

SoundEarth Strategies, Inc. 2811 Fairview Avenue East, Suite 2000 Seattle, Washington 98102

PHASE II ENVIRONMENTAL SITE ASSESSMENT

Property:

J&J Auto Masters Property 1110 Martin Luther King Jr. Way Seattle, Washington

Report Date: August 13, 2021

Prepared for:

Schwabe, Williamson & Wyatt 1420 5th Avenue, Suite 3400 Seattle, Washington

Draft - Privileged and Confidential Attorney-Client Work Product

PHASE II ENVIRONMENTAL SITE ASSESSMENT

Prepared for:

Schwabe, Williamson & Wyatt 1420 5th Avenue, Suite 3400 Seattle, Washington 98101

Property:

J&J Auto Masters Property 1110 Martin Luther King Jr. Way Seattle, Washington 98122

Project No.: 1421-005

Prepared by:

Prepared by:

DRAFT

DRAFT

Kait Salley, LG Project Scientist Travis Zandi Associate Scientist

Reviewed by:

DRAFT

Tom Cammarata, LHG Managing Principal

August 13, 2021

TABLE OF CONTENTS

ACRONYM	ACRONYMS AND ABBREVIATIONSiii										
1.0 INTROD	DUCTION1										
2.0 BACKGR	ROUND1										
2.1	PROPERTY DESCRIPTION AND PHYSICAL SETTING										
2.2	PROPERTY HISTORY										
2.3	PRIOR ENVIRONMENTAL INVESTIGATIONS										
	2.3.1 Kane Environmental, Inc. Phase II ESA2										
	2.3.2 Vestige Environmental, Inc. Level II Subsurface Investigation										
	2.3.3 SoundEarth Phase I ESA										
3.0 SUBSUR	RFACE INVESTIGATION4										
3.1	SOIL SAMPLING										
3.2	GROUNDWATER SAMPLING										
3.3	LABORATORY ANALYSIS										
3.4	INVESTIGATION-DERIVED WASTE										
4.0 SUBSUR	RFACE CONDITIONS AND ANALYTICAL RESULTS5										
4.1	SUBSURFACE CONDITIONS										
4.2	SOIL ANALYTICAL RESULTS										
4.3	RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS										
5.0 CONCLU	JSION7										
6.0 LIMITAT	ΓΙΟΝS8										
7.0 REFERE	NCES8										

TABLE OF CONTENTS (CONTINUED)

FIGURES

- 1 Property Location Map
- 2 Boring Locations
- 3 Soil Analytical Results TPH and BTEX
- 4 Groundwater Analytical Results TPH and BTEX

TABLES

- 1 Soil Analytical Results for TPH and BTEX
- 2 Soil Analytical Results for VOCs
- 3 Soil Analytical Results for RCRA 8 Metals
- 4 Groundwater Analytical Results for TPH and BTEX
- 5 Groundwater Analytical Results for VOCs

APPENDICES

- A Boring Logs
- B Soil Laboratory Analytical Report

Friedman & Bruya, Inc. #107131

C Groundwater Laboratory Analytical Report Friedman & Bruya, Inc. #107130

ACRONYMS AND ABBREVIATIONS

μg/L	micrograms per liter
AST	above-ground storage tank
ASTM	ASTM International
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and total xylenes
cis-1,2-DCE	cis-1,2-dichlorothene
CNI	CNI Locates Ltd.
DRPH	diesel-range petroleum hydrocarbons
EPA	US Environmental Protection Agency
ESA	Environmental Site Assessment
GPR	ground-penetrating radar
GRPH	gasoline-range petroleum hydrocarbons
Kane	Kane Environmental, Inc.
mg/kg	milligrams per kilogram
MTCA	Washington State Model Toxics Control Act
NWTPH	Northwest Total Petroleum Hydrocarbon
ORPH	oil-range petroleum hydrocarbons
ppmv	parts per million by volume
PCE	tetrachloroethene
PID	photoionization detector
the Property	1110 Martin Luther King Jr. Way, Seattle, Washington
RCRA	Resource Conservation and Recovery Act
ROW	right-of-way
SoundEarth	SoundEarth Strategies, Inc.
TCE	trichloroethene
UST	underground storage tank
VC	vinyl chloride
Vestige	Vestige Environmental, Inc.
VOC	volatile organic compound

1.0 INTRODUCTION

SoundEarth Strategies, Inc. (SoundEarth) has prepared this Phase II Environmental Site Assessment (ESA) to provide Schwabe, Williamson & Wyatt with the results of the subsurface investigation conducted at the J&J Auto Masters Property located at 1110 Martin Luther King Jr. Way in Seattle, Washington (the Property). The Property consists of one irregularly shaped tax parcel (King County Parcel No. 118900-0469) that covers approximately 11,158 square feet (0.26 acres) of land in Seattle, Washington (Figure 1). The Property is developed with a one-story building constructed in approximately 1961 that encompasses 1,231 square feet of space. The building is currently occupied by J&J Auto Masters.

SoundEarth's subsurface investigation was completed in accordance with SoundEarth Work Order 02 dated May 28, 2021. Field activities for the Phase II ESA were completed on July 9, 2021, and consisted of utility locating and direct-push soil borings. The public and private utility locates were performed in an effort to identify conductible utilities around proposed boring locations in advance of subsurface investigation activities. Seven direct-push borings (B01 through B06 and B04A) were advanced on the north-adjoining property (currently occupied by a Grocery Outlet supermarket) and in the west-adjoining Martin Luther King Jr. Way right-of-way (ROW) to determine if known impacts from former gasoline service station and automotive repair operations have migrated off the Property.

2.0 BACKGROUND

This section provides a description of the Property and physical setting, a summary of the historical use of the Property, and a summary of prior environmental investigations.

2.1 PROPERTY DESCRIPTION AND PHYSICAL SETTING

The Property is located in the Judkins Park area of Seattle, approximately 500 feet north of Interstate 90 and 0.5 miles west of Lake Washington. The Property is located at an approximate elevation of 235 to 240 feet above mean sea level. The Geologic Map of Seattle—A Progress Report (Troost et al. 2005), indicates that the Property is underlain by Vashon recessional outwash deposits. These deposits consist of a dense mixture of silt, sand, gravel, and clay, which typically are characterized by relatively low vertical hydraulic conductivity.

Currently, the Property is developed with a one-story commercial building that encompasses 1,231 square feet of space. Additional improvements include an asphalt-paved parking lot and a former fuel canopy that is connected to the existing building (Figure 2).

Potable water and sewer service are provided to the Property by the City of Seattle. Puget Sound Energy provides natural gas and Seattle City Light provides electricity to the building. Solid waste disposal and recycling services are provided by Waste Management. No evidence was found of potable or process water supply wells on the Property.

2.2 PROPERTY HISTORY

The Property was initially developed in 1926 with a single-family residence on the southwestern portion of the Property. The residence was demolished and a retail gasoline service station was constructed on

the Property in 1961. The service station was equipped with one 6,000-gallon underground storage tank (UST), two 4,000-gallon USTs, one 500-gallon UST, one 200-gallon UST, and one hydraulic hoist located in a lubrication room in the northern portion of the building. Heat was provided by an oil-burning furnace. In 1974, one 8,000-gallon UST was installed on the Property. In 1979 and 1980, the on-Property building was vacant and/or occupied by a furniture store. The former service station was converted to an automotive repair facility in 1981. Currently, the Property is occupied by the J&J Auto Masters automotive repair facility. Adjoining properties include a mix of residential and commercial development.

2.3 PRIOR ENVIRONMENTAL INVESTIGATIONS

The following sections summarize prior environmental reports provided to SoundEarth by Schwabe, Williamson & Wyatt and the Phase I ESA conducted by SoundEarth in 2021.

2.3.1 Kane Environmental, Inc. Phase II ESA

Kane Environmental, Inc. (Kane) completed a Limited Phase II ESA of the Property in 2015 (Kane 2015). A ground-penetrating radar (GPR) survey conducted on the Property as part of the Phase II ESA identified four USTs related to the former service station, one hydraulic oil UST located inside the on-Property building to the east of a former hydraulic lift, and an additional UST along the northern Property boundary. One above-ground storage tank (AST) containing used motor oil and one empty AST were also observed along the eastern portion of the on-Property building during the Kane Property reconnaissance.

Kane advanced 10 direct-push soil borings on the Property (KSB-1 through KSB-10; Figure 2) in the vicinity of the identified USTs and the former pump island. Gasoline-range petroleum hydrocarbons (GRPH) and benzene were detected at concentrations above Washington State Model Toxics Control Act (MTCA) Method A cleanup levels in soil samples collected from borings KSB-1, KSB-2, and KSB-8. Oil-range petroleum hydrocarbons (ORPH) were detected in soil samples collected from borings KSB-1 and KSB-2 at concentrations below the MTCA Method A cleanup level. Vinyl chloride (VC) and cis-1,2-dichloroethene (cis-1,2-DCE) were detected at concentrations below MTCA Method A cleanup levels in a soil sample collected from boring KSB-1, which was advanced inside of the auto repair facility. Lead was detected in soil samples collected from borings KSB-7 and KSB-8 at concentrations below the MTCA Method A cleanup level. Total xylenes were detected in a soil sample collected from boring KSB-9 at a concentration below the MTCA Method A cleanup level. Diesel-range petroleum hydrocarbons (DRPH) were detected in a soil sample collected from boring KSB-9 at a concentration below the MTCA Method A cleanup level. Soil samples collected from boring KSB-9 at a concentration below the MTCA Method A cleanup level. Soil samples collected from borings KSB-9 at a concentration below the MTCA Method A cleanup level. Soil samples collected from borings KSB-9 at a concentration below the MTCA Method A cleanup level. Soil samples collected from borings KSB-9 at a concentration below the MTCA Method A cleanup level. Soil samples collected from borings KSB-9, and KSB-10 did not contain elevated concentrations of any of the contaminants of concern.

Groundwater was encountered at an approximate depth of 10 feet below ground surface (bgs) during drilling. ORPH and VC were detected at concentrations above MTCA Method A cleanup levels in a reconnaissance groundwater sample collected from boring KSB-1. GRPH, DRPH, and ORPH were detected at concentrations above MTCA Method A cleanup levels in a reconnaissance groundwater sample collected from boring KSB-2. GRPH was also detected at a concentration above the MTCA Method A cleanup level in a reconnaissance groundwater sample collected from boring KSB-3, and at concentrations below the MTCA Method A cleanup level in reconnaissance groundwater samples collected from borings KSB-1, KSB-5, and KSB-7. DRPH and cis-1,2-DCE were detected at concentrations below the MTCA Method A cleanup level in the reconnaissance groundwater sample collected from boring KSB-1. None of the contaminants of concern were

detected above laboratory reporting limits in the remaining reconnaissance groundwater samples.

Kane concluded that the Property had been impacted by hydraulic oil leaking from closed-in-place infrastructure related to the former underground hydraulic lifts located inside the automotive repair bays. Kane did not speculate about the source of the VC impacts.

2.3.2 Vestige Environmental, Inc. Level II Subsurface Investigation

Vestige Environmental, Inc. (Vestige) conducted an additional subsurface investigation on the Property in 2018, which included the advancement of nine direct-push borings (SB1 through SB9; Figure 2; Vestige 2018). The purpose of the investigation was to further evaluate the extent of impacts previously identified by Kane and to determine if a remedial action was necessary.

A soil sample collected from boring SB6 contained concentrations of GRPH and naphthalene above the MTCA Method A cleanup levels. Lead and DRPH were detected in soil samples collected from borings SB6 and SB8 at concentrations below the MTCA Method A cleanup levels. Ethylbenzene and total xylenes were detected at concentrations below the MTCA Method A cleanup levels (TCE), and cis-1,2-DCE were detected at concentrations below the MTCA Method A cleanup levels in the soil sample collected from SB6. Soil samples collected from borings SB1, SB2, and SB5 did not contain detectable concentrations of GRPH, DRPH, or lead. Acetone was detected in soil samples collected from boring SB1 and SB5, and 2-butanone was detected in a soil sample collected from borings SB1, SB2, or SB5. Soil samples from the remaining borings were reportedly not analyzed due to the apparent absence of visible indications of petroleum contamination.

Groundwater was encountered at approximate depths between 7.5 and 15 feet bgs. A reconnaissance groundwater sample collected from boring SB6 contained concentrations of GRPH, DRPH, and lead above the applicable MTCA Method A cleanup levels. The reconnaissance groundwater sample collected from boring SB8 contained concentrations of DRPH and lead above the MTCA Method A cleanup levels. Ethylbenzene, total xylenes, and naphthalene were detected at concentrations below the MTCA Method A cleanup levels in the reconnaissance groundwater collected from boring SB6. Carbon disulfide and cis-1,2-DCE were detected in the reconnaissance groundwater sample collected from boring SB8. The concentration of cis-1,2-DCE detected was below the MTCA Method A cleanup level in the SB8 sample and there is no Method A cleanup level established for carbon disulfide. Reconnaissance groundwater samples collected from borings SB1, SB2, and SB5 contained concentrations of total lead above the MTCA Method A cleanup level. Reconnaissance groundwater samples collected from borings were not analyzed. The Vestige report concluded that the Property had been impacted by releases of gasoline, lead, VOCs, and hydraulic fluid and suggested that the impacts may extend beyond the Property boundaries to the north and west.

2.3.3 SoundEarth Phase I ESA

In April 2021, SoundEarth conducted a Phase I ESA for the Property (SoundEarth 2021). The Phase I ESA identified several recognized environmental conditions, including the historical operation of a gasoline service station and automotive repair facilities on the Property, the historical use and

storage of heating oil on the Property, and the historical use and storage of heating oil on adjoining properties.

3.0 SUBSURFACE INVESTIGATION

Prior to initiating the subsurface investigation, SoundEarth prepared a site-specific health and safety plan in accordance with the Washington Industrial Safety and Health Act and Part 1910.120 of Title 29 of the Code of Federal Regulations. SoundEarth requested public utility locates by contacting the Northwest Utility Notification Center. In addition, CNI Locates Ltd. (CNI) of Bonney Lake, Washington, completed a private utility locate at each proposed boring location.

On July 9, 2021, ESN Northwest, under the observation of a SoundEarth geologist, advanced five soil borings using a tractor-mounted direct-push drill rig on the north-adjoining Grocery Outlet property (P01, P04, P04A, P05, and P06) and two additional borings in the west-adjoining Martin Luther King Jr. Way ROW (P02 and P03) to evaluate the northern and western extents of previously identified impacts to soil and groundwater. Due to difficult drilling conditions at boring P04, where refusal was encountered at 6 feet bgs, a second boring (P04A) was advanced 2 feet south of boring P04 to a total depth of 17.5 feet bgs. The remaining soil borings were advanced to total depths between 15 and 17.5 feet bgs.

3.1 SOIL SAMPLING

Soil samples were collected from the borings at up to 5-foot depth intervals based on field observations at various depths. Soil samples were described in general accordance with a modification of ASTM International (ASTM) Method D2488-17 (Visual-Manual Procedures) and were screened in the field for potential evidence of contamination. Field screening included visual observations and notations of odor and conducting headspace analysis using a photoionization detector (PID) to screen for the presence of volatile organic vapors. Headspace analysis was conducted by placing soil from each sample interval into a sealable plastic bag and allowing the sample to produce volatiles, if present. The probe of the PID was then inserted into the bag and the highest reading obtained over an approximately 30-second interval was recorded. The modified ASTM soil descriptions, visual and olfactory notations for the samples, and PID readings were recorded on boring log forms (Appendix A). A total of 12 soil samples were submitted to the laboratory for one or more of the analyses described in Section 3.3.

3.2 GROUNDWATER SAMPLING

Following advancement of borings P01, P02, P03, P04A, P05, and P06, temporary groundwater monitoring wells were installed using 2-inch-diameter schedule 40 PVC. Five feet of 0.010-inch slotted screen was installed at the bottom of each temporary well (10 to 15 feet bgs in P05 and P06; 11 to 16 feet bgs in P01, P02, and P03; and 12.5 to 17.5 feet bgs in P04A). Two-inch-diameter blank schedule 40 PVC riser was installed in the upper non-screened portions. Following temporary well installation, the depth to groundwater was measured using a water level indicator at 11.0 feet bgs in boring P01 and P02, 7.5 feet bgs in boring P03, 9.3 feet bgs in boring P05, and 9.0 feet bgs in boring P06. Dry conditions were encountered in P04A, which prevented the collection of a reconnaissance groundwater sample from this location. Reconnaissance groundwater samples were collected from borings P01, P02, P03, P05, and P06 using a peristaltic pump and dedicated polyethylene tubing and the well casings were removed after sample collection. Each boring was subsequently decommissioned by backfilling the boring with bentonite and sealing with asphalt or concrete to grade, in accordance with the procedures specified in the

Minimum Standards for Construction and Maintenance of Wells (Chapter 173-360 of the Washington Administrative Code).

Groundwater samples were placed directly into clean, laboratory-prepared sample containers and submitted to the laboratory for analysis of one or more of the chemicals described in Section 3.3.

3.3 LABORATORY ANALYSIS

Each soil and groundwater sample was labeled with a unique sample identifier, placed on ice in a cooler, and transported to Friedman & Bruya, Inc. of Seattle, Washington, under standard chain-of-custody protocols for laboratory analysis. Based on boring locations, screening results, sampling depths, and observed soil characteristics, select soil and groundwater samples were submitted to the laboratory for chemical analysis of one or more of the following:

- GRPH by Northwest Total Petroleum Hydrocarbon (NWTPH) Method NWTPH-Gx
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by US Environmental Protection Agency (EPA) Method 8021B
- DRPH and ORPH by Method NWTPH-Dx
- VOCs by EPA Method 8260
- Resource Conservation and Recovery Act (RCRA) 8 Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) by EPA Method 6020B

Laboratory reports for soil and groundwater analyses are provided in Appendices B and C, respectively.

3.4 INVESTIGATION-DERIVED WASTE

Soil cuttings and purge/decontamination water generated during the subsurface investigation activities were placed in labeled 10-gallon drums and temporarily stored on the north-adjoining property pending receipt of analytical data for waste profiling and proper disposal.

4.0 SUBSURFACE CONDITIONS AND ANALYTICAL RESULTS

The following sections provide a summary of soil and groundwater conditions encountered during the supplemental subsurface investigation and a summary of soil and groundwater analytical results.

4.1 SUBSURFACE CONDITIONS

Soil observed during drilling activities at the Property generally consisted of well-graded sand, silty sand, clayey sand, and elastic silt from the surface to depths of 6 to 17.5 feet bgs. In addition, gravel and well-graded sand with gravel were present at depths between 10 and 15 feet bgs to depths between 15 and 17.5 feet bgs in borings P02, P03, P05, and P06. In boring P05, a shallower layer of gravel was observed at depths between 5.5 and 8.5 feet bgs. Fill material, including wood, concrete, and brick debris, was observed at depths of 9 feet bgs in boring P03, 1 to 3.5 feet bgs in boring P04, 2.5 to 4.5 feet bgs in boring P04A, and 4.5 to 8.5 feet bgs in boring P05.

Wet soil conditions were observed during drilling at depths between 8 and 11.5 feet bgs to between 12 and 13.5 feet bgs. Petroleum hydrocarbon odors and elevated PID readings of up to 260 parts per million

by volume (ppmv) were observed in boring P06 at depths of 7.5 to 10 feet bgs. All other PID readings for screened soil samples were generally less than 10 ppmv.

Copies of boring logs for borings P01 through P06 and P04A are provided in Appendix A.

4.2 SOIL ANALYTICAL RESULTS

A total of 12 soil samples (two from each soil boring) were submitted for laboratory analysis. In addition, one composite soil sample from all borings was submitted for analysis of RCRA 8 metals for soil disposal profiling. Soil analytical results are summarized in Tables 1 through 3, on Figure 3, and are discussed below. The laboratory analytical report is presented in Appendix B.

- GRPH. The sample collected from boring P06 at a depth of 10 feet bgs contained a GRPH concentration of 330 milligrams per kilogram (mg/kg), exceeding the MTCA Method A cleanup level of 30 mg/kg. GRPH was also detected in the sample collected from boring P05 at a depth of 10 feet bgs at a concentration below the MTCA Method A cleanup level (8.2 mg/kg). GRPH was not detected at concentrations above the laboratory reporting limits in the remaining samples.
- DRPH and ORPH. The sample collected from boring P06 at a depth of 10 feet bgs contained a DRPH concentration of 270 mg/kg, below the MTCA Method A cleanup level of 2,000 mg/kg. This detection was flagged by the laboratory as not representative of the standard used for quantitation. None of the remaining samples contained concentrations of DRPH or ORPH above laboratory reporting limits.
- **BTEX.** None of the analyzed samples contained BTEX constituents at concentrations above laboratory reporting limits.
- VOCs. Sec-butylbenzene was detected at 0.11 mg/kg in the sample collected from boring P06 at a depth of 10 feet bgs at a concentration below the MTCA Method B cleanup level. No other VOCs were detected above laboratory reporting limits in samples submitted for analysis.
- Metals. Concentrations of RCRA 8 metals were either not detected above the laboratory reporting limits or were below their respective MTCA Method A cleanup levels in the composite soil sample submitted for analysis.

4.3 RECONNAISSANCE GROUNDWATER ANALYTICAL RESULTS

Five reconnaissance groundwater samples were collected and submitted for laboratory analysis. Analytical results are summarized in Tables 4 and 5, on Figure 4, and are discussed below. The laboratory analytical report is provided in Appendix C.

- GRPH. GRPH was detected in the reconnaissance groundwater samples collected from borings P05 and P06 at concentrations of 2,000 and 6,100 micrograms per liter (μg/L), respectively. These concentrations exceed the MTCA Method A cleanup level of 800 μg/L. The remaining three groundwater samples did not contain GRPH concentrations above laboratory reporting limits.
- DRPH and OPRH. DRPH was detected in the reconnaissance groundwater samples collected from borings P05 and P06 at concentrations of 4,000 and 33,000 µg/L, respectively, which exceed the MTCA Method A cleanup level of 500 µg/L. ORPH was detected in the reconnaissance groundwater samples collected from borings P01, P05, and P06 at concentrations of 610, 6,100, and 2,300 µg/L, respectively, exceeding the MTCA Method A cleanup level of 500 µg/L. Remaining

groundwater samples did not contain DRPH or ORPH at concentrations above laboratory reporting limits and/or MTCA Method A cleanup levels.

- BTEX. Toluene was detected in the reconnaissance groundwater sample collected from boring PO1 at a concentration below the MTCA Method A cleanup level. Other BTEX constituents were not detected at concentrations above the laboratory reporting limits in any of the reconnaissance groundwater samples submitted for analysis.
- VOCs. Chlorinated VOCs were not detected above laboratory reporting limits in the analyzed reconnaissance groundwater samples. Isopropyl benzene, n-propylbenzene, and secbutylbenzene were detected at concentrations below applicable MTCA cleanup levels in the reconnaissance groundwater samples collected from borings P05 and P06. Methylene chloride was detected in the reconnaissance groundwater sample collected from boring P06 (5.8 µg/L) at a concentration above the cleanup level of 5 µg/L, but was flagged by the laboratory as likely due to laboratory contamination.

5.0 CONCLUSION

On July 9, 2021, SoundEarth conducted field activities consisting of seven direct-push soil borings located on the north-adjoining Grocery Outlet property and the west-adjoining Martin Luther King Jr. Way ROW. In total, 12 soil samples and 5 groundwater samples were submitted for laboratory analysis of one or more of the following: GPRH, BTEX, DRPH, ORPH, VOCs, and RCRA 8 Metals.

A GRPH concentration exceeding the MTCA Method A cleanup level of 30 mg/kg was detected in soil at a depth of 20 feet bgs in boring P06, on the Grocery Outlet property. Soil samples collected from other borings advanced during this investigation did not contain contaminants of concern above applicable cleanup levels.

Concentrations of GRPH, DRPH, and ORPH exceeding applicable MTCA Method A cleanup levels were detected in the reconnaissance groundwater samples collected from borings P05 and P06 on the Grocery Outlet property. In addition, the reconnaissance groundwater sample collected from boring P01, located on the Grocery Outlet property, also exceeded the cleanup level for ORPH.

Methylene chloride was detected in the reconnaissance groundwater sample collected from boring P06 at a concentration above the cleanup level, but this sample was flagged due to likely laboratory contamination and therefore, would not be representative of subsurface groundwater conditions. Impacts to soil and groundwater from VOCs and RCRA 8 metals were not observed in the borings advanced on the north-adjoining property or in the Martin Luther King Jr. Way ROW.

Based on the findings of this Phase II ESA, it appears that petroleum-related impacts to soil and groundwater originating from the Property have migrated onto the north-adjoining Grocery Outlet property at concentrations above regulatory levels. Because groundwater was not encountered in borings P04 and P04A, the full extent of the groundwater plume has not been defined.

Impacts related to VOCs and RCRA 8 metals do not appear to have migrated to either the north-adjoining property or the Martin Luther King Jr. Way ROW.

6.0 LIMITATIONS

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made. These services were performed consistent with SoundEarth's agreement with the client. This report is solely for the use and information of the client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report are derived, in part, from data gathered by others, and from conditions evaluated when services were performed, and are intended only for the client, purposes, locations, time frames, and project parameters indicated. SoundEarth does not warrant and is not responsible for the accuracy or validity of work performed by others, nor from the impacts of changes in environmental standards, practices, or regulations subsequent to performance of services. SoundEarth does not warrant the use of segregated portions of this report.

7.0 REFERENCES

- Kane Environmental, Inc. (Kane). 2015. Limited Phase II Environmental Site Assessment, 1110 Martin Luther King Jr. Way, Seattle, Washington.
- SoundEarth Strategies, Inc. (SoundEarth). 2021. Phase I Environmental Site Assessment, 1110 Martin Luther King Jr. Way, Seattle, Washington.
- Troost, Kathy Goetz, D.B. Booth, A.P. Wisher, and S.A. Shimel (Troost et al.). 2005. *The Geologic Map of Seattle—A Progress Report.* U.S. Geological Survey Open-File Report 2005-1252. http://pubs.usgs.gov/of/2005/1252/. December 9.
- Vestige Environmental, Inc. (Vestige). 2018. *Limited Sub Surface Investigation Level II, 1110 Martin Luther King Jr. Way, Seattle, Washington*. July 31.

Draft – Privileged and Confidential Attorney-Client Work Product

FIGURES

Document Path: P:/1421 Schwabe/1421-005 J&J Masters Property/Technical/CAD/Figure 1/1421-005 2021 FIG1.mxd

Draft - Privileged and Confidential Attorney-Client Work Product

TOWNHC 2820 EAST { STREE

SINGLE FAMILY RESIDENCE 1111 29TH AVENUE PARCEL: 9839300485

TOWNHOUSES 2816 EAST SPRING STREET PARCELS: 1189000493

LEGEND

	PROPERTY BOUNDARY
	PARCEL BOUNDARY
	HISTORICAL BUILDING LOCATIONS (BASED ON SANBORN MAPS)
	HISTORICAL TANK LOCATIONS (BASED ON KANE ENVIRONMENTAL, INC., 2015)
KSB-8	EXISTING DIRECT PUSH BORING LOCATION (KANE ENVIRONMENTAL, INC., AUGUST 2015)
- -2	CORE DRILLING LOCATIONS (VESTIGE ENVIRONMENTAL, INC., JULY 2018)
₱-1	SOIL BORING LOCATION (SOUNDEARTH, JULY 2021)
1	GROUNDWATER FLOW DIRECTION
AST	ABOVEGROUND STORAGE TANK
UST	UNDERGROUND STORAGE TANK
S I	A C

SoundEarth Strategies WWW.SOUNDEARTHINC.COM J&J AUTO MASTERS PROPERTY 1110 MARTIN LUTHER KING JR. WAY SEATTLE, WASHINGTON SOUNDEARTH PROJECT #1421-005

FIGURE 2 BORING LOCATIONS

Draft – Privileged and Confidential Attorney-Client Work Product

	Analytical Results (milligrams per kilogram)											
Depth							Total					
(feet bgs)	GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Xylenes					
10	<5	<50	<250	<0.03	<0.05	<0.05	<0.15					
15	<5	<50	<250	<0.03	<0.05	< 0.05	<0.15					
8	<5	<50	<250	<0.03	<0.05	<0.05	<0.15					
16	<5	<50	<250	<0.03	<0.05	<0.05	<0.15					
9	<5	<50	<250	<0.03	<0.05	<0.05	<0.15					
16	<5	<50	<250	<0.03	<0.05	<0.05	<0.15					
9	<5	<50	<250	< 0.03	<0.05	< 0.05	<0.15					
17.5	<5	<50	<250	<0.03	<0.05	<0.05	<0.15					
10	8.2	<50	<250	< 0.03	< 0.05	< 0.05	<0.15					
15	<5	<50	<250	< 0.03	<0.05	< 0.05	<0.15					
10	330	270	<250	<0.03	<0.05	< 0.05	<0.15					
15	<5	<50	<250	< 0.03	<0.05	< 0.05	<0.15					
	30	2,000	2,000	0.03	7	6	9					

	PROPERTY BOUNDARY
	PARCEL BOUNDARY
	HISTORICAL BUILDING LOCATIONS (BASED ON SANBORN MAPS)
	HISTORICAL TANK LOCATIONS (BASED ON KANE ENVIRONMENTAL, INC., 2015)
KSB-8	EXISTING DIRECT PUSH BORING LOCATION (KANE ENVIRONMENTAL, INC., AUGUST 2015
- 2	CORE DRILLING LOCATIONS (VESTIGE ENVIRONMENTAL, INC., JULY 2018
₽-1	SOIL BORING LOCATION (SOUNDEARTH, JULY 2021)
1	GROUNDWATER FLOW DIRECTION
RED	DENOTES CONCENTRATION EXCEEDS MTCA CLEANUP LEVEL
<	RESULT BELOW LABORATORY REPORTING LIMIT
AST	ABOVEGROUND STORAGE TANK
bgs	BELOW GROUND SURFACE
BTEX	BENZENE, TOLUENE, ETHYLBENZENE, AND TOTAL XYLENES
DRPH	DIESEL-RANGE PETROLEUM HYDROCARBONS
GRPH	GASOLINE-RANGE PETROLEUM HYDROCARBONS
MTCA	WASHINGTON STATE MODEL TOXICS CONTROL ACT
ORPH	OIL-RANGE PETROLEUM HYDROCARBONS
TPH	TOTAL PETROLEUM HYDROCARBONS

UNDERGROUND STORAGE TANK

SoundEarth Strategies WWW.SOUNDEARTHINC.COM

J&J AUTO MASTERS PROPERTY 1110 MARTIN LUTHER KING JR. WAY SEATTLE, WASHINGTON SOUNDEARTH PROJECT #1421-005

FIGURE 3 SOIL ANALYTICAL RESULTS-TPH AND BTEX

Analytical Results (micrograms per liter)												
GRPH	DRPH	ORPH	Benzene	Toluene	Ethylbenzene	Total Xylenes						
<100	210	610	< 0.35	1.4	<1	<3						
<100	<60	<300	< 0.35	<1	<1	3						
<100	110	<300	< 0.35	<1	<1	<3						
2,000	4,000	6,100	< 0.35	<1	<1	<3						
6,100	33,000	2,300	<0.35	<1	<1	<3						
800	500	500	5	1,000	700	1,000						
	GRPH <100 <100 <100 2,000 6,100 800	GRPH DRPH <100	GRPH DRPH ORPH <100	Analytical Results (micro GRPH DRPH ORPH Benzene <100	Analytical Results (micrograms per GRPH DRPH ORPH Benzene Toluene <100	Analytical Results (micrograms per liter) GRPH DRPH ORPH Benzene Toluene Ethylbenzene <100						

the second se							
-		LEGEND					
		PROPERTY BOUNDARY					
		PARCEL BOUNDARY					
		HISTORICAL BUILDING LOCATIONS (BASED ON SANBORN MAPS)					
		HISTORICAL TANK LOCATIONS (BASED ON KANE ENVIRONMENTAL, INC., 2015)					
	KSB-8	EXISTING DIRECT PUSH BORING LOCATION (KANE ENVIRONMENTAL, INC., AUGUST 2015)					
	- 2	CORE DRILLING LOCATIONS (VESTIGE ENVIRONMENTAL, INC., JULY 2018)					
SES PRING 9000493		SOIL BORING LOCATION (SOUNDEARTH, JULY 2021)					
NHOUS AST SF STREET S: 1189	1	GROUNDWATER FLOW DIRECTION					
TOW 2816 E 2 PARCEL	RED	DENOTES CONCENTRATION EXCEEDS MTCA CLEANUP LEVEL					
State State	<	RESULT BELOW LABORATORY REPORTING LIMIT					
and the second s	AST	ABOVEGROUND STORAGE TANK					
100 100	bgs	BELOW GROUND SURFACE					
	BTEX	BENZENE, TOLUENE, ETHYLBENZENE, AND TOTAL XYLENES					
and the second	DRPH	DIESEL-RANGE PETROLEUM HYDROCARBONS					
	GRPH	GASOLINE-RANGE PETROLEUM HYDROCARBONS					
ING 00491	MTCA	WASHINGTON STATE MODEL TOXICS CONTROL ACT					
REET SPR ST SPR (ST SPR (118900 (118900 (118900	ORPH	OIL-RANGE PETROLEUM HYDROCARBONS					
ARCEL	ТРН	TOTAL PETROLEUM HYDROCARBONS					
	UST	UNDERGROUND STORAGE TANK					
		SoundEarth Strategies WWW.SOUNDEARTHINC.COM					

APPROXIMATE SCALE IN FEET

FIGURE 4 GROUNDWATER ANALYTICAL RESULTS - TPH AND BTEX

Draft – Privileged and Confidential Attorney-Client Work Product

TABLES

Table 1 Soil Analytical Results for TPH and BTEX J & J Auto Masters Property 1110 Martin Luther King Jr. Way Seattle, Washington

DRAFT Privileged and Confidential Attorney-Client Work Product

					Analytical Results (milligrams per kilogram) GRPH ⁽¹⁾ DRPH ⁽²⁾ ORPH ⁽²⁾ Benzene ⁽³⁾ Toluene ⁽³⁾ Ethylbenzene ⁽³⁾ Xylenes ⁽³⁾ <5 <50 <250 <0.03 <0.05 <0.05 <0.05 <0.15								
		Sampled	Date	Depth							Total		
Boring ID	Sample ID	Ву	Sampled	(feet bgs)	GRPH ⁽¹⁾	DRPH ⁽²⁾	ORPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Xylenes ⁽³⁾		
P01	P01-10			10	<5	<50	<250	<0.03	<0.05	<0.05	<0.15		
FOI	P01-15	SoundEarth		15	<5	<50	<250	<0.03	<0.05	<0.05	<0.15		
002	P02-08			8	<5	<50	<250	<0.03	<0.05	<0.05	<0.15		
P02 P02-16	P02-16			16	<5	<50	<250	<0.03	<0.05	<0.05	<0.15		
002	P03-09			9	<5	<50	<250	<0.03	<0.05	<0.05	<0.15		
P03 P0.	P03-16	SoundEarth	07/00/21	16	<5	<50	<250	<0.03	<0.05	<0.05	<0.15		
D04A	P04A-09	SoundLantin	07/09/21	9	<5	<50	<250	<0.03	<0.05	<0.05	<0.15		
F04A	P04A-17.5			17.5	<5	<50	<250	<0.03	<0.05	<0.05	<0.15		
DOE	P05-10			10	8.2	<50	<250	<0.03	<0.05	<0.05	<0.15		
FUS	P05-15			15	<5	<50	<250	<0.03	<0.05	<0.05	<0.15		
DOG	P06-10			10	330	270 [×]	<250	<0.03	<0.05	<0.05	<0.15		
P06 -	P06-15		-	15	<5	<50	<250	<0.03	<0.05	<0.05	<0.15		
MTCA Cleanup Lev	el for Soil ⁽⁴⁾				30	2,000	2,000	0.03	7	6	9		

NOTES:

Red denotes concentration exceeds MTCA cleanup level for soil.

Sample analysis conducted by Friedman & Bruya, Inc. of Seattle, Washington.

⁽¹⁾Analyzed by Method NWTPH-Gx.

⁽²⁾Analyzed by Method NWTPH-Dx.

⁽³⁾Analyzed by EPA Method 8021B.

⁽⁴⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Soil, Unrestricted Land Uses, revised November 2007. Laboratory Notes:

^x = The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

< = not detected at a concentration exceeding the laboratory reporting limit

bgs = below ground surface

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DRPH = diesel-range petroleum hydrocarbons

EPA = US Environmental Protection Agency

GRPH = gasoline-range petroleum hydrocarbons

MTCA = Washington State Model Toxics Control Act

NWTPH = Northwest Total Petroleum Hydrocarbon

ORPH = oil-range petroleum hydrocarbons

SoundEarth = SoundEarth Strategies, Inc.

TPH = total petroleum hydrocarbons

WAC = Washington Administrative Code

Table 2 Soil Analytical Results for VOCs J & J Auto Masters Property 1110 Martin Luther King Jr. Way Seattle, Washington

DRAFT Privileged and Confidential Attorney-Client Work Product

							Analytical Res	s ults⁽¹⁾ (milligrams p	er kilogram)		
		Sampled	Date	Depth			Cis-1,2-	Trans-1,2-	1,1-		
Boring ID	Sample ID	Ву	Sampled	(feet bgs)	Tetrachloroethene	Trichloroethene	Dichloroethene	Dichloroethene	Dichloroethene	Vinyl Chloride	sec-Butylbenzene
D01	P01-10			10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
PUI	P01-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
D O2	P02-08			8	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
FUZ	P02-16			16	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
002	P03-09			9	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
P03 P03-09 P03-10 P04-0	P03-16	SoundEarth	07/00/21	16	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
D04A	P04A-09	Soundearth	07/09/21	9	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
P04A	P04A-17.5			17.5	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
DOF	P05-10			10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
P05	P05-15]		15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
DOG	P06-10			10	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	0.11
P00	P06-15			15	<0.025	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
MTCA Cleanup Lev	vel for Soil				0.05 ⁽²⁾	0.03 ⁽²⁾	160 ⁽³⁾	1,600 ⁽³⁾	4,000 ⁽³⁾	0.67 ⁽⁴⁾	8,000 ⁽³⁾

NOTES:

Sample analysis conducted by Friedman & Bruya, Inc. of Seattle, Washington. ⁽¹⁾Samples analyzed by EPA Method 8260C.

()

⁽²⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Soil, Unrestricted Land Uses, revised November 2007.

⁽³⁾MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Soil, Method B, Noncancer, Direct Contact, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

⁽⁴⁾MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Soil, Method B, Cancer, Direct Contact, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx>.

< = not detected at a concentration exceeding the laboratory reporting limit

bgs = below ground surface

- CLARC = Cleanup Levels and Risk Calculations
- EPA = US Environmental Protection Agency
- MTCA = Washington State Model Toxics Control Act
- SoundEarth = SoundEarth Strategies, Inc.
- VOC = volatile organic compound
- WAC = Washington Administrative Code

Table 3 Soil Analytical Results for RCRA 8 Metals J & J Auto Masters Property 1110 Martin Luther King Jr. Way Seattle, Washington

DRAFT Privileged and Confidential Attorney-Client Work Product

	Data	Douth	Analytical Results ⁽¹⁾ (milligrams per kilogram)									
Sample ID	Sampled	(feet bgs)	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver		
Composite01	07/09/21		3.79	91.6	<1	30.4	11.6	<1	<1	<1		
MTCA Cleanup Level for Soil			20 ⁽²⁾	16,000 ⁽³⁾	2 ⁽²⁾	2,000 ⁽²⁾	250 ⁽²⁾	2 ⁽²⁾	400 ⁽³⁾	400 ⁽³⁾		

NOTES:

Sample analysis conducted by Friedman & Bruya, Inc. ⁽¹⁾Samples analyzed by EPA Method 6020.

⁽²⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Soil, Unrestricted Land Uses, revised November 2007.

⁽³⁾MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Soil, Method B, Noncancer, Direct Contact, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

-- = not analyzed/not applicable

< = not detected at a concentration exceeding the laboratory reporting limit

bgs = below ground surface

CLARC = Cleanup Levels and Risk Calculations

EPA = US Environmental Protection Agency

MTCA = Washington State Model Toxics Control Act

RCRA = Resource Conservation and Recovery Act

WAC = Washington Administrative Code

Table 4 Groundwater Analytical Results for TPH and BTEX J & J Auto Masters Property 1110 Martin Luther King Jr. Way Seattle, Washington

DRAFT Privileged and Confidential Attorney-Client Work Product

						Analytical	Results (microgram	ns per liter)		
Boring ID	Sample ID	Sampled By	Date Sampled	GRPH ⁽¹⁾	DRPH ⁽²⁾	ORPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾
P01	P01-20210709			<100	210 ^x	610	<0.35	1.4	<1	<3
P02	P02-20210709			<100	<60	<300	<0.35	<1	<1	<3
P03	P03-20210709	SoundEarth	07/09/21	<100	110 [×]	<300	<0.35	<1	<1	<3
P05	P05-20210709			2,000	4,000 [×]	6,100	<0.35	<1	<1	<3
P06	P06-20210709			6,100	33,000	2,300 ^{ve}	<0.35	<1	<1	<3
MTCA Cleanup Level for Groundwater ⁽⁴⁾			800	500	500	5	1,000	700	1,000	

NOTES:

Red denotes concentration exceeds MTCA cleanup level for groundwater.

Sample analysis conducted by Friedman & Bruya, Inc. of Seattle, Washington.

⁽¹⁾Analyzed by Method NWTPH-Gx.

⁽²⁾Analyzed by Method NWTPH-Dx.

⁽³⁾Analyzed by EPA Method 8021B.

⁽⁴⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Groundwater, revised November 2007.

Laboratory Notes:

^x = The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

^{ve} = The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

< = not detected at a concentration exceeding the laboratory reporting limit

BTEX = benzene, toluene, ethylbenzene, and total xylenes

- DRPH = diesel-range petroleum hydrocarbons
- EPA = US Environmental Protection Agency
- GRPH = gasoline-range petroleum hydrocarbons
- MTCA = Washington State Model Toxics Control Act
- NWTPH = Northwest Total Petroleum Hydrocarbon
- ORPH = oil-range petroleum hydrocarbons
- SoundEarth = SoundEarth Strategies, Inc.
- TPH = total petroleum hydrocarbons
- WAC = Washington Administrative Code

Table 5 Groundwater Analytical Results for VOCs J & J Auto Masters Property 1110 Martin Luther King Jr. Way Seattle, Washington

DRAFT Privileged and Confidential Attorney-Client Work Product

					Analytical Results ⁽¹⁾ (micrograms per liter)										
Well ID	Sample ID	Sampled By	Date Sampled	Tetrachloroethene	Trichloroethene	Cis-1,2- Dichloroethene	Dichloroethen e	, Dichloroethen e	Vinyl Chloride	Methylene Chloride	lsopropyl benzene	n-Propyl benzene	sec-Butyl benzene		
P01	P01-20210709			<1	<1	<1	<1	<1	<0.2	<5	<1	<1	<1		
P02	P02-20210709			<1	<1	<1	<1	<1	<0.2	<5	<1	<1	<1		
P03	P03-20210709	SoundEarth	07/09/21	<1	<1	<1	<1	<1	<0.2	<5	<1	<1	<1		
P05	P05-20210709			<1	<1	<1	<1	<1	<0.2	<5	2.3	5.0	2.8		
P06	P06-20210709			<1	<1	<1	<1	<1	<0.2	5.8 ^{lc}	1.7	4.0	6.0		
MTCA Cleanup	Level for Groundw	ater		5 ⁽²⁾	5 ⁽²⁾	16 ⁽³⁾	160 ⁽³⁾	400 ⁽³⁾	0.2 ⁽²⁾	5 ⁽²⁾	800 ⁽³⁾	800 ⁽³⁾	800 ⁽³⁾		

NOTES:

Sample analysis conducted by Friedman & Bruya, Inc. of Seattle, Washington. ⁽¹⁾Samples analyzed by EPA Method 8260C.

⁽²⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Groundwater, revised November 2007.

⁽³⁾MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Groundwater, Method B Standard Formula, Non cancer, CLARC Website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

Laboratory Notes:

 $^{\rm lc}$ = The presence of the analyte is likely due to laboratory contamination.

< = not detected at a concentration exceeding the laboratory reporting limit

CLARC = Cleanup Levels and Risk Calculations

EPA = US Environmental Protection Agency

MTCA = Washington State Model Toxics Control Act

NE = not established

SoundEarth = SoundEarth Strategies, Inc.

VOC = volatile organic compound

WAC = Washington Administrative Code

APPENDIX A BORING LOGS

SoundEarth Strategies Project: Project: Project: Date Started Surface Con							nber: d: nditions:	J&J Au 1421-0 KAS 07/09/ Aspha	uto Masters Property 005-02 21 It S of SW grocony store building corner	BORING LOG Site Address: 1110 M Seattle	P01 Iartin Luth , Washing	er King Jr. Way Iton
	DRAFT Location E Reviewed I Date Comp							30 feet DRAF 07/09/	E of SW grocery store building corner T 21	Water Depth / Time of Drillin Water Depth After Complet	At ng ⁸ tion 11	feet bgs feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Dese (ASTM texture, density, color supplemental descriptors, estimated Field-estimated grain size dist (% Fines - % Sand - 6	cription , odor, moisture, I grain size distributio ribution by volume % Gravel)	n)	Well Detail/ Water Depth
0							000 000	—	0.0-0.5 feet bgs: Surface asphalt.	/ 1		
_	\mathbf{V}			0.0			GW-GM		0.5-2.0 feet bgs: Well-graded GRA brown, no hydrocarbon odor, dry	VEL with silt and sa (10-20-70).	ind,	
-	\land		100				SW-SM		2.0-5.0 feet bgs: Well-graded SANI brown, no hydrocarbon odor, moi) with silt and grave st (10-80-10).	el,	
-				0.4	P01-03	x						
5—			100	0.6	P01-06	x	SM		5.0-8.0 feet bgs: Silty SAND with g hydrocarbon odor, moist (30-60-10	ravel, gray, no)).		
-				0.0			SM		8.0-9.0 feet bgs: Silty SAND, trace	gravel, dark brown	to	\square
-	\setminus			0.0			см		black, no hydrocarbon odor, wet (20-75-5).		
10 —	$\left \right\rangle$		100		P01-10		5111		faint hydrocarbon odor, wet (15-80	9 gravel, light brown 1-5).	n,	V
-				0.3			SW		12.0-13.0 feet bgs: Well-graded SA brown, no hydrocarbon odor, wet	ND, trace silt and g (5-90-5).	ravel,	
-	\mathbb{V}			0.0			SW-SM	•	13.0-14.0 feet bgs: Well-graded SA brown, no hydrocarbon odor, moi	ND with silt, trace g st (10-85-5).	jravel,	
15 —	$\left \right $		100		P01-15		SM		14.0-15.0 feet bgs: Silty SAND, trac hydrocarbon odor, dry (30-65-5).	ce gravel, brown, no	>	
	$/ \setminus$			0.0			SW		15.0-16.0 feet bgs: Poorly-graded s gravel, brown, no hydrocarbon od	SAND, trace silt and or, moist (5-90-5).	I	
									Driller set temporary well with a 5- reconnaissance groundwater sam Drillers abandoned boring with ber	oot screen. Collecte ble (P01-20210709). htonite.	ed	
Drillin	ıg Co	./Drillo	er:	ESN / D)on		Well/Au	iger Dia	imeter: inches	Notes/Commen	nts:	
Drillin Samp	g Equ ler T\	uipme /pe:	ent:	Track-M Plastic :	lounted Pusł Sleeve	n Probe	Well Sc Screen	reened Slot Si	Interval: feet bgs ze: inches	No hydrocarbon o	odor in co	ollected
Hamm	ner Ty	/pe/W	eight:		lbs	6	Filter P	ack Use	ed:	groundwater sam	ihie	
Total	Borin Well	g Dep	oth:	16 	fee	et bgs	Surface	e Seal:		bgs = below grou	ind surfac	e
Total Well Depth: State Well ID No.:				100	uys.	Monum	ent Ty	 be:	Page:	1	of 1	

SoundEarthProject: Project Num Logged by: Date Started Surface Con Location N/S Location E/V Reviewed by						ct: ct Num ed by: Startec ace Con tion N/ tion E/ ewed b Compl	nber: d: nditions: S: W: y: y: eted:	J&J A 1421-0 KAS 07/9/2 Concr 53 feet 68 feet DRAF 07/9/2	uto Masters Property 005-02 021 ete S of pole 20' N of NW property corner W of SW grocery store building corner T	BORING LOG P02 Site Address: 1110 Martin Luther King Jr. Way Seattle, Washington Water Depth At Time of Drilling 11.5 feet bgs Water Depth 11.5 feet bgs Water Depth 11.5 feet bgs	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Deso (ASTM texture, density, color, supplemental descriptors, estimated Field-estimated grain size dist (% Fines - % Sand - %	cription , odor, moisture, l grain size distribution) ribution by volume % Gravel)	Well Detail/ Water Depth
0			100	0.3			МН		0.0-0.5 feet bgs: Surface concrete. 0.5-4.0 feet bgs: Elastic SILT with s no hydrocarbon odor, dry (75-15-1	sand and gravel, brown, 0).	
5			100	0.1	P02-04		SM		4.0-10.0 feet bgs: Silty SAND with hydrocarbon odor, dry (20-60-20).	gravel, brown, no	
- 10			100	0.1	P02-08 P02-10	×	SM		10.0-11.5 feet bgs: Silty SAND, dar no hydrocarbon odor, moist, roots	k brown, organic odor, s (20-80-0).	
- - 15 —			100	0.2			SW SW-SC		11.5-12.5 feet bgs: Well graded SA hydrocarbon odor, wet (5-95-0). 12.5-16.0 feet bgs: Well graded SA gray, no hydrocarbon odor, moist	ND, trace silt, gray, no ND with clay and gravel, (10-60-30).	
_				0.1	P02-16	X		••	Driller set temporary well with 5-foo reconnaissance groundwater samp Drillers abandoned boring with ber	ot screen. Collected ble (P02-20210709). Itonite.	
Drilling Co./Driller: ESN / Don Drilling Equipment: Track-Mounted Push F Sampler Type: Plastic Sleeve Hammer Type/Weight: Ibs Total Boring Depth: 16 feet Total Well Depth: feet State Well ID No.:			n Probe s et bgs et bgs	Well/Au Well Sc Screen Filter Pa Surface Annular Monum	iger Dia reened Slot Si ack Us Seal: Seal: r Seal: nent Ty	ameter: inches Interval: feet bgs ze: inches ed: pe:	Notes/Comments: No hydrocarbon odor in groundwater sample bgs = below ground surfa	collected ace			

SoundEarth Strategies Project: Project Numi Logged by: Date Started Surface Con Location N/S Location E/V							nber: I: nditions: S: W:	J&J Au 1421-0 KAS 07/9/2 Concre 101 fee 68 feet	uto Masters Property 005-02 021 ete et S of pole 20' N of NW property corner W of SW grocery store building corner	BORING LOG P03 Site Address: 1110 Martin Luther King Jr. Way Seattle, Washington Water Depth At Time of Drilling 8.0 feet bgs		
	Date Comp							07/9/2	021	After Completion	7.55 feet bgs	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Desc (ASTM texture, density, color, supplemental descriptors, estimated Field-estimated grain size dist (% Fines - % Sand - %	cription odor, moisture, grain size distribution) ribution by volume & Gravel)	Well Detail/ Water Depth	
0 - - 5-			100	0.1	P03-04		SM		0.0-0.5 feet bgs: Surface concrete. 0.5-6.0 feet bgs: Very fine silty SAI no hydrocarbon odor, dry (20-70-1	ND with gravel, brown, 0).		
-	\mathbb{N}		100	0.2			SM		6.0-8.0 feet bgs: Silty SAND, trace hydrocarbon odor, moist (15-80-5)	gravel, brown, no		
- 10			100	1.3	P03-08 P03-09	x	SM SC		8.0-10.0 feet bgs: Silty SAND, trace hydrocarbon odor, wet, wood debr 10.0-12.0 feet bgs: Clayey SAND, tr	e gravel, gray, no ris (15-80-5). race gravel, gray to dark		
-				0.1			SM		gray, no hydrocarbon odor, moist 12.0-13.5 feet bgs: Silty SAND, trac hydrocarbon odor, wet (15-80-5).	(20-75-5). :e gravel, gray, no	_	
-			100	0.1			sc sw		13.5-14.5 feet bgs: Clayey SAND, t hydrocarbon odor, moist (30-65-5) 14.5-15.0 feet bgs: Well graded SA	race gravel, gray, no ND, trace silt and gravel		
15 —	$/ \setminus$			0.2	P03-16	x	SM		gray, no hydrocarbon odor, wet (5 15.0-16.0 feet bgs: Silty SAND with	-90-5). gravel, gray, no		
								<u>paratatata</u>	Driller set temporary well with 5-for reconnaissance groundwater samp Drillers abandoned boring with ber	ot screen. Collected ole (P03-20210709). ntonite.		
Drillin Drillin Samp Hamm Total Total	ng Co ng Equ ler Ty ner Ty Borin Well Well	./Drille uipme /pe: /pe/W g Dep Depth ID No.	er: nt: /eight: oth: :	ESN / E Track-M Plastic S 16 	Don Iounted Pust Sleeve Ibs fee	n Probe s et bgs et bgs	Well/Au Well So Screen Filter P Surface Annula Monum	uger Dia creened Slot Si ack Use e Seal: r Seal: nent Ty	imeter: inches Interval: feet bgs ze: inches ed: pee:	Notes/Comments: No hydrocarbon odor i groundwater sample bgs = below ground su Page:	n collected rface 1 of 1	

Strategies DRAFT Project: Project Numb Logged by: Date Started: Surface Cond Location N/S Reviewed by							nber: d: nditions: 'S: W: by:	J&J Au 1421-0 KAS 07/9/2 Aspha 0 feet S 16 feet DRAF	uto Masters Property 005-02 021 It S of SW grocery store building corner W of SW grocery store building corner T	BORING Depth		
					Date	Comp	leted:	07/9/2	021	After Comp	letion	feet bgs
Depth (feet bgs)	Interval	Blow Coun	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	(ASTM texture, density, color supplemental descriptors, estimated Field-estimated grain size dist (% Fines - % Sand - %	, odor, moisture, grain size distribut tribution by volume % Gravel)	ion)	Well Detail/ Water Depth
0									0.0-0.5 feet bgs: Surface asphalt.			
							sw		0.5-1.0 feet bgs: Well graded SANI brown, no hydrocarbon odor, dry	D with gravel, trac (5-80-15).	e silt,	
-			100	0.1	P04-03		SC		1.0-3.5 feet bgs: Clayey SAND, tra organic odor, dry, wood debris (30	ce gravel, brown t D-65-5).	o gray,	
-				0.2			SM		3.5-5.0 feet bgs: Silty SAND, trace hydrocarbon odor, dry (15-80-5).	gravel, gray, no		
5-	\square		100	0.1	P04-06		SM		5.0-6.0 feet bgs: Silty SAND with g hydrocarbon odor, dry (15-70-15).	ravel, gray, no		
-									Refusal at 6 feet bgs. Drillers aban bentonite.	doned boring with		
10					<u> </u>							
Drilling Co./Driller: ESN / Drilling Equipment: Track- Sampler Type: Plastic Hammer Type/Weight: Total Boring Depth: 6 Total Well Depth: State Well ID No :			ESN / E Track-M Plastic : 6 	ESN / Don We Track-Mounted Push Probe We Plastic Sleeve Scr Ibs Filt 6 feet bgs Sur feet bgs An				ameter: inches Interval: feet bgs ze: inches ed: pe:	bgs = below gro	ents: ound surfa		
										rage:	~	

Strategies DRAFT Project: Project Numl Logged by: Date Started: Surface Cond Location N/S Location E/M Reviewed by							nber: d: nditions: S: W: yy:	J&J Au 1421-0 KAS 07/9/2 Aspha 2 feet S 16 feet DRAF	uto Masters Property 105-02 021 It 6 of P04 W of SW grocery store building corner T	BORING LOG P04A Site Address: 1110 Martin Luther King Jr. Way Seattle, Washington Water Depth At Time of Drilling 9.0 feet bgs Water Depth 9.0 feet bgs		her King Jr. Way gton feet bgs
u (st							leted:	07/9/2 .으	021 Lithologic Desc (ASTM texture density color	After Comp	letion	feet bgs
Deptl (feet bç	Interv	Blow Co	% Recove	PID (ppm)	Sample ID	Sample Analyze	Group Symbo	Graph	supplemental descriptors, estimated Field-estimated grain size dist (% Fines - % Sand - %	l grain size distribut ribution by volume % Gravel)	tion)	Well Detail/ Water Depth
0							SW-SM		0.0-0.5 feet bgs: Surface asphalt. 0.5-2.5 feet bgs: Well graded SAND) with silt, brown,	no	
-			80	0.1	P04A-04		SC		hydrocarbon odor, dry (10-80-10). 2.5-4.5 feet bgs: Clayey SAND, trac hydrocarbon odor, dry, wood debr	ce gravel, gray, no ris (20-75-5).)	
5			60	0.1			SW-SM		4.5-8.5 feet bgs: Well graded SANE gray, no hydrocarbon odor, moist, (10-85-5).) with silt, trace g , concrete debris	ravel,	
- 10 — -				1.5	P04A-09	×	SW-SM		8.5-10.0 feet bgs: Well graded SAN gray, no hydrocarbon odor, moist 10.0-11.5 feet bgs: Silty SAND, trac hydrocarbon odor, moist (20-75-5)	ID with silt and gr to wet (10-80-10). ce gravel, dark bro	avel, own, no	\square
_			90	1.1	P04A-12		SW-SM		11.5-13.0 feet bgs: Well graded SA gray, no hydrocarbon odor, wet (1	ND with silt, trace 0-85-5).	gravel,	
-				0.1			GM SW-SM		13.0-14.0 feet bgs: Silty GRAVEL with sand, brown, no hydrocarbon odor, dry (15-15-70).14.0-15.0 feet bgs: Well graded SAND with silt and gravel,		no ravel,	-
15 —							SW-SM		brown, no hydrocarbon odor, dry 15.0-17.5 feet bgs: Well graded SA gray, no hydrocarbon odor, dry (1	(10-75-15). ND with silt and g 0-75-15).	ravel,	
-	\wedge		100	0.7	P04A-17.5	x		· - •		6		
							_		dry. Drillers abandoned boring with	bentonite.	was	
Drilling Co./Driller: Drilling Equipment: Sampler Type: Hammer Type/Weight: Total Boring Depth: Total Well Depth:		ESN / E Truck-N Plastic : 17.5)on Aounted Pusl Sleeve Ibs fer fer	h Probe s et bgs et bgs	Well/Au Well Sc Screen Filter Pa Surface Annula	iger Dia reened Slot Si ack Use Seal: r Seal:	meter: inches Interval: feet bgs ze: inches ed: 	Notes/Comm bgs = below gr	ents: ound surfa	ce		
State Well ID No.:							Monum	ent ly	De:	Page:	1	of 1

Strategies Project: Project Numb Logged by: Date Started: Surface Cond Location N/S							nber: d: nditions: S: W:	J&J Au 1421-0 KAS 07/9/2 Aspha 6 feet \$ 25 feet	uto Masters Property 005-02 021 It & of P04A W of SW grocery store building corner	BORING LOG P05 Site Address: 1110 Martin Luther King Jr. Way Seattle, Washington Water Depth At Time of Drilling 8.0 feet bgs		
	DRAFI Reviewed I Date Comp						y: leted:	DRAFT Water Depth : 07/9/2021 After Completion				3 feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Deso (ASTM texture, density, color, supplemental descriptors, estimated Field-estimated grain size dist (% Fines - % Sand - %	cription odor, moisture, grain size distribut ribution by volume & Gravel)	ion)	Well Detail/ Water Depth
0			75	0.1			SW SC		0.0-0.5 feet bgs: Surface asphalt. 0.5-3.0 feet bgs: Well graded SANE brown, no hydrocarbon odor, dry 3.0-4.5 feet bgs: Clayey very fine S), trace silt and gr (5-90-5). GAND, trace grave	avel,	
5				0.7	P05-04		Conc		brown, no hydrocarbon odor, mois (30-65-5). 4.5-5.5 feet bgs: Subsurface concr	st, concrete debri	S	
_			80	0.1			GW		5.5-8.0 feet bgs: Well graded GRA dark brown, no hydrocarbon odor,	/EL, trace silt and , dry, brick fill (5-5	l sand, i-90).	$\nabla \overline{A}$
- - 10				5.2 0.1	P05-10	x	SW-SM		8.0-12.0 feet bgs: Well graded very brown, no hydrocarbon odor, wet	/ fine SAND with s (10-80-10).	ilt, dark	
-			100	0.3	P05-15	x	SW-SM		12.0-15.0 feet bgs: Well graded SA gray to brown, no hydrocarbon od (10-75-15).	ND with silt and g or, dry, glacial till	ravel,	
15 —								•_•	Drillers set temporary well with a 5 reconnaissance groundwater samp Drillers abandoned boring with ber	foot screen. Colle le (P05-20210709) Itonite.	ected).	
Drilling Co./Driller: ESN / Don Drilling Equipment: Truck-Mounted Push Probe Sampler Type: Plastic Sleeve Hammer Type/Weight: Ibs Total Boring Depth: 15 feet bgs Total Well Depth: feet bgs State Well ID No.:				Well/Au Well Sc Screen Filter Pa Surface Annulau Monum	iger Dia reened Slot Si ack Use Seal: r Seal: r Seal: nent Typ	imeter: inches Interval: feet bgs ze: inches ed: pe:	Notes/Commo bgs = below gro Page:	ents: ound surfa	ce of 1			

SoundEarth Strategies Project: Project Numbe Logged by: Date Started: Surface Cond							nber: d: nditions: S:	J&J Au 1421-0 KAS 07/9/2 Aspha 11 feet	uto Masters Property 005-02 021 It SW of SW grocery store building corner	BORING DOG P06 LOG Site Address: 1110 Martin Luther King Jr. Way Seattle, Washington	
	DRAFT Location E/ DRAFT Reviewed b Date Comp							0 feet V DRAF 07/9/2	V of SW grocery store building corner T 021	Water Depth At Time of Drilling Water Depth After Completion	3.0 feet bgs 9.0 feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	Sample Analyzed	Group Symbol	Graphic	Lithologic Desc (ASTM texture, density, color, supplemental descriptors, estimated Field-estimated grain size distr (% Fines - % Sand - %	odor, moisture, grain size distribution) ribution by volume 6 Gravel)	Well Detail/ Water Depth
			10	0.1			SP-SM		0.0-0.5 feet bgs: Surface asphalt. 0.5-5.0 feet bgs: Poorly graded SAI brown, no hydrocarbon odor, dry, (10-60-30). 5.0-7.5 feet bgs: Elastic SILT with g brown, no hydrocarbon odor, dry (ND with silt and gravel, concrete debris gravel, trace sand, (70-5-25).	
- - 10			70	0.1 0.1 260	P06-10	x	SP-SM SW-SM		7.5-10.0 feet bgs: Poorly graded ve dark brown, faint hydrocarbon odd	ery fine SAND with silt, or, wet (10-90-0). ND with silt and gravel	
			100	0.1	P06-15	x			brown to gray, no hydrocarbon od (10-65-25).	or, dry, glacial till	
-									Drillers set temporary well with a 5- reconnaissance groundwater samp Drillers abandoned boring with ben	foot screen. Collected le (P06-20210709). tonite.	
Drillin Drillin Samp Hamm Total Total	ig Co g Equ ler Ty ner Ty Borin Well I Well I	./Drille uipme vpe: vpe/W g Dep Depth D No.	er: ent: eight: oth: :	ESN / E Truck-N Plastic 15 	Don Mounted Pusi Sleeve Ibs fer	h Probe s et bgs et bgs	Well/Au Well Sc Screen Filter P Surface Annula Monum	iger Dia reened Slot Si ack Use Seal: r Seal: r Seal:	inneter: inches Interval: feet bgs ze: inches ed: pe:	Notes/Comments: Poor recovery from 0 to prevented collection of bgs = below ground sur- Page:	5 feet bgs soil sample. face 1 of 1

APPENDIX B SOIL LABORATORY ANALYTICAL REPORTS

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 20, 2021

Travis Zandi, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Zandi:

Included are the results from the testing of material submitted on July 9, 2021 from the SOU_1421-005_ 20210709, F&BI 107131 project. There are 27 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures SOU0720R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 9, 2020 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_1421-005_ 20210709, F&BI 107131 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
107131 -01	P01-03
107131 -02	P01-06
107131 -03	P01-10
107131 -04	P01-15
107131 -05	P02-04
107131 -06	P02-08
107131 -07	P02-10
107131 -08	P02-16
107131 -09	P03-04
107131 -10	P03-08
107131 -11	P03-09
107131 -12	P03-16
107131 -13	P04A-04
107131 -14	P04A-09
107131 -15	P04A-12
107131 -16	P04A-17.5
107131 -17	P05-04
107131 -18	P05-10
107131 -19	P05-15
107131 -20	P06-10
107131 -21	P06-15
107131 -22	Composite01

All quality control requirements were acceptable.

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107131 Date Extracted: 07/15/21 Date Analyzed: 07/15/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
P01-10 107131-03	<5	86
P01-15 107131-04	<5	93
P02-08 107131-06	<5	86
P02-16 107131-08	<5	119
P03-09 107131-11	<5	81
P03-16 107131-12	<5	94
P04A-09 107131-14	<5	97
P04A-17.5 107131-16	<5	78
P05-10 107131-18	8.2	88
P05-15 107131-19	<5	86
ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107131 Date Extracted: 07/15/21 Date Analyzed: 07/15/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
P06-10 107131-20	330	107
P06-15 107131-21	<5	95
Method Blank 01-1449 MB	<5	87

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107131 Date Extracted: 07/15/21 Date Analyzed: 07/15/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
P01-10 107131-03	<50	<250	99
P01-15 107131-04	<50	<250	100
P02-08 107131-06	<50	<250	99
P02-16 107131-08	<50	<250	104
P03-09 107131-11	<50	<250	101
P03-16 107131-12	<50	<250	99
P04A-09 107131-14	<50	<250	95
P04A-17.5 107131-16	<50	<250	96
P05-10 107131-18	<50	<250	95
P05-15 107131-19	<50	<250	104

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107131 Date Extracted: 07/15/21 Date Analyzed: 07/15/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
P06-10 107131-20	270 х	<250	99
P06-15 107131-21	<50	<250	99
Method Blank	<50	<250	101

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Composite01 07/09/21 07/15/21 07/15/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1421-005_20210709 107131-22 107131-22.107 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Barium Cadmium Lead	3.79 91.6 <1 11.6		
Mercury Selenium	<1 <1		
SIIVEL	< <u>1</u>		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Composite01	Client:	SoundEarth Strategies
Date Received:	07/09/21	Project:	SOU_1421-005_ 20210709
Date Extracted:	07/15/21	Lab ID:	107131-22 x10
Date Analyzed:	07/16/21	Data File:	107131-22 x10.036
Matrix:	Soil	Instrument:	ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		
Chromium	30.4		

30.4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 07/15/21 07/15/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_1421-005_ 20210709 I1-433 mb2 I1-433 mb2.106 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	P01-10		Client:	SoundEarth Strategie	es 0700
Date Received:	07/09/21		Project:	SUU_1421-005_2021	.0709
Date Extracted:	07/14/21 07/14/21		Lap ID: Doto Eilor	107131-03 071410 D	
Date Analyzed:	07/14/21		Data File:	071419.D CCMS4	
	5011) Dara Wai alat	Instrument:	GOM54	
Units:	mg/kg (ppi	n) Dry weight	Operator:	JUM	
~			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	106	90	109	
Toluene-d8		101	89	112	
4-Bromofluorobenz	ene	98	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	e	< 0.05
Methylene chloride		< 0.5	Styrene		< 0.05
Methyl t-butyl ether (MTBE)		< 0.05	Isopropylbenzene		< 0.05
trans-1,2-Dichloroe	thene	< 0.05	Bromoform		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	е	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tri	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorid	le	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentane	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	1,2,4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed:	P01-15 07/09/21 07/14/21 07/14/21		Client: Project: Lab ID: Data File:	SoundEarth Strategie SOU_1421-005_ 2021 107131-04 071420.D	es 0709
Units:	mg/kg (ppr	m) Dry Weight	Operator:	JCM	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	101	90	109	
Toluene-d8		102	89	112	
4-Bromofluorobenz	ene	103	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	oroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	letrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	e e	< 0.05
Methylene chloride)	< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Isopropylbenzene		< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Bromofo	rm	< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	le	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-1	etrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tri	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	.ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlori	de	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichloromet	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1	1,2-Dibr	omo-3-chloropropane	<0.5
cis-1,3-Dichloropro	pene	<0.05	1,2,4-Tri	ichlorobenzene	<0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	.ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P02-08 07/09/21 07/14/21 07/14/21 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_1421-005_ 2021 107131-06 071421.D GCMS4 JCM	es 0709
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	99	90	109	
Toluene-d8		100	89	112	
4-Bromofluorobenz	ene	100	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	oroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene))	< 0.05
Methylene chloride)	< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Isopropy	lbenzene	< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Bromoform		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tri	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	1,2,4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	.ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	P02-16		Client:	SoundEarth Strategie	es
Date Received:	07/09/21		Project:	SOU_1421-005_ 2021	0709
Date Extracted:	07/14/21		Lab ID:	107131-08	
Date Analyzed:	07/14/21		Data File:	071422.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (pp	m) Dry Weight	Operator:	JCM	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	98	90	109	
Toluene-d8		101	89	112	
4-Bromofluorobenz	ene	102	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrach	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	e	< 0.05
Methylene chloride		< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	Methyl t-butyl ether (MTBE)		Isopropylbenzene		< 0.05
trans-1,2-Dichloroe	thene	< 0.05	Bromoform		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	$1,3,5-{ m Tr}$	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tr	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorie	le	< 0.05	1,2,4-Tr	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	1,2,4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P03-09 07/09/21 07/14/21 07/14/21 Soil mg/kg (ppr	m) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_1421-005_ 2021 107131-11 071423.D GCMS4 JCM	es 0709
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	102	90	109	
Toluene-d8		100	89	112	
4-Bromofluorobenz	ene	102	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene))	< 0.05
Methylene chloride)	< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Isopropy	lbenzene	< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Bromoform		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tri	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	1,2,4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	.ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	P03-16		Client:	SoundEarth Strategie	es
Date Received:	07/09/21		Project:	SOU 1421-005 2021	0709
Date Extracted:	07/14/21		Lab ID:	107131-12	
Date Analyzed:	07/14/21		Data File:	071424.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (pp)	n) Dry Weight	Operator :	JCM	
	0 0 11	/ / 0	т т	TT	
C		0/ D	Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-04	97	90	109	
1 oluene-08		99	89	112	
4-Bromofluorobenz	ene	99	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	oroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	chloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	9	< 0.05
Methylene chloride		< 0.5	Stvrene		< 0.05
Methyl t-butyl ether (MTBE)		< 0.05	Isopropylbenzene		< 0.05
trans-1,2-Dichloroe	thene	< 0.05	Bromoform		< 0.05
1,1-Dichloroethane		< 0.05	n-Propylbenzene		< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1.1.2.2-7	etrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tr	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	vlbenzene	< 0.05
Carbon tetrachlorio	le	< 0.05	1,2,4-Tr	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1.4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1.2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentane	one	<1	1.2-Dibr	omo-3-chloropropane	< 0.5
cis-1.3-Dichloropro	pene	< 0.05	1.2.4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichloror	ropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1.2.3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	P04A-09		Client:	SoundEarth Strategie	es 0700
Date Received:	07/09/21		Project:	500_1421-000_2021 107121_14	0709
Date Extracted.	07/14/21 07/14/21		Lab ID: Data Filo:	107151-14 071495 D	
Motrix:	07/14/21 Soil		Data File.	071425.D CCMS4	
Unita:	Soll	n) Dry Woight	Operator:	ICM	
Units.	ing/kg (ppi	ii) Dry weight	Operator.	0.0101	
~			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	100	90	109	
Toluene-d8		99	89	112	
4-Bromofluorobenz	ene	102	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Cetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	9	< 0.05
Methylene chloride		< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Isopropy	lbenzene	< 0.05
trans-1,2-Dichloroe	thene	< 0.05	Bromofo	orm	< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	etrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tri	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorid	le	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentane	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloroprop	pene	< 0.05	1,2,4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P04A-17.5 07/09/21 07/14/21 07/14/21 Soil mg/kg (ppm	n) Drv Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_1421-005_ 2021 107131-16 071426.D GCMS4 JCM	es 0709
	0 0 0 1	, , ,	T orrow	Unnon	
Surrogates.		% Recovery:	Lower Limit:	Upper Limit:	
1 2-Dichloroethane	-d4	102	90	109	
Toluene-d8	uı	102	89	112	
4-Bromofluorobenz	ene	99	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	9	< 0.05
Methylene chloride	•	< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Isopropy	lbenzene	< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Bromofo	orm	< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tr	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorid	le	< 0.05	1,2,4-Tr	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentane	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	1,2,4-Tri	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P05-10 07/09/21 07/14/21 07/14/21 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_1421-005_ 2021 107131-18 071427.D GCMS4 JCM	es .0709
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	102	90	109	
Toluene-d8		100	89	112	
4-Bromofluorobenz	ene	101	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	oroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene))	< 0.05
Methylene chloride)	< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Isopropy	lbenzene	< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Bromofo	rm	< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tri	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	vlbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	1,2,4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	.ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	P05-15 07/09/21 07/14/21 07/14/21 Soil		Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategie SOU_1421-005_ 2021 107131-19 071428.D GCMS4	es 0709
Units:	mg/kg (ppr	n) Dry Weight	Operator:	JCM	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	99	90	109	
Toluene-d8		101	89	112	
4-Bromofluorobenz	ene	101	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Cetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	e e	< 0.05
Methylene chloride	•	< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Isopropy	vlbenzene	< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Bromofo	orm	< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tri	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorid	de	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentane	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	1,2,4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P06-10 07/09/21 07/14/21 07/14/21 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_1421-005_ 2021 107131-20 071437.D GCMS4 JCM	es 0709
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	101	90	109	
Toluene-d8		100	89	112	
4-Bromofluorobenz	ene	102	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	oroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene))	< 0.05
Methylene chloride	•	< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Isopropy	lbenzene	< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Bromofo	rm	< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	etrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tri	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorid	de	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	0.11
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	1,2,4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P06-15 07/09/21 07/14/21 07/14/21 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_1421-005_ 2021 107131-21 071435.D GCMS4 JCM	es 0709
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	106	90	109	
Toluene-d8		101	89	112	
4-Bromofluorobenz	ene	101	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	oroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene)	< 0.05
Methylene chloride	•	< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Isopropy	lbenzene	< 0.05
trans-1,2-Dichloroe	ethene	< 0.05	Bromofo	orm	< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tr	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05	1,2,4-Tri	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	vlbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	ie	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	1,2,4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	.ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Data Bacaiyad:	Method Bl	ank	Client: Project:	SoundEarth Strategie	es 0709
Date Received.	07/14/91	able	Lah ID.	01-1572 mb	0105
Date Analyzed	07/14/21 07/14/21		Data File	071409 D	
Matrix.	Soil		Instrument.	GCMS4	
Units.	mg/kg (nnr	n) Dry Weight	Operator:	JCM	
011105.	mg/ng (pp)	ii) Diy Weight	operator.	90M	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	102	90	109	
Toluene-d8		99	89	112	
4-Bromofluorobenz	ene	98	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	,	< 0.05
Methylene chloride		< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Isopropy	lbenzene	< 0.05
trans-1,2-Dichloroe	thene	< 0.05	Bromofo	orm	< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tr	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorid	le	< 0.05	1,2,4-Tr	imethylbenzene	< 0.05
Benzene		< 0.03	sec-Buty	vlbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentane	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloroprop	pene	< 0.05	1,2,4-Tr	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107131

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code:	107183-01 (Duplic	cate)			
		Samp	ole Du	plicate	
	Reporting	Resu	lt R	esult	RPD
Analyte	Units	(Wet V	Wt) (W	et Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code:	Laboratory Contro	ol Sample	e		
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	mg/kg (ppm)	20	105	71-131 a	

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107131

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	107222-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	88	90	64-133	2
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent	5			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diagol Extanded		5 000	00	59 1	147		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107131

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 107164-08 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	78	77	75 - 125	1
Barium	mg/kg (ppm)	50	19.1	108	106	75 - 125	2
Cadmium	mg/kg (ppm)	10	<5	98	98	75 - 125	0
Chromium	mg/kg (ppm)	50	9.63	99	101	75 - 125	2
Lead	mg/kg (ppm)	50	<5	95	96	75 - 125	1
Mercury	mg/kg (ppm	5	<5	101	104	75 - 125	3
Selenium	mg/kg (ppm)	5	<5	100	93	75 - 125	7
Silver	mg/kg (ppm)	10	<5	94	96	75 - 125	2

Laboratory Code: Laboratory Control Sample

U U	v	1	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	95	80-120
Barium	mg/kg (ppm)	50	98	80-120
Cadmium	mg/kg (ppm)	10	101	80-120
Chromium	mg/kg (ppm)	50	112	80-120
Lead	mg/kg (ppm)	50	99	80-120
Mercury	mg/kg (ppm)	5	105	80-120
Selenium	mg/kg (ppm)	5	97	80-120
Silver	mg/kg (ppm)	10	95	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107131

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 107131-03 (Matrix Spike)

	· · · ·		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	26	27	10-142	4
Chloromethane	mg/kg (ppm)	1	< 0.5	57	57	10-126	0
Vinyl chloride	mg/kg (ppm)	1	< 0.05	57	56	10-138	2
Bromomethane	mg/kg (ppm)	1	< 0.5	87	79	10-163	10
Chloroethane	mg/kg (ppm)	1	< 0.5	74	75	10-176	1
Trichlorofluoromethane	mg/kg (ppm)	1	<0.5	68	69	10-176	1
Acetone	mg/kg (ppm)	5	<5	91	87	10-163	4
1,1-Dichloroethene	mg/kg (ppm)	1	<0.05	72	74	10-160	3
nexane Methylone eblevide	mg/kg (ppm)	1	<0.25	62 70	68 79	10-137	9
Methylene chloride Methyl t-butyl other (MTBF)	mg/kg (ppm)	1	<0.05	89	88	21-145	1
trans.1 2. Dichloroethene	mg/kg (ppm)	1	<0.05	85	86	14.137	1
1.1-Dichloroethane	mg/kg (ppm)	1	<0.05	87	87	19-140	0
2.2-Dichloropropane	mg/kg (ppm)	1	< 0.05	99	102	10-158	3
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	89	90	25 - 135	1
Chloroform	mg/kg (ppm)	1	< 0.05	88	89	21-145	1
2-Butanone (MEK)	mg/kg (ppm)	5	<1	88	87	19-147	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	89	90	12-160	1
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	91	94	10-156	3
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	86	88	17-140	2
Carbon tetrachloride	mg/kg (ppm)	1	<0.05	92	95	9-164	3
Denzene Twicklongethere	mg/kg (ppm)	1	< 0.03	80	88	29-129	2
1 9 Dichloropropago	mg/kg (ppm)	1	<0.02	00 80	90	21-159	2
Bromodichloromethane	mg/kg (ppm)	1	<0.05	88	91	23.155	3
Dibromomethane	mg/kg (ppm)	1	<0.05	90	91	23-145	1
4-Methyl-2-pentanone	mg/kg (ppm)	5	<1	93	93	24-155	0
cis-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	88	91	28-144	3
Toluene	mg/kg (ppm)	1	< 0.05	86	87	35-130	1
trans-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	87	85	26-149	2
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	91	91	10-205	0
2-Hexanone	mg/kg (ppm)	5	<0.5	89	87	15-166	2
1,3-Dichloropropane	mg/kg (ppm)	1	<0.05	89	89	31-137	0
Dibromochloromothano	mg/kg (ppm)	1	<0.025	01	01 84	20-155	0
1.2-Dibromoethane (FDB)	mg/kg (ppm)	1	<0.05	88	91	28-142	2
Chlorobenzene	mg/kg (ppm)	1	<0.05	90	89	32-129	1
Ethylbenzene	mg/kg (ppm)	1	< 0.05	89	91	32-137	2
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	90	91	31-143	1
m,p-Xylene	mg/kg (ppm)	2	< 0.1	90	90	34-136	0
o-Xylene	mg/kg (ppm)	1	< 0.05	88	89	33-134	1
Styrene	mg/kg (ppm)	1	< 0.05	91	91	35-137	0
Isopropylbenzene	mg/kg (ppm)	1	<0.05	90	92	31-142	2
Bromotorm	mg/kg (ppm)	1	<0.05	87	83	21-156	ð
n-Propylbenzene Bromohonzono	mg/kg (ppm)	1	< 0.05	88	91	23-146	3 9
1 3 5-Trimethylbonzone	mg/kg (ppm)	1	<0.05	87	90	18-149	4
1 1 2 2-Tetrachloroethane	mg/kg (ppm)	1	<0.05	89	90	28.140	1
1.2.3-Trichloropropane	mg/kg (ppm)	1	< 0.05	88	88	25-144	0
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	88	90	31-134	2
4-Chlorotoluene	mg/kg (ppm)	1	< 0.05	88	89	31-136	1
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	90	94	30-137	4
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	87	92	10-182	6
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	89	92	23 - 145	3
p-lsopropyltoluene	mg/kg (ppm)	1	< 0.05	91	92	21-149	1
1,3-Dichlorobenzene	mg/kg (ppm)	1	<0.05	89	90	30-131	1
1,4-Dichlorobenzene	mg/kg (ppm)	1	<0.05	90	92	29-129	2
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropano	mg/kg (ppm)	1	<u></u> <0.00 <0.5	09 83	90 88	01-102 11-161	1 G
1.2.4.Trichlorohonzene	mg/kg (ppm)	1	<0.0	60 87	91	22.142	4
Hexachlorobutadiene	mg/kg (ppm)	1	<0.25	92	97	10-142	5
Naphthalene	mg/kg (ppm)	1	< 0.05	87	88	14-157	1
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	86	88	20-144	2

ENVIRONMENTAL CHEMISTS

Date of Report: 07/20/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107131

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

	I I I		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	58	10-146
Chloromethane	mg/kg (ppm)	1	77	27-133
Vinyl chloride	mg/kg (ppm)	1	83	22-139
Chloroothono	mg/kg (ppm)	1	91	38-114
Trichlorofluoromethane	mg/kg (ppm)	1	88	10.196
Acetone	mg/kg (ppm)	5	91	52-141
1,1-Dichloroethene	mg/kg (ppm)	1	93	47-128
Hexane	mg/kg (ppm)	1	83	43-142
Methylene chloride	mg/kg (ppm)	1	107	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	102	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1	101	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	102	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	133	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	103	72-127
2-Butanona (MEK)	mg/kg (ppm)	5	95	30-120
1 2-Dichloroethane (EDC)	mg/kg (ppm)	1	102	56-135
1.1.1-Trichloroethane	mg/kg (ppm)	1	112	62-131
1.1-Dichloropropene	mg/kg (ppm)	1	102	69-128
Carbon tetrachloride	mg/kg (ppm)	1	113	60-139
Benzene	mg/kg (ppm)	1	100	71-118
Trichloroethene	mg/kg (ppm)	1	104	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	102	72-127
Bromodichloromethane	mg/kg (ppm)	1	101	57-126
Dibromomethane	mg/kg (ppm)	1	101	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	107	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	103	67-122 66 196
trans-1 3-Dichloronronene	mg/kg (ppm)	1	97	72-132
1.1.2-Trichloroethane	mg/kg (ppm)	1	102	64-115
2-Hexanone	mg/kg (ppm)	5	94	33-152
1,3-Dichloropropane	mg/kg (ppm)	1	100	72-130
Tetrachloroethene	mg/kg (ppm)	1	96	72-114
Dibromochloromethane	mg/kg (ppm)	1	94	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	101	74-132
Chlorobenzene	mg/kg (ppm)	1	100	76-111
Ethylbenzene	mg/kg (ppm)	1	102	64-123
n, 1, 1, 2-1 etrachioroethane	mg/kg (ppm)	1	104	64-121 78 199
o.Xylene	mg/kg (ppiii)	1	101	77.124
Styrene	mg/kg (ppm)	1	101	74-124
Isopropylbenzene	mg/kg (ppm)	1	102	76-127
Bromoform	mg/kg (ppm)	1	100	56-132
n-Propylbenzene	mg/kg (ppm)	1	97	74-124
Bromobenzene	mg/kg (ppm)	1	100	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	98	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	99	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	101	61-137
2-Chlorotoluene	mg/kg (ppm)	1	99	74-121
4-Chlorotoldene tert-Butylbenzene	mg/kg (ppm)	1	90	73-122
1 2 4-Trimethylbenzene	mg/kg (ppm)	1	98	76-125
sec-Butylbenzene	mg/kg (ppm)	1	97	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	97	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	98	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	101	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	100	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	98	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	95	64-135
Hexachlorobutadiene	mg/kg (ppm)	1	97	50-153
Naphinalene	mg/kg (ppm)	1	95	03-140
1,2,0-111011010001120110	mg/kg (ppm)	1	99	00-190

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

										5				ision 1)	DOC (Rev	GEMSR 1	MS\COC\SES(FOR
														ived by:	Rece	5044	u (206) 283-1	Ŧc
å	ed at <u>6</u>	es receiv	ldura	ţ.									ý:	uquished l	Reli	282	L (206) 285-8	ld
15:20	7/9/21		BT	r 9*1	-77		0 d	adt		- Wi	1 ac	6 6	Will	ived by:	Rece	119-202	attle, WA 98.	S
1530	7/9/21	3((11)	ME	NOUT	-		4	alu	ent s	×	C,	Local	TOV.	nquished l	t . Reli	uue Wes	112 16th Aver	30
TIME	DATE	YN	DMPA	Q			B	TNAN	PRIN			ATURE	SIGN		ь П	ruya, In	iedman & B	ų
			-			-		G			001	<	34		A	PON	DNY-04	Ð
An office of the second s	-	, ,				X,				0	201			Q.	~	RO.	03-16	Ø
						X	×			<i>i</i>	102				N 	PO.	03-09	0
					-	-			*	Ŏ	s ol			8	N	8	80-50	P
			-	<u> </u> .						N N	S					2003	NO- 20	ha
										0	101	-	8	6	19	002	02-16	
				'	<u></u>			<u> </u>		Ŏ	100		Ĩ¥ I	10	×.	80,	01-10	10
			_		মি	×				6	09		<u> </u>	8		503	20-60	0
										3	5 b0		<u>ত</u>	4	9 	00	10-64	
							Z X		arrent had been and the second and the se	8	090		У́Ч	5		RO	Q-15	
			{				X			Ň	090	-	<u>}3</u>	0		00	01-10	1
- ·						- - - - - - - -				9	080	-	ې ا	6		100	01-06	3
4/21 ME	+							9		Ô	S 8	7/9/21	\A→E	N O		00	20-103	
Votes TE	X-24	RCRA-8 Metals	SVOC's by 8270	VOC's by 8260	BTEX by 8021B	NWTPH-Gx	NWTPH-Dx	ars	Matrix	upled	s a B B B B B B B B B B B B B B B B B B	Date Sampled	IJ	ample Jepth	aple S	San Locz	Sample ID	************** **********************
	ED	REQUEST	SES]	NALY	A												والمتعادية والمتعادية والمحالية والمحال	7~1
uctions	m samples call with instru	D Ketw							1000				1	Fax #	-1900	0-306	Phone #20	1
ys	AMPLE DISP se after 30 da	D Dispo			****				* ~~	REMARKS				ku,	ALTHON	S di	City, State, Z	4-
aca oy:	larges autoon	Kusn c						7	00-18		She Jook	1013	C A	liep	BOILLY	1180	Address	
	dard (2 Weeks H	o Ros		PO#		V)	Acc	Xe.	NAME/NO	PROJECT				to	deni	JOCUN	Company	
NIL O	URNAROUNI	(H) ²			1×	A	R	e V	S (signatur	SAMPLER			B	25	CINIC	ToT	Send Report	
υ	A03	, SSN	12/1	H J	M	Ŷ	U.U.U	CUS	IAUN OF	TA ATA	SAM						121701	
						{ ₹	}	2442	1)]							

Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc		(COMOSHEO)	A 51-900	P06-10 P	P05-15 1	POS -10 Y	P05-04 P	POUL - 17.5 P	POUL-12 P	PO47-09	Sample ID) 10713 Send Report to TTO Company Sour Address 2811 J City, State, ZIP Seat Phone # 206-306-19
Received	Received	Relinquis				06	06	202	20	Ŏ A	04.1-	OH X	Pour +	Sample		dEarth Str dEarth Str rairview Av tle, Washir tle, Washir
shed by: by:	W we	shed by:	IS		(5	6	5	0	2	17.5	5	٩	Sample Depth		And rategies venue E ug ton 98
	R	STOR W	GNAT		33	J.W	30	19	68	4	5	দ্য	IL AN	a£) , Inc. , Suite 1102
	Biel	WW	URE	-	<	S							or 1/9/1	Date Sampled		2000 Sr
				stat	IN AC	1345	046	1300	1255	050	1230	121S	2061	Time Sampled		PROJ REM
	N)	K		7	Ŕ	-							8	Matrix		HOU
	RR	a't	PRI	4/2							1111111111		N	dars dars		P COS
a a a a a a a a a a a a a a a a a a a	adla	Salli	NT NAJ			X	×				X		N	NWTPH-Dx		Lite h
وليتركب وجوريا والمحافظ	gr	29	ME					X						NWTPH-Gx	-	S W
و خارجه و سال الله الله الله الله الله الله الله														BTEX by 8021B		
	5	an Sis									×			VOCs by 8260	ANAI	ME:
Samp	ien j	5	COMIE											SVOCs by 8270	YSES R	# #
les recei	South the Annual Ann		ANY	-										178A 8 184als 100.8/	EQUESTEI	Rush Rose
ived at	NE	1912	DAT						*****							Page # A TILBANANG TILBANANG Charges au Charges au SAMPLE I SAMPLE I I call with j
6 %	2	110	Â.	×			54 20	an and the second s			2001 - ST 1000 - S	a manager of a start of the former of the fo		Not		blispos blispo
	08:5	Sad	TIME				DIMINE							8		I by:

(b) A start of the start of

.

1 - A

and a superior of the second states of the second states and the

e Antonio de la composición de la composi Antonio de la composición de la composic

entre de la constante

an an an an the state of the st

and the second sec

.

APPENDIX C GROUNDWATER LABORATORY ANALYTICAL REPORTS

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 22, 2021

Travis Zandi, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Zandi:

Included are the results from the testing of material submitted on July 9, 2021 from the SOU_1421-005_ 20210709, F&BI 107130 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures SOU0722R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 9, 2020 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_1421-005_ 20210709, F&BI 107130 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
107130 -01	P01-20210709
107130 -02	P02-20210709
107130 -03	P03-20210709
107130 -04	P05-20210709
107130 -05	P06-20210709

Methylene chloride was detected in the 8260D analysis of sample P06-20210709. The data were flagged as due to laboratory contamination.

The 8260D laboratory control sample and laboratory control sample duplicate exceeded the acceptance criteria for bromomethane. The compound was not detected, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/22/21 Date Received: 07/09/21 Project: SOU_1421-005_20210709, F&BI 107130 Date Extracted: 07/15/21 Date Analyzed: 07/16/21 and 07/20/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
P01-20210709	<100	79
P02-20210709	<100	79
P03-20210709 107130-03	<100	77
$\underset{107130\cdot04}{P05\text{-}20210709}$	2,000	ip
P06-20210709 107130-05 1/5	6,100	95
Method Blank 01-1448 MB	<100	102

ENVIRONMENTAL CHEMISTS

Date of Report: 07/22/21 Date Received: 07/09/21 Project: SOU_1421-005_20210709, F&BI 107130 Date Extracted: 07/16/21 Date Analyzed: 07/16/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	$rac{ ext{Diesel Range}}{(ext{C}_{10} ext{-} ext{C}_{25})}$	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
P01-20210709 107130-01 1/1.3	210 х	610	76
P02-20210709 107130-02 1/1.2	<60	<300	87
P03-20210709 107130-03 1/1.2	110 x	<300	90
$\underset{107130\cdot04}{P05\text{-}20210709}$	4,000 x	6,100	94
P06-20210709 107130-05	33,000	23,000 ve	92
Method Blank 01-1640 MB	<50	<250	89

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P01-202107 07/09/21 07/15/21 07/15/21 Water ug/L (ppb)	709	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_1421-005_ 2021 107130-01 071526.D GCMS4 JCM	es .0709, F&BI 107130
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	101	86	113	
Toluene-d8		100	88	114	
4-Bromofluorobenz	ene	102	88	112	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<5	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	hane	<1	Ethylber	nzene	<1
Acetone		<50	1,1,1,2-7	'etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Hexane		<5	o-Xylene)	<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe	er (MTBE)	<1	Isopropy	lbenzene	<1
trans-1,2-Dichloroe	thene	<1	Bromofo	rm	<5
1,1-Dichloroethane		<1	n-Propy	benzene	<1
2,2-Dichloropropan	e	<1	Bromobe	enzene	<1
cis-1,2-Dichloroethe	ene	<1	1,3,5-Tri	imethylbenzene	<1
Chloroform		<1	1,1,2,2-7	'etrachloroethane	<1
2-Butanone (MEK)		<20	1,2,3-Tri	chloropropane	<1
1,2-Dichloroethane	(EDC)	<1	2-Chloro	toluene	<1
1,1,1-Trichloroetha	ne	<1	4-Chloro	toluene	<1
1,1-Dichloropropen	e	<1	tert-But	ylbenzene	<1
Carbon tetrachlorid	le	<1	1,2,4-Tri	methylbenzene	<1
Benzene		< 0.35	sec-Buty	lbenzene	<1
Trichloroethene		<1	p-Isopro	pyltoluene	<1
1,2-Dichloropropan	e	<1	1,3-Dich	lorobenzene	<1
Bromodichlorometh	nane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentance	one	<10	1,2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloroprop	pene	<1	1,2,4-Tri	chlorobenzene	<1
Toluene		1.4	Hexachl	orobutadiene	<1
trans-1,3-Dichlorop	ropene	<1	Naphtha	alene	<1
1,1,2-Trichloroetha	ne	<1	1,2,3-Tri	chlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P02-202107 07/09/21 07/15/21 07/15/21 Water ug/L (ppb)	709	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategi SOU_1421-005_ 2021 107130-02 071527.D GCMS4 JCM	es 10709, F&BI 107130
			Lower	Upper	
Surrogates:	• .	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	101	86	113	
Toluene-d8		100	88	114	
4-Bromofluorobenzo	ene	101	88	112	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<5	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometl	hane	<1	Ethylber	nzene	<1
Acetone		<50	1,1,1,2-7	'etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Hexane		<5	o-Xylene)	<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe	er (MTBE)	<1	Isopropy	lbenzene	<1
trans-1,2-Dichloroe	thene	<1	Bromofo	rm	<5
1,1-Dichloroethane		<1	n-Propy	benzene	<1
2,2-Dichloropropan	e	<1	Bromobe	enzene	<1
cis-1,2-Dichloroethe	ene	<1	1,3,5-Tri	imethylbenzene	<1
Chloroform		<1	1,1,2,2-7	'etrachloroethane	<1
2-Butanone (MEK)		<20	1,2,3-Tri	chloropropane	<1
1,2-Dichloroethane	(EDC)	<1	2-Chloro	toluene	<1
1,1,1-Trichloroetha	ne	<1	4-Chloro	toluene	<1
1,1-Dichloropropen	e	<1	tert-But	ylbenzene	<1
Carbon tetrachlorid	le	<1	1,2,4-Tri	methylbenzene	<1
Benzene		< 0.35	sec-Buty	lbenzene	<1
Trichloroethene		<1	p-Isopro	pyltoluene	<1
1,2-Dichloropropan	e	<1	1,3-Dich	lorobenzene	<1
Bromodichlorometh	nane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentance	one	<10	1,2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloroprop	pene	<1	1,2,4-Tri	chlorobenzene	<1
Toluene		<1	Hexachl	orobutadiene	<1
trans-1,3-Dichlorop	ropene	<1	Naphtha	alene	<1
1,1,2-Trichloroetha	ne	<1	1,2,3-Tri	chlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P03-202107 07/09/21 07/15/21 07/16/21 Water ug/L (ppb)	709	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategi SOU_1421-005_ 2021 107130-03 071625.D GCMS4 JCM	es .0709, F&BI 107130
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	96	86	113	
Toluene-d8		101	88	114	
4-Bromofluorobenzo	ene	99	88	112	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<5	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	hane	<1	Ethylber	nzene	<1
Acetone		<50	1,1,1,2-7	'etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Hexane		<5	o-Xylene	9	<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe	er (MTBE)	<1	Isopropy	lbenzene	<1
trans-1,2-Dichloroe	thene	<1	Bromofo	rm	<5
1,1-Dichloroethane		<1	n-Propy	lbenzene	<1
2,2-Dichloropropan	e	<1	Bromobe	enzene	<1
cis-1,2-Dichloroethe	ene	<1	1,3,5-Tri	imethylbenzene	<1
Chloroform		<1	1,1,2,2-1	etrachloroethane	<1
2-Butanone (MEK)		<20	1,2,3-Tri	ichloropropane	<1
1,2-Dichloroethane	(EDC)	<1	2-Chloro	otoluene	<1
1,1,1-Trichloroetha	ne	<1	4-Chloro	otoluene	<1
1,1-Dichloropropen	e	<1	tert-But	ylbenzene	<1
Carbon tetrachlorid	le	<1	1,2,4-Tri	imethylbenzene	<1
Benzene		< 0.35	sec-Buty	lbenzene	<1
Trichloroethene		<1	p-Isopro	pyltoluene	<1
1,2-Dichloropropan	e	<1	1,3-Dich	lorobenzene	<1
Bromodichlorometh	nane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentance	one	<10	1,2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloroprop	pene	<1	1,2,4-Tri	ichlorobenzene	<1
Toluene		<1	Hexachl	orobutadiene	<1
trans-1,3-Dichlorop	ropene	<1	Naphtha	alene	<1
1,1,2-Trichloroetha	ne	<1	1,2,3-Tri	ichlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P05-202107 07/09/21 07/15/21 07/15/21 Water ug/L (ppb)	709	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategi SOU_1421-005_ 2021 107130-04 071529.D GCMS4 JCM	es .0709, F&BI 107130
			Lower	Upper	
Surrogates:	1.4	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	101	86	113	
Toluene-d8		99	88	114	
4-Bromofluorobenz	ene	102	88	112	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<5	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluoromet	hane	<1	Ethylber	nzene	<1
Acetone		<50	1,1,1,2-7	'etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Hexane		<5	o-Xylene	9	<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe	er (MTBE)	<1	Isopropy	lbenzene	2.3
trans-1,2-Dichloroe	thene	<1	Bromofo	rm	<5
1,1-Dichloroethane		<1	n-Propy]	lbenzene	5.0
2,2-Dichloropropan	e	<1	Bromobe	enzene	<1
cis-1,2-Dichloroethe	ene	<1	1,3,5-Tri	imethylbenzene	<1
Chloroform		<1	1,1,2,2-7	etrachloroethane	<1
2-Butanone (MEK)		<20	1,2,3-Tri	ichloropropane	<1
1,2-Dichloroethane	(EDC)	<1	2-Chloro	otoluene	<1
1,1,1-Trichloroetha	ne	<1	4-Chloro	otoluene	<1
1,1-Dichloropropen	e	<1	tert-But	ylbenzene	<1
Carbon tetrachlorid	le	<1	1,2,4-Tri	imethylbenzene	<1
Benzene		< 0.35	sec-Buty	lbenzene	2.8
Trichloroethene		<1	p-Isopro	pyltoluene	<1
1,2-Dichloropropan	e	<1	1,3-Dich	lorobenzene	<1
Bromodichlorometh	nane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentance	one	<10	1,2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloroproj	pene	<1	1,2,4-Tri	ichlorobenzene	<1
Toluene		<1	Hexachl	orobutadiene	<1
trans-1,3-Dichlorop	ropene	<1	Naphtha	alene	<1
1,1,2-Trichloroetha	ne	<1	1,2,3-Tri	ichlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P06-202107 07/09/21 07/15/21 07/16/21 Water ug/L (ppb)	709	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategi SOU_1421-005_ 2021 107130-05 071626.D GCMS4 JCM	es .0709, F&BI 107130
			Lower	Upper	
Surrogates:	_	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	103	86	113	
Toluene-d8		102	88	114	
4-Bromofluorobenz	ene	103	88	112	
		Concentration			Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<5	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluoromet	hane	<1	Ethylber	nzene	<1
Acetone		<50	1,1,1,2-7	'etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Hexane		<5	o-Xylene	9	<1
Methylene chloride		$5.8 \ m lc$	Styrene		<1
Methyl t-butyl ethe	er (MTBE)	<1	Isopropy	lbenzene	1.7
trans-1,2-Dichloroe	thene	<1	Bromofo	rm	<5
1,1-Dichloroethane		<1	n-Propy	benzene	4.0
2,2-Dichloropropan	e	<1	Bromobe	enzene	<1
cis-1,2-Dichloroethe	ene	<1	1,3,5-Tri	methylbenzene	<1
Chloroform		<1	1,1,2,2-7	'etrachloroethane	<1
2-Butanone (MEK)		<20	1,2,3-Tri	chloropropane	<1
1,2-Dichloroethane	(EDC)	<1	2-Chloro	toluene	<1
1,1,1-Trichloroetha	ne	<1	4-Chloro	toluene	<1
1,1-Dichloropropen	e	<1	tert-But	ylbenzene	<1
Carbon tetrachlorid	le	<1	1,2,4-Tri	methylbenzene	<1
Benzene		< 0.35	sec-Buty	lbenzene	6.0
Trichloroethene		<1	p-Isopro	pyltoluene	<1
1,2-Dichloropropan	e	<1	1,3-Dich	lorobenzene	<1
Bromodichlorometh	nane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentance	one	<10	1,2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloroproj	pene	<1	1,2,4-Tri	chlorobenzene	<1
Toluene		<1	Hexachl	orobutadiene	<1
trans-1,3-Dichlorop	ropene	<1	Naphtha	alene	<1
1,1,2-Trichloroetha	ne	<1	1,2,3-Tri	chlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Bla	nk	Client:	SoundEarth Strategi	es
Date Received:	Not Applica	ble	Project:	SOU_1421-005_ 2021	0709, F&BI 107130
Date Extracted:	07/15/21		Lab ID:	01-1580 mb	
Date Analyzed:	07/15/21		Data File:	071508.D	
Matrix:	Water		Instrument:	GCMS4	
Units:	ug/L (ppb)		Operator:	JCM	
			Lower	Unner	
Surrogates:		% Recovery:	Limit:	Limit:	
1 2-Dichloroethane-	d4	97	86	113	
Toluene-d8		102	88	114	
4-Bromofluorobenze	ene	100	88	112	
		Concentration			Constanting.
0 1		Concentration	C	1	Concentration
Compounds:		ug/L (ppb)	Compou	nds:	ug/L (ppb)
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.2	Dibromo	chloromethane	<1
Bromomethane		<5	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluorometh	nane	<1	Ethylber	nzene	<1
Acetone		<50	1,1,1,2 - T	'etrachloroethane	<1
1,1-Dichloroethene		<1	m,p-Xyle	ene	<2
Hexane		<5	o-Xylene	9	<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe	r (MTBE)	<1	Isopropy	lbenzene	<1
trans-1,2-Dichloroe	thene	<1	Bromofo	rm	<5
1,1-Dichloroethane		<1	n-Propyl	benzene	<1
2,2-Dichloropropan	е	<1	Bromobe	enzene	<1
cis-1,2-Dichloroethe	ene	<1	1,3,5-Tri	methylbenzene	<1
Chloroform		<1	1,1,2,2-Т	etrachloroethane	<1
2-Butanone (MEK)		<20	1,2,3-Tri	chloropropane	<1
1,2-Dichloroethane	(EDC)	<1	2-Chloro	toluene	<1
1,1,1-Trichloroethan	ne	<1	4-Chloro	toluene	<1
1,1-Dichloropropene	9	<1	tert-But	ylbenzene	<1
Carbon tetrachlorid	le	<1	1,2,4-Tri	methylbenzene	<1
Benzene		< 0.35	sec-Buty	lbenzene	<1
Trichloroethene		<1	p-Isopro	pyltoluene	<1
1,2-Dichloropropan	е	<1	1,3-Dich	lorobenzene	<1
Bromodichlorometh	ane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentanc	one	<10	1,2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloroprop	oene	<1	1,2,4-Tri	chlorobenzene	<1
Toluene		<1	Hexachl	orobutadiene	<1
trans-1,3-Dichlorop	ropene	<1	Naphtha	alene	<1
1,1,2-Trichloroethan	ne	<1	1,2,3-Tri	chlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Date of Report: 07/22/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 10	7193-01 (Duplie	cate)							
	Reporting	Samp	le Du	plicate	RPD				
Analyte	Units	Resul	lt R	esult	(Limit 20)				
Gasoline	ug/L (ppb)	<100) <	<100	nm				
Laboratory Code: La	Laboratory Code: Laboratory Control Sample								
			Percent						
	Reporting	Spike	Recovery	Acceptance					
Analyte	Units	Level	LCS	Criteria	_				
Gasoline	ug/L (ppb)	1,000	95	69-134	_				

ENVIRONMENTAL CHEMISTS

Date of Report: 07/22/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	92	96	63-142	4

ENVIRONMENTAL CHEMISTS

Date of Report: 07/22/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 107242-02 (Matrix Spike)

	Percent				
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	124	10-172
Chloromethane	ug/L (ppb)	10	<10	102	25-166
Vinyl chloride	ug/L (ppb)	10	< 0.2	105	36-166
Bromomethane	ug/L (ppb)	10	<5	151	47-169
Chloroethane	ug/L (ppb)	10	<1	109	46-160
Trichlorofluoromethane	ug/L (ppb)	10	<1	110	44-165
Acetone	ug/L (ppb)	50 10	<00	02 00	10-182
Hovano	ug/L (ppb)	10	<5	100	38-152
Methylene chloride	ug/L (ppb)	10	<5	69	50-145
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	99	61-136
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	104	61-136
1,1-Dichloroethane	ug/L (ppb)	10	<1	100	63-135
2,2-Dichloropropane	ug/L (ppb)	10	<1	117	36 - 154
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	103	63-134
Chloroform	ug/L (ppb)	10	<1	99	61-135
2-Butanone (MEK)	ug/L (ppb)	50	<20	76	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<1	102	48-149
1,1,1-1 richloropenano	ug/L (ppb)	10	<1	109	60-140
Carbon tetrachloride	ug/L (ppb)	10	<1	102	56-152
Benzene	ug/L (ppb)	10	<0.35	101	57-135
Trichloroethene	ug/L (ppb)	10	<1	99	66-135
1,2-Dichloropropane	ug/L (ppb)	10	<1	99	59-136
Bromodichloromethane	ug/L (ppb)	10	<1	97	61-150
Dibromomethane	ug/L (ppb)	10	<1	99	66-141
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	101	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	10	<1	97	52-147
Toluene	ug/L (ppb)	10	<1	95	50-137
trans-1,3-Dichloropropene	ug/L (ppb)	10	<1	91	53-142 68 191
2-Hovenono	ug/L (ppb)	50	<10	90	10-185
1 3-Dichloropropane	ug/L (ppb)	10	<1	95	60-135
Tetrachloroethene	ug/L (ppb)	10	<1	95	10-226
Dibromochloromethane	ug/L (ppb)	10	<1	90	52 - 145
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	99	62-135
Chlorobenzene	ug/L (ppb)	10	<1	96	63-130
Ethylbenzene	ug/L (ppb)	10	<1	96	60-133
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	98	56-143
m,p-Aylene	ug/L (ppb)	20	<2	95	69-135
Sturono	ug/L (ppb)	10	<1	90	60-140
Isopronylbenzene	ug/L (ppb)	10	<1	97	65-142
Bromoform	ug/L (ppb)	10	<5	91	54-148
n-Propylbenzene	ug/L (ppb)	10	<1	96	58-144
Bromobenzene	ug/L (ppb)	10	<1	98	61-130
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	97	59 - 134
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	<1	99	51 - 154
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	100	53-150
2-Chlorotoluene	ug/L (ppb)	10	<1	96	66-127
4-Uniorotoluene	ug/L (ppb)	10	<1	90	65-130
1 2 4-Trimethylbenzene	ug/L (ppb)	10	<1	96	59-146
sec-Butylbenzene	ug/L (ppb)	10	<1	95	64-140
p-Isopropyltoluene	ug/L (ppb)	10	<1	96	65-141
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	96	60-131
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	97	60-129
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	97	60-130
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	98	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	97	52-138
Hexachlorobutadiene	ug/L (ppb)	10	<1	99	60-143
Naphthalene	ug/L (ppb)	10	<1	95	44-164
1,2,3-1 richlorobenzene	ug/L (ppb)	10	<1	96	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 07/22/21 Date Received: 07/09/21 Project: SOU_1421-005_ 20210709, F&BI 107130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recoverv	Recoverv	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	123	113	25-158	8
Chloromethane	ug/L (ppb)	10	111	106	45-156	5
Vinyl chloride	ug/L (ppb)	10	109	106	50 - 154	3
Bromomethane	ug/L (ppb)	10	164 vo	155 vo	55-143	6
Chloroethane	ug/L (ppb)	10	115	112	58-146	3
Trichlorofluoromethane	ug/L (ppb)	10	117	112	50-150	4
Acetone	ug/L (ppb)	50	57	56	22-155	2
1,1-Dichloroethene	ug/L (ppb)	10	102	97	67-136	5
Hexane Methodaya ablayida	ug/L (ppb)	10	83	80	57-137	4
Methylene chloride Methyl t hystyl ether (MTPF)	ug/L (ppb)	10	107	109	19-178	2
trange 1 2-Dichloroothono	ug/L (ppb)	10	100	101	68-128	5
1 1-Dichloroethane	ug/L (ppb)	10	107	104	74-135	6
2.2-Dichloropropane	ug/L (ppb)	10	136	126	55-143	8
cis-1.2-Dichloroethene	ug/L (ppb)	10	108	103	74-136	5
Chloroform	ug/L (ppb)	10	106	100	74-134	6
2-Butanone (MEK)	ug/L (ppb)	50	80	78	37-150	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	106	102	66-129	4
1,1,1-Trichloroethane	ug/L (ppb)	10	117	110	74-142	6
1,1-Dichloropropene	ug/L (ppb)	10	107	100	77-129	7
Carbon tetrachloride	ug/L (ppb)	10	116	111	75-158	4
Benzene	ug/L (ppb)	10	105	100	69-134	5
Trichloroethene	ug/L (ppb)	10	104	100	67-133	4
1,2-Dichloropropane	ug/L (ppb)	10	104	99	71-134	5
Dibromomothano	ug/L (ppb)	10	105	100	68-132	5
4-Methyl-2-pentanone	ug/L (ppb)	50	110	102	65.138	2
cis-1 3-Dichloropropene	ug/L (ppb)	10	104	97	74-140	7
Toluene	ug/L (ppb)	10	102	95	72-122	7
trans-1,3-Dichloropropene	ug/L (ppb)	10	99	93	80-136	6
1,1,2-Trichloroethane	ug/L (ppb)	10	106	99	75-124	7
2-Hexanone	ug/L (ppb)	50	100	95	60-136	5
1,3-Dichloropropane	ug/L (ppb)	10	102	98	76-126	4
Tetrachloroethene	ug/L (ppb)	10	99	92	76-121	7
Dibromochloromethane	ug/L (ppb)	10	98	94	84-133	4
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	108	101	82-115	7
Chlorobenzene	ug/L (ppb)	10	102	97	83-114	5
1 1 1 2 Tetrachlanothana	ug/L (ppb)	10	104	96	77-124 94 197	8
m. Yylono	ug/L (ppb)	20	107	96	04-147 81-119	6
o-Xylene	ug/L (ppb)	10	102	96	81.121	7
Styrene	ug/L (ppb)	10	104	97	84-119	7
Isopropylbenzene	ug/L (ppb)	10	102	97	80-117	5
Bromoform	ug/L (ppb)	10	100	93	69-121	7
n-Propylbenzene	ug/L (ppb)	10	95	94	74-126	1
Bromobenzene	ug/L (ppb)	10	101	99	80-121	2
1,3,5-Trimethylbenzene	ug/L (ppb)	10	97	95	78-123	2
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	103	101	66-126	2
1,2,3-Trichloropropane	ug/L (ppb)	10	102	100	67-124	2
2-Chlorotoluene	ug/L (ppb)	10	98	96	77-127	2
4-Chlorotoluene	ug/L (ppb)	10	97	94	78-128	3
1.9.4 Trimothylbonzono	ug/L (ppb)	10	99	97	80-123	2
1,2,4-1 Hinethylbenzene	ug/L (ppb)	10	90 07	95	79-122 80-116	5 4
n-Isopropyltoluene	ug/L (ppb)	10	95	93	81.123	4 2
1.3-Dichlorobenzene	ug/L (ppb)	10	97	95	83-113	2
1.4-Dichlorobenzene	ug/L (ppb)	10	98	95	81-112	3
1,2-Dichlorobenzene	ug/L (ppb)	10	99	98	84-112	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	100	94	57-141	6
1,2,4-Trichlorobenzene	ug/L (ppb)	10	94	91	72-130	3
Hexachlorobutadiene	ug/L (ppb)	10	93	89	53-141	4
Naphthalene	ug/L (ppb)	10	99	96	64-133	3
1,2,3-Trichlorobenzene	ug/L (ppb)	10	93	91	65-136	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

L			NAMES OF STREET, AND AN ADDREED AND THE STREET, BOARD					Revision 1)	MSR I.DOC	ORMS\COC\SESGE	₽IJ
(7	Received by	44	Fax (206) 283-50	
	ples received at A of	Sam				0	ad by:	Relinquishe	28	Ph. (206) 285-82	
<u> </u>	1/9/21 15:20	L EV BT	brd	1 (Lad	<u> </u>	apple	" WULL	Received by	9-2029	Secutie, WA 9811	
<u>.l</u>	7/9/21 1520	SES	lu	ait sal	K	THE A	ed by: NOL	Keunquish	e West	sulz toth Avenu	
	DATE TIME	COMPANY	ME	PRINT NAI		ATURE	SIGN		ga, Inc.	Friedman & Bru	
,						4 4)		a Para Sector		
L		/	-								
L		/	-/	(10)							
<u> </u>					<u>x</u> s						
<u> </u>											
<u></u>						Serve - Andread - Andr		1	1		
<u></u>	1404 Sample	X	X X		355		20	ſ	09 206	ROG-2020	
		X	XXX		500-1375		09	ł	109 POS	PUS -20210	
			X X		8		63	1	109 203	PD3-202107	
		X	XX		0 0		02	1	E90 60	POR-202107	
	7/14/21 ME			1 2 PH	an oer	1/9/a/ (-210	1	109 201	PO1-202107	
	メ-Dertz	BTEX by VOC's I SVOC's RCRA-8	NWTI NWTI	un jars	ampled	Sampled (. 8	Depth	Location	2	
	y 1	y 802 by 820 by 82 by 82	°H-D: °H-G:	# of	Time	Date	e Lab	Sampl	Sample		
		1B 30 270 als	x								
	UESTED	ANALYSES REQ									
] Return samples] Will call with instructions			F	- F		#	COFax 7	-306-10	Phone # 206	
	J Dispose after 30 days				REMARKS	WAARFOON ON WINNING BUR WHILE APPLY RULE ALL ALL ALL ALL ALL ALL ALL ALL ALL A	WH-	style,	p Soc	City, State, ZI	
	rush charges authorized by:			200-18	chi c	E ste 200	U AYR	MUYOU	All Ro	Address_2	
	J KUGH	PO#	les /	UTO 2005	PROJECT NA	de en século a bio contrano, e maio de minima do demos	والمراجع		SES	Company	
	TUBNAROUND TIME		(DUN COUL)	1 commission	Convert Price 200		20MO	EX 2	NUT V	Send Report 7	
	UT Page# of			cignoturo) b	SAMPLERS /	*		•	ł		
	52	用 下小小 当下	STODY	IN OF CU:	AMPLE CHA	S				701221	

