

August 8, 2023

Washin and Kathleen Murakami c/o Allan Bakalian Bakalian & Associates PS 8201 164th Avenue Northwest, Suite 200 Redmond, Washington 98052

RE: SECOND ADDENDUM TO REMEDIAL INVESTIGATION AND FEASIBILITY STUDY REPORT MORNINGSIDE ACRES TRACTS 5001, 5015, AND 5021 RAINIER AVENUE SOUTH SEATTLE, WASHINGTON FARALLON PN: 1355-001

Farallon Consulting, L.L.C. (Farallon) has prepared this Second Addendum to the Remedial Investigation and Feasibility Study Report (RI/FS Report),¹ in response to the Washington State Department of Ecology (Ecology) May 23, 2023 letter and opinion (May 2023 Opinion Letter)² requiring limited further evaluation of the nature and extent of the petroleum and chlorinated volatile organic compound (CVOC) contamination at the Morningside Acres Site generally located at 5001, 5015, and 5021 Rainier Avenue South in Seattle, Washington (herein referred to as the Property) (Figures 1 and 2). The Second Addendum provides the additional soil and groundwater data requested by Ecology to address the data gaps identified following its review of Farallon's April 5, 2023 Remedial Investigation and Feasibility Study Addendum (RI/FS Addendum).³ The Second Addendum also evaluates whether the additional data and investigation work will affect the recommended cleanup action alternative identified in the RI/FS Report.

¹ Farallon. 2022. Remedial Investigation and Feasibility Study Report, Morningside Acres Tracts, 5001, 5015, and 5021 Rainier Avenue South, Seattle, Washington. Prepared for Washin Murakami c/o Bakalian & Associates PS. June 20 (RI/FS Report).

² Ecology. 2023. Letter Regarding Opinion pursuant to WAC 173-340-515(5) on Remedial Action of the Following Hazardous Waste Site: Morningside Acres, 5021 Rainier Avenue S, Seattle, WA 98118. From David Unruh. To Jerry-Alan Murakami. May 23 (May 2023 Opinion Letter).

³ Farallon. 2023. Letter Regarding Remedial Investigation and Feasibility Study Addendum, Morningside Acres Tracts, 5001, 5015, and 5021 Rainier Avenue South, Seattle, Washington. from Yusuf Pehlivan and Brani Jurista. To Washin and Kathleen Murakami. April 5 (RI/FS Addendum).

Ecology identified the following data gaps requiring additional characterization of soil and groundwater at the Property, as described in the May 2023 Opinion Letter:

- The extent of trichloroethene (TCE) and vinyl chloride contamination in soil and groundwater east of shallow groundwater monitoring well MW-17 has not been defined.
- The lateral extent of total petroleum hydrocarbons as diesel-range organics (DRO) and as oil-range organics (ORO) in groundwater south, east, and west of shallow monitoring well MW-6 has not been defined.
- The extent of total petroleum hydrocarbons as gasoline-range organics (GRO), DRO, ORO, and benzene in soil and groundwater east of boring FB-30 and shallow monitoring well MW-18 has not been defined.
- The extent of petroleum contamination in soil south of boring FB-23 has not been defined.
- The vertical extent of vinyl chloride contamination in soil in the vicinity of a former floor drain in the basement of the building at 5021 Rainier Avenue South (South Parcel) has not been defined.

In the May 2023 Opinion Letter, Ecology confirmed that evaluation of the vertical distribution of CVOCs proximate to the former floor drain in the basement of the South Parcel building is complete, pending demolition of the building for redevelopment in conjunction with the cleanup action.

The scope of work to address the remaining data gaps listed above was prepared and documented in the July 6, 2023 Remedial Investigation Data Gap Work Plan (Work Plan)⁴ prepared by Farallon and submitted for Ecology review prior to implementation. Ecology provided the concurrence with the scope of work outlined in the Work Plan in an email dated July 10, 2023, with an additional recommendation to measure light nonaqueous-phase liquid (LNAPL) in monitoring well MW-10 during future groundwater monitoring events.

The results from the July 2023 supplemental remedial investigation are described below.

⁴ Farallon. 2023. Letter Regarding Remedial Investigation Data Gap Work Plan, Morningside Acres Tracts, 5001, 5015, and 5021 Rainier Avenue South, Seattle, Washington. From Stuart Brown and Branislav Jurista. To David Unruh, Ecology. July 6 (Work Plan).

Bakalian & Associates PS August 8, 2023 Page 3 of 17

SUPPLEMENTAL REMEDIAL INVESTIGATION

Farallon conducted a supplemental remedial investigation at the Property between July 13 and 25, 2023 to further evaluate the nature and extent of CVOC and petroleum impacts in soil and groundwater on the Property. The supplemental remedial investigation consisted of advancing six borings for collection of soil and reconnaissance groundwater samples and installing two shallow and one deep groundwater monitoring wells.

BORING ADVANCEMENT AND MONITORING WELL INSTALLATION

Prior to conducting subsurface work, Farallon retained public and private utility locating services to clear proposed boring and monitoring well locations for subsurface utilities. A vacuum truck was used to manually clear proposed drilling locations to depths of up to 5 feet below ground surface (bgs) to confirm that no utilities were present. A recently updated Property-specific Health and Safety Plan was made available during field activities in accordance with the U.S. Occupational Safety and Health Administration and Part 1910.120 of Title 29 of the Code of Federal Regulations.

Borings FB-31 through FB-36 and shallow monitoring well MW-25 were advanced and installed by Holt Services, Inc. of Edgewood, Washington using a direct-push drill rig, and deep monitoring well MW-26 and shallow monitoring well MW-27 were installed by Cascade Environmental of Woodinville, Washington using a hollow-stem auger drill rig at the locations shown on Figure 3. The total depth of vertical borings advanced with the direct-push drill rig ranged from 15 to 20 feet and the total linear depth of angled boring FB-35 was 15 feet. Boring FB-35 was advanced at a 32.5 degree angle, the maximum angle the direct-push drill rig could achieve, with the boring surface location south of the convenience store building at 5015 Rainier Avenue South (Middle Parcel) and terminating at depth beneath the western portion of the convenience store building.

During drilling, Farallon field personnel observed subsurface conditions and recorded information on boring logs, including soil types encountered, visual and olfactory evidence of contamination, and qualitative measurement of volatile organic vapors in soil using a photoionization detector. Soil samples were collected continuously during direct-push drilling and at 5-foot intervals during hollow-stem auger drilling; soil samples were retained at select intervals for potential laboratory analysis, generally in accordance with the Ecology-approved Work Plan. Soil samples retained for laboratory analysis were placed on ice in a cooler and

transported to OnSite Environmental, Inc. of Redmond, Washington (OnSite) under standard chain-of-custody protocols for analysis of one or more of the following:

- GRO by Northwest Method NWTPH-Gx;
- DRO, ORO, and DRO+ORO by Northwest Method NWTPH-Dx, with and without silica gel cleanup;
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by U.S. Environmental Protection Agency (EPA) Method 8021B; and
- CVOCs by EPA Method 8260D.

Reconnaissance groundwater samples were collected at borings FB-31, FB-32, and FB-34 from temporary monitoring well screens constructed with slotted polyvinyl chloride piping surrounded with a clean sand filter pack placed near the top of the first encountered waterbearing zone at each location. Reconnaissance groundwater samples were collected using a peristaltic pump after the majority of fine-grained suspended soil was removed from the well screen, and analyzed for GRO, DRO, ORO, DRO+ORO, BTEX, and CVOCs by the methods described above. At boring FB-33, an attempt was made to collect a reconnaissance groundwater sample but was unsuccessful due to insufficient groundwater accumulating in the borehole.

Monitoring wells MW-25 through MW-27 were constructed along the eastern Property boundary using 10 feet of 0.010-inch slotted polyvinyl chloride well screen set in a sand filter pack extending approximately 1 foot above the top of the screened interval. The filter pack was overlain by hydrated bentonite chips to within 2 feet of ground surface, and monitoring wells were completed at the surface with flush-mounted steel monuments set in concrete. Shallow monitoring well MW-25 was installed east of the former dispenser islands on the 5001 Rainier Avenue South parcel (North Parcel) with a screen interval from 5 to 15 feet bgs. Monitoring wells MW-26 and MW-27 were installed as a nested groundwater monitoring well pair at the eastern Property boundary east of the convenience store on the Middle Parcel with screen intervals from 35 to 45 feet bgs and 8 to 18 feet bgs, respectively. Following installation, the new monitoring wells were developed using surging and purging techniques until water drawn from the wells appeared relatively clear, except for monitoring well MW-26, which remained relatively turbid due to the high silt content of the lithologic units and extremely slow groundwater recharge. The monitoring wells were surveyed for location and elevation by Farallon on July 25, 2023. Boring logs for borings and monitoring wells installed during the supplemental remedial investigation are included in Attachment A.

GROUNDWATER MONITORING EVENT

Farallon conducted a groundwater monitoring event at several existing and the newly installed monitoring wells on and off the Property on July 19 and 20, 2023. The groundwater monitoring event included the following:

- Measuring depth-to-groundwater at 26 new and existing monitoring wells on and off the Property;
- Measuring product thickness in shallow monitoring well MW-10; and
- Collecting groundwater samples from three new monitoring wells (MW-25 through MW-27) and seven existing monitoring wells MW-6, MW-11, MW-12, MW-19, MW-22, MW-23, and MW-24.

Prior to collecting groundwater elevation measurements, the well caps for all wells were opened, and the wells were allowed to equilibrate to atmospheric pressure for at least 20 minutes. Depth to groundwater was then measured from the top of the well casing to the nearest 0.01 foot using an electronic water level measuring device. Existing monitoring well MW-14 could not be accessed due to a vehicle parked on top of the well.

Groundwater samples were collected in accordance with standard EPA low-flow groundwater sampling procedures. Each monitoring well was purged using a peristaltic pump or bladder pump equipped with a flow-through cell at a flow rate of approximately 100 to 200 milliliters per minute. Temperature, pH, specific conductance, dissolved oxygen, oxidation-reduction potential, and turbidity were monitored during purging to determine when stabilization of the parameters occurred. Groundwater samples were collected directly from the low-flow pump outlet once parameters stabilized.

Groundwater samples were placed on ice in a cooler and transported to OnSite under standard chain-of-custody protocols for analysis of one or more of the following:

- GRO by Northwest Method NWTPH-Gx;
- DRO, ORO, and DRO+ORO by Northwest Method NWTPH-Dx with and without silica gel cleanup;
- BTEX by EPA Method 8021B; and
- CVOCs by EPA Method 8260D.

Investigation-derived waste generated during the July 2023 supplemental remedial investigation and groundwater monitoring activities was temporarily stored on the Property

in labeled 55-gallon steel drums. The analytical results for the soil and groundwater samples will be used to develop a waste profile for off-Property disposal.

JULY 2023 SUPPLEMENTAL REMEDIAL INVESTIGATION RESULTS

Subsurface conditions and analytical results from the July 2023 supplemental remedial investigation are summarized in the following sections. Depth to groundwater measurements and groundwater elevations are presented in Table 1, and groundwater elevation contours are presented on Figure 4. Soil and groundwater analytical results are summarized in Tables 2 through 5 and presented on Figures 5 through 8. Cross sections showing the general lithology and the approximate extents of contamination exceeding MTCA cleanup levels are shown on Figures 9 through 12. Laboratory analytical reports are included in Attachment B.

While marking for utilities, Farallon observed a concrete patch in the parking lot on the North Parcel, northeast of the reported location of boring FB-23; no patch was observed at the location previously identified as boring FB-23. Boring FB-23 was advanced on August 29, 2018, and the review of aerial photos shows the concrete patch appearing after May 2018 and before May 2019. This information led to the conclusion that boring FB-23 location is approximately 10 feet to the northeast of the location previously reported in Farallon documents, as indicated on Figure 3.

Geology and Hydrogeology

During the July 2023 supplemental remedial investigation, soil encountered during drilling at borings FB-31 through FB-36 and monitoring wells MW-25 through MW-27 generally consisted of silty sand and sandy silt interbedded with silt and gravel to the maximum explored depth of 45 feet bgs. Sandy silt and/or silt was generally encountered below the pavement between depths of approximately 0.3 to 14 feet bgs on the northern portion of the North Parcel, and at depths from 5 to 10 and from 15 to at least 40 feet bgs on the eastern portion of the Middle Parcel. Silty sand and sand were encountered on the southern portion of the North Parcel at depths of approximately 6 to 13 feet bgs and from approximately 10 to 15 feet bgs in the eastern portion of the Middle Parcel. The silt content in the silty sand layers was relatively high, typically estimated at up to 30 percent (Attachment A).

During drilling, groundwater was encountered at borings FB-31 through FB-36 and monitoring wells MW-25 through MW-27 between depths of approximately 5 to 12.5 feet

bgs. During the July 2023 groundwater monitoring event, depth to groundwater was measured between depths of approximately 6.09 to 10.66 feet bgs in the monitoring wells, except for the wells located in the basement of the warehouse building on the South Parcel, where it was measured between depths of approximately 0.67 to 2.26 feet bgs (Table 1). Groundwater elevation measurements indicated that groundwater generally flowed to the north at the South Parcel and to the north-northwest at the Middle and North Parcels during the July 2023 groundwater monitoring event (Figure 4). The northerly groundwater flow direction is consistent with prior historical estimations of the groundwater flow direction for the South Parcel. The groundwater contours generated for the July 2023 groundwater monitoring the north-northwesterly flow direction on the North Parcel, which was initially identified during the supplemental remedial investigation conducted in February 2023.

Light Nonaqueous-Phase Liquid Measurements

The thickness of the LNAPL was 0.82 feet when measured at monitoring well MW-10 on July 19, 2023 (Table 1). Two other LNAPL thickness measurements were recorded in the past at monitoring well MW-10. LNAPL thickness was measured at 0.42 feet on December 14, 2017 and at 0.21 feet on October 2, 2018.

Soil Analytical Results

Analytical results for soil samples collected during the July 2023 supplemental remedial investigation indicated the following:

• The CVOCs cis-1,2-dichloroethene (cis-1,2-DCE) and vinyl chloride were detected at concentrations exceeding the Model Toxics Control Act Cleanup Regulation (MTCA) Method B cleanup levels for saturated soil protective of groundwater in the soil sample collected from monitoring well boring MW-26 at a depth of 15 feet bgs. Vinyl chloride was also detected at a concentration exceeding the MTCA Method B cleanup level for saturated soil protective of groundwater in the soil sample collected at a depth of 25 feet bgs from monitoring well boring MW-26. All other CVOCs were either not detected or were detected at concentrations less than the applicable MTCA Method A or B cleanup levels in the remaining soil samples collected at monitoring well boring MW-26 (Table 2; Figures 5, 10, and 11). The CVOCs 1,1,2-trichloroethane (1,1,2-TCA) and 1,2-dichloroethane (1,2-DCA), detected in the reconnaissance groundwater sample from boring FB-32, were not detected in the soil samples collected from boring FB-32 at depths of 5, 10, and 15 feet bgs.

- GRO was detected at concentrations of 480, 440, and 160 milligrams per kilogram (mg/kg) in soil samples collected from borings FB-33, MW-25, and FB-32 at a depth of 10 feet bgs, respectively, exceeding the MTCA Method A cleanup level of 30 mg/kg. GRO was not detected in any other soil samples analyzed during the supplemental remedial investigation, including the soil samples from borings FB-34, FB-35, FB-36, and monitoring well boring MW-25 ranging in depth from 5 to 18 feet bgs (Table 3; Figures 6 and 12).
- Benzene was detected at a concentration of 0.16 mg/kg in the soil sample collected from boring FB-32 at a depth of 10 feet bgs, which exceeds the MTCA Method A cleanup level of 0.03 mg/kg. Toluene was detected at a concentration less than the MTCA Method A cleanup level in the soil sample collected from boring FB-32 at a depth of 10 feet bgs. Ethylbenzene and/or xylenes were detected at concentrations less than MTCA Method A cleanup levels in soil samples collected from borings FB-32, FB-33, and MW-25 at a depth of 10 feet bgs. BTEX constituents were not detected in any other soil samples analyzed during the supplemental remedial investigation, including the soil samples from borings FB-34 through FB-36 and monitoring well boring MW-25 at depths ranging from 5 to 18 feet bgs (Table 3).
- DRO, ORO, and DRO+ORO (with and without silica-gel cleanup procedure) were not detected in any soil samples analyzed during the July 2023 supplemental remedial investigation (Table 3; Figures 6 and 12).

Groundwater Analytical Results

Analytical results for groundwater samples collected during the July 2023 supplemental remedial investigation indicated the following:

Reconnaissance Groundwater Samples

- The CVOCs 1,1,2-TCA and 1,2-DCA were detected at concentrations exceeding their respective MTCA cleanup levels in the reconnaissance groundwater sample collected from boring FB-32, near the top of the shallow water-bearing zone at 12 feet bgs. All remaining CVOCs were either not detected or were detected at concentrations less than the MTCA cleanup levels in the other reconnaissance groundwater samples collected during the July 2023 supplemental remedial investigation (Table 4; Figures 7, 10, and 11).
- GRO was detected at a concentration of 130,000 μ g/l and BTEX constituents were detected at concentrations ranging from 1,800 to 20,000 ug/l in the reconnaissance

groundwater sample collected at boring FB-32, all of which exceed the MTCA Method A cleanup levels (Table 5; Figures 8 and 12). GRO and BTEX were not detected in the reconnaissance groundwater samples collected from borings FB-31 and FB-34.

DRO+ORO were detected at combined concentrations of 750 and 4,100 micrograms per liter (µg/l), both of which exceed the MTCA Method A cleanup level of 500 µg/l, in the reconnaissance groundwater samples collected from borings FB-31 and FB-32, respectively, near the top of the shallow water-bearing zone at a depth of 12 to 15 feet bgs. DRO+ORO were detected at a combined concentration less than the MTCA Method A cleanup level in the reconnaissance groundwater sample collected at boring FB-34. DRO+ORO were not detected in the reconnaissance groundwater samples collected from borings FB-31, FB-32, and FB-34 when analyzed using the silica gel cleanup procedure (Table 5; Figures 8 and 12).

Groundwater Samples

- The CVOCs TCE, cis-1,2-DCE, and vinyl chloride were detected at concentrations exceeding their respective MTCA cleanup levels in the groundwater sample collected from shallow monitoring well MW-27 (Table 4). All other CVOCs were either not detected or were detected at concentrations less than the applicable MTCA cleanup levels in the remaining groundwater samples collected during the July 2023 supplemental remedial investigation (Table 4; Figures 7, 10, and 11).
- GRO and/or BTEX constituents were not detected in any groundwater samples collected from monitoring wells during the July 2023 supplemental remedial investigation (Table 5; Figures 8 and 12). The monitoring wells sampled for GRO and/or BTEX included monitoring wells MW-6, MW-11, and MW-22 through MW-25.
- DRO+ORO were detected at a combined concentration of 510 µg/l, exceeding the MTCA Method A cleanup level of 500 µg/l, in the groundwater sample collected from shallow monitoring well MW-11. DRO+ORO were either not detected or were detected at a combined concentration equal to or less than the MTCA Method A cleanup level in the remaining groundwater samples collected during the July 2023 supplemental remedial investigation. DRO+ORO were not detected in the groundwater sample collected from shallow monitoring well MW-22 when analyzed using the acid silica gel cleanup procedure (Table 5; Figures 8 and 12).

DISCUSSION

Ecology comments regarding the conceptual site model for the Property indicated that the nature and extent of contamination at the Property had not been fully defined, including potential migration of petroleum and CVOC impacts to the adjacent properties to the west or the Rainier Avenue South right-of-way (ROW) to the east. This section includes discussion of the results from the July 2023 supplemental remedial investigation in relation to the conceptual site model, updated with the new data to address Ecology comments, and the recommended cleanup action alternative.

CONCEPTUAL SITE MODEL

Nature and Extent of CVOC Contamination

CVOCs were detected at concentrations slightly exceeding the MTCA Method B cleanup levels protective of the groundwater in soil samples collected from monitoring well boring MW-26 at the eastern Property boundary at depths ranging from 15 to 25 feet bgs during the July 2023 supplemental remedial investigation (Table 2; Figures 5, 10, and 11). The horizontal extent of CVOCs in soil at concentrations exceeding the applicable MTCA Method A or Method B cleanup levels is defined by the analytical results for soil samples collected from borings GLP-9, GLP-11, and FB-27 to the south, from borings FB-24, GLP-13, GLP-12, and monitoring well boring MW-21 to the west, from borings FB-30 and monitoring well boring MW-24 to the north, and from borings GLP-11, GP-5, GP-2, and monitoring well boring MW-20 to the east. The CVOC contamination in saturated soil at the 15 to 25 feet bgs interval in the Middle Parcel is likely caused by migration of CVOC contaminants in groundwater that sorbed to soil, as shallow soil intervals do not appear to be affected by CVOCs at concentrations exceeding MTCA cleanup levels. The vertical extent of CVOCs in soil at concentrations exceeding the applicable MTCA Method A or Method B cleanup levels is defined by the analytical results for deeper soil samples collected from borings FB-26 and monitoring well borings MW-19 and MW-21. Additional vertical delineation beneath the sump in the South Parcel is deferred until the building is removed to provide access, as previously agreed to by Ecology.

Groundwater analytical results from the July 2023 supplemental remedial investigation indicate that the groundwater CVOC plume originating beneath the 5021 Building on the South Parcel extends north onto the eastern half of the Middle Parcel and slightly into the Rainier Avenue South ROW in shallow groundwater, as detected in monitoring well MW-27, and is not present in deep groundwater in the ROW as indicated by the results for the

groundwater sample collected at deep monitoring well MW-26 (Table 4; Figure 10). The horizontal extent of CVOCs in groundwater at concentrations exceeding the applicable MTCA Method A or Method B cleanup levels is defined by the analytical results for groundwater samples collected from boring GLP-7 and monitoring wells MW-11, MW-14, and MW-15 to the south; from monitoring well MW-13 to the west; from borings FB-23 and FB-30 and monitoring wells MW-22, MW-23, MW-10, MW-18, and MW-24 to the north; and from monitoring wells MW-8, MW-5, and MW-20 to the east. The vertical extent of CVOC concentrations in groundwater has not been defined; however, the analytical results for the groundwater sample collected from deeper monitoring well MW-21 at the Middle Parcel indicate that vinyl chloride, detected at a concentration of 0.21 μ g/l in February 2023, only slightly exceeds the MTCA Method B cleanup level of 0.20 μ g/l. Vinyl chloride is the only CVOC detected in that groundwater sample, indicating that the vertical extent of CVOCs in groundwater is nearly defined at this location. The vertical delineation beneath the sump at the South Parcel is deferred until the building is removed to provide access for collection of deeper groundwater samples, as previously agreed to by Ecology.

A limited and isolated area of CVOC contamination was encountered in groundwater at the northwestern corner on the North Parcel during the July 2023 supplemental remedial investigation. The CVOCs 1,1,2-TCA and 1,2-DCA were detected at concentrations exceeding their respective MTCA Method B cleanup levels in a shallow reconnaissance groundwater sample collected at boring FB-32, but were not detected in soil samples collected at depth of 5, 10, and 15 feet bgs at boring FB-32 or at adjacent borings FB-22, GP-3, and GP-1 (Tables 2 and 4; Figures 5, 7, 10, and 11). The source of 1,1,2-TCA and 1,2-DCA has not been identified, but is likely associated with a releases from the first generation former service station proximate to boring FB-32 that occupied the North Parcel between approximately 1929 and 1950. The extent of 1,1,2-TCA and 1,2-DCA in groundwater at concentrations exceeding the applicable MTCA Method B cleanup levels is defined by the analytical results for groundwater samples collected at monitoring well MW-1 to the east, monitoring well MW-2 to the north, monitoring well MW-6 to the west, and monitoring wells MW-9, MW-22, and MW-23 to the south.

Nature and Extent of Petroleum Contamination

Two areas of petroleum-related contamination are present at the Morningside Acres Site, both of which are related to releases from the former gasoline service stations on the North Parcel (Figures 2, 6, and 8). The northern of the two petroleum-impacted areas contains GRO and benzene in soil and GRO, DRO+ORO, and BTEX in groundwater at concentrations

exceeding MTCA Method A cleanup levels as evidenced by the analytical results for soil samples from borings FB-32, FB-33, and GP-3 and groundwater samples from borings FB-22, FB-31, and FB-32 and monitoring well MW-6 (Tables 3 and 5). Analytical results indicate that the extent of petroleum impacts in soil at concentrations exceeding MTCA Method A cleanup levels is defined by soil samples collected from boring FB-34 to the west; from boring FB-22 to the south, from borings GLP-02 and GLP-03 to the east, and from boring GP-1 to the north (Table 3; Figure 6). DRO, ORO, and DRO+ORO were not detected in any of the groundwater samples analyzed using acid silica gel cleanup. Field notes recorded during reconnaissance groundwater sample collection at boring FB-32 describe the groundwater sample as cloudy and grayish brown in color, indicating a highly turbid sample, potentially biasing the reconnaissance groundwater sample results due to potential interference from suspended fine-grained soil. The extent of petroleum impacts in groundwater at concentrations exceeding MTCA Method A cleanup levels in the northern area of the North Parcel is defined by the analytical results for groundwater samples collected from boring FB-34 to the west; from monitoring wells MW-22, MW-23, and MW-9 to the south and southeast; from monitoring well MW-1 to the east; and from monitoring well MW-2 to the north (Table 5; Figures 8 and 12).

The southern of the two petroleum-impacted areas on the North Parcel contains GRO, DRO+ORO, and benzene at concentrations exceeding MTCA Method A cleanup levels as evidenced by the analytical results for soil samples from borings FB-23 (note the revised location on Figure 7) and FB-30, and monitoring well borings GLP-05 and GLP-18, and newly installed monitoring well boring MW-25 (Tables 3 and 5). The analytical results for groundwater in this area only exceed the MTCA Method A cleanup levels at boring FB-30 and monitoring well MW-10. Analytical results indicate that petroleum impacts in soil at the southern petroleum-impacted area on the North Parcel do not extend onto the westadjoining property. Petroleum contamination was not encountered in soil samples collected from borings FB-35 and FB-36, immediately adjacent to the west-adjoining property, and sampled at depths of up to 18 feet bgs (Table 3; Figure 6). The analytical results and the observation that boring FB-23 is approximately 10 feet to the northeast of the location shown on prior figures, confirms that the western and southern extent of petroleum contamination in soil is confined to the North Parcel and bounded by soil samples collected from borings FB-35 and FB-36 and monitoring well boring MW-23. The southern extent of contamination in soil at concentrations exceeding the MTCA Method A cleanup level in this area is defined by the analytical results for soil samples collected from boring GLP-6 and

monitoring well boring MW-24 and the northern extent in soil is defined by the soil sample results for monitoring well boring GLP-04.

The extent of petroleum impacts in groundwater at concentrations exceeding MTCA Method A cleanup levels in the southern area of the North Parcel is defined by the analytical results for groundwater samples collected from boring FB-23 and monitoring wells MW-22 and MW-23 to the west, monitoring wells MW-13, MW-17, MW-19, and MW-21 to the south, monitoring well MW-25 to the east, and from monitoring wells MW-1, MW-9, and MW-18 to the north (Table 5; Figure 8). The new analytical results indicate that although there is limited GRO contamination in soil in the Rainier Avenue South ROW (sidewalk), the groundwater is not adversely affected, based on the analytical results for groundwater sample collected from monitoring well MW-25.

The results of the July 2023 supplemental remedial investigation are summarized below:

- CVOC impacts at concentrations exceeding MTCA cleanup levels have been defined in soil and shallow groundwater on the Middle Parcel and extend slightly beyond the eastern Property boundary to a limited portion of the Rainier Avenue South ROW.
- Petroleum impacts at concentrations exceeding MTCA cleanup levels are present in soil and groundwater at two separate areas on the North Parcel and do not extend on to the west-adjacent property(s). The northern area of petroleum-impacted area is confined to the Property.
- The petroleum-impacted soil at concentrations exceeding MTCA cleanup levels in the southern portion of the North Parcel likely extends slightly east to a limited portion of the Rainier Avenue South ROW. However, the groundwater is not adversely affected by petroleum contamination in the Rainier Avenue South ROW.

The results from the July 2023 supplemental investigation were used to update the conceptual site model developed for the Morningside Acres Site as the estimated extent of petroleum contamination on the North Parcel and the eastern extent of CVOC impacts on the Middle Parcel are slightly altered.

FEASIBILITY STUDY AND RECOMMENDED CLEANUP ACTION ALTERNATIVE

Based on the results from the feasibility study presented in Farallon's RI/FS Report, the recommended cleanup action alternative consisted of the following elements:

- Source removal by excavation and off-Property disposal of petroleum- and CVOCcontaminated soil to depths of up to 20 feet bgs in conjunction with Property redevelopment;
- Treatment and disposal of contaminated groundwater extracted during Property redevelopment activities;
- Installing groundwater treatment injection wells on the Middle and South Parcels of the Property during redevelopment;
- Conducting in-situ chemical reduction and enhanced bioremediation injection events on the Middle and South Parcels of the Property to treat concentrations of CVOCs in groundwater between a depth interval of approximately 10 to 45 feet bgs; and
- Semiannual performance groundwater monitoring for approximately 4 years, followed by 1 year of quarterly confirmational groundwater monitoring.

The results from the supplemental remedial investigation do not impact the selection of remedial technologies assembled for the recommended cleanup action alternative. The supplemental soil and groundwater data have been incorporated into the RI and used in reevaluation of the FS. The new data are also used in the final cleanup action plan, which will now include the following additional remedial actions (Figure 13):

- Northern petroleum- and CVOC-impacted area on North Parcel The removal of source soil by excavation to a depth of up to 20 feet bgs will expand to include a larger footprint for the petroleum-impacted area and the 1,1,2-TCA and 1,2-DCA impacts in the northern portion of the North Parcel. A contingency for groundwater cleanup of 1,1,2-TCA and 1,2-DCA would consist of installing four injection wells and implementing in-situ chemical reduction and enhanced bioremediation injection in conjunction with the treatment of CVOC-related contamination on the South and Middle Parcels. The cost to implement cleanup action in conjunction with redevelopment is expected to change in this area to accommodate the disposal of additional soil and implementation of groundwater treatment.
- Southern petroleum-impacted area on North Parcel The removal of petroleum source soil by excavation to a depth of up to 20 feet bgs in this area of the

Morningside Acres Site would expand east into the Rainier Avenue South ROW. However, the footprint of the proposed excavation remains relatively unchanged in size as the western portion of the excavation will not extend as far west as it was shown on the RI/FS Report figures. The cost to implement this excavation in conjunction with redevelopment is not expected to change.

 CVOC-impacted area on South and Middle Parcels – The removal of source soil beneath the basement of the warehouse on the South Parcel remains unchanged. CVOC-impacted soil on the Middle Parcel and the Rainier Avenue South ROW is present in the saturated zone and is believed to be associated with the migration of CVOC-impacted groundwater, rather than to a separate release. Therefore, the in-situ chemical reduction and enhanced bioremediation injection cleanup action will treat CVOCs in both soil and groundwater within the footprint of the CVOC plume. Additional injection wells will be installed to treat CVOC-impacted soil and groundwater adjacent to the eastern Property boundary, including the impacted portion of the Rainier Avenue South ROW. The cost to implement injections is expected to change due to the addition of seven injection wells and additional volume of the treatment solution.

The overall estimated cost for Alternative 3 presented in the RI/FS Report has increased from \$1,232,000 to \$1,463,000. The revised cost for Alternative 3 includes a 20 percent contingency on construction costs. The estimated costs for Alternatives 1 and 2 also have increased, totaling in excess of \$2,700,000 each. Since the MTCA Composite Benefit Scores for all three alternatives remain unchanged, the Alternative 3 remains as the preferred cleanup alternative for cleanup of the Morningside Acres Site.

REQUEST FOR OPINION

Based on the additional investigation activities presented in this Second Addendum to the RI/FS, the nature and extent of contamination contained on the Property has been sufficiently defined and the analytical data evaluated to support selection of the preferred cleanup action alternative, which remains unchanged from the RI/FS Report as described above. Accordingly, Farallon respectfully requests that Ecology provide an opinion confirming and approving the recommended cleanup action alternative and issue a determination that No Further Action (NFA) will be issued for the Site following implementation of the cleanup action described herein (an NFA-likely letter), in accordance with MTCA. An Ecology Opinion Request Form is included in Attachment C.

CLOSING

Farallon appreciates the opportunity to provide environmental consulting services for this project. Please contact the undersigned at (425) 295-0800 if you have questions or need additional information.

Sincerely,

Farallon Consulting, L.L.C.

Stuart Brown. Associate Geologist

Braniolar urisla Brani Jurista, L.G.

Principal Geologist

Attachments: Figure 1, Property Vicinity Map

- Figure 2, Current and Historical Property Features Figure 3, Sampling Locations Figure 4, Groundwater Elevation Contours – July 2023 Figure 5, Estimated Areal Extent of Chlorinated VOCs in Soil Figure 6, Estimated Areal Extent of Petroleum Hydrocarbons in Soil Figure 7. Estimated Areal Extent of Chlorinated VOCs in Groundwater Figure 8, Estimated Areal Extent of Petroleum Hydrocarbons in Groundwater Figure 9, Cross Section Locations Figure 10, Cross Section A-A' – Chlorinated VOCs Figure 11, Cross Section B-B' – Chlorinated VOCs Figure 12, Cross Section A-A' – Petroleum Hydrocarbons Figure 13, Alternative 3 Table 1, Groundwater Elevations Table 2, Soil Analytical Results for Chlorinated VOCs Table 3, Soil Analytical Results for Petroleum Hydrocarbons and Lead Table 4, Groundwater Analytical Results for Chlorinated VOCs Table 5, Groundwater Analytical Results for Petroleum Hydrocarbons and 1,2-Dibromoethane Attachment A, Boring Logs Attachment B, Laboratory Analytical Reports Attachment C, Ecology Opinion Request Form
- Jerry-Allan K. Murakami cc:

SB/BJ:mbg

LIMITATIONS

The conclusions contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:

- Accuracy of Information. Farallon reviewed certain information used in this report/assessment from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy. Should the information upon which Farallon relied prove to be inaccurate, Farallon may revise its conclusions, opinions, and/or recommendations.
- Reconnaissance and/or Characterization. Farallon performed a reconnaissance and/or characterization of the Site that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions. Contamination may exist in other areas of the Site that were not investigated or were inaccessible. Site activities beyond Farallon's control could change at any time after the completion of this report/assessment.

Farallon does not guarantee that the Site is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions are as of the date of the report.

This report/assessment has been prepared in accordance with the contract for services between Farallon and Washin and Kathleen Murakami. No other warranties, representations, or certifications are made.

FIGURES

SECOND ADDENDUM TO REMEDIAL INVESTIGATION AND FEASIBILITY STUDY REPORT Morningside Acres Tracts 5001, 5015, and 5021 Rainier Avenue South Seattle, Washington

Farallon PN: 1355-001

LEGEND

APPROXIMATE EXTENT OF CHLORINATED VOC CONTAMINATION (DASHED WHERE INFERRED) APPROXIMATE EXTENT OF PETROLEUM CONTAMINAT (DASHED WHERE INFERRED) HISTORICAL GAS STATION FEATURE L PROPERTY FEATURE

PROPERTY BOUNDARY

KING COUNTY PARCEL BOUNDARY

UST = UNDERGROUND STORAGE TANK VOC = VOLATILE ORGANIC COMPOUND

	NOTES: 1. ALL LOCATIONS ARE APPROXIM 2. FIGURE WAS PRODUCED IN CC	IATE. LOR. GRAYSCALE COPIES MAY NOT REPRODU	JCE ALL ORIGINAL INFORMATION.					
ΓΙΟΝ		Washington Issaquah Bellingham Seattle	FIGURE 2					
		Oregon Portland Baker City	CURRENT AND HISTORICAL PROPERTY FEA MORNINGSIDE ACRES TRACTS	TURES				
	Farallon	California	5001, 5015, AND 5021					
	Consulting	Oakland Irvine	RAINIER AVENUE SOUTH					
			SEATTLE, WASHINGTON					
	Your Challenges. Our Priority.	farallonconsulting.com						
			FARALLON PN: 1355-001					
	Drawn By: Imurock	Checked By: SB	Date: 8/2/2023 Dis	c Reference:				
	Document Path: Q:\Projects\1355 Morningside\001 RainierAveS\Mapfiles\018\Figure-02_PropertyFeatures.mxd							

LEGEND

10

- DECOMMISSIONED MONITORING WELL
- SHALLOW MONITORING WELL
- DEEP MONITORING WELL
- BORING WITH RECONNAISSANCE GROUNDWATER SAMPLE
 (FARALLON)
- ANGLED BORING (FARALLON)
- BORING (FARALLON)
- BORING (G-LOGICS)
- BORING (KLEINFELDER)
- SUMP SEDIMENT SAMPLE
- HISTORICAL GAS STATION FEATURE
 - PROPERTY FEATURE
 - PROPERTY BOUNDARY
 - KING COUNTY PARCEL BOUNDARY
- UST = UNDERGROUND STORAGE TANK

NOTES: 1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURE WAS PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

	Washington Issaquah Bellingham Seattle	FIGURE 3	
	Oregon Portland Baker City	SAMPLING LOCATIONS MORNINGSIDE ACRES TRACTS	
Farallon	California	5001, 5015, AND 5021	
Consulting	Oakland Irvine	RAINIER AVENUE SOUTH	
		SEATTLE, WASHINGTON	
Your Challenges. Our Priority. 1	farallonconsulting.com		
		FARALLON PN: 1355-001	
Drawn By: Imurock	Checked By: SB	Date: 8/2/2023	Disc Reference:
	Document Path: Q:\P	rojects\1355 Morningside\001 RainierAveS\Mapfiles\018\Figure-03_Sa	mplingLocations.mxd

- BORING WITH RECONNAISSANCE GROUNDWATER • SAMPLE (FARALLON)
- -0 ANGLED BORING (FARALLON)
- BORING (FARALLON) ۲
- ۲ BORING (G-LOGICS)
- BORING (KLEINFELDER) 0
- ESTIMATED EXTENT OF CHI ORINATED VOCS I EXCEEDING MTCA METHOD A OR B CLEANUP (DASHED WHERE INFERRED)
- HISTORICAL GAS STATION FEATURE
 - PROPERTY FEATURE
 - PROPERTY BOUNDARY
 - KING COUNTY PARCEL BOUNDARY

NOTES 1. ALL LOCATIONS ARE APPROXIMATE FIGURE WAS PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

IT OF SOIL ACTS TH
Disc Reference:

DRO+ORO = THE SUM OF DRO AND ORO, USING ONE HALF OF THE REPORTING LIMIT IN THE SUMMATION FOR NON-DETECT RESULTS. BEGINNING IN JULY 2023, RESULTS WERE QUANTIFIED BY THE LABORATORY AS HYDROCARBON RANGE C10 TO C36 (DIESEL AND OIL RANGES). ORO = TPH AS OIL-RANGE ORGANICS GRO = TPH AS GASOLINE-RANGE ORGANICS MTCA = WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION UST = UNDERGROUND STORAGE TANK **LEGEND** DECOMMISSIONED MONITORING WELL \bullet SHALLOW MONITORING WELL DEEP MONITORING WELL BORING WITH RECONNAISSANCE GROUNDWATER • SAMPLE (FARALLON)

FARALLON

Drawn By: Imurock

CONSULTING

Your Challenges. Our Priority. | farallonconsulting.com

• ANGLED BORING (FARALLON)

- BORING (FARALLON) ۲
- BORING (G-LOGICS) ۲

BORING (KLEINFELDER) 0

ESTIMATED EXTENT OF PETROLEUM IMPACTS IN SOIL EXCEEDING MTCA METHOD A CLEANUP LEVEL (DASHED WHERE INFERRED)

HISTORICAL GAS STATION FEATURE

PROPERTY FEATURE

PROPERTY BOUNDARY

KING COUNTY PARCEL BOUNDARY

		SCALE
NOTES: 1. ALL LOCATIONS ARE APPR 2. FIGURE WAS PRODUCED I	OXIMATE. N COLOR. GRAYSCALE COPIES MAY NOT REPRODU	CE ALL ORIGINAL INFORMATION.
	Washington Issaquah Bellingham Seattle	FIGURE 6

Beilingnam Seattle	
Oregon Portland Baker City	ESTIMATED AREAL EXTENT OF PETROLEUM HYDROCARBONS IN SOIL
California Oakland Irvine	MORNINGSIDE ACRES TRACTS 5001, 5015, AND 5021 RAINIER AVENUE SOUTH SEATTLE, WASHINGTON
ng.com	FARALLON PN: 1355-001

Ν

30

N FEET

Date: 8/2/2023 Checked By: SB Disc Reference: Document Path: Q:\Projects\1355 Morningside\001 RainierAveS\Mapfiles\018\Figure-06_Soil_TPH.mxd

 MW+14/021+14

 2/16/2007|<1.0|<1.0|<0.2|<1.0|<1.0</td>

 2/12/2013|<1|<1|<0.2|<1|---</td>

 12/15/2017|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0.20|<0 1,2-DCP = 1,2-DICHLOROPROPANE -- = DENOTES SAMPLE NOT ANALYZED ND = NOT DETECTED; METHOD REPORTING LIMIT UNKNOWN MTCA = WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION VOCs = VOLATILE ORGANIC COMPOUNDS UST = UNDERGROUND STORAGE TANK LEGEND DECOMMISSIONED MONITORING WELL SHALLOW MONITORING WELL 30 DEEP MONITORING WELL BORING WITH RECONNAISSANCE GROUNDWATER SCALE IN FEET SAMPLE (FARALLON) ANGLED BORING (FARALLON) NOTES 1. ALL LOCATIONS ARE APPROXIMATE. 2. FIGURE WAS PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION. BORING (FARALLON) BORING (G-LOGICS) BORING (KLEINFELDER) ESTIMATED EXTENT OF CHI ORINATED VOCS MTCA METHOD A OR B CLEANUP LEVELS IN GROUNDWATER (BASED ON MOST RECENT DASHED WHERE INFERRED INFERRED GROUNDWATER FLOW DIRECTION HISTORICAL GAS STATION FEATURE

PROPERTY FEATURE

0

۲

-0

۲

0

PROPERTY BOUNDARY

KING COUNTY PARCEL BOUNDARY

		Washington Issaquah Bellingham Seattle	FIGURE 7
S EXCEEDING		Oregon	ESTIMATED AREAL EXTENT OF CHLORINATED VOCS
DATA),	F ADALLONI	Portland Baker City	MORNINGSIDE ACRES TRACTS
N	FARALLON	California Oakland L Invine	5001, 5015, AND 5021
	CONSOLITING		SEATTLE, WASHINGTON
	Your Challenges. Our Priority.	farallonconsulting.com	
	Drawn By: Imurock	Checked By: SB	PARALLON PN: 1355-001 Date: 8/2/2023 Disc Reference:
	Brawn By: marook	Document Pa	ath: Q:\Projects\1355 Morningside\001 RainierAveS\Mapfiles\018\Figure-07_GW_VOCs.mxd

LEGEND

T

- DECOMMISSIONED MONITORING WELL
- DEEP MONITORING WELL
- BORING WITH RECONNAISSANCE GROUNDWATER SAMPLE
 (FARALLON)
- ANGLED BORING (FARALLON)
- BORING (FARALLON)
- BORING (G-LOGICS)
- BORING (KLEINFELDER)
- SUMP SEDIMENT SAMPLE
- LINE OF CROSS SECTION
- HISTORICAL GAS STATION FEATURE
 - PROPERTY FEATURE
 - PROPERTY BOUNDARY
 - KING COUNTY PARCEL BOUNDARY
- UST = UNDERGROUND STORAGE TANK

	Washington Issaquah Bellingham Seattle	FIGURE 9	
	Oregon Portland Baker City	CROSS SECTION LOCATIONS	
Farallon	California	5001, 5015, AND 5021	
CONSULTING	Oakland Irvine		
Your Challenges. Our Priority.	farallonconsulting.com	SEATTLE, WASHINGTON	
		FARALLON PN: 1355-001	

Drawn By: RB Checked By: SB

Date: 07/31/2023

65 —

GLP-08 (TP 24'SE) ?--V1777

LEGEND

BORING OR MONITORING WELL LOCATION	(<0.20 <0.20 <0.20 <0.20 <0.20)	GROUNDWATER RESULTS FOR (DATE TCE CIS-1,2-DCE VC 1,2-DCA 1,2-DCP) IN MICROGRAMS PER LITER (MOST RECENT RESULTS SHOWN A
- TRANSPOSED (TP) IN FEET, NORTHWEST	[<0.03 <0.03]	SOIL RESULTS FOR [TCE VC] IN MILLIGRAMS PER KILOGRAM
CROSS-SECTION LINE	<	DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE REPORTING LIMIT LISTED
	BOLD	INDICATES CONCENTRATION EXCEEDS THE MTCA METHOD A OR B CLEANUP LEVELS
WHERE INFERRED		SAMPLE NOT ANALYZED FOR CONSTITUENT
- GROUNDWATER LEVEL (10/2/2018)	UST	UNDERGROUND STORAGE TANK
- GROUNDWATER LEVEL (7/19/2023)	MTCA	WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION
- SOIL SAMPLE	VOC	VOLATILE ORGANIC COMPOUND
- GROUNDWATER SAMPLE	TCE	TRICHLOROETHENE
	CIS-1,2-DCE	CIS-1,2-DICHLOROETHENE
- WELL SCREEN INTERVAL	VC	VINYL CHLORIDE
	1,2-DCP	1,2-DICHLOROPROPANE
ESTIMATED EXTENT OF CHLORINATED VOCS IN SOIL - EXCEEDING MTCA METHOD A OR B CLEANUP LEVELS (DASHED WHERE INFERRED)	1,2-DCA S	1,2-DICHLOROETHANE

ESTIMATED EXTENT OF CHLORINATED VOCS IN — GROUNDWATER EXCEEDING MTCA METHOD A OR B CLEANUP LEVELS

— 65

N AT EACH LOCATION)

Washington Issaquah Bellingham Seattle	FIGURE 11
Oregon Portland Baker City FARALLON CONSULTING Your Challenges. Our Priority. farallonconsulting.com	CROSS SECTION B-B' CHLORINATED VOCs MORNINGSIDE ACRES TRACTS 5001, 5015, AND 5021 RAINIER AVENUE SOUTH SEATTLE, WASHINGTON
Drawn By: RB Checked By: SB	Date: 07/31/2023

CROSS SECTION A-A' PETROLEUM HYDROCARBONS MORNINGSIDE ACRES TRACTS 5001, 5015, AND 5021 RAINIER AVENUE SOUTH SEATTLE, WASHINGTON FARALLON PN:1355-001

LEGEND

- DECOMMISSIONED MONITORING WELL
- \blacklozenge SHALLOW MONITORING WELL
- \bullet DEEP MONITORING WELL
- BORING WITH RECONNAISSANCE GROUNDWATER \bullet SAMPLE (FARALLON)
- -0 ANGLED BORING (FARALLON)
- BORING (FARALLON) ۲
- ۲ BORING (G-LOGICS)
- BORING (KLEINFELDER) 0
- IN-SITU CHEMICAL REDUCTION/ENHANCED 0 BIOREMEDIATION INJECTION WELL
- ASSUMED INJECTION AREA OF INFLUENCE
- APPROXIMATE SOURCE AREA TO BE EXCAVATED (MAXIMUM EXCAVATION DEPTH = 20 FEET BELOW GROUND SURFACE)
- HISTORICAL GAS STATION FEATURE

PROPERTY FEATURE

PROPERTY BOUNDARY

KING COUNTY PARCEL BOUNDARY

Ise	Washington saquah Bellingham Seattle	FIGURE 13
	Oregon Portland Baker City	ALTERNATIVE 3 MORNINGSIDE ACRES TRACTS
FARALLON Consulting	California Oakland Irvine	5001, 5015, AND 5021 RAINIER AVENUE SOUTH SEATTLE, WASHINGTON
Your Challenges. Our Priority. farall	onconsulting.com	FARALLON PN: 1355-001
Drawn By: Imurock	Checked By: SB Document Pat	Date: 8/2/2023 Disc Reference: h: Q:\Projects\1355 Morningside\001 RainierAveS\Mapfiles\018\Figure-13_Alternative-3.mxd

TABLES

SECOND ADDENDUM TO REMEDIAL INVESTIGATION AND FEASIBILITY STUDY REPORT Morningside Acres Tracts 5001, 5015, and 5021 Rainier Avenue South Seattle, Washington

Farallon PN: 1355-001

Table 1Groundwater ElevationsMorningside Acres TractsSeattle, WashingtonFarallon PN: 1355-001

Location	Top of Casing Elevation (foot NA VD89) ¹	Screened Interval	Screened Interval	Monitoring	Depth to Water	Depth to LNAPL	LNAPL Thickness	Water Level Elevation
Location	(leet NAVDoo)	(leet)	(leet NA V Doo)	1/5/2007	0.01	(leet)	(leet)	(Ieet NA V Doo)
				1/10/2007	9.91			104.90
				2/20/2007	9.99			104.88
MW-1	114 87	8 - 18	106.9 - 96.9	2/20/2007	10.41			104.40
10100 1	111.07	0 10	100.9 90.9	8/9/2021	NM			104.55
				2/22/2023	9.70			105.17
				7/19/2023	10.40			103.17
				1/5/2007	16.07			98.31
				1/10/2007	Drv			
				2/20/2007	15.66			98.72
				2/12/2013	9.43			104.95
MW-2	114.38	8 - 18	106.4 - 96.4	12/14/2017	9.41			104.97
				10/2/2018	9.71			104.67
				8/9/2021	9.82			104.56
				2/20/2023	9.38			105.00
				7/19/2023	9.76			104.62
				1/5/2007	9.79			105.18
				1/10/2007	12.11			102.86
				2/20/2007	10.55			104.42
				2/12/2013	9.48			105.49
MW-3	114.97	8 - 18	107.0 - 97.0	12/14/2017	9.78			105.19
				10/2/2018	10.83			104.14
				8/9/2021	10.34			104.63
				2/20/2023	9.22			105.75
				7/19/2023	10.10			104.87
		6.5 - 16.5		1/5/2007	7.26			105.73
				1/10/2007	7.25			105.74
				2/20/2007	7.39			105.60
	110.00		104 5 04 5	2/12/2013	7.44			105.55
MW-4	112.99		106.5 - 96.5	12/14/2017	7.87			105.12
				10/2/2018	8.48			104.51
				8/9/2021	NM 7.00			
				2/22/2023	7.09			105.90
				1/19/2023	7.70			103.29
	114.85	9 - 13		1/10/2007	NM			104.90
				2/20/2007	NM			
MW-5			105.9 - 101.9	2/12/2013	NM			
			10000 1010	8/9/2021	NM			
				2/20/2023	NM			
				7/19/2023	NM			
				1/5/2007	10.04			105.11
				1/10/2007	10.04			105.11
				2/20/2007	NM			
				2/12/2013	10.51			104.64
MW-6	115.15	9.5 - 14.5	105.7 - 100.7	12/14/2017	10.77			104.38
				10/2/2018	11.20			103.95
				8/9/2021	10.82			104.33
				2/20/2023	9.80			105.35
ļ	L			7/19/2023	10.47			104.68
				1/5/2007	1.10			107.19
				1/10/2007	0.98			107.31
				2/20/2007	1.09			107.20
1000	100.20		101.0 01.0	2/12/2013	1.07			107.22
MW-7/	108.29	6.5 - 11.5	101.8 - 96.8	12/14/2017	1.46			106.83
				10/2/2018	2.21			106.08
				8/9/2021	1.70			106.59
				2/20/2023	0.78			10/.51
1	1		1	//19/2023	1.42			100.8/

Table 1Groundwater ElevationsMorningside Acres TractsSeattle, WashingtonFarallon PN: 1355-001

	Top of Casing	Screened	Screened		Depth to	Depth to	LNAPL	Water Level
	Elevation	Interval	Interval	Monitoring	Water	LNAPL	Thickness	Elevation
Location	(feet NAVD88) ²	(feet)	(feet NAVD88) ²	Date	(feet)	(feet)	(feet)	(feet NAVD88) ²
				1/5/2007	10.01			106.27
				1/10/2007	10.41			105.87
				2/20/2007	10.46			105.82
MW-8	116.28	95-145	106.8 - 101.8	12/12/2013	10.21			105.07
141 44 -0	110.20	9.5 - 14.5	100.0 - 101.0	10/2/2018	11.26			105.72
				8/9/2021	10.94			105.02
				2/20/2023	10.34			105.94
				7/19/2023	10.52			105.50
				1/5/2007	9.36			105.29
				1/10/2007	9.25			105.40
				2/20/2007	9.75			104.90
				2/12/2013	9.51			105.14
MW-9	114.65	9 - 19	105.7 - 95.7	12/14/2017	9.89			104.76
				10/2/2018	10.42			104.23
				8/9/2021	9.90			104.80
				2/20/2023	8.91			105.74
				7/19/2023	9.50			105.15
				1/5/2007	8.58	NM	NM	106.00
				1/10/2007	8.65	NM	NM	105.93
				2/20/2007	9.35	Present	NM	105.23
				2/12/2013	9.74	NM	NM	104.84
MW-10	114 58	0 10	105 6 05 6	12/14/2017	9.94	9.52	0.42	104.64
11111 10	111.50	, 1,	105.0 55.0	10/2/2018	10.54	10.33	0.21	104.04
				8/9/2021	10.28	Present	NM	104.40
				2/20/2023	10.32	Present	NM	104.26
				3/16/2023	9.85	Present	NM	104.73
				7/19/2023	9.88	9.06	0.82	104.70
				1/10/2007	0.48			107.99
				2/20/2007	0.51			107.96
				2/12/2013	0.53			107.94
MW-11	108.47	3 - 13	105.5 - 95.5	12/14/2017	0.81			107.00
				8/0/2021	0.83			107.51
				2/20/2023	0.60			107.87
				7/19/2023	0.67			107.80
				1/10/2007	1.61			107.56
		109.17 3 - 8		2/20/2007	1.96			107.21
				2/12/2013	1.96			107.21
NUV 12	100.17		10(2, 101.2	12/14/2017	2.38			106.79
IVI W-12	109.17		106.2 - 101.2	10/2/2018	3.11			106.06
				8/9/2021	2.58			106.59
				2/20/2023	1.81			107.36
				7/19/2023	2.26			106.91
				1/10/2007	6.22			105.60
				2/20/2007	6.44			105.38
				2/12/2013	6.49			105.33
MW-13	111.82	5 - 15	106.8 - 96.8	12/14/2017	7.11			104.71
				10/2/2018	7.59			104.23
				8/9/2021	6.97			104.85
				7/10/2022	4.20			107.50
				2/20/2007	0.09			105./3
				2/12/2007	9.20			106.09
				12/15/2017	9.56			106.75
MW-14	115.89	16 - 26	99.9 - 89.9	10/2/2018	10.22			105.55
	110.09	10 - 20	77.7 - 07.7	8/9/2021	9.78			106.11
				2/20/2023	8,96			106.93
				7/19/2023	NM			NM

Table 1Groundwater ElevationsMorningside Acres TractsSeattle, WashingtonFarallon PN: 1355-001

	Top of Casing	Screened	Screened		Depth to	Depth to	LNAPL	Water Level	
	Elevation	Interval	Interval	Monitoring	Water	LNAPL	Thickness	Elevation	
Location	(feet NAVD88) ¹	$(\mathbf{feet})^2$	(feet NAVD88) ¹	Date	(feet) ²	(feet) ²	(feet) ²	(feet NAVD88) ¹	
				2/20/2007	9.69			106.23	
MW-15	115.92	7 - 17		2/12/2013	9.47			106.45	
				12/14/2017	9.91			106.01	
			108.9 - 98.9	10/2/2018	10.73			105.19	
				8/9/2021	10.33			105.59	
				2/20/2023	9.81			106.11	
				7/19/2023	10.35			105.57	
MW-16	108.68	2 - 6	106.7 - 102.7	2/20/2007	1.65			107.03	
				2/12/2013	1.65			107.03	
				12/14/2017	2.05			106.63	
				10/2/2018	2.70			105.98	
				8/9/2021	2.19			106.49	
				2/20/2023	1.36			107.32	
				2/20/2007	1.80			100.82	
	113.61	6 - 16	107.6 - 97.6	2/20/2007	8.62			104.99	
				12/12/2013	8.03			104.98	
MW-17				10/2/2018	0.92			104.09	
IVI VV -1 /				8/0/2021	9.38			104.23	
				2/20/2023	8.02			105.59	
				7/19/2023	8.62			103.35	
	114.79	7 - 17	107.8 - 97.8	2/20/2007	10.38			104.94	
MW-18				2/12/2013	10.33			104.32	
				12/14/2017	10.17			104.12	
				10/2/2018	11.18			103.61	
				8/9/2021	10.72			104.18	
				2/20/2023	9.07			105.72	
				3/16/2023	9.77			105.02	
				7/19/2023	10.32			104.47	
	113.31	25 - 30	88.3 - 83.3	12/14/2017	8.43			104.88	
				10/2/2018	8.94			104.37	
MW-19				8/9/2021	8.61			104.70	
				2/20/2023	7.72			105.59	
				7/19/2023	8.28			105.03	
MW-20	114.75	15 - 25	99.8 - 89.8	10/2/2018	8.83			105.92	
				8/9/2021	9.07			105.68	
				2/24/2023	8.72			106.03	
				7/19/2023	9.17			105.58	
MW-21	112.86	35 - 45	77.9 - 67.9	10/2/2018	8.52			104.34	
				8/9/2021	8.01			104.85	
				2/20/2023	7.29			105.57	
				7/19/2023	8.15			104.71	
MW-22 MW-23	115.31	8-18 38-48	107.3 - 97.3	2/20/2023	9.46			105.85	
				3/16/2023	9.45			105.86	
				7/19/2023	9.90			105.41	
				2/20/2023	42.23			73.14	
				3/16/2023	30.50			84.87	
				7/19/2023	10.34			105.03	
MW-24	114.01	35-45	79.9 - 69.9	2/20/2023	13.37			101.54	
	114.91			3/16/2023	9.14			105.77	
	115.00	5 1 5	110.1 100.1	7/19/2023	9.61			105.30	
MW-25	115.09	5-15	110.1 - 100.1	7/19/2023	10.16			104.93	
IVI W-20	114.92	33-43 9 1 9	/9.9 - 69.9	7/19/2023	10.11			104.81	
IVI W-2 /	114.88	8-18	106.9 - 96.9	//19/2023	10.29			104.59	

Notes:

--- denotes LNAPL not present or groundwater elevation not calculated.

¹ In feet referenced to North American Vertical Datum of 1988 (NAVD88).

² In feet below top of well casing.

LNAPL = light non-aqueous phase liquid NM = not measured

Table 2Soil Analytical Results for Chlorinated VOCsMorningside Acres TractsSeattle, WashingtonFarallon PN: 1355-001

						Analytical Results (milligrams per kilogram) ¹									
Location	Sampled By	Sample Identification	Sample Depth (feet bgs unless otherwise noted)	Zone	Sample Date	РСЕ	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride	1,1- Dichloroethene	1,2- Dichloroethane	1,2- Dichloropropane	Chloroethane	1,1,2- Trichloroethane
GP-1	Kleinfelder	GP1-4@13'	13	Vadose	6/8/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	
GP-2	Kleinfelder	GP2-3a	10	Vadose	6/8/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	
GP-3	Kleinfelder	GP3-3a	10	Vadose	8/2/2006	< 0.02	< 0.02	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	
GP-4	Kleinfelder	GP4-3a	8.0 feet bbf	Vadose	8/2/2006	< 0.02	0.24	0.14	< 0.05	0.30	< 0.05	< 0.05	< 0.05	< 0.05	
GP-5	Kleinfelder	GP5-3a	10	Vadose	8/2/2006	< 0.02	< 0.02	< 0.05	< 0.05	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	
GLP-05	G-Logics	GLP-05-05	5.0	Vadose	1/5/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
GLP-08	G-Logics	GLP-08-7	7.0 feet bbf	Saturated	1/5/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
GLP-09	G-Logics	GLP-09-2	2.0 feet bbf	Vadose	1/5/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
	G-Logics	GLP-09-8	8.0 feet bbf	Vadose	1/5/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
	G-Logics	GLP-09-12	12.0 feet bbf	Saturated	1/5/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
GLP-10	G-Logics	GLP-10-3	3.0 feet bbf	Vadose	1/5/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
	G-Logics	GLP-10-7	7.0 feet bbf	Saturated	1/5/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
	G-Logics	GLP-10-9	9.0 feet bbf	Saturated	1/5/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
GLP-11	G-Logics	GLP-11-3	3.0 feet bbf	Vadose	1/5/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
GLP-12	G-Logics	GLP-12-6	6.0	Vadose	1/5/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
GLP-13	G-Logics	GLP-13-4	4.0 feet bbf	Vadose	2/16/2007	< 0.02	< 0.03	0.054	< 0.02	0.77	< 0.05	< 0.03	< 0.02	< 0.06	
	G-Logics	GLP-13-8	8.0 feet bbf	Vadose	2/16/2007	< 0.02	< 0.03	< 0.02	< 0.02	0.036	< 0.05	< 0.03	< 0.02	< 0.06	
	G-Logics	GLP-13-12	12.0 feet bbf	Saturated	2/16/2007	< 0.02	< 0.03	< 0.02	< 0.02	0.087	< 0.05	< 0.03	< 0.02	< 0.06	
	G-Logics	GLP-13-12 DUP	12.0 feet bbf	Saturated	2/16/2007	< 0.02	< 0.03	< 0.02	< 0.02	0.092	< 0.05	< 0.03	< 0.02	< 0.06	
GLP-14	G-Logics	GLP-14-13	13.0	Saturated	2/16/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
	G-Logics	GLP-14-24	24.0	Saturated	2/16/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
GLP-15	G-Logics	GLP-15-13	13.0	Saturated	2/16/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
	G-Logics	GLP-15-15	15.0	Saturated	2/16/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
GLP-16	G-Logics	GLP-16-4	4.0 feet bbf	Saturated	2/16/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
	G-Logics	GLP-16-6	6.0 feet bbf	Saturated	2/16/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
GLP-17	G-Logics	GLP-17-11	11.0	Vadose	2/16/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
	G-Logics	GLP-17-15	15.0	Saturated	2/16/2007	< 0.02	< 0.03	0.027	0.039	0.041	< 0.05	< 0.03	< 0.02	< 0.06	
MTCA Method A Cleanup Level ²					0.05	0.03	160 ³	1,600 ³	0.67 ³	4,000 ³	11 ³	27.0 ³	NE	18 ³	
MTCA Method B Cleanup Levels for Soil Protective of Groundwater Vadose @ 13 Degrees Celsius ⁴							0.079	0.52	0.0017	0.046	0.023	0.025	NE	0.017	
MTCA Method B Cleanup Levels for Soil Protective of Groundwater Saturated ⁴							0.0052	0.032	0.00009	0.0025	0.0016	0.0017	NE	0.0011	
Table 2Soil Analytical Results for Chlorinated VOCsMorningside Acres TractsSeattle, WashingtonFarallon PN: 1355-001

									Ana	lytical Results (mi	lligrams per kilog	ram) ¹			
Location	Sampled By	Sample Identification	Sample Depth (feet bgs unless otherwise noted)	Zone	Sample Date	РСЕ	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride	1,1- Dichloroethene	1,2- Dichloroethane	1,2- Dichloropropane	Chloroethane	1,1,2- Trichloroethane
CI D 19	G-Logics	GLP-18-10	10.0	Vadose	2/16/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
OLF-10	G-Logics	GLP-18-15	15.0	Saturated	2/16/2007	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.05	< 0.03	< 0.02	< 0.06	
	Farallon	MW-19-10.0	10.0	Vadose	12/11/2017	< 0.0024	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0078	< 0.0012
MW 10	Farallon	MW-19-15.0	15.0	Saturated	12/11/2017	< 0.0033	0.18	0.016	0.0043	0.017	< 0.0017	< 0.0017	< 0.0017	< 0.011	< 0.0017
IVI VV - 19	Farallon	MW-19-22.5	22.5	Saturated	12/12/2017	< 0.0025	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0080	< 0.0013
	Farallon	MW-19-30.0	30.0	Saturated	12/12/2017	< 0.0025	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0080	< 0.0012
	Farallon	FB-20-10.0	10.0	Vadose	4/13/2018	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0084	< 0.0013
MW 20	Farallon	FB-20-13.0	13.0	Vadose	4/13/2018	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0085	< 0.0013
IVI W -20	Farallon	MW-20-15.0	15.0	Vadose	5/8/2018	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0060	< 0.0012
	Farallon	MW-20-20.0	20.0	Saturated	5/8/2018	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0054	< 0.0011
	Farallon	MW-21-30	30.0	Saturated	8/28/2018	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0078	< 0.0016
MW 21	Farallon	MW-21-35	35.0	Saturated	8/28/2018	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0085	< 0.0017
IVI W -21	Farallon	MW-21-40	40.0	Saturated	8/28/2018	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0067	< 0.0013
	Farallon	MW-21-45	45.0	Saturated	8/28/2018	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0078	< 0.0016
	Farallon	MW-23-10.0	10.0	Saturated	2/14/2023	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0064	< 0.0013
	Farallon	MW-23-15.0	15.0	Saturated	2/14/2023	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0064	< 0.0013
MW 22	Farallon	MW-23-20.0	20.0	Saturated	2/14/2023	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0078	< 0.0016
MW-23	Farallon	MW-23-30.0	30.0	Saturated	2/14/2023	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0081	< 0.0016
	Farallon	MW-23-45.0	45.0	Saturated	2/15/2023	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0077	< 0.0015
	Farallon	MW-23-50.0	50.0	Saturated	2/15/2023	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0063	< 0.0013
NUV 24	Farallon	FB-30-40.0	40.0	Saturated	2/16/2023	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0059	< 0.0012
MW-24	Farallon	FB-30-45.0	45.0	Saturated	2/16/2023	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0051	< 0.0010
	Farallon	MW-26-10.0	10.0	Vadose	7/18/2023	< 0.00097	< 0.00097	< 0.00097	< 0.00097	< 0.00097	< 0.00097	< 0.00097	< 0.00097	< 0.0049	< 0.00097
	Farallon	MW-26-15.0	15.0	Saturated	7/18/2023	< 0.0012	0.014	0.015	0.0017	0.014	< 0.0012	< 0.0012	< 0.0012	< 0.0058	< 0.0012
MW-26	Farallon	MW-26-25.0	25.0	Saturated	7/18/2023	< 0.00099	< 0.00099	0.0015	< 0.00099	0.0014	< 0.00099	< 0.00099	< 0.00099	< 0.0050	< 0.00099
	Farallon	MW-26-35.0	35.0	Saturated	7/18/2023	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0054	< 0.0011
	Farallon	MW-26-45.0	45.0	Saturated	7/18/2023	< 0.00088	< 0.00088	< 0.00088	< 0.00088	< 0.00088	< 0.00088	< 0.00088	< 0.00088	< 0.0044	< 0.00088
	Farallon	FB-22-10	10.0	Vadose	8/29/2018	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.0021	< 0.011	< 0.0021
FB-22	Farallon	FB-22-15	15.0	Saturated	8/29/2018	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0068	< 0.0014
	Farallon	FB-22-20	20.0	Saturated	8/29/2018	2162007 < 0.02 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.02 < 0.0012 1211/2017 < 0.0034							< 0.0063	< 0.0013	
MTCA Method	A Cleanup Level ²	•	•	•		0.05	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					NE	18 ³		
MTCA Method	B Cleanup Levels for	r Soil Protective of (Groundwater Vadose	@ 13 Degrees Co	elsius ⁴			0.079	0.52	0.0017	0.046	0.023	0.025	NE	0.017
MTCA Method	B Cleanup Levels for	r Soil Protective of (Groundwater Saturat	ed ⁴				0.0052	0.032	1,1-1,2-1,2-1,2-1,1-Vinyl ChordeDichloroethaneDichloroethaneChloroethaneTrichloroethane < 0.03 < 0.05 < 0.03 < 0.02 < 0.06 < 0.03 < 0.05 < 0.03 < 0.02 < 0.06 < 0.0012 < 0.0012 < 0.0012 < 0.0012 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0012 < 0.0012 < 0.0012 < 0.0013 < 0.0013 < 0.0080 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0084 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0085 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0016 < 0.0016 < 0.0016 < 0.0017 < 0.0017 < 0.0017 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0016 < 0.0016 < 0.0016 < 0.0078 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0014 < 0.0013 < 0.0013 < 0.0013 < 0.0013 < 0.0015 < 0.0013 < 0					

Table 2 Soil Analytical Results for Chlorinated VOCs **Morningside Acres Tracts** Seattle, Washington Farallon PN: 1355-001

									Ana	alytical Results (mi	lligrams per kilog	ram) ¹			
Location	Sampled By	Sample Identification	Sample Depth (feet bgs unless otherwise noted)	Zone	Sample Date	PCE	ТСЕ	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride	1,1- Dichloroethene	1,2- Dichloroethane	1,2- Dichloropropane	Chloroethane	1,1,2- Trichloroethane
	Farallon	FB-23-10	10.0	Vadose	8/29/2018	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0059	< 0.0012
ED 22	Farallon	FB-23-13	13.0	Vadose	8/29/2018	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0067	< 0.0013
FB-23	Farallon	FB-23-17	17.0	Vadose	8/29/2018	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0063	< 0.0013
	Farallon	FB-23-20	20.0	Saturated	8/29/2018	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0066	< 0.0013
ED 24	Farallon	FB-24-6.0	6.0	Saturated	4/13/2021	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.010	< 0.0020
FB-24	Farallon	FB-24-10.0	10.0	Saturated	4/13/2021	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0053	< 0.0011
	Farallon	FB-25-2.0	2.0	Vadose	4/13/2021	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0094	< 0.0019
FB-25	Farallon	FB-25-6.0	6.0	Saturated	4/13/2021	< 0.0016	< 0.0016	< 0.0016	< 0.0016	0.0019	< 0.0016	< 0.0016	< 0.0016	< 0.0078	< 0.0016
	Farallon	FB-25-10.0	10.0	Saturated	4/13/2021	< 0.0011	0.023	0.0074	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0056	< 0.0011
	Farallon	FB-26-6.0	6.0	Saturated	4/13/2021	< 0.0017	< 0.0017	< 0.0017	< 0.0017	0.0035	< 0.0017	< 0.0017	< 0.0017	< 0.0086	< 0.0017
FB-26	Farallon	FB-26-10.0	10.0	Saturated	4/13/2021	< 0.0018	0.88	0.042	< 0.0018	0.012	< 0.0018	0.0025	0.0029	< 0.0092	< 0.0018
	Farallon	FB-26-14.0	14.0	Saturated	4/13/2021		< 0.0011								
ED 27	Farallon	FB-27-10.0	10.0	Saturated	4/13/2021		< 0.0013								
ГБ-27	Farallon	FB-27-14.0	14.0	Saturated	4/13/2021		< 0.0012								
ED 29	Farallon	FB-28-2.0	2.0	Vadose	4/14/2021	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0075	< 0.0015
ГБ-28	Farallon	FB-28-6.0	6.0	Saturated	4/14/2021	< 0.0013	0.034	0.039	0.0080	0.0066	< 0.0013	< 0.0013	< 0.0013	< 0.0064	< 0.0013
FB-30	Farallon	FB-30-12.5	12.5	Saturated	2/14/2023	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0056	< 0.0011
	Farallon	FB-32-5.0	5.0	Vadose	7/13/2023							< 0.0022 J			< 0.0022 J
FB-32	Farallon	FB-32-10.0	10.0	Vadose	7/13/2023							< 0.013 J			< 0.013 J
	Farallon	FB-32-15.0	15.0	Saturated	7/13/2023							< 0.011 J			< 0.011 J
MTCA Method	A Cleanup Level ²					0.05	0.03	160 ³	1,600 ³	0.67³	4,000 ³	11 ³	27.0 ³	NE	18 ³
MTCA Method	B Cleanup Levels for	r Soil Protective of (Groundwater Vadose	@ 13 Degrees Co	elsius ⁴			0.079	Irans-1,2- roothen trans-1,2- Dichloroothen Vinyl Chlorid 1,1- Dichloroothen 1,2- Dichloroothen 1,2- Dichloroothen Trichloroothane 0012 < 0.0012						
MTCA Method	B Cleanup Levels fo	r Soil Protective of (Groundwater Saturate	ed ⁴				0.0052	0.032	0.00009	0.0025	0.0016	0.0017	NE	0.0011

NOTES:

Results in **bold** and highlighted yellow denote concentrations exceeding MTCA cleanup levels. Green highlight indicates new 2023 analytical results.

< denotes concentration not detected at or exceeding the laboratory method reporting limit listed.

--- denotes sample not analyzed or not applicable.

¹Analyzed by U.S. Environmental Protection Agency Method 8260/8260D.

²MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

³MTCA Method A cleanup level not established; the listed value is the Washington State Cleanup Levels and Risk Calculations (CLARC) MTCA Method B Standard Formula Value for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only), lowest of cancer or non-cancer values, from CLARC Master Spreadsheet dated January 2023, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

⁴Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State MTCA, Standard Method B Formula Values for Soil from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

bbf = below basement floor

bgs = below ground surface Farallon = Farallon Consulting, L.L.C.

G-Logics = G-Logics, Inc. Kleinfelder = Kleinfelder, Inc.

MTCA = Washington State Model Toxics Control Act Cleanup Regulation ND = analyte not detected; laboratory method reporting limit unknown NE = not established

PCE = tetrachloroethene

TCE = trichloroethene VOC = volatile organic compound

TCE = trichloroethene

									Analytical R	esults (milligrams]	per kilogram)				
							NWTPH-Dy			NWTPH-Cy		FPA Metho	d 8021 or 8260		EPA 7000 Series Method
			Sample Depth (feet bgs unless						DRO+ORO			EI A MUIO			litethou
Location	Sampled By	Sample Identification	otherwise noted)	Sample Date	Diesel	Mineral Oil	DRO	ORO	(C10-C36)^	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	Lead
GP-1	Kleinfelder	GP1-4@13'	13	6/8/2006	< 20	< 40		< 40 ¹	< 30	< 10	< 0.02	< 0.05	< 0.05	< 0.05	< 5
GP-2	Kleinfelder	GP2-3a	8.0	6/8/2006							< 0.02	< 0.05	< 0.05	< 0.05	
GP-3	Kleinfelder	GP3-3a	10	8/2/2006	< 20	< 40		< 40 ¹	< 30	530	0.15	< 0.05	1.1	1.3	5.6
GP-4	Kleinfelder	GP4-3a	8.0 feet bbf	8/2/2006	< 20	< 40		< 40 ¹	< 30	< 10	< 0.02	< 0.05	< 0.05	< 0.05	5.6
GP-5	Kleinfelder	GP5-3a	10	8/2/2006	< 20	< 40		< 40 ¹	< 30	< 10	< 0.02	< 0.05	< 0.05	< 0.05	< 5
GL P-01	G-Logics	GLP-01-8.5	8.5	1/5/2007						< 10 ²	< 0.02	< 0.10	< 0.05	< 0.15	
GEI VI	G-Logics	GLP-01-10	10.0	1/5/2007						< 10 ²	< 0.02	< 0.10	< 0.05	< 0.15	
GLP-02	G-Logics	GLP-02-09	9.0	1/5/2007						< 10 ²	< 0.02	< 0.10	< 0.05	< 0.15	
	G-Logics	GLP-03-03	3.0	1/5/2007						< 10 ²	< 0.02	< 0.10	< 0.05	< 0.15	
GLP-03	G-Logics	GLP-03-14	14.0	1/5/2007						< 10 ²	< 0.02	< 0.10	< 0.05	< 0.15	
GLP-04	G-Logics	GLP-04-14	14.0	1/5/2007						< 10 ²	< 0.02	< 0.10	< 0.05	< 0.15	
	G-Logics	GLP-05-05	5.0	1/5/2007	< 25		3,300 ³	6,800 ¹	10,100	4,460 ²	1.15	0.094	1.68	3.40	
	G-Logics	GLP-05-05 DUP	5.0	1/5/2007	< 25		3,630 ³	7,810 ¹	11,440						
GLP-05	G-Logics	GLP-05-11.5	11.5	1/5/2007	< 25		3,520 ³	3,480 ¹	7,000	4,800 ²	< 0.02	< 0.10	0.90	1.85	
	G-Logics	GLP-05-18	18.0	1/5/2007	< 25		785 ³	1,650 ¹	2,435	890 ²	< 0.02	< 0.10	< 0.05	0.83	
	G-Logics	GLP-06-11	11.0	1/5/2007	< 25		< 40 ³	< 40 ¹	< 40	28 ²	< 0.02	< 0.10	0.11	0.23	
	G-Logics	GLP-06-17	17.0	1/5/2007						< 10 ²	< 0.02	< 0.10	< 0.05	< 0.15	
GLP-06	G-Logics	GLP-06-18	18.0	1/5/2007						< 10 ²	< 0.02	< 0.10	< 0.05	< 0.15	
	G-Logics	GLP-06-18 DUP	18.0	1/5/2007						< 10 ²	< 0.02	< 0.10	< 0.05	< 0.15	
	G-Logics	GLP-08-7	7.0 feet bbf	1/5/2007						< 10 ²	< 0.02	< 0.02	< 0.03	< 0.03	
GLP-08	G-Logics	GLP-08-12	12.0 feet bbf	1/5/2007	< 25		< 40 ³	< 40 ¹	< 40	< 10 ²	< 0.02	< 0.10	< 0.05	< 0.15	
	G-Logics	GLP-08-12 DUP	12.0 feet bbf	1/5/2007	< 25		< 40 ³	< 40 ¹	< 40						
	G-Logics	GLP-09-2	2.0 feet bbf	1/5/2007	< 25		< 40 ³	< 40 ¹	< 40	< 10 ²	< 0.02	< 0.02	< 0.03	< 0.03	
	G-Logics	GLP-09-8	8.0 feet bbf	1/5/2007						< 10 ²	< 0.02	< 0.02	< 0.03	< 0.03	
GLP-09	G-Logics	GLP-09-12	12.0 feet bbf	1/5/2007						< 10 ²	< 0.02	< 0.02	< 0.03	< 0.03	
	G-Logics	GLP-09-12 DUP	12.0 feet bbf	1/5/2007						< 10 ²	< 0.02	< 0.10	< 0.05	< 0.15	
	G-Logics	GLP-10-3	3.0 feet bbf	1/5/2007	< 25		< 40 ³	< 40 ¹	< 40	< 10 ²	< 0.02	< 0.02	< 0.03	< 0.03	
GLP-10	G-Logics	GLP-10-7	7.0 feet bbf	1/5/2007						< 10 ²	< 0.02	< 0.02	< 0.03	< 0.03	
	G-Logics	GLP-10-9	9.0 feet bbf	1/5/2007						< 10 ²	< 0.02	< 0.02	< 0.03	< 0.03	
MTCA Method A	Cleanup Level ⁴	1			2,000	4,000	2,000	2,000 ⁵	2,000	30/100 ⁶	0.03	7	6	9	250

									Analytical R	esults (milligrams)	per kilogram)				
							NWTPH_Dy			NWTPH-Cy		FPA Methor	1 8021 or 8260		EPA 7000 Series Method
			Sample Depth (feet bgs unless						DRO+ORO	Itwilliox					Interiou
Location	Sampled By	Sample Identification	otherwise noted)	Sample Date	Diesel	Mineral Oil	DRO	ORO	(C10-C36)^	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	Lead
GLP-11	G-Logics	GLP-11-3	3.0 feet bbf	1/5/2007	< 25		< 40 ³	< 40 ¹	< 40	< 10 ²	< 0.02	< 0.02	< 0.03	< 0.03	
GLP-12	G-Logics	GLP-12-6	6.0	1/5/2007	< 25		< 40 ³	< 40 ¹	< 40	< 10 ²	< 0.02	< 0.02	< 0.03	< 0.03	
	G-Logics	GLP-12-6 DUP	6.0	1/5/2007	< 25		< 40 ³	< 40 ¹	< 40	< 10 ²	< 0.02	< 0.10	< 0.05	< 0.15	
	G-Logics	GLP-13-4	4.0 feet bbf	2/16/2007	< 25		$< 40^{3}$	< 40 ¹	< 40		< 0.02	< 0.02	< 0.03	< 0.03	
GLP-13	G-Logics	GLP-13-8	8.0 feet bbf	2/16/2007	< 25		< 40 ³	< 40 ¹	< 40		< 0.02	< 0.02	< 0.03	< 0.03	
	G-Logics	GLP-13-12	12.0 feet bbf	2/16/2007	< 25		< 40 ³	< 40 ¹	< 40		< 0.02	< 0.02	< 0.03	< 0.03	
	G-Logics	GLP-13-12 DUP	12.0 feet bbf	2/16/2007							< 0.02	< 0.02	< 0.03	< 0.03	
GI P-14	G-Logics	GLP-14-13	13.0	2/16/2007	< 25		$< 40^{3}$	< 40 ¹	< 40		< 0.02	< 0.02	< 0.03	< 0.03	
OLI-14	G-Logics	GLP-14-24	24.0	2/16/2007	< 25		< 40 ³	< 40 ¹	< 40		< 0.02	< 0.02	< 0.03	< 0.03	
GLP-15	G-Logics	GLP-15-13	13.0	2/16/2007							< 0.02	< 0.02	< 0.03	< 0.03	
OLI-15	G-Logics	GLP-15-15	15.0	2/16/2007							< 0.02	< 0.02	< 0.03	< 0.03	
CLP 16	G-Logics	GLP-16-4	4.0 feet bbf	2/16/2007	< 25		< 40 ³	< 40 ¹	< 40		< 0.02	< 0.02	< 0.03	< 0.03	
GLI-10	G-Logics	GLP-16-6	6.0 feet bbf	2/16/2007	< 25		< 40 ³	< 40 ¹	< 40		< 0.02	< 0.02	< 0.03	< 0.03	
GL P-17	G-Logics	GLP-17-11	11.0	2/16/2007							< 0.02	< 0.02	< 0.03	< 0.03	
GLI-II/	G-Logics	GLP-17-15	15.0	2/16/2007							< 0.02	< 0.02	< 0.03	< 0.03	
GI P-18	G-Logics	GLP-18-10	10.0	2/16/2007	< 25		< 40 ³	< 40 ¹	< 40	63	< 0.02	< 0.02	< 0.03	< 0.03	
OLI-18	G-Logics	GLP-18-15	15.0	2/16/2007	< 25		< 40 ³	< 40 ¹	< 40	86	< 0.02	< 0.02	< 0.03	< 0.03	
	Farallon	MW-19-10.0	10.0	12/11/2017			36	< 63	67.5	< 7.3	< 0.020	< 0.073	< 0.073	< 0.146	
MW-19	Farallon	MW-19-15.0	15.0	12/11/2017			< 33	< 66	< 49.5	< 8.7	< 0.020	< 0.087	< 0.087	< 0.174	
101 00 - 1 9	Farallon	MW-19-22.5	22.5	12/12/2017			< 34	< 67	< 50.5	< 8.6	< 0.020	< 0.086	< 0.086	< 0.172	
	Farallon	MW-19-30.0	30.0	12/12/2017			< 33	< 66	< 49.5	< 7.6	< 0.020	< 0.076	< 0.076	< 0.152	
	Farallon	FB-20-10.0	10.0	4/13/2018			< 31	< 63	< 47	< 7.7	< 0.020	< 0.077	< 0.077	< 0.154	
MW 20	Farallon	FB-20-13.0	13.0	4/13/2018			< 32	63	79	< 7.8	< 0.020	< 0.078	< 0.078	< 0.156	
101 00 -20	Farallon	MW-20-15.0	15.0	5/8/2018			< 32	< 64	< 48	< 6.9	< 0.0012	< 0.0060	< 0.0012	< 0.0072	
	Farallon	MW-20-20.0	20.0	5/8/2018			< 33	< 66	< 49.5	< 6.9	< 0.0011	< 0.0054	< 0.0011	< 0.0065	
	Farallon	MW-21-30	30.0	8/28/2018			< 32	< 64	< 48	< 8.2	< 0.0016	< 0.0078	< 0.0016	< 0.0094	
MW 21	Farallon	MW-21-35	35.0	8/28/2018			< 31	< 62	< 46.5	< 8.1	< 0.0017	< 0.0085	< 0.0017	< 0.0102	
1 v1 vv - 2 1	Farallon	MW-21-40	40.0	8/28/2018			< 31	< 62	< 46.5	< 6.5	< 0.0013	< 0.0067	< 0.0013	< 0.0080	
	Farallon	MW-21-45	45.0	8/28/2018			< 33	< 65	< 49	< 7.3	< 0.0016	< 0.0078	< 0.0016	< 0.0094	
MTCA Method A	Cleanup Level ⁴				2,000	4,000	2,000	2,000 ⁵	2,000	30/100 ⁶	0.03	7	6	9	250

									Analytical R	esults (milligrams)	per kilogram)				
			Sample Depth				NWTPH-Dx			NWTPH-Gx		EPA Metho	d 8021 or 8260		EPA 7000 Series Method
Location	Sampled By	Sample Identification	(feet bgs unless otherwise noted)	Sample Date	Diesel	Mineral Oil	DRO	ORO	DRO+ORO (C10-C36)^	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	Lead
	Farallon	MW-23-10.0	10.0	2/14/2023			< 35	< 69	< 52	< 8.2	< 0.020	< 0.082	< 0.082	< 0.164	
	Farallon	MW-23-15.0	15.0	2/14/2023			< 32	< 64	< 48	< 7.0	< 0.020	< 0.070	< 0.070	< 0.140	
MW 22	Farallon	MW-23-20.0	20.0	2/14/2023			< 33	< 66	< 49.5	< 9.0	< 0.020	< 0.090	< 0.090	< 0.180	
MW-23	Farallon	MW-23-30.0	30.0	2/14/2023			< 31	< 63	< 47	< 7.7	< 0.020	< 0.077	< 0.077	< 0.154	
	Farallon	MW-23-45.0	45.0	2/15/2023			< 31	< 62	< 46.5	< 7.5	< 0.020	< 0.075	< 0.075	< 0.150	
	Farallon	MW-23-50.0	50.0	2/15/2023			< 32	< 63	< 47.5	< 6.8	< 0.020	< 0.068	< 0.068	< 0.136	
MW 24	Farallon	FB-30-40.0	40.0	2/16/2023			< 28	< 56	< 42	< 5.9	< 0.020	< 0.059	< 0.059	< 0.118	
IVI VV -24	Farallon	FB-30-45.0	45.0	2/16/2023			< 29	< 57	< 43	< 5.5	< 0.020	< 0.055	< 0.055	< 0.11	
	Farallon	MW-25-5.0	5.0	7/14/2023			< 34 < 34 SG	< 68 < 68 SG	< 68 < 68 SG	< 6.2	< 0.020	< 0.062	< 0.062	< 0.124	
NUV 25	Farallon	MW-25-10.0	10.0	7/14/2023			< 31 < 31 SG	< 62 < 62 SG	< 62 < 62 SG	440	< 0.020	< 0.071	< 0.071	0.26	
MW-25	Farallon	MW-25-15.0	15.0	7/14/2023			< 32 < 32 SG	< 63 < 63 SG	< 63 < 63 SG	< 7.4	< 0.020	< 0.074	< 0.074	< 0.148	
	Farallon	MW-25-17.0	17.0	7/14/2023			< 31 < 31 SG	< 62 < 62 SG	< 62 < 62 SG	< 7.7	< 0.020	< 0.077	< 0.077	< 0.154	
	Farallon	FB-22-10	10.0	8/29/2018			< 42	< 84	< 63	< 12	< 0.0021	< 0.011	< 0.0021	< 0.0131	
FB-22	Farallon	FB-22-15	15.0	8/29/2018			< 33	< 66	< 49.5	< 7.9	< 0.0014	< 0.0068	< 0.0014	< 0.0082	
	Farallon	FB-22-20	20.0	8/29/2018			< 29	< 59	< 44	< 6.1	< 0.0013	< 0.0063	< 0.0013	< 0.0076	
	Farallon	FB-23-10	10.0	8/29/2018			320	< 70	355	< 18	< 0.0012	< 0.0059	< 0.0012	< 0.0071	
ED 22	Farallon	FB-23-13	13.0	8/29/2018			430	< 68	464	1,400	< 0.0013	< 0.0067	< 0.0013	< 0.0080	
FB-23	Farallon	FB-23-17	17.0	8/29/2018			< 33	< 65	< 49	< 8.2	< 0.0013	< 0.0063	< 0.0013	< 0.0076	
	Farallon	FB-23-20	20.0	8/29/2018			< 31	< 61	< 46	< 7.6	< 0.0013	< 0.0066	< 0.0013	< 0.0079	
	Farallon	FB-30-5.0	5.0	2/14/2023			520 N	5,400	5,920	150	< 0.020	< 0.081	< 0.081	0.15	
FB-30	Farallon	FB-30-10.0	10.0	2/14/2023			820 N	6,300	7,120	390	< 0.020	< 0.076	0.12	0.21	
	Farallon	FB-30-19.0	19.0	2/14/2023			< 32	< 65	< 48.5	< 7.1	< 0.020	< 0.071	< 0.071	< 0.142	
FB-32	Farallon	FB-32-10.0	10.0	7/13/2023						160	0.16	2.1	1.2	5.6	
FB-33	Farallon	FB-33-10.0	10.0	7/13/2023						480	< 0.020	< 0.062	0.092	0.29	
FB-34	Farallon	FB-34-10.0	10.0	7/13/2023						< 7.3	< 0.020	< 0.073	< 0.073	< 0.146	
FB-35	Farallon	FB-35-10.0	10.0	7/14/2023			< 31 < 31 SG	< 61 < 61 SG	< 61 < 61 SG	< 6.6	< 0.020	< 0.066	< 0.066	< 0.132	
10-55	Farallon	FB-35-11.5	11.5	7/14/2023			< 32 < 32 SG	< 64 < 64 SG	< 64 < 64 SG	< 7.8	< 0.020	< 0.078	< 0.078	< 0.156	
MTCA Method A	Cleanup Level ⁴				2,000	4,000	2,000	2,000 ⁵	2,000	30/100 ⁶	0.03	7	6	9	250

									Analytical R	esults (milligrams]	per kilogram)				
			Sample Depth				NWTPH-Dx			NWTPH-Gx		EPA Method	8021 or 8260		EPA 7000 Series Method
			(feet bgs unless						DRO+ORO						
Location	Sampled By	Sample Identification	otherwise noted)	Sample Date	Diesel	Mineral Oil	DRO	ORO	(C10-C36)^	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	Lead
	Farallon	FB-36-10.0	10.0	7/13/2023			< 33 < 33 SG	< 67 < 67 SG	< 67 < 67 SG	< 7.1	< 0.020	< 0.071	< 0.071	< 0.142	
FB-36	Farallon	FB-36-13.0	13.0	7/13/2023			< 39 < 39 SG	< 79 < 79 SG	< 79 < 79 SG	< 10	< 0.021	< 0.10	< 0.10	< 0.20	
	Farallon	FB-36-18.0	18.0	7/13/2023			< 33 < 33 SG	< 67 < 67 SG	< 67 < 67 SG	< 7.8	< 0.020	< 0.078	< 0.078	< 0.156	
MTCA Method A	Cleanup Level ⁴				2,000	4,000	2,000	2,000 ⁵	2,000	30/100 ⁶	0.03	7	6	9	250

NOTES:

Results in **bold** and highlighted yellow denote concentrations exceeding MTCA cleanup levels. Green highlight indicates new 2023 analytical results.

< denotes concentration not detected at or exceeding the laboratory method reporting limit listed.

- denotes constituent not analyzed.

^ Results are DRO+ORO calculations. A value of half the detection limit was used for non-detect values. Beginning in July 2023, results were quantified by the laboratory as hydrocarbon range of C10 to C36 (diesel and oil ranges).

* denotes sample extract treated with a silica gel cleanup procedure prior to analysis

¹Quantified as "oil."

²Quantified as "mineral spirits."

³Quantified as "kerosene."

⁴MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁵Cleanup level for total petroleum hydrocarbons as heavy oil-orange organics.

⁶Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected.

bbf = below basement floor bgs = below ground surface

DRO = total petroleum hydrocarbons as diesel-range organics

EPA = U.S. Environmental Protection Agency

Farallon = Farallon Consulting, L.L.C.

G-Logics = G-Logics, Inc.

GRO = total petroleum hydrocarbons as gasoline-range organics

Kleinfelder = Kleinfelder, Inc.

MTCA = Washington State Model Toxics Control Act Cleanup Regulation

N = hydrocarbons in the oil-range are impacting the diesel result

ND = analyte not detected; laboratory method reporting limit unknown

NWTPH-Dx = Northwest Method NWTPH-Dx

NWTPH-Gx = Northwest Method NWTPH-Gx

ORO = total petroleum hydrocarbons as oil-range organics

SG = result for sample analyzed with silica gel cleanup procedure

Table 4 Groundwater Analytical Results for Chlorinated VOCs Morningside Acres Tracts Seattle, Washington Farallon PN: 1355-001

							А	nalytical Results (r	nicrograms per lite	r) ¹			
Sample Location	Sampled By	Sample Date	Sample Identification	РСЕ	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1- Dichloroethene	1,2- Dichloroethane	Vinyl Chloride	Chloroethane	1,2- Dichloropropane	1,1,2- Trichloroethane
	• •		-		Rec	onnaissance Groun	dwater Samples	-	•	•	•	-	-
GLP-07	G-Logics	1/8/2007	GLP-07-010807	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 0.2	< 2.0	< 1.0	
FB-22	Farallon	8/29/2018	FB-22-GW	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.84	< 1.0	< 0.20	< 0.20
FB-23	Farallon	8/29/2018	FB-23-GW	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
FB-30	Farallon	2/14/2023	FB-30-15.0-GW-021423	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
110-50	Farallon	2/16/2023	FB-30-30.0-GW-021623	< 0.20 J	< 0.20 J	< 0.20 J	< 0.20 J	< 0.20 J	< 0.20 J	< 0.20 J	< 1.0 J	< 0.20 J	< 0.20
FB-31	Farallon	7/13/2023	FB-31-RGW	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
FB-32	Farallon	7/13/2023	FB-32-RGW	< 10	< 10	< 10	< 10	< 10	820	< 10	< 50	< 10	39
FB-34	Farallon	7/14/2023	FB-34-RGW	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
					Mon	itoring Well Groun	ndwater Samples						-
	Kleinfelder	5/30/2006	MW-1-053006	ND	ND	ND	ND	ND	ND	ND	ND	ND	
MW-1	G-Logics	1/8/2007	MW-1-010807	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 0.2	< 2.0	< 1.0	
	RGI	2/12/2013	MW-1-021213	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1	< 1	
	RGI	2/12/2013	MW-100-021213	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1	< 1	
	G-Logics	1/8/2007	MW-2-010807	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 0.2	< 2.0	< 1.0	
	RGI	2/12/2013	MW-2-021213	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1	< 1	
MW-2	Farallon	12/15/2017	MW-2-121517	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	10/2/2018	MW-2-100218	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	8/10/2021	MW-2-081021	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Kleinfelder	8/4/2006	MW-3-080406	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.72	< 1.0	< 1.0	
	G-Logics	1/8/2007	MW-3-010807	< 1.0	< 1.0	3.3	< 1.0	< 2.0	< 1.0	0.46	11.2	< 1.0	
MW-3	RGI	2/12/2013	MW-3-021213	< 1	< 1	1.4	< 1	< 1	< 1	< 0.2	< 1		
WI W -5	Farallon	12/15/2017	MW-3-121517	< 0.20	< 0.20	0.48	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	10/2/2018	MW-3-100218	< 0.20	< 0.20	1.2	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	8/9/2021	MW-3-080921	< 0.20	< 0.20	0.51	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Kleinfelder	5/30/2006	MW-4-053006	ND	ND	ND	ND	ND	ND	2.1	ND	ND	
	Kleinfelder	6/9/2006	MW-4-061406	ND	1.8	2.7	ND	ND	ND	16	ND	ND	
MW-4	G-Logics	1/8/2007	MW-4-010807	< 1.0	< 1.0	0.79 J	< 1.0	< 2.0	< 1.0	4.0	< 2.0	< 1.0	
	RGI	2/12/2013	MW-4-021213	< 1	< 1	1.3	< 1	< 1	< 1	7.0	< 1		
	Farallon	12/14/2017	MW-4-121417	< 0.20	0.31	0.71	< 0.20	< 0.20	< 0.20	1.5	< 1.0	< 0.20	< 0.20
	Farallon	10/2/2018	MW-4-100218	< 0.20	0.24	0.71	< 0.20	< 0.20	< 0.20	1.5	< 1.0	< 0.20	< 0.20
MW-5	Kleinfelder	6/9/2006	MW-5-061406	ND	2.2	13	ND	ND	ND	24	12	ND	
MTCA Method A C	Cleanup Level ²			5	5	16 ³	160 ³	400 ³	5	0.2	NE	1.223	0.77³
MTCA Method B V	apor Intrusion Scre	eening Level ⁴		25	1.4	180	77	130	3.5	0.33	15,000	10	5.1

Table 4Groundwater Analytical Results for Chlorinated VOCsMorningside Acres TractsSeattle, WashingtonFarallon PN: 1355-001

							А	analytical Results (r	nicrograms per lite	r) ¹			
Sample Location	Sampled By	Sample Date	Sample Identification	РСЕ	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1- Dichloroethene	1,2- Dichloroethane	Vinyl Chloride	Chloroethane	1,2- Dichloropropane	1,1,2- Trichloroethane
	Kleinfelder	8/4/2006	MW-6-080406	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.2	< 1.0	< 1.0	
	G-Logics	1/8/2007	MW-6-010807	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 0.2	< 2.0	< 1.0	
MW-6	RGI	2/12/2013	MW-6-021213	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1	< 1	
141 44 -0	Farallon	12/15/2017	MW-6-121517	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	10/2/2018	MW-6-100218	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	8/10/2021	MW-6-081021	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Kleinfelder	8/4/2006	MW-7-080406	< 1.0	51	160	< 1.0	2.5	11	260	< 1.0	3.4	
	G-Logics	1/8/2007	MW-7-010807	< 1.0	16	173	2.6	6.1	8.2	593	< 2.0	< 1.0	
	RGI	2/12/2013	MW-7-021213	< 1	25	220	3.7	3.5	6.1	290	< 1	< 1	
MW-7	Farallon	12/14/2017	MW-7-121417	< 1.0	24	140	3.7	2.9	5.1	150	< 5.0	2.4	< 1.0
	Farallon	12/14/2017	DUP-1-121417	< 1.0	24	140	3.5	2.7	5.0	140	< 5.0	2.3	< 1.0
	Farallon	10/3/2018	MW-7-100318	< 2.0	50	210	5.0	4.2	6.9	250	< 10	3.9	< 2.0
	Farallon	8/9/2021	MW-7-080921	< 0.80	34	120	2.6	2.5	4.2	150	< 4.0	2.4	< 0.80
	Kleinfelder	8/4/2006	MW-8-080406	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.2	< 1.0	< 1.0	
	G-Logics	1/8/2007	MW-8-010807	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 0.2	< 2.0	< 1.0	
MW-8	RGI	2/12/2013	MW-8-021213	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1		
141 44 -0	Farallon	12/15/2017	MW-8-121517	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	10/3/2018	MW-8-100318	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	8/10/2021	MW-8-081021	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	G-Logics	1/8/2007	MW-9-010807	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 0.2	< 2.0	< 1.0	
	RGI	2/12/2013	MW-9-021213	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1	< 1	
MW-9	Farallon	12/15/2017	MW-9-121517	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	10/3/2018	MW-9-100318	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	8/10/2021	MW-9-081021	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
MW-10	G-Logics	1/8/2007	MW-10-010807	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 0.2	< 2.0	< 1.0	
IVI VV - 10	RGI	2/12/2013	MW-10-021213	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1	< 1	
MTCA Method A C	Cleanup Level ²			5	5	16 ³	160 ³	400 ³	5	0.2	NE	1.22 ³	0.77 ³
MTCA Method B V	apor Intrusion Scre	ening Level ⁴		25	1.4	180	77	130	3.5	0.33	15,000	10	5.1

Table 4 Groundwater Analytical Results for Chlorinated VOCs Morningside Acres Tracts Seattle, Washington Farallon PN: 1355-001

							А	nalytical Results (r	nicrograms per lite	r) ¹			
Sample Location	Sampled By	Sample Date	Sample Identification	РСЕ	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1- Dichloroethene	1,2- Dichloroethane	Vinyl Chloride	Chloroethane	1,2- Dichloropropane	1,1,2- Trichloroethane
	G-Logics	1/8/2007	MW-11-010807	< 1.0	0.9	1.2	< 1.0	< 2.0	< 1.0	1.4	< 2.0	< 1.0	
	RGI	2/12/2013	MW-11-021213	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1		
MW-11	Farallon	12/14/2017	MW-11-121417	< 0.20	< 0.20	0.73	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	10/3/2018	MW-11-100318	< 0.20	< 0.20	1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	8/9/2021	MW-11-080921	< 0.20	< 0.20	0.62	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	G-Logics	1/8/2007	MW-12-010807	< 1.0	12.2	6.2	< 1.0	< 2.0	< 1.0	1.2	< 2.0	< 1.0	
	RGI	2/12/2013	MW-12-021213	< 1	8.3	6.7	< 1	< 1	< 1	0.26	< 1		
MW-12	Farallon	12/14/2017	MW-12-121417	< 0.20	23	29	2.7	0.72	0.57	11	< 1.0	0.52	< 0.20
	Farallon	10/3/2018	MW-12-100318	< 0.40	38	46	4.5	1.1	0.80	13	< 2.0	0.79	< 0.40
	Farallon	8/9/2021	MW-12-080921	< 0.40	47	57	4.7	1.2	0.91	20	< 2.0	0.75	< 0.40
	G-Logics	1/8/2007	MW-13-010807	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 0.2	< 2.0	< 1.0	
	RGI	2/12/2013	MW-13-021213	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1		
MW-13	Farallon	12/14/2017	MW-13-121417	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	10/2/2018	MW-13-100218	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	8/9/2021	MW-13-080921	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	G-Logics	2/16/2007	MW-14-021607	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 0.2	< 2.0	< 1.0	
	RGI	2/12/2013	MW-14-021213	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1		
MW-14	Farallon	12/15/2017	MW-14-121517	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	10/3/2018	MW-14-100318	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	8/10/2021	MW-14-081021	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	G-Logics	2/16/2007	MW-15-021607	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 0.2	< 2.0	< 1.0	
	RGI	2/12/2013	MW-15-021213	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1		
MW-15	Farallon	12/14/2017	MW-15-121417	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	10/3/2018	MW-15-100318	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	8/9/2021	MW-15-080921	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
MTCA Method A C	Cleanup Level ²			5	5	16 ³	160 ³	400 ³	5	0.2	NE	1.22 ³	0.77 ³
MTCA Method B V	apor Intrusion Scre	eening Level ⁴		25	1.4	180	77	130	3.5	0.33	15,000	10	5.1

Table 4Groundwater Analytical Results for Chlorinated VOCsMorningside Acres TractsSeattle, WashingtonFarallon PN: 1355-001

							А	nalytical Results (r	nicrograms per lite	r) ¹							
Sample Location	Sampled By	Sample Date	Sample Identification	РСЕ	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1- Dichloroethene	1,2- Dichloroethane	Vinyl Chloride	Chloroethane	1,2- Dichloropropane	1,1,2- Trichloroethane				
	G-Logics	2/16/2007	MW-16-021607	< 1.0	30.2	27.9	< 1.0	< 2.0	< 1.0	7	< 2.0	< 1.0					
	RGI	2/12/2013	MW-16-021213	< 1	2.4	24	6.1	< 1	< 1	6.6	< 1						
MW-16	Farallon	12/14/2017	MW-16-121417	< 0.20	1.7	30	7.2	0.55	< 0.20	8.1	< 1.0	< 0.20	< 0.20				
	Farallon	10/3/2018	MW-16-100318	< 0.20	1.2	25	5.4	0.44	< 0.20	7.0	< 1.0	< 0.20	< 0.20				
	Farallon	8/9/2021	MW-16-080921	< 0.20	1.2	25	4.7	0.41	< 0.20	7.1	< 1.0	< 0.20	< 0.20				
	G-Logics	2/16/2007	MW-17-021607	< 1.0	109	77.3	< 1.0	5.6	< 1.0	155	< 2.0	< 1.0					
	RGI	2/12/2013	MW-17-021213	< 1	48	41	17	2.5	< 1	76	9.2						
MW 17	Farallon	12/14/2017	MW-17-121417	< 0.20	18	23	8.4	0.92	0.31	23	8	0.32	< 0.20				
1 v1 vv - 1 /	Farallon	12/14/2017	DUP-2-121417	< 0.20	17	23	8.3	0.89	0.31	22	7.9	0.29	< 0.20				
	Farallon	10/2/2018	MW-17-100218	< 0.40	31	34	15	2.3	0.41	46	22	0.41	< 0.40				
	Farallon	8/9/2021	MW-17-080921	< 0.20	16	23	8.8	1.2	0.20	22	4.2	0.26	< 0.20				
	G-Logics	2/16/2007	MW-18-021607	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 0.2	< 2.0	< 1.0					
	RGI	2/12/2013	MW-18-021213	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1	< 1					
MW-18	Farallon	12/15/2017	MW-18-121517	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20				
	Farallon	10/3/2018	MW-18-100318	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20				
	Farallon	8/10/2021	MW-18-081021	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20				
	Farallon	12/14/2017	MW-19-121417	< 0.40	6.6	19	2.7	0.72	< 0.40	41	< 2.0	< 0.40	< 0.40				
MW-19	Farallon	10/2/2018	MW-19-100218	< 0.20	0.86	3.7	0.21	< 0.20	< 0.20	8.5	< 1.0	< 0.20	< 0.20				
	Farallon	8/9/2021	MW-19-080921	< 0.20	1.2	7.1	0.51	< 0.20	< 0.20	15	< 1.0	< 0.20	< 0.20				
MTCA Method A C	Cleanup Level ²			5	5	16 ³	160 ³	400 ³	5	0.2	NE	1,2- Dichloropropane1 1 < 2.0 < 1.0 < 1 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 2.0 < 1.0 9.2 8 0.32 7.9 0.29 22 0.41 4.2 0.26 < 2.0 < 1.0 < 1 < 1 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 <t< td=""></t<>					
MTCA Method B V	apor Intrusion Scre	ening Level ⁴		25	1.4	180	77	130	3.5	0.33	15,000	Dichloropropane Tri < 2.0 < 1.0 < 1 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 2.0 < 1.0 9.2 8 0.32 7.9 0.29 22 0.41 4.2 0.26 < 2.0 < 1.0 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0 < 0.20 < 1.0					

Table 4 **Groundwater Analytical Results for Chlorinated VOCs Morningside Acres Tracts** Seattle, Washington Farallon PN: 1355-001

							А	nalytical Results (r	nicrograms per lite	r) ¹			
Sample Location	Sampled By	Sample Date	Sample Identification	РСЕ	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	1,1- Dichloroethene	1,2- Dichloroethane	Vinyl Chloride	Chloroethane	1,2- Dichloropropane	1,1,2- Trichloroethane
	Farallon	5/10/2018	MW-20-051018	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
MW-20	Farallon	10/3/2018	MW-20-100318	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	8/10/2021	MW-20-081021	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
	Farallon	10/2/2018	MW-21-100218	< 0.20 J	1.2 J	2.6 J	0.39 J	< 0.20 J	< 0.20 J	7.9 J	< 1.0 J	< 0.20 J	< 0.20
MW-21	Farallon	8/9/2021	MW-21-080921	< 0.20	< 0.20	0.55	< 0.20	< 0.20	< 0.20	0.98	< 1.0	< 0.20	< 0.20
	Farallon	2/20/2023	MW-21-022023	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.21	< 1.0	< 0.20	< 0.20
MW-22	Farallon	2/20/2023	MW-22-022023	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
MW-23	Farallon	2/20/2023	MW-23-022023	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
MW-24	Farallon	2/22/2023	MW-24-022223	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
MW-26	Farallon	7/20/2023	MW-26-072023	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20
MW-27	Farallon	7/20/2023	MW-27-072023	< 0.40	9.4	34	2.8	1.4	0.53	48	< 2.0	0.41	< 0.40
MTCA Method A C	Cleanup Level ²			5	5	16 ³	160 ³	400 ³	5	0.2	NE	1.22 ³	0.77 ³
MTCA Method B V	apor Intrusion Scre	ening Level ⁴		25	1.4	180	77	130	3.5	0.33	15,000	10	5.1

NOTES:

Results in **bold** denote concentrations exceeding MTCA cleanup levels. Green highlight indicates new 2023 analytical results.

Results in shaded cells denote concentrations exceeding MTCA vapor intrusion screening levels.

< denotes concentration not detected at or exceeding the laboratory method reporting limit listed.

- denotes constituent not analyzed.

¹Analyzed by U.S. Environmental Protection Agency Method 8260/8260D.

²MTCA Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

³MTCA Method A cleanup level not established; the listed value is the Washington State Cleanup Levels and Risk Calculations (CLARC) MTCA Method B Standard Formula Value for Groundwater - Direct Contact (Ingestion and Inhalation Only), lowest of cancer or non-cancer values, from CLARC Master Spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-⁴Washington State CLARC MTCA Method B Standard Formula Value - Groundwater Screening Level for Vapor Intrusion Pathway, lowest of cancer or non-cancer values, from CLARC Master Spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

Farallon = Farallon Consulting, L.L.C. G-Logics = G-Logics, Inc. J = result is an estimate Kleinfelder = Kleinfelder, Inc. MTCA = Washington State Model Toxics Control Act Cleanup Regulation ND = analyte not detected; laboratory reporting limit unknown NE = not established PCE = tetrachloroethene RGI = The Riley Group, Inc. TCE = trichloroethene VOC = volatile organic compound

								Analytical Result	ts (micrograms pe	er liter)			
					NWT	PH-Dx		NWTPH-Gx		EPA Method	l 8021 or 8260		EPA Method 8011
							DRO+ORO	67 D O	-				
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	Mineral Oil	ORO	(C10-C36)^	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-Dibromoethane
CLD 07	C Lucius	1/5/2007	CLD 07 CW	Fa ana1	Keconnaissar	ice Groundwater		. 1003	< 1.0	1.0	< 1.0	6.4	[
GLP-0/	G-Logics	1/5/2007	GLP-0/-GW	52,800	< 400	< 400-	53,000	< 100	< 1.0	1.9	< 1.0	0.4	
FB-22	Farallon	8/29/2018	FB-22-GW	330		510	840	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
FB-23	Farallon	8/29/2018	FB-23-GW					< 100	< 0.20	< 1.0	< 0.20	< 0.60	
FB-30	Farallon	2/14/2023	FB-30-15.0-GW-021423	1,100 N		5,700	6,800	< 400	< 4.0	< 4.0	< 4.0	< 8.0	
	Farallon	2/16/2023	FB-30-30.0-GW-021623	520		420	940	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
FB-31	Farallon	7/13/2023	FB-31-RGW	< 130 SG		< 200 SG	< 260 SG	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
FB-32	Farallon	7/13/2023	FB-32-RGW	4,600 M < 1,100 SG M1		700 < 210 SG	4,100 M < 970 SG M1	130,000	8,100	20,000	1,800	9,600	
FB-34	Farallon	7/14/2023	FB-34-RGW	140 < 130 SG		390 < 210 SG	330 < 260 SG	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
					Monitoring V	Vell Groundwater	Samples						
	Kleinfelder	5/30/2006	MW-1-053006	ND		ND	ND	ND	ND	ND	ND	ND	
M337 1	G-Logics	1/8/2007	MW-1					< 100 ³	< 1.0	< 1.0	< 1.0	< 1.0	
IVI VV - 1	RGI	2/12/2013	MW-1-021213	72		< 250	197	< 100	< 0.35	< 1	< 1	< 2	
	RGI	2/12/2013	MW-100-021213	59		< 250	184		< 0.35	< 1	< 1	< 2	
	G-Logics	1/8/2007	MW-2					< 100 ³	< 1.0	< 1.0	< 1.0	< 1.0	
	RGI	2/12/2013	MW-2-021213	190		< 250	315	< 100	< 0.35	< 1	< 1	< 2	
MW-2	Farallon	12/15/2017	MW-2-121517	< 260		< 420	< 340	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	10/2/2018	MW-2-100218	< 250		< 400	< 325	< 100	< 0.20	< 1.0	< 0.20	< 0.60	< 0.0097
	Farallon	8/10/2021	MW-2-081021	< 200		< 200	< 200	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
	Kleinfelder	8/4/2006	MW-3-080406						< 1.0	< 1.0	< 1.0	< 1.0	
	G-Logics	1/8/2007	MW-3	$< 200^{1}$	< 400	< 400 ²	< 300	< 100 ³	< 1.0	< 1.0	< 1.0	< 1.0	
	RGI	2/12/2013	MW-3-021213	< 50		< 250	< 150	< 100	< 0.35	< 1	< 1	< 2	
MW-3	Farallon	12/15/2017	MW-3-121517	< 260		< 410	< 335	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	10/2/2018	MW-3-100218	< 250		< 400	< 325	< 100	< 0.20	< 1.0	< 0.20	< 0.60	< 0.0096
	Farallon	8/9/2021	MW-3-080921	< 210		< 210	< 210	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
MTCA Method A Clea	nup Level ⁴	•	•	500	500	500 ⁵	500	800/1,000 ⁶	5	1,000	700	1,000	0.01
MTCA Method B Vap	or Intrusion Screening I	Level ⁷		NE	NE	NE	NE	NE	2.4	15,000	2,800	320	0.30

				Analytical Results (micrograms per liter)									
					NWT	PH-Dx		NWTPH-Gx		EPA Method	1 8021 or 8260		EPA Method 8011
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	Mineral Oil	ORO	DRO+ORO (C10-C36)^	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-Dibromoethane
	Kleinfelder	5/30/2006	MW-4-053006	ND		ND	ND	ND	ND	ND	ND	ND	
	Kleinfelder	6/9/2006	MW-4-061406						ND	ND	ND	ND	
MXX 4	G-Logics	1/8/2007	MW-4					< 100 ³	< 1.0	< 1.0	< 1.0	< 1.0	
IVI VV -4	RGI	2/12/2013	MW-4-021213	< 50		< 250	< 150	< 100	< 0.35	< 1	< 1	< 2	
	Farallon	12/14/2017	MW-4-121417	< 250		< 410	< 330	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	10/2/2018	MW-4-100218	< 250		< 400	< 325	< 100	< 0.20	< 1.0	< 0.20	< 0.60	< 0.0097
MW-5	Kleinfelder	6/9/2006	MW-5-061406	ND		ND	ND	ND	ND	ND	ND	ND	
	Kleinfelder	8/4/2006	MW-6-080406	$< 200^{1}$	< 400	$< 400^{2}$	< 300	< 100 ³	< 1.0	< 1.0	< 1.0	< 1.0	
	G-Logics	1/8/2007	MW-6	$< 200^{1}$	< 400	$< 400^{2}$	< 300	< 100 ³	< 1.0	< 1.0	< 1.0	< 1.0	
	RGI	2/12/2013	MW-6-021213	600 < 50 SG		430 < 250 SG	1,030 < 150 SG	100	< 0.35	< 1	< 1	< 2	
MW-6	Farallon	12/15/2017	MW-6-121517	< 260		< 420	< 340	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	10/2/2018	MW-6-100218	260		< 410	465	< 100	< 0.20	< 1.0	< 0.20	< 0.60	< 0.0097
	Farallon	8/10/2021	MW-6-081021	460		520	980	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
	Farallon	7/19/2023	MW-6-071923	< 210		240	< 260	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Kleinfelder	8/4/2006	MW-7-080406	$< 200^{1}$	< 400	$< 400^{2}$	< 300	< 100 ³	< 1.0	2.2	< 1.0	< 1.0	
	G-Logics	1/8/2007	MW-7	$< 200^{1}$	< 400	$< 400^{2}$	< 300	< 100 ³	1.4	2.0	< 1.0	< 1.0	
	RGI	2/12/2013	MW-7-021213	< 50		< 250	< 150	< 100	0.55	< 1	< 1	< 2	
Sample Location MW-4 MW-5 MW-5 MW-6 MW-6 MW-7 MW-7 MW-8 MW-8 MW-8 MW-8 MW-8 MW-8 MW-8 MW-7 MW-7 MW-7 MW-7 MW-7 MW-7 MW-7 MW-7 MW-7 MW-8 MW-8 MW-8 MW-8 MW-8 MTCA Method A Cleanup I MTCA Method B Vapor Int	Farallon	12/14/2017	MW-7-121417	< 260		< 420	< 340	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	12/14/2017	DUP-1-121417	< 260		< 420	< 340	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	10/3/2018	MW-7-100318	< 250		< 400	< 325	< 100	< 2.0	< 10	< 2.0	< 6.0	< 0.0097
	Farallon	8/9/2021	MW-7-080921	< 210		< 210	< 210	< 100	< 0.80	< 4.0	< 0.80	< 2.4	
	Kleinfelder	8/4/2006	MW-8-080406						< 1.0	< 1.0	< 1.0	< 1.0	
	G-Logics	1/8/2007	MW-8	< 200 ¹	< 400	< 400 ²	< 300	< 100 ³	< 1.0	< 1.0	< 1.0	< 1.0	
MW-8	RGI	2/12/2013	MW-8-021213	< 85		< 430	< 257.5	< 100	< 0.35	< 1	< 1	< 2	
1111-0	Farallon	12/15/2017	MW-8-121517	< 250		< 400	< 325	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	10/3/2018	MW-8-100318					< 100	< 0.20	< 1.0	< 0.20	< 0.60	
	Farallon	8/10/2021	MW-8-081021	< 260		< 260	< 260	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
MTCA Method A Clea	nup Level ⁴			500	500	500 ⁵	500	800/1,000 ⁶	5	1,000	700	1,000	0.01
MTCA Method B Vapo	or Intrusion Screening I	Level ⁷		NE	NE	NE	NE	NE	2.4	15,000	2,800	320	0.30

				Analytical Results (micrograms per liter)									
					NWT	PH-Dx		NWTPH-Gx		EPA Method	l 8021 or 8260		EPA Method 8011
							DRO+ORO						
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	Mineral Oil	ORO	(C10-C36)^	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-Dibromoethane
	G-Logics	1/8/2007	MW-9					< 100 ³	< 1.0	< 1.0	< 1.0	< 1.0	
	RGI	2/12/2013	MW-9-021213	430 < 50 SG		280 < 250 SG	710 < 150 SG	< 100	< 0.35	< 1	< 1	< 2	
MW-9	Farallon	12/15/2017	MW-9-121517	< 260		< 410	< 335	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	10/3/2018	MW-9-100318	< 250		< 400	< 325	< 100	< 0.20	< 1.0	< 0.20	< 0.60	< 0.0098
Sample Location MW-9 MW-10 MW-11 MW-11 MW-12 MW-13	Farallon	8/10/2021	MW-9-081021	280		330	610	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
MW 10	G-Logics	1/8/2007	MW-10	283,000 ¹	< 400	230,000 ²	513,000	298,000 ⁸	< 1.0	< 1.0	< 1.0	< 1.0	
WIW-10	RGI	2/12/2013	MW-10-021213	39,000		53,000	92,000	1,700	< 0.35	< 1	< 1	< 2	
	G-Logics	1/8/2007	MW-11	$< 200^{1}$	< 400	< 400 ²	< 300	< 100 ³	1.2	3.2	< 1.0	3.2	
	RGI	2/12/2013	MW-11-021213	230		< 250	355	< 100	< 0.35	< 1	< 1	< 2	
N (1) (1)	Farallon	12/14/2017	MW-11-121417	< 260		< 420	< 340	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
MW-11	Farallon	10/3/2018	MW-11-100318	< 280		< 440	< 360	< 100	< 0.20	< 1.0	< 0.20	< 0.60	< 0.0098
	Farallon	8/9/2021	MW-11-080921	320		690	1,010	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
	Farallon	7/19/2023	MW-11-071923	220		600	510		< 1.0	< 1.0	< 1.0	< 2.0	
	G-Logics	1/8/2007	MW-12	$< 200^{1}$	< 400	< 400 ²	< 300	< 100 ³	< 1.0	< 1.0	< 1.0	< 1.0	
	RGI	2/12/2013	MW-12-021213	88		< 250	213	< 100	< 0.35	< 1	< 1	< 2	
MW 12	Farallon	12/14/2017	MW-12-121417	NUMPRIANE INTERMENTION NUMPRIANE NUMPRIAN									
IVI W -12	Farallon	10/3/2018	MW-12-100318	260		< 410	465	< 100	< 0.40	< 2.0	< 0.40	< 1.20	< 0.0097
MW-9 MW-10 MW-11 MW-12 MW-12 MW-13 MTCA Method A Clean MTCA Method B Vapo	Farallon	8/9/2021	MW-12-080921	400		230	630	< 100	< 0.40	< 2.0	< 0.40	< 1.20	
	Farallon	7/19/2023	MW-12-071923	< 220		< 220	< 270						
	G-Logics	1/8/2007	MW-13					< 100 ³	< 1.0	< 1.0	< 1.0	< 1.0	
	RGI	2/12/2013	MW-13-021213	< 50		< 250	< 150	< 100	< 0.35	< 1	< 1	< 2	
MW-13	Farallon	12/14/2017	MW-13-121417	< 260		< 420	< 340	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.60	< 0.0099									
	Farallon	8/9/2021	MW-13-080921	< 210		< 210	< 210	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
MTCA Method A Clea	nup Level ⁴			500	500	500 ⁵	500	800/1,000 ⁶	5	1,000	700	1,000	0.01
MTCA Method B Vapo	or Intrusion Screening I	Level ⁷		NE	NE	NE	NE	NE	2.4	15,000	2,800	320	0.30

				Analytical Results (micrograms per liter)									
					NWT	PH-Dx		NWTPH-Gx		EPA Method	l 8021 or 8260		EPA Method 8011
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	Mineral Oil	ORO	DRO+ORO (C10-C36)^	GRO	Benzene	Toluene	Ethylbenzene	Xvlenes	1.2-Dibromoethane
	G-Logics	2/16/2007	MW-14	< 2.00 ¹	< 400	$< 400^{2}$	< 300		< 1.0	<1.0	< 1.0	< 1.0	
	RGI	2/12/2013	MW-14-021213	< 50		< 250	< 150	< 100	< 0.35	< 1	< 1	< 2	
MW-14	Farallon	12/15/2017	MW-14-121517	< 270		< 440	< 355	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	10/3/2018	MW-14-100318	< 250		< 400	< 325	< 100	< 0.20	< 1.0	< 0.20	< 0.60	< 0.0097
	Farallon	8/10/2021	MW-14-081021	< 210		< 210	< 210	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
	G-Logics	2/16/2007	MW-15	< 200 ¹	< 400	< 400 ²	< 300		< 1.0	< 1.0	< 1.0	< 1.0	
	RGI	2/12/2013	MW-15-021213	< 50		< 250	< 150	< 100	< 0.35	< 1	< 1	< 2	
MW-15	Farallon	12/14/2017	MW-15-121417	< 290		< 470	< 380	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	10/3/2018	MW-15-100318	< 250		< 400	< 325	< 100	< 0.20	< 1.0	< 0.20	< 0.60	< 0.0098
	Farallon	8/9/2021	MW-15-080921	< 210		< 210	< 210	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
	G-Logics	2/16/2007	MW-16	$< 200^{1}$	< 400	< 400 ²	< 300	< 100 ³	< 1.0	< 1.0	< 1.0	< 1.0	
	RGI	2/12/2013	MW-16-021213	< 50		< 250	< 150	< 100	< 0.35	< 1	< 1	< 2	
Sample Location MW-14 MW-15 MW-15 MW-16 MW-16 MW-17 MW-18 MW-18	Farallon	12/14/2017	MW-16-121417	< 260		< 410	< 335	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	10/3/2018	MW-16-100318	< 260		< 410	< 335	< 100	< 0.20	< 1.0	< 0.20	< 0.60	< 0.0098
	Farallon	8/9/2021	MW-16-080921	< 210		< 210	< 210	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
	G-Logics	2/16/2007	MW-17	$< 200^{1}$	< 400	< 400 ²	< 300		< 1.0	< 1.0	< 1.0	< 1.0	
	RGI	2/12/2013	MW-17-021213	< 50		< 250	< 150	< 100	< 0.35	< 1	< 1	< 2	
MW 17	Farallon	12/14/2017	MW-17-121417	< 290		< 460	< 375	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
101 00 - 1 7	Farallon	12/14/2017	DUP-2-121417	< 310		< 500	< 405	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	10/2/2018	MW-17-100218	< 250		< 400	< 325	< 100	< 0.40	< 2.0	< 0.40	< 1.20	< 0.0098
	Farallon	8/9/2021	MW-17-080921	< 210		< 210	< 210	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
	G-Logics	2/16/2007	MW-18	$< 200^{1}$	< 400	< 400 ²	< 300	< 100 ³	< 1.0	< 1.0	< 1.0	< 1.0	
	RGI	2/12/2013	MW-18-021213	83		< 250	208	< 100	< 0.35	< 1	< 1	< 2	
MW-18	Farallon	12/15/2017	MW-18-121517	< 260		< 410	< 335	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	10/3/2018	MW-18-100318	< 260		< 410	< 335	< 100	< 0.20	< 1.0	< 0.20	< 0.60	< 0.0096
	Farallon	8/10/2021	MW-18-081021	< 210		260	365	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
MTCA Method A Clea	nup Level ⁴			500	500	500 ⁵	500	800/1,000 ⁶	5	1,000	700	1,000	0.01
MTCA Method B Vapo	or Intrusion Screening I	Level ⁷		NE	NE	NE	NE	NE	2.4	15,000	2,800	320	0.30

				Analytical Results (micrograms per liter)									
					NWT	PH-Dx		NWTPH-Gx		EPA Method	l 8021 or 8260		EPA Method 8011
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	Mineral Oil	ORO	DRO+ORO (C10-C36)^	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-Dibromoethane
	Farallon	12/14/2017	MW-19-121417	< 260		< 410	< 335	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
NUV 10	Farallon	10/2/2018	MW-19-100218	< 250		< 400	< 325	< 100	5.9	< 1.0	< 0.20	< 0.60	< 0.0097
MW-19	Farallon	8/9/2021	MW-19-080921	< 200		< 200	< 200	< 100	2.8	< 1.0	< 0.20	< 0.60	
	Farallon	7/20/2023	MW-19-072023						< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	5/10/2018	MW-20-051018	< 260		< 420	< 340	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
MW-20	Farallon	10/3/2018	MW-20-100318	< 250		< 400	< 325	< 100	< 0.20	< 1.0	< 0.20	< 0.60	< 0.0098
	Farallon	8/10/2021	MW-20-081021	< 210		< 210	< 210	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
MW 21	Farallon	10/2/2018	MW-21-100218	380		< 400	580	< 100	< 0.20 J	< 1.0 J	< 0.20 J	< 0.60 J	< 0.010 J
WI W - 2 I	Farallon	8/9/2021	MW-21-080921	< 210		260	365	< 100	< 0.20	< 1.0	< 0.20	< 0.60	
MW 22	Farallon	2/20/2023	MW-22-022023	260		450	710	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
M w -22	Farallon	7/19/2023	MW-22-071923	< 200 < 200 SG		270 < 200 SG	250 < 250 SG	< 100	EPA Method 8021 or 8260 EPA Method Benzene Toluene Ethylbenzene Xylenes 1,2-Dibromod < 1.0				
MW-23	Farallon	2/20/2023 ⁹ 3/23/2023	MW-23-022023 ⁹ MW-23-230323	< 160 ⁹		250 ⁹	330 ⁹	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	7/19/2023	MW-23-071923	< 200		< 200	< 250	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
MW-24	Farallon	2/22/2023	MW-24-022223	< 230		< 230	< 230	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
	Farallon	7/19/2023	MW-24-071923	< 210		240	< 260	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
MW-25	Farallon	7/19/2023	MW-25-071923	380		420	500	< 100	< 1.0	< 1.0	< 1.0	< 2.0	
MTCA Method A Clea	nup Level ⁴			500	500	500 ⁵	500	800/1,000 ⁶	5	1,000	700	1,000	0.01
MTCA Method B Vapo	or Intrusion Screening I	Level ⁷		NE	NE	NE	NE	NE	2.4	15,000	2,800	320	0.30

NOTES:

Results in **bold** denote concentrations exceeding MTCA cleanup levels. Green highlight indicates new 2023 analytical results.

Results in shaded cells denote concentrations exceeding MTCA vapor intrusion screening levels.

< denotes concentration not detected at or exceeding the laboratory method reporting limit listed.

- denotes constituent not analyzed.

^ Results are DRO+ORO calculations. A value of half the detection limit was used for non-detect values. Beginning in July 2023,

results were quantified by the laboratory as hydrocarbon range of C10 to C36 (diesel and oil ranges).

¹Quantified as "diesel."

²Quantified as "oil."

³Quantified as "gasoline."

⁴MTCA Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁵Cleanup level for total petroleum hydrocarbons as heavy oil-range organics.

⁶Cleanup level is 800 micrograms per liter if benzene is detected and 1,000 micrograms per liter if benzene is not detected.

⁷Washington State CLARC MTCA Method B Standard Formula Value - Groundwater Screening Level for Vapor Intrusion Pathway, lowest of cancer or non-cancer values, from CLARC Master Spreadsheet dated July 2015, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

⁸Quantified as "mineral spirits."

⁹Original DRO and ORO results for sample MW-23-022023 were 690 and 190 micrograms per liter, respectively. This sample contained high turbidity at 1,414 nephelometric turbidity units (NTU) that appeared to impact results. Another groundwater sample was collected from MW-23 on 3/23/2023 with a turbidity measurement of 180 NTU that was submitted for NWTPH-Dx analysis. The results from the sample collected on 3/23/2023 are shown in the table.

DRO = total petroleum hydrocarbons as diesel-range organics EPA = U.S. Environmental Protection Agency Farallon = Farallon Consulting, L.L.C. G-Logics = G-Logics, Inc. GRO = total petroleum hydrocarbons as gasoline-range organics J = result is an estimate Kleinfelder = Kleinfelder, Inc. MTCA = Washington State Model Toxics Control Act Cleanup Regulation M = hydrocarbons in the gasoline range are impacting the diesel range result M1 = hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample. N = hydrocarbons in the oil-range are impacting the diesel result ND = analyte not detected; laboratory method reporting limit unknown NE = not established NWTPH-Dx = Northwest Method NWTPH-Dx NWTPH-Gx = Northwest Method NWTPH-Gx ORO = total petroleum hydrocarbons as oil-range organics RGI = The Riley Group, Inc.

BTEX = benzene, toluene, ethylbenzene, and xylenes

SG = result for sample analyzed with silica gel cleanup procedure

ATTACHMENT A BORING LOGS

SECOND ADDENDUM TO REMEDIAL INVESTIGATION AND FEASIBILITY STUDY REPORT Morningside Acres Tracts 5001, 5015, and 5021 Rainier Avenue South Seattle, Washington

Farallon PN: 1355-001

FARALLON	FARALLON CONSULTING Log of Borir									
Client:Washin MurakamiProject:Morningside Acres TractLocation:Seattle, WashingtonFarallon PN:1355-001Logged By:C. Van StolkReviewed By:Y. Pehlivan	Date/Time Started:7/13/23 1300Date/Time Completed:7/13/23 1338Drilling Company:Holt ServicesDrilling Method:Direct PushDrilling Equipment:GP7822DTDrilling Operator:Grady GreenSampler Type:5' macrocore	Dep Bor Tota	th to \ ing Di al Bori	Water amete ng D	· ATD (er (in): epth (f	(ft bgs): 14.2 2.0 t bgs): 20.0				
Depth (ft bgs) Sample Interval Fithologic Des	scription	USCS USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed			
0 0.0 - 0.3': Asphalt. 0.3 - 5.0': Sandy SILT, brown, gray, moist. Air knifed 5 5 5 5 5 5 5.0 - 10.0': SILT with sand (75% silt, 25% sand), fine blueish gray, moist, organic odor, some organic mat 10 10 10.0 - 14.2': SILT (100% silt), gray with orange mott	g g 0.0 - 0.3': Asphalt. AC 0.3 - 5.0': Sandy SILT, brown, gray, moist. Air knifed to 5.0' bgs. ML 10.0 - 10.0': SILT with sand (75% silt, 25% sand), fine to medium sand, gray, grayish brown and blueish gray, moist, organic odor, some organic material. ML 10.0 - 14.2': SILT (100% silt), gray with orange mottling to blueish gray, moist, organic odor, abundant organic material. ML									
abundant organic material. 14.2 - 15.0': Silty SAND with gravel (55% sand, 25% brownish gray, wet. 15.0 - 16.0': Silty SAND with gravel (60% sand, 20% gravel, gray, wet. 16.0 - 16.5': Poorly graded GRAVEL (100% gravel), 16.5 - 20.0': Silty SAND (75% sand, 25% silt), fine to	10.0 - 14.2': SILT (100% silt), gray with orange mottling to blueish gray, moist, organic odor, abundant organic material. ML ML ML 14.2 - 15.0': Silty SAND with gravel (55% sand, 25% silt, 20% gravel), fine to medium sand, brownish gray, wet. SM SM SM 15.0 - 16.0': Silty SAND with gravel (60% sand, 20% silt, 20% gravel), fine to coarse sand, fine gravel, gray, wet. SM SM SM 16.0 - 16.5': Poorly graded GRAVEL (100% gravel), fine gravel, gray, wet. SM SM SM SM 16.5 - 20.0': Silty SAND (75% sand, 25% silt), fine to medium sand, gray, wet, no odor. SM SM SM									
Temporary Well Casing Diameter (in): 0.75 Temporary Well Screened Interval (ft bgs): 10.0 - 20.0	Completion Information Surface Seal: Ground Surface	e Elevation	(ft):	N/A N/A						

Surveyed Location: X: N/A

Y: N/A

Borina	Abandonment:	

Bentonite

FARALLON CONSULTING	FARALLON CONSULTING Log of Boring: FB-32 Page 1 of 1											
Client:Washin MurakamiProject:Morningside Acres TractLocation:Seattle, WashingtonFarallon PN:1355-001Logged By:C. Van StolkReviewed By:Y. Pehlivan	Date/Time Started:7/13/23 1135Date/Time Completed:7/13/23 1200Drilling Company:Holt ServicesDrilling Method:Direct PushDrilling Equipment:GP7822DTDrilling Operator:Grady GreenSampler Type:5' macrocore	Depth to Boring I Total Bo	o Water A Diameter oring Dep	ATD (ft bgs): 12.0 r (in): 2.0 pth (ft bgs): 17.5								
Lithologic Des Bamble luterval	scription	USCS USCS Graphic Water Level	% Recovery	PID (ppmv) Sample ID Sample Vialyzed								
0 0.0 - 0.3': Asphalt. 0.3 - 5.0': Sandy SILT, brown, moist, wet at 3.5' bgs 5 5.0 - 6.5': Sandy SILT with gravel (60% silt, 20% sa dry, petroleum-like odor, some organic material. 6.5 - 10.0': No Recovery.	AC ML ML	30	417 FB-32-5.0									
10 10.0 - 12.0': Sandy SILT with gravel (60% silt, 20% gray, dry, strong petroleum-like odor, some organic 12.0 - 13.0': SILT with sand (80% silt, 20% sand), fil petroleum-like odor. 13.0 - 14.0': Silty SAND with gravel (40% sand 40%	sand, 20% gravel), fine to coarse sand, material.		100 ;	328 FB-32-10.0 X FB-32-RGW X								
15 15 15 15 15 15 15 15 15 15	GP	100 é	61.0 FB-32-15.0									
20	Completion Information											
Temporary Well Casing Diameter (in):0.75Temporary Well Screened Interval (ft bgs):7.5 - 17.5Boring Abandonment:Bentonite	Surface Seal: Ground Surfac Surveyed Loca	e Elevation (ft): ation: X: N/A	N/A N/A	N/A N/A Y: N/A								

FARALLON	Lo	og of Boring	g:F	В-(33		Pag	je 1 of 1	
Client: Washin Murakami	Date/Time Started:	7/13/23 1044	Dept	th to \	Wate	r ATD (ft bgs):	11.0	
Project: Morningside Acres Tract	Date/Time Completed:	7/13/23 1215	Bori	Boring Diameter (in):					
Location: Seattle, Washington	Drilling Company:	Holt Services	Tota	l Bori	ing D	epth (f	t bgs):	17.5	
Earallon BN: 1255.001	Drilling Method:	Direct Push							
Faralion FN: 1355-001	Drilling Equipment:	GP7822DT							
Logged By: C. Van Stolk	Drilling Operator:	Grady Green							
Reviewed By: Y. Pehlivan	Sampler Type:	5' macrocore							
Depth (ft bgs) Sample Interval Tithologic Des	scription	nscs Liscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Samp	ole ID	Sample Analyzed

0		0.0 - 0.3': Asphalt.	AC	388888					Т
-		0.3 - 5.0': Sandy SILT, brown, petroleum-like odor. Air knifed to 5.0' bgs.	ML						
5-		5.0 - 6.5': Sandy SILT (60% silt, 30% sand, 10% gravel), fine to coarse sand, fine gravel, grayish brown, moist.	ML			100	75.2	FB-33-6.0	
- - -		6.5 - 10.0': SILT with sand (75% silt, 25% sand), fine to coarse sand, light gray, dry, petroleum-like odor, some organic material.	ML				186.1		
- 10		10.0 - 12.0': Silty SAND (60% sand, 40% silt), fine to medium sand, greenish gray, moist, wet at 11.0' bgs, petroleum-like odor.	SM		×	100	209	FB-33-10.0	x
	I V	12.0 - 12.5': Silty SAND with gravel (50% sand, 20% silt, 30% gravel), fine to coarse sand,	SM		-				
- - 15 - -	\wedge	12.5 - 17.5': Silty SAND with gravel (40% silt, 30% sand, 30% gravel), fine sand, gray, dry.	SM			100	3.4 1.2	FB-33-15.0	
	1				1	1			

Completion Information										
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A							
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A							
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A							

FARALLON	FARALLON CONSULTING Log of Boring: F									
Client:Washin MurakamiProject:Morningside Acres TractLocation:Seattle, WashingtonFarallon PN:1355-001Logged By:C. Van StolkReviewed By:Y. Pehlivan	Date/Time Started:7/13/23 1530Date/Time Completed:7/13/23 1555Drilling Company:Holt ServicesDrilling Method:Direct PushDrilling Equipment:GP7822DTDrilling Operator:Grady GreenSampler Type:5' macrocore	De Bo To	pth to ^v ring Di al Bor	Water amet	r ATD (er (in): epth (f	(ft bgs): 14.0 2.0 't bgs): 20.0				
Depth (ft bgs) Sample Interval Sample Sample	scription	USCS IISCS Granhic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed			
0 0.0 - 0.2': Landscape topsoil. 0.2 - 5.0': Sandy SILT (80% silt, 20% sand), fine to codor. Air knifed to 5.0' bgs. 5 5.0 - 7.0': SILT (90% silt, 10% sand), fine to medium some organic material. 7.0 - 8.3': Sandy SILT with gravel (65% silt, 20% sar and coarse gravel, dark brown, moist, perched wate 8.3 - 10.0': SILT (90% silt, 10% sand), fine to medium some organic material. 10 10.0 - 13.5': SILT (90% silt, 10% sand), fine to medium some organic material. 10 13.5 - 15.0': Silty SAND with gravel (50% sand, 20% and coarse gravel, brown, moist, wet at 14.0' bgs. 15 15.0 - 20.0': Well graded GRAVEL with sand (70% grand coarse gravel, dark gray, wet, no odor, trace silt and coarse grave	/ coarse sand, tan, dry, slight petroleum-like in sand, gray with orange mottling, moist, and, 15% gravel), fine to coarse sand, fine r at 8.0' bgs. m sand, gray with orange mottling, moist, um sand, gray with orange mottling, moist, is silt, 30% gravel), fine to coarse sand, fine gravel, 30% sand), fine to coarse sand, fine	TOP SOIL ML 4		100	0.6	FB-34-8.0 FB-34-10.0 FB-34-15.0 FB-34-RGW	x			
Temporary Well Casing Diameter (in):0.75Temporary Well Screened Interval (ft bgs):10.0 - 20.0	Completion Information Surface Seal: Ground Surfac	e Elevation	(ft):	N/A N/A						

Boring Abandonment:

10.0 - 20.0 Bentonite

Y: N/A

Surveyed Location: X: N/A

FARALLON	Loç	g of Boring:	F	В-3	35		Page	1 of 1	
Client: Washin Murakami	Date/Time Started: 7/	/14/23 1620	Dept	h to \	Nate	r ATD ((ft):	5.6	
Project: Morningside Acres Tract	Date/Time Completed: 7/14/23 1700 Boring Diameter (in):						:	2.0	
Location: Seattle, Washington	Drilling Company: Ho	lolt Services	Tota	l Bori	ng L	ength	(ft):	15.0	
Farallon PN: 1355-001	Drilling Method: Di	irect Push	Bear	ing (e	degre m Ve	es):	(dogroos):	100 32 5	
Logged By: C. Van Stolk	Drilling Operator: G	Grady Green	Angr	erio	iii ve	fical	(uegrees).	02.0	
Reviewed By: Y. Pehlivan	Sampler Type: 5'	' macrocore							
Linear feet Logged Vertical Depth (ft bgs) Sample Interval Sample Interval	Description	SCS	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample	ID	Sample Analyzed

0	0		0.0 - 1.0': Concrete.				50			
-	_		1.0 - 3.6': Silty SAND (65% sand, 25% silt, 10% gravel), fine to coarse sand, fine gravel, brown, moist, no odor.	SM						
-	_		3.6 - 5.0': No Recovery.							
5-	-5		5.0 - 6.0': SILT (100% silt), gray, moist.	- <u></u> - ML		¥	80			
-	-		6.0 - 8.2': Well graded SAND (90% sand, 10% silt), fine to medium sand, gray with orange mottling, moist, wet at 5.6' bgs.	SW				0.7	FB-35-6.0	×
-		$\left \right $	8.2 - 9.3': Silty SAND (85% sand, 15% silt), fine sand, gray, moist, no odor.	SM	·····					
10	-		9.3 - 10.0': No Recovery.	[
10 -	_		10.0 - 12.9': Silty SAND (70% sand, 30% silt), fine sand, gray, moist.	SM			80	0.9	FB-35-10.0	х
-	- 10	V						0.3	FB-35-11.5	х
		$\left \right $	12.9 - 14.4': SILT with sand (85% silt, 15% sand), fine sand, gray, dry.	ML						
15 -	_		14.4 - 15.0': No Recovery. Refusal at 15' bgs due to hard silt.							

Completion Information										
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A							
Temporary Well Screened Interval (ft):	N/A	Ground Surface Elevation (ft):	N/A							
Boring Abandonment:	N/A	Surveyed Location: X: N/A	Y: N/A							
1										

FARALLON CONSULTING	Log of B	oring:	F	В-(36		Pag	e 1 of 1
Client: Washin Murakami	Date/Time Started: 7/14/23 1417		Dept	th to	Wate	r ATD ((ft bgs):	13.0
Project: Morningside Acres Tract	Date/Time Completed: 7/14/23 1440		Bori	ng Di	amet	er (in):	:	2.0
Location: Seattle, Washington	Drilling Company: Holt Services		Tota	l Bor	ing D	epth (f	ft bgs):	20.0
Farallon PN: 1355 001	Drilling Method: Direct Push							
Faralion FN: 1353-001	Drilling Equipment: GP7822DT							
Logged By: C. Van Stolk	Drilling Operator: Grady Green							
Reviewed By: Y. Pehlivan	Sampler Type: 5' macrocore							
Depth (ft bgs) Sample Interval Cithologic Des	scription	nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Samp	ଟା ପ Sample Analyzed

0	0.0 - 0.3': Asphalt.	AC					
	0.3 - 5.0': Silty SAND with gravel, brown, moist, no odor. Air knifed to 5.0' bgs.	SM					
-	5.0 - 6.8': Silty SAND with gravel (55% sand, 25% silt, 20% gravel), fine gravel, brown, moist. Charcoal debris present.	SM		70			
	6.8 - 7.5': Sandy SILT (65% silt, 35% sand), dark brown, moist, organic odor. 7.5 - 8.5': SILT (100% silt), gray, dry. 8.5 - 10.0': No Recovery.	ML ML			2.6	FB-36-7.0	
10	10.0 - 11.5': Sandy SILT (65% silt, 35% sand), fine to medium sand, greenish gray, moist,	— <u>— </u>		80	0.8	FB-36-10.0	
-\/	some organic material.	CM					
	12.0 - 14.0': SILT (100% silt), gray, moist, wet at 13.0' bgs.	ML	¥		0.4	FB-36-13.0	x
15	14.0 - 15.0': No Recovery.						
	15.0 - 16.2': SILT (100% silt), gray, wet.	ML		100			
	16.2 - 20.0': Silty GRAVEL with sand (50% gravel, 25% silt, 25% sand), fine to coarse sand, fine and coarse gravel, gray, wet, dry at 19.0' bgs.	GM			1.0	FB-36-18.0	×
20							

Completion Information											
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A								
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A								
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A								

FARALLON	L	og of I	Bori	ng:	MW-25		D	ago 1 of 1
Client: Washin Murakami Project: Morningside Acres Tract	Date/Time Started: Date/Time Completed:	7/14/23 11 7/14/23 11	10 38		Depth to Water A Boring Diameter (TD (f (in):	t bgs):	14.0 3.0
Location: Seattle, Washington	Drilling Method:	Direct Pusl	ย ร 1		Constructed Well	Dep	bgs). th (ft bg	I 7.0 s): 15.0
Logged By: C Van Stolk	Drilling Equipment:	GP7822DT						
Reviewed By: Y. Pehlivan	Drilling Operator: Sampler Type:	5' macroco						
Depth (ft bgs) Sample Interval Sample Sample	tion	USCS IISCS Granhic	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Bor Cons D	ing/Well struction vetails
0 0.0 - 5.0': Silty SAND, brown, moist, some roots an knifed to 5.0' bgs.	d organic material. Air	SM						Concrete Bentonite Sand Pack
5.0 - 6.8': Sandy SILT (80% silt, 20% sand), fine to brown, and black, moist, some organic material and 6.8 - 9.0': SILT (100% silt), gray, moist, some organ	medium sand, gray, d wood debris. nic material.	ML ML	80	0.2	MW-25-5.0	x		PVC Screen
10 10.0 - 13.9': Silty SAND with gravel (40% sand, 30% to coarse sand, fine and coarse gravel, gray with of moist.	% gravel, 30% silt), fine range-brown mottling,	SM	100	29.4	MW-25-10.0	x		
13.9 - 15.0': Silty SAND (60% sand, 30% silt, 10% sand, fine gravel, gray, wet.	gravel), fine to medium	SM	•	0.1				▼ Water Level
15.0 - 15.6': Sandy SILT with gravel (50% silt, 30% to medium sand, fine gravel, dark gray, moist.	sand, 20% gravel), fine	ML ML	100		MW-25-15.0	X		
20	17.0' bgs.			0.1	MW-25-17.0	x		Bentonite
Wel	I Construction Inform	ation						
Monument Type:Flush MountFilter PackCasing Diameter (in):2.0Surface SScreen Slot Size (in):0.010Annular SScreened Interval (ft bgs):5.0 - 15.0Boring Ab	k: 10/20 Sar eal: Concrete seal: Bentonite bandonment: N/A	nd	Grou Top Surv Unic	ind Sui of Casi eyed L jue Wel	rface Elevation (ff ing Elevation (ft): .ocation: X: N/A II ID: BPL 565	:):	N/A 115.09 Y:	N/A

FARALLON CONSULTING		Log	of B	orin	g: MW-26		Pa	age 1 of 3
Client:Washin MurakamiProject:Morningside Acres TractLocation:Seattle, WashingtonFarallon PN:1355-001Logged By:M. H. NelsonReviewed By:Y. Pehlivan	Date/Time Started Date/Time Compl Drilling Company Drilling Method: Drilling Equipmen Drilling Operator: Sampler Type: Drive Hammer (Ib	d: 7/17/ eted: 7/18/ r: Casc Hollo nt: CME : Wesl 18" S ss): 145	23 120(23 1032 ade w Stem 55 ey Kenr plit Spc	Auger Auger nedy bon	Depth to Water AT Boring Diameter (Total Boring Dept Constructed Well	ſD (ft in): h (ft ∣ Dept	bgs): bgs): h (ft bg	4.0 8.0 45.0 (s): 45.0
Depth (ft bgs) Sample Interval Sample Sample Sample Content of the Sample Sampl		USCS IISCS Granhic	Blow Counts	% Recovery	Sample ID	Sample Analyzed	Bori Cons D	ing/Well struction etails
0 0.0 - 0.3': Concrete. 0.3 - 5.0': Silty SAND (50% sand, 40% silt, 10% grasand, fine gravel, brown, dry, no odor. Air knifed to since the second stress of the second stresecond stress of the second stress of the second stress	vel), medium 5.0' bgs. gravel), fine to to medium sand,	AC SM	222 25 28	100 66 100	MW-26-5.0 MW-26-10.0 MW-26-15.0	x		Concrete Water Level Bentonite Blank Casing
WellMonument Type:Flush MountFilter PackCasing Diameter (in):2.0Surface SeScreen Slot Size (in):0.010Annular Se	Construction In c: 10/2 eal: Conceal: Bent	formation 0 Sand crete tonite		Ground Top of C Surveye	Surface Elevation (ft Casing Elevation (ft): ed Location: X: N/A):	N/A N/A Y:	N/A

Screened Interval (ft bgs):

35.0 - 45.0

Boring Abandonment: N/A

Unique Well ID: BPR 414

FARALLON	I	Log of B	oring	: MW-26		Page 2 of 3			
Client:Washin MurakamiProject:Morningside Acres TractLocation:Seattle, WashingtonFarallon PN:1355-001Logged By:M. H. NelsonReviewed By:Y. Pehlivan	Depth to Water AT Boring Diameter (i Total Boring Depth Constructed Well I	D (ft n): n (ft k Deptl	bgs): 4.0 8.0 ogs): 45.0 h (ft bgs): 45.0						
Depth (ft bgs) Sample Interval Sample Sample Sample Content of the second secon		USCS USCS Graphic Blow Counts	% Recovery PID (ppmv)	Sample ID	Sample Analyzed	Boring/Well Construction Details			
20.0 - 20.5': Sandy SILT (50% silt, 50% sand), fine gray, wet, no odor, no staining. 20.5 - 21.5': No Recovery. 25 25.0 - 26.0': Sandy SILT (50% silt, 50% sand), fine gray, wet, no odor, no staining 26.0 - 26.5': No Recovery. 30 30.0 - 31.0': Sandy SILT (50% silt, 50% sand), fine gray, wet, no odor, no staining 31.0 - 31.5': No Recovery.	to medium sand,	ML 50/4 	4 33 60 / 60	MW-26-25.0	x	Bentonite Blank Casing			
35 35.0 - 35.5': SILT (95% silt, 5% sand), gray, low pla odor. 35.5 - 36.5': No Recovery. 40 Wel	asticity, dry, no	ML 100 6 	/ 30	MW-26-35.0	x	Sand Pack PVC Screen			
Monument Type:Flush MountFilter PacCasing Diameter (in):2.0Surface SScreen Slot Size (in):0.010Annular SScreened Interval (ft bgs):35.0 - 45.0Boring Ab	weil Construction Information onument Type: Flush Mount Filter Pack: 10/20 Sand Ground Surface Elevation (ft): N/A sing Diameter (in): 2.0 Surface Seal: Concrete Top of Casing Elevation (ft): N/A reen Slot Size (in): 0.010 Annular Seal: Bentonite Surveyed Location: X: N/A Y: N/A reened Interval (ft bgs): 35.0 - 45.0 Boring Abandonment: N/A Unique Well ID: BPR 414								

	V	FARALLO	N ing		Loç	g of	Bo	ori	ng:	MW-26		Pa	age 3 of 3
Clier Proj Loca Fara	nt: ect: ation: allon P ged By	Washin Murakami Morningside Acres Tra Seattle, Washington N: 1355-001 /: M. H. Nelson	lot	Date/Time Started:7/17/23 1200Date/Time Completed:7/18/23 1032Drilling Company:CascadeDrilling Method:Hollow Stem AugerDrilling Equipment:CME55Drilling Operator:Wesley KennedySampler Type:18" Split SpoonDrive Hammer (lbs):145				Depth to Water AT Boring Diameter (i Total Boring DeptI Constructed Well I	t bgs): bgs): th (ft bg	4.0 8.0 45.0 s): 45.0			
Revi	iewed	By: Y. Pehlivan											
Depth (ft bgs)	Sample Interval	Lithologic Des	scription		USCS	USCS Graphic	Blow Counts	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Bori Cons D	ng/Well struction etails
	40. fair 40. 45. 45. 45.) - 40.8': SILT with sand (85% silt, t odor. 3 - 41.5': No Recovery.	15% sand), f	ine sand, gray, dry,			100/ 6	33					Sand Pack PVC Screen Bentonite
60 _			Wol	Construction Int	formati	ion							
Monu	ment Ty	Flush Mount	Filter Pac	k: 10/2	0 Sand	511	(Grou	nd Su	rface Elevation (ft)	:	N/A	

N/A

Y: N/A

Top of Casing Elevation (ft):

Surveyed Location: X: N/A

Unique Well ID: BPR 414

Casing Diameter (in):

Screen Slot Size (in):

Screened Interval (ft bgs):

2.0

0.010

35.0 - 45.0

Surface Seal:

Annular Seal:

Boring Abandonment:

Concrete

Bentonite

N/A

FARALLON CONSULTING	L	og	of B	ori	ng:	MW-27		Page 1	l of 1
Client: Washin Murakami	Date/Time Started:	7/17/	23 1058	5		Depth to Water AT	D (ft	bgs):	15.0
Project: Morningside Acres Tract	Date/Time Completed	: 7/17/	23 1609	9		Boring Diameter (i	n):		8.0
Location: Seattle Washington	Drilling Company:	Holt	Service	S		Total Boring Depth	ח (ft	bgs):	18.0
Location: Seattle, Washington	Drilling Method:	Hollo	w Stem	Auge	er	Constructed Well I	Dept	th (ft bgs):	18.0
Farallon PN: 1355-001	Drilling Equipment:	CME	55						
Logged By: M. H. Nelson	Drilling Operator: Sampler Type:	Wes 18" S	ey Kenı plit Spo	nedy oon					
Reviewed By: Y. Pehlivan	Drive Hammer (Ibs):	140							
Depth (ft bgs) Sample Interval Sample Sample Sample Interval	3031	uaca LISCe Granhic	Blow Counts	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed	Boring/ Constru Deta	Well ction ils

0		0.0 - 0.3': Concrete	со						
-	\setminus /	0.3 - 5.0': Air knifed to 5.0' bgs. Poorly graded SAND (95% sand, 5%	SP						Concrete
	\backslash	silt), medium sand, brown dry, no odor.							
-	V								
_	Λ								
	/								Blank Casing
-	/								odoling
5-									
							7.8		Bentonite
-	\setminus /								
_	\backslash								
	X								Sand Pack
-	\wedge								
_	/								
	$ \rangle$								
10 -		10.0 - 11.3': SILT with sand (75% silt. 10% sand. 5% gravel), dark	ML		38	100	2.8		PVC Screen
-		brown with gray and black staining, dry, faint petroleum-like odor.			50/6				_
	$\backslash /$	L	:						
-	V	/	<u></u>						
_	Å								
	/								
-	/								
15	\								×
13		15.0 - 16.0': Poorly graded SAND with SILT (90% sand, 10% silt),	SP-		21	100	0.4		
-	\setminus /	gray, wet, no odor.		<u>.:/:/:</u> ;	24 27				Water Level
	\backslash		┝						
	Y								
-	Λ	18.0 18.5" SILT (100% silt) gray day no odor	N/I		50/6	100	20		
	$ \rangle$	10.0 - 10.3. SILT (100% Sill), gray, dry, 10 0001.			30/0	100	2.0		
	$ \rangle$								
20 _									

Well Construction Information											
Monument Type:	Flush Mount	Filter Pack:	10/20 Sand	Ground Surface Elevation (ft):	N/A						
Casing Diameter (in):	2.0	Surface Seal:	Concrete	Top of Casing Elevation (ft):	114.88						
Screen Slot Size (in):	0.010	Annular Seal:	Bentonite	Surveyed Location: X: N/A	Y: N/A						
Screened Interval (ft bgs):	8.0 - 18.0	Boring Abandonment:	N/A	Unique Well ID: BPR-413							

ATTACHMENT B LABORATORY ANALYTICAL REPORTS

SECOND ADDENDUM TO REMEDIAL INVESTIGATION AND FEASIBILITY STUDY REPORT Morningside Acres Tracts 5001, 5015, and 5021 Rainier Avenue South Seattle, Washington

Farallon PN: 1355-001

July 20, 2023

Stuart Brown Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1355-001 Laboratory Reference No. 2307-105

Dear Stuart:

Enclosed are the analytical results and associated quality control data for samples submitted on July 14, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 20, 2023 Samples Submitted: July 14, 2023 Laboratory Reference: 2307-105 Project: 1355-001

Case Narrative

Samples were collected on July 13 and 14, 2023 and received by the laboratory on July 14, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx/BTEX Analysis - Soil

The surrogate percent recovery is outside control limits on the high end for samples FB-36-10.0, FB-36-13.0, and FB-34-10.0. Because the samples are non-detect, no further action will be taken.

Volatiles EPA 8260D Analysis

Sample FB-32-RGW was analyzed at a dilution due to the high concentration of non-halogenated compounds. Consequently, some MTCA Method A cleanup levels are not achievable.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-33-10.0					
Laboratory ID:	07-105-02					
Benzene	ND	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.062	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	0.092	0.062	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	0.29	0.062	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.062	EPA 8021B	7-18-23	7-18-23	
Gasoline Range Organics	480	6.2	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	115	65-126				
Client ID:	FB-32-10.0					
Laboratory ID:	07-105-05					
Benzene	0.16	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	2.1	0.081	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	1.2	0.081	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	3.9	0.081	EPA 8021B	7-18-23	7-18-23	
o-Xylene	1.7	0.081	EPA 8021B	7-18-23	7-18-23	
Gasoline Range Organics	160	8.1	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	116	65-126				
Client ID:	FB-36-10.0					
Laboratory ID:	07-105-08					
Benzene	ND	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.071	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	0.071	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	0.071	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.071	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	7.1	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	129	65-126				Q

3

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-36-13.0					
Laboratory ID:	07-105-09					
Benzene	ND	0.021	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.10	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	0.10	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	0.10	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.10	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	10	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	137	65-126				Q
Client ID:	FB-36-18.0					
Laboratory ID:	07-105-10					
Benzene	ND	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.078	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	0.078	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	0.078	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.078	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	7.8	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	65-126				
Client ID:	FB-34-10.0					
Laboratory ID:	07-105-12					
Benzene	ND	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.073	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	0.073	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	0.073	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.073	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	7.3	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	133	65-126				Q

4

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-25-5.0					
Laboratory ID:	07-105-17					
Benzene	ND	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.062	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	0.062	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	0.062	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.062	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	6.2	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	118	65-126				
Client ID:	MW-25-10.0					
Laboratory ID:	07-105-18					
Benzene	ND	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.071	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	0.071	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	0.26	0.071	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.071	EPA 8021B	7-18-23	7-18-23	
Gasoline Range Organics	440	140	NWTPH-Gx	7-18-23	7-20-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	117	65-126				
Client ID:	MW-25-15.0					
Laboratory ID:	07-105-19					
Benzene	ND	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.074	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	0.074	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	0.074	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.074	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	7.4	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	117	65-126				

5

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-25-17.0					
Laboratory ID:	07-105-20					
Benzene	ND	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.077	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	0.077	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	0.077	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.077	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	7.7	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	121	65-126				
Client ID:	FB-35-10.0					
Laboratory ID:	07-105-22					
Benzene	ND	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.066	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	0.066	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	0.066	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.066	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	6.6	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	123	65-126				
Client ID:	FB-35-11.5					
Laboratory ID:	07-105-23					
Benzene	ND	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.078	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	0.078	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	0.078	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.078	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	7.8	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	124	65-126				

6

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0718S3					
Benzene	ND	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.050	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	0.050	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	0.050	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.050	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	5.0	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	65-126				
Laboratory ID:	MB0718S4					
Benzene	ND	0.020	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	0.050	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	0.050	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	0.050	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	0.050	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	5.0	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	65-126				

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-12	20-04									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Ethylbenzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	A	NA	NA	30	
Surrogate:											
Fluorobenzene						93	93	65-126			
Laboratory ID:	07-12	20-06									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Ethylbenzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						98	95	65-126			
SPIKE BLANKS											
Laboratory ID:	SB07	18S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.892	0.899	1.00	1.00		89	90	77-113	1	10	
Toluene	0.917	0.918	1.00	1.00		92	92	81-115	0	10	
Ethylbenzene	0.928	0.930	1.00	1.00		93	93	80-115	0	10	
m,p-Xylene	0.924	0.924	1.00	1.00		92	92	81-115	0	11	
o-Xylene	0.935	0.932	1.00	1.00		94	93	82-115	0	11	
Surrogate: Eluorobenzene						87	87	65-126			
						07	07	00-120			

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-32-RGW					
Laboratory ID:	07-105-14					
Benzene	8100	250	EPA 8021B	7-18-23	7-18-23	
Toluene	20000	250	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	1800	250	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	5900	250	EPA 8021B	7-18-23	7-18-23	
o-Xylene	3700	250	EPA 8021B	7-18-23	7-18-23	
Gasoline	130000	25000	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	65-122				
Client ID:	FB-31-RGW					
Laboratory ID:	07-105-15					
Benzene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	100	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	65-122				
Client ID:	FB-34-RGW					
Laboratory ID:	07-105-16					
Benzene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	100	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	65-122				

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

5° (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0718W1					
Benzene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
Toluene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
Ethylbenzene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
m,p-Xylene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
o-Xylene	ND	1.0	EPA 8021B	7-18-23	7-18-23	
Gasoline	ND	100	NWTPH-Gx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	65-122				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	07-10)5-16								
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethylbenzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						94 80	65-122			
SPIKE BLANKS										

Laboratory ID:	SB07	18W1								
	SB	SBD	SB	SBD	SB	SBD				
Benzene	45.1	46.2	50.0	50.0	90	92	81-118	2	12	
Toluene	46.2	47.1	50.0	50.0	92	94	82-119	2	12	
Ethylbenzene	46.3	47.1	50.0	50.0	93	94	81-118	2	12	
m,p-Xylene	46.1	46.8	50.0	50.0	92	94	82-118	2	12	
o-Xylene	46.7	47.5	50.0	50.0	93	95	81-119	2	11	
Surrogate:										
Fluorobenzene					89	89	65-122			

10

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-36-10.0					
Laboratory ID:	07-105-08					
Diesel Range Organics	ND	33	NWTPH-Dx	7-18-23	7-18-23	
Lube Oil Range Organics	ND	67	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	70	50-150				
Client ID:	FB-36-10.0					
Laboratory ID:	07-105-08					
Diesel Range Organics	ND	33	NWTPH-Dx	7-18-23	7-18-23	X2
Lube Oil Range Organics	ND	67	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	71	50-150				
Client ID:	FB-36-13.0					
Laboratory ID:	07-105-09					
Diesel Range Organics	ND	39	NWTPH-Dx	7-18-23	7-18-23	
Lube Oil Range Organics	ND	79	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	FB-36-13.0					
Laboratory ID:	07-105-09					
Diesel Range Organics	ND	39	NWTPH-Dx	7-18-23	7-18-23	X2
Lube Oil Range Organics	ND	79	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	77	50-150				
	FD 20 40 0					
	07 105 10					
Laboratory ID:	07-105-10			7 40 00	7 40 00	
Diesel Range Organics		33		7-18-23	7-18-23	
Lube OII Range Organics	Dereent Desevery	01 Control Limito	NVVIPH-DX	1-10-23	7-10-23	
Surrogale.		Control Linnis				
0-Terphenyi	71	50-750				
Client ID:	FB-36-18 0					
Laboratory ID.	07_105_10					
Diesel Range Organics	N	33		7-18-23	7-18-23	X2
Lube Ail Range Organics	ND	67		7-18-23	7_18_22	X2
Surrogate:	Percent Pecovery	Control Limits		1-10-20	1-10-23	<u>^</u>
o-Ternhenvl	70	50_150				
	70	00 100				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-25-5.0					
Laboratory ID:	07-105-17					
Diesel Range Organics	ND	34	NWTPH-Dx	7-18-23	7-18-23	
Lube Oil Range Organics	ND	68	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	75	50-150				
Client ID:	MW-25-5.0					
Laboratory ID:	07-105-17					
Diesel Range Organics	ND	34	NWTPH-Dx	7-18-23	7-18-23	X2
Lube Oil Range Organics	ND	68	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	76	50-150				
	WW-25-10.0					
Laboratory ID:	07-105-18	<u></u>		- / 0 00	- / 0 00	
Diesel Range Organics	ND	31	NWTPH-Dx	7-18-23	7-18-23	
Lube Oil Range Organics		62	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				
Client ID:	MW-25-10 0					
Laboratory ID:	07-105-18					
Diesel Range Organics		31		7-18-23	7-18-23	X2
Lube Oil Range Organics		62		7-18-23	7-18-23	X2 X2
Surrogate:	Percent Recovery	Control Limits	NWITTEDX	7-10-20	7-10-25	72
o-Ternhenvl	80	50-150				
0-respicitly	00	50-750				
Client ID:	MW-25-15.0					
Laboratory ID:	07-105-19					
Diesel Range Organics	ND	32	NWTPH-Dx	7-18-23	7-18-23	
Lube Oil Range Organics	ND	63	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
Client ID:	MW-25-15.0					
Laboratory ID:	07-105-19					
Diesel Range Organics	ND	32	NWTPH-Dx	7-18-23	7-18-23	X2
Lube Oil Range Organics	ND	63	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-25-17.0					
Laboratory ID:	07-105-20					
Diesel Range Organics	ND	31	NWTPH-Dx	7-18-23	7-18-23	
Lube Oil Range Organics	ND	62	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	MW-25-17.0					
Laboratory ID:	07-105-20					
Diesel Range Organics	ND	31	NWTPH-Dx	7-18-23	7-18-23	X2
Lube Oil Range Organics	ND	62	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
	FB-35-10.0					
Laboratory ID:	07-105-22	04		7 40 00	7 40 00	
Diesel Range Organics	ND	31		7-18-23	7-19-23	
Lube OII Range Organics		<u>61</u>	NWIPH-DX	7-18-23	7-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyi	82	50-750				
Client ID:	FB-35-10 0					
Laboratory ID:	07-105-22					
Diesel Range Organics		31	NWTPH-Dx	7-18-23	7-19-23	X2
Lube Oil Range Organics	ND	61		7-18-23	7-19-23	X2
Surrogate:	Percent Recovery	Control Limits		1 10 20	1 10 20	
o-Ternhenvl	90	50-150				
e reipiteity:		00 /00				
Client ID:	FB-35-11.5					
Laboratory ID:	07-105-23					
Diesel Range Organics	ND	32	NWTPH-Dx	7-18-23	7-19-23	
Lube Oil Range Organics	ND	64	NWTPH-Dx	7-18-23	7-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	FB-35-11.5					
Laboratory ID:	07-105-23					
Diesel Range Organics	ND	32	NWTPH-Dx	7-18-23	7-19-23	X2
Lube Oil Range Organics	ND	64	NWTPH-Dx	7-18-23	7-19-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

								Date	Date)	
Analyte		Result		PQL	Ме	thod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB0718S1									
Diesel Range Organics		ND		25	NWT	PH-Dx		7-18-23	7-18-2	23	
Lube Oil Range Organio	cs	ND		50	NWT	PH-Dx		7-18-23	7-18-2	23	
Surrogate:	Pe	rcent Recovery	Co	ntrol Limit	s						
o-Terphenyl		77		50-150							
Laboratory ID:		MB0718S1									
Diesel Range Organics		ND		25	NWT	PH-Dx		7-18-23	7-18-2	23	X2
Lube Oil Range Organic	cs	ND		50	NWT	PH-Dx		7-18-23	7-18-2	23	X2
Surrogate:	Pe	rcent Recovery	Co	ntrol Limit	s						
o-Terphenyl		74		50-150							
					Source	Perce	ent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Recov	/ery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-12	20-05									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA	۱	NA	NA	40	
Lube Oil	59.9	ND	NA	NA		NA	ι	NA	NA	40	
Surrogate:											
o-Terphenyl						84	79	50-150			
Laboratory ID:	07-12	20-05									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA	\	NA	NA	40	X2
Lube Oil Range	ND	ND	NA	NA		NA	\	NA	NA	40	X2
Surrogate:											
- Town to a set of						00	~ 1	50 450			

o-Terphenyl

83 81 50-150

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-36-10.0					
Laboratory ID:	07-105-08					
DRO/LRO C10-C36	ND	67	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	70	50-150				
Client ID:	FB-36-10.0					
Laboratory ID:	07-105-08					
DRO/LRO C10-C36	ND	67	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	71	50-150				
Client ID:	FB-36-13.0					
Laboratory ID:	07-105-09					
DRO/LRO C10-C36	ND	79	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	FB-36-13.0					
Laboratory ID:	07-105-09					
DRO/LRO C10-C36	ND	79	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenyl	77	50-150				
Client ID:	FB-36-18.0					
Laboratory ID:	07-105-10					
DRO/LRO C10-C36		67	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	71	50-150				
Client ID:	FB-36-18.0					
Laboratory ID:	07-105-10					
DRO/LRO C10-C36	ND	67	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	70	50-150				
Client ID:	MW-25-5.0					
Laboratory ID:	07-105-17					
DRO/LRO C10-C36	ND	68	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	75	50-150				
		the state of the s				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-25-5.0					
Laboratory ID:	07-105-17					
DRO/LRO C10-C36	ND	68	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	76	50-150				
Client ID:	MW-25-10.0					
Laboratory ID:	07-105-18					
DRO/LRO C10-C36	ND	62	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				
Client ID:	MW-25-10.0					
Laboratory ID:	07-105-18					
DRO/LRO C10-C36	ND	62	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
Client ID:	MW-25-15.0					
Laboratory ID:	07-105-19					
DRO/LRO C10-C36	ND	63	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
Client ID:	MW-25-15.0					
Laboratory ID:	07-105-19					
DRO/LRO C10-C36	ND	63	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
Client ID:	MW-25-17.0					
Laboratory ID:	07-105-20					
DRO/LRO C10-C36	ND	62	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	MW-25-17.0					
Laboratory ID:	07-105-20					
DRO/LRO C10-C36	ND	62	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
ourrogato.						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-35-10.0					
Laboratory ID:	07-105-22					
DRO/LRO C10-C36	ND	61	NWTPH-Dx	7-18-23	7-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Client ID:	FB-35-10.0					
Laboratory ID:	07-105-22					
DRO/LRO C10-C36	ND	61	NWTPH-Dx	7-18-23	7-19-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				
Client ID:	FB-35-11.5					
Laboratory ID:	07-105-23					
DRO/LRO C10-C36	ND	64	NWTPH-Dx	7-18-23	7-19-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	FB-35-11.5					
Laboratory ID:	07-105-23					
DRO/LRO C10-C36	ND	64	NWTPH-Dx	7-18-23	7-19-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				

Date of Report: July 20, 2023 Samples Submitted: July 14, 2023 Laboratory Reference: 2307-105 Project: 1355-001

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

								Date	Date		
Analyte		Result	P	QL	Metl	nod	P	repared	Analyzed	F	lags
METHOD BLANK											
Laboratory ID:		MB0718S1									
DRO/LRO C10-C36		ND		50	NWTF	PH-Dx		7-18-23	7-18-23		
Surrogate:	Per	cent Recovery	Contr	ol Limits							
o-Terphenyl		77	50	-150							
Laboratory ID:		MB0718S1									
DRO/LRO C10-C36		ND		50	NWTF	PH-Dx		7-18-23	7-18-23		X2
Surrogate:	Per	cent Recovery	Contr	ol Limits							
o-Terphenyl		74	50	-150							
					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-12	20-05									
	ORIG	DUP									
DRO/LRO C10-C36	ND	ND	NA	NA		N	IA	NA	NA	40	X2
Surrogate:											
o-Terphenyl						83	81	50-150			
Laboratory ID:	07-12	20-05									
	ORIG	DUP									
DRO/LRO C10-C36	ND	ND	NA	NA		N	IA	NA	NA	40	
Surrogate:											
o-Terphenyl						84	79	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-32-RGW					
Laboratory ID:	07-105-14					
Diesel Range Organics	4.6	0.13	NWTPH-Dx	7-18-23	7-18-23	М
Lube Oil Range Organics	0.70	0.21	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	FB-32-RGW					
Laboratory ID:	07-105-14					
Diesel Range Organics	ND	1.1	NWTPH-Dx	7-18-23	7-18-23	M1,U1,X2
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	FB-31-RGW					
Laboratory ID:	07-105-15					
Diesel Range Organics	0.44	0.13	NWTPH-Dx	7-18-23	7-18-23	
Lube Oil Range Organics	0.67	0.20	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				
Client ID:						
	PB-31-RGW					
Laboratory ID:	07-105-15	0.40		7 40 00	7 40 00	NO.
Diesel Range Organics		0.13		7-18-23	7-18-23	X2
Lube OII Range Organics		0.20	NWIPH-DX	7-18-23	7-18-23	λ2
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	98	50-150				
Client ID:	FB-34-RGW					
Laboratory ID:	07-105-16					
Diosol Bango Organico	01-100-10	0.13		7 19 22	7 19 22	
	0.14	0.13		7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits		7-10-25	7-10-25	
o-Ternhenvl	71	50-150				
e reipilenyi		00 /00				
Client ID:	FB-34-RGW					
Laboratory ID:	07-105-16					
Diesel Range Organics	ND	0.13	NWTPH-Dx	7-18-23	7-19-23	X2
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	7-18-23	7-19-23	X2
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenyl	69	50-150				
- 1 7						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

19

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

						Date	Date		
Analyte	Result	PQ	L N	Nethod		Prepared	Analyze	əd	Flags
METHOD BLANK									
Laboratory ID:	MB0718W1								
Diesel Range Organics	ND	0.1	0 NV	VTPH-D	х	7-18-23	7-18-2	3	
Lube Oil Range Organics	ND	0.1	6 NV	VTPH-D	х	7-18-23	7-18-2	3	
Surrogate:	Percent Recov	ery Control	Limits						
o-Terphenyl	107	50-1	50						
Laboratory ID:	MB0718W1								
Diesel Range Organics	ND	0.1	0 NV	VTPH-D	х	7-18-23	7-18-2	3	X2
Lube Oil Range Organics	ND	0.1	6 NV	VTPH-D	х	7-18-23	7-18-2	3	X2
Surrogate:	Percent Recov	ery Control	Limits						
o-Terphenyl	130	50-1	50						
			_	_		_			
			Source	e Per	cent	Recovery		RPD	
Analyte	Result	Spike Lev	<u>/el Result</u>	t Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	SB0718W1								
OI	RIG DUP								
Diesel Fuel #2 0.3	347 0.322	NA N	JA	Ν	ΝA	NA	7	40	
Surrogate:									
o-Terphenyl				82	78	50-150			
Laboratory ID:	SB0718W1								
OI	RIG DUP								
Diesel Fuel #2 0.3	328 0.315	NA N	JA	Ν	١A	NA	4	40	X2
Surrogate:									
o-Terphenyl				83	81	50-150			

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-32-RGW					
Laboratory ID:	07-105-14					
DRO/LRO C10-C36	4.1	0.26	NWTPH-Dx	7-18-23	7-18-23	М
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	FB-32-RGW					
Laboratory ID:	07-105-14					
DRO/LRO C10-C36	ND	0.97	NWTPH-Dx	7-18-23	7-18-23	M1,U1,X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	FB-31-RGW					
Laboratory ID:	07-105-15					
DRO/LRO C10-C36	0.75	0.26	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenyl	108	50-150				
Client ID:	FB-31-RGW					
Laboratory ID:	07-105-15					
DRO/LRO C10-C36	ND	0.26	NWTPH-Dx	7-18-23	7-18-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	FB-34-RGW					
Laboratory ID:	07-105-16					
DRO/LRO C10-C36	0.33	0.26	NWTPH-Dx	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	71	50-150				
Client ID:	FB-34-RGW					
Laboratory ID:	07-105-16					
DRO/LRO C10-C36	ND	0.26	NWTPH-Dx	7-18-23	7-19-23	X2
Surrogate:	Percent Recovery	Control Limits			-	
o-Terphenyl	69	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: July 20, 2023 Samples Submitted: July 14, 2023 Laboratory Reference: 2307-105 Project: 1355-001

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

								Date	Date)	
Analyte		Result	P	PQL	Me	thod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB0718W1									
DRO/LRO C10-C36		ND	C).20	NWT	PH-D	х	7-18-23	7-18-2	23	
Surrogate:	Pe	rcent Recovery	Contr	ol Limit	s						
o-Terphenyl		107	50)-150							
Laboratory ID:		MB0718W1									
DRO/LRO C10-C36		ND	C).20	NWT	PH-D	х	7-18-23	7-18-2	23	X2
Surrogate:	Pe	rcent Recovery	Contr	ol Limit	's						
o-Terphenyl		130	50)-150							
					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike L	.evel	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB07	18W1									
	ORIG	DUP									
DRO/LRO C10-C36	0.304	0.275	NA	NA		Ν	IA	NA	10	40	
Surrogate:											
o-Terphenyl						82	78	50-150			
Laboratory ID:	SB07	18W1									
	ORIG	DUP									
DRO/LRO C10-C36	0.299	0.291	NA	NA		Ν	A	NA	3	40	X2
Surrogate:											
o-Terphenyl						83	81	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-32-RGW					
Laboratory ID:	07-105-14					
Dichlorodifluoromethane	ND	10	EPA 8260D	7-17-23	7-17-23	
Chloromethane	ND	50	EPA 8260D	7-17-23	7-17-23	
Vinyl Chloride	ND	10	EPA 8260D	7-17-23	7-17-23	
Bromomethane	ND	50	EPA 8260D	7-17-23	7-17-23	
Chloroethane	ND	50	EPA 8260D	7-17-23	7-17-23	
Trichlorofluoromethane	ND	10	EPA 8260D	7-17-23	7-17-23	
1,1-Dichloroethene	ND	10	EPA 8260D	7-17-23	7-17-23	
lodomethane	ND	250	EPA 8260D	7-17-23	7-17-23	
Methylene Chloride	ND	50	EPA 8260D	7-17-23	7-17-23	
(trans) 1,2-Dichloroethene	ND	10	EPA 8260D	7-17-23	7-17-23	
1,1-Dichloroethane	ND	10	EPA 8260D	7-17-23	7-17-23	
2,2-Dichloropropane	ND	10	EPA 8260D	7-17-23	7-17-23	
(cis) 1,2-Dichloroethene	ND	10	EPA 8260D	7-17-23	7-17-23	
Bromochloromethane	ND	10	EPA 8260D	7-17-23	7-17-23	
Chloroform	ND	10	EPA 8260D	7-17-23	7-17-23	
1,1,1-Trichloroethane	ND	10	EPA 8260D	7-17-23	7-17-23	
Carbon Tetrachloride	ND	10	EPA 8260D	7-17-23	7-17-23	
1,1-Dichloropropene	ND	10	EPA 8260D	7-17-23	7-17-23	
1,2-Dichloroethane	820	10	EPA 8260D	7-17-23	7-17-23	
Trichloroethene	ND	10	EPA 8260D	7-17-23	7-17-23	
1,2-Dichloropropane	ND	10	EPA 8260D	7-17-23	7-17-23	
Dibromomethane	ND	10	EPA 8260D	7-17-23	7-17-23	
Bromodichloromethane	ND	10	EPA 8260D	7-17-23	7-17-23	
(cis) 1,3-Dichloropropene	ND	10	EPA 8260D	7-17-23	7-17-23	
(trans) 1,3-Dichloropropene	ND	10	EPA 8260D	7-17-23	7-17-23	
1,1,2-Trichloroethane	39	10	EPA 8260D	7-17-23	7-17-23	
Tetrachloroethene	ND	10	EPA 8260D	7-17-23	7-17-23	
1,3-Dichloropropane	ND	10	EPA 8260D	7-17-23	7-17-23	
Dibromochloromethane	ND	10	EPA 8260D	7-17-23	7-17-23	
1,2-Dibromoethane	ND	10	EPA 8260D	7-17-23	7-17-23	
Chlorobenzene	ND	10	EPA 8260D	7-17-23	7-17-23	
1,1,1,2-Tetrachloroethane	ND	10	EPA 8260D	7-17-23	7-17-23	
Bromoform	ND	50	EPA 8260D	7-17-23	7-17-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-32-RGW					
Laboratory ID:	07-105-14					
Bromobenzene	ND	10	EPA 8260D	7-17-23	7-17-23	
1,1,2,2-Tetrachloroethane	ND	10	EPA 8260D	7-17-23	7-17-23	
1,2,3-Trichloropropane	ND	10	EPA 8260D	7-17-23	7-17-23	
2-Chlorotoluene	ND	10	EPA 8260D	7-17-23	7-17-23	
4-Chlorotoluene	ND	10	EPA 8260D	7-17-23	7-17-23	
1,3-Dichlorobenzene	ND	10	EPA 8260D	7-17-23	7-17-23	
1,4-Dichlorobenzene	ND	10	EPA 8260D	7-17-23	7-17-23	
1,2-Dichlorobenzene	ND	10	EPA 8260D	7-17-23	7-17-23	
1,2-Dibromo-3-chloropropane	ND	50	EPA 8260D	7-17-23	7-17-23	
1,2,4-Trichlorobenzene	ND	10	EPA 8260D	7-17-23	7-17-23	
Hexachlorobutadiene	ND	50	EPA 8260D	7-17-23	7-17-23	
1,2,3-Trichlorobenzene	ND	10	EPA 8260D	7-17-23	7-17-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	106	78-125				

VOLATILE ORGANICS EPA 8260D page 2 of 2

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-31-RGW					
Laboratory ID:	07-105-15					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Chloromethane	ND	1.0	EPA 8260D	7-18-23	7-18-23	
Vinyl Chloride	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Bromomethane	ND	1.0	EPA 8260D	7-18-23	7-18-23	
Chloroethane	ND	1.0	EPA 8260D	7-18-23	7-18-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
lodomethane	ND	6.5	EPA 8260D	7-18-23	7-18-23	
Methylene Chloride	ND	1.0	EPA 8260D	7-18-23	7-18-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Bromochloromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Chloroform	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Trichloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Dibromomethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Bromodichloromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Tetrachloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Dibromochloromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Chlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Bromoform	ND	1.0	EPA 8260D	7-18-23	7-18-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-31-RGW					
Laboratory ID:	07-105-15					
Bromobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	7-18-23	7-18-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	7-18-23	7-18-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	105	78-125				

VOLATILE ORGANICS EPA 8260D page 2 of 2

26

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-34-RGW					
Laboratory ID:	07-105-16					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Chloromethane	ND	1.0	EPA 8260D	7-18-23	7-18-23	
Vinyl Chloride	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Bromomethane	ND	1.0	EPA 8260D	7-18-23	7-18-23	
Chloroethane	ND	1.0	EPA 8260D	7-18-23	7-18-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
lodomethane	ND	6.5	EPA 8260D	7-18-23	7-18-23	
Methylene Chloride	ND	1.0	EPA 8260D	7-18-23	7-18-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Bromochloromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Chloroform	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Trichloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Dibromomethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Bromodichloromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Tetrachloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Dibromochloromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Chlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Bromoform	ND	1.0	EPA 8260D	7-18-23	7-18-23	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-34-RGW					
Laboratory ID:	07-105-16					
Bromobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	7-18-23	7-18-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	7-18-23	7-18-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	75-127				
Toluene-d8	98	80-127				
4-Bromofluorobenzene	104	78-125				

VOLATILE ORGANICS EPA 8260D page 2 of 2

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0717W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Chloromethane	ND	1.0	EPA 8260D	7-17-23	7-17-23	
Vinyl Chloride	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Bromomethane	ND	1.0	EPA 8260D	7-17-23	7-17-23	
Chloroethane	ND	1.0	EPA 8260D	7-17-23	7-17-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
lodomethane	ND	5.0	EPA 8260D	7-17-23	7-17-23	
Methylene Chloride	ND	1.0	EPA 8260D	7-17-23	7-17-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Bromochloromethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Chloroform	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Trichloroethene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Dibromomethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Bromodichloromethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Tetrachloroethene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Dibromochloromethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Chlorobenzene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Bromoform	ND	1.0	EPA 8260D	7-17-23	7-17-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0717W1					
Bromobenzene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	7-17-23	7-17-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	7-17-23	7-17-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	7-17-23	7-17-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	7-17-23	7-17-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	75-127				
Toluene-d8	99	80-127				
4-Bromofluorobenzene	106	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0718W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Chloromethane	ND	1.0	EPA 8260D	7-18-23	7-18-23	
Vinyl Chloride	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Bromomethane	ND	1.0	EPA 8260D	7-18-23	7-18-23	
Chloroethane	ND	1.0	EPA 8260D	7-18-23	7-18-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
lodomethane	ND	6.5	EPA 8260D	7-18-23	7-18-23	
Methylene Chloride	ND	1.0	EPA 8260D	7-18-23	7-18-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Bromochloromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Chloroform	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Trichloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Dibromomethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Bromodichloromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Tetrachloroethene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Dibromochloromethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dibromoethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Chlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Bromoform	ND	1.0	EPA 8260D	7-18-23	7-18-23	

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0718W1					
Bromobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	7-18-23	7-18-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	7-18-23	7-18-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	7-18-23	7-18-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	7-18-23	7-18-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	105	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	17W1								
	SB	SBD	SB	SBD	SB	SBD				
Dichlorodifluoromethane	11.2	10.6	10.0	10.0	112	106	34-166	6	21	
Chloromethane	10.8	10.9	10.0	10.0	108	109	63-138	1	18	
Vinyl Chloride	9.32	9.24	10.0	10.0	93	92	71-135	1	20	
Bromomethane	10.2	11.0	10.0	10.0	102	110	20-151	8	36	
Chloroethane	9.12	9.17	10.0	10.0	91	92	76-125	1	20	
Trichlorofluoromethane	9.43	9.64	10.0	10.0	94	96	75-131	2	19	
1,1-Dichloroethene	8.61	8.78	10.0	10.0	86	88	78-125	2	19	
lodomethane	8.27	8.91	10.0	10.0	83	89	10-155	7	40	
Methylene Chloride	8.87	8.96	10.0	10.0	89	90	80-120	1	15	
(trans) 1,2-Dichloroethene	8.85	9.02	10.0	10.0	89	90	80-125	2	17	
1,1-Dichloroethane	8.50	8.65	10.0	10.0	85	87	80-125	2	17	
2,2-Dichloropropane	9.78	10.2	10.0	10.0	98	102	80-146	4	21	
(cis) 1,2-Dichloroethene	9.24	9.38	10.0	10.0	92	94	80-129	2	17	
Bromochloromethane	10.1	10.2	10.0	10.0	101	102	80-125	1	18	
Chloroform	8.61	8.79	10.0	10.0	86	88	80-123	2	16	
1,1,1-Trichloroethane	8.68	8.79	10.0	10.0	87	88	80-123	1	18	
Carbon Tetrachloride	8.32	8.51	10.0	10.0	83	85	80-126	2	17	
1,1-Dichloropropene	8.38	8.68	10.0	10.0	84	87	80-126	4	18	
1,2-Dichloroethane	9.73	9.54	10.0	10.0	97	95	80-124	2	15	
Trichloroethene	8.52	8.64	10.0	10.0	85	86	80-122	1	18	
1,2-Dichloropropane	8.60	8.57	10.0	10.0	86	86	80-123	0	15	
Dibromomethane	9.87	9.53	10.0	10.0	99	95	80-123	4	15	
Bromodichloromethane	9.19	9.13	10.0	10.0	92	91	80-125	1	15	
(cis) 1,3-Dichloropropene	9.63	9.55	10.0	10.0	96	96	80-129	1	15	
(trans) 1,3-Dichloropropene	8.68	8.58	10.0	10.0	87	86	80-134	1	17	
1,1,2-Trichloroethane	10.0	9.79	10.0	10.0	100	98	77-126	2	20	
Tetrachloroethene	8.95	9.06	10.0	10.0	90	91	80-124	1	18	
1,3-Dichloropropane	9.62	9.48	10.0	10.0	96	95	80-120	1	15	
Dibromochloromethane	10.3	10.1	10.0	10.0	103	101	80-128	2	15	
1,2-Dibromoethane	10.7	10.4	10.0	10.0	107	104	80-127	3	15	
Chlorobenzene	8.61	8.78	10.0	10.0	86	88	80-120	2	17	
1,1,1,2-Tetrachloroethane	9.14	9.19	10.0	10.0	91	92	80-125	1	17	
Bromoform	10.2	10.1	10.0	10.0	102	101	80-130	1	15	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

33

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

					Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	17W1								
	SB	SBD	SB	SBD	SB	SBD				
Bromobenzene	9.59	9.45	10.0	10.0	96	95	76-128	1	16	
1,1,2,2-Tetrachloroethane	11.0	10.4	10.0	10.0	110	104	74-130	6	15	
1,2,3-Trichloropropane	9.98	9.56	10.0	10.0	100	96	71-129	4	25	
2-Chlorotoluene	9.00	8.77	10.0	10.0	90	88	80-128	3	18	
4-Chlorotoluene	9.15	9.11	10.0	10.0	92	91	80-130	0	19	
1,3-Dichlorobenzene	9.36	9.16	10.0	10.0	94	92	80-126	2	17	
1,4-Dichlorobenzene	9.19	9.03	10.0	10.0	92	90	80-121	2	17	
1,2-Dichlorobenzene	9.55	9.33	10.0	10.0	96	93	79-125	2	15	
1,2-Dibromo-3-chloropropane	10.9	10.4	10.0	10.0	109	104	73-133	5	15	
1,2,4-Trichlorobenzene	9.48	9.44	10.0	10.0	95	94	80-139	0	18	
Hexachlorobutadiene	8.46	8.56	10.0	10.0	85	86	80-151	1	18	
1,2,3-Trichlorobenzene	9.22	9.13	10.0	10.0	92	91	75-146	1	28	
Surrogate:										
Dibromofluoromethane					104	104	75-127			
Toluene-d8					99	100	80-127			
4-Bromofluorobenzene					108	108	78-125			

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Water Matrix: Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	18W1								
	SB	SBD	SB	SBD	SB	SBD				
Dichlorodifluoromethane	10.6	10.8	10.0	10.0	106	108	34-166	2	21	
Chloromethane	10.9	11.7	10.0	10.0	109	117	63-138	7	18	
Vinyl Chloride	9.62	9.99	10.0	10.0	96	100	71-135	4	20	
Bromomethane	10.7	12.6	10.0	10.0	107	126	20-151	16	36	
Chloroethane	9.68	9.96	10.0	10.0	97	100	76-125	3	20	
Trichlorofluoromethane	9.90	10.5	10.0	10.0	99	105	75-131	6	19	
1,1-Dichloroethene	9.07	9.53	10.0	10.0	91	95	78-125	5	19	
lodomethane	7.72	10.0	10.0	10.0	77	100	10-155	26	40	
Methylene Chloride	9.49	9.81	10.0	10.0	95	98	80-120	3	15	
(trans) 1,2-Dichloroethene	9.38	9.83	10.0	10.0	94	98	80-125	5	17	
1,1-Dichloroethane	9.16	9.52	10.0	10.0	92	95	80-125	4	17	
2,2-Dichloropropane	10.3	11.1	10.0	10.0	103	111	80-146	7	21	
(cis) 1,2-Dichloroethene	9.76	10.3	10.0	10.0	98	103	80-129	5	17	
Bromochloromethane	10.8	11.1	10.0	10.0	108	111	80-125	3	18	
Chloroform	9.28	9.59	10.0	10.0	93	96	80-123	3	16	
1,1,1-Trichloroethane	9.22	9.67	10.0	10.0	92	97	80-123	5	18	
Carbon Tetrachloride	8.90	9.33	10.0	10.0	89	93	80-126	5	17	
1,1-Dichloropropene	8.88	9.52	10.0	10.0	89	95	80-126	7	18	
1,2-Dichloroethane	10.2	10.3	10.0	10.0	102	103	80-124	1	15	
Trichloroethene	8.89	9.38	10.0	10.0	89	94	80-122	5	18	
1,2-Dichloropropane	8.85	9.25	10.0	10.0	89	93	80-123	4	15	
Dibromomethane	9.99	10.2	10.0	10.0	100	102	80-123	2	15	
Bromodichloromethane	9.44	9.75	10.0	10.0	94	98	80-125	3	15	
(cis) 1,3-Dichloropropene	9.87	10.2	10.0	10.0	99	102	80-129	3	15	
(trans) 1,3-Dichloropropene	8.76	8.90	10.0	10.0	88	89	80-134	2	17	
1,1,2-Trichloroethane	9.99	10.3	10.0	10.0	100	103	77-126	3	20	
Tetrachloroethene	8.89	9.67	10.0	10.0	89	97	80-124	8	18	
1,3-Dichloropropane	9.67	9.88	10.0	10.0	97	99	80-120	2	15	
Dibromochloromethane	10.3	10.5	10.0	10.0	103	105	80-128	2	15	
1,2-Dibromoethane	10.4	10.8	10.0	10.0	104	108	80-127	4	15	
Chlorobenzene	8.79	9.23	10.0	10.0	88	92	80-120	5	17	
1,1,1,2-Tetrachloroethane	9.23	9.73	10.0	10.0	92	97	80-125	5	17	
Bromoform	9.87	10.4	10.0	10.0	99	104	80-130	5	15	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

35

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

					Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	18W1								
	SB	SBD	SB	SBD	SB	SBD				
Bromobenzene	9.28	9.87	10.0	10.0	93	99	76-128	6	16	
1,1,2,2-Tetrachloroethane	10.3	10.9	10.0	10.0	103	109	74-130	6	15	
1,2,3-Trichloropropane	9.31	9.94	10.0	10.0	93	99	71-129	7	25	
2-Chlorotoluene	8.74	9.40	10.0	10.0	87	94	80-128	7	18	
4-Chlorotoluene	8.95	9.72	10.0	10.0	90	97	80-130	8	19	
1,3-Dichlorobenzene	9.01	9.69	10.0	10.0	90	97	80-126	7	17	
1,4-Dichlorobenzene	8.78	9.59	10.0	10.0	88	96	80-121	9	17	
1,2-Dichlorobenzene	9.25	9.87	10.0	10.0	93	99	79-125	6	15	
1,2-Dibromo-3-chloropropane	9.73	10.4	10.0	10.0	97	104	73-133	7	15	
1,2,4-Trichlorobenzene	9.12	9.89	10.0	10.0	91	99	80-139	8	18	
Hexachlorobutadiene	8.09	9.16	10.0	10.0	81	92	80-151	12	18	
1,2,3-Trichlorobenzene	8.65	9.55	10.0	10.0	87	96	75-146	10	28	
Surrogate:										
Dibromofluoromethane					109	107	75-127			
Toluene-d8					101	101	80-127			
4-Bromofluorobenzene					109	108	78-125			

Date of Report: July 20, 2023 Samples Submitted: July 14, 2023 Laboratory Reference: 2307-105 Project: 1355-001

% MOISTURE

Client ID	Lab ID	% Moisture	Date Analyzed
FB-33-10.0	07-105-02	23	7-19-23
FB-32-10.0	07-105-05	26	7-19-23
FB-36-10.0	07-105-08	25	7-19-23
FB-36-13.0	07-105-09	37	7-19-23
FB-36-18.0	07-105-10	25	7-19-23
FB-34-10.0	07-105-12	28	7-19-23
MW-25-5.0	07-105-17	27	7-19-23
MW-25-10.0	07-105-18	20	7-19-23
MW-25-15.0	07-105-19	21	7-19-23
MW-25-17.0	07-105-20	19	7-19-23
FB-35-10.0	07-105-22	19	7-19-23
FB-35-11.5	07-105-23	22	7-19-23

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Construction	Signature	10 FB- 36- 18.0	9 FB-36-13.0	8 FB-36-10,0	7 FB- 36-7.0	6 FB-32-15.0	5 FB-32-10,0	4 FB- 32-5.0	3 FB- 33-15.0	2 FB-33-10.0	1 FB-33-6.0	Lab ID Sample Identification	c. van stolk	Project Manager: Stuckt Brown	Morningside Acres Trust Truct	Project Number: 1355-001	Company: Farallon	14648 NE 95th Street - Hedmond, WA 98092 Phone: (425) 883-3881 - www.onsite-env.com	Analytical Laboratory Testing Services	Environmental Inc.
Reviewed/Date					780)	Favallon	Company	V 1500 V V	1450 1	1435	1455	1200	1150	Shii	1135	1116	7/13/23 1058 5011 2	Date Time Sampled Sampled Matrix	(other)	Contain	Standard (Z Davs)	2 Days X3 Days	Same Day 1 Day	(Check One)	Turnaround Request	Chain of
					5287 5714112	2481 5214112	Date Time	XX	× ×	× ×			×			×		NWTF NWTF NWTF NWTF Volati Halog EDB I	PH-HCI PH-Gx/ PH-Gx PH-Dx les 826 enated EPA 80	D BTEX (8 (SG Clea W/ 0	021, 8 an-up + W s 8260 ers Only	260[])			Laboratory Number	Custody
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs	Data Package: Standard Level III Level IV				Coardinated of D. Bauneister	Bropped Off in Waiter	Comments/Special Instructions		×	×								Semini (with 1 PAHs PCBs Orgar Orgar Chlori Total 1 Total 1 Total 1 TCLP	volatile: low-lev 8270/S 8082 nochlor nophos inated RCRA I MTCA I MTCA I Metals	ine Pest phorus F Acid Her Metals	icides 8 Pesticides bicides	081 es 8270 8151	/SIM		n 07-105	Page 1 of 3

Investing dragent (neuroning dragent) Laboratory Number: 07 - 105 Company 1 - 100/ 1 - 2000 - 100/ - 2000 <t< th=""><th>Received Reviewed/Date</th><th>Relinquished</th><th>Received</th><th>Relinquished</th><th>Received</th><th>Zarly A Sward Providential</th><th>Relinquished</th><th>Signature</th><th>20 MW-28-20-07.0</th><th>19 MW-25-15.0</th><th>18 MW-25-10.0</th><th>17 MW-25-5.0</th><th>16 FB-34-RGW 7</th><th>15 FB-31- RGW</th><th>14 FB-32-RGW</th><th>13 FB-34-15.0</th><th>12 FB-34-10.0</th><th>[[FB-34-8.0 7</th><th>Lab ID Sample Identification S</th><th>Ci van Stolk.</th><th>Stuart Brown</th><th>Morningside Acres Tract .</th><th>1355-001</th><th>Company: Favallon</th><th>14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com</th><th>Analytical Laboratory Testing Services</th></t<>	Received Reviewed/Date	Relinquished	Received	Relinquished	Received	Zarly A Sward Providential	Relinquished	Signature	20 MW-28-20-07.0	19 MW-25-15.0	18 MW-25-10.0	17 MW-25-5.0	16 FB-34-RGW 7	15 FB-31- RGW	14 FB-32-RGW	13 FB-34-15.0	12 FB-34-10.0	[[FB-34-8.0 7	Lab ID Sample Identification S	Ci van Stolk.	Stuart Brown	Morningside Acres Tract .	1355-001	Company: Favallon	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services
Image: Standard Image: Sta	Reviewed/Date				(OXC	Tavallon	Roll	Company	9 1142 P	0411	1130	1125 5011	114 1035 11	11 Stitl Q	1345 GW	4 45S1	1545	1/13 1538 50:1	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Theck One)	Turnaround Request
Chromatograms with final report Eeven III Level III Level IV V V X X X V V V X X X V V					7/14/25 1	21 CP1111	181 2014116	Date Time	X X X	××	×××		··· X X	" × ×	X X X	4	×		NWTF NWTF NWTF NWTF Volatil	PH-HCI PH-HCI PH-Gx/I PH-Gx PH-Gx PH-Dx (les 826	SG Clea	ers 1021X 8 an-upX W 0	3260 [] ())		Laboratory Nun
B 7 7 7 7 7 7 1 DPO 1220 COMBINED	Data Package: Standard Level III Level IV Chromatograms with final report Electronic Data Deliveral				Sh3.	12 cropped on in way ler	45 Armoved aft in trailer	Comments/Special Instructions		×	×	X							Halog EDB E Semiv (with 1 PAHs PCBs Organ Organ Chlori Total 1 Total 1 TCLP HEM	enated PA 80 ⁻ rolatiles ow-leve 8270/S 8082 nochlori nophosp nated / RCRA N MTCA I Metals (oil and	Volatile 11 (Wate 8270/S el PAHs SIM (low ne Pest bhorus I Acid He Metals grease	s 8260 ers Only SIM) level) iccides 8 Pesticid rbicides) 1081 es 827(8151	D/SIM		mber: 07-105

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Converts Autom	Signature		The second secon	/	23 FB-35-11.5	22 FB-35-10,0	21 FB- 35-6.0	Lab ID Sample Identification	C. van Stolk	Start Brown	Moningside Acres Tract -	Project Number: 1355-001	Company: Farallon	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date					ONE	Farallan	Company		/		A 4 01L1 A	1705	7/14 1706 Soil 2	Date Time Sampled Sampled Matrix	(other)		etanoard (7 Days)	2 Days A3 Days	Same Day 1 Day	(in working days)	Chain of
					Sh&1 21/4/12	7/14/23 1845	Date Time				×××	XXX	× 200 × 000	NWTF NWTF NWTF NWTF Volatil Halog EDB E	PH-HCI PH-Gx/ PH-Gx PH-Dx es 826 enated EPA 80	D BTEX (8 (SG Clea) 0 Volatile	021 E	3260[])		Laboratory Number	Custody
Chromatograms with final report 🗌 Electronic Data Deliverable	Data Package: Standard Level III Level IV				coordinated up 0. Baumeister	Dropped off in trailer,	Comments/Special Instructions						×	Semiv (with I PAHs PCBs Organ Organ Organ Chlori Total I Total I Total I TCLP	rolatile: ow-lev 8270/S 8082 oochlor ophos nated ACRA Metals (oil anc	s 8270/S el PAHs SIM (low ine Pest phorus I Acid He Metals I grease	icides 8 Pesticides bicides	081 es 8270 8151	/SIM	- 07-105	Page 3 of 3
's (EDDs) 🗌						and the second s					×	×	X	D % Mo	20 w·:	PH A	No was	wp1	nec/		

July 26, 2023

Stuart Brown Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1355-001 Laboratory Reference No. 2307-105B

Dear Stuart:

Enclosed are the analytical results and associated quality control data for samples submitted on July 14, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 26, 2023 Samples Submitted: July 14, 2023 Laboratory Reference: 2307-105B Project: 1355-001

Case Narrative

Samples were collected on July 13 and 14, 2023 and received by the laboratory on July 14, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

Method 5035A VOA vials containing stir bars were not provided for the low-level analysis of samples FB-32-5.0, FB-32-10.0 and FB-32-15.0. The samples were therefore extracted from 4-ounce jars. Some loss of volatiles may have occurred.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

VOLATILE ORGANICS EPA 8260D

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FB-32-5.0					
Laboratory ID:	07-105-04					
1,2-Dichloroethane	ND	0.0022	EPA 8260D	7-25-23	7-25-23	
1,1,2-Trichloroethane	ND	0.0022	EPA 8260D	7-25-23	7-25-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	90	75-130				
Toluene-d8	126	78-128				
4-Bromofluorobenzene	121	71-130				
Client ID:	FB-32-10 0					
Laboratory ID:	07 105 05					
1.2 Dichloroethane	ND	0.013		7_25_23	7_25_23	
1,2-Dichloroethane		0.013	EPA 8260D	7-25-23	7-25-23	
Surrogate:	Percent Recovery	Control Limits		1-20-20	1-20-20	
Dibromofluoromethane	88	75-130				
Toluene-d8	107	78-128				
4-Bromofluorobenzene	113	71-130				
Client ID:	FB-32-15.0					
Laboratory ID:	07-105-06					
1,2-Dichloroethane	ND	0.011	EPA 8260D	7-25-23	7-25-23	
1,1,2-Trichloroethane	ND	0.011	EPA 8260D	7-25-23	7-25-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	87	75-130				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	103	71-130				

3

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0725S1					
1,2-Dichloroethane	ND	0.0010	EPA 8260D	7-25-23	7-25-23	
1,1,2-Trichloroethane	ND	0.0010	EPA 8260D	7-25-23	7-25-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	89	75-130				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	102	71-130				

					Pe	rcent	Recovery		RPD	
Analyte	Result		Spike	Spike Level		covery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	25S1								
	SB	SBD	SB	SBD	SB	SBD				
1,2-Dichloroethane	0.0495	0.0505	0.0500	0.0500	99	101	75-124	2	15	
1,1,2-Trichloroethane	0.0492	0.0530	0.0500	0.0500	98	106	80-120	7	15	
Surrogate:										
Dibromofluoromethane					90	91	75-130			
Toluene-d8					99	100	78-128			
4-Bromofluorobenzene					99	98	71-130			

Date of Report: July 26, 2023 Samples Submitted: July 14, 2023 Laboratory Reference: 2307-105B Project: 1355-001

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
FB-32-5.0	07-105-04	25	7-25-23
FB-32-10.0	07-105-05	26	7-19-23
FB-32-15.0	07-105-06	25	7-25-23

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Chain of Custody Intransmit Register Laboratory Number: 07-105 One of the series One of the series <tr< th=""><th>Reviewed/Date</th><th>Received</th><th>Relinquished</th><th>Received</th><th>Relinquished</th><th>Received</th><th>Relinquished Construction</th><th>Signature</th><th>10 FB-36-18.0</th><th>9 FB-36-13.0</th><th>8 F3-36-10,0</th><th>7 FB-36-710</th><th>6 FB-32-15.6</th><th>5 FB-32-10,0</th><th>4 FB- 32-5.0</th><th>3 FB- 33-15.0</th><th>2 FB-33-10,0</th><th>1 FB-33-6.0</th><th>Lab ID Sample Identification</th><th>c. van Stelk</th><th>Project Manager: Sturt Brown</th><th>Morningside Acres Trust Tru</th><th>Project Number: 1355-001</th><th>Company: Farallon</th><th>Phone: (425) 883-3881 • www.onsite-env.com</th><th>Environmental Inc.</th></tr<>	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Construction	Signature	10 FB-36-18.0	9 FB-36-13.0	8 F3-36-10,0	7 FB-36-710	6 FB-32-15.6	5 FB-32-10,0	4 FB- 32-5.0	3 FB- 33-15.0	2 FB-33-10,0	1 FB-33-6.0	Lab ID Sample Identification	c. van Stelk	Project Manager: Sturt Brown	Morningside Acres Trust Tru	Project Number: 1355-001	Company: Farallon	Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Current of the second of th	Reviewed/Date				(380)	Le Favallon	Company	V 1500 V	1450	1435	1455	1200	1150	Shill	SSIL	1110	7/13/23 1058 Soil 2	Date Time Sampled Sampled Matrix =	(other)	 	Ct Standard (7 Days)	2 Days	Same Day 1 Day	(in working days)	Chain of
OP-105 Organophosphorus Pesticides 8081 Organophosphorus Pesticides 8151 Organophosphorus Pesticides 815						2487 6714/12	2114125 1845	Date Time		××	× ×		0	×	0		×		NWTP NWTP NWTP NWTP Volatili Haloge	H-HCII H-Gx/I H-Gx H-Dx (es 8260 enated TPA 801	SG Clea	021 8 n-up 8 s 8260	260 []) ©		Laboratory Number	Custody
	Chromatograms with final report 🗌 Electronic Data Deliverables (E	Data Package: Standard Level III Level IV	× 1,2-Dichlosoethancond 1/1/2-	O Added 7/25/23, DR (1004)71	(X) Added Fliples. 35 (3 days)	Coardinated at 0. Bauneister	Drapped of in trailer,	Comments/Special Instructions		×	×								EDBE Semiv (with le PAHs I PCBs Organ Organ Chlorin Total F Total N TCLP HEM (PA 801 olatiless sw-leve 8270/S 8082 ochlori ophosp nated A Metals oil and P_0 (I (Wate 8270/S) I PAHs) IM (Iow- ne Pesti- ihorus P Acid Herd fetals grease)	In the second se	081 s 8270/ 8151	SIM	×r: 07 - 105	Page 1 of 3

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Cornerty Arth	Signature				/	23 FB-35-11.5	22 FB-35-10.0	21 FB- 35-6.0	Lab ID Sample Identification	C. Van Stolk	Start Brown	Moningside Acres Tract	132-001	Company: Farallon	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date	A				340	Farallon	Company	1	/			\$ 1710 \$ J	1705	7/14 1706 5011 2	Date Time Sampled Sampled Matrix :	(other)		etandard (7 Days) D5	2 Days A3 Days	(Check Une)	Turnaround Request (in working days)	Chain of
					21/1/12 184V	7/14/23 1845	Date Time					XX	XXX	1 × 20 × 20	NWTP NWTP NWTP NWTP NWTP Volatile Haloge	H-HCIE H-Gx/E H-Gx H-Dx (S Res 8260 enated 1	SG Clea	021 . 8 n-up . 8 	260])		Laboratory Numbe	Custody
Chromatograms with final report 🗌 Electronic Data De	Data Package: Standard Level III Level IV				coordinated w/ D. Baumel	Drapped off in trailer.	Comments/Special Instructions								Semiv (with k PAHs I PCBs Organ Organ Chlorir Total R Total N TCLP I HEM (c	olatiles ow-leve 3270/SI 8082 ochlorir ophosp nated A CRA M ITCA M Metals oil and g	Revealed a service of the service of	In Internet	81 s 8270/ 3151	SIM	n 07-105	Page 3
sliverables (EDDs)				1	ster							×	X	X	H Di % Mois	0 L] 20/ w . 7	PRO HAN Se	Com	nbi-	ned		Ŵ

July 20, 2023

Stuart Brown Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1355-001 Laboratory Reference No. 2307-127

Dear Stuart:

Enclosed are the analytical results and associated quality control data for samples submitted on July 19, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 20, 2023 Samples Submitted: July 19, 2023 Laboratory Reference: 2307-127 Project: 1355-001

Case Narrative

Samples were collected on July 17 and 18, 2023 and received by the laboratory on July 19, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-10.0					
Laboratory ID:	07-127-02					
Dichlorodifluoromethane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Chloromethane	ND	0.0049	EPA 8260D	7-19-23	7-19-23	
Vinyl Chloride	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Chloroethane	ND	0.0049	EPA 8260D	7-19-23	7-19-23	
Trichlorofluoromethane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloroethene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Methylene Chloride	ND	0.0049	EPA 8260D	7-19-23	7-19-23	
(trans) 1,2-Dichloroethene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloroethane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
2,2-Dichloropropane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
(cis) 1,2-Dichloroethene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Bromochloromethane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Chloroform	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,1,1-Trichloroethane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Carbon Tetrachloride	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloropropene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,2-Dichloroethane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Trichloroethene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,2-Dichloropropane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Bromodichloromethane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
2-Chloroethyl Vinyl Ether	ND	0.0049	EPA 8260D	7-19-23	7-19-23	
(cis) 1,3-Dichloropropene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
(trans) 1,3-Dichloropropene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,1,2-Trichloroethane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Tetrachloroethene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,3-Dichloropropane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Dibromochloromethane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Chlorobenzene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,1,1,2-Tetrachloroethane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,1,2,2-Tetrachloroethane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,2,3-Trichloropropane	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
2-Chlorotoluene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
4-Chlorotoluene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	

3

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-10.0					
Laboratory ID:	07-127-02					
1,3-Dichlorobenzene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,4-Dichlorobenzene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,2-Dichlorobenzene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
1,2-Dibromo-3-chloropropane	ND	0.0049	EPA 8260D	7-19-23	7-19-23	
1,2,4-Trichlorobenzene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Hexachlorobutadiene	ND	0.0049	EPA 8260D	7-19-23	7-19-23	
1,2,3-Trichlorobenzene	ND	0.00097	EPA 8260D	7-19-23	7-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	75-130				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	101	71-130				

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-15.0					
Laboratory ID:	07-127-03					
Dichlorodifluoromethane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
Chloromethane	ND	0.0058	EPA 8260D	7-19-23	7-19-23	
Vinyl Chloride	0.014	0.0012	EPA 8260D	7-19-23	7-19-23	
Chloroethane	ND	0.0058	EPA 8260D	7-19-23	7-19-23	
Trichlorofluoromethane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloroethene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
Methylene Chloride	ND	0.0058	EPA 8260D	7-19-23	7-19-23	
(trans) 1,2-Dichloroethene	0.0017	0.0012	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloroethane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
2,2-Dichloropropane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
(cis) 1,2-Dichloroethene	0.015	0.0012	EPA 8260D	7-19-23	7-19-23	
Bromochloromethane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
Chloroform	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
Carbon Tetrachloride	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloropropene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
1,2-Dichloroethane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
Trichloroethene	0.014	0.0012	EPA 8260D	7-19-23	7-19-23	
1,2-Dichloropropane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
Bromodichloromethane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
2-Chloroethyl Vinyl Ether	ND	0.0058	EPA 8260D	7-19-23	7-19-23	
(cis) 1,3-Dichloropropene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
(trans) 1,3-Dichloropropene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
1,1,2-Trichloroethane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
Tetrachloroethene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
1,3-Dichloropropane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
Dibromochloromethane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
Chlorobenzene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
2-Chlorotoluene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
4-Chlorotoluene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-15.0					
Laboratory ID:	07-127-03					
1,3-Dichlorobenzene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
1,2-Dibromo-3-chloropropane	ND	0.0058	EPA 8260D	7-19-23	7-19-23	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
Hexachlorobutadiene	ND	0.0058	EPA 8260D	7-19-23	7-19-23	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260D	7-19-23	7-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	75-130				
Toluene-d8	98	78-128				
4-Bromofluorobenzene	95	71-130				

VOLATILE ORGANICS EPA 8260D page 2 of 2

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-25.0					
Laboratory ID:	07-127-04					
Dichlorodifluoromethane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
Chloromethane	ND	0.0050	EPA 8260D	7-19-23	7-19-23	
Vinyl Chloride	0.0014	0.00099	EPA 8260D	7-19-23	7-19-23	
Chloroethane	ND	0.0050	EPA 8260D	7-19-23	7-19-23	
Trichlorofluoromethane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloroethene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
Methylene Chloride	ND	0.0050	EPA 8260D	7-19-23	7-19-23	
(trans) 1,2-Dichloroethene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloroethane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
2,2-Dichloropropane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
(cis) 1,2-Dichloroethene	0.0015	0.00099	EPA 8260D	7-19-23	7-19-23	
Bromochloromethane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
Chloroform	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,1,1-Trichloroethane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
Carbon Tetrachloride	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloropropene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,2-Dichloroethane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
Trichloroethene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,2-Dichloropropane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
Bromodichloromethane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260D	7-19-23	7-19-23	
(cis) 1,3-Dichloropropene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
(trans) 1,3-Dichloropropene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,1,2-Trichloroethane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
Tetrachloroethene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,3-Dichloropropane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
Dibromochloromethane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
Chlorobenzene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,1,1,2-Tetrachloroethane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,1,2,2-Tetrachloroethane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,2,3-Trichloropropane	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
2-Chlorotoluene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
4-Chlorotoluene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-25.0					
Laboratory ID:	07-127-04					
1,3-Dichlorobenzene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,4-Dichlorobenzene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,2-Dichlorobenzene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260D	7-19-23	7-19-23	
1,2,4-Trichlorobenzene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
Hexachlorobutadiene	ND	0.0050	EPA 8260D	7-19-23	7-19-23	
1,2,3-Trichlorobenzene	ND	0.00099	EPA 8260D	7-19-23	7-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	91	75-130				
Toluene-d8	101	78-128				
4-Bromofluorobenzene	97	71-130				

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-35.0					
Laboratory ID:	07-127-05					
Dichlorodifluoromethane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Chloromethane	ND	0.0054	EPA 8260D	7-19-23	7-19-23	
Vinyl Chloride	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Chloroethane	ND	0.0054	EPA 8260D	7-19-23	7-19-23	
Trichlorofluoromethane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloroethene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Methylene Chloride	ND	0.0054	EPA 8260D	7-19-23	7-19-23	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloroethane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
2,2-Dichloropropane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Bromochloromethane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Chloroform	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Carbon Tetrachloride	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloropropene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,2-Dichloroethane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Trichloroethene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,2-Dichloropropane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Bromodichloromethane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
2-Chloroethyl Vinyl Ether	ND	0.0054	EPA 8260D	7-19-23	7-19-23	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,1,2-Trichloroethane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Tetrachloroethene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,3-Dichloropropane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Dibromochloromethane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Chlorobenzene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
2-Chlorotoluene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
4-Chlorotoluene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D	
page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-35.0					
Laboratory ID:	07-127-05					
1,3-Dichlorobenzene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
1,2-Dibromo-3-chloropropane	ND	0.0054	EPA 8260D	7-19-23	7-19-23	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Hexachlorobutadiene	ND	0.0054	EPA 8260D	7-19-23	7-19-23	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260D	7-19-23	7-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	75-130				
Toluene-d8	99	78-128				
4-Bromofluorobenzene	96	71-130				

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-45.0					
Laboratory ID:	07-127-06					
Dichlorodifluoromethane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Chloromethane	ND	0.0044	EPA 8260D	7-19-23	7-19-23	
Vinyl Chloride	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Chloroethane	ND	0.0044	EPA 8260D	7-19-23	7-19-23	
Trichlorofluoromethane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloroethene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Methylene Chloride	ND	0.0044	EPA 8260D	7-19-23	7-19-23	
(trans) 1,2-Dichloroethene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloroethane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
2,2-Dichloropropane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
(cis) 1,2-Dichloroethene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Bromochloromethane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Chloroform	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,1,1-Trichloroethane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Carbon Tetrachloride	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloropropene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,2-Dichloroethane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Trichloroethene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,2-Dichloropropane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Bromodichloromethane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
2-Chloroethyl Vinyl Ether	ND	0.0044	EPA 8260D	7-19-23	7-19-23	
(cis) 1,3-Dichloropropene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
(trans) 1,3-Dichloropropene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,1,2-Trichloroethane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Tetrachloroethene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,3-Dichloropropane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Dibromochloromethane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Chlorobenzene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,1,1,2-Tetrachloroethane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,1,2,2-Tetrachloroethane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,2,3-Trichloropropane	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
2-Chlorotoluene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
4-Chlorotoluene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	

11

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-45.0					
Laboratory ID:	07-127-06					
1,3-Dichlorobenzene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,4-Dichlorobenzene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,2-Dichlorobenzene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
1,2-Dibromo-3-chloropropane	ND	0.0044	EPA 8260D	7-19-23	7-19-23	
1,2,4-Trichlorobenzene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Hexachlorobutadiene	ND	0.0044	EPA 8260D	7-19-23	7-19-23	
1,2,3-Trichlorobenzene	ND	0.00088	EPA 8260D	7-19-23	7-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	91	75-130				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	95	71-130				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0719S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Chloromethane	ND	0.0050	EPA 8260D	7-19-23	7-19-23	
Vinyl Chloride	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Chloroethane	ND	0.0050	EPA 8260D	7-19-23	7-19-23	
Trichlorofluoromethane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloroethene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Methylene Chloride	ND	0.0050	EPA 8260D	7-19-23	7-19-23	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloroethane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
2,2-Dichloropropane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Bromochloromethane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Chloroform	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Carbon Tetrachloride	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,1-Dichloropropene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Trichloroethene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,2-Dichloropropane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Bromodichloromethane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260D	7-19-23	7-19-23	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,1,2-Trichloroethane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Tetrachloroethene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,3-Dichloropropane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Dibromochloromethane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Chlorobenzene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
2-Chlorotoluene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
4-Chlorotoluene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

13

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0719S1					
1,3-Dichlorobenzene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260D	7-19-23	7-19-23	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Hexachlorobutadiene	ND	0.0050	EPA 8260D	7-19-23	7-19-23	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260D	7-19-23	7-19-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	92	75-130				
Toluene-d8	100	78-128				
4-Bromofluorobenzene	96	71-130				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

0.0				Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS									
Laboratory ID:	SB07	19S1							
	SB	SBD	SB SBD	SB	SBD				
Dichlorodifluoromethane	0.0507	0.0469	0.0500 0.0500	101	94	30-160	8	26	
Chloromethane	0.0517	0.0499	0.0500 0.0500	103	100	59-131	4	26	
Vinyl Chloride	0.0537	0.0522	0.0500 0.0500	107	104	68-136	3	23	
Chloroethane	0.0524	0.0505	0.0500 0.0500	105	101	67-141	4	16	
Trichlorofluoromethane	0.0518	0.0522	0.0500 0.0500	104	104	76-127	1	19	
1,1-Dichloroethene	0.0511	0.0513	0.0500 0.0500	102	103	75-129	0	19	
Methylene Chloride	0.0483	0.0472	0.0500 0.0500	97	94	60-124	2	18	
(trans) 1,2-Dichloroethene	0.0500	0.0500	0.0500 0.0500	100	100	79-133	0	15	
1,1-Dichloroethane	0.0511	0.0502	0.0500 0.0500	102	100	79-125	2	17	
2,2-Dichloropropane	0.0493	0.0492	0.0500 0.0500	99	98	79-126	0	18	
(cis) 1,2-Dichloroethene	0.0503	0.0499	0.0500 0.0500	101	100	75-131	1	15	
Bromochloromethane	0.0535	0.0514	0.0500 0.0500	107	103	80-126	4	15	
Chloroform	0.0501	0.0492	0.0500 0.0500	100	98	80-123	2	15	
1,1,1-Trichloroethane	0.0496	0.0505	0.0500 0.0500	99	101	78-124	2	21	
Carbon Tetrachloride	0.0500	0.0500	0.0500 0.0500	100	100	74-127	0	18	
1,1-Dichloropropene	0.0515	0.0515	0.0500 0.0500	103	103	80-123	0	15	
1,2-Dichloroethane	0.0522	0.0502	0.0500 0.0500	104	100	75-124	4	15	
Trichloroethene	0.0523	0.0526	0.0500 0.0500	105	105	80-129	1	18	
1,2-Dichloropropane	0.0535	0.0531	0.0500 0.0500	107	106	80-123	1	15	
Bromodichloromethane	0.0530	0.0519	0.0500 0.0500	106	104	80-129	2	15	
(cis) 1,3-Dichloropropene	0.0542	0.0532	0.0500 0.0500	108	106	80-130	2	15	
(trans) 1,3-Dichloropropene	0.0534	0.0524	0.0500 0.0500	107	105	80-124	2	15	
1,1,2-Trichloroethane	0.0520	0.0508	0.0500 0.0500	104	102	80-120	2	15	
Tetrachloroethene	0.0519	0.0526	0.0500 0.0500	104	105	77-126	1	15	
1,3-Dichloropropane	0.0521	0.0521	0.0500 0.0500	104	104	77-123	0	15	
Dibromochloromethane	0.0531	0.0536	0.0500 0.0500	106	107	80-128	1	16	
Chlorobenzene	0.0515	0.0516	0.0500 0.0500	103	103	80-120	0	18	
1,1,1,2-Tetrachloroethane	0.0513	0.0508	0.0500 0.0500	103	102	80-120	1	15	
1,1,2,2-Tetrachloroethane	0.0535	0.0518	0.0500 0.0500	107	104	75-122	3	17	
1,2,3-Trichloropropane	0.0519	0.0506	0.0500 0.0500	104	101	72-125	3	20	
2-Chlorotoluene	0.0501	0.0511	0.0500 0.0500	100	102	75-128	2	15	
4-Chlorotoluene	0.0493	0.0514	0.0500 0.0500	99	103	78-127	4	16	
1,3-Dichlorobenzene	0.0500	0.0516	0.0500 0.0500	100	103	78-123	3	17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

15

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

					Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	19S1								
	SB	SBD	SB	SBD	SB	SBD				
1,4-Dichlorobenzene	0.0498	0.0511	0.0500	0.0500	100	102	77-121	3	17	
1,2-Dichlorobenzene	0.0495	0.0513	0.0500	0.0500	99	103	80-120	4	15	
1,2-Dibromo-3-chloropropane	0.0546	0.0512	0.0500	0.0500	109	102	61-137	6	28	
1,2,4-Trichlorobenzene	0.0497	0.0529	0.0500	0.0500	99	106	77-127	6	17	
Hexachlorobutadiene	0.0499	0.0505	0.0500	0.0500	100	101	77-125	1	22	
1,2,3-Trichlorobenzene	0.0510	0.0527	0.0500	0.0500	102	105	77-124	3	19	
Surrogate:										
Dibromofluoromethane					96	93	75-130			
Toluene-d8					102	100	78-128			
4-Bromofluorobenzene					103	102	71-130			

Date of Report: July 20, 2023 Samples Submitted: July 19, 2023 Laboratory Reference: 2307-127 Project: 1355-001

% MOISTURE

Client ID	Lab ID	% Moioturo	Date
			Analyzeu
MW-26-10.0	07-127-02	20	7-19-23
MW-26-15.0	07-127-03	20	7-19-23
MW-26-25.0	07-127-04	17	7-19-23
MW-26-35.0	07-127-05	23	7-19-23
MW-26-45.0	07-127-06	12	7-19-23

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Mar Henry Albert	Signature		6 MW-26-45,0	S MW-26-35,0	4 MW-26-25:0	3 MW-26-15.0	2 mw-26-10,0	1 Mw-26-5,0	Lab ID Sample Identification	May henry nelson + Drew Blockwell	Sturt Brown	Morningside acres tract	1355-001	Company: Kanallon Project Number:	 Miaiyucai Lauoiduy tesiing services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com 	Environmental Inc.
			1			-	C.		7/18/23	7/15/13	SIRIN.	7115/23	7115/23	7/17/23	Date Sampled			No. Stand	X 2 Day	Same		Tue
Reviewed/Dat			0	N	8	urallan	ompany		1032	932	848	837	100	1345	Time Sampled	(other)		Barel (LDays)	/s	Day	1 working day	Cha
Φ			220	and and a	A.	Naves			5	S	S	5 4	S	S	Matrix] 3 Days	PS PS	(S)	in of
			L ~1			ting			7	1	-	1	-		NWTF	PH-HC	D	ers			IIE	S
			7/1	2	7	4	Date								NWTF	PH-Gx/	BTEX (3021 [] 8	3260)	abo	Ist
			10	92	pl	1/81								-	NWTF	PH-Gx PH-Dx	(SG Cle	an-up)		ator	d
		-	M	13 11	100	1	Tim		-		-			-	Volati	les 826	0				- Nu	×
			115	5	Z	619	9								Halog	enated	Volatile	es 8260			mbe	
0			- /	1	G	100	0		-	-				-	Semi	volatile	s 8270/	SIM	()		- ă	
hroma	ata Pa					T	omme		+					-	(with PAHs	low-lev 8270/\$	el PAHs SIM (lov	s) v-level)				
togran	ickage					012	nts/Sp								PCBs	8082						
ns with	: Star					to	ecial I								Organ	nochlor	ine Pes	ticides 8	081	0/0114	N	
final r	Idard					-0	nstruct		_				-	-	Chlor	inated	Acid He	rbicides	8151	0/3101		
report						3	ions	-							Total	RCRA	Metals					
Ele	evel III					12									Total	MTCA	Metals					P
otronic						Guld									TCLP	Metals	3					ige
Data Deli	_evel IV								X	X	X	×	X	X	C	V C	grease	9 1664			-	of
verables														X	L.	101	2					1
(EDDs)														1	n l	JE	D					
							-		X	X	X	X	X		% Mo	isture						

July 24, 2023

Stuart Brown Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1355-001 Laboratory Reference No. 2307-160

Dear Stuart:

Enclosed are the analytical results and associated quality control data for samples submitted on July 20, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 24, 2023 Samples Submitted: July 20, 2023 Laboratory Reference: 2307-160 Project: 1355-001

Case Narrative

Samples were collected on July 19 and 20, 2023 and received by the laboratory on July 20, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

2

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-071923					
Laboratory ID:	07-160-03					
Benzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Toluene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Ethylbenzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
m,p-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
o-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Gasoline	ND	100	NWTPH-Gx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	65-122				
Client ID:	MW-24-071923					
Laboratory ID:	07-160-04					
Benzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Toluene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Ethylbenzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
m,p-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
o-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Gasoline	ND	100	NWTPH-Gx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	65-122				
Client ID:	MW-22-071923					
Laboratory ID:	07-160-05					
Benzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Toluene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Ethylbenzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
m,p-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
o-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Gasoline	ND	100	NWTPH-Gx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	65-122				

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-23-071923					
Laboratory ID:	07-160-06					
Benzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Toluene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Ethylbenzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
m,p-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
o-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Gasoline	ND	100	NWTPH-Gx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	65-122				
Client ID:	MW-25-071923					
Laboratory ID:	07-160-07					
Benzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Toluene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Ethylbenzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
m,p-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
o-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Gasoline	ND	100	NWTPH-Gx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	65-122				
Client ID:	MW-19-072023					
Laboratory ID:	07-160-08					
Benzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Toluene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Ethylbenzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
m,p-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
o-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	65-122				

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

• • • • •				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0721W1					
Benzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Toluene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Ethylbenzene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
m,p-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
o-Xylene	ND	1.0	EPA 8021B	7-21-23	7-21-23	
Gasoline	ND	100	NWTPH-Gx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	65-122				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	07-18	59-01								
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethylbenzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						90 83	65-122			
SPIKE BLANKS										
Laboratory ID:	SB07	21W1								

	SB	SBD	SB	SBD	SB	SBD				
Benzene	44.7	44.5	50.0	50.0	89	89	81-118	0	12	
Toluene	45.9	45.7	50.0	50.0	92	91	82-119	0	12	
Ethylbenzene	46.0	45.7	50.0	50.0	92	91	81-118	1	12	
m,p-Xylene	45.9	45.3	50.0	50.0	92	91	82-118	1	12	
o-Xylene	46.5	46.3	50.0	50.0	93	93	81-119	0	11	
Surrogate:										
Fluorobenzene					90	88	65-122			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-12-071923					
Laboratory ID:	07-160-01					
Diesel Range Organics	ND	0.22	NWTPH-Dx	7-21-23	7-21-23	
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	MW-11-071923					
Laboratory ID:	07-160-02					
Diesel Range Organics	0.22	0.20	NWTPH-Dx	7-21-23	7-21-23	
Lube Oil Range Organics	0.60	0.20	NWTPH-Dx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	MW-6-071923					
Laboratory ID:	07-160-03					
Diesel Range Organics	ND	0.21	NWTPH-Dx	7-21-23	7-21-23	
Lube Oil Range Organics	0.24	0.21	NWTPH-Dx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	91	50-150				
Client ID:	MW_24_071923					
Laboratory ID:	07_160_04					
Diesel Range Organics	<u>ND</u>	0.21		7_21_23	7-24-23	
	0.24	0.21		7-21-23	7-24-23	
Surrogate:	Percent Recovery	Control Limits	NWH HEDX	1-21-20	1-24-20	
o-Ternhenvl	95	50-150				
e reipileily	00	00 /00				
Client ID:	MW-22-071923					
Laboratory ID:	07-160-05					
Diesel Range Organics	ND	0.20	NWTPH-Dx	7-21-23	7-21-23	
Lube Oil Range Organics	0.27	0.20	NWTPH-Dx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				
Client ID:	MW-22-071923					
Laboratory ID:	07-160-05					
Diesel Range Organics	ND	0.20	NWTPH-Dx	7-21-23	7-21-23	X2
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	7-21-23	7-21-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	POI	Method	Date Prepared	Date Analyzed	Flage
Client ID:	MW-23-071923	I QL	Method	Tiepaieu	Analyzeu	Tiags
Laboratory ID:	07-160-06					
Diesel Range Organics	ND	0.20	NWTPH-Dx	7-21-23	7-21-23	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	MW-25-071923					

Laboratory ID:	07-160-07					
Diesel Range Organics	0.38	0.20	NWTPH-Dx	7-21-23	7-21-23	
Lube Oil Range Organics	0.42	0.20	NWTPH-Dx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

DIESEL AND HEAVY OIL RANGE ORGANICS **NWTPH-Dx** QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte		Result		POI	Me	thod		Date Prenared	Date Analyz	ьd	Flags
METHOD BLANK		Result		I QL	inc	liiou		Ticparca	Analyz	cu	Tiugo
Laboratory ID:		MB0721W1									
Diesel Range Organics		ND		0.16	NWT	PH-D	х	7-21-23	7-21-2	3	
Lube Oil Range Organics	S	ND		0.16	NWT	PH-D	х	7-21-23	7-21-2	3	
Surrogate:	Pe	rcent Recovery	Со	ntrol Limit	S						
o-Terphenyl		91		50-150							
Laboratory ID:		MB0721W1									
Diesel Range Organics		ND		0.16	NWT	[PH-D	х	7-21-23	7-21-2	3	X2
Lube Oil Range Organics	6	ND		0.16	NWT	PH-D	х	7-21-23	7-21-2	3	X2
Surrogate:	Pe	rcent Recovery	Со	ntrol Limits	S						
o-Terphenyl		90		50-150							
					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spik	e Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB07	21W1									
(ORIG	DUP									
Diesel Fuel #2).449	0.442	NA	NA		Ν	A	NA	2	40	
Surrogate:											
o-Terphenyl						83	85	50-150			
Laboratory ID:	SB07	21W1									
(ORIG	DUP									
Diesel Fuel #2	0.400	0.385	NA	NA		Ν	IA	NA	4	40	X2
Surrogate:											
o-Terphenyl						87	87	50-150			

o-Terphenyl

50-150 87

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-12-071923					
Laboratory ID:	07-160-01					
DRO/LRO C10-C36	ND	0.27	NWTPH-Dx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	MW-11-071923					
Laboratory ID:	07-160-02					
DRO/LRO C10-C36	0.51	0.25	NWTPH-Dx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	MW-6-071923					
Laboratory ID:	07-160-03					
DRO/LRO C10-C36	ND	0.26	NWTPH-Dx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	MW_24_071923					
Laboratory ID.	07-160-04					
DRO/I RO C10-C36	<u>ND</u>	0.26	NWTPH-Dx	7-21-23	7-24-23	
Surrogate:	Percent Recovery	Control Limits		1 21 20	1 2 1 20	
o-Terphenyl	95	50-150				
Client ID:	MW 22 074022					
	NIN - 22-071923					
	07-160-05	0.05		7 04 00	7 04 00	
DRU/LRU C 10-C30	0.20 Dereent Deservery	0.25	NW IPH-DX	7-21-23	7-21-23	
o-Terphenyl	78	50-150				
Client ID:	MW-22-071923					
Laboratory ID:	07-160-05	-				
DRO/LRO C10-C36	ND	0.25	NWTPH-Dx	7-21-23	7-21-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
Client ID:	MW-23-071923					
Laboratory ID:	07-160-06					
DRO/LRO C10-C36	ND	0.25	NWTPH-Dx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
o-Terphenyl	92	50-150	Dedmand M/A	00052 (425) 99	2 2004	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

5 (T)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-25-071923					
Laboratory ID:	07-160-07					
DRO/LRO C10-C36	0.50	0.25	NWTPH-Dx	7-21-23	7-21-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

Date of Report: July 24, 2023 Samples Submitted: July 20, 2023 Laboratory Reference: 2307-160 Project: 1355-001

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

							Date	Date)	
Analyte		Result	PQL	Me	Method		Prepared	Analyz	ed	Flags
METHOD BLANK										
Laboratory ID:		MB0721W1								
DRO/LRO C10-C36		ND	0.20	NW	TPH-Dx		7-21-23	7-21-2	23	
Surrogate:	Pe	rcent Recovery	Control Lir	nits						
o-Terphenyl		91	50-150)						
Laboratory ID:		MB0721W1								
DRO/LRO C10-C36		ND	0.20	NW	TPH-Dx		7-21-23	7-21-2	23	X2
Surrogate:	Pe	rcent Recovery	Control Lir	nits						
o-Terphenyl		90	50-150	1						
				Source	Perce	nt	Recovery		RPD	
Analyte	Re	sult	Spike Level	Result	Recove	ery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	SB07	21W1								
	ORIG	DUP								
DRO/LRO C10-C36	0.413	0.405	NA NA		NA		NA	2	40	
Surrogate:										
o-Terphenyl					83	85	50-150			
Laboratory ID:	SB07	21W1								
	ORIG	DUP								
DRO/LRO C10-C36	0.359	0.346	NA NA		NA		NA	4	40	X2
Surrogate:										
o-Terphenyl					87	87	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

07 00-700

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-072023					
Laboratory ID:	07-160-09					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Chloromethane	ND	1.0	EPA 8260D	7-24-23	7-24-23	
Vinyl Chloride	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Chloroethane	ND	1.0	EPA 8260D	7-24-23	7-24-23	
Trichlorofluoromethane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,1-Dichloroethene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Methylene Chloride	ND	1.0	EPA 8260D	7-24-23	7-24-23	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,1-Dichloroethane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
2,2-Dichloropropane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Bromochloromethane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Chloroform	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Carbon Tetrachloride	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,1-Dichloropropene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,2-Dichloroethane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Trichloroethene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,2-Dichloropropane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Bromodichloromethane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Tetrachloroethene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,3-Dichloropropane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Dibromochloromethane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Chlorobenzene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	7-24-23	7-24-23	
2-Chlorotoluene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
4-Chlorotoluene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	7-24-23	7-24-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-26-072023					
Laboratory ID:	07-160-09					
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	7-24-23	7-24-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	7-24-23	7-24-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	98	78-125				

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-27-072023					
Laboratory ID:	07-160-10					
Dichlorodifluoromethane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
Chloromethane	ND	2.0	EPA 8260D	7-24-23	7-24-23	
Vinyl Chloride	48	0.40	EPA 8260D	7-24-23	7-24-23	
Chloroethane	ND	2.0	EPA 8260D	7-24-23	7-24-23	
Trichlorofluoromethane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
1,1-Dichloroethene	1.4	0.40	EPA 8260D	7-24-23	7-24-23	
Methylene Chloride	ND	2.0	EPA 8260D	7-24-23	7-24-23	
(trans) 1,2-Dichloroethene	2.8	0.40	EPA 8260D	7-24-23	7-24-23	
1,1-Dichloroethane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
2,2-Dichloropropane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
(cis) 1,2-Dichloroethene	34	0.40	EPA 8260D	7-24-23	7-24-23	
Bromochloromethane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
Chloroform	ND	0.40	EPA 8260D	7-24-23	7-24-23	
1,1,1-Trichloroethane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
Carbon Tetrachloride	ND	0.40	EPA 8260D	7-24-23	7-24-23	
1,1-Dichloropropene	ND	0.40	EPA 8260D	7-24-23	7-24-23	
1,2-Dichloroethane	0.53	0.40	EPA 8260D	7-24-23	7-24-23	
Trichloroethene	9.4	0.40	EPA 8260D	7-24-23	7-24-23	
1,2-Dichloropropane	0.41	0.40	EPA 8260D	7-24-23	7-24-23	
Bromodichloromethane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
(cis) 1,3-Dichloropropene	ND	0.40	EPA 8260D	7-24-23	7-24-23	
(trans) 1,3-Dichloropropene	ND	0.40	EPA 8260D	7-24-23	7-24-23	
1,1,2-Trichloroethane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
Tetrachloroethene	ND	0.40	EPA 8260D	7-24-23	7-24-23	
1,3-Dichloropropane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
Dibromochloromethane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
Chlorobenzene	ND	0.40	EPA 8260D	7-24-23	7-24-23	
1,1,1,2-Tetrachloroethane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
1,1,2,2-Tetrachloroethane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
1,2,3-Trichloropropane	ND	0.40	EPA 8260D	7-24-23	7-24-23	
2-Chlorotoluene	ND	0.40	EPA 8260D	7-24-23	7-24-23	
4-Chlorotoluene	ND	0.40	EPA 8260D	7-24-23	7-24-23	
1,3-Dichlorobenzene	ND	0.40	EPA 8260D	7-24-23	7-24-23	

VOLATILE ORGANICS EPA 8260D page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-27-072023					
Laboratory ID:	07-160-10					
1,4-Dichlorobenzene	ND	0.40	EPA 8260D	7-24-23	7-24-23	
1,2-Dichlorobenzene	ND	0.40	EPA 8260D	7-24-23	7-24-23	
1,2-Dibromo-3-chloropropane	ND	2.0	EPA 8260D	7-24-23	7-24-23	
1,2,4-Trichlorobenzene	ND	0.40	EPA 8260D	7-24-23	7-24-23	
Hexachlorobutadiene	ND	2.0	EPA 8260D	7-24-23	7-24-23	
1,2,3-Trichlorobenzene	ND	0.40	EPA 8260D	7-24-23	7-24-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	75-127				
Toluene-d8	99	80-127				
4-Bromofluorobenzene	97	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
METHOD BLANK							
Laboratory ID:	MB0724W1						
Dichlorodifluoromethane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
Chloromethane	ND	1.0	EPA 8260D	7-24-23	7-24-23		
Vinyl Chloride	ND	0.20	EPA 8260D	7-24-23	7-24-23		
Chloroethane	ND	1.0	EPA 8260D	7-24-23	7-24-23		
Trichlorofluoromethane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
1,1-Dichloroethene	ND	0.20	EPA 8260D	7-24-23	7-24-23		
Methylene Chloride	ND	1.0	EPA 8260D	7-24-23	7-24-23		
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	7-24-23	7-24-23		
1,1-Dichloroethane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
2,2-Dichloropropane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	7-24-23	7-24-23		
Bromochloromethane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
Chloroform	ND	0.20	EPA 8260D	7-24-23	7-24-23		
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
Carbon Tetrachloride	ND	0.20	EPA 8260D	7-24-23	7-24-23		
1,1-Dichloropropene	ND	0.20	EPA 8260D	7-24-23	7-24-23		
1,2-Dichloroethane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
Trichloroethene	ND	0.20	EPA 8260D	7-24-23	7-24-23		
1,2-Dichloropropane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
Bromodichloromethane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	7-24-23	7-24-23		
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	7-24-23	7-24-23		
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
Tetrachloroethene	ND	0.20	EPA 8260D	7-24-23	7-24-23		
1,3-Dichloropropane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
Dibromochloromethane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
Chlorobenzene	ND	0.20	EPA 8260D	7-24-23	7-24-23		
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	7-24-23	7-24-23		
2-Chlorotoluene	ND	0.20	EPA 8260D	7-24-23	7-24-23		
4-Chlorotoluene	ND	0.20	EPA 8260D	7-24-23	7-24-23		
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	7-24-23	7-24-23		

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0724W1					
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	7-24-23	7-24-23	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Hexachlorobutadiene	ND	1.0	EPA 8260D	7-24-23	7-24-23	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	7-24-23	7-24-23	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	75-127				
Toluene-d8	100	80-127				
4-Bromofluorobenzene	98	78-125				

17

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

					Per	Percent			RPD		
Analyte	Result Spike Level Recover		overy	Limits	RPD	Limit	Flags				
SPIKE BLANKS											
Laboratory ID:	SB07	24W1									
	SB	SBD	SB	SBD	SB	SBD					
Dichlorodifluoromethane	8.15	7.86	10.0	10.0	82	79	34-166	4	21		
Chloromethane	8.95	8.72	10.0	10.0	90	87	63-138	3	18		
Vinyl Chloride	9.45	9.21	10.0	10.0	95	92	71-135	3	20		
Chloroethane	9.56	9.39	10.0	10.0	96	94	76-125	2	20		
Trichlorofluoromethane	9.45	9.62	10.0	10.0	95	96	75-131	2	19		
1,1-Dichloroethene	9.49	9.54	10.0	10.0	95	95	78-125	1	19		
Methylene Chloride	9.13	9.13	10.0	10.0	91	91	80-120	0	15		
(trans) 1,2-Dichloroethene	9.39	9.50	10.0	10.0	94	95	80-125	1	17		
1,1-Dichloroethane	9.64	9.65	10.0	10.0	96	97	80-125	0	17		
2,2-Dichloropropane	10.2	10.6	10.0	10.0	102	106	80-146	4	21		
(cis) 1,2-Dichloroethene	9.71	9.79	10.0	10.0	97	98	80-129	1	17		
Bromochloromethane	9.16	9.21	10.0	10.0	92	92	80-125	1	18		
Chloroform	9.43	9.63	10.0	10.0	94	96	80-123	2	16		
1,1,1-Trichloroethane	9.54	9.53	10.0	10.0	95	95	80-123	0	18		
Carbon Tetrachloride	9.59	9.79	10.0	10.0	96	98	80-126	2	17		
1,1-Dichloropropene	9.55	9.76	10.0	10.0	96	98	80-126	2	18		
1,2-Dichloroethane	9.32	9.29	10.0	10.0	93	93	80-124	0	15		
Trichloroethene	9.70	9.71	10.0	10.0	97	97	80-122	0	18		
1,2-Dichloropropane	10.1	9.96	10.0	10.0	101	100	80-123	1	15		
Bromodichloromethane	9.73	9.63	10.0	10.0	97	96	80-125	1	15		
(cis) 1,3-Dichloropropene	10.0	10.1	10.0	10.0	100	101	80-129	1	15		
(trans) 1,3-Dichloropropene	9.82	9.84	10.0	10.0	98	98	80-134	0	17		
1,1,2-Trichloroethane	9.54	9.30	10.0	10.0	95	93	77-126	3	20		
Tetrachloroethene	9.59	9.68	10.0	10.0	96	97	80-124	1	18		
1,3-Dichloropropane	9.32	9.05	10.0	10.0	93	91	80-120	3	15		
Dibromochloromethane	9.30	9.30	10.0	10.0	93	93	80-128	0	15		
Chlorobenzene	9.51	9.38	10.0	10.0	95	94	80-120	1	17		
1,1,1,2-Tetrachloroethane	9.22	9.36	10.0	10.0	92	94	80-125	2	17		
1,1,2,2-Tetrachloroethane	9.45	9.29	10.0	10.0	95	93	74-130	2	15		
1,2,3-Trichloropropane	9.16	9.09	10.0	10.0	92	91	71-129	1	25		
2-Chlorotoluene	9.45	9.38	10.0	10.0	95	94	80-128	1	18		
4-Chlorotoluene	9.39	9.33	10.0	10.0	94	93	80-130	1	19		
1,3-Dichlorobenzene	9.34	9.28	10.0	10.0	93	93	80-126	1	17		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

18

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

					Per	rcent	Recovery		RPD	
Analyte	Result		Spike Level		Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB072	24W1								
	SB	SBD	SB	SBD	SB	SBD				
1,4-Dichlorobenzene	9.10	9.21	10.0	10.0	91	92	80-121	1	17	
1,2-Dichlorobenzene	9.36	9.32	10.0	10.0	94	93	79-125	0	15	
1,2-Dibromo-3-chloropropane	9.69	9.06	10.0	10.0	97	91	73-133	7	15	
1,2,4-Trichlorobenzene	9.92	9.90	10.0	10.0	99	99	80-139	0	18	
Hexachlorobutadiene	10.4	10.3	10.0	10.0	104	103	80-151	1	18	
1,2,3-Trichlorobenzene	9.61	9.35	10.0	10.0	96	94	75-146	3	28	
Surrogate:										
Dibromofluoromethane					96	95	75-127			
Toluene-d8					100	100	80-127			
4-Bromofluorobenzene					101	100	78-125			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Sign	10 mw-27 -0	9 mv-26-07	8 mu-19-07	7 mu- 25 -0	6 mw-23-0	5 mw-22-0	4 mw-24-0	3 mw-6-0	2 mw-11-0-	1 mw-12-0	ab ID Sample	sampled by: Max Han	Stuart	Project Name: marnings:2	1355-00	Company: Faidllon Project Number:	Analytical Laboratory 14648 NE 95th St Phone: (425) 883-	Environn
						Max- How We	ature	72023	12023	12023	7/923	71923	71923	82 612	71923	71923	71923	Identification	us Mon	Brown	e Acres Tructs	1		 Testing Services reet • Redmond, WA 98052 3881 • www.onsite-env.com 	nental Inc.
Reviewec					N	w Far	Company	7/20/23 1155	7/20/23 1120	7/20/23 810	7/19/23 14 50	7/19/23 1350	7/19/23 1210	7/19/23 1510	7/19/23 1338	7/19/23 1/43	7/14/23 1110	Date Time Sampled Sample	(oth		Standard (7 Da	2 Days	Mu (Check C	Turnaround I (in working	Ct
I/Date					0225	Allan		<i>w</i> 3	K 3	W 3	5	5	× 5	8 5	5	2 3	h h 2	ed Matrix Numb	er)	Contain	ers	3 Days	1 Day	days)	nain of C
					Tholes	1/20/23	Date		010	X	$\frac{1}{\chi}$	×	\times	× ×	×××	×	\sim	NWTF NWTF NWTF	PH-HCI PH-Gx/ PH-Gx PH-Dx (D BTEX	TEC.	oan up	₽ ₽	Laboratory	ustody
0	D				1601	1601	Time (7			*					V olatii Halog EDB E Semiv	enated EPA 80 volatiles	Volatile	EX es 8260E ers Only /SIM		-7 80	Number:	
Shromatograms with final report 🗍 Elec)ata Package: Standard 🗌 Level III				* WIJA NY		Comments/Special Instructions											(with I PAHs PCBs Organ Organ Chlori Total I Total I	ow-lev 8270E 8082A nochlor nochlor nophos nated RCRA I	el PAHs /SIM (lo ine Pesi phorus Acid He Metals Metals) w-level) icides 8 Pesticid rbicides	081B es 8270 8151A	DE/SIM	07-160	Ра
stronic Data Deliverables (EDD								X	\times		×	×	×.*	×	×	×	×	HEM (CVC	Metals (oil and $\mathcal{O}\mathcal{L}$	grease meth RO) 1664A a2 8 COM	260 BIN	D E.D		ge(of(

ATTACHMENT C ECOLOGY OPINION REQUEST FORM

SECOND ADDENDUM TO REMEDIAL INVESTIGATION AND FEASIBILITY STUDY REPORT Morningside Acres Tracts 5001, 5015, and 5021 Rainier Avenue South Seattle, Washington

Farallon PN: 1355-001

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

REQUEST FOR OPINION FORM

Use this form to request a written opinion on your planned or completed independent remedial action under the Voluntary Cleanup Program (VCP). Attach to this form the plans or reports documenting the remedial action. Please submit only one form for each request.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are requesting a written opinion under the VCP. This information may be found on the VCP Agreement.

Facility/Site Name: Morningside Acres Tracts South

Facility/Site Address: 5021 Rainier Avenue South, Seattle, Washington

Facility/Site No: 4321

VCP Project No.: NW3345

Step 2: REQUEST WRITTEN OPINION ON PLAN OR REPORT

What type o under the V	of independent remedial action plan or report are you submitting to Ecology for review /CP? Please check all that apply.
	Remedial investigation plan
\boxtimes	Remedial investigation report
\boxtimes	Feasibility study report
	Property cleanup* plan (* cleanup of one or more parcels located within the Site)
	Property cleanup* report
	Site cleanup plan
	Site cleanup report
	Other – please specify:
	ant Ecology to provide you with a written opinion on the planned or completed

Do you want Ecology to provide you with a written opinion on the planned or completed independent remedial action?

🛛 Yes 🗌 No

Please note that Ecology's opinion will be limited to:

- Whether the planned or completed remedial action at the site meets the substantive requirements of the Model Toxics Control Act (MTCA), and/or
- Whether further remedial action is necessary at the site under MTCA.

Step 3: REPRESENTATIONS AND SIGNATURE

The undersigned representative of the Customer hereby certifies that he or she is fully authorized to request services from Ecology under the Agreement for this VCP Project.									
Name: Jerry-Alan K. Mural	kami		Title: Co-Attorney-in-Fact for Chisato Kathleen Murakami						
Signature:					Date:				
Organization:									
Mailing address: 12424 83	rd Avenue South								
City: Seattle		State: WA		Zip		code: 98178			
Phone: 425-761-8816		E-mail: Jerryskii@yahoo.com)yahoo.com				

Step 4: SUBMITTAL

Please mail your completed form and the independent remedial action plan or report that you are requesting Ecology review to the site manager Ecology assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.