REMEDIAL INVESTIGATION AND FOCUSED FEASIBILITY STUDY REPORT

Building C at Woodinville West Business Park

16750 Woodinville-Redmond Road NE, Woodinville, Washington Facility/Site #36189742 Cleanup Site #16672

Remedial Investigation and Focused Feasibility Study Report

Building C at Woodinville West Business Park Woodinville, Washington

Prepared for:

Woodinville CD, LLC

c/o Fox Rothschild LLP 1001 Fourth Avenue, Suite 4500 Seattle, Washington 98154-1065

This document has been prepared by SLR International Corporation (SLR). The material and data in this report were prepared under the supervision and direction of the undersigned.

Christopher A. Lee

Christopher Lee, L.G. Associate Geologist

John McCorkle Principal Scientist

CONTENTS

ACF	RONYMS)		iii	
1.	INTRODUCTION				
	1.1	Descriptio	n of Subject Property	1	
	1.2	•	subsurface Assessment Results		
2.	REMEDIAL INVESTIGATION ACTIVITIES				
	2.1	Drill and S	nd Sample Soil Borings and Install Monitoring Wells		
			April 2022 Drilling and Well Installation Activities		
			January 2023 Drilling and Well Installation Activities		
		2.1.3	Soil Sample Analytical Results	6	
	2.2	Conduct C	Quarterly Groundwater Monitoring Events	7	
		2.2.1	Groundwater Monitoring Results	7	
		2.2.2	Groundwater Sample Analytical Results	8	
	2.3	Conduct Ir	ndoor Air Sampling Event	10	
	2.4	Site Geolo	gy and Hydrogeology	11	
3.	CONCEPTUAL SITE MODEL				
	3.1	Source Ch	aracterization	12	
	3.2	Evaluation of Potential Terrestrial and Aquatic Ecological Receptors			
	3.3	Fate and T	ate and Transport of Contaminants		
	3.4	Potential I	Human Receptors and Exposures	14	
		3.4.1	Human Receptors	14	
		3.4.2	Potential Human Exposures	15	
4.	NATURE AND EXTENT OF CONTAMINATION				
	4.1	Extents of	Soil Contamination	17	
	4.2	Extents of Groundwater Contamination			
5.	FOCUSED FEASIBILITY STUDY				
	5.1	Remedial	Action Alternatives	18	
		5.1.1	Alternative 1: Enhanced RDC	18	
		5.1.2	Alternative 2: Vacuum-Enhanced Groundwater Recovery and MNA	20	
		5.1.3	Alternative 3: Soil Excavation, Groundwater Extraction, and MNA	22	
	5.2	Evaluation	n Basis for Remedial Action Alternatives	24	
		5.2.1	Disproportionate Cost Analysis	24	
	5.3	5.3 Evaluation of Remedial Alternatives			
			Protectiveness		
			Permanence		
			Effectiveness Over the Long Term		
			Management of Short-Term Risks		
		5.3.5	Technical and Administrative Implementability	28	

i

CONTENTS (CONTINUED)

		5.3.6 5.3.7	Consideration of Public Concerns			
	5.4	Results of Disproportionate Cost Analysis				
6.	CONCL	USIONS .		30		
7.	REFERE	ENCES		33		
FIGU	RES					
Figure 1		Sub	ject Property Location Map			
Figur	e 2	Soil	and Groundwater Investigation Locations			
Figur	e 3	Indo	oor Air and Soil Vapor Sample Locations			
Figur	e 4	Soil	Sample Analytical Results – PCE and Cis-1,2-Dichloroethene			
Figur	e 5	Sha	llow Groundwater Elevation Contour Map – April 12, 2022			
Figur	e 6	Sha	llow Groundwater Elevation Contour Map – July 12, 2022			
Figur	e 7	Sha	llow Groundwater Elevation Contour Map – October 12, 2022			
Figur	e 8	Sha	llow Groundwater Elevation Contour Map – January 9, 2023			
Figur	e 9		kimum Vinyl Chloride Concentrations in 2022 and 2023 Groundwater aples			
Figur	e 10	Con	ceptual Site Model – Human Health			
Figur	e 11	Alte	ernative 1 – Enhanced RDC			
Figur	e 12	Alte	rnative 2 – Vacuum-Enhanced Groundwater Recovery and MNA			
Figure 13		Alte	Alternative 3 – Soil Excavation, Groundwater Extraction, and MNA			
TABL	.ES					
Table	e 1	Soil	Sample Analytical Results - VOCs			
Table	2	Gro	undwater Sampling Field Parameter Measurements			
Table	3	Gro	undwater Monitoring Data			
Table	e 4	Gro	undwater Sample Analytical Results - VOCs			
Table	e 5	Indo	oor Air Sample Analytical Results - VOCs			
Table	e 6	Cost	t Estimate for Alternative 1 - Enhanced RDC			
Table	e 7	Cost MN	t Estimate for Alternative 2 - Vacuum-Enhanced Groundwater Recovery A	and		
Table	8 8	Cost MN	t Estimate for Alternative 3 - Soil Excavation, Groundwater Extraction, a A	nd		
Table	9	Rem	nedial Alternatives Evaluation and Disproportionate Cost Analysis			
APPE	NDICE	S				
Appe	ndix A	Soil	Boring Logs			
Appe	ndix B	Lab	oratory Reports			
Appe	ndix C	Gro	undwater Sampling Field Data Sheets			

ACRONYMS

μg/L micrograms per liter

μg/m³ micrograms per cubic meter

AKART all known and reasonable technologies

Apex Apex Laboratories, Inc.

ARAR applicable, relevant, and appropriate requirement

AS air sparging

bgs below ground surface

°C degrees Celsius
Cascade Cascade Drilling
CDF controlled-density fill
cfm cubic feet per minute
cis-1,2-DCE cis-1,2-dichloroethene
COC contaminant of concern

Coit Services

CODA

CSM conceptual site model

DCA disproportionate cost analysis

DCE dichloroethene
DO dissolved oxygen

Ecology Washington State Department of Ecology

CODA Consulting Group

EPA United States Environmental Protection Agency

ESA environmental site assessment

FFS focused feasibility study

ft/ft feet per foot

GAC granular activated carbon

gpm gallons per minute

HVOC halogenated volatile organic compound

KCIW King County Industrial Waste mg/kg milligrams per kilogram mg/L milligrams per liter MDL method detection limit

MNA monitored natural attenuation

MRL method reporting limit
MTCA Model Toxics Control Act

mV millivolt

O&M operation and maintenance ORP oxidation-reduction potential

PCE tetrachloroethene

PID photoionization detector

ppm parts per million

PSCAA Puget Sound Clean Air Agency

ACRONYMS (CONTINUED)

PVC polyvinyl chloride

RAO remedial action objective
RDC reductive dechlorination
RI remedial investigation
ROI radius of influence

Seattle Pump and Equipment Co.
SLR SLR International Corporation

STEE simplified terrestrial ecological evaluation

SVE soil vapor extraction

USCS Unified Soil Classification System

VC vinyl chloride VI vapor intrusion

VOC volatile organic compound

WAC Washington Administrative Code

1. INTRODUCTION

On behalf of Woodinville CD, LLC, the former owner of the Building C property (the Subject Property) of the Woodinville West Business Park, SLR International Corporation (SLR) has prepared this report to present the results of the remedial investigation (RI) activities that were conducted at the Subject Property and surrounding area from April 2022 through January 2023. The Subject Property is located at 16750 Woodinville-Redmond Road NE in Woodinville, Washington (see Figure 1). This report also presents: 1) a conceptual site model that describes the transport mechanisms and pathways by which human and ecological receptors may be exposed to the contaminants in the soil and groundwater at the Building C Site (the Site; also designated by the Washington Department of Ecology [Ecology] as the Woodinville West Business Park Site), and 2) a focused feasibility study (FFS) that identifies and evaluates soil and groundwater remediation alternatives for the Site.

The objectives of the RI and the FFS included the following:

- Delineate the lateral extents of the known tetrachloroethene (PCE)-impacted soil beneath Building C in the vicinity of the former dry cleaning machine;
- Assess if the former Wincraft print washing operation in Suite C-101 of Building C was an additional source of halogenated volatile organic compound (HVOC)-impacted soil and/or groundwater;
- Assess if groundwater samples from properly developed monitoring wells at the Subject Property area would contain HVOC concentrations greater than the Model Toxics Control Act (MTCA) Method A or Method B cleanup levels;
- Delineate the lateral extents of the HVOC-impacted groundwater (if groundwater samples from properly developed monitoring wells contained HVOC concentrations greater than the Method A or Method B cleanup levels);
- Monitor any seasonal effects on the groundwater flow direction and HVOC concentrations in the groundwater;
- Assess any seasonal effects on the indoor air quality within smaller spaces in Building C to further assess the soil vapor pathway into the building;
- Evaluate the potential risks associated with the Site contamination; and
- Develop and evaluate remedial alternatives in accordance with MTCA and select a recommended alternative.

1.1 DESCRIPTION OF SUBJECT PROPERTY

The Subject Property is located at the northern portion of the Woodinville West Business Park, at 16750 Woodinville-Redmond Road Northeast (see Figure 1). The business park consists of an approximately 9.76-acre property (King County parcel number 0926059084), which is located within an industrial area at the southwestern part of Woodinville. Based on a review of online

King County Assessor records, a timeline of the Subject Property owners, including the dates that the property was acquired, is provided below:

- December 2021 Terreno Woodinville II LLC & Terreno Realty Corporation
- July 2020 Woodinville CD, LLC
- June 2015 Woodinville West LLC
- January 2006 Everything Else LLC
- March 1995 Wilcoxon Family Limited Partners
- December 1994 Robert and Marjorie Wilcoxon
- December 1994 Intrawest Properties Partnership

The Subject Property is developed with a 19,000 square foot (SF) warehouse (designated as Building C). The building was constructed in 1999. Building C contains three suites (C-101, C-102, and C-103) that are currently occupied by the following tenants:

- Suite C-101 Seattle Pump and Equipment Co. (Seattle Pump) provides water pump, high
 pressure industrial cleaning equipment, sprayers, "jetters" and pipe cleaning equipment
 sales, rentals, and repair. Prior to Seattle Pump, Wincraft, a former tenant, conducted
 screen and sign printing operations in Suite C-101. Wincraft reportedly used
 trichloroethene (TCE) in its operations, and during a Phase I Environmental Site
 Assessment (ESA) in 2008, waste from the print washing operations was observed
 discharging directly to a floor drain in the print washing area. The floor drain is reportedly
 connected to the Subject Property's sanitary sewer system (Adapt Engineering, Inc.,
 2008).
- Suite C-102 Intertek PSI is a construction project services and concrete testing company. Before relocating to Suite C-103, Coit Services (Coit) occupied C-102. Coit cleans residential and commercial air ducts, area rugs, carpets, upholstery, and other products, and also provides fire, smoke, and water damage restoration services. Coit formerly operated a dry cleaning machine along the east wall of Suite C-102 that used PCE between approximately 1999 and 2007.
- Suite C-103 is occupied by Coit.

The Subject Property is bounded to the north by a large office/warehouse building occupied by a utility locating service, a biotechnology research company, a specialty metal and titanium supplier to the aerospace industry, and an engineering firm; to the west by a former railroad right-of-way (ROW) currently owned by King County Parks, beyond which is the Woodinville-Redmond Road ROW and a manufacturer of commercial marine deck hatches; to the east by the Sammamish River, beyond which is the Sammamish River Trail and Woodin Creek Park; and to the south by Building D of the Woodinville West Business Park, which is a large warehouse occupied by a manufacturer of a powdered drink mix and an electrical contractor business.

1.2 PREVIOUS SUBSURFACE ASSESSMENT RESULTS

In November 2019 and December 2021, Phase II Environmental Site Assessments (ESAs) were conducted by AECOM and CODA Consulting Group (CODA), respectively, at the Subject Property as part of environmental and transactional due diligence activities. The AECOM assessment consisted of drilling and sampling five soil borings (GP-1 through GP-5) and installing and sampling a temporary well in each boring, and the CODA assessment consisted of drilling and sampling 12 soil borings (B-1 through B-12) and installing and sampling temporary wells in 10 of the borings (B-1 through B-9 and B-11). The approximate locations of the 2019 and 2021 soil borings are shown on Figure 2.

The results of the assessments showed that shallow soil samples collected at depths of up to 7 feet below ground surface (bgs) from 3 of the borings (B-11, GP-4, and GP-5) contained PCE concentrations (0.092 to 0.14 milligrams per kilogram [mg/kg]) that exceeded the MTCA Method A cleanup level (0.05 mg/kg). Soil samples collected at depths between 10 and 15 feet bgs from borings B-7, B-11, B-12, GP-4, and GP-5 contained cis-1,2-dichloroethene (cis-1,2-DCE) concentrations (0.13 to 0.33 mg/kg) that exceeded the Method B cleanup level based on protection of groundwater in the saturated zone (0.0052 mg/kg). The deep soil sample from B-11, collected from 10 to 15 feet bgs, also contained a vinyl chloride (VC) concentration (0.007 mg/kg) that exceeded the Method B cleanup level based on protection of the groundwater in the saturated zone (0.00009 mg/kg). Shallower samples from B-12 and GP-5, collected at depths of less than 7 feet bgs, contained cis-1,2-DCE concentrations (0.27 and 0.13 mg/kg, respectively) that exceeded the Method B cleanup level based on protection of groundwater in the vadose zone (0.079 mg/kg). B-11, B-12, GP-4, and GP-5 were located near the former dry cleaning machine in Suite C-102, and B-7 was located near an underground oil/water separator to the northwest of Building C (see Figure 2). The groundwater samples collected from the temporary wells installed in borings located near the former dry cleaning machine (B-11 and GP-4), near the oil/water separator (B-7 and GP-3), and to the northeast of Building C in an estimated downgradient (northeastern) direction (B-4) contained VC concentrations (0.35 to 5.45 micrograms per liter [µg/L]) that exceeded the Method A cleanup level (0.20 µg/L; AECOM, 2019 and CODA, 2021); however, the results may have been biased high since the samples were collected from undeveloped temporary wells.

In December 2021, CODA also installed sub-slab soil vapor points in borings B-10 and B-12, collected soil vapor samples from the points, and collected six indoor air samples (A-01 through A-04, A-06, and A-07) within Building C, as well as two exterior ambient air samples (A-05 and A-08), to assess the potential soil vapor intrusion risks at the Site. The 2021 soil vapor and indoor air sample locations are shown on Figure 3. The sub-slab soil vapor sample collected from B-12, located near the former dry cleaning machine, contained PCE, TCE, and VC concentrations (615, 70.2, and 81.3 micrograms per cubic meter $[\mu g/m^3]$, respectively) that exceeded the MTCA Method B sub-slab soil gas screening levels (320, 11, and 9.5 $\mu g/m^3$, respectively). However, the indoor air samples collected in Building C did not contain PCE, TCE, VC, or any other HVOCs at concentrations above either the MTCA Method B indoor air cleanup levels or the laboratory's method reporting limits (MRLs; CODA, 2021).

2. REMEDIAL INVESTIGATION ACTIVITIES

To meet the objectives presented in Section 1, SLR conducted RI activities at the Subject Property from April 2022 through January 2023. A description of the field activities and the results of the work are presented below.

2.1 DRILL AND SAMPLE SOIL BORINGS AND INSTALL MONITORING WELLS

To meet the RI objectives, the drilling and well installation work was completed in two phases. The first phase of this work was conducted in April 2022 and the second phase was performed in January 2023.

2.1.1 APRIL 2022 DRILLING AND WELL INSTALLATION ACTIVITIES

In April 2022, drilling and well installation activities were conducted to:

- Delineate the lateral extents of the PCE-impacted soil beneath Building C in the vicinity of the former dry cleaning machine,
- Assess if the former Wincraft print washing operation in Suite C-101 was an additional source of HVOC-impacted soil and/or groundwater,
- Assess if groundwater samples from properly developed groundwater monitoring wells would contain VC concentrations greater than the MTCA Method A or Method B cleanup levels.

To address these objectives, Cascade Drilling (Cascade) of Woodinville, Washington, drilled and sampled a total of eight soil borings (designated as MW-1, MW-2, MW-3, and SB-1 through SB-5) at the Subject Property, and completed three of the borings as properly constructed and developed groundwater monitoring wells (MW-1, MW-2, and MW-3). The work was conducted under the direction of an SLR geologist. To delineate the lateral extents of the PCE-impacted soil, soil borings SB-1 through SB-4 were located to the north, south, east, and west of the former dry cleaning machine. To assess if the former Wincraft print washing operation was an additional source of HVOC-impacted soil and/or groundwater, soil borings SB-5 and MW-3 were located near the floor drain at the former print washing area and along the side sewer downstream from the floor drain, respectively. To further assess the groundwater conditions, well MW-1 was located in the vicinity of the former dry cleaning machine, well MW-2 was located near the oil/water separator, and well MW-3 was located along the northeastern side of Building C (in the vicinity of previous boring B-4, as well as near the side sewer described above). The locations of the borings and wells are shown on Figure 2.

Prior to conducting the drilling activities, private and public utility locates were conducted to identify and mark any underground utilities near the drilling locations. The private utility locating included tracing the non-conductible drain lines near the drilling locations that were accessible through nearby floor drains, clean-outs, or accessible drainpipes. To reduce the likelihood of any

damaged utilities, Cascade conducted pre-drilling utility clearance of each drilling location by using a hand auger to a depth of approximately 5 feet bgs.

Cascade drilled and sampled the soil borings for MW-1, MW-2, MW-3, and SB-1 through SB-4, by using a hydraulic push-probe rig. Boring SB-5 was located in a small room only accessible via a man door, and it could only be advanced and sampled by using a hand auger. All of the drilling activities were conducted under the direction of an SLR geologist.

Borings MW-1, MW-2, and MW-3 were each drilled to a depth of approximately 23 feet bgs (7 feet below the lowest depth to groundwater during the previous assessments). Borings SB-1, SB-2, SB-3, and SB-4 were each drilled to a depth of approximately 20 feet bgs. Boring SB-5 was advanced to a depth of approximately 5 feet bgs. During the drilling of each of the borings, soil samples were collected on a continuous basis to a depth of approximately 5 feet bgs by using a decontaminated bucket-auger sampler on the hand auger. At MW-1, MW-2, MW-3, and SB-1 through SB-4, soil samples were then collected on a continuous basis from 5 feet bgs to the bottom of the boring by using disposable acetate liners within the drill rods. SLR personnel screened each of the soil samples for the potential presence of HVOCs by using visual appearance, odors, and photoionization detector (PID) readings.

The soil sample from each boring that exhibited the strongest field evidence of contamination was submitted to Apex Laboratories (Apex) in Tigard, Oregon, for analysis. If there was no field evidence of contamination, then the soil sample collected immediately above the groundwater table was submitted for analysis. Additionally, the soil sample collected from the bottom of each boring was submitted for potential analysis to delineate the vertical extent of any impacted soil in the boring. The selected soil samples were analyzed for full-list volatile organic compounds (VOCs) by EPA Method 8260D (including VC by EPA Method 8260D SIM). The soil lithology, field screening results, and moisture content in each boring, and the construction details of the monitoring wells, are included on the soil boring logs presented in Appendix A.

After drilling and sampling the soil borings for MW-1, MW-2, and MW-3, Cascade over-drilled these borings by using hollow-stem auger methods and completed the borings as groundwater monitoring wells. Cascade constructed each of the groundwater monitoring wells with 2-inch-diameter Schedule 40 PVC casing and a 20-foot-long screen (0.010-inch-wide slots) that was installed from approximately 3 to 23 feet bgs. The 20-foot-long screen allowed for the significant seasonal groundwater elevation fluctuations due to the proximity of the Sammamish River, which is located less than 50 feet to the east of the Subject Property. A filter pack consisting of 10x20 Colorado® silica sand was extended from at least 6 inches below the bottom screen slot to at least six inches above the uppermost screen slot. A hydrated bentonite chip seal was installed above the filter pack to approximately 1-foot bgs, and a traffic-rated steel monument was installed (in concrete) flush with the ground surface to protect each well. After installation, Cascade developed each of the wells by using surging and pumping methods to ensure hydraulic continuity between the well screen and formation materials. Signature Surveying of Shoreline, Washington, surveyed the ground surface and top of casing elevations of the wells relative to the NAVD 88 datum.

2.1.2 JANUARY 2023 DRILLING AND WELL INSTALLATION ACTIVITIES

In January 2023, a second phase of the drilling and well installation work was conducted to try and delineate the lateral extents of the VC-impacted groundwater. To meet this objective, Cascade drilled and sampled six soil borings and completed each boring as a properly constructed and developed groundwater monitoring well (designated as MW-4 through MW-9). The work was conducted under the direction of an SLR geologist. The locations of the wells were selected based on the groundwater sample analytical results from wells MW-1, MW-2, and MW-3 during the April, July, and October 2022 quarterly groundwater monitoring activities described below. Wells MW-4, MW-5, and MW-6 were located to the northeast, southeast, and west-southwest, respectively, of MW-1, and wells MW-7, MW-8, and MW-9 were located to the west, north, and northeast, respectively, of MW-2. MW-6 was also located to the south-southeast of MW-2 and MW-9 was also located to the north-northwest of MW-1. The locations of the wells MW-4 through MW-9 are shown on Figure 2.

The drilling and soil sampling procedures and the well construction details of monitoring wells MW-4 through MW-9 were consistent with those described above for wells MW-1 through MW-3. However, since these wells were not located near a potential source area or within an area of impacted soil, and there was no field evidence of HVOCs in any of the soil samples from the borings, none of the soil samples from borings MW-4 through MW-9 were submitted for laboratory analysis. After installation, Cascade developed each of the wells by using surging and pumping methods to ensure hydraulic continuity between the well screen and formation materials of the wells. Signature Surveying surveyed the ground surface and top of casing elevations of the wells relative to the NAVD 88 datum.

The soil waste generated by both phases of the drilling activities and the wastewater generated from the decontamination of the drilling and sampling equipment, as well as the development of the monitoring wells, were transported off-site and disposed as non-hazardous waste at the Chemical Waste Management of the Northwest facility in Arlington, Oregon.

2.1.3 SOIL SAMPLE ANALYTICAL RESULTS

The soil sample analytical results showed that the samples collected from borings SB-4, at approximately 4 feet bgs, contained a cis-1,2-DCE concentration (0.26 mg/kg) that exceeded the MTCA Method B cleanup based on protection of groundwater in the vadose zone. The soil sample collected from boring MW-1, at a depth of approximately 13 feet bgs, contained a cis-1,2-DCE concentration (0.11 mg/kg) that exceeded the MTCA Method B cleanup level based on protection of groundwater in the saturated zone. SB-4 and MW-1 were located approximately 25 feet to the northeast and 9 feet to the northwest, respectively, of the former dry cleaning machine (see Figure 2). As described below in Section 2.4, the groundwater monitoring data collected in 2012 and 2013 indicated that the vadose zone extends to a depth of approximately 8.70 feet bgs beneath the Subject Property area.

None of the other soil samples contained analyte concentrations greater than either the MRLs or the MTCA Method A or B cleanup levels. The soil sample analytical results from this investigation,

as well as from the previous assessments (for VOCs only), are presented in Table 1. The soil sample analytical results from this investigation and the previous assessments (for PCE and cis-1,2-DCE only) are presented on Figure 4. Copies of the laboratory reports from this investigation are included in Appendix B.

2.2 CONDUCT QUARTERLY GROUNDWATER MONITORING EVENTS

On April 12, July 12, and October 12, 2022, and on January 9 and 10, 2023, SLR conducted quarterly groundwater monitoring events to monitor seasonal fluctuations in the groundwater conditions during periods of higher and lower groundwater elevations. During the April, July, and October 2022 monitoring events, SLR personnel collected groundwater samples from each of the monitoring wells (MW-1, MW-2, and MW-3) at the Subject Property. The January 2023 monitoring event included MW-1, MW-2, and MW-3, as well as the six newly installed wells (MW-4 through MW-9). Prior to sampling, SLR personnel measured the depth to groundwater in each of the wells by using an electronic water level meter. SLR used a peristaltic pump with dedicated tubing in each well to purge and sample the wells by using low flow (approximately 0.33 liters per minute) pumping methods. The intake of the tubing was placed at approximately 2 feet below the groundwater level in each well. During the purging of each well, SLR measured the pH, conductivity, temperature, oxidation-reduction potential (ORP), and dissolved oxygen (DO) of the extracted water approximately every three minutes. The groundwater samples were collected from each well following stabilization of the field parameter measurements. The final groundwater sampling field parameter measurements from each well during the monitoring events are presented in Table 2. Copies of the groundwater sampling field data sheets from each of the monitoring events are presented in Appendix C.

The groundwater samples from each of the monitoring events were submitted to Apex for analysis. The samples were analyzed for full-list VOCs by EPA Method 8260D (including VC by EPA Method 8260D SIM).

2.2.1 GROUNDWATER MONITORING RESULTS

On April 12, 2022, the depths to groundwater in the monitoring wells (MW-1 through MW-3) ranged from 9.61 to 14.07 feet below the top of each well casing. Based on the results of the April 2022 well elevation survey described above, the groundwater elevations in the wells ranged from 21.41 to 22.48 feet above the NAVD88 datum. Based on the groundwater elevations on April 12, 2022, the general groundwater flow direction beneath the Subject Property area was to the northeast with a horizontal hydraulic gradient of approximately 0.009 feet per foot (ft/ft). A groundwater elevation contour map of the data collected on April 12, 2022, is presented on Figure 5.

On July 12, 2022, the depths to groundwater in the monitoring wells (MW-1 through MW-3) ranged from 10.84 to 15.28 feet below the top of each well casing. The groundwater elevations in the wells ranged from 20.27 to 21.25 feet above the NAVD88 datum. Based on the groundwater elevations on July 12, 2022, the general groundwater flow direction beneath the

Subject Property area was to the northeast with a horizontal hydraulic gradient of approximately 0.009 ft/ft. A groundwater elevation contour map of the data collected on July 12, 2022, is presented on Figure 6.

On October 12, 2022, the depths to groundwater in the monitoring wells (MW-1 through MW-3) ranged from 12.12 to 16.54 feet below the top of each well casing. The groundwater elevations in the wells ranged from 19.34 to 19.97 feet above the NAVD88 datum. Based on the groundwater elevations on October 12, 2022, the general groundwater flow direction beneath the Subject Property area was to the northeast with a horizontal hydraulic gradient of approximately 0.005 ft/ft. A groundwater elevation contour map of the data collected on October 12, 2022, is presented on Figure 7.

On January 9, 2023, the depths to groundwater in each of the monitoring wells (MW-1 through MW-9) ranged from 8.70 to 13.67 feet below the top of each well casing. Based on the results of the previous well elevation surveys described above, the groundwater elevations in the wells ranged from 21.85 to 23.01 feet above the NAVD88 datum. Based on the groundwater elevations on January 9, 2023, the general groundwater flow direction beneath the Subject Property area was to the east-northeast with a horizontal hydraulic gradient of approximately 0.007 ft/ft. A groundwater elevation contour map of the data collected on January 9, 2023, is presented on Figure 8.

The depth to groundwater measurements and the groundwater elevations in the monitoring wells during the April 2022, July 2022, October 2022, and January 2023 groundwater monitoring events are presented in Table 3.

2.2.2 GROUNDWATER SAMPLE ANALYTICAL RESULTS

The groundwater sample analytical results from the April 2022 sampling event showed that the sample collected from monitoring well MW-1 contained a VC concentration (0.27 $\mu g/L$) that exceeded the MTCA Method A cleanup level (0.2 $\mu g/L$). The groundwater samples from MW-2 and MW-3 did not contain any VOC analyte concentrations above either the MRLs or the MTCA Method A or B cleanup levels.

The groundwater sample analytical results from the July 2022 sampling event showed that the sample collected from monitoring well MW-2 contained a VC concentration (0.21 μ g/L) that exceeded the MTCA Method A cleanup level. The groundwater samples from MW-1 and MW-3 did not contain any VOC analyte concentrations above either the MRLs or the MTCA Method A or B cleanup levels.

The groundwater sample analytical results from the October 2022 sampling event showed that the sample collected from monitoring well MW-2 contained a VC concentration (0.93 $\mu g/L$) that exceeded the MTCA Method A cleanup level. The groundwater samples from MW-1 and MW-3 did not contain any VOC analyte concentrations above either the MRLs or the MTCA Method A or B cleanup levels.

The groundwater sample analytical results from the January 2023 sampling event showed that the samples collected from monitoring well MW-1, as well as from newly installed wells MW-4, MW-8, and MW-9, contained VC concentrations (0.38, 9.83, 1.01, and 1.61 μ g/L, respectively) that exceeded the MTCA Method A cleanup level. The groundwater samples from the other wells did not contain any VOC analyte concentrations above either the MRLs or the MTCA Method A or B cleanup levels.

The groundwater sample analytical results from this investigation, as well as from the previous assessments (for VOCs only), are presented in Table 4. The maximum VC concentration in the groundwater samples from each monitoring well during this investigation is presented on Figure 9. Copies of the laboratory reports from this investigation are included in Appendix B.

2.2.2.1 GROUNDWATER SAMPLE ANALYTICAL RESULTS TO EVALUATE ENHANCED REDUCTIVE DECHLORINATION AS POTENTIAL REMEDIATION TECHNOLOGY

To assist with the evaluation of enhanced reductive dechlorination (RDC) as a potential groundwater remediation technology for the VC plume, the January 2023 groundwater samples from four wells (MW-1, MW-2, MW-4, and MW-9) that contained VC concentrations above the MTCA Method A cleanup level were submitted to Apex for analysis of nitrate and sulfate by EPA Method 300.0, and methane, ethane, and ethene by Method RSK 175. The samples from MW-1 and MW-2 were also submitted to SiREM in Knoxville, Tennessee, for enumeration of VC reductase genes (vcrA and bvcA) and TCE reductase genes (tceA) by the Gene Trac VCRA Method. During the purging of wells MW-1, MW-2, MW-4, and MW-9, SLR personnel also measured the ferrous iron content of the extracted water with a Hach field testing kit. Copies of the laboratory reports for the groundwater samples that were analyzed for the parameters to evaluate RDC are presented in Appendix B, and the ferrous iron concentrations, where measured, are presented on the groundwater sampling field data sheets in Appendix C.

Background data are not available for comparison, but field measurements and geochemical data indicate that the groundwater in the vicinity of MW-1, MW-2, MW-4, and MW-9 (within the vinyl chloride plumes) is largely conducive to RDC. The concentrations of electron acceptors are generally low enough to be considered favorable for anaerobic RDC; specifically, DO is <1 milligrams per liter (mg/L), nitrate is <1 mg/L and sulfate is <20 mg/L. Similarly, ferrous iron, which is produced when ferric iron is used as an electron acceptor, was detected at levels greater than 3 mg/L (the upper limit of quantitation) in all four analyzed samples.

The most notable exception in the geochemical data is ORP. Field measurements of ORP ranged from +16 to +38 millivolts (mV), which is not in the reducing range. Negative values of approximately -100 mV are typically required for complete RDC to ethene. However, counter to what is suggested by the ORP results, methane was detected in the samples at concentrations ranging from 0.2 to 2.1 mg/L and elevated levels of methane are strongly indicative of reducing conditions. At higher concentrations, the presence of methane could indicate the presence of a robust population of methanogens who may compete with Dehalococcoides for hydrogen and

inhibit RDC. However, this is less of a concern at the methane concentrations present beneath the Subject Property area (less than approximately 2 mg/L).

Although geochemical conditions appear favorable for RDC of VC, genes encoding for the enzymes needed to dechlorinate VC to ethene (*vcrA* and *bvcA*) were not detected in the groundwater samples from MW-1 or MW-2, which could explain why VC is still present and why ethene was not detected in the groundwater samples. The gene for TCE reductase (*tceA*) was also not detected. The lack of detectable VC and TCE reductase genes indicates a lack of microbial capacity for multiple dechlorination steps. Bioaugmentation with a *Dehalococcoides* enrichment culture and adding an electron donor (i.e., emulsified vegetable oil, lactate, etc.) could stimulate RDC of the remaining VC within the plume areas.

Overall, the geochemical conditions within the HVOC-impacted areas are sufficient to support RDC; however, the microbial community does not appear to be present.

2.3 CONDUCT INDOOR AIR SAMPLING EVENT

To assess any seasonal effects on indoor air concentrations and to further evaluate the potential vapor intrusion risks within the Subject Property building, SLR collected two indoor air samples (designated IA-1 and IA-2) from office spaces within Suites C-101 and C-102. The indoor air samples were collected on July 12, 2022, when atmospheric conditions and interior building pressures were likely different than during the December 2021 indoor air sampling event conducted by CODA.

SLR collected each sample by using a six-liter Summa canister (certified as decontaminated by the lab) equipped with an 8-hour flow regulator. The Summa canisters were placed at locations that were closest to the areas of HVOC-impacted soil and/or groundwater, and where floor drains, sewer pipes, etc. penetrate the floor slab and potentially create a soil vapor conduit to indoor air. The flow regulator intake was set at a height of a typical breathing zone (approximately 4.5 feet above the floor). Concurrent with the indoor air sampling, one Summa canister (designated AA-1) was deployed outside the Subject Property building in an upwind direction to sample the ambient air and assess any background concentrations of HVOCs. The July 2022 indoor and ambient air sample locations are shown on Figure 3.

After placing the Summa canisters, the sample valves and dedicated flow regulators were opened to allow each Summa canister to collect an air sample over an 8-hour period. The valve on each canister was closed before the vacuum within the canister reached zero. The filled Summa canisters were submitted to Friedman & Bruya, Inc. (F&B) in Seattle, Washington, for analysis of HVOCs by EPA Method TO-15.

The indoor air sample analytical results from this investigation, as well as from the December 2021 sampling event, showed that none of the samples contained any analytes at concentrations above either the MRLs or the MTCA Method B indoor air cleanup levels. The indoor air sample analytical results from this investigation, as well as from the 2021 assessment, are presented in Table 5. A copy of the laboratory report from this investigation is included in Appendix B.

2.4 SITE GEOLOGY AND HYDROGEOLOGY

Based on the results of this investigation and the previous assessments, the shallow geology beneath the Subject Property area consists of approximately 2 to 7 feet of fill (primarily sand and gravel) that is underlain by fluvial deposits that consist of interbedded sands, sands with varying amounts of silt, and silts to depths of at least 23 feet bgs (the maximum depth explored). The bottom unit in each SLR boring that extended to a depth below 5 feet bgs was a fine-grained or fine- to medium-grained sand that was at least 4 to 13.5 feet thick.

Based on the groundwater monitoring conducted during 2022 and 2023, the groundwater table is present at depths from approximately 8.7 to 16.5 feet bgs. From April 2022 through January 2023, the groundwater table seasonally fluctuated up to 2.51 to 2.94 feet in wells MW-1, MW-2, and MW-3. The seasonal groundwater elevation fluctuations are likely due to hydrologic influence of the Sammamish River. In January 2023, after the six additional groundwater monitoring wells were installed to more effectively monitor the groundwater conditions at the Subject Property area, the general flow direction of the shallow groundwater was to the east-northeast, towards the river.

3. CONCEPTUAL SITE MODEL

A conceptual site model (CSM) describes potential chemical sources and release mechanisms, environmental fate and transport processes, receptors, exposure routes, and exposure pathways (WAC 173-340-200). The primary purpose of the CSM is to describe pathways by which human and ecological receptors may be exposed to site-related chemicals in the environment. According to the EPA (1989), a complete exposure pathway consists of four necessary elements: (1) a source and mechanism of chemical release to the environment, (2) an environmental transport medium for a released chemical, (3) a point of potential contact with the impacted medium (referred to as the exposure point), and (4) an exposure route (e.g., indoor air inhalation) at the exposure point. An exposure pathway is one element of an exposure scenario, and an exposure scenario may include multiple exposure pathways.

3.1 SOURCE CHARACTERIZATION

The results of this investigation, as well as the previous assessments at the Site, have shown that the soil and groundwater beneath the Subject Property contain HVOC concentrations greater than the MTCA Method A or Method B cleanup levels. Based on the two areas of HVOC-impacted soil (see Figure 3) and groundwater (see Figure 9), the sources of the contamination appear to be releases of PCE at the former dry cleaning machine area at the eastern portion of Suite C-102, and releases of PCE or a daughter product (cis-1,2-DCE) from the underground oil/water separator or an associated storm drain catch basin or line that are located to the northwest of Building C.

Coit formerly operated the dry cleaning machine that used PCE between approximately 1999 and 2007. Since Coit discontinued the use of dry cleaning solvents that contained PCE in 2007, the source of the HVOC-impacted soil and groundwater at the former dry cleaning machine area is no longer present at the Subject Property. Coit's previous use of PCE at the Subject Property may have been the source of the HVOC-impacted soil and groundwater at the oil/water separator area; however, SLR needs to better understand the floor drain system at the property and the drainage pathways to the separator. It is SLR's understanding that there is no current use of products containing chlorinated solvents at the Subject Property; therefore, the source of the contamination at the oil/water separator is also no longer present.

The soil sample analytical results from this investigation and the previous assessments showed that PCE, cis-1,2-DCE, and VC were present in at least one soil sample at concentrations greater than the MTCA Method A or Method B cleanup levels. The groundwater sample analytical results showed that at least one groundwater sample contained VC concentrations greater than the Method A cleanup level. Based on the previous sample analytical results, the soil contaminants of concern (COCs) at the Site are PCE and daughter products cis-1,2-DCE and VC. The only groundwater COC at the Site is VC.

3.2 EVALUATION OF POTENTIAL TERRESTRIAL AND AQUATIC ECOLOGICAL RECEPTORS

In accordance with MTCA, SLR conducted a simplified terrestrial ecological evaluation (STEE) to evaluate if terrestrial ecological receptors could possibly be exposed to the COCs at the Site. The Site failed the STEE because there are more than 8 acres of undeveloped land within a 500-foot radius around the Site. However, there are no MTCA soil cleanup levels for the soil COCs (PCE, cis-1,2-DCE, and VC) that are based on protection of terrestrial organisms. Therefore, the terrestrial ecological evaluation was ended.

As described above, the nearest surface water body to the Site is the Sammamish River, which is located less than 50 feet to the east of the Subject Property. Based on the VC concentrations below the MTCA Method A cleanup level in the groundwater samples from downgradient well MW-3, the eastern-northeastern extent of the southern VC plume has been delineated and does not extend to the east of the building. SLR estimates that the southern VC plume extends approximately 70 feet from the source area (the former dry cleaning machine area; see Figure 9). The eastern and northeastern extents of the northern VC plume have not been delineated with properly developed groundwater monitoring wells; however, the groundwater samples collected in 2021 from the temporary wells in boring B-5 and B-6, located to the northeast of the plume (see Figure 4), did not contain detectable VC concentrations. Therefore, it appears that the VC concentrations in the northern plume have naturally attenuated to below detectable levels within 110 feet of the source area (the oil/water separator area). Since the estimated downgradient extents of both VC plumes appear to have been delineated and are not extending to the Sammamish River (see Figure 9), it is unlikely that aquatic ecological receptors could have exposure to the groundwater COCs at the Site.

Since terrestrial and aquatic ecological receptors should not have significant exposure to the COCs at the Site, this CSM is focused on the pathways by which human receptors may be exposed to site-related chemicals in the environment. A schematic diagram of how COCs are released and transported, and the different ways in which potential human receptors may be exposed are presented as Figure 10. COC sources, transport processes, and potential human exposure scenarios are discussed in greater detail below.

3.3 FATE AND TRANSPORT OF CONTAMINANTS

Figure 10 is a graphical representation of the fate and transport of the COCs at the Site. The source of the soil and groundwater contamination at the Site appears to be historical releases from the storage and use of dry cleaning solvents that contained PCE. Solvents such as PCE are typically a dense non-aqueous phase liquid (DNAPL) that is denser than water (i.e., sinks). It is important to note that evidence indicating the presence of DNAPL has not been observed in the subsurface at the Site and is only discussed here to reflect theoretical fate and transport processes.

After being released, DNAPL will migrate downward through permeable materials until encountering an impermeable layer. DNAPL will migrate downward through groundwater (the

saturated zone), and if a sufficient mass of DNAPL was released, it can migrate horizontally along the impermeable layer. Volatile chemicals in DNAPL can adsorb to soil particles, dissolve in soil pore water or groundwater, and volatilize into soil pore air.

Volatile COCs adsorbed to vadose zone soil can partition into soil pore air and vice versa. Similarly, COCs adsorbed to vadose zone soil can partition into soil pore water. In the saturated zone, COCs in soil can partition to the dissolved phase in groundwater and vice versa. Dissolved phase COCs in the groundwater near the boundary with the vadose zone can partition into overlying soil pore air.

Shallow groundwater levels beneath the Subject Property area have ranged from approximately 8.7 to 16.5 feet bgs, and the general flow direction of the shallow groundwater beneath the area is to the east-northeast. Advection can transport dissolved COCs in shallow groundwater along the flow path. Also, dissolved COCs in groundwater may migrate via diffusion.

Volatile contaminants in soil gas within the vadose zone can migrate to the ground surface and outdoor air or indoor air. Upon migration to outdoor air, airborne concentrations are expected to be minimal due to instantaneous dispersion and mixing with ambient air at the soil-air interface. Vapors may be present at higher concentrations in the outdoor air within an excavation such as a trench, which may be relevant under a future construction scenario. Vapors may enter indoor air if volatile contaminants are present in the subsurface beneath or near a building. Vapor intrusion into buildings located above impacted soil or groundwater is typically considered to be a potentially complete exposure pathway; however, the results of the indoor air sampling within Building C during this investigation and the 2021 assessment indicate that vapor intrusion of HVOCs into Building C is an incomplete exposure pathway.

Chemicals present in exposed surface soil may be transported to ambient air in the form of suspended particulates (i.e., dust). However, the surface of the Subject Property area is paved or covered with buildings or vegetation, and dust generation is expected to be insignificant.

3.4 POTENTIAL HUMAN RECEPTORS AND EXPOSURES

Potential current and future human receptors and exposure pathways are described in the following sections and summarized in Figure 10.

3.4.1 HUMAN RECEPTORS

The Subject Property is zoned Industrial, and it has been used for commercial and/or industrial purposes for over 20 years. It is SLR's understanding that there are no current plans to change the industrial use or zoning of the property. The hours of operation of the current tenants at the Subject Property vary, and Coit is open 24-hours a day, 7 days a week to provide water damage and restoration services to its off-site customers. However, it is SLR's understanding that any individual on-property facility worker for the current tenants works 8- to 10-hour workdays, 5 days a week. For the foreseeable future, commercial and industrial workers at the Subject Property are the people with the greatest potential to have exposure to COCs in the environment.

In addition to facility workers, visitors (e.g., customers, delivery personnel) are expected to be present at the property for short periods of time. Also, it is possible that construction workers may visit the property in the foreseeable future. Future construction workers are expected to work typical eight-hour workdays. Property visitors and construction workers are therefore identified as potential future receptors, and property visitors and facility workers are identified as potential current receptors.

The Subject Property is surrounded by industrial and commercial businesses. Maps of the Subject Property area were used to identify potential nearby sensitive receptors such as schoolchildren, as well as elderly and/or chronically infirm adults. The closest school (Chrysalis High School) is located over 2,600 feet to the southeast of the Subject Property. The nearest hospital (Evergreen Health Medical Center) is located over 2.5 miles feet to the south-southwest of the Subject Property, and the nearest retirement community (Fairwinds – Brittany Park) is located over 1,100 feet to the northeast of the property, on the opposite side of the Sammamish River. As a result, no schools, hospitals, or retirement homes/facilities are present within 1,000 feet of the Subject Property. The Site COCs are not expected to migrate to any of these locations where sensitive receptors may be present.

3.4.2 POTENTIAL HUMAN EXPOSURES

3.4.2.1 Currently Known Exposures

Receptors currently present at the Subject Property include employees of the current facility tenants that work within the property building, and visitors to the property. Facility workers and visitors may inhale volatile contaminant vapors that migrate into the building from subsurface soil and groundwater; however, the results of the indoor air sampling within Building C during this investigation and the 2021 assessment indicate that vapor intrusion of HVOCs into the building is an incomplete exposure pathway.

Based on the soil sample analytical results from this investigation and the previous assessments, the HVOC-impacted soil and groundwater are present beneath the concrete floor of the Subject Property building and beneath the concrete and asphalt surfaces near the oil/water separator. The depths of the impacted soil range from approximately 2 to 21 feet bgs, and the impacted groundwater occurs at depths below 8.7 feet bgs. Due to the surface pavement, current workers and visitors are unlikely to directly contact the COCs in the soil. Similarly, the groundwater at and near the Site is not currently used as a domestic water source and there are no significant pathways by which people may directly contact COCs in groundwater.

There are no residential buildings located above or near the impacted soil or shallow groundwater at the Site. Therefore, the potential vapor exposure route to residents is incomplete. The Subject Property is likely to continue to support commercial and industrial operations for the foreseeable future, and a residential development on the property is not expected.

3.4.2.2 Potential Future Exposures

It is SLR's understanding that there are no plans to redevelop the Subject Property in the foreseeable future. However, for the purposes of this CSM, it is assumed that some development may take place and that future construction workers could be exposed to subsurface soil during construction and excavation activities. Potential exposure routes include dermal contact, incidental soil ingestion, and inhalation of windblown dust or vapors. Potential future soil excavations could extend below the shallow groundwater table, and direct contact with groundwater (e.g., incidental ingestion and dermal contact) may occur during future construction activities.

As discussed previously, the shallow groundwater beneath the Subject Property is not currently used as a domestic water supply. However, consistent with MTCA regulations, it was conservatively assumed that the shallow groundwater could be used for domestic purposes in the future. Groundwater ingestion and dermal contact, as well as inhalation of volatile chemicals during domestic use (e.g., showering, dishwashing), are assumed to be potentially complete exposure pathways for hypothetical residents using groundwater as a domestic water source.

4. NATURE AND EXTENT OF CONTAMINATION

As described in the CSM, the soil and groundwater COCs at the Site are chlorinated solvents (PCE and daughter products cis-1,2-DCE and VC) associated with the previous dry cleaning operations in Suite C-102. The soil COCs are PCE, cis-1,2-DCE, and VC, and the only groundwater COC is VC. Therefore, the PCE, cis-1,2-DCE, and VC concentrations were used to evaluate the extents of the HVOC-impacted soil at the Site, and the VC concentrations were used to evaluate the extents of the HVOC-impacted groundwater.

4.1 EXTENTS OF SOIL CONTAMINATION

The soil sample analytical results from this investigation and the previous assessments at the Subject Property area show that PCE concentrations greater than the MTCA Method A cleanup level and cis-1,2-DCE and VC concentrations greater than the Method B cleanup levels occur at the former dry cleaning machine area, and cis-1,2-DCE concentrations greater than the Method B cleanup level occur at the oil/water separator area. The estimated areas of HVOC-impacted soil at the Site are shown on Figure 4. The lateral extents of the PCE-, cis-1,2-DCE-, and VC-impacted soil at the former dry cleaning machine area have been delineated in all directions, except to the northeast (see Figure 4). The impacted soil at the former dry cleaning machine area does not extend to a depth greater than 22.5 feet bgs, and the vertical extents have been delineated. The lateral extents of the cis-1,2-DCE-impacted soil at the oil/water separator area have only been delineated to the west (see Figure 4). The impacted soil at the oil/water separator area extends to depths below 15 feet bgs and the vertical extents have not been delineated.

4.2 EXTENTS OF GROUNDWATER CONTAMINATION

The groundwater sample analytical results from the 2022 and 2023 monitoring events at the Subject Property area show that there are two areas that contain VC concentrations greater than the MTCA Method A cleanup level. The areas of VC-impacted groundwater occur at the former dry cleaning machine area (the southern VC plume) and at the oil/water separator area (the northern VC plume), and extend to the northeast of both source areas. The estimated areas of the HVOC-impacted groundwater at the Site are shown on Figure 9. The lateral extents of the southern VC plume have been delineated to the west, southwest, and east-northeast directions with properly developed groundwater monitoring wells (see Figure 9). In addition, the groundwater sample collected in 2021 from the temporary well in boring B-6, located to the north-northeast of the plume (see Figure 4), did not contain detectable VC concentrations. The lateral extents of the northern VC plume are only delineated to the west and southwest with properly developed groundwater monitoring wells; however, the groundwater samples collected in 2021 from the temporary wells in borings B-5 and B-6, located to the northeast of the plume (see Figure 4), did not contain detectable VC concentrations. The vertical extents of the VC-impacted groundwater have not been delineated at either plume area.

5. FOCUSED FEASIBILITY STUDY

SLR conducted a focused feasibility study (FFS) to develop and evaluate three potential remedial action alternatives for the Site in accordance with WAC 173-340-350. The primary objectives for the remedial action are to reduce the HVOC concentrations in the soil and groundwater to below the MTCA Method A or Method B cleanup levels, and to obtain a no further action opinion from Ecology.

This is a focused version of a feasibility study because it assumes that MTCA will be the primary regulation for the remedial action at the sites, and it does not include an Applicable or Relevant and Appropriate Regulations (ARAR) analysis. In addition, this feasibility study is focused because it does not include an All Known and Reasonable Technologies (AKART) analysis. The remedial alternatives developed for this study were based on the technologies that SLR identified as most appropriate based on the site conditions, the remedial action objections (RAOs) described above, and our experience and best professional judgement. A detailed analysis of the remedial action alternatives was performed consistent with WAC 173-340-360 criteria.

5.1 REMEDIAL ACTION ALTERNATIVES

This section summarizes the three remedial alternatives that were developed and evaluated for the sites. For each alternative, the key components are described, including conceptual engineering designs. Component costs and unit pricing were developed based on prior experience and recent vendor information.

The following three alternatives were developed and evaluated:

- 1. Alternative 1: Enhanced Reductive Dechlorination (RDC)
- 2. Alternative 2: Vacuum-Enhanced Groundwater Recovery and Monitored Natural Attenuation (MNA)
- 3. Alternative 3: Soil Excavation, Groundwater Recovery, and MNA

5.1.1 ALTERNATIVE 1: ENHANCED RDC

Alternative 1 would include the injection of emulsified soybean oil and bioaugmentation solution to produce subsurface conditions that stimulate anaerobic RDC of the remaining HVOCs in the soil and groundwater at the Site. After the injections have been completed, the RDC performance in the groundwater would be monitored until the MTCA Method A or Method B cleanup levels are met. After meeting the groundwater cleanup levels, a confirmation soil boring would be drilled at the location of previous boring GP-4 to verify that the remaining PCE concentrations in the soil are below the MTCA Method A cleanup level. The cis-1,2-DCE and vinyl chloride concentrations in the soil exceed MTCA Method B cleanup levels based on protection of groundwater so an empirical demonstration (groundwater concentrations below the cleanup

levels) would be used to show that the remaining cis-1,2-DCE and vinyl chloride concentration in the soil are protective of human health and the environment. The approximate solution injection locations are shown on Figure 11.

The conceptual scope of work for Alternative 1 is described below, and the estimated costs for Alternative 1 are presented in Table 6.

5.1.1.1 Pre-Remediation Activities

Prior to conducting the remedial action, additional investigation activities would be conducted to further delineate the lateral and vertical extents of HVOC-impacted soil and groundwater in accordance with MTCA. A total of four soil borings would be drilled and sampled within the area of HVOC-impacted soil near the oil/water separator and to the north, south, and east of the oil/water separator to further assess the lateral and vertical extents of the impacted soil at that area. The deep soil boring within the area of impacted soil would be completed as a deep groundwater monitoring well to assess the vertical extent of the impacted groundwater. To delineate the northern, northeastern, and southeastern extents of the northern VC plume (as well as the northern extents of the southern VC plume), four additional shallow groundwater monitoring wells would be installed to the north of Building C. The proposed locations of the additional soil borings, deep groundwater monitoring well, and shallow groundwater monitoring wells to the north of Building C are shown on Figure 11.

A deep soil boring would be drilled and sampled within the southern VC plume area and completed as a deep groundwater monitoring well to delineate the eastern extent of the HVOC-impacted soil near the former dry cleaning machine and to assess the vertical extent of the impacted groundwater. To further delineate the southern extent of the southern VC plume, a shallow groundwater monitoring well would be installed within Suite C-101. The proposed locations of the additional deep and shallow groundwater monitoring wells within Building C are shown on Figure 11. A groundwater monitoring event would be conducted that includes sampling all of the newly installed shallow and deep monitoring wells at the Site. Based on the results of the additional investigation activities, this scope of remedial alternative may be expanded.

To evaluate the effectiveness of the injection of an emulsified soybean oil and bioaugmentation solution, an injection pilot test would be conducted to evaluate the dechlorination rate, the radius of injection influence, and the design parameters for a full-scale system.

5.1.1.2 Solution Injection

The areas of HVOC-impacted soil and groundwater at the Site would be remediated by RDC, and a soybean oil and bioaugmentation solution would be injected into the subsurface to stimulate the RDC. A licensed well driller would use direct-push drilling methods to advance borings to depths of approximately 20 feet bgs. The solution would be injected into each of the borings at depths of approximately 7 to 20 feet bgs, and at locations with known shallow soil contamination, the solution would also be injected from approximately 2 to 7 feet bgs. The borings would be

spaced at an assumed injection radius of influence (ROI) of approximately 20 feet (see Figure 11). A total of 11 injection borings would be located within the impacted areas; however, the spacing and number of the injection borings may be modified based on the results of the additional investigation and the injection pilot test.

For cost estimating purposes, SLR assumed that emulsified soybean oil would be mixed with a bioaugmentation solution such as SiREM's KB-1, Regenesis' BDI Plus, or another *Dehalococcoides* culture to provide sufficiently large microorganism populations for RDC to proceed rapidly. Initial calculations estimate that approximately 98,000 gallons of the soybean oil and bioaugmentation solution would be required to create a sufficient anaerobic environment within the target treatment area. A full round of injections is expected to take 18 days based on an assumed injection flow rate of 3 gallons per minute (gpm) per injection point, and injection into up to 5 points at a time. For the purposes of this FFS, we assumed that only one round of solution injections would be required.

5.1.1.3 Groundwater Monitoring

The groundwater at the Site would be monitored over a period of approximately 2 years to assess the effectiveness of the remedial action and to monitor the RDC of the remaining groundwater COC concentrations. The groundwater monitoring events would be conducted on a quarterly basis.

During each groundwater monitoring event, the depths to groundwater would be measured in all of the 14 shallow groundwater monitoring wells and 2 deep groundwater monitoring wells at the Site. A groundwater sample would be collected from each of the wells by using a peristaltic pump with new tubing (low-flow sampling methods). The samples would be submitted to Apex for analysis for full-list VOCs by EPA Method 8260D (including VC by EPA Method 8260D SIM). In addition, the samples from MW-1, MW-2, MW-4, MW-8, and MW-9 would be analyzed for dissolved ethene by Method RSK 175 on an annual basis to monitor the progress of the final dechlorination stage of VC. The locations of the monitoring wells are shown on Figure 11.

5.1.2 ALTERNATIVE 2: VACUUM-ENHANCED GROUNDWATER RECOVERY AND MNA

For Alternative 2, a vacuum-enhanced groundwater recovery system would be installed and operated to reduce the HVOC concentrations in the soil and groundwater at the Site to below the MTCA Method A or Method B cleanup levels. After the vacuum-enhanced groundwater recovery operations have been completed, MNA would be implemented until the soil and groundwater concentrations are below the Method A or Method B cleanup levels. After meeting the groundwater cleanup levels, a confirmation soil boring would be drilled at the location of previous boring GP-4 to verify that the remaining PCE concentrations in the soil are below the MTCA Method A cleanup level. The approximate locations of the vacuum-enhanced groundwater recovery wells are shown on Figure 12. The conceptual scope of work for Alternative 2 is described below, and the estimated costs are presented in Table 7.

5.1.2.1 Pre-Remediation Activities

Prior to conducting the remediation activities, the additional investigation activities described for Alternative 1 would be conducted. Based on the results of the additional investigation activities, the scope of this remedial alternative may be expanded.

Prior to installing the vacuum-enhanced groundwater recovery/treatment system, a Notice of Construction permit would be obtained from the Puget Sound Clean Air Agency (PSCAA) to construct and operate the system and emit treated vapors to the atmosphere. In addition, a discharge permit would be obtained from King County Industrial Waste (KCIW) to discharge the extracted groundwater, after treatment, into the sanitary sewer system on the Subject Property.

To evaluate the effectiveness of vacuum-enhanced groundwater recovery, a groundwater recovery well would be installed within the southern VC plume that is constructed with a 15-footlong or 20-foot-long screen that intercepts the groundwater table and a 2-foot-long sump below the screen. Vacuum-enhanced groundwater pumping tests would be conducted to evaluate the radius of pumping influence and the radius of vacuum influence, and to obtain the necessary data to design a full-scale system.

5.1.2.2 Vacuum-Enhanced Groundwater Recovery/Treatment

To reduce the HVOC concentrations in the soil and groundwater at the Site to below the MTCA Method A or Method B cleanup levels, a licensed driller would install a total of six groundwater recovery wells (three within each plume area) within the areas of the impacted soil and groundwater. The recovery wells are spaced by using an assumed radius of pumping influence of 30 feet and a sustained pumping rate of 0.5 gallons per minute (gpm) per well (subject to change based on results of the pumping tests). The locations of the proposed groundwater recovery wells are shown on Figure 13. Each recovery well would be constructed of 4-inch-diameter, Schedule 40 PVC with a 15-foot-long or 20-foot-long screen that intercepts the groundwater table. The screens of the recovery wells located within the northern plume area would be installed at depths from approximately 7 to 22 feet bgs. Due to the known shallow impacted soil, the screens of the recovery wells located within the southern plume area would be installed at depths from approximately 3 to 23 feet bgs.

A pneumatic submersible pump within each recovery well would be plumbed via individual underground Schedule 40 PVC piping to a groundwater treatment system that would be located within a remediation system enclosure at the southeastern corner of the parking lot to the northwest of Building C. Within the enclosure, the groundwater treatment system would consist of an air stripper. The air from the air stripper would be treated by using two 1,000-pound vaporphase granular activated carbon (GAC) canisters in series. An air compressor within the enclosure would supply the air pressure to operate the pneumatic pumps.

To extract the HVOCs from the soil and to extend the radius of groundwater pumping influence, each groundwater recovery well would be plumbed via individual Schedule 40 PVC piping to a vacuum blower that is located within the system enclosure. The extracted soil vapors would be

treated by the two GAC canisters described above. For the purposes of this FFS, we assumed that the average extracted airflow rate would be approximately 70 cubic feet per minute (cfm) per vacuum-enhanced recovery well, for a total flow of approximately 420 cfm at a vacuum of approximately 40 inches of water.

For cost estimating purposes, SLR assumed that the vacuum-enhanced groundwater recovery/treatment system and the SVE system would operate for a period of two years. During system operation, system operation and maintenance (O&M) visits would be conducted on a weekly basis for the first month of operation and then on an every-other-week basis. SVE system samples would be collected on a monthly basis to monitor carbon usage and to ensure that the mass of emitted HVOCs is below the PSCAA requirement. Groundwater treatment system samples would be collected on a monthly basis to ensure compliance with KCIW discharge limits. Prior to shutdown of the remediation system, a confirmation soil boring would be drilled at the location of previous boring GP-4 to verify that the remaining PCE concentrations in the soil are below the MTCA Method A cleanup level.

5.1.2.3 MNA

The groundwater beneath the property area would be monitored over a period of approximately three years to assess the effectiveness of the remedial action and to monitor the natural attenuation of the remaining COC concentrations. During the period of system operations and during the last year of monitoring, the groundwater monitoring events would be conducted on a quarterly basis.

During each groundwater monitoring event, the depths to groundwater would be measured in all of the 14 shallow groundwater monitoring wells and 2 deep groundwater monitoring wells at the Subject Property area. A groundwater sample would be collected from each of the wells by using a peristaltic pump with new tubing (low-flow sampling methods). The samples would be submitted to Apex for analysis for full-list VOCs by EPA Method 8260D (including VC by EPA Method 8260D SIM). The locations of the wells to be sampled for Alternative 2 are shown on Figure 12.

5.1.3 ALTERNATIVE 3: SOIL EXCAVATION, GROUNDWATER EXTRACTION, AND MNA

For Alternative 3, the soil at the Site that contains HVOC concentrations greater than the MTCA Method A or Method B cleanup levels would be excavated and transported off-site for disposal. The approximate areas of excavation are shown on Figure 13. Each excavation would extend to a depth of approximately 20 feet bgs, and the groundwater that enters the open excavation would be extracted to reduce the HVOCs concentrations in the groundwater within and near the excavation areas to below the MTCA Method A or Method B cleanup levels. MNA would address the remaining impacted groundwater at the Site.

The conceptual scope of work for Alternative 3 is described below, and the estimated costs are presented in Table 8.

5.1.3.1 Pre-Remediation Activities

Prior to the soil excavation, SLR would design a shoring plan for the excavation, and grading and shoring permits would be obtained from the City of Woodinville. In addition, a discharge permit would be obtained from KCIW to discharge the extracted groundwater, after treatment, into the sanitary sewer system on the subject property. All of the groundwater monitoring wells within the planned excavation areas (MW-1, MW-2, MW-4, MW-5, and both of the proposed deep wells) would be abandoned by a licensed driller. The section of the interior wall between Suites C-101 and C-102, within and near the proposed excavation area in Building C, would be removed prior to conducting the excavation work.

5.1.3.2 Soil Excavation and Groundwater Extraction/Treatment

Based on the results of this investigation and the previous assessments, the HVOC-impacted soil at the Subject Property area occurs at depths as shallow as approximately 2 feet bgs and extends to depths of approximately 20 feet bgs (approximately 3 feet below the low seasonal groundwater table). To remediate the impacted soil and remove the primary source of the impacted groundwater, each soil excavation would extend to a depth of approximately 20 feet bgs. To protect the northwestern wall of Building C during the soil excavation within the building, trench boxes will be used to excavate 4-foot-wide sections of soil along the building wall, and after the stacked trench boxes reach the desired excavation depth, the boxes will be filled with controlled-density fill (CDF) and then removed. The approximate location of CDF gravity shoring wall is shown on Figure 13. After the CDF wall has been constructed, the other sidewalls of the excavation will maintain a 1:1 slope to minimize sloughing. The sidewalls of the soil excavation located outside of the building will also maintain a 1:1 slope.

An estimated 2,910 in-place cubic yards (cy) of soil would be excavated and transported off-site for hazardous waste disposal at a licensed facility. The groundwater that collects in each open excavation would be pumped through a temporary treatment system that includes a 20,000-gallon settling tank, sand or bag filters, two liquid-phase 1,000-pound GAC canisters in series, and a 20,000-gallon holding tank. The treated water would be sampled and then after receiving analytical results that demonstrate that the concentrations are below the discharge limits, the water in the holding tank would be batch discharged into the sewer system. An estimated 400,000 gallons of groundwater would be pumped from the excavation.

After excavating the impacted soil and extracting the groundwater, each excavation would be backfilled with imported clean backfill material. The ground surface of each backfilled area would be completed with concrete, and the previously removed section of the interior wall between Suites C-101 and C-102 would be replaced. After backfilling the excavations, a total six replacement groundwater monitoring wells (four shallow wells and two deep wells) would be installed at the locations of the previously abandoned wells to monitor the effectiveness of the remedial action.

5.1.3.3 MNA

After completing the soil excavation and groundwater recovery/treatment activities, the groundwater beneath the property area would be monitored over a period of approximately three years to assess the effectiveness of the remedial action and to monitor the natural attenuation of the remaining COC concentrations. The groundwater monitoring events would be conducted on a quarterly basis during the first and third years of monitoring and on a semiannual basis during the second year of monitoring (during the periods of high and low groundwater elevations).

During each groundwater monitoring event, the depths to groundwater would be measured in all of the 14 shallow groundwater monitoring wells and 2 deep groundwater monitoring wells at the Subject Property area. A groundwater sample would be collected from each of the wells by using a peristaltic pump with new tubing (low-flow sampling methods). The samples would be submitted to Apex for analysis for full-list VOCs by EPA Method 8260D (including VC by EPA Method 8260D SIM). The locations of the wells to be sampled for Alternative 3 are shown on Figure 13 (six of the wells shown on Figure 13 will be abandoned and the replacement wells will be included in the groundwater monitoring program).

5.2 EVALUATION BASIS FOR REMEDIAL ACTION ALTERNATIVES

Cleanup actions are subject to the threshold requirements set forth in WAC 173-340-360(2)(a). Under the threshold requirements, the cleanup action shall:

- Protect human health and the environment;
- Comply with cleanup standards;
- Comply with applicable state and federal laws; and
- Provide for compliance monitoring.

In addition, for cleanup actions that meet the threshold requirements, the selected actions shall:

- Use permanent solutions to the maximum extent practicable;
- Provide for a reasonable restoration time frame; and
- Consider public concerns.

5.2.1 DISPROPORTIONATE COST ANALYSIS

The MTCA Disproportionate Cost Analysis [DCA; described in WAC 173-340-360(3)(e) and (3)(f)] is used to evaluate which of the alternatives that meet the threshold requirements is permanent to the maximum extent practicable. This analysis involves comparing the costs and benefits of

alternatives and selecting the alternative whose incremental costs are not disproportionate to the incremental benefits. The evaluation criteria for the DCA are specified in WAC 173-340-360(3)(f), and include protectiveness, permanence, effectiveness over the long term, management of short-term risks, implementability, consideration of public concerns, and costs. Further definition of the evaluation criteria provided in WAS 173-340-360(3)(f) is presented in the following subsections.

To favor the benefits of criteria associated with the primary goals of the interim action, a weighting system was used in this FFS for the DCA. That is, the criteria associated with environmental benefits are more highly weighted than other criteria that are associated with non-environmental factors. Each of the MTCA criteria used in the DCA and the weighting factors for the criteria are described below and are shown in Table 9.

5.2.1.1 Protectiveness

The remediation alternatives are evaluated for overall protectiveness of human health and the environment, including the degree to which existing risks are reduced, the time required to reduce the risks at the facility and attain cleanup standards, the on-site and off-site risks resulting from implementing the alternative, and the improvement of the overall environmental quality. For the protectiveness criterion, a weighting factor of 30 percent was applied toward the overall benefit analysis. The high weight placed on protectiveness relative to the other factors is warranted due to the overall importance of protection of human health and the environment as the primary goal of cleanup at the Site.

5.2.1.2 Permanence

The permanence of a cleanup action is defined as the degree to which the alternative permanently reduces the toxicity, mobility, or volume of hazardous substances, including the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of waste treatment process, and the characteristics and quantity of generated treatment residuals. A weighting factor of 20 percent was applied to the numeric values associated with the permanence criterion.

5.2.1.3 Effectiveness over the Long Term

Long-term effectiveness includes the degree of certainty that the alternative will be successful, the reliability of the alternative during the period of time hazardous substances are expected to remain on-site at concentrations that exceed cleanup levels, the magnitude of residual risk with the alternative in place, and the effectiveness of controls required to manage treatment residues or remaining wastes. The MTCA regulations provide guidelines for ranking cleanup action components when assessing the relative degree of long-term effectiveness. These elements are, in descending order: reuse or recycling; destruction or detoxification; immobilization or solidification; on-site or offsite disposal in an engineered, lined and monitored facility; on-site isolation or containment with attendant engineering controls; and institutional controls and

monitoring. The MTCA preference ranking must be considered along with other site-specific factors in the evaluation of long-term effectiveness. A weighting factor of 20 percent was assigned to the long-term effectiveness criterion.

5.2.1.4 Management of Short-Term Risks

This criterion considers potential risk to human health and the environment associated with the alternative during construction and implementation, and the effectiveness of measures that will be taken to manage such risks. Examples of risks include potential exposure to hazardous substances by site workers during implementation, mobilization of contaminants during construction, or general safety risks and construction hazards. A weighting factor of 10 percent was assigned to this criterion. This lower rating is based on the limited timeframe associated with the risks and the general ability to correct short-term risks during construction without significant effect on human health and the environment.

5.2.1.5 Technical and Administrative Implementability

This criterion considers the feasibility of a selected remedy to be implemented, including consideration of whether the alternative is technically possible, the availability of necessary off-site facilities, services and materials, administrative and regulatory requirements, scheduling, size, complexity, monitoring requirements, access for construction operations and monitoring, and integration with existing facility operations and other current or potential remedial actions. Implementability is less associated with the primary goal of the cleanup action, protection of human health and the environment, and therefore, has a lower weighting factor. In addition, the issues associated with the implementability are reflected in the remedy costs. Therefore, the weighting factor for implementability was 10 percent.

5.2.1.6 Consideration of Public Concerns

The public involvement process under MTCA is used to identify potential public concerns regarding cleanup action alternatives. The extent to which an alternative addresses those concerns is part of the evaluation process. This includes concerns raised by individuals, community groups, local governments, tribes, federal and state agencies, and other organizations with an interest in the Site. The weighting factor used for this criterion was 10 percent. Similar to the applied factor for implementability, the low weighting of public concerns prevents duplication of issues that are addressed with other criteria. Historically, public concerns for most sites are typically related to environmental concerns and performance of the cleanup action, which are addressed under other MTCA criteria such as protectiveness and permanence.

5.2.1.7 Cost

The costs to implement the cleanup action alternatives are evaluated, including the cost of construction and operation, and the net present value of any long-term costs (a discount rate of

2.5 percent for a 20-year period was applied¹). For the alternatives described in this FFS, long-term costs include groundwater monitoring costs. The design life of the cleanup components is estimated, and the cost of replacement or repair of major elements is included in the estimate. Costs were compared against benefits to assess cost effectiveness and practicability of the cleanup action alternatives. No weighting factor was applied to this quantitative category.

5.3 EVALUATION OF REMEDIAL ALTERNATIVES

This section provides an evaluation of the three remedial action alternatives. Each alternative is discussed independently relative to the MTCA criteria used in the DCA, and a raw score is provided for the alternative, on a scale of 1 to 10. In this scheme, a raw score of 10 is the highest (i.e., the most favorable) potential ranking, and a raw score of 1 represents the least favorable potential ranking. Raw scores were carried forward into the DCA, where they were weighted according to the factors discussed in Section 5.2.1.

5.3.1 PROTECTIVENESS

With proper implementation, all of the alternatives can be adequately protective of human health and the environment after the remedial action has been completed. Alternative 3 has the highest score (9) for protectiveness because soil excavation and groundwater extraction will remove the HVOC-impacted soil and the greatest groundwater concentrations in the shortest period of time. Alternatives 1 and 2 both have a score of 7 because there is some uncertainty regarding the effectiveness of the injection of an emulsified soybean oil and bioaugmentation solution and of vacuum-enhanced groundwater recovery, respectively, and these alternatives will not be conducted without successful pilot testing results.

5.3.2 PERMANENCE

Alternative 1 has the highest permanence score (9) because the contaminants will be detoxified by reductive dechlorination within a relatively short time period. Alternative 2 has a lower score (7) because most of the extracted contaminants will be adsorbed to carbon and transferred to a landfill for disposal (and demobilization) rather than being permanently destroyed. Alternative 3 also has a score of 7 because the contaminants in the excavated soil are transferred to a landfill rather than being permanently destroyed.

5.3.3 EFFECTIVENESS OVER THE LONG TERM

Since vinyl chloride is the only groundwater COC at the Site, it appears that reductive dechlorination and natural attenuation are currently occurring and will eventually reduce the HVOC concentrations to below the cleanup levels. Therefore, all of the remedial alternatives will be effective over the long term. Based on the MTCA preference ranking described in Section 5.2.1.3, Alternative 1 has the highest score (9) because it relies on reductive dechlorination (e.g., detoxification). Alternative 2 has a lower score (7) because most of the remediated HVOC mass

¹ OMB Circular No. A-94 (Executive Office of the President, Office of Management and Budget, 2022 Discount Rates memo dated March 15, 2022).

will be adsorbed to carbon and the carbon waste will be disposed off-site at a landfill (e.g., off-site disposal in an engineered, lined and monitored facility). Alternative 3 also has a score of 7 because the contaminants in the excavated soil will be disposed off-site at a landfill.

5.3.4 MANAGEMENT OF SHORT-TERM RISKS

Alternative 1 has the highest score (8) for management of short-term risks because it only includes drilling and solution injection activities, and the impacts on the Building C tenant operations would be relatively minor. Alternative 2 has a lower score (6) due to the construction activities, which include drilling, trenching, equipment installation, and electrical work. Alternative 3 has the lowest score (4) due to safety risks and construction hazards associated with soil excavation within a building, and to the substantial impacts to the tenant operations in Suites C-101 and C-102 for over a month.

5.3.5 TECHNICAL AND ADMINISTRATIVE IMPLEMENTABILITY

Alternative 1 has the highest score (8) for technical and administrative implementability because it is the least complex of the alternatives to implement. Alternative 2 has a lower score (5) due the permitting, monitoring, and reporting requirements for the remediation system, the impacts to Building C tenant operations during the well installation and system construction activities, and the closure of two parking spaces during the remediation system operation period (two years) for the system equipment enclosure. Alternative 3 has the lowest score (3) due to the permitting requirements and the impacts to the tenants in Suites C-101 and C-102 for over a month during the excavation, groundwater extraction, and backfilling activities.

5.3.6 CONSIDERATION OF PUBLIC CONCERNS

Alternative 1 has the highest score (9) because there should be limited public concerns associated with enhanced reductive dechlorination. Alternative 2 has a lower score (7) because there will be permits and approvals required to install and operate the remediation system and there may be noise concerns associated with the system equipment. Alternative 3 also has a score of 7 because there will be permits and approvals required for the soil excavation and groundwater extraction/treatment activities, and there may be concerns regarding additional truck traffic during the excavation work.

5.3.7 **COST**

The total estimated costs for Alternatives 1, 2, and 3 are \$630,000, \$1,050,000, and \$2,210,000, respectively. Detailed cost estimates for each alternative are provided in Tables 6, 7, and 8. The remedial action costs include a 20 percent contingency.

5.4 RESULTS OF DISPROPORTIONATE COST ANALYSIS

The results of our evaluation of the remediation alternatives are summarized as a numeric scoring system in Table 9. The highest total weighted score (benefit value) was 8.2 for Alternative 1, followed by 6.9 for Alternative 3, and 6.7 for Alternative 2. Based on the total estimated costs

and total benefit values, the cost per benefit value for each alternative was calculated. The cost per benefit values were \$76,829 for Alternative 1, \$156,716 for Alternative 2, and \$320,290 for Alternative 3. Based on this analysis, Alternative 1 is the recommended alternative. However, pilot testing is required to determine the effectiveness of the injected emulsified soybean oil and bioaugmentation solution, and the radius of injection influence.

6. **CONCLUSIONS**

From April 2022 through January 2023, SLR conducted a subsurface assessment at the Subject Property and surrounding area. The objectives of the work were to: 1) delineate the lateral extents of the known PCE-impacted soil beneath Building C in the vicinity of the former dry cleaning machine, 2) assess if the former Wincraft print washing operation in Suite C-101 of Building C was an additional source of HVOC-impacted soil and/or groundwater, 3) assess if groundwater samples from properly developed monitoring wells at the Subject Property area would contain HVOC concentrations greater than the MTCA Method A or Method B cleanup levels, 4) delineate the lateral extents of the HVOC-impacted groundwater (if groundwater samples from properly developed monitoring wells contained HVOC concentrations greater than the Method A or Method B cleanup levels), 5) monitor any seasonal effects on the groundwater flow direction and HVOC concentrations in the groundwater, and 6) assess any seasonal effects on the indoor air quality within smaller spaces in Building C to further assess the soil vapor pathway into the building. In addition, SLR developed a CSM that described the transport mechanisms and pathways by which human and ecological receptors may be exposed to the contaminants in the soil and groundwater at the Site, and conducted an FFS to develop and evaluate soil and groundwater remediation alternatives for the Site.

The following conclusions are supported by the results of this assessment and the previous investigations at the Subject Property and surrounding area, as well as the results of the conceptual site model and the focused feasibility study.

- Based on the results of this investigation and the previous assessments, there are two areas of soil and groundwater beneath the Subject Property area that contain HVOC concentrations (PCE, cis-1,2-DCE, and/or VC) greater than the MTCA Method A or Method B cleanup levels. PCE concentrations greater than the Method A soil cleanup level and cis-1,2-DCE and VC concentrations greater than the Method B soil cleanup levels occur at the former dry cleaning machine area, and cis-1,2-DCE concentrations greater than the Method B soil cleanup level occur at the oil/water separator area. The estimated areas of HVOC-impacted soil at the Site are shown on Figure 4. VC is the only groundwater COC at the Site, and VC concentrations greater than the Method A groundwater cleanup level occur at the former dry cleaning machine area (the southern VC plume) and at the oil/water separator area (the northern VC plume). Both plumes extend to the east-northeast (hydraulically downgradient) of the former dry cleaning machine area and the oil/water separator area. The estimated areas of the VC-impacted groundwater are shown on Figure 9.
- The lateral extents of the PCE-, cis-1,2-DCE-, and VC-impacted soil at the former dry cleaning machine area have been delineated in all directions, except to the northeast (see Figure 4). The impacted soil at that former dry cleaning machine area does not extend to a depth of at least 22.5 feet bgs, and the vertical extents have been delineated.

- The lateral extents of the cis-1,2-DCE-impacted soil at the oil/water separator area have only been delineated to the west (see Figure 4). The impacted soil at the oil/water separator area extends to depths below 15 feet bgs and the vertical extents have not been delineated.
- The lateral extents of the southern VC plume have been delineated to the west, southwest, and east-northeast directions with properly developed groundwater monitoring wells (see Figure 9). In addition, the groundwater sample collected in 2021 from the temporary well in boring B-6, located to the north-northeast of the plume (see Figure 4), did not contain detectable VC concentrations. The lateral extents of the northern VC plume are only delineated to the west and southwest with properly developed groundwater monitoring wells; however, the groundwater samples collected in 2021 from the temporary wells in borings B-5 and B-6, located to the northeast of the plume (see Figure 4), did not contain detectable VC concentrations. The vertical extents of the VC-impacted groundwater have not been delineated at either plume area.
- Based on the two areas of HVOC-impacted soil (see Figure 3) and groundwater (see Figure 9), the sources of the contamination appear to be releases of PCE at the former dry cleaning machine area at the eastern portion of Suite C-102, and releases of PCE or a daughter product (cis-1,2-DCE) from the underground oil/water separator or an associated storm drain catch basin or line that are located to the northwest of Building C. Coit discontinued the use of dry cleaning solvents that contained PCE in 2007; therefore, the source of the HVOC-impacted soil and groundwater at the former dry cleaning machine area is no longer present at the Subject Property. Coit's previous use of PCE at the Subject Property may have been the source of the HVOC-impacted soil and groundwater at the oil/water separator area; however, we need to obtain more information about the floor drain system at the property and the drainage pathways to the separator.
- Based on the lack of detectable HVOCs in the soil samples from boring SB-5, which was
 located within the former Wincraft print washing area, and the low HVOC concentrations
 in the groundwater samples from downgradient well MW-3, it does not appear that the
 former Wincraft print washing operations in Suite C-101 were a source of HVOC-impacted
 soil or groundwater.
- During the first three quarterly groundwater monitoring events in 2022, there were three
 groundwater monitoring wells at the Site and the shallow groundwater flow direction was
 consistently to the northwest, towards the Sammamish River. After installing six
 additional groundwater monitoring wells at the Subject Property area in January 2023,
 the general flow direction of the shallow groundwater was to the east-northeast (also
 towards the river).
- From April 2022 through January 2023, the groundwater table seasonally fluctuated up to 2.51 to 2.94 feet in wells MW-1, MW-2, and MW-3. At MW-1 and MW-2, which contained VC concentrations greater than the MTCA Method A cleanup level during two

of the four quarterly monitoring events, the groundwater concentrations appear to have been affected by the groundwater elevations at the wells. At MW-1, the VC concentrations were greater during periods of shallower groundwater elevations, but at MW-2, the VC concentrations were greater during periods of deeper groundwater elevations.

- The indoor air sample analytical results from this investigation, as well as from the December 2021 sampling event, showed that none of the samples contained any analytes at concentrations above either the MRLs or the MTCA Method B indoor air cleanup levels. Therefore, there do not appear to be any seasonal effects on the indoor air quality within smaller spaces in Building C, and the potential risks associated with intrusion of HVOC-impacted vapors into the building are low.
- Based on the presence of cis-1,2-DCE and VC in the soil and that VC is the only groundwater COC, RDC and natural attenuation of the HVOCs are occurring in the soil and groundwater at the Site.
- A potentially complete HVOC contaminant exposure pathway for human receptors is not currently present at the Site. Potential future exposure pathways include direct contact (ingestion, dermal contact, and inhalation) with the HVOC-impacted soil and groundwater.
- Enhanced RDC (Alternative 1) is the recommended remediation alternative for the Site; however, pilot testing is required to evaluate the effectiveness of the injected emulsified soybean oil and bioaugmentation solution, and the radius of injection influence.

7. REFERENCES

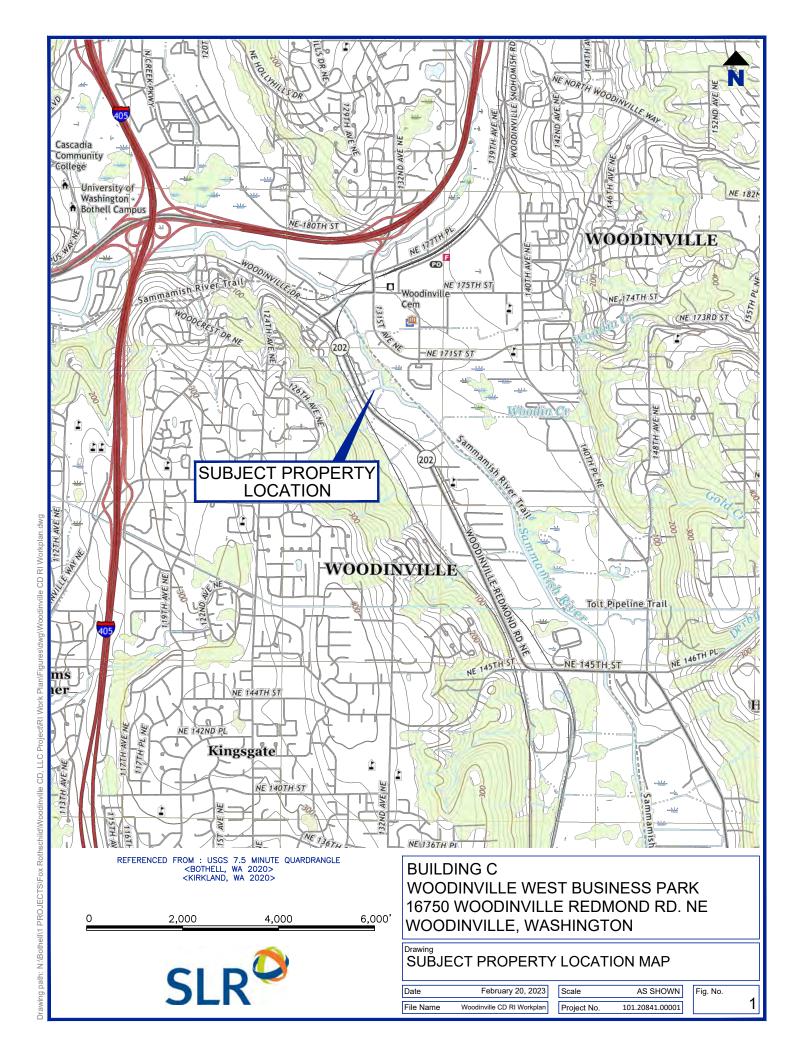
- Adapt Engineering, Inc. 2008. Phase I Environment Site Assessment, Woodinville Buildings, 16650, 16750, 16928, 16932 Woodinville Redmond Road NE, Woodinville, Washington 98072. March 20.
- AECOM. 2019. Phase II Environmental Site Assessment, Woodinville West Business Park, Building C, 16750 Redmond-Woodinville Road Northeast, Woodinville, Washington. December 16.
- CODA Consulting Group. 2021. Phase II Indoor Air Quality and Subsurface Assessment, Industrial Building, 16750 Woodinville Redmond Road, Woodinville, WA. December 29.
- United States Environmental Protection Agency. 1989. *Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part A). Interim Final.* Office of Emergency and Remedial Response. Washington D.C. EPA/540/1-89/002. July.

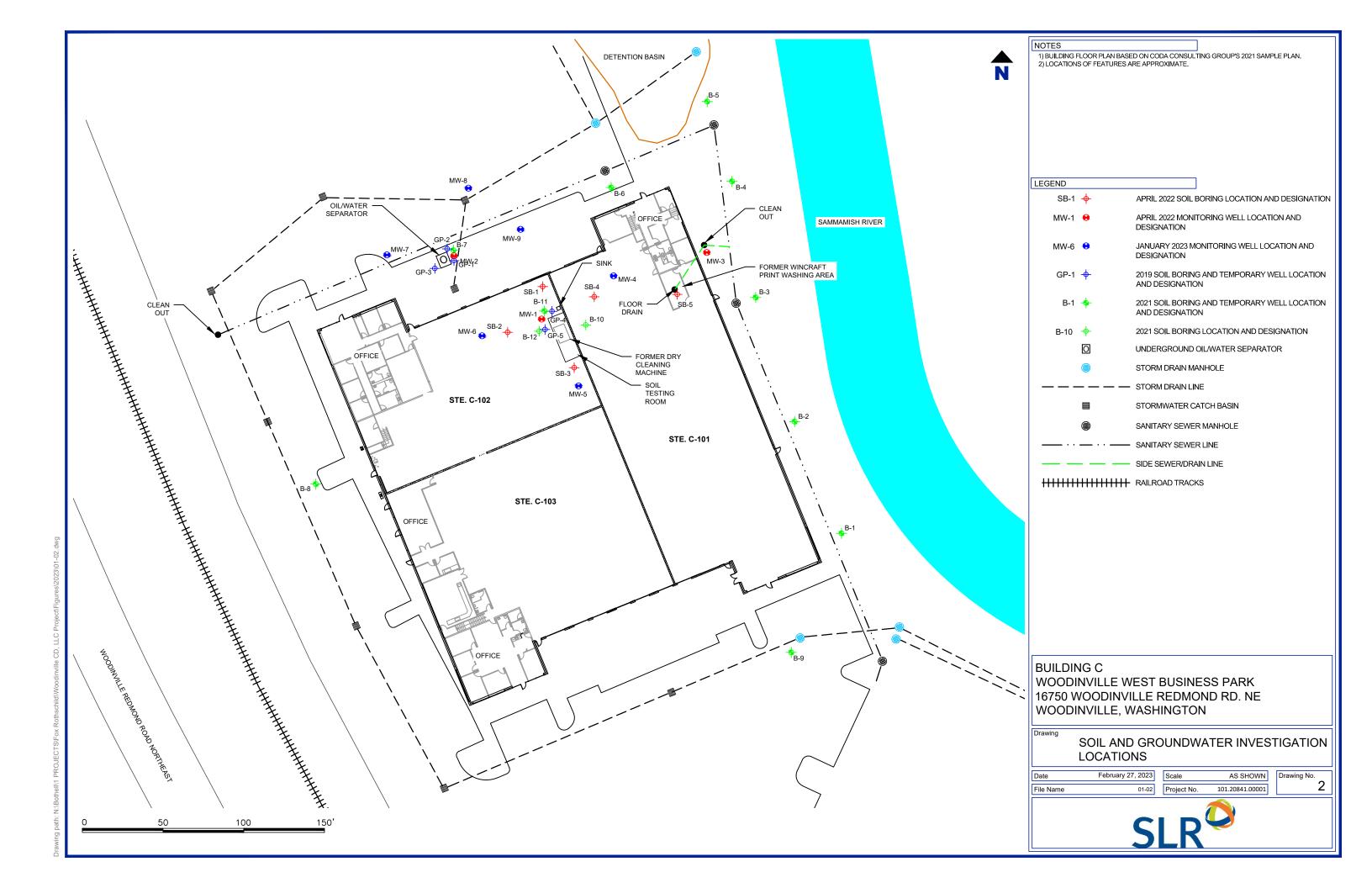
LIMITATIONS

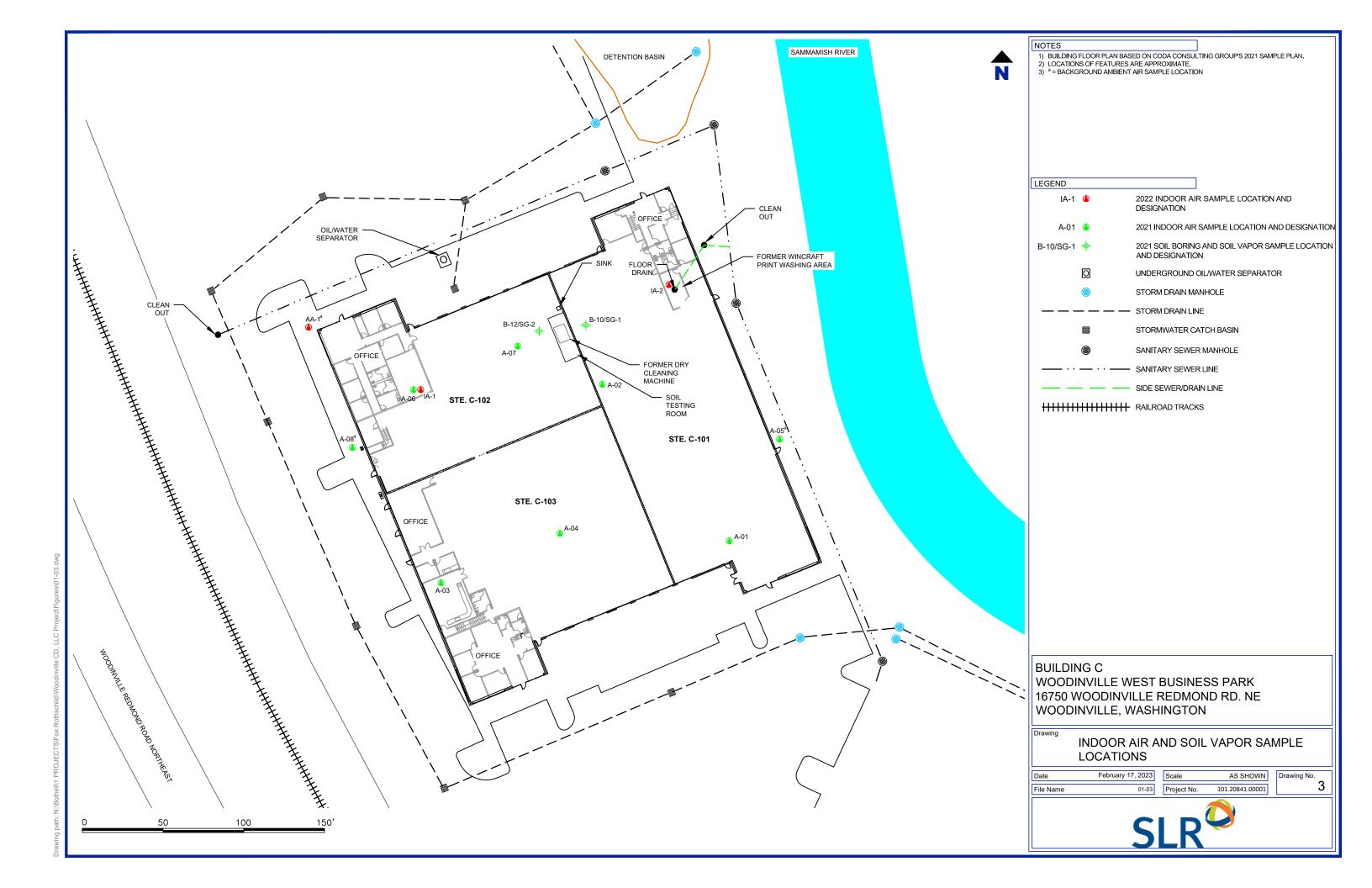
The services described in this work product were performed in accordance with generally accepted professional consulting principles and practices. No other representations or warranties, expressed or implied, are made. These services were performed consistent with our agreement with our client. This work product is intended solely for the use and information of our client unless otherwise noted. Any reliance on this work product by a third party is at such party's sole risk.

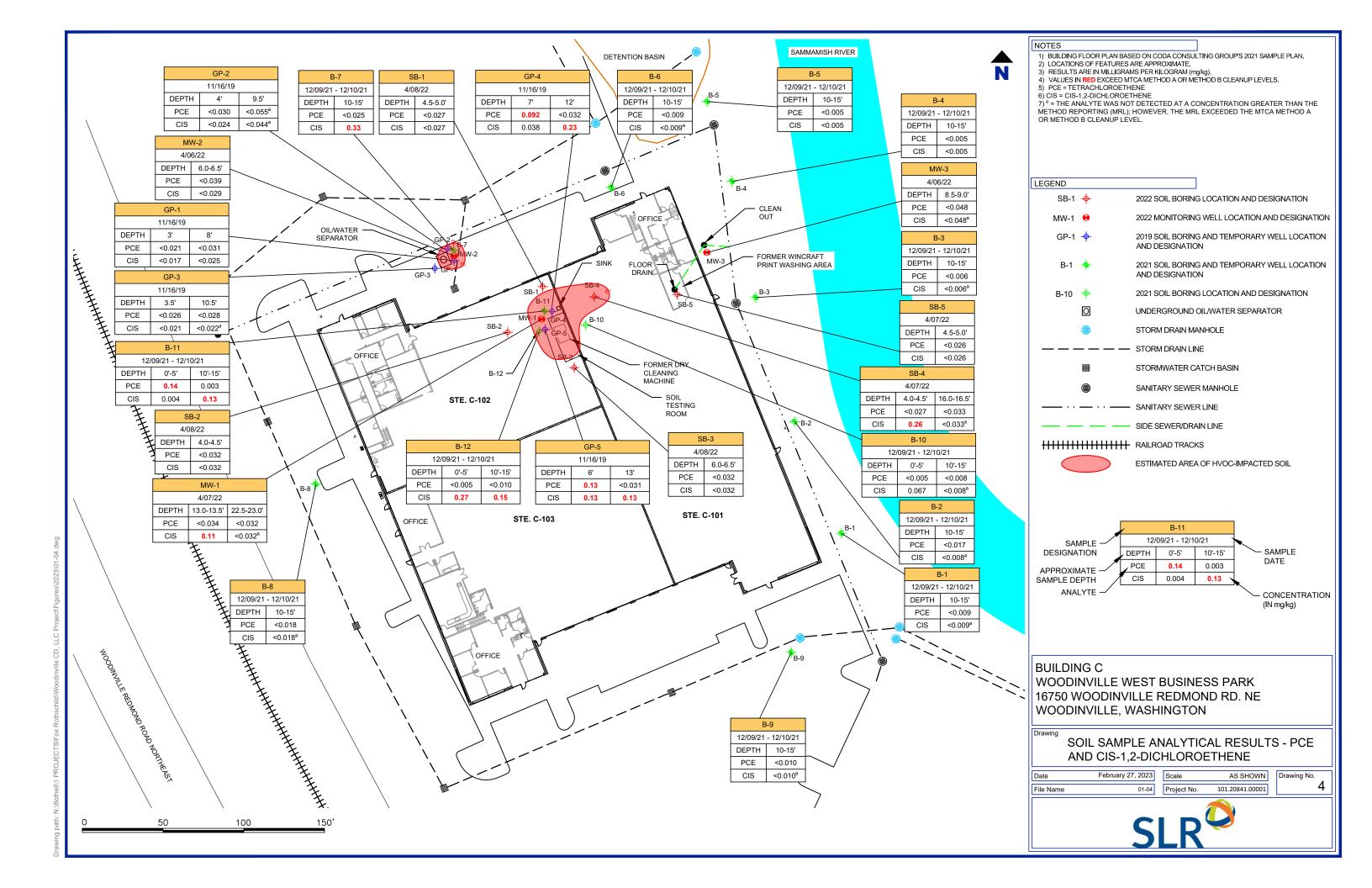
Opinions and recommendations contained in this work product are based on conditions that existed at the time the services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. The data reported and the findings, observations, and conclusions expressed are limited by the scope of work. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this work product.

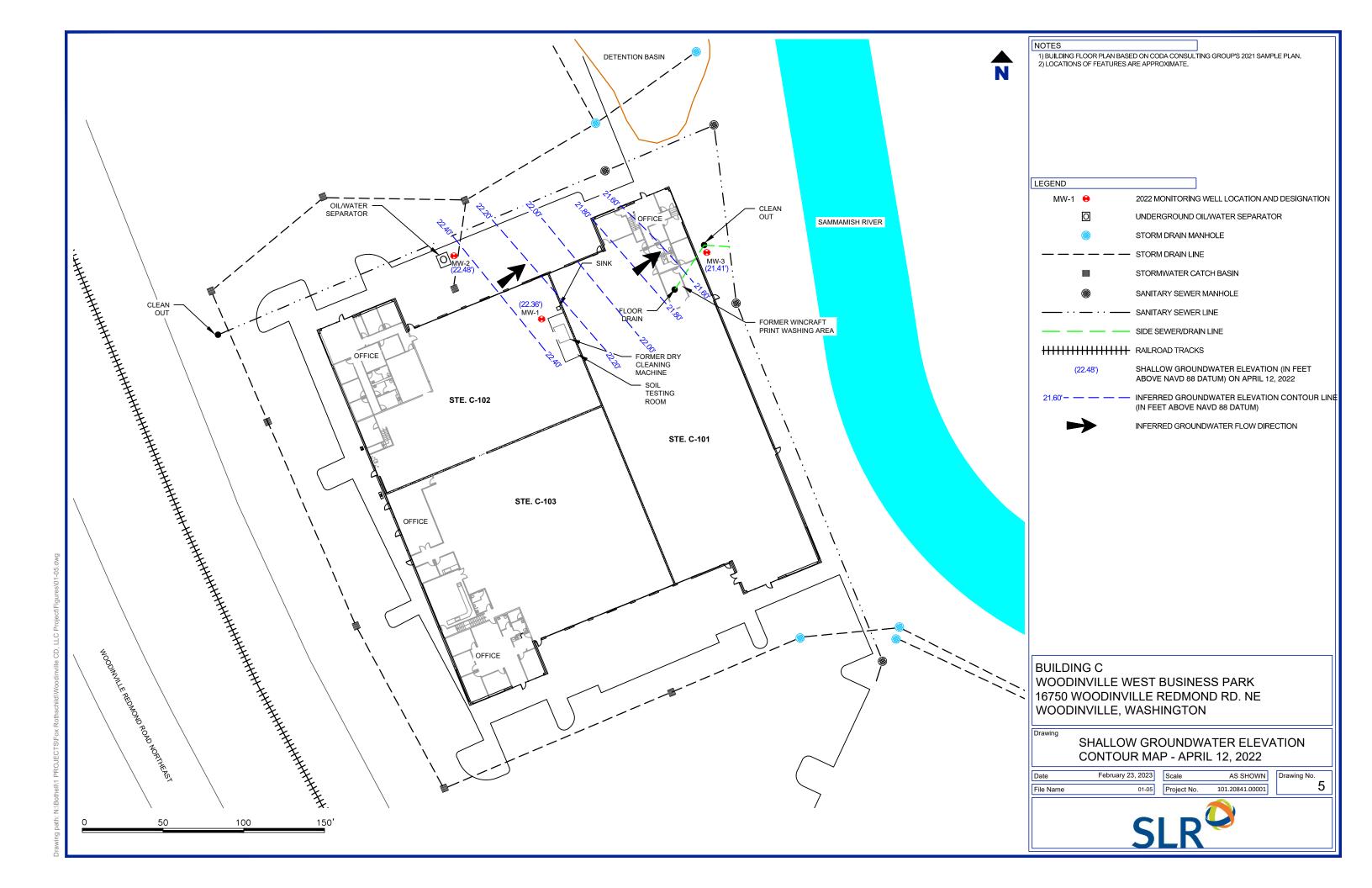
The purpose of an environmental assessment is to reasonably evaluate the potential for, or actual impact of, past practices on a given site area. In performing an environmental assessment, it is understood that a balance must be struck between a reasonable inquiry into the environmental issues and an appropriate level of analysis for each conceivable issue of potential concern. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

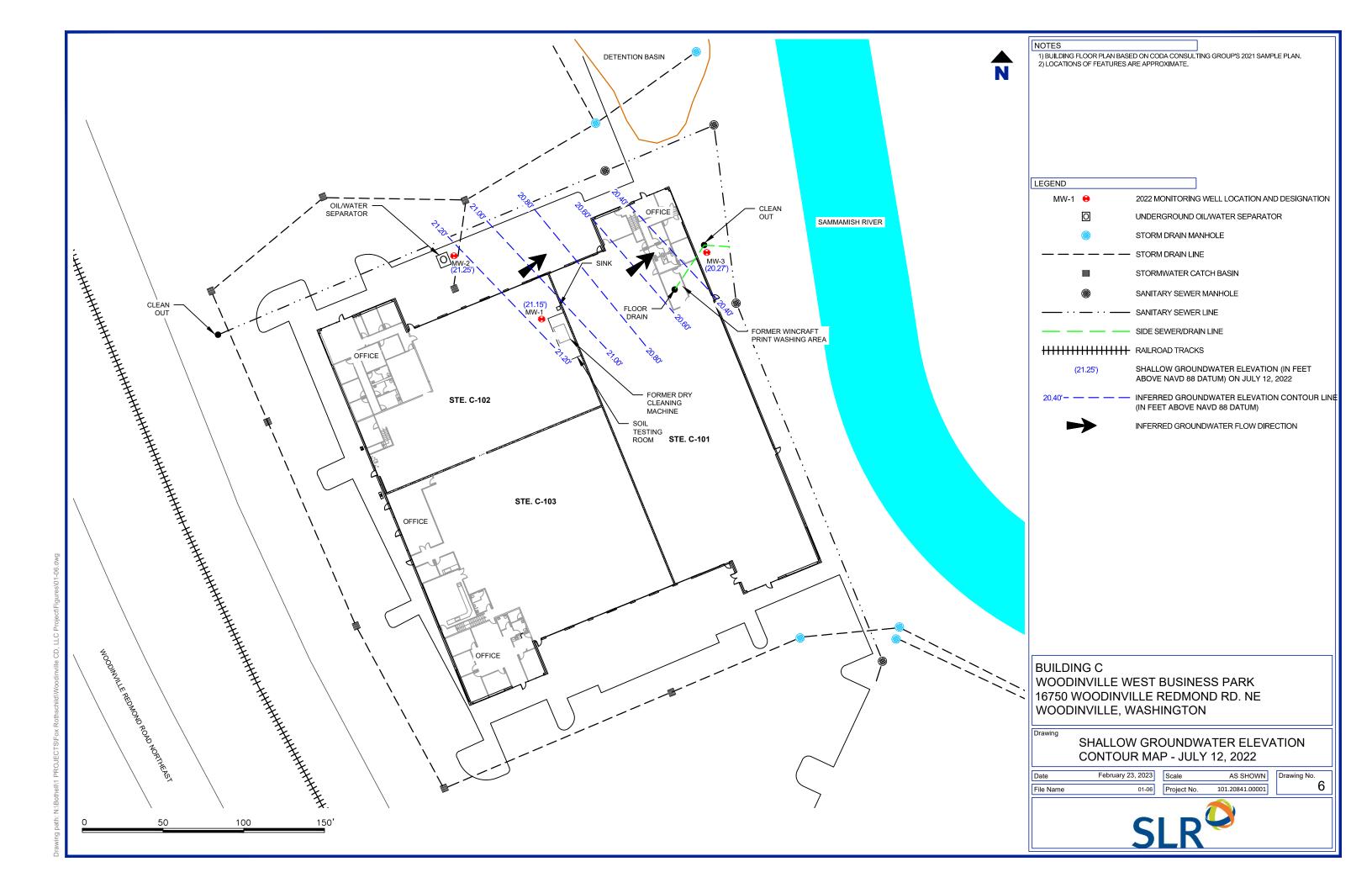

No investigation can be thorough enough to exclude the presence of hazardous materials at a given site. If hazardous conditions have not been identified during the assessment, such a finding should not therefore be construed as a guarantee of the absence of such materials on the site, but rather as the result of the services performed within the scope, practical limitations, and cost of the work performed.

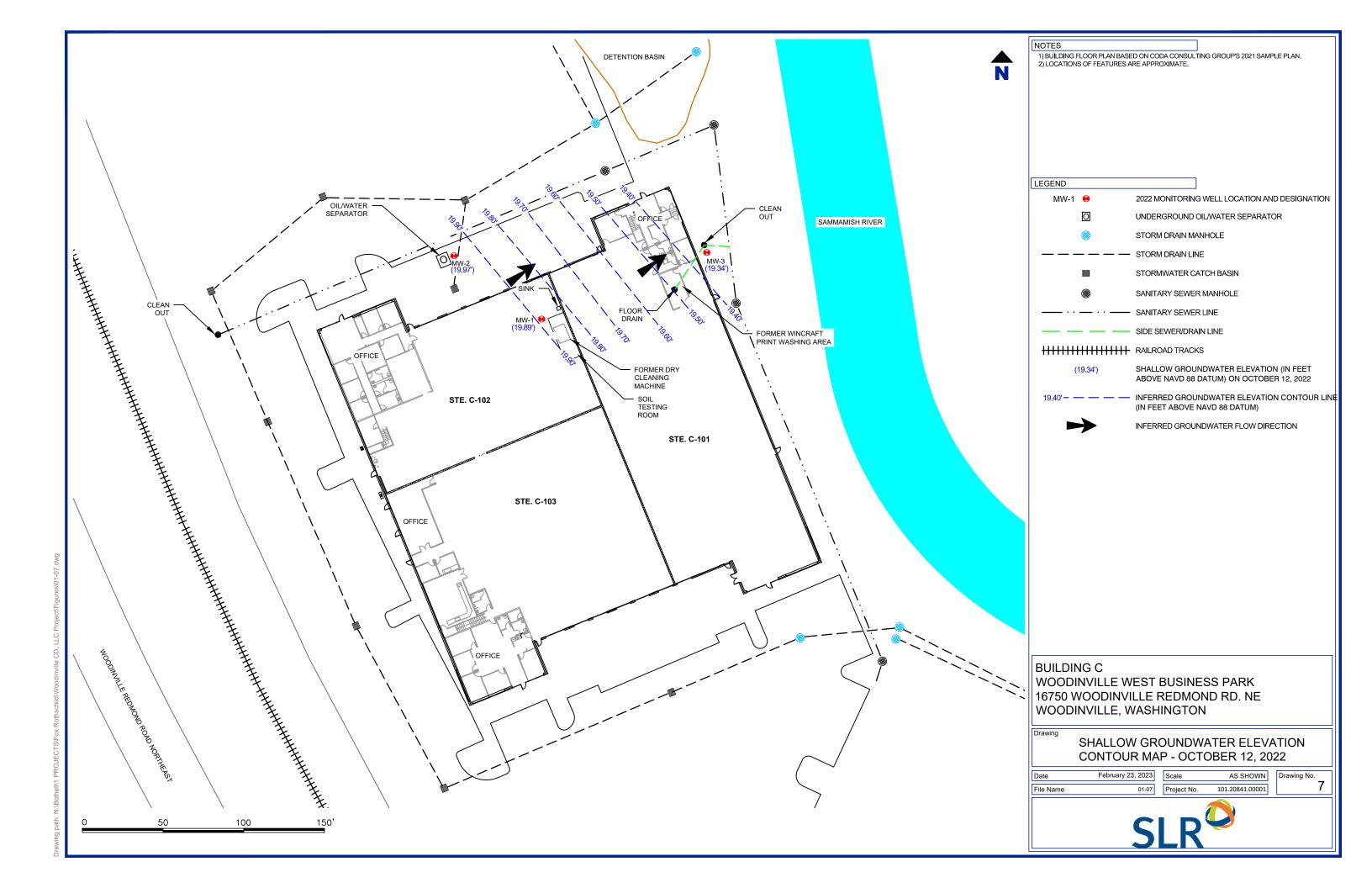

Environmental conditions that are not apparent may exist at the site. Our professional opinions are based in part on interpretation of data from a limited number of discrete sampling locations and therefore may not be representative of the actual overall site environmental conditions.

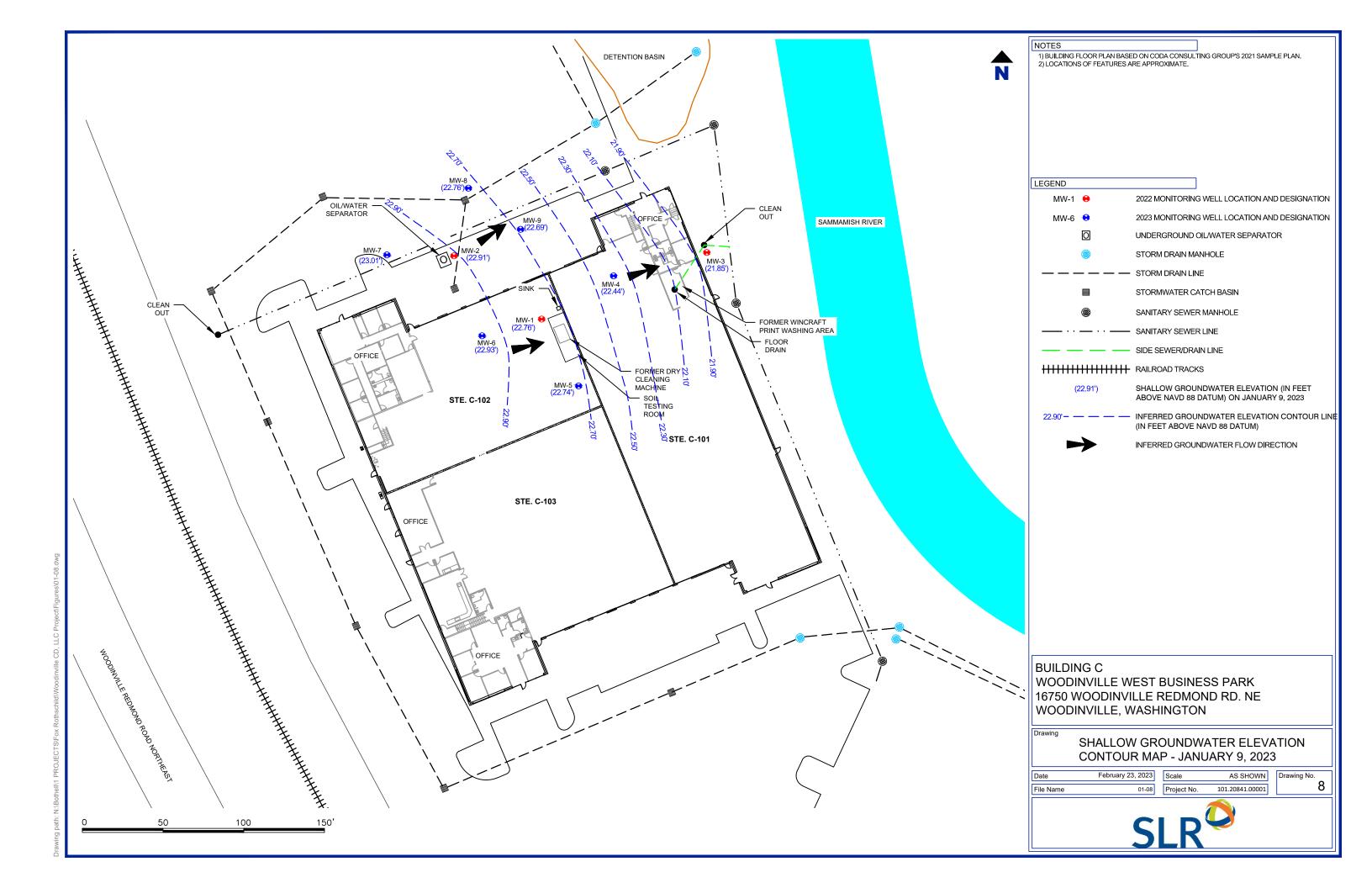

The passage of time, manifestation of latent conditions, or occurrence of future events may require further study at the site, analysis of the data, and/or reevaluation of the findings, observations, and conclusions in the work product.

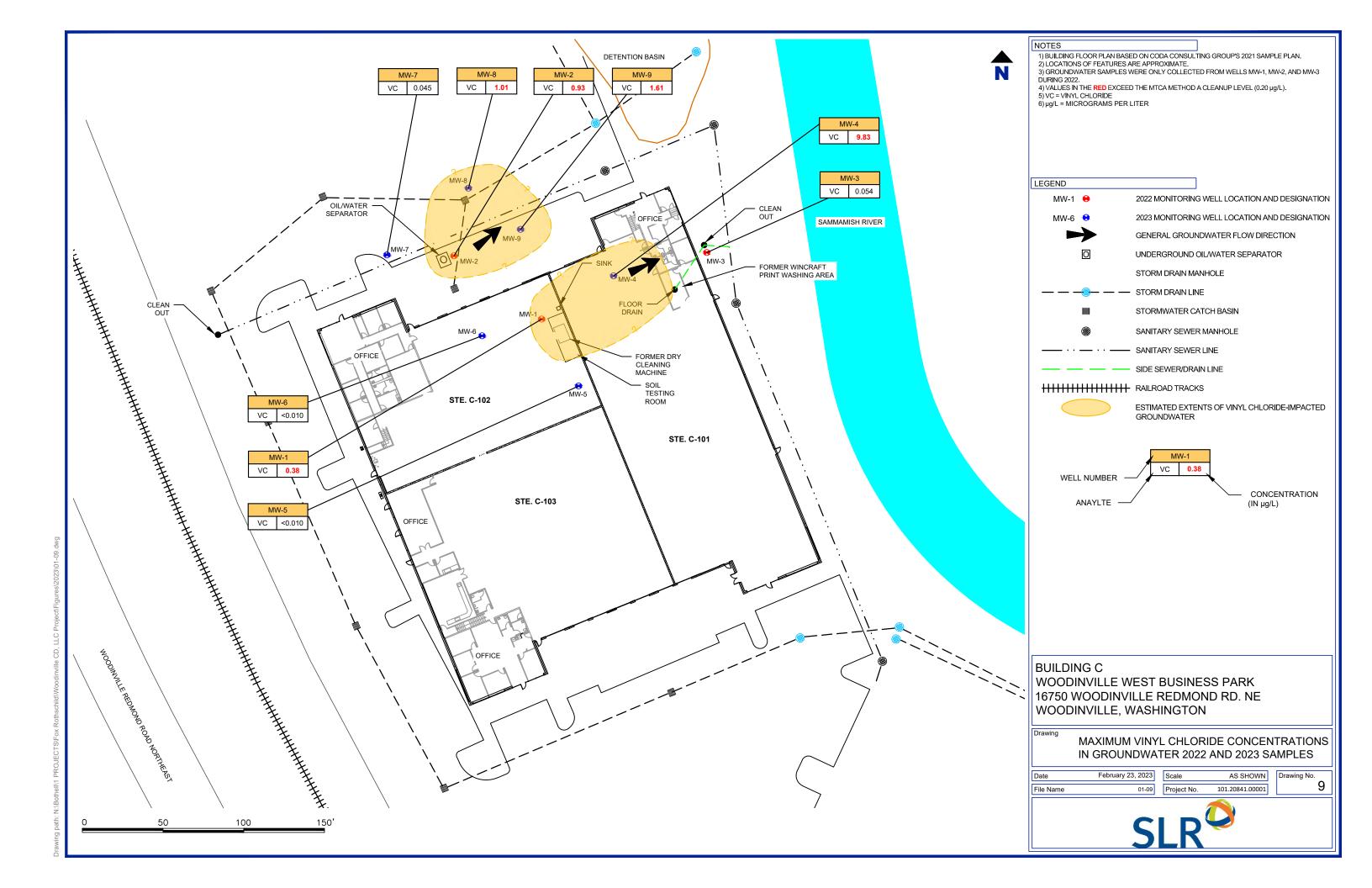

This work product presents professional opinions and findings of a scientific and technical nature. The work product shall not be construed to offer legal opinion or representations as to the requirements of, nor the compliance with, environmental laws rules, regulations, or policies of federal, state or local governmental agencies.

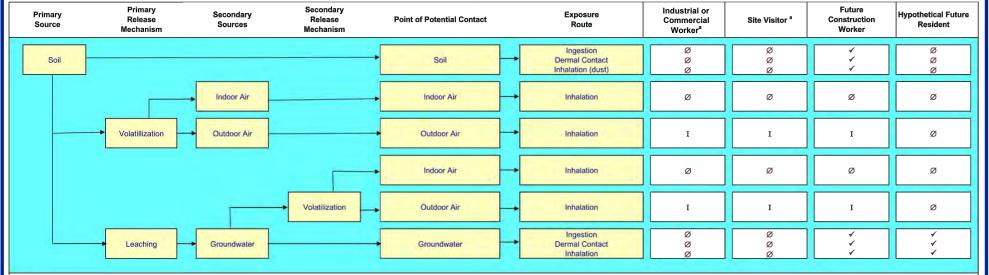

FIGURES











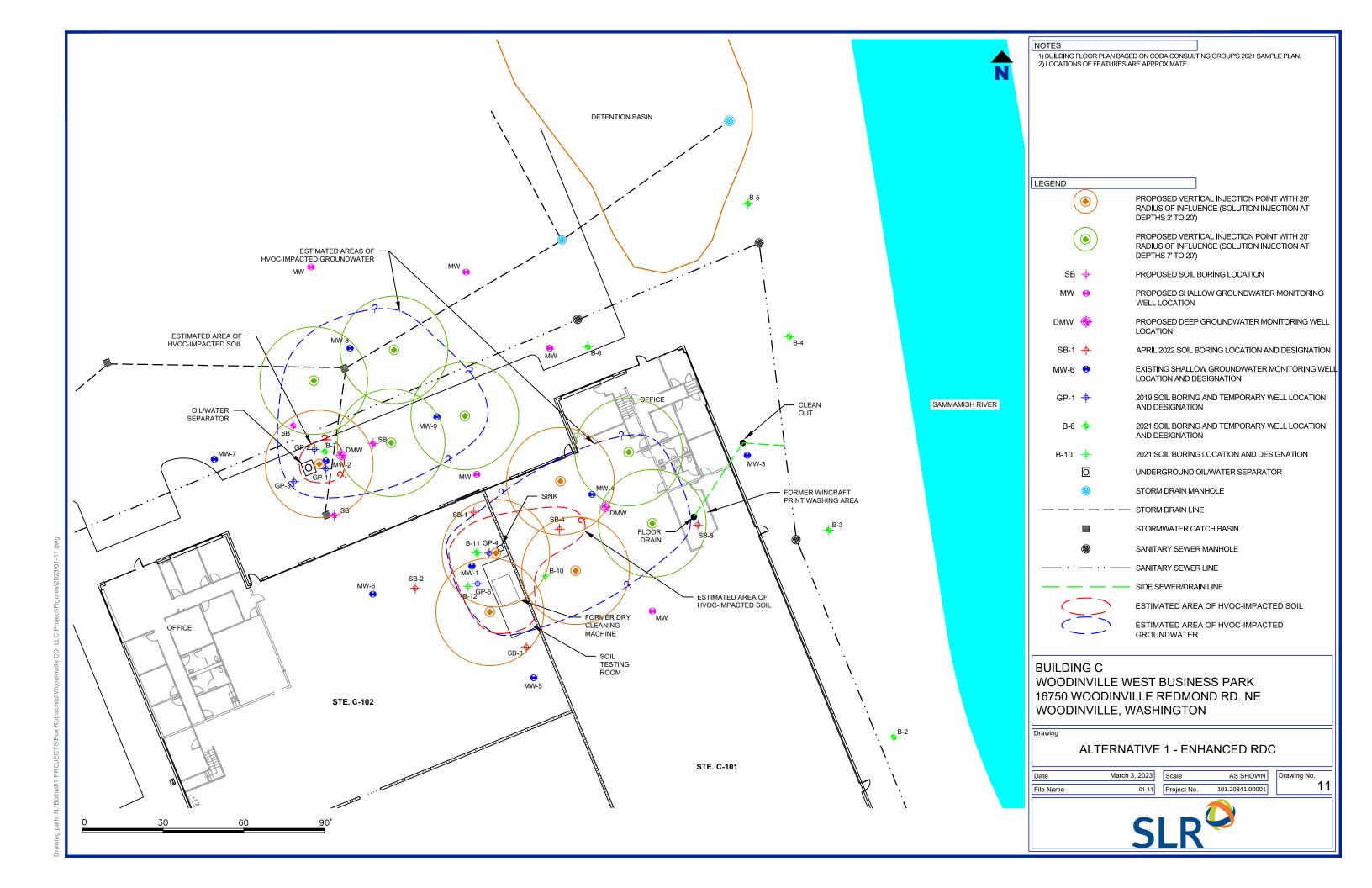
Notes:

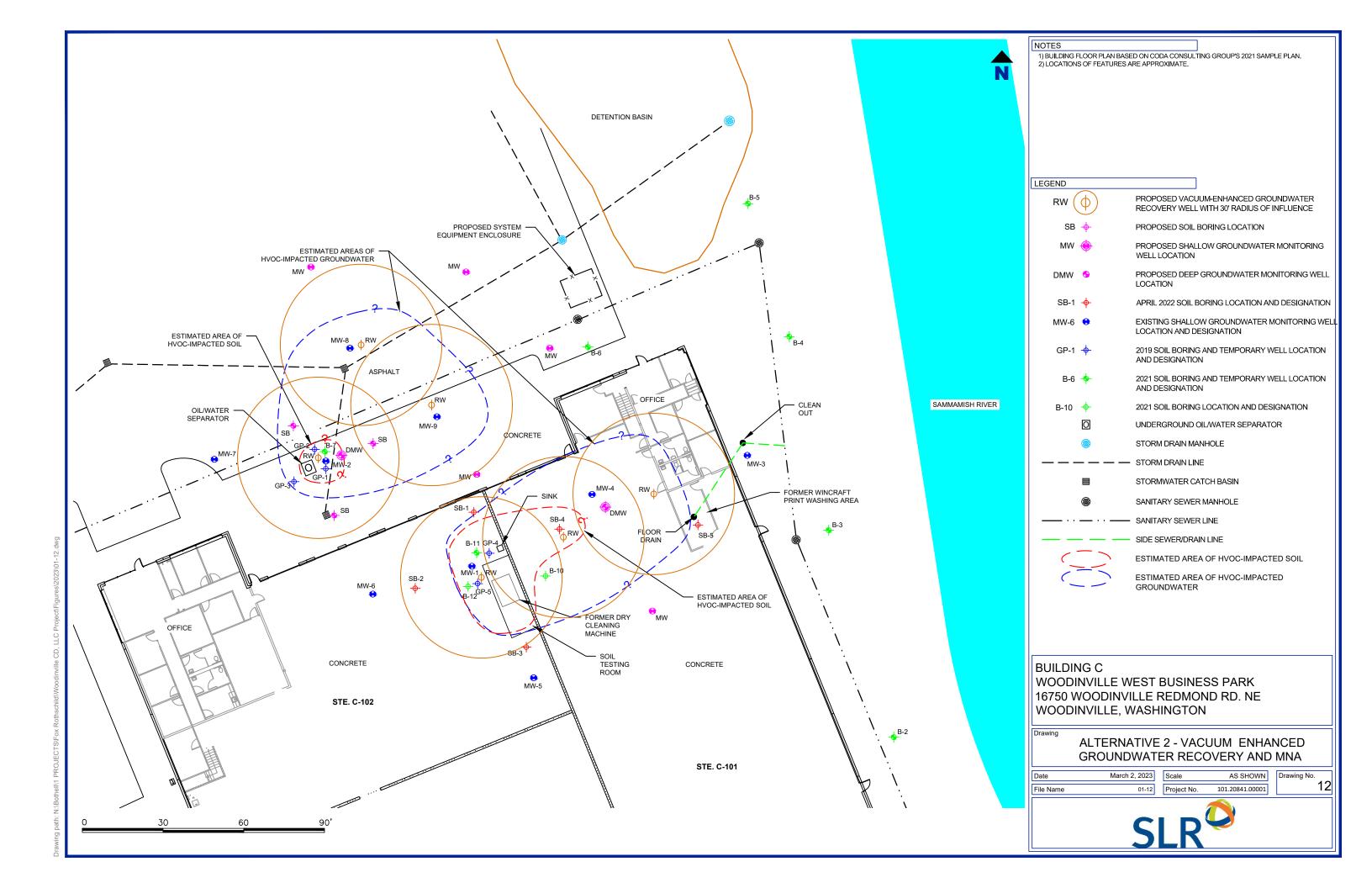
- ^a Current and Future
- Primary Pathway
- --- Incomplete Pathway
- ✓ Potentially Complete Exposure Route
- Ø Incomplete Exposure Route
 - Insignificant Exposure Route

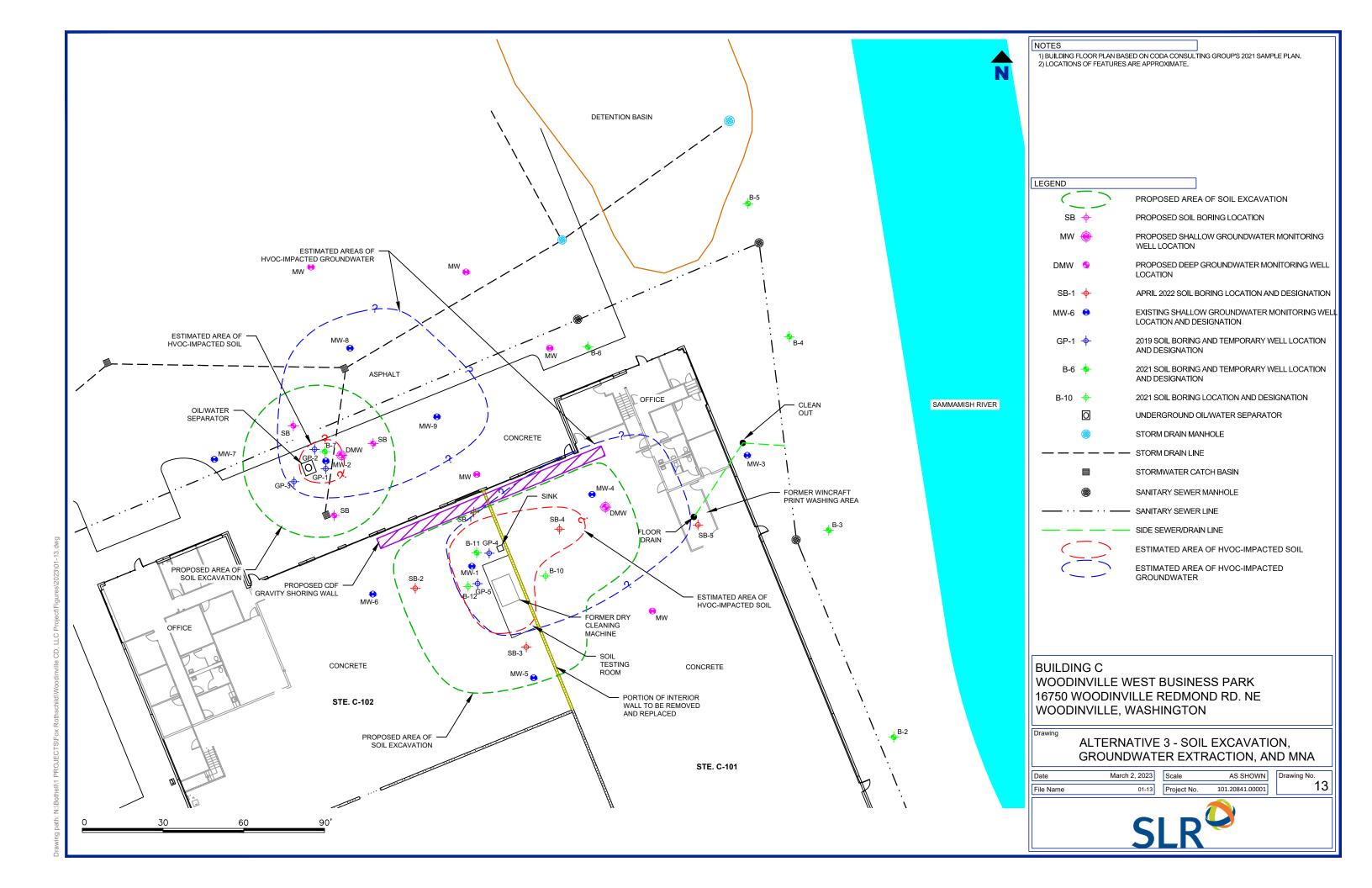
BUILDING C WOODINVILLE WEST BUSINESS PARK 16750 WOODINVILLE REDMOND RD. NE WOODINVILLE, WASHINGTON

Drawing

CONCEPTUAL SITE MODEL - HUMAN HEALTH


Date February 23, 2023
File Name 01-10


 Scale
 AS SHOWN


 Project No.
 101.20841.00001

Drawing No.

TABLES

Table 1
Soil Sample Analytical Results
Building C at Woodinville West Business Park
Woodinville, Washington

Soil Boring Number	Sample ID	Approximate Sample Depth (feet)	Date Collected	Cis-1,2-Dichloroethene ^b	Toluene	2-Chlorotoluene	Acetone	Benzene	2-Butanone (MEK)	Trans-1,2-Dichloroethene	Naphthalene	Tetrachloroethene (PCE) ^b	Trichloroethene (TCE) ^b	Vinyl Chloride ^c	Total Xylenes ^b
		MTCA Method A	Cleanup Levels ^a	0.079 ¹ /0.0052 ⁹	7.0	1,600 ^e	72,000 ^e	0.03	48,000 ^e	0.52 ^f /0.032 ^g	5.0	0.05	0.03	0.0017 ^f /0.00009 ^g	9.0
2022 SLR Inv			_												
SB-1	SB-1-4.5'-5.0'	4.5-5.0	04/08/22	<0.027	<0.058	<0.055	<1.10	<0.011	<0.55	<0.027	<0.11	<0.027	<0.027	<0.027 ^h	NA
SB-2	SB-2-4.0'-4.5'	4.0-4.5	04/08/22	<0.032	<0.063	<0.063	<1.26	<0.013	<0.63	<0.032	<0.13	<0.032	<0.032 ^h	<0.032 ^h	NA
SB-3	SB-3-6.0'-6.5'	6.0-6.5	04/08/22	<0.032	<0.063	<0.063	<1.27	<0.013	<0.63	<0.032	<0.13	<0.032	<0.032 ^h	<0.032 ^h	NA
SB-4	SB-4-4.0'-4.5'	4.0-4.5	04/07/22	0.26	<0.053	<0.053	<1.06	<0.011	<0.53	<0.027	<0.11	<0.027	<0.027	<0.027 ^h	NA
	SB-4-16.0'-16.5'	16.0-16.5	04/07/22	<0.033 ^h	<0.067	<0.067	<1.33	<0.013	<0.67	<0.033 ^h	<0.13	<0.033	<0.033 ^h	<0.033 ^h	NA
SB-5	SB-5-4.5'-5.0'	4.5-5.0	04/07/22	<0.026	<0.052	<0.052	<1.03	<0.010	<0.52	<0.026	<0.10	<0.026	<0.026	<0.026 ^h	NA
MW-1	MW-1-13.0'-13.5'	13.0-13.5	04/07/22	0.11	<0.069	<0.069	<1.37	<0.014	<0.69	<0.034 ^h	<0.14	<0.034	<0.034 ^h	<0.034 ^h	NA
	MW-1-22.5'-23.0'	22.5-23.0	04/07/22	<0.032 ^h	<0.063	<0.063	<1.26	<0.013	<0.63	<0.032	<0.13	<0.032	<0.032 ^h	<0.032 ^h	NA
MW-2	MW-2-6.0'-6.5'	6.0-6.5	04/06/22	<0.039	<0.077	<0.077	<1.54	<0.015	<0.77	<0.039	<0.15	<0.039	<0.039 ^h	<0.039 ^h	NA
MW-3	MW-3-8.5'-9.0'	8.5-9.0	04/06/22	<0.048 ^h	<0.096	<0.096	<1.93	<0.019	<0.96	<0.048 ^h	<0.19	<0.048	<0.048 ^h	<0.048 ^h	NA
2021 CODA	1	T	T	h		T	I		T	T		I	T	b	
B-1	B1	10-15	12/09/21	<0.009 ^h	<0.017	<0.009	0.17	<0.003	0.37	<0.017	<0.043	<0.009	<0.003	<0.009 ^h	<0.022
B-2	B2	10-15	12/09/21	<0.017 ^h	<0.033	<0.017	<0.33	<0.007	0.56	<0.033 ^h	<0.084	<0.017	<0.007	<0.017 ^h	<0.044
B-3	B3	10-15	12/09/21	<0.006 ^h	<0.011	<0.006	<0.11	<0.002	<0.22	<0.011	<0.028	<0.006	<0.002	<0.006 ^h	<0.015
B-4	B4	10-15	12/09/21	<0.005	<0.011	<0.005	<0.11	<0.002	<0.21	<0.011	<0.026	<0.005	<0.002	<0.005 ^h	<0.014
B-5	B5	10-15	12/09/21	<0.005	<0.010	<0.005	<0.10	<0.002 <0.004	0.17	<0.010	<0.025	<0.005	<0.002	<0.005 ^h	<0.013
B-6 B-7	B6	10-15	12/09/21	<0.009 ^h	<0.018	<0.009	<0.18		0.36	<0.018	<0.044	<0.009	<0.004	<0.009 ^h	<0.023
	B7	10-15	12/09/21	0.33	0.017	<0.025	0.77	0.011	1.30	<0.050 ^h	<0.12	<0.025	<0.010	<0.025 ^h	<0.064
B-8 B-9	B8	10-15	12/09/21	<0.018 ^h	<0.035	<0.018	0.36	<0.007	<0.71	<0.035 ^h	<0.089	<0.018	<0.007	<0.018 ^h	<0.046
D-9	B9 B10-1	10-15	12/09/21	<0.010 ^h	<0.021	<0.010	0.18	<0.004	0.48	<0.021	<0.052	<0.010	<0.004	<0.010 ^h	<0.027
B-10	B10-1	0-5	11/30/21	0.067	0.015	<0.005	<0.10	<0.002	<0.21	0.004	0.013	<0.005	<0.002	<0.005 ^h	0.002
	B10-2	10-15 0-5	11/30/21 12/10/21	<0.008 ^h	<0.016	<0.008	0.15 <0.080	<0.003 <0.002	0.35 <0.16	<0.016	<0.040	<0.008	<0.003 0.005	<0.008 ^h	<0.021
B-11	B11-1 B11-2	10-15	12/10/21	0.004 0.13	<0.008 0.003	<0.004 <0.005	<0.080	<0.002	<0.16	<0.008 0.003	<0.020 <0.023	0.14 0.003	<0.005	0.007	<0.010 <0.012
	B11-2 B12-1	0-5	12/10/21	0.13	0.003	<0.005	<0.091	<0.002	<0.18	0.003	0.023	< 0.003	<0.002	<0.007	0.003
B-12	B12-1	10-15	12/10/21	0.27	0.009	<0.005	0.092	<0.002	0.42	0.014	<0.049	<0.005	<0.002	<0.005 <0.010 ^h	<0.025
	DIZ-Z	10-15	12/10/21	U.15	0.014	<0.010	0.17	<u></u> <0.004	0.42	0.009	<0.049	<0.010	<u></u> <0.004	\0.010	<u.u25< td=""></u.u25<>

Table 1 Soil Sample Analytical Results Building C at Woodinville West Business Park Woodinville, Washington

Soil Boring Number	Sample ID	Approximate Sample Depth (feet)	Date Collected		Toluene	2-Chlorotoluene	Acetone	Benzene	2-Butanone (MEK)	Trans-1,2-Dichloroethene	Naphthalene	Tetrachloroethene (PCE) ^b	Trichloroethene (TCE) ^b	Vinyl Chloride ^c	Total Xylenes ^b
		MTCA Method A	Cleanup Levels ^d	0.079 ^f /0.0052 ^g	7.0	1,600 ^e	72,000 ^e	0.03	48,000 ^e	0.52 ^f /0.032 ^g	5.0	0.05	0.03	0.0017 ^f /0.00009 ^g	9.0
2019 AECOM	Assessment														
GP-1	GP-1-3	3	11/16/19	<0.017	NA	<0.021	NA	NA	NA	<0.017	NA	<0.021	<0.017	<0.021 ^h	NA
01 - 1	GP-1-8	8	11/16/19	<0.025	NA	<0.031	NA	NA	NA	<0.025	NA	<0.031	<0.025	<0.031 ^h	NA
GP-2	GP-2-4	4	11/16/19	<0.024	NA	<0.030	NA	NA	NA	<0.024	NA	<0.030	<0.024	<0.030h	NA
01 -2	GP-2-9.5	9.5	11/16/19	<0.044 ^h	NA	0.12	NA	NA	NA	<0.044 ^h	NA	<0.055 ^h	<0.044 ^h	<0.055 ^h	NA
GP-3	GP-3-3.5	3.5	11/16/19	<0.021	NA	<0.026	NA	NA	NA	<0.021	NA	<0.026	<0.021	<0.026 ^h	NA
01 0	GP-3-10.5	10.5	11/16/19	<0.022 ^h	NA	<0.028	NA	NA	NA	<0.022	NA	<0.028	<0.022	<0.028 ^h	NA
GP-4	GP-4-7	7	11/16/19	0.038	NA	<0.028	NA	NA	NA	<0.023	NA	0.092	<0.023	<0.028 ^h	NA
O1 ¬	GP-4-12	12	11/16/19	0.23	NA	<0.032	NA	NA	NA	<0.026	NA	<0.032	<0.026	<0.032 ^h	NA
GP-5	GP-5-6	6	11/16/19	0.13	NA	<0.032	NA	NA	NA	<0.025	NA	0.13	<0.025	<0.032 ^h	NA
O1 -0	GP-5-13	13	11/16/19	0.13	NA	<0.031	NA	NA	NA	<0.025	NA	<0.031	<0.025	<0.031 ^h	NA

Notes:

This table only includes the analytes that were detected in at least one soil sample and have MTCA Method A or Method B soil cleanup levels. All values in milligrams per kilogram (mg/kg).

Values in red represent concentrations above MTCA Method A or Method B cleanup levels.

Based on the 2022 and 2023 groundwater monitoring data, the vadose zone beneath the subject property area extends to a depth of approximately 8.7 feet below ground surface (bgs).

NA = Not Analyzed

J = Estimated result. The laboratory stated that the result was detected below the lowest point of the calibration curve, but above the specified method detection limit (MDL).

^a Gasoline-range organics by Ecology Method NWTPH-Gx.

^bVolatile organic compounds (VOCs) by EPA Method 8260C or 8260 D.

^cAnalyzed by EPA Method 8260C SIM or 8260D SIM.

^d Chapter 173-340 WAC, Model Toxics Control Act Statute and Regulation, Table 740-1, Method A Soil Cleanup Levels for Unrestriced Land Uses. Revised November 2007.

^e Method B cleanup level used because a Method A level is not established. Standard formula values, direct contact Method B soil cleanup levels as published in Ecology's Cleanup Level and Risk Calculation (CLARC) online database (January 2023).

Method B cleanup level used because a Method A level is not established. Standard formula values, protection of groundwater in the vadose zone Method B soil cleanup level as published in Ecology's CLARC online database (January 2023).

The protection of groundwater in the vadose zone values were only applied to soil samples collected at depths of less than 8.7 feet bgs.

⁹ Method B cleanup level used because a Method A level is not established. Standard formula values, protection of groundwater in the saturated zone Method B soil cleanup level as published in Ecology's CLARC online database (January 2023). The protection of groundwater in the saturated zone values were only applied to the soil samples collected at depths greater than 8.7 feet bgs.

^h The analyte was not detected at a concentration greater than the method reporting limit (MRL); however, the MRL exceeded the MTCA Method A or Method B cleanup level.

Table 2 Groundwater Sampling Field Parameter Measurements Building C at Woodinville West Business Park Woodinville, Washington

Well Number	Date Measured	Approximate Total Purge Volume (gallons)	Temperature (°C)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	рН	Redox Potential (mV)
MW-1	04/12/22	1.25	15.5	0.33	0.65	7.14	232.2
	07/13/22	1.50	15.7	0.27	0.14	5.89	10.8
	10/12/22	1.75	15.6	0.29	0.08	6.47	26.2
	01/09/23	2.00	15.9	0.38	0.43	6.61	23.7
MW-2	04/12/22	1.50	9.80	0.30	0.74	6.74	229.9
	07/13/22	1.00	14.0	0.33	0.12	6.19	8.90
	10/12/22	1.75	14.3	0.26	0.05	6.51	24.9
	01/09/23	1.25	8.60	0.31	0.94	6.75	15.8
MW-3	04/12/22	1.50	14.2	0.40	0.79	6.67	243.4
	07/13/22	1.25	15.8	0.39	0.07	6.23	1.70
	10/12/22	1.75	15.4	0.33	0.06	6.42	30.2
	01/09/23	1.25	14.3	0.29	0.06	6.42	33.7
MW-4	01/09/23	1.25	15.7	0.63	0.10	6.35	37.6
MW-5	01/10/23	1.75	15.4	0.33	0.06	6.50	29.3
MW-6	01/10/23	1.50	15.8	0.38	0.12	6.68	20.2
MW-7	01/10/23	1.00	12.7	0.40	0.13	6.55	27.0
MW-8	01/09/23	1.50	12.3	1.67	0.26	6.22	44.3
MW-9	01/09/23	1.75	12.8	0.61	0.60	6.63	22.6

Notes:

Field parameter measurements in this table were the final measurements prior to collecting each groundwater sample.

mS/cm = millisiemens per centimeter.

mg/L = milligrams per liter.

mV = millivolts.

[°]C = Degrees Celsius.

Table 3 Groundwater Monitoring Data Building C at Woodinville West Business Park Woodinville, Washington

Well Number	Approximate Depth of Well Screen (feet)	Top of Casing Elevation (feet) ^a	Date Measured	Depth to Groundwater (feet) ^b	Groundwater Elevation (feet)
MW-1	2.8 to 22.8	36.43	04/12/22	14.07	22.36
			07/12/22	15.28	21.15
			10/12/22	16.54	19.89
			01/09/23	13.67	22.76
MW-2	2.7 to 22.7	32.09	04/12/22	9.61	22.48
			07/12/22	10.84	21.25
			10/12/22	12.12	19.97
			01/09/23	9.18	22.91
MW-3	3.0 to 23.0	35.35	04/12/22	13.94	21.41
			07/12/22	15.08	20.27
			10/12/22	16.01	19.34
			01/09/23	13.50	21.85
MW-4	2.5 to 22.5	35.96	01/09/23	13.52	22.44
MW-5	2.4 to 22.4	36.30	01/09/23	13.56	22.74
MW-6	2.4 to 22.4	36.40	01/09/23	13.47	22.93
MW-7	3.0 to 23.0	33.23	01/09/23	10.22	23.01
MW-8	3.0 to 23.0	31.46	01/09/23	8.70	22.76
MW-9	2.0 to 22.0	31.99	01/09/23	9.30	22.69

Notes:

^a Elevations surveyed relative to the NAVD 88 vertical datum.

b Depth below top of well casing.

Table 4
Groundwater Sample Analytical Results
Building C at Woodinville West Business Park
Woodinville, Washington

							VOCs ^a				
Well Number	Sample ID	Date Collected	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Cis-1,2- Dichloroethene	Vinyl Chloride ^b	Chloroform	2-Chlorotoluene	Benzene	Ethylbenzene	Total Xylenes
01.0		A Cleanup Levels ^c	5.0	5.0	16 ^d	0.20	1.40 ^d	160 ^d	5.0	700	1,000
	ndwater Monitoring \ MW-1-0422		10.10	10.40	10.10	0.07	-11.00	11.00	10.00	10.50	44.50
MW-1		04/12/22	<0.40	<0.40	<0.40	0.27	<1.00	<1.00	<0.20	< 0.50	<1.50
	MW-1-0722	07/12/22	0.20	<0.40	<0.40	0.052	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-1-1022 MW-1-0123	10/12/22	<0.40	<0.40 <0.40	<0.40	0.036	<1.00	<1.00	<0.20 <0.20	<0.50	<1.50
MW-2	MW-2-0422	01/09/23	<0.40	<0.40	<0.40 0.65	0.38	<1.00	<1.00	0.20	<0.50	<1.50 2.87
IVIVV-Z	MW-2-0722	04/12/22 07/12/22	<0.40		0.65	0.085	<1.00	4.04 2.58	0.44	0.74 0.58	1.70
	MW-2-1022	10/12/22	<0.40 <0.40	<0.40 <0.40	<0.40	0.21 0.93	<1.00 <1.00	<1.00	<0.20	<0.50	<1.70
	MW-2-0123	01/09/23	<0.40	<0.40	0.46	0.93	<1.00	1.70		<0.50	0.51
MW-3	MW-3-0422	01/09/23	<0.40	<0.40	<0.40	<0.020	<1.00	<1.00	0.15 ^f <0.20	<0.50	<1.50
IVIVV-3	MW-3-0722	04/12/22	<0.40	<0.40	<0.40	0.020	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-3-1022	10/12/22	<0.40	<0.40	<0.40	0.028	<1.00	<1.00	<0.20	<0.50	<1.50
	MW-3-0123	01/09/23	<0.40	<0.40	<0.40	<0.010	<1.00	<1.00	<0.20	<0.50	<1.50
MW-4	MW-4-0123	01/09/23	<0.40	<0.40	0.95	9.83	<1.00	<1.00	<0.20	<0.50	<1.50
MW-5	MW-5-0123	01/10/23	<0.40	<0.40	<0.40	<0.010	<1.00	<1.00	<0.20	<0.50	<1.50
MW-6	MW-6-0123	01/10/23	<0.40	<0.40	<0.40	<0.010	<1.00	<1.00	<0.20	<0.50	<1.50
MW-7	MW-7-0123	01/10/23	<0.40	<0.40	1.19	0.045	<1.00	<1.00	<0.20	<0.50	<1.50
MW-8	MW-8-0123	01/09/23	<0.40	<0.40	<0.40	1.01	<1.00	<1.00	<0.20	<0.50	<1.50
MW-9	MW-9-0123	01/09/23	<0.40	<0.40	0.24	1.61	<1.00	<1.00	<0.20	<0.50	<1.50
	Temporary Wells	01/03/20	-0.10	-0.10	0.21	1.01	11.00	11.00	10.20	10.00	11.00
B-1	B1-W*	12/09/21	<1.00	<1.00	<1.00	<1.00 ⁹	<5.00 ^g	<1.00	<1.00	<1.00	<3.00
B-2	B2-W*	12/09/21	<1.00	<1.00	<1.00	<1.00 ⁹	<5.00 ⁹	<1.00	<1.00	<1.00	<3.00
B-3	B3-W*	12/09/21	<1.00	<1.00	<1.00	<1.00 ⁹	<5.00 ⁹	<1.00	<1.00	<1.00	<3.00
B-4	B4-W*	12/09/21	<1.00	<1.00	0.31	0.44 ^e	<5.00 ⁹	<1.00	<1.00	<1.00	<3.00
B-5	B5-W*	12/09/21	<1.00	<1.00	<1.00	<1.00 ⁹	<5.00 ⁹	<1.00	<1.00	<1.00	<3.00
B-6	B6-W*	12/09/21	<1.00	<1.00	0.16	<1.00 ⁹	<5.00 ^g	<1.00	<1.00	<1.00	<3.00

Table 4
Groundwater Sample Analytical Results
Building C at Woodinville West Business Park
Woodinville, Washington

							VOCs ^a				
Well Number	Sample ID	Date Collected	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Cis-1,2- Dichloroethene	Vinyl Chloride ^b	Chloroform	2-Chlorotoluene	Benzene	Ethylbenzene	Total Xylenes
	MTCA Method	A Cleanup Levels ^c		5.0	16 ^d	0.20	1.40 ^d	160 ^d	5.0	700	1,000
B-7	B7-W*	12/09/21	<1.00	<1.00	2.44	1.55 ^e	<5.00	0.20	<1.00	<1.00	<3.00
B-8	B8-W*	12/09/21	<1.00	<1.00	<1.00	<1.00 ⁹	<5.00	<1.00	<1.00	<1.00	<3.00
B-9	B9-W*	12/09/21	<1.00	<1.00	<1.00	<1.00 ⁹	<5.00	<1.00	<1.00	<1.00	<3.00
B-11	B11-W*	12/09/21	0.40	<1.00	0.37	2.99 ^e	<5.00	<1.00	<1.00	<1.00	<3.00
AECOM 20	19 Temporary Wells										
GP-1	GP-1-W*	11/16/19	<1.00	<0.50	2.05	<0.20	<1.00	4.81	NA	NA	NA
GP-2	GP-2-W*	11/16/19	<1.00	<0.50	<1.00	<0.20	<1.00	<1.00	NA	NA	NA
GP-3	GP-3-W*	11/16/19	<1.00	<0.50	<1.00	0.35 ^e	<1.00	<1.00	NA	NA	NA
GP-4	GP-4-W*	11/16/19	1.04	<0.50	7.62	5.45 ^e	2.95	<1.00	NA	NA	NA
GP-5	GP-5-W*	11/16/19	<1.00	<0.50	<1.00	<0.20	<1.00	<1.00	NA	NA	NA

Notes:

All values in micrograms per liter (µg/L).

This table only includes the volatile organic compound (VOC) analytes that were detected in at least one sample and that have MTCA cleanup levels. Values in bold and **red** represent concentrations above the MTCA Method A groundwater cleanup levels.

NA = Not analyzed

^{* =} Groundwater sample was collected from a temporary well.

^a VOCs analyzed by EPA Method 8260C or 8260D.

^b Analyzed by EPA Method 8260C SIM or 8260D SIM.

^c Ecology's Model Toxics Control Act (MTCA) Cleanup Regulation (Chapter 173-340 WAC), Table 720-1, Method A Cleanup Levels.

d Method B cleanup level used because Method A level is not established. Method B cleanup level as published on Ecology's Cleanup Level and Risk Calculation

^e Sample collected from temporary well and may be biased high.

f Sample result is estimated. The result was detected below the lowest point of the calibration curve, but above the method detection limit (MDL).

⁹ The analyte was not detected at a concentration greater than the method reporting limit (MRL); however, the MRL exceeded the MTCA Method A or Method B cleanup level.

Table 5
Indoor Air Sample Analytical Results
Building C at Woodinville West Business Park
Woodinville, Washington

							Ana	lytical Resu	ılts ^a						
Sample Designation	Sample Date	Vinyl Chloride	1,1-Dichloroethene	Trans-1,2-Dichloroethene	1,1-Dichloroethane	Cis-1,2-Dichloroethene	1,2-Dichloroethane	1,1,1-Trichloroethane	Trichloroethene (TCE)	Chloromethane	Trichlorofluoromethane	Dichlorodifluoromethane	Methylene Chloride	1,1,2-Trichloroethane	Tetrachloroethene (PCE)
MTCA Method B Indoor	r Air Cleanup Levels ^b	0.28	91	18	1.60	18	0.096	2,300	0.33	41	320	46	66	0.16	9.60
July 2022 SLR Samplin															
IA-1-0722	07/13/22	<0.26	<0.52	<0.52	< 0.53	<0.52	< 0.053	<0.71	<0.14	NA	NA	NA	NA	<0.071	<8.8
IA-2-0722	07/13/22	<0.26	<0.56	< 0.56	< 0.57	< 0.56	< 0.057	< 0.76	<0.15	NA	NA	NA	NA	< 0.076	<9.5
AA-1-0722	07/13/22	<0.26	< 0.40	<0.40	<0.40	<0.40	0.040	<0.55	<0.11J	NA	NA	NA	NA	<0.055J	<6.8J
December 2021 CODA	Sampling Event														
A-01	12/08/21	<0.51°	< 0.79	< 0.79	<0.80	< 0.79	<0.81°	<1.09	<1.07 ^c	1.07	1.28	2.30	44.8	<1.09 ^c	ND
A-02	12/08/21	<0.51°	<0.79	<0.79	<0.80	<0.79	<0.81 ^c	<1.09	<1.07 ^c	1.08	1.29	2.27	293	<1.09 ^c	ND
A-03	12/08/21	<0.51 ^c	<0.79	<0.79	<0.80	<0.79	<0.81 ^c	<1.09	<1.07 ^c	1.14	1.36	2.40	3.22	<1.09 ^c	2.01
A-04	12/08/21	<0.51 ^c	<0.79	<0.79	<0.80	<0.79	<0.81 ^c	<1.09	<1.07 ^c	1.21	1.35	2.38	2.86	<1.09 ^c	1.82
A-05	12/08/21	<0.51 ^c	<0.79	<0.79	<0.80	<0.79	<0.81 ^c	<1.09	<1.07 ^c	1.08	1.34	2.34	ND	<1.09 ^c	ND
A-06	12/08/21	<0.51 ^c	<0.79	<0.79	<0.80	<0.79	<0.81 ^c	<1.09	<1.07 ^c	1.12	1.39	2.35	2.65	<1.09 ^c	ND
A-07	12/08/21	<0.51 ^c	<0.79	<0.79	<0.80	<0.79	<0.81 ^c	<1.09	<1.07 ^c	1.12	1.46	2.40	2.97	<1.09 ^c	ND
A-08	12/08/21	<0.51 ^c	<0.79	<0.79	<0.80	<0.79	<0.81 ^c	<1.09	<1.07 ^c	1.17	1.34	2.37	ND	<1.09 ^c	ND

NOTES:

This table only includes the analytes that were detected in at least one air sample and that have MTCA Method B indoor air cleanup levels.

All values in micrograms per cubic meter (µg/m³)

Values in red represent concentrations above MTCA Method B indoor Air cleanup levels.

J = The laboratory reported the concentration as an estimate.

NA = Not analyzed

ND = Not detected

^aAnalyzed by EPA Method TO-15.

bMTCA Method B indoor air cleanup levels as published in Ecology's Cleanup Level and Risk Calculation (CLARC) online database (January 2023). If a contaminant has both non-cancer- and cancer-risk cleanup levels, the lower of the two values was applied.

The analyte was not detected at a concentration greater than the method reporting limit (MRL); however, the MRL exceeded the MTCA Method B cleanup level.

Table 6 Cost Estimate for Alternative 1 - Enhanced Reductive Dechlorination Building C at Woodinville West Business Park Woodinville, Washington

- Inject 98,000 gallons of emulsified soybean oil and bioaugmentation solution into subsurface via 11 temporary injections injection points at depths from approximately 7 to 20 feet bgs (from 2 to 20 feet at locations with known shallow so contamination). Assumes one round of solution injections required to effectively stimulate reductive dechlorination (RDC). Groundwater monitoring of 14 shallow and 2 deep monitoring wells for 2 years. Quarterly groundwater monitoring during the first year and the fourth year. Semiannual groundwater monitoring during the second and third years. Analytical testing for full-list VOCs by EPA Method 8260D (including vinyl chloride by 8260D SIM) and annual testing from five selected wells for dissolved ethene. Remedial Action Component	Remedy Components:					
contamination). Assumes one round of solution injections required to effectively stimulate reductive dechlorination (RDC). Groundwater Monitoring and Installation of Temporary Injection Points Solution Mixing and Injection Contractor Drilling and Installation of Temporary Injection Points Solution Mixing and Injection Contractor Drilling and Installation of Temporary Injection Points Solution Mixing and Injection Contractor Drilling and Installation of Temporary Injection Points Contingency 20% Project Management Design Project Management Construction Oversight and Reporting Quarterly groundwater Monitoring Quarterly groundwater sampling, reporting, and project closure activities (yr. 2) 1 \$51,000 \$5120,000 \$120,		ioaugmei	ntation solution i	nto subsurfa	ce via 11 ter	mporary
- Groundwater Monitoring and Injection Contractor Drilling and Injection Contractor Solution Mixing and Injection Contractor L.S. 1 \$35,000 \$35,000 \$30,000 \$3	contamination). Assumes one round of solution inject					
during the first year and the fourth year. Semiannual groundwater monitoring during the second and third years. Analytical testing for full-list VOCs by EPA Method 8260D (including vinyl chloride by 8260D SIM) and annual testing from five selected wells for dissolved ethene. Remedial Action Component Units No. of Units Units Cost Total Cost	(RDC).					
Pre-Remediation Activities	Monitoring during the first year and the fourth year. Semiannua Analytical testing for full-list VOCs by EPA Method 8:	l groundw 260D (inc	ater monitoring	during the se	econd and th	nird years.
Additional Investigation Activities	Remedial Action Component	Units	No. of Units	Units	Cost	Total Cost
Permitting	Pre-Remediation Activities					
Injection Solution Pilot Testing	Additional Investigation Activities	L.S.	1	\$58,000	\$58,000	
Soybean Oil and Bioaugmentation Solution Injections Drilling and Installation of Temporary Injection Points L.S. 1 \$35,000 \$	Permitting	L.S.	1	\$5,000	\$5,000	
Soybean Oil and Bioaugmentation Solution Injections Drilling and Installation of Temporary Injection Points L.S. 1 \$35,000 \$	Injection Solution Pilot Testing	L.S.	1	\$30,000	\$30,000	
Drilling and Installation of Temporary Injection Points L.S. 1 \$35,000 \$35,000 Soybean Oil and Bioaugmentation Solution L.S. 1 \$135,000 \$135,000 Solution Mixing and Injection Contractor L.S. 1 \$105,000 \$105,000 \$275,000 Subtotal \$368,000 Subtotal						\$93,000
Soybean Oil and Bioaugmentation Solution L.S. 1 \$135,000 \$135,000 \$105,000 \$275,00 \$275,00 \$368,00	Soybean Oil and Bioaugmentation Solution Injections					
Solution Mixing and Injection Contractor L.S. 1 \$105,000 \$105,000 \$275,00 Subtotal Contingency 20% \$73,60 Project Management 3% \$11,04 Design 5% \$18,40 Construction Oversight and Reporting 11% \$40,48 Remedial Action Subtotal (Rounded to Nearest \$10,000) \$510,00 Groundwater Monitoring Quarterly groundwater sampling and reporting, and project closure activities (yr. 2) 1 \$71,200 \$71,200 NPV¹ of Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$120,000	Drilling and Installation of Temporary Injection Points	L.S.	1	\$35,000	\$35,000	
\$275,00 Subtotal Contingency 20% Project Management Design Sometiment Some	Soybean Oil and Bioaugmentation Solution	L.S.	1	\$135,000	\$135,000	
Subtotal Contingency 20% \$368,00 Project Management Design Construction Oversight and Reporting Remedial Action Subtotal (Rounded to Nearest \$10,000) Groundwater Monitoring Quarterly groundwater sampling and reporting (yr. 1) Quarterly groundwater sampling, reporting, and project closure activities (yr. 2) NPV¹ of Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$368,00 \$73,60 \$11,04	Solution Mixing and Injection Contractor	L.S.	1	\$105,000	\$105,000	
Project Management 3% \$11,04 Design 5% \$18,40 Construction Oversight and Reporting 11% \$40,48 Remedial Action Subtotal (Rounded to Nearest \$10,000) \$510,00 Groundwater Monitoring Quarterly groundwater sampling and reporting (yr. 1) 1 \$51,200 \$51,200 Quarterly groundwater sampling, reporting, and project closure activities (yr. 2) 1 \$71,200 \$71,200 NPV¹ of Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$120,000						\$275,000
Project Management 3% \$11,04 Design 5% \$18,40 Construction Oversight and Reporting 11% \$40,48 Remedial Action Subtotal (Rounded to Nearest \$10,000) \$510,00 Groundwater Monitoring Quarterly groundwater sampling and reporting (yr. 1) 1 \$51,200 \$51,200 Quarterly groundwater sampling, reporting, and project closure activities (yr. 2) 1 \$71,200 \$71,200 NPV¹ of Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$120,000	Subtotal					\$368,000
Design 5% \$18,40 \$40,48 Construction Oversight and Reporting 11% \$510,00 Semedial Action Subtotal (Rounded to Nearest \$10,000) \$5510,00 Semedial Action Subtotal (Rounded to Nearest \$10,000) \$5510,00 Semedial Action Subtotal (Rounded to Nearest \$10,000) \$551,200 \$51,200 Quarterly groundwater sampling and reporting (yr. 1) 1 \$51,200 \$51,200 Quarterly groundwater sampling, reporting, and project closure activities (yr. 2) 1 \$71,200 \$71,200 PV¹ of Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$120,000	Contingency	20%				\$73,600
Design 5% \$18,40 \$40,48 Construction Oversight and Reporting 11% \$510,00 Semedial Action Subtotal (Rounded to Nearest \$10,000) \$5510,00 Semedial Action Subtotal (Rounded to Nearest \$10,000) \$5510,00 Semedial Action Subtotal (Rounded to Nearest \$10,000) \$5510,00 Semedial Action Subtotal (Rounded to Nearest \$10,000) \$551,200 \$51,200 Semedial Rounded to Nearest \$10,000) \$71,200 Semedial Rounded to Nearest \$10,000) \$120,00	Project Management	3%				\$11,040
Remedial Action Subtotal (Rounded to Nearest \$10,000) Groundwater Monitoring Quarterly groundwater sampling and reporting (yr. 1) Quarterly groundwater sampling, reporting, and project closure activities (yr. 2) NPV¹ of Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$510,00	,	5%				\$18,400
Groundwater Monitoring Quarterly groundwater sampling and reporting (yr. 1) Quarterly groundwater sampling, reporting, and project closure activities (yr. 2) NPV¹ of Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$120,00	Construction Oversight and Reporting	11%			-	\$40,480
Quarterly groundwater sampling and reporting (yr. 1) Quarterly groundwater sampling, reporting, and project closure activities (yr. 2) 1 \$51,200 \$51,200 \$71,200 \$71,200 \$71,200 \$71,200 \$71,200 \$71,200 \$120,000	Remedial Action Subtotal (Rounded to Nearest \$10,000)					\$510,000
Quarterly groundwater sampling and reporting (yr. 1) Quarterly groundwater sampling, reporting, and project closure activities (yr. 2) 1 \$51,200 \$51,200 \$71,200 \$71,200 \$71,200 \$71,200 \$71,200 \$71,200 \$120,000	Groundwater Monitoring					
Quarterly groundwater sampling, reporting, and project closure activities (yr. 2) 1 \$71,200 <u>\$71,200</u> NPV ¹ of Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$120,00			1	\$51,200	\$51,200	
3		(yr. 2)	1	\$71,200	\$71,200	
REMEDIAL ACTION ESTIMATED TOTAL (Rounded to Nearest \$10,000) \$630,00	NPV ¹ of Groundwater Monitoring Subtotal (Rounded to Nearest \$10,0	000)				\$120,000
	REMEDIAL ACTION ESTIMATED TOTAL (Rounded to Nearest \$10,000))				\$630,000

Footnote:

¹Net present value (NPV) is based on a 2.5 percent discount rate for a 20-year period, as per OMB Circular No. A-94 (Executive Office of the President, Office of Management and Budget, 2022 Discount Rates memo dated March 15, 2022).

Table 7

Cost Estimate for Alternative 2 - Vacuum-Enhanced Groundwater Recovery and MNA Building C at Woodinville West Business Park Woodinville, Washington

Remedy Comp	onents:					
Vacuum-	- Install and operate vacuum-enhanced groundwate	r recovery syste	m to extract	the remaining	HVOC-imp	pacted soil
Enhanced	and groundwater. The system will consist of 6 groundwater.					
Groundwater	that are plumbed to a groundwater treatment syste					
Recovery	blower to provide vacuum enhancement to the pur					
110001019	remove the HVOCs from the soil. The extracted s					
	1,000-pound granular activated carbon (GAC) can	•				•
	system will operate for two years.	iotoro iri dorico.	THE VACUATI	i omianoca gi	ouriawator i	Coovery
MNA	- Groundwater monitoring of 14 shallow and 2 deep	monitoring wells	s on a quarte	erly basis for 3	R vears Ana	lytical
	testing for full-list VOCs by EPA Method 8260D (in				youro. 7 ma	nytiodi
			No. of			
	Remedial Action Component	Units	Units	Units	Cost	Total Cost
	Pre-remediation Activities					
	Additional Investigation Activities	L.S.	1	\$58,000	\$58,000	
	Permitting	L.S.	1	\$20,000	\$20,000	
	Vacuum-Enhanced Groundwater Pump Tests	L.S.	1	\$30,000	\$30,000	
						\$108,000
	Vacuum-Enhanced Groundwater Recovery System Ins		_			
	Groundwater Recovery Well Installation	L.S.	1	\$30,000	\$30,000	
	System Equipment and Enclosure	L.S.	1	\$145,000	\$145,000	
	System Piping and Equipment Installation	L.S.	1	\$170,000	\$170,000	
0.11.1						\$345,000
Subtotal						\$453,000
Contingency		20%				\$90,600
Project Mana	agement	4%				\$18,120
Design		7%				\$31,710
Construction	Oversight and Reporting	10%				\$45,300
Remedial Acti	on Subtotal (Rounded to Nearest \$10,000)					\$640,000
Svstem O&M a	nd Groundwater Monitoring					
	1, quarterly groundwater sampling and reporting (yr. 1)		1	\$185,000	\$185,000	
	1, quarterly groundwater sampling and reporting (yr. 2)		1	\$168,000	\$168,000	
	oundwater sampling, reporting, and project closure activ	ities (yr. 3)	1	\$70,000	\$70,000	
NPV ¹ of O&M	and Groundwater Monitoring Subtotal (Rounded to	Nearest \$10,000	0)			\$410,000
REMEDIAL AC	CTION ESTIMATED TOTAL (Rounded to Nearest \$10	,000)				\$1,050,000

Footnote

¹Net present value (NPV) is based on a 2.5 percent discount rate for a 20-year period, as per OMB Circular No. A-94 (Executive Office of the President, Office of Management and Budget, 2022 Discount Rates memo dated March 15, 2022).

Table 8

Cost Estimate for Alternative 3 - Soil Excavation, Groundwate Extraction, and MNA
Building C at Woodinville West Business Park
Woodinville, Washington

Pre-remediation Activities	Remedy Components:					
Treatment system that includes a 20,000-gallon settling tank, sand or bag filters, two 1,000-pound granular activated carbon (GAC) canisters in series, and a 20,000-gallon holding tank. The treated water will be discharged into the sanit sewer system. MNA	Excavation waste at a licensed facility. A controlled-dens interior wall between Suites C-101 and C-102	ity fill gravity sho will be removed	oring wall will be o and replaced. T	constructed to the excavation	protect Buildins will extend	ng C, and the to
the first and third years. Semiannual groundwater monitoring during the second year. Analytical testing for full-list VOC by EPA Method 8260D (including vinyl chloride by 8260D SIM). Remedial Action Component	Recovery treatment system that includes a 20,000-gallo carbon (GAC) canisters in series, and a 20,00	n settling tank, s	and or bag filters	s, two 1,000-p	ound granular	activated
Pre-remediation Activities	the first and third years. Semiannual groundv	vater monitoring	during the secon	, ,		
Additional Investigation Activities	Remedial Action Component	Units	No. of Units	Units	Cost	Total Cost
Soil Excavation and Disposal Mobilization/Demobilization L.S. 1 \$8,500 \$8,500 Remove and Replace Interior Wall L.S. 1 \$30,000 \$30,000 Install Shoring LF 85 \$1,200 \$102,000 Soil Excavation and Stockpile Construction BCY 2,910 \$18,50 \$53,835 Hauling and Off-Site Disposal Ton 5,150 \$150 \$772,500 Backfilling Ton 5,150 \$48.00 \$247,200 \$1,500 \$247,200 Surface Paving SF 7,600 \$38.50 \$292,600 \$1,50	Pre-remediation Activities Additional Investigation Activities Permitting	L.S.	1	\$40,000	\$40,000	
Soil Excavation and Disposal Mobilization/Demobilization L.S. 1 \$8,500 \$8,500 Remove and Replace Interior Wall L.S. 1 \$30,000 \$30,000 Install Shoring LF 85 \$1,200 \$102,000 Soil Excavation and Stockpile Construction BCY 2,910 \$18.50 \$53,835 Hauling and Off-Site Disposal Ton 5,150 \$150 \$772,500 Backfilling Ton 5,150 \$48.00 \$247,200 Surface Paving SF 7,600 \$38.50 \$292,600 Surface Paving SF 7,600 \$38.50 \$292,600 \$1,506, \$38.50 \$392,600 \$1,506, \$38.50 \$392,600 \$3,506, \$3,506, \$3,506, \$3,506,	Abandon Monitoring Wells	L.S.	1	\$12,000	\$12,000	¢440.000
Mobilization/Demobilization	Soil Excavation and Disposal					\$110,000
Remove and Replace Interior Wall L.S. 1 \$30,000 \$30,000 Install Shoring LF 85 \$1,200 \$102,000 Soil Excavation and Stockpile Construction BCY 2,910 \$18.50 \$53,835 Hauling and Off-Site Disposal Ton 5,150 \$150 \$772,500 Backfilling Ton 5,150 \$48.00 \$247,200 Surface Paving SF 7,600 \$38.50 \$292,600 \$1,506,	•	LS	1	\$8 500	\$8 500	
Install Shoring				. ,		
Hauling and Off-Site Disposal Ton 5,150 \$150 \$772,500 Backfilling Ton 5,150 \$48.00 \$247,200 \$247,200 \$3150 \$247,200 \$247,200 \$3150 \$48.00 \$247,200 \$3150				. ,	. ,	
Backfilling Ton 5,150 \$48.00 \$247,200 \$247,200 \$37,600 \$38.50 \$292,600 \$1,506, \$200,600 \$38.50 \$292,600 \$1,506, \$200,600 \$1,506, \$200,600 \$1,506, \$200,600 \$1,506, \$200,600 \$1,506, \$200,600 \$1,506, \$200,600 \$1,506, \$200,600 \$1,506, \$200,600 \$2,160, \$2,1	<u> </u>	BCY	2,910			
Surface Paving SF 7,600 \$38.50 \$292,600 \$1,506, Groundwater Recovery and Treatment System Equipment and Water Discharge Fee L.S. 1 \$55,000 \$55	Hauling and Off-Site Disposal	Ton	5,150	\$150	\$772,500	
Stoppost	Backfilling	Ton	5,150	\$48.00	\$247,200	
Groundwater Recovery and Treatment System Equipment and Water Discharge Fee L.S. 1 \$55,000 \$55,000 Subtotal \$1,671, Contingency 20% \$334, Project Management 1% \$16, Design 3% \$50, Construction Oversight and Reporting 4% \$66, Remedial Action Subtotal (Rounded to Nearest \$10,000) \$2,140, Groundwater Monitoring Quarterly groundwater sampling and reporting (yr. 1) 1 \$50,000 \$50,000 Semiannual groundwater sampling and reporting (yr. 2) 1 \$25,000 \$25,000 Quarterly groundwater sampling, reporting, and project closure activities (yr. 3) 1 \$70,000 \$70,000 Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$70,000	Surface Paving	SF	7,600	\$38.50	\$292,600	
System Equipment and Water Discharge Fee L.S. 1 \$55,000	Groundwater Recovery and Treatment					\$1,506,635
\$55, Subtotal \$1,671, Contingency 20% \$334, Project Management 1% \$16, Design 3% \$50, Construction Oversight and Reporting 4% \$50, Construction Oversight and Reporting 4% \$2,140, \$66, Remedial Action Subtotal (Rounded to Nearest \$10,000) \$2,140, Groundwater Monitoring Quarterly groundwater sampling and reporting (yr. 1) \$50,000 \$50,000 Semiannual groundwater sampling and reporting (yr. 2) \$1 \$25,000 \$25,000 Quarterly groundwater sampling, reporting, and project closure activities (yr. 3) \$1 \$70,000 \$70,00	· ·	LS	1	\$55,000	\$55,000	
Subtotal Contingency 20% \$334, Project Management 1% Design Construction Oversight and Reporting 4% Semedial Action Subtotal (Rounded to Nearest \$10,000) Groundwater Monitoring Quarterly groundwater sampling and reporting (yr. 1) Semiannual groundwater sampling and reporting (yr. 2) Quarterly groundwater sampling, reporting, and project closure activities (yr. 3) Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$70,000 \$70,000 \$70,000	dystem Equipment and Water Discharge Fee	L.O.	'	ψ55,000	ψ55,000	\$55,000
Project Management 1% \$16, Design 3% \$50, Construction Oversight and Reporting 4% \$2,140, Remedial Action Subtotal (Rounded to Nearest \$10,000) \$2,140, Groundwater Monitoring Quarterly groundwater sampling and reporting (yr. 1) 1 \$50,000 \$50,000 Semiannual groundwater sampling and reporting (yr. 2) 1 \$25,000 \$25,000 Quarterly groundwater sampling, reporting, and project closure activities (yr. 3) 1 \$70,000 \$7	Subtotal					\$1,671,635
Project Management 1% \$16, Design 3% \$50, Construction Oversight and Reporting 4% \$2,140, Remedial Action Subtotal (Rounded to Nearest \$10,000) \$2,140, Groundwater Monitoring Quarterly groundwater sampling and reporting (yr. 1) 1 \$50,000 \$50,000 Semiannual groundwater sampling and reporting (yr. 2) 1 \$25,000 \$25,000 Quarterly groundwater sampling, reporting, and project closure activities (yr. 3) 1 \$70,000 \$7	Contingency	200/				¢224 227
Design 3% \$50, Construction Oversight and Reporting 4% \$50, \$66, \$66, \$66, \$66, \$66, \$66, \$66, \$6	Contingency	20%				\$334,327
Design 3% \$50, Construction Oversight and Reporting 4% \$50, \$66, \$66, \$66, \$66, \$66, \$66, \$66, \$6	Project Management	1%				\$16,716
Construction Oversight and Reporting 4% \$66, Remedial Action Subtotal (Rounded to Nearest \$10,000) \$2,140, Groundwater Monitoring Quarterly groundwater sampling and reporting (yr. 1) 1 \$50,000 \$50,000 Semiannual groundwater sampling and reporting (yr. 2) 1 \$25,000 \$25,000 Quarterly groundwater sampling, reporting, and project closure activities (yr. 3) 1 \$70,000 \$70,000 Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$70,000						\$50,149
Groundwater Monitoring Quarterly groundwater sampling and reporting (yr. 1) Semiannual groundwater sampling and reporting (yr. 2) Quarterly groundwater sampling, reporting, and project closure activities (yr. 3) Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$70,000 \$70,000 \$70,000	•	4%			_	\$66,865
Quarterly groundwater sampling and reporting (yr. 1) 1 \$50,000 \$50,000 Semiannual groundwater sampling and reporting (yr. 2) 1 \$25,000 \$25,000 Quarterly groundwater sampling, reporting, and project closure activities (yr. 3) 1 \$70,000 \$70	Remedial Action Subtotal (Rounded to Nearest \$10,000)					\$2,140,000
Quarterly groundwater sampling and reporting (yr. 1) 1 \$50,000 \$50,000 Semiannual groundwater sampling and reporting (yr. 2) 1 \$25,000 \$25,000 Quarterly groundwater sampling, reporting, and project closure activities (yr. 3) 1 \$70,000 \$70	Groundwater Monitoring					
Semiannual groundwater sampling and reporting (yr. 2) 1 \$25,000 \$25,000 Quarterly groundwater sampling, reporting, and project closure activities (yr. 3) 1 \$70,000 \$70,000 \$70,000 \$70,000 \$70,000 \$70,000			1	\$50,000	\$50,000	
Quarterly groundwater sampling, reporting, and project closure activities (yr. 3) 1 \$70,000 \$7					. ,	
Groundwater Monitoring Subtotal (Rounded to Nearest \$10,000) \$70,		activities (yr. 3)			, -,	
						\$70,000
DEMEDIAL ACTION FOR MATER TOTAL (Payred day Negret \$40,000)	Groundwater Monitoring Subtotal (Rounded to Nearest \$10,00	00)				\$70,000
KEMEDIAL ACTION ESTIMATED TOTAL (KOUNGEG TO NEAREST \$10,000) \$2,210,	REMEDIAL ACTION ESTIMATED TOTAL (Rounded to Nearest	\$10,000)				\$2,210,000

Table 9 Remedial Alternatives Evaluation and Disproportionate Cost Analysis Building C at Woodinville West Business Park Woodinville, Washington

		Relat		Evaluation Criteri lowest; 10 = hig	a hest relative benefi	ts)				
		Weighted Ben	efit Ranking (us	ing weighting va	lues listed below ea	ach criteria)		Dispr	oportionate Cos	t Analysis
	Protectiveness	Permanence	Effectiveness over the Long Term ^a	Management of Short-Term Risks	Technical and Administrative Implementability	Consideration of Public Concerns	Total of Scores			Cost
Remedial Alternatives	30%	20%	20%	10%	10%	10%	(Total Weighted Scores)	Estimated Cost	Cost/Benefit Value	Disproportionate to Incremental Benefits?
Alternative 1: Enhanced Reductive	7	9	9	8 8 9		9	50	\$630,000	\$76,829	No
Dechlorination	2.1	1.8	1.8	0.8	0.8	0.9	8.2	4000,000	V. 0,020	
Alternative 2: Vacuum-Enhanced	7	7	7	6	5	7	39			
Groundwater Recovery and MNA	2.1	1.4	1.4	0.6	0.5	0.7	6.7	\$1,050,000	\$156,716	Yes
Alternative 3: Soil Excavation,	9	7	7	4	3	7	37			
Groundwater Extraction, and MNA	2.7	1.4	1.4	0.4	0.3	0.7	6.9	\$2,210,000 \$320,290		Yes

Notes:

Evaluation Criteria Relative Ranking Scale (1 = lowest; 10 = highest relative benefits)

^a Per WAC 173-340-360 (3)(f)iv) as a guide, the long term effectiveness of cleanup action components, in descending order are:

- resuse or recycling
- destruction or detoxification
- immobilization or solidification
- on-site or off-site disposal at an engineered facility
- on-site isolation or containment with controls
- institutional controls and monitoring

APPENDIX A SOIL BORING LOGS

BORING NUMBER SB-1

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIEN	IT.	Wood	dinville CD,	LLC				PROJECT NAME Woodinville West E	Business Park, Building C	
PROJ	EC	T NUN	IBER 128	.2084	1.000	01		PROJECT LOCATION 16750 Woodin	nville-Redmond Rd NE, Wo	odinville, W
DATE	ST	ARTE	D 4/8/22			COM	PLETED 4/8/22	GROUND ELEVATION	HOLE SIZE 6" - diame	ter
DRILL	IN	G CON	ITRACTOR	Cas	cade	Drilling		GROUND WATER LEVELS:		
DRILL	.IN	G MET	HOD Dire	ct Pus	sh			X AT TIME OF DRILLING 14.5 ft		
LOGG	EC	BY _	S. Losleber	n		CHE	CKED BY M. Staton	AFTER DRILLING N/A		
NOTE	S									
о DEPTH (ft)	INTERVAL	TYPE	SAMPLE NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		PID (ppm)
0		Hand		400		9 4 4	CONCRETE			
	П	Auger		100	-	- A A	SAND, gray, fine grai	ned, moist, no odor		
		Hand		400	SP		1.5			0.0
	П	Auger		100			SANDY SILT, gray, se	ome fine sand, moist, no odor		0.2
_		Hand Auger		100	SP- SM		3.0			0.1
	П	Hand		100		o		ray, fine to coarse grained, few fine grav	vel, moist, no odor	0.6
_	Ш	Auger		100		0 0				0.0
5		Hand Auger	SB-1-4.5- 5.0*	100	SP	00				1.5
10		Direct Push		100	SM SP		9.5 SAND, gray, fine grain 11.0 SILTY SAND, gray, fine 14.5 ▼	ne grained, little silt, moist, no odor		1.2 0.6 1.4 1.1 0.5
15		D//C			SP		SAND, gray, fine grai	ned, wet, no odor		
PID : Direct Split Hand NM : * = S	= P ct F Sp d A = N Soil	Push = loon = luger = lot mea sampl	Soil sample Soil sample	es colles colles col	ected lected lected aborat	as a c I within d within	parts per million (ppm). ontinuous core within a 5-foo 18-inch-long stainless-steel s 8-inch-long stainless-steel a alysis.	split-barrel sampler.		

PAGE 2 OF 2

SLR

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT Woodinville CD, LLC

PROJECT NAME Woodinville West Business Park, Building C

PROJECT NUMBER 128.20841.00001 PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville, WA

DEPTH (ft)	INTERVAL	TYPE	SAMPLE NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
	П						SAND, gray, fine grained, wet, no odor (continued)	
 	-\							0.9
	ון וו	Direct Push		100	SP			0.6
<u> </u>	4 A I	i usii						
20							20.0	0.1

BORING COMPLETION DETAILS:

Boring comleted at 20.0 feet bgs.

Boring backfilled with hydrated bentonite chips up to 1.5 feet bgs and then concrete to the ground surface.

REMARKS

PID = Photoionization detector readings in parts per million (ppm).

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler.

Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger.

NM = Not measured.

= Soil sample submitted for laboratory analysis.

Water level at time of drilling.

BORING NUMBER SB-2

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

		dinville CD,					PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville, WA		
		IBER 128							
DRILLIN	IG CON	D 4/8/22 ITRACTOR HOD Dire	Cas	cade l		TED _4/8/22 GROUND ELEVATION	- diameter		
	D BY _	S. Losleber			CHECKE	D BY M. Staton AFTER DRILLING N/A			
O DEPTH (ft) INTERVAL	TYPE	SAMPLE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (mdd)		
	Hand Auger		100		0.5	CONCRETE SAND w/ GRAVEL, gray, fine to medium grained, few fine gravel, moist, no odor			
	Hand Auger		100	SP			0.1		
	Hand Auger		100		0 2.5	SAND w/ GRAVEL and SILT, gray, fine grained, few fine gravel, few silt, moist, n	o odor 0.1		
	Hand Auger		100		000		0.8		
5	Hand Auger SB-2-4.0 4.5*	4.5*	.5* 100	SP			1.4		
	Direct		90		• \(\) \(\	SAND w/ SILT, gray, fine grained, few silt, moist, no odor	0.4		
10	Push		80 SP SM	SP- SM			0.2		
					12.0		1.5		
	Direct Push		90	SP- SM-	12.5	SAND gray fine grained moist no odor	0.5		
15				ML	14.0	ORGANIC SILT, dark brown, some organics, wet, organic-like odor	0.8		
REM	ARKS		to at - :-	roc-l!	nao in ===+	a nor million (nom)			

PID = Photoionization detector readings in parts per million (ppm).

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler.

Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger.

NM = Not measured.

* = Soil sample submitted for laboratory analysis.

Water level at time of drilling.

SLR SB LOG WOODINVILLE WEST BUSINESS PARK BORING LOGS.GPJ GINT US.GDT 5/17/22

PAGE 2 OF 2

SLR

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT Woodinville CD, LLC

PROJECT NAME Woodinville West Business Park, Building C

PROJECT NUMBER 128.20841.00001 PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville, WA

DEPTH (ft)	INTERVAL	TYPE	SAMPLE NAME	RECOVERY %	U.S.C.S.	GRAPHIC	20	MATERIAL DESCRIPTION	PID (ppm)
	-	Direct		100	ML		17.5	ORGANIC SILT, dark brown, some organics, wet, organic-like odor (continued)	0.9
		Push		100	SP		20.0	SAND, gray, fine grained, wet, no odor	0.5

BORING COMPLETION DETAILS:

Boring comleted at 20.0 feet bgs.

Boring backfilled with hydrated bentonite chips up to 1.5 feet bgs and then concrete to the ground surface.

REMARKS

PID = Photoionization detector readings in parts per million (ppm).

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler.

Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger.

NM = Not measured.

* = Soil sample submitted for laboratory analysis.

Water level at time of drilling.

BORING NUMBER SB-3

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

T Wood	linville CD,	LLC			PROJECT NAME Woodinville West Business Park, Building C PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville, WA			
CT NUM	IBER <u>128</u>	.20841	1.0000	01				
STARTE	D 4/8/22			COMPLETED 4/8/22	GROUND ELEVATION	HOLE SIZE 6" - diameter		
NG CON	TRACTOR	Cas	cade	Drilling	GROUND WATER LEVELS:			
NG MET	HOD Dire	ct Pus	sh		AT TIME OF DRILLING 15 f	t		
ED BY	S. Losleber	n		CHECKED BY M. Staton	AFTER DRILLING N/A	AFTER DRILLING N/A		
S								
INTERVAL	SAMPLE NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTIO	N .	PID (ppm)	
Hand Auger		100		CONCRETE 0.5 SAND, gray, fine	to medium grained, trace fine gravel, mo	ist, no odor		
Hand Auger		100					0.2	
Hand Auger		100	SP	464 464 466			0.4	
Hand Auger		100	 	literatura de la compansión de la compan	EL and SILT, gray, fine to coarse grained,	few silt, few fine gravel, moist,	0.1	
Hand Auger		100	SP	@ 4.5 feet: Enco	ountered cobble with hand auger		0.4	
Direct Push	SB-3-6.0- 6.5*	100	SM	SILTY SAND, gra			0.1	
Direct Push		60	SP	13.0 SILTY SAND, gra	ay, fine grained, some silt, moist, no odor		0.7	
	Hand Auger	STARTED 4/8/22 NG CONTRACTOR NG METHOD Dire ED BY S. Loslebel S S S S S S S S S S S S S S S S S S S	STARTED 4/8/22 NG CONTRACTOR Cas NG METHOD Direct Pus ED BY S. Losleben S	### SP	STARTED 4/8/22 COMPLETED 4/8/22 NG CONTRACTOR Cascade Drilling NG METHOD Direct Push ED BY S. Losleben CHECKED BY M. Staton STARTED 4/8/22 COMPLETED 4/8/22 NG CONTRACTOR Cascade Drilling NG METHOD Direct Push ED BY S. Losleben CHECKED BY M. Staton STARTED 4/8/22 COMPLETED 4/8/22 NG CONTRACTOR Cascade Drilling NG METHOD Direct Push CHECKED BY M. Staton STARTED 4/8/22 COMPLETED 4/8/22 NG CONTRACTOR CASCADE DRILLING STARTED 4/8/22 COMPLETED 4/8/22 NG METHOD DIRECT Push STARTED 4/8/22 COMPLETED 4/8/22 NG CONTRACTOR CASCADE DRILLING STARTED 4/8/22 NG COMPLETED 4/8/22 NG METHOD DIRECT Push SAND, gray, fine SP SAND w/ GRAVI no odor Auger 100 SP SILTY SAND, gray, fine SP SAND, gray, fine SP SAND, gray, fine SP SAND, gray, fine SP SAND, gray, fine	STARTED 4/8/22 COMPLETED 4/8/22 GROUND ELEVATION 16750 Work GROUND CASCAGE Drilling GROUND WATER LEVELS: WAT TIME OF DRILLING 15f AFTER DRILLING N/A S. S	STATED 4:8/22 COMPLETED 4:8/22 GROUND ELEVATION HOLE SIZE 6"-diameter ROCONTRACTOR Cescade Drilling GROUND WATER LEVELS: NO METHOD Direct Push CHECKED BY M. Staton S WATTIME OF DRILLING 15 ft AFTER DRILLING 1/A AFTER DRI	

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner. Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler. Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger. NM = Not measured.

* = Soil sample submitted for laboratory analysis.

Water level at time of drilling.

SLR SB LOG WOODINVILLE WEST BUSINESS PARK BORING LOGS.GPJ GINT US.GDT 5/17/22

PAGE 2 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT Woodinville CD, LLC

PROJECT NAME Woodinville West Business Park, Building C

PROJECT NUMBER 128.20841.00001 PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville, WA

DEPTH (ft)	INTERVAL	TYPE	SAMPLE NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
							SAND, gray, fine grained, wet, no odor	
	$\Lambda \Lambda$							0.1
	M							
-		Direct		100	SP			0.5
	1	Push		100	0.			0.0
	Ш							
-								0.0
20							20.0	

BORING COMPLETION DETAILS:

Boring comleted at 20.0 feet bgs.

Boring backfilled with hydrated bentonite chips up to 1.5 feet bgs and then concrete to the ground surface.

PID = Photoionization detector readings in parts per million (ppm).

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler.

Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger.

NM = Not measured.

*_= Soil sample submitted for laboratory analysis.

Water level at time of drilling.

BORING NUMBER SB-4

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT Woodinville CD, LLC		PROJECT NAME Woodinville West Business Park, Building C	
PROJECT NUMBER 128.20841.00001		PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville	<u>, WA</u>
DATE STARTED 4/7/22 C	**COMPLETED 4/7/22	GROUND ELEVATION HOLE SIZE 6" - diameter	
DRILLING CONTRACTOR Cascade Drilling	ng	GROUND WATER LEVELS:	
DRILLING METHOD Direct Push		T AT TIME OF DRILLING 16 ft	
LOGGED BY S. Losleben C	HECKED BY M. Staton	AFTER DRILLING N/A	
NOTES			
O DEPTH (ft) INTERVAL TYPE SAMPLE NAME U.S.C.S.	900 900 900	MATERIAL DESCRIPTION	PID (ppm)
Hand	0.5 CONCRETE		
Auger 100	SAND, gray, fine to med	dium grained, trace fine gravel, moist, no odor	1
Hand Auger 100 SP	### ### ###		0.1
Hand 100			1.4
Auger	SAND w/ SILT and GR gravel, moist, no odor	AVEL, dark brown, fine to coarse grained, few silt, few fine to coarse	1.4
Hand Auger	graver, molet, no oder		1.7
SP- SB-4-4.0- SM			
Hand 4.5* 100			3.2
Direct Push 80 SM	8.5	e grained, little silt, moist, no odor e grained, some silt, moist, no odor ed, moist, no odor	0.8
Direct Push 25 SP			1.7
PID = Photoionization detector readings in Direct Push = Soil sampes collected as a complex Split Spoon = Soil samples collected within Hand Auger = Soil samples collected within NM = Not measured. * = Soil sample submitted for laboratory ar Water level at time of drilling.	continuous core within a 5-foot-long n 18-inch-long stainless-steel split-b in 8-inch-long stainless-steel auger.	parrel sampler.	

SLR SB LOG WOODINVILLE WEST BUSINESS PARK BORING LOGS.GPJ GINT US.GDT 2/22/23

PAGE 2 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT Woodinville CD, LLC

PROJECT NAME Woodinville West Business Park, Building C

PROJECT NUMBER 128.20841.00001 PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville, WA

DEPTH (ft)	INTERVAL	TYPE	SAMPLE NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)
 	-	Direct Push	SB-4-16.0- 16.5*	100	SP		SAND, gray, fine grained, moist, no odor (continued) ▼ @ 16.0 feet: Becomes wet 20.0	0.5 0.2

BORING COMPLETION DETAILS:

Boring completed at 20.0 feet bgs.

Boring backfilled with hydrated bentonite chips up to 1.5 feet bgs and then concrete to the ground surface.

REMARKS

PID = Photoionization detector readings in parts per million (ppm).

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler.

Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger.

NM = Not measured.

= Soil sample submitted for laboratory analysis.

Water level at time of drilling.

BORING NUMBER SB-5

PAGE 1 OF 1

	_
SI	R

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIE	NT .	Wood	<u>dinville CD,</u>	LLC			PROJECT NAME Woodinville West Business Park, Building C	PROJECT NAME Woodinville West Business Park, Building C				
PRO.	JEC	T NUN	IBER 128	.20841	.000	01	PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinvil	le, W				
DATE	ST	ARTE	D 4/7/22			COM	PLETED 4/7/22 GROUND ELEVATION HOLE SIZE 6" - diameter					
DRIL	LIN	G CON	ITRACTOR	Cas	cade	Drilling	GROUND WATER LEVELS:					
DRIL	LIN	G MET	HOD Han	d Aug	er		AT TIME OF DRILLING					
LOG	GED	BY _	S. Losleber	ı		CHEC	CKED BY M. Staton AFTER DRILLING N/A					
NOTE	ES _											
о ОЕРТН (ft)	INTERVAL	TYPE	SAMPLE NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)				
		Hand Auger		100								
		Hand Auger		100		。 ()) Ø	moist, no odor	0.0				
		Hand Auger		100	SP	。 。 ()		0.0				
		Hand Auger		100		0 4.0	4.0	0.0				
5		Hand Auger	SB-5-4.5- 5.0*	100	SP		SAND, gray, fine to medium grained, moist, no odor 5.0	0.2 0.4				

BORING COMPLETION DETAILS:

Boring comleted at 5.0 feet bgs.

Boring backfilled with hydrated bentonite chips up to 1.5 feet bgs and then concrete to the ground surface.

PID = Photoionization detector readings in parts per million (ppm).

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner. Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler.

Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger. NM = Not measured.

^{* =} Soil sample submitted for laboratory analysis.

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT Woodinville CD, LLC	PROJECT NAME Woodinville West Busine	ess Park	ς, Building C
PROJECT NUMBER 128.20841.00001	PROJECT LOCATION 16750 Woodinville-	Redmor	nd Rd NE, Woodinville, WA
DATE STARTED 4/7/22 COMPLETED 4/7/22	GROUND ELEVATION 36.73 ft	HOLE S	IZE 6" - diameter
DRILLING CONTRACTOR Cascade Drilling	GROUND WATER LEVELS:		
DRILLING METHOD Direct Push/Hollow-Stem Auger	TAT TIME OF DRILLING 14 ft		
LOGGED BY S. Losleben CHECKED BY M. Staton	AFTER DRILLING N/A		
NOTES			
O DEPTH INTERVAL TYPE SAMPLE NAME U.S.C.S. GRAPHIC LOG	ERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
Hand Auger 100 CONCRETE 0.8	36.0		≺ Concrete
Hand Auger 100 SAND w/ GRAVEL, b	orown, fine to coarse grained, few fine t, no odor	0.7	Hydrated bentonite
Hand Auger		0.8	chips 2-inch sch 40 PVC riser
Hand Auger 100 SP		0.3	
Hand Auger 100		0.2	
SM ::::::::::::::::::::::::::::::::::::	ne grained, little silt, moist, no odor 28.7 ome fine sand, moist, no odor	0.4	
		0.7	#10/20 silica sand
MW-1- 13.0-13.5* SP	ned, trace silt, moist, no odor	2.3	2-inch sch 40 PVC 0.01" slot screen
	s wet 22.2	1.9	
SP- SANDY SILT, gray, so	ome fine sand, moist, no odor	L	
REMARKS PID = Photoionization detector readings in parts per million (ppm)			

SLR SB LOG WOODINVILLE WEST BUSINESS PARK BORING LOGS.GPJ GINT US.GDT 2/22/23

PID = Photoionization detector readings in parts per million (ppm).

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

Split Spoon = Soil samples collected as a continuous core within a 5-root-rong acetate liner.

Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler.

Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger.

NM = Not measured.

* = Soil sample submitted for laboratory analysis.

▼ Water level at time of drilling.

PAGE 2 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT Woodinville CD, LLC

PROJECT NAME Woodinville West Business Park, Building C

PROJECT NUMBER 128.20841.00001 PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville, WA

DEPTH (ft)	INTERVAL	TYPE	SAMPLE NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
 		Direct Push		100	ML SP		SANDY SILT, gray, some fine sand, moist, no odor (continued) ORGANIC SILT, dark brown, some organics, wet, organic-like odor SAND, gray, fine grained, trace organics, wet, no odor	1.7	
)irect Push	MW-1- 22.5-23.0*	100			23.0	0.2	End cap

BORING COMPLETION DETAILS:

Boring completed at 23.0 feet bgs.

0.0 to 1.0 feet: Concrete.

1.0 to 2.0 feet: Hydrated bentonite chips 3.0 to 23.0 feet: 10x20 silica sand pack.

0.0 to 3.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser.

3.0 to 22.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen. 22.8 to 23.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKS

PID = Photoionization detector readings in parts per million (ppm).

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler.

Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger.

NM = Not measured.

= Soil sample submitted for laboratory analysis.

Water level at time of drilling.

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT Woodinville CD, LLC	PROJECT NAME Woodinville West Busin	ness Pa	ark, Building C
PROJECT NUMBER 128.20841.00001	PROJECT LOCATION 16750 Woodinville	-Redm	nond Rd NE, Woodinville, W
DATE STARTED 4/6/22 COMPLETED 4/6/22	GROUND ELEVATION 32.36 ft	HOLE S	SIZE 6" - diameter
DRILLING CONTRACTOR Cascade Drilling	GROUND WATER LEVELS:		
DRILLING METHOD Direct Push/Hollow-Stem Auger	AT TIME OF DRILLING 7 ft		
LOGGED BY S. Losleben CHECKED BY M. Staton	AFTER DRILLING N/A		
NOTES	_		
O DEPTH INTERVAL TYPE SAMPLE NAME U.S.C.S. U.S.C.S. GRAPHIC LOG	ERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
Hand Auger 100 0.5 CONCRETE SAND, brown- gray, gravel, moist, no od	fine to coarse grained, trace fine		⊸ Concrete
Hand Auger 100 SP	G.	0.0	Hydrated bentonite
Hand Auger 100 3.0	29.4	0.1	chips 2-inch sch 40 PVC riser
Hand Auger 100 SILTY SAND, gray, gravel, moist, no od	fine grained, little silt, trace fine or	0.0	
Hand Auger 100 SM		0.1	
SP	26.4 ained, trace silt, moist, no odor es wet GANICS, gray- brown, fine grained, nics, wet, organic-like odor	1.4 1.2 1.7	
SM	21.4	1.8	■#10/20 silica sand
ML odor	own, little organics, wet, organic-like 19.9 ained, trace organics, wet, no odor	0.8	
SP SP	, , , , , , , , , , , , , , , , , , , ,	0.0	2-inch sch 40 PVC 0.01" slot screen
REMARKS			

PID = Photoionization detector readings in parts per million (ppm).

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler.

Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger.

NM = Not measured.

* = Soil sample submitted for laboratory analysis.

Water level at time of drilling.

SLR SB LOG WOODINVILLE WEST BUSINESS PARK BORING LOGS.GPJ GINT US.GDT 5/17/22

PAGE 2 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT Woodinville CD, LLC

PROJECT NAME Woodinville West Business Park, Building C

PROJECT NUMBER 128.20841.00001 PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville, WA

DEPTH (ft) INTERVAL	TYPE	SAMPLE NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	Direct Push		100	SP		SAND, gray, fine grained, trace organics, wet, no odor (continued)	0.2	
	Direct Push		100			23.0	0.0	End cap

BORING COMPLETION DETAILS:

Boring comleted at 23.0 feet bgs.

0.0 to 1.0 feet: Concrete.

1.0 to 2.5 feet: Hydrated bentonite chips 2.5 to 23.0 feet: 10x20 silica sand pack.

0.0 to 3.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser.

3.0 to 22.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen.

22.8 to 23.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

PID = Photoionization detector readings in parts per million (ppm).

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler.

Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger.

NM = Not measured.

* = Soil sample submitted for laboratory analysis.

Water level at time of drilling.

PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIEN	ΙT	Wood	dinville CD,	LLC				PROJECT NAME _Woo	odinville West Busir	iess Pa	Park, Building C	
PROJ	EC	T NUM	IBER <u>128.</u>	20841	1.0000)1		PROJECT LOCATION	16750 Woodinville	-Redm	nond Rd NE, Woodinville,	W
DATE	ST	ARTE	D 4/6/22			COM	PLETED 4/6/22	GROUND ELEVATION	35.69 ft F	IOLE S	SIZE 6" - diameter	—
			ITRACTOR					GROUND WATER LEVE				
DRILL	.IN	G MET	HOD Dire	ct Pus	h/Hol	low-Ste	em Auger	T AT TIME OF DRIL	LING 9 ft			
LOGG	EC	BY _	S. Losleber	1		CHE	CKED BY M. Staton	AFTER DRILLING	6 N/A			
NOTE	S											
O DEPTH (ft)	INTERVAL	TYPE	SAMPLE NAME	RECOVERY %	U.S.C.S.	GRAPHIC		RIAL DESCRIPTION	95.4	PID (ppm)	WELL DIAGRAM	
		Hand Auger		100		$\stackrel{\circ}{\circ}$	SAND w/ GRAVEL, b	rown, fine to coarse grain trace silt, moist, no odor	35.4 ed, few		- Concrete	
		Hand Auger		100	SP	000		,, 240			Hydrated bentonite chips	
		Hand Auger		100		。 ()) ,	3.0		32.7	0.1	2-inch sch 4 PVC riser	0
		Hand Auger		100			grained, few silt, few	RAVEL , brown, fine to me fine to coarse gravel, trac concrete, plastic), moist,	e	0.1		
5		Hand Auger		100	SP- SM					0.0		
		Direct Push	MW-3-8.5-	80	SP SM		8.0 SILTY SAND w/ ORG silt, few organics, mo	ned, trace silt, moist, no constant of the second s	27.7	0.1		
10			9.0*				9.0 ▼	ned, wet, no odor	26.7	0.1 0.2	◄ #10/20 silica	1
 		Direct Push		90	SP- SP- SM		SANDY SILT, gray, s wet, no odor	ome fine sand, trace woo	<u>24.2</u> dy debris,	0.4	2-inch sch 4 PVC 0.01" slot screen	0
15 PF I		RKS			SP		SAND, gray, fine grai	ned, trace organics, wet,		0.1		

SLR SB LOG WOODINVILLE WEST BUSINESS PARK BORING LOGS.GPJ GINT US.GDT 5/17/22

PID = Photoionization detector readings in parts per million (ppm).

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler.

Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger.

NM = Not measured.

* = Soil sample submitted for laboratory analysis.

Water level at time of drilling.

PAGE 2 OF 2

SLR

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT Woodinville CD, LLC

PROJECT NAME Woodinville West Business Park, Building C

PROJECT NUMBER 128.20841.00001 PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville, WA

DEPTH (ft)	INTERVAL	SAMPLE	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	Direc Push		100	SP		SAND, gray, fine grained, trace organics, wet, no odor (continued) 16.5 SILTY SAND w/ ORGANICS, brown, fine grained, little silt, few organics, wet, weak organic-like odor 19.0 SAND, gray, fine grained, trace organics, wet, no odor	0.2 0.2 0.1	
	Direc Push		100	SP		23.0	0.0	End cap

BORING COMPLETION DETAILS:

Boring comleted at 23.0 feet bgs.

0.0 to 1.0 feet: Concrete.

1.0 to 2.0 feet: Hydrated bentonite chips 2.0 to 23.0 feet: 10x20 silica sand pack.

0.0 to 3.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser.

3.0 to 22.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen.

22.8 to 23.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKS

PID = Photoionization detector readings in parts per million (ppm).

Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

Split Spoon = Soil samples collected within 18-inch-long stainless-steel split-barrel sampler.

Hand Auger = Soil samples collected within 8-inch-long stainless-steel auger.

NM = Not measured.

= Soil sample submitted for laboratory analysis.

Water level at time of drilling.

BORING NUMBER MW-4 PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT Woodinville CD, LLC PROJECT NUMBER 128.2084	1.00001	PROJECT NAME Woodinville West Business Park, Building C PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville,			
DATE STARTED _1/3/23 DRILLING CONTRACTOR _Ho DRILLING METHOD _Direct Pu LOGGED BY S. Lo	COMPLETED 1/4/23	GROUND ELEVATION HOLE SIZE 6" - diameter GROUND WATER LEVELS: AT TIME OF DRILLING 16 ft			
O DEPTH (ft) INTERVAL TYPE NAME	U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM	
Air Knife 100	sp 600 SAND with SILT ar grained, few silt, few	iL, light brown, fine to coarse grained, few no odor d GRAVEL, brown to gray, fine to coarse w fine grained gravel, moist, no odor		Concrete Hydrated bentonite chips 2-inch sch 4 PVC riser	
Direct Push	ML 7.5 SILT, gray, brown r ML 9.0 SW-SW-SM 10.0	some fine sand, moist, no odor nottling, moist, no odor rown to gray, fine to medium grained, few	0.0	- 4#10/20 silica	
Direct Push	SM 11.0 SILT, gray, moist, r	rk brown, some organics, moist,	0.1	sand 2-inch sch 4 PVC 0.01" slot screen	

PAGE 2 OF 2

CI	
SL	R

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT	LIENT Woodinville CD, LLC						PROJECT NAME Woodinville West Business Park, Building C			
PROJEC	T NUM	IBER <u>128</u>	.20841	1.0000)1		PROJECT LOCATION _	16750 Woodinville	e-Redm	ond Rd NE, Woodinville, W
DATE S	TARTE	D 1/3/23			COM	PLETED _1/4/23	GROUND ELEVATION $_$		HOLE S	IZE 6" - diameter
DRILLIN	IG CON	ITRACTOR	R Holt	Servi	ces		GROUND WATER LEVE	LS:		
DRILLIN	IG MET	HOD Dire	ect Pus	h/Holl	ow-Ste	em Auger	X AT TIME OF DRIL	LING <u>16 ft</u>		
LOGGEI	D BY _	S. Lo			CHE	CKED BY M. Staton	AFTER DRILLING	N/A		
NOTES										
OEPTH (ft)	ТҮРЕ	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MA	TERIAL DESCRIPTION		PID (ppm)	WELL DIAGRAM
20	Direct Push		100	ML		ORGANIC SILT, dark organic-like odor <i>(cor</i> 16.0 ♥ @ 16.0 feet: Become SAND, gray, fine grai	s wet	oist,	0.0	
	Direct Push		100			23.0			0.0	End cap

WELL COMPLETION DETAILS:

Boring completed at 23.0 feet bgs.

0.0 to 1.0 feet: Concrete.

1.0 to 2.0 feet: Hydrated bentonite chips 2.0 to 23.0 feet: 10x20 silica sand pack.

0.0 to 3.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 3.0 to 22.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen. 22.8 to 23.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKSPID = Photoionization detector readings in parts per million (ppm).
Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

BORING NUMBER MW-5 PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

LLC				PROJECT NAME Woodinville West Business Park, Building C PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville, WA			
.20841	.0000	1					
		COMF	PLETED1/5/23	GROUND ELEVATION	HOLE	SIZE 6" - diameter	
<u>Holt</u>	Servic	es		_ GROUND WATER LEVELS:			
ct Pus	h/Holl	ow-Ste	m Auger	_ X AT TIME OF DRILLING 17 ft			
		CHEC	KED BY M. Staton	AFTER DRILLING N/A			
				_			
RECOVERY %	U.S.C.S.	GRAPHIC LOG	N	IATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM	
			CONCRETE			Concrete	
100	SP		SAND with GRAVE few fine to coarse g	L , brown to gray, fine to coarse grained, ravel, moist, no odor		Hydrated bentonite chips 2-inch sch 40 PVC riser	
75			SAND with SILT, gr fine grained gravel, SILTY SAND, gray, no odor	moist, no odor fine to medium grained, some silt, mois	0.0 t,		
	SW-		SAND with SILT, br silt, trace root, mois @ 10.0 feet: No trace	t, no odor ce root	0.1	#10/20 silica sand	
100	ML ———— ML		3.0 SILT with SAND, gr			2-inch sch 40 PVC 0.01" slot screen	
	ML	4 1 1 1			0.0		
	Holt ct Pus % XBOOGEN % 1000	Holt Service Ct Push/Holle % SCONEKY 100 SP SP- SM 75 SM ML SW- SM ML	COMP Holt Services CHEC CHEC % NOTE OF THE	TOMPLETED 1/5/23 Holt Services Ct Push/Hollow-Stem Auger CHECKED BY M. Staton SHOW ST. O. SHAND with GRAVE few fine to coarse gravel, some odor Tomplete Services SAND with SILT, gray, moist, no odor SILT, gray, moist, no silt, trace root, mois silt, gray, moist, no multiplete silt. ML 100 ML 12.0 SILT with SAND, gray, moist, no multiplete silt.	COMPLETED 1/5/23 GROUND ELEVATION Holt Services Ct Push/Hollow-Stem Auger CHECKED BY M. Staton MATERIAL DESCRIPTION SAND with GRAVEL, brown to gray, fine to coarse grained, few silt, trace fine grained gravel, moist, no odor SP SM SILTY SAND, gray, fine to medium grained, some silt, moist no odor ML SW SW SW SW SW SW SW SW SW S	COMPLETED 1/5/23 GROUND ELEVATION 16750 Woodinville-Redrices GROUND WATER LEVELS: CHURCH BY M. Staton MATERIAL DESCRIPTION 17 ft AFTER DRILLING 17 ft	

PAGE 2 OF 2

	2211
CID	Both
JLK	Tele

18 20th Ave. SE, Suite G-202 nell, Washington 98021 phone: 425.402.8800 Fax: 425.402.8488

CLIEN	LIENT Woodinville CD, LLC							PROJECT NAME Woodinville West Business Park, Building C			
PROJ	EC	T NUN	IBER <u>128</u>	.20841	.0000)1		PROJECT LOCATION	16750 Woodinvi	lle-Redm	ond Rd NE, Woodinville, W
DATE	ST	ARTE	D <u>1/4/23</u>			COM	PLETED _1/5/23	GROUND ELEVATION		HOLE S	IZE _6" - diameter
DRILL	LINC	CON	ITRACTOR	Holt	Servi	ces		GROUND WATER LEV	ELS:		
DRILL	DRILLING METHOD _Direct Push/Hollow-Stem Auger						em Auger	T AT TIME OF DRII	LLING 17 ft		
LOGG	ED	BY _	S. Lo			CHE	CKED BY M. Staton	AFTER DRILLING	9 <u>N/A</u>		
NOTE	S_										
(ft) (ft)	INTERVAL	TYPE	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG					WELL DIAGRAM
		Direct Push		100	ML		odor <i>(continued)</i> 17.0 ▼ SAND, gray, fine to m	n, some organics, moist, edium grained, trace silt silt lens with trace root		0.0	
		Direct Push		100	SP		23.0			0.0	End cap

WELL COMPLETION DETAILS:

Boring completed at 23.0 feet bgs.

0.0 to 1.0 feet: Concrete.

1.0 to 2.0 feet: Hydrated bentonite chips 2.0 to 23.0 feet: 10x20 silica sand pack.

0.0 to 3.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 3.0 to 22.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen. 22.8 to 23.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKSPID = Photoionization detector readings in parts per million (ppm).
Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

= Water level at time of drilling.

BORING NUMBER MW-6 PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIE	LIENT Woodinville CD, LLC							PROJECT NAME Woodinville West Business Park, Building C			
PROJ	JEC.	T NUN	/IBER <u>128</u>	.20841	1.0000)1		PROJECT LOCATION 16750 Woodinvil	ville-Redmond Rd NE, Woodinville, W		
DATE	ST	ARTE	D 1/3/23			COM	PLETED 1/5/23	GROUND ELEVATION	HOLE SIZE 6" - diameter		
DRILI	LIN	G CON	NTRACTOR	R Holt	Servi	ces		GROUND WATER LEVELS:			
DRILI	LING	G MET	HOD Dire	ect Pus	sh/Hol	low-Ste	em Auger	▼ AT TIME OF DRILLING 13 ft			
LOGO	GED	BY _	S. Lo			CHE	CKED BY M. Staton	AFTER DRILLING N/A			
NOTE	ES _	I	I						Т Т		
O DEPTH (ft)	INTERVAL	TYPE	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MA	ATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM	
						444	CONCRETE			Concrete	
	-	Air Knife		100	SP		SAND with GRAVEL, few fine to coarse gra	, brown to gray, fine to coarse grained, avel, moist, no odor to gray, fine to medium grained, little silt,		Hydrated bentonite chips 2-inch sch 40 PVC riser	
 		Direct Push		75	SM		@ 6.5 feet: Trace roc @ 7.0 feet: Becomes 8.0 SANDY SILT, gray, s @ 9.0 feet: Brown me	ome fine grained sand, moist, no odor	0.0	◄ #10/20 silica	
 		Direct Push		100	ML		SILT, gray, moist, no 13.0 @ 13.0 feet: Become SAND, gray, fine to m		0.1	sand 2-inch sch 40 PVC 0.01" slot screen	
15 REI PID Direc	= P						parts per million (ppm). Continuous core within a 5-fool	t-long acetate liner.			
10 15 REI PID Direc	Wa	ater lev	vel at time o	of drilliı	ng.						

PAGE 2 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIEN	LIENT Woodinville CD, LLC						PROJECT NAME Woodinville West Business Park, Building C			
PROJE	ECT NU	MBER 128	8.2084	1.0000)1		PROJECT LOCATION 1675	0 Woodinville-F	Redmon	d Rd NE, Woodinville, W
DATE	START	ED <u>1/3/23</u>			COM	PLETED 1/5/23	GROUND ELEVATION	нс	DLE SIZE	6" - diameter
DRILL	ING CC	NTRACTO	R Holt	Servi	ces		GROUND WATER LEVELS:			
DRILL	ING ME	THOD Dir	ect Pus	sh/Hol	low-Ste	em Auger	X AT TIME OF DRILLING	13 ft		
LOGG	ED BY	S. Lo			CHE	CKED BY M. Staton	AFTER DRILLING N/A	4		
NOTES	S									
DEPTH (ft)	INTERVAL	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MA	TERIAL DESCRIPTION		PID (ppm)	WELL DIAGRAM
20	Dired Pus		100	SP		SAND, gray, fine to m (continued)	edium grained, trace silt, wet,		0.0	
	Dire Pus		100			23.0			0.0	End cap

WELL COMPLETION DETAILS:

Boring completed at 23.0 feet bgs.

0.0 to 1.0 feet: Concrete.

1.0 to 2.0 feet: Hydrated bentonite chips 2.0 to 23.0 feet: 10x20 silica sand pack.

0.0 to 3.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 3.0 to 22.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen. 22.8 to 23.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKSPID = Photoionization detector readings in parts per million (ppm).
Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

BORING NUMBER MW-7 PAGE 1 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

ville CD, LLC	1,000,4				
ER 128.2084		PROJECT LOCATION 16750 Woo			
	OHESKED DI W. Staton				
NAME RECOVERY %	U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM	
	0.3 ASPHALT				
100	SP 5.0	moist, no odor		Hydrated bentonite chips 2-inch sch 40 PVC riser	
75	no odor SW- SM © 6.0 feet: Be SILT, gray, mo SW SW SW SW SILT, gray, mo SILT, gray, mo	ecomes wet ecomes gray pist, no odor LT, gray, fine to medium grained, few silt, tra no odor pist, no odor	0.0	■# 10/20 silica	
	ML 11.5 SILT, gray, mo	•		sand	
100	ML 13.5 SAND, gray, fi	ne to medium grained, trace silt, wet, no odo	or	2-inch sch 40 PVC 0.01" slot screen	
	RACTOR Holt DD Direct Pus Lo 100 75	ACTOR Holt Services DD Direct Push/Hollow-Stem Auger Lo CHECKED BY M. Staton CHECKED BY M. Staton O.3 ASPHALT SAND with Gi coarse gravel, SW SM SILT, gray, mo SW SILT, gray, mo SW SILT, gray, mo SW SILT, gray, mo SILT, gray, mo SM SILT, gray, mo SILT, gray,	ACTOR Holt Services DD Direct Push/Hollow-Stem Auger LO CHECKED BY M. Staton MATERIAL DESCRIPTION 0.3 ASPHALT SAND with GRAVEL, brown, fine to coarse grained, few fine coarse gravel, molst, no odor SW. SAND with SILT, gray, fine to medium grained, few silt, monodor Tools, molst, no odor SW. SH. 18.3 SAND with SILT, gray, fine to medium grained, few silt, monodor SW. SH. 18.3 SAND with SILT, gray, fine to medium grained, few silt, monodor SILT, gray, moist, no odor ORGANIC SILT, brown, some organics, moist, organic-like odor	ACTOR Holt Services DD Direct Push/Hollow-Stem Auger Lo CHECKED BY M. Staton MATERIAL DESCRIPTION O SAND with SILT, gray, fine to medium grained, few silt, moist, no odor SW SW SW SW SW SW SW SW SW S	

PAGE 2 OF 2

CI	D
JL	.R

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIEN	LIENT Woodinville CD, LLC							PROJECT NAME Woodinville West Business Park, Building C			
PROJ	IEC	T NUM	IBER 128	.20841	.0000)1		PROJECT LOCATION	16750 Woodinvil	lle-Redm	ond Rd NE, Woodinville, W
DATE	ST	ARTE	D <u>1/3/23</u>			COM	PLETED _1/5/23	GROUND ELEVATION		HOLE S	IZE 6" - diameter
DRILL	LING	G CON	ITRACTOR	Holt	Servi	ces		GROUND WATER LEV	ELS:		
DRILI	LINC	3 MET	HOD Dire	ct Pus	h/Holl	low-Ste	em Auger	X AT TIME OF DRII	LING 6 ft		
LOGO	LOGGED BY S. Lo CHECKED BY M. Staton							AFTER DRILLING	8 <u>N/A</u>		
NOTE	S										
(ft) (ft)	INTERVAL	TYPE	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	GIA			WELL DIAGRAM	
 		Direct Push		100	SP		(continued) @ 18.0 feet: 1-inch organic silt lens @ 19.5 feet: 1-inch organic silt lens			0.0	
		Direct Push		100			23.0			0.0	End cap

WELL COMPLETION DETAILS:

Boring completed at 23.0 feet bgs.

0.0 to 1.0 feet: Concrete.

1.0 to 2.0 feet: Hydrated bentonite chips 2.0 to 23.0 feet: 10x20 silica sand pack.

0.0 to 3.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 3.0 to 22.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen. 22.8 to 23.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKSPID = Photoionization detector readings in parts per million (ppm).
Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

= Water level at time of drilling.

BORING NUMBER MW-8 PAGE 1 OF 2

SLR MW LOG WOODINVILLE WEST BUSINESS PARK BORING LOGS.GPJ GINT US.GDT 1/6/23

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

		linville CD										
		IBER _128					PROJECT LOCATION 16750 Woo					
DATE S	TARTE	D <u>1/3/23</u>				PLETED 1/4/23		HOLI	SIZE 6" - diameter			
		TRACTOR										
DRILLIN	IG MET	HOD Dire	ct Pus	h/Hol	low-Ste	m Auger	TAT TIME OF DRILLING 6 ft					
LOGGEI	D BY	S. Lo			CHEC	KED BY M. Staton	AFTER DRILLING N/A					
NOTES												
O DEPTH (ft) INTERVAL	TYPE	NAME	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MA	ATERIAL DESCRIPTION	PID (mad)	WELL DIAGRAM			
	Air Knife		100	SP- SM		SAND with SILT and grained, few fine to c	GRAVEL, brown to gray, fine to coars oarse gravel, few silt, moist, no odor		■Concrete ■Hydrated bentonite chips 2-inch sch 40 PVC riser			
10	Direct Push		75	SW-SM		no odor @ 6.0 feet: Becomes 7.0 SILT, gray, moist, no 3.0 SILT with SAND, gra		0.l				
	Direct Push		100	ML SP		13.5 SAND , gray, fine to n	nedium grained, wet, no odor	0.	2-inch sch 40 PVC 0.01" slot screen			
Direct F	Photoio Push =		es colle	ected		arts per million (ppm). ntinuous core within a 5-foo	t-long acetate liner.					

PAGE 2 OF 2

CI	D
JL	. 1

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

CLIENT Woodinville CD, LLC	PROJECT NAME Woodinville West Business Park, Building C
PROJECT NUMBER 128.20841.00001	PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville, W
DATE STARTED _1/3/23 COMPLETED _1/4/23	GROUND ELEVATION HOLE SIZE 6" - diameter
DRILLING CONTRACTOR Holt Services	GROUND WATER LEVELS:
DRILLING METHOD Direct Push/Hollow-Stem Auger	▼ AT TIME OF DRILLING 6 ft
LOGGED BY S. Lo CHECKED BY M. Staton	AFTER DRILLING N/A
NOTES	-
DEPTH (ft) (ft) INTERVAL TYPE NAME U.S.C.S. U.S.C.S.	ATERIAL DESCRIPTION ATERIAL DESCRIPTION O C D
SAND, gray, fine to r	medium grained, wet, no odor (continued) ay, fine grained, few silt, wet, no odor medium grained, trace silt, wet, no odor 0.0 0.0
Direct Push 100	0.0 End cap

WELL COMPLETION DETAILS:

Boring completed at 23.0 feet bgs.

0.0 to 1.0 feet: Concrete.

1.0 to 2.0 feet: Hydrated bentonite chips 2.0 to 23.0 feet: 10x20 silica sand pack.

0.0 to 3.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 3.0 to 22.8 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen. 22.8 to 23.0 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKSPID = Photoionization detector readings in parts per million (ppm).
Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

BORING NUMBER MW-9 PAGE 1 OF 2

SLR MW LOG WOODINVILLE WEST BUSINESS PARK BORING LOGS.GPJ GINT US.GDT 1/6/23

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

Rd NE, Woodinville, W. 6" - diameter WELL DIAGRAM
WELL DIAGRAM
WELL DIAGRAM
10
■ Concrete ■ Hydrated bentonite chips ■ 2-inch sch 40 PVC riser
∃ (:)
∄::
■ #10/20 silica sand
2-inch sch 40 PVC 0.01" slot screen

PAGE 2 OF 2

22118 20th Ave. SE, Suite G-202 Bothell, Washington 98021 Telephone: 425.402.8800 Fax: 425.402.8488

PROJECT NUMBER 128.20841.00001 PROJECT LOCATION 16750 Woodinville-Redmond Rd NE, Woodinville, W. DATE STARTED 19/23 COMPLETED 1/4/23 GROUND ELEVATION HOLE SIZE 6'-diameter DRILLING METHOD Direct Push/Hollow-Stern Auger LOGGED BY S. Lo CHECKED BY M. Staton NOTES A T TIME OF DRILLING N/A	CLIE	NT _V	/oodinville C	D, LLC			PROJECT NAME Woodinville West Busi	ness Parl	k, Building C
DRILLING METHOD Direct Push/Hollow-Stem Auger CHECKED BY M. Staton NOTES # AT TIME OF DRILLING 6.11 AFTER DRILLING METHOD MATERIAL DESCRIPTION MATER	PROJ	IECT I	NUMBER 1	28.2084	1.0000)1	PROJECT LOCATION 16750 Woodinville	e-Redmoi	nd Rd NE, Woodinville, W
DRILLING METHOD Direct Push/Hollow-Stem Auger LOGGED BY S. Lo CHECKED BY M. Staton NOTES ### AFTER DRILLING N/A AFTER DRILLING N/A MATERIAL DESCRIPTION ### AFTER DRILLING N/A WELL DIAGRAM ### AFTER DRILLING N/A ### AFTER DRILLING N/A WELL DIAGRAM ### AFTER DRILLING N/A WELL DIAGRAM ### AFTER DRILLING N/A WELL DIAGRAM ### AFTER DRILLING N/A ### AFTER DRILLING N/A WELL DIAGRAM ### AFTER DRILLING N/A ### AFTE	DATE	STAI	RTED 1/3/2	3		COM	PLETED 1/4/23 GROUND ELEVATION	HOLE SIZ	E 6" - diameter
NOTES HE (1) A LINE SHAPE AND SHAPE	DRILI	LING	CONTRACTO	OR Holt	Servi	ces	GROUND WATER LEVELS:		
NOTES ### A Push									
MATERIAL DESCRIPTION SANDY SILT, gray to brown, some fine grained sand, wet, no odor (continued) ML SANDY SILT, gray to brown, some fine grained sand, wet, no odor (continued) SM SM SM SM SM SM SILTY SAND, gray, fine to medium grained, little silt, wet, no odor O.0 O.0 O.0 O.0 O.0 Direct Push Direct Push ODirect Push OD OD OD OD End cap	LOGO	GED B	Y S. Lo			CHE	KED BY M. Staton AFTER DRILLING N/A		
MATERIAL DESCRIPTION A	NOTE	ES							
Direct Push Direct Push 100 SP SAND, gray, fine to medium grained, wet, no odor 0.0		INTERVAL	TYPE		U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
Direct Push 100 SM SM 100 SAND, gray, fine to medium grained, little silt, wet, no odor 0.0 0.0 0.0 0.1 Direct Push 100 SAND, gray, fine to medium grained, wet, no odor 0.0 0.0 End cap	10				ML		odor (continued)		
Direct Push 100 SP 0.1 0.0 End cap				100	SM		SILTY SAND, gray, fine to medium grained, little silt, wet, no odor		
Direct Push 100 SP 0.0 0.0 End cap	20							0.0	
		Di	rect ush	100	SP			0.1	
25 25.0		-						0.0	_ i≡l End cap
	25						25.0		

WELL COMPLETION DETAILS:

Boring completed at 23.0 feet bgs.

0.0 to 1.0 feet: Concrete.

1.0 to 1.9 feet: Hydrated bentonite chips 1.9 to 22.9 feet: 10x20 silica sand pack.

0.0 to 2.9 feet: 2"-diameter, flush-threaded Sch. 40 PVC riser. 2.9 to 22.7 feet: 2"-diameter, flush-threaded Sch. 40 PVC 0.010-slotted well screen. 22.7 to 22.9 feet: 2"-diameter, flush-threaded Sch. 40 PVC cap.

REMARKSPID = Photoionization detector readings in parts per million (ppm).
Direct Push = Soil sampes collected as a continuous core within a 5-foot-long acetate liner.

= Water level at time of drilling.

APPENDIX B LABORATORY REPORTS

SOIL SAMPLES

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, April 29, 2022 Mike Staton SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021

RE: A2D0430 - Woodinville West - 101.20841.00001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2D0430, which was received by the laboratory on 4/9/2022 at 10:00:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 3.2 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202

Bothell, WA 98021

Pr

Project Number: 101.20841.00001
Project Manager: Mike Staton

Woodinville West

Project:

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1-4.5'-5.0'	A2D0430-01	Soil	04/08/22 08:47	04/09/22 10:00
SB-2-4.0'-4.5'	A2D0430-03	Soil	04/08/22 09:41	04/09/22 10:00
SB-3-6.0'-6.5'	A2D0430-05	Soil	04/08/22 10:30	04/09/22 10:00
SB-4-4.0'-4.5'	A2D0430-07	Soil	04/07/22 08:50	04/09/22 10:00
SB-4-16.0'-16.5'	A2D0430-08	Soil	04/07/22 08:55	04/09/22 10:00
SB-5-4.5'-5.0'	A2D0430-10	Soil	04/07/22 09:11	04/09/22 10:00
MW-1-13.0'-13.5'	A2D0430-11	Soil	04/07/22 10:58	04/09/22 10:00
MW-1.22.5'-23.0'	A2D0430-12	Soil	04/07/22 11:04	04/09/22 10:00
MW-2-6.0'-6.5'	A2D0430-13	Soil	04/06/22 10:12	04/09/22 10:00
MW-3-8.5'-9.0'	A2D0430-15	Soil	04/06/22 14:13	04/09/22 10:00

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

			ic Compound	,		D :		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-1-4.5'-5.0' (A2D0430-01)				Matrix: Soil	<u> </u>	Batch:	22D0439	
Acetone	ND		1.10	mg/kg dry	50	04/13/22 14:15	5035A/8260D	ICV-02
Acrylonitrile	ND		0.110	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Benzene	ND		0.0110	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Bromobenzene	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Bromochloromethane	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Bromodichloromethane	ND		0.110	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Bromoform	ND		0.110	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Bromomethane	ND		0.548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
2-Butanone (MEK)	ND		0.548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
n-Butylbenzene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
sec-Butylbenzene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
tert-Butylbenzene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Carbon disulfide	ND		0.548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Carbon tetrachloride	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Chlorobenzene	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Chloroethane	ND		0.548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Chloroform	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Chloromethane	ND		0.274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
2-Chlorotoluene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
4-Chlorotoluene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Dibromochloromethane	ND		0.110	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Dibromomethane	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Dichlorodifluoromethane	ND		0.110	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,1-Dichloroethane	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,1-Dichloroethene	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
cis-1,2-Dichloroethene	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
trans-1,2-Dichloroethene	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-1-4.5'-5.0' (A2D0430-01)				Matrix: Soil	1	Batch:	22D0439	
1,2-Dichloropropane	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,3-Dichloropropane	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
2,2-Dichloropropane	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,1-Dichloropropene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
trans-1,3-Dichloropropene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Ethylbenzene	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Hexachlorobutadiene	ND		0.110	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
2-Hexanone	ND		0.548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Isopropylbenzene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
4-Isopropyltoluene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Methylene chloride	ND		0.548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Naphthalene	ND		0.110	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
n-Propylbenzene	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Styrene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Toluene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,2,3-Trichlorobenzene	ND		0.274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,2,4-Trichlorobenzene	ND		0.274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,1,1-Trichloroethane	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
1,1,2-Trichloroethane	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Trichloroethene (TCE)	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
Trichlorofluoromethane	ND		0.110	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
,2,3-Trichloropropane	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
,2,4-Trimethylbenzene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
,3,5-Trimethylbenzene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
/inyl chloride	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
n,p-Xylene	ND		0.0548	mg/kg dry	50	04/13/22 14:15	5035A/8260D	
-Xylene	ND		0.0274	mg/kg dry	50	04/13/22 14:15	5035A/8260D	

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 4 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

			-	nds by EPA 826				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-1-4.5'-5.0' (A2D0430-01)				Matrix: Soil		Batch:	Batch: 22D0439	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 109 %	Limits: 80-120 %	I	04/13/22 14:15	5035A/8260D	
Toluene-d8 (Surr)			98 %	80-120 %	1	04/13/22 14:15	5035A/8260D	
4-Bromofluorobenzene (Surr)			101 %	79-120 %	1	04/13/22 14:15	5035A/8260D	
SB-2-4.0'-4.5' (A2D0430-03)				Matrix: Soil		Batch:	22D0439	
Acetone	ND		1.26	mg/kg dry	50	04/13/22 14:42	5035A/8260D	ICV-02
Acrylonitrile	ND		0.126	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Benzene	ND		0.0126	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Bromobenzene	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Bromochloromethane	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Bromodichloromethane	ND		0.126	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Bromoform	ND		0.126	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Bromomethane	ND		0.632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
2-Butanone (MEK)	ND		0.632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
n-Butylbenzene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
sec-Butylbenzene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
tert-Butylbenzene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Carbon disulfide	ND		0.632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Carbon tetrachloride	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Chlorobenzene	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Chloroethane	ND		0.632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Chloroform	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Chloromethane	ND		0.316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
2-Chlorotoluene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
4-Chlorotoluene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Dibromochloromethane	ND		0.126	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Dibromomethane	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Dichlorodifluoromethane	ND		0.126	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,1-Dichloroethane	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

		olatile Organ	•	•				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-2-4.0'-4.5' (A2D0430-03)				Matrix: Soi	I	Batch:	22D0439	
1,2-Dichloroethane (EDC)	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,1-Dichloroethene	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
cis-1,2-Dichloroethene	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
trans-1,2-Dichloroethene	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,2-Dichloropropane	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,3-Dichloropropane	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
2,2-Dichloropropane	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,1-Dichloropropene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
trans-1,3-Dichloropropene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Ethylbenzene	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Hexachlorobutadiene	ND		0.126	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
2-Hexanone	ND		0.632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Isopropylbenzene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
4-Isopropyltoluene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Methylene chloride	ND		0.632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Naphthalene	ND		0.126	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
n-Propylbenzene	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Styrene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Toluene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,2,3-Trichlorobenzene	ND		0.316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,2,4-Trichlorobenzene	ND		0.316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,1,1-Trichloroethane	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,1,2-Trichloroethane	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Trichloroethene (TCE)	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Trichlorofluoromethane	ND		0.126	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,2,3-Trichloropropane	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 6 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-2-4.0'-4.5' (A2D0430-03)				Matrix: Soil		Batch:	22D0439	
1,3,5-Trimethylbenzene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Vinyl chloride	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
m,p-Xylene	ND		0.0632	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
o-Xylene	ND		0.0316	mg/kg dry	50	04/13/22 14:42	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	·: 108 %	Limits: 80-120 %	I	04/13/22 14:42	5035A/8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	04/13/22 14:42	5035A/8260D	
4-Bromofluorobenzene (Surr)			102 %	79-120 %	I	04/13/22 14:42	5035A/8260D	
SB-3-6.0'-6.5' (A2D0430-05)				Matrix: Soil		Batch:	22D0439	
Acetone	ND		1.27	mg/kg dry	50	04/13/22 15:36	5035A/8260D	ICV-02
Acrylonitrile	ND		0.127	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Benzene	ND		0.0127	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Bromobenzene	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Bromochloromethane	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Bromodichloromethane	ND		0.127	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Bromoform	ND		0.127	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Bromomethane	ND		0.633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
2-Butanone (MEK)	ND		0.633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
n-Butylbenzene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
sec-Butylbenzene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
tert-Butylbenzene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Carbon disulfide	ND		0.633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Carbon tetrachloride	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Chlorobenzene	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Chloroethane	ND		0.633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Chloroform	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Chloromethane	ND		0.317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
2-Chlorotoluene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
4-Chlorotoluene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Dibromochloromethane	ND		0.127	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Dibromomethane	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-3-6.0'-6.5' (A2D0430-05)				Matrix: Soil		Batch:	22D0439	
1,3-Dichlorobenzene	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
,4-Dichlorobenzene	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Dichlorodifluoromethane	ND		0.127	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,1-Dichloroethane	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,1-Dichloroethene	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
cis-1,2-Dichloroethene	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
rans-1,2-Dichloroethene	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,2-Dichloropropane	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,3-Dichloropropane	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
2,2-Dichloropropane	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,1-Dichloropropene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
rans-1,3-Dichloropropene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Ethylbenzene	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Hexachlorobutadiene	ND		0.127	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
2-Hexanone	ND		0.633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
sopropylbenzene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
4-Isopropyltoluene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Methylene chloride	ND		0.633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Naphthalene	ND		0.127	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
n-Propylbenzene	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Styrene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
,1,2,2-Tetrachloroethane	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0337	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Foluene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
,2,3-Trichlorobenzene	ND		0.317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
,2,4-Trichlorobenzene	ND		0.317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
.1.1-Trichloroethane	ND ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
,1,2-Trichloroethane	ND ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 8 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-3-6.0'-6.5' (A2D0430-05)				Matrix: Soil		Batch:	22D0439	
Trichloroethene (TCE)	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Trichlorofluoromethane	ND		0.127	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,2,3-Trichloropropane	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
1,3,5-Trimethylbenzene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Vinyl chloride	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
m,p-Xylene	ND		0.0633	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
o-Xylene	ND		0.0317	mg/kg dry	50	04/13/22 15:36	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 108 %	Limits: 80-120 %	1	04/13/22 15:36	5035A/8260D	
Toluene-d8 (Surr)			95 %	80-120 %	1	04/13/22 15:36	5035A/8260D	
4-Bromofluorobenzene (Surr)			104 %	79-120 %	1	04/13/22 15:36	5035A/8260D	
SB-4-4.0'-4.5' (A2D0430-07)				Matrix: Soil		Batch:	22D0439	
Acetone	ND		1.06	mg/kg dry	50	04/13/22 16:03	5035A/8260D	ICV-02
Acrylonitrile	ND		0.106	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Benzene	ND		0.0106	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Bromobenzene	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Bromochloromethane	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Bromodichloromethane	ND		0.106	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Bromoform	ND		0.106	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Bromomethane	ND		0.531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
2-Butanone (MEK)	ND		0.531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
n-Butylbenzene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
sec-Butylbenzene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
tert-Butylbenzene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Carbon disulfide	ND		0.531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Carbon tetrachloride	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Chlorobenzene	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Chloroethane	ND		0.531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Chloroform	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Chloromethane	ND		0.266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
2-Chlorotoluene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
4-Chlorotoluene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Dibromochloromethane	ND		0.106	mg/kg dry	50	04/13/22 16:03	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 9 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-4-4.0'-4.5' (A2D0430-07)				Matrix: Soil	1	Batch:	22D0439	
1,2-Dibromo-3-chloropropane	ND		0.266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Dibromomethane	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Dichlorodifluoromethane	ND		0.106	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
1,1-Dichloroethane	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
1,1-Dichloroethene	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
cis-1,2-Dichloroethene	0.261		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
trans-1,2-Dichloroethene	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
1,2-Dichloropropane	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
1,3-Dichloropropane	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
2,2-Dichloropropane	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
1,1-Dichloropropene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
trans-1,3-Dichloropropene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Ethylbenzene	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Hexachlorobutadiene	ND		0.106	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
2-Hexanone	ND		0.531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Isopropylbenzene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
4-Isopropyltoluene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Methylene chloride	ND		0.531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Naphthalene	ND		0.106	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
n-Propylbenzene	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Styrene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
,1,2,2-Tetrachloroethane	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D	
Toluene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 10 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
SB-4-4.0'-4.5' (A2D0430-07)				Matrix: Soil		Batch: 22D0439						
1,2,3-Trichlorobenzene	ND		0.266	mg/kg dry	50	04/13/22 16:03	5035A/8260D					
1,2,4-Trichlorobenzene	ND		0.266	mg/kg dry	50	04/13/22 16:03	5035A/8260D					
1,1,1-Trichloroethane	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D					
1,1,2-Trichloroethane	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D					
Trichloroethene (TCE)	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D					
Trichlorofluoromethane	ND		0.106	mg/kg dry	50	04/13/22 16:03	5035A/8260D					
1,2,3-Trichloropropane	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D					
1,2,4-Trimethylbenzene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D					
1,3,5-Trimethylbenzene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D					
Vinyl chloride	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D					
m,p-Xylene	ND		0.0531	mg/kg dry	50	04/13/22 16:03	5035A/8260D					
o-Xylene	ND		0.0266	mg/kg dry	50	04/13/22 16:03	5035A/8260D					
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 108 %	Limits: 80-120 %	1	04/13/22 16:03	5035A/8260D					
Toluene-d8 (Surr)			95 %	80-120 %	1	04/13/22 16:03	5035A/8260D					
4-Bromofluorobenzene (Surr)			104 %	79-120 %	1	04/13/22 16:03	5035A/8260D					
SB-4-16.0'-16.5' (A2D0430-08)		Matrix: Soil Batch: 2				22D0831						
Acetone	ND		1.33	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Acrylonitrile	ND		0.133	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Benzene	ND		0.0133	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Bromobenzene	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Bromochloromethane	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Bromodichloromethane	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Bromoform	ND		0.133	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Bromomethane	ND		0.667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
2-Butanone (MEK)	ND		0.667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
n-Butylbenzene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
ec-Butylbenzene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
ert-Butylbenzene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Carbon disulfide	ND		0.667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Carbon tetrachloride	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Chlorobenzene	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Chloroethane	ND		0.667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Chloroform	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 11 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
SB-4-16.0'-16.5' (A2D0430-08)				Matrix: Soil		Batch: 22D0831						
Chloromethane	ND		0.333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
2-Chlorotoluene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
4-Chlorotoluene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Dibromochloromethane	ND		0.133	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
1,2-Dibromo-3-chloropropane	ND		0.333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
1,2-Dibromoethane (EDB)	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Dibromomethane	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
1,2-Dichlorobenzene	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
1,3-Dichlorobenzene	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
1,4-Dichlorobenzene	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Dichlorodifluoromethane	ND		0.133	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
1,1-Dichloroethane	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
1,2-Dichloroethane (EDC)	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
1,1-Dichloroethene	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
cis-1,2-Dichloroethene	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
trans-1,2-Dichloroethene	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
1,2-Dichloropropane	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
1,3-Dichloropropane	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
2,2-Dichloropropane	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
1,1-Dichloropropene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
cis-1,3-Dichloropropene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
trans-1,3-Dichloropropene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Ethylbenzene	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Hexachlorobutadiene	ND		0.133	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
2-Hexanone	ND		0.667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Isopropylbenzene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
4-Isopropyltoluene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Methylene chloride	ND		0.667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
4-Methyl-2-pentanone (MiBK)	ND		0.667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Methyl tert-butyl ether (MTBE)	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Naphthalene	ND		0.133	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
n-Propylbenzene	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D					
Styrene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D					

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0D			
A 1.	Sample	Detection	Reporting	** **	Dil di	Date	W 4 1D 6	N T (
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SB-4-16.0'-16.5' (A2D0430-08)				Matrix: Soil		Batch:	22D0831	
1,1,1,2-Tetrachloroethane	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
Toluene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
1,2,3-Trichlorobenzene	ND		0.333	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
1,2,4-Trichlorobenzene	ND		0.333	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
1,1,1-Trichloroethane	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
1,1,2-Trichloroethane	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
Trichloroethene (TCE)	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
Trichlorofluoromethane	ND		0.133	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
1,2,3-Trichloropropane	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
1,3,5-Trimethylbenzene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
Vinyl chloride	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
m,p-Xylene	ND		0.0667	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
o-Xylene	ND		0.0333	mg/kg dry	50	04/21/22 15:20	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 111 %	Limits: 80-120 %	1	04/21/22 15:20	5035A/8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	04/21/22 15:20	5035A/8260D	
4-Bromofluorobenzene (Surr)			98 %	79-120 %	I	04/21/22 15:20	5035A/8260D	
SB-5-4.5'-5.0' (A2D0430-10)				Matrix: Soil		Batch:	22D0439	
Acetone	ND		1.03	mg/kg dry	50	04/13/22 16:30	5035A/8260D	ICV-02
Acrylonitrile	ND		0.103	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Benzene	ND		0.0103	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Bromobenzene	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Bromochloromethane	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Bromodichloromethane	ND		0.103	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Bromoform	ND		0.103	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Bromomethane	ND		0.515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
2-Butanone (MEK)	ND		0.515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
n-Butylbenzene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
sec-Butylbenzene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
tert-Butylbenzene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Carbon disulfide	ND		0.515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

			·	ds by EPA 82				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-5-4.5'-5.0' (A2D0430-10)				Matrix: Soil	1	Batch:	22D0439	
Carbon tetrachloride	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Chlorobenzene	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Chloroethane	ND		0.515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Chloroform	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Chloromethane	ND		0.258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
2-Chlorotoluene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
4-Chlorotoluene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Dibromochloromethane	ND		0.103	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Dibromomethane	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Dichlorodifluoromethane	ND		0.103	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,1-Dichloroethane	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,1-Dichloroethene	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
cis-1,2-Dichloroethene	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
trans-1,2-Dichloroethene	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,2-Dichloropropane	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,3-Dichloropropane	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
2,2-Dichloropropane	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,1-Dichloropropene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
rans-1,3-Dichloropropene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Ethylbenzene	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Hexachlorobutadiene	ND		0.103	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
2-Hexanone	ND		0.515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
sopropylbenzene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1-Isopropyltoluene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Methylene chloride	ND		0.515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
I-Methyl-2-pentanone (MiBK)	ND		0.515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-5-4.5'-5.0' (A2D0430-10)				Matrix: Soil		Batch:	22D0439	
Methyl tert-butyl ether (MTBE)	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Naphthalene	ND		0.103	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
n-Propylbenzene	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Styrene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Toluene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,2,3-Trichlorobenzene	ND		0.258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,2,4-Trichlorobenzene	ND		0.258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,1,1-Trichloroethane	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,1,2-Trichloroethane	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Trichloroethene (TCE)	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Trichlorofluoromethane	ND		0.103	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,2,3-Trichloropropane	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
1,3,5-Trimethylbenzene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Vinyl chloride	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
m,p-Xylene	ND		0.0515	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
o-Xylene	ND		0.0258	mg/kg dry	50	04/13/22 16:30	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 108 %	Limits: 80-120 %	1	04/13/22 16:30	5035A/8260D	
Toluene-d8 (Surr)			94 %	80-120 %	1	04/13/22 16:30	5035A/8260D	
4-Bromofluorobenzene (Surr)			103 %	79-120 %	1	04/13/22 16:30	5035A/8260D	
MW-1-13.0'-13.5' (A2D0430-11)				Matrix: Soil		Batch:	22D0439	
Acetone	ND		1.37	mg/kg dry	50	04/13/22 16:57	5035A/8260D	ICV-02
Acrylonitrile	ND		0.137	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Benzene	ND		0.0137	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Bromobenzene	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Bromochloromethane	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Bromodichloromethane	ND		0.137	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Bromoform	ND		0.137	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Bromomethane	ND		0.687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
2-Butanone (MEK)	ND		0.687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 15 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1-13.0'-13.5' (A2D0430-11)				Matrix: Soi	Matrix: Soil		22D0439	
n-Butylbenzene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
sec-Butylbenzene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
tert-Butylbenzene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Carbon disulfide	ND		0.687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Carbon tetrachloride	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Chlorobenzene	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Chloroethane	ND		0.687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Chloroform	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Chloromethane	ND		0.343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
2-Chlorotoluene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
4-Chlorotoluene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Dibromochloromethane	ND		0.137	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Dibromomethane	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Dichlorodifluoromethane	ND		0.137	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,1-Dichloroethane	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,1-Dichloroethene	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
cis-1,2-Dichloroethene	0.110		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
trans-1,2-Dichloroethene	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,2-Dichloropropane	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,3-Dichloropropane	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
2,2-Dichloropropane	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
,1-Dichloropropene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
sis-1,3-Dichloropropene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
rans-1,3-Dichloropropene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Ethylbenzene	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Hexachlorobutadiene	ND		0.137	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
2-Hexanone	ND		0.687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 16 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-1-13.0'-13.5' (A2D0430-11)				Matrix: Soil		Batch:	22D0439	
Isopropylbenzene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
4-Isopropyltoluene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Methylene chloride	ND		0.687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Naphthalene	ND		0.137	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
n-Propylbenzene	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Styrene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Toluene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,2,3-Trichlorobenzene	ND		0.343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,2,4-Trichlorobenzene	ND		0.343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,1,1-Trichloroethane	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,1,2-Trichloroethane	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Trichloroethene (TCE)	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Trichlorofluoromethane	ND		0.137	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,2,3-Trichloropropane	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
1,3,5-Trimethylbenzene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Vinyl chloride	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
m,p-Xylene	ND		0.0687	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
o-Xylene	ND		0.0343	mg/kg dry	50	04/13/22 16:57	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	ry: 109 %	Limits: 80-120 %	1	04/13/22 16:57	5035A/8260D	
Toluene-d8 (Surr)			96 %	80-120 %		04/13/22 16:57	5035A/8260D	
4-Bromofluorobenzene (Surr)			102 %	79-120 %	I	04/13/22 16:57	5035A/8260D	
MW-1.22.5'-23.0' (A2D0430-12)	0' (A2D0430-12)			Matrix: Soil		Batch: 22D0831		
Acetone	ND		1.26	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Acrylonitrile	ND		0.126	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Benzene	ND		0.0126	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Bromobenzene	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Bromochloromethane	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 17 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1.22.5'-23.0' (A2D0430-12)				Matrix: Soi	1	Batch:	22D0831	
Bromodichloromethane	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Bromoform	ND		0.126	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Bromomethane	ND		0.632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
2-Butanone (MEK)	ND		0.632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
n-Butylbenzene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
sec-Butylbenzene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
tert-Butylbenzene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Carbon disulfide	ND		0.632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Carbon tetrachloride	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Chlorobenzene	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Chloroethane	ND		0.632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Chloroform	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Chloromethane	ND		0.316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
2-Chlorotoluene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
4-Chlorotoluene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Dibromochloromethane	ND		0.126	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Dibromomethane	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Dichlorodifluoromethane	ND		0.126	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,1-Dichloroethane	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,1-Dichloroethene	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
cis-1,2-Dichloroethene	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
rans-1,2-Dichloroethene	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
,2-Dichloropropane	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,3-Dichloropropane	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
2,2-Dichloropropane	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,1-Dichloropropene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 18 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-1.22.5'-23.0' (A2D0430-12)				Matrix: Soil		Batch: 22D0831		
trans-1,3-Dichloropropene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Ethylbenzene	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Hexachlorobutadiene	ND		0.126	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
2-Hexanone	ND		0.632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Isopropylbenzene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
4-Isopropyltoluene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Methylene chloride	ND		0.632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Naphthalene	ND		0.126	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
n-Propylbenzene	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Styrene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Toluene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,2,3-Trichlorobenzene	ND		0.316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,2,4-Trichlorobenzene	ND		0.316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,1,1-Trichloroethane	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,1,2-Trichloroethane	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Trichloroethene (TCE)	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Trichlorofluoromethane	ND		0.126	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,2,3-Trichloropropane	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
1,3,5-Trimethylbenzene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Vinyl chloride	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
m,p-Xylene	ND		0.0632	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
o-Xylene	ND		0.0316	mg/kg dry	50	04/21/22 15:47	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 111 %	Limits: 80-120 %	1	04/21/22 15:47	5035A/8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	04/21/22 15:47	5035A/8260D	
4-Bromofluorobenzene (Surr)			97 %	79-120 %	1	04/21/22 15:47	5035A/8260D	
MW-2-6.0'-6.5' (A2D0430-13)	2D0430-13)			Matrix: Soil		Batch:	22D0439	
Acetone	ND		1.54	mg/kg dry	50	04/13/22 17:24	5035A/8260D	ICV-02

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

			ic Compound					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-2-6.0'-6.5' (A2D0430-13)				Matrix: Soi	I	Batch:	22D0439	
Acrylonitrile	ND		0.154	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Benzene	ND		0.0154	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Bromobenzene	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Bromochloromethane	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Bromodichloromethane	ND		0.154	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Bromoform	ND		0.154	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Bromomethane	ND		0.772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
2-Butanone (MEK)	ND		0.772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
n-Butylbenzene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
sec-Butylbenzene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
tert-Butylbenzene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Carbon disulfide	ND		0.772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Carbon tetrachloride	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Chlorobenzene	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Chloroethane	ND		0.772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Chloroform	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Chloromethane	ND		0.386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
2-Chlorotoluene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
4-Chlorotoluene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Dibromochloromethane	ND		0.154	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Dibromomethane	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Dichlorodifluoromethane	ND		0.154	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,1-Dichloroethane	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,1-Dichloroethene	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
cis-1,2-Dichloroethene	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
trans-1,2-Dichloroethene	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,2-Dichloropropane	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-2-6.0'-6.5' (A2D0430-13)				Matrix: Soil		Batch:	22D0439	
1,3-Dichloropropane	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
2,2-Dichloropropane	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,1-Dichloropropene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
trans-1,3-Dichloropropene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Ethylbenzene	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Hexachlorobutadiene	ND		0.154	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
2-Hexanone	ND		0.772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Isopropylbenzene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
4-Isopropyltoluene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Methylene chloride	ND		0.772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Naphthalene	ND		0.154	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
n-Propylbenzene	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Styrene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Fetrachloroethene (PCE)	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Toluene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,2,3-Trichlorobenzene	ND		0.386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,2,4-Trichlorobenzene	ND		0.386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,1,1-Trichloroethane	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
1,1,2-Trichloroethane	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Frichloroethene (TCE)	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Frichlorofluoromethane	ND		0.154	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
,2,3-Trichloropropane	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
,2,4-Trimethylbenzene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
,3,5-Trimethylbenzene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
/inyl chloride	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
ı,p-Xylene	ND		0.0772	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
-Xylene	ND		0.0386	mg/kg dry	50	04/13/22 17:24	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)			ery: 109 %	Limits: 80-120 %		04/13/22 17:24	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-2-6.0'-6.5' (A2D0430-13)				Matrix: Soil		Batch: 22D0439		
Surrogate: Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)		Reco	very: 95 % 102 %	Limits: 80-120 % 79-120 %	1 1	04/13/22 17:24 04/13/22 17:24	5035A/8260D 5035A/8260D	
MW-3-8.5'-9.0' (A2D0430-15)				Matrix: Soil		Batch:	22D0439	
Acetone	ND		1.93	mg/kg dry	50	04/13/22 17:51	5035A/8260D	ICV-02
Acrylonitrile	ND		0.193	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Benzene	ND		0.0193	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Bromobenzene	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Bromochloromethane	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Bromodichloromethane	ND		0.193	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Bromoform	ND		0.193	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Bromomethane	ND		0.964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
2-Butanone (MEK)	ND		0.964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
n-Butylbenzene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
sec-Butylbenzene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
tert-Butylbenzene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Carbon disulfide	ND		0.964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Carbon tetrachloride	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Chlorobenzene	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Chloroethane	ND		0.964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Chloroform	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Chloromethane	ND		0.482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
2-Chlorotoluene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
4-Chlorotoluene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Dibromochloromethane	ND		0.193	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		0.482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Dibromomethane	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,2-Dichlorobenzene	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,3-Dichlorobenzene	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,4-Dichlorobenzene	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Dichlorodifluoromethane	ND		0.193	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,1-Dichloroethane	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
, (=20)	- 1.25		3.0.02)	- 0			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 22 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-3-8.5'-9.0' (A2D0430-15)					I	Batch: 22D0439		
1,1-Dichloroethene	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
cis-1,2-Dichloroethene	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
trans-1,2-Dichloroethene	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,2-Dichloropropane	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,3-Dichloropropane	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
2,2-Dichloropropane	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,1-Dichloropropene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
cis-1,3-Dichloropropene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
trans-1,3-Dichloropropene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Ethylbenzene	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Hexachlorobutadiene	ND		0.193	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
2-Hexanone	ND		0.964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
sopropylbenzene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
4-Isopropyltoluene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Methylene chloride	ND		0.964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		0.964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Naphthalene	ND		0.193	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
n-Propylbenzene	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Styrene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,1,2-Tetrachloroethane	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Tetrachloroethene (PCE)	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Toluene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,2,3-Trichlorobenzene	ND		0.482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,2,4-Trichlorobenzene	ND		0.482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,1,1-Trichloroethane	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,1,2-Trichloroethane	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Γrichloroethene (TCE)	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
Trichlorofluoromethane	ND		0.193	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,2,3-Trichloropropane	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,2,4-Trimethylbenzene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	
1,3,5-Trimethylbenzene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 23 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW-3-8.5'-9.0' (A2D0430-15)		Matrix: Soil Batch: 22D0439							
Vinyl chloride	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D		
m,p-Xylene	ND		0.0964	mg/kg dry	50	04/13/22 17:51	5035A/8260D		
o-Xylene	ND		0.0482	mg/kg dry	50	04/13/22 17:51	5035A/8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 108 %	Limits: 80-120 %	5 1	04/13/22 17:51	5035A/8260D		
Toluene-d8 (Surr)			97 %	80-120 %	5 I	04/13/22 17:51	5035A/8260D		
4-Bromofluorobenzene (Surr)			102 %	79-120 %	1	04/13/22 17:51	5035A/8260D		

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SB-1-4.5'-5.0' (A2D0430-01)				Matrix: So	il	Batch:	22D0473	
% Solids	89.9		1.00	%	1	04/14/22 09:56	EPA 8000D	
SB-2-4.0'-4.5' (A2D0430-03)				Matrix: So	il	Batch:	22D0473	
% Solids	82.2		1.00	%	1	04/14/22 09:56	EPA 8000D	
SB-3-6.0'-6.5' (A2D0430-05)				Matrix: So	il	Batch:	22D0473	
% Solids	85.9		1.00	%	1	04/14/22 09:56	EPA 8000D	
SB-4-4.0'-4.5' (A2D0430-07)				Matrix: So	il	Batch:	22D0473	
% Solids	90.6		1.00	%	1	04/14/22 09:56	EPA 8000D	
SB-4-16.0'-16.5' (A2D0430-08)				Matrix: So	il	Batch:	22D0819	
% Solids	81.7		1.00	%	1	04/22/22 10:16	EPA 8000D	
SB-5-4.5'-5.0' (A2D0430-10)				Matrix: So	il	Batch:	22D0473	
% Solids	92.5		1.00	%	1	04/14/22 09:56	EPA 8000D	
MW-1-13.0'-13.5' (A2D0430-11)				Matrix: So	il	Batch:	22D0473	
% Solids	83.8		1.00	%	1	04/14/22 09:56	EPA 8000D	
MW-1.22.5'-23.0' (A2D0430-12)				Matrix: So	il	Batch:	22D0819	
% Solids	85.7		1.00	%	1	04/22/22 10:16	EPA 8000D	
MW-2-6.0'-6.5' (A2D0430-13)				Matrix: So	il	Batch:		
% Solids	73.8		1.00	%	1	04/14/22 09:56	EPA 8000D	
MW-3-8.5'-9.0' (A2D0430-15)				Matrix: So	il	Batch:		
% Solids	68.5		1.00	%	1	04/14/22 09:56	EPA 8000D	

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 25 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0439 - EPA 5035A Soil Blank (22D0439-BLK1) Prepared: 04/13/22 08:00 Analyzed: 04/13/22 10:39 5035A/8260D ND 0.667 mg/kg wet ICV-02 Acetone 50 0.0667 ND 50 Acrylonitrile mg/kg wet Benzene ND 0.00667 mg/kg wet 50 Bromobenzene ND 0.0167 mg/kg wet 50 Bromochloromethane ND 0.0333 mg/kg wet 50 Bromodichloromethane ND 0.0667 mg/kg wet 50 Bromoform ND mg/kg wet 0.0667 50 Bromomethane ND 0.333 mg/kg wet 50 2-Butanone (MEK) ND 0.333 mg/kg wet 50 0.0333 n-Butylbenzene ND mg/kg wet 50 sec-Butylbenzene ND 0.0333 mg/kg wet 50 0.0333 tert-Butylbenzene ND mg/kg wet 50 ---Carbon disulfide ND 0.333 mg/kg wet 50 Carbon tetrachloride ND 0.0333 mg/kg wet 50 Chlorobenzene ND 0.0167 mg/kg wet 50 Chloroethane ND 0.333 mg/kg wet 50 ---Chloroform ND 0.0333 mg/kg wet 50 0.167 Chloromethane ND mg/kg wet 50 2-Chlorotoluene ND 0.0333 mg/kg wet 50 4-Chlorotoluene ND 0.0333 mg/kg wet 50 Dibromochloromethane ND 0.0667 mg/kg wet 50 1,2-Dibromo-3-chloropropane ND 0.167 mg/kg wet 50 1,2-Dibromoethane (EDB) ND 0.0333 mg/kg wet 50 Dibromomethane ND 0.0333 mg/kg wet 50 1,2-Dichlorobenzene ND 0.0167 mg/kg wet 50 1,3-Dichlorobenzene ND 0.0167 mg/kg wet 50 1,4-Dichlorobenzene ND 0.0167 mg/kg wet 50 Dichlorodifluoromethane ND 0.0667 mg/kg wet 50 ---ND 1,1-Dichloroethane 0.0167 mg/kg wet 50 1,2-Dichloroethane (EDC) ND 0.0167 mg/kg wet 50 1,1-Dichloroethene ND mg/kg wet 50 0.0167 cis-1,2-Dichloroethene ND 0.0167 mg/kg wet 50 0.0167 trans-1,2-Dichloroethene ND mg/kg wet 50

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 26 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0439 - EPA 5035A Soil Blank (22D0439-BLK1) Prepared: 04/13/22 08:00 Analyzed: 04/13/22 10:39 ND 0.0167 50 1,2-Dichloropropane mg/kg wet ND 0.0333 mg/kg wet 50 1,3-Dichloropropane ---2,2-Dichloropropane ND 0.0333 mg/kg wet 50 1,1-Dichloropropene ND 0.0333 mg/kg wet 50 0.0333ND mg/kg wet 50 cis-1,3-Dichloropropene trans-1,3-Dichloropropene ND 0.0333 mg/kg wet 50 mg/kg wet Ethylbenzene ND 0.0167 50 Hexachlorobutadiene ND 0.0667 mg/kg wet 50 2-Hexanone ND 0.333 mg/kg wet 50 Isopropylbenzene ND 0.0333mg/kg wet 50 ND 4-Isopropyltoluene 0.0333 mg/kg wet 50 Methylene chloride ND 0.333 mg/kg wet 50 0.333 ND 4-Methyl-2-pentanone (MiBK) mg/kg wet 50 ---Methyl tert-butyl ether (MTBE) ND 0.0333 mg/kg wet 50 Naphthalene ND mg/kg wet 0.0667 50 n-Propylbenzene ND 0.0167 mg/kg wet 50 0.0333 Styrene ND mg/kg wet 50 1,1,1,2-Tetrachloroethane ND mg/kg wet 0.0167 50 ND 1.1.2.2-Tetrachloroethane 0.0333 --mg/kg wet 50 ------Tetrachloroethene (PCE) ND 0.0167 mg/kg wet 50 Toluene ND 0.0333 mg/kg wet 50 ---1,2,3-Trichlorobenzene ND 0.167 mg/kg wet 50 1,2,4-Trichlorobenzene ND 0.167 mg/kg wet 50 1,1,1-Trichloroethane ND 0.0167 mg/kg wet 50 ND 1,1,2-Trichloroethane 0.0167 mg/kg wet 50 ---Trichloroethene (TCE) ND 0.0167 mg/kg wet 50 Trichlorofluoromethane ND 0.0667 mg/kg wet 50 1,2,3-Trichloropropane ND 0.0333 mg/kg wet 50 1,2,4-Trimethylbenzene ND 0.0333 mg/kg wet 50 ---1,3,5-Trimethylbenzene ND 0.0333mg/kg wet 50

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

Philip Nevenberg

ND

ND

ND

0.0167

0.0333

0.0167

Recovery: 102 %

mg/kg wet

mg/kg wet

mg/kg wet

Limits: 80-120 %

Vinyl chloride

m,p-Xylene

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dilution: 1x

Philip Nerenberg, Lab Director

Page 27 of 56

50

50

50

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0439 - EPA 5035A							So	il				
Blank (22D0439-BLK1)			Prepared	: 04/13/22 0	8:00 Ana	yzed: 04/13	/22 10:39					
Surr: Toluene-d8 (Surr)		Rec	overy: 99 %	Limits: 80-		Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			99 %	79-	120 %		"					
LCS (22D0439-BS1)			Prepared	: 04/13/22 0	8:00 Ana	yzed: 04/13	/22 09:41					
5035A/8260D												
Acetone	1.31		1.00	mg/kg we		2.00		65	80-120%			ICV-02, Q-5
Acrylonitrile	1.01		0.100	mg/kg we		1.00		101	80-120%			
Benzene	1.00		0.0100	mg/kg we	t 50	1.00		100	80-120%			
Bromobenzene	0.974		0.0250	mg/kg we	t 50	1.00		97	80-120%			
Bromochloromethane	1.05		0.0500	mg/kg we	t 50	1.00		105	80-120%			
Bromodichloromethane	0.963		0.100	mg/kg we	t 50	1.00		96	80-120%			
Bromoform	0.953		0.100	mg/kg we	t 50	1.00		95	80-120%			
Bromomethane	1.04		0.500	mg/kg we	t 50	1.00		104	80-120%			
2-Butanone (MEK)	1.63		0.500	mg/kg we	t 50	2.00		81	80-120%			
n-Butylbenzene	1.05		0.0500	mg/kg we	t 50	1.00		105	80-120%			
sec-Butylbenzene	1.04		0.0500	mg/kg we	t 50	1.00		104	80-120%			
ert-Butylbenzene	1.00		0.0500	mg/kg we	t 50	1.00		100	80-120%			
Carbon disulfide	0.936		0.500	mg/kg we	t 50	1.00		94	80-120%			
Carbon tetrachloride	1.01		0.0500	mg/kg we	t 50	1.00		101	80-120%			
Chlorobenzene	0.984		0.0250	mg/kg we	t 50	1.00		98	80-120%			
Chloroethane	1.04		0.500	mg/kg we	t 50	1.00		104	80-120%			
Chloroform	1.07		0.0500	mg/kg we	t 50	1.00		107	80-120%			
Chloromethane	0.906		0.250	mg/kg we	t 50	1.00		91	80-120%			
2-Chlorotoluene	1.02		0.0500	mg/kg we	t 50	1.00		102	80-120%			
1-Chlorotoluene	1.03		0.0500	mg/kg we		1.00		103	80-120%			
Dibromochloromethane	0.944		0.100	mg/kg we	t 50	1.00		94	80-120%			
1,2-Dibromo-3-chloropropane	0.939		0.250	mg/kg we		1.00		94	80-120%			
1,2-Dibromoethane (EDB)	1.06		0.0500	mg/kg we		1.00		106	80-120%			
Dibromomethane	1.06		0.0500	mg/kg we		1.00		106	80-120%			
1,2-Dichlorobenzene	0.999		0.0250	mg/kg we		1.00		100	80-120%			
1,3-Dichlorobenzene	1.00		0.0250	mg/kg we		1.00		100	80-120%			
1,4-Dichlorobenzene	0.992		0.0250	mg/kg we		1.00		99	80-120%			
Dichlorodifluoromethane	0.954		0.100	mg/kg we		1.00		95	80-120%			
1,1-Dichloroethane	0.998		0.0250	mg/kg we		1.00		100	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 28 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0439 - EPA 5035A Soil LCS (22D0439-BS1) Prepared: 04/13/22 08:00 Analyzed: 04/13/22 09:41 1,2-Dichloroethane (EDC) 1.01 0.0250 mg/kg wet 50 1.00 101 80-120% 1,1-Dichloroethene 1.01 0.0250 mg/kg wet 50 1.00 101 80-120% ---------50 cis-1,2-Dichloroethene 1.04 0.0250 mg/kg wet 1.00 104 80-120% trans-1,2-Dichloroethene 1.04 0.0250 mg/kg wet 50 1.00 104 80-120% 98 0.977 0.0250 mg/kg wet 1.00 80-120% 1,2-Dichloropropane 50 97 1,3-Dichloropropane 0.969 0.0500 mg/kg wet 50 1.00 80-120% 80-120% 2,2-Dichloropropane 1.16 0.0500 mg/kg wet 50 1.00 116 107 1,1-Dichloropropene 1.07 0.0500 mg/kg wet 50 1.00 80-120% 99 cis-1,3-Dichloropropene 0.989 0.0500mg/kg wet 50 1.00 80-120% trans-1,3-Dichloropropene 0.974 0.0500mg/kg wet 50 1.00 97 80-120% Ethylbenzene 99 0.986 0.0250 mg/kg wet 50 1.00 80-120% Hexachlorobutadiene 1.04 0.100 mg/kg wet 50 1.00 104 80-120% 2.00 81 2-Hexanone 1.63 0.500 mg/kg wet 50 ---80-120% ---Isopropylbenzene 1.10 0.0500 mg/kg wet 50 1.00 110 80-120% 1.09 0.0500 mg/kg wet 1.00 109 80-120% 4-Isopropyltoluene 50 Methylene chloride 0.952 0.500 mg/kg wet 50 1.00 95 80-120% 1.97 0.500 2.00 99 4-Methyl-2-pentanone (MiBK) mg/kg wet 50 80-120% Methyl tert-butyl ether (MTBE) 1.00 mg/kg wet 1.00 100 80-120% 0.0500 50 Naphthalene 0.944 0.100 1.00 94 --mg/kg wet 50 ---80-120% --n-Propylbenzene 1.01 0.0250 mg/kg wet 50 1.00 101 80-120% 0.958 0.0500 1.00 96 80-120% Styrene mg/kg wet 50 ---1,1,1,2-Tetrachloroethane 0.980 0.0250 mg/kg wet 50 1.00 98 80-120% 1,1,2,2-Tetrachloroethane 1.16 0.0500 mg/kg wet 50 1.00 116 80-120% Tetrachloroethene (PCE) 1.01 0.0250 mg/kg wet 50 1.00 101 80-120% Toluene 0.986 1.00 99 0.0500 mg/kg wet 50 80-120% ------1,2,3-Trichlorobenzene 1.00 0.250 mg/kg wet 50 1.00 100 80-120% 1,2,4-Trichlorobenzene 0.974 0.250 mg/kg wet 1.00 97 80-120% 50 ------1,1,1-Trichloroethane 1.08 0.0250 mg/kg wet 50 1.00 108 80-120% 1.1.2-Trichloroethane 1.02 0.0250 mg/kg wet 50 1.00 102 80-120% ---Trichloroethene (TCE) 0.931 0.0250 mg/kg wet 50 1.00 93 80-120% Trichlorofluoromethane 1.12 0.100 mg/kg wet 50 1.00 112 80-120% ---1,2,3-Trichloropropane 0.974 0.0500 mg/kg wet 50 1.00 97 80-120% 1,2,4-Trimethylbenzene 1.06 0.0500 mg/kg wet 50 1.00 106 80-120% 1,3,5-Trimethylbenzene 1.06 0.0500mg/kg wet 50 1.00 106 80-120%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0439 - EPA 5035A							So	il				
LCS (22D0439-BS1)			Prepared	: 04/13/22 0	8:00 Ana	yzed: 04/13	/22 09:41					
Vinyl chloride	0.984		0.0250	mg/kg we	t 50	1.00		98	80-120%			
n,p-Xylene	2.03		0.0500	mg/kg we	t 50	2.00		102	80-120%			
o-Xylene	1.03		0.0250	mg/kg we	t 50	1.00		103	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			99 %	79-	120 %		"					
Duplicate (22D0439-DUP1)			Prepared	: 04/08/22 0	9:41 Anal	yzed: 04/13	/22 15:09					
OC Source Sample: SB-2-4.0'-4.5'	(A2D0430-	03)										
5035A/8260D												
Acetone	ND		1.26	mg/kg dr	y 50		ND				30%	ICV-
Acrylonitrile	ND		0.126	mg/kg dr	y 50		ND				30%	
Benzene	ND		0.0126	mg/kg dr	y 50		ND				30%	
Bromobenzene	ND		0.0316	mg/kg dr	y 50		ND				30%	
Bromochloromethane	ND		0.0632	mg/kg dr	y 50		ND				30%	
Bromodichloromethane	ND		0.126	mg/kg dr	y 50		ND				30%	
Bromoform	ND		0.126	mg/kg dr	y 50		ND				30%	
Bromomethane	ND		0.632	mg/kg dr	y 50		ND				30%	
2-Butanone (MEK)	ND		0.632	mg/kg dr	y 50		ND				30%	
n-Butylbenzene	ND		0.0632	mg/kg dr	y 50		ND				30%	
sec-Butylbenzene	ND		0.0632	mg/kg dr	y 50		ND				30%	
ert-Butylbenzene	ND		0.0632	mg/kg dr	y 50		ND				30%	
Carbon disulfide	ND		0.632	mg/kg dr	y 50		ND				30%	
Carbon tetrachloride	ND		0.0632	mg/kg dr	y 50		ND				30%	
Chlorobenzene	ND		0.0316	mg/kg dr	y 50		ND				30%	
Chloroethane	ND		0.632	mg/kg dr	y 50		ND				30%	
Chloroform	ND		0.0632	mg/kg dr	y 50		ND				30%	
Chloromethane	ND		0.316	mg/kg dr	y 50		ND				30%	
2-Chlorotoluene	ND		0.0632	mg/kg dr	y 50		ND				30%	
4-Chlorotoluene	ND		0.0632	mg/kg dr			ND				30%	
Dibromochloromethane	ND		0.126	mg/kg dr	y 50		ND				30%	
1,2-Dibromo-3-chloropropane	ND		0.316	mg/kg dr			ND				30%	
1,2-Dibromoethane (EDB)	ND		0.0632	mg/kg dr			ND				30%	
Dibromomethane	ND		0.0632	mg/kg dr			ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0439 - EPA 5035A Soil Duplicate (22D0439-DUP1) Prepared: 04/08/22 09:41 Analyzed: 04/13/22 15:09 QC Source Sample: SB-2-4.0'-4.5' (A2D0430-03) mg/kg dry 1,2-Dichlorobenzene 0.0316 50 ND 30% 0.0316ND 1,3-Dichlorobenzene mg/kg dry 50 ND 30% 1,4-Dichlorobenzene ND 0.0316 mg/kg dry 50 ND 30% Dichlorodifluoromethane ND 0.126mg/kg dry 50 ND 30% 1,1-Dichloroethane ND 0.0316 mg/kg dry 50 ND 30% ------1,2-Dichloroethane (EDC) ND 0.0316 mg/kg dry 50 ND 30% 1,1-Dichloroethene ND 0.0316mg/kg dry 50 ND 30% 30% cis-1,2-Dichloroethene ND 0.0316 mg/kg dry 50 ND trans-1,2-Dichloroethene ND 0.0316 mg/kg dry 50 ND 30% 0.03161,2-Dichloropropane ND mg/kg dry 50 ND 30% 1,3-Dichloropropane ND 0.0632 mg/kg dry 50 ND 30% ND 0.063230% 2,2-Dichloropropane mg/kg dry 50 ND 1,1-Dichloropropene ND 0.0632 mg/kg dry 50 ND 30% ND 30% cis-1,3-Dichloropropene 0.0632 mg/kg dry 50 ND trans-1,3-Dichloropropene ND 0.0632 mg/kg dry 50 ND 30% Ethylbenzene ND 0.0316 mg/kg dry 50 ND ___ 30% Hexachlorobutadiene ND 0.126 mg/kg dry 50 ND 30% 2-Hexanone ND 30% 0.632 mg/kg dry 50 ND Isopropylbenzene ND 0.0632mg/kg dry 50 ND 30% ND 0.0632 mg/kg dry 50 ND 30% 4-Isopropyltoluene mg/kg dry Methylene chloride ND 0.632 50 ND 30% 4-Methyl-2-pentanone (MiBK) ND ---0.632 mg/kg dry 50 ND ---30% Methyl tert-butyl ether (MTBE) ND 0.0632 mg/kg dry 50 ND 30% Naphthalene 50 30% ND 0.126mg/kg dry ND ND 0.0316 30% n-Propylbenzene mg/kg dry 50 ND ND 0.0632 ND 30% Styrene mg/kg dry 50 1,1,1,2-Tetrachloroethane ND 0.0316 mg/kg dry ND 30% 50 1,1,2,2-Tetrachloroethane ND 0.0632 mg/kg dry 50 ND ---30% Tetrachloroethene (PCE) ND 0.0316 mg/kg dry 50 ND 30% Toluene ND 0.0632 30% mg/kg dry 50 ND ---1,2,3-Trichlorobenzene ND 0.316 mg/kg dry 50 ND 30% 0.316 1,2,4-Trichlorobenzene ND 50 ND 30% mg/kg dry ---1,1,1-Trichloroethane ND 0.0316mg/kg dry 50 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 31 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 22D0439 - EPA 5035A							So	il					
Duplicate (22D0439-DUP1)			Prepared	: 04/08/22 09	9:41 Ana	lyzed: 04/13/	/22 15:09						
QC Source Sample: SB-2-4.0'-4.5'	(A2D0430-0	<u>)3)</u>											
1,1,2-Trichloroethane	ND		0.0316	mg/kg dry	50		ND				30%		
Trichloroethene (TCE)	ND		0.0316	mg/kg dry	50		ND				30%		
Trichlorofluoromethane	ND		0.126	mg/kg dry	50		ND				30%		
1,2,3-Trichloropropane	ND		0.0632	mg/kg dry	50		ND				30%		
1,2,4-Trimethylbenzene	ND		0.0632	mg/kg dry	50		ND				30%		
1,3,5-Trimethylbenzene	ND		0.0632	mg/kg dry	50		ND				30%		
Vinyl chloride	ND		0.0316	mg/kg dry	50		ND				30%		
n,p-Xylene	ND		0.0632	mg/kg dry	50		ND				30%		
o-Xylene	ND		0.0316	mg/kg dry	50		ND				30%		
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 109 %	Limits: 80-1	120 %	Dilı	ıtion: 1x						
Toluene-d8 (Surr)			97 %	80-1	20 %		"						
Totalene-uo (Surt)													
4-Bromofluorobenzene (Surr)			103 % Prepared		1:13 Anal	lyzed: 04/13/	/22 18:18						
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.6 5035A/8260D			Prepared	79-1 : 04/06/22 14	1:13 Ana	•	/22 18:18						
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.6 5035A/8260D	0' (A2D0430 ND) <u>-15)</u> 		79-1	1:13 Ana	dyzed: 04/13/			36-164%			ICV-(Q-:	
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) QC Source Sample: MW-3-8.5'-9.0 5035A/8260D Acetone			Prepared	79-1 : 04/06/22 14	1:13 Ana	•	/22 18:18	92	36-164% 65-134%				
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.0 5035A/8260D Acetone Acrylonitrile	ND		Prepared	79-1 : 04/06/22 14 mg/kg dry	4:13 Ana	3.85	/22 18:18 ND	92 96					
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) QC Source Sample: MW-3-8.5'-9.6	ND 1.78		Prepared 1.93 0.193	79-1 : 04/06/22 14 mg/kg dry mg/kg dry	50 50 50	3.85 1.93	/22 18:18 ND ND		65-134%				
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.6 5035A/8260D Acetone Acrylonitrile Benzene	ND 1.78 1.85	 	1.93 0.193 0.0193	79-1 : 04/06/22 14 mg/kg dry mg/kg dry mg/kg dry	50 50 50 50 50	3.85 1.93 1.93	/22 18:18 ND ND ND	96	65-134% 77-121%				
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.6 5035A/8260D Acctone Acrylonitrile Benzene Bromobenzene	ND 1.78 1.85 1.74	 	1.93 0.193 0.0193 0.0482	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	4:13 Anai	3.85 1.93 1.93 1.93	/22 18:18 ND ND ND ND ND	96 90	65-134% 77-121% 78-121%		 		
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.0 5035A/8260D Acctone Acrylonitrile Benzene Bromobenzene Bromochloromethane	ND 1.78 1.85 1.74 1.76	 	1.93 0.193 0.0193 0.0482 0.0964	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	4:13 Anai	3.85 1.93 1.93 1.93 1.93	/22 18:18 ND ND ND ND ND ND ND ND	96 90 91	65-134% 77-121% 78-121% 78-125%	 	 		
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.6 5035A/8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane	ND 1.78 1.85 1.74 1.76 1.66	 	1.93 0.193 0.0193 0.0482 0.0964 0.193	mg/kg dry	50 50 50 50 50 50 50 50 50	3.85 1.93 1.93 1.93 1.93 1.93	ND	96 90 91 86	65-134% 77-121% 78-121% 78-125% 75-127%	 	 		
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.6 5035A/8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND 1.78 1.85 1.74 1.76 1.66 1.59	 	1.93 0.193 0.0193 0.0482 0.0964 0.193 0.193	mg/kg dry	50 50 50 50 50 50 50 50 50 50 50	3.85 1.93 1.93 1.93 1.93 1.93	ND N	96 90 91 86 82	65-134% 77-121% 78-121% 78-125% 75-127% 67-132%	 	 		
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.6 5035A/8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	ND 1.78 1.85 1.74 1.76 1.66 1.59 2.11	 	1.93 0.193 0.0193 0.0482 0.0964 0.193 0.193 0.964	mg/kg dry	50 50 50 50 50 50 50 50 50 50 50 50	3.85 1.93 1.93 1.93 1.93 1.93 1.93	ND N	96 90 91 86 82 110	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143%	 	 		
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.6 5035A/8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	ND 1.78 1.85 1.74 1.76 1.66 1.59 2.11 2.57	 	1.93 0.193 0.0193 0.0482 0.0964 0.193 0.193 0.964 0.964	mg/kg dry	4:13 Anal	3.85 1.93 1.93 1.93 1.93 1.93 1.93 3.85	ND N	96 90 91 86 82 110	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148%	 	 		
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.6 5035A/8260D Acctone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	ND 1.78 1.85 1.74 1.76 1.66 1.59 2.11 2.57 1.81	 	1.93 0.193 0.0193 0.0482 0.0964 0.193 0.193 0.964 0.964	mg/kg dry	4:13 Anal	3.85 1.93 1.93 1.93 1.93 1.93 1.93 3.85 1.93	ND N	96 90 91 86 82 110 67	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128%	 	 		
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.0 5035A/8260D Acctone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene see-Butylbenzene sert-Butylbenzene	ND 1.78 1.85 1.74 1.76 1.66 1.59 2.11 2.57 1.81 1.85	 	1.93 0.193 0.0193 0.0482 0.0964 0.193 0.193 0.964 0.964 0.0964	mg/kg dry	4:13 Anal	3.85 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93	ND N	96 90 91 86 82 110 67 94	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126%	 	 		
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.6 5035A/8260D Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon disulfide	ND 1.78 1.85 1.74 1.76 1.66 1.59 2.11 2.57 1.81 1.85 1.73	 	1.93 0.193 0.0193 0.0482 0.0964 0.193 0.193 0.964 0.0964 0.0964	mg/kg dry	4:13 Anai 50 50 50 50 50 50 50 50 50 5	3.85 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93	ND N	96 90 91 86 82 110 67 94 96	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126% 73-125%	 	 		
4-Bromofluorobenzene (Surr) Matrix Spike (22D0439-MS1) OC Source Sample: MW-3-8.5'-9.0 5035A/8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	ND 1.78 1.85 1.74 1.76 1.66 1.59 2.11 2.57 1.81 1.85 1.73 1.73	 	1.93 0.193 0.0193 0.0482 0.0964 0.193 0.193 0.964 0.0964 0.0964 0.0964	mg/kg dry	4:13 Anai 50 50 50 50 50 50 50 50 50 5	3.85 1.93 1.93 1.93 1.93 1.93 1.93 3.85 1.93 1.93 1.93 1.93	ND N	96 90 91 86 82 110 67 94 96 90	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126% 73-125% 63-132%		 		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0439 - EPA 5035A Soil Matrix Spike (22D0439-MS1) Prepared: 04/06/22 14:13 Analyzed: 04/13/22 18:18 QC Source Sample: MW-3-8.5'-9.0' (A2D0430-15) mg/kg dry Chloroform 1.89 0.0964 50 1.93 ND 98 78-123% 0.482 1.93 Chloromethane 1.57 mg/kg dry 50 ND 82 50-136% 2-Chlorotoluene 1.82 0.0964 mg/kg dry 50 1.93 ND 95 75-122% 4-Chlorotoluene 1.74 0.0964 mg/kg dry 50 1.93 ND 91 72-124% Dibromochloromethane 1.63 0.193 mg/kg dry 50 1.93 ND 85 74-126% 1,2-Dibromo-3-chloropropane 1.54 1.93 0.482mg/kg dry 50 ND 80 61-132% 1,2-Dibromoethane (EDB) 1.79 0.0964 mg/kg dry 50 1.93 ND 93 78-122% 1.93 0.0964 97 Dibromomethane 1.86 mg/kg dry 50 ND 78-125% 1,2-Dichlorobenzene 1.69 0.0482 mg/kg dry 50 1.93 ND 88 78-121% 1,3-Dichlorobenzene 1.76 0.0482 mg/kg dry 50 1.93 ND 92 77-121% 1,4-Dichlorobenzene 1.69 0.0482 mg/kg dry 50 1.93 ND 88 75-120% 50 0.193 mg/kg dry 1.93 89 29-149% Dichlorodifluoromethane 1.70 ND 1,1-Dichloroethane 1.78 0.0482 mg/kg dry 50 1.93 ND 92 76-125% 1,2-Dichloroethane (EDC) 0.0482 mg/kg dry 1.93 ND 1.63 50 85 73-128% 1,1-Dichloroethene 1.82 0.0482 mg/kg dry 50 1.93 ND 94 70-131% cis-1.2-Dichloroethene 1.85 0.0482 mg/kg dry 50 1.93 ND 96 77-123% ___ trans-1,2-Dichloroethene 1.87 0.0482 mg/kg dry 50 1.93 ND 97 74-125% 1.93 93 1,2-Dichloropropane 1.78 0.0482mg/kg dry 50 ND 76-123% 1.93 77-121% 1,3-Dichloropropane 1.61 0.0964 mg/kg dry 50 ND 84 0.0964 2,2-Dichloropropane 1.80 mg/kg dry 50 1.93 ND 93 67-133% mg/kg dry 1.93 102 76-125% 1,1-Dichloropropene 1.97 0.0964 50 ND cis-1,3-Dichloropropene 1.60 ---0.0964 mg/kg dry 50 1.93 ND 83 74-126% trans-1,3-Dichloropropene 1.53 0.0964 mg/kg dry 50 1.93 ND 80 71-130% 0.0482 1.93 87 Ethylbenzene 1.68 mg/kg dry 50 ND 76-122% 0.193 1.93 95 Hexachlorobutadiene 1.83 mg/kg dry 50 ND 61-135% 2-Hexanone 2.45 0.964 3.85 ND 64 53-145% mg/kg dry 50 Isopropylbenzene 1.96 0.0964 mg/kg dry 1.93 ND 102 68-134% 50 4-Isopropyltoluene 1.93 0.0964 mg/kg dry 50 1.93 ND 100 73-127% Methylene chloride 1.75 0.964 mg/kg dry 50 1.93 ND 91 70-128% 4-Methyl-2-pentanone (MiBK) 3.03 0.964 mg/kg dry 3.85 ND 79 50 65-135% Methyl tert-butyl ether (MTBE) 1.75 0.0964 mg/kg dry 50 1.93 ND 91 73-125% 0.193 1.93 81 Naphthalene 1.56 50 ND 62-129% mg/kg dry -----n-Propylbenzene 1.73 0.0482 mg/kg dry 50 1.93 ND 90 73-125%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 33 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22D0439 - EPA 5035A Soil Matrix Spike (22D0439-MS1) Prepared: 04/06/22 14:13 Analyzed: 04/13/22 18:18 QC Source Sample: MW-3-8.5'-9.0' (A2D0430-15) 1.68 0.0964 mg/kg dry 50 1.93 ND 87 76-124% Styrene 0.04821.93 1,1,1,2-Tetrachloroethane 1.67 mg/kg dry 50 ND 87 78-125% 1,1,2,2-Tetrachloroethane 1.90 0.0964 mg/kg dry 50 1.93 ND 99 70-124% Tetrachloroethene (PCE) 1.80 0.0482mg/kg dry 50 1.93 ND 93 73-128% Toluene 1.70 0.0964 mg/kg dry 50 1.93 ND 88 77-121% 0.482 1,2,3-Trichlorobenzene 1.72 1.93 mg/kg dry 50 ND 89 66-130% 1,2,4-Trichlorobenzene 1.69 0.482mg/kg dry 50 1.93 ND 88 67-129% 1,1,1-Trichloroethane 1.92 0.0482mg/kg dry 1.93 73-130% 50 ND 100 1,1,2-Trichloroethane 1.72 0.0482 mg/kg dry 50 1.93 ND 89 78-121% Trichloroethene (TCE) 1.75 0.0482mg/kg dry 50 1.93 ND 91 77-123% Trichlorofluoromethane 1.76 0.193 mg/kg dry 50 1.93 ND 92 62-140% 50 1,2,3-Trichloropropane 0.0964 mg/kg dry 1.93 ND 81 73-125% 1.56 1.93 1,2,4-Trimethylbenzene 1.84 0.0964 mg/kg dry 50 ND 96 75-123% 1.93 73-124% 1,3,5-Trimethylbenzene 1.81 0.0964 mg/kg dry ND 94 50 0.0482 1.93 95 Vinyl chloride 1.83 mg/kg dry 50 ND 56-135% m,p-Xylene 3.46 0.0964 mg/kg dry 50 3.85 ND 90 77-124% ___ o-Xylene 1.78 0.0482 mg/kg dry 50 ND 92 77-123% Surr: 1,4-Difluorobenzene (Surr) 107 % Dilution: Recovery: Limits: Toluene-d8 (Surr) 80-120 % 96% 4-Bromofluorobenzene (Surr) 102 % 79-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0831 - EPA 5035A Soil Blank (22D0831-BLK1) Prepared: 04/21/22 08:00 Analyzed: 04/21/22 14:54 5035A/8260D ND 0.667 mg/kg wet 50 Acetone 0.0667 ND 50 Acrylonitrile mg/kg wet Benzene ND 0.00667 mg/kg wet 50 Bromobenzene ND 0.0167 mg/kg wet 50 Bromochloromethane ND 0.0333 mg/kg wet 50 Bromodichloromethane ND 0.0333 mg/kg wet 50 Bromoform ND mg/kg wet 0.0667 50 Bromomethane ND 0.333 mg/kg wet 50 2-Butanone (MEK) ND 0.333 mg/kg wet 50 n-Butylbenzene ND 0.0333 mg/kg wet 50 sec-Butylbenzene ND 0.0333 mg/kg wet 50 0.0333 tert-Butylbenzene ND mg/kg wet 50 ---Carbon disulfide ND 0.333 mg/kg wet 50 Carbon tetrachloride ND 0.0333 mg/kg wet 50 Chlorobenzene ND 0.0167 mg/kg wet 50 Chloroethane ND 0.333 mg/kg wet 50 ---Chloroform ND 0.0333 mg/kg wet 50 0.167 Chloromethane ND mg/kg wet 50 2-Chlorotoluene ND 0.0333 mg/kg wet 50 4-Chlorotoluene ND 0.0333 mg/kg wet 50 Dibromochloromethane ND 0.0667 mg/kg wet 50 1,2-Dibromo-3-chloropropane ND 0.167 mg/kg wet 50 1,2-Dibromoethane (EDB) ND 0.0333 mg/kg wet 50 Dibromomethane ND 0.0333 mg/kg wet 50 1,2-Dichlorobenzene ND 0.0167 mg/kg wet 50 1,3-Dichlorobenzene ND 0.0167 mg/kg wet 50 1,4-Dichlorobenzene ND 0.0167 mg/kg wet 50 Dichlorodifluoromethane ND 0.0667 mg/kg wet 50 ---1,1-Dichloroethane ND 0.0167 mg/kg wet 50 1,2-Dichloroethane (EDC) ND 0.0167 mg/kg wet 50 1,1-Dichloroethene ND 0.0167 mg/kg wet 50 cis-1,2-Dichloroethene ND 0.0167 mg/kg wet 50 0.0167 trans-1,2-Dichloroethene ND mg/kg wet 50

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 35 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit

Analyte	Result	Limit	Limit	Units Di	Hutton	Amount	Resuit	70 KEC	Limits	KPD	LIIIII	notes
Batch 22D0831 - EPA 5035A							Soi	I				
Blank (22D0831-BLK1)			Prepared	: 04/21/22 08:0	00 Anal	yzed: 04/21/	22 14:54					
1,2-Dichloropropane	ND		0.0167	mg/kg wet	50							
,3-Dichloropropane	ND		0.0333	mg/kg wet	50							
2,2-Dichloropropane	ND		0.0333	mg/kg wet	50							
,1-Dichloropropene	ND		0.0333	mg/kg wet	50							
is-1,3-Dichloropropene	ND		0.0333	mg/kg wet	50							
rans-1,3-Dichloropropene	ND		0.0333	mg/kg wet	50							
Ethylbenzene	ND		0.0167	mg/kg wet	50							
Iexachlorobutadiene	ND		0.0667	mg/kg wet	50							
2-Hexanone	ND		0.333	mg/kg wet	50							
sopropylbenzene	ND		0.0333	mg/kg wet	50							
-Isopropyltoluene	ND		0.0333	mg/kg wet	50							
Methylene chloride	ND		0.333	mg/kg wet	50							
-Methyl-2-pentanone (MiBK)	ND		0.333	mg/kg wet	50							
Methyl tert-butyl ether (MTBE)	ND		0.0333	mg/kg wet	50							
Japhthalene	ND		0.0667	mg/kg wet	50							
-Propylbenzene	ND		0.0167	mg/kg wet	50							
tyrene	ND		0.0333	mg/kg wet	50							
,1,1,2-Tetrachloroethane	ND		0.0167	mg/kg wet	50							
,1,2,2-Tetrachloroethane	ND		0.0333	mg/kg wet	50							
Cetrachloroethene (PCE)	ND		0.0167	mg/kg wet	50							
Coluene	ND		0.0333	mg/kg wet	50							
,2,3-Trichlorobenzene	ND		0.167	mg/kg wet	50							
,2,4-Trichlorobenzene	ND		0.167	mg/kg wet	50							
,1,1-Trichloroethane	ND		0.0167	mg/kg wet	50							
,1,2-Trichloroethane	ND		0.0167	mg/kg wet	50							
richloroethene (TCE)	ND		0.0167	mg/kg wet	50							
richlorofluoromethane	ND		0.0667	mg/kg wet	50							
,2,3-Trichloropropane	ND		0.0333	mg/kg wet	50							
,2,4-Trimethylbenzene	ND		0.0333	mg/kg wet	50							
,3,5-Trimethylbenzene	ND		0.0333	mg/kg wet	50							
inyl chloride	ND		0.0167	mg/kg wet	50							
n,p-Xylene	ND		0.0333	mg/kg wet	50							
-Xylene	ND		0.0167	mg/kg wet	50							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 110 % Limits: 80-120 % Dilution: 1x

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 36 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0831 - EPA 5035A							So	il				
Blank (22D0831-BLK1)			Prepared	l: 04/21/22 0	8:00 Ana	lyzed: 04/21	/22 14:54					
Surr: Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)		Reco	very: 102 %	Limits: 80-	120 % 120 %	Dili	ution: 1x					
4-Bromojiuorovenzene (Surr)			99 /0	/9-	120 /0							
LCS (22D0831-BS1)			Prepared	1: 04/21/22 0	8:00 Ana	lyzed: 04/21	/22 14:00					
<u>5035A/8260D</u>												
Acetone	1.43		1.00	mg/kg we		2.00		71	80-120%			Q-5
Acrylonitrile	1.05		0.100	mg/kg we		1.00		105	80-120%			
Benzene	1.15		0.0100	mg/kg we		1.00		115	80-120%			
Bromobenzene	1.01		0.0250	mg/kg we		1.00		101	80-120%			
Bromochloromethane	1.08		0.0500	mg/kg we		1.00		108	80-120%			
Bromodichloromethane	1.03		0.0500	mg/kg we		1.00		103	80-120%			
Bromoform	0.979		0.100	mg/kg we	t 50	1.00		98	80-120%			
Bromomethane	1.86		0.500	mg/kg we	t 50	1.00		186	80-120%			Q-5
2-Butanone (MEK)	1.83		0.500	mg/kg we		2.00		92	80-120%			
n-Butylbenzene	1.01		0.0500	mg/kg we		1.00		101	80-120%			
sec-Butylbenzene	0.986		0.0500	mg/kg we		1.00		99	80-120%			
tert-Butylbenzene	0.897		0.0500	mg/kg we	t 50	1.00		90	80-120%			
Carbon disulfide	0.932		0.500	mg/kg we	t 50	1.00		93	80-120%			
Carbon tetrachloride	1.04		0.0500	mg/kg we	t 50	1.00		104	80-120%			
Chlorobenzene	0.993		0.0250	mg/kg we	t 50	1.00		99	80-120%			
Chloroethane	2.76		0.500	mg/kg we	t 50	1.00		276	80-120%			ICV-01, Q-5
Chloroform	1.11		0.0500	mg/kg we	t 50	1.00		111	80-120%			
Chloromethane	1.18		0.250	mg/kg we	t 50	1.00		118	80-120%			
2-Chlorotoluene	1.06		0.0500	mg/kg we	t 50	1.00		106	80-120%			
4-Chlorotoluene	0.969		0.0500	mg/kg we	t 50	1.00		97	80-120%			
Dibromochloromethane	0.923		0.100	mg/kg we	t 50	1.00		92	80-120%			
1,2-Dibromo-3-chloropropane	0.826		0.250	mg/kg we	t 50	1.00		83	80-120%			
1,2-Dibromoethane (EDB)	1.06		0.0500	mg/kg we	t 50	1.00		106	80-120%			
Dibromomethane	1.10		0.0500	mg/kg we	t 50	1.00		110	80-120%			
1,2-Dichlorobenzene	1.01		0.0250	mg/kg we	t 50	1.00		101	80-120%			
1,3-Dichlorobenzene	0.987		0.0250	mg/kg we		1.00		99	80-120%			
1,4-Dichlorobenzene	0.977		0.0250	mg/kg we		1.00		98	80-120%			
Dichlorodifluoromethane	1.19		0.100	mg/kg we		1.00		119	80-120%			ICV-(
1,1-Dichloroethane	1.13		0.0250	mg/kg we		1.00		113	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0831 - EPA 5035A Soil LCS (22D0831-BS1) Prepared: 04/21/22 08:00 Analyzed: 04/21/22 14:00 1,2-Dichloroethane (EDC) 1.05 0.0250 mg/kg wet 50 1.00 105 80-120% 1,1-Dichloroethene 1.09 0.0250 mg/kg wet 50 1.00 109 80-120% ---------50 cis-1,2-Dichloroethene 1.09 0.0250 mg/kg wet 1.00 109 80-120% trans-1,2-Dichloroethene 1.07 0.0250 mg/kg wet 50 1.00 107 80-120% 0.0250 mg/kg wet 1.00 114 80-120% 1,2-Dichloropropane 1.14 50 1,3-Dichloropropane 1.08 0.0500 mg/kg wet 50 1.00 108 80-120% 80-120% 2,2-Dichloropropane 0.975 0.0500 mg/kg wet 50 1.00 97 1,1-Dichloropropene 1.09 0.0500 mg/kg wet 50 1.00 109 80-120% cis-1,3-Dichloropropene 0.896 0.0500mg/kg wet 50 1.00 90 80-120% trans-1,3-Dichloropropene 0.883 0.0500mg/kg wet 50 1.00 88 80-120% Ethylbenzene 0.957 0.0250 mg/kg wet 50 1.00 96 80-120% 99 Hexachlorobutadiene 0.994 0.100 mg/kg wet 50 1.00 80-120% 2.00 84 2-Hexanone 1.67 ---0.500mg/kg wet 50 ---80-120% Isopropylbenzene 0.985 0.0500 mg/kg wet 50 1.00 99 80-120% 0.962 0.0500 mg/kg wet 1.00 96 80-120% 4-Isopropyltoluene 50 Methylene chloride 1.13 0.500 mg/kg wet 50 1.00 113 80-120% 0.500 2.00 91 4-Methyl-2-pentanone (MiBK) 1.82 mg/kg wet 50 80-120% Methyl tert-butyl ether (MTBE) 1.01 mg/kg wet 50 1.00 101 80-120% 0.0500 Naphthalene 0.856 0.100 1.00 86 --mg/kg wet 50 ---80-120% --n-Propylbenzene 0.985 0.0250 mg/kg wet 50 1.00 98 80-120% 0.988 0.0500 1.00 99 80-120% Styrene mg/kg wet 50 1,1,1,2-Tetrachloroethane 0.968 0.0250 mg/kg wet 50 1.00 97 80-120% 1,1,2,2-Tetrachloroethane 1.12 0.0500 mg/kg wet 50 1.00 112 80-120% Tetrachloroethene (PCE) 0.0250 mg/kg wet 50 1.00 101 80-120% 1.01 Toluene 0.993 1.00 99 0.0500 mg/kg wet 50 80-120% ---------1,2,3-Trichlorobenzene 0.960 0.250 mg/kg wet 50 1.00 96 80-120% 1,2,4-Trichlorobenzene 0.948 0.250 mg/kg wet 1.00 95 80-120% 50 ---1,1,1-Trichloroethane 1.08 0.0250 mg/kg wet 50 1.00 108 80-120% 1.1.2-Trichloroethane 1.06 0.0250 mg/kg wet 50 1.00 106 80-120% ---Trichloroethene (TCE) 1.08 0.0250 mg/kg wet 50 1.00 108 80-120% Trichlorofluoromethane 2.39 0.100 mg/kg wet 50 1.00 239 80-120% Q-56 1,2,3-Trichloropropane 0.975 0.0500 mg/kg wet 50 1.00 97 80-120% 1,2,4-Trimethylbenzene 0.941 0.0500 mg/kg wet 50 1.00 94 80-120%

Apex Laboratories

Philip Nevenberg

1,3,5-Trimethylbenzene

0.960

0.0500

mg/kg wet

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

96

80-120%

Q-56

Philip Nerenberg, Lab Director

Page 38 of 56

50

1.00

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0831 - EPA 5035A							So	il				
LCS (22D0831-BS1)			Prepared	l: 04/21/22 0	8:00 Ana	lyzed: 04/21	/22 14:00					
Vinyl chloride	1.26		0.0250	mg/kg we	et 50	1.00		126	80-120%			Q-5
m,p-Xylene	1.85		0.0500	mg/kg we	et 50	2.00		93	80-120%			
o-Xylene	0.914		0.0250	mg/kg we	et 50	1.00		91	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 109 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			91 %	79-	120 %		"					
Duplicate (22D0831-DUP1)			Prepared	l: 04/14/22 1	2:00 Ana	lyzed: 04/21	/22 16:41					
OC Source Sample: Non-SDG (A2	D0663-23)											
Acetone	ND		1.61	mg/kg dr	y 50		ND				30%	
Acrylonitrile	ND		0.161	mg/kg dr	y 50		ND				30%	
Benzene	ND		0.0161	mg/kg dr	y 50		ND				30%	
Bromobenzene	ND		0.0401	mg/kg dr	y 50		ND				30%	
Bromochloromethane	ND		0.0803	mg/kg dr	y 50		ND				30%	
Bromodichloromethane	ND		0.0803	mg/kg dr	y 50		ND				30%	
Bromoform	ND		0.161	mg/kg dr	y 50		ND				30%	
Bromomethane	ND		0.803	mg/kg dr	y 50		ND				30%	
2-Butanone (MEK)	ND		0.803	mg/kg dr	y 50		ND				30%	
n-Butylbenzene	ND		0.0803	mg/kg dr	y 50		ND				30%	
sec-Butylbenzene	ND		0.0803	mg/kg dr	y 50		ND				30%	
tert-Butylbenzene	ND		0.0803	mg/kg dr			ND				30%	
Carbon disulfide	ND		0.803	mg/kg dr			ND				30%	
Carbon tetrachloride	ND		0.0803	mg/kg dr			ND				30%	
Chlorobenzene	ND		0.0401	mg/kg dr	y 50		ND				30%	
Chloroethane	ND		0.803	mg/kg dr	y 50		ND				30%	
Chloroform	ND		0.0803	mg/kg dr			ND				30%	
Chloromethane	ND		0.401	mg/kg dr			ND				30%	
2-Chlorotoluene	ND		0.0803	mg/kg dr	,		ND				30%	
4-Chlorotoluene	ND		0.0803	mg/kg dr			ND				30%	
Dibromochloromethane	ND		0.161	mg/kg dr			ND				30%	
1,2-Dibromo-3-chloropropane	ND		0.401	mg/kg dr			ND				30%	
1,2-Dibromoethane (EDB)	ND		0.0803	mg/kg dr			ND				30%	
Dibromomethane	ND		0.0803	mg/kg dr			ND				30%	
1,2-Dichlorobenzene	ND		0.0401	mg/kg dr			ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 39 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0831 - EPA 5035A Soil Duplicate (22D0831-DUP1) Prepared: 04/14/22 12:00 Analyzed: 04/21/22 16:41 QC Source Sample: Non-SDG (A2D0663-23) mg/kg dry 1,3-Dichlorobenzene ND 0.0401 50 ND 30% ND 0.0401 1,4-Dichlorobenzene mg/kg dry 50 ND 30% Dichlorodifluoromethane ND 0.161 mg/kg dry 50 ND 30% 1,1-Dichloroethane ND 0.0401 mg/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 0.0401 mg/kg dry 50 ND 30% ------1,1-Dichloroethene ND 0.0401 mg/kg dry 50 ND 30% cis-1,2-Dichloroethene ND 0.0401 mg/kg dry 50 ND 30% trans-1,2-Dichloroethene 30% ND 0.0401 mg/kg dry 50 ND 1,2-Dichloropropane ND 0.0401 mg/kg dry 50 ND 30% 1,3-Dichloropropane ND 0.0803 mg/kg dry 50 ND 30% 2,2-Dichloropropane ND 0.0803 mg/kg dry 50 ND 30% ND 0.0803 30% 1,1-Dichloropropene mg/kg dry 50 ND cis-1,3-Dichloropropene ND 0.0803 mg/kg dry 50 ND 30% ND 0.0803 30% trans-1,3-Dichloropropene mg/kg dry 50 ND Ethylbenzene ND 0.0401 mg/kg dry 50 ND 30% Hexachlorobutadiene ND 0.161 mg/kg dry 50 ND ___ 30% 2-Hexanone ND 0.803 mg/kg dry 50 ND 30% ND 0.0803 30% Isopropylbenzene mg/kg dry 50 ND 4-Isopropyltoluene ND 0.0803 mg/kg dry 50 ND 30% Methylene chloride ND 0.803 mg/kg dry 50 ND 30% 4-Methyl-2-pentanone (MiBK) ND 0.803 mg/kg dry 50 ND 30% Methyl tert-butyl ether (MTBE) ND ---0.0803 mg/kg dry 50 ND ------30% Naphthalene ND 0.161 mg/kg dry 50 ND 30% 50 30% n-Propylbenzene ND 0.0401 mg/kg dry ND 0.0803 30% Styrene ND mg/kg dry 50 ND 1,1,1,2-Tetrachloroethane ND 0.0401 ND 30% mg/kg dry 50 1,1,2,2-Tetrachloroethane ND 0.0803 mg/kg dry ND 30% 50 Tetrachloroethene (PCE) ND 0.0401 mg/kg dry 50 ND ---30% ND 0.0803 mg/kg dry 50 ND 30% ND 0.401 30% 1.2.3-Trichlorobenzene mg/kg dry 50 ND ---1,2,4-Trichlorobenzene ND 0.401 mg/kg dry 50 ND 30% 0.0401 1,1,1-Trichloroethane ND 50 ND 30% mg/kg dry ---1,1,2-Trichloroethane ND 0.0401 mg/kg dry 50 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 40 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0831 - EPA 5035A							Soi	I				
Duplicate (22D0831-DUP1)			Prepared	: 04/14/22	2:00 Ana	lyzed: 04/21/	/22 16:41					
QC Source Sample: Non-SDG (A2	D0663-23)											
Trichloroethene (TCE)	ND		0.0401	mg/kg dı	y 50		ND				30%	
Trichlorofluoromethane	ND		0.161	mg/kg dı	y 50		ND				30%	
1,2,3-Trichloropropane	ND		0.0803	mg/kg dı	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND		0.0803	mg/kg dı	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND		0.0803	mg/kg dı			ND				30%	
Vinyl chloride	ND		0.0401	mg/kg dı	y 50		ND				30%	
m,p-Xylene	ND		0.0803	mg/kg dı	-		ND				30%	
o-Xylene	ND		0.0401	mg/kg dı	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80	-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	79	-120 %		"					
QC Source Sample: Non-SDG (A2			1 30	ma/ka di	m. 50		ND				200/	
Acetone	ND		1.30	mg/kg dı	y 50		ND				30%	
Acrylonitrile	ND		0.130	mg/kg di			ND				30%	
Benzene	ND		0.0130	mg/kg dı	y 50		ND				30%	
Bromobenzene	ND		0.0324	mg/kg di	y 50		ND				30%	
Bromochloromethane	ND		0.0648	mg/kg di	•		ND				30%	
Bromodichloromethane	ND		0.0648	mg/kg dı	y 50		ND				30%	
Bromoform	ND		0.130	mg/kg dı			ND				30%	
Bromomethane	ND		0.648	mg/kg dı	y 50		ND				30%	
2-Butanone (MEK)	ND		0.648	mg/kg dı	y 50		ND				30%	
n-Butylbenzene	ND		0.0648	mg/kg dı			ND				30%	
sec-Butylbenzene	ND		0.0648	mg/kg dı			ND				30%	
tert-Butylbenzene	ND		0.0648	mg/kg dı			ND				30%	
Carbon disulfide	ND		0.648	mg/kg dı	y 50		ND				30%	
Carbon tetrachloride	ND		0.0648	mg/kg dı	y 50		ND				30%	
Chlorobenzene	ND		0.0324	mg/kg dı	y 50		ND				30%	
Chloroethane	ND		0.648	mg/kg dı	y 50		ND				30%	
Chloroform	ND		0.0648	mg/kg dı	y 50		ND				30%	
Chloromethane	ND		0.324	mg/kg dı	y 50		ND				30%	
2-Chlorotoluene	ND		0.0648	mg/kg dı	y 50		ND				30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0831 - EPA 5035A Soil Duplicate (22D0831-DUP2) Prepared: 04/13/22 16:30 Analyzed: 04/21/22 19:22 QC Source Sample: Non-SDG (A2D0663-33) mg/kg dry 4-Chlorotoluene ND 0.0648 50 ND 30% 0.130 ND Dibromochloromethane mg/kg dry 50 ND 30% 1,2-Dibromo-3-chloropropane ND 0.324 mg/kg dry 50 ND 30% 1,2-Dibromoethane (EDB) ND 0.0648mg/kg dry 50 ND 30% Dibromomethane ND 0.0648 mg/kg dry 50 ND 30% ------1,2-Dichlorobenzene ND 0.0324mg/kg dry 50 ND 30% 1,3-Dichlorobenzene ND 0.0324mg/kg dry 50 ND 30% 30% 1,4-Dichlorobenzene ND 0.0324 mg/kg dry 50 ND Dichlorodifluoromethane ND 0.130 mg/kg dry 50 ND 30% 1,1-Dichloroethane ND 0.0324 mg/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 0.0324 mg/kg dry 50 ND 30% 1,1-Dichloroethene ND 0.032430% mg/kg dry 50 ND cis-1,2-Dichloroethene ND 0.0324 mg/kg dry 50 ND 30% ND 0.0324 30% trans-1,2-Dichloroethene mg/kg dry 50 ND 1,2-Dichloropropane ND 0.0324 mg/kg dry 50 ND 30% 1,3-Dichloropropane ND 0.0648 mg/kg dry 50 ND ___ 30% 2,2-Dichloropropane ND 0.0648mg/kg dry 50 ND 30% ND 30% 1,1-Dichloropropene 0.0648mg/kg dry 50 ND cis-1,3-Dichloropropene ND 0.0648mg/kg dry 50 ND 30% trans-1,3-Dichloropropene ND 0.0648 mg/kg dry 50 ND 30% ND 0.0324 mg/kg dry Ethylbenzene 50 ND 30% Hexachlorobutadiene ND ---0.130 mg/kg dry 50 ND ---30% 2-Hexanone ND 0.648 mg/kg dry 50 ND 30% ND 0.0648 30% Isopropylbenzene mg/kg dry 50 ND 0.0984 0.0648 30% 4-Isopropyltoluene mg/kg dry 50 0.103 5 ND 0.648 ND 30% Methylene chloride mg/kg dry 50 ---4-Methyl-2-pentanone (MiBK) ND 0.648 mg/kg dry ND 30% 50 Methyl tert-butyl ether (MTBE) ND 0.0648 mg/kg dry 50 ND 30% Naphthalene ND 0.130 mg/kg dry 50 0.0919 *** 30% ND 0.0324 ND 30% n-Propylbenzene mg/kg dry 50 ---Styrene ND 0.0648 mg/kg dry 50 ND 30% 0.0324 ND 50 ND 30% 1.1.1.2-Tetrachloroethane mg/kg dry ---1,1,2,2-Tetrachloroethane ND 0.0648 mg/kg dry 50 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 42 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0831 - EPA 5035A							Soi	I.				
Duplicate (22D0831-DUP2)			Prepared	: 04/13/22 1	6:30 Ana	lyzed: 04/21	/22 19:22					
QC Source Sample: Non-SDG (A2	D0663-33)											
Tetrachloroethene (PCE)	ND		0.0324	mg/kg dr	y 50		ND				30%	
Toluene	ND		0.0648	mg/kg dr	y 50		ND				30%	
1,2,3-Trichlorobenzene	ND		0.324	mg/kg dr	y 50		ND				30%	
1,2,4-Trichlorobenzene	ND		0.324	mg/kg dr	y 50		ND				30%	
1,1,1-Trichloroethane	ND		0.0324	mg/kg dr	y 50		ND				30%	
1,1,2-Trichloroethane	ND		0.0324	mg/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND		0.0324	mg/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND		0.130	mg/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND		0.0648	mg/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND		0.0648	mg/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND		0.0648	mg/kg dr	y 50		ND				30%	
Vinyl chloride	ND		0.0324	mg/kg dr	y 50		ND				30%	
m,p-Xylene	ND		0.0648	mg/kg dr	y 50		ND				30%	
o-Xylene	ND		0.0324	mg/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80-	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			101 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	79-	120 %		"					
Matrix Spike (22D0831-MS1)			Prepared	: 04/14/22 1	4:00 Ana	lyzed: 04/21	/22 21:36					
QC Source Sample: Non-SDG (A2	D0663-41)											
5035A/8260D												
Acetone	2.64		1.74	mg/kg dr	y 50	3.48	ND	76	36-164%			Q-54
Acrylonitrile	1.86		0.174	mg/kg dr	y 50	1.74	ND	107	65-134%			
Benzene	2.15		0.0174	mg/kg dr		1.74	0.0166	123	77-121%			Q-(
Bromobenzene	1.75		0.0435	mg/kg dr	•	1.74	ND	101	78-121%			
Bromochloromethane	2.00		0.0869	mg/kg dr	•	1.74	ND	115	78-125%			
Bromodichloromethane	1.82		0.0869	mg/kg dr		1.74	ND	105	75-127%			
Bromoform	1.65		0.174	mg/kg dr	•	1.74	ND	95	67-132%			
Bromomethane	3.56		0.869	mg/kg dr	•	1.74	ND	205	53-143%			Q-54
2-Butanone (MEK)	3.08		0.869	mg/kg dr		3.48	ND	89	51-148%			
n-Butylbenzene	1.81		0.0869	mg/kg dr	•	1.74	ND	104	70-128%			
sec-Butylbenzene	1.85		0.0869	mg/kg dr		1.74	ND	107	73-126%			
tert-Butylbenzene	1.67		0.0869	mg/kg dr	-	1.74	ND	96	73-125%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0831 - EPA 5035A Soil Matrix Spike (22D0831-MS1) Prepared: 04/14/22 14:00 Analyzed: 04/21/22 21:36 QC Source Sample: Non-SDG (A2D0663-41) mg/kg dry Carbon disulfide 1.81 0.869 50 1.74 ND 104 63-132% 0.0869 Carbon tetrachloride 1.94 mg/kg dry 50 1.74 ND 112 70-135% mg/kg dry Chlorobenzene 1.77 0.0435 50 1.74 ND 102 79-120% Chloroethane 6.05 0.869 mg/kg dry 50 1.74 ND 348 59-139% ICV-01. Q-54a Chloroform 2.03 0.0869mg/kg dry 50 1.74 ND 117 78-123% 1.74 Chloromethane 2.36 0.435 mg/kg dry 50 ND 136 50-136% 2-Chlorotoluene 1.90 0.0869 mg/kg dry 50 1.74 ND 109 75-122% 1.73 0.0869 mg/kg dry 1 74 ND 100 4-Chlorotoluene 50 72-124% Dibromochloromethane 1.56 0.174 mg/kg dry 50 1.74 ND 90 74-126% 1,2-Dibromo-3-chloropropane 1.46 0.435 mg/kg dry 50 1.74 ND 84 61-132% ---1,2-Dibromoethane (EDB) 1.81 0.0869 mg/kg dry 50 1.74 ND 104 78-122% 1.93 mg/kg dry 1.74 ND Dibromomethane 0.0869 50 111 78-125% 1,2-Dichlorobenzene 1.78 0.0435 mg/kg dry 50 1.74 ND 103 78-121% 1.3-Dichlorobenzene 1.75 0.0435 mg/kg dry 50 1.74 ND 101 77-121% 1,4-Dichlorobenzene 1.73 0.0435 mg/kg dry 50 1.74 ND 100 75-120% Dichlorodifluoromethane 2.36 0.174 50 1.74 ND 136 29-149% ICV-01 mg/kg dry ---1,1-Dichloroethane 2.14 0.0435 mg/kg dry 50 1.74 ND 123 76-125% 1,2-Dichloroethane (EDC) 0.0435 1.74 ND 106 1.85 mg/kg dry 50 73-128% ---1,1-Dichloroethene 2.14 0.0435 mg/kg dry 50 1.74 ND 123 70-131% cis-1,2-Dichloroethene 2.02 0.0435 mg/kg dry 50 1.74 ND 116 77-123% trans-1,2-Dichloroethene 2.05 0.0435 mg/kg dry 50 1.74 ND 118 74-125% mg/kg dry 1,2-Dichloropropane 2.04 0.0435 50 1.74 ND 118 76-123% 1,3-Dichloropropane 1.86 0.0869mg/kg dry 50 1.74 ND 107 77-121% 1.66 0.0869 mg/kg dry 50 1.74 ND 95 67-133% 2,2-Dichloropropane 1,1-Dichloropropene 2.04 0.0869 mg/kg dry 50 1.74 ND 117 76-125% cis-1,3-Dichloropropene 1.54 0.0869 mg/kg dry 50 1.74 ND 88 74-126% trans-1,3-Dichloropropene 1.49 0.0869mg/kg dry 50 1.74 ND 86 71-130% Ethylbenzene 1.74 0.0435 mg/kg dry 50 1.74 ND 100 76-122% ---Hexachlorobutadiene 1.84 0.174 mg/kg dry 50 1.74 ND 106 61-135% 2-Hexanone 2.86 0.869 mg/kg dry 50 3.48 ND 82 53-145% 0.086950 1.74 ND 103 Isopropylbenzene 1.80 mg/kg dry 68-134% 4-Isopropyltoluene 1.79 0.0869 mg/kg dry 50 1.74 ND 103 73-127% Methylene chloride 2.07 ---0.869 mg/kg dry 50 1.74 ND 119 70-128%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 44 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell Project: 22118 20th Ave SE, Suite G202 Project Number: 101.20841.00001 Bothell, WA 98021 Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

Woodinville West

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0831 - EPA 5035A Soil Matrix Spike (22D0831-MS1) Prepared: 04/14/22 14:00 Analyzed: 04/21/22 21:36 QC Source Sample: Non-SDG (A2D0663-41) 4-Methyl-2-pentanone (MiBK) 3.11 0.869 mg/kg dry 50 3.48 ND 90 65-135% 0.0869 Methyl tert-butyl ether (MTBE) 1.74 1.78 mg/kg dry 50 ND 102 73-125% Naphthalene 1.59 0.174 mg/kg dry 50 1.74 ND 91 62-129% n-Propylbenzene 1.81 0.0435 mg/kg dry 50 1.74 ND 104 73-125% 1.76 0.0869 mg/kg dry 50 1.74 ND 101 76-124% Styrene 1,1,1,2-Tetrachloroethane 1.74 1.67 0.0435 mg/kg dry 50 ND 96 78-125% 1,1,2,2-Tetrachloroethane 1.90 0.0869mg/kg dry 50 1.74 ND 109 70-124% 1.74 Tetrachloroethene (PCE) 73-128% 1.84 0.0435 mg/kg dry 50 ND 106 Toluene 1.81 0.0869 mg/kg dry 50 1.74 ND 104 77-121% 1,2,3-Trichlorobenzene 1.70 0.435 mg/kg dry 50 1.74 ND 98 66-130% 1,2,4-Trichlorobenzene 1.72 0.435 mg/kg dry 50 1.74 ND 99 67-129% 1,1,1-Trichloroethane 2.02 0.0435 mg/kg dry 1.74 73-130% 50 ND 116 1,1,2-Trichloroethane 1.84 0.0435 mg/kg dry 50 1.74 ND 106 78-121% Trichloroethene (TCE) 2.02 0.0435 mg/kg dry 1.74 ND 77-123% 50 116 Q-54 Trichlorofluoromethane 4.97 0.174 mg/kg dry 50 1.74 ND 286 62-140% 1,2,3-Trichloropropane 1.69 0.0869 mg/kg dry 50 1.74 ND 97 73-125% 1,2,4-Trimethylbenzene 1.72 0.0869 mg/kg dry 50 1.74 ND 99 75-123% 1,3,5-Trimethylbenzene 1.79 1.74 0.0869mg/kg dry 50 ND 103 73-124% Vinyl chloride 2.42 1.74 ND 56-135% Q-54b 0.0435 mg/kg dry 50 139 0.0869 m,p-Xylene 3.37 mg/kg dry 50 3.48 ND 97 77-124% 0.0435 1.74 ND 77-123% o-Xylene 1.68 mg/kg dry 50 Surr: 1,4-Difluorobenzene (Surr) Recovery: 110 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 100 % 80-120 %

79-120 %

92 %

Apex Laboratories

Philip Nevenberg

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 45 of 56 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0473 - Total Solids	(Dry Weig	ht)					Soi	I				
Duplicate (22D0473-DUP1)			Prepared	: 04/13/22	11:43 Anal	yzed: 04/14/	22 09:56					
QC Source Sample: Non-SDG (A2	2D0012-01)											
% Solids	85.1		1.00	%	1		84.0			1	10%	
Duplicate (22D0473-DUP2)			Prepared	: 04/13/22	11:43 Anal	yzed: 04/14/	22 09:56					
QC Source Sample: SB-1-4.5'-5.0' EPA 8000D	(A2D0430-	01)										
% Solids	89.8		1.00	%	1		89.9			0.09	10%	
Duplicate (22D0473-DUP3)			Prepared	: 04/13/22	18:56 Anal	yzed: 04/14/	22 09:56					
QC Source Sample: Non-SDG (A2	2D0493-01)											
% Solids	90.5		1.00	%	1		90.3			0.2	10%	
Duplicate (22D0473-DUP4)			Prepared	: 04/13/22	18:56 Anal	yzed: 04/14/	22 09:56					
QC Source Sample: Non-SDG (A2	2D0501-01)											
% Solids	83.3		1.00	%	1		84.7			2	10%	
Duplicate (22D0473-DUP5)			Prepared	: 04/13/22	21:11 Anal	yzed: 04/14/	22 09:56					
QC Source Sample: Non-SDG (A2	2D0502-01)											
% Solids	80.4		1.00	%	1		80.6			0.2	10%	
Duplicate (22D0473-DUP6)			Prepared	: 04/13/22	21:11 Anal	yzed: 04/14/	22 09:56					
QC Source Sample: Non-SDG (A2	2D0512-02)											
% Solids	95.8		1.00	%	1		96.5			0.7	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weio	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0819 - Total Solids (Dry	/ Weigl	ht)					Soi	I				
Duplicate (22D0819-DUP1)			Prepared	: 04/21/22	10:08 Anal	yzed: 04/22/	/22 10:16					
QC Source Sample: Non-SDG (A2D07) % Solids	703-09) 78.9		1.00	%	1		74.8			5	10%	
Duplicate (22D0819-DUP2)			Prepared	: 04/21/22	10:08 Anal	yzed: 04/22	/22 10:16					
QC Source Sample: Non-SDG (A2D07	703-10)											
% Solids	88.6		1.00	%	1		88.4			0.2	10%	
Duplicate (22D0819-DUP3)			Prepared	: 04/21/22	10:08 Anal	yzed: 04/22/	/22 10:16					
QC Source Sample: Non-SDG (A2D07	703-11)											
% Solids	90.2		1.00	%	1		90.8			0.7	10%	
Duplicate (22D0819-DUP4)			Prepared	: 04/21/22	10:08 Anal	yzed: 04/22/	/22 10:16					
QC Source Sample: Non-SDG (A2D07												
% Solids	87.4		1.00	%	1		87.9			0.5	10%	
Duplicate (22D0819-DUP5)			Prepared	: 04/21/22	10:08 Anal	yzed: 04/22/	/22 10:16					
QC Source Sample: Non-SDG (A2D07	703-13)											
% Solids	89.5		1.00	%	1		89.5			0.01	10%	
Duplicate (22D0819-DUP6)			Prepared	: 04/21/22	10:08 Anal	yzed: 04/22/	/22 10:16					
QC Source Sample: Non-SDG (A2D07	703-14)											
% Solids	89.0		1.00	%	1		88.8			0.2	10%	
Duplicate (22D0819-DUP7)			Prepared	: 04/21/22	10:08 Anal	yzed: 04/22/	/22 10:16					
QC Source Sample: Non-SDG (A2D07	703-15)											
% Solids	81.4		1.00	%	1		83.9			3	10%	
Duplicate (22D0819-DUP8)			Prepared	: 04/21/22	19:17 Anal	yzed: 04/22/	/22 10:16					
QC Source Sample: Non-SDG (A2D08	375-01)											
% Solids	92.4		1.00	%	1		95.1			3	10%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0819 - Total Solids	(Dry Weigl	ht)					Soil					
Duplicate (22D0819-DUP9)			Prepared	: 04/21/22	19:17 Ana	lyzed: 04/22	/22 10:16					
QC Source Sample: Non-SDG (AZ	2D0884-01)											
% Solids	75.2		1.00	%	1		75.1			0.2	10%	
Duplicate (22D0819-DUPA)			Prepared	: 04/21/22	19:17 Ana	lyzed: 04/22	/22 10:16					
QC Source Sample: Non-SDG (A2	2D0890-02)											
% Solids	90.1		1.00	%	1		89.4			0.7	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 48 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	s by EPA 8260D			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22D0439							
A2D0430-01	Soil	5035A/8260D	04/08/22 08:47	04/08/22 08:47	5.65g/5mL	5g/5mL	0.89
A2D0430-03	Soil	5035A/8260D	04/08/22 09:41	04/08/22 09:41	5.81g/5mL	5g/5mL	0.86
A2D0430-05	Soil	5035A/8260D	04/08/22 10:30	04/08/22 10:30	5.28g/5mL	5g/5mL	0.95
A2D0430-07	Soil	5035A/8260D	04/07/22 08:50	04/07/22 08:50	5.76g/5mL	5g/5mL	0.87
A2D0430-10	Soil	5035A/8260D	04/07/22 09:11	04/07/22 09:11	5.69g/5mL	5g/5mL	0.88
A2D0430-11	Soil	5035A/8260D	04/07/22 10:58	04/07/22 10:58	5.05g/5mL	5g/5mL	0.99
A2D0430-13	Soil	5035A/8260D	04/06/22 10:12	04/06/22 10:12	5.7g/5mL	5g/5mL	0.88
A2D0430-15	Soil	5035A/8260D	04/06/22 14:13	04/06/22 14:13	4.97g/5mL	5g/5mL	1.01
Batch: 22D0831							
A2D0430-08	Soil	5035A/8260D	04/07/22 08:55	04/07/22 08:55	5.52g/5mL	5g/5mL	0.91
A2D0430-12	Soil	5035A/8260D	04/07/22 11:04	04/07/22 11:04	5.32g/5mL	5g/5mL	0.94

			Percent Dry We	ight			
Prep: Total Solids (I	Ory Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22D0473							
A2D0430-01	Soil	EPA 8000D	04/08/22 08:47	04/13/22 11:43			NA
A2D0430-03	Soil	EPA 8000D	04/08/22 09:41	04/13/22 11:43			NA
A2D0430-05	Soil	EPA 8000D	04/08/22 10:30	04/13/22 11:43			NA
A2D0430-07	Soil	EPA 8000D	04/07/22 08:50	04/13/22 11:43			NA
A2D0430-10	Soil	EPA 8000D	04/07/22 09:11	04/13/22 11:43			NA
A2D0430-11	Soil	EPA 8000D	04/07/22 10:58	04/13/22 11:43			NA
A2D0430-13	Soil	EPA 8000D	04/06/22 10:12	04/13/22 11:43			NA
A2D0430-15	Soil	EPA 8000D	04/06/22 14:13	04/13/22 11:43			NA
Batch: 22D0819							
A2D0430-08	Soil	EPA 8000D	04/07/22 08:55	04/21/22 19:17			NA
A2D0430-12	Soil	EPA 8000D	04/07/22 11:04	04/21/22 19:17			NA

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 49 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

ICV-01	Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
ICV-02	Estimated Result. Initial Calibration Verification (ICV) failed low.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +119%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +156%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +6%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +66%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -15%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -9%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 50 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 51 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell Project: 22118 20th Ave SE, Suite G202 Project Number: 101.20841.00001 Bothell, WA 98021 Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

REPORTING NOTES AND CONVENTIONS (Cont.):

Woodinville West

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 52 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2D0430 - 04 29 22 1307

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 53 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project: Woodinville West
Project Number: 101.20841.00001

 Project Number:
 101.20841.00001
 Report ID:

 Project Manager:
 Mike Staton
 A2D0430 - 04 29 22 1307

CHAIN OF CUSTODY Project Mar. Project Mar. Project Mar. Public Nature Public Natur	Lab # 44120 30 coc 1 of 2	Project #: 161 . 20841.00001	thing com PO#	Palita	di	LCI ZD NI K	(8) ele	Mg, M, TAL 1 TAL 1 Sample Sample	ном	>	<	3	Υ	>		>	< ×			by 4260) SIM		RECEIVED BY:	Signature: Date:	Prinked Name. Time:	
CHAIN Tigend, OR 9723 Ph. 503-718-333 Tigend, OR 9723 Ph. 503-718-333 Las Lobert Las L		ne: Woodsowille West	mail: Mstaton@s/ransu	ANA I ANA		(6	Yole F	270 Semi- 382 Pestid CRA Me	8 8 8 4										PECIAL INSTRUCTIONS:			ELINQUISHED BY:			
1. Tiggerd, OR 97223 Ph. 503-718-2323 1. Tiggerd, OR 97223 Ph. 503-718-2323 1. Tiggerd, OR 97223 Ph. 503-718-2323 1. List Local Project Mgr. Milk List 1. List Local Project Mgr. Milk List 1. List Local Project Mgr. Matter List 1. List Local Project Mgr. Mgr. Mgr. Mgr. Mgr. Mgr. Mgr. Mgr.	CHAIN OF CUR	1					AOC® W AOS X	260 Halo 260 RBD	8 8		×		×		×			×	S	.			25/4/	Tine:	
	A: K	/ 11 mc	35			SA	нспр	INTRIX	# m	455		945	630	35	05.8	355	lol	911 G	(TAT) O'Business Days		FOR 30 DAYS	RECEIVED BY:	Spare	Printed Name.	Company
7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATEA LABS 6700 SW Sandburg St. Tigard, OR 97223 Ph. 56 Conpany: 5LR		35	Sampled by: Steven Losleben		OR W CA		, , ,	1	0	54-04-2-85	٠٥.		>	58-4-4.0-4.5 AT 4/1/208			3	Standard Turn Around Time		SAMPLES ARE HELD F	į	who 4/8/22	Time: Loslebea 1400	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Maenberg

Page 54 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001

Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

o/tit SW Sandburg St. Tigard, OR 97223 Ph. 503-718-2323		202-716	C-107-																
Company: 5LR		Project Mgr.		M; Kc	4	Staten		Į Ž	loct Na	Project Name: Waskin wille	1	25	1 1	West	45	1	Project #: 101. 70841. 00001	9000	1
Address: 22118 20th Ave SE	- 1	Ste 6202		Both 4/	F.	42 (42	Phone: (426) 462-8800	-88		onail:	4812	Tage	150	3	Email: Mstaton @ strangulting, con		PO#	3	
Sampled by: Steven Loskber	2												NA	84.1	ANALVSIS BEOTING	1			1
Site Location:					_		\vdash	L		H	H	<u> </u>			an an			-	L
OR AND CA				SS			•:		řel.	1 114	M7 F				LCI At Kt St Pb				
AK ID											a sto	səp	(8) ale		ISS' ' Mo' I	(g) s			
	31.	91	XINT	F CONT	G-H9TV	Э-НЧТ/	O RBDN	olaH 0	9 VOC	4 MIS 0	S PCBs	i Pestici	usM AS	hiy Met	h, As, 1 7, Co, 1 8, Na, T 8, Na, T	laisM. ¶.		əįdure	Archive
SAMPLEID	va	VIT			-		-						ВСІ		Ca, C Ca, C Hg, N Se, Ap	JOT		S pla	aszo.
MW-1-13.0-13.5	4/7/22	850	1.05	2			-		×	╁┈	-	L	I		S	+		т	14
MW-1-225-23.0	->	FOI	-	_			-			+	-	_		T		+		>	
MW- 2-6.0'-6.5'	1/4/2	210					+		×	+	+-	\perp		\dagger		+		<	
MW-2-22.5'-23.0'		0.00	-				+		+	+	+			†		+-		7	
MW-3-8.5'-9.0'	E	1413	<u> </u>	<u> </u>			\vdash		×	+	╀-			+		+		×	
MW-3-22.5-23.0	>	(11)	>	>		İ	-		:	-	+-		1	+		+		>	
			-	-			+		T	+	+		I	\top		+		5	
			\vdash	-		\pm	+		T	+	+		T	+		+			
							-		T	\vdash	┼			+-		+			
										 	-			†		+		-	
Standard Turn Around Time (TAT)	Around Tim	e (TAT)	10 Business Days	ess Days					S	SPECIAL INSTRUCTIONS:	S	IRG.	TIONS	1		-			
TAT Bennented (circle)	1 Day	7	2 Day	43	3 Day					>	· Vhyl chlonde	45	ale.	þ	, 82600 SEM	0	SEA		
	S Day	Sta	Standard	0	Other:			1											
	ARE HELD	FOR 36	DAYS						T										
en ch	Date: Signature: ()	- <u>s -</u>	RECEIVED			Ē	Date:	rziblih		RELINQUISHED BY: Signature:	UISHE	D BY:		ă	Dethe	≅ 3€	RECEIVED BY: Signature: Date:		
Printed Name: Stewen Leslabern	Time: Ye0		Printed Name:	AN SEALER	1 Kip	Time:	E	0.011	+	Printed Name	36) i	Time:	E	Printed Name: Time		
Company: SLR			Company:	外づくされ	一当				15	Сопраму:						ి	Company:		T

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 55 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2D0430 - 04 29 22 1307

	APEX LABS COOL	ER RECEIPT FORM
Client: SLR		Element WO#: A2_00430
Project/Project #: Wo	dinville West	#101.20841.00001
Delivery Info:		
Date/time received: 49	22 @ 1000 By:	AKIC
	• 1 Production of the second o	UPS Swift Senvoy SDS Other
		@ 1000 By: AUC
Chain of Custody included		Custody seals? YesNoX
Signed/dated by client?	Yes _ × No	
Signed/dated by Apex?		# 2718 2605 7640
		oler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #
Temperature (°C)		
Received on ice? (Y/N)		
Temp. blanks? (Y/N)	4	
Ice type: (Gel/Real/Other)	O o l	
Condition:	(, , 1)	
Bottle labels/COCs agree?	4/8/754/7122	s: Coc has date as Helzz-71;
	es form initiated? Yes]	^
Containers/volumes receive	ed appropriate for analysis?	Yes No Comments:
Comments		ppropriate? YesNoNA
Additional information:		
Labeled by:	Witness:	Cooler Inspected by:
Th,	D75	Akk
		TPK

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 56 of 56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, April 29, 2022 Greg Lish SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021

RE: A2D0557 - Woodinville CD - 101.20841.00001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2D0557, which was received by the laboratory on 4/14/2022 at 9:55:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1

5.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1-0422	A2D0557-01	Water	04/12/22 15:58	04/14/22 09:55
MW-2-0422	A2D0557-02	Water	04/12/22 17:06	04/14/22 09:55
MW-3-0422	A2D0557-03	Water	04/12/22 16:37	04/14/22 09:55

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1-0422 (A2D0557-01)				Matrix: Wa		•	22D0580	1,010
Acetone	ND	10.0	20.0	ug/L	1	04/15/22 12:33	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L ug/L	1	04/15/22 12:33	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L ug/L	1	04/15/22 12:33	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L ug/L	1	04/15/22 12:33	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L ug/L	1	04/15/22 12:33	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L ug/L	1	04/15/22 12:33	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L ug/L	1	04/15/22 12:33	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L ug/L	1	04/15/22 12:33	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L ug/L	1	04/15/22 12:33	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L ug/L	1	04/15/22 12:33	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L ug/L	1	04/15/22 12:33	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/15/22 12:33	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/15/22 12:33	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/15/22 12:33	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	04/15/22 12:33	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	04/15/22 12:33	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	04/15/22 12:33	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/15/22 12:33	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/15/22 12:33	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/15/22 12:33	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/15/22 12:33	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/15/22 12:33	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/15/22 12:33	EPA 8260D	
is-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/15/22 12:33	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/15/22 12:33	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 3 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

ANALYTICAL SAMPLE RESULTS

		Jiame Organ	ic Compound	S DY EPA 8	-00D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW-1-0422 (A2D0557-01)				Matrix: Wa	ater	Batch:	22D0580	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/15/22 12:33	EPA 8260D	_
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	04/15/22 12:33	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/15/22 12:33	EPA 8260D	
2-Hexanone	ND	10.0	10.0	ug/L	1	04/15/22 12:33	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/15/22 12:33	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/15/22 12:33	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	04/15/22 12:33	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	04/15/22 12:33	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/15/22 12:33	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/15/22 12:33	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	04/15/22 12:33	EPA 8260D	
Гoluene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/15/22 12:33	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/15/22 12:33	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/15/22 12:33	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	04/15/22 12:33	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	04/15/22 12:33	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/15/22 12:33	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
/inyl chloride	0.270	0.200	0.400	ug/L	1	04/15/22 12:33	EPA 8260D	J
n,p-Xylene	ND	0.500	1.00	ug/L	1	04/15/22 12:33	EPA 8260D	
-Xylene	ND	0.250	0.500	ug/L ug/L	1	04/15/22 12:33	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 4 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-1-0422 (A2D0557-01)				Matrix: Wate	r	Batch: 2	22D0580	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	1	04/15/22 12:33	EPA 8260D	
Toluene-d8 (Surr)			98 %	80-120 %	1	04/15/22 12:33	EPA 8260D	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	I	04/15/22 12:33	EPA 8260D	
MW-2-0422 (A2D0557-02RE1)				Matrix: Wate	r	Batch: 2	22D0648	
Acetone	ND	10.0	20.0	ug/L	1	04/18/22 15:10	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	04/18/22 15:10	EPA 8260D	
Benzene	0.440	0.100	0.200	ug/L	1	04/18/22 15:10	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	04/18/22 15:10	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	04/18/22 15:10	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	04/18/22 15:10	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/18/22 15:10	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/18/22 15:10	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/18/22 15:10	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	04/18/22 15:10	EPA 8260D	
2-Chlorotoluene	4.04	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	04/18/22 15:10	EPA 8260D	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	04/18/22 15:10	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/18/22 15:10	EPA 8260D	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/18/22 15:10	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/18/22 15:10	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/18/22 15:10	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 5 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-2-0422 (A2D0557-02RE1)				Matrix: Wa	ater	Batch:	22D0648	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/18/22 15:10	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/18/22 15:10	EPA 8260D	
cis-1,2-Dichloroethene	0.650	0.200	0.400	ug/L	1	04/18/22 15:10	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/18/22 15:10	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/18/22 15:10	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
Ethylbenzene	0.740	0.250	0.500	ug/L	1	04/18/22 15:10	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/18/22 15:10	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	04/18/22 15:10	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/18/22 15:10	EPA 8260D	
1-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/18/22 15:10	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	04/18/22 15:10	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	04/18/22 15:10	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/18/22 15:10	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/18/22 15:10	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	04/18/22 15:10	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/18/22 15:10	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/18/22 15:10	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/18/22 15:10	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	04/18/22 15:10	EPA 8260D	
Crichloroethene (TCE)	ND	0.200	0.400	ug/L	1	04/18/22 15:10	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/18/22 15:10	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 6 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-2-0422 (A2D0557-02RE1)				Matrix: Wate	r	Batch: 2	22D0648	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
m,p-Xylene	1.46	0.500	1.00	ug/L	1	04/18/22 15:10	EPA 8260D	
o-Xylene	1.41	0.250	0.500	ug/L	1	04/18/22 15:10	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 108 %	Limits: 80-120 %	1	04/18/22 15:10	EPA 8260D	
Toluene-d8 (Surr)			94 %	80-120 %	1	04/18/22 15:10	EPA 8260D	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	04/18/22 15:10	EPA 8260D	
MW-3-0422 (A2D0557-03)				Matrix: Wate	er	Batch: 2	22D0580	
Acetone	ND	10.0	20.0	ug/L	1	04/15/22 13:18	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	04/15/22 13:18	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	04/15/22 13:18	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	04/15/22 13:18	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	04/15/22 13:18	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	04/15/22 13:18	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	04/15/22 13:18	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	04/15/22 13:18	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	04/15/22 13:18	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	04/15/22 13:18	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	04/15/22 13:18	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	04/15/22 13:18	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/15/22 13:18	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/15/22 13:18	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-3-0422 (A2D0557-03)				Matrix: Wa	ater	Batch:	22D0580	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	04/15/22 13:18	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	04/15/22 13:18	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	04/15/22 13:18	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	04/15/22 13:18	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/15/22 13:18	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	04/15/22 13:18	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	04/15/22 13:18	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	04/15/22 13:18	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	04/15/22 13:18	EPA 8260D	
2-Hexanone	ND	10.0	10.0	ug/L	1	04/15/22 13:18	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	04/15/22 13:18	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	04/15/22 13:18	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	04/15/22 13:18	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	04/15/22 13:18	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	04/15/22 13:18	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	04/15/22 13:18	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	04/15/22 13:18	EPA 8260D	
Coluene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/15/22 13:18	EPA 8260D	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	04/15/22 13:18	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	04/15/22 13:18	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L ug/L	1	04/15/22 13:18	EPA 8260D	
Frichloroethene (TCE)	ND	0.200	0.400	ug/L ug/L	1	04/15/22 13:18	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 8 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	50D			Volatile Organic Compounds by EPA 8260D													
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes													
MW-3-0422 (A2D0557-03)				Matrix: Wate	er	Batch:	22D0580														
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	04/15/22 13:18	EPA 8260D														
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D														
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D														
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D														
m,p-Xylene	ND	0.500	1.00	ug/L	1	04/15/22 13:18	EPA 8260D														
o-Xylene	ND	0.250	0.500	ug/L	1	04/15/22 13:18	EPA 8260D														
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 106 %	Limits: 80-120 %	6 I	04/15/22 13:18	EPA 8260D														
Toluene-d8 (Surr)			97 %	80-120 %	ó 1	04/15/22 13:18	EPA 8260D														
4-Bromofluorobenzene (Surr)			97 %	80-120 %	ó 1	04/15/22 13:18	EPA 8260D														

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 9 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

ANALYTICAL SAMPLE RESULTS

		Vinyl Chl	oride by EF	A 8260D SIM				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
•	Kesuit	Lillit	Lillit					INOICS
MW-2-0422 (A2D0557-02RE1)				Matrix: Wate	er	Batch:	22D0939	
Vinyl chloride	0.0846	0.0100	0.0200	ug/L	1	04/26/22 12:39	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97%	Limits: 80-120 %	5 1	04/26/22 12:39	EPA 8260D SIM	
Toluene-d8 (Surr)			99 %	80-120 %	1	04/26/22 12:39	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	<i>I</i>	04/26/22 12:39	EPA 8260D SIM	
MW-3-0422 (A2D0557-03)				Matrix: Wate	er	Batch:	22D0769	
Vinyl chloride	ND	0.0200	0.0200	ug/L	1	04/21/22 03:20	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	5 1	04/21/22 03:20	EPA 8260D SIM	
Toluene-d8 (Surr)			104 %	80-120 %	<i>I</i>	04/21/22 03:20	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			96 %	80-120 %	1	04/21/22 03:20	EPA 8260D SIM	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 22D0580 - EPA 5030B Water Blank (22D0580-BLK1) Prepared: 04/15/22 10:03 Analyzed: 04/15/22 11:27 EPA 8260D ND 10.0 20.0 ug/L Acetone ND 2.00 Acrylonitrile 1.00 ug/L 1 Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 ug/L 1 Bromochloromethane ND 0.500 1.00 ug/L 1 ND Bromodichloromethane 0.500 1.00 ug/L 1 Bromoform ND 0.500 1.00 ug/L 1 5.00 Bromomethane ND 5.00 ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 ug/L 1.00 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ------Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 Dibromochloromethane ND 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 Dibromomethane ND 0.500 1.00 ug/L 1 0.250 1,2-Dichlorobenzene ND 0.500 ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 11 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0580 - EPA 5030B Water Blank (22D0580-BLK1) Prepared: 04/15/22 10:03 Analyzed: 04/15/22 11:27 ND 0.250 0.500 1,2-Dichloropropane ug/L ND 0.500 1.00 ug/L 1 1,3-Dichloropropane ---2,2-Dichloropropane ND 0.500 1.00 ug/L 1 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 ND 0.500 1.00 cis-1,3-Dichloropropene ug/L 1 trans-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 Ethylbenzene ND 0.250 0.500 ug/L 1 Hexachlorobutadiene ND 2.50 5.00 ug/L 1 10.0 10.0 2-Hexanone ND ug/L 1 Isopropylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 1.00 4-Isopropyltoluene ug/L 1 Methylene chloride ND 5.00 10.0 ug/L 1 ND 10.0 4-Methyl-2-pentanone (MiBK) 5.00 ug/L 1 ---Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 Naphthalene ND 2.00 2.00 ug/L 1 n-Propylbenzene ND 0.250 0.500 ug/L 1 ND 0.500 1.00 Styrene 1 ug/L 1,1,1,2-Tetrachloroethane ND 0.200 0.400 1 ug/L ND 1.1.2.2-Tetrachloroethane 0.250 0.500 ug/L 1 ---------Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 Toluene ND 0.500 1.00 ug/L 1 ---1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 1,1,1-Trichloroethane ND 0.200 0.400ug/L 1 ND 0.250 1,1,2-Trichloroethane 0.500 ug/L 1 ------Trichloroethene (TCE) ND 0.200 0.400 ug/L 1 Trichlorofluoromethane ND 1.00 2.00 ug/L 1 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 1,3,5-Trimethylbenzene ND 0.500 1.00 ug/L 1 Vinyl chloride ND 0.200 0.400 ug/L 1

Surr: 1,4-Difluorobenzene (Surr) Recovery: 104 % Limits: 80-120 % Dilution: 1x

1.00

0.500

ug/L

ug/L

0.500

0.250

ND

ND

Apex Laboratories

Philip Manherg

m,p-Xylene

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 12 of 39

1

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0580 - EPA 5030B							Wa	ter				
Blank (22D0580-BLK1)			Prepared	: 04/15/22	10:03 Ana	lyzed: 04/15	/22 11:27					
Surr: Toluene-d8 (Surr)		Recor	very: 100 %	Limits: 80	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			102 %	80	0-120 %		"					
LCS (22D0580-BS1)			Prepared	: 04/15/22	10:03 Ana	lyzed: 04/15	/22 10:28					
EPA 8260D												
Acetone	34.9	10.0	20.0	ug/L	1	40.0		87	80-120%			
Acrylonitrile	17.5	1.00	2.00	ug/L	1	20.0		88	80-120%			
Benzene	18.9	0.100	0.200	ug/L	1	20.0		94	80-120%			
Bromobenzene	16.8	0.250	0.500	ug/L	1	20.0		84	80-120%			
Bromochloromethane	19.8	0.500	1.00	ug/L	1	20.0		99	80-120%			
Bromodichloromethane	19.4	0.500	1.00	ug/L	1	20.0		97	80-120%			
Bromoform	20.7	0.500	1.00	ug/L	1	20.0		104	80-120%			
Bromomethane	20.4	5.00	5.00	ug/L	1	20.0		102	80-120%			
2-Butanone (MEK)	34.1	5.00	10.0	ug/L	1	40.0		85	80-120%			
n-Butylbenzene	18.2	0.500	1.00	ug/L	1	20.0		91	80-120%			
ec-Butylbenzene	19.5	0.500	1.00	ug/L	1	20.0		97	80-120%			
ert-Butylbenzene	18.4	0.500	1.00	ug/L	1	20.0		92	80-120%			
Carbon disulfide	19.4	5.00	10.0	ug/L	1	20.0		97	80-120%			
Carbon tetrachloride	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
Chlorobenzene	17.7	0.250	0.500	ug/L	1	20.0		88	80-120%			
Chloroethane	18.6	5.00	5.00	ug/L	1	20.0		93	80-120%			
Chloroform	18.9	0.500	1.00	ug/L	1	20.0		95	80-120%			
Chloromethane	18.8	2.50	5.00	ug/L	1	20.0		94	80-120%			
2-Chlorotoluene	17.7	0.500	1.00	ug/L	1	20.0		89	80-120%			
l-Chlorotoluene	17.6	0.500	1.00	ug/L	1	20.0		88	80-120%			
Dibromochloromethane	18.8	0.500	1.00	ug/L	1	20.0		94	80-120%			
,2-Dibromo-3-chloropropane	17.3	2.50	5.00	ug/L	1	20.0		86	80-120%			
,2-Dibromoethane (EDB)	18.7	0.250	0.500	ug/L	1	20.0		93	80-120%			
Dibromomethane	19.0	0.500	1.00	ug/L	1	20.0		95	80-120%			
,2-Dichlorobenzene	17.2	0.250	0.500	ug/L	1	20.0		86	80-120%			
,3-Dichlorobenzene	17.6	0.250	0.500	ug/L	1	20.0		88	80-120%			
,4-Dichlorobenzene	17.1	0.250	0.500	ug/L	1	20.0		85	80-120%			
Dichlorodifluoromethane	19.1	0.500	1.00	ug/L	1	20.0		95	80-120%			
,1-Dichloroethane	18.9	0.200	0.400	ug/L	1	20.0		94	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution Result RPD Limit Amount Limits Limit Notes Batch 22D0580 - EPA 5030B Water LCS (22D0580-BS1) Prepared: 04/15/22 10:03 Analyzed: 04/15/22 10:28 1,2-Dichloroethane (EDC) 18.3 0.200 0.400 ug/L 20.0 91 80-120% 1,1-Dichloroethene 19.6 0.200 0.400 ug/L 1 20.0 98 80-120% ---------20.0 cis-1,2-Dichloroethene 18.8 0.200 0.400 ug/L 1 94 80-120% trans-1,2-Dichloroethene 18.7 0.200 0.400ug/L 1 20.0 93 80-120% 20.0 91 18.2 0.250 0.500 80-120% 1,2-Dichloropropane ug/L 1 20.0 87 1,3-Dichloropropane 17.5 0.500 1.00 ug/L 1 80-120% 2,2-Dichloropropane 19.1 0.5001.00 ug/L 1 20.0 95 80-120% 20.0 98 1,1-Dichloropropene 19.5 0.500 1.00 ug/L 1 80-120% 0.500 1.00 20.0 94 cis-1,3-Dichloropropene 18.8 ug/L 1 80-120% trans-1,3-Dichloropropene 19.3 0.500 1.00 ug/L 1 20.0 96 80-120% Ethylbenzene 20.0 91 18.3 0.250 0.500 80-120% ug/L 1 20.0 Hexachlorobutadiene 17.3 2.50 5.00 ug/L 1 86 80-120% 27.6 10.0 10.0 40.0 O-55 2-Hexanone ug/L 1 ---69 80-120% ---Isopropylbenzene 20.0 0.500 1.00 ug/L 1 20.0 100 80-120% 18.9 0.500 20.0 94 80-120% 4-Isopropyltoluene 1.00 ug/L 1 Methylene chloride 18.4 5.00 10.0 ug/L 1 20.0 92 80-120% 33.1 5.00 10.0 40.0 83 4-Methyl-2-pentanone (MiBK) 1 80-120% ug/L Methyl tert-butyl ether (MTBE) 19.2 0.500 1.00 1 20.0 96 80-120% ug/L Q-55 Naphthalene 14.7 2.00 2.00 20.0 74 80-120% ug/L 1 --n-Propylbenzene 18.2 0.250 0.500 ug/L 1 20.0 91 80-120% 16.8 0.500 1.00 20.0 84 80-120% Styrene ug/L 1 1,1,1,2-Tetrachloroethane 17.6 0.200 0.400 ug/L 1 20.0 88 80-120% 1,1,2,2-Tetrachloroethane 16.9 0.250 0.500 20.0 84 80-120% ug/L 1 Tetrachloroethene (PCE) 19.0 0.200 0.400 ug/L 1 20.0 95 80-120% Toluene 17.6 0.500 1.00 20.0 88 ug/L 1 80-120% ------1,2,3-Trichlorobenzene 17.2 1.00 2.00 ug/L 1 20.0 86 80-120% 1,2,4-Trichlorobenzene 17.5 1.00 2.00 ug/L 20.0 87 80-120% 1 ---1,1,1-Trichloroethane 19.7 0.200 0.400 ug/L 1 20.0 98 80-120% 1.1.2-Trichloroethane 18.1 0.250 0.500 ug/L 1 20.0 90 80-120% Trichloroethene (TCE) 18.5 0.200 0.400 ug/L 1 20.0 92 80-120% Trichlorofluoromethane 20.3 1.00 2.00 20.0 101 80-120% ug/L 1 1,2,3-Trichloropropane 16.4 0.500 1.00 ug/L 1 20.0 82 80-120% 1,2,4-Trimethylbenzene 19.2 0.500 1.00 ug/L 1 20.0 96 80-120% 1,3,5-Trimethylbenzene 19.1 0.500 1.00 ug/L 1 20.0 95 80-120%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 14 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0580 - EPA 5030B							Wa	ter				
LCS (22D0580-BS1)			Prepared	1: 04/15/22	10:03 Anal	yzed: 04/15	/22 10:28					
Vinyl chloride	18.9	0.200	0.400	ug/L	1	20.0		95	80-120%			
m,p-Xylene	38.9	0.500	1.00	ug/L	1	40.0		97	80-120%			
o-Xylene	18.7	0.250	0.500	ug/L	1	20.0		94	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 103 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					
Duplicate (22D0580-DUP1)			Prepared	d: 04/15/22	10:03 Anal	lyzed: 04/15	/22 12:56					
OC Source Sample: MW-1-0422 (A2D0557-0	1)										
EPA 8260D		•										
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
l-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
				-								

Apex Laboratories

Philip Nevenberg

Dibromomethane

ND

0.500

1.00

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

30%

Philip Nerenberg, Lab Director

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0580 - EPA 5030B Water Duplicate (22D0580-DUP1) Prepared: 04/15/22 10:03 Analyzed: 04/15/22 12:56 QC Source Sample: MW-1-0422 (A2D0557-01) 1,2-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 0.500 1,3-Dichlorobenzene ug/L 1 ND 30% 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 1 ND 30% ug/L ------1,2-Dichloroethane (EDC) ND 0.200 0.400 ug/L 1 ND 30% 1,1-Dichloroethene ND 0.200 0.400ug/L 1 ND 30% ND 0.400 ND 30% cis-1,2-Dichloroethene 0.200 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% 2,2-Dichloropropane ug/L 1 ND 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% cis-1,3-Dichloropropene ug/L 1 ND 0.500 ug/L trans-1,3-Dichloropropene ND 1.00 1 ND 30% Ethylbenzene ND 0.250 0.500 ug/L 1 ND ___ 30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND 30% ND 10.0 30% 2-Hexanone 10.0 1 ND ug/L ND ND Isopropylbenzene 0.500 1.00 ug/L 1 30% 0.500 1.00 ND ND 30% 4-Isopropyltoluene ug/L 1 ND Methylene chloride 5.00 10.0 ug/L 1 ND 30% 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND ------30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND 30% Naphthalene ND ND 30% 2.00 2.00 ug/L 1 ND 0.250 0.500 30% n-Propylbenzene ug/L 1 ND ND 0.500 1.00 ND 30% Styrene ug/L 1 1,1,1,2-Tetrachloroethane ND 0.200 0.400 ND 30% ug/L 1 ND 1,1,2,2-Tetrachloroethane 0.250 0.500 ug/L 1 ---ND ------30% Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 ND 30% Toluene ND 0.500 1.00 ND 30% ug/L 1 ---1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND 30% ND 1.00 2.00 1,2,4-Trichlorobenzene 1 ND 30% ug/L 1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 16 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0580 - EPA 5030B							Wat	ter				
Duplicate (22D0580-DUP1)			Prepared	: 04/15/22	10:03 Ana	lyzed: 04/15	/22 12:56					
QC Source Sample: MW-1-0422 (A2D0557-0	<u>1)</u>										
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		0.270			***	30%	Q-(
m,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 106 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					
Duplicate (22D0580-DUP2) QC Source Sample: Non-SDG (A2	D0579-03)		Prepared	: 04/15/22	10:03 Ana	lyzed: 04/15	/22 18:31					
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	17.1	0.100	0.200	ug/L	1		14.6			16	30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution RPD Limit Amount Result Limits Limit Notes Batch 22D0580 - EPA 5030B Water Duplicate (22D0580-DUP2) Prepared: 04/15/22 10:03 Analyzed: 04/15/22 18:31 QC Source Sample: Non-SDG (A2D0579-03) 2-Chlorotoluene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 4-Chlorotoluene ug/L 1 ND 30% Dibromochloromethane ND 0.500 1.00 ug/L 1 ND 30% 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 ND 30% 1,2-Dibromoethane (EDB) ND 0.250 0.500 1 ND 30% ug/L ------Dibromomethane ND 0.500 1.00 ug/L 1 ND 30% 1,2-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND ND 30% 1.3-Dichlorobenzene 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.200 0.400ND 30% ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% ND 0.200 0.400 ND 30% cis-1,2-Dichloroethene ug/L 1 0.200 trans-1,2-Dichloroethene ND 0.400 ug/L 1 ND 30% 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND ___ 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 ND 30% 2,2-Dichloropropane 1.00 1 ug/L ---ND ND 1,1-Dichloropropene 0.500 1.00 ug/L 1 30% 0.500 1.00 cis-1,3-Dichloropropene ND ND 30% ug/L 1 trans-1,3-Dichloropropene ND 0.500 ND 1.00 ug/L 1 30% 0.250 9 Ethylbenzene 38.4 0.500 ug/L 1 42.1 30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND 30% 2-Hexanone ND ND 30% 10.0 10.0 ug/L 1 0.500 1.00 2.54 2 30% Isopropylbenzene 2.49 ug/L 1 ND 0.500 1.00 ND 30% 4-Isopropyltoluene ug/L 1 Methylene chloride ND 5.00 10.0 ND 30% ug/L 1 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND ---30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND 30% Naphthalene 3.06 2.00 2.00 2.90 5 30% ug/L 1 n-Propylbenzene 4.91 0.250 0.500 ug/L 1 5.18 5 30% Styrene 0.500 1.00 ND 1 ND 30% ug/L ---1,1,1,2-Tetrachloroethane ND 0.200 0.400 ug/L 1 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 18 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0580 - EPA 5030B							Wa	ter				
Duplicate (22D0580-DUP2)			Prepared	: 04/15/22	10:03 Anal	yzed: 04/15/	/22 18:31					
QC Source Sample: Non-SDG (A2	D0579-03)											
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Toluene	ND	0.500	1.00	ug/L	1		ND				30%	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,2,4-Trimethylbenzene	1.86	0.500	1.00	ug/L	1		1.77			5	30%	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
n,p-Xylene	1.75	0.500	1.00	ug/L	1		1.67			5	30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 101 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	-120 %		"					
M-4-2- C-21- (22D0500 MC1)			D 1	04/15/22	10.02 4 1	1.04/15	/22 14 02					
Matrix Spike (22D0580-MS1)	D0514.00\		Prepared	: 04/15/22	10:03 Anai	yzed: 04/15/	/22 14:03					
QC Source Sample: Non-SDG (A2)	D0514-02)											
EPA 8260D	30.1	10.0	20.0	~/T	1	40.0	ND	75	39-160%			
Acetone				ug/L	1							
Acrylonitrile	18.5	1.00	2.00	ug/L	1	20.0	ND	93	63-135%			
Benzene	20.9	0.100	0.200	ug/L	1	20.0	ND	105	79-120%			
Bromobenzene	17.1	0.250	0.500	ug/L	1	20.0	ND	86	80-120%			
Bromochloromethane	21.3	0.500	1.00	ug/L	1	20.0	ND	107	78-123%			
Bromodichloromethane	20.9	0.500	1.00	ug/L	1	20.0	ND	104	79-125%			
Bromoform	22.0	0.500	1.00	ug/L	1	20.0	ND	110	66-130%			
Bromomethane	22.5	5.00	5.00	ug/L	1	20.0	ND	112	53-141%			
2-Butanone (MEK)	28.9	5.00	10.0	ug/L	1	40.0	ND	72	56-143%			
n-Butylbenzene	19.2	0.500	1.00	ug/L	1	20.0	ND	96	75-128%			
sec-Butylbenzene	20.6	0.500	1.00	ug/L	1	20.0	ND	103	77-126%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 22D0580 - EPA 5030B							Wa	ter					
Matrix Spike (22D0580-MS1)			Prepared	: 04/15/22	10:03 Anal	lyzed: 04/15/	22 14:03						
QC Source Sample: Non-SDG (A	2D0514-02)												
ert-Butylbenzene	19.5	0.500	1.00	ug/L	1	20.0	ND	98	78-124%				
Carbon disulfide	21.8	5.00	10.0	ug/L	1	20.0	ND	109	64-133%				
Carbon tetrachloride	22.4	0.500	1.00	ug/L	1	20.0	ND	112	72-136%				
Chlorobenzene	18.9	0.250	0.500	ug/L	1	20.0	ND	94	80-120%				
Chloroethane	21.3	5.00	5.00	ug/L	1	20.0	ND	107	60-138%				
Chloroform	20.7	0.500	1.00	ug/L	1	20.0	ND	104	79-124%				
Chloromethane	21.4	2.50	5.00	ug/L	1	20.0	ND	107	50-139%				
2-Chlorotoluene	18.4	0.500	1.00	ug/L	1	20.0	ND	92	79-122%				
1-Chlorotoluene	18.4	0.500	1.00	ug/L	1	20.0	ND	92	78-122%				
Dibromochloromethane	19.8	0.500	1.00	ug/L	1	20.0	ND	99	74-126%				
1,2-Dibromo-3-chloropropane	17.9	2.50	5.00	ug/L	1	20.0	ND	90	62-128%				
1,2-Dibromoethane (EDB)	19.7	0.250	0.500	ug/L	1	20.0	ND	98	77-121%				
Dibromomethane	20.5	0.500	1.00	ug/L	1	20.0	ND	103	79-123%				
1,2-Dichlorobenzene	17.7	0.250	0.500	ug/L	1	20.0	ND	88	80-120%				
1,3-Dichlorobenzene	18.3	0.250	0.500	ug/L	1	20.0	ND	92	80-120%				
1,4-Dichlorobenzene	17.5	0.250	0.500	ug/L	1	20.0	ND	88	79-120%				
Dichlorodifluoromethane	21.4	0.500	1.00	ug/L	1	20.0	ND	107	32-152%				
1,1-Dichloroethane	20.9	0.200	0.400	ug/L	1	20.0	ND	104	77-125%				
1,2-Dichloroethane (EDC)	19.5	0.200	0.400	ug/L	1	20.0	ND	98	73-128%				
1,1-Dichloroethene	22.3	0.200	0.400	ug/L	1	20.0	ND	112	71-131%				
cis-1,2-Dichloroethene	20.7	0.200	0.400	ug/L	1	20.0	ND	104	78-123%				
rans-1,2-Dichloroethene	21.2	0.200	0.400	ug/L	1	20.0	ND	106	75-124%				
1,2-Dichloropropane	19.8	0.250	0.500	ug/L	1	20.0	ND	99	78-122%				
1,3-Dichloropropane	18.7	0.500	1.00	ug/L	1	20.0	ND	94	80-120%				
2,2-Dichloropropane	20.2	0.500	1.00	ug/L	1	20.0	ND	101	60-139%				
1,1-Dichloropropene	21.9	0.500	1.00	ug/L	1	20.0	ND	110	79-125%				
eis-1,3-Dichloropropene	18.2	0.500	1.00	ug/L	1	20.0	ND	91	75-124%				
rans-1,3-Dichloropropene	20.2	0.500	1.00	ug/L	1	20.0	ND	101	73-127%				
Ethylbenzene	19.8	0.250	0.500	ug/L	1	20.0	ND	99	79-121%				
Hexachlorobutadiene	18.4	2.50	5.00	ug/L	1	20.0	ND	92	66-134%				
2-Hexanone	26.0	10.0	10.0	ug/L	1	40.0	ND	65	57-139%			(
sopropylbenzene	21.9	0.500	1.00	ug/L	1	20.0	ND	110	72-131%				
4-Isopropyltoluene	20.0	0.500	1.00	ug/L	1	20.0	ND	100	77-127%				

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 22D0580 - EPA 5030B Water Matrix Spike (22D0580-MS1) Prepared: 04/15/22 10:03 Analyzed: 04/15/22 14:03 QC Source Sample: Non-SDG (A2D0514-02) Methylene chloride 20.0 5.00 10.0 ug/L 1 20.0 ND 100 74-124% 35.3 5.00 10.0 40.0 4-Methyl-2-pentanone (MiBK) ug/L 1 ND 88 67-130% Methyl tert-butyl ether (MTBE) 20.8 0.500 1.00 ug/L 1 20.0 ND 104 71-124% Naphthalene 15.2 2.00 2.00 ug/L 1 20.0 ND 76 61-128% O-54g n-Propylbenzene 18.9 0.250 0.500 ug/L 1 20.0 ND 95 76-126% 17.9 0.500 1.00 20.0 90 Styrene ug/L 1 ND 78-123% 1,1,1,2-Tetrachloroethane 18.5 0.200 0.400ug/L 1 20.0 ND 93 78-124% 1,1,2,2-Tetrachloroethane 17.4 0.250 0.500 20.0 87 71-121% ug/L 1 ND 20.0 Tetrachloroethene (PCE) 20.9 0.200 0.400 ug/L 1 ND 104 74-129% Toluene 18.9 0.500 1.00 ug/L 1 20.0 ND 95 80-121% 1,2,3-Trichlorobenzene 17.9 1.00 2.00 ug/L 1 20.0 ND 89 69-129% 1,2,4-Trichlorobenzene 17.7 1.00 2.00 20.0 ND 89 69-130% ug/L 1 20.0 1,1,1-Trichloroethane 22.1 0.200 0.400 ug/L 1 ND 110 74-131% 1,1,2-Trichloroethane 20.0 19.0 0.250 0.500 ND 95 ug/L 1 80-120% 0.200 0.400 Trichloroethene (TCE) 20.7 ug/L 1 20.0 0.320 102 79-123% Trichlorofluoromethane 23.0 1.00 2.00 ug/L 1 20.0 ND 115 65-141% 1,2,3-Trichloropropane 16.9 0.500 1.00 ug/L 1 20.0 ND 84 73-122% 19.9 0.500 1.00 20.0 ND 100 1,2,4-Trimethylbenzene ug/L 76-124% 1 1,3,5-Trimethylbenzene 19.8 0.500 20.0 ND 99 75-124% 1.00 ug/L 1 0.200 0.400 20.0 Vinyl chloride 21.6 ND 108 58-137% ug/L 1 m,p-Xylene 42.2 0.500 1.00 40.0 ND 106 80-121% ug/L 1 o-Xylene 20.2 0.250 0.500 ug/L 1 20.0 ND 101 78-122% Surr: 1,4-Difluorobenzene (Surr) 103 % Dilution: 1x Recovery: Limits: 80-120 % Toluene-d8 (Surr) 94% 80-120 % 4-Bromofluorobenzene (Surr) 96 % 80-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 21 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 22D0648 - EPA 5030B Water Blank (22D0648-BLK1) Prepared: 04/18/22 10:12 Analyzed: 04/18/22 14:06 EPA 8260D ND 10.0 20.0 ug/L Acetone ND 2.00 1 Acrylonitrile 1.00 ug/L Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 1 ug/L Bromochloromethane ND 0.500 1.00 ug/L 1 ND Bromodichloromethane 0.500 1.00 ug/L 1 Bromoform ND 0.500 1.00 ug/L 1 5.00 Bromomethane ND 5.00 ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 ug/L 1.00 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ---Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 Dibromochloromethane ND 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 Dibromomethane ND 0.500 1.00 ug/L 1 0.250 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene 0.200 0.400 ND ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 22 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC RPD Result Limit Limit Units Dilution Amount Result % REC Limits RPD Limit Notes

Analyte	Result	Limit	Limit Limit	Units	Dilution	Amount	Result	% REC	% REC Limits	RPD	Limit	Notes
Batch 22D0648 - EPA 5030B							Wa	ter				
Blank (22D0648-BLK1)			Prepared	: 04/18/22	10:12 Anal	lyzed: 04/18	/22 14:06					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	1.00	2.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1							
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L	1							
m,p-Xylene	ND	0.500	1.00	ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L	1							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 107 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

Philip Namberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 23 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0648 - EPA 5030B							Wa	ter				
Blank (22D0648-BLK1)			Prepared	1: 04/18/22	10:12 Ana	lyzed: 04/18	/22 14:06					
Surr: Toluene-d8 (Surr)		Reco	overy: 94 %	Limits: 80	0-120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					
LCS (22D0648-BS1)			Prepared	1: 04/18/22	10:12 Ana	lyzed: 04/18	/22 13:10					
EPA 8260D												
Acetone	47.2	10.0	20.0	ug/L	1	40.0		118	80-120%			
Acrylonitrile	21.4	1.00	2.00	ug/L	1	20.0		107	80-120%			
Benzene	23.5	0.100	0.200	ug/L	1	20.0		117	80-120%			
Bromobenzene	18.8	0.250	0.500	ug/L	1	20.0		94	80-120%			
Bromochloromethane	22.4	0.500	1.00	ug/L	1	20.0		112	80-120%			
Bromodichloromethane	23.6	0.500	1.00	ug/L	1	20.0		118	80-120%			
Bromoform	21.5	0.500	1.00	ug/L	1	20.0		107	80-120%			
Bromomethane	21.4	5.00	5.00	ug/L	1	20.0		107	80-120%			
2-Butanone (MEK)	48.8	5.00	10.0	ug/L	1	40.0		122	80-120%			Q-:
n-Butylbenzene	18.4	0.500	1.00	ug/L	1	20.0		92	80-120%			
sec-Butylbenzene	18.7	0.500	1.00	ug/L	1	20.0		94	80-120%			
tert-Butylbenzene	18.3	0.500	1.00	ug/L	1	20.0		91	80-120%			
Carbon disulfide	23.4	5.00	10.0	ug/L	1	20.0		117	80-120%			
Carbon tetrachloride	27.3	0.500	1.00	ug/L	1	20.0		137	80-120%			Q-:
Chlorobenzene	19.8	0.250	0.500	ug/L	1	20.0		99	80-120%			
Chloroethane	20.6	5.00	5.00	ug/L	1	20.0		103	80-120%			
Chloroform	23.4	0.500	1.00	ug/L	1	20.0		117	80-120%			
Chloromethane	20.6	2.50	5.00	ug/L	1	20.0		103	80-120%			
2-Chlorotoluene	20.2	0.500	1.00	ug/L	1	20.0		101	80-120%			
4-Chlorotoluene	20.8	0.500	1.00	ug/L	1	20.0		104	80-120%			
Dibromochloromethane	22.5	0.500	1.00	ug/L	1	20.0		113	80-120%			
1,2-Dibromo-3-chloropropane	19.0	2.50	5.00	ug/L	1	20.0		95	80-120%			
1,2-Dibromoethane (EDB)	21.3	0.250	0.500	ug/L	1	20.0		106	80-120%			
Dibromomethane	23.3	0.500	1.00	ug/L	1	20.0		116	80-120%			
1,2-Dichlorobenzene	19.3	0.250	0.500	ug/L	1	20.0		96	80-120%			
1,3-Dichlorobenzene	20.0	0.250	0.500	ug/L	1	20.0		100	80-120%			
1,4-Dichlorobenzene	18.7	0.250	0.500	ug/L	1	20.0		93	80-120%			
Dichlorodifluoromethane	21.5	0.500	1.00	ug/L	1	20.0		107	80-120%			
1,1-Dichloroethane	22.4	0.200	0.400	ug/L	1	20.0		112	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

<u>Report ID:</u> A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Reporting Detection Spike Source % REC **RPD** % REC Limits RPD Analyte Result Ĺimit Units Dilution Amount Result Limit Notes Limit

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 22D0648 - EPA 5030B							Wa	ter				
LCS (22D0648-BS1)			Prepared	: 04/18/22	10:12 Anal	yzed: 04/18/	/22 13:10					
1,2-Dichloroethane (EDC)	22.5	0.200	0.400	ug/L	1	20.0		112	80-120%			
1,1-Dichloroethene	23.6	0.200	0.400	ug/L	1	20.0		118	80-120%			
cis-1,2-Dichloroethene	22.5	0.200	0.400	ug/L	1	20.0		112	80-120%			
trans-1,2-Dichloroethene	22.3	0.200	0.400	ug/L	1	20.0		112	80-120%			
1,2-Dichloropropane	22.2	0.250	0.500	ug/L	1	20.0		111	80-120%			
1,3-Dichloropropane	20.2	0.500	1.00	ug/L	1	20.0		101	80-120%			
2,2-Dichloropropane	25.8	0.500	1.00	ug/L	1	20.0		129	80-120%			Q-56
1,1-Dichloropropene	24.8	0.500	1.00	ug/L	1	20.0		124	80-120%			Q-56
cis-1,3-Dichloropropene	19.7	0.500	1.00	ug/L	1	20.0		99	80-120%			
trans-1,3-Dichloropropene	22.9	0.500	1.00	ug/L	1	20.0		114	80-120%			
Ethylbenzene	21.2	0.250	0.500	ug/L	1	20.0		106	80-120%			
Hexachlorobutadiene	19.1	2.50	5.00	ug/L	1	20.0		96	80-120%			
2-Hexanone	36.9	5.00	10.0	ug/L	1	40.0		92	80-120%			
Isopropylbenzene	18.6	0.500	1.00	ug/L	1	20.0		93	80-120%			
4-Isopropyltoluene	18.4	0.500	1.00	ug/L	1	20.0		92	80-120%			
Methylene chloride	21.7	5.00	10.0	ug/L	1	20.0		109	80-120%			
4-Methyl-2-pentanone (MiBK)	38.9	5.00	10.0	ug/L	1	40.0		97	80-120%			
Methyl tert-butyl ether (MTBE)	24.2	0.500	1.00	ug/L	1	20.0		121	80-120%			Q-56
Naphthalene	17.1	1.00	2.00	ug/L	1	20.0		86	80-120%			
n-Propylbenzene	21.1	0.250	0.500	ug/L	1	20.0		106	80-120%			
Styrene	18.4	0.500	1.00	ug/L	1	20.0		92	80-120%			
1,1,1,2-Tetrachloroethane	22.5	0.200	0.400	ug/L	1	20.0		113	80-120%			
1,1,2,2-Tetrachloroethane	18.9	0.250	0.500	ug/L	1	20.0		94	80-120%			
Tetrachloroethene (PCE)	20.8	0.200	0.400	ug/L	1	20.0		104	80-120%			
Toluene	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
1,2,3-Trichlorobenzene	19.8	1.00	2.00	ug/L	1	20.0		99	80-120%			
1,2,4-Trichlorobenzene	19.8	1.00	2.00	ug/L	1	20.0		99	80-120%			
1,1,1-Trichloroethane	24.3	0.200	0.400	ug/L	1	20.0		122	80-120%			Q-56
1,1,2-Trichloroethane	20.1	0.250	0.500	ug/L	1	20.0		101	80-120%			
Trichloroethene (TCE)	22.1	0.200	0.400	ug/L	1	20.0		110	80-120%			
Trichlorofluoromethane	24.3	1.00	2.00	ug/L	1	20.0		122	80-120%			Q-56
1,2,3-Trichloropropane	19.3	0.500	1.00	ug/L	1	20.0		96	80-120%			
1,2,4-Trimethylbenzene	18.6	0.500	1.00	ug/L	1	20.0		93	80-120%			
1,3,5-Trimethylbenzene	18.7	0.500	1.00	ug/L	1	20.0		94	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 25 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
atch 22D0648 - EPA 5030B							Wa	ter				
.CS (22D0648-BS1)			Prepared	1: 04/18/22	10:12 Ana	yzed: 04/18	/22 13:10					
inyl chloride	21.7	0.200	0.400	ug/L	1	20.0		109	80-120%			
ı,p-Xylene	38.4	0.500	1.00	ug/L	1	40.0		96	80-120%			
-Xylene	18.4	0.250	0.500	ug/L	1	20.0		92	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Recon	very: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			93 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
Ouplicate (22D0648-DUP1)			Prepared	l: 04/18/22	10:12 Ana	lyzed: 04/18	/22 17:18					
OC Source Sample: Non-SDG (A2	D0555-02)											
cetone	ND	100	200	ug/L	10		ND				30%	
crylonitrile	ND	10.0	20.0	ug/L	10		ND				30%	
Benzene	ND	1.00	2.00	ug/L	10		ND				30%	
Fromobenzene	ND	2.50	5.00	ug/L	10		ND				30%	
romochloromethane	ND	5.00	10.0	ug/L	10		ND				30%	
romodichloromethane	ND	5.00	10.0	ug/L	10		ND				30%	
Bromoform	ND	5.00	10.0	ug/L	10		ND				30%	
Fromomethane	ND	50.0	50.0	ug/L	10		ND				30%	
-Butanone (MEK)	ND	50.0	100	ug/L	10		ND				30%	
-Butylbenzene	ND	5.00	10.0	ug/L	10		ND				30%	
ec-Butylbenzene	ND	5.00	10.0	ug/L	10		ND				30%	
ert-Butylbenzene	ND	5.00	10.0	ug/L	10		ND				30%	
Carbon disulfide	ND	50.0	100	ug/L	10		ND				30%	
Carbon tetrachloride	ND	5.00	10.0	ug/L	10		ND				30%	
Chlorobenzene	ND	2.50	5.00	ug/L	10		ND				30%	
Chloroethane	ND	50.0	50.0	ug/L	10		ND				30%	
Chloroform	ND	5.00	10.0	ug/L	10		ND				30%	
Chloromethane	ND	25.0	50.0	ug/L	10		ND				30%	
-Chlorotoluene	ND	5.00	10.0	ug/L	10		ND				30%	
-Chlorotoluene	ND	5.00	10.0	ug/L	10		ND				30%	
Dibromochloromethane	ND	5.00	10.0	ug/L	10		ND				30%	
,2-Dibromo-3-chloropropane	ND	25.0	50.0	ug/L	10		ND				30%	
,2-Dibromoethane (EDB)	ND	2.50	5.00	ug/L	10		ND				30%	
Dibromomethane	ND	5.00	10.0	ug/L ug/L	10		ND				30%	
,2-Dichlorobenzene	ND	2.50	5.00	ug/L ug/L	10		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22D0648 - EPA 5030B Water Duplicate (22D0648-DUP1) Prepared: 04/18/22 10:12 Analyzed: 04/18/22 17:18 QC Source Sample: Non-SDG (A2D0555-02) 1,3-Dichlorobenzene ND 2.50 5.00 ug/L 10 ND 30% ND 2.50 10 1,4-Dichlorobenzene 5.00 ug/L ND 30% Dichlorodifluoromethane ND 5.00 10.0 ug/L 10 ND 30% 1,1-Dichloroethane ND 2.00 4.00 ug/L 10 ND 30% 1,2-Dichloroethane (EDC) ND 2.00 4.00 ug/L 10 ND 30% ------ND 2.00 1,1-Dichloroethene 4.00 ug/L 10 ND 30% cis-1,2-Dichloroethene ND 2.00 4.00 ug/L 10 ND 30% trans-1,2-Dichloroethene ND 30% 2.00 4.00 ug/L 10 ND 1,2-Dichloropropane ND 2.50 5.00 ug/L 10 ND 30% 1,3-Dichloropropane ND 5.00 10.0 ug/L 10 ND 30% 2,2-Dichloropropane ND 5.00 10.0 ug/L 10 ND 30% ND 5.00 10.0 30% 1,1-Dichloropropene ug/L 10 ND cis-1,3-Dichloropropene ND 5.00 10.0 ug/L 10 ND 30% ND 5.00 10.0 10 30% trans-1,3-Dichloropropene ug/L ND ug/L Ethylbenzene ND 2.50 5.00 10 ND 30% ND Hexachlorobutadiene 25.0 50.0 ug/L 10 ND ___ 30% 2-Hexanone ND 50.0 100 ug/L 10 ND 30% ND 5.00 30% Isopropylbenzene 10.0 10 ND ug/L ND 4-Isopropyltoluene 5.00 10.0 ug/L 10 ND 30% ND 100 Methylene chloride 50.0 10 ND 30% ug/L 4-Methyl-2-pentanone (MiBK) ND 50.0 100 ug/L 10 ND 30% Methyl tert-butyl ether (MTBE) ND 5.00 10.0 ug/L 10 ND ------30% Naphthalene ND 10.0 20.0 ug/L 10 ND 30% ND 30% n-Propylbenzene 2.50 5.00 10 ND ug/L ND 5.00 10.0 30% Styrene ug/L 10 ND ND 1,1,1,2-Tetrachloroethane 2.00 4.00 10 ND 30% ug/L 1,1,2,2-Tetrachloroethane ND 2.50 5.00 10 ND 30% ug/L Tetrachloroethene (PCE) 8.20 2.00 4.00 ug/L 10 8.50 ---4 30% ND 5.00 10.0 ug/L 10 ND 30% 1,2,3-Trichlorobenzene ND 10.0 20.0 10 30% ug/L ND ---1,2,4-Trichlorobenzene ND 10.0 20.0 ug/L 10 ND 30% ND 2.00 4.00 1,1,1-Trichloroethane 10 ND 30% ug/L 1,1,2-Trichloroethane ND 2.50 5.00 ug/L 10 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 27 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0648 - EPA 5030B							Wa	ter				
Duplicate (22D0648-DUP1)			Prepared	1: 04/18/22	10:12 Anal	yzed: 04/18	/22 17:18					
QC Source Sample: Non-SDG (A2	D0555-02)											
Trichloroethene (TCE)	ND	2.00	4.00	ug/L	10		ND				30%	
Trichlorofluoromethane	ND	10.0	20.0	ug/L	10		ND				30%	
1,2,3-Trichloropropane	ND	5.00	10.0	ug/L	10		ND				30%	
1,2,4-Trimethylbenzene	ND	5.00	10.0	ug/L	10		ND				30%	
1,3,5-Trimethylbenzene	ND	5.00	10.0	ug/L	10		ND				30%	
Vinyl chloride	ND	2.00	4.00	ug/L	10		ND				30%	
m,p-Xylene	ND	5.00	10.0	ug/L	10		ND				30%	
o-Xylene	ND	2.50	5.00	ug/L	10		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 109 %	Limits: 80	0-120 %	Dilı	ution: 10x					
Toluene-d8 (Surr)			93 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
QC Source Sample: Non-SDG (A2	D0555-03)											
EPA 8260D Acetone	396	100	200	/T	10	400	ND	99	39-160%			
Acrylonitrile	219	10.0	20.0	ug/L ug/L	10	200	ND					
Acrylonitrile Benzene		1.00	2.00		10			109	63-135%			0-
	256			ug/L		200	ND	128 96	79-120%			Q-
Bromobenzene Bromochloromethane	192	2.50 5.00	5.00 10.0	ug/L	10	200	ND		80-120%			
Bromocnioromethane Bromodichloromethane	240 248	5.00	10.0	ug/L	10 10	200 200	ND ND	120 124	78-123% 79-125%			
Bromoform	216	5.00	10.0	ug/L	10	200	ND ND	108	66-130%			
Bromomethane	250	50.0	50.0	ug/L ug/L	10	200	ND ND	125	53-141%			
2-Butanone (MEK)	436	50.0	100	ug/L ug/L	10	400	ND ND	109	56-143%			Q-5
n-Butylbenzene	199	5.00	10.0	ug/L ug/L	10	200	ND ND	109	75-128%			Q-3
sec-Butylbenzene	205	5.00	10.0	ug/L ug/L	10	200	ND ND	100	77-126%			
ert-Butylbenzene	200	5.00	10.0	ug/L ug/L	10	200	ND ND	102	78-124%			
Carbon disulfide	262	50.0	10.0	ug/L ug/L	10	200	ND ND	131	64-133%			
Carbon disumde Carbon tetrachloride	296	5.00	10.0	ug/L	10	200	ND	148	72-136%			O-5
Chlorobenzene	210	2.50	5.00	ug/L ug/L	10	200	ND ND	105	80-120%			Q-2
Chloroethane	237	50.0	50.0	ug/L ug/L	10	200	ND ND	118	60-120%			
Chloroform	251	5.00	10.0	ug/L ug/L	10	200	ND	125	79-124%			Q-
Chloromethane	226	25.0	50.0	ug/L	10	200	ND	113	50-139%			~

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville CD22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 22D0648 - EPA 5030B Water Matrix Spike (22D0648-MS1) Prepared: 04/18/22 10:12 Analyzed: 04/18/22 18:01 QC Source Sample: Non-SDG (A2D0555-03) 2-Chlorotoluene 214 5.00 10.0 ug/L 10 200 ND 107 79-122% 221 5.00 10.0 200 4-Chlorotoluene ug/L 10 ND 111 78-122% ug/L Dibromochloromethane 227 5.00 10.0 10 200 ND 113 74-126% 1,2-Dibromo-3-chloropropane 187 25.0 50.0 ug/L 10 200 ND 94 62-128% 1,2-Dibromoethane (EDB) 214 2.50 5.00 10 200 ND 107 77-121% ug/L 245 10.0 200 ND 79-123% Dibromomethane 5.00 ug/L 10 122 1,2-Dichlorobenzene 198 2.50 5.00 ug/L 10 200 ND 99 80-120% 206 200 ND 103 1,3-Dichlorobenzene 2.50 5.00 ug/L 10 80-120% 1,4-Dichlorobenzene 194 2.50 5.00 ug/L 10 200 ND 97 79-120% Dichlorodifluoromethane 240 5.00 10.0 ug/L 10 200 ND 120 32-152% 1,1-Dichloroethane 251 2.00 4.00 ug/L 10 200 ND 125 77-125% 1,2-Dichloroethane (EDC) 2.00 4.00 10 200 ND 73-128% 236 ug/L 118 200 Q-01 1,1-Dichloroethene 263 2.00 4.00 ug/L 10 ND 132 71-131% Q-01 200 248 2.00 4.00 10 ND 78-123% cis-1,2-Dichloroethene ug/L 124 ug/L trans-1,2-Dichloroethene 245 2.00 4.00 10 200 ND 122 75-124% 1,2-Dichloropropane 243 2.50 5.00 ug/L 10 200 ND 121 78-122% ___ 1,3-Dichloropropane 210 5.00 10.0 ug/L 10 200 ND 105 80-120% 5.00 10.0 200 ND O-54e 2,2-Dichloropropane 264 10 132 60-139% ug/L 271 200 ND 79-125% Q-54c 1,1-Dichloropropene 5.00 10.0 ug/L 10 136 10.0 200 cis-1,3-Dichloropropene 179 5.00 10 ND 90 75-124% ug/L 231 200 ND 73-127% trans-1,3-Dichloropropene 5.00 10.0 ug/L 10 116 Ethylbenzene 228 2.50 5.00 ug/L 10 200 ND 114 79-121% Hexachlorobutadiene 202 25.0 50.0 ug/L 10 200 ND 101 66-134% 363 400 ND 91 57-139% 2-Hexanone 50.0 100 10 ug/L 202 5.00 10.0 200 ND 101 72-131% Isopropylbenzene ug/L 10 198 200 99 5.00 10.0 10 ND 77-127% 4-Isopropyltoluene ug/L Methylene chloride 229 50.0 100 10 200 ND 114 74-124% ug/L 400 67-130% 4-Methyl-2-pentanone (MiBK) 408 50.0 100 ug/L 10 ND 102 Methyl tert-butyl ether (MTBE) 249 5.00 10.0 ug/L 10 200 ND 125 71-124% O-54 Naphthalene 174 10.0 20.0 10 200 ND 87 ug/L 61-128% n-Propylbenzene 227 2.50 5.00 10 200 ND 114 76-126% ug/L 197 5.00 10.0 200 98 Styrene 10 ND 78-123% ug/L

Apex Laboratories

Philip Manherz

1,1,1,2-Tetrachloroethane

234

2.00

4.00

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

117

78-124%

Philip Nerenberg, Lab Director

Page 29 of 39

10

200

ND

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 22D0648 - EPA 5030B Water Matrix Spike (22D0648-MS1) Prepared: 04/18/22 10:12 Analyzed: 04/18/22 18:01 QC Source Sample: Non-SDG (A2D0555-03) 97 1,1,2,2-Tetrachloroethane 193 2.50 5.00 ug/L 10 200 ND 71-121% 2.00 200 Tetrachloroethene (PCE) 228 4.00 ug/L 10 8.80 110 74-129% 80-121% Toluene 212 5.00 10.0 ug/L 10 200 ND 106 1,2,3-Trichlorobenzene 201 10.0 20.0 ug/L 10 200 ND 100 69-129% 1,2,4-Trichlorobenzene 203 10.0 20.0 ug/L 10 200 ND 101 69-130% 200 1,1,1-Trichloroethane 268 2.00 4.00 ND Q-54b ug/L 10 134 74-131% 1,1,2-Trichloroethane 206 2.50 5.00 ug/L 10 200 ND 103 80-120% Trichloroethene (TCE) 245 2.00 4.00 200 ND 79-123% ug/L 10 122 Q-54b Trichlorofluoromethane 278 10.0 20.0 ug/L 10 200 ND 139 65-141% 1,2,3-Trichloropropane 196 5.00 10.0 ug/L 10 200 ND 98 73-122% 1,2,4-Trimethylbenzene 197 5.00 10.0 ug/L 10 200 ND 98 76-124% 200 1,3,5-Trimethylbenzene 200 5.00 10.0 10 ND 100 75-124% ug/L 257 2.00 200 ND Vinyl chloride 4.00 ug/L 10 129 58-137% 400 m,p-Xylene 414 5.00 10.0 10 ND 104 80-121% ug/L 2.50 5.00 78-122% o-Xylene 194 ug/L 10 ND Surr: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % Dilution: 10x Toluene-d8 (Surr) 92 % 80-120 %

80-120 %

96 %

Apex Laboratories

Philip Nevenberg

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 30 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

			Vinyl	Chloride	by EPA 8	3260D SIM						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0769 - EPA 5030B							Wa	ter				
Blank (22D0769-BLK1)			Prepared	1: 04/20/22	10:03 Ana	lyzed: 04/20	/22 18:49					
EPA 8260D SIM												
Vinyl chloride	ND	0.0100	0.0200	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recover	ry: 105 %	Limits: 8	0-120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			105 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	8	0-120 %		"					
LCS (22D0769-BS1)			Prepared	d: 04/20/22	10:03 Ana	lyzed: 04/20	/22 17:39					
EPA 8260D SIM												
Vinyl chloride	0.255	0.0100	0.0200	ug/L	1	0.200		127	80-120%			Q-56
Surr: 1,4-Difluorobenzene (Surr)		Recover	ry: 100 %	Limits: 8	0-120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			103 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	8	0-120 %		"					
Duplicate (22D0769-DUP1)			Prepared	d: 04/20/22	10:03 Ana	lyzed: 04/20	/22 21:31					
OC Source Sample: Non-SDG (A2	D0461-03)											
Vinyl chloride	ND	0.0100	0.0200	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recover	ry: 103 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			105 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	8	0-120 %		"					
Matrix Spike (22D0769-MS1)			Prepared	d: 04/20/22	10:03 Ana	lyzed: 04/21	/22 03:47					
QC Source Sample: MW-3-0422 (A2D0557-03	3)										
EPA 8260D SIM												
Vinyl chloride	0.294	0.0100	0.0200	ug/L	1	0.200	ND	139	58-137%			Q-54d
Surr: 1,4-Difluorobenzene (Surr)		Recover	ry: 105 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			104 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	8	0-120 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 31 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALITY CONTROL (QC) SAMPLE RESULTS

			Vinyl	Chloride	by EPA 8	3260D SIM						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22D0939 - EPA 5030B							Wa	ter				
Blank (22D0939-BLK1)			Prepared	: 04/26/22	09:47 Ana	lyzed: 04/26	/22 12:12					
EPA 8260D SIM												
Vinyl chloride	ND	0.0100	0.0200	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 8	0-120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			99 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	8	0-120 %		"					
LCS (22D0939-BS1)			Prepared	l: 04/26/22	09:47 Ana	lyzed: 04/26	/22 11:18					
EPA 8260D SIM												
Vinyl chloride	0.206	0.0100	0.0200	ug/L	1	0.200		103	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 97%	Limits: 8	0-120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			99 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	8	0-120 %		"					
Duplicate (22D0939-DUP1)			Prepared	: 04/26/22	09:47 Ana	lyzed: 04/26	/22 16:14					
OC Source Sample: Non-SDG (A2	D0905-03)											
Vinyl chloride	ND	0.0100	0.0200	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			99 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	8	0-120 %		"					
Matrix Spike (22D0939-MS1)			Prepared	: 04/26/22	09:47 Ana	lyzed: 04/26	/22 17:34					
QC Source Sample: Non-SDG (A2)	D0905-05)											
EPA 8260D SIM												
Vinyl chloride	0.230	0.0100	0.0200	ug/L	1	0.200	ND	115	58-137%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			99 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	8	0-120 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 32 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22D0580							
A2D0557-01	Water	EPA 8260D	04/12/22 15:58	04/15/22 10:03	5mL/5mL	5mL/5mL	1.00
A2D0557-03	Water	EPA 8260D	04/12/22 16:37	04/15/22 10:03	5mL/5mL	5mL/5mL	1.00
Batch: 22D0648							
A2D0557-02RE1	Water	EPA 8260D	04/12/22 17:06	04/18/22 10:12	5mL/5mL	5mL/5mL	1.00

		Vin	yl Chloride by EPA 8	3260D SIM			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22D0769							
A2D0557-03	Water	EPA 8260D SIM	04/12/22 16:37	04/20/22 10:03	5mL/5mL	5mL/5mL	1.00
Batch: 22D0939							
A2D0557-02RE1	Water	EPA 8260D SIM	04/12/22 17:06	04/26/22 09:47	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell Project: Woodinville CD 22118 20th Ave SE, Suite G202 Project Number: 101.20841.00001 Bothell, WA 98021 Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Ape

oex Laborato	<u>ories</u>
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +1%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +17%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +2%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +4%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +7%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +9%. The results are reported as Estimated Values.
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -11%. The results are reported as Estimated Values.
Q-54g	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -6%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Page 34 of 39 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 35 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 36 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 37 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

Company:5LR		Project Mgr. Gra	67		Lish				Projek	Nan X	i	Project Name: Wanding !!	1.5	1	8				Project #. 101.70	101.70841.0000	-	
30 # Am	SF, Ste 6	6202 18	Bothery WA	23		Phone: (425	15	201	W2-8800	1	mail:	15	(g)	15	# X X	Email: alish @ Stronsultya. com	ź		PO#			1
Sampled by: Steven Losk	Losleban		•											•		ANAI VOIC BROHIEGI	34.10					
Site Location:					_	_					F,	F ,		-			T.					
OR (WA) CA AK ID			TAINERS				х	W AOC?		s Full List		Vols Full Lis				Ba, Be, Cd Cu, Fe, Pb n, Mo, Ni, K Tl, V, Zn DISS. TC	TI, V, Zn	(8) sle				9A]
SAMPLE ID	DVIE	TIME	# OF CON	LHTWN	I-H4TWN	-HALMN	8760 BTE	8760 RBD	olsH 0528		MIS 0728	8087 bCB	8081 Pestio	KCKA Me	Priority Me		e, Ag, Na,	LCLP Met	- 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17		old Sample	dora Arch
7240-1-MW	8551 22/21/h		into 5		ļ	<u> </u>			tî	×	 	-	-	-	_		S				Ø	H.
22h0-2-mW	. —	901							+-	×	-	-	-	-	1						-	
22ho- 5-MW		(23)								×	-	-	-	1		_					-	
MW-11-0422	>	0091	7									-		-	1						×	
			_	-					\dashv	+	-											
					_						-	-									-	
								1-1	+-+	+	+	+	-	\perp								
										_	-		_									
Standard T	Standard Turn Around Time (TAT) = 1 PBusiness Days	me (TAT) = [1 Busine	SS Days	- s			1	\dashv	120	-IECLA	SPECIAL INSTRUCTIONS:									_	
TAT Democred (circle)	1 Day	21	2 Day		3 Day					·	Ş	·-	12.5	رت ت	~	- Viry Chloride by 82600 SEM	75	Z				
ועד אכלהכפנת (חוכוני)	5 Day	Stan	Standard	5	Other:					-,												
	SAMPLES ARE HELD FOR 30 DAYS	D FOR 30 D	4YS							Т												
RELINQUISHED BY: Signature: A free To The	Date:	Sign Sign	RECEIVED BY: Signatury:	EX BX	\bigcirc	2	Date	2		Sign	mature:	RELINQUISHED BY: Signature:	ED BY	e:	1	Date:			RECEIVED BY: Signature:	Date:		
Printed Name: Struen Los leben	Time: 1600	臣 7	Printed Magne:	1			Time:	T	Ţ	E	Printed Name	ame:				Time:			Printed Name:	Time:		
Company:		S	Company:	A	2 in					రి	Соперану:	,.							Company:			1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 38 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville CD
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2D0557 - 04 29 22 1635

		LER RECEIPT FOR		
Client: SUR		Elemen	nt WO#: A	2 DOSS7
Project/Project #:	Woodin ville CD	101.20841.00	1001.	
Delivery Info:	30 3335390003	,		
	4/12 @ 955 By	r: Us		
	Client ESS FedEx			SDS Other
Cooler Inspection	Date/time inspected: 4/14/22	0 4:55	Ву:	W.
Chain of Custody includ		Custody seals?	Yes	No X
Signed/dated by client?	Yes No			
Signed/dated by Apex?	Yes No			
	Cooler #1 Cooler #2 Co		Cooler #5	Cooler #6 Cooler #7
Temperature (°C)	- / /			
Received on ice? (Y/N)	1 /			
Temp. blanks? (Y/N)	1 2			
Ice type: (Gel/Real/Other	n 1			
Condition:	Grond			
	No Comments: e? Yes No Commen	75,000,000		
COC/container discrepar	ncies form initiated? Yes	No. X	***********	
	ived appropriate for analysis?	·	omments:	
Do VOA vials have visib	ole headspace? Yes No	<u>×</u> NA		10000
Water samples: pH check	ked: YesNoNA_×pH	appropriate? Yes	No NA	X
Comments:				
Commonts.				
	27 20 0435 5011	/-2		
		<u></u>		
Additional information:	27 70 0435 501 Witness:	<u></u>		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 39 of 39

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Monday, July 25, 2022 Mike Staton SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021

RE: A2G0380 - Woodinville West - 101.20841.00001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2G0380, which was received by the laboratory on 7/14/2022 at 10:35:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

3.1 degC

Cooler #1

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001

 22118 20th Ave SE, Suite G202
 Project Number: 101.20841.00001
 Report ID:

 Bothell, WA 98021
 Project Manager: Mike Staton
 A2G0380 - 07 25 22 1604

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1-0722	A2G0380-01	Water	07/13/22 11:30	07/14/22 10:35
MW-2-0722	A2G0380-02	Water	07/13/22 12:00	07/14/22 10:35
MW-3-0722	A2G0380-03	Water	07/13/22 12:31	07/14/22 10:35
MW-11-0722	A2G0380-04	Water	07/13/22 11:33	07/14/22 10:35

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	us by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1-0722 (A2G0380-01)				Matrix: Wa	ater	Batch:	22G0565	
Acetone	ND	10.0	20.0	ug/L	1	07/19/22 19:31	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	07/19/22 19:31	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	07/19/22 19:31	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	07/19/22 19:31	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	07/19/22 19:31	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	07/19/22 19:31	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	07/19/22 19:31	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 19:31	EPA 8260D	
Chloroethane	ND	5.00	10.0	ug/L	1	07/19/22 19:31	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	07/19/22 19:31	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	07/19/22 19:31	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	07/19/22 19:31	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 19:31	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 19:31	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 19:31	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	07/19/22 19:31	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	07/19/22 19:31	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	07/19/22 19:31	EPA 8260D	
eis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	07/19/22 19:31	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	07/19/22 19:31	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 3 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

ANALYTICAL SAMPLE RESULTS

			•	ds by EPA 826				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1-0722 (A2G0380-01)				Matrix: Wat	er	Batch:	22G0565	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	07/19/22 19:31	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	07/19/22 19:31	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	07/19/22 19:31	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	07/19/22 19:31	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	07/19/22 19:31	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	07/19/22 19:31	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	07/19/22 19:31	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	07/19/22 19:31	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	07/19/22 19:31	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	07/19/22 19:31	EPA 8260D	
Tetrachloroethene (PCE)	0.200	0.200	0.400	ug/L	1	07/19/22 19:31	EPA 8260D	J
Toluene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	07/19/22 19:31	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	07/19/22 19:31	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	07/19/22 19:31	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	07/19/22 19:31	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	07/19/22 19:31	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	07/19/22 19:31	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	07/19/22 19:31	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	07/19/22 19:31	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 110 %	Limits: 80-120 %	6 I	07/19/22 19:31	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

ANALYTICAL SAMPLE RESULTS

Amalista	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Analyte	Result	Limit	Limit					Notes
MW-1-0722 (A2G0380-01)				Matrix: Wate			22G0565	
Surrogate: Toluene-d8 (Surr)		Recove	ry: 103 %	Limits: 80-120 %	1	07/19/22 19:31	EPA 8260D	
4-Bromofluorobenzene (Surr)			93 %	80-120 %	1	07/19/22 19:31	EPA 8260D	
MW-2-0722 (A2G0380-02)				Matrix: Wate	r	Batch: 2	22G0565	
Acetone	ND	10.0	20.0	ug/L	1	07/19/22 20:25	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	07/19/22 20:25	EPA 8260D	
Benzene	0.260	0.100	0.200	ug/L	1	07/19/22 20:25	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:25	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	07/19/22 20:25	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	07/19/22 20:25	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	07/19/22 20:25	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:25	EPA 8260D	
Chloroethane	ND	5.00	10.0	ug/L	1	07/19/22 20:25	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	07/19/22 20:25	EPA 8260D	
2-Chlorotoluene	2.58	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	07/19/22 20:25	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	07/19/22 20:25	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:25	EPA 8260D	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:25	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:25	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	07/19/22 20:25	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	07/19/22 20:25	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 5 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	as by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-2-0722 (A2G0380-02)			<u> </u>	Matrix: Wa	ater	Batch:	22G0565	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	07/19/22 20:25	EPA 8260D	
cis-1,2-Dichloroethene	0.510	0.200	0.400	ug/L	1	07/19/22 20:25	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	07/19/22 20:25	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	07/19/22 20:25	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
Ethylbenzene	0.580	0.250	0.500	ug/L	1	07/19/22 20:25	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	07/19/22 20:25	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	07/19/22 20:25	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	07/19/22 20:25	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	07/19/22 20:25	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	07/19/22 20:25	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:25	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	07/19/22 20:25	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	07/19/22 20:25	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	07/19/22 20:25	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	07/19/22 20:25	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	07/19/22 20:25	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	07/19/22 20:25	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	07/19/22 20:25	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	07/19/22 20:25	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	07/19/22 20:25	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 6 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

ANALYTICAL SAMPLE RESULTS

	Commit-	Detection	Domontin -			Data		
Analyte	Sample Result	Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-2-0722 (A2G0380-02)				Matrix: Wate	er	Batch: 2	22G0565	
m,p-Xylene	0.630	0.500	1.00	ug/L	1	07/19/22 20:25	EPA 8260D	J
o-Xylene	1.07	0.250	0.500	ug/L	1	07/19/22 20:25	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 111 %	Limits: 80-120 %	1	07/19/22 20:25	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %		07/19/22 20:25	EPA 8260D	
4-Bromofluorobenzene (Surr)			93 %	80-120 %	1	07/19/22 20:25	EPA 8260D	
MW-3-0722 (A2G0380-03)				Matrix: Wate	er	Batch: 2	22G0565	
Acetone	ND	10.0	20.0	ug/L	1	07/19/22 20:52	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	07/19/22 20:52	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	07/19/22 20:52	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:52	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	07/19/22 20:52	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	07/19/22 20:52	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	07/19/22 20:52	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:52	EPA 8260D	
Chloroethane	ND	5.00	10.0	ug/L	1	07/19/22 20:52	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	07/19/22 20:52	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	07/19/22 20:52	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	07/19/22 20:52	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:52	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:52	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:52	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 7 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-3-0722 (A2G0380-03)				Matrix: Wa	ater	Batch:	22G0565	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	07/19/22 20:52	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	07/19/22 20:52	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	07/19/22 20:52	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	07/19/22 20:52	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	07/19/22 20:52	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	07/19/22 20:52	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:52	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	07/19/22 20:52	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	07/19/22 20:52	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	07/19/22 20:52	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	07/19/22 20:52	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	07/19/22 20:52	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	07/19/22 20:52	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	07/19/22 20:52	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	07/19/22 20:52	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	07/19/22 20:52	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	07/19/22 20:52	EPA 8260D	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	07/19/22 20:52	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	07/19/22 20:52	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	07/19/22 20:52	EPA 8260D	
Γrichloroethene (TCE)	ND	0.200	0.400	ug/L	1	07/19/22 20:52	EPA 8260D	
Frichlorofluoromethane	ND	1.00	2.00	ug/L	1	07/19/22 20:52	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 8 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	טט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-3-0722 (A2G0380-03)				Matrix: Wate	r	Batch: 2	22G0565	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	07/19/22 20:52	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	07/19/22 20:52	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 113 %	Limits: 80-120 %	1	07/19/22 20:52	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	07/19/22 20:52	EPA 8260D	
4-Bromofluorobenzene (Surr)			92 %	80-120 %	1	07/19/22 20:52	EPA 8260D	
MW-11-0722 (A2G0380-04)				Matrix: Wate	er	Batch: 2	22G0565	
Acetone	ND	10.0	20.0	ug/L	1	07/19/22 21:19	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	07/19/22 21:19	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	07/19/22 21:19	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	07/19/22 21:19	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	07/19/22 21:19	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	07/19/22 21:19	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	07/19/22 21:19	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 21:19	EPA 8260D	
Chloroethane	ND	5.00	10.0	ug/L	1	07/19/22 21:19	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	07/19/22 21:19	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	07/19/22 21:19	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	07/19/22 21:19	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	as by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-11-0722 (A2G0380-04)				Matrix: Wa	ater	Batch:	22G0565	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 21:19	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 21:19	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	07/19/22 21:19	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	07/19/22 21:19	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	07/19/22 21:19	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	07/19/22 21:19	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	07/19/22 21:19	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	07/19/22 21:19	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	07/19/22 21:19	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	07/19/22 21:19	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	07/19/22 21:19	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	07/19/22 21:19	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	07/19/22 21:19	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	07/19/22 21:19	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
Naphthalene	ND	1.00	2.00	ug/L	1	07/19/22 21:19	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	07/19/22 21:19	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	07/19/22 21:19	EPA 8260D	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	07/19/22 21:19	EPA 8260D	
Cetrachloroethene (PCE)	0.240	0.200	0.400	ug/L	1	07/19/22 21:19	EPA 8260D	J
Toluene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	07/19/22 21:19	EPA 8260D	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	07/19/22 21:19	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	07/19/22 21:19	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 10 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

ANALYTICAL SAMPLE RESULTS

		olatile Organ	ic Compour	nds by EPA 826	50D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-11-0722 (A2G0380-04)				Matrix: Wate	er	Batch: 22G0565		
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	07/19/22 21:19	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	07/19/22 21:19	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	07/19/22 21:19	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	07/19/22 21:19	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	07/19/22 21:19	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 111 %	Limits: 80-120 %	6 I	07/19/22 21:19	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	6 I	07/19/22 21:19	EPA 8260D	
4-Bromofluorobenzene (Surr)			93 %	80-120 %	ó 1	07/19/22 21:19	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

ANALYTICAL SAMPLE RESULTS

		Vinyl Chlo	ride by EF	A 8260D SIM				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1-0722 (A2G0380-01)				Matrix: Wate	r	Batch:	22G0560	
Vinyl chloride	0.0518	0.0100	0.0200	ug/L	1	07/19/22 20:59	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	ry: 98 %	Limits: 80-120 %	1	07/19/22 20:59	EPA 8260D SIM	
Toluene-d8 (Surr)			99 %	80-120 %	1	07/19/22 20:59	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	07/19/22 20:59	EPA 8260D SIM	
MW-2-0722 (A2G0380-02)				Matrix: Wate	r	Batch:	22G0560	
Vinyl chloride	0.211	0.0100	0.0200	ug/L	1	07/19/22 21:26	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	ry: 97%	Limits: 80-120 %	1	07/19/22 21:26	EPA 8260D SIM	
Toluene-d8 (Surr)			98 %	80-120 %	1	07/19/22 21:26	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	07/19/22 21:26	EPA 8260D SIM	
MW-3-0722 (A2G0380-03)				Matrix: Wate	r	Batch:	22G0560	
Vinyl chloride	0.0276	0.0100	0.0200	ug/L	1	07/19/22 21:53	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	ry: 97%	Limits: 80-120 %	1	07/19/22 21:53	EPA 8260D SIM	
Toluene-d8 (Surr)			98 %	80-120 %	1	07/19/22 21:53	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	07/19/22 21:53	EPA 8260D SIM	
MW-11-0722 (A2G0380-04)				Matrix: Wate	r	Batch:	22G0560	
Vinyl chloride	0.197	0.0100	0.0200	ug/L	1	07/19/22 22:20	EPA 8260D SIM	Q-42
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	ry: 97%	Limits: 80-120 %	1	07/19/22 22:20	EPA 8260D SIM	
Toluene-d8 (Surr)			98 %	80-120 %	1	07/19/22 22:20	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	07/19/22 22:20	EPA 8260D SIM	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2G0380 - 07 25 22 1604

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 22G0565 - EPA 5030B Water Blank (22G0565-BLK1) Prepared: 07/19/22 12:41 Analyzed: 07/19/22 15:55 EPA 8260D ND 10.0 20.0 ug/L Acetone ND 2.00 Acrylonitrile 1.00 ug/L 1 Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 1 ug/L Bromochloromethane ND 0.500 1.00 ug/L 1 ND Bromodichloromethane 0.500 1.00 ug/L 1 Bromoform ND 0.500 1.00 ug/L 1 5.00 Bromomethane ND 5.00 ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 ug/L 1.00 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 10.0 ug/L 1 ---Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L ---2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 Dibromochloromethane ND 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 Dibromomethane ND 0.500 1.00 ug/L 1 0.250 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene 0.200 0.400 ND ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 13 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2G0380 - 07 25 22 1604

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit

Batch 22G0565 - EPA 5030B							Wa	ater		
Blank (22G0565-BLK1)			Prepared:	07/19/22 12	:41 Anal	yzed: 07/19	/22 15:55		 	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1				 	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1				 	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1				 	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1				 	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1				 	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1				 	
Ethylbenzene	ND	0.250	0.500	ug/L	1				 	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1				 	
2-Hexanone	ND	5.00	10.0	ug/L	1				 	
Isopropylbenzene	ND	0.500	1.00	ug/L	1				 	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1				 	
Methylene chloride	ND	5.00	10.0	ug/L	1				 	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1				 	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1				 	
Naphthalene	ND	1.00	2.00	ug/L	1				 	
n-Propylbenzene	ND	0.250	0.500	ug/L	1				 	
Styrene	ND	0.500	1.00	ug/L	1				 	
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1				 	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1				 	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1				 	
Toluene	ND	0.500	1.00	ug/L	1				 	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1				 	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1				 	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1				 	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1				 	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1				 	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1				 	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1				 	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1				 	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1				 	
Vinyl chloride	ND	0.200	0.400	ug/L	1				 	
m,p-Xylene	ND	0.500	1.00	ug/L	1				 	
o-Xylene	ND	0.250	0.500	ug/L	1				 	

Surr: 1,4-Difluorobenzene (Surr) Recovery: 109 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0565 - EPA 5030B							Wa	ter				
Blank (22G0565-BLK1)			Prepared	1: 07/19/22	12:41 Ana	lyzed: 07/19	/22 15:55					
Surr: Toluene-d8 (Surr)		Reco	very: 102 %	Limits: 80	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			94 %	80	0-120 %		"					
LCS (22G0565-BS1)			Prepared	1: 07/19/22	12:41 Ana	lyzed: 07/19	/22 13:13					A-01
EPA 8260D												
Acetone	52.8	10.0	20.0	ug/L	1	40.0		132	80-120%			Q-5
Acrylonitrile	20.9	1.00	2.00	ug/L	1	20.0		105	80-120%			
Benzene	20.1	0.100	0.200	ug/L	1	20.0		101	80-120%			
Bromobenzene	17.4	0.250	0.500	ug/L	1	20.0		87	80-120%			
Bromochloromethane	21.8	0.500	1.00	ug/L	1	20.0		109	80-120%			
Bromodichloromethane	19.3	0.500	1.00	ug/L	1	20.0		97	80-120%			
Bromoform	17.8	0.500	1.00	ug/L	1	20.0		89	80-120%			
Bromomethane	13.8	5.00	5.00	ug/L	1	20.0		69	80-120%			Q-5
2-Butanone (MEK)	48.8	5.00	10.0	ug/L	1	40.0		122	80-120%			Q-5
n-Butylbenzene	20.9	0.500	1.00	ug/L	1	20.0		105	80-120%			
sec-Butylbenzene	19.8	0.500	1.00	ug/L	1	20.0		99	80-120%			
tert-Butylbenzene	17.4	0.500	1.00	ug/L	1	20.0		87	80-120%			
Carbon disulfide	17.3	5.00	10.0	ug/L	1	20.0		87	80-120%			
Carbon tetrachloride	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%			
Chlorobenzene	19.9	0.250	0.500	ug/L	1	20.0		100	80-120%			
Chloroethane	24.0	5.00	10.0	ug/L	1	20.0		120	80-120%			ICV-0
Chloroform	20.4	0.500	1.00	ug/L	1	20.0		102	80-120%			
Chloromethane	31.7	2.50	5.00	ug/L	1	20.0		159	80-120%			Q-5
2-Chlorotoluene	17.6	0.500	1.00	ug/L	1	20.0		88	80-120%			
4-Chlorotoluene	18.5	0.500	1.00	ug/L	1	20.0		93	80-120%			
Dibromochloromethane	17.9	0.500	1.00	ug/L	1	20.0		89	80-120%			
1,2-Dibromo-3-chloropropane	16.8	2.50	5.00	ug/L	1	20.0		84	80-120%			
1,2-Dibromoethane (EDB)	17.7	0.250	0.500	ug/L	1	20.0		89	80-120%			
Dibromomethane	20.5	0.500	1.00	ug/L	1	20.0		102	80-120%			
1,2-Dichlorobenzene	19.7	0.250	0.500	ug/L	1	20.0		99	80-120%			
1,3-Dichlorobenzene	20.0	0.250	0.500	ug/L	1	20.0		100	80-120%			
1,4-Dichlorobenzene	19.6	0.250	0.500	ug/L	1	20.0		98	80-120%			
Dichlorodifluoromethane	19.5	0.500	1.00	ug/L	1	20.0		98	80-120%			
1,1-Dichloroethane	20.7	0.200	0.400	ug/L	1	20.0		103	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2G0380 - 07 25 22 1604

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22G0565 - EPA 5030B Water LCS (22G0565-BS1) Prepared: 07/19/22 12:41 Analyzed: 07/19/22 13:13 A-01 1,2-Dichloroethane (EDC) 20.7 0.200 0.400 ug/L 20.0 104 80-120% 1,1-Dichloroethene 19.8 0.200 0.400 ug/L 1 20.0 99 80-120% ---------20.0 99 cis-1,2-Dichloroethene 19.7 0.200 0.400 ug/L 1 80-120% trans-1,2-Dichloroethene 19.6 0.200 0.400 ug/L 1 20.0 98 80-120% 20.0 20.3 0.250 0.500 102 80-120% 1,2-Dichloropropane ug/L 1 99 1,3-Dichloropropane 19.7 0.500 1.00 ug/L 1 20.0 80-120% 2,2-Dichloropropane 17.7 0.5001.00 ug/L 1 20.0 88 80-120% 20.0 1,1-Dichloropropene 20.0 0.500 1.00 ug/L 1 100 80-120% 0.500 1.00 20.0 cis-1,3-Dichloropropene 18.1 ug/L 1 90 80-120% trans-1,3-Dichloropropene 19.6 0.500 1.00 ug/L 1 20.0 98 80-120% Ethylbenzene 20.0 20.1 0.250 0.500 100 80-120% ug/L 1 ---20.0 Hexachlorobutadiene 21.0 2.50 5.00 ug/L 1 105 80-120% 41.9 40.0 105 2-Hexanone 5.00 10.0 ug/L 1 ---80-120% ---Isopropylbenzene 19.6 0.500 1.00 ug/L 1 20.0 98 80-120% 0.500 20.0 100 80-120% 4-Isopropyltoluene 20.1 1.00 ug/L 1 ---Methylene chloride 21.5 5.00 10.0 ug/L 1 20.0 107 80-120% 5.00 10.0 40.0 98 4-Methyl-2-pentanone (MiBK) 39.2 1 80-120% ug/L Methyl tert-butyl ether (MTBE) 16.5 0.500 1.00 1 20.0 83 80-120% ug/L Naphthalene 17.4 1.00 2.00 20.0 87 ug/L 1 ---80-120% --n-Propylbenzene 18.9 0.250 0.500 ug/L 1 20.0 95 80-120% 20.6 0.500 1.00 20.0 103 80-120% Styrene ug/L 1 1,1,1,2-Tetrachloroethane 19.9 0.200 0.400 ug/L 1 20.0 99 80-120% 1,1,2,2-Tetrachloroethane 20.3 0.250 0.500 20.0 102 80-120% ug/L 1 Tetrachloroethene (PCE) 20.1 0.200 0.400 ug/L 1 20.0 100 80-120% Toluene 18.7 0.500 1.00 20.0 94 ug/L 1 80-120% ------1,2,3-Trichlorobenzene 20.4 1.00 2.00 ug/L 1 20.0 102 80-120% 1,2,4-Trichlorobenzene 196 1.00 2.00 ug/L 20.0 98 80-120% 1 ---

Apex Laboratories

Philip Nevenberg

1,1,1-Trichloroethane

1.1.2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

18.4

19.5

18.9

24.2

18.6

19.8

19.4

0.200

0.250

0.200

1.00

0.500

0.500

0.500

0.400

0.500

0.400

2.00

1.00

1.00

1.00

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

1

1

1

1

1

1

1

20.0

20.0

20.0

20.0

20.0

20.0

20.0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

92

98

94

121

93

99

97

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

Q-56

Philip Nerenberg, Lab Director

Page 16 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2G0380 - 07 25 22 1604

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0565 - EPA 5030B							Wa	ter				
LCS (22G0565-BS1)			Prepared	1: 07/19/22	12:41 Ana	lyzed: 07/19	/22 13:13					A-0
Vinyl chloride	20.9	0.200	0.400	ug/L	1	20.0		105	80-120%			
n,p-Xylene	40.9	0.500	1.00	ug/L	1	40.0		102	80-120%			
o-Xylene	18.4	0.250	0.500	ug/L	1	20.0		92	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	verv: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %		-120 %		"					
4-Bromofluorobenzene (Surr)			86 %		0-120 %		"					
Duplicate (22G0565-DUP1)			Prepared	1: 07/19/22	12:41 Ana	lyzed: 07/19/	/22 19:58					
OC Source Sample: MW-1-0722 (A2G0380-01	1)	*			-						
EPA 8260D												
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	10.0	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
l-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

Dibromomethane

ND

0.500

1.00

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

30%

Philip Nerenberg, Lab Director

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2G0380 - 07 25 22 1604

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 22G0565 - EPA 5030B Water Duplicate (22G0565-DUP1) Prepared: 07/19/22 12:41 Analyzed: 07/19/22 19:58 QC Source Sample: MW-1-0722 (A2G0380-01) 1,2-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 1,3-Dichlorobenzene 0.500 ug/L 1 ND 30% 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 1 ND 30% ug/L ------1,2-Dichloroethane (EDC) ND 0.200 0.400 ug/L 1 ND 30% 1,1-Dichloroethene ND 0.200 0.400ug/L 1 ND 30% 0.400 ND 30% cis-1,2-Dichloroethene ND 0.200 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% 2,2-Dichloropropane ug/L 1 ND 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% cis-1,3-Dichloropropene ug/L 1 ND 0.500 ug/L trans-1,3-Dichloropropene ND 1.00 1 ND 30% Ethylbenzene ND 0.250 0.500 ug/L 1 ND ___ 30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND 30% ND 30% 2-Hexanone 5.00 10.0 1 ND ug/L ND Isopropylbenzene 0.500 1.00 ug/L 1 ND 30% 0.500 1.00 ND ND 30% 4-Isopropyltoluene ug/L 1 ND Methylene chloride 5.00 10.0 ug/L 1 ND 30% 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND ---30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND 30% Naphthalene ND 30% 1.00 2.00 ug/L 1 ND ND 0.250 0.500 30% n-Propylbenzene ug/L 1 ND ND 0.500 1.00 ND 30% Styrene ug/L 1 1,1,1,2-Tetrachloroethane ND 0.200 0.400 ND 30% ug/L 1 ND 1,1,2,2-Tetrachloroethane 0.250 0.500 ug/L 1 ---ND ------30% Tetrachloroethene (PCE) 0.250 0.200 0.400 ug/L 1 0.200 22 30% J Toluene ND 0.500 1.00 ND 30% ug/L 1 ---1,2,3-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND 30% 1.00 2.00 1,2,4-Trichlorobenzene ND 1 ND 30% ug/L

Apex Laboratories

Philip Merenberg

1,1,1-Trichloroethane

ND

0.200

0.400

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

ND

Philip Nerenberg, Lab Director

Page 18 of 27

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units Amount Result % REC Limits RPD Limit Limit Notes Water Batch 22G0565 - EPA 5030B Duplicate (22G0565-DUP1) Prepared: 07/19/22 12:41 Analyzed: 07/19/22 19:58 QC Source Sample: MW-1-0722 (A2G0380-01) 0.250 30% 1,1,2-Trichloroethane ND 0.500 ug/L 1 ND Trichloroethene (TCE) ND 0.200 0.400 30% ug/L 1 ND Trichlorofluoromethane ND 1.00 2.00 ug/L 1 ND 30% 1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 ND 30% 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1 ND 30% 1,3,5-Trimethylbenzene ND 0.500 1.00 30% ug/L 1 ND ND 0.200 0.400 Vinyl chloride ug/L 1 ND 30% ND 30% m,p-Xylene 0.500 1.00 ug/L ND 1 ND 0.250 ND 30% o-Xylene 0.500 ug/L 1 1,4-Difluorobenzene (Surr) 113 % 80-120 % Recovery: Limits: Dilution: 1x Toluene-d8 (Surr) 102 % 80-120 % ,, 4-Bromofluorobenzene (Surr) 93 % 80-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

QUALITY CONTROL (QC) SAMPLE RESULTS

			Vinyl	Chloride	by EPA 8	3260D SIM						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0560 - EPA 5030B							Wa	ter				
Blank (22G0560-BLK1)			Prepared	l: 07/19/22	11:35 Ana	lyzed: 07/19	/22 14:43					
EPA 8260D SIM												
Vinyl chloride	ND	0.0100	0.0200	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			99 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			103 %	8	0-120 %		"					
LCS (22G0560-BS1)			Prepared	l: 07/19/22	11:35 Ana	lyzed: 07/19	/22 13:47					
EPA 8260D SIM												
Vinyl chloride	0.184	0.0100	0.0200	ug/L	1	0.200		92	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 94 %	Limits: 8	0-120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			98 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	8	0-120 %		"					
Duplicate (22G0560-DUP1)			Prepared	l: 07/19/22	11:35 Ana	lyzed: 07/19	/22 17:24					
OC Source Sample: Non-SDG (A2	G0156-04)											
Vinyl chloride	ND	0.0100	0.0200	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			97 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			93 %	8	0-120 %		"					
Matrix Spike (22G0560-MS1)			Prepared	l: 07/19/22	11:35 Ana	lyzed: 07/19	/22 22:46					
QC Source Sample: MW-11-0722	(A2G0380-0	<u>)4)</u>										
EPA 8260D SIM												
Vinyl chloride	0.271	0.0100	0.0200	ug/L	1	0.200	0.197	37	58-137%			Ç
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			99 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	8	0-120 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

SAMPLE PREPARATION INFORMATION

	Volatile Organic Compounds by EPA 8260D												
Prep: EPA 5030B					Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Batch: 22G0565													
A2G0380-01	Water	EPA 8260D	07/13/22 11:30	07/19/22 12:41	5mL/5mL	5mL/5mL	1.00						
A2G0380-02	Water	EPA 8260D	07/13/22 12:00	07/19/22 12:41	5mL/5mL	5mL/5mL	1.00						
A2G0380-03	Water	EPA 8260D	07/13/22 12:31	07/19/22 12:41	5mL/5mL	5mL/5mL	1.00						
A2G0380-04	Water	EPA 8260D	07/13/22 11:33	07/19/22 12:41	5mL/5mL	5mL/5mL	1.00						

Vinyl Chloride by EPA 8260D SIM							
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22G0560							
A2G0380-01	Water	EPA 8260D SIM	07/13/22 11:30	07/19/22 11:36	5mL/5mL	5mL/5mL	1.00
A2G0380-02	Water	EPA 8260D SIM	07/13/22 12:00	07/19/22 11:36	5mL/5mL	5mL/5mL	1.00
A2G0380-03	Water	EPA 8260D SIM	07/13/22 12:31	07/19/22 11:36	5mL/5mL	5mL/5mL	1.00
A2G0380-04	Water	EPA 8260D SIM	07/13/22 11:33	07/19/22 11:36	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2G0380 - 07 25 22 1604

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

A-01	Due to preparation error, not all Batch QC samples were analyzed. The batch is accepted based on the recoveries of the Blank Spike (BS).
ICV-01	Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.

J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.

Q-01 Spike recovery and/or RPD is outside acceptance limits.

Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)

Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.

Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 22 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 23 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 24 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A2G0380 - 07 25 22 1604

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 25 of 27

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project: Woodinville West
Project Number: 101.20841.00001

Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

Company: 5LR	4	Project Mgr. Gred		45:7			8	Proje	ct Nan	ie: (v)	Project Name: Wood in 1,11e	100	West Business	Susin		27.	1	Project #: 0 . 2084/- 0000	1807	1.0000		
Address: 2410 with his SE	Suite G	6202 , Bothell	1 1		Phone: 425		8 204	8800		nail: 6	Email: 9/154@strconsling.com		ors.	2) S.C.	. 165		A	PO#				
Sampled by: Sperier (ANAL	YSIS	ANALYSIS REQUEST	EST						
Site Location:			<u> </u>			2			492	_	isi					,8M ,1T ,1				-		
OR WA CA				SKS							,			(.d, G , Hg, N ,3A	TOT					
AK ID				LVIVE										8) elet		E¢, Ph E¢, Ph K, S¢,	.00	(8) sign				
	AB ID#	ATE	XINTA	OŁ COM	I-Hdlw	І-НЧТW Э-НЧТW	3E0 BTE	GBR 092	OOV 092	WIS 027	ims2 072	087 PCB	189 I Pest	CEA Me	M viiroir	Sb, As, I Co, Cu, Mo, Mi, Z Zn	TWT TNT	CLP Me				элілэ
An		- ;				_		_			-		8	er		WE CE VI'	0.1	ı		+	-	YV
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					+-	-			+	X	-			+			\dagger		-	+		
10 0 1 Min			+	1	\dagger	+		Ť	+	+	1			t	1		\dagger	+	Ţ		-	
MW-3-078	+	163	_	#	\dashv	4			\dashv	×	4			\dashv	7		1			+		
MW-11-0722	-	1133	3	→																		
Companies and the Companies an	+				_	+			\dashv											\dashv	_	
- The second state of the second seco		\dashv	-		-	-	[\dashv		\dashv						1					
					1	+		1	_					\dashv						\dashv		
					\top	-			-					_					_	+	4	
			+		\top	+			+	+	_			\top					-	+	_	
]	\dashv	-	4		+	-	_			1			,			-		
Norm	Normal Jun Around June (1A1) = 19 Business Days	1 Ime (IA	I)= Iq B	usiness L	Jays				T	PECL	SPECIAL INSTRUCTIONS	, IRU										
G E T E	1 Day	2 Day		3 Day						Ś	Viryl chlovide by	را دا دادا	~ સુ		87601	85600 SIM						
1A1 Requested (circle)	4 DAY	5 DAY	ΑY	Other:	er:			1														
	SAMPLES ARE	HELD FOR	30 DAYS						Т			÷										
ИЕВ ВУ:	RECEIVER BY 7.13.22	REC Signa	EIVED BY		1	Date:	1	14/	® ® ₩	ELINQ gnature:	RELINQUISHED BY: Signature:	ED BY				Date:		RECEIVED BY: Signature:	9	Date:	65	
Printed Name: Spence lo	Time: / 530	Print	Printed Name:	W.	1/2	Time:	- (135		Printed Name;	ame:					Time:		Printed Name:		Time:	<u></u>	
Company: 5LR		Com	Company:	7	Cu	0			٥	Сотрапу:	e.							Company:				.0091

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A2G0380 - 07 25 22 1604

Client: 51/5	Element WO#: A2 600 780
Project/Project #: <u>Ww</u>	dinville West Business Park 61.20841.
Delivery Info:	20001
Date/time received: 1	27a 1035 By: 15
Delivered by: ApexCli	
Cooler Inspection Date	e/time inspected: 7/14/2/@ 1036 By: 5
Chain of Custody included?	? Yes No Custody seals? Yes No
Signed/dated by client?	Yes No
Signed/dated by Apex?	Yes No
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	3.1
Received on ice? (Y/N)	<u></u>
Temp. blanks? (Y/N)	_X
Ice type: (Gel/Real/Other)	Year
Condition:	_good
All samples intact? Yes	No Comments:
Bottle labels/COCs agree?	Yes Yes No Comments:

COC/container discrepancie	es form initiated? Yes No \nearrow
E. M. STAN SERVICE STREET, MARKET ST	es form initiated? Yes No Comments:
Containers/volumes receive Do VOA vials have visible Comments	headspace? Yes No No NA NA
Containers/volumes receive Do VOA vials have visible Comments	ed appropriate for analysis? Yes 🔀 No Comments:
Containers/volumes receive Do VOA vials have visible Comments Water samples: pH checked	headspace? Yes No No NA NA
Containers/volumes receive Do VOA vials have visible Comments Water samples: pH checked Comments:	headspace? Yes No No NA NA
Containers/volumes receive Do VOA vials have visible Comments	headspace? Yes No Y NA L. H. Yes No NA Y pH appropriate? Yes No NA Y

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Maenberg

Page 27 of 27 $\,$

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, October 27, 2022 Greg Lish SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021

RE: A2J0415 - Woodinville West - 101.20841.00001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2J0415, which was received by the laboratory on 10/13/2022 at 11:08:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1

1.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Bothell, WA 98021

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1-1022	A2J0415-01	Water	10/12/22 11:54	10/13/22 11:08
MW-2-1022	A2J0415-02	Water	10/12/22 12:42	10/13/22 11:08
MW-3-1022	A2J0415-03	Water	10/12/22 13:33	10/13/22 11:08
MW-11-1022	A2J0415-04	Water	10/12/22 12:07	10/13/22 11:08

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 2 of 31

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

ANALYTICAL SAMPLE RESULTS

		oracine Organ	ic Compound	JO DY EPA 8.				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
·	Kesuit	Lillit						INOTES
MW-1-1022 (A2J0415-01)				Matrix: Wa	ater	Batch:	22J0701	
Acetone	ND		20.0	ug/L	1	10/18/22 15:30	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	10/18/22 15:30	EPA 8260D	
Benzene	ND		0.200	ug/L	1	10/18/22 15:30	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	10/18/22 15:30	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	10/18/22 15:30	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	10/18/22 15:30	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	10/18/22 15:30	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	10/18/22 15:30	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	10/18/22 15:30	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	10/18/22 15:30	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	10/18/22 15:30	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	10/18/22 15:30	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	10/18/22 15:30	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	10/18/22 15:30	EPA 8260D	
,4-Dichlorobenzene	ND		0.500	ug/L	1	10/18/22 15:30	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
,1-Dichloroethane	ND		0.400	ug/L	1	10/18/22 15:30	EPA 8260D	
,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	10/18/22 15:30	EPA 8260D	
,1-Dichloroethene	ND		0.400	ug/L	1	10/18/22 15:30	EPA 8260D	
sis-1,2-Dichloroethene	ND		0.400	ug/L	1	10/18/22 15:30	EPA 8260D	
rans-1,2-Dichloroethene	ND		0.400	ug/L	1	10/18/22 15:30	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-1-1022 (A2J0415-01)				Matrix: Wate	er	Batch:	22J0701	
1,2-Dichloropropane	ND		0.500	ug/L	1	10/18/22 15:30	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	10/18/22 15:30	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	10/18/22 15:30	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	10/18/22 15:30	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	10/18/22 15:30	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	10/18/22 15:30	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
Naphthalene	ND		2.00	ug/L	1	10/18/22 15:30	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	10/18/22 15:30	EPA 8260D	
Styrene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	10/18/22 15:30	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	10/18/22 15:30	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	10/18/22 15:30	EPA 8260D	
Toluene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	10/18/22 15:30	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	10/18/22 15:30	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	10/18/22 15:30	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	10/18/22 15:30	EPA 8260D	
Frichloroethene (TCE)	ND		0.400	ug/L	1	10/18/22 15:30	EPA 8260D	
Frichlorofluoromethane	ND		2.00	ug/L	1	10/18/22 15:30	EPA 8260D	
,2,3-Trichloropropane	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
,2,4-Trimethylbenzene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
,3,5-Trimethylbenzene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
n,p-Xylene	ND		1.00	ug/L	1	10/18/22 15:30	EPA 8260D	
-Xylene	ND		0.500	ug/L	1	10/18/22 15:30	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Racove		Limits: 80-120 %		10/18/22 15:30	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1-1022 (A2J0415-01)				Matrix: Wate	r	Batch:	22J0701	
Surrogate: Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)		Recov	ery: 103 % 99 %	Limits: 80-120 % 80-120 %		10/18/22 15:30 10/18/22 15:30	EPA 8260D EPA 8260D	
MW-2-1022 (A2J0415-02)				Matrix: Wate	r	Batch:	22J0701	
Acetone	ND		20.0	ug/L	1	10/18/22 15:51	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	10/18/22 15:51	EPA 8260D	
Benzene	ND		0.200	ug/L	1	10/18/22 15:51	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	10/18/22 15:51	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	10/18/22 15:51	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	10/18/22 15:51	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	10/18/22 15:51	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	10/18/22 15:51	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	10/18/22 15:51	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	10/18/22 15:51	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	10/18/22 15:51	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	10/18/22 15:51	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	10/18/22 15:51	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	10/18/22 15:51	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	10/18/22 15:51	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	10/18/22 15:51	EPA 8260D	
,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	10/18/22 15:51	EPA 8260D	
1,2 2.10moloculaine (EDC)	112		0.100					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 5 of 31

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-2-1022 (A2J0415-02)		<u> </u>		Matrix: Wa	ater	Batch:	22J0701	-
1,1-Dichloroethene	ND		0.400	ug/L	1	10/18/22 15:51	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	10/18/22 15:51	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	10/18/22 15:51	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	10/18/22 15:51	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	10/18/22 15:51	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	10/18/22 15:51	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	10/18/22 15:51	EPA 8260D	
sopropylbenzene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
l-Isopropyltoluene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	10/18/22 15:51	EPA 8260D	
1-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	10/18/22 15:51	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
Naphthalene	ND		2.00	ug/L	1	10/18/22 15:51	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	10/18/22 15:51	EPA 8260D	
Styrene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	10/18/22 15:51	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	10/18/22 15:51	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	10/18/22 15:51	EPA 8260D	
Toluene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	10/18/22 15:51	EPA 8260D	
,2,4-Trichlorobenzene	ND		2.00	ug/L	1	10/18/22 15:51	EPA 8260D	
,1,1-Trichloroethane	ND		0.400	ug/L	1	10/18/22 15:51	EPA 8260D	
,1,2-Trichloroethane	ND		0.500	ug/L	1	10/18/22 15:51	EPA 8260D	
Crichloroethene (TCE)	ND		0.400	ug/L	1	10/18/22 15:51	EPA 8260D	
richlorofluoromethane	ND		2.00	ug/L	1	10/18/22 15:51	EPA 8260D	
,2,3-Trichloropropane	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
,2,4-Trimethylbenzene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
,3,5-Trimethylbenzene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

ANALYTICAL SAMPLE RESULTS

	V	olatile Organio	Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-2-1022 (A2J0415-02)				Matrix: Wate	r	Batch: 2	22J0701	
Vinyl chloride	0.930		0.400	ug/L	1	10/18/22 15:51	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	10/18/22 15:51	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	10/18/22 15:51	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 100 %	Limits: 80-120 %	1	10/18/22 15:51	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	10/18/22 15:51	EPA 8260D	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	10/18/22 15:51	EPA 8260D	
MW-3-1022 (A2J0415-03)				Matrix: Wate	r	Batch: 2	22J0701	
Acetone	ND		20.0	ug/L	1	10/18/22 16:13	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	10/18/22 16:13	EPA 8260D	
Benzene	ND		0.200	ug/L	1	10/18/22 16:13	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	10/18/22 16:13	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	10/18/22 16:13	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	10/18/22 16:13	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
ert-Butylbenzene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	10/18/22 16:13	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	10/18/22 16:13	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	10/18/22 16:13	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	10/18/22 16:13	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
1-Chlorotoluene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	10/18/22 16:13	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	10/18/22 16:13	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	10/18/22 16:13	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	10/18/22 16:13	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-3-1022 (A2J0415-03)				Matrix: Wa	ater	Batch:	22J0701	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	10/18/22 16:13	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	10/18/22 16:13	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	10/18/22 16:13	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	10/18/22 16:13	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	10/18/22 16:13	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	10/18/22 16:13	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	10/18/22 16:13	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	10/18/22 16:13	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	10/18/22 16:13	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	10/18/22 16:13	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	10/18/22 16:13	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	10/18/22 16:13	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
Naphthalene	ND		2.00	ug/L	1	10/18/22 16:13	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	10/18/22 16:13	EPA 8260D	
Styrene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	10/18/22 16:13	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	10/18/22 16:13	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	10/18/22 16:13	EPA 8260D	
Toluene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
,2,3-Trichlorobenzene	ND		2.00	ug/L	1	10/18/22 16:13	EPA 8260D	
,2,4-Trichlorobenzene	ND		2.00	ug/L	1	10/18/22 16:13	EPA 8260D	
,1,1-Trichloroethane	ND		0.400	ug/L	1	10/18/22 16:13	EPA 8260D	
,1,2-Trichloroethane	ND		0.500	ug/L ug/L	1	10/18/22 16:13	EPA 8260D	
Frichloroethene (TCE)	ND		0.400	ug/L ug/L	1	10/18/22 16:13	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-3-1022 (A2J0415-03)				Matrix: Wate	r	Batch:	22J0701	
Trichlorofluoromethane	ND		2.00	ug/L	1	10/18/22 16:13	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	10/18/22 16:13	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	10/18/22 16:13	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	1	10/18/22 16:13	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	10/18/22 16:13	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	I	10/18/22 16:13	EPA 8260D	
MW-11-1022 (A2J0415-04)				Matrix: Wate	r	Batch:	22J0701	
Acetone	ND		20.0	ug/L	1	10/18/22 16:34	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	10/18/22 16:34	EPA 8260D	
Benzene	ND		0.200	ug/L	1	10/18/22 16:34	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	10/18/22 16:34	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	10/18/22 16:34	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	10/18/22 16:34	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	10/18/22 16:34	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	10/18/22 16:34	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	10/18/22 16:34	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	10/18/22 16:34	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	10/18/22 16:34	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	10/18/22 16:34	EPA 8260D	

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

ANALYTICAL SAMPLE RESULTS

		olatile Organ	ic Compound	15 DY EPA 8	∠ 00D			
Amalanta	Sample	Detection	Reporting	TT *2	Dile e	Date	M-4-10 C	XT ·
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-11-1022 (A2J0415-04)				Matrix: Wa	ater	Batch:	22J0701	
Dibromomethane	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	10/18/22 16:34	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	10/18/22 16:34	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	10/18/22 16:34	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	10/18/22 16:34	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	10/18/22 16:34	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	10/18/22 16:34	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	10/18/22 16:34	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	10/18/22 16:34	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	10/18/22 16:34	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
rans-1,3-Dichloropropene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	10/18/22 16:34	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	10/18/22 16:34	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	10/18/22 16:34	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	10/18/22 16:34	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	10/18/22 16:34	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
Naphthalene	ND		2.00	ug/L	1	10/18/22 16:34	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	10/18/22 16:34	EPA 8260D	
Styrene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	10/18/22 16:34	EPA 8260D	
,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	10/18/22 16:34	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	10/18/22 16:34	EPA 8260D	
Toluene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
,2,3-Trichlorobenzene	ND		2.00	ug/L	1	10/18/22 16:34	EPA 8260D	
,2,4-Trichlorobenzene	ND		2.00	ug/L ug/L	1	10/18/22 16:34	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compour	nds by EPA 826	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-11-1022 (A2J0415-04)		•		Matrix: Wate	ər	Batch:	22J0701	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	10/18/22 16:34	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	10/18/22 16:34	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	10/18/22 16:34	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	10/18/22 16:34	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	10/18/22 16:34	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	10/18/22 16:34	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	6 <i>1</i>	10/18/22 16:34	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	6 I	10/18/22 16:34	EPA 8260D	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	6 I	10/18/22 16:34	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

ANALYTICAL SAMPLE RESULTS

		Vinyl Chl	oride by EF	A 8260D SIM				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1-1022 (A2J0415-01)				Matrix: Wate	ər	Batch:	22J0931	
Vinyl chloride	0.0360		0.0200	ug/L	1	10/24/22 16:07	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 94%	Limits: 80-120 %	6 I	10/24/22 16:07	EPA 8260D SIM	
Toluene-d8 (Surr)			99 %	80-120 %	6 1	10/24/22 16:07	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	6 I	10/24/22 16:07	EPA 8260D SIM	
MW-3-1022 (A2J0415-03)				Matrix: Wate	er	Batch:	22J0931	
Vinyl chloride	0.0542		0.0200	ug/L	1	10/24/22 16:34	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 94 %	Limits: 80-120 %	6 I	10/24/22 16:34	EPA 8260D SIM	
Toluene-d8 (Surr)			99 %	80-120 %	6 1	10/24/22 16:34	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	6 I	10/24/22 16:34	EPA 8260D SIM	
MW-11-1022 (A2J0415-04)				Matrix: Wate	er	Batch:	22J0931	
Vinyl chloride	0.0338		0.0200	ug/L	1	10/24/22 17:00	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 94 %	Limits: 80-120 %	6 I	10/24/22 17:00	EPA 8260D SIM	
Toluene-d8 (Surr)			98 %	80-120 %	6 1	10/24/22 17:00	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	6 <i>1</i>	10/24/22 17:00	EPA 8260D SIM	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID:
A2J0415 - 10 27 22 1207

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 22J0701 - EPA 5030C Water Blank (22J0701-BLK1) Prepared: 10/18/22 09:53 Analyzed: 10/18/22 13:01 EPA 8260D ND 20.0 ug/L Acetone ND 2.00 Acrylonitrile ug/L 1 Benzene ND 0.200 ug/L 1 Bromobenzene ND 0.500 ug/L 1 Bromochloromethane ND 1.00 ug/L 1 Bromodichloromethane ND 1.00 ug/L 1 Bromoform ND 1.00 ug/L 1 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 10.0 ug/L 1 n-Butylbenzene ND 1.00 1 ug/L sec-Butylbenzene ND 1.00 ug/L 1 ND tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 10.0 ug/L 1 Carbon tetrachloride ND ug/L 1.00 1 Chlorobenzene ND 0.500 ug/L 1 Chloroethane ND 5.00 ug/L 1 ---Chloroform ND 1.00 ug/L 1 5.00 Chloromethane ND 1 ug/L 2-Chlorotoluene ND 1.00 ug/L 1 4-Chlorotoluene ND 1.00 ug/L 1 Dibromochloromethane ND 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 ug/L Dibromomethane ND 1.00 1 1,2-Dichlorobenzene ND 0.500 ug/L 1 1,3-Dichlorobenzene ND 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.500 ug/L 1 Dichlorodifluoromethane ND 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.400ug/L 1 1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 1,1-Dichloroethene ND 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.400 ug/L 1

Apex Laboratories

Philip Merenberg

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 13 of 31

1

0.400

ug/L

ND

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID:
A2J0415 - 10 27 22 1207

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0701 - EPA 5030C							Wat	ter				
Blank (22J0701-BLK1)			Prepared	: 10/18/22	09:53 Anal	yzed: 10/18/	/22 13:01					
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
1,1-Dichloropropene	ND		1.00	ug/L	1							
cis-1,3-Dichloropropene	ND		1.00	ug/L	1							
rans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
Isopropylbenzene	ND		1.00	ug/L	1							
1-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		10.0	ug/L	1							
l-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Toluene	ND		1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1							
,2,4-Trichlorobenzene	ND		2.00	ug/L	1							
,1,1-Trichloroethane	ND		0.400	ug/L	1							
1,1,2-Trichloroethane	ND		0.500	ug/L	1							
Trichloroethene (TCE)	ND		0.400	ug/L	1							
Frichlorofluoromethane	ND		2.00	ug/L	1							
1,2,3-Trichloropropane	ND		1.00	ug/L	1							
,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Vinyl chloride	ND		0.400	ug/L	1							
n,p-Xylene	ND		1.00	ug/L	1							
o-Xylene	ND		0.500	ug/L ug/L	1							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 102 % Limits: 80-120 % Dilution: 1x

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2J0415 - 10 27 22 1207

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0701 - EPA 5030C							Wa	ter				
Blank (22J0701-BLK1)			Prepared	: 10/18/22	09:53 Anal	yzed: 10/18	/22 13:01					
Surr: Toluene-d8 (Surr)		Reco	very: 102 %	Limits: 80	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
LCS (22J0701-BS1)			Prepared	: 10/18/22	09:53 Anal	lyzed: 10/18	/22 12:18					
EPA 8260D												
Acetone	39.6		20.0	ug/L	1	40.0		99	80-120%			
Acrylonitrile	19.6		2.00	ug/L	1	20.0		98	80-120%			
Benzene	19.7		0.200	ug/L	1	20.0		99	80-120%			
Bromobenzene	18.6		0.500	ug/L	1	20.0		93	80-120%			
Bromochloromethane	21.6		1.00	ug/L	1	20.0		108	80-120%			
Bromodichloromethane	20.2		1.00	ug/L	1	20.0		101	80-120%			
Bromoform	22.1		1.00	ug/L	1	20.0		111	80-120%			
Bromomethane	16.3		5.00	ug/L	1	20.0		81	80-120%			
2-Butanone (MEK)	42.0		10.0	ug/L	1	40.0		105	80-120%			
n-Butylbenzene	22.0		1.00	ug/L	1	20.0		110	80-120%			
sec-Butylbenzene	22.9		1.00	ug/L	1	20.0		115	80-120%			
ert-Butylbenzene	22.0		1.00	ug/L	1	20.0		110	80-120%			
Carbon disulfide	20.1		10.0	ug/L	1	20.0		101	80-120%			
Carbon tetrachloride	21.8		1.00	ug/L	1	20.0		109	80-120%			
Chlorobenzene	19.7		0.500	ug/L	1	20.0		98	80-120%			
Chloroethane	21.5		5.00	ug/L	1	20.0		108	80-120%			
Chloroform	20.3		1.00	ug/L	1	20.0		102	80-120%			
Chloromethane	18.4		5.00	ug/L	1	20.0		92	80-120%			
2-Chlorotoluene	20.0		1.00	ug/L	1	20.0		100	80-120%			
4-Chlorotoluene	21.4		1.00	ug/L	1	20.0		107	80-120%			
Dibromochloromethane	21.0		1.00	ug/L	1	20.0		105	80-120%			
1,2-Dibromo-3-chloropropane	18.7		5.00	ug/L	1	20.0		93	80-120%			
,2-Dibromoethane (EDB)	20.5		0.500	ug/L	1	20.0		103	80-120%			
Dibromomethane	20.4		1.00	ug/L	1	20.0		102	80-120%			
,2-Dichlorobenzene	19.7		0.500	ug/L	1	20.0		99	80-120%			
1,3-Dichlorobenzene	20.3		0.500	ug/L	1	20.0		102	80-120%			
,4-Dichlorobenzene	19.0		0.500	ug/L	1	20.0		95	80-120%			
Dichlorodifluoromethane	20.6		1.00	ug/L	1	20.0		103	80-120%			
,1-Dichloroethane	20.0		0.400	ug/L	1	20.0		100	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2J0415 - 10 27 22 1207

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0701 - EPA 5030C							Wa	ter				
LCS (22J0701-BS1)			Prepared	: 10/18/22	09:53 Anal	yzed: 10/18/	22 12:18					
1,2-Dichloroethane (EDC)	19.6		0.400	ug/L	1	20.0		98	80-120%			
1,1-Dichloroethene	22.0		0.400	ug/L	1	20.0		110	80-120%			
cis-1,2-Dichloroethene	20.3		0.400	ug/L	1	20.0		102	80-120%			
trans-1,2-Dichloroethene	20.3		0.400	ug/L	1	20.0		101	80-120%			
1,2-Dichloropropane	19.7		0.500	ug/L	1	20.0		99	80-120%			
1,3-Dichloropropane	20.6		1.00	ug/L	1	20.0		103	80-120%			
2,2-Dichloropropane	21.6		1.00	ug/L	1	20.0		108	80-120%			
1,1-Dichloropropene	21.0		1.00	ug/L	1	20.0		105	80-120%			
cis-1,3-Dichloropropene	21.5		1.00	ug/L	1	20.0		107	80-120%			
trans-1,3-Dichloropropene	22.6		1.00	ug/L	1	20.0		113	80-120%			
Ethylbenzene	21.2		0.500	ug/L	1	20.0		106	80-120%			
Hexachlorobutadiene	19.7		5.00	ug/L	1	20.0		98	80-120%			
2-Hexanone	42.1		10.0	ug/L	1	40.0		105	80-120%			
Isopropylbenzene	23.0		1.00	ug/L	1	20.0		115	80-120%			
4-Isopropyltoluene	22.1		1.00	ug/L	1	20.0		110	80-120%			
Methylene chloride	18.9		10.0	ug/L	1	20.0		94	80-120%			
4-Methyl-2-pentanone (MiBK)	44.2		10.0	ug/L	1	40.0		110	80-120%			
Methyl tert-butyl ether (MTBE)	20.3		1.00	ug/L	1	20.0		102	80-120%			
Naphthalene	18.4		2.00	ug/L	1	20.0		92	80-120%			
n-Propylbenzene	21.0		0.500	ug/L	1	20.0		105	80-120%			
Styrene	22.2		1.00	ug/L	1	20.0		111	80-120%			
1,1,2-Tetrachloroethane	21.1		0.400	ug/L	1	20.0		106	80-120%			
1,1,2,2-Tetrachloroethane	20.0		0.500	ug/L	1	20.0		100	80-120%			
Tetrachloroethene (PCE)	19.4		0.400	ug/L	1	20.0		97	80-120%			
Toluene	19.2		1.00	ug/L	1	20.0		96	80-120%			
1,2,3-Trichlorobenzene	20.5		2.00	ug/L	1	20.0		103	80-120%			
1,2,4-Trichlorobenzene	18.9		2.00	ug/L	1	20.0		94	80-120%			
1,1,1-Trichloroethane	20.4		0.400	ug/L	1	20.0		102	80-120%			
1,1,2-Trichloroethane	20.7		0.500	ug/L	1	20.0		104	80-120%			
Trichloroethene (TCE)	18.9		0.400	ug/L	1	20.0		95	80-120%			
Trichlorofluoromethane	22.5		2.00	ug/L	1	20.0		112	80-120%			
1,2,3-Trichloropropane	19.6		1.00	ug/L	1	20.0		98	80-120%			
1,2,4-Trimethylbenzene	22.4		1.00	ug/L	1	20.0		112	80-120%			
1,3,5-Trimethylbenzene	22.4		1.00	ug/L	1	20.0		112	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2J0415 - 10 27 22 1207

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0701 - EPA 5030C							Wa	ter				
CS (22J0701-BS1)			Prepared	: 10/18/22	09:53 Anal	yzed: 10/18	22 12:18					
inyl chloride	19.8		0.400	ug/L	1	20.0		99	80-120%			
n,p-Xylene	45.1		1.00	ug/L	1	40.0		113	80-120%			
-Xylene	21.4		0.500	ug/L	1	20.0		107	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Rec	overy: 96 %	Limits: 80	120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					
Ouplicate (22J0701-DUP1)			Prepared	: 10/18/22	09:53 Anal	yzed: 10/18	/22 19:25					
OC Source Sample: Non-SDG (A2	J0355-05)											
acetone	ND		200	ug/L	10		ND				30%	
Acrylonitrile	ND		20.0	ug/L	10		ND				30%	
Benzene	ND		2.00	ug/L	10		ND				30%	
Bromobenzene	ND		5.00	ug/L	10		ND				30%	
Bromochloromethane	ND		10.0	ug/L	10		ND				30%	
Bromodichloromethane	ND		10.0	ug/L	10		ND				30%	
Bromoform	ND		10.0	ug/L	10		ND				30%	
Bromomethane	ND		50.0	ug/L	10		ND				30%	
-Butanone (MEK)	ND		100	ug/L	10		ND				30%	
-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
ec-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
ert-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
Carbon disulfide	ND		100	ug/L	10		ND				30%	
Carbon tetrachloride	ND		10.0	ug/L	10		ND				30%	
Chlorobenzene	ND		5.00	ug/L	10		ND				30%	
Chloroethane	ND		50.0	ug/L	10		ND				30%	
Chloroform	ND		10.0	ug/L	10		ND				30%	
Chloromethane	ND		50.0	ug/L	10		ND				30%	
-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
Dibromochloromethane	ND		10.0	ug/L	10		ND				30%	
,2-Dibromo-3-chloropropane	ND		50.0	ug/L	10		ND				30%	
,2-Dibromoethane (EDB)	ND		5.00	ug/L	10		ND				30%	
Dibromomethane	ND		10.0	ug/L	10		ND				30%	
,2-Dichlorobenzene	ND		5.00	ug/L ug/L	10		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID:
A2J0415 - 10 27 22 1207

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22J0701 - EPA 5030C Water Duplicate (22J0701-DUP1) Prepared: 10/18/22 09:53 Analyzed: 10/18/22 19:25 QC Source Sample: Non-SDG (A2J0355-05) 1,3-Dichlorobenzene ND 5.00 ug/L 10 ND 30% ND 1,4-Dichlorobenzene 5.00 ug/L 10 ND 30% ug/L Dichlorodifluoromethane ND 10.0 10 ND 30% 1,1-Dichloroethane ND 4.00 ug/L 10 ND 30% 1,2-Dichloroethane (EDC) ND 4.00 ug/L 10 ND 30% ------1,1-Dichloroethene ND 4.00 ug/L 10 ND 30% cis-1,2-Dichloroethene ND 4.00 ug/L 10 ND 30% trans-1,2-Dichloroethene 30% ND 4.00 ug/L 10 ND 1,2-Dichloropropane ND 5.00 ug/L 10 ND 30% 1,3-Dichloropropane ND 10.0 ug/L 10 ND 30% 2,2-Dichloropropane ND 10.0 ug/L 10 ND 30% ND 10.0 30% 1,1-Dichloropropene ug/L 10 ND cis-1,3-Dichloropropene ND 10.0 ug/L 10 ND 30% ND 10.0 30% trans-1,3-Dichloropropene ug/L 10 ND ug/L Ethylbenzene ND 5.00 10 ND 30% Hexachlorobutadiene ND 50.0 ug/L 10 ND ___ 30% 2-Hexanone ND 100 ug/L 10 ND 30% ND 30% Isopropylbenzene 10.0 10 ND ug/L 4-Isopropyltoluene ND 10.0 ug/L 10 ND 30% 100 Methylene chloride ND 10 ND 30% ug/L 4-Methyl-2-pentanone (MiBK) ND 100 ug/L 10 ND 30% Methyl tert-butyl ether (MTBE) ND ---10.0 ug/L 10 ND ------30% Naphthalene ND 20.0 ug/L 10 ND 30% 5.00 30% n-Propylbenzene ND 10 ND ug/L ND 10.0 30% Styrene ug/L 10 ND ND 4.00 1,1,1,2-Tetrachloroethane 10 ND 30% ug/L 1,1,2,2-Tetrachloroethane ND 5.00 10 ND 30% ug/L Tetrachloroethene (PCE) ND 4.00 ug/L 10 ND ---30% ND 10.0 ug/L 10 ND 30% ND 20.0 10 30% 1.2.3-Trichlorobenzene ug/L ND ---1,2,4-Trichlorobenzene ND 20.0 ug/L 10 ND 30% 4.00 1,1,1-Trichloroethane ND 10 ND 30% ug/L ---1,1,2-Trichloroethane ND 5.00 ug/L 10 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 18 of 31

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell Project: 22118 20th Ave SE, Suite G202 Project Number: 101.20841.00001 Bothell, WA 98021 Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

QUALITY CONTROL (QC) SAMPLE RESULTS

Woodinville West

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0701 - EPA 5030C							Wa	ter				
Duplicate (22J0701-DUP1)			Prepared	1: 10/18/22	09:53 Anal	yzed: 10/18	/22 19:25					
QC Source Sample: Non-SDG (A2	J0355-05)											
Trichloroethene (TCE)	ND		4.00	ug/L	10		ND				30%	
Trichlorofluoromethane	ND		20.0	ug/L	10		ND				30%	
1,2,3-Trichloropropane	ND		10.0	ug/L	10		ND				30%	
,2,4-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
1,3,5-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
Vinyl chloride	ND		4.00	ug/L	10		ND				30%	
n,p-Xylene	ND		10.0	ug/L	10		ND				30%	
o-Xylene	ND		5.00	ug/L	10		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
QC Source Sample: Non-SDG (A2. EPA 8260D	<u>J0443-05)</u>											
Acetone	45.6		20.0	ug/L	1	40.0	ND	114	39-160%			
Acrylonitrile	20.7		2.00	ug/L	1	20.0	ND	104	63-135%			
Benzene	22.6		0.200	ug/L	1	20.0	ND	113	79-120%			
Bromobenzene	19.5		0.500	ug/L	1	20.0	ND	98	80-120%			
Bromochloromethane	22.8		1.00	ug/L	1	20.0	ND	114	78-123%			
Bromodichloromethane	22.2		1.00	ug/L	1	20.0	ND	111	79-125%			
Bromoform	23.5		1.00	ug/L	1	20.0	ND	118	66-130%			
Bromomethane	18.8		5.00	ug/L	1	20.0	ND	94	53-141%			
2-Butanone (MEK)	47.3		10.0	ug/L	1	40.0	ND	118	56-143%			
n-Butylbenzene	24.1		1.00	ug/L	1	20.0	ND	121	75-128%			
ec-Butylbenzene	24.8		1.00	ug/L	1	20.0	ND	124	77-126%			
ert-Butylbenzene	23.4		1.00	ug/L	1	20.0	ND	117	78-124%			
Carbon disulfide	22.9		10.0	ug/L	1	20.0	ND	114	64-133%			
Carbon tetrachloride	24.8		1.00	ug/L	1	20.0	ND	124	72-136%			
Chlorobenzene	21.0		0.500	ug/L	1	20.0	ND	105	80-120%			
Chloroethane	23.4		5.00	ug/L	1	20.0	ND	117	60-138%			
Chloroform	22.4		1.00	ug/L	1	20.0	ND	112	79-124%			
Chloromethane	20.5		5.00	ug/L	1	20.0	ND	102	50-139%			

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Page 19 of 31 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID:
A2J0415 - 10 27 22 1207

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 22J0701 - EPA 5030C Water Matrix Spike (22J0701-MS1) Prepared: 10/18/22 09:53 Analyzed: 10/18/22 17:17 QC Source Sample: Non-SDG (A2J0443-05) 2-Chlorotoluene 21.6 1.00 ug/L 1 20.0 ND 108 79-122% 22.5 20.0 4-Chlorotoluene 1.00 ug/L 1 ND 112 78-122% ug/L Dibromochloromethane 22.0 1.00 1 20.0 ND 110 74-126% 1,2-Dibromo-3-chloropropane 20.1 5.00 ug/L 1 20.0 ND 101 62-128% 1,2-Dibromoethane (EDB) 21.6 0.500 1 20.0 ND 108 77-121% ug/L 22.5 20.0 ND Dibromomethane 1.00 ug/L 1 113 79-123% 1,2-Dichlorobenzene 20.9 0.500 ug/L 1 20.0 ND 104 80-120% 20.0 ND 1,3-Dichlorobenzene 21.2 0.500 ug/L 1 106 80-120% 1,4-Dichlorobenzene 20.1 0.500 ug/L 1 20.0 ND 101 79-120% Dichlorodifluoromethane 24.2 1.00 ug/L 1 20.0 ND 121 32-152% 1,1-Dichloroethane 22.0 0.400 ug/L 1 20.0 ND 110 77-125% 1,2-Dichloroethane (EDC) 20.9 0.40020.0 ND 73-128% ug/L 1 104 20.0 1,1-Dichloroethene 24.3 0.400 ug/L 1 ND 121 71-131% 20.0 21.7 0.400 ND 109 cis-1,2-Dichloroethene ug/L 1 78-123% 0.400 ug/L trans-1,2-Dichloroethene 23.4 1 20.0 ND 117 75-124% 1,2-Dichloropropane 21.8 0.500 ug/L 1 20.0 ND 109 78-122% ___ 1,3-Dichloropropane 21.8 1.00 ug/L 1 20.0 ND 109 80-120% 23.1 20.0 ND 2,2-Dichloropropane 1.00 1 115 60-139% ug/L 20.0 79-125% 1,1-Dichloropropene 24.1 1.00 ug/L 1 ND 121 1.00 20.0 cis-1,3-Dichloropropene 20.2 ND 101 75-124% ug/L 1 20.0 ND 73-127% trans-1,3-Dichloropropene 23.3 1.00 ug/L 1 116 Ethylbenzene 22.8 ---0.500 ug/L 1 20.0 ND 114 79-121% Hexachlorobutadiene 20.2 5.00 ug/L 1 20.0 ND 101 66-134% ug/L 40.0 ND 57-139% 2-Hexanone 46.0 10.0 1 115 ---1.00 20.0 ND Isopropylbenzene 24.7 ug/L 1 123 72-131% 20.0 23.6 1.00 ND 118 77-127% 4-Isopropyltoluene ug/L 1 Methylene chloride 20.2 10.0 20.0 ND 101 74-124% ug/L 1 47.3 40.0 4-Methyl-2-pentanone (MiBK) 10.0 ug/L 1 ND 118 67-130% Methyl tert-butyl ether (MTBE) 21.2 1.00 ug/L 1 20.0 ND 106 71-124% Naphthalene 194 2.00 1 20.0 ND 97 ug/L 61-128% n-Propylbenzene 23.0 0.500 1 20.0 ND 115 76-126% ug/L Styrene 22.2 1.00 20.0 1 ND 111 78-123% ug/L ---1,1,1,2-Tetrachloroethane 22.3 0.400 ug/L 1 20.0 ND 112 78-124%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 31

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0701 - EPA 5030C							Wa	ter				
Matrix Spike (22J0701-MS1)			Prepared	: 10/18/22	09:53 Ana	lyzed: 10/18	3/22 17:17					
QC Source Sample: Non-SDG (A2	J0443-05)											
1,1,2,2-Tetrachloroethane	21.2		0.500	ug/L	1	20.0	ND	106	71-121%			
Tetrachloroethene (PCE)	21.2		0.400	ug/L	1	20.0	ND	106	74-129%			
Toluene	20.6		1.00	ug/L	1	20.0	ND	103	80-121%			
1,2,3-Trichlorobenzene	21.6		2.00	ug/L	1	20.0	ND	108	69-129%			
1,2,4-Trichlorobenzene	19.8		2.00	ug/L	1	20.0	ND	99	69-130%			
1,1,1-Trichloroethane	23.3		0.400	ug/L	1	20.0	ND	117	74-131%			
1,1,2-Trichloroethane	21.5		0.500	ug/L	1	20.0	ND	107	80-120%			
Trichloroethene (TCE)	20.8		0.400	ug/L	1	20.0	ND	104	79-123%			
Trichlorofluoromethane	26.5		2.00	ug/L	1	20.0	ND	132	65-141%			
1,2,3-Trichloropropane	20.2		1.00	ug/L	1	20.0	ND	101	73-122%			
1,2,4-Trimethylbenzene	23.3		1.00	ug/L	1	20.0	ND	117	76-124%			
1,3,5-Trimethylbenzene	24.0		1.00	ug/L	1	20.0	ND	120	75-124%			
Vinyl chloride	23.7		0.400	ug/L	1	20.0	ND	119	58-137%			
m,p-Xylene	48.6		1.00	ug/L	1	40.0	ND	122	80-121%			Q-(
o-Xylene	22.6		0.500	ug/L	1	20.0	ND	113	78-122%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 98 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	80	0-120 %		"					
Matrix Spike Dup (22J0701-M OC Source Sample: Non-SDG (A2			Prepared	: 10/18/22	09:53 Ana	lyzed: 10/18	3/22 17:38					
Acetone	44.2		20.0	ug/L	1	40.0	ND	111	39-160%	3	30%	
Acrylonitrile	22.1		2.00	ug/L ug/L	1	20.0	ND	111	63-135%		30%	
Benzene	22.1		0.200	ug/L ug/L	1	20.0	ND ND	111	79-120%		30%	
Bromobenzene	19.9		0.500		1	20.0	ND	100	80-120%		30%	
Bromochloromethane	21.9		1.00	ug/L ug/L	1	20.0	ND ND	110	78-123%		30%	
Bromodichloromethane	21.9		1.00	ug/L ug/L	1	20.0	ND	106	78-125% 79-125%		30%	
Bromodicnioromeinane Bromoform	21.2		1.00	_	1	20.0	ND ND	113	/9-125% 66-130%		30%	
Bromotorm Bromomethane	20.2		5.00	ug/L	1	20.0	ND ND	101	53-141%		30%	
			10.0	ug/L								
2-Butanone (MEK)	44.8			ug/L	1	40.0	ND	112	56-143%		30%	
n-Butylbenzene	24.1		1.00	ug/L	1	20.0	ND	121	75-128%		30%	
sec-Butylbenzene	25.2		1.00	ug/L	1	20.0	ND	126	77-126%		30%	
tert-Butylbenzene	23.4		1.00	ug/L	1	20.0	ND	117	78-124%	0.4	30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID:
A2J0415 - 10 27 22 1207

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 22J0701 - EPA 5030C Water Matrix Spike Dup (22J0701-MSD1) Prepared: 10/18/22 09:53 Analyzed: 10/18/22 17:38 QC Source Sample: Non-SDG (A2J0443-05) Carbon disulfide 10.0 ug/L 1 20.0 ND 113 64-133% 1 30% 24.7 1.00 20.0 Carbon tetrachloride ug/L 1 ND 124 72-136% 0.4 30% ug/L Chlorobenzene 20.4 0.500 1 20.0 ND 102 80-120% 3 30% Chloroethane 23.2 5.00 ug/L 1 20.0 ND 116 60-138% 0.6 30% Chloroform 21.4 1.00 1 20.0 ND 107 79-124% 4 30% ug/L 22.6 20.0 ND 10 Chloromethane 5.00 ug/L 1 113 50-139% 30% ug/L 2-Chlorotoluene 21.4 1.00 1 20.0 ND 107 79-122% 0.6 30% 30% 22.8 20.0 ND 2 4-Chlorotoluene 1.00 ug/L 1 114 78-122% Dibromochloromethane 21.3 1.00 ug/L 1 20.0 ND 106 74-126% 3 30% 1,2-Dibromo-3-chloropropane 20.0 5.00 ug/L 1 20.0 ND 100 62-128% 0.9 30% 1,2-Dibromoethane (EDB) 21.5 0.500 ug/L 1 20.0 ND 107 77-121% 0.7 30% 1.00 20.0 ND 108 79-123% Dibromomethane 21.6 ug/L 1 4 30% 20.0 1,2-Dichlorobenzene 21.2 0.500 ug/L 1 ND 106 80-120% 1 30% 20.0 21.5 0.500 ND 108 80-120% 2 30% 1,3-Dichlorobenzene ug/L 1 ug/L 1,4-Dichlorobenzene 20.1 0.500 1 20.0 ND 100 79-120% 0.2 30% Dichlorodifluoromethane 25.3 1.00 ug/L 1 20.0 ND 127 32-152% 5 30% 1,1-Dichloroethane 21.4 0.400 ug/L 1 20.0 ND 107 77-125% 3 30% 20.4 0.400 20.0 ND 102 30% 1,2-Dichloroethane (EDC) 73-128% 2 ug/L 1 20.0 71-131% 1,1-Dichloroethene 24.2 0.400 ug/L 1 ND 121 0.2 30% 0.400 20.0 cis-1,2-Dichloroethene 21.4 ND 107 78-123% 30% ug/L 1 1 trans-1,2-Dichloroethene 22.3 0.400 20.0 ND 75-124% 5 ug/L 1 111 30% 21.4 1,2-Dichloropropane ---0.500 ug/L 1 20.0 ND 107 78-122% 1 30% 1,3-Dichloropropane 21.4 1.00 ug/L 1 20.0 ND 107 80-120% 2 30% 22.5 ug/L 20.0 ND 60-139% 2 30% 2,2-Dichloropropane 1.00 1 113 ---23.6 1.00 20.0 79-125% 2 1,1-Dichloropropene ug/L 1 ND 118 30% 19.7 20.0 99 1.00 ND 75-124% 2 30% cis-1,3-Dichloropropene ug/L 1 trans-1,3-Dichloropropene 23.0 1.00 20.0 ND 115 73-127% 1 ug/L 1 30% 20.0 79-121% Ethylbenzene 22.5 0.500 ug/L 1 ND 112 1 30% Hexachlorobutadiene 20.3 5.00 ug/L 1 20.0 ND 101 66-134% 0.4 30% 2-Hexanone 45 9 10.0 1 40.0 ND 57-139% 0.3 30% ug/L 115 Isopropylbenzene 24.8 1.00 1 20.0 ND 124 72-131% 0.4 30% ug/L 1.00 20.0 2 4-Isopropyltoluene 23.9 1 ND 120 77-127% 30% ug/L ---Methylene chloride 19.9 10.0 ug/L 1 20.0 ND 99 74-124% 2 30%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 22 of 31

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID:
A2J0415 - 10 27 22 1207

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22J0701 - EPA 5030C Water Matrix Spike Dup (22J0701-MSD1) Prepared: 10/18/22 09:53 Analyzed: 10/18/22 17:38 QC Source Sample: Non-SDG (A2J0443-05) 4-Methyl-2-pentanone (MiBK) 47.5 10.0 ug/L 1 40.0 ND 119 67-130% 0.5 30% Methyl tert-butyl ether (MTBE) 20.0 20.8 1.00 ug/L 1 ND 104 71-124% 2 30% ug/L Naphthalene 19.6 2.00 1 20.0 ND 98 61-128% 0.8 30% n-Propylbenzene 23.1 0.500 ug/L 1 20.0 ND 115 76-126% 0.2 30% 21.8 1.00 ug/L 1 20.0 ND 109 78-123% 2 30% Styrene 1,1,1,2-Tetrachloroethane 21.3 0.400 20.0 107 ug/L 1 ND 78-124% 5 30% 1,1,2,2-Tetrachloroethane 21.8 0.500 ug/L 1 20.0 ND 109 71-121% 3 30% Tetrachloroethene (PCE) 21.2 0.400 20.0 74-129% 30% ug/L 1 ND 106 0.4 20.0 Toluene 20.2 1.00 ug/L 1 ND 101 80-121% 2 30% 1,2,3-Trichlorobenzene 21.9 2.00 ug/L 1 20.0 ND 110 69-129% 1 30% 1,2,4-Trichlorobenzene 20.3 2.00 ug/L 1 20.0 ND 101 69-130% 3 30% 1,1,1-Trichloroethane 22.5 0.400 20.0 ND 74-131% ug/L 1 112 4 30% 0.500 20.0 80-120% 2 1,1,2-Trichloroethane 21.0 ug/L 1 ND 105 30% 20.0 Trichloroethene (TCE) 20.6 0.400 ND 103 79-123% 0.9 30% ug/L 1 Trichlorofluoromethane 25.8 2.00 ug/L 1 20.0 ND 129 65-141% 2 30% 1,2,3-Trichloropropane 20.4 1.00 ug/L 1 20.0 ND 102 73-122% 1 30% 1,2,4-Trimethylbenzene 23.4 1.00 ug/L 1 20.0 ND 117 76-124% 0.1 30% 1,3,5-Trimethylbenzene 24.1 20.0 75-124% 30% 1.00 ND 120 0.5 ug/L 1 Vinyl chloride 25.3 20.0 ND 127 58-137% 7 0.400 ug/L 1 30% 1.00 40.0 m,p-Xylene 47.9 ND 120 80-121% 1 30% ug/L 1 22.6 0.500 20.0 ND 78-122% 0.4 30% o-Xylene ug/L 113 Surr: 1,4-Difluorobenzene (Surr) Recovery: 97% Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 80-120 % 98 %

80-120 %

96%

Apex Laboratories

Philip Nevenberg

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 23 of 31

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

QUALITY CONTROL (QC) SAMPLE RESULTS

			Vinyl	Chloride	by EPA 8	260D SIM						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0931 - EPA 5030C							Wa	ter				
Blank (22J0931-BLK1)			Prepared	l: 10/24/22	11:35 Ana	yzed: 10/24	/22 15:13					
EPA 8260D SIM												
Vinyl chloride	ND		0.0200	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 94 %	Limits: 8	0-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80	0-120 %		"					
LCS (22J0931-BS1)			Prepared	l: 10/24/22	11:35 Ana	yzed: 10/24	/22 14:16					
EPA 8260D SIM												
Vinyl chloride	0.222		0.0200	ug/L	1	0.200		111	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 94 %	Limits: 8	0-120 %	Dili	ution: 1x					_
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
Duplicate (22J0931-DUP1)			Prepared	l: 10/24/22	11:35 Ana	yzed: 10/24	/22 21:29					
OC Source Sample: Non-SDG (A2	J0499-12)											
Vinyl chloride	0.168		0.0200	ug/L	1		0.168			0.2	30%	
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 97 %	Limits: 8	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			92 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			105 %	80	0-120 %		"					
Matrix Spike (22J0931-MS1)			Prepared	l: 10/24/22	11:35 Ana	yzed: 10/24	/22 23:43					
QC Source Sample: Non-SDG (A2	J0527-02)											
EPA 8260D SIM												
Vinyl chloride	6.34		0.500	ug/L	25	5.00	ND	127	58-137%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 92 %	Limits: 8	0-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 24 of 31

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0701							
A2J0415-01	Water	EPA 8260D	10/12/22 11:54	10/18/22 09:53	5mL/5mL	5mL/5mL	1.00
A2J0415-02	Water	EPA 8260D	10/12/22 12:42	10/18/22 09:53	5mL/5mL	5mL/5mL	1.00
A2J0415-03	Water	EPA 8260D	10/12/22 13:33	10/18/22 09:53	5mL/5mL	5mL/5mL	1.00
A2J0415-04	Water	EPA 8260D	10/12/22 12:07	10/18/22 09:53	5mL/5mL	5mL/5mL	1.00

		Vin	yl Chloride by EPA 8	3260D SIM			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0931							
A2J0415-01	Water	EPA 8260D SIM	10/12/22 11:54	10/24/22 11:35	5mL/5mL	5mL/5mL	1.00
A2J0415-03	Water	EPA 8260D SIM	10/12/22 13:33	10/24/22 11:35	5mL/5mL	5mL/5mL	1.00
A2J0415-04	Water	EPA 8260D SIM	10/12/22 12:07	10/24/22 11:35	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2J0415 - 10 27 22 1207

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

Q-01 Spike recovery and/or RPD is outside acceptance limits.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 26 of 31

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2J0415 - 10 27 22 1207

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 27 of 31

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 28 of 31

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Greg Lish

Report ID: A2J0415 - 10 27 22 1207

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 31

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project: Woodinville West
Project Number: 101.20841.00001

Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

6700 SW Sandburg St., Tigard, OR 97223 Ph.: 503-718-2323	7223 Ph:	503-718	3-2323		,	CHAIN OF CUSTOD!	É	5) -	2	7	3	=			-	# qe	Lab # // 50	Jo J	
Company: SLR		Project Mgr. Greg Lish	Agr: G	9	151				Proje	ct Nar	Z. 3	Poor	18	ا ا	\$	Asines Par	1	Project Name: NEOCH INVILLE VACE BESTIVES POR Project #: 101.20541, 0000	0000	
Address: 72.118 20th ANE SE SH GIDZ BOTHUI NA Phone (425) 402 - 8 YOO Email Oli ShAOSICCOSVIHICA: COM	346	702	Both	, Z	A P	T)	द्व	23	20	S	mail:C	Sile	હું	22	NSV	Hing. com	PO#	#		
Sampled by: Emily Herrancke	uncle	A۱					100			Q)	V	XΤV)	ANALYSIS REOUEST				
Site Location: OR WA CA AK ID SAMPLE ID	втя	TIME	MATRIX	# OF CONTAINERS	NWTPH-HCID	NWTPH-Gx	8760 BTEX	8700 KBDW AOC	8260 Halo VOCs	8700 AOCs Full List \$2200	8HA9 MI2 0728	8082 bCBs 8082 bCBs	8081 Pesticides		Priority Metals (13)		TCLP Metals (8) Viryl Chiecicle Science SIM	WIS COMPS	1105 PM	fold Sample Tozen Archive
MW-1-1022	1912/12 1154		water	P.		<u> </u>			Ė	×	-			ļ		L S	X			-
MW-2-1022		7171								7			-				X			-
MW-3-1072		1333		_					_	×	<u> </u>			<u> </u>			X			-
MW-11-1022	-	1207	-	->						义		-	-	ļ			X			\vdash
						-							_							
				<u> </u>		┦—			 	+	-	+-	-	1			-			+
T. A.S.A.A.d.)																				
																	-			
Standard Turn Around Time (TAT) = 10 Business Days	Around Tir	ne (TAT)	= 10 Bu	siness D	ays.				1	S	PECIA	LIN	SPECIAL INSTRUCTIONS:	Įį	iS.		-			-
TAT Requested (circle)	t Day 2 Day Standar SAMPLES ARE HELD FOR 30 DAYS	A S S S S S S S S S S S S S S S S S S S	Standard Standard		3 Day Other:					1										
KELINQUISHED BY: Signature:	Date: 19/12/22	72	RECEIVED BY:				Date:	12/		<u>≈</u> :55	ELING mature:	HSID	RELINQUISHED BY: Signature:			Date:	Sign	RECEIVED BY: Signature:	Date:	
Emily Hernandez	12/2	١٥	Printed Name: Drap Solora	2 E	6		Time: (1,708)	. %		E.	Printed Name	ame:				Time:	提	Printed Name:	Time:	
Company:			Company:							Ö	Company:		11				5	Сотралу:		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 30 of 31

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
101.20841.00001
Project Manager: Greg Lish

Report ID: A2J0415 - 10 27 22 1207

APEX LABS COOLER RECEIPT FORM Client: SLR Element WO#: A2 Jours Project/Project #: Woodinville West Business Park / 101,20841.00001 **Delivery Info:** Date/time received: 10/13/22 @ 1108 By: _____ D\$5 Delivered by: Apex Client ESS FedEx × UPS Swift Senvoy SDS Other____ Date/time inspected: 10/13/22 @ 1109 By: DJ5 Cooler Inspection Chain of Custody included? Yes No Custody seals? Yes No No Signed/dated by client? Yes _ > _ No ____ Signed/dated by Apex? Yes _______ No _____ Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (°C) Received on ice? (Y/N) 7 Temp. blanks? (Y/N) Real _ Ice type: (Gel/Real/Other) Condition (In/Out): 10 Out of temperature samples form initiated? Yes/No Sample Inspection: Date/time inspected: 10-13-2) @ [3 18 By: D35 All samples intact? Yes × No Comments: Bottle labels/COCs agree? Yes > No _ Comments: _ COC/container discrepancies form initiated? Yes No > Containers/volumes received appropriate for analysis? Yes \succeq No ____ Comments: _____ Do VOA vials have visible headspace? Yes ___ No _> NA ____ Water samples: pH checked: Yes No NA pH appropriate? Yes No NA v Additional information: 2790 7646 2470 Labeled by: Witness: Cooler Inspected by: Form Y-003 R-00 -のゴら Xar) D 35

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

APEXLABORATORIES

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, February 1, 2023 Mike Staton SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021

RE: A3A0313 - Woodinville West - 101.20841.00001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3A0313, which was received by the laboratory on 1/10/2023 at 10:30:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler 1.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1 of 52 Page 1 of 47

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001

 22118 20th Ave SE, Suite G202
 Project Number: 101.20841.00001
 Report ID:

 Bothell, WA 98021
 Project Manager: Mike Staton
 A3A0313 - 02 01 23 1322

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1-0123	A3A0313-01	Water	01/09/23 11:46	01/10/23 10:30
MW-2-0123	A3A0313-02	Water	01/09/23 14:19	01/10/23 10:30
MW-3-0123	A3A0313-03	Water	01/09/23 15:56	01/10/23 10:30
MW-4-0123	A3A0313-04	Water	01/09/23 12:36	01/10/23 10:30
MW-8-0123	A3A0313-05	Water	01/09/23 15:19	01/10/23 10:30
MW-9-0123	A3A0313-06	Water	01/09/23 13:27	01/10/23 10:30

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

2 of 52
Page 2 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell Project: Woodinville West 22118 20th Ave SE, Suite G202 Project Number: 101.20841.00001 Bothell, WA 98021

Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	as by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1-0123 (A3A0313-01)				Matrix: Wa	ater	Batch:	23A0283	
Acetone	ND	10.0	20.0	ug/L	1	01/10/23 20:58	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/10/23 20:58	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/10/23 20:58	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/10/23 20:58	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/10/23 20:58	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/10/23 20:58	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/10/23 20:58	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 20:58	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/10/23 20:58	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/10/23 20:58	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/10/23 20:58	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/10/23 20:58	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 20:58	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 20:58	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 20:58	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/10/23 20:58	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/10/23 20:58	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/10/23 20:58	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/10/23 20:58	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/10/23 20:58	EPA 8260D	

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

3 of 52 Page 3 of 47 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001

Bothell, WA 98021 Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	ic Compound	ds by EPA 8.	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1-0123 (A3A0313-01)				Matrix: Wa	ater	Batch:	23A0283	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/10/23 20:58	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/10/23 20:58	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	01/10/23 20:58	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/10/23 20:58	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/10/23 20:58	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/10/23 20:58	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	01/10/23 20:58	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	01/10/23 20:58	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/10/23 20:58	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/10/23 20:58	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	01/10/23 20:58	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
1,2,3-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/10/23 20:58	EPA 8260D	
1,2,4-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/10/23 20:58	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/10/23 20:58	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/10/23 20:58	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/10/23 20:58	EPA 8260D	
Frichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/10/23 20:58	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
/inyl chloride	0.380	0.200	0.400	ug/L	1	01/10/23 20:58	EPA 8260D	J
n,p-Xylene	ND	0.500	1.00	ug/L	1	01/10/23 20:58	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L ug/L	1	01/10/23 20:58	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

4 of 52 Page 4 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021

Project: Woodinville West Project Number: 101.20841.00001 Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1-0123 (A3A0313-01)				Matrix: Wate	r	Batch: 23A0283		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	1	01/10/23 20:58	EPA 8260D	
Toluene-d8 (Surr)			104 %	80-120 %	1	01/10/23 20:58	EPA 8260D	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	01/10/23 20:58	EPA 8260D	
MW-2-0123 (A3A0313-02)				Matrix: Wate	r	Batch: 2	23A0283	
Acetone	ND	10.0	20.0	ug/L	1	01/10/23 21:25	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/10/23 21:25	EPA 8260D	
Benzene	0.150	0.100	0.200	ug/L	1	01/10/23 21:25	EPA 8260D	J
Bromobenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:25	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/10/23 21:25	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/10/23 21:25	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/10/23 21:25	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:25	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/10/23 21:25	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/10/23 21:25	EPA 8260D	
2-Chlorotoluene	1.70	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/10/23 21:25	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/10/23 21:25	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:25	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:25	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:25	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/10/23 21:25	EPA 8260D	

Apex Laboratories

Philip Nerenberg, Lab Director

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-2-0123 (A3A0313-02)				Matrix: Wa	ater	Batch:	23A0283	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/10/23 21:25	EPA 8260D	-
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/10/23 21:25	EPA 8260D	
cis-1,2-Dichloroethene	0.460	0.200	0.400	ug/L	1	01/10/23 21:25	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/10/23 21:25	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/10/23 21:25	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:25	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	01/10/23 21:25	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/10/23 21:25	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/10/23 21:25	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/10/23 21:25	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	01/10/23 21:25	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:25	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/10/23 21:25	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/10/23 21:25	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	01/10/23 21:25	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
1,2,3-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/10/23 21:25	EPA 8260D	
1,2,4-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/10/23 21:25	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/10/23 21:25	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/10/23 21:25	EPA 8260D	
Frichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/10/23 21:25	EPA 8260D	
Frichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/10/23 21:25	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

6 of 52 Page 6 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-2-0123 (A3A0313-02)				Matrix: Wate	r	Batch: 2	23A0283	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/10/23 21:25	EPA 8260D	
o-Xylene	0.510	0.250	0.500	ug/L	1	01/10/23 21:25	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	1	01/10/23 21:25	EPA 8260D	
Toluene-d8 (Surr)			104 %	80-120 %	1	01/10/23 21:25	EPA 8260D	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	I	01/10/23 21:25	EPA 8260D	
MW-3-0123 (A3A0313-03RE1)				Matrix: Wate	r	Batch: 2	23A0349	
Acetone	ND	10.0	20.0	ug/L	1	01/11/23 17:15	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/11/23 17:15	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/11/23 17:15	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/11/23 17:15	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/11/23 17:15	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/11/23 17:15	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/11/23 17:15	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/11/23 17:15	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/11/23 17:15	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/11/23 17:15	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
,2-Dibromo-3-chloropropane	ND	5.00	5.00	ug/L	1	01/11/23 17:15	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/11/23 17:15	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/11/23 17:15	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/11/23 17:15	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

7 of 52 Page 7 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

			ic Compound	S SY LEMO				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-3-0123 (A3A0313-03RE1)				Matrix: Wa	iter	Batch:	23A0349	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/11/23 17:15	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/11/23 17:15	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/11/23 17:15	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/11/23 17:15	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/11/23 17:15	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/11/23 17:15	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/11/23 17:15	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/11/23 17:15	EPA 8260D	
Hexachlorobutadiene	ND	5.00	5.00	ug/L	1	01/11/23 17:15	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/11/23 17:15	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/11/23 17:15	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/11/23 17:15	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	01/11/23 17:15	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	01/11/23 17:15	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/11/23 17:15	EPA 8260D	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/11/23 17:15	EPA 8260D	
Cetrachloroethene (PCE)	ND	0.400	0.400	ug/L	1	01/11/23 17:15	EPA 8260D	
oluene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
,2,3-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/11/23 17:15	EPA 8260D	
,2,4-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/11/23 17:15	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L ug/L	1	01/11/23 17:15	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L ug/L	1	01/11/23 17:15	EPA 8260D	
richloroethene (TCE)	ND ND	0.200	0.400	ug/L ug/L	1	01/11/23 17:15	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

8 of 52 Page 8 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-3-0123 (A3A0313-03RE1)				Matrix: Wate	r	Batch: 2	23A0349	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/11/23 17:15	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/11/23 17:15	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	01/11/23 17:15	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	1	01/11/23 17:15	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	01/11/23 17:15	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	01/11/23 17:15	EPA 8260D	
MW-4-0123 (A3A0313-04)				Matrix: Wate	r	Batch: 2	23A0283	
Acetone	ND	20.0	20.0	ug/L	1	01/10/23 21:53	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/10/23 21:53	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:53	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/10/23 21:53	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/10/23 21:53	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/10/23 21:53	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:53	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/10/23 21:53	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/10/23 21:53	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/10/23 21:53	EPA 8260D	

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

9 of 52 Page 9 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001

Bothell, WA 98021 Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-4-0123 (A3A0313-04)				Matrix: Wa	ater	Batch:	23A0283	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:53	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:53	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:53	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/10/23 21:53	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/10/23 21:53	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/10/23 21:53	EPA 8260D	
cis-1,2-Dichloroethene	0.950	0.200	0.400	ug/L	1	01/10/23 21:53	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/10/23 21:53	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/10/23 21:53	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:53	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	01/10/23 21:53	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/10/23 21:53	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/10/23 21:53	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/10/23 21:53	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	01/10/23 21:53	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	01/10/23 21:53	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/10/23 21:53	EPA 8260D	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/10/23 21:53	EPA 8260D	
Cetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	01/10/23 21:53	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
1,2,3-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/10/23 21:53	EPA 8260D	
1,2,4-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/10/23 21:53	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

	V	ाबसार Organic	Compou	nds by EPA 826	חחי			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-4-0123 (A3A0313-04)				Matrix: Wate	ır	Batch:	23A0283	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/10/23 21:53	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/10/23 21:53	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/10/23 21:53	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/10/23 21:53	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
Vinyl chloride	9.83	0.200	0.400	ug/L	1	01/10/23 21:53	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/10/23 21:53	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	01/10/23 21:53	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	103 %	Limits: 80-120 %	5 I	01/10/23 21:53	EPA 8260D	
Toluene-d8 (Surr)		-	103 %	80-120 %		01/10/23 21:53	EPA 8260D	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	5 1	01/10/23 21:53	EPA 8260D	
MW-8-0123 (A3A0313-05)				Matrix: Wate	r	Batch:	23A0283	
Acetone	55.4	10.0	20.0	ug/L	1	01/10/23 22:21	EPA 8260D	ICV-01
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/10/23 22:21	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:21	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/10/23 22:21	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/10/23 22:21	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/10/23 22:21	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:21	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/10/23 22:21	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell

22118 20th Ave SE, Suite G202 Pr

Bothell, WA 98021 Pro

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-8-0123 (A3A0313-05)				Matrix: Wa	ater	Batch:	23A0283	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/10/23 22:21	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/10/23 22:21	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:21	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:21	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:21	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/10/23 22:21	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/10/23 22:21	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/10/23 22:21	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/10/23 22:21	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/10/23 22:21	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/10/23 22:21	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:21	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	01/10/23 22:21	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/10/23 22:21	EPA 8260D	
Sopropylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/10/23 22:21	EPA 8260D	
1-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/10/23 22:21	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Vaphthalene	ND	2.00	2.00	ug/L	1	01/10/23 22:21	EPA 8260D	
-Propylbenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:21	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/10/23 22:21	EPA 8260D	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/10/23 22:21	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-8-0123 (A3A0313-05)				Matrix: Wate	r	Batch:	23A0283	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	01/10/23 22:21	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
1,2,3-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/10/23 22:21	EPA 8260D	
1,2,4-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/10/23 22:21	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/10/23 22:21	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/10/23 22:21	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/10/23 22:21	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/10/23 22:21	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
Vinyl chloride	1.01	0.200	0.400	ug/L	1	01/10/23 22:21	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/10/23 22:21	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	01/10/23 22:21	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 104 %	Limits: 80-120 %	I	01/10/23 22:21	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	01/10/23 22:21	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	01/10/23 22:21	EPA 8260D	
MW-9-0123 (A3A0313-06)				Matrix: Wate	r	Batch:	23A0283	
Acetone	ND	10.0	20.0	ug/L	1	01/10/23 22:48	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/10/23 22:48	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:48	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/10/23 22:48	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/10/23 22:48	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/10/23 22:48	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:48	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

	<u>v</u>	organ Organ	ic Compound	us by EPA 8.				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-9-0123 (A3A0313-06)				Matrix: Wa	ater	Batch:	23A0283	
Chloroethane	ND	5.00	5.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/10/23 22:48	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/10/23 22:48	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/10/23 22:48	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:48	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:48	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:48	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/10/23 22:48	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/10/23 22:48	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/10/23 22:48	EPA 8260D	
cis-1,2-Dichloroethene	0.240	0.200	0.400	ug/L	1	01/10/23 22:48	EPA 8260D	J
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/10/23 22:48	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/10/23 22:48	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:48	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	01/10/23 22:48	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/10/23 22:48	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/10/23 22:48	EPA 8260D	
l-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/10/23 22:48	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	01/10/23 22:48	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	ic Compoun	nds by EPA 826	30D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-9-0123 (A3A0313-06)				Matrix: Wate	ər	Batch:	23A0283	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	01/10/23 22:48	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/10/23 22:48	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/10/23 22:48	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	01/10/23 22:48	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
1,2,3-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/10/23 22:48	EPA 8260D	
1,2,4-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/10/23 22:48	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/10/23 22:48	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/10/23 22:48	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/10/23 22:48	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/10/23 22:48	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
Vinyl chloride	1.61	0.200	0.400	ug/L	1	01/10/23 22:48	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/10/23 22:48	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	01/10/23 22:48	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	ery: 104 %	Limits: 80-120 %	6 I	01/10/23 22:48	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %		01/10/23 22:48	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	6 1	01/10/23 22:48	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

		Vinyl Chlo	oride by EF	A 8260D SIM				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-2-0123 (A3A0313-02)				Matrix: Wate	ər	Batch:	23A0286	
Vinyl chloride	0.104	0.0100	0.0200	ug/L	1	01/18/23 18:51	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 100 %	Limits: 80-120 %	6 I	01/18/23 18:51	EPA 8260D SIM	
Toluene-d8 (Surr)			101 %	80-120 %	6 I	01/18/23 18:51	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	6 I	01/18/23 18:51	EPA 8260D SIM	
MW-3-0123 (A3A0313-03)				Matrix: Wate	er	Batch:	23A0286	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	01/18/23 19:45	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 100 %	Limits: 80-120 %	6 I	01/18/23 19:45	EPA 8260D SIM	
Toluene-d8 (Surr)			100 %	80-120 %	6 1	01/18/23 19:45	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	6 <i>1</i>	01/18/23 19:45	EPA 8260D SIM	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 20	0.8 (ICPMS)							
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
MW-1-0123 (A3A0313-01)				Matrix: W	ater							
Batch: 23A0525 Iron	9040		50.0	ug/L	1	01/18/23 18:48	EPA 200.8					
MW-2-0123 (A3A0313-02)				Matrix: W	ater							
Batch: 23A0525												
Iron	3240		50.0	ug/L	1	01/18/23 19:20	EPA 200.8					
MW-4-0123 (A3A0313-04)				Matrix: W	ater							
Batch: 23A0525												
Iron	8870		50.0	ug/L	1	01/18/23 19:33	EPA 200.8					
MW-9-0123 (A3A0313-06)	Matrix: Water											
Batch: 23A0525												
Iron	6740		50.0	ug/L	1	01/18/23 19:39	EPA 200.8					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

ANALYTICAL SAMPLE RESULTS

		Anions I	by Ion Chrom	atography				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-1-0123 (A3A0313-01)				Matrix: Wa	ater			
Batch: 23A0296								
Nitrate-Nitrogen	ND		0.250	mg/L	1	01/10/23 16:16	EPA 300.0	
Sulfate	ND		1.00	mg/L	1	01/10/23 16:16	EPA 300.0	
MW-2-0123 (A3A0313-02)				Matrix: Wa	ater			
Batch: 23A0296								
Nitrate-Nitrogen	ND		0.250	mg/L	1	01/10/23 16:37	EPA 300.0	
Sulfate	18.4		1.00	mg/L	1	01/10/23 16:37	EPA 300.0	
MW-4-0123 (A3A0313-04)				Matrix: Wa	ater			
Batch: 23A0296								
Nitrate-Nitrogen	ND		0.250	mg/L	1	01/10/23 17:42	EPA 300.0	
Sulfate	ND		1.00	mg/L	1	01/10/23 17:42	EPA 300.0	
MW-9-0123 (A3A0313-06)				Matrix: Wa	ater			
Batch: 23A0296								
Nitrate-Nitrogen	ND		0.250	mg/L	1	01/10/23 18:03	EPA 300.0	
Sulfate	4.16		1.00	mg/L	1	01/10/23 18:03	EPA 300.0	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 23A0283 - EPA 5030C Water Blank (23A0283-BLK1) Prepared: 01/10/23 10:27 Analyzed: 01/10/23 14:03 EPA 8260D ND 10.0 20.0 ug/L Acetone ND 2.00 1 Acrylonitrile 1.00 ug/L Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 1 ug/L Bromochloromethane ND 0.500 1.00 ug/L 1 ug/L Bromodichloromethane ND 0.500 1.00 1 Bromoform ND 0.500 1.00 ug/L 1 5.00 Bromomethane ND 5.00 ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 1.00 ug/L 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ------Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L ---2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 Dibromochloromethane ND 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 Dibromomethane ND 0.500 1.00 ug/L 1 0.250 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

19 of 52 Page 19 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23A0283 - EPA 5030C Water Blank (23A0283-BLK1) Prepared: 01/10/23 10:27 Analyzed: 01/10/23 14:03 ND 0.250 0.500 1,2-Dichloropropane ug/L 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ------2,2-Dichloropropane ND 0.500 1.00 ug/L 1 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 cis-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 trans-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 Ethylbenzene ND 0.250 0.500 ug/L 1 Hexachlorobutadiene ND 2.50 5.00 ug/L 1 10.0 2-Hexanone ND 5.00 ug/L 1 Isopropylbenzene ND 0.500 1.00 ug/L 1 ND 4-Isopropyltoluene 0.500 1.00 ug/L 1 Methylene chloride ND 5.00 10.0 ug/L 1 ND 4-Methyl-2-pentanone (MiBK) 5.00 10.0 ug/L 1 ---Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 Naphthalene ND 2.00 2.00 ug/L 1 n-Propylbenzene ND 0.250 0.500 ug/L 1 ND 0.500 1.00 Styrene 1 ug/L 1,1,1,2-Tetrachloroethane ND 0.200 0.400 1 ug/L ND 1.1.2.2-Tetrachloroethane 0.250 0.500 ug/L 1 ---------Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 Toluene ND 0.500 1.00 ug/L 1 1,2,3-Trichlorobenzene ND 2.00 2.00 ug/L 1 1,2,4-Trichlorobenzene ND 2.00 2.00 ug/L 1 1,1,1-Trichloroethane ND 0.200 0.400ug/L 1 ND 0.250 1,1,2-Trichloroethane 0.500 ug/L 1 ------Trichloroethene (TCE) ND 0.200 0.400 ug/L 1 Trichlorofluoromethane ND 1.00 2.00 ug/L 1 ---1,2,3-Trichloropropane ND 0.500 1.00 ug/L 1 1,2,4-Trimethylbenzene ND 0.500 1.00 ug/L 1

Surr: 1,4-Difluorobenzene (Surr) Recovery: 104 % Limits: 80-120 % Dilution: 1x

0.500

0.200

0.500

0.250

1.00

0.400

1.00

0.500

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

ND

Apex Laboratories

Philip Merenberg

1,3,5-Trimethylbenzene

Vinyl chloride

m,p-Xylene

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

1

1

1

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0283 - EPA 5030C							Wa	ter				
Blank (23A0283-BLK1)			Prepared	: 01/10/23	10:27 Ana	yzed: 01/10	/23 14:03					
Surr: Toluene-d8 (Surr)		Reco	very: 105 %	Limits: 80	0-120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			103 %	80)-120 %		"					
LCS (23A0283-BS1)			Prepared	: 01/10/23	10:27 Ana	yzed: 01/10	/23 12:30					
EPA 8260D												
Acetone	42.4	10.0	20.0	ug/L	1	40.0		106	80-120%			ICV-0
Acrylonitrile	21.7	1.00	2.00	ug/L	1	20.0		109	80-120%			
Benzene	20.4	0.100	0.200	ug/L	1	20.0		102	80-120%			
Bromobenzene	17.6	0.250	0.500	ug/L	1	20.0		88	80-120%			
Bromochloromethane	25.3	0.500	1.00	ug/L	1	20.0		127	80-120%			Q-5
Bromodichloromethane	22.6	0.500	1.00	ug/L	1	20.0		113	80-120%			
Bromoform	17.7	0.500	1.00	ug/L	1	20.0		89	80-120%			
Bromomethane	31.2	5.00	5.00	ug/L	1	20.0		156	80-120%			Q-5
2-Butanone (MEK)	44.1	5.00	10.0	ug/L	1	40.0		110	80-120%			ICV-0
n-Butylbenzene	20.3	0.500	1.00	ug/L	1	20.0		101	80-120%			
sec-Butylbenzene	20.9	0.500	1.00	ug/L	1	20.0		104	80-120%			
tert-Butylbenzene	19.1	0.500	1.00	ug/L	1	20.0		95	80-120%			
Carbon disulfide	22.1	5.00	10.0	ug/L	1	20.0		111	80-120%			
Carbon tetrachloride	21.9	0.500	1.00	ug/L	1	20.0		110	80-120%			
Chlorobenzene	20.1	0.250	0.500	ug/L	1	20.0		101	80-120%			
Chloroethane	23.4	5.00	5.00	ug/L	1	20.0		117	80-120%			ICV-0
Chloroform	21.4	0.500	1.00	ug/L	1	20.0		107	80-120%			
Chloromethane	22.9	2.50	5.00	ug/L	1	20.0		115	80-120%			
2-Chlorotoluene	18.4	0.500	1.00	ug/L	1	20.0		92	80-120%			
4-Chlorotoluene	20.0	0.500	1.00	ug/L	1	20.0		100	80-120%			
Dibromochloromethane	22.5	0.500	1.00	ug/L	1	20.0		113	80-120%			
1,2-Dibromo-3-chloropropane	16.2	2.50	5.00	ug/L	1	20.0		81	80-120%			
1,2-Dibromoethane (EDB)	19.5	0.250	0.500	ug/L	1	20.0		98	80-120%			
Dibromomethane	21.3	0.500	1.00	ug/L	1	20.0		106	80-120%			
1,2-Dichlorobenzene	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%			
1,3-Dichlorobenzene	18.9	0.250	0.500	ug/L	1	20.0		94	80-120%			
1,4-Dichlorobenzene	18.9	0.250	0.500	ug/L	1	20.0		95	80-120%			
Dichlorodifluoromethane	21.5	0.500	1.00	ug/L	1	20.0		107	80-120%			
1,1-Dichloroethane	22.3	0.200	0.400	ug/L	1	20.0		111	80-120%			

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

21 of 52 Page 21 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23A0283 - EPA 5030C Water LCS (23A0283-BS1) Prepared: 01/10/23 10:27 Analyzed: 01/10/23 12:30 1,2-Dichloroethane (EDC) 22.2 0.200 0.400 20.0 111 ug/L 80-120% 1,1-Dichloroethene 22.8 0.200 0.400 ug/L 1 20.0 114 80-120% ---------20.0 cis-1,2-Dichloroethene 20.9 0.200 0.400 ug/L 1 104 80-120% trans-1,2-Dichloroethene 21.1 0.200 0.400 ug/L 1 20.0 106 80-120% 20.0 21.4 0.250 0.500 107 80-120% 1,2-Dichloropropane ug/L 1 1,3-Dichloropropane 20.9 0.500 1.00 ug/L 1 20.0 105 80-120% 2,2-Dichloropropane 20.2 0.5001.00 ug/L 1 20.0 101 80-120% 20.0 1,1-Dichloropropene 20.7 0.500 1.00 ug/L 1 104 80-120% 1.00 20.0 cis-1,3-Dichloropropene 20.4 0.500 ug/L 1 102 80-120% trans-1,3-Dichloropropene 22.2 0.500 1.00 ug/L 1 20.0 111 80-120% Ethylbenzene 20.0 20.9 0.250 0.500 104 80-120% ug/L 1 ---20.0 85 Hexachlorobutadiene 17.0 2.50 5.00 ug/L 1 80-120% 41.9 40.0 105 2-Hexanone 5.00 10.0 ug/L 1 ---80-120% ---19.8 Isopropylbenzene 0.500 1.00 ug/L 1 20.0 99 80-120% 19.9 0.500 20.0 100 80-120% 4-Isopropyltoluene 1.00 ug/L 1 ---Methylene chloride 21.1 5.00 10.0 ug/L 1 20.0 105 80-120% 5.00 10.0 40.0 4-Methyl-2-pentanone (MiBK) 44.2 1 111 80-120% ug/L Methyl tert-butyl ether (MTBE) 17.3 0.500 1.00 1 20.0 86 80-120% ug/L Q-55 Naphthalene 12.7 2.00 2.00 20.0 80-120% ug/L 1 ---63 --n-Propylbenzene 20.6 0.250 0.500 ug/L 1 20.0 103 80-120% 20.6 0.500 1.00 20.0 103 80-120% Styrene ug/L 1 ---1,1,1,2-Tetrachloroethane 20.3 0.200 0.400 ug/L 1 20.0 102 80-120% 1,1,2,2-Tetrachloroethane 22.1 0.250 0.500 20.0 111 80-120% ug/L 1 Tetrachloroethene (PCE) 18.0 0.200 0.400 1 20.0 90 80-120% ug/L Toluene 19.1 0.500 1.00 20.0 95 ug/L 1 80-120% ------1,2,3-Trichlorobenzene 13.6 2.00 2.00 ug/L 1 20.0 68 80-120% Q-55 1,2,4-Trichlorobenzene 13.3 2.00 2.00 ug/L 20.0 66 80-120% Q-55 1 ------1,1,1-Trichloroethane 20.8 0.200 0.400 ug/L 1 20.0 104 80-120% 1.1.2-Trichloroethane 20.1 0.250 0.500 1 20.0 101 80-120% ug/L Trichloroethene (TCE) 17.8 0.200 0.400 ug/L 1 20.0 89 80-120% Trichlorofluoromethane 1.00 2.00 20.0 133 80-120% Q-56 26.7 ug/L 1 ---1,2,3-Trichloropropane 20.3 0.500 1.00 ug/L 1 20.0 101 80-120% 1,2,4-Trimethylbenzene 20.8 0.500 1.00 ug/L 1 20.0 104 80-120%

Apex Laboratories

Philip Nevenberg

1,3,5-Trimethylbenzene

21.0

0.500

1.00

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

105

80-120%

Philip Nerenberg, Lab Director

22 of 52 Page 22 of 47

1

20.0

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell Project: Woodinville West 22118 20th Ave SE, Suite G202 Project Number: 101.20841.00001 Bothell, WA 98021 Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0283 - EPA 5030C							Wa	ter				
LCS (23A0283-BS1)			Prepared	1: 01/10/23	10:27 Ana	lyzed: 01/10	/23 12:30					
Vinyl chloride	23.3	0.200	0.400	ug/L	1	20.0		116	80-120%			
n,p-Xylene	42.0	0.500	1.00	ug/L	1	40.0		105	80-120%			
o-Xylene	18.8	0.250	0.500	ug/L	1	20.0		94	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			101 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			87 %	80	0-120 %		"					
Duplicate (23A0283-DUP1)			Prepared	1: 01/10/23	10:27 Anal	lyzed: 01/10	/23 14:58					
OC Source Sample: Non-SDG (A3	A0315-01)					<u>-</u>						
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	0.610	0.500	1.00	ug/L	1		0.650			6	30%	
sec-Butylbenzene	0.530	0.500	1.00	ug/L	1		0.560			6	30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

23 of 52 $_{Page\ 23\ of\ 47}$ Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 23A0283 - EPA 5030C Water Duplicate (23A0283-DUP1) Prepared: 01/10/23 10:27 Analyzed: 01/10/23 14:58 QC Source Sample: Non-SDG (A3A0315-01) 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 0.500 1,4-Dichlorobenzene ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.200 0.400 1 ND 30% ug/L ------ND 0.200 1,1-Dichloroethene 0.400 ug/L 1 ND 30% cis-1,2-Dichloroethene ND 0.200 0.400ug/L 1 ND 30% trans-1,2-Dichloroethene ND ND 30% 0.200 0.400ug/L 1 ug/L 1,2-Dichloropropane ND 0.250 0.500 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% 2,2-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% 1,1-Dichloropropene ug/L 1 ND cis-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% trans-1,3-Dichloropropene ug/L 1 ND 0.250 ug/L Ethylbenzene ND 0.500 1 ND 30% ND Hexachlorobutadiene 2.50 5.00 ug/L 1 ND ___ 30% 2-Hexanone ND 5.00 10.0 ug/L 1 ND 30% ND 0.500 30% Isopropylbenzene 1.00 1 ND ug/L 0.830 0.500 29 4-Isopropyltoluene 1.00 ug/L 1 1.11 30% 5.00 10.0 Methylene chloride ND ND 30% ug/L 1 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND 30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND ------30% Naphthalene ND 2.00 2.00 ug/L 1 ND 30% 0.270 0.500 0.290 7 30% n-Propylbenzene 0.250 ug/L 1 ND 0.500 1.00 30% Styrene ug/L 1 ND ND 1,1,1,2-Tetrachloroethane 0.200 0.400 ND 30% ug/L 1 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ND 30% ug/L 1 Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 ---ND ------30% ND 0.500 1.00 ug/L 1 ND 30% ND 2.00 2.00 ND 30% 1.2.3-Trichlorobenzene ug/L 1 ---1,2,4-Trichlorobenzene ND 2.00 2.00 ug/L 1 ND 30% 0.200 0.400 1,1,1-Trichloroethane ND 1 ND 30% ug/L ---1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

24 of 52 Page 24 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0283 - EPA 5030C							Wa	ter				
Duplicate (23A0283-DUP1)			Prepared	1: 01/10/23	10:27 Ana	lyzed: 01/10	/23 14:58					
QC Source Sample: Non-SDG (A3	A0315-01)											
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
m,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	0.470	0.250	0.500	ug/L	1		0.510			8	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 102 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			89 %	80	-120 %		"					
QC Source Sample: Non-SDG (A3	A0290-01)											
EPA 8260D	440	100	200	/T	10	400	ND	110	20.1600/			ICV-0
Acetone	218	10.0	20.0	ug/L	10 10	400 200	ND ND	110 109	39-160% 63-135%			IC V-0
Acrylonitrile Benzene	203	1.00	2.00	ug/L ug/L	10	200	ND ND	109	79-120%			
Bromobenzene	203 171	2.50	5.00	_	10	200	ND ND	86	79-120% 80-120%			
Bromochloromethane	246	5.00	10.0	ug/L	10	200	ND ND	123	78-123%			Q-54
Bromodichloromethane	219	5.00	10.0	ug/L ug/L	10	200	ND ND	110	79-125%			Q-5-
Bromoform	170	5.00	10.0	ug/L	10	200	ND	85	66-130%			
Bromomethane	297	50.0	50.0	ug/L	10	200	ND	148	53-141%			Q-54
2-Butanone (MEK)	444	50.0	100	ug/L	10	400	ND	111	56-143%			ICV-0
n-Butylbenzene	194	5.00	10.0	ug/L	10	200	ND	97	75-128%			
sec-Butylbenzene	195	5.00	10.0	ug/L	10	200	ND	98	77-126%			
tert-Butylbenzene	180	5.00	10.0	ug/L	10	200	ND	90	78-124%			
Carbon disulfide	206	50.0	100	ug/L	10	200	ND	103	64-133%			
Carbon tetrachloride	207	5.00	10.0	ug/L	10	200	ND	103	72-136%			
Chlorobenzene	195	2.50	5.00	ug/L	10	200	ND	97	80-120%			
Chloroethane	214	50.0	50.0	ug/L	10	200	ND	107	60-138%			ICV-0
Chloroform	208	5.00	10.0	ug/L	10	200	ND	104	79-124%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23A0283 - EPA 5030C Water Matrix Spike (23A0283-MS1) Prepared: 01/10/23 10:27 Analyzed: 01/10/23 15:54 QC Source Sample: Non-SDG (A3A0290-01) 2-Chlorotoluene 176 5.00 10.0 ug/L 10 200 ND 88 79-122% 191 5.00 10.0 200 4-Chlorotoluene ug/L 10 ND 95 78-122% ug/L Dibromochloromethane 216 5.00 10.0 10 200 ND 108 74-126% 1,2-Dibromo-3-chloropropane 155 25.0 50.0 ug/L 10 200 ND 78 62-128% 1,2-Dibromoethane (EDB) 188 2.50 5.00 10 200 ND 94 77-121% ug/L Dibromomethane 207 10.0 200 ND 79-123% 5.00 ug/L 10 104 ug/L 1,2-Dichlorobenzene 179 2.50 5.00 10 200 ND 90 80-120% 181 200 90 1,3-Dichlorobenzene 2.50 5.00 ug/L 10 ND 80-120% 1,4-Dichlorobenzene 182 2.50 5.00 ug/L 10 200 ND 91 79-120% Dichlorodifluoromethane 203 5.00 10.0 ug/L 10 200 ND 101 32-152% 1,1-Dichloroethane 220 2.00 4.00 ug/L 10 200 ND 110 77-125% 1,2-Dichloroethane (EDC) 217 2.00 4.00 10 200 ND 109 73-128% ug/L 200 1,1-Dichloroethene 222 2.00 4.00 ug/L 10 ND 111 71-131% cis-1,2-Dichloroethene 200 210 2.00 4.00 10 ND 105 78-123% ug/L ug/L trans-1,2-Dichloroethene 210 2.00 4.00 10 200 ND 105 75-124% 1,2-Dichloropropane 213 2.50 5.00 ug/L 10 200 ND 106 78-122% ___ 1,3-Dichloropropane 204 5.00 10.0 ug/L 10 200 ND 102 80-120% 194 5.00 10.0 200 ND 97 2,2-Dichloropropane 10 60-139% ug/L 200 200 ND 79-125% 1,1-Dichloropropene 5.00 10.0 ug/L 10 100 5.00 10.0 200 cis-1,3-Dichloropropene 182 10 ND 91 75-124% ug/L trans-1,3-Dichloropropene 213 200 ND 73-127% 5.00 10.0 ug/L 10 106 Ethylbenzene 198 2.50 5.00 ug/L 10 200 ND 99 79-121% Hexachlorobutadiene 168 25.0 50.0 ug/L 10 200 ND 84 66-134% 2-Hexanone 425 400 ND 106 57-139% 50.0 100 10 ug/L 5.00 10.0 200 ND 93 72-131% Isopropylbenzene 186 ug/L 10 200 189 5.00 10.0 10 ND 95 77-127% 4-Isopropyltoluene ug/L Methylene chloride 207 50.0 100 10 200 ND 104 74-124% ug/L 444 400 67-130% 4-Methyl-2-pentanone (MiBK) 50.0 100 ug/L 10 ND 111 Methyl tert-butyl ether (MTBE) 174 5.00 10.0 ug/L 10 200 ND 87 71-124% Naphthalene 133 20.0 20.0 10 200 ND 67 Q-54h ug/L 61-128% --n-Propylbenzene 193 2.50 5.00 10 200 ND 97 76-126% ug/L 197 5.00 10.0 200 99 Styrene 10 ND 78-123% ug/L 1,1,1,2-Tetrachloroethane 194 2.00 4.00 ug/L 10 200 ND 97 78-124%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

26 of 52 Page 26 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution Result RPD Limit Amount Limits Limit Notes Batch 23A0283 - EPA 5030C Water Matrix Spike (23A0283-MS1) Prepared: 01/10/23 10:27 Analyzed: 01/10/23 15:54 QC Source Sample: Non-SDG (A3A0290-01) 1,1,2,2-Tetrachloroethane 216 2.50 5.00 ug/L 10 200 ND 108 71-121% Tetrachloroethene (PCE) 171 2.00 200 4.00 ug/L 10 ND 85 74-129% 185 200 93 80-121% Toluene 5.00 10.0 ug/L 10 ND 1,2,3-Trichlorobenzene 134 20.0 20.0 ug/L 10 200 ND 67 69-129% O-54f 1,2,4-Trichlorobenzene 132 20.0 20.0 ug/L 10 200 ND 66 69-130% Q-54g 200 100 1,1,1-Trichloroethane 200 2.00 4.00 ND ug/L 10 74-131% 1,1,2-Trichloroethane 196 2.50 5.00 ug/L 10 200 ND 98 80-120% 200 Trichloroethene (TCE) 173 2.00 4.00 ND 87 79-123% ug/L 10 200 Q-54 Trichlorofluoromethane 256 10.0 20.0 ug/L 10 ND 128 65-141% 1,2,3-Trichloropropane 198 5.00 10.0 ug/L 10 200 ND 99 73-122% 1,2,4-Trimethylbenzene 197 5.00 10.0 ug/L 10 200 ND 99 76-124% 200 1,3,5-Trimethylbenzene 199 5.00 10.0 ND 100 75-124% ug/L 10 232 2.00 200 ND Vinyl chloride 4.00 ug/L 10 116 58-137% 10.0 400 m,p-Xylene 399 5.00 10 ND 100 80-121% ug/L 2.50 5.00 78-122% o-Xylene 181 ug/L 10 ND Surr: 1,4-Difluorobenzene (Surr) Recovery: 99 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 99 % 80-120 %

80-120 %

88 %

Apex Laboratories

Philip Nevenberg

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

27 of 52 Page 27 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 23A0349 - EPA 5030C Water Blank (23A0349-BLK1) Prepared: 01/11/23 08:30 Analyzed: 01/11/23 14:57 EPA 8260D ND 10.0 20.0 ug/L Acetone ND 2.00 1 Acrylonitrile 1.00 ug/L Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 ug/L 1 Bromochloromethane ND 0.500 1.00 ug/L 1 ug/L Bromodichloromethane ND 0.500 1.00 1 Bromoform ND 0.500 1.00 ug/L 1 5.00 Bromomethane ND 5.00 ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 ug/L 1.00 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ------Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L ---2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 Dibromochloromethane ND 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 5.00 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 Dibromomethane ND 0.500 1.00 ug/L 1 0.250 1,2-Dichlorobenzene ND 0.500 ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

28 of 52 Page 28 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Batch 23A0349 - EPA 5030C Blank (23A0349-BLK1) ,2-Dichloropropane ,3-Dichloropropane ,1-Dichloropropene cis-1,3-Dichloropropene strans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone sopropylbenzene L-Isopropyltoluene Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene 1-Propylbenzene Etyrene ,1,1,2-Tetrachloroethane										Notes
,2-Dichloropropane ,3-Dichloropropane ,2-Dichloropropane ,1-Dichloropropene cis-1,3-Dichloropropene cits-1,3-Dichloropropene cits-1,3-Dichloroprop							Wat	er		
,3-Dichloropropane 2,2-Dichloropropane ,1-Dichloropropene cis-1,3-Dichloropropene ctas-1,3-Dichloropropene ctas-1,3-Dichl			Prepared	: 01/11/23 (08:30 Anal	yzed: 01/11/	23 14:57			
2,2-Dichloropropane .,1-Dichloropropene cis-1,3-Dichloropropene cthylbenzene Hexachlorobutadiene 2-Hexanone sopropylbenzene H-Isopropyltoluene Methylene chloride H-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene n-Propylbenzene styrene .,1,1,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1				 	
,1-Dichloropropene cis-1,3-Dichloropropene crans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene E-Hexanone sopropylbenzene H-Isopropyltoluene Methylene chloride H-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene h-Propylbenzene Etyrene ,1,1,2-Tetrachloroethane	ND	0.500	1.00	ug/L	1				 	
eis-1,3-Dichloropropene erans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene E-Hexanone sopropylbenzene I-Isopropyltoluene Methylene chloride I-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene I-Propylbenzene Etyrene I,1,1,2-Tetrachloroethane	ND	0.500	1.00	ug/L	1				 	
rans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone sopropylbenzene I-Isopropyltoluene Methylene chloride I-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene I-Propylbenzene Styrene ,1,1,2-Tetrachloroethane	ND	0.500	1.00	ug/L	1				 	
Ethylbenzene Hexachlorobutadiene 2-Hexanone sopropylbenzene I-Isopropyltoluene Methylene chloride I-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene I-Propylbenzene Styrene ,1,1,2-Tetrachloroethane	ND	0.500	1.00	ug/L	1				 	
Hexachlorobutadiene 2-Hexanone sopropylbenzene 4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene 1-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane	ND	0.500	1.00	ug/L	1				 	
2-Hexanone sopropylbenzene 4-Isopropyltoluene Methylene chloride 1-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene 1-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1				 	
sopropylbenzene I-Isopropyltoluene Methylene chloride I-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene I-Propylbenzene Styrene ,1,1,2-Tetrachloroethane	ND	5.00	5.00	ug/L	1				 	
A-Isopropyltoluene Methylene chloride A-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene I-Propylbenzene Styrene ,1,1,2-Tetrachloroethane	ND	5.00	10.0	ug/L	1				 	
Methylene chloride I-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene I-Propylbenzene Styrene ,1,1,2-Tetrachloroethane	ND	0.500	1.00	ug/L	1				 	
Methylene chloride I-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene I-Propylbenzene Styrene ,1,1,2-Tetrachloroethane	ND	0.500	1.00	ug/L	1				 	
Methyl tert-butyl ether (MTBE) Naphthalene 1-Propylbenzene Styrene ,1,1,2-Tetrachloroethane	ND	5.00	10.0	ug/L	1				 	
Methyl tert-butyl ether (MTBE) Naphthalene -Propylbenzene styrene ,1,1,2-Tetrachloroethane	ND	5.00	10.0	ug/L	1				 	
Naphthalene I-Propylbenzene Styrene 1,1,2-Tetrachloroethane	ND	0.500	1.00	ug/L	1				 	
n-Propylbenzene Styrene ,1,1,2-Tetrachloroethane	ND	2.00	2.00	ug/L	1				 	
Styrene ,1,1,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1				 	
,1,1,2-Tetrachloroethane	ND	0.500	1.00	ug/L	1				 	
	ND	0.200	0.400	ug/L	1				 	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1				 	
Tetrachloroethene (PCE)	ND	0.400	0.400	ug/L	1				 	
Coluene	ND	0.500	1.00	ug/L	1				 	
,2,3-Trichlorobenzene	ND	2.00	2.00	ug/L	1				 	
,2,4-Trichlorobenzene	ND	2.00	2.00	ug/L ug/L	1				 	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1				 	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L ug/L	1				 	
richloroethene (TCE)	ND	0.200	0.400	ug/L ug/L	1				 	
richlorofluoromethane	ND	1.00	2.00	ug/L ug/L	1				 	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L ug/L	1				 	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L ug/L	1				 	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L ug/L	1				 	
/inyl chloride	ND	0.200	0.400	ug/L ug/L	1				 	
n,p-Xylene	ND	0.500	1.00	ug/L ug/L	1				 	
n,p-Aylene p-Xylene	ND	0.300	0.500	ug/L ug/L	1				 	

Surr: 1,4-Difluorobenzene (Surr) Recovery: 104 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23A0349 - EPA 5030C Water Blank (23A0349-BLK1) Prepared: 01/11/23 08:30 Analyzed: 01/11/23 14:57 Surr: Toluene-d8 (Surr) Recovery: 105 % Limits: 80-120 % Dilution: 1x 4-Bromofluorobenzene (Surr) 100 % 80-120 % Prepared: 01/11/23 08:30 Analyzed: 01/11/23 13:26 LCS (23A0349-BS1) EPA 8260D Acetone 42.0 10.0 20.0 ug/L 1 40.0 105 80-120% ICV-01 Acrylonitrile 21.9 1.00 2.00 ug/L 1 20.0 109 80-120% ---Benzene 19.7 0.100 0.200 1 20.0 98 80-120% ug/L Bromobenzene 0.250 0.500 20.0 83 80-120% 16.5 ug/L 1 ---Bromochloromethane 25.1 0.500 1.00 1 20.0 80-120% Q-56 ug/L 126 Bromodichloromethane 0.500 1.00 20.0 21.8 ug/L 1 ---109 80-120% Bromoform 16.6 0.500 1.00 ug/L 1 20.0 83 80-120% Bromomethane 32.7 5.00 5.00 1 20.0 163 80-120% Q-56 ug/L 2-Butanone (MEK) 44.3 5.00 10.0 1 40.0 111 80-120% ICV-01 ug/L n-Butylbenzene 18.0 0.500 1.00 ug/L 20.0 90 1 80-120% --sec-Butylbenzene 18.3 0.500 1.00 1 20.0 92 80-120% ug/L tert-Butylbenzene 0.500 1.00 20.0 84 80-120% 16.8 ug/L 1 Carbon disulfide 19.4 5.00 10.0 ug/L 1 20.0 97 80-120% Carbon tetrachloride 19.1 0.500 1.00 ug/L 1 20.0 95 80-120% ug/L Chlorobenzene 19.2 0.250 0.500 1 20.0 96 80-120% ICV-01 Chloroethane 23.4 5.00 5.00 20.0 117 80-120% 1 ug/L Chloroform 20.5 0.500 1.00 ug/L 1 20.0 102 80-120% Chloromethane 22.2 2.50 5.00 1 20.0 111 80-120% ug/L 2-Chlorotoluene 16.6 0.500 1.00 ug/L 1 20.0 83 80-120% 4-Chlorotoluene 18.6 0.500 1.00 ug/L 1 20.0 93 80-120% Dibromochloromethane 20.9 0.500 1.00 ug/L 1 20.0 104 80-120% 1,2-Dibromo-3-chloropropane 14.8 5.00 5.00 ug/L 1 20.0 74 80-120% O-55 1,2-Dibromoethane (EDB) 20.0 92 18.4 0.250 0.500 ug/L 1 80-120% Dibromomethane 20.7 0.500 1.00 1 20.0 103 80-120% ug/L 1,2-Dichlorobenzene 17.3 0.250 0.500 ug/L 1 20.0 86 80-120% 1,3-Dichlorobenzene 17.6 0.250 0.500 ug/L 1 20.0 88 80-120% 17.6 0.250 0.500 20.0 88 1.4-Dichlorobenzene ug/L 1 80-120% Dichlorodifluoromethane 18.4 0.500 1.00 ug/L 1 20.0 92 80-120% 1,1-Dichloroethane 0.200 0.400 20.0 108 80-120% 21.5 ug/L 1

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

30 of 52 Page 30 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** Dilution Amount % REC Analyte Result Ĺimit Units Result Limits RPD Limit Notes Limit

Batch 23A0349 - EPA 5030C							W	ater			
LCS (23A0349-BS1)			Prepared:	01/11/23 08	3:30 Ana	lyzed: 01/11/	23 13:26				
1,2-Dichloroethane (EDC)	21.9	0.200	0.400	ug/L	1	20.0		110	80-120%	 	
1,1-Dichloroethene	20.2	0.200	0.400	ug/L	1	20.0		101	80-120%	 	
cis-1,2-Dichloroethene	20.2	0.200	0.400	ug/L	1	20.0		101	80-120%	 	
trans-1,2-Dichloroethene	19.6	0.200	0.400	ug/L	1	20.0		98	80-120%	 	
1,2-Dichloropropane	21.0	0.250	0.500	ug/L	1	20.0		105	80-120%	 	
1,3-Dichloropropane	20.0	0.500	1.00	ug/L	1	20.0		100	80-120%	 	
2,2-Dichloropropane	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%	 	
1,1-Dichloropropene	18.6	0.500	1.00	ug/L	1	20.0		93	80-120%	 	
cis-1,3-Dichloropropene	19.5	0.500	1.00	ug/L	1	20.0		98	80-120%	 	
trans-1,3-Dichloropropene	21.1	0.500	1.00	ug/L	1	20.0		105	80-120%	 	
Ethylbenzene	19.1	0.250	0.500	ug/L	1	20.0		96	80-120%	 	
Hexachlorobutadiene	14.4	5.00	5.00	ug/L	1	20.0		72	80-120%	 	Q-55
2-Hexanone	41.1	5.00	10.0	ug/L	1	40.0		103	80-120%	 	
Isopropylbenzene	17.2	0.500	1.00	ug/L	1	20.0		86	80-120%	 	
4-Isopropyltoluene	17.5	0.500	1.00	ug/L	1	20.0		88	80-120%	 	
Methylene chloride	20.6	5.00	10.0	ug/L	1	20.0		103	80-120%	 	
4-Methyl-2-pentanone (MiBK)	43.3	5.00	10.0	ug/L	1	40.0		108	80-120%	 	
Methyl tert-butyl ether (MTBE)	16.4	0.500	1.00	ug/L	1	20.0		82	80-120%	 	
Naphthalene	11.5	2.00	2.00	ug/L	1	20.0		58	80-120%	 	Q-55
n-Propylbenzene	18.5	0.250	0.500	ug/L	1	20.0		93	80-120%	 	
Styrene	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%	 	
1,1,1,2-Tetrachloroethane	18.8	0.200	0.400	ug/L	1	20.0		94	80-120%	 	
1,1,2,2-Tetrachloroethane	20.8	0.250	0.500	ug/L	1	20.0		104	80-120%	 	
Tetrachloroethene (PCE)	15.8	0.400	0.400	ug/L	1	20.0		79	80-120%	 	Q-55
Toluene	17.9	0.500	1.00	ug/L	1	20.0		90	80-120%	 	
1,2,3-Trichlorobenzene	12.4	2.00	2.00	ug/L	1	20.0		62	80-120%	 	Q-55
1,2,4-Trichlorobenzene	11.9	2.00	2.00	ug/L	1	20.0		60	80-120%	 	Q-55
1,1,1-Trichloroethane	18.9	0.200	0.400	ug/L	1	20.0		95	80-120%	 	
1,1,2-Trichloroethane	19.4	0.250	0.500	ug/L	1	20.0		97	80-120%	 	
Trichloroethene (TCE)	16.8	0.200	0.400	ug/L	1	20.0		84	80-120%	 	
Trichlorofluoromethane	24.1	1.00	2.00	ug/L	1	20.0		120	80-120%	 	
1,2,3-Trichloropropane	19.3	0.500	1.00	ug/L	1	20.0		96	80-120%	 	
1,2,4-Trimethylbenzene	19.0	0.500	1.00	ug/L	1	20.0		95	80-120%	 	
1,3,5-Trimethylbenzene	19.1	0.500	1.00	ug/L	1	20.0		96	80-120%	 	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

31 of 52 Page 31 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0349 - EPA 5030C							Wa	ter				
LCS (23A0349-BS1)			Prepared	l: 01/11/23 (08:30 Anal	yzed: 01/11/	23 13:26					
inyl chloride	21.3	0.200	0.400	ug/L	1	20.0		107	80-120%			
n,p-Xylene	38.6	0.500	1.00	ug/L	1	40.0		96	80-120%			
-Xylene	17.1	0.250	0.500	ug/L	1	20.0		85	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			85 %	80	-120 %		"					
Ouplicate (23A0349-DUP1)			Prepared	l: 01/11/23	13:31 Anal	yzed: 01/11/	23 20:28					
OC Source Sample: Non-SDG (A3	A0367-01)											
acetone	ND	20.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	5.00	5.00	ug/L ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L ug/L	1		ND				30%	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 23A0349 - EPA 5030C Water Duplicate (23A0349-DUP1) Prepared: 01/11/23 13:31 Analyzed: 01/11/23 20:28 QC Source Sample: Non-SDG (A3A0367-01) 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 0.500 1,4-Dichlorobenzene ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.200 0.400 1 ND 30% ug/L ------ND 0.200 1,1-Dichloroethene 0.400 ug/L 1 ND 30% cis-1,2-Dichloroethene ND 0.200 0.400ug/L 1 ND 30% trans-1,2-Dichloroethene ND ND 30% 0.200 0.400ug/L 1 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% 2,2-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% 1,1-Dichloropropene ug/L 1 ND cis-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% trans-1,3-Dichloropropene ug/L 1 ND 0.250 ug/L Ethylbenzene ND 0.500 1 ND 30% ND Hexachlorobutadiene 5.00 5.00 ug/L 1 ND ___ 30% 2-Hexanone ND 5.00 10.0 ug/L 1 ND 30% ND 0.500 30% Isopropylbenzene 1.00 1 ND ug/L ND 4-Isopropyltoluene 0.500 1.00 ug/L 1 ND 30% ND 10.0 Methylene chloride 5.00 ND 30% ug/L 1 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND 30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND ---30% Naphthalene ND 2.00 2.00 ug/L 1 ND 30% ND 30% n-Propylbenzene 0.250 0.500 ug/L 1 ND ND 0.500 1.00 30% Styrene ug/L 1 ND ND 1,1,1,2-Tetrachloroethane 0.200 0.400 ND 30% ug/L 1 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ND 30% ug/L 1 Tetrachloroethene (PCE) ND 0.400 0.400 ug/L 1 ---ND ------30% ND 0.500 1.00 ug/L 1 ND 30% ND 2.00 2.00 ND 30% 1.2.3-Trichlorobenzene ug/L 1 ---1,2,4-Trichlorobenzene ND 2.00 2.00 ug/L 1 ND 30% 0.200 0.400 1,1,1-Trichloroethane ND 1 ND 30% ug/L ---1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

33 of 52 Page 33 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0349 - EPA 5030C							Wa	ter				
Duplicate (23A0349-DUP1)			Prepared	d: 01/11/23	13:31 Ana	lyzed: 01/11	/23 20:28					
QC Source Sample: Non-SDG (A3	A0367-01)											
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
m,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 106 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			105 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					
QC Source Sample: Non-SDG (A3	A0355-03)											
EPA 8260D Acetone	235	50.0	100	/T	-	200	ND	118	39-160%			ICV-
		5.00	10.0	ug/L ug/L	5 5	100	ND					IC V-1
Acrylonitrile Benzene	111 103	0.500	1.00	_	5	100		111 103	63-135% 79-120%			
				ug/L			ND					
Bromobenzene Bromochloromethane	83.2	1.25	2.50 5.00	ug/L	5	100	ND	83	80-120%			Q-54
Bromochioromethane Bromodichloromethane	128 113	2.50 2.50	5.00	ug/L	5 5	100 100	ND ND	128 113	78-123% 79-125%			Q-3
Bromoform	83.6	2.50	5.00	ug/L ug/L	5	100	ND ND	84	66-130%			
Bromomethane	180	25.0	25.0	ug/L ug/L	5	100	ND ND	180	53-141%			Q-54
2-Butanone (MEK)	230	25.0	50.0	ug/L ug/L	5	200	ND	115	56-143%			ICV-0
n-Butylbenzene	93.8	2.50	5.00	ug/L ug/L	5	100	ND ND	94	75-128%			10 1-1
n-Butylbenzene sec-Butylbenzene	96.3	2.50	5.00	ug/L ug/L	5	100	ND ND	94 96	77-126%			
tert-Butylbenzene	90.3 87.2	2.50	5.00	ug/L ug/L	5	100	ND ND	90 87	78-124%			
Carbon disulfide	105	25.0	50.0	ug/L ug/L	5	100	ND ND	105	64-133%			
Carbon tetrachloride	103	2.50	5.00	ug/L	5	100	ND	103	72-136%			
Chlorobenzene	98.6	1.25	2.50	ug/L	5	100	ND	99	80-120%			
Chloroethane	128	25.0	25.0	ug/L	5	100	ND	128	60-138%			ICV-0
Chloroform	107	2.50	5.00	ug/L	5	100	ND	107	79-124%			'
	107	2.50	2.00	~g/ L	_	100	111		, , 12 1/0			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

34 of 52 Page 34 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23A0349 - EPA 5030C Water Matrix Spike (23A0349-MS1) Prepared: 01/11/23 13:31 Analyzed: 01/12/23 00:09 QC Source Sample: Non-SDG (A3A0355-03) 2-Chlorotoluene 84.4 2.50 5.00 ug/L 5 100 ND 84 79-122% 93.0 2.50 5 100 93 4-Chlorotoluene 5.00 ug/L ND 78-122% ug/L Dibromochloromethane 106 2.50 5.00 5 100 ND 106 74-126% Q-541 1,2-Dibromo-3-chloropropane 76.6 25.0 25.0 ug/L 5 100 ND 77 62-128% 1,2-Dibromoethane (EDB) 92.8 1.25 2.50 5 100 ND 93 77-121% ug/L ---107 5 100 ND Dibromomethane 2.50 5.00 ug/L 107 79-123% ug/L 1,2-Dichlorobenzene 87.8 1.25 2.50 5 100 ND 88 80-120% 89.2 1.25 5 100 89 1,3-Dichlorobenzene 2.50 ug/L ND 80-120% 1,4-Dichlorobenzene 88.5 1.25 2.50 ug/L 5 100 ND 88 79-120% Dichlorodifluoromethane 104 2.50 5.00 ug/L 5 100 ND 104 32-152% 1,1-Dichloroethane 113 1.00 2.00 ug/L 5 100 ND 113 77-125% 1,2-Dichloroethane (EDC) 112 1.00 2.00 5 100 ND 73-128% ug/L 112 5 100 1,1-Dichloroethene 112 1.00 2.00 ug/L ND 112 71-131% cis-1,2-Dichloroethene 177 100 1.00 2.00 5 68.2 109 78-123% ug/L ug/L trans-1,2-Dichloroethene 103 1.00 2.00 5 100 ND 103 75-124% 1,2-Dichloropropane 108 1.25 2.50 ug/L 5 100 ND 108 78-122% ___ 1,3-Dichloropropane 100 2.50 5.00 ug/L 5 100 ND 100 80-120% 83.7 5 100 ND 2,2-Dichloropropane 2.50 5.00 84 60-139% ug/L 5 79-125% 1,1-Dichloropropene 100 2.50 5.00 ug/L 100 ND 100 5 cis-1,3-Dichloropropene 81.0 2.50 5.00 100 ND 75-124% ug/L 81 trans-1,3-Dichloropropene 5 100 ND 73-127% 103 2.50 5.00 ug/L 103 Ethylbenzene 100 1.25 2.50 ug/L 5 100 ND 100 79-121% Hexachlorobutadiene 77.6 25.0 25.0 ug/L 5 100 ND 78 66-134% Q-54m 2-Hexanone 50.0 5 200 ND 107 57-139% 214 25.0 ug/L 90.4 2.50 5.00 5 90 72-131% Isopropylbenzene ug/L 100 ND 100 91 91.0 2.50 5.00 5 ND 77-127% 4-Isopropyltoluene ug/L Methylene chloride 107 25.0 50.0 5 100 ND 107 74-124% ug/L ug/L 5 200 67-130% 4-Methyl-2-pentanone (MiBK) 219 25.0 50.0 ND 109 Methyl tert-butyl ether (MTBE) 83.4 2.50 5.00 ug/L 5 100 ND 83 71-124% Naphthalene 57.5 10.0 10.0 5 100 ND 58 61-128% Q-54k ug/L n-Propylbenzene 95.6 1.25 2.50 5 100 ND 96 76-126% ug/L 98.6 2.50 5.00 5 99 Styrene 100 ND 78-123% ug/L 1,1,1,2-Tetrachloroethane 96.0 1.00 2.00 ug/L 5 100 ND 96 78-124%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

35 of 52 Page 35 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC Limits RPD Limit Amount Limit Notes Batch 23A0349 - EPA 5030C Water Matrix Spike (23A0349-MS1) Prepared: 01/11/23 13:31 Analyzed: 01/12/23 00:09 QC Source Sample: Non-SDG (A3A0355-03) 5 1,1,2,2-Tetrachloroethane 105 1.25 2.50 ug/L 100 ND 105 71-121% Tetrachloroethene (PCE) 84.9 2.00 2.00 5 100 Q-54e ug/L 2.70 82 74-129% 92.1 5 92 80-121% Toluene 2.50 5.00 ug/L 100 ND O-54i 1,2,3-Trichlorobenzene 61.4 10.0 10.0 ug/L 5 100 ND 61 69-129% 1,2,4-Trichlorobenzene 59.2 10.0 10.0 ug/L 5 100 ND 59 69-130% Q-54j 101 1,1,1-Trichloroethane 101 1.00 2.00 5 100 ND ug/L 74-131% 97.4 1,1,2-Trichloroethane 1.25 2.50 ug/L 5 100 ND 97 80-120% Q-01 Trichloroethene (TCE) 329 1.00 2.00 5 100 ug/L 262 66 79-123% 5 Trichlorofluoromethane 139 5.00 10.0 ug/L 100 ND 139 65-141% 1,2,3-Trichloropropane 97.4 2.50 5.00 ug/L 5 100 ND 97 73-122% 1,2,4-Trimethylbenzene 97.3 2.50 5.00 ug/L 5 100 ND 97 76-124% 1,3,5-Trimethylbenzene 97.6 2.50 5.00 5 100 ND 98 75-124% ug/L 119 1.00 5 100 Vinyl chloride 2.00 ug/L ND 119 58-137% 5 200 m,p-Xylene 200 2.50 5.00 ND 100 80-121% ug/L 1.25 2.50 78-122% o-Xylene 88.0 ug/L 5 ND Surr: 1,4-Difluorobenzene (Surr) Recovery: 102 % Limits: 80-120 % Dilution: 1x

80-120 %

80-120 %

98 %

84 %

Apex Laboratories

Philip Nevenberg

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

36 of 52 Page 36 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

			Vinyl	Chloride	by EPA 8	3260D SIM						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0286 - EPA 5030C							Wa	ter				
Blank (23A0286-BLK1)			Prepared	1: 01/18/23	15:00 Ana	lyzed: 01/18	/23 18:24					
EPA 8260D SIM												
Vinyl chloride	ND	0.0100	0.0200	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 104 %	Limits: 8	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	8	0-120 %		"					
LCS (23A0286-BS1)			Prepared	l: 01/18/23	15:00 Ana	lyzed: 01/18	/23 17:31					
EPA 8260D SIM												
Vinyl chloride	0.198	0.0100	0.0200	ug/L	1	0.200		99	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 98 %	Limits: 8	0-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			99 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	8	0-120 %		"					
Duplicate (23A0286-DUP1)			Prepared	1: 01/18/23	15:00 Ana	lyzed: 01/18	/23 19:18					
OC Source Sample: MW-2-0123 (A	A3A0313-02	3)										
EPA 8260D SIM												
Vinyl chloride	0.0815	0.0100	0.0200	ug/L	1		0.104			24	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 100 %	Limits: 8		Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	8	0-120 %		"					
Matrix Spike (23A0286-MS1)			Prepared	l: 01/18/23	15:00 Ana	lyzed: 01/18	/23 21:33					
QC Source Sample: Non-SDG (A3.	A0367-02)											
EPA 8260D SIM												
Vinyl chloride	0.228	0.0100	0.0200	ug/L	1	0.200	ND	114	58-137%			
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 101 %	Limits: 8	0-120 %	Dilt	ution: 1x					_
Toluene-d8 (Surr)			100 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	8	0-120 %		"					

Apex Laboratories

Philip Nerenberg, Lab Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 200.8 (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0525 - EPA 3015A							Wa	ter				
Blank (23A0525-BLK1)			Prepared	: 01/16/23	15:56 Anal	yzed: 01/18/	/23 18:36					
EPA 200.8												
Iron	ND		50.0	ug/L	1							
LCS (23A0525-BS1)			Prepared	: 01/16/23	15:56 Anal	yzed: 01/18/	/23 18:42					
EPA 200.8												
Iron	2920		50.0	ug/L	1	2780		105	85-115%			
Duplicate (23A0525-DUP1)			Prepared	: 01/16/23	15:56 Anal	yzed: 01/18/	/23 19:08					
QC Source Sample: MW-1-0123 (A	A3A0313-01	1										
<u>EPA 200.8</u> Iron	9220		50.0	ug/L	1		9040			2	20%	
Matrix Spike (23A0525-MS1)			Prepared	: 01/16/23	15:56 Anal	yzed: 01/18/	/23 19:14					
OC Source Sample: MW-1-0123 (A	A3A0313-01	Ţ										
<u>EPA 200.8</u> Iron	11700		50.0	ug/L	1	2780	9040	95	70-130%			
Matrix Spike (23A0525-MS2)			Prepared	: 01/16/23	15:56 Anal	yzed: 01/18/	/23 19:26					
QC Source Sample: MW-2-0123 (A	A3A0313-02	<u>2)</u>										
EPA 200.8				_								
Iron	6120		50.0	ug/L	1	2780	3240	104	70-130%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

38 of 52 Page 38 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALITY CONTROL (QC) SAMPLE RESULTS

			Anio	ns by Ion	Chroma	tography						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0296 - Method Prep	: Aq						Wa	ter				
Blank (23A0296-BLK1)			Prepared	: 01/10/23	13:05 Anal	yzed: 01/10	/23 14:49					
EPA 300.0												
Nitrate-Nitrogen	ND		0.250	mg/L	1							
Sulfate	ND		1.00	mg/L	1							
LCS (23A0296-BS1)			Prepared	: 01/10/23	13:05 Anal	yzed: 01/10	/23 15:11					
EPA 300.0												
Nitrate-Nitrogen	2.01		0.250	mg/L	1	2.00		100	90-110%			
Sulfate	7.86		1.00	mg/L	1	8.00		98	90-110%			
Duplicate (23A0296-DUP1)			Prepared	: 01/10/23	13:05 Anal	yzed: 01/10	/23 16:59					
OC Source Sample: MW-2-0123 (EPA 300.0	A3A0313-02	2)										
Nitrate-Nitrogen	ND		0.250	mg/L	1		ND				3%	
Sulfate	18.5		1.00	mg/L	1		18.4			0.3	4%	
Matrix Spike (23A0296-MS1)			Prepared	: 01/10/23	13:05 Anal	yzed: 01/10	/23 17:20					
QC Source Sample: MW-2-0123 (A3A0313-02	2)										
EPA 300.0												
Nitrate-Nitrogen	2.54		0.312	mg/L	1	2.50	ND	102	87-112%			
Sulfate	28.6		1.25	mg/L	1	10.0	18.4	102	88-115%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

39 of 52 Page 39 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23A0283							
A3A0313-01	Water	EPA 8260D	01/09/23 11:46	01/10/23 10:27	5mL/5mL	5mL/5mL	1.00
A3A0313-02	Water	EPA 8260D	01/09/23 14:19	01/10/23 10:27	5mL/5mL	5mL/5mL	1.00
A3A0313-04	Water	EPA 8260D	01/09/23 12:36	01/10/23 10:27	5mL/5mL	5mL/5mL	1.00
A3A0313-05	Water	EPA 8260D	01/09/23 15:19	01/10/23 10:27	5mL/5mL	5mL/5mL	1.00
A3A0313-06	Water	EPA 8260D	01/09/23 13:27	01/10/23 10:27	5mL/5mL	5mL/5mL	1.00
Batch: 23A0349							
A3A0313-03RE1	Water	EPA 8260D	01/09/23 15:56	01/11/23 13:31	5mL/5mL	5mL/5mL	1.00

		Vin	yl Chloride by EPA 8	3260D SIM			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23A0286							
A3A0313-02	Water	EPA 8260D SIM	01/09/23 14:19	01/18/23 15:00	5mL/5mL	5mL/5mL	1.00
A3A0313-03	Water	EPA 8260D SIM	01/09/23 15:56	01/18/23 15:00	5mL/5mL	5mL/5mL	1.00

		Tot	al Metals by EPA 200	0.8 (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23A0525							
A3A0313-01	Water	EPA 200.8	01/09/23 11:46	01/16/23 15:56	45mL/50mL	45mL/50mL	1.00
A3A0313-02	Water	EPA 200.8	01/09/23 14:19	01/16/23 15:56	45mL/50mL	45mL/50mL	1.00
A3A0313-04	Water	EPA 200.8	01/09/23 12:36	01/16/23 15:56	45mL/50mL	45mL/50mL	1.00
A3A0313-06	Water	EPA 200.8	01/09/23 13:27	01/16/23 15:56	45mL/50mL	45mL/50mL	1.00

		A	nions by Ion Chroma	atography			
Prep: Method Prep:	: Aq				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23A0296							
A3A0313-01	Water	EPA 300.0	01/09/23 11:46	01/10/23 13:05	5mL/5mL	5mL/5mL	1.00
A3A0313-02	Water	EPA 300.0	01/09/23 14:19	01/10/23 13:05	5mL/5mL	5mL/5mL	1.00
A3A0313-04	Water	EPA 300.0	01/09/23 12:36	01/10/23 13:05	5mL/5mL	5mL/5mL	1.00
A3A0313-06	Water	EPA 300.0	01/09/23 13:27	01/10/23 13:05	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

40 of 52 Page 40 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

oex Laborato	<u>ories</u>
ICV-01	Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +13%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +36%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +43%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +6. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +7%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -1%. The results are reported as Estimated Values.
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -12%. The results are reported as Estimated Values.
Q-54g	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -14%. The results are reported as Estimated Values.
Q-54h	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -17%. The results are reported as Estimated Values.
Q-54i	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -18%. The results are reported as Estimated Values.
Q-54j	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -20%. The results are reported as Estimated Values.
Q-54k	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -22%. The results are reported as Estimated Values.
Q-54l	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -6%. The results are reported as Estimated Values.
Q-54m	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -8%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

41 of 52 Page 41 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell Project: Woodinville West 22118 20th Ave SE, Suite G202 Project Number: 101.20841.00001 Report ID: Bothell, WA 98021 Project Manager: Mike Staton A3A0313 - 02 01 23 1322

Q-56 Daily CCV/LCS recovery for this analyte was above the \pm -20% criteria listed in EPA 8260

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

43 of 52 Page 43 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

44 of 52 Page 44 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0313 - 02 01 23 1322

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

45 of 52 Page 45 of 47

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

6700 SW Sandburg St., Tigard, OR 97223 Ph; 503-718-2323	7223 Ph:	503-71	8-2323																			
company: Sip.		Project 1	Project Mgr. Mike Stotton	3	[욁	1		П	Project	Name	Na	inni	le N	150	Project Name: New Jinuille 1965 Pailching	1,	Projec	Project #: ©	1 1	20841. BOCO	8	0
Address: 221/8 20th SE SPG-202 BOTWIL WA	SPGZ	St. B	ST ST	11 18		Phone: 475 402	h SZ		280	B	ail: R	र्ड	अध	봉	8800 Emmit Metoten POSIC CAROLHING CAROL	3	#0#					
Sampled by: Emily Hernanduz	Sinch	بہ												ANA	ANALYSIS REQUEST	, p						
Site Location:									F	ใจทา	18				K' GP'	CLP		0 7	57.			
State NA				NEKS	a			\$OC2	1444102	II ListF	I Hull s				1, Be, 6, 10, Me, Ni, Ni, Ni, Ni, Ni, Ni, Ni, Ni, Ni, Ni	(8)	Hore	4 300 14 300	8.00.8 extra 42.90			
County			χ	IIATVO				DW A				883	seticides		As, B; Co, C Ma, T Va, TL	SIU Jetals	is c	ices services	SOF ATM			əjdi
SAMPLE ID	atad	TIME	MATRE	# OE CC	IdJWN	NWTP	8260 BT	8260 RI	H 0978	IS 0478		8082 PC	94 1808	RCRA	Priority Al, Sb, Ca, Cr, Bg, Mg, Se, Ag,	TCLP A	10072	10058 10058 10058 1004 1004 1004 1004 1004 1004 1004 100	nten nten mente		**************************************	ns2 bloH
MW-1-0123	119/23	19/23/14/12 WORLD	water	9					1	1					5 L		1	X	1 1			
MW-2-0123	_	MP		2					1	7						-	7	Carrie or one	メメ			
MW-3-0173		मुडडा		\mathcal{U}					/	7						_	×					
MW-4-0123		1230		0					/	7						-	1	×	メ			
MW-8-0123		1519		5					-/-	*						-	1		-			
MW-9-0123	->	1327	-	01					/	7								X	X			
***************************************						-			+	_				+		-						
					+	+			+	_				+		-		+	-			\top
Standard Tim Around Time (TAT) = 10 Business Doors	Around Ti	TAT.	10 B	loinose L	-	\dashv			\dashv	ê	SPECIAL PRESENTATIONS	Total T	17.16			_		-	-			-
Transport	T month	101	011	T CROTTERS T	says					1	LITTLE VOS	3	ארער	3	fast hold Hime	2	0	¥	Z			
TAT Dognocted (circle)	1 Day	\	2 Day	1	3 Day	Ď.				-			,	•								
(arana) masanhay ara	5 Day	×	Standard		Other:	=																
	SAMPLES ARE HELD FOR 30 DAYS	D FOR 3	DAYS							T												
RELINQUISHED BY: Signature:	Date:	23	RECEIV Signafure:	Signafure:	X		Date:	12		Signa	RELINQUISHED BY: Signature:	ISHED	BY:		Date:		RECE Signatu	RECEIVED BY: Signature:	¥:	Date:		
Prince Native Percentage	Time:	30	Printed N	3	17		fine:	030		捏	Printed Name	ë			Time:		Printed	Printed Name:		Time:		
Company: SLP			Сопрапу	× '	of	Ĭ				Con	Сопрапу:						Сопрапу:	my:				
				L	1.		/															

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

46 of 52 Page 46 of 47

Philip Marenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0313 - 02 01 23 1322

	APEX LABS COOLER RECEIPT FORM	
Client: SLP	Element WO#: A3 月し ³	13
Project/Project #:	odhille West Building C.	
Delivery Info:	O	
	23 @ 1030 By: Ms	
Delivered by: Apex_Clien	nt_ESS FedEx_UPS Radio Morgan SDS Evergreen	n Other
	e/time inspected: 1/10/23 @ 103D By: Mo	
Chain of Custody included?	? Yes No	
Signed/dated by client?	YesNo	
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler	#6 Cooler #7
Temperature (°C)	1.4	
Custody seals? (Y/N)	N	
Received on ice? (Y/N)	<u> </u>	······
Temp. blanks? (Y/N)	<u> </u>	
Ice type: (Gel/Real/Other)	Peal	
Condition (In/Out):	<u> </u>	
Out of temperature samples	f temperature samples? Yes/No	
All samples intact? Yes 🗶	No Comments:	
	PR 102	
	Yes X No x Comments: For MW-9-0127 the time	on the
ontainers reads 13:		
	es form initiated? Yes No X	
Containers/volumes received	d appropriate for analysis? Yes 🗶 No Comments:	
	headspace? Yes No _X NA	
Comments	W. V.	
	l: YesNoNA pH appropriate? YesNoNA	
Comments:		
Additional information: 3°	932 2538 1522	
Labeled by: AAW	Witness: Cooler Inspected by:	IALJ
ARD	35	Form Y-003 R-00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

January 18, 2023

Apex Laboratories ATTN: Philip Nerenberg 6700 S.W. Sandburg St. Tigard, OR 97223

LA Cert #04140 EPA Methods TO3, TO14A, TO15, 25C/3C, ASTM D1946, RSK-175

TX Cert T104704450-14-6 EPA Methods T014A, T015

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

LABORATORY TEST RESULTS

Project Reference: A3A0313

Lab Number:

P011202-01/04

Enclosed are results for sample(s) received 1/12/23 by Air Technology Laboratories. Sample was received intact and chilled to 2° C. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the TNI Standards.
- The enclosed results relate only to the sample(s).

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

lumika Scholo Stay for

Note: The cover letter is an integral part of this analytical report.

SUBCONTRACT ORDER

Apex Laboratories

ab 1/10/13 A3A0313

AW 1/11/23 PO11202-01/84

SENDING LABORATORY:

Apex Laboratories

6700 S.W. Sandburg Street

Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager: Philip Nerenberg

(J)40 mL VOA - HCL

RECEIVING LABORATORY:

Air Technology Laboratories, Inc 18501 E. Gale Ave Suite 130 City of Industry, CA 91748

Phone: (626) 964-4032 Fax: (626) 964-5832

Sample Name: MW-1-0123		Water	Sampled: 01/09/23 11:46	(A3A0313-01)
Analysis	Due	Expires	Comments	
RSK 175 Preserved (Meth, Eth, Eth) (Sub)	01/23/23 17:00	01/23/23 11:46		
Containers Supplied:				
(H)40 mL VOA - HCL				
(I)40 mL VOA - HCL				
(J)40 mL VOA - HCL				
Sample Name: MW-2-0123		Water	Sampled: 01/09/23 14:19	(A3A0313-02)
Analysis	Due	Expires	Comments	
RSK 175 Preserved (Meth, Eth, Eth) (Sub)	01/23/23 17:00	01/23/23 14:19	*	
Containers Supplied:				
(H)40 mL VOA - HCL				
(I)40 mL VOA - HCL				
(J)40 mL VOA - HCL				
Sample Name: MW-4-0123		Water	Sampled: 01/09/23 12:36	(A3A0313-04)
Analysis	Due	Expires	Comments	
RSK 175 Preserved (Meth, Eth, Eth) (Sub)	01/23/23 17:00	01/23/23 12:36		
Containers Supplied:				
(H)40 mL VOA - HCL				
(I)40 mL VOA - HCL				

Standard TAT

	1-11-23	UPS (Ship	oper)		
Released By	Date /	Received By		Date	
UPS (Shipper)	1/12/23	-1 (May)	1/11/23	1013	
Released By	Date	Received By		Date J	
		, (49 of 52 age 1 of 2

SUBCONTRACT ORDER

Apex Laboratories

M 1/10/23A3A0313

9011202-01

Time on containers reads 13:37 Sample Name: MW-9-0123 Sampled: 01/09/23 13:27 Water (A3A0313-06) Analysis Due **Expires** Comments RSK 175 Preserved (Meth, Eth, Eth) (Sub) 01/23/23 17:00 01/23/23 13:27 Containers Supplied: (H)40 mL VOA - HCL (I)40 mL VOA - HCL (J)40 mL VOA - HCL

Standard PAT

20

8	1-11-23	UPS (Shipper)	
Released By	Date / 1	Received By	Date
UPS (Shipper)	1/12/23	() [- 1/12/	13 1013
Released By	Date	Received By	Date

Client:

Apex Laboratories

Attn:

Philip Nerenberg

Project Name:

NA

Project No.:

A3A0313

Date Received:

01/12/23

Matrix:

Water

Reporting Units: ug/L

RSK175

Lab No.:	P01120	2-01	P01120	2-02	P01120	2-03	P01120	2-04
Client Sample I.D.:	MW-1- (A3A031		MW-2- (A3A031		MW-4- (A3A031		MW-9- (A3A031	
Date/Time Sampled:	1/9/23 1	1:46	1/9/23 1	14:19	1/9/23 1	12:36	1/9/23 1	3:27
Date/Time Analyzed:	1/16/23	11:21	1/16/23	11:33	1/16/23	11:46	1/16/23	12:08
QC Batch No.:	230116G	C8A1	230116G	C8A1	230116G	C8A1	230116G	C8A1
Analyst Initials:	RC		RC		RC		RC	,
Dilution Factor:	1.0		1.0		1.0		1.0	
ANALYTE	Result ug/L	RL ug/L	Result ug/L	RL ug/L	Result ug/L	RL ug/L	Result ug/L	RL ug/L
Ethene	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Ethane	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Methane	1,100	1.0	240	1.0	1,300	1.0	2,100	1.0

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson

Operations Manager

The cover letter is an integral part of this analytical report

QC Batch No:

230116GC8A1

Matrix:

Water

Reporting Units:

ug/L

RSK 175 LABORATORY CONTROL SAMPLE SUMMARY

Lab No.:	METHOD	BLANK	LCS			L	CSD				
Date/Time Analyzed:	1/16/23	11:04		1/16/2	23 10:35	1/16/2	23 10:51	1			
Analyst Initials:	RC	7]	RC	RC		1			
Dilution Factor:	1.0)		1.0		1.0				Limits	
ANALYTE	Result ug/L	RL ug/L	SPIKE AMT. ug/L	Result ug/L	% Rec.	Result ug/L	% Rec.	RPD %	Low %Rec	High %Rec	Max. RPD
Ethene	ND	1.0	1,150	1,190	104	1,380	120	14.5	70	130	30
Ethane	ND	1.0	1,200	1,240	101	1,340	109	7.3	70	130	30
Methane	ND	1.0	650	658	101	697	106	5.7	70	130	30

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By: Munika that

Mark Johnson

Operations Manager

Date 01-17-23

The cover letter is an integral part of this analytical report

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, January 20, 2023 Mike Staton SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021

RE: A3A0367 - Woodinville West - 101.20841.00001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3A0367, which was received by the laboratory on 1/11/2023 at 10:45:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler 3.3 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	RMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-5-0123	A3A0367-01	Water	01/10/23 11:03	01/11/23 10:45
MW-6-0123	A3A0367-02	Water	01/10/23 11:44	01/11/23 10:45
MW-7-0123	A3A0367-03	Water	01/10/23 12:17	01/11/23 10:45

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 2 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
MW-5-0123 (A3A0367-01)			<u> </u>	Matrix: Wa	ater	Batch:						
Acetone	ND	20.0	20.0	ug/L	1	01/11/23 20:01	EPA 8260D					
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/11/23 20:01	EPA 8260D					
Benzene	ND	0.100	0.200	ug/L	1	01/11/23 20:01	EPA 8260D					
Bromobenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:01	EPA 8260D					
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
Bromoform	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
Bromomethane	ND	5.00	5.00	ug/L	1	01/11/23 20:01	EPA 8260D					
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/11/23 20:01	EPA 8260D					
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/11/23 20:01	EPA 8260D					
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:01	EPA 8260D					
Chloroethane	ND	5.00	5.00	ug/L	1	01/11/23 20:01	EPA 8260D					
Chloroform	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
Chloromethane	ND	2.50	5.00	ug/L	1	01/11/23 20:01	EPA 8260D					
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
1,2-Dibromo-3-chloropropane	ND	5.00	5.00	ug/L	1	01/11/23 20:01	EPA 8260D					
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/11/23 20:01	EPA 8260D					
Dibromomethane	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:01	EPA 8260D					
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:01	EPA 8260D					
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:01	EPA 8260D					
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D					
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/11/23 20:01	EPA 8260D					
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/11/23 20:01	EPA 8260D					
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/11/23 20:01	EPA 8260D					
eis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/11/23 20:01	EPA 8260D					
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/11/23 20:01	EPA 8260D					

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

ANALYTICAL SAMPLE RESULTS

			•	ds by EPA 826				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-5-0123 (A3A0367-01)				Matrix: Wate	er	Batch:		
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/11/23 20:01	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:01	EPA 8260D	
Hexachlorobutadiene	ND	5.00	5.00	ug/L	1	01/11/23 20:01	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/11/23 20:01	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/11/23 20:01	EPA 8260D	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/11/23 20:01	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	01/11/23 20:01	EPA 8260D	
-Propylbenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:01	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/11/23 20:01	EPA 8260D	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/11/23 20:01	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.400	0.400	ug/L	1	01/11/23 20:01	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
,2,3-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/11/23 20:01	EPA 8260D	
,2,4-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/11/23 20:01	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/11/23 20:01	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/11/23 20:01	EPA 8260D	
richloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/11/23 20:01	EPA 8260D	
richlorofluoromethane	ND	1.00	2.00	ug/L	1	01/11/23 20:01	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	01/11/23 20:01	EPA 8260D	
-Xylene	ND	0.250	0.500	ug/L	1	01/11/23 20:01	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 106 %	Limits: 80-120 %	6 I	01/11/23 20:01	EPA 8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

ANALYTICAL SAMPLE RESULTS

		Ciacile Organ	io compour	nds by EPA 8260			•	
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-5-0123 (A3A0367-01)				Matrix: Water	r	Batch: 2		
Surrogate: Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)		Recove	ery: 104 % 99 %	Limits: 80-120 % 80-120 %	1 1	01/11/23 20:01 01/11/23 20:01	EPA 8260D EPA 8260D	
MW-6-0123 (A3A0367-02)				Matrix: Water	T	Batch: 2	23A0349	
Acetone	ND	10.0	20.0	ug/L	1	01/11/23 20:56	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/11/23 20:56	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/11/23 20:56	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:56	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	0 ug/L 1		01/11/23 20:56	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L 1		01/11/23 20:56	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L 1		01/11/23 20:56	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L 1		01/11/23 20:56	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/11/23 20:56	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:56	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/11/23 20:56	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/11/23 20:56	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	5.00	5.00	ug/L	1	01/11/23 20:56	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/11/23 20:56	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:56	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:56	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:56	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/11/23 20:56	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/11/23 20:56	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

ANALYTICAL SAMPLE RESULTS

			ic Compound	, L. A O		_		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-6-0123 (A3A0367-02)				Matrix: Wa	ater	Batch:	23A0349	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/11/23 20:56	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/11/23 20:56	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/11/23 20:56	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/11/23 20:56	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:56	EPA 8260D	
Hexachlorobutadiene	ND	5.00	5.00	ug/L	1	01/11/23 20:56	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	01/11/23 20:56	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	01/11/23 20:56	1/23 20:56 EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/11/23 20:56	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	01/11/23 20:56	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	01/11/23 20:56	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/11/23 20:56	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/11/23 20:56	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.400	0.400	ug/L	1	01/11/23 20:56	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
1,2,3-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/11/23 20:56	EPA 8260D	
,2,4-Trichlorobenzene	ND	2.00	2.00	ug/L	1	01/11/23 20:56	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/11/23 20:56	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/11/23 20:56	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/11/23 20:56	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/11/23 20:56	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 6 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-6-0123 (A3A0367-02)				Matrix: Wate	r	Batch: 2	23A0349	
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/11/23 20:56	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	01/11/23 20:56	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 106 %	Limits: 80-120 %	1	01/11/23 20:56	EPA 8260D	
Toluene-d8 (Surr)			104 %	80-120 %	1	01/11/23 20:56	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	01/11/23 20:56	EPA 8260D	
W-7-0123 (A3A0367-03RE2)				Matrix: Wate	r	Batch:	23A0372	
Acetone	ND	10.0	20.0	ug/L	1	01/13/23 17:40	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	01/13/23 17:40	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	01/13/23 17:40	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	01/13/23 17:40	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	01/13/23 17:40	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	01/13/23 17:40	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	01/13/23 17:40	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	01/13/23 17:40	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	01/13/23 17:40	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	01/13/23 17:40	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	01/13/23 17:40	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	01/13/23 17:40	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/13/23 17:40	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/13/23 17:40	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	01/13/23 17:40	EPA 8260D	

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Moodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Date Analyzed	Method Ref.	Notes					
MW-7-0123 (A3A0367-03RE2)				Matrix: Wa	ater	Batch:						
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	01/13/23 17:40	EPA 8260D					
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	01/13/23 17:40	EPA 8260D					
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	01/13/23 17:40	EPA 8260D					
cis-1,2-Dichloroethene	1.19	0.200	0.400	ug/L	1	01/13/23 17:40	EPA 8260D					
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	01/13/23 17:40	EPA 8260D					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	01/13/23 17:40	EPA 8260D					
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
Ethylbenzene	ND	0.250	0.500	ug/L	1	01/13/23 17:40	EPA 8260D					
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	01/13/23 17:40	EPA 8260D					
2-Hexanone	ND	5.00	10.0	ug/L	1	01/13/23 17:40	EPA 8260D					
sopropylbenzene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
Methylene chloride	ND	5.00	10.0	ug/L	1	01/13/23 17:40	EPA 8260D					
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	01/13/23 17:40	EPA 8260D					
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
Naphthalene	ND	2.00	4.00	ug/L	1	01/13/23 17:40	EPA 8260D					
n-Propylbenzene	ND	0.250	0.500	ug/L	1	01/13/23 17:40	EPA 8260D					
Styrene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	01/13/23 17:40	EPA 8260D					
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	01/13/23 17:40	EPA 8260D					
Fetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	01/13/23 17:40	EPA 8260D					
Toluene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	01/13/23 17:40	EPA 8260D					
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	01/13/23 17:40	EPA 8260D					
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	01/13/23 17:40	EPA 8260D					
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	01/13/23 17:40	EPA 8260D					
Frichloroethene (TCE)	ND	0.200	0.400	ug/L	1	01/13/23 17:40	EPA 8260D					
Frichlorofluoromethane	ND	1.00	2.00	ug/L	1	01/13/23 17:40	EPA 8260D					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 8 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell 22118 20th Ave SE, Suite G202 Bothell, WA 98021 Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
	Sample	Detection	Reporting	***		Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
MW-7-0123 (A3A0367-03RE2)				Matrix: Wate	er e	Batch:						
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
m,p-Xylene	ND	0.500	1.00	ug/L	1	01/13/23 17:40	EPA 8260D					
o-Xylene	ND	0.250	0.500	ug/L	1	01/13/23 17:40	EPA 8260D					
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	<i>i</i> 1	01/13/23 17:40	EPA 8260D					
Toluene-d8 (Surr)			102 %	80-120 %	<i>i</i> 1	01/13/23 17:40	EPA 8260D					
4-Bromofluorobenzene (Surr)			98 %	80-120 %	i = I	01/13/23 17:40	EPA 8260D					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 9 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

ANALYTICAL SAMPLE RESULTS

	Vinyl Chloride by EPA 8260D SIM												
	Sample	Detection	Reporting	_		Date							
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes					
MW-5-0123 (A3A0367-01)				Matrix: Wate	er	Batch:	23A0286						
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	01/18/23 20:12	EPA 8260D SIM						
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 101 %	Limits: 80-120 %	6 I	01/18/23 20:12	EPA 8260D SIM						
Toluene-d8 (Surr)			100 %	80-120 %	<i>i</i> 1	01/18/23 20:12	EPA 8260D SIM						
4-Bromofluorobenzene (Surr)			100 %	80-120 %	6 <i>1</i>	01/18/23 20:12	EPA 8260D SIM						
MW-6-0123 (A3A0367-02)				Matrix: Wate	er	Batch: 23A0286							
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	01/18/23 21:06	EPA 8260D SIM						
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 100 %	Limits: 80-120 %	6 I	01/18/23 21:06	EPA 8260D SIM						
Toluene-d8 (Surr)			100 %	80-120 %	6 1	01/18/23 21:06	EPA 8260D SIM						
4-Bromofluorobenzene (Surr)			101 %	80-120 %	6 1	01/18/23 21:06	EPA 8260D SIM						
MW-7-0123 (A3A0367-03)		Matrix: Water Batch: 2		23A0286									
Vinyl chloride	0.0447	0.0100	0.0200	ug/L	1	01/18/23 20:39	EPA 8260D SIM						
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 101 %	Limits: 80-120 %	6 I	01/18/23 20:39	EPA 8260D SIM						
Toluene-d8 (Surr)			99 %	80-120 %	6 1	01/18/23 20:39	EPA 8260D SIM						
4-Bromofluorobenzene (Surr)			101 %	80-120 %	6 1	01/18/23 20:39	EPA 8260D SIM						

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 10 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 23A0349 - EPA 5030C Water Blank (23A0349-BLK1) Prepared: 01/11/23 08:30 Analyzed: 01/11/23 14:57 EPA 8260D ND 10.0 20.0 Acetone ug/L ND 2.00 Acrylonitrile 1.00 ug/L 1 Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 ug/L 1 Bromochloromethane ND 0.500 1.00 ug/L 1 ND Bromodichloromethane 0.500 1.00 ug/L 1 Bromoform ND 0.500 1.00 ug/L 1 5.00 Bromomethane ND 5.00 ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 ug/L 1.00 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ------Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L ---2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 Dibromochloromethane ND 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 5.00 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 ug/L Dibromomethane ND 0.500 1.00 1 0.250 1,2-Dichlorobenzene ND 0.500 ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 0.200 0.400 trans-1,2-Dichloroethene ND ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 11 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC RPD

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0349 - EPA 5030C							Wat	ter				
Blank (23A0349-BLK1)			Prepared	: 01/11/23	08:30 Anal	yzed: 01/11/	23 14:57					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	5.00	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	2.00	2.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	ND	0.400	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	2.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	2.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1							
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L	1							
m,p-Xylene	ND	0.500	1.00	ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L ug/L	1							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 104 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 12 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell Project: 22118 20th Ave SE, Suite G202 Project Number: 101.20841.00001 Bothell, WA 98021 Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

Woodinville West

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Result Units Dilution RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23A0349 - EPA 5030C Water Blank (23A0349-BLK1) Prepared: 01/11/23 08:30 Analyzed: 01/11/23 14:57 Surr: Toluene-d8 (Surr) Recovery: 105 % Limits: 80-120 % Dilution: 1x 4-Bromofluorobenzene (Surr) 100 % 80-120 % Prepared: 01/11/23 08:30 Analyzed: 01/11/23 13:26 LCS (23A0349-BS1) EPA 8260D Acetone 42.0 10.0 20.0 ug/L 1 40.0 105 80-120% ICV-01 Acrylonitrile 21.9 1.00 2.00 ug/L 1 20.0 109 80-120% Benzene 19.7 0.100 0.200 1 20.0 98 80-120% ug/L Bromobenzene 0.250 0.500 20.0 83 80-120% 16.5 ug/L 1 ---Bromochloromethane 25.1 0.500 1.00 1 20.0 80-120% Q-56 ug/L 126 Bromodichloromethane 0.500 1.00 20.0 21.8 ug/L 1 ---109 80-120% Bromoform 16.6 0.500 1.00 ug/L 1 20.0 83 80-120% Bromomethane 32.7 5.00 5.00 1 20.0 163 80-120% Q-56 ug/L 2-Butanone (MEK) 44.3 5.00 10.0 ug/L 1 40.0 111 80-120% ICV-01 18.0 0.500 1.00 ug/L 20.0 90 80-120% n-Butylbenzene 1 --sec-Butylbenzene 18.3 0.500 1.00 1 20.0 92 80-120% ug/L tert-Butylbenzene 0.500 1.00 20.0 84 80-120% 16.8 ug/L 1 Carbon disulfide 19.4 5.00 10.0 ug/L 1 20.0 97 80-120% Carbon tetrachloride 19.1 0.500 1.00 ug/L 1 20.0 95 80-120% ug/L Chlorobenzene 19.2 0.250 0.500 1 20.0 96 80-120% ICV-01 Chloroethane 23.4 5.00 5.00 20.0 117 80-120% 1 ug/L Chloroform 20.5 0.500 1.00 ug/L 1 20.0 102 80-120% Chloromethane 22.2 2.50 5.00 1 20.0 111 80-120% ug/L 2-Chlorotoluene 16.6 0.500 1.00 ug/L 1 20.0 83 80-120% 4-Chlorotoluene 18.6 0.500 1.00 ug/L 1 20.0 93 80-120% Dibromochloromethane 20.9 0.500 1.00 ug/L 1 20.0 104 80-120% 1,2-Dibromo-3-chloropropane 14.8 5.00 5.00 ug/L 1 20.0 74 80-120% O-55 1,2-Dibromoethane (EDB) 20.0 92 18.4 0.250 0.500 ug/L 1 80-120% Dibromomethane 20.7 0.500 1.00 1 20.0 103 80-120% ug/L 1,2-Dichlorobenzene 17.3 0.250 0.500 ug/L 1 20.0 86 80-120% 1,3-Dichlorobenzene 17.6 0.250 0.500 ug/L 1 20.0 88 80-120% 17.6 0.250 0.500 20.0 88 1.4-Dichlorobenzene ug/L 1 80-120% Dichlorodifluoromethane 18.4 0.500 1.00 ug/L 1 20.0 92 80-120% 1,1-Dichloroethane 0.200 0.400 20.0 108 80-120% 21.5 ug/L 1

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 13 of 36 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** Dilution Amount % REC Limits RPD Analyte Result Ĺimit Units Result Limit Notes Limit

7 that y to	1000010	Limit	2	011110	Dimenon	11110 0111	1100011	70 REC	Ziiiii	2	2	110105
Batch 23A0349 - EPA 5030C							Wa	ater				
LCS (23A0349-BS1)			Prepared	: 01/11/23 0	08:30 Anal	yzed: 01/11/	23 13:26					
1,2-Dichloroethane (EDC)	21.9	0.200	0.400	ug/L	1	20.0		110	80-120%			
1,1-Dichloroethene	20.2	0.200	0.400	ug/L	1	20.0		101	80-120%			
cis-1,2-Dichloroethene	20.2	0.200	0.400	ug/L	1	20.0		101	80-120%			
trans-1,2-Dichloroethene	19.6	0.200	0.400	ug/L	1	20.0		98	80-120%			
1,2-Dichloropropane	21.0	0.250	0.500	ug/L	1	20.0		105	80-120%			
1,3-Dichloropropane	20.0	0.500	1.00	ug/L	1	20.0		100	80-120%			
2,2-Dichloropropane	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%			
1,1-Dichloropropene	18.6	0.500	1.00	ug/L	1	20.0		93	80-120%			
cis-1,3-Dichloropropene	19.5	0.500	1.00	ug/L	1	20.0		98	80-120%			
trans-1,3-Dichloropropene	21.1	0.500	1.00	ug/L	1	20.0		105	80-120%			
Ethylbenzene	19.1	0.250	0.500	ug/L	1	20.0		96	80-120%			
Hexachlorobutadiene	14.4	5.00	5.00	ug/L	1	20.0		72	80-120%			Q-55
2-Hexanone	41.1	5.00	10.0	ug/L	1	40.0		103	80-120%			
Isopropylbenzene	17.2	0.500	1.00	ug/L	1	20.0		86	80-120%			
4-Isopropyltoluene	17.5	0.500	1.00	ug/L	1	20.0		88	80-120%			
Methylene chloride	20.6	5.00	10.0	ug/L	1	20.0		103	80-120%			
4-Methyl-2-pentanone (MiBK)	43.3	5.00	10.0	ug/L	1	40.0		108	80-120%			
Methyl tert-butyl ether (MTBE)	16.4	0.500	1.00	ug/L	1	20.0		82	80-120%			
Naphthalene	11.5	2.00	2.00	ug/L	1	20.0		58	80-120%			Q-55
n-Propylbenzene	18.5	0.250	0.500	ug/L	1	20.0		93	80-120%			
Styrene	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%			
1,1,1,2-Tetrachloroethane	18.8	0.200	0.400	ug/L	1	20.0		94	80-120%			
1,1,2,2-Tetrachloroethane	20.8	0.250	0.500	ug/L	1	20.0		104	80-120%			
Tetrachloroethene (PCE)	15.8	0.400	0.400	ug/L	1	20.0		79	80-120%			Q-55
Toluene	17.9	0.500	1.00	ug/L	1	20.0		90	80-120%			
1,2,3-Trichlorobenzene	12.4	2.00	2.00	ug/L	1	20.0		62	80-120%			Q-55
1,2,4-Trichlorobenzene	11.9	2.00	2.00	ug/L	1	20.0		60	80-120%			Q-55
1,1,1-Trichloroethane	18.9	0.200	0.400	ug/L	1	20.0		95	80-120%			
1,1,2-Trichloroethane	19.4	0.250	0.500	ug/L	1	20.0		97	80-120%			
Trichloroethene (TCE)	16.8	0.200	0.400	ug/L	1	20.0		84	80-120%			
Trichlorofluoromethane	24.1	1.00	2.00	ug/L	1	20.0		120	80-120%			
1,2,3-Trichloropropane	19.3	0.500	1.00	ug/L	1	20.0		96	80-120%			
1,2,4-Trimethylbenzene	19.0	0.500	1.00	ug/L	1	20.0		95	80-120%			
1,3,5-Trimethylbenzene	19.1	0.500	1.00	ug/L	1	20.0		96	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 14 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0349 - EPA 5030C							Wa	ter				
LCS (23A0349-BS1)			Prepared	d: 01/11/23	08:30 Ana	yzed: 01/11/	/23 13:26					
Vinyl chloride	21.3	0.200	0.400	ug/L	1	20.0		107	80-120%			
n,p-Xylene	38.6	0.500	1.00	ug/L	1	40.0		96	80-120%			
o-Xylene	17.1	0.250	0.500	ug/L	1	20.0		85	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 98 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			85 %	80	0-120 %		"					
Duplicate (23A0349-DUP1)			Prepared	d: 01/11/23	13:31 Anal	yzed: 01/11/	/23 20:28					
OC Source Sample: MW-5-0123 (A3A0367-01	D .										
EPA 8260D												
Acetone	ND	20.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	5.00	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

Dibromomethane

ND

0.500

1.00

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

30%

Philip Nerenberg, Lab Director

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 23A0349 - EPA 5030C Water Duplicate (23A0349-DUP1) Prepared: 01/11/23 13:31 Analyzed: 01/11/23 20:28 QC Source Sample: MW-5-0123 (A3A0367-01) 1,2-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 1,3-Dichlorobenzene 0.500 ug/L 1 ND 30% 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 1 ND 30% ug/L ------1,2-Dichloroethane (EDC) ND 0.200 0.400 ug/L 1 ND 30% 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% ND 0.400 ND 30% cis-1,2-Dichloroethene 0.200 ug/L 1 trans-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% 2,2-Dichloropropane ug/L 1 ND 1,1-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% cis-1,3-Dichloropropene ug/L 1 ND 0.500 ug/L trans-1,3-Dichloropropene ND 1.00 1 ND 30% Ethylbenzene ND 0.250 0.500 ug/L 1 ND ___ 30% Hexachlorobutadiene ND 5.00 5.00 ug/L 1 ND 30% ND 30% 2-Hexanone 5.00 10.0 1 ND ug/L ND Isopropylbenzene 0.500 1.00 ug/L 1 ND 30% 0.500 1.00 ND ND 30% 4-Isopropyltoluene ug/L 1 ND Methylene chloride 5.00 10.0 ug/L 1 ND 30% 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND ------30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND 30% Naphthalene ND ND 30% 2.00 2.00 ug/L 1 ND 0.250 0.500 30% n-Propylbenzene ug/L 1 ND ND 0.500 1.00 ND 30% Styrene ug/L 1 1,1,1,2-Tetrachloroethane ND 0.200 0.400 ND 30% ug/L 1 ND 1,1,2,2-Tetrachloroethane 0.250 0.500 ug/L 1 ---ND ------30% Tetrachloroethene (PCE) ND 0.400 0.400 ug/L 1 ND 30% Toluene ND 0.500 1.00 ND 30% ug/L 1 ---1,2,3-Trichlorobenzene ND 2.00 2.00 ug/L 1 ND 30% ND 2.00 2.00 1,2,4-Trichlorobenzene 1 ND 30% ug/L 1,1,1-Trichloroethane ND 0.200 0.400 ug/L 1 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 16 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0349 - EPA 5030C							Wa	ter				
Duplicate (23A0349-DUP1)			Prepared	: 01/11/23	13:31 Anal	yzed: 01/11/	/23 20:28					
QC Source Sample: MW-5-0123 (A3A0367-0	<u>1)</u>										
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
m,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 106 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			105 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
Matrix Spike (23A0349-MS1)			Prepared	: 01/11/23	13:31 Anal	yzed: 01/12/	/23 00:09					
QC Source Sample: Non-SDG (A3	A0355-03)											
EPA 8260D												
Acetone	235	50.0	100	ug/L	5	200	ND	118	39-160%			ICV-0
Acrylonitrile	111	5.00	10.0	ug/L	5	100	ND	111	63-135%			
Benzene	103	0.500	1.00	ug/L	5	100	ND	103	79-120%			
Bromobenzene	83.2	1.25	2.50	ug/L	5	100	ND	83	80-120%			
Bromochloromethane	128	2.50	5.00	ug/L	5	100	ND	128	78-123%			Q-54
Bromodichloromethane	113	2.50	5.00	ug/L	5	100	ND	113	79-125%			
Bromoform	115	2.50	5.00	G	9	100	ND		,, 120,0			
	83.6	2.50	5.00	ug/L	5	100	ND	84	66-130%			
Bromomethane				_				84 180				Q-54
	83.6	2.50	5.00	ug/L	5	100	ND		66-130%			
Bromomethane	83.6 180	2.50 25.0	5.00 25.0	ug/L ug/L	5 5	100 100	ND ND	180	66-130% 53-141%			Q-54 ICV-(
Bromomethane 2-Butanone (MEK)	83.6 180 230	2.50 25.0 25.0	5.00 25.0 50.0	ug/L ug/L ug/L	5 5 5	100 100 200	ND ND ND	180 115	66-130% 53-141% 56-143%			•
Bromomethane 2-Butanone (MEK) n-Butylbenzene	83.6 180 230 93.8	2.50 25.0 25.0 2.50	5.00 25.0 50.0 5.00	ug/L ug/L ug/L ug/L	5 5 5 5	100 100 200 100	ND ND ND ND	180 115 94	66-130% 53-141% 56-143% 75-128%	 	 	-
Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	83.6 180 230 93.8 96.3	2.50 25.0 25.0 2.50 2.50	5.00 25.0 50.0 5.00 5.00	ug/L ug/L ug/L ug/L ug/L	5 5 5 5	100 100 200 100 100	ND ND ND ND	180 115 94 96	66-130% 53-141% 56-143% 75-128% 77-126%	 	 	
Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	83.6 180 230 93.8 96.3 87.2	2.50 25.0 25.0 2.50 2.50 2.50	5.00 25.0 50.0 5.00 5.00 5.00	ug/L ug/L ug/L ug/L ug/L ug/L	5 5 5 5 5 5	100 100 200 100 100	ND ND ND ND ND	180 115 94 96 87	66-130% 53-141% 56-143% 75-128% 77-126% 78-124%	 	 	•
Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	83.6 180 230 93.8 96.3 87.2	2.50 25.0 25.0 2.50 2.50 2.50 25.0	5.00 25.0 50.0 5.00 5.00 5.00 5.00	ug/L ug/L ug/L ug/L ug/L ug/L	5 5 5 5 5 5 5	100 100 200 100 100 100	ND ND ND ND ND ND ND ND	180 115 94 96 87 105	66-130% 53-141% 56-143% 75-128% 77-126% 78-124% 64-133%	 	 	
Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride	83.6 180 230 93.8 96.3 87.2 105	2.50 25.0 25.0 2.50 2.50 2.50 25.0 25.0	5.00 25.0 50.0 5.00 5.00 5.00 5.00 50.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5 5 5 5 5 5 5 5	100 100 200 100 100 100 100	ND	180 115 94 96 87 105 104	66-130% 53-141% 56-143% 75-128% 77-126% 78-124% 64-133% 72-136%	 	 	•

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell Project: 22118 20th Ave SE, Suite G202 Project Number: 101.20841.00001 Bothell, WA 98021 Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

Woodinville West

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23A0349 - EPA 5030C Water Matrix Spike (23A0349-MS1) Prepared: 01/11/23 13:31 Analyzed: 01/12/23 00:09 QC Source Sample: Non-SDG (A3A0355-03) Chloromethane 118 12.5 25.0 ug/L 5 100 ND 118 50-139% 2.50 5 100 2-Chlorotoluene 84.4 5.00 ug/L ND 84 79-122% ug/L 4-Chlorotoluene 93.0 2.50 5.00 5 100 ND 93 78-122% Dibromochloromethane 106 2.50 5.00 ug/L 5 100 ND 106 74-126% 1,2-Dibromo-3-chloropropane 76.6 25.0 25.0 5 100 ND 77 62-128% Q-54j ug/L ---92.8 1.25 5 100 ND 93 1,2-Dibromoethane (EDB) 2.50 ug/L 77-121% ug/L Dibromomethane 107 2.50 5.00 5 100 ND 107 79-123% 87.8 5 100 88 1,2-Dichlorobenzene 1.25 2.50 ug/L ND 80-120% 1,3-Dichlorobenzene 89.2 1.25 2.50 ug/L 5 100 ND 89 80-120% 1,4-Dichlorobenzene 88.5 1.25 2.50 ug/L 5 100 ND 88 79-120% Dichlorodifluoromethane 104 2.50 5.00 ug/L 5 100 ND 104 32-152% 5 113 1.00 2.00 100 ND 77-125% 1.1-Dichloroethane ug/L 113 5 100 1,2-Dichloroethane (EDC) 112 1.00 2.00 ug/L ND 112 73-128% 5 100 112 1.00 2.00 ND 112 71-131% 1,1-Dichloroethene ug/L ug/L 5 cis-1,2-Dichloroethene 177 1.00 2.00 100 68.2 109 78-123% trans-1,2-Dichloroethene 103 1.00 2.00 ug/L 5 100 ND 103 75-124% ___ 1,2-Dichloropropane 108 1.25 2.50 ug/L 5 100 ND 108 78-122% 100 5 100 ND 100 1,3-Dichloropropane 2.50 5.00 80-120% ug/L 83.7 5 100 ND 60-139% 2,2-Dichloropropane 2.50 5.00 ug/L 84 5 1,1-Dichloropropene 100 2.50 5.00 100 ND 100 79-125% ug/L 5 100 ND 81 75-124% cis-1,3-Dichloropropene 81.0 2.50 5.00 ug/L trans-1,3-Dichloropropene 103 2.50 5.00 ug/L 5 100 ND 103 73-127% ---Ethylbenzene 100 1.25 2.50 ug/L 5 100 ND 100 79-121% 77.6 5 100 ND 78 66-134% Q-54k Hexachlorobutadiene 25.0 25.0 ug/L 25.0 50.0 5 200 ND 107 57-139% 2-Hexanone 214 ug/L 90.4 100 2.50 5.00 5 ND 90 72-131% Isopropylbenzene ug/L 91.0 2.50 5.00 5 100 ND 91 77-127% 4-Isopropyltoluene ug/L 5 Methylene chloride 107 25.0 50.0 ug/L 100 ND 107 74-124% 4-Methyl-2-pentanone (MiBK) 219 25.0 50.0 ug/L 5 200 ND 109 67-130% Methyl tert-butyl ether (MTBE) 83.4 2.50 5.00 5 100 ND 83 71-124% ug/L Naphthalene 57.5 10.0 10.0 5 100 ND 58 61-128% Q-54i ug/L 1.25 2.50 5 n-Propylbenzene 95.6 100 ND 96 76-126% ug/L Styrene 98.6 2.50 5.00 ug/L 5 100 ND 99 78-123%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 18 of 36 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23A0349 - EPA 5030C Water Matrix Spike (23A0349-MS1) Prepared: 01/11/23 13:31 Analyzed: 01/12/23 00:09 QC Source Sample: Non-SDG (A3A0355-03) 5 1,1,1,2-Tetrachloroethane 96.0 1.00 2.00 ug/L 100 ND 96 78-124% 105 1.25 5 100 1,1,2,2-Tetrachloroethane 2.50 ug/L ND 105 71-121% 5 74-129% Tetrachloroethene (PCE) 84.9 2.00 2.00 ug/L 100 2.70 82 Q-54f Toluene 92.1 2.50 5.00 ug/L 5 100 ND 92 80-121% 1,2,3-Trichlorobenzene 61.4 10.0 10.0 ug/L 5 100 ND 61 69-129% Q-54g 1,2,4-Trichlorobenzene 59.2 10.0 10.0 5 100 Q-54h ug/L ND 59 69-130% 1,1,1-Trichloroethane 101 1.00 2.00 ug/L 5 100 ND 101 74-131% 97.4 1,1,2-Trichloroethane 1.25 5 100 ND 97 80-120% 2.50 ug/L 5 Q-01 Trichloroethene (TCE) 329 1.00 2.00 ug/L 100 262 66 79-123% Trichlorofluoromethane 139 5.00 10.0 ug/L 5 100 ND 139 65-141% 1,2,3-Trichloropropane 97.4 2.50 5.00 ug/L 5 100 ND 97 73-122% 97.3 1,2,4-Trimethylbenzene 2.50 5.00 5 100 ND 97 76-124% ug/L 97.6 5 100 75-124% 1,3,5-Trimethylbenzene 2.50 5.00 ug/L ND 98 5 100 Vinyl chloride 119 1.00 2.00 ND 119 58-137% ug/L 200 2.50 5 m,p-Xylene 5.00 ug/L 200 ND 100 80-121% o-Xylene 88.0 1.25 2.50 ug/L 5 100 ND 88 78-122% ---Surr: 1,4-Difluorobenzene (Surr) 102 % Recovery: Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 98 % 80-120 %

80-120 %

84 %

Apex Laboratories

Philip Nevenberg

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 23A0372 - EPA 5030C Water Blank (23A0372-BLK1) Prepared: 01/13/23 09:00 Analyzed: 01/13/23 12:06 EPA 8260D ND 10.0 20.0 Acetone ug/L ND 2.00 Acrylonitrile 1.00 ug/L 1 Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 ug/L 1 Bromochloromethane ND 0.500 1.00 ug/L 1 ND Bromodichloromethane 0.500 1.00 ug/L 1 Bromoform ND 0.500 1.00 ug/L 1 5.00 Bromomethane ND 5.00 ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 1 ug/L sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 ug/L 1.00 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ------Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 Dibromochloromethane ND 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 ug/L Dibromomethane ND 0.500 1.00 1 0.250 1,2-Dichlorobenzene ND 0.500 ug/L 1 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.200 0.400ug/L 1 0.200 1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1 0.200 0.400 trans-1,2-Dichloroethene ND ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0372 - EPA 5030C	Water											
Blank (23A0372-BLK1)			Prepared	: 01/13/23	09:00 Anal	yzed: 01/13	/23 12:06					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
sopropylbenzene	ND	0.500	1.00	ug/L	1							
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
1-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	2.00	4.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Γetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Гoluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Frichlorofluoromethane	ND	1.00	2.00	ug/L	1							
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L	1							
m,p-Xylene	ND	0.500	1.00	ug/L ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L	1							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 102 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 21 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell

22118 20th Ave SE, Suite G202

Project Nur

Bothell, WA 98021

Project Mar

 Project Number:
 101.20841.00001
 Report ID:

 Project Manager:
 Mike Staton
 A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

Woodinville West

		•	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0372 - EPA 5030C							Wa	iter				
Blank (23A0372-BLK1)			Prepared	: 01/13/23	09:00 Anal	yzed: 01/13	/23 12:06					
Surr: Toluene-d8 (Surr)		Recov	very: 102 %	Limits: 80	0-120 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					
LCS (23A0372-BS1)			Prepared	: 01/13/23	09:00 Anal	yzed: 01/13	/23 10:50					
EPA 8260D												
Acetone	36.4	10.0	20.0	ug/L	1	40.0		91	80-120%			
Acrylonitrile	18.7	1.00	2.00	ug/L	1	20.0		93	80-120%			
Benzene	20.2	0.100	0.200	ug/L	1	20.0		101	80-120%			
Bromobenzene	19.9	0.250	0.500	ug/L	1	20.0		99	80-120%			
Bromochloromethane	21.3	0.500	1.00	ug/L	1	20.0		106	80-120%			
Bromodichloromethane	20.0	0.500	1.00	ug/L	1	20.0		100	80-120%			
Bromoform	20.2	0.500	1.00	ug/L	1	20.0		101	80-120%			
Bromomethane	29.6	5.00	5.00	ug/L	1	20.0		148	80-120%			Q-5
2-Butanone (MEK)	39.5	5.00	10.0	ug/L	1	40.0		99	80-120%			
n-Butylbenzene	24.1	0.500	1.00	ug/L	1	20.0		121	80-120%			Q-5
sec-Butylbenzene	25.6	0.500	1.00	ug/L	1	20.0		128	80-120%			Q-5
tert-Butylbenzene	23.9	0.500	1.00	ug/L	1	20.0		120	80-120%			
Carbon disulfide	21.0	5.00	10.0	ug/L	1	20.0		105	80-120%			
Carbon tetrachloride	22.0	0.500	1.00	ug/L	1	20.0		110	80-120%			
Chlorobenzene	20.2	0.250	0.500	ug/L	1	20.0		101	80-120%			
Chloroethane	23.7	5.00	5.00	ug/L	1	20.0		119	80-120%			
Chloroform	20.1	0.500	1.00	ug/L	1	20.0		100	80-120%			
Chloromethane	21.4	2.50	5.00	ug/L	1	20.0		107	80-120%			
2-Chlorotoluene	22.3	0.500	1.00	ug/L	1	20.0		112	80-120%			
4-Chlorotoluene	22.3	0.500	1.00	ug/L	1	20.0		111	80-120%			
Dibromochloromethane	20.9	0.500	1.00	ug/L	1	20.0		104	80-120%			
1,2-Dibromo-3-chloropropane	18.2	2.50	5.00	ug/L	1	20.0		91	80-120%			
1,2-Dibromoethane (EDB)	20.3	0.250	0.500	ug/L	1	20.0		102	80-120%			
Dibromomethane	19.6	0.500	1.00	ug/L	1	20.0		98	80-120%			
1,2-Dichlorobenzene	20.6	0.250	0.500	ug/L	1	20.0		103	80-120%			
1,3-Dichlorobenzene	21.4	0.250	0.500	ug/L	1	20.0		107	80-120%			
1,4-Dichlorobenzene	20.2	0.250	0.500	ug/L	1	20.0		101	80-120%			
Dichlorodifluoromethane	22.5	0.500	1.00	ug/L	1	20.0		112	80-120%			
1,1-Dichloroethane	20.7	0.200	0.400	ug/L	1	20.0		104	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23A0372 - EPA 5030C Water LCS (23A0372-BS1) Prepared: 01/13/23 09:00 Analyzed: 01/13/23 10:50 1,2-Dichloroethane (EDC) 19.7 0.200 0.400 20.0 99 ug/L 80-120% 1,1-Dichloroethene 22.3 0.200 0.400 ug/L 1 20.0 112 80-120% ---------20.0 cis-1,2-Dichloroethene 21.4 0.200 0.400 ug/L 1 107 80-120% trans-1,2-Dichloroethene 21.2 0.200 0.400ug/L 1 20.0 106 80-120% 20.0 20.3 0.250 0.500 102 80-120% 1,2-Dichloropropane ug/L 1 1,3-Dichloropropane 20.4 0.500 1.00 ug/L 1 20.0 102 80-120% 2,2-Dichloropropane 21.7 0.5001.00 ug/L 1 20.0 108 80-120% 20.0 1,1-Dichloropropene 22.3 0.500 1.00 ug/L 1 112 80-120% 22.3 1.00 20.0 cis-1,3-Dichloropropene 0.500 ug/L 1 111 80-120% trans-1,3-Dichloropropene 22.5 0.500 1.00 ug/L 1 20.0 113 80-120% Ethylbenzene 20.0 22.3 0.250 0.500 112 80-120% ug/L 1 20.0 Hexachlorobutadiene 23.2 2.50 5.00 ug/L 1 116 80-120% 32.4 40.0 81 2-Hexanone 5.00 10.0 ug/L 1 ---80-120% ---Isopropylbenzene 20.4 0.500 1.00 ug/L 1 20.0 102 80-120% 0.500 20.0 108 80-120% 4-Isopropyltoluene 21.6 1.00 ug/L 1 ---Methylene chloride 20.8 5.00 10.0 ug/L 1 20.0 104 80-120% 5.00 10.0 40.0 103 4-Methyl-2-pentanone (MiBK) 41.3 1 80-120% ug/L Methyl tert-butyl ether (MTBE) 20.8 0.500 1.00 1 20.0 104 80-120% ug/L Naphthalene 16.8 2.00 4.00 20.0 84 ug/L 1 ---80-120% --n-Propylbenzene 22.7 0.250 0.500 ug/L 1 20.0 114 80-120% 19.6 0.500 1.00 20.0 98 80-120% Styrene ug/L 1 ---1,1,1,2-Tetrachloroethane 20.2 0.200 0.400 ug/L 1 20.0 101 80-120% 1,1,2,2-Tetrachloroethane 19.1 0.250 0.500 20.0 96 80-120% ug/L 1 Tetrachloroethene (PCE) 21.7 0.200 0.400 1 20.0 108 80-120% ug/L Toluene 0.500 1.00 20.0 105 21.0 ug/L 1 80-120% ------1,2,3-Trichlorobenzene 21.4 1.00 2.00 ug/L 1 20.0 107 80-120% 1,2,4-Trichlorobenzene 21.6 1.00 2.00 ug/L 20.0 108 80-120% 1 ------1,1,1-Trichloroethane 21.3 0.200 0.400 ug/L 1 20.0 107 80-120% 1.1.2-Trichloroethane 20.4 0.250 0.500 1 20.0 102 80-120% ug/L Trichloroethene (TCE) 20.1 0.200 0.400ug/L 1 20.0 101 80-120%

Apex Laboratories

Philip Nevenberg

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

22.8

19.3

20.8

24.6

1.00

0.500

0.500

0.500

2.00

1.00

1.00

1.00

ug/L

ug/L

ug/L

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

114

97

104

123

80-120%

80-120%

80-120%

80-120%

Q-56

Philip Nerenberg, Lab Director

Page 23 of 36

1

1

1

1

20.0

20.0

20.0

20.0

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0372 - EPA 5030C							Wa	ter				
LCS (23A0372-BS1)			Prepared	1: 01/13/23	09:00 Anal	yzed: 01/13/	/23 10:50					
/inyl chloride	23.0	0.200	0.400	ug/L	1	20.0		115	80-120%			
n,p-Xylene	48.0	0.500	1.00	ug/L	1	40.0		120	80-120%			
-Xylene	23.0	0.250	0.500	ug/L	1	20.0		115	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80	120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
Ouplicate (23A0372-DUP1)			Prepared	l: 01/13/23 (09:00 Anal	yzed: 01/13/	/23 13:13					
OC Source Sample: Non-SDG (A3	A0438-01)											
Acetone	46.8	10.0	20.0	ug/L	1		44.6			5	30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.200	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	5.00	5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 23A0372 - EPA 5030C Water Duplicate (23A0372-DUP1) Prepared: 01/13/23 09:00 Analyzed: 01/13/23 13:13 QC Source Sample: Non-SDG (A3A0438-01) 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% ND 0.250 0.500 1,4-Dichlorobenzene ug/L 1 ND 30% Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.200 0.400 1 ND 30% ug/L ------ND 0.200 1,1-Dichloroethene 0.400 ug/L 1 ND 30% cis-1,2-Dichloroethene ND 0.200 0.400ug/L 1 ND 30% trans-1,2-Dichloroethene ND 0.400 ND 30% 0.200 ug/L 1 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% 2,2-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% 1,1-Dichloropropene ug/L 1 ND cis-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% trans-1,3-Dichloropropene ug/L 1 ND 0.250 ug/L Ethylbenzene ND 0.500 1 ND 30% ND Hexachlorobutadiene 2.50 5.00 ug/L 1 ND ___ 30% 2-Hexanone ND 5.00 10.0 ug/L 1 ND 30% ND 0.500 30% Isopropylbenzene 1.00 1 ND ug/L ND 4-Isopropyltoluene 0.500 1.00 ug/L 1 ND 30% ND 10.0 Methylene chloride 5.00 ND 30% ug/L 1 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND 30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND ------30% Naphthalene ND 2.00 4.00 ug/L 1 ND 30% ND 0.500 ND 30% n-Propylbenzene 0.250 ug/L 1 ND 0.500 1.00 30% Styrene ug/L 1 ND ND 1,1,1,2-Tetrachloroethane 0.200 0.400 ND 30% ug/L 1 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ND 30% ug/L 1 Tetrachloroethene (PCE) ND 0.200 0.400 ug/L 1 ---ND ------30% ND 0.500 1.00 ug/L 1 ND 30% ND 1.00 2.00 ND 30% 1.2.3-Trichlorobenzene ug/L 1 ---1,2,4-Trichlorobenzene ND 1.00 2.00 ug/L 1 ND 30% 0.200 0.400 1,1,1-Trichloroethane ND 1 ND 30% ug/L 1,1,2-Trichloroethane ND 0.250 0.500 ug/L 1 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 25 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0372 - EPA 5030C							Wa	ter				
Duplicate (23A0372-DUP1)			Prepared	1: 01/13/23	09:00 Anal	lyzed: 01/13/	/23 13:13					
QC Source Sample: Non-SDG (A3	A0438-01)											
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
m,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 100 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			101 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
Matrix Spike (23A0372-MS1) QC Source Sample: Non-SDG (A3	A0437-07)		Prepared	1: 01/13/23	09:00 Anal	lyzed: 01/13/	/23 13:57					
<u> </u>	A0437-07)		Prepared	1: 01/13/23	09:00 Anal	lyzed: 01/13/	/23 13:57					
QC Source Sample: Non-SDG (A3	(A0437-07) 4930	10.0	Prepared	l: 01/13/23 ug/L	09:00 Anal	40.0	5480	-1360	39-160%			Q-0:
QC Source Sample: Non-SDG (A3 EPA 8260D		10.0 1.00						-1360 97	39-160% 63-135%			Q-0:
QC Source Sample: Non-SDG (A3 EPA 8260D Acetone	4930		20.0	ug/L	1	40.0	5480					Q-0:
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile	4930 19.4	1.00	20.0	ug/L ug/L	1 1	40.0 20.0	5480 ND	97	63-135%			Q-0.
OC Source Sample: Non-SDG (A3 EPA 8260D) Acetone Acrylonitrile Benzene	4930 19.4 20.0	1.00 0.100	20.0 2.00 0.200	ug/L ug/L ug/L	1 1 1	40.0 20.0 20.0	5480 ND ND	97 100	63-135% 79-120%			Q-03
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene	4930 19.4 20.0 18.3	1.00 0.100 0.250	20.0 2.00 0.200 0.500	ug/L ug/L ug/L ug/L	1 1 1 1	40.0 20.0 20.0 20.0	5480 ND ND ND	97 100 92	63-135% 79-120% 80-120%		 	Q-03
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane	4930 19.4 20.0 18.3 20.9	1.00 0.100 0.250 0.500	20.0 2.00 0.200 0.500 1.00	ug/L ug/L ug/L ug/L ug/L	1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0	5480 ND ND ND ND	97 100 92 105	63-135% 79-120% 80-120% 78-123%		 	Q-0:
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane	4930 19.4 20.0 18.3 20.9 19.5	1.00 0.100 0.250 0.500 0.500	20.0 2.00 0.200 0.500 1.00	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0	5480 ND ND ND ND ND	97 100 92 105 98	63-135% 79-120% 80-120% 78-123% 79-125%	 	 	
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	4930 19.4 20.0 18.3 20.9 19.5 19.2	1.00 0.100 0.250 0.500 0.500	20.0 2.00 0.200 0.500 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	5480 ND ND ND ND ND ND	97 100 92 105 98 96	63-135% 79-120% 80-120% 78-123% 79-125% 66-130%	 	 	
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	4930 19.4 20.0 18.3 20.9 19.5 19.2 29.8	1.00 0.100 0.250 0.500 0.500 0.500 5.00	20.0 2.00 0.200 0.500 1.00 1.00 5.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	5480 ND ND ND ND ND ND	97 100 92 105 98 96 149	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141%	 	 	Q-54
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	4930 19.4 20.0 18.3 20.9 19.5 19.2 29.8 42.6	1.00 0.100 0.250 0.500 0.500 5.00 5.00 0.500 0.500	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	5480 ND ND ND ND ND ND ND	97 100 92 105 98 96 149 106	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143%	 	 	Q-03 Q-54; Q-5; Q-54
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	4930 19.4 20.0 18.3 20.9 19.5 19.2 29.8 42.6 22.6	1.00 0.100 0.250 0.500 0.500 5.00 5.00 0.500	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	5480 ND ND ND ND ND ND ND ND ND ND	97 100 92 105 98 96 149 106 113	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126% 78-124%	 	 	Q-54 Q-5-
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	4930 19.4 20.0 18.3 20.9 19.5 19.2 29.8 42.6 22.6 24.2	1.00 0.100 0.250 0.500 0.500 0.500 5.00 0.500 0.500 0.500 5.00	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	5480 ND ND ND ND ND ND ND ND ND	97 100 92 105 98 96 149 106 113 121	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126%	 	 	Q-54 Q-5
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	4930 19.4 20.0 18.3 20.9 19.5 19.2 29.8 42.6 22.6 24.2 23.1	1.00 0.100 0.250 0.500 0.500 0.500 5.00 0.500 0.500 0.500 0.500	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00 1.00 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	5480 ND	97 100 92 105 98 96 149 106 113 121	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126% 78-124%	 	 	Q-54 Q-5-
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene	4930 19.4 20.0 18.3 20.9 19.5 19.2 29.8 42.6 22.6 24.2 23.1 21.5	1.00 0.100 0.250 0.500 0.500 0.500 5.00 0.500 0.500 0.500 0.500 0.500 0.500	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00 1.00 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	5480 ND ND ND ND ND ND ND ND ND ND	97 100 92 105 98 96 149 106 113 121 115	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126% 64-133%	 	 	Q-54 Q-5-
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene carbon disulfide Carbon tetrachloride	4930 19.4 20.0 18.3 20.9 19.5 19.2 29.8 42.6 22.6 24.2 23.1 21.5 21.9	1.00 0.100 0.250 0.500 0.500 0.500 5.00 0.500 0.500 0.500 0.500 0.500 0.500 5.00	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00 1.00 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	5480 ND	97 100 92 105 98 96 149 106 113 121 115 107 109 95	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126% 64-133% 72-136%	 		Q-54 Q-5-
OC Source Sample: Non-SDG (A3 EPA 8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene	4930 19.4 20.0 18.3 20.9 19.5 19.2 29.8 42.6 22.6 24.2 23.1 21.5 21.9 18.9	1.00 0.100 0.250 0.500 0.500 0.500 5.00 0.500 0.500 0.500 0.500 0.500 0.500	20.0 2.00 0.200 0.500 1.00 1.00 5.00 10.0 1.00 1.00 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	5480 ND	97 100 92 105 98 96 149 106 113 121 115 107 109	63-135% 79-120% 80-120% 78-123% 79-125% 66-130% 53-141% 56-143% 75-128% 77-126% 78-124% 64-133% 72-136% 80-120%	 		Q-54 Q-5

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23A0372 - EPA 5030C Water Matrix Spike (23A0372-MS1) Prepared: 01/13/23 09:00 Analyzed: 01/13/23 13:57 QC Source Sample: Non-SDG (A3A0437-07) 2-Chlorotoluene 20.4 0.500 1.00 ug/L 1 20.0 ND 102 79-122% 21.1 0.500 1.00 20.0 4-Chlorotoluene ug/L 1 ND 105 78-122% ug/L Dibromochloromethane 19.6 0.500 1.00 1 20.0 ND 98 74-126% 1,2-Dibromo-3-chloropropane 18.8 2.50 5.00 ug/L 1 20.0 ND 94 62-128% 1,2-Dibromoethane (EDB) 19.6 0.250 0.500 1 20.0 ND 98 77-121% ug/L Dibromomethane 19.5 0.500 1.00 20.0 ND 97 79-123% ug/L 1 1,2-Dichlorobenzene 19.4 0.250 0.500 ug/L 1 20.0 ND 97 80-120% 19.8 0.500 20.0 ND 99 80-120% 1.3-Dichlorobenzene 0.250 ug/L 1 1,4-Dichlorobenzene 18.5 0.250 0.500 ug/L 1 20.0 ND 93 79-120% Dichlorodifluoromethane 22.7 0.500 1.00 ug/L 1 20.0 ND 114 32-152% 1,1-Dichloroethane 20.3 0.200 0.400 ug/L 1 20.0 ND 102 77-125% 0.400 1,2-Dichloroethane (EDC) 19.7 0.200 20.0 ND 97 73-128% ug/L 1 20.0 1,1-Dichloroethene 23.0 0.200 0.400 ug/L 1 ND 115 71-131% cis-1,2-Dichloroethene 20.0 20.7 0.200 0.400 ND 103 78-123% ug/L 1 0.400 ug/L trans-1,2-Dichloroethene 21.4 0.200 1 20.0 ND 107 75-124% 1,2-Dichloropropane 20.2 0.250 0.500 ug/L 1 20.0 ND 100 78-122% ___ 1,3-Dichloropropane 19.4 0.500 1.00 ug/L 1 20.0 ND 97 80-120% 20.8 0.500 20.0 ND 104 2,2-Dichloropropane 1.00 1 60-139% ug/L 22.4 20.0 ND 79-125% 1,1-Dichloropropene 0.500 1.00 ug/L 1 112 0.500 1.00 20.0 cis-1,3-Dichloropropene 20.6 ND 103 75-124% ug/L 1 trans-1,3-Dichloropropene 0.500 20.0 ND 105 73-127% 21.1 1.00 ug/L 1 0.250 Ethylbenzene 21.3 0.500 ug/L 1 20.0 ND 106 79-121% Hexachlorobutadiene 21.2 2.50 5.00 ug/L 1 20.0 ND 106 66-134% 2-Hexanone 40.0 ND 87 57-139% 34.6 5.00 10.0 ug/L 1 19.6 0.500 1.00 20.0 ND 98 72-131% Isopropylbenzene ug/L 1 20.0 20.1 0.500 1.00 ND 101 77-127% 4-Isopropyltoluene ug/L 1 Methylene chloride 19.0 5.00 10.0 20.0 ND 95 74-124% ug/L 1 40.0 67-130% 4-Methyl-2-pentanone (MiBK) 43.9 5.00 10.0 ug/L 1 ND 110 Methyl tert-butyl ether (MTBE) 20.5 0.500 1.00 ug/L 1 20.0 ND 102 71-124% Naphthalene 16.2 2.00 4.00 1 20.0 ND 81 ug/L 61-128% n-Propylbenzene 21.4 0.250 0.500 1 20.0 ND 107 76-126% ug/L 18.5 0.500 1.00 20.0 93 Styrene 1 ND 78-123% ug/L ---1,1,1,2-Tetrachloroethane 18.6 0.200 0.400 ug/L 1 20.0 ND 93 78-124%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 27 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23A0372 - EPA 5030C Water Matrix Spike (23A0372-MS1) Prepared: 01/13/23 09:00 Analyzed: 01/13/23 13:57 QC Source Sample: Non-SDG (A3A0437-07) 1,1,2,2-Tetrachloroethane 18.4 0.250 0.500 ug/L 1 20.0 ND 92 71-121% 20.3 0.200 0.40020.0 Tetrachloroethene (PCE) ug/L 1 ND 102 74-129% 20.0 80-121% Toluene 20.1 0.500 1.00 ug/L 1 ND 100 1,2,3-Trichlorobenzene 19.2 1.00 2.00 ug/L 1 20.0 ND 96 69-129% 1,2,4-Trichlorobenzene 19.7 1.00 2.00 ug/L 1 20.0 ND 98 69-130% 1,1,1-Trichloroethane 21.4 0.200 0.400 20.0 ug/L 1 ND 107 74-131% 1,1,2-Trichloroethane 19.0 0.250 0.500 ug/L 1 20.0 ND 95 80-120% Trichloroethene (TCE) 0.200 0.40020.0 98 79-123% 19.6 ug/L 1 ND 20.0 Trichlorofluoromethane 23.4 1.00 2.00 ug/L 1 ND 117 65-141% 1,2,3-Trichloropropane 18.8 0.500 1.00 ug/L 1 20.0 ND 94 73-122% 1,2,4-Trimethylbenzene 19.3 0.500 1.00 ug/L 1 20.0 ND 97 76-124% O-54b 1,3,5-Trimethylbenzene 23.0 0.500 1.00 20.0 ND 75-124% ug/L 1 115 22.5 0.200 20.0 ND Vinyl chloride 0.400 ug/L 1 113 58-137% 1.00 40.0 m,p-Xylene 45.9 0.500 ND 80-121% ug/L 1 115 0.250 0.500 78-122% o-Xylene 22.0 ug/L ND 110 Surr: 1,4-Difluorobenzene (Surr) 100 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 98 % 80-120 % 4-Bromofluorobenzene (Surr) 96 % 80-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALITY CONTROL (QC) SAMPLE RESULTS

			Vinyl	Chloride	by EPA 8	260D SIM						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0286 - EPA 5030C							Wa	ter				
Blank (23A0286-BLK1)			Prepared	1: 01/18/23	15:00 Anal	yzed: 01/18/	/23 18:24					
EPA 8260D SIM												
Vinyl chloride	ND	0.0100	0.0200	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 104 %	Limits: 8	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					
LCS (23A0286-BS1)			Prepared	1: 01/18/23	15:00 Anal	yzed: 01/18/	/23 17:31					
EPA 8260D SIM												
Vinyl chloride	0.198	0.0100	0.0200	ug/L	1	0.200		99	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 8	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	0-120 %		"					
Duplicate (23A0286-DUP1)			Prepared	1: 01/18/23	15:00 Anal	yzed: 01/18/	/23 19:18					
OC Source Sample: Non-SDG (A3	A0313-02)											
Vinyl chloride	0.0815	0.0100	0.0200	ug/L	1		0.104			24	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 100 %	Limits: 8	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
Matrix Spike (23A0286-MS1)			Prepared	1: 01/18/23	15:00 Anal	yzed: 01/18/	/23 21:33					
OC Source Sample: MW-6-0123 (A3A0367-02	<u>)</u>										
Vinyl chloride	0.228	0.0100	0.0200	ug/L	1	0.200	ND	114	58-137%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 101 %	Limits: 8		Dilı	tion: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 29 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	by EPA 8260D			
<u>Prep: EPA 5030C</u>					Sample Initial/Final	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23A0349							
A3A0367-01	Water	EPA 8260D	01/10/23 11:03	01/11/23 13:31	5mL/5mL	5mL/5mL	1.00
A3A0367-02	Water	EPA 8260D	01/10/23 11:44	01/11/23 13:31	5mL/5mL	5mL/5mL	1.00
Batch: 23A0372							
A3A0367-03RE2	Water	EPA 8260D	01/10/23 12:17	01/12/23 15:02	5mL/5mL	5mL/5mL	1.00

		Vin	yl Chloride by EPA 8	3260D SIM			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23A0286							
A3A0367-01	Water	EPA 8260D SIM	01/10/23 11:03	01/18/23 15:00	5mL/5mL	5mL/5mL	1.00
A3A0367-02	Water	EPA 8260D SIM	01/10/23 11:44	01/18/23 15:00	5mL/5mL	5mL/5mL	1.00
A3A0367-03	Water	EPA 8260D SIM	01/10/23 12:17	01/18/23 15:00	5mL/5mL	5mL/5mL	1.00
A3A0367-01 A3A0367-02	Water	EPA 8260D SIM	01/10/23 11:44	01/18/23 15:00	5mL/5mL		5mL/5mL

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

oex Laborato	<u>rries</u>
ICV-01	Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-03	Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +1%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the $\pm -20\%$ criteria listed in EPA method 8260/8270 by $\pm 28\%$. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +3%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +43%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +6. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +8%. The results are reported as Estimated Values.
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -1%. The results are reported as Estimated Values.
Q-54g	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -18%. The results are reported as Estimated Values.
Q-54h	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -20%. The results are reported as Estimated Values.
Q-54i	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -22%. The results are reported as Estimated Values.
Q-54j	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -6%. The results are reported as Estimated Values.
Q-54k	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -8%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell Project:

22118 20th Ave SE, Suite G202 Project Nu.

Bothell, WA 98021 Project Mar

 Project Number:
 101.20841.00001
 Report ID:

 Project Manager:
 Mike Staton
 A3A0367 - 01 20 23 1628

REPORTING NOTES AND CONVENTIONS:

Woodinville West

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 32 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 33 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-BothellProject:Woodinville West22118 20th Ave SE, Suite G202Project Number:101.20841.00001Bothell, WA 98021Project Manager:Mike Staton

Report ID: A3A0367 - 01 20 23 1628

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 34 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

	-	-			1																		
Company: 518		Project Mgr. Mike Staton	Mik	50	뒹	ξ			Proje	ct Nar	ne:	soci	N. S.	3	15	Project Name: NOOCLINVILL WRS+ Bis ICLINCA	2	J	Proj	Project #: 151 - 2084	*	0000	
Address: 22118 20" And SE SHE GROZ BOTHULI NIG Phone 425 HOL-58CO Emait MStephone Sircanswithing Gran 100#	Ster	1007 Br	TMEIL	3	Pho	J.	153	105	880	8	mail:	MSt	C. Par	SS.	3	7.35	C S	Š	og i				
Sampled by: Frish Herrander	nan	des				•	4155								NAI	ANAL VER BEDIEST	ף וּ	5	i de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición dela comp		en la	Single)	and the
Site Location:										Dans.		18	H	<u> </u>		'qa	K'	CLP	<u> </u>			-	-
State			SAS					s DC				Full L				Be, ('N' 'o	T.	19/2				
Country	8		NIAT	_	-	X.	х)A W	-							, Ba,	M ,al	SSIG	<u>जैप</u>			9	
County	ЭJ	LEIX	CON	-Hd.L.	-H4T	-H4T	эта о	аая (olsH (OOA (WIS (imse (beet;	Pesti MAN	M vii	sA ,d	r, Co Mg, M g, Na,	'b We	ने भर			lqmsS	IoaA n
SAMPLE ID	ΓΑG	MIT				MN	978	978								S TV	1 ,3H Se, A	IOI				Hold 3	
MW-5-073	1/10/23 1103	103 ward	* 5						Ĺ	7		-	-	_					1				
MW-(e-0123		HHI			_				ŕ	7		-	-	-	-	-		\vdash	1				-
MW-7-0123	<u>></u>	1217	*						ŕ	X	-	-	-	-	-			\vdash	X				-
											-	-	+	-				+	+			-	+
The state of the s										 					-				-			-	-
Code to the control of the control o													-					-	ļ			-	-
			_		_				\dashv	\dashv	_	-							_				
		-	-	_	_				\dashv	_	-	\dashv	\dashv			_							
E -	!			_					\dashv	\dashv	-	\dashv	\dashv	-		_						\dashv	
Standard Turn Around Time (TAT) = 10 Business Days	round Time	s (TAT) = I ₁	0 Busines	ss Days						T	PECI	AL IN	STRU	SPECIAL INSTRUCTIONS	NS:								
TAT Beamseted (ofenie)	1 Day	2 Day	a	4.1	3 Day																		
	5 Day	Standard	F F	0	Other:																		
	ARE HELD	SAMPLES ARE HELD FOR 30 DAYS	YS							Т													
HED BY:)		RECEIVED BY: Signature:	BY:			Date:	Date: 1/11/13		155 155	RELINQUISHED BY: Signature:	QUISE	ED B	¥:		Date:			Signa	RECEIVED BY: Signature:	Date:		
mily Hemandy	7me 1500	8	Printed Name: Orayo Saluran	Sat.	\$		Time:	ne: 1045		EL4	Printed Name	Name:				Time:			Print	Printed Name:	Time:		
Company: SLR		Com	Company:	7			•			U	Company:	<u>s</u>							Company	any.			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Maenberg

Page 35 of 36

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

SLR Corporation-Bothell
22118 20th Ave SE, Suite G202
Bothell, WA 98021

Project Number: Woodinville West
Project Number: 101.20841.00001
Project Manager: Mike Staton

Report ID: A3A0367 - 01 20 23 1628

Client: SLR	Element WO#: A3	0367
Project/Project #:	roodingille west Building C/101.208	41.00001
Delivery Info:	<i>)</i> ,	
Date/time received: 1/11	123 @ 1045 By: OTS	
Delivered by: Apex_Clier	t_ESSFedEx_UPS_Radio_Morgan_SDS_Ever	greenOther
Cooler Inspection Dat	e/time inspected: 1/1/23 @ 1046 By:	75
Chain of Custody included	*	
Signed/dated by client?	Yes _ * No	
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Co	oler #6 Cooler #7
Temperature (°C)	3.3	
Custody seals? (Y/N)		
Received on ice? (Y/N)	<u>Y</u>	
Temp. blanks? (Y/N)	<u>N</u>	
Ice type: (Gel/Real/Other)	Real	
Condition (In/Out):	ln	
Green dots applied to out o	Possible reason why: f temperature samples? Yes/No form initiated? Yes/No //time inspected: 1 = 1 2 3 0 0 5 3 By:	ς
Green dots applied to out of temperature samples Sample Inspection:	f temperature samples? Yes/No	
Green dots applied to out o Out of temperature samples Sample Inspection: Date All samples intact? Yes	f temperature samples? Yes/ fo form initiated? Yes/ fo /time inspected: <u> - 2 3 @ 1 D 5 9</u> By: <u> 5 5</u>	
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes _> Bottle labels/COCs agree?	f temperature samples? Yes/No form initiated? Yes/No /time inspected:	
Green dots applied to out o Out of temperature samples Sample Inspection: Date All samples intact? Yes _> Bottle labels/COCs agree? COC/container discrepancie	f temperature samples? Yes/form initiated? Yes	
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes _> Bottle labels/COCs agree? COC/container discrepancic Containers/volumes received	f temperature samples? Yes/No form initiated? Yes/No /time inspected:	
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes _> Bottle labels/COCs agree? COC/container discrepance Containers/volumes received Do VOA vials have visible Comments	f temperature samples? Yes/for form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? Hes/form Initiated? Wes/form Initiated? Yes/form Initiated?	
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes _> Bottle labels/COCs agree? COC/container discrepance Containers/volumes received Do VOA vials have visible Comments	f temperature samples? Yes/for form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? Yes No Comments: Yes No Comments: es form initiated? Yes No Comments: d appropriate for analysis? Yes No Comments:	
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes _> Bottle labels/COCs agree? COC/container discrepance Containers/volumes received Do VOA vials have visible Comments	f temperature samples? Yes/for form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? Hes/form Initiated? Wes/form Initiated? Yes/form Initiated?	
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes _> Bottle labels/COCs agree? COC/container discrepancie Containers/volumes received Do VOA vials have visible Comments Water samples: pH checked Comments:	f temperature samples? Yes/for form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? Hes/form Initiated? Wes/form Initiated? Yes/form Initiated?	
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes _> Bottle labels/COCs agree? COC/container discrepancie Containers/volumes received Do VOA vials have visible Comments Water samples: pH checked Comments:	f temperature samples? Yes/form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? It is a solution of the same of the sam	
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes _> Bottle labels/COCs agree? COC/container discrepancie Containers/volumes received Do VOA vials have visible Comments Water samples: pH checked Comments:	f temperature samples? Yes/form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? It is a solution of the same of the sam	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

Gene-Trac® Certificate of Analysis

Customer: Mike StatonBatch Reference: S-9598Email: mstaton@slrconsulting.comReport Date: 23-Jan-23

Phone: 425-402-8800 Certificate Number: CAG-0295

Company: SLR Test Location(s): Knoxville and Guelph
Project Name: Woodinville West Building C
Customer Reference: 101.20841.00001

Method Reference: SOP-002, 019, 108, 114, & 116

The results included herein only apply to the samples described within and are applicable to the items as received.

SOP-116 (DNA Extraction) and SOP-114 (DNA Quantification) were performed in SiREM Knoxville, the remainder of testing was performed at SiREM Guelph.

This certificate is not to be reproduced unless in full.

Certificate of Analysis: Gene-Trac® Functional Gene Assay

Certificate number: CAG-0295

Data File(s): QS3B-FGA-QPCR-1383

Run Date(s): 17-Jan-23

Table 1: Test Results

Sample ID		eductase vcrA)		C Reductase		Reductase tceA)
·	Percent vcrA (1)	Gene Copies/Liter ⁽²⁾	Percent bvcA (1)	Gene Copies/Liter ⁽²⁾	Percent tceA (1)	Gene Copies/Liter ⁽²⁾
MW-1-0123	NA	8 x 10 ² U	NA	8 x 10 ² U	NA	8 x 10 ² U
MW-2-0123	NA	1 x 10 ³ U	NA	1 x 10 ³ U	NA	1 x 10 ³ U

See final page for notes.

Analyst: KjEl

KJ Elipse-Cruz, B.Sc. Laboratory Technician I Approved:

∕Jen Wilkinson

Senior Laboratory Technician II

Table 2: Detailed Test Parameters, Test Certificate CAG-0295

Customer Sample ID	MW-1-0123	MW-2-0123
Date Sampled ⁽³⁾	9-Jan-23	9-Jan-23
Matrix	Groundwater	Groundwater
Date Received ⁽³⁾	11-Jan-23	11-Jan-23
Sample Temperature	4.3 °C	4.3 °C
Filtration Date ⁽³⁾	11-Jan-23	11-Jan-23
Volume Used for DNA Extraction	300 mL	200 mL
DNA Extraction Date	12-Jan-23	12-Jan-23
DNA Concentration in Sample (extractable)	170 ng/L (J)	233 ng/L (J)
PCR Amplifiable DNA	Detected	Detected
DNA Extraction Control (4)	Passed	Passed
Detection Limit (copies/L)	8 x 10 ²	1 x 10 ³
Quantitation Limit (copies/L)	2 x 10 ³	3 x 10 ³
qPCR Controls (see Table 3)	Passed	Passed
Comments		

See final page for notes.

Table 3: Gene-Trac FGA Control Results, Test Reference CAG-0295

			VC	rA	bv	cA	tce	eA	
Laboratory Control	Analysis Date	Control Description	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Comments
Positive Control Low Concentration	17-Jan-23	Synthetic DNA (CSLF-1251)	5.7 x 10 ⁶	8.0 x 10 ⁶	5.5 x 10 ⁶	4.9 x 10 ⁶	6.3 x 10 ⁶	6.0 x 10 ⁶	Passed
Positive Control High Concentration	17-Jan-23	Synthetic DNA (CSHF-1251)	6.0 x 10 ⁸	7.4 x 10 ⁸	5.7 x 10 ⁸	5.1 x 10 ⁸	6.4 x 10 ⁸	5.1 x 10 ⁸	Passed
DNA Extraction Blank	17-Jan-23	Sterile Water (FB-4267)	0	5.0 x 10 ² U	0	5.0 x 10 ² U	0	5.0 x 10 ² U	Passed
Negative Control	17-Jan-23	Reagent Blank (TBF-1222)	0	5.0 x 10 ² U	0	5.0 x 10 ² U	0	5.0 x 10 ² U	Passed

See final page for notes.

Notes:

vcrA = VC reductase

bvcA = BAV1 VC reductase

tceA = TCE reductase

FGA = functional gene assay

M Non-specific amplification was observed via melt curve analysis

J The associated value is an estimated quantity between the detection limit and quantitation limit.

U Not detected, associated value is the detection limit.

B Analyte was detected in the method blank within an order of magnitude of the test sample.

E Extracted genomic DNA was not detected in the sample.

I Sample inhibited the test reaction based on inability to PCR amplify extracted DNA with universal primers.

ng/L = nanograms per liter

mL = milliliter

NA = not applicable

ND = not detected

DNA = deoxyribonucleic acid

PCR = polymerase chain reaction

qPCR = quantitative PCR

°C = degrees Celsius

¹ Percent of functional gene in microbial population. This value is calculated by dividing the functional gene copies quantified by the total number of estimated prokaryotes in the sample (based on the total quantity of DNA extracted from the sample). A value of 100% would suggest that all microbes in the sample contain the gene.

² Target quantitation is subject to the variability of the method, this variability has been demonstrated to be +/- 60%.

³ Samples are stabilized by freezing at -80 °C upon sample reception (field filters) or in-lab filtration (groundwater). Hold time not exceeded if sampling date is within 14 days of date received or filtration date.

⁴ DNA is extracted from a standardized bacterial culture sample once per week and Total Bacteria qPCR is performed using standard methods. A recovery greater than 25% of the expected value is deemed acceptable.

⁵ Control was outside recovery limit guidelines (+/- 50%), however, test results are deemed acceptable if one of two positive controls fall within the recovery limit guidelines.

Chain-of-Custody Form

siremlab.com

180B Market Place Blvd Knoxville, TN 37922 1-865-291-4718 or 1-866-251-1747 S-9598

*Project Name Woodinville West Building C *Project Manager	*Project #	4.41														
*Project Manager	*Company	0841.0	0001		_		,			Ana	lysis					
*Email Address		SLR		4												Page 11 and 12 a
mstatono siconout	ng. Co	$ \mathcal{M} $									es S		4	+		Preservative Key O. None
Address (Street) 22118 20th Ave SE Ste	670	7			7						n gas		BA			1, HCL
City Bother State/Province WA	(Country				1		≥		gg	arbo	>	7			2. Other
*Phone # (425) 402 - 8800		Country	ted s	taks	DHC	FGA	뭐	DHG	SRB	Fatty Acids	ydroc	Stud	-Trac	1		3. Other
*Sampler's					3-Trac	Gene-Trac FGA	Gene-Trac DHB	Gene-Trac DHGM	Gene-Trac SRB	le Fa	lved h	Treatability Study	3		}	4 Other
Signature *Sampler's Name	Printed En	H Hin	erm	rdo7	Gene	Gene	Gene	Gene	Gene	Volatile	Dissolved hydrocarbon gases	Treat	Grene		1 1	5. Other6. Other
Client Sample ID	- 501	mpining		# of										-		
Mula La Diaz	Date	Time	Matrix	Containers												Other Information
MW-1-0123		31140		1									+	BK-0	17:38	envincention of vinyl
MW-2-0123	19/2	3 1419	wher	1									7	BK-0	91737	enumeration of vinyl Chloride reductor agang varable Enpresation of vingl chloriste reductors genes (vara 4 byca)
	-													UK V	1107	THE PROPERTY OF CHI
100																
					-1/h											
						4										

P.O. # Billing Information	Turnare	ound Time Red	quested	Cooler Con	dition		For L	ab Use	Only		For Lab Use Only					
ACULT	. N.	overal M		Goolal Coll	Onion.		nota	Ut-1	neti	ice					,	71-11
*BIII TO: 101,20841.00001	1	ormal 🔀 ush		Cooler Tem	peratu					KX	o not	ъ				
				Custody Se	nole	Va	s []		. [N	EX	000	0	-			
	-			0436009 50	GIA.	10	s [IN	2 [[\sum_{\substack}]							
				JL									P	roposal	#:	
Relinquished By: Signature Signature		Re Signature	elinquished	i By:	Sign	nature	Rece	ived By	:		0:		linguis	hed By:		Received By:
S Sylpayor		<u></u>			Jaigh	iatere					Signatu	е				Signature
Printed Emily Herrordiz Printed Name Kaitland Cracu	nina.	Printed Jame			Printe						Printed			-		Printed
SLR FIRM SIREM	F	irm			Firm	_	77/				Name Firm					Name Firm
Date/Time Date/Time DI 1 23 10 2	D	Pate/Time			Date,	/Time			-		Date/Tim	e		-110		Date/Time
MINISTER CENTRAL																

AIR SAMPLES

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 21, 2022

Greg Lish, Project Manager SLR International Corp. 22118 20th Ave. SE, G-202 Bothell, WA 98021

Dear Mr Lish:

Included are the results from the testing of material submitted on July 14, 2022 from the Woodinville Business Park 128.20841.00001, F&BI 207221 project. There are 7 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures SLR0721R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 14, 2022 by Friedman & Bruya, Inc. from the SLR International Corp. Woodinville Business Park 128.20841.00001, F&BI 207221 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SLR International Corp.
207221 -01	IA-1-0722
207221 -02	IA-2-0722
207221 -03	AA-1-0722

A TO-15 internal standard failed the acceptance criteria for sample AA-1-0722. The affected data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	IA-1-0722	Client:	SLR International Corp.
Date Received:	07/14/22	Project:	128.20841.00001, F&BI 207221

Date Collected: 07/13/22 Lab ID: 207221-01 1/1.3 Date Analyzed: 07/16/22 Data File: $071526.\mathrm{D}$ Matrix: GCMS7Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	88	70	130

	Concentratio	
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.10
Chloroethane	< 3.4	<1.3
1,1-Dichloroethene	< 0.52	< 0.13
trans-1,2-Dichloroethene	< 0.52	< 0.13
1,1-Dichloroethane	< 0.53	< 0.13
cis-1,2-Dichloroethene	< 0.52	< 0.13
1,2-Dichloroethane (EDC)	< 0.053	< 0.013
1,1,1-Trichloroethane	< 0.71	< 0.13
Trichloroethene	< 0.14	< 0.026
1,1,2-Trichloroethane	< 0.071	< 0.013
Tetrachloroethene	<8.8	<1.3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	IA-2-0722	Client:	SLR International Corp.
Date Received:	07/14/22	Project:	128.20841.00001, F&BI 207221

Date Collected: 07/13/22 Lab ID: 207221-02 1/1.4 07/16/22 Date Analyzed: Data File: $071527.\mathrm{D}$ Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	89	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.10
Chloroethane	< 3.7	<1.4
1,1-Dichloroethene	< 0.56	< 0.14
trans-1,2-Dichloroethene	< 0.56	< 0.14
1,1-Dichloroethane	< 0.57	< 0.14
cis-1,2-Dichloroethene	< 0.56	< 0.14
1,2-Dichloroethane (EDC)	< 0.057	< 0.014
1,1,1-Trichloroethane	< 0.76	< 0.14
Trichloroethene	< 0.15	< 0.028
1,1,2-Trichloroethane	< 0.076	< 0.014
Tetrachloroethene	< 9.5	<1.4

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	AA-1-0722	Client:	SLR International Corp.
Date Received:	07/14/22	Project:	128.20841.00001, F&BI 207221

Project: Lab ID: Date Collected: 07/13/22 207221-03 Date Analyzed: 07/16/22 Data File: $071528.\mathrm{D}$ Matrix: Air Instrument: GCMS7Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	84	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
Chloroethane	< 2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	0.040	0.010
1,1,1-Trichloroethane	< 0.55	< 0.1
Trichloroethene	<0.11 J	<0.02 J
1,1,2-Trichloroethane	<0.055 J	<0.01 J
Tetrachloroethene	<6.8 J	<1 J

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: SLR International Corp.

Date Received: Not Applicable Project: 128.20841.00001, F&BI 207221

Lab ID: Date Collected: Not Applicable $02\text{-}1643~\mathrm{MB}$ 07/15/22 Date Analyzed: Data File: $071513.\mathrm{D}$ Matrix: Air Instrument: GCMS7ug/m3 Units: Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	82	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.19	< 0.07
Chloroethane	< 2.6	<1
1,1-Dichloroethene	< 0.4	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
1,1-Dichloroethane	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01
1,1,1-Trichloroethane	< 0.55	< 0.1
Trichloroethene	< 0.11	< 0.02
1,1,2-Trichloroethane	< 0.055	< 0.01
Tetrachloroethene	< 6.8	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 07/21/22 Date Received: 07/14/22

Project: Woodinville Business Park 128.20841.00001, F&BI 207221

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 207178-03 1/6.9 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.8	<1.8	nm
Chloroethane	ug/m3	<18	<18	nm
1,1-Dichloroethene	ug/m3	< 2.7	< 2.7	nm
trans-1,2-Dichloroethene	ug/m3	< 2.7	< 2.7	nm
1,1-Dichloroethane	ug/m3	< 2.8	< 2.8	nm
cis-1,2-Dichloroethene	ug/m3	< 2.7	< 2.7	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.28	< 0.28	nm
1,1,1-Trichloroethane	ug/m3	<3.8	<3.8	nm
Trichloroethene	ug/m3	< 0.74	< 0.74	nm
1,1,2-Trichloroethane	ug/m3	< 0.38	< 0.38	nm
Tetrachloroethene	ug/m3	<47	<47	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	79	70-130
Chloroethane	ug/m3	36	91	70-130
1,1-Dichloroethene	ug/m3	54	90	70-130
trans-1,2-Dichloroethene	ug/m3	54	85	70-130
1,1-Dichloroethane	ug/m3	55	88	70-130
cis-1,2-Dichloroethene	ug/m3	54	84	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	89	70-130
1,1,1-Trichloroethane	ug/m3	74	90	70-130
Trichloroethene	ug/m3	73	98	70-130
1,1,2-Trichloroethane	ug/m3	74	101	70-130
Tetrachloroethene	ug/m3	92	107	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Greg Lish
Company SLE

Address 22/18 20# MUE SE, Svite 6202

City, State, ZIP Bothell, WA

Phone (75, 402.80

Email glishe stress thing com

SAMPLE CHAIN OF CUSTODY

ME 07-14-22

TESTED	ANALYSIS REQUESTED	
T Archive (Fee may apply)	***************************************	
= Default: Clean after 3 days		
SAMPLE DISPOSAL	INVOICE TO	NOTES:
Rush charges authorized by:	[0000.]HEQTE.BU!	Woodinville Business Park
_ RUSH		
XStandard	P0#	PROJECT NAME & ADDRESS
TURNAROUND TIME		M
of 1		SAMPLERS (signature)
•	Commission contraction of the commission of the	The state of the s

Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.						AA-1-0722	IA-2-0722	IA-1-0722	Sample Name		SAMPLE INFORMATION
Received by:	Relinqu						,	S	Ŗ	0/	Lab ID		
1907	Relinquished by:	SIG					,	18566	18563	2 HHD	Canister ID	•	
	<i>(</i> ,	SIGNATURE						F 7847	F7851	F5348	Cont. ID	Flow	
	2	Ð	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	/1A) / SG	(TA) / SG	SG=Soil Gas (Circle One)	Reporting Level: IA=Indoor Air	
20%	in growing and				,			7.13.22	7.13.22	7/13.22	Date Sampled		
	Spencer	PRIN	- AND					30	યુ	29	Vac. ("Hg)	n H	
7	, ,	PRINT NAME						923	910	gro	Initial Time	Field	
		E						ユ	ō	5	Vac. ("Hg)	Final	
								[648]	1630	1940	Final Time	Field	
$ \cdot $	رے										тс)15 Full Scan	ANA
	6	CO									T	O15 BTEXN	ANALYSIS REQUESTED
W		COMPANY		70	· · · · · · · · · · · · · · · · · · ·						r	O15 cVOCs	IS R
		Y		8							ļ	APH	υβε
	٠		· ·	les	,							Helium	ESTI
Į,	~!			666	2			х	Х	X	T015	HUDGS	GE GE
26000	7.14.22	DATE	-	Samples rece ved at 2							z		
١, ٢,٩	1884	TIME		100		i i					Notes		

3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044 FORMS\COC\COCTO-15.DOC

ruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
ue West	Relinquished by:	Speaker Co	SLR	7.14.22 1654	1834
119-2029	Received by:	See Jam?	TIB	Thype 1, 54	1 Sy
3282	Relinquished by:			_	
5044	Received by:			:	
200	Territorio de la companio del la companio de la companio de la companio de la c				

APPENDIX C GROUNDWATER SAMPLING FIELD DATA SHEETS

Project No. 101.20841.00001 Purged By: SML Well I.D.: MW - I Project Name: Woodinville West Business Park Sampled By: SML Sample I.D.: MW - I - 0422 Location: 16750 Woodinville-Redmond Road NE, Woodinville, WA QA Samples: MW - II - 0422 Q 1600
Date Purged: 4/12/22 Start (2400hr): 1543 End (2400hr): 1558 Date Sampled: 4/12/22 Sample Time (2400hr): 1558
Casing Diameter: 2"
Total depth (feet) = 27.90 Depth to water (feet) = 14.67 Water column height (feet) = Actual Purge (gal) =
FIELD MEASUREMENTS
Volume (Gal) (2400hr) (degrees C) (mS/cm) (g/L) (mg/L) (units) (mV) (Visual) (Visual
PURGING & SAMPLING EQUIPMENT SAMPLE VESSELS
Well Wizard Bladder Pump Active Extraction Well Pump Bailer (DVC) Submersible Pump Bailer (Stainless Steel) Y Dedicated Labora Pump Intake Depth: 16.10 (feet) Bailer (disposable) 40mL VOA ML HDPE w/ H2SO4 40mL VOA w/ HCL ML amber glass ML amber glass w/ HCl ML HDPE ML HDPE ML HDPE w/ HNO3
Well Integrity: Odor: No
Signature: Am Page 1 of _1_

_	101.20841.00001		_	By: SML		Vell I.D.: M		-
Project Name: _	Woodinville West B	usiness Park	Sampled	By: SML	Sam	ple I.D.: M	N-2-04	22
Location: _	16750 Woodinville-Re	dmond Road NE, Woodin	ville, WA	QA San	nples:	AN BOOK AN GOOD FOR THE PROPERTY AND THE		
Date Purged:	4/12/22	Start (2400	ohr): 16	48	End (2400hr):	1706		
Date Sampled:		Sample Time (2400						
(Casing Diameter:	2"	4"	5"	6"	8" C	Other	
Casing Volume:	(gallons per foot)	(0.17) (0.38)	(0.67)	(1.02)	(1.50)	(2.60)	()	
Tota	al depth (feet) =7	2.78	Tuk	oing Volume (ga	al) =			
	to water (feet) = 9				al) =			
Water columi	n height (feet) =			otual Purge (ga	al) =			PANTANIA DI DI BANTONI MENDANIMA DI
		FIELD) MEASU	JREMENTS				
Volume (Gal) (2	Time Temp. 2400hr) (degrees		TDS (g/L)	DO (mg/L)	pH (units)	ORP (mV)	Turbidity (Visual)	Color (Visual)
` ' '	648 9.3		(g/L) —	3.27	6.97	Z94.Z	(Visual)	(Visual)
	651 9.4	0.2948	_	1.13	6.90	775.8	clear	cleer
0.5	654 9.7	0.3008	-	0.85	6.79	761.7	clear	der
0.75	1657 9.8	0.3021		0.79	6.76	250.5	clear	clear
	1700 9.8	0.3022		0.75	6.74	739.0	clear	class
	1703 9.9	0.3011		0.73	6.74	233.1	clear	clear
1.5	1706 9.8	0.3008		0-74	6.74	729.9	clear	cleur
							,	
								•
							7,	
							-	
PURGING & SAMPLING EQUIPMENT					SAMP	LE VESSEL	S	
Well Wizard B	ladder Pump	Bailer (disposa	able)	40mL VOAmL HDPE w/ H2SO4				
Active Extracti	ion Well Pump	Bailer (PVC)		<u>5</u> 40mL VO	A w/ HCL			, 8 %
Submersible F	Pump	Bailer (Stainle		mL a	mber glass			
X Peristaltic Pun	mp	Dedicated <u>Fu</u>	bing	mL a	mber glass w/ h	HCI		
Other:				mL H				
Pump Intake Depth	h: <u>// 6</u> (feet)			mL H	IDPE w/ HNO3			
Well Integrity: 6	ood			O	dor: <u>Me</u>			
Remarks: 🖊	YP	:						
Signature: Sh	2 4	4		and the state of t			Pa	ge 1 of _1_

		THE PART OF THE	DAI	ASIILLI			
Project No. 101.20841.00001 Project Name: Woodinville West E Location: 16750 Woodinville-Re	-	Purged By Sampled By	: SML	Sa	mple I.D.:	MW-3 MW-3-	-04ZZ
Date Purged: 4/12/22 Date Sampled: 4/12/22		Ohr):	γ				
Casing Diameter: Casing Volume: (gallons per foot)	2"_X3"	4" (0.67)	5" (1.02)	6" (1.50)	8" (2.60)	Other	
Total depth (feet) =/ Depth to water (feet) =/ Water column height (feet) =		Minimu	g Volume (ga ım Purge (ga ıal Purge (ga	al) =			
Volume Time Temp	FIELD	MEASUR	EMENTS				
Volume (Gal) (2400hr) (degrees (degrees) (degr	,	TDS (g/L)	DO (mg/L) 7.01 1.33 1.17 0.98 0.81 0.79	pH (units) 7.01 6.82 6.74 6.71 6.69 6.68	ORP (mV) 297.1 271.9 261.0 253.5 249.6 245.5 243.4	Turbidity (Visual) Clear Color (Visual) clear clear clear clear clear	
PURGING & SAMPLING	EQUIPMENT						
Well Wizard Bladder Pump Active Extraction Well PumpSubmersible Pump Peristaltic Pump ner:	Bailer (disposable Bailer (PVC) Bailer (Stainless Dedicated	Steel) 5	mL aml	w/ HCL ber glass per glass w/ H0	.E VESSEL	S _mL HDPE w	// H2SO4
Remarks: VA				Ne			
inature: Stur - Gu	h					Page	1 of _1_

Project No. 101.20841.00001 Purged By: SLo Well I.D.: MW- Project Name: Woodinville West Business Park Sampled By: SLo Sample I.D.: MW- 1-0722 Location: 16750 Woodinville-Redmond Road NE, Woodinville, WA QA Samples: MW- (1-0722) MW- (1-0722)
Date Purged: 7/13/2022 Start (2400hr): 112 End (2400hr): 1130 Date Sampled: 7/13/2022 Sample Time (2400hr): 1130
Casing Diameter: 2" X 3" 4" 5" 6" 8" Other Casing Volume: (gallons per foot) (0.17) (0.38) (0.67) (1.02) (1.50) (2.60) ()
Total depth (feet) = 22.90 Depth to water (feet) = 15.28 Water column height (feet) = Actual Purge (gal) =
FIELD MEASUREMENTS
Volume (Gal) (2400hr) (degrees C) (mS/cm) (g/L) (mg/L) (units) (mV) (Visual) (Visual
PURGING & SAMPLING EQUIPMENT SAMPLE VESSELS
PURGING & SAMPLING EQUIPMENT
Well Integrity: 9000 Odor: 10000 Remarks:
Signature: Page 1 of _1_

Project No. <u>101.20841.00001</u> Project Name: Woodinville West Busin	d By: <u>SLo</u> d By: SLo		Well I.D.: <u>M\</u>		·				
Location: 16750 Woodinville-Redmond Road NE, Woodinville, WA QA Samples:									
Date Purged: 7/13/2022 Date Sampled: 7/13/2022	Start (2400hr): 10 ample Time (2400hr): 12		End (2400hr)): 1200					
Casing Diameter: 2"_Casing Volume: (gallons per foot) (0.	X 3" 4" 17) (0.38) (0.6		6" (1.50)	8" (2.60)	Other				
Total depth (feet) = $\frac{22}{10.8}$ Depth to water (feet) = $\frac{10.8}{10.8}$		Casing Volume (ga Iinimum Purge (ga Actual Purge (ga	i) =						
	FIELD MEA	SUREMENTS							
Volume (Gal) (2400hr) (degrees C) 148 17.7 0.25 151 14.0 0.50 1154 13.9 0.75 1157 14.0	Conductivity TDS (g/L) .359 .335 .337 .331 .319	DO DO	6.32 6.30 6.20 6.20	ORP (mV) 51.7 16.8 9.6 9.6	Turbidity (Visual) Clear Clear Clear Clear	Color (Visual) (lear clear clear clear			
- Description - Description - Description									
PURGING & SAMPLING E		SAMPLE VESSELS							
Well Wizard Bladder Pump Active Extraction Well Pump Submersible Pump X Peristaltic Pump Other: Pump Intake Depth: 13 (feet)	mL a	A w/ HCL .mber glass .mber glass w/		mL HDPE	w/ H2SO4				
Well Integrity: 9ம்சி Remarks:		0	dor: ////	ne					
Signature:	1-1-				Pa	age 1 of _1_			

Project No. <u>101.20841.00001</u>	Purged By: SLo Well I.D.: MW- 3		
Project Name: <u>Woodinville West Business Park</u>	Sampled By: SLo Sample I.D.: MW- 3 -0722		
Location: 16750 Woodinville-Redmond Road NE, Woo	odinville, WA QA Samples:		
Date Purged: 7/13/2022 Start (2400 Date Sampled: 7/13/2022 Sample Time (2400)	nr): 1216 End (2400hr): 1231 hr): 1231		
Casing Diameter: 2" X 3" Casing Volume: (gallons per foot) (0.17) (0.38)			
Total depth (feet) = 23.06	Casing Volume (gal) =		
Depth to water (feet) = 15.0 g	Minimum Purge (gal) =		
Water column height (feet) =	Actual Purge (gal) =		
FIELD) MEASUREMENTS		
Volume (Gal) (2400hr) (degrees C) (mS/cm) 0 1216	TDS (g/L) (mg/L) (units) (mV) (Visual) - 3.22	Color (Visual) Clear Clear Clear Clear	
DUBONIC A CAMPLING FOURING	OANDI EVENERI O	The state of the s	
PURGING & SAMPLING EQUIPMENT Well Wizard Bladder Pump Bailer (disposa		w/ H2SO4	
Active Extraction Well Pump Bailer (PVC)	5_40mL VOA w/ HCL		
Submersible Pump Bailer (Stainles Submersible Pump Bailer (Stainles Dedicated _Tul			
Other:	mL HDPE		
Pump Intake Depth: 17.5 (feet) mL HDPE w/ HNO3			
Well Integrity: g ๒๓๔ . Odor: กะหย			
Signature: Page 1 of _1_			

Project No101.20841.00001 Project Name: Woodinville West Business Park Location: Renton, WA	Purged By:		Sam	Vell I.D.:	1022 (1207)
Date Purged: 10-12-2022 Start (2400 Date Sampled: 10-12-2022 Sample Time (2400		54_ 54_	End (2400hr)	115	4	
Casing Diameter: 2" X 3" 3" (0.38)	4" (0.67)	5" (1.02)	6" (1.50)	8" (2.60)	Other	
Total depth (feet) = 72.90 Depth to water (feet) = 16.54 Water column height (feet) =	Minimur	Volume (gal) m Purge (gal) al Purge (gal)	=	,	• 4	
W 74	MEASURE					
Volume (Gal) (2400hr) (degrees C) (mS/cm) D 1133 Le.5 -3148 0.25 1134 15.7 -2945 0.50 1142 15.7 -2945 1.25 1148 5.14 -2928 1.50 1151 15.14 -2921 1.76 1154 15.16 -2921	TDS (g/L)	DO (mg/L) O. 55 O. 15 O. 15 O. 10 O. 08	pH (units) と・17 と・28 と・44 と・47 と・47 と・47 と・47	27.8 27.4 27.3 21.2 21.2 21.2	Clear	
PURGING & SAMPLING EQUIPMENT			SAMPI	LE VESSEL	S	
Well Wizard Bladder PumpBailer (disposal plane)Bailer (disposal plane)Bailer (PVC)Bailer (PVC)Bailer (Stainless of the plane)X	s Steel)	mL amb	ber glass per glass w/ H PE PE w/ HNO3		mL HDPE	w/ H2SO4
Signature	2				Pa	ge 1 of _1_

GW Sample Data Sheet - Low Flow.doc

SLR International Corp

Project No101.20841.00001 Purged By: _EH Well I.D.:MW2 Project Name: Woodinville West Business Park Sampled By: _EH Sample I.D.:MW2	<u>2</u> - 09 22				
Migro	Date Purged: 10-12-2022 Start (2400hr): 1221 End (2400hr): 1242 Date Sampled: 10-12-2022 Sample Time (2400hr): 1242				
Casing Diameter: 2" 3" 4" 5" 6" 8" Other Casing Volume: (gallons per foot) (0.17) (0.38) (0.67) (1.02) (1.50) (2.60))				
Total depth (feet) = 22.8 Casing Volume (gal) = Depth to water (feet) = 12.12 Minimum Purge (gal) = Water column height (feet) = Actual Purge (gal) =					
Time Temp. Conductivity TDS DO pH ORP Turbit	an Char An				
PURGING & SAMPLING EQUIPMENT — Well Wizard Bladder Pump — Bailer (disposable) — Active Extraction Well Pump — Bailer (PVC) — Submersible Pump — Bailer (Stainless Steel) — ML amber glass — ML amber glass w/ HCI — mL amber glass w/ HCI — mL HDPE — mL HDPE — mL HDPE — mL HDPE w/ HNO3 Well Integrity: — Odor: — Odor: Odor: Odor: Odor: Odor: Odor: Odor: Odor: Divided Tubing Odor: DPE w/ H2SO4					
Remarks:Signature:	Page 1 of _1_				

SLR International Corp

Project No. 101.20841.00001 Purg Project Name: Woodinville West Business Park Sample Location: Renton, WA Date Purged: 10-12-2022 Start (2400hr): Date Sampled: 10-12-2022 Sample Time (2400hr):	ed By: EH Well I.D.: MW- 3 ed By: EH Sample I.D.: MW- 3-1622 QA Samples:		
	5" 8" Other 67) (1.02) (1.50) (2.60) ()		
	Casing Volume (gal) = Minimum Purge (gal) = Actual Purge (gal) =		
FIELD MEA Volume Time Temp. Conductivity TD: (Gal) (2400hr) (degrees C) (mS/cm) (g/L O 1312 15.4 3157 O.50 1318 15.4 32.07 O.75 1321 15.4 32.24 1.25 1327 15.4 32.49 1.50 1330 15.4 32.47 1.75 1333 15.4 32.50			
PURGING & SAMPLING EQUIPMENT — Well Wizard Bladder Pump	SAMPLE VESSELS 40mL VOA		
Well Integrity:Odor:Odor:			
Signature:	Page 1 of _1_		
GW Sample Data Sheet - Low Flow.doc	SLR International Corp		

Project No. 101.20841.00001 Purged By: EH Well I.D.: MW- NW- OUT MW- -0123 Location: Under Purged: 01-9-2023 Start (2400hr): 112-2 End (2400hr): 1140	
Date Sampled: 01-9-2023 Sample Time (2400hr): 1140	
Casing Diameter: 2" 3" 4" 5" 6" 8" Other Casing Volume: (gallons per foot) (0.17) (0.38) (0.67) (1.02) (1.50) (2.60) ()	
Total depth (feet) = 22.80 Casing Volume (gal) = Depth to water (feet) = 13.07 Minimum Purge (gal) = Water column height (feet) = Actual Purge (gal) =	
FIELD MEASUREMENTS	
(Gal) (2400hr) (degrees C) (mS/cm) (g/L) (mg/L) (units) (mV) (Visual) (Color Visual)
PURGING & SAMPLING EQUIPMENT SAMPLE VESSELS	
Well Wizard Bladder Pump Active Extraction Well PumpSubmersible PumpPeristaltic Pump Deficition: Ump Intake Depth: Sailer (disposable)Bailer (PVC)Bailer (Stainless Steel)mL amber glassmL amber glass w/ HCIsmL HDPEbmL HDPEsmL HDPE w/ HNO3	H2SO4
Remarks: Fe2+: + + + mg/L Signature: Page	 1 of _1_
nginatare.	

Project No. 101.20841.00001 Purged By: EH Well I.D.: MW- Z Project Name: Woodinville West Business Park C Sampled By: EH Sample I.D.: MW- Z -0123 Location: QA Samples:	_		
Date Purged: 01-9-2023 Start (2400hr): 1404 End (2400hr): 1419 Date Sampled: 01-9-2023 Sample Time (2400hr): 1419	_		
Casing Diameter: 2" 3" 4" 5" 6" 8" Other Casing Volume: (gallons per foot) (0.17) (0.38) (0.67) (1.02) (1.50) (2.60) ()			
Total depth (feet) = 22.24 Depth to water (feet) = 9.18 Water column height (feet) = Actual Purge (gal) =			
FIELD MEASUREMENTS			
(Gal) (2400hr) (degrees C) (mS/cm) (g/L) (mg/L) (units) (mV) (Visual) (Visual)	olor (ual)		
PURGING & SAMPLING EQUIPMENT SAMPLE VESSELS			
Well Wizard Bladder Pump Active Extraction Well Pump Bailer (disposable) Bailer (PVC) Bailer (Stainless Steel) Peristaltic Pump Other: Pump Intake Depth: 11.18 (feet) Bailer (disposable) Bailer (disposable) 40mL VOA Mathematical Montage (PVC) Ma	3O4 —— —— ——		
Well Integrity:Odor:			
Remarks: Fe 24: 3-10 mg/L			
Signature: Page 1 c	f_1_		

Location:	
CV.	hr): 1541 End (2400hr): 1550 End (2400hr): 1550
Casing Diameter: 2" 3" Casing Volume: (gallons per foot) (0.17) (0.38)	4" 5" 6" 8" Other (0.67) (1.02) (1.50) (2.60) ()
Total depth (feet) = 22.95 Depth to water (feet) = \frac{13.50}{} Water column height (feet) =	Casing Volume (gal) = Minimum Purge (gal) = Actual Purge (gal) =
FIFI D	MEASUREMENTS
Volume Time Temp. Conductivity (Gal) (2400hr) (degrees C) (mS/cm) O 1841 172 3788 O 28 1544 14.2 3089 O 50 1847 14.2 2950 O 75 1550 14.3 2911 1 25 1550 14.3 2911	TDS DO pH ORP Turbidity Color (yisual) 2.43 (e.89 8.1 clear curr 0.19 (e.48 32.5
DUDCING & CAMPUING FOURDMENT	CAMPLE VESSELS
PURGING & SAMPLING EQUIPMENT Well Wizard Bladder Pump Bailer (disposal Bailer (PVC) Bailer (PVC) Bailer (Stainless	5 40mL VOA w/ HCL ml. amber glass
Signature:	Page 1 of _1_

Project No. 101.20841.00001 Purged Project Name: Woodinville West Business Park C Sampled Location:	M/\/_ 1 -0123
	122\ End (2400hr): 123\(\begin{array}{cccccccccccccccccccccccccccccccccccc
Casing Diameter: 2" 3" 4"	
Depth to water (feet) = 13.52 Mir Water column height (feet) =	nimum Purge (gal) = Actual Purge (gal) =
FIELD MEAS	
Volume (Gal) (2400hr) (degrees C) (mS/cm) (g/L) 0 1221	DO pH (units) (mV) (Visual) (Visual) 0.97 (2.37) 37.4 Clear (1.07) 0.17 (2.34) 38.0 0.17 (2.35) 37.8 0.11 (2.35) 37.8 0.11 (2.35) 37.0
3-	CAMPLE VECCEL C
PURGING & SAMPLING EQUIPMENT Well Wizard Bladder Pump	SAMPLE VESSELS 40mL VOAmL HDPE w/ H2SO4 40mL VOA w/ HCLmL amber glassmL amber glass w/ HCl 1 250mL HDPE Odor:OOOO
Remarks: Fe 2+: +++ mg/L	new tobing
Signature:	Page 1 of _1_

Project No. 101.20841.00001 Purged By: EH Well I.D.: MW-5 Project Name: Woodinville West Business Park C Sampled By: EH Sample I.D.: MW-5-0123 Location: QA Samples:			
Date Purged: 01-\(\bullet \)2023 Start (2400hr): \(\bullet \)2023 End (2400hr): \(\bullet \)3 Date Sampled: 01-\(\bullet \)2023 Sample Time (2400hr): \(\bullet \)3			
Casing Diameter: 2" 3" 4" 5" 6" 8" Other Casing Volume: (gallons per foot) (0.17) (0.38) (0.67) (1.02) (1.50) (2.60) (
Total depth (feet) = 27.38 Casing Volume (gal) = Minimum Purge (gal) = Water column height (feet) = Actual Purge (gal) =			
FIELD MEASUREMENTS			
Volume (Gai) (2400hr) (degrees C) (mS/cm) (g/L) (mg/L) (units) (mV) (Visual) (Visual			
PURGING & SAMPLING EQUIPMENT SAMPLE VESSELS			
Well Wizard Bladder Pump			
Well Integrity: Odor:			
Remarks:			
Signature: Page 1 of _1_			

Date Purged: 01-162023 Start (2400hr): 112-0 End (2400hr): 1144	Project No. 101.20841.00001 Project Name: Woodinville West Busin		By: EH QA Samples:	Sample I.D,:	MW- (2-0123
Casing Volume: (gallons per foot) (0.17) (0.38) (0.67) (1.02) (1.50) (2.60) ()	04 1/2000		1144 End (2400hr):	1
Depth to water (feet) = 13.41				•	
Volume (Gal) (2400hr) (degrees C) (ms/cm) (ms/cm) (mg/L) (units) (visual)	Depth to water (feet) = 13	.47 Min	imum Purge (gal) =		
Claimage	FIELD MEAS	UREMENTS			
	(Gal) (2400hr) (degrees C) O 1174 14.3 O.25 1129 14.0 O.50 1132 15.9 O.75 1138 15.8	(mS/cm) (g/L) 4028 3997 3981 3912 3852	(mg/L) 1.45 (c) 0.21 (c) 0.15 (d) 0.13 (d) 0.13 (d) 0.13 (d)	(inits) (mV) 2.89 24.7 2.65 21.4 2.67 20.3 (67 20.0 20.0 20.0	(Visual) (Visual)
	Well Wizard Bladder Pump Active Extraction Well Pump Submersible Pump Peristaltic Pump Other: Pump Intake Depth: 15.47 (feet) Well Integrity:	Bailer (disposable) Bailer (PVC) Bailer (Stainless Steel) Dedicated	ML amber gmL amber gmH amber gmL HDPE	CL glass glass w/ HCl	
					Page 1 of _1_

Project No. 101.20841.00001 Project Name: Woodinville West Business Park C Location:	Purged By: EH Sampled By: EH QA :	Well I.D.: Sample I.D.:	
Date Purged: 01-15-2023 Start (2400) Date Sampled: 01-15-2023 Sample Time (2400)	0hr): 1205 0hr): 1217	End (2400hr): \	217
Casing Diameter: 2" X 3" Casing Volume: (gallons per foot) (0.17) (0.38)	4" 5" (0.67) (1.02)	6" 8" (1.50) (2.60)	
Total depth (feet) = 23.04 Depth to water (feet) = 10.27 Water column height (feet) =	Casing Volume Minimum Purge Actual Purge		
FIELD	D MEASUREMENT	S	
Volume (Gal) (2400hr) (degrees C) (mS/cm) 0 1205 12.4 3795 0.25 1211 12.7 3977 0.75 1214 12.7 3998	TDS (g/L) (mg/L) (mg/L) ()	0 (e/s) 24. 0 (e/s) 27. 6 (e/s) 27. 3 (e/s) 27.	(Visual) (Visual) (Visual) (Visual) (Visual)
	<u> </u>		
PURGING & SAMPLING EQUIPMENT Well Wizard Bladder Pump Active Extraction Well Pump Bailer (PVC) Submersible Pump Bailer (Stainles: Peristaltic Pump Dedicated	s Steel)mL	OA W/ HCL — amber glass — amber glass w/ HCl —	ELS mL HDPE w/ H2SO4
Other:Pump Intake Depth:(feet)		HDPE	
Well Integrity: Remarks: Well Integrity: Remarks:		HDPE w/ HNO3	
Signature.			Page 1 of _1_

Project No. 101.20841.00001 Purged E Project Name: Woodinville West Business Park C Sampled E Location:	M/\/		
Date Purged: 01-9-2023 Start (2400hr): 15 Date Sampled: 01-9-2023 Sample Time (2400hr): 15			
Casing Diameter: 2" 3" 4"			
Depth to water (feet) = 8.70 Mini	sing Volume (gal) = mum Purge (gal) = ctual Purge (gal) =		
FIELD MEASU			
Volume (Gal) Time (2400hr) Temp. (degrees C) Conductivity (mS/cm) TDS (g/L) 0 1501 11.3 1.357 — 0.25 1504 11.9 1.435 — 0.50 1507 12.0 1.490 — 0.75 1510 12.1 1.430 — 1.25 1510 12.3 1.450 — 1.25 1510 12.3 1.435 — 1.50 1519 12.3 1.403 —	DO (mg/L) (units) (mV) (Visual) (Visual) 3.24 (0.3) 36.3 char char O.47 (0.20 45.6) O.30 (0.21 44.7) O.27 (0.22 44.7) O.28 (0.22 44.4) O.28 (0.22 44.4) O.20 25 44.5		
PURGING & SAMPLING EQUIPMENT Well Wizard Bladder Pump	SAMPLE VESSELS 40mL VOAmL HDPE w/ H2SO4 40mL VOA w/ HCLmL amber glass mL amber glass w/ HCImL HDPE mL HDPE w/ HNO3 Odor:		
Remarks: New tobing			
Signature:	Page 1 of _1_		

,	ged By: EH Well I.D.: MW-9-0123 Dled By: EH Sample I.D.: MW-9-0123
Date Purged: 01-9-2023 Start (2400hr): 1300 End (2400hr): [3 27] Date Sampled: 01-9-2023 Sample Time (2400hr): 1331	
	7 5" 6" 8" Other 0.67) (1.02) (1.50) (2.60) ()
Total depth (feet) = 22.00 Depth to water (feet) = 01.30 Water column height (feet) =	Casing Volume (gal) = Minimum Purge (gal) = Actual Purge (gal) =
FIELD MEASUREMENTS	
Volume Time Temp. Conductivity TI	DS DO pH ORP Turbidity Color (Wisual) (Visual) 2.73
DUDCING & SAMPLING FOLLIDMENT	SAMPLE VESSELS
PURGING & SAMPLING EQUIPMENT Well Wizard Bladder Pump Bailer (disposable) Active Extraction Well Pump Bailer (PVC) Submersible Pump Bailer (Stainless Stermann) Peristaltic Pump Dedicated Other: Pump Intake Depth: (feet) Well Integrity: Good Remarks: Tool Feet	40mL VOAmL HDPE w/ H2SO4
Signature: Page 1 of _1_	