<u> </u>		<u> </u>	<u>L</u>		<u> </u>						_	
RELINQU	ISHED	PA PA	DATE	RECEIVE		5	DATE,						HAND NENT		OR					Į Ž	TOTAL NUMBER OF CONTAINERS SAMPLE RECEIPT INFORMATION
SIGNATURI SIGNATURI DEVCE W	we	wa-lly		VAU.	all	01	6/8/6		. 0147		4 -			-,							CUSTODY SEALS. LYES UNIO DIVIA
PRINT NAM	icioo4n	مديمه	TIME	PRINT NA	ME	7-02	TIME	-								-				34	GOOD CONDITION
PRINT NAME PRINT NAME 1705 COMPANY																	•			ă S	TEMPERATURE PAGE
RELINQUISHED BY DATE RECEIVED BY DATE								1												2 P. 23 Se	SHIPMENT METHÖD: CHAND CIGOURIER COVERNIGHT:
								C	OOLE	RN	0.;				S	TORA	GE L	OCA	TION:		TURNAROUND TIME:
SIGNATURE SIGNATURE TIME							TIME		C) 24											C) 24 HOURS C) 1 WEEK	
PRINT NAME PRINT NAME								1					No.							-	1 48 HOURS STANDARD
COMPANY			0.4.2.2.2	COMPAN	Υ			fo	or Oth	ner (Contra	act R	lequir	emer	ıts ——						O 72 HOURS OTHER

Sample Custody Record Samples Shipped to: AAL

A00600 7

u

Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, Washington 98102-3699 Phone: 206-324-9530 FAX: 206-328-5581

HARTCROWSER

IOB LA	1250-01	LAB NU	MRFR					, ₁		塔	REQU	ESTE	D ANA	ALYSIS		·		_ _	
		2BOEN PR		Gustar	111	·	- bv	50	5260	1 2%								CONTAINER	ODCTOVATION C/CONAMENTE/
HART CROWSER CONTACT Jule wuxelic)	9,	WIZE.							j	THO	OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS
HART CROWSER CONTACT DACKE SO PECIC								TPH) 5	3		•		mage of tradeto				0.00	
SAMPLED BY:								Haz WA		15 hai	1 1							CIN CIN	
BRUCE MCDOWNED								2	7	15					<u> </u>				
LAB NO.	SAMPLE ID	DESCRIPTION	DATE	TIME	MA	TRIX					}		_		<u> </u>	<u> </u>		<u> </u>	
Software - Bido	3p-6 3		5/30/06	0940	50	<u> </u>	√	1	<u> </u>	V.					_			6	
Bidg,		5-2		loto														1	
		5-3		1015			1/.	/]								1	
		S-4		1025		**************************************												1	
	SP-6A +	5-1		1050			ļ	<u></u> ,										1_1	
	SP-6A		5/30/06	1130		HER	/	/	1.	V					<u> </u>			11	(1-filtered Poly)
	5P-6B X	19-1		1250	50) 	1	V		<u> </u>									
(DCC)	SP-5		5/30/06	1400	44	HER	/			/	12			ساند.				1	(1. filteres Poly)
(DCC/F)	SP-5 1)	- 5-1	5/30/06	1315	SO	L.	V	V		T-V	100) is \(\)	102.	*				!!	the ensurest.
	<u> </u>	15-2		1330			<u> </u>											_	the ensurement.
	Đ,	5-3		1340			V	1/	1	1								١	
	8	5-4		1415		,	./	./	V	1 ,								1	·
RELINQU	JISHED BY	DATE	RECEIVED-BY		1	ATE /					ENT H			R					TOTAL NUMBER OF CONTAINERS
6) much	Nt Donal	6/6/06	V. hai	il I	6/2	8/6	2	TORA	GE P	REQU	IREM	:NTS:						- 30	AMPLE RECEIPT INFORMATION: GUTTODY SEALS
SIGNATUR	McDome D	TIME	SIGNATURE	na	TI	IA AC	1				-								D/ES CONO CONTRACTOR OF THE C
PRINT NAI	ΛE		PRINTNAME]:	Jec Jec	7												GOOD CONDITION WES INO CONTROL TEMPERATURE
COMPANY	,		COMPANY	`	//														TEMPERATURE SHIPMENT METHOD: CHAND
RELINQUISHED BY DATE RECEIVED BY DATE											 .								CIGOURI <u>er</u> COVERNIGHT
								OOL	ER N	0.:			•	STO	RAGE	LOC	NTION:		TURNAROUND TIME:
SIGNATUR		TIME	SIGNATURE		Ti	IME							******************	······································			·	- 1	□ 24 HOURS □ 1 WEEK
PRINT NA			PRINT NAME	allegated and the company of the control of the con			1				order N	-			······································	***************************************	·	~ [☐ 48 HOURS ☐ STANDARD
COMPANY									for Other Contract Requirements										CI 72 HOURS OTHER

Sample Custody Record

Hart Crowser, Inc.

□NA.

uc CUHAND. OVERNIGHT :-:

1 1 WEEK

12 48 HOURS

□ 72 HOURS

E STANDARD

OTHER

1910 Fairview Avenue East Seattle, Washington 98102-3699 **HARTCROWSER** Samples Shipped to: Phone: 206-324-9530 FAX: 206-328-5581 S REQUESTED ANALYSIS JOB 17250-00 LAB NUMBER OF CONTAINERS PROJECT NAME Dearburn Property (Goodwill) OBSERVATIONS/COMMENTS/ **COMPOSITING INSTRUCTIONS** HART CROWSER CONTACT Talie Wilkelin MTCA metals *As, Cd, Cr, Pb, Hg, ni, SAMPLED BY: Bruce Medonald SAMPLE ID DESCRIPTION LAB NO. DATE TIME MATRIX u/2/00 2350 SP-7 Soil 6/2/04 2445 So:1 SP-10 6/6/06 2415 50:1 6/6/062445 50:1 NUMBER OF CONTAINERS ORMATION

RELINQUISHED BY	DATE	RECEIVED BY	DATE	SPECIAL SHIPMENT HANDLING	OR	.]	TOTAL NU
111	4/8/04	V. herew	6/8/6	STORAGE REQUIREMENTS:			PLE RECEIPT INFOR
SIGNATURE	TIME	SIGNATURE TVALOR	E (" / ()				ØTÖDY SEALS YES ⊏NO
PRINT NAME HAVY COUNSEL	-	PRINT NAME		z.		10.00	OD CONDITION
COMPANY		COMPANY	1700				YES: □NO MPERATURE :
RELINQUISHED BY	DATE	RECEIVED BY	DATE		·	1 1 4 3 6	IPMENT METHOD: . GOURIER:
· · · · · · · · · · · · · · · · · · ·	·	The second secon		COOLER NO.:	STORAGE LOCATION:		RNAROUND TIME:
SIGNATURE	TILAR	SIGNATURE	711.45				24 HOURS
PRINT NAME	TIME	PRINT NAME	TIME	A 3 F-144 1 A F- 54			48 HOURS IS

White and Yellow Copies to Lah

COMPANY

Pink to Project Manager

COMPANY

Lab to Return White Copy to Hart Crowser

Gold to Sample Custodian

See Lab Work Order No.

for Other Contract Requirements

Sample Custody Record

1160000 7

HARTCROWSER

nart Crowser, Inc. 1910 Fairview Avenue East Seattle, Washington 98102-3699 Phone: 206-324-9530 FAX: 206-328-5581

Samples Shipped to: AAL

ing 175	55-M	LAB NU	MARCD					·	·		~~~	QUES	LED 4	/NAL	Y515	renderitato a grace		عندن ورروعت م		5				
PROJECT	NAME DEAD!	BOEN PROFE	-	C. 20,0)	,	7	1 3		交 交 交					And the second s				CONTAINERS		vations/com Ositing instri		
		The second of th			,		13	7 7	~ ~		7/77					Ì				8				
SAMPLED	BY: Bauce	McDonall	٥		, , , , , , , , , , , , , , , , , , ,	-	5	THE CENT	CESTYH CESTYH	1,000	Poter fulch									9				
LAB NO.	SAMPLE ID	DESCRIPTION	DA'	TE	TIME	MATRIX																	·	
Ing de)	5P-9,	5-1	6-2-	06	2240	SOIL	ν	! 1	!											1				
Blag.		5-2			2245																			
		5-3			2300		٧	/\v																
	A	5-4			2315															i	5			
	SP-11	5-1	6-6	-060	2330	ŀ														i				
	J	5-2			2340			/ v	1	1	1						1							
	•	5-3			2415												•]							
		5-4			2430		V	1						Į			j			í				
	SP-11	WATER		<u>, </u>	2400	WATER	<u>.</u> V	/ v	()	//	4			-						10			a security of the security of	
						<u> </u>			-	_	+	_	-	-	<u> </u>			{						
				-						<u> </u>	1													
	ISHED BY	DATE	RECEIVE		***************************************	DATE	/					T HAN		G OR						V 45-4 60		IUMBER OF CO	NTAINERS	
W. June (b)	chubl	6666	SIGNATUR	Vau	inca	6/8/	6	5101	RAGE	: REC	JUIKE	MENT	5;							SAN	IPLE RECEIPT INFO &TODY SEALS 'ES □ □NO	rmation.		
PRINT NAM	MeDowald	TIME	DOINT NO	シンナ	rARA	Z TIME				,											XOD CONDITION	ÜN		
COMPANY	······································		PRINT NA	717		179	半	-													OD CONDITION (ES: ONC MPERATURE	IPC		
	·						_													* SH	IPMENT METHOD	CHAND:		
RELINQU	IISHED BY	DATE	RECEIVE	D BY	***********	DATE		con	LER	NO.					STOR	ACEI	064	TION		******	COURIER COUNT TIME			<u> </u>
SIGNATUR			SIGNATUR	Œ		Marianin - v zodany go _{ro} jej zan, gangerontegen		CUU	, LCN	PIQ.:					3 IUK/	HOE !	,UCA	ii IUIV	•			E: 1 WEEK		
PRINT NAM		TIME	PRINT NA	•	***************************************	TIME			1 5 6 1	ا د ماه			ayabaday) a Samoon		~ •				2019****> .w.	1		ET STANDARD		
COMPANY			COMPANY									er No. Requi		nts					×-1604	1		OTHER		
1		1		•		1			1	-~		· · · · · · · · · · · ·								1				

Sample Custody Record

HAL

HARTCROWSER

1910 Fairview Avenue East Seattle, Washington 98102-3699

Samples Shi	ipped to:	HAL	- Charles than 10 marks are new							, HA	RT	CROWSER	?	Phone: 206-324-9530 FAX: 206-328-558
PROJECT HART CR	NAME <u>D</u> &	LAB NI APPOPLO CT Jule	mokatic	(Good)	WILL)	260	(retalst	REQUESTED	ANALY	/SIS	NO. OF CONTAINERS	OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS
		McDonne				1				and the second s			<u> </u>	
LAB NO.	SAMPLE ID	DESCRIPTION	·	TIME	MATRIX	<u> </u>	<u> </u>	<u> </u>	1			and the second s		
	SP-12	<u> S= </u>	6-7-06		Sou			ļ	-					to the second commence of the second commence
****		\$-2		2255		X	Ķ.	7	-			***	L_	* MICA
		5-3		2310				-						
· · · · · · · · · · · · · · · · · · ·	Land And Andrews	5-4 5-1		2320				<u> </u>	ļ		_			
WW become accommission of the first	HP-13	184		2020		l.,		ļ					<u> </u>	
A. Seat. 1888 - Marie		5-2		2100				<u> </u>	ļ				1	
	Bronners-Tokish a socialism specimen Artista	5-3		2115		X		X						1
ge processor and a constraint of	SP-1	WATER	6-8-06	0120	WATER	\ <u>X</u>	$\langle X \rangle$	X	X	- Company of the Comp		97,00	10	
	38-11	S-1 S-2		2330	SOIL		•		-	condition (included to			1	
	- programs graphycontronscence i cong	5-3	10-9-K/0	2415		X	×	X	4					
Marian de la compania del compania del compania de la compania del la compania de la compania della compania de la compania de la compania della compania de la compania della compania de	**************************************	5-4		2430		.32 198.500		-	***************************************					
RELINQU	ISHED BY	DATE	RECEIVED BY	1 7 (0)	DATE	+ <	PFC1/	AI SE	HIPME	NT HANDLI	LLLLI NG OR		-	TOTAL NUMBER OF CONTAINERS
(house)	MeDowald	Clales	SIGNATURE PRINT NAME COMPANY	in Viran	1/10	S				REMENTS:	on		OX Q I	MPLE RECEIPT INFORMATION USTODY SEALS: WES INO LINA COD CONDITION LYES INO EMPERATURE HIPMENT METHOD: LINAND
RELINQU	ISHED BY	DATE	RECEIVED BY		DATE									COURIER LIDVERNIGHT
SIGNATURI PRINT NAN		TIME	SIGNATURE PRINT NAME		TIME		COOL			nik katala ka sa	S	TORAGE LOCATION:		RNAROUND TIME: 24 Hours © 1 Week
						- 1				der No	·		-	TANDARD STANDARD
COMPANY			COMPANY		,] f	or Otl	ner C	.ontra	ct Requirem	ents		"-	72 HOURS OTHER

Samples Shipped to: AAL

lart ser, 1910 Fairview Avenue East Seattle, Washington 98102-3699

Phone: 206-324-9530 FAX: 206-328-5581

JOB 17250-00 LAB NUMBER	REQUESTED ANALYSIS	10
PROJECT NAME DEARBORN PROPERTY (GOOD WILL)	K I I I I I I I I I I I I I I I I I I I	OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS
HART CROWSER CONTACT JULE WOKELIC	60	OBSERVATIONS/COMMENTS/
HARI CROWSER CONTACT	2772	COMPOSITING INSTRUCTIONS
SAMPLED BY: 72	2003	0 0
SAMPLED BY: BRUCE M. DONALD		
LAB NO. SAMPLE ID DESCRIPTION DATE TIME MATRIX		
SP-5 (FSP) S-1 6-6-06 2045 GOIL		
5-2 2100	XXX	
\$~3 2130		
5-4 259		
SP-5 (FSP) WATER 2/15 WATER	XXXX	10
SP-11 WATER 2400 WATER	$X \times X \times X$	10 -> Incluses on clajob coe
DELINOUSUED BY DATE DESCRIPTION		
RELINQUISHED BY DATE RECEIVED BY DATE	SPECIAL SHIPMENT HANDLING OR STORAGE REQUIREMENTS:	TOTAL NUMBER OF CONTAINERS
Jane My Dane 69/06 SIGNATURE TO 6/9/06	STORAGE RECORDINENTS.	SAMPLE RECEIPT INFORMATION QUSTODY SEALS: LYES INO INVA
TIME 1/4/ Y/MALL TIME	-	GOOD CONDITION. □N/A
PRINT NAME PRINT NAME AL COMPANY COMPANY COMPANY		GOOD CONDITION LYES LINGS
	•	TEMPERATURE THAND THAND
RELINQUISHED BY DATE RECEIVED BY DATE	COOLER NO.: STORAGE LOCATION:	GOURIER GOVERNIGHT
SIGNATURE SIGNATURE	COOLER NO.: STORAGE LOCATION:	TURNAROUND TIME:
TIME TIME PRINT NAME PRINT NAME	Carlab Mada Ordania	☐ 24 HOURS ☐ 1 WEEK ☐ 48 HOURS ☐ STANDARD
COMPANY COMPANY	See Lab Work Order No for Other Contract Requirements	☐ 72 HOURS OTHER
White and Yellow Copies to Lab Pink to Project Manager Lab to Return White Copy to Ha		

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results						Inside Bldg
8260B, µg/kg		MTH BLK	LCS	SP1-S3	SP4-S2	SP5-S1(FSP)
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	. 06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Dichlorodifluoromethane	. 50	nd		nd	nd	nd
Chloromethane	5 0 ·	nd		nd	nd	nd
Vinyl chloride	50	nd		nd	nd	nd
Bromomethane	50	nd		nd	nd	nd
Chloroethane	50	· nd		nd	nd	nd
Trichlorofluoromethane	50	nd		nd	· nd	nd
1,1-Dichloroethene	50	nd		nd	nd	nd
Methylene chloride	20	nđ	•	nd	nd	nd
trans-1,2-Dichloroethene	50	nd		nd	nd	nd
1,1-Dichloroethane	50	nd		nd	nd	nd
2,2-Dichloropropane	50	nd		nd	nd	nd
cis-1,2-Dichloroethene	50	nd		nd	nd	. nd
Chloroform	50	nd		nd	nd	nd
1,1,1-Trichloroethane	50	nd		nd	nd	nd
Carbontetrachloride	· 50	nd		nd	nd	nd
1,1-Dichloropropene	50	nd		nd	nd	nd
Benzene	50	nd	70%	nd	nd	· nd
1,2-Dichloroethane(EDC)	S 20	nd		nd	nd	nd
Trichloroethene	20	nd	73%	nd	nd	nd
1,2-Dichloropropane	50	nd		nd	nd	nd
Dibromomethane	50	nd		nd	nd	nd
Bromodichloromethane	· 50	nd		nd	nd	nd
cis-1,3-Dichloropropene	50	nd		nd	nd	nd
Toluene	50	nd	107%	nd	nđ	nd
trans-1,3-Dichloropropene	50	nd		· nd	· nd	nd
1,1,2-Trichloroethane	50	nd		nd	nd	nd
Tetrachloroethene	50	nd		nd	nd	· nd
1,3-Dichloropropane	50	nd		nd	nd	nd
Dibromochloromethane	20	nd		nd	nd	· nd
1,2-Dibromoethane (EDB)*	5	nd		nd	nd	nd
Chlorobenzene	50	nd	86%	nd	nd	nd
1,1,1,2-Tetrachloroethane	.50	nd		nd	nd	nd
Ethylbenzene	50	· nd		nd	nd	nd
Xylenes	50	nd		nd	nd	nd
Styrene	50	nd	•	nd	nd	nd
Bromoform	50	nd		nd	nd	nd

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number: Date received:

17250 06/08/06

Analytical Results						Inside Bldg
8260B, μg/kg		MTH BLK	LCS	SP1-S3	SP4-S2	SP5-S1(FSP)
Matrix	Soil	Soil	. Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Isopropylbenzene	50	nd		nd	nd	nd
1,2,3-Trichloropropane	50	nd		nd	nd	nd
Bromobenzene	50	nd		ņd	nd	nd
1,1,2,2-Tetrachloroethane	50	nd		nd	nd	nd
n-Propylbenzene	50	nd		nd	nd	nd
2-Chlorotoluene	50	nđ		nd	200	nd
4-Chlorotoluene	50	· nd		nd	nd	nd
1,3,5-Trimethylbenzene	50	nd		nd	nd	nd
tert-Butylbenzene	50	nd		nd	nd	nd
1,2,4-Trimethylbenzene	50	nd		nd	nđ	nd
sec-Butylbenzene	50	nd		nd	nđ	nd
1,3-Dichlorobenzene	50	nd		nd	. nd	nd
Isopropyltoluene	50	nd		nd	nd .	. nd
1,4-Dichlorobenzene	50	nd		nd	nd	nd
1,2-Dichlorobenzene	50	nd		nd	nd	nd
n-Butylbenzene	50	nd		nd	nd	nd
1,2-Dibromo-3-Chloropropane	50	nđ		nd	nd	nd
1,2,4-Trichlorobenzene	50	nď		nd	nd	nd
Hexachloro-1,3-butadiene	50	nd		nd	nd	nd
Naphthalene	50	nd		nd	nd	nd
1,2,3-Trichlorobenzene	50	nd	•	nd	nd	nd
*-instrument detection limits						
Surrogate recoveries	_					·
Dibromofluoromethane		84%	76%	81%	81%	84%
Toluene-d8		92%	118%	128%	99%	103%
1,2-Dichloroethane-d4		118%	73%	70%	100%	99%
4-Bromofluorobenzene		127%	116%	111%	97%	117%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130%

SP6-S1

Soil

AAL Job Number:

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250 06/08/06

		-,-	
Date	rec	eiv	ed:

Analytical Results			Inside Bldg	Inside Bldg	
8260B, µg/kg		MTH BLK	SP5-S2(FSP)	SP5-S3(FSP)	SP5-S1
Matrix	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06

Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
	-					
Dichlorodifluoromethane	50	nd	nd	nd	nd	nd
Chloromethane	50	nd	nd	nd	nd	nd
Vinyl chloride	50	nd	nd	nd	nd	nd
Bromomethane	- 50	nd	nd	nd	nd	nd
Chloroethane	50	nd ·	nd	, nd	nd	nd
Trichlorofluoromethane	50	nd	nd	nđ	nd	nd
1,1-Dichloroethene	50	nd	nd	nd	nd	nd
Methylene chloride	20	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	50	nd .	nd	nd	nd	nd
1,1-Dichloroethane	50	nd	nd	nd _.	nd	nd
2,2-Dichloropropane	50	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	50	nd	nd	nd	nd	nd
Chloroform	50	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	50	nd	nd	nd	nd	nd
Carbontetrachloride	50	nd	nd	nd	nd	nd
1,1-Dichloropropene	50	nd	nd	nd	nd	nd
Benzene	50 .	nd	nd	. nd	nd	nd
1,2-Dichloroethane(EDC)	20	nd	nd	nd	nd	nd
Trichloroethene	20	nd	nd	nd	nd	nd
1,2-Dichloropropane	50	nd	nd	nd	nd	. nd
Dibromomethane	50	nd	nd	nd	nd	nd
Bromodichloromethane	50	nd	nd	` nd	nd	nd
cis-1,3-Dichloropropene	50	nd	nd	nd	nd	nd
Toluene .	50	nd	nd	nd	nd	nd
trans-1,3-Dichloropropene	_. 50	nd	nd ·	nd	nd	. nd
1,1,2-Trichloroethane	50	nd	nd	nd	nd	nd
Tetrachloroethene	50	nd	nd	nd	170	nd
1,3-Dichloropropane	50	nd	nd	nd	· nd	nd
Dibromochloromethane	20	nd	nd	, nd	nd	nd
1,2-Dibromoethane (EDB)*	5	nd	nd	nd	nd	nd
Chlorobenzene	50	, nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	50	nď	nd	nd	nd	nd
Ethylbenzene	50	nd	nd	nd	nd	nd
Xylenes	50	nd	nd	nd	nd	210
Styrene	50	nd	nd	nd	nd	nd -
Bromoform	50	nd	nd	nd	nd	nd

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results			Inside Bldg	Inside Bldg		
8260B, μg/kg		MTH BLK	SP5-S2(FSP)	SP5-S3(FSP)	SP5-S1	SP6-S1
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Isopropyibenzene	50	nd	nd	nd	nd	50
1,2,3-Trichloropropane	50	กต์	nd	nd	nd	nd
Bromobenzene	50	nd	nd	nḍ	nd	nd
1,1,2,2-Tetrachloroethane	50	nd	nd	nd	nd	nd
n-Propylbenzene	50	nd	nd	nd	nd	71
2-Chlorotoluene	50	nd	nd	nd	nd	nd
4-Chlorotoluene	50	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	50	nd	nd	nd	nd	nd
tert-Butylbenzene	50	nd	nd	nd	59	nd
1,2,4-Trimethylbenzene	50	nd	nđ	nd-	nd	260
sec-Butylbenzene	50	nd	nd	nd	nd	210
1,3-Dichlorobenzene	50	nd	nd	nd	nd	nd
Isopropyltoluene	50	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	50	nd	nd	· nd	nd	nd
1,2-Dichlorobenzene	50	nd	nd	nd	nd	nd
n-Butylbenzene	50	nd	nd	nd	82	110
1,2-Dibromo-3-Chloropropane	50	nd	nd	nd	nd	nd
1,2,4-Trichlorobenzene	50	nd	nđ	nd	59	. nd
Hexachloro-1,3-butadiene	50	nd	nd	nd	nd	nd
Naphthalene	50	nd	nd	. nd	85	50
1,2,3-Trichlorobenzene	50	nď	nd	nd	86	nd
*-instrument detection limits	•					
Surrogate recoveries						
Dibromofluoromethane		84%	84%	82%	78%	77%
Toluene-d8		92%	96%	101%	117%	86%
1,2-Dichloroethane-d4	•	118%	110%	99%	77%	125%
4-Bromofluorobenzene		127%	124%	108%	121%	119%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

8260B, μg/kg		MTH BLK	SP8-S1	SP10-S2	SP11-S2	SP11-S3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Dichlorodifluoromethane	50	nd	nd	nd	nd ·	nd
Chloromethane	50	nd	nd	nd	nd	nd
Vinyl chloride	50	nd	nd	nd	nd	nd
Bromomethane	50	nd	nd	nd	nd	nd
Chloroethane	50	nd	nd	nd	nd	nd
Trichlorofluoromethane	50	nd	nd	nd	nd	nd
1,1-Dichloroethene	50	nd	nd	nd	nd	nd
Methylene chloride	20	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	50	nd	nd	nd	nd	nd
1,1-Dichloroethane	50	nd	nd	nd	nd	nd
2,2-Dichloropropane	50 ·	nd	nd	, nd	nd	nd
cis-1,2-Dichloroethene	50	nd	nd	nd	nd	nd:
Chloroform	50	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	50	nd	nd	nd	nd	nd
Carbontetrachloride	50	nd	nd	nd	nd	nd
1,1-Dichloropropene	50 ·	nd	nd	nd	nd	. nd
Benzene	50	nd	nd	nd	nd	nd
1,2-Dichloroethane(EDC)	20	nd	nd	nd	nd	nd
Trichloroethene	20	nd	nd	nd	nd	ņd
1,2-Dichloropropane	50	nd	nd	nd	nd	nd
Dibromomethane	50	nd	nd	nd	nd	nd
Bromodichloromethane	50	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	50	nd	nd	nd	nd	nd
Toluene	50	nd	nd	nd	nd	nd
trans-1,3-Dichloropropene	50	nd	nd	nd	· nd	nd
1,1,2-Trichloroethane	50	- 'nd	nd	nd	nd	nd
Tetrachloroethene	50	nd	nd	nd	nd	nd
1,3-Dichloropropane	50	nd	nd	nd	nd	nd
Dibromochloromethane	20	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB)*	5	nd	nd	nd	nd	nd
Chlorobenzene	. 50	nd	nd	· nd	nd	nd
1,1,1,2-Tetrachloroethane	50	nd	nd	nd	nd	nd
Ethylbenzene	50	.nd	nd	nd	nd	nd
Xylenes	50	nd	nd	nd	nd	nd
Styrene	50	nd	nd	nd	nd	nd
Bromoform	50	nd	nd	nd	nd	nd

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

8260B, μg/kg		MTH BLK	SP8-S1	SP10-S2	SP11-S2	SP11-S3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
	.	_				
Isopropylbenzene	50	nd	nd	nd	. nd	nd
1,2,3-Trichloropropane	50	nd	nd	nd	nd	nd
Bromobenzene	50	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	50	nd	nd	nd	nd	nd
п-Propylbenzene	50	nd	nd	· nd	nd	nd
2-Chlorotoluene	50	nd	- nd	nd	nd	nd
4-Chlorotoluene	50	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	50	nd	nd	nd	nd	nd
tert-Butylbenzene	50	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	50	nd	nď	nd	nd	nd
sec-Butylbenzene	50	nd	nd	. nd	nd	nd
1,3-Dichlorobenzene	50	nd	nd	nd	nd	nd
Isopropyltoluene	50	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	50	nd	nd	nd	nd	, nd
1,2-Dichlorobenzene	50	nd	nd	nd	nd	nd
n-Butylbenzenę	50 ·	nd	nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	50	nd	nd	nd	nd	nd
1,2,4-Trichlorobenzene	50	nd	nd	nd	nd	nd
Hexachloro-1,3-butadiene	50 .	nd	nd	nd	nd	· nd
Naphthalene	50	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	50	nd	nd	nd	nd	<u>nd</u>
*-instrument detection limits						
Surrogate recoveries					- 	<u> </u>
Dibromofluoromethane		84%	70%	75%	78%	94%
Toluene-d8		92%	94%	94%	99%	101%
1,2-Dichloroethane-d4		118%	109%	114%	104%	97%
4-Bromofluorobenzene		127%	124%	123%	126%	1 <u>11%</u>

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results		, ,	Dupl	MS	MSD	RPD
8260B, μg/kg		MTH BLK	SP11-S3	SP11-S2	SP11-S3	SP11-S4
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
		<u>-</u>	-		= =	
Dichlorodifluoromethane	50	nd	nd			
Chloromethane	50	nd	nd			
Vinyl chloride	50	nd	nd			
Bromomethane	50	nd	nd		•	
Chloroethane	50	nd	nd			
Trichlorofluoromethane	50	nd	nd			
1,1-Dichloroethene	50	nd	nd			
Methylene chloride	20	nd	· nd			
trans-1,2-Dichloroethene	50	nd	nd			
1,1-Dichloroethane	50	nd	nd			
2,2-Dichloropropane	50	nd	nd			
cis-1,2-Dichloroethene	50	nd	· nd			
Chloroform	50	nd	nd			
1,1,1-Trichloroethane	50	nd	nd			
Carbontetrachloride	50	nd	nd			
1,1-Dichloropropene	50	nd	nd		•	
Benzene	50	nd	nd	75%	70%	7%
1,2-Dichloroethane(EDC)	20	nd	nd			
Trichloroethene	20 .	nd	nd	101%	110%	8%
1,2-Dichloropropane	50	nd	nd			
Dibromomethane	50	nd	, nd			
Bromodichloromethane	50	nd	nd			
cis-1,3-Dichloropropene	50	nd	nd			
Toluene	50	nđ	nd	119%	121%	2%
trans-1,3-Dichloropropene	50	nd	nd			
1,1,2-Trichloroethane	50	nd	nd			•
Tetrachloroethene	50	nd	nd			
1,3-Dichloropropane	50	nd	nd	•		
Dibromochloromethane	20	nd .	nd			
1,2-Dibromoethane (EDB)*	5	nd	nd			
Chlorobenzene	50	nd	nd	102%	105%	3%
1,1,1,2-Tetrachloroethane	50	nd	nd			
Ethylbenzene	50	nd	nd			
Xylenes	50	nd	nd			
Styrene	50	nd	nd			
Bromoform	50	nd	nd			

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results	·	_	Dupl	MS	MSD	RPD
8260B, μg/kg		MTH BLK	SP11-S3	SP11-S2	SP11-S3_	SP11-S4
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Isopropylbenzene	50	nd	nd		-	
1,2,3-Trichloropropane	50	nd	nd			
Bromobenzene	50	nd	nd			•
1,1,2,2-Tetrachloroethane	50	nd	nd	,		
n-Propylbenzene	50	nd	nd			
2-Chlorotoluene	50	nd	nd .	,		
4-Chlorotoluene	50	nd	nd	•		
1,3,5-Trimethylbenzene	50	nd	nd			
tert-Butylbenzene	50	nd	nd			
1,2,4-Trimethylbenzene	50 ·	. nd	nd	•		
sec-Butylbenzene	50	nd	nd			
1,3-Dichlorobenzene	50	nd	· nd		•	
Isopropyltoluene	50	nd	nd			
1,4-Dichlorobenzene	50	nd	nd			
1,2-Dichlorobenzene	50	nd	nd			
n-Butylbenzene	50	nd	nd			
1,2-Dibromo-3-Chloropropane	50	nd	nd			
1,2,4-Trichlorobenzene	50	nd	nd			
Hexachloro-1,3-butadiene	50	nd	nd			
Naphthalene	50	nd	nd			
1,2,3-Trichlorobenzene	50	nd	nd			
*-instrument detection limits						•
Surrogate recoveries						
Dibromofluoromethane		84%	92%	83%	74%	
Toluene-d8		92%	97%	101%	101%	
1,2-Dichloroethane-d4		118%	103%	94%	96%	
4-Bromofluorobenzene		127%	116%	124%	130%	

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

8260B, µg/kg		MTH BLK	SP12-S2	HP13-S3
Matrix	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06
Dichlorodifluoromethane	50	nd	nd	nd
Chloromethane	50	nd	nd	nd
Vinyl chloride	50	nd	nd	nd
Bromomethane	50	nd	nd	nd
Chloroethane	50	nd	nd	nd
Trichlorofluoromethane	50	nd	nd	nd
1,1-Dichloroethene	50	nd	nd _.	nd
Methylene chloride	20	nd	nd	nd
trans-1,2-Dichloroethene	50	nd	nd	nd
1,1-Dichloroethane	50	nd	nd	nd
2,2-Dichloropropane	50	nd	nd	nd
cis-1,2-Dichloroethene	50	nd	nd	nd
Chloroform	50	nd	nd	nđ
1,1,1-Trichloroethane	50	nd	nd	. nd
Carbontetrachloride	50	_, nd	nd	nd
1,1-Dichloropropene	50	nd	nd	nd
Benzene	50	nd	nd i	nd
1,2-Dichloroethane(EDC)	20	nd	nd	nd
Trichloroethene	20	nd	nd	nd
1,2-Dichloropropane	50	nd	nd	nd
Dibromomethane	50	nd	nd	nd
Bromodichloromethane	50	nd	nd	nd
cis-1,3-Dichloropropene	50	nd	nd	nd
Toluene	50	nd	nd	nd
trans-1,3-Dichloropropene	50	nd	nd	nd
1,1,2-Trichloroethane	50	nd	nd	nd
Tetrachloroethene	50	nd	nd	nd
1,3-Dichloropropane	50	nd	. nd	nd
Dibromochloromethane	20	nd	nd	nd
1,2-Dibromoethane (EDB)*	5	nd	nd	nd
Chlorobenzene	50	nd	nd	nd
1,1,1,2-Tetrachloroethane	50	nd	nd	nd
Ethylbenzene	.50	nd	nd	nd
Xylenes	50	nd	nd	nd
Styrene	50	nd	nd	nd
Bromoform	50	nd	nd	nd

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

Allalytical Acounts				
8260B, μg/kg		MTH BLK	SP12-S2	HP13-S3
Matrix	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06
Isopropylbenzene	50	nd	nd	nd
1,2,3-Trichloropropane	50	nd	nd	nd
Bromobenzene	50	nd	nd	nd
1,1,2,2-Tetrachloroethane	50	nd	nd	nd
n-Propylbenzene	50	nd	nd	nd
2-Chlorotoluene	50	nd	nd	nd
4-Chiorotoluene	50	nd	nd	nd
1,3,5-Trimethylbenzene	50	nd	nd ·	nd
tert-Butylbenzene	50	nd	nd	nd
1,2,4-Trimethylbenzene	50	nd	nd	nd
sec-Butylbenzene	50	nd	nd	nd
1,3-Dichlorobenzene	50	nd	nd	nd
Isopropyltoluene	50	nd	nd	nd
1,4-Dichlorobenzene	50	nd	nd	nd
1,2-Dichlorobenzene	50	nd	nd	nd
n-Butylbenzene	50	nd	nd	. nd
1,2-Dibromo-3-Chloropropane	50	nd	· nd	nd
1,2,4-Trichlorobenzene	50	· nd	nd	nd
Hexachloro-1,3-butadiene	50	nd	nd	nd
Naphthalene	50	nđ	nd	nd
1,2,3-Trichlorobenzene	50	nd	nd	nd
*-instrument detection limits				
Surrogate recoveries				
Dibromofluoromethane		84%	91%	84%
Toluene-d8		92%	120%	113%
1,2-Dichloroethane-d4		118%	75%	80%
4-Bromofluorobenzene		127%	119%	117%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

8260B, μg/L		MTH BLK	LCS	SP-1	SP-4	SP-5	SP-5(FSP)
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Dichlorodifluoromethane	1.0	nd		nd	nd	nd	nd
Chloromethane	1.0	nd		nd	nd	nd	nd
Vinyl chloride(*)	0.2	nd		nd	nd	nd	nd
Bromomethane	1.0	nd		· nd	nd	nd	nd
Chloroethane	1.0	nd		nd	nd.	nd	nd
Trichlorofluoromethane	1.0	nd		nd	nd	_ nd	, nd
1,1-Dichloroethene	1.0	nd		nd	nd	nd	nd
Methylene chloride	1.0	nd		nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd		nd	nd	nd	nd
1,1-Dichloroethane	1.0	nd		nd	nd	nd	nd
2,2-Dichloropropane	1.0	nd		nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd		nd	nd	nd	nd
Chloroform	1.0	nd		nd	nd	nd	· nd
1,1,1-Trichloroethane	1.0	nd		nd	nd	nd	nd
Carbontetrachloride	1.0	nd		nd	nd	nd	nd
1,1-Dichloropropene	1.0	nd		nd	nd	nd	nd
Benzene	1.0	nd	70%	nd	nd	nd	nd
1,2-Dichloroethane(EDC)	1.0	nd		nd	nd	nd	nd
Trichloroethene	1.0	nd	73%	nd	nd	1.7	10
1,2-Dichloropropane	1.0	nd		nd	nd	nd	nd
Dibromomethane	1.0	nd		nd	nd	nd	nd
Bromodichloromethane	1.0	nd	*	nd	nd	nd	nd
cis-1,3-Dichloropropene	1.0	nd		nd	nd	nd	nd
Toluene	1.0	nd	107%	nd	1.0	nd	nd
trans-1,3-Dichloropropene	1.0	nd		nd	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd		nd	nd	nd	nd
Tetrachloroethene	1.0	nd		90	nđ	55	nd
1,3-Dichloropropane	1,0	nd		nd	nd	nd .	nd
Dibromochloromethane	1.0	nd		nd	· nd	nd	nd
1,2-Dibromoethane (EDB)*	0.01	nd		nd	nd	nd	nd
Chlorobenzene	1.0	nd	86%	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd		nd	nd	nd	nd
Ethylbenzene	1.0	nd		nd	nd	nd	nd
Xylenes	1.0	nd		nd	1.8	1.6	. nd
Styrene	1.0	nd		nd	nd	nd	nd
Bromoform	1.0	nd		nd	nd	nd	nd
Isopropylbenzene	1.0	nd		nd	nd	nd	nd
1,2,3-Trichloropropane	1.0	nd		nd	nd	nd	nd

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

Analytical Results			·	ı			
8260B, μg/L	 	MTH BLK	LCS	SP-1	SP-4	SP-5	SP-5(FSP)
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
•.							
Bromobenzene	1.0	nd		nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd		nd	nd	nd	nd
n-Propylbenzene	1.0	nd		nd	nd	nd	nd
2-Chlorotoluene	1.0	nd		nd	nd	nd	nd
4-Chlorotoluene	1.0	nd		nd	nd	nd	nd
1,3,5-Trimethylbenzene	1.0	nd		nd	nd	nd	nd
tert-Butylbenzene	1.0	nd		nd	nd	nd	nd
1,2,4-Trimethylbenzene	1.0	nd		nd	nd	nd	nd
sec-Butylbenzene	1.0	nd	•	nd	nd	nd	nd
1,3-Dichlorobenzene	· 1.0	nd		nd	nd	nd	. nd
Isopropyitoluene	1.0	nd		nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nd		nd	nd	nd	nd
1,2-Dichlorobenzene	1.0	nd		nd	nd	nd	nd
n-Butylbenzene	1.0	nd		nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd		nd	nd	nd	nd
1,2,4-Trichlorobenzene	1.0	nd		nd	nd	nd	. nd
Hexachloro-1,3-butadiene	1.0	nd		nd	nd	nd	nd
Naphthalene	1.0	nd		nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd		nd	nd	nd	nď
*-instrument detection limits							
Surrogate recoveries				•		_	
Dibromofluoromethane		84%	76%	82%	81%	83%	83%
Toluene-d8		92%	118%	113%	114%	110%	99%
1,2-Dichloroethane-d4		118%	73%	87%	89%	93%	103%
4-Bromofiuorobenzene		127%	116%	111%	116%	124%	119%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager: Client Project Name: Julie Wukelic Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results				MS	MSD	RPD	
8260B, μg/L		SP-6A	SP-11	SP-6A	SP-6A	SP-6A	SP-G-2-3
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/07/06
Dichlorodifluoromethane	1.0	nd	nd	•			nd
Chloromethane	1.0	nd	nd				nd
Vinyl chloride(*)	0.2	nd	nd				nd
Bromomethane	1.0	nd	nd				nd
Chloroethane	1.0	nd	nd				nd
Trichlorofluoromethane	1.0	nd	nd				nd
1,1-Dichloroethene	1.0	nd	nd				nd
Methylene chloride	1.0	nd	nd	•			· nd
trans-1,2-Dichloroethene	1.0	nd	nd				nd
1,1-Dichloroethane	1.0	nd	nd				nd
2,2-Dichloropropane	1.0	nd	nd				nd
cis-1,2-Dichloroethene	1.0	nd	1.0				nd
Chloroform	1.0	nd	nd				3.5
1,1,1-Trichloroethane	1.0	nd	nd				nd
Carbontetrachloride	1.0	nd	nd				nd
1,1-Dichloropropene	1.0	nd	nd				nd
Benzene	1.0	nd	nd	76%	72%	6%	nd
1,2-Dichloroethane(EDC)	1.0	nd	nd			•	nd
Trichloroethene	1.0	nd	nd	89%	84%	6%	nd
1,2-Dichloropropane	1.0	nd	nd				nd
Dibromomethane	1.0	nd	nd				nd
Bromodichloromethane	1.0	nd	nd			•	· nd
cis-1,3-Dichloropropene	1.0	nd	nd				nd
Toluene	1.0	nd	nd	96%	90%	6%	nd
trans-1,3-Dichloropropene	1.0	nd	nd	*			nd
1,1,2-Trichloroethane	1.0	nd	nd				nd
Tetrachloroethene	1.0	nd	· nd				nd
1,3-Dichloropropane	1.0	nd	· nd				nd
Dibromochloromethane	1.0	nd	nd			•	nd
1,2-Dibromoethane (EDB)*	0.01	nd	nd				nd
Chlorobenzene	1.0	nd	nd	103%	97%	6%	nd
1,1,1,2-Tetrachloroethane	1.0	nd	nd				nd
Ethylbenzene	1.0	nd	nd			•	nd
Xylenes	1.0	nd	nd				nd
Styrene	1.0	nd	nd				nd
Bromoform	1.0	nd	nd				nd
Isopropylbenzene	1.0	nd	nd				nd
1,2,3-Trichloropropane	1.0	nd	nd		•		<u> </u>

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name: Client Project Number: Dearborn/Goodwill 17250

Data received:

06/08/06

Date received:	

Analytical Results				MS	MSD	RPD	
8260B, μg/L		SP-6A	SP-11	SP-6A	SP-6A	SP-6A	SP-G-2-3
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/07/06
Bromobenzene	1.0	nd	nd				nd nd
1,1,2,2-Tetrachloroethane	1.0	nd	nd				nd
n-Propylbenzene	1.0	nd	nd				nd
2-Chlorotoluene	1.0	nd	nd				nd
4-Chlorotoluene	1.0	nd	nd				. nd
1,3,5-Trimethylbenzene	1.0	nd	nd				nd
tert-Butylbenzene	1.0	nd	nd				nd
1,2,4-Trimethylbenzene	1.0	nd	· nd		•		nd
sec-Butylbenzene	· 1.0	nd	nd				nd
1,3-Dichlorobenzene	1.0	nd	nd				. nd
Isopropyltoluene	1.0	nd	nd				nd
1,4-Dichlorobenzene	1.0	nd	nd		•		nd
1,2-Dichlorobenzene	1.0	nd	nd				nd
п-Butylbenzene	1.0	nd	nd				nd
1,2-Dibromo-3-Chloropropane	1.0	nd	. nd				. nd
1,2,4-Trichlorobenzene	1.0	nd	nợ			4	nd
Hexachloro-1,3-butadiene	1.0	nd	nd				nd
Naphthalene	1.0	· nd	nd				nd
1,2,3-Trichlorobenzene	1.0	nd	nd			_	nd
*-instrument detection limits		•				_	
Surrogate recoveries							·
Dibromofluoromethane		82%	87%	87%	78%		81%
Toluene-d8	·	110%	119%	90%	88%		101%
1,2-Dichloroethane-d4		96%	75%	113%	113%		105%
4-Bromofluorobenzene		119%	106%	121%	121%		123%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

, wai y wood i 100 and						
NWTPH-Dx, mg/kg		MTH BLK	SP1-S1	SP1-S3	SP4-S2	SP4-S5
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Kerosene/Jet fuel	20	nd	nd	nd	nd	nd
Diesel/Fuel oil	20	nd	nd	nd	nd	nd
Heavy oil	50	nd	. nd	nd	nd	nd
Surrogate recoveries:						
Fluorobiphenyl		81%	92%	85%	84%	97%
o-Terphenyl		130%	93%	89%	90%	88%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results			Inside Bldg	Inside Bldg	Inside Bldg
NWTPH-Dx, mg/kg		MTH BLK	SP5-S1(FSP)	SP5-S2(FSP)	SP5-S3(FSP)
Matrix	Soil	Soil	Soil ,	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06
Kerosene/Jet fuel	20	nd	nd	nd	nd
Diesel/Fuel oil	20	nd	nd-	nd .	nd
Heavy oil	50	<u>,</u> nd	nd	nd	nd
Surrogate recoveries:	~	•			
Fluorobiphenyl		81%	99%	93%	92%
o-Terphenyl		130%	89%	89%	87%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

7 thaty tood i toodito							
NWTPH-Dx, mg/kg		MTH BLK	SP5-S1	SP5-S3	SP5-S4	SP6-S1	SP6-S3
Matrix	Soil	Soil	Soil	Soil	Şoil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Kerosene/Jet fuel	20	nd	nd	nd	nd	nd	nd
Diesel/Fuel oil	· 20	nd	3,400	nd	nd	nd	. nd
Heavy oil	50	nd	7,400	82	nd	1,800	nd
Summer to an annual and						2 .	
Surrogate recoveries:				2001			0.00/
Fluorobiphenyl	•	81%	С	99%	99%	83%	96%
o-Terphenyl		130%	С	90%	89%	91%	91%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

Allalytical Results							
NWTPH-Dx, mg/kg		MTH BLK	SP6B-S1	SP7-S2	SP7-S5	SP8-S1	SP8-S3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Kerosene/Jet fuel	20	nd	nd	nd	nd	nd	nd
Diesel/Fuel oil	20	nd	nd	nd	nd	nd	nd
Heavy oil	50	nd	. 1,400	nd	nd	nd	nd
Surrogate recoveries:				_			
Fluorobiphenyl		81%	104%	95%	98%	95%	93%
o-Terphenyl	-	130%	90%	88%	91%	88%	87%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic Dearborn/Goodwill

Client Project Name: Client Project Number:

17250

Date received:

06/08/06

Analytical Results

Analytical Nesults						
NWTPH-Dx, mg/kg		MTH BLK	SP9-S1	SP9-S3	SP10-S2	SP10-S4
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Kerosene/Jet fuel	20	nd	nd	nd	nd	nd
Diesel/Fuel oil	20	nd	nd	nd	nd	nd
Heavy oil	50	' nd	nd	nd	nd	nd
Surrogate recoveries:		•				
Fluorobiphenyl		81%	98%	91%	93%	91%
o-Terphenyl		130%	92%	89%	88%	89%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results						Dupl
NWTPH-Dx, mg/kg		MTH BLK	SP11-S2	SP11-S3	SP11-S4	SP11-S4
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Kerosene/Jet fuel	20	nd	nd	nd	. nd	nd
Diesel/Fuel oil	20	nd	nd	nd	nd	nd
Heavy oil	50	nd	nd	nd	nd	nd
Surrogate recoveries:		·				•
Fluorobiphenyl		81%	96%	101%	89%	86%
o-Terphenyl		130%	92%_	94%	86%	88%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%.

A60608-7

Client:

Hart Crowser, Inc.

Project Manager: Client Project Name: Julie Wukelic Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results					Dupl	
NWTPH-Dx, mg/kg		MTH BLK	SP12-S2	HP13-S3	HP13-S3	SP-G-2-3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/07/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/07/06
Kerosene/Jet fuel	20	nd	nd	nd	nd	nd
Diesel/Fuel oil	20	· nd	nd	nd	nd	nd
Heavy oil	50	nd	· nd	nd	nd	nd
Surrogate recoveries:						
Fluorobiphenyl		81%	91%	96%	70%	113%
o-Terphenyl		130%	95%	101%	97%	105%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager.

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results			Dupl
NWTPH-Dx, mg/kg		MTH BLK	SP-G-2-3
Matrix	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/07/06
Date analyzed	Limits	06/10/06	06/07/06
	•••		•
Kerosene/Jet fuel	20	nd	nd
Diesel/Fuel oil	20	nd	nd
Heavy oil	50	nd	nd
	<u>-</u>	, .	
Surrogate recoveries:			
Fluorobiphenyl		81%	116%
o-Terphenyl		130%	109%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.
Julie Wukelic

Project Manager: Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

NWTPH-Dx, mg/l	٠.	MTH BLK	SP-1	SP-4	SP-5	SP-5(FSP)	SP-6A
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
Date analyzed	Limits	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
Kerosene/Jet fuel	0.20	nd	nd	nd	, nđ	nd	nd
Diesel/Fuel oil	0.20	nd	nd	nd	nd	nd	nd
Heavy oil	0.50	nd	nd	nd	nd	nd	nd
Surrogate recoveries:							
Fluorobiphenyl		115%	88%	130%	129%	72%	126%
o-Terphenyl	•	118%	101%	117%	114%	93%	124%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name: Client Project Number: Dearborn/Goodwill 17250

Date received:

06/08/06

Analytical Results				Dupl	
NWTPH-Dx, mg/l		MTH BLK	SP-11	SP-11	SP-G-2-3
Matrix	Water	Water	Water	Water	Water
Date extracted	Reporting	06/09/06	06/09/06	06/09/06	06/07/06
Date analyzed	Limits	06/09/06	06/09/06	06/09/06	06/07/06
Kerosene/Jet fuel	0.20	nd	nd	nd	nd
Diesel/Fuel oil	0.20	nd	nd	nd	nd
Heavy oil	0.50	nd	nd	nd	nd
Surrogate recoveries:					
Fluorobiphenyl		115%	78%	98%	116%
o-Terphenyl		118%	98%	99%	115%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name: Client Project Number: Dearborn/Goodwill 17250

Date received:

06/08/06

Analytical Results

Alialylical Nesulis							
NWTPH-Gx/BTEX		MTH BLK	LCS	SP1-S1	SP1-S3	SP4-S2	SP4-S5
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
							•
NWTPH-Gx, mg/kg							
Mineral spirits/Stoddard	5.0	nd	nd	nd	nd	nd	nd
Gasoline	5.0	nd	nd	nd	nd	nd	<u>nd</u>
		_					
BTEX (8021B) , μg/kg						•	
Benzene ·	20	nd	93%	nd		nd	nd
Toluene	50	nd	96%	nd		nd	· nd
Ethylbenzene	50	nd		nd		- nd	nd
Xylenes	50	nd		nd		nd	nd
_							
Surrogate recoveries:							
Trifluorotoluene		93%	95%	96%	97%	98%	95%
Bromofluorobenzene		96%_	93%	101%	102%	104%	102%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na -\not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, I

Project Manager:

Julie Wukelic

Client Project Name: Client Project Number: Dearborn/Gooc

17250

Date received:

06/08/06

Analytical Results	÷	Inside Bldg	Inside Bldg	Inside Bldg_	Loading Dock
NWTPH-Gx/BTEX		SP5-S1(FSP)	SP5-S2(FSP)	SP5-S3(FSP)	SP5-S1
Matrix	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06
NWTPH-Gx, mg/kg			•		
Mineral spirits/Stoddard	5.0	nd	nd	nd	nd
Gasoline	5.0	nd	nd	nd	110
BTEX (8021B) , μg/kg	•				
Benzene	20				
Toluene	50				•
Ethylbenzene	50				
Xylenes	50			<u> </u>	
Surrogate recoveries:					<u></u>
Trifluorotoluene		91%	71%	95%	97%
Bromofluorobenzene		97%	. 74%	110%	103%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, I

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Gooc

Client Project Number: Date received:

17250 06/08/06

Analytical Results		Loading Dock	Loading Dock			
NWTPH-Gx/BTEX		SP5-S3	SP5-S4	SP6-S1	SP6-S3	SP6B-S1
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
NWTPH-Gx, mg/kg						·
Mineral spirits/Stoddard	5.0	nd	nd	nd	; nd	nd
Gasoline	5.0	nd	nd	180	nd	120
ž		·				
BTEX (8021B) , μg/kg			•			
Benzene `	20	nd	nd		nd	nd
Toluene ·	50	nd	. nd		nd	nd
Ethylbenzene	50	nd	nd		nd	100
Xylenes	50	nd	nd		nd	760
Surrogate recoveries:					_	<u>.</u>
Trifluorotoluene		90%	92%	87%	109%	99%
Bromofluorobenzene	·	103%	98%	103%	108%	124%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, I

Project Manager:

Julie Wukelic

Client Project Name:

Dearbom/Gooc

Client Project Number: Date received:

17250 06/08/06

Analytical Posuite

Analytical Results								
NWTPH-Gx/BTEX		SP7-S2	SP7-S5	SP8-S1	SP8-S3	SP9-S1	SP9-S3	SP10-S2
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
NWTPH-Gx, mg/kg								
Mineral spirits/Stoddard	5.0	nd	nd	nd	. nd	nd	nd	nd
Gasoline	5.0	nd						
BTEX (8021B) , μg/kg						•		
Benzene	20	nd	nd		nd	nd	nd	
Toluene	50	nd	nđ		nd	nd	nd	
Ethylbenzene	50	nd	nd		nd	nd	nd	
Xylenes	50	· nd	nd		nd	nd	nd	
Surrogate recoveries:								•
Trifluorotoluene	-	105%	106%	102%	97%	100%	98%	92%
Bromofluorobenzene		С	99%	90%	108%	109%	111%	95%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, I

Project Manager:

Julie Wukelic Dearborn/Good

Client Project Name: Client Project Number:

17250

Date received:

06/08/06

Analytical Results		Dupl					Dupl
NWTPH-Gx/BTEX	-	SP10-S2	SP10-S4	SP11-S2	SP11-S3	SP11-S4	SP11-S4
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06
NWTPH-Gx, mg/kg						•	
Mineral spirits/Stoddard	5.0	nd	nd	nd	nd	nd	nd
Gasoline	5.0	nd	nd	nd	nd	nd	nd
BTEX (8021B) , µg/kg				·			
Benzene	20		nd			nd	nd
Toluene	50		nd		•	nd	nd
Ethylbenzene	50		nd			nd	nd
Xylenes	50		nd			nd	nd
Surrogate recoveries:		,					
Trifluorotoluene		99%	92%	83%	84%	84%	90%
Bromofluorobenzene		114%	96%	103%	101%	102%	101%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed .

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, I

Project Manager: Client Project Name: Julie Wukelic Dearborn/Gooc

Client Project Number:

17250

Date received:

06/08/06

Analytical Results	,			MS	MSD	RPD	
NWTPH-Gx/BTEX		SP12-S2	HP13-S3	SP1-S1	SP1-S1	SP1-S1	SP-G-2-3-S2
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/07/06
Date analyzed	Limits	06/10/06	06/10/06	06/10/06	06/10/06	06/10/06	06/07/06
NWTPH-Gx, mg/kg							•
Mineral spirits/Stoddard	5.0	nd	nd				nd
Gasoline	5.0	nd	nd	_			<u>nd</u>
BTEX (8021B) , μg/kg							
Benzene	20		•	99%	99%	0%	nd
Toluene	50			95%	107%	13%	nd
Ethylbenzene	50						nd
Xylenes	50						nd
Surrogate recoveries:							
Trifluorotoluene		90%	96%	97%	93%		84%
Bromofluorobenzene		101%	89%	99%	100%		96%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, I

Project Manager:

Julie Wukelic Dearbom/Gooc

Client Project Name: Client Project Number:

17250

Date received:

06/08/06

Analytical Results		Dupl
NWTPH-Gx/BTEX		SP-G-2-3-S2
Matrix	Soil	Soil
Date extracted	Reporting	06/07/06
Date analyzed	Limits	06/07/06
NWTPH-Gx, mg/kg	5.0	nd
Mineral spirits/Stoddard	5.0 5.0	-
Gasoline	5.0	nd
BTEX (8021B), µg/kg		
Benzene	20	¹ nd
Toluene	50	nđ
Ethylbenzene	50	nd
Xylenes	50	nd
Surrogate recoveries:		
Trifluorotoluene		93%
Bromofluorobenzene		. 101%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

NWTPH-Gx		MTH BLK	SP-1	SP-4	SP-5	SP-5(FSP)	SP-6A
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
NWTPH-Gx, mg/L			•				
Mineral spirits/Stoddard	0.10	nd	nd	nd	nd	nd	. nd
Gasoline	0.10	_ nd	nd	nd	nd	nd	nd
Surrogate recoveries:							
Trifluorotoluene	•	99%	98%	81%	84%	92%	83%
Bromofluorobenzene		100%	90%	90%	93%	87%	87%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name: Client Project Number: Dearborn/Goodwill 17250

Date received:

06/08/06

Analytical Results			Dupl	
NWTPH-Gx	-	SP-11	SP-11	SP-G-2-3
Matrix	Water	Water	Water	Water
Date analyzed	Reporting Limits	06/09/06	06/09/06	06/07/06
				,
NWTPH-Gx, mg/L				
Mineral spirits/Stoddard	0.10	nd	nd	nd
Gasoline	0.10	nd	nd	nd
Surrogate recoveries:				
Trifluorotoluene		87%	78%	84%
Bromofluorobenzene		83%	98%	92%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearbom/Goodwill

Client Project Number:

17250.

Date received:

06/08/06

Analytical Results		••				Inside Bldg	
Metals (7010/7471), mg/kg		MTH BLK	LCS	SP1-S3	SP4-S2	SP5-S1(FSP)	SP5-S1
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted.	Reporting	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
Date analyzed	Limits	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
					40	0.0	00
Lead (Pb)	1.0	nd	112%	2.3	19	2.6	26
Chromium (Cr)	2.0	nd	85%	10	8.1	7.1	3.5
Cadmium (Cd)	1.0	nd	106%	nd	nd	nd	nd
Arsenic (As)	2.0	nd	90%	2.0	2.0	nd	nd
Mercury (Hg) (7471)	0.5	nd	90%	nd	nd	nd	nd
Copper (Cu)	1.0	nd	79%	8.2	8.6	4.2	10
Nickel (Ni)	1.0	nd	84%	4.1	2.3	3.1	3.7
Zinc (Zn)	0.5	nd	120%	55	6.9	15	19

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name: Client Project Number: Dearborn/Goodwill

17250

Date received:

06/08/06

Analytical Results

Madela (7010/7471) marks		MTH BLK	SP5-S3	SP5-S4	SP6-S1	SP8-S1	SP10-S2
Metals (7010/7471), mg/kg			-		-		
Matrix	Soil	Soil_	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
Date analyzed	Limits	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
		_				70	
Lead (Pb)	1.0	nd	2.1	1.1	nd	72	1.0
Chromium (Cr)	2.0	nd	8.8	6.5	19	16	6.6
Cadmium (Cd)	1.0	nd	nd	nd	nd	nd	nd
Arsenic (As)	2.0	nd	nd	nd	11	4.4	nd
Mercury (Hg) (7471)	0.5	nd	nd	nd	nd	nd	nd
Copper (Cu)	1.0	nd	13	4.2	300	31	3.6
Nickel (Ni)	1.0	nd	8.1	3.6	24	4.0	11
Zinc (Zn)	0.5	nd	13	20	180	38	16

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results				. Dupl	RPD	
Metals (7010/7471), mg/kg		MTH BLK	SP11-S2	SP11-S2	SP11-S2	SP-G-2-3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
Date analyzed	Limits	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
Lead (Pb)	1.0	nd	1.9	2.0	7%	3.2
Chromium (Cr)	2.0	nd	11	9.3	17%	44
Cadmium (Cd)	1.0	nd	nd	nd		nđ
Arsenic (As)	2.0	nd	nd	nd	•	5.6
Mercury (Hg) (7471)	0.5	nd	nd	. nd		nd
Copper (Cu)	1.0	nd	3.8	4.1	9%	17
Nickel (Ni)	· 1.0	nd	4.2	3.7	14%	29
Zinc (Zn)	0.5	· nd	13	12	12%	2.9

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

Allalytical nesults						
Metals Total (7010/7470A), mg/l		MTH BLK	LCS	SP-1	SP-4	SP-5
Matrix	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	06/16/06	06/16/06	06/16/06	06/16/06	06/16/06
Date analyzed	Limits	06/16/06	06/16/06	06/16/06	06/16/06	06/16/06
Lead (Pb)	0.002	nd	110%	nd	0.002	nd
Chromium (Cr)	⁻ 0.01	nd	98%	nd	nd	nd
Cadmium (Cd)	0.005	nd	118%	nd	nd	nd
Arsenic (As)	0.005	nd	105%	nd	nd	nd
Mercury (Hg) (7470A)	0.001	nd	88%	nd	nd	nd
Copper (Cu)	0.01	· nd	104%	nd	nd	nd
Nickel (Ni)	0.01	nd	83%	0.013	nd	nd
Zinc (Zn)	0.001	nd	104%	0.009	0.005	0.003

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

J - estimated value

Acceptable Recovery limits: 70% TO 130%

A60608-7

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Dearborn/Goodwill

Client Project Number:

17250

Date received:

06/08/06

Analytical Results

Metals Total (7010/7470A), mg/l		MTH BLK	SP-5(FSP)	SP-6A	SP-11	SP-G-2-3
Matrix	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	06/16/06	06/16/06	06/16/06	06/16/06	06/16/06
Date analyzed	Limits	06/16/06	06/16/06	06/16/06	06/16/06	06/16/06
	-					
Lead (Pb)	0.002	nd	nd	nd	nd	nd
Chromium (Cr)	0.01	. nd	` nd	nd	nd	nd
Cadmium (Cd)	0.005	nd	nd	nd	nd	nd
Arsenic (As)	0.005	nd	nd	nd	nd	nd
Mercury (Hg) (7470A)	0.001	nd	nd	nd	nd	. nd
Copper (Cu)	0.01	nd	, nd	nd	nd	nd
Nickel (Ni)	0.01	nd	0.01	0.017	nd	nd
Zinc (Zn)	0.001	· nd	0.002	0.003	0.003	0.002

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

J - estimated value

Acceptable Recovery limits: 70% TO 130%

1

A60607-1a

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage Building

Client Project Number:

Date received:

17250 06/07/06

Analytical Results

3

8260B, μg/kg		MTH BLK	LCS	SP14-S3	SP15-S3	SP19-S3	SP16B-S4
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/07/06
Date analyzed	Limits	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/07/06
				-			
Dichlorodifluoromethane	50	nd		nd	nd	nd	nd
Chloromethane	50	nd		nd	nd	nd	nd
Vinyl chloride	50	nd		nd	nd	nd	nd
Bromomethane	50	nd		nd	nd	nd	nd
Chloroethane	50	nd		nd	nd	nd	nd
Trichlorofluoromethane	50	nd		nd	nd	nd	nd
1,1-Dichloroethene	50	nd		nd	nd	nd	nd
Methylene chloride	20	nd		nd	nd	nd	nd
trans-1,2-Dichloroethene	50	nd		nd	nd	nd	nd
1,1-Dichloroethane	50	nd		nd	nd	nd	nd
2,2-Dichloropropane	50	nd		nd	nd	nd	nd
cis-1,2-Dichloroethene	50	nd		nd	nd	nd	nd
Chloroform	50	nd		nd	nd	nd	nd
1,1,1-Trichloroethane	50	nd		nd	nd	nd	nd
Carbontetrachloride	50	nd		nd	nd	nd	nd
1,1-Dichloropropene	50	nd		nd	nd	nd	nd
Benzene	50	nd	91%	nd	nd	nd	nd
1,2-Dichloroethane(EDC)	20	nd		nd	nd	nd	nd
Trichloroethene	20	nd	80%	nd	nd	nd	nd
1,2-Dichloropropane	50	nd		nd	nd	nd	nd
Dibromomethane	50	nd		nd	nd	nd	nd
Bromodichloromethane	50	nd		nd	nd	nd	nd
cis-1,3-Dichloropropene	50	nd		nd	nd	nd	nd
Toluene	50	nd	106%	nd	nd	nd	nd
trans-1,3-Dichloropropene	50	nd		nd	nd	nd	nd
1,1,2-Trichloroethane	50	nd		nd	nd	nd	nd
Tetrachloroethene	50	nd		nd	nd	nd	nd
1,3-Dichloropropane	50	nd		nd	nd	nd	nd
Dibromochloromethane	20	nd		nd	nd	nd	nd
1,2-Dibromoethane (EDB)*	5	nd		nd	nd	nd	nd
Chlorobenzene	50	nd	94%	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	50	nd		nd	nd	nd	nd
Ethylbenzene	50	nd		nd	nd	nd	nd
Xylenes	50	nd		nd	nd	nd	nd
Styrene	50	nd		nd	nd	nd	nd
Bromoform	50	nd		nd	nd	nd	nd

A60607-1a

Client:

Hart Crowser, inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage Building

Client Project Number: Date received: 17250 06/07/06

Analytical Results

8260B, μg/kg		MTH BLK	LCS	SP14-S3	SP15-S3	SP19-S3	SP16B-S4
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/07/06
Date analyzed	Limits	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/07/06
I	50					nd	nd
Isopropylbenzene		nd		nd d	nd 		
1,2,3-Trichloropropane	50	nd		nd t	nd 	nd 	nd
Bromobenzene	50	nd		nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	50	nd		nd	nd	nd	nd
n-Propylbenzene	50	nd	•	nd	nd	nd	nd
2-Chlorotoluene	50	nd		nd	nd	nd	nd
4-Chlorotoluene	50	nd		nd	nd	nd	nd
1,3,5-Trimethylbenzene	50	nd		nd	nd	nd	nd
tert-Butylbenzene	50	nd		nd	nd	nd	nd
1,2,4-Trimethylbenzene	50	nd	•	រាជ	nd	nd	nd
sec-Butylbenzene	-50	nd		nd	nd	nd	nd
1,3-Dichlorobenzene	50	nd		nd	nd	nd	nd
Isopropyltoluene	50	nd		nd	nd	nd	nd
1,4-Dichlorobenzene	50	nd		nd	nd	nd	nd
1,2-Dichlorobenzene	50	nd		nd	nd	nd	nd
n-Butylbenzene	50	nd		nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	50	nd		nđ	nd	nd	nd
1,2,4-Trichlorobenzene	50	nd		nd.	nd	nd	nd
Hexachloro-1,3-butadiene	50	nd		nd	nd	nd	nd
Naphthalene	50	nd		nd	nd	nd	nd
1,2,3-Trichlorobenzene	50	nd		nd	nd	nd	nd
*-instrument detection limits						,	
Surrogate recoveries							
Dibromofluoromethane		92%	94%	80%	76%	75%	74%
Toluene-d8		107%	109%	111%	101%	95%	119%
1,2-Dichloroethane-d4		87%	92%	82%	101%	110%	73%
4-Bromofluorobenzene		111%	108%	112%	122%	127%	108%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130%

A60607-1a

Client:

Hart Crowser, Ir

Project Manager:

Julie Wukelic Goodwill Storag

Client Project Name: Client Project Number:

17250

Date received:

06/07/06

Analytical Results	`.				MSD	MSD	RPD
8260B, μg/kg		SP17-S3	SP18-S4_	SP20-S3	SP20-S3	SP20-S3	SP20-S3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/07/06	06/07/06	06/07/06	06/07/06	06/07/06	06/07/06
Date analyzed	Limits	06/07/06	06/07/06	06/07/06	06/07/06	06/07/06	06/07/06
Dichlorodifluoromethane	50	nd	nd	nd			
Chloromethane	50	nd	nd	nd			
Vinyl chloride	50	nd	nd	nd			
Bromomethane	50	nd	nd	nd			•
Chloroethane	50	nd	nd	nd	•		
Trichlorofluoromethane	50	nd	nd	nd			
1,1-Dichloroethene	50	nd	nđ	nd		•	
Methylene chloride	20 .	nd	nd.	nd			
trans-1,2-Dichloroethene	50	nd	nd	nd			
1,1-Dichloroethane	50	nd	nd	nd			
2,2-Dichloropropane	50	nd	nd	nd			
cis-1,2-Dichloroethene	50	nd	. nd	nd			
Chloroform	50	nd	nd	nd			
1,1,1-Trichloroethane	50	nd	nd	nd	•		
Carbontetrachloride	50	nd	nd	nd			
1,1-Dichloropropene	50	nd	nd	nd			
Benzene	50	nd	nd	nd	75%	70%	7%
1,2-Dichloroethane(EDC)	20	nd	nd	nd			
Trichloroethene	20	nd	nd	nd	101%	110%	8%
1,2-Dichloropropane	50	nd	nd	nd			
Dibromomethane	50	nd	nd	nd			
Bromodichloromethane	50	nd	nd	nd			
cis-1,3-Dichloropropene	50	nd	nd	nd			
Toluene	50	nd	nd	nd	119%	121%	2%
trans-1,3-Dichloropropene	50	nd	nd	nd			
1,1,2-Trichloroethane	50	nd	nd	nd			
Tetrachloroethene	50	nd	nd	. nd			
1,3-Dichloropropane	50	nd	nd	nd			
Dibromochloromethane	20	nd	nd	nd			
1,2-Dibromoethane (EDB)*	5	nd	nd	nd		•	
Chlorobenzene	50	nd	nd	nd	102%	105%	3%
1,1,1,2-Tetrachloroethane	50	nd	nd	nd	•		
Ethylbenzene	50	nd	nd	nd			
Xylenes	50	nd	nd	nd			
Styrene	50	nd	nd	nd			
Bromoform	50	nđ	nd	nd			

A60607-1a

Client:

Hart Crowser, Ir

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storag

Client Project Number:

17250

Date received:

06/07/06

Analytical Results					MSD	MSD	RPD
8260B, μg/kg		SP17-S3	SP18-S4	SP20-S3	SP20-S3	SP20-S3	SP20-S3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/07/06	06/07/06	06/07/06	06/07/06	06/07/06	06/07/06
Date analyzed	Limits	06/07/06	06/07/06	06/07/06	06/07/06	06/07/06	06/07/06
Isopropylbenzene	50	nd	nd	nd			
1,2,3-Trichloropropane	50 `	nd	nd	nd			,
Bromobenzene	50	nd	nd	nd			
1,1,2,2-Tetrachloroethane	50	nd	nd	nd			•
n-Propylbenzene	50	nd	nd	nd			
2-Chlorotoluene	50	nd	nd	nd			•
4-Chlorotoluene	50	nd	nd	nd	•		
1,3,5-Trimethylbenzene	50 .	nd	nd	nd			
tert-Butylbenzene	50	nd	nd	nd			
1,2,4-Trimethylbenzene	50	nd	nd	nd			
sec-Butylbenzene	50	nd	nd	nd			
1,3-Dichlorobenzene	50	nd	nd	nd			
Isopropyltoluene	50	nd	nd	nd			
1,4-Dichlorobenzene	50	nd	nd	nd		-	
1,2-Dichlorobenzene	50	nd	nd	nd			
n-Butylbenzene	50	nd	nd	nd			
1,2-Dibromo-3-Chloropropane	50	nd	nd	nd			
1,2,4-Trichlorobenzene	50	nd	nd	nd			
Hexachloro-1,3-butadiene	50	nd	nd	nd			
Naphthalene	50	nd	nd	nd			
1,2,3-Trichlorobenzene	50	nd	nd	nd			
*-instrument detection limits							
Surrogate recoveries							
Dibromofluoromethane		73%	73%	73%	83%	74%	
Toluene-d8	•	111%	118%	105%	101%	101%	
1,2-Dichloroethane-d4		84%	79%	97%	94%	96%	
1-Bromofluorobenzene		120%	116%	127%	124%	130%	

Data Qualifiers and Analytical Comments

nd.- not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130%

A60607-1a

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage Building

Client Project Number:

17250

Date received:

06/07/06

Analytical Results

NWTPH-Dx, mg/kg		MTH BLK	SP16B-S2	SP16B-S4	SP17-S3	SP18-S2	SP18-S4
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Şoil
Date extracted	Reporting	06/09/06	06/07/06	06/07/06	06/07/06	06/07/06	06/07/06
Date analyzed	Limits	06/09/06	06/07/06	06/07/06	06/07/06	06/07/06	06/07/06
Kerosene/Jet fuel	20	nd	nd	nd	. , nd	nd	nd
Diesel/Fuel oil	2 0	nd	nd	nd	nd	nd	nd
Heavy oil	50	nd	nd	rid	nd	nd	nd
Surrogate recoveries:				_			
Fluorobiphenyl		93%	123%	124%	112%	117%	112%
o-Terphenyl		106%	113%	113%	107%	110%	111%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60607-1a

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name: Client Project Number: Goodwill Storage E

17250

Date received:

06/07/06

Analytical Results	·	,	Dupi		Dupl		
NWTPH-Dx, mg/kg		SP20-S1	SP20-S1	SP20-S3	SP20-S3	SP14-S3	SP15-S3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/07/06	06/07/06	06/07/06	06/07/06	06/09/06	06/09/06
Date analyzed	Limits	06/07/06	06/07/06	06/07/06	06/07/06	06/09/06	06/09/06
Kerosene/Jet fuel	20	nd	nd	nd	nd	nd	nd
Diesel/Fuel oil	20	nd	nd	· nd	nd	· nd	nd
Heavy oil	50	nd	nd	nd	nd	nd	. nd
Surrogate recoveries:							
Fluorobiphenyi		127%	113%	114%	122%	· 70%	99%
o-Terphenyl		116%	112%	107%	117%	94%	96%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60607-1a

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage E

Client Project Number:

17250

Date received:

06/07/06

Analytical Results

NWTPH-Dx, mg/kg		SP19-S3
Matrix	Soit	Soil
Date extracted	Reporting	06/09/06
Date analyzed	Limits	06/09/06
		•
Kerosene/Jet fuel	20	nd
Diesel/Fuel oil	20	nd
Heavy oil	50	nd

Surrogate recoveries:

Fluorobiphenyl	70%
o-Terphenyl	96%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60607-1a

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage Building

Client Project Number:

17250

Date received:

06/07/06

Analytical Results

NIA/TOU CY/DTEY		MTH BLK	SP14-S3	SP15-S3	SP19-S3	SP18-S4
NWTPH-Gx/BTEX	0."					
Matrix	Soil	Soil	Soil	Soil	Soil_	Soil
Date extracted	Reporting	06/09/06	06/09/06	06/09/06	06/09/06	06/07/06
Date analyzed	Limits	06/09/06	06/09/06	06/09/06	06/09/06	06/07/06
NWTPH-Gx, mg/kg						
Mineral spirits/Stoddard	5.0	nd	nd	nd	nd	nd
Gasoline	5.0	nd	nd	nd	nd	nd
BTEX (8021B) , μg/kg						
	00					
Benzene	20	nd	nd	nd	nd	nd
Toluene	50	nd	nd	nd	nd	nd
Ethylbenzene	50	nd	nd	nd	nd	- nd
Xylenes	50	. nd	nd	nd	nd [.]	<u>nd</u>
Surrogate recoveries:						
`		4040/	740/	750/	710/	86%
Trifluorotoluene		121%	74%	75%	71%	
Bromofluorobenzene		106%	98%	97%	97%	96%_

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60607-1a

Client:

Hart Crowser, inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage Building

Client Project Number:

17250

Date received:

06/07/06

Analytical Results

Metals (7010/7471), mg/kg		MTH BLK	LCS	SP16B-S2	SP16B-S4	SP17-S3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
Date analyzed	Limits	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
Lead (Pb)	1.0	nd	112%	7.9	4.6	8.6
Chromium (Cr)	2.0	nd	85%	77	69	140
Cadmium (Cd)	1.0	nd	106%	nd	nd	nd
Arsenic (As)	2.0	nd	90%	3.2	2.4	4.3
Mercury (Hg) (7471)	0.5	. nd	90%	nd	nd	nd
Copper (Cu)	1.0	nd	79%	38	47	51
Nickel (Ni)	1.0	nd	84%	36	31	66
Zinc (Zn)	0.5	nd	120%	4.5	2.4	3.9

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60607-1a

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage Building

Client Project Number: Date received: 17250 06/07/06

Analytical Results

Metals (7010/7471), mg/kg	١	MTH BLK	SP18-S2	SP18-S4	SP20-S1	SP20-S3	SP14-S3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
Date analyzed	Limits	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06	06/09/06
Lead (Pb)	1.0	nd	8.1	3.8	3.4	, 7.0	1.0
Chromium (Cr)	2.0	nd	170	49	43	66 .	8.1
Cadmium (Cd)	1.0	nd	nd	nd	nd	nd	nd
Arsenic (As)	2.0	· nd	4.4	2.4	2.0	2.3	nd
Mercury (Hg) (7471)	0.5	nd	nd	nd	nd	nd	nd
Copper (Cu)	1.0	nd	33	18	20	36	4.1
Nickel (Ni)	1.0	nd	43	30	30	37	4.6
Zinc (Zn)	0.5	nd	4.4	nd	nď	3.9	8.6

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60607-1a

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage Building

Client Project Number:

17250

Date received:

06/07/06

Analytical Results				Dupl	RPD
Metals (7010/7471), mg/kg		MTH BLK	SP19-S3	SP19-S3	SP19-S3
Matrix	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	06/09/06	06/09/06	06/09/06	06/09/06
Date analyzed	Limits	06/09/06	06/09/06	06/09/06	06/09/06
	<u>-</u>				
Lead (Pb)	1.0	nd	1.8	1.9	6%
Chromium (Cr)	2.0	nd	11	12	8%
Cadmium (Cd)	1.0	nd	nd	nd	
Arsenic (As)	2.0	nd	nd	nd	
Mercury (Hg) (7471)	0.5	nd	nd	nd	
Copper (Cu)	1.0	nd	. 12	12	1%
Nickel (Ni)	1.0	nd	6.0	5.6	8%
Zinc (Zn)	0.5	nd	12	12	5%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

A60607-1b

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage Building

Client Project Number:

17250

Date received:

06/07/06

8260B, µg/L		MTH BLK	LCS	SP-15	SP-1
Matrix	Water	Water	Water	Water	Wate
Date analyzed	Reporting Limits	06/07/06	06/07/06	06/07/06	06/07/0
Dichlorodifluoromethane	1.0	nd		nd	n
Chloromethane	1.0	nd		nd	n
Vinyi chloride(*)	0.2	nd		nd	n
Bromomethane	1.0	. nd		nd	n
Chloroethane	1.0	nd		nd	'n
Trichlorofluoromethane	1.0	nd		nd	n
1,1-Dichloroethene	1.0	nd		nd	n
Methylene chloride	1.0	nd		nd	n
trans-1,2-Dichloroethene	1.0	nd		nd	n
1,1-Dichloroethane	1.0	nd		nd	n
2,2-Dichloropropane	1.0	nd		nd	n
cis-1,2-Dichloroethene	1.0	nd		nd	п
Chloroform	. 1.0	nd		nd	n
1,1,1-Trichloroethane	1.0	nd	·	nd	· n
Carbontetrachloride	1.0	nd		nd	п
1,1-Dichloropropene	1.0	nd		nd	n
Benzene	1.0	. nd	88%	nd	п
1,2-Dichloroethane(EDC)	1.0	nd		nd	п
Trichloroethene	1.0	. nd	87%	nd	п
1,2-Dichloropropane	1.0	nď		nd	n
Dibromomethane	1.0	nď		nd	n
Bromodichloromethane	1.0	nd		nd	n
cis-1,3-Dichloropropene	1.0	nd		' nd	. п
Toluene	1.0	. nd	120%	nd	n
trans-1,3-Dichloropropene	1.0	nd		nd	. п
1,1,2-Trichloroethane	1.0	nd		nd	n
Tetrachloroethene	1.0	nd		nd	П
1,3-Dichloropropane	1.0	nd		nd	n
Dibromochloromethane	[*] 1.0	nd		nd	п
1,2-Dibromoethane (EDB)*	0.01	nd	ė	nd	п
Chlorobenzene	1.0	nd	94%	nd	n
1,1,1,2-Tetrachloroethane	1.0	nd		nd	П
Ethylbenzene	1.0	nd		nd	n
Xylenes	1.0	nd	,	nd	п
Styrene	1.0	nd		nd	п
Bromoform	1.0	nd		nd	n
Isopropylbenzene	1.0	nd		nd	n
1,2,3-Trichloropropane	1.0	nd		nd	n

A60607-1b

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage Building

Client Project Number: Date received:

17250 06/07/06

Analytical Results

Analytical Results			_		Dupl
8260B, μg/L	_	MTH BLK	LCS	SP-15	SP-15
Matrix	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	06/07/06	06/07/06	06/07/06	06/07/06
Bromobenzene	1.0	nd		nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd		nd	nd
n-Propylbenzene	1.0	nd		nd	nd
2-Chlorotoluene	1.0	nd		nd	nd
4-Chlorotoluene	1.0	nd		nd	nd
1,3,5-Trimethylbenzene	1.0	nd		nd	nd
tert-Butylbenzene	1.0	nd		nd	nd
1,2,4-Trimethylbenzene	1.0	nd		nd	nd
sec-Butylbenzene	1.0	nd		nd	nd
1,3-Dichlorobenzene	1.0	nd		nd	nd
Isopropyltoluene	1.0	nd		nd	nd
1,4-Dichlorobenzene	1.0	nd		nd	nd
1,2-Dichlorobenzene	1.0	- nd		nd	nd
n-Butylbenzene	1.0	nd		nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd		nd	nd
1,2,4-Trichlorobenzene	1.0	nd		nd	nd
Hexachloro-1,3-butadiene	1.0	nd		nd	nd
Naphthalene	1.0	nd		nd	nd
1,2,3-Trichlorobenzene	1.0	nd		nd	nd
*-instrument detection limits	· .	 			
Surrogate recoveries		•		·	
Dibromofluoromethane		91%	84%	79%	83%
Toluene-d8	•	120%	113%	94%	108%
1,2-Dichloroethane-d4		75%	80%	109%	102%
4-Bromofluorobenzene		119%	117%	128%	119%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130%

A60607-1b

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage Building

Client Project Number: Date received: 17250 06/07/06

۸	احمندا	Resu	14-
АПЯ	ווכיווועו	Resu	II S

Dupi

119%

NWTPH-Dx, mg/l		MTH BLK	SP-15	SP-15
Matrix	Water	Water	Water	Water
Date extracted	Reporting	06/07/06	06/07/06	06/07/06
Date analyzed	Limits	06/07/06	06/07/06	06/07/06
		•		-
Kerosene/Jet fuel	0.20	nd	nd	nd
Diesel/Fuel oil	0.20	nd	nd	nd
Heavy oil	0.50	nd	nd	nd
Surrogate recoveries:				
Fluorobiphenyl		115%	129%	128%

118%

113%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

o-Terphenyl

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 70% TO 130%

A60607-1b

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage Building

Client Project Number: 17250

Date received:

06/07/06

Analytical Results				Dupl
NWTPH-Gx		MTH BLK	SP-15	SP-15
Matrix	Water	Water	Water	Water
Date analyzed	Reporting Limits	06/07/06	06/07/06	06/07/06
	-		ř	
NWTPH-Gx, mg/L				
Mineral spirits/Stoddard	0.10	nd	nd	nd
Gasoline	0.10	nd	nd	nd
Surrogate recoveries:				
Trifluorotoluene		79%	81%	79%
Bromofluorobenzene		85%	87%	88%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 70% TO 130%

A60607-1b

Client:

Hart Crowser, Inc.

Project Manager:

Julie Wukelic

Client Project Name:

Goodwill Storage Building

Client Project Number:

17250

Date received:

06/07/06

Analytical Results

Metals Total (7010/7470A), mg/l		MTH BLK	LCS	SP-15
Matrix _	Water	Water	Water	Water
Date extracted	Reporting	06/16/06	06/16/06	06/16/06
Date analyzed	Limits	06/16/06	06/16/06	06/16/06
Lead (Pb)	0.002	nd	110%	nd
Chromium (Cr)	0.01	nd	98%	nd
Cadmium (Cd)	0.005	nd	118%	nđ
Arsenic (As)	0.005	nd	105%	nd
Mercury (Hg) (7470A)	0.001	nd	90%	nd
Copper (Cu)	0.01	nd	104%	nd
Nickel (Ni)	0.01	nd	83%	0.053
Zinc (Zn)	0.001	nd	104%	0.002

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

J - estimated value

Acceptable Recovery limits: 70% TO 130%

July 17, 2006

Job No.: 07-5-1100-011

Date:

HARTCROWSER

Letter of Transmittal

Delivering smarter solutions

To:

Department of Ecology

Northwest Regional Office 3190 160th Avenue SE

Bellevue, WA 98008-5442

Attn:

Sunny Linhao Becker, P.E.

Re:

Background documents for Goodwill Property, Mar-Lac Property, and Dearborn

Corporate Campus

We are sending the following items:

Date	Copies	Description
March 11, 2002	1	Draft Remedial Investigation/Feasibility Study (RI/FS) and Cleanup Action Plan, Dearborn Corporate Campus
January 5, 2005	1	Limited Phase II Assessment, Mar-Lac Property
January 5, 2005	1	Limited Phase II Assessment, Goodwill Property
July 7, 2006	1	Draft Limited Phase Subsurface Assessment, Herzog Glass Property
July 10, 2006	1	Draft Limited Phase Subsurface Assessment, Goodwill/Former Unocal No. 0166 Property
July 13, 2006	1	Draft Supplemental Subsurface Assessment, Goodwill Industries and Goodwill Storage Property

By:

Art Hube Title: Staff

Copies to:

Darrell Vange, Dearborn Street Developers, LLC (Letter of Transmittal only)