Pre-Remedial Design Investigation Data Report

South State Street MGP Site Bellingham, Washington

for Puget Sound Energy

June 28, 2023

APPENDIX E Data Validation Reports

Data Validation Report

2101 4th Avenue Suite	101 4 th Avenue Suite 950, Seattle, WA 98121, Telephone: 206.728.2674, Fax: 206.728.2732 www.geoengineers.co		
Project:	Puget Sound Energy – South State Street Preliminary Remedial Design September 2021 and January 2022 Upland Soil Sampling Event	n Investigation	
GEI File No:	0186-890-03		
Date:	February 7, 2022		

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2B data validation (USEPA Document 540-R-08-005; USEPA 2009) of analytical data from the analyses of soil samples collected as part of the September 2021 and January 2022 Upland Soil sampling events, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the South State Street Manufactured Gas Plant Site in Bellingham, Washington.

Please note that this report was originally dated October 26, 2021. This report was revised on February 7, 2022 to include the addition of SDG 22A0427.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (USEPA, 2020a) and Inorganic Superfund Methods Data Review (USEPA, 2020b) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory and Field Duplicates
- Instrument Tuning
- Internal Standards

- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated
2110042	HA-15-0-1, HA-15-1-2, HA-16-0-1, HA-16-1-2, HA-17-1-2, HA-18-1-2, HA-19-0-1, HA-19-1-2, HA-20-0-1, HA-20-1-2, HA-21-1-2, HA-22-0-1, HA-22-1-2, HA-23-1-2, DUP-01-1-2, HA-24-0-1, HA-24-1-2, HA-25-0-1, HA-25-1-2, HA-26-0-1, HA-26-1-2, HA-27-0-1, HA-27-1-2, HA-28-0-1, HA-28-1-2, HA-29-0-1, HA-29-1-2, HA-30-1-2, DUP-02-1-2, HA-31-0-1, HA-31-1-2, HA-32-0-1, HA-32-1-2, HA-33-0-1, HA-33-1-2, HA-34-1-2, HSA-59-9-10.5, HSA-60-9-10.5, HSA-62-13-14, DUP-1-083121, TRIP BLANKS
22A0427	GP-58-13-14, GP-59-12-13, GP-60-14-15, GP-61-13-14, GP-62-14-15, GP-63-14-15, GP-64-14-15, GP-70-3-4, GP-71-3-4, GP-72-3-4, GP-73-2-3, GP-74-15-16, GP-75-15-16, MW-61-15-16

CHEMICAL ANALYSIS PERFORMED

Analytical Resources, Inc. (ARI), located in Tukwila, Washington, performed laboratory analyses on the samples using one or more of the following methods:

- Gasoline-range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Volatile Organic Compounds (VOCs) by Method SW8260D;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270E-SIM;
- Total Metals by Method SW6020B;
- Total Cyanide by Method EPA9014;
- Total Organic Carbon (TOC) by Method EPA9060M; and
- Total Solids by Method SM2540G-97

ARI subcontracted to Spectra Laboratories, Inc., (Spectra) located in Tacoma, Washington for laboratory analyses on the samples using the following method:

Total Cyanide by Method SM4500-CNE

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

ARI provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory, with the following exceptions:

SDG 21I0042: The laboratory noted that the trip blank sample was received, but not listed on the COC. The sample was logged for NWTPH-Gx and VOC analyses.

SDG 22A0427: The laboratory noted that Sample GP-59-12-13 was listed as GP-59-13-14 on the sample vial labels. The sample was logged as GP-59-12-13, as written on the COC.

The laboratory noted that for Sample GP-74-15-16 one sample vial had no sample ID listed on the label. It was determined to be for Sample GP-74-15-16 since the date and time listed on the sample vial label matched the date and time listed on the COC.

The laboratory noted that for Sample GP-62-14-15 one sample vial had no sample information listed on the label. It was determined to be for Sample GP-62-14-15 since all of the other samples were received with their respective sample vials.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius, with the exceptions noted below.

SDG 2110042: Two sample cooler temperatures recorded at the laboratory were 0.4 and 1.3 degrees Celsius. It was determined through professional judgment that since the samples were not frozen, these temperatures should not affect the sample analytical results.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries (%R) are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits.

Method, Trip, and Rinsate Blanks

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks.

Trip Blanks

Trip blanks are analyzed to assess whether field sampling or sample transport processes may have introduced measurable concentrations of volatile analytes of interest into project samples. None of the analytes of interest were detected in the trip blank.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the results from the MS and MSD, the relative percent difference (RPD) is calculated. The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the %R and RPD values were within the proper control limits, with the following exceptions:

SDG 2110042: (NWTPH-Dx) The laboratory performed an MS/MSD sample set on Sample DUP-1-083121. The %R and RPD values for diesel-range hydrocarbons were greater than the control limits in the MS/MSD extracted on 9/13/2021. The positive result for this target analyte was qualified as estimated (J) in this sample.

(PAHs) The laboratory performed an MS/MSD sample set on Sample HA-24-1-2. The %R and RPD values for the PAH target analytes were outside the control limits in the MS/MSD extracted on 9/10/2021. The positive results for the PAH target analytes were qualified as estimated (J) in this sample.

The laboratory performed an MS/MSD sample set on Sample HA-31-0-1. The %R for benzo(a)anthracene, benzo(a)pyrene, and chrysene were outside the control limits in the MS/MSD extracted on 9/10/2021. The positive results for these target analytes were qualified as estimated (J) in this sample.

Additionally, in the same MS/MSD sample set, the %R for benzo(b)fluoranthene and benzo(k)fluoranthene were less than the control limits in the MS; however, the %R for these target analytes were within the control limits in the corresponding MSD. No action was required for these outliers.

(Total Metals) The laboratory performed an MS/MSD sample set on Sample HSA-59-9-10.5. The %R for total iron was greater than the control limits in the MS/MSD digested on 9/21/2021. The positive result for this target analyte was qualified as estimated (J) in this sample.

The laboratory performed an MS/MSD sample set on Sample HSA-59-9-10.5. The RPD for total copper was greater than the control limits in the MS/MSD digested on 9/21/2021. The positive result for this target analyte was qualified as estimated (J) in this sample.

Additionally, in the same MS/MSD sample set, the %R for total copper was less than the control limits in the MS; however, the %R for this target analyte was within the control limits in the corresponding MSD. No action was required for this outlier.

(Total Cyanide) The laboratory performed an MS/MSD sample set on Sample HSA-59-9-10.5. The %R for total cyanide was less than the control limits in the MS/MSD digested on 9/9/2021. The positive result for this target analyte was qualified as estimated (J) in this sample.

(TOC) The laboratory performed an MS/MSD sample set on Sample HSA-59-9-10.5. The RPD for TOC was greater than the control limit in the MS/MSD extracted on 9/8/2021. The positive result for this target analyte was qualified as estimated (J) in this sample.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, control limits for accuracy and precision in the LCS and its duplicate (LCSD) are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to each sample in the associated batch, instead of just the parent sample. The %R control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. The RPD control limits are specified in the laboratory documents. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exception:

SDG 21I0042: (Total Cyanide) The laboratory performed a laboratory duplicate sample set on Sample HSA-59-9-10.5. The RPD for total cyanide was greater than the control limit in the laboratory duplicate digested on 9/9/2021. The positive result for this target analyte was qualified as estimated (J) in this sample.

Field Duplicates

Field duplicates are similar to laboratory duplicates in that they are used to assess precision. Two samples (parent and duplicate) are created in the field by subsampling the homogenized sample and submitting them to the lab as separate samples. Duplicate samples were collected and analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration greater than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for soil samples is 50 percent.

SDG 2110042: Three field duplicate sample pairs, HA-23-1-2/DUP-01-1-2, HA-30-1-2/DUP-02-1-2, and HSA-62-13-14/DUP-1-083121, were submitted with this SDG. The precision criteria for the target analytes were met for these sample pairs, with the exceptions noted below:

<u>HA-23-1-2/DUP-01-1-2</u>: The positive results for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene were qualified as estimated (J) in this sample pair.

HA-30-1-2/DUP-02-1-2: The positive results for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were qualified as estimated (J) in this sample pair.

HSA-62-13-14/DUP-1-083121: The positive results for benzene and naphthalene were qualified as estimated (J) in this sample pair.

Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are completed to ensure that mass resolution, identification, and sensitivity of the analyses are acceptable. Instrument tuning should be performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for each applicable analysis.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12-hour sample run and the control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard. All internal standard recoveries were within the control limits.

Initial Calibrations (ICALs)

The initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent relative standard deviation (%RSD) and relative response factors (RRF) values were within the control limits stated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2020a), with the following exception:

SDG 2110042: (PAHs) The %RSD for dibenzo(a,h)anthracene was greater than the control limit in the initial calibration performed on 9/28/2021. The positive results for this target analyte were qualified as estimated (J) in Samples HA-34-1-2, DUP-01-1-2, and DUP-02-1-2.

Continuing Calibrations (CCALs)

The continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent difference (%D) and relative response factors (RRF) values were within the control limits in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2020a).

Miscellaneous

SDG 2110042: (VOCs) The laboratory reported two sets of results for Sample HSA-62-13-14, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial results for naphthalene and the reanalysis results for benzene were labeled as "do not report" (DNR) and should not be used for any purpose.

(PAHs) The laboratory reported two sets of results for Samples HA-15-0-1, HA-15-1-2, HA-16-0-1, HA-16-1-2, HA-18-1-2, HA-21-1-2, HA-22-0-1, HA-22-1-2, HA-23-1-2, DUP-01-1-2, HA-26-0-1, HA-26-1-2, HA-27-1-2, HA-29-1-2, HA-30-1-2, DUP-02-1-2, HA-31-0-1, HA-31-1-2, HA-32-0-1, HA-32-1-2, and HA-34-1-2, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The following lists which analysis should be used, and which were labeled as DNR and should not be used for any purpose.

Samples HA-15-0-1, HA-15-1-2, HA-22-0-1, HA-34-1-2, DUP-02-1-2: The initial results for the PAH target analytes were labeled as DNR and should not be used for any purpose.

<u>Samples HA-29-1-2, HA-31-0-1</u>: The initial results for chrysene and the reanalysis results for benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were labeled as DNR and should not be used for any purpose.

<u>Samples HA-26-0-1, DUP-01-1-2</u>: The initial results for benzo(a)pyrene and chrysene and the reanalysis results for benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were labeled as DNR and should not be used for any purpose.

<u>Samples HA-16-0-1, HA-18-1-2, HA-32-0-1</u>: The initial results for benzo(a)anthracene, benzo(a)pyrene, and chrysene and the reanalysis results for benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were labeled as DNR and should not be used for any purpose.

<u>Sample HA-16-1-2</u>: The initial results for benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene and the reanalysis results for benzo(a)pyrene and dibenzo(a,h)anthracene were labeled as DNR and should not be used for any purpose.

<u>Sample HA-27-1-2</u>: The initial results for benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene and the reanalysis results for benzo(a)anthracene, benzo(k)fluoranthene, and dibenzo(a,h)anthracene were labeled as DNR and should not be used for any purpose.

<u>Samples HA-21-1-2, HA-23-1-2, HA-32-1-2</u>: The initial results for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene and the reanalysis results for benzo(k)fluoranthene and dibenzo(a,h)anthracene were labeled as DNR and should not be used for any purpose.

<u>Samples HA-22-1-2, HA-26-1-2, HA-30-1-2, HA-31-1-2</u>: The initial results for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene and the reanalysis results for dibenzo(a,h)anthracene were labeled as DNR and should not be used for any purpose.

SDG 22A0427: (NWTPH-Gx) The laboratory reported two sets of results for Sample GP-62-14-15, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial results were labeled as DNR and should not be used for any purpose.

(NWTPH-Dx) The laboratory reported two sets of results for Sample GP-58-13-14, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The reanalysis results were labeled as DNR and should not be used for any purpose.

The laboratory reported two sets of results for Sample GP-61-13-14, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial results for diesel-range hydrocarbons and the reanalysis results for lube oil-range hydrocarbons were labeled as DNR and should not be used for any purpose.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values, with the exceptions noted above.

All data are acceptable for the intended use, with the following qualifications listed below in Table 2.

Sample ID	Analyte	Qualifier	Reason
	Benzo(a)anthracene	J	Field Duplicate Precision
	Benzo(a)pyrene	J	Field Duplicate Precision
	Benzo(b)fluoranthene	J	Field Duplicate Precision
NA-23-1-2	Benzo(k)fluoranthene	J	Field Duplicate Precision
	Chrysene	J	Field Duplicate Precision
	Indeno(1,2,3-cd)pyrene	J	Field Duplicate Precision

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

	n			
DUP-01-1-2	Benzo(a)anthracene	J	Field Duplicate Precision	
	Benzo(a)pyrene	J	Field Duplicate Precision	
	Benzo(b)fluoranthene	J	Field Duplicate Precision	
	Benzo(k)fluoranthene	J	Field Duplicate Precision	
	Chrysene	J	Field Duplicate Precision	
	Dibenzo(a,h)anthracene	J	ICAL %RSD	
	Indeno(1,2,3-cd)pyrene	J	Field Duplicate Precision	
	Benzo(a)anthracene	J	MS/MSD Recovery and Precision	
	Benzo(a)pyrene	J	MS/MSD Recovery and Precision	
	Benzo(b)fluoranthene	J	MS/MSD Recovery and Precision	
HA-24-1-2	Benzo(k)fluoranthene	J	MS/MSD Recovery and Precision	
	Chrysene	J	MS/MSD Recovery and Precision	
	Dibenzo(a,h)anthracene	J	MS/MSD Recovery and Precision	
	Indeno(1,2,3-c,d)pyrene	J	MS/MSD Recovery and Precision	
	Benzo(a)anthracene	J	Field Duplicate Precision	
	Benzo(a)pyrene	J	Field Duplicate Precision	
	Benzo(b)fluoranthene	J	Field Duplicate Precision	
HA-30-1-2	Benzo(k)fluoranthene	J	Field Duplicate Precision	
	Chrysene	J	Field Duplicate Precision	
	Dibenzo(a,h)anthracene	J	Field Duplicate Precision	
	Indeno(1,2,3-c,d)pyrene	J	Field Duplicate Precision	
	Benzo(a)anthracene	J	Field Duplicate Precision	
	Benzo(a)pyrene	J	Field Duplicate Precision	
	Benzo(b)fluoranthene	J	Field Duplicate Precision	
DUP-02-1-2	Benzo(k)fluoranthene	J	Field Duplicate Precision	
	Chrysene	J	Field Duplicate Precision	
	Dibenzo(a,h)anthracene	J	Field Duplicate Precision/ICAL %RSD	
	Indeno(1,2,3-c,d)pyrene	J	Field Duplicate Precision	
	Benzo(a)anthracene	J	MS/MSD Recovery	
HA-31-0-1	Benzo(a)pyrene	J	MS/MSD Recovery	
	Chrysene	J	MS/MSD Recovery	
HA-34-1-2	Dibenzo(a,h)anthracene	J	ICAL %RSD	
	Total copper	J	MS/MSD Precision	
	Total cyanide	J	MS/MSD Recovery/Laboratory Duplicate	
HSA-59-9-10.5	Total iron	J	Precision	
	тос	J	MS/MSD Recovery	
			MS/MSD Precision	
	Benzene	J	Field Duplicate Precision	
н5А-62-13-14	Naphthalene	J	Field Duplicate Precision	
	Benzene	J	Field Duplicate Precision	
DUP-1-083121	Diesel-range hydrocarbons	J	MS/MSD Recovery and Precision	
201 1 000121	Naphthalene	J	Field Duplicate Precision	

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (USEPA) 2020a. Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review, EPA-540-R-20-005. November 2020.
- U.S. Environmental Protection Agency (USEPA) 2020b. Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA-542-R-20-006. November 2020.

Data Validation Report

2101 4th Avenue Suit	101 4 th Avenue Suite 950, Seattle, WA 98121, Telephone: 206.728.2674, Fax: 206.728.2732 www.geoengineers.com		
Project:	Puget Sound Energy – South State Street Preliminary Remedial Des June and December 2021 Intertidal Sediment and Porewater Samp	ign Investigation ling Events	
GEI File No:	0186-890-03		
Date:	March 9, 2022		

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2B data validation (USEPA Document 540-R-08-005; USEPA 2009) of analytical data from the analyses of intertidal sediment and porewater samples collected as part of the June and December 2021 sampling events, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the South State Street Manufactured Gas Plant Site in Bellingham, Washington.

Please note that this report was originally dated August 25, 2021. This report was revised on March 9, 2022 to include the addition of SDG 21L0100.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (USEPA, 2020a) and Inorganic Superfund Methods Data Review (USEPA, 2020b) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory and Field Duplicates
- Instrument Tuning
- Internal Standards

- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

Laboratory SDG	Samples Validated
21F0419	PRDI-1-PW-, PRDI-1-SC-0-15, PRDI-1-SC-15-60, PRDI-2-PW-, DUP-1-PW-, PRDI-2-SC-0-15, DUP-2-SC, PRDI-2-SC-15-60, PRDI-3-PW-, PRDI-3-SC-0-15, PRDI-3-SC-15-60, PRDI-4-PW-, PRDI-4-SC-0-15, PRDI-4-SC-15-60, PRDI-5-PW-, PRDI-5-SC-0-15, PRDI-5-SC-15-60, PRDI-6-PW-, PRDI-6-SC-0-15, PRDI-6-SC-15-60, PRDI-7-PW-, PRDI-7-SC-0-15, PRDI-7-SC-15-60, PRDI-8-PW-, PRDI-8-SC-0-15, PRDI-8-SC-15-60, PRDI-9-SC-0-15, PRDI-9-SC-0-45, PRDI-8-PW-, PRDI-10-SC-0-15, PRDI-10-SC-0-45, PRDI-10-SC-15-60, PRDI-10-SC-0-15, PRDI-10-SC-0-45, PRDI-10-SC-15-60, PRDI-10-SC-0-15, PRDI-11-SC-0-45, PRDI-10-SC-15-60, PRDI-11-SS-0-12, PRDI-12-PW-, PRDI-12-SC-0-15, PRDI-12-SC-0-45, PRDI-12
21L0100	PRDI-2A-PW, DUP-101-PW, PRDI-2B-PW, PRDI-2C-PW, PRDI-2D-PW, PRDI-2E-PW, Trip Blanks

CHEMICAL ANALYSIS PERFORMED

Analytical Resources, Inc. (ARI), located in Tukwila, Washington, performed laboratory analyses on the samples using one or more of the following methods:

- Gasoline-range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Volatile Organic Compounds (VOCs) by Method SW8260D;
- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270E-SIM;
- Total Cyanide by Method EPA9014;
- Cyanide. Weak Acid Dissociable by Method SM4500-CN I-97;
- Total Organic Carbon (TOC) by Method EPA9060A; and
- Total Solids by Method SM2540G-97

ARI subcontracted to Materials Testing and Consulting, Inc., (MTC) located in Tukwila, Washington for laboratory analyses on the sediment samples using the following methods:

Grain Size by Method ASTM D6913

The results for each of the QC elements are summarized below.

Data Package Completeness

ARI and MTC provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratories followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory, with the following exceptions:

SDG 21L0100: The laboratory noted that the relinquished date on the COC was listed as 9/20/2017. Additionally, the laboratory noted the sample collection times listed on the COC appear to be after times after the samples were relinquished. The date and times were revised by GeoEngineers.

The laboratory noted that the trip blank sample was received at the laboratory, but not listed on the COC. The sample was logged for NWTPH-Gx and VOCs analyses.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for each analysis. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius, with the exceptions noted below.

SDG 21F0419: One sample cooler temperature recorded at the laboratory was 17.3 degrees Celsius. It was determined through professional judgment that since the samples were received on ice at the laboratory the same day they were collected, and the cooling process had begun, this temperature should likely not affect the sample analytical results.

One sample cooler temperature recorded at the laboratory was 1.7 degrees Celsius. It was determined through professional judgment that since the samples were not frozen, this temperature should not affect the sample analytical results.

The laboratory noted that for several samples, one or two sample vials (depending on the sample), were received with a bubble. Since a total of three sample vials were submitted for these samples, the samples were analyzed from the remaining sample vials, accordingly.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries (%R) are

calculated following analysis. The surrogate recoveries for field samples were within the laboratory control limits, with the following exceptions:

SDG 21F0419: (VOCs) The %R for surrogates 1,2-Dichloroethane-d4 and 4-Bromofluorobenzene were less than the control limits in Sample PRDI-11-SC-0-15. The positive results for 1,2,4-Trimethylbenzene, 4-Isopropyltoluene, acetone, benzene, carbon disulfide, chloroform, tetrachloroethene, and toluene and the reporting limits for the remaining VOC target analytes were qualified as estimated (J and UJ, respectively) in this sample.

Method, Trip, and Rinsate Blanks

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For each sample batch, method blanks were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks, with the following exceptions:

SDG 21F0419: (VOCs) There was a positive result for bromomethane and toluene detected above the method detection limit, but below the reporting limit in the soils method blank extracted on 6/29/2021. The positive results for toluene were qualified as non-detected (U) in Samples PRDI-1-SC-0-15, PRDI-2-SC-0-15, PRDI-2-SC-0-15, PRDI-3-SC-0-15, PRDI-4-SC-0-15, PRDI-4-SC-0-15, PRDI-5-SC-0-15, PRDI-6-SC-0-15, PRDI-6-SC-15-60, PRDI-7-SC-0-15, and PRDI-8-SC-0-15. The positive results for bromomethane and toluene were qualified as non-detected (U) in Samples PRDI-3-SC-15-60 and PRDI-7-SC-15-60. There were no positive results for bromomethane in Samples PRDI-1-SC-0-15, PRDI-2-SC-0-15, PRDI-2-SC-0-15, PRDI-2-SC-0-15, PRDI-3-SC-0-15, PRDI-4-SC-0-15, PRDI-2-SC-0-15, PRDI-2-SC-0-15, PRDI-3-SC-0-15, PRDI-4-SC-0-15, PRDI-2-SC-0-15, PRDI-3-SC-0-15, PRDI-3-SC-0-15, PRDI-2-SC-0-15, PRDI-3-SC-0-15, PRDI-3-SC-0-15, PRDI-2-SC-0-15, PRDI-3-SC-0-15, PRDI-4-SC-0-15, PRDI-2-SC-0-15, PRDI-2-SC-0-15, PRDI-3-SC-0-15, PRDI-3-SC-0-15, PRDI-4-SC-0-15, PRDI-4-SC-0-15, PRDI-2-SC-0-15, PRDI-3-SC-0-15, PRDI-4-SC-0-15, PRDI-4-SC-0-15, PRDI-5-SC-0-15, PRDI-5-SC-0-15, PRDI-4-SC-0-15, PRDI-4-SC-0-15, PRDI-5-SC-0-15, PRDI-5-SC-0-15, PRDI-4-SC-0-15, PRDI-4-SC-0-15, PRDI-5-SC-0-15, PRDI-5-SC-0-15,

<u>Trip Blanks</u>

Trip blanks are analyzed to assess whether field sampling or sample transport processes may have introduced measurable concentrations of volatile analytes of interest into project samples. None of the analytes of interest were detected in the trip blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the results from the MS and MSD, the relative percent difference (RPD) is calculated. The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits, with the following exceptions:

SDG 21F0419: (PAHs) The laboratory performed an MS/MSD sample set on Sample PRDI-9-SS-0-12. The %R for most of the target analytes were outside the control limits in the MS/MSD extracted on 7/8/2021; however, it was performed on the initial results which was labeled as do-not-report (DNR). For this reason, no action was required for these outliers.

(Total Cyanide) The laboratory performed an MS/MSD sample set on Sample PRDI-1-SC-0-15. The %R for total cyanide was less than the control limits in the MS/MSD digested on 7/1/2021. The reporting limit for this target analyte was qualified as estimated (UJ) in this sample.

The laboratory performed an MS/MSD sample set on Sample PRDI-11-SC-0-15. The %R for total cyanide was less than the control limits in the MS/MSD digested on 7/6/2021. The reporting limit for this target analyte was qualified as estimated (UJ) in this sample.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, control limits for accuracy and precision in the LCS and its duplicate (LCSD) are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to each sample in the associated batch, instead of just the parent sample. The %R control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits, with the following exceptions:

SDG 21F0419: (VOCs) The %R for 2-Chloroethyl vinyl ether was greater than the control limits in the LCS/LCSD extracted on 6/29/2021. There were no positive results for this target analyte in the associated field samples; therefore, no qualifications were required.

The RPD for 2-Chloroethyl vinyl ether was greater than the control limit in the LCS/LCSD extracted on 6/30/2021. There were no positive results for this target analyte in the associated field samples; therefore, no qualifications were required.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. The RPD control limits are specified in the laboratory documents. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met.

Field Duplicates

Field duplicates are similar to laboratory duplicates in that they are used to assess precision. Two samples (parent and duplicate) are created in the field by subsampling the homogenized sample and submitting them to the lab as separate samples. Duplicate samples were collected and analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration greater than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for water samples is 35 percent. The RPD control limit for soil samples is 50 percent.

SDG 21F0419: Three field duplicate sample pairs, PRDI-2-PW-/DUP-1-PW-, PRDI-2-SC-0-15/DUP-2-SC, and PRDI-9-SC-15-60/DUP-3-SC, were submitted with this SDG. The precision criteria for the target analytes were met for these sample pairs, with the exception of 2-Butanone, acetone, and carbon disulfide in Samples PRDI-9-SC-15-60 and DUP-3-SC. The positive results for these target analytes were qualified as estimated (J) in this sample pair.

SDG 21L0100: One field duplicate sample pair, PRDI-2A-PW and DUP-101-PW, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair, with the exception of benzene and lube oil-range hydrocarbons. The positive results and reporting limit for these target analytes were qualified as estimated (J and UJ, accordingly) in this sample pair.

Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are completed to ensure that mass resolution, identification, and sensitivity of the analyses are acceptable. Instrument tuning should be performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for each applicable analysis.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in an environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12-hour sample run and the control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard. The internal standard recoveries were within the control limits, with the following exceptions:

SDG 21F0419: (VOCs) The internal standards %R for 1,4-Dichlorobenzene-d4, 1,4-Difluorobenzene, chlorobenzene-d5, and pentafluorobenzene were outside the control limits in Sample PRDI-11-SC-0-15. The positive results for 1,2,4-Trimethylbenzene, 4-Isopropyltoluene, acetone, benzene, carbon disulfide, chloroform, tetrachloroethene, and toluene and reporting limits for the remaining VOC target analytes were qualified as estimated (J and UJ, respectively) in this sample.

Initial Calibrations (ICALs)

The initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent relative standard deviation (%RSD) and relative response factors (RRF) values were within the control limits stated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2020a).

Continuing Calibrations (CCALs)

The continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent difference (%D) and relative response factors (RRF) values were within the control limits in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2020a), with the following exceptions:

SDG 21F0419: (VOCs) The %D value for 2-Chloroethyl vinyl ether, dichlorodifluoromethane, and iodomethane was greater than the control limits, which is indicative of a high bias, in the continuing calibration verification performed on 6/29/2021. There were no positive results for these target analytes in the associated field samples; therefore, qualifications were not required for these outliers.

Miscellaneous

SDG 21F0419: (VOCs) The laboratory reported two sets of results for Sample PRDI-2-PW-, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial results for naphthalene and the reanalysis results for benzene were labeled as DNR and should not be used for any purpose.

The laboratory reported two sets of results for Sample PRDI-11-SC-0-15, initial results and reanalysis results, due to surrogate and internal standards recovery outliers. A reanalysis was performed with the surrogate and internal standard recoveries within the limits; however, the reanalysis was analyzed from an unpreserved sample vial. The reanalysis results were labeled as DNR and should not be used for any purpose.

(PAHs) The laboratory reported two sets of results for Samples PRDI-9-SS-0-12, PRDI-9-SC-0-45, PRDI-10-SS-0-12, PRDI-10-SC-0-45, PRDI-11-SS-0-12, PRDI-11-SC-0-45, and PRDI-12-SC-0-45, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The following lists which analysis should be used, and which were labeled as DNR and should not be used for any purpose.

<u>Samples PRDI-9-SS-0-12 and PRDI-9-SC-0-45</u>: The initial results for the PAH target analytes were labeled as DNR and should not be used for any purpose.

<u>Sample PRDI-10-SS-0-12</u>: The reanalysis results for the PAH target analytes were labeled as DNR and should not be used for any purpose.

<u>Samples PRDI-10-SC-0-45 and PRDI-12-SC-0-45</u>: The initial results for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene and the reanalysis results for benzo(k)fluoranthene and dibenzo(a,h)anthracene were labeled as DNR and should not be used for any purpose.

<u>Samples PRDI-11-SS-0-12 and PRDI-11-SC-0-45</u>: The initial results for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene and the reanalysis results for dibenzo(a,h)anthracene were labeled as DNR and should not be used for any purpose.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values, with the exceptions noted above.

The data are acceptable for the intended use, with the following qualifications listed below in Table 2.

Sample ID	Analyte	Qualifier	Reason
	Benzene	J	Field Duplicate Precision
PRDI-ZA-PW	Lube oil-range hydrocarbons	UJ	Field Duplicate Precision
	Benzene	J	Field Duplicate Precision
DOP-IOI-PW	Lube oil-range hydrocarbons	J	Field Duplicate Precision
	Total cyanide	UJ	MS/MSD Recovery
PRDI-1-30-0-13	Toluene	U	Method Blank Contamination
PRDI-2-SC-0-15	Toluene	U	Method Blank Contamination
PRDI-2-SC-15-60	Toluene	U	Method Blank Contamination
PRDI-3-SC-0-15	Toluene	U	Method Blank Contamination
	Bromomethane	U	Method Blank Contamination
PRDI-3-50-15-60	Toluene	U	Method Blank Contamination
PRDI-4-SC-0-15	Toluene	U	Method Blank Contamination
PRDI-4-SC-15-60	Toluene	U	Method Blank Contamination
PRDI-5-SC-0-15	Toluene	U	Method Blank Contamination
PRDI-5-SC-15-60	Toluene	U	Method Blank Contamination
PRDI-6-SC-0-15	Toluene	U	Method Blank Contamination
PRDI-6-SC-15-60	Toluene	U	Method Blank Contamination
PRDI-7-SC-0-15	Toluene	U	Method Blank Contamination
	Bromomethane	U	Method Blank Contamination
PRDI-7-50-15-60	Toluene	U	Method Blank Contamination
PRDI-8-SC-0-15	Toluene	U	Method Blank Contamination
	2-Butanone	J	Field Duplicate Precision
PRDI-9-SC-15-60	Acetone	J	Field Duplicate Precision
	Carbon disulfide	J	Field Duplicate Precision
	2-Butanone	J	Field Duplicate Precision
DUP-3-SC	Acetone	J	Field Duplicate Precision
	Carbon disulfide	J	Field Duplicate Precision

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

	1,2,4-Trimethylbenzene	J	Surrogate Recovery/IS Recovery
	4-Isopropyltoluene	J	Surrogate Recovery/IS Recovery
	Acetone	J	Surrogate Recovery/IS Recovery
	Benzene	J	Surrogate Recovery/IS Recovery
PRDI-11-SC-0-15	Carbon disulfide	J	Surrogate Recovery/IS Recovery
	Chloroform	J	Surrogate Recovery/IS Recovery
	Total cyanide	UJ	MS/MSD Recovery
	Tetrachloroethene	J	Surrogate Recovery/IS Recovery
	Toluene	J	Surrogate Recovery/IS Recovery
	All other VOC target analytes	UJ	Surrogate Recovery/IS Recovery

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (USEPA) 2020a. Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review, EPA-540-R-20-005. November 2020.
- U.S. Environmental Protection Agency (USEPA) 2020b. Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA-542-R-20-006. November 2020.

Data Validation Report

2101 4th Avenue Suit	101 4 th Avenue Suite 950, Seattle, WA 98121, Telephone: 206.728.2674, Fax: 206.728.2732 www.geoengineers.com		
Project:	Puget Sound Energy – South State Street Preliminary Remedial Desig September 2021 Subtidal Sediment Sampling Event	gn Investigation	
GEI File No:	0186-890-03		
Date:	March 10, 2022		

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2B data validation (USEPA Document 540-R-08-005; USEPA 2009) of analytical data from the analyses of sediment samples collected as part of the September 2021 subtidal sediment sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the South State Street Manufactured Gas Plant Site in Bellingham, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (USEPA, 2020) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Field Duplicates
- Instrument Tuning
- Internal Standards
- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1: SUMMARY OF	VALIDATED SAMPLE	DELIVERY GROUPS
----------------------------	------------------	-----------------

Laboratory SDG	Samples Validated
2110209	PRDI-15-SS, PRDI-16-SS, PRDI-18-SS, PRDI-19-SS, PRDI-20-SS, PRDI-22-SS, PRDI-24-SS, PRDI-25-SS, PRDI-26-SS, PRDI-27-SS, PRDI-29-SS, PRDI-30-SS, PRDI-31-SS, PRDI-32-SS, PRDI-37-SS, PRDI-40-SS
2110238	PRDI-36-SC-0-15, PRDI-Dup-1-SC, PRDI-36-SC-15-30, PRDI-37-SC-0-15, PRDI-Dup-2-SC, PRDI-37-SC-15-30, PRDI-39-SC-0-15, PRDI-39-SC-15-30, PRDI-40-SC-0-15, PRDI-40-SC-15-30
21J0467	PRDI-13-SS, PRDI-14-SS, PRDI-23-SS, PRDI-34-SS

CHEMICAL ANALYSIS PERFORMED

Analytical Resources, Inc. (ARI), located in Tukwila, Washington, performed laboratory analyses on the samples using the following method:

Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270E-SIM

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

ARI provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for each analysis. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius, with the exception noted below.

SDGs 2110209, 2110238, and 21J0467: One sample cooler temperature recorded at the laboratory was 1.7 degrees Celsius. It was determined through professional judgment that since the samples were not frozen, this temperature should not affect the sample analytical results.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries (%R) are calculated following analysis. The surrogate recoveries for field samples were within the laboratory control limits, with the following exceptions:

SDG 21I0209: (PAHs) The %R values for surrogates 2-Methylnaphthalene-d10, dibenzo[a,h]anthracene-d14, and fluoranthene-d10 were not recoverable in Samples PRDI-18-SS and PRDI-22-SS, because of sample dilution (50X and 100X, respectively). The surrogates are added to the sample when it is extracted. If the sample is diluted 10X or more, recovery of the surrogates is often not possible because it is also diluted below the linear calibration range of the instrument. No action was required for these outliers.

SDG 21I0238: (PAHs) The %R values for surrogates 2-Methylnaphthalene-d10, dibenzo[a,h]anthracene-d14, and fluoranthene-d10 were not recoverable in Samples PRDI-36-SC-0-15, PRDI-Dup-1-SC, PRDI-36-SC-15-30, PRDI-39-SC-0-15, and PRDI-39-SC-15-30, because of sample dilution (100X). The surrogates are added to the sample when it is extracted. If the sample is diluted 10X or more, recovery of the surrogates is often not possible because it is also diluted below the linear calibration range of the instrument. No action was required for these outliers.

SDG 21J0467: (PAHs) The %R for surrogate fluoranthene-d10 was greater than the control limits in Samples PRDI-14-SS, PRDI-23-SS, and PRDI-34-SS; however, the samples were spiked with two additional surrogates and in each case the %R values were within their respective control limits. No action was required for these outliers.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For each sample batch, method blanks were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the results from the MS and MSD, the relative percent difference (RPD) is calculated.

The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits, with the following exceptions:

SDG 21I0209: (PAHs) The laboratory performed an MS/MSD sample set on Sample PRDI-29-SS. The %R values for benzo(a)anthracene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were greater than the control limits in the MS/MSD extracted on 9/23/2021. The positive results for these target analytes were qualified as estimated (J) in this sample.

Additionally, in the same MS/MSD sample set, the %R values for benzo(b)fluoranthene and benzo(k)fluoranthene were greater than the control limits in the MSD; however, the %R values for these target analytes were within the control limits in the corresponding MS. No action was required for these outliers.

SDG 21I0238: (PAHs) The laboratory performed an MS/MSD sample set on Sample PRDI-37-SC-0-15. The %R values for benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene were less than the control limits in the MS/MSD extracted on 9/23/2021. The positive results for these target analytes were qualified as estimated (J) in this sample.

Additionally, in the same MS/MSD sample set, the %R for benzo(a)anthracene was less than the control limits in the MS; however, the %R for this target analyte was within the control limits in the corresponding MSD. No action was required for this outlier.

SDG 21J0467: (PAHs) The laboratory performed an MS/MSD sample set on Sample PRDI-13-SS. The %R values for benzo(a)pyrene, chrysene, and dibenzo(a,h)anthracene were greater than the control limits in the MSD extracted on 11/10/2021; however, the %R values for these target analytes were within the control limits in the corresponding MS. No action was required for these outliers.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, control limits for accuracy and precision in the LCS and its duplicate (LCSD) are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to each sample in the associated batch, instead of just the parent sample. The %R control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits, with the following exceptions:

SDG 21J0467: (PAHs) The %R values for benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were greater than the control limits in the LCS extracted on 11/10/2021. The positive results for these target analytes were qualified as estimated (J) in Samples PRDI-13-SS, PRDI-14-SS, PRDI-23-SS, and PRDI-34-SS.

Field Duplicates

Field duplicates are similar to laboratory duplicates in that they are used to assess precision. Two samples (parent and duplicate) are created in the field by subsampling the homogenized sample and submitting them to the lab as separate samples. Duplicate samples were collected and analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration greater than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for soil samples is 50 percent.

SDG 21I0238: Two field duplicate sample pairs, PRDI-36-SC-0-15/PRDI-Dup-1-SC and PRDI-37-SC-0-15/PRDI-Dup-2-SC, were submitted with this SDG. The precision criteria for the target analytes were met for these sample pairs.

Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are completed to ensure that mass resolution, identification, and sensitivity of the analyses are acceptable. Instrument tuning should be performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for each applicable analysis.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in an environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12-hour sample run and the control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard. The internal standard recoveries were within the control limits, with the following exceptions:

SDG 21I0209: (PAHs) The internal standard recoveries for chrysene-d12 and perylene-d12 were greater than the control limits in Sample PRDI-25-SS. The positive result for dibenzo(a,h)anthracene was qualified as estimated (J) in this sample.

The internal standard recoveries perylene-d12 were greater than the control limits in Samples PRDI-26-SS and PRDI-29-SS. The positive results for dibenzo(a,h)anthracene and indeno(1,2,3-cd)pyrene were qualified as estimated (J) in these samples.

Initial Calibrations (ICALs)

The initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent relative standard deviation (%RSD) and relative response factors (RRF) values were within the control limits stated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2020).

Continuing Calibrations (CCALs)

The continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent difference (%D) and relative response factors (RRF)

values were within the control limits in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2020).

Miscellaneous

SDG 21I0209: (PAHs) The laboratory reported two sets of results for Samples PRDI-15-SS, PRDI-16-SS, PRDI-18-SS, PRDI-22-SS, PRDI-24-SS, PRDI-25-SS, PRDI-26-SS, PRDI-29-SS, PRDI-31-SS, PRDI-37-SS, and PRDI-40-SS, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The following lists which analysis should be used, and which were labeled as do not report (DNR) and should not be used for any purpose.

<u>Samples PRDI-15-SS and PRDI-24-SS</u>: The initial results for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene and the reanalysis results for benzo(k)fluoranthene and dibenzo(a,h)anthracene were labeled as DNR and should not be used for any purpose.

<u>Samples PRDI-16-SS, PRDI-26-SS, and PRDI-37-SS</u>: The initial results for benzo(a)pyrene and the reanalysis results for benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were labeled as DNR and should not be used for any purpose.

<u>Samples PRDI-18-SS, PRDI-25-SS, PRDI-29-SS, and PRDI-31-SS</u>: The initial results for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene and the reanalysis results for dibenzo(a,h)anthracene were labeled as DNR and should not be used for any purpose.

<u>Sample PRDI-22-SS</u>: The initial results for the PAH target analytes were labeled as DNR and should not be used for any purpose.

<u>Sample PRDI-40-SS</u>: The initial results for benzo(a)anthracene, benzo(a)pyrene, and chrysene and the reanalysis results for benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were labeled as DNR and should not be used for any purpose.

SDG 21I0238: (PAHs) The laboratory reported two sets of results for Samples PRDI-36-SC-0-15, PRDI-Dup-1-SC, PRDI-36-SC-15-30, PRDI-37-SC-0-15, PRDI-Dup-2-SC, PRDI-37-SC-15-30, PRDI-39-SC-0-15, PRDI-39-SC-0-15, PRDI-39-SC-15-30, and PRDI-40-SC-15-30, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The following lists which analysis should be used, and which were labeled as DNR and should not be used for any purpose.

Samples PRDI-36-SC-0-15, PRDI-Dup-1-SC, PRDI-36-SC-15-30, and PRDI-39-SC-15-30: The initial results for the PAH target analytes were labeled as DNR and should not be used for any purpose.

<u>Samples PRDI-37-SC-0-15, PRDI-Dup-2-SC, and PRDI-40-SC-15-30</u>: The initial results for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene and the reanalysis results for benzo(k)fluoranthene and dibenzo(a,h)anthracene were labeled as DNR and should not be used for any purpose.

<u>Samples PRDI-37-SC-15-30 and PRDI-39-SC-0-15</u>: The initial results for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene and

the reanalysis results for dibenzo(a,h)anthracene were labeled as DNR and should not be used for any purpose.

SDG 21J0467: (PAHs) The laboratory reported two sets of results for Sample PRDI-13-SS, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial results for benzo(a)anthracene, benzo(a)pyrene, and chrysene and the reanalysis results for benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were labeled as DNR and should not be used for any purpose.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values.

The data are acceptable for the intended use, with the following qualifications listed below in Table 2.

Sample ID	Analyte	Qualifier	Reason
PRDI-13-SS	Benzo(b)fluoranthene	J	LCS Recovery
	Benzo(k)fluoranthene	J	LCS Recovery
	Dibenzo(a,h)anthracene	J	LCS Recovery
	Indeno(1,2,3-cd)pyrene	J	LCS Recovery
PRDI-14-SS	Benzo(b)fluoranthene	J	LCS Recovery
	Benzo(k)fluoranthene	J	LCS Recovery
	Dibenzo(a,h)anthracene	J	LCS Recovery
	Indeno(1,2,3-cd)pyrene	J	LCS Recovery
PRDI-23-SS	Benzo(b)fluoranthene	J	LCS Recovery
	Benzo(k)fluoranthene	J	LCS Recovery
	Dibenzo(a,h)anthracene	J	LCS Recovery
	Indeno(1,2,3-cd)pyrene	J	LCS Recovery
PRDI-25-SS	Dibenzo(a,h)anthracene	J	Internal Standard Recovery
PRDI-26-SS	Dibenzo(a,h)anthracene	J	Internal Standard Recovery
	Indeno(1,2,3-cd)pyrene	J	Internal Standard Recovery
PRDI-29-SS	Benzo(a)anthracene	J	MS/MSD Recovery
	Benzo(a)pyrene	J	MS/MSD Recovery
	Chrysene	J	MS/MSD Recovery
	Dibenzo(a,h)anthracene	J	MS/MSD Recovery/Internal Standard Recovery
	Indeno(1,2,3-cd)pyrene	J	MS/MSD Recovery/Internal Standard Recovery
PRDI-34-SS	Benzo(b)fluoranthene	J	LCS Recovery
	Benzo(k)fluoranthene	J	LCS Recovery
	Dibenzo(a,h)anthracene	J	LCS Recovery
	Indeno(1,2,3-cd)pyrene	J	LCS Recovery

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (USEPA) 2020. Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review, EPA-540-R-20-005. November 2020.

Data Validation Report

2101 4th Avenue Suite 950, Seattle, WA 98121, Telephone: 206.728.2674, Fax: 206.728.2732 www.geoengineers.co			
Project:	Puget Sound Energy – South State Street Preliminary Remedial Des September 2021, January 2022, February 2022, and April 2022 G Sampling Events	sign Investigation roundwater	
GEI File No:	0186-890-03		
Date:	July 29, 2022		

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2B data validation (USEPA Document 540-R-08-005; USEPA 2009) of analytical data from the analyses of groundwater samples collected as part of the September 2021, January 2022, February 2022, and April 2022 groundwater sampling events, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the South State Street Manufactured Gas Plant Site in Bellingham, Washington.

Please note that this report was originally dated February 22, 2022. This report was revised on April 3, 2022 to include the addition of SDGs 22B0103, 22B0129, and 22B0161. This report was revised again on July 20, 2022 to include the addition of SDG 22D0188.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (USEPA, 2020a) and Inorganic Superfund Methods Data Review (USEPA, 2020b) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method and Trip Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Laboratory and Field Duplicates

- Instrument Tuning
- Internal Standards
- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

Laboratory SDG	Samples Validated
2110294	MW-24_092021, MW-28_092021, MW-42_092021, MW-54_092021, MW-55_092021, MW-60_092021, TB-1_092021, TB-2_092021
2110320	MW-29_092121, MW-34_092121, MW-36_092121, MW-38_092121, MW-40_092121, MW-45_092121, MW-46_092121, MW-59_092121, MW-62_092121, Dup-1_092121, TB-3_092121, TB-4_092121, TB-5_092121
2110331	MW-53-092221, TB-6-092221
22A0426	GP-62-GW-011022, GP-64-GW-011022, GP-65-GW-011122, DUP-1-GW-011122, GP-66- GW-011222, GP-67-GW-011222, GP-68-GW-011222, GP-69-GW-011222, GP-74-GW- 011322, GP-75-GW-011322, Trip Blank
22B010 3	MW-40-020722, MW-53-020722, MW-54-020722, MW-55-020722, MW-59-020722, MW-61-020722, Dup-1-020722, TB-1-020722, TB-2-020722
22B0129	MW-29-020822, MW-34-020822, MW-36-020822, MW-42-020822, MW-46-020922, MW-62-020822, TB-3-020922, TB-4-020922
22B0161	MW-07-020922, MW-19-020922, MW-24-020922, MW-28-020922, MW-31-021022, MW-38-021022, MW-45-021022, MW-60-021022, TB-5-020922, TB-6-020922
22D0188	MW-07-040622, MW-19-040722, MW-24-040722, MW-28-040622, MW-31-040622, MW-38-040722, MW-45-040622, MW-60-040622

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

CHEMICAL ANALYSIS PERFORMED

Analytical Resources, Inc. (ARI), located in Tukwila, Washington, performed laboratory analyses on the samples using one or more of the following methods:

- Gasoline-range Hydrocarbons (NWTPH-Gx) by Method NWTPH-Gx;
- Petroleum Hydrocarbons (NWTPH-Dx) by Method NWTPH-Dx;
- Volatile Organic Compounds (VOCs) by Method SW8260D;

- Total and Dissolved Metals by Method SW6020B;
- Nitrate, Nitrite, and Nitrate + Nitrite by Method EPA353.2;
- Sulfate by Method EPA375.2;
- Total Cyanide by Methods EPA9014 or SM4500-CNE-99;
- Cyanide, Weak Acid Dissociable by Method SM4500-CNI-97; and
- Total Organic Carbon (TOC) by Method SM5310B-00

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

ARI provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory, with the following exceptions:

SDG 21I0320: The laboratory noted that Sample TB-3_092121 was listed as TB-6_092121 on the sample vial labels. The laboratory logged the sample as TB-3_092121, as written on the COC.

SDG 22A0426: The laboratory noted that the trip blank sample was received, but not listed on the COC. The laboratory logged the sample for NWTPH-Gx and VOC analyses.

SDG 22B0103: The laboratory noted that the sample vial label on one sample vial was smeared for Sample MW-55-020722. It was determined to be for this sample by matching the sample collection time on the label to the COC.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for each analysis, with the exceptions noted below. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius, with the exception noted below.

SDG 21I0294: (Nitrate, Nitrite, and Nitrate + Nitrite) The 48-hour holding time for nitrate and nitrite analyses was exceeded in Samples MW-24_092021, MW-28_092021, and MW-60_092021. The positive results and reporting limits for these target analytes were qualified as estimated (J and UJ, accordingly) in these samples.

The 48-hour holding time for nitrate was exceeded in Sample MW-55_092021. The positive result for this target analyte was qualified as estimated (J) in this sample.

SDG 21I0331: One sample cooler temperature recorded at the laboratory was 0.8 degrees Celsius. It was determined through professional judgment that since the samples were not frozen, this temperature should not affect the sample analytical results.

SDG 22A0426: (NWTPH-Dx) The 7-day holding time for NWTPH-Dx analysis was exceeded in Samples GP-62-GW-011022 and GP-64-GW-011022. The positive results and reporting limit for diesel- and lube oil-range hydrocarbons were qualified as estimated (J and UJ, accordingly) in these samples.

SDG 22B0103: (Nitrate, Nitrite, and Nitrate + Nitrite) The 48-hour holding time for nitrate analysis was exceeded in Samples MW-40-020722, MW-53-020722, MW-54-020722, MW-55-020722, MW-59-020722, MW-61-020722, and Dup-1-020722. The positive results and reporting limit for these target analytes were qualified as estimated (J and UJ, accordingly) in these samples.

SDG 22B0161: (Nitrate, Nitrite, and Nitrate + Nitrite) The 48-hour holding time for nitrate and nitrite analyses was exceeded in Sample MW-28-020922. The reporting limits for these target analytes were qualified as estimated (UJ) in this sample.

The following preservation outliers were noted on the cooler receipt forms:

SDG 21I0294: (VOCs) The laboratory noted that sample vials were received with bubbles for Sample MW-42_092021. Since a total of five sample vials were submitted for these samples, the samples were analyzed from the remaining vials, accordingly.

SDG 22A0426: (VOCs) The laboratory noted that sample vials were received with bubbles for Sample GP-62-GW-011022. Since a total of three sample vials were submitted for these samples, the samples were analyzed from the remaining vials, accordingly.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries (%R) are calculated following analysis. The surrogate recoveries for field samples were within the laboratory control limits, with the following exceptions:

SDG 22A0426: (NWTPH-Dx) The %R values for surrogate o-Terphenyl were less than the control limits in Samples GP-69-GW-011222 and GP-74-GW-011322. The positive results for lube oil-range hydrocarbons were qualified as estimated (J) in these samples.

Method, Trip, and Rinsate Blanks

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For each sample batch, method blanks were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks, with the following exceptions:

SDG 22A0426: (VOCs) There was a positive result for naphthalene detected above the method detection limit, but below the reporting limit in the method blank extracted on 1/20/2022. The positive results for this target analyte were greater than 2X the concentration in the method blank in the associated field samples; therefore, no qualifications were required.

(Total Cyanide) There was a positive result for total cyanide detected in the method blank digested on 1/24/2022. The positive results for this target analyte were greater than 2X the concentration in the method blank in the associated field samples; therefore, no qualifications were required.

SDG 22B0103: (Total Cyanide) There was a positive result for total cyanide detected in the method blank digested on 2/11/2022. The positive results for this target analyte were qualified as non-detected (U) in Samples MW-40-020722, MW-53-020722, MW-54-020722, MW-55-020722, MW-61-020722, and Dup-1-020722.

SDG 22B0129: (Total Cyanide) There was a positive result for total cyanide detected in the method blank digested on 2/16/2022. The positive results for this target analyte were greater than 2X the concentration in the method blank in the associated field samples; therefore, no qualifications were required.

<u>Trip Blanks</u>

Trip blanks are analyzed to assess whether field sampling or sample transport processes may have introduced measurable concentrations of volatile analytes of interest into project samples. None of the analytes of interest were detected in the trip blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the results from the MS and MSD, the relative percent difference (RPD) is calculated. The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits, with the following exception:

SDG 21I0294: (Dissolved Metals) The laboratory performed an MS/MSD sample set on Sample MW-28_092021. The %R for dissolved iron was less than the control limits in the MS digested on 10/7/2021; however, the %R for this target analyte was within the control limits in the corresponding MSD. No action was required for this outlier.

SDG 22B0103: (Total Metals) The laboratory performed an MS/MSD sample set on Sample MW-59-020722. The %R for total iron was less than the control limits in the MSD digested on

2/18/2022; however, the %R for this target analyte was within the control limits in the corresponding MS. No action was required for this outlier.

SDG 22B0161: (Total Metals) The laboratory performed an MS/MSD sample set on Sample MW-28-020922. The %R for total iron was less than the control limits in the MS digested on 2/23/2022; however, the %R for this target analyte was within the control limits in the corresponding MSD. No action was required for this outlier.

(Nitrate, Nitrite, and Nitrate + Nitrite) The laboratory performed an MS/MSD sample set on Sample MW-24-020922. The %R values for nitrate + nitrite as N were less than the control limits in the MS/MSD digested on 2/21/2022. The reporting limit for this target analyte was qualified as estimated (UJ) in this sample.

(Sulfate) The laboratory performed an MS/MSD sample set on Sample MW-28-020922. The %R values for sulfate were less than the control limits in the MS/MSD digested on 2/16/2022. The positive result for this target analyte was qualified as estimated (J) in this sample.

(Cyanide, Weak Acid Dissociable) The laboratory performed an MS/MSD sample set on Sample MW-28-020922. The %R for cyanide, weak acid dissociable was less than the control limits in the MSD digested on 2/22/2022; however, the %R for this target analyte was within the control limits in the corresponding MS. No action was required for this outlier

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, control limits for accuracy and precision in the LCS and its duplicate (LCSD) are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to each sample in the associated batch, instead of just the parent sample. The %R control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. The RPD control limits are specified in the laboratory documents. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exception:

SDG 22B0129: (Cyanide, Weak Acid Dissociable) The laboratory performed a laboratory duplicate sample set on Sample MW-62-020822. The RPD for cyanide, weak acid dissociable was greater than the control

limit in the laboratory duplicate digested on 2/17/2022. The positive result for this target analyte was qualified as estimated (J) in this sample.

Field Duplicates

Field duplicates are similar to laboratory duplicates in that they are used to assess precision. Two samples (parent and duplicate) are created in the field by subsampling the homogenized sample and submitting them to the lab as separate samples. Duplicate samples were collected and analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration greater than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for water samples is 20 percent.

SDG 2110320: One field duplicate sample pair, MW-62_092121 and Dup-1_092121, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair, with the exception of sulfate. The positive results for this target analyte were qualified as estimated (J) in this sample pair.

SDG 22A0426: One field duplicate sample pair, GP-65-GW-011122 and DUP-1-GW-011122, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair, with the exception of diesel- and lube oil-range hydrocarbons. The positive results for these target analytes were qualified as estimated (J) in this sample pair.

SDG 22B0103: One field duplicate sample pair, MW-61-020722 and Dup-1-020722, was submitted with this SDG. The precision criteria for the target analytes were met for this sample pair, with the exception of total cyanide, nitrate, nitrate + nitrite as N, and dissolved selenium. The positive results for these target analytes were qualified as estimated (J) in this sample pair.

Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are completed to ensure that mass resolution, identification, and sensitivity of the analyses are acceptable. Instrument tuning should be performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for each applicable analysis.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in an environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12-hour sample run and the control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard. The internal standard recoveries were within the control limits.

Initial Calibrations (ICALs)

The initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent relative standard deviation (%RSD) and relative response factors (RRF) values were within the control limits stated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2020a, USEPA 2020b).

Continuing Calibrations (CCALs)

The continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent difference (%D) and relative response factors (RRF) values were within the control limits in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2020a, USEPA 2020b), with the following exceptions:

SDG 21I0294: (VOCs) The %D for naphthalene was outside the control limits in the continuing calibration performed on 9/23/2021. The positive result for this target analyte was qualified as estimated (J) in Sample MW-24_092021.

SDG 21I0320: (VOCs) The %D for naphthalene was outside the control limits in the continuing calibration performed on 9/28/2021. The positive results for this target analyte were qualified as estimated (J) in Samples MW-62_092121 and Dup-1_092121.

SDG 22A0426: (NWTPH-Gx) The %D for gasoline-range hydrocarbons was outside the control limits in the continuing calibration performed on 9/28/2021. The positive result for this target analyte was qualified as estimated (J) in Sample GP-62-GW-011022.

(VOCs) The %D for naphthalene was outside the control limits in the continuing calibration performed on 9/28/2021. The positive results for this target analyte were qualified as estimated (J) in Samples GP-62_GW-011022, GP-65-GW-011122, GP-68-GW-011222, GP-74-GW-011322, GP-75-GW-011322, and DUP-1-GW-011122.

Miscellaneous

SDG 21I0294: (VOCs) The laboratory reported two sets of results for Sample MW-24_092021, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial result for naphthalene and the reanalysis result for benzene were labeled as "do not report" (DNR) and should not be used for any purpose.

SDG 21I0320: (NWTPH-Dx) The laboratory reported two sets of results for Samples MW-62_092121 and Dup-1_092121, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial results for diesel-range hydrocarbons and the reanalysis results for lube oil-range hydrocarbons were labeled as DNR and should not be used for any purpose.

SDG 22A0426: (NWTPH-Gx) The laboratory reported two sets of results for Samples GP-62-GW-011022, GP-74-GW-011322, and GP-75-GW-011322, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial results were labeled as DNR and should not be used for any purpose.

(NWTPH-Dx) The laboratory reported two sets of results for Samples GP-69-GW-011222, GP-74-GW-011322, and GP-75-GW-011322, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial results for diesel-range hydrocarbons and the reanalysis results for lube oil-range hydrocarbons were labeled as DNR and should not be used for any purpose.

(VOCs) The laboratory reported two sets of results for Samples GP-62-GW-011022 and GP-68-GW-011222, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial result for naphthalene and the reanalysis result for benzene were labeled as DNR and should not be used for any purpose.

The laboratory reported two sets of results for Samples GP-65-GW-011122, GP-74-GW-011322, GP-75-GW-011322, and DUP-1-GW-011122, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial results for benzene and naphthalene were labeled as DNR and should not be used for any purpose.

SDG 22B0103: (NWTPH-Gx) The laboratory reported two sets of results for Samples MW-40-020722, MW-53-020722, MW-54-020722, MW-55-020722, MW-59-020722, MW-61-020722, and Dup-1-020722, initial results and reanalysis results, due to ICV and CCV frequency exceedance. The initial results were labeled as DNR and should not be used for any purpose.

SDG 22B0161: (NWTPH-Gx) The laboratory reported two sets of results for Sample MW-31-021022, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial result was labeled as DNR and should not be used for any purpose.

(VOCs) The laboratory reported two sets of results for Sample MW-31-021022, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial results for benzene and naphthalene were labeled as DNR and should not be used for any purpose.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and laboratory/field duplicate RPD values, with the exceptions noted above.

The data are acceptable for the intended use, with the following qualifications listed below in Table 2.

Sample ID	Analyte	Qualifier	Reason
GP-62-GW- 011022	Diesel-range hydrocarbons	J	Holding Time
	Gasoline-range hydrocarbons	J	CCAL
	Lube oil-range hydrocarbons	UJ	Holding Time
	Naphthalene	J	CCAL
GP-64-GW- 011022	Diesel-range hydrocarbons	J	Holding Time
	Lube oil-range hydrocarbons	J	Holding Time
GP-65-GW- 011122	Diesel-range hydrocarbons	J	Field Duplicate Precision
	Lube oil-range hydrocarbons	J	Field Duplicate Precision
	Naphthalene	J	CCAL
DUP-1-GW- 011122	Diesel-range hydrocarbons	J	Field Duplicate Precision
	Lube oil-range hydrocarbons	J	Field Duplicate Precision
	Naphthalene	J	CCAL

TABLE 2: SUMMARY OF QUALIFIED SAMPLES

GP-68-GW- 011222	Naphthalene	J	CCAL		
GP-69-GW- 011222	Lube oil-range hydrocarbons	J	Surrogate Recovery		
GP-74-GW-	Lube oil-range hydrocarbons	J	Surrogate Recovery		
011322	Naphthalene	J	CCAL		
GP-75-GW- 011322	Naphthalene	J	CCAL		
	Naphthalene	J	CCAL		
MW-24_092021	Nitrate	UJ	Holding Time		
	Nitrite	J	Holding Time		
MW-24-020922	Nitrate + nitrite as N	UJ	MS/MSD Recovery		
MW 28, 002021	Nitrate	IJ	Holding Time		
WW-28_092021	Nitrite	UJ	Holding Time		
	Nitrate	IJ	Holding Time		
MW-28-020922	Nitrite	UJ	Holding Time		
	Sulfate	J	MS/MSD Recovery		
MW 40 000700	Total cyanide	U	Method Blank Contamination		
10100-40-020722	Nitrate	UJ	Holding Time		
MW-53-020722	Total cyanide	U	Method Blank Contamination		
	Nitrate	J	Holding Time		
MW E 4 000700	Total cyanide	U	Method Blank Contamination		
10100-54-020722	Nitrate	J	Holding Time		
MW-55_092021	Nitrate	J	Holding Time		
	Total cyanide	U	Method Blank Contamination		
MW-55-020722	Nitrate	J	Holding Time		
MW-59-020722	Nitrate	J	Holding Time		
	Nitrate	IJ	Holding Time		
MW-60_092021	Nitrite	UJ	Holding Time		
	Total cyanide	UJ	Method Blank Contamination/Field Duplicate		
	Nitrate	J	Precision		
MW-61-020722	Nitrate + Nitrite as N	J	Holding Time/Field Duplicate Precision		
	Dissolved selenium	J	Field Duplicate Precision		
			Field Duplicate Precision		
	Total cyanide	UJ	Method Blank Contamination/Field Duplicate		
	Nitrate	J	Precision		
Dup-1-020722	Nitrate + Nitrite as N	J	Field Duplicate Precision		
	Dissolved selenium	J	Field Duplicate Precision		
	Nie wiedzie i				
MW-62_092121	Naphthalene	, I	UUAL Field Duplicate Presidion		
	Juliate	,			

MW-62-020822	Cyanide, Weak Acid Dissociable	J	Laboratory Duplicate Precision
Dup-1_092121	Naphthalene Sulfate	J	CCAL Field Duplicate Precision

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (USEPA) 2020a. Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review, EPA-540-R-20-005. November 2020.
- U.S. Environmental Protection Agency (USEPA) 2020b. Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA-542-R-20-006. November 2020.

2101 4th Avenue Suite 950, Seattle, WA 98121, Telephone: 206.728.2674, Fax: 206.728.2732 www.geoengineers				
Project:	Puget Sound Energy – South State Street Preliminary Remedial Design March and April 2022 Sampling Event	n Investigation		
GEI File No:	0186-890-03			
Date:	August 12, 2022			

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2B data validation (USEPA Document 540-R-08-005; USEPA 2009) of analytical data from the analyses of sediment samples collected as part of the March and April 2022 sampling events, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the South State Street Manufactured Gas Plant Site located in Bellingham, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (USEPA, 2020) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Field Duplicates
- Instrument Tuning
- Internal Standards
- Initial Calibrations (ICALs)
- Continuing Calibrations (CCALs)
- Miscellaneous

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

Laboratory SDG	Samples Validated
22D0021	PRDI-42-SS, PRDI-45-SS, PRDI-46-SS, PRDI-DUP-01
22D0310	PRDI-47-SS, PRDI-50-SS
22D0397	PRDI-58-SS, PRDI-DUP-2-SS, PRDI-59-SS
22E0022	PRDI-48-SS, PRDI-51-SS
22E0279	PRDI-47-SS, PRDI-49-SS, PRDI-50-SS, PRDI-52-SS
22F0067	PRDI-43-SS, PRDI-44-SS, PRDI-53-SS
22F0336	PRDI-60-SS, PRDI-61-SS, PRDI-62-SS

CHEMICAL ANALYSIS PERFORMED

Analytical Resources, Inc. (ARI), located in Tukwila, Washington, performed laboratory analyses on the samples using the following method:

Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270E-SIM

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

ARI provided the required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and the identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for each analysis. The sample coolers arrived at the laboratory within the appropriate temperatures of between 2 and 6 degrees Celsius, with the exception noted below.

SDG 22D0397: One sample cooler temperature recorded at the laboratory was 14.3 degrees Celsius. This cooler was sent to the laboratory without sufficient ice. The positive results for the PAH target analytes were qualified as estimated (J) in Samples PRDI-58-SS, PRDI-59-SS, and PRDI-DUP-2-SS.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in an environmental sample. Surrogates are used for organic analyses and are added to the samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries (%R) are calculated following analysis. The surrogate recoveries for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For each sample batch, method blanks were analyzed at the required frequency. None of the analytes of interest were detected in the method blanks, with the following exceptions:

SDG 22D0021: (PAHs) There was a positive result for benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene detected above the method detection limit, but below the reporting limit in method blank extracted on 4/12/2022. The positive results for these target analytes were greater than 5X the concentration in the method blank in the associated field samples; therefore, no qualifications were required.

SDG 22D0310: (PAHs) There was a positive result for benzo(a)pyrene detected above the method detection limit, but below the reporting limit in method blank extracted on 4/22/2022. The positive results for this target analyte were greater than 5X the concentration in the method blank in the associated field samples; therefore, no qualifications were required.

SDG 22E0279: (PAHs) There was a positive result for dibenzo(a,h)anthracene detected above the method detection limit, but below the reporting limit in method blank extracted on 5/20/2022. The positive results for this target analyte were greater than 5X the concentration in the method blank in the associated field samples; therefore, no qualifications were required.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the

associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the results from the MS and MSD, the relative percent difference (RPD) is calculated. The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits, with the following exceptions:

SDG 22D0021: (PAHs) The laboratory performed an MS/MSD sample set on Sample PRDI-42-SS. The %R and RPD values for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were greater than the control limits in the MS/MSD extracted on 4/12/2022. The positive results for these target analytes were qualified as estimated (J) in Sample PRDI-42-SS.

SDG 22D0310: (PAHs) The laboratory performed an MS/MSD sample set on Sample PRDI-47-SS. The %R values for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene were greater than the control limits in the MS/MSD extracted on 4/22/2022. The positive results for these target analytes were qualified as estimated (J) in Sample PRDI-47-SS.

Additionally, in the same MS/MSD sample set, the %R values for benzo(k)fluoranthene and dibenzo(a,h)anthracene were greater than the control limits in the MSD; however, the %R values for these target analytes were within the control limits in the corresponding MS. No action was required for these outliers.

SDG 22D0397: (PAHs) The laboratory performed an MS/MSD sample set on Sample PRDI-58-SS. The RPD values for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene were greater than the control limits in the MS/MSD extracted on 5/4/2022. The positive results for these target analytes were qualified as estimated (J) in Sample PRDI-58-SS.

Additionally, in the same MS/MSD sample set, the %R values for benzo(a)anthracene, benzo(a)pyrene, and chrysene were greater than the control limits in the MS; however, the %R values for these target analytes were within the control limits in the corresponding MSD. No action was required for these outliers.

SDG 22F0067: (PAHs) The laboratory performed an MS/MSD sample set on Sample PRDI-43-SS. The RPD values for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were greater than the control limits in the MS/MSD extracted on 6/8/2022. The positive results for these target analytes were qualified as estimated (J) in Sample PRDI-43-SS.

Additionally, in the same MS/MSD sample set, the %R values for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were greater than the control limits in the MS; however, the %R values for these

target analytes were within the control limits in the corresponding MSD. No action was required for these outliers.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, control limits for accuracy and precision in the LCS and its duplicate (LCSD) are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to each sample in the associated batch, instead of just the parent sample. The %R control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for each analysis and the %R and RPD values were within the proper control limits, with the following exceptions:

SDG 22D0021: (PAHs) The %R values for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were greater than the control limits in the LCS extracted on 4/12/2022. The positive results for these target analytes were gualified as estimated (J) in Samples PRDI-42-SS, PRDI-45-SS, PRDI-46-SS, and PRDI-DUP-01.

Field Duplicates

Field duplicates are similar to laboratory duplicates in that they are used to assess precision. Two samples (parent and duplicate) are created in the field by subsampling the homogenized sample and submitting them to the lab as separate samples. Duplicate samples were collected and analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. If one or more of the sample analytes has a concentration less than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for sediment samples is 50 percent.

SDG 22D0397: One field duplicate sample pair, PRDI-58-SS and PRDI-DUP-2-SS, were submitted with this SDG. The precision criteria for the target analytes were met for these sample pairs, with the exception of benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene. The positive results for these target analytes were qualified as estimated (J) in this sample pair.

SDG 22D0021: One field duplicate sample, PRDI-DUP-01, was submitted with this SDG. However, the parent sample, PRDI-55-SS, was archived and not submitted for chemical analysis.

Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are completed to ensure that mass resolution, identification, and sensitivity of the analyses are acceptable. Instrument tuning should be performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for each applicable analysis.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in an environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12-hour sample run and the control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard. The internal standard recoveries were within the control limits.

Initial Calibrations (ICALs)

The initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent relative standard deviation (%RSD) and relative response factors (RRF) values were within the control limits stated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2020).

Continuing Calibrations (CCALs)

The continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the %R values were within the control limits of 90% and 110%. For organic analyses, the percent difference (%D) and relative response factors (RRF) values were within the control limits in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2020).

Miscellaneous

SDG 22F0067: (PAHs) The laboratory reported two sets of results for Sample PRDI-43-SS, initial results and reanalysis results, due to target analyte instrument calibration range exceedance. The initial results for benzo(a)anthracene, benzo(a)pyrene, and chrysene and the reanalysis results for all other PAH target analytes were labeled as DNR and should not be used for any purpose.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD values, with the exceptions noted above.

The data are acceptable for the intended use, with the following qualifications listed below in Table 2.

Sample ID	Analyte	Qualifier	Reason
	Benzo(a)anthracene	J	MS/MSD Recovery and Precision/LCS Recovery
	Benzo(a)pyrene	J	MS/MSD Recovery and Precision/LCS Recovery
	Benzo(b)fluoranthene	J	MS/MSD Recovery and Precision/LCS Recovery
PRDI-42-SS	Benzo(k)fluoranthene	J	MS/MSD Recovery and Precision/LCS Recovery
	Chrysene	J	MS/MSD Recovery and Precision/LCS Recovery
	Dibenzo(a,h)anthracene	J	MS/MSD Recovery and Precision/LCS Recovery
	Indeno(1,2,3-cd)pyrene	J	MS/MSD Recovery and Precision/LCS Recovery
	Benzo(a)anthracene	J	MS/MSD Precision
	Benzo(a)pyrene	J	MS/MSD Precision
	Benzo(b)fluoranthene	J	MS/MSD Precision
PRDI-43-SS	Benzo(k)fluoranthene	J	MS/MSD Precision
	Chrysene	J	MS/MSD Precision
	Dibenzo(a,h)anthracene	J	MS/MSD Precision
	Indeno(1,2,3-cd)pyrene	J	MS/MSD Precision
	Benzo(a)anthracene	J	LCS Recovery
	Benzo(a)pyrene	J	LCS Recovery
	Benzo(b)fluoranthene	J	LCS Recovery
PRDI-45-SS	Benzo(k)fluoranthene	J	LCS Recovery
	Chrysene	J	LCS Recovery
	Dibenzo(a,h)anthracene	J	LCS Recovery
	Indeno(1,2,3-cd)pyrene	J	LCS Recovery
	Benzo(a)anthracene	J	LCS Recovery
	Benzo(a)pyrene	J	LCS Recovery
	Benzo(b)fluoranthene	J	LCS Recovery
PRDI-46-SS	Benzo(k)fluoranthene	J	LCS Recovery
	Chrysene	J	LCS Recovery
	Dibenzo(a,h)anthracene	J	LCS Recovery
	Indeno(1,2,3-cd)pyrene	J	LCS Recovery
PRDI-47-SS	Benzo(a)anthracene	J	MS/MSD Recovery
	Benzo(a)pyrene	J	MS/MSD Recovery
	Benzo(b)fluoranthene	J	MS/MSD Recovery
	Chrysene	J	MS/MSD Recovery
	Indeno(1,2,3-cd)pyrene	J	MS/MSD Recovery

	Benzo(a)anthracene	J	Sample Preservation/MS/MSD Precision
	Benzo(a)pyrene	J	Sample Preservation/MS/MSD Precision/Field
	Benzo(b)fluoranthene	J	Duplicate Precision
	Benzo(k)fluoranthene	J	Sample Preservation/MS/MSD Precision/Field
PRDI-58-SS	Chrysene	J	Sample Preservation/MS/MSD Precision
	Dibenzo(a,h)anthracene	J	Sample Preservation/MS/MSD Precision
	Indeno(1,2,3-cd)pyrene	J	Sample Preservation
			Sample Preservation/MS/MSD Precision/Field
			Duplicate Precision
	Benzo(a)anthracene	J	Sample Preservation
	Benzo(a)pyrene	J	Sample Preservation/Field Duplicate Precision
	Benzo(b)fluoranthene	J	Sample Preservation/Field Duplicate Precision
PRDI-DUP-2-SS	Benzo(k)fluoranthene	J	Sample Preservation
	Chrysene	J	Sample Preservation
	Dibenzo(a,h)anthracene	J	Sample Preservation
	Indeno(1,2,3-cd)pyrene	J	Sample Preservation/Field Duplicate Precision
	Benzo(a)anthracene	J	Sample Preservation
	Benzo(a)pyrene	J	Sample Preservation
	Benzo(b)fluoranthene	J	Sample Preservation
PRDI-59-SS	Benzo(k)fluoranthene	J	Sample Preservation
	Chrysene	J	Sample Preservation
	Dibenzo(a,h)anthracene	J	Sample Preservation
	Indeno(1,2,3-cd)pyrene	J	Sample Preservation
	Benzo(a)anthracene	J	LCS Recovery
	Benzo(a)pyrene	J	LCS Recovery
	Benzo(b)fluoranthene	J	LCS Recovery
PRDI-DUP-01	Benzo(k)fluoranthene	J	LCS Recovery
	Chrysene	J	LCS Recovery
	Dibenzo(a,h)anthracene	J	LCS Recovery
	Indeno(1,2,3-cd)pyrene	J	LCS Recovery

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review," EPA-540-R-20-005. November 2020.

APPENDIX F

Evaluation of Pre-Remedial Design Investigation Data Related to Permeable Reactive Barrier Treatment

TO:	Neil Morton, GeoEngineers, Inc.
FROM:	Clint Jacob, PE, LG
DATE:	September 27, 2022
RE:	Evaluation of Pre-Remedial Design Investigation Data Related to Permeable Reactive Barrier Treatment Former South State Street Manufactured Gas Plant Site Bellingham, Washington Project No. 0611004.020

Introduction

This technical memorandum evaluates data collected during the Pre-Remedial Design Investigation (PRDI), completed by GeoEngineers, Inc. (GeoEngineers) in 2021 and 2022, at the former South State Street Manufactured Gas Plant (MGP) in Bellingham, Washington (Site). PRDI data are being used to evaluate technical feasibility of a permeable reactive barrier (PRB) to treat groundwater contaminants migrating from the uplands portion of the Site to the marine portion of the Site. This memorandum also discusses the target treatment area and contaminants, aquifer redox conditions, remedial approach, conceptual design of a PRB, and additional design data needs to be resolved through groundwater flux testing, bench testing, and possible pilot testing. Design testing is described in a separate work plan (Landau 2022). This memorandum is included as an appendix to the PRDI report (GeoEngineers 2022) and, therefore, only briefly summarizes and discusses data which are presented comprehensively in that report. The information covered in this memorandum assumes that the reader is familiar with the content and conclusions of the PRDI report.

Target Treatment Zone and Contaminants

As will be further discussed in this memorandum, the target treatment zone consists of the shallow groundwater zone present on top of the bedrock on the east side of the pedestrian path, east of the BNSF railroad tracks to the nearest possible point of discharge at the "pocket beach" (Figure 1), where groundwater discharges to marine surface water. Groundwater from the upland portion of the Site carries contaminants from the vicinity of the former gas holders, through the soil and steep, weathered bedrock, and into groundwater within fill material beneath the pedestrian path and the railroad tracks. The shallow groundwater zone begins at the top of the bedrock outcrop on the east side of the pedestrian path and extends approximately northwest beneath the path, adjacent vegetated slope, and railroad grade toward the pocket beach.

Stratigraphy and groundwater conditions near the path are defined by three monitoring wells (MW-28, MW-29, and MW-62) and by nine PRDI borings (GP-58 through GP-64, GP-74, GP-75), as shown on Figure 1. As shown on cross-section C-C', which is oriented through these wells and borings (Figure 2), approximately 16 feet (ft) of fill overlies bedrock at the three monitoring wells. Fill consists

of relatively conductive sand and gravel (GP, SP) ranging to sand with silt (SP-SM).¹ Observed depth to groundwater in monitoring wells MW-28, MW-29, and MW-62 during the dry season (September 2021) and wet season (February 2022) ranged from 8 to 12 ft below ground surface (bgs). As shown on Figure 2, the depth to bedrock decreases abruptly to the north. North of GP-58, the depth to bedrock decreases substantially to approximately 3 ft bgs, and groundwater was not observed at borings GP-70 through GP-73 during the PRDI. Monitoring well MW-58 that was installed in 2016 is located between GP-71 and GP-72 and extends approximately 10 ft into bedrock. Water has periodically been detected in MW-58. However, when the water has been purged from MW-58 prior to sampling the well, the well has remained dry indicating that the bedrock is not a groundwater bearing unit. Monitoring well MW-58 likely acts as a sump and accumulates minor perched water over a long period of time.

Benzene, naphthalene, total petroleum hydrocarbons gasoline- and diesel-range (TPH-G and TPH-Dx, respectively; collectively TPH), and cyanide (CN) are groundwater contaminants targeted for treatment over the southern portion of the cross section C-C' transect (Figure 2); these contaminants were detected above cleanup levels (CULs) or screening levels (SLs) at monitoring wells MW-28, MW-29, and MW-62. PRDI results are shown for benzene and naphthalene on Figure 3, for TPH-G and TPH-Dx on Figure 4, and for CN on Figure 5. The data for TPH, benzene, and naphthalene show a similar distribution, with the highest concentrations occurring at the north end of this segment (MW-28), while the highest concentrations of CN occur at the south end (MW-29), as summarized below:

- Benzene was detected at more than 1,000 times the CUL at MW-28, in the range of 10 to 1,000 times the CUL at MW-62, and less than 10 times the CUL (wet season) and below the CUL (dry season) at southern well MW-29.
- Naphthalene concentrations were highest (less than 100 times the CUL) at MW-28 to the north, lower at MW-62, and below the CUL at MW-29 to the south.
- TPH-G exceeded SLs by less than 100 times at both MW-28 and MW-62 but was below the SL at southern well MW-29. TPH-Dx was detected at all three wells at less than 10 times the SL.
- CN was detected above the CUL at all three wells, with the highest concentrations occurring to the south. CN concentrations at south well MW-29 were in the range of 10 to 100 times the CUL but decreased to less than 10 times the CUL at north well MW-28.

Moving west from the pedestrian path to the pocket beach, detections of TPH are collocated together in a localized area at the north end of the beach. TPH were below SLs at all monitoring wells west of the railroad tracks, near the pocket beach, and at most PRDI porewater sample locations at the pocket beach. However, SLs for TPH were exceeded in one or more porewater samples near the north end of the pocket beach. At porewater location PRDI-2 sampled in June 2021, benzene was detected at more than 1,000 times the CUL, and naphthalene was detected between 10 and 100 times the CUL. In December 2021, the PRDI-2 location was resampled (PRDI-2A) and other nearby step out locations

¹ Contains 5 to 30 percent silt.

(PRDI-2B through PRDI-2E) were also sampled. Benzene detections less than 10 times the CUL occurred at nearby porewater locations PRDI-2A and PRDI-2C. TPH-G was also detected at PRDI-2 between 10 and 100 times the CUL. TPH-Dx results at less than 10 times the CUL were detected at PRDI-2 and PRDI-2A.

CN exceeded the CUL at just one of the pocket beach porewater sample locations (PRDI-4). CN at porewater sample location PRDI-4 was less than 10 times the CUL. Similarly, CN was detected at the three monitoring wells, located west of the railroad tracks and near the head of the beach (MW-34, MW-46, and MW-61), at less than 10 times the CUL. Well MW-46, where the CUL was exceeded in both the dry and wet season, is in line with the estimated groundwater flow path between the highest CN detections east of the railroad tracks (MW-29 and MW-62) and the beach porewater exceedance at PRDI-4.

Aquifer Redox Conditions

PRDI total organic carbon (TOC) and aquifer redox data collected in the targeted treatment area (MW-28, MW-29, and MW-62) indicate anaerobic conditions. PRDI groundwater data for these three wells are presented in Table 1. TOC ranges from 5 to 12 milligrams per liter (mg/L) at the middle (MW-62) and south wells (MW-29) and is higher (between 17 and 19 mg/L) at the northern well (MW-28) where TPH concentrations are the highest. TOC of between 5 and 10 mg/L generally presents enough oxygen demand to result in anaerobic conditions. Anaerobic conditions were further indicated by the sampling results for the natural electron acceptors nitrate, iron, and sulfate, which are utilized by anaerobic bacteria for TPH biodegradation, as follows:

- Nitrate, the first natural electron acceptor to be consumed following depletion of oxygen, was low to not detected; three detections out of seven samples ranged from 0.05 to 1.5 mg/L.
- Maximum concentrations of dissolved (ferrous) iron, which is generated under anaerobic conditions, ranged from 0.5 to 18 mg/L at the three wells.
- The distribution of sulfate at the three wells is consistent with sulfate utilization by anerobic bacteria for TPH biodegradation. The lowest sulfate (between 5 and 10 mg/L) was measured at well MW-28 where the highest concentrations of TPH occur. Sulfate concentrations at the wells with lower TPH concentrations (MW-29 and MW-62) was much higher, ranging from 73 to 203 mg/L.

Sulfate in groundwater at the Site is the result of tidal-influenced intrusion of seawater. Seawater contains approximately 2,600 mg/L of sulfate. At other monitoring wells nearer to the pocket beach and where TPH concentrations were below CULs (i.e., MW-34 and MW-46), sulfate is much higher with maxima ranging from to 1,420 to 1,750 mg/L (see PRDI Table 4); these higher sulfate concentrations result from both low TPH concentrations and more intrusion of seawater occurring closer to the beach. This intrusion of seawater provides sulfate for natural attenuation of TPH through anaerobic biodegradation. The spatial distribution of sulfate indicated by the PRDI data indicates that natural attenuation occurs all along the flow path from the impacted monitoring wells east of the railroad tracks to the pocket beach.

• It is notable, that nitrate was higher and ferrous iron was lower in the wet season (February) samples, consistent with an influx of aerobic water from infiltration of precipitation.

The anaerobic conditions indicated by PRDI data likely result from both the natural depositional environment and the presence of TPH contamination. Marine shoreline aquifer conditions are often naturally anaerobic due to naturally occurring organic carbon. The presence of TPH contamination also results in anaerobic conditions. The sulfate-reducing condition observed at the TPH-impacted wells is likely the result of this contamination, while less reducing (nitrate- to iron-reducing conditions) at wells with lower concentrations of TPH may represent the natural environment.

Remedial Approach

The recommended remedial approach is construction of a PRB to treat TPH and CN. A PRB consists of a trench oriented perpendicular to groundwater flow. The PRB is backfilled with reactive media that treats contaminated groundwater as it flows through the trench. The PRB will be located east of the railroad tracks and pedestrian footpath, at the base of the bedrock outcrop, to intercept and treat contaminated groundwater flowing from the upland area in advance of its discharge at the pocket beach.

PRB Conceptual Design

The PRB will be approximately 160 ft long and extend from GP-70 to a location south of MW-29.² The anticipated length and location of the PRB is presented on Figure 6. The PRB will be located hydraulically upgradient (east) of monitoring wells MW-28, MW-29, and MW-62, which will be used to monitor the treatment effects of the PRB.

The PRB will extend from above the seasonal high water table to bedrock. As shown on cross-section C-C' (Figure 2), the highest groundwater level observed during the PRDI was approximately 8 ft bgs (elevation 12 ft) and the bedrock was encountered at elevation 4 or 5 ft (approximately 16 ft bgs). It is anticipated that the PRB will be constructed from 6 to 16 ft bgs (between elevations 4 to 14 ft), as shown in profile on Figure 7. It is anticipated that the PRB will be constructed using standard excavator and trench box methods commonly used to install subsurface utilities.

Trench backfill will consist of mixed sand, gypsum, and granular zero-valent iron (ZVI). Sand is required to maintain the hydraulic conductivity of the PRB and to prevent excessive settling of backfill as the gypsum dissolves over time. Gypsum (CaSO₄) will provide a slow release of sulfate, as the electron acceptor, to enhance biodegradation of TPH. ZVI is known to immobilize CN through

² The southern end of the PRB will be as near as is convenient to the railroad signal controls located approximately 35 ft south of well MW-29.

adsorption and through precipitation of insoluble iron-cyanides (commonly known as Turnbull's Blue and Prussian Blue; Adams 1992, Dzombak et al. 2005, Ghosh et al. 1999). Likely percentages of PRB materials are 55 percent sand, 30 percent gypsum, and 15 percent ZVI.

Over time, the gypsum or ZVI may become depleted, and the barrier would need to be refreshed if continued treatment is needed to achieve and maintain CULs. ZVI may last approximately 10 to 20 years, while the longevity of gypsum may be between 3 and 5 years. It is anticipated that the gypsum and ZVI components of the PRB could be refreshed through injection of gypsum and ZVI slurries along the PRB alignment using direct-push drilling, avoiding replacement of the PRB backfill. The sand matrix of the PRB will allow for effective injection and distribution of the injected slurries.

Design Testing Data Needs

Aquifer flux testing and bench testing are recommended to collect design-level data and evaluate treatment effectiveness. A field pilot test may also be performed if the cleanup schedule allows and additional proof of concept is desired. The design testing elements are summarized below and described in further detail in the design test work plan (PRDI Appendix G; Landau 2022).

- <u>Aquifer flux testing:</u> It is anticipated that aquifer flux testing would allow estimation of groundwater and contaminant flux through the PRB. Wet season measurement will represent maximum flux used to design PRB thickness for adequate residence time to treat groundwater contaminants. Dry season measurements will be combined with wet season results to calculate average flux, which will be used to estimate the longevity of the gypsum and ZVI components of the PRB.
- <u>Bench testing</u>: It is anticipated that bench testing would primarily answer design questions related to optimal percent ZVI and gypsum and gypsum size to be used in PRB backfill to achieve the desired treatment and longevity. The ZVI particle size will be based on literature values and consultation with vendors
- Field pilot testing (optional): A field pilot test may be performed if the cleanup schedule allows and additional proof of concept is desired. It is anticipated that pilot testing would consist of two short PRB segments (e.g., 30 ft) located upgradient of the maximum TPH concentrations in groundwater at MW-28 and the maximum CN concentrations in groundwater at MW-29. Pilot test groundwater monitoring performed at these two wells would be used to evaluate treatment effectiveness. One to 2 years of pilot testing monitoring would likely be required to evaluate treatment effects over wet and dry seasons. Furthermore, although the PRB is expected to immediately treat contaminant flux passing through it, a period of flushing and treatment will be required in the zone between the PRB and downgradient monitoring wells before the treatment effects will be fully observed at the monitoring wells.

Use of This Technical Memorandum

This technical memorandum has been prepared for the exclusive use of GeoEngineers and Puget Sound Energy (PSE) for specific application to the South State Street MGP Site project. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Landau, shall be at the user's sole risk. Landau warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

This document has been prepared under the supervision and direction of the following key staff.

LANDAU ASSOCIATES, INC.

prod

Clint Jacob, PE, LG Principal

CLJ/JAF/IJI [P:\611\004\r\bio tm for prdi report\landau bio tm for prdi report_final 092722.docx]

Attachments

Figure 1. Target Treatment Zone
Figure 2. Target Treatment Zone Cross Section C-C'
Figure 3. PRDI Groundwater/Porewater Analytical Results, Benzene and Naphthalene
Figure 4. PRDI Groundwater/Porewater Analytical Results, Gasoline and Diesel/Heavy Oil
Figure 5. PRDI Groundwater/Porewater Analytical Results, WAD Cyanide
Figure 6. Anticipated PRB Alignment
Figure 7. Anticipated PRB Profile
Table 1. PRDI Groundwater Data for PRB Alignment

References

- Adams, M.D. 1992. "The Removal of Cyanide from Aqueous Solution by the Use of Ferrous Sulphate." Journal of the South African Institute of Mining and Metallurgy 92 (1):17-25. January.
- Dzombak, D.A, R.S. Ghosh, and G.M. Wong-Chong. 2005. *Cyanide in Water and Soil: Chemistry, Risk, and Management*. Boca Raton, FL: CRC Press.
- GeoEngineers. 2022. GeoEngineers. 2022. Pre-Remedial Design Investigation Report. GeoEngineers, Inc. *Pending*.

- Ghosh, R.S., D.A. Dzombak, R.G. Luthy, and J.R. Smith. 1999. "In Situ Treatment of Cyanide-Contaminated Groundwater by Iron Cyanide Precipitation." Water Environment Research 71 (6):1217-1228.
- Landau. 2022. Technical Memorandum: Work Plan for Design Testing, Permeable Reactive Barrier, Former South State Street Manufactured Gas Plant Site, Bellingham, Washington. Landau Associates, Inc. September 27.

 Notes:

 1. The locations of all features shown are approximate.

 2. Mean High Tide defines the boundary between the Upland Unit and Marine Unit.

 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

 Data Source:
 Base upland survey from Larry Steel

Data Source: Base upland survey from Larry Steel Associates, 2022. Base bathymetric survey from David Evands and Assocates, 2021. Aerial from Bing.

Projection: NAD83 WA State Plane, N Zone, US Foot Vertical Datum: NAVD88

Legend

- Direct Push Soil Boring
- \mathbf{V} Shallow Hand Auger Soil Sample
- \bigcirc Monitoring Well
- Intertidal Sediment and Porewater Sample Location
- Stormwater Outfall \bigotimes
- Stormwater Pipe
- Approximate Limits of Aquatic Vegetation
- ----- Fence
- Retaining Wall

- ----- BNSF Centerline
- Inner Harbor Line
- OHWM (9.70' NAVD88)
- MLLW (el. 0.48' NAVD88) -----
- $\overline{}$ Wood Pilings Area
- Site Structures Former Gas Holder

- Marine Unit Boundary
- Upland Unit Boundary

Bathymetry Contours

- 1-Foot Contour 5-foot Contour Upland Contours 1-Foot Contour

- Project North 75

Feet

Target Treatment Zone

South State Street MGP Site Bellingham, Washington

Presentation and information as extracted directly from GeoEngineers 2022

100

Figure 1

75

C'

LANDAU A S S O C I A T E S

Notes:

- widely spaced explorations and should be considered approximate; actual subsurface conditions may vary from those shown.
- 2. This figure is for informational purposes only. It is intended to assist in the identification of features discussed in a related document. Data were compiled from sources as listed in this figure. The data sources do not guarantee these data are accurate or complete. There may have been updates to the data since the publication of this figure. This figure is a copy of a master document. The hard copy is stored by GeoEngineers, Inc. and will serve as the official document of record.

Datum: NAVD 88, unless otherwise noted.

Notes: 1. The locations of all features shown are approximate. 2. Mean High Tide defines the boundary between the Upland Unit and Marine Unit. 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers. Inc. and will serve as the is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Base upland survey from Larry Steel Associates, 2022. Base bathymetric survey from David Evands and Assocates, 2021. Aerial from Bing.

Projection: NAD83 WA State Plane, N Zone, US Foot Vertical Datum: NAVD88

Legend

- Monitoring Well •
- Intertidal Sediment and Porewater Sample Location
- \otimes Stormwater Outfall
- Stormwater Pipe
- Approximate Limits of Aquatic Vegetation
- ----- Fence
 - Retaining Wall

- ----- BNSF Centerline
- Inner Harbor Line OHWM (9.70' NAVD88)
- Wood Pilings Area
- Site Structures
- Former Gas Holder Marine Unit Boundary
- Upland Unit Boundary

Bathymetry Contours 1-Foot Contour 5-foot Contour

- Upland Contours 1-Foot Contour
 - 5-foot Contour
- 75

Feet

PRDI Groundwater/Porewater Analytical **Results Benzene & Naphthalene**

> South State Street MGP Site Bellingham, Washington

Presentation and information as extracted directly from GeoEngineers 2022

Figure 3

75

Notes: 1. The locations of all features shown are approximate. 2. Mean High Tide defines the boundary between the Upland Unit and Marine Unit. 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Base upland survey from Larry Steel Associates, 2022. Base bathymetric survey from David Evands and Assocates, 2021. Aerial from Bing.

Projection: NAD83 WA State Plane, N Zone, US Foot Vertical Datum: NAVD88

Legend

- Monitoring Well •
- Intertidal Sediment and Porewater Sample Location
- \otimes Stormwater Outfall
- Stormwater Pipe
- Approximate Limits of Aquatic Vegetation
- ----- Fence
 - Retaining Wall

- ----- BNSF Centerline
- Inner Harbor Line OHWM (9.70' NAVD88)
- Wood Pilings Area
- Site Structures
- Former Gas Holder
- Marine Unit Boundary Upland Unit Boundary
- **Bathymetry Contours** 1-Foot Contour 5-foot Contour Upland Contours 1-Foot Contour
 - 5-foot Contour
- 75

Feet

PRDI Groundwater/Porewater Analytical Results Gasoline & Diesel/Heavy Oil

> South State Street MGP Site Bellingham, Washington

Presentation and information as extracted directly from GeoEngineers 2022

Figure 4

75

Notes: 1. The locations of all features shown are approximate. 2. Mean High Tide defines the boundary between the Upland Unit and Marine Unit. 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers. Inc. and will serve as the is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Base upland survey from Larry Steel Associates, 2022. Base bathymetric survey from David Evands and Assocates, 2021. Aerial from Bing.

Projection: NAD83 WA State Plane, N Zone, US Foot Vertical Datum: NAVD88

Legend

- Monitoring Well •
- Intertidal Sediment and Porewater Sample Location
- \otimes Stormwater Outfall
- Stormwater Pipe
- Approximate Limits of Aquatic Vegetation ----- Fence
- Retaining Wall

- ----- BNSF Centerline Inner Harbor Line
- OHWM (9.70' NAVD88)
- Wood Pilings Area
- Site Structures
- Former Gas Holder
- Marine Unit Boundary Upland Unit Boundary
- **Bathymetry Contours** 1-Foot Contour 5-foot Contour Upland Contours 1-Foot Contour
- 5-foot Contour

75

- 0
 - Feet

rue North

75

PRDI Groundwater/Porewater Analytical **Results WAD Cyanide**

South State Street MGP Site Bellingham, Washington

Presentation and information as extracted directly from GeoEngineers 2022

Figure 5

Notes: 1. The locations of all features shown are approximate. 2. Mean High Tide defines the boundary between the Upland Unit and Marine Unit. 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Base upland survey from Larry Steel Associates, 2022. Base bathymetric survey from David Evands and Assocates, 2021. Aerial from Bing.

Projection: NAD83 WA State Plane, N Zone, US Foot Vertical Datum: NAVD88

Legend

- Direct Push Soil Boring
- \mathbf{V} Shallow Hand Auger Soil Sample
- \bigcirc Monitoring Well
- Intertidal Sediment and Porewater Sample Location
- Stormwater Outfall \bigotimes
- Stormwater Pipe
- Approximate Limits of Aquatic Vegetation
- ----- Fence
- Retaining Wall

- ----- BNSF Centerline
- Inner Harbor Line
- OHWM (9.70' NAVD88)
- MLLW (el. 0.48' NAVD88) -----
- $\overline{}$ Wood Pilings Area
- Site Structures
- Former Gas Holder Marine Unit Boundary

Bathymetry Contours

- 1-Foot Contour 5-foot Contour Upland Contours

Feet

- - Upland Unit Boundary
- 1-Foot Contour
 - 75

Anticipated PRB Alignment

South State Street MGP Site Bellingham, Washington

Presentation and information as extracted directly from GeoEngineers 2022

100

Figure 6

75

2. This figure is for informational purposes only. It is intended to assist in the identification of features discussed in a related document. Data were compiled from sources as listed in this figure. The data sources do not guarantee these data are accurate or complete. There may have been updates to the data since the publication of this figure. This figure is a copy of a master document. The hard copy is stored by GeoEngineers, Inc. and will serve as the official document of record.

Datum: NAVD 88, unless otherwise noted.

TABLE 1

PSE - South State Street, September 2021, January 2022, and February 2022 Groundwater Data (DRAFT)

(Validated) (check against GeoEngineers final)

Location II		tion ID	MGP-MW-28	MGP-MW-28	MGP-MW-29	MGP-MW-29	MGP-MW-62	MGP-MW-62	MGP-MW-62	
Sample ID		MW-28_092021	MW-28-020922	MW-29_092121	MW-29-020822	MW-62_092121	DUP-1_092121	MW-62-020822		
		Samp	le Date	9/20/2021	2/9/2022	9/21/2021	2/8/2022	9/21/2021	9/21/2021	2/8/2022
		Project								
Method	Analyte	CULs	Units							
	Total Organic Carbon	NE	mg/L	18.97	16.8	7.17	10.5	12.24	11.83	5.40
	Nitrate	NE	mg/L	2.00 UJ	0.0200 UJ	0.0493	1.54	0.200 U	0.200 U	0.729
	Nitrate-Nitrite	NE	mg/L	1.00 U	0.010 U	0.049	1.56	0.100 U	0.100 U	0.729
Conventionals	Nitrite	NE	mg/L	1.00 UJ	0.010 UJ	0.010 U	0.025	0.100 U	0.100 U	0.010 U
	Sulfate	NE	mg/L	5.40	10.6 J	95.5	72.6	88.9 J	203 J	172
	Cyanide	0.005	mg/L	0.155	0.106	1.14	0.955	0.280	0.274	0.270
	Cyanide (Weak & Dissociable)	0.005	mg/L	0.033	0.016	0.073	0.091	0.048	0.048	0.058 J
NWTPH-GX	Gasoline-range hydrocarbons	NE	µg/L	22600	32500	100 U	484	27800	27000	2850
	Diesel-range hydrocarbons	NE	mg/L	2.84		0.521	2.53	5.11	5.75	1.06
NWTPH-DX	Lube oil-range hydrocarbons	NE	mg/L	0.200 U		0.229	0.724	0.231	0.273	0.200 U
	Total TPH	NE	mg/L	2.84		0.750	3.254	5.341	6.023	1.06
	Iron (Total)	NE	µg/L	17100	21100	1700	975	4050	4210	260
Metals	Iron (Dissolved)	NE	µg/L	17300	18200	440	455	2990	3000	285
	Lead (Dissolved)	NE	µg/L	0.100 U	0.500 U	0.100 U	0.500 U	0.100 U	0.100 U	0.500 U
	Selenium (Dissolved)	71	µg/L	0.307 J	0.995 J	0.560	0.995 J	0.500 U	0.222 J	2.50 U
VOCe	Benzene	1.6	µg/L	4890	3720	1.48	9.78	926	876	58.0
VUUS	Naphthalene	83	µg/L	4170	3550	0.48 J	48.6	6920 J	6650 J	780

Notes:

CUL = cleanup level

ID = identification

mg/L = milligrams per liter

µg/L = micrograms per liter

NE = not established

ND = not detected

NWTPH-DX = Northwest total petroleum hydrocarbon diesel-range extended

(GeoEngineers 2022)

NWTPH-GX = Northwest total petroleum hydrocarbon gasoline-range extended

VOC = volatile organic compound

TPH = total petroleum hydrocarbon

U = The analyte was not detected at a concentration greater than the value identified.

J = The analyte was detected and the detected concentration is considered an estimate.

Bold font type indicates the analyte was detected at the reported concentration.

Grey shading indicates exceedance of the project cleanup level.

APPENDIX G

Work Plan for Column Study and Pilot Test for Evaluation of Permeable Reactive Barrier

Technical Memorandum

то:	Neil Morton, GeoEngineers, Inc.
FROM:	Jenny Green, EIT, and Clint Jacob, PE, LG
DATE:	September 27, 2022
RE:	Work Plan for Design Testing Permeable Reactive Barrier Former South State Street Manufactured Gas Plant Site Bellingham, Washington Project No. 0611004.020

Introduction

This technical memorandum presents a work plan to conduct design testing for evaluation and design of a permeable reactive barrier (PRB) at the former South State Street Manufactured Gas Plant (MGP) in Bellingham, Washington (Site; Figure 1). This work plan describes aquifer flux testing, bench testing, and optional pilot testing. Aquifer flux testing and bench testing will be performed to collect design data and to evaluate treatment effectiveness. A field pilot test may also be performed if the cleanup schedule allows and additional proof of concept is desired.

GeoEngineers, Inc. (GeoEngineers) performed a pre-remedial design investigation (PRDI) in 2021– 2022. The PRDI and prior groundwater monitoring identified benzene, naphthalene, and cyanide (CN) in groundwater at concentrations above cleanup levels (CULs) at the Site (GeoEngineers 2022). Additionally, gasoline-range total petroleum hydrocarbons (TPH-G) and diesel-range total petroleum hydrocarbons (TPH-D) were detected at concentrations above MTCA Method A groundwater cleanup levels (GeoEngineers 2022). A technical memorandum (Landau Associates, Inc. [Landau] 2022), presented as Appendix F to the PRDI report, evaluates PRB treatment of a shallow groundwater target treatment zone which discharges to marine surface water at the "pocket beach" (Figure 1). That memorandum describes, in detail, the target treatment area and contaminants, aquifer redox conditions, remedial approach, the conceptual design of the PRB, and the design data to be addressed by the design testing described in this work plan.

This work plan is also included as an appendix to the PRDI report and, therefore, only briefly summarizes and discusses data which are presented comprehensively in that report. The information covered in this memorandum assumes that the reader is familiar with the content and conclusions of the PRDI report and the Appendix F evaluation memorandum.

Summary of Remedial Approach and Conceptual Design

As presented in Appendix F of the PRDI report (Landau 2022), the recommended remedial approach is construction of a PRB to treat benzene, naphthalene, TPH-G, TPH-D, and CN. A PRB consists of a trench oriented perpendicular to groundwater flow, which is backfilled with a mixture of sand and

reactive media that treats contaminated groundwater as it flows through the trench. The Site PRB will be located east of the railroad tracks and pedestrian footpath, at the foot of the bedrock outcrop, to intercept and treat contaminated groundwater flowing from the upland area in advance of its discharge at the pocket beach. The target treatment zone, in plan and profile views, is presented on Figures 1 and 2, respectively.

The PRB will be approximately 160 feet (ft) long and extend from GP-70 to a location south of MW-29. The anticipated length and location of the PRB is presented on Figure 3. The PRB will be located hydraulically upgradient (east) of monitoring wells MW-28, MW-29, and MW-62, which will be used to monitor the treatment effects of the PRB (Figure 1).

The PRB will extend from above the seasonal high water table to bedrock. As shown on cross-section C-C' (Figure 2), the highest groundwater level observed during the PRDI was approximately 8 ft below ground surface (bgs; elevation 12 ft), and the bedrock was encountered at elevation 4 or 5 ft (approximately 16 ft bgs). It is anticipated that the PRB will be constructed from 6 to 16 ft bgs (between elevations 4 to 14 ft), as shown in profile on Figure 4.

Trench backfill will consist of mixed sand, gypsum, and granular zero-valent iron (ZVI). Sand is required to maintain the hydraulic conductivity of the PRB and to prevent excessive settling of backfill as the gypsum dissolves over time. Gypsum (CaSO₄) will provide a slow release of sulfate, as the electron acceptor, to enhance biodegradation of total petroleum hydrocarbons (TPH) within and downgradient of the PRB. ZVI is known to immobilize CN through adsorption and through precipitation of insoluble iron-cyanides (commonly known as Turnbull's Blue and Prussian Blue; Adams 1992; Dzombak, et al. 2005; Ghosh, et al. 1999). Likely percentages of PRB materials are 55 percent sand, 30 percent gypsum, and 15 percent ZVI.

Design Testing

Aquifer flux testing and bench testing will be performed to collect design data and evaluate treatment effectiveness. A field pilot test may also be performed if the cleanup schedule allows and additional proof of concept is desired.

- <u>Aquifer flux testing:</u> Aquifer flux testing data will be used to estimate groundwater and contaminant flux through the PRB. Wet season measurement will represent maximum flux used to design PRB thickness for adequate residence time for treatment of groundwater contaminants. Dry season and wet season results will be used to calculate average flux which will be used to estimate the longevity of gypsum and ZVI components of the PRB.
- <u>Bench study</u>: The bench study will consist of column tests to answer design questions related to the optimal ZVI percentage in PRB backfill and the optimal gypsum particle size.
 - Column tests with ZVI will verify that it can remove CN, as indicated in the literature (Adams 1992; Dzombak, et al. 2005; Ghosh, et al. 1999), evaluate required residence

time and the appropriate the percentage of ZVI in the PRB backfill for efficient removal over the anticipated 5-ft thickness of the PRB.

- Column tests with gypsum will evaluate different particle sizes and percentages to optimize longevity and sulfate loading.
- <u>Field pilot test (optional)</u>: A field pilot test may be performed if the cleanup schedule allows and additional proof of concept is desired. The field pilot test will consist of two short PRB segments (e.g., 30 ft) located upgradient of the maximum TPH concentrations in groundwater at MW-28 and the maximum CN concentrations in groundwater at MW-29. Pilot test groundwater monitoring performed at these two wells will be used to evaluate treatment effectiveness. One to 2 years of pilot test monitoring is proposed in order to evaluate treatment effectiveness over wet and dry seasons. Furthermore, although the PRB is expected to immediately treat contaminant flux passing through it, a period of flushing and treatment will be required in the zone between the PRB and monitoring wells before the treatment effects will be fully observed at the monitoring wells.

These design test components are described in the following sections.

Aquifer Flux Measurements

Before the bench study, wet season contaminant and groundwater flux will be measured at the two downgradient wells (MW-28 and MW-29) using Passive Flux Meter[™] devices (EnviroFlux, LLC). These are passive devices that are deployed down existing groundwater monitoring wells and contain a tracer compound and an absorbent material. EnviorFlux will calculate groundwater flux from the amount of tracer compound lost during deployment. EnviorFlux will calculate contaminant flux from the amount of contaminant (TPH and CN) absorbed during deployment.

EnviroFlux recommends deploying the Passive Flux Meter[™] devices for 1–4 weeks. Once the devices are retrieved, they will be sent to the EnviroFlux laboratory in Gainesville, Florida for analysis. A deployment time of 3 weeks is anticipated and may be adjusted following initial results and consultation with EnviroFlux. Results are available within 4 weeks of Passive Flux Meter[™] retrieval. At the time of meter collection, groundwater samples will also be collected from each well for laboratory analysis of TPH-G, TPH-D, benzene, CN, sulfate, and ferrous iron for comparison to Passive Flux Meter[™] results.

The wet season flux measurements will be made before performing the bench testing, while dry season measurements will be completed after bench testing due to schedule constraints. Wet season measurements will represent maximum groundwater and contaminant flux used to design the bench column studies and ultimately to design PRB thickness for adequate residence time for treatment of groundwater contaminants. Dry season flux measurements will be combined with wet season results to calculate average flux; average flux together with column study results will be used to estimate the longevity of the gypsum and ZVI components of the PRB.

If optional pilot testing is performed, flux measurements will also be performed during the pilot test to evaluate treatment effectiveness and impacts of the PRBs on groundwater flow over time. It is anticipated that flux meter measurement and concurrent groundwater sampling would occur quarterly during the pilot test.

Bench Study

Two groups of column tests will be performed to evaluate the percent ZVI and gypsum and gypsum particle size to be used as reactive PRB construction materials. Up to four sequential column tests will be run using different percent weight of ZVI (e.g., Ferox PRB and Ferox Flow, Hepure) to evaluate CN degradation rates. Each ZVI test is expected to take 5 days, with samples analyzed twice per day. At the same time, a 6-week test will be performed on three columns packed with sand and different particle size gypsum to evaluate gypsum dissolution as it affects TPH treatment and PRB longevity. The three sulfate column tests will run concurrently with sulfate samples collected twice per week. CN and sulfate will be measured in-house using compound-specific photometers.

The gypsum column setup will feature three columns, each with a rotameter (flow meter) and three ports for sampling along the length of the column. Each column will be constructed with clear, 2-inchdiameter, Schedule 40 polyvinyl chloride (PVC) and will be 2 ft long. PRB backfill material will be secured in the main body of the column using fine mesh filters or cheesecloth. A sand grain size will be selected in consultation with the ZVI vendor. A summary of flow parameters for typical sand grit sizes in provided in Table 1.

The group of three columns will be fed simultaneously by a peristaltic pump. A basic setup diagram is provided on Figure 5. A summary of design parameters for each column study is presented in Table 2. The column flow rate will approximate the maximum groundwater flux measured at well MW-28 and MW-29 during the wet season flux testing.

The column setup for ZVI testing will be similar but will be performed on one column at a time due to the short time (1 week) required for each test. By this approach, percent ZVI can be modified for each subsequent test as needed based on data obtained from prior tests.

Cyanide Removal by ZVI

Mixtures of sand and granular ZVI will be tested in the column study to evaluate removal of CN by ZVI. Coarse-grained, granular ZVI (mesh -8/+50) will be used (e.g., Hepure PRB). The percent of ZVI will be varied in each column; a range of 10–20 percent ZVI will be evaluated.

The influent solution will contain CN at a concentration of 1.0 milligrams per liter (mg/L), which represents a concentration of 200 times the CN cleanup level and approximately the highest concentration in the Site target treatment area. The solution will be made using CN standard

(1,000 mg/L) purchased from a laboratory supply vendor. Waste influent and effluent solution containing CN will be disposed of according to local laboratory waste regulations.

Twice per day for 5 days, samples will be collected from all three ports on the ZVI column to evaluate CN removal along the length of the column. Temperature and pH will be measured in each sample using a water quality meter (YSI Professional Plus, or similar), and CN will be measured in each sample using a portable photometer (Hanna[®] Instruments Cyanide Photometer HI97714, or similar).

The plug flow model, including dispersion, will be used to determine the CN removal/reaction rate in ZVI. Using CN concentrations measured at known distances along the length of the column, a plot can be generated showing CN versus distance. The equation for the exponential trendline that fits the data (generated using Microsoft Excel) is then used to solve for the reaction rate:

$$C(x) = C(0) \exp\left(-\frac{kx}{u}\right) \rightarrow y = C(0) \exp\left(\left(-\frac{k}{u}\right)x\right)$$

The reaction rate(s) determined during the ZVI column study will inform ZVI percentage in the PRB backfill and the required PRB width to provide adequate residence time for CN removal. Column results will also be input to the Hepure model used for ZVI PRB design.

Sulfate Loading and Longevity of Gypsum

Mixtures of sand and gypsum will be tested in the column study to evaluate the longevity of gypsum and the concentration of dissolved sulfate leaving the column. The grain size/shape of gypsum will be varied in each column; it is anticipated that crushed, pelleted, and pulverized gypsum will be tested. Gypsum will be added to each column at approximately 30 percent by weight. The weight of gypsum added to each column will be precisely measured for comparison to the calculated mass of dissolved sulfate removed in the effluent from each column during the test.

The influent solution will be plain tap water. Waste effluent solution containing sulfate will be disposed of according to local laboratory waste regulations.

Twice per week, samples will be collected from the effluent sample port on each of the three columns to evaluate sulfate loading over time. Temperature and pH will be measured in each sample using a water quality meter (YSI Professional Plus, or similar), and sulfate will be measured in each sample using a portable photometer (Hanna[®] Instruments Sulfate Photometer HI97751, or similar). Total sulfate mass removed from each column during the test period will be used to estimate the longevity of the different grain sizes used and the theoretical mass of TPH that could be degraded.

Column test results will be used to select the optimal grain size used for the pilot test PRB. A sulfate effluent concentration of 50–100 mg/L is desired for effective treatment of petroleum within the PRB

and for some distance downgradient. A gypsum longevity of 3–5 years or greater is also desired. Gypsum longevity will be a function of the sulfate removed (dissolution rate) for each gypsum grain size and the percent of gypsum in the PRB backfill; the percent of gypsum in the PRB may be modified based on the column test results.

Field Pilot Test(Optional)

A field pilot test may be performed if the cleanup schedule allows and additional proof of concept is desired. The pilot test would include construction of two short PRB segments upgradient of monitoring wells MW-28 and MW-29 and the measurement of contaminant and groundwater flux at the site over 1–2 years. The pilot test would be used to evaluate short-term effectiveness and longevity under Site-specific field conditions. A summary of the pilot test PRB segments is provided in Table 3. Anticipated PRB segment alignments are presented on Figure 6.

Construction of PRB Segments

Each PRB segment would be approximately 30 ft long and 5 ft wide. Reactive backfill would extend from just above the water table (6 ft bgs) into the top of bedrock (16 ft bgs; i.e., reactive backfill between elevations 4 and 14 ft bgs). For each segment, the total volume of reactive media would be approximately 2,400 cubic feet (89 cubic yards). A geofabric would be placed on top of the reactive media and granular excavation spoils may be used to backfill to the surface.

Stacked trench boxes would be used for installation of the pilot test segments. Sidewall stability would be evaluated to determine if trench boxes will be required for full-scale installation.

PRB material mixing procedures may also be evaluated for efficiency and feasibility, including the use of transit mixers (i.e., cement trucks from batch facility), *ex situ* soil mixing with excavator bucket on site, and *in situ* soil mixing methods (e.g., mixing with excavator bucket in the trench or other excavator-fitted mixing attachment). Hepure would be consulted regarding recommended mixing procedures.

Use of This Technical Memorandum

This technical memorandum has been prepared for the exclusive use of GeoEngineers and Puget Sound Energy (PSE) for specific application to the South State Street MGP Site project. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Landau, shall be at the user's sole risk. Landau warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing
in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

LANDAU ASSOCIATES, INC.

Jenny Green, EIT

Senior Project EIT

Clint Jacob, PE, ŁG Principal

JKG/CLJ/IJI [P:\611\004\R\BENCH-PILOT TEST WORK PLAN\LANDAU SSSMGP BENCH-PILOT TEST WP_FINAL_092722.DOCX]

Attachments

Figure 1. Target Treatment Zone Figure 2. Target Treatment Zone Cross Section C-C' Figure 3. Anticipated PRB Alignment Figure 4. Anticipated PRB Profile Figure 5. Column Study Setup Figure 6. Anticipated Pilot Test PRB Alignments Table 1. Hydrogeologic Parameters for Typical Sand Grits Table 2. Column Study Summary Table 3. Pilot Test Summary

References

- Adams, M.D. 1992. "The Removal of Cyanide from Aqueous Solution by the Use of Ferrous Sulphate." *Journal of the South African Institute of Mining and Metallurgy* 92 (1):17-25. January.
- Dzombak, D.A, R.S. Ghosh, and G.M. Wong-Chong. 2005. *Cyanide in Water and Soil: Chemistry, Risk, and Management*. Boca Raton, FL: CRC Press.
- GeoEngineers. 2022. Pre-Remedial Design Investigation Report. GeoEngineers, Inc. Pending.
- Ghosh, R.S., D.A. Dzombak, R.G. Luthy, and J.R. Smith. 1999. "In Situ Treatment of Cyanide-Contaminated Groundwater by Iron Cyanide Precipitation." Water Environment Research 71 (6):1217-1228.
- Landau. 2022. Technical Memorandum: Evaluation of Pre-Remedial Design Investigation Data Related to Permeable Reactive Barrier Treatment, Former South State Street Manufactured Gas Plant Site, Bellingham, Washington. Landau Associates, Inc. September 27.

Notes: 1. The locations of all features shown are approximate. 2. Mean High Tide defines the boundary between the Upland Unit and Marine Unit. 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. Data Source: Base unland survey from Larry Steel

Data Source: Base upland survey from Larry Steel Associates, 2022. Base bathymetric survey from David Evands and Assocates, 2021. Aerial from Bing.

Projection: NAD83 WA State Plane, N Zone, US Foot Vertical Datum: NAVD88

Legend

- Direct Push Soil Boring
- \mathbf{V} Shallow Hand Auger Soil Sample
- \bigcirc Monitoring Well
- Intertidal Sediment and Porewater Sample Location
- Stormwater Outfall \bigotimes
- Stormwater Pipe
- Approximate Limits of Aquatic Vegetation
- ----- Fence
- Retaining Wall

- ----- BNSF Centerline
- Inner Harbor Line
- OHWM (9.70' NAVD88)
- MLLW (el. 0.48' NAVD88) -----
- $\overline{}$ Wood Pilings Area Site Structures
- Former Gas Holder

- Marine Unit Boundary
- Upland Unit Boundary

Bathymetry Contours

- 1-Foot Contour 5-foot Contour Upland Contours

- 1-Foot Contour

rue North 0

Feet

Project North

75

Target Treatment Zone

South State Street MGP Site Bellingham, Washington

Presentation and information as extracted directly from GeoEngineers 2022

100

Figure 1

75

C'

LANDAU A S S O C I A T E S

Notes:

- widely spaced explorations and should be considered approximate; actual subsurface conditions may vary from those shown.
- 2. This figure is for informational purposes only. It is intended to assist in the identification of features discussed in a related document. Data were compiled from sources as listed in this figure. The data sources do not guarantee these data are accurate or complete. There may have been updates to the data since the publication of this figure. This figure is a copy of a master document. The hard copy is stored by GeoEngineers, Inc. and will serve as the official document of record.

Datum: NAVD 88, unless otherwise noted.

Notes: 1. The locations of all features shown are approximate. 2. Mean High Tide defines the boundary between the Upland Unit and Marine Unit. 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Base upland survey from Larry Steel Associates, 2022. Base bathymetric survey from David Evands and Assocates, 2021. Aerial from Bing.

Projection: NAD83 WA State Plane, N Zone, US Foot Vertical Datum: NAVD88

Legend

- Direct Push Soil Boring
- \mathbf{V} Shallow Hand Auger Soil Sample
- \bigcirc Monitoring Well
- Intertidal Sediment and Porewater Sample Location
- Stormwater Outfall \bigotimes
- Stormwater Pipe
- Approximate Limits of Aquatic Vegetation
- ----- Fence
- Retaining Wall

- ----- BNSF Centerline
- Inner Harbor Line
- OHWM (9.70' NAVD88)
- MLLW (el. 0.48' NAVD88) -----
- $\overline{}$ Wood Pilings Area
- Site Structures
- Former Gas Holder Marine Unit Boundary
- Upland Unit Boundary
- Upland Contours

Bathymetry Contours

1-Foot Contour

1-Foot Contour

5-foot Contour

75

Feet

Anticipated PRB Alignment

South State Street MGP Site Bellingham, Washington

Presentation and information as extracted directly from GeoEngineers 2022

100

Figure 3

75

2. This figure is for informational purposes only. It is intended to assist in the identification of features discussed in a related document. Data were compiled from sources as listed in this figure. The data sources do not guarantee these data are accurate or complete. There may have been updates to the data since the publication of this figure. This figure is a copy of a master document. The hard copy is stored by GeoEngineers, Inc. and will serve as the official document of record.

Datum: NAVD 88, unless otherwise noted.

Column Study Setup

South State Street MGP Site Bellingham, Washington

Presentation and information as extracted directly from GeoEngineers 2022

Figure 5

Notes: 1. The locations of all features shown are approximate. 2. Mean High Tide defines the boundary between the Upland Unit and Marine Unit. 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Base upland survey from Larry Steel Associates, 2022. Base bathymetric survey from David Evands and Assocates, 2021. Aerial from Bing.

Projection: NAD83 WA State Plane, N Zone, US Foot Vertical Datum: NAVD88

Legend

- Direct Push Soil Boring
- \mathbf{V} Shallow Hand Auger Soil Sample
- \bigcirc Monitoring Well
- Intertidal Sediment and Porewater Sample Location
- Stormwater Outfall \bigotimes
- Stormwater Pipe
- Approximate Limits of Aquatic Vegetation
- ----- Fence
- Retaining Wall

- **BNSF** Centerline
- Inner Harbor Line
- OHWM (9.70' NAVD88)
- MLLW (el. 0.48' NAVD88) -----
- $\overline{}$ Wood Pilings Area Site Structures
- Former Gas Holder

- Marine Unit Boundary
- Upland Unit Boundary
- 1-Foot Contour 5-foot Contour Upland Contours

Bathymetry Contours

- 1-Foot Contour

75

Feet

Anticipated Pilot Test PRB Alignments

South State Street MGP Site Bellingham, Washington

Presentation and information as extracted directly from GeoEngineers 2022

100

Figure 6

75

Table 1 Hydrogeologic Parameters of Typical Sand Grits Former South State Street MGP Bellingham, Washington

Sand Grit	Hydraulic Conductivity (cm/s) (a)	Hydraulic Conductivity (cm/min)	Effective Porosity (b)	Approx. Hydraulic Gradient (cm/cm) (c)	Seepage Velocity (cm/s)	Fluid Velocity (cm/s)	Nominal Column Size	Column Inner Diameter (cm)	Flow Area (cm ²)	Flow Rate (cm ³ /s)	Flow Rate (cm ³ /min)
40/50	0.072	4.32	0.20	-0.078	0.006	0.028	2"	5.20	21.2	0.119	7
30/40	0.149	8.94	0.20	-0.078	0.012	0.058	2"	5.20	21.2	0.245	15
20/30	0.250	15.0	0.20	-0.078	0.019	0.097	2"	5.20	21.2	0.411	25
12/20	0.503	30.2	0.20	-0.078	0.039	0.195	2"	5.20	21.2	0.828	50

Notes:

(a) Schroth, M.H., S.J. Ahearn, J.S. Selker, and J.D. Istok. 1996. Characterization of Miller-Similar Silica Sands for Laboratory Hydrologic Studies Soil Science Society of America, 60(5): 1331-1339.

(b) Typical mid-range value reported in literature.

(c) Approximated using groundwater contours for the site in the proposed location for the permeable reactive barrier

Abbreviations and Acronyms:

cm = centimeters

s = second

min = minute

Table 2 Column Study Summary Former South State Street MGP Bellingham, Washington

	Reactive Material		Inert Ma	iterial (b)	Influen	t Solution		Effluent		Test Parameters			
Column ID	Type (Percent)	Grit or Grain Size (a)	Type (Percent)	Grit or Grain Size (b)	Solution Composition	Concentration (mg/L) (c)	pН	Temperature	CN	Fe2+	Sulfate	Sampling Frequency	Test Duration
Z1	Granular ZVI (10%)	16	Sand (90%)	12/20	CN/Water	1.0	х	х	х	х		2x/day	5 days
Z2	Granular ZVI (15%)	16	Sand (85%)	12/20	CN/Water	1.0	х	х	х	х		2x/day	5 days
Z3	Granular ZVI (20%)	16	Sand (80%)	12/20	CN/Water	1.0	х	х	х	х		2x/day	5 days
G1	Crushed Gypsum (30%)	3/8" and less	Sand (70%)	12/20	Water		х	х			x	1-4 days	4-6 weeks
G2	Pulverized Gypsum (30%)	1/4" and less	Sand (70%)	12/20	Water		х	х			х	1-4 days	4-6 weeks
G3	Pelleted Gypsum (30%)	1/8" to 1/4"	Sand (70%)	12/20	Water		х	х			x	1-4 days	4-6 weeks

Notes:

(a) Common grit size for ZVI on the market. May be adjusted based on an evaluation of current products and their availability.

(b) Coarse-grained sand. May be adjusted based on consultation with ZVI vendor.

(c) The maximum CN concentration measured in the treatment zone is 1.14 mg/L.

Abbreviations and Acronyms:

CN = cyanide

Fe2+ = ferrous iron

ID = identification

mg/L = milligrams per liter

PRB = permeable reactive barrier

ZVI = zero-valent iron

Table 3 Pilot Test Summary Former South State Street MGP Bellingham, Washington

	Pilot Study F	PRB Segment				
Dimension/ Parameter (a)	MW-28	MW-29				
Physical Dimensions						
Length	30 ft	30 ft				
Width (a)	5 ft	5 ft				
Depth	16 ft	16 ft				
Volume (a)	2,400 ft ³	2,400 ft ³				
Volume (a)	89 cy	89 cy				
Po tential Backfill Con	nposition					
Sand (a)	60 %	65 %				
Granular ZVI (a)	10 %	15 %				
Gypsum (a)	30 %	20 %				
Indicators of Treatme	nt Effects					
Decreased	TPH concentrations	CN concentrations				
Increased	Sulfate concentrations	Fe2+ concentrations				

Notes:

(a) Subject to change based on the results of the column tests

TPH = total petroleum hydrocarbons. In this context, collectively benzene, naphthalene, total petroleum hydrocarbons gasoline- range and diesel-range.

Abbreviations and Acronyms:

% = percent CN = cyanide cy = cubic yard Fe2+ = ferrous iron ft = feet ft³ = cubic feet ZVI = zero-valent iron

APPENDIX H

Coastal MetOcean Conditions and Geomorphologic Assessment Coastal MetOcean Conditions and Geomorphologic Assessment – Final Pre-Remedial Design Investigation South State Street Manufactured Gas Plant

Prepared for GeoEngineers Inc. Prepared by Coastal Geologic Services, Inc.

September 28, 2022

Table of Contents

Table of Tables
Table of Figures2
Introduction
Site Conditions
Overview5
Geology
Geologic Unit Descriptions7
Subsurface Conditions
Coastal Processes9
Historical Conditions Littoral Drift9
Current Conditions Littoral Drift
Historic Shore Change
1855 – USCS Hydrographic Survey12
1887 – USCGS Topographic Survey
1891 – USCGS Topographic Survey 14
20 th Century Aerial Photographs
20 Century Aenal Photographs
Tides and Water Levels
Thes and water Levels
Tides
Extreme Water Levels
Extreme Water Levels 19 Sea Level Rise 19 Currents 20 Winds 21 Data Sources 21 Wind Climate 21 Extreme Winds 23 Waves 23
Extreme Water Levels 19 Sea Level Rise 19 Currents 20 Winds 21 Data Sources 21 Wind Climate 21 Extreme Winds 23 Waves 23 Geomorphologic Assessment 25
Extreme Water Levels19Sea Level Rise19Currents20Winds21Data Sources21Wind Climate21Extreme Winds23Waves23Geomorphologic Assessment25Bathymetric Change Analysis25
Extreme Water Levels 19 Sea Level Rise 19 Currents 20 Winds 21 Data Sources 21 Wind Climate 21 Extreme Winds 23 Waves 23 Geomorphologic Assessment 25 Bathymetric Change Analysis 25
Extreme Water Levels19Sea Level Rise19Currents20Winds21Data Sources21Wind Climate21Extreme Winds23Waves23Geomorphologic Assessment25Bathymetric Change Analysis25Results27
Extreme Water Levels19Sea Level Rise19Currents20Winds21Data Sources21Wind Climate21Extreme Winds23Waves23Geomorphologic Assessment25Bathymetric Change Analysis25Results27Historic Seabed Erosion and Accretion33
Extreme Water Levels19Sea Level Rise19Currents20Winds21Data Sources21Wind Climate21Extreme Winds23Waves23Geomorphologic Assessment25Bathymetric Change Analysis25Results27Historic Seabed Erosion and Accretion33Sediment Core Sampling and Analysis33
Extreme Water Levels19Sea Level Rise19Currents20Winds21Data Sources21Wind Climate21Extreme Winds23Waves23Geomorphologic Assessment25Bathymetric Change Analysis25Results27Historic Seabed Erosion and Accretion33Sediment Core Sampling and Analysis36
Extreme Water Levels19Sea Level Rise19Currents20Winds21Data Sources21Wind Climate21Extreme Winds23Waves23Geomorphologic Assessment25Bathymetric Change Analysis25Results27Historic Seabed Erosion and Accretion33Sediment Core Sampling and Analysis36Conclusions41

Table of Tables

Table 2. Extreme water levels
Table 3. SLR projections for the high greenhouse gas scenarios (RCP 8.5, Miller et al., 2018) and
Bellingham's SLR standard for 2120
Table 4. Joint frequency of wind speed (mph) against wind direction at KBLI Station
Table 5. Joint frequency of wind speed (mph) against wind direction at FH Station (after height
correction factor of 1.185 and land correction factor of 1.2)23
Table 6. Extreme winds23
Table 7. Wave joint occurrence frequency table, wave height vs. wave direction
Table 8. Summary of core elevations, lengths, descriptions, sediment accumulation rates (SARs), and
mass accumulation rates (MARs) (from GEL labs final report; Attachment D). See core logs (Attachment
A) for more details
Table 9. Surface and shallow subsurface (0 to 15 cm bml) sediment samples D50 and Unified Soil
Classification System description. See Figure 31 for sample locations

Table of Figures

Figure 1. Site and vicinity map adapted from GeoEngineers (2020; Figure 1). Approximate site boundary
shown in black with hashmarks5
Figure 2. Site units and cleanup action map adapted from Cleanup Action Plan
Figure 3. Subsurface conditions from Herrenkohl Consulting, LLC et al. (2009), Cross Section A-A'. Cross
section following the previously proposed overwater walkway8
Figure 4. Subsurface conditions from Landau Associates, LLC and GeoEngineers (2019), Cross Section B-
B'. Inset shows cross section location
Figure 5. Historic net shore-drift (MacLennan and Johannessen, 2008). Direction of net shore-drift from
the perspective of the water facing the shore10
Figure 6. Modern net shore-drift in Bellingham Bay (Jacobsen, 1980) from the WA Coastal Atlas.
Direction of net shore-drift from the perspective of the water facing the shore
Figure 7. Coastal landforms at the site from the WA Coastal Atlas (data from Simenstad et al., 2011).
Note that the artificial characterization was not always used accurately in this mapping, as all of the
pocket beaches in this figure have been highly modified since pre-development conditions. $\dots \dots \dots$
Figure 8. USCS Hydrographic Survey of the site and vicinity from 1855. Green line represents shoreline
as of 2002. Map from Wahl (2009)13
Figure 9. USCGS map from 1887 on 2002 orthophoto. Map from Wahl (2009)13
Figure 10. 1891 USCGS Harbor Survey with the GNRW constructed. Green line represents shoreline as of
2002 (Wahl, 2009)14
Figure 11. 1943 aerial photo. Earliest aerial of the site following the sawmill fire in 1925 (Wahl, 2009).
Red markings were used to georeferenced imagery (Wahl, 2009)15
Figure 12. 1950 aerial photograph of the site and vicinity (Landau Associates, Inc. and GeoEngineers,
2019)
Figure 13. 1963 aerial photograph of the site and vicinity (Landau Associates, Inc. and GeoEngineers,
2019)

Figure 14. 1977 oblique aerial photograph of the site and vicinity (WDOE, 2016)
Figure 15. 1994 oblique aerial photograph of the site and vicinity (WDOE, 2016)
Figure 16. 2016 oblique aerial photograph of the site and vicinity (WDOE, 2016)
Figure 17. MetOcean data stations and locations
Figure 18. Snapshots of peak flood and ebb currents in the Bellingham Bay, spring tide (Yang et al.,
2021)
Figure 19. Wind roses, (a) Bellingham Airport (KBLI); (b) Fairhaven Ferry Terminal (FH-D8969)22
Figure 20. Wave rose off the coast of project site
Figure 21. DEA 2021 bathymetry survey map in the project area
Figure 22. NOAA 2005 bathymetry survey map in the project area
Figure 23. USGS 2019 bathymetry survey track lines27
Figure 24. Bathymetry change over the period of 2005 to 2021
Figure 25. Comparison between Friday Harbor predicted tide adjusted for Bellingham Bay (used by
NOAA 2005 bathy survey correction) and Bellingham predicted tide29
Figure 26. Comparison of seabed elevation features revealed by 2005 and 2021 multibeam surveys,
northeastern underwater mound area. Some features are called out as examples
Figure 27. Comparison of seabed elevation features revealed by 2005 and 2021 multibeam surveys,
Starr Rock area. Some features are called out as examples
Figure 28. Cross section bathymetry comparison
Figure 29. Vibracore sample locations. Imagery Whatcom County 2019. Elevation source DEA 2021 in FT
NAVD88
Figure 30. Age in years before present (yBP) compared to depth (cm) for all cores except PRDI-38-SC
(too few layers to allow estimation of CRS ages). Comparison of Constant Flux: Constant Sedimentation
(CF:CS) and Constant Rate of Supply (CRS) models ages show good to excellent agreement between the
two age models except at cores PRDI-35-SC and PRDI-39-SC. GEL labs favored CF:CS model when the two
approaches do not agree (cores PRDI-35-SC and PRDI-39-SC). See GEL's final report for more details
(Attachment D)
Figure 31. Surface sediment sample locations. Imagery Whatcom County 2019. Elevation source DEA
2021 in FT NAVD88
Figure 32. Surface sediment sample D10 grain size. Imagery Whatcom County 2019. Elevation source
DEA 2021 in FT NAVD88
Figure 33. Surface sediment sample D50 grain size. Imagery Whatcom County 2019. Elevation source
DEA 2021 in FT NAVD88
Figure 34. Surface sediment sample D90 grain size. Imagery Whatcom County 2019. Elevation source
DEA 2021 in FT NAVD88
Figure 35. Surface sediment sample D50 grain size (mm) and sediment accumulation rates (cm/yr) from
core data. Imagery Whatcom County 2019. Elevation source DEA 2021 in FT NAVD8840
Figure 36. Erosion and Accretion Areas, shown on top of surface sediment D50 grain size and sediment
accumulation rate data

Introduction

This report summarizes the results and main findings of a coastal process and coastal geomorphology assessment to provide baseline data and a fundamental understanding of the seabed stability and accretion (deposition) and erosion potential to assist with shoreline, intertidal, and subtidal cap design for the South State Street Manufactured Gas Plant Site (SSSMGP).

The site is located on a highly modified section of shore, at the northeast end of Bellingham Bay, WA (Figure 1). The site was classified as a contaminated coastal site by Washington Department of Ecology (WDOE) due to historical manufactured gas plant (MGP), sawmill and other industrial uses in water and on land including areas of fill. The majority of the site is heavily armored with a riprap revetment, as well as one pocket-like beach.

Cleanup efforts at the site are currently underway conducted between the Washington State Department of Ecology (Ecology), the City of Bellingham (City), and Puget Sound Energy (PSE). A Cleanup Action Plan (CAP) has been prepared that outlines the elements of the cleanup action for the site (GeoEngineers, 2020). Components of the cleanup action proposed for the marine portion of the site include:

- Sediment capping A conventional sand cap will be constructed in the intertidal and shallow subtidal zones (above approximately -10 feet NAVD88 at, and slightly beyond). A thin sand cap (1-foot-thick) will be constructed in deeper subtidal (below -10 feet MLLW) (GeoEngineers, 2020).
- Sediment natural recovery Monitored Natural Recovery (MNR) and Enhanced Natural Recovery (ENR) will be used in portions of the Marine Unit where surface sediment concentrations of cPAHs are lower and natural deposition of clean sediment is anticipated to achieve cleanup levels within a reasonable timeframe on a surface weighted average concentration (SWAC) basis. The selected cleanup action relies on natural recovery to be effective in deeper offshore areas where lower energy conditions allow net deposition (accretion) of clean sediment, and where periodic high-energy events (e.g. storms) will not affect recovery on a large scale (GeoEngineers, 2020).

Coastal Geologic Services, Inc. (CGS) was contracted by GeoEngineers, the prime consultant contracted with PSE, to perform coastal components of the Pre-Remedial Design Investigation (PRDI) for the SSSMGP. The goal of the PRDI is to obtain additional data to support design of the cleanup action for the site.

The purpose of this report is to assess coastal MetOcean conditions, coastal processes, and coastal geomorphology including an assessment of:

- Historic shore changes
- Surface and subsurface sediments
- Water levels, winds, waves, and currents (MetOcean conditions)
- Change in site bathymetry
- Historic seabed sediment accretion/erosion patterns

Figure 1. Site and vicinity map adapted from GeoEngineers (2020; Figure 1). Site boundary shown in black with hashmarks.

Together these assessments help characterize the site marine unit and allows us to understand shore stability and morphological conditions. The final objective of this investigation is to provide recommendations for the next stage engineering design, including design requirements for capping and shore protection, refine limits of conventional and thin layer capping, and determine where ENR and MNR can be applied.

Site Conditions

Overview

The SSSMGP site is located on northern Boulevard Park and adjacent waters along the eastern shore of Bellingham Bay between the Fairhaven District (south) and the Bellingham Waterfront District (north) (Figure 1).

The site is divided into two units by the mean high tide line, the Upland Unit and the Marine Unit (Figure 2). The Upland Unit is comprised of the northern portion of Boulevard Park and is divided into the upper park, the slope, and the lower park areas. The upper park is where the former SSSMGP was located.

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 6 - Final COASTAL GEOLOGIC SERVICES, INC.

Figure 2. Site units and cleanup action map adapted from Cleanup Action Plan (GeoEngineers, 2020; Figure 6). Note that the Marine Unit boundary will change based on measured contamination.

The Upland Unit encompasses property owned by the City, Burlington Northern/Santa Fe Railroad (BNSF), and Washington State (see Figure 3 from GeoEngineers, 2020). The Marine Unit encompasses State Owned Aquatic Land (SOAL). The Marine Unit of the site extends down to approximately -35 FT elevation relative to NAVD88 datum.

Since circa 1980 the site has been a public park. The lower park area and vicinity were constructed by placing fill on the existing tidelands which was formerly the site of a historic sawmill. The fill in the lower park area is comprised of wood waste from the former lumber mill and log-rafting operations as well as material from local demolition and construction activities. Beneath the lower park area are pilings associated with the former lumber mill. A component of a former above-ground gas holder (concrete cylinder) remains in the upper park area.

Geology

The shores of Bellingham Bay area are generally composed of Chuckanut Formation Bedrock and postglacial deposits, as well as more recent Nooksack River and beach deposits, and fill material. Bedrock is exposed at a number of locations along the eastern shore of Bellingham Bay and is generally comprised of several members of the Chuckanut Formation, an arkosic sandstone with lesser amounts of siltstone and conglomerate. These were mostly deposited during the Eocene time of the Cretaceous period. Members of the Chuckanut Formation found in Bellingham Bay consist of Government Point, Bellingham Bay, and Padden members (Lapen, 2000). The outcrops that are present in the intertidal area are more erosion resistant beds of sandstone than other rocks within the formation that are not cemented well enough to persist in the erosive environment of the shore.

Overlying the Chuckanut Formation in many parts of the shore is glacial outwash deposited during the Sumas Stade of the Pleistocene epoch, roughly 11,000 – 13,500 years before present. These units are commonly loose, moderately to well-sorted gravel with local boulders, sandy gravel, and minor gravelly

medium to coarse sand and rare sand to silt. Glaciomarine drift, deposited during the more recent Everson Interstade (also of the Pleistocene epoch) is slightly less abundant. This geologic unit is characterized by moderately to well-sorted gravel within a fine-grained matrix that can contain marine shells (Easterbrook, 1976; Lapen, 2000).

Above the bedrock and glacial deposits, substantial amounts of fill material are found throughout much of the downtown Bellingham region and almost all of the eastern Bellingham Bay shore at and surrounding the site. Much of the fill material was placed near the turn of the century through the 1930's. The historical configuration of the marine shoreline in the lower park was considerably landward of the current shoreline at the site. Changes in the position of the shore were analyzed and more details are presented in the *Historic Shore Change* section below.

Geologic Unit Descriptions

Select geologic descriptions of units mapped by previous studies in the site vicinity are summarized below.

Post Glacial Fluvial/Deltaic Deposits (Holocene) – Silty, fine to medium sand, shell fragments, and occasional gravel. This unit represents native deltaic sediments from the Nooksack River Delta and fluvial sediments, primarily from Whatcom Creek. Coarser deposits represent rapidly advancing deltaic growth or fluvial outflow events, while fine grained sediments (silts) represent deposition in lower energy environments.

Artificial Fill (Holocene) (Qf) – Composed of earth debris, demolition debris, and refuse. Thickness is generally more than 2 m. Many wharves and structures, including industrial buildings, are built on unit Qf in Bellingham Bay (Lapen, 2000).

Glacial Outwash, Sumas Stade (Pleistocene) (Qgo_s) – Loose, moderately to well-sorted gravel with local boulders, sandy gravel, minor gravely medium to coarse sand, and rare sand to silt. Clasts are generally subrounded to rounded and derived from the Coast Plutonic Complex in British Columbia and nearby sources. Bedding is massive to well-stratified; stratified sections are generally planar with bedding thickness ranging from a few centimeters to a few meters, depending on clast size; beds are rarely cross-stratified. Color is brown to gray, depending on oxidation state (Lapen, 2000).

Padden Member (Eocene) (Chuckanut Formation) (Ec_{cp}) – Moderately to well sorted sandstone and conglomerate alternating with mudstone and minor coal. Sandstone ranges from fine to coarse grained, with pebbly to conglomeratic sandstone layers common. Planar cross-bedding (2 m high), flat-bedding, trough cross-bedding, and ripple lamination are common bedding features. Sandstone is rich in chert and volcanic lithic clasts. Conglomerate is commonly massive to poorly stratified or cross-bedded and composed primarily of rounded chert, volcanic, and plutonic clasts as much as 16 cm in diameter. The matrix is commonly medium- to coarse-grained sandstone. Mudstone is commonly massive to thinly laminated and usually associated with coal; sandstone and conglomerate layers as much as 50 m thick alternate with mudstone. Color is light olive-gray to pale yellowish brown. Thickness is possibly more than 3000 m (Johnson, 1984). Honeycomb weathering patterns are common on exposures near sea water (Mustoe, 1982). Outcrops are widespread on the mainland and occur on Lummi, Matia, Sucia, and Patos Islands. The Padden Member has been the source of substantial amounts of coal in the vicinity of the city of Bellingham.

Subsurface Conditions

Several previous investigations within the site and in the vicinity have characterized the subsurface conditions by collecting geotechnical borings. Generally, these studies found several layers including fill material, wood waste, beach deposits, and bedrock. Two of these studies and the main findings are summarized below.

Focused Environmental Site Assessment, Herrenkohl Consulting/Landau Associates 2009 (Herrenkohl Consulting, LLC et al., 2009)

- Mapped distinct layers (see Figure 3), as listed below starting from the surface:
 - Fill Silty sand and silty sand and gravel
 - Wood Debris saw dust, chips, bark
 - Native Sediment clayey silt with sand
 - Chuckanut Formation Sandstone, siltstone

Figure 3. Subsurface conditions from Herrenkohl Consulting, LLC et al. (2009), Cross Section A-A'. Cross section following the previously proposed overwater walkway.

South State Street Manufactured Gas Plant RI/FS, Landau Associates/GeoEngineers 2019

- Encountered 7 distinct layers (Figure 4), listed below starting at the surface (generally).
 - Rip rap Angular cobble-sized rock
 - Nooksack Deposits Sandy silt, silty clay

- o Debris brick, coal-like material, clinker soil, and black granular material
- Fill silts, clays, sands, gravel and other debris
- Wood fresh and peat-like wood debris with sand lenses
- Bellingham drift (glaciomarine drift) silt and silty sands
- o Chuckanut Formation (bedrock) sandstone carbonaceous shale

Figure 4. Subsurface conditions from Landau Associates, Inc. and GeoEngineers (2019), Cross Section B-B'. Inset shows cross section location.

Coastal Processes

The term "net shore-drift" refers to the long-term, net effect of littoral (sediment) drift along particular reaches of coast (Jacobsen and Schwartz, 1981). While littoral drift can go in opposite directions along a shore during short periods of time, when driven by changing wind and wave conditions, net shore-drift refers to the net effect of littoral drift over a period of many years at a particular location.

Historical Conditions Littoral Drift

The historic net shore-drift cells were mapped as part of the "Change Analysis" with the Puget Sound Nearshore Ecosystem Restoration Project (PSNERP) several years ago (MacLennan and Johannessen, 2008) (Figure 5). The immediate site area was historically within a cell with northward net shore-drift, as shown in Figure 5. This cell originated at a zone of drift divergence centered on Pattle Point in the southern end of Boulevard Park. This cell had northward drift to downtown Bellingham, which continued alongshore over sandstone outcrops.

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 10 - Final COASTAL GEOLOGIC SERVICES, INC.

Figure 5. Historic net shore-drift (MacLennan and Johannessen, 2008). Direction of net shore-drift from the perspective of the water facing the shore.

Since the mid-1800s, the eastern Bellingham Bay shore has been highly altered, which has drastically changed the characteristics of waves approaching shore and the processes of littoral sediment transport. The fill also buried natural coastal features and caused the loss of much of the remaining littoral sediment to deep water. The extensive rock revetment along the rail line has also greatly reduced sediment supply to the shore. The position of the shoreline in the site has moved waterward on the order of 100-250 FT since pre-development conditions. Currently, the majority of the site shoreline has a low to moderate height embankment and is generally armored with riprap.

Current Conditions Littoral Drift

Mapping of net shore-drift in Whatcom County in current conditions was completed in 1980 (Jacobsen, 1980; Schwartz et al., 1991) (Figure 6). Physical conditions along the Bellingham shoreline have seen little change since 1980 such that this mapping is still applicable. The site shore and the surrounding urbanized Bellingham Bay shore was mapped as "no appreciable net shore-drift". This current lack of net shore-drift was caused by the extensive fill and shore armor that had been placed from south Bellingham to the site and along the remainder of the City shore which has blocked most of the historically limited amount of littoral transport.

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 11 - Final COASTAL GEOLOGIC SERVICES, INC.

Figure 6. Modern net shore-drift in Bellingham Bay (Jacobsen, 1980) from the WA Coastal Atlas. Direction of net shore-drift from the perspective of the water facing the shore.

The existing upper intertidal beach area within the site is limited to a small pocket-like beach at the north end of the park (Figure 7). Pocket beaches are beaches that are typically contained between two bedrock headlands, essentially creating a closed system in terms of sediment transport. Within the site, the pocket beach is located between armored fill areas at the north end of the park adjacent to the railroad. Outside of the site, another larger pocket beach was constructed just south of the site in 2013, designed by CGS. Pocket beaches are typically not located within net shore-drift cells. As compared to typical bluff-backed beaches in drift cells of the Puget Sound region, pocket beaches are typically swashaligned, shorter in length, crescentic in plan shape, and often display well-sorted sediment.

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 12 - Final COASTAL GEOLOGIC SERVICES, INC.

Figure 7. Coastal landforms at the site from the WA Coastal Atlas (data from Simenstad et al., 2011). Note that the artificial characterization was not always used accurately in this mapping, as all of the pocket beaches in this figure have been highly modified since pre-development conditions.

The small pocket beach at the northeast corner of the park within the site is the only shore area without exposed armor in the site shore. The remainder of the shore in the site is heavily armed with rock and concrete rip rap as well as old, scattered wood pilings.

Historic Shore Change

A 2009 report (Wahl, 2009) assembled for Wessen and Associates details the history of the site from 1855 to 2009 which encompassed maps showing the historic shoreline configuration. A summary of the shoreline history and figures from that report are detailed in this section.

1855 – USCS Hydrographic Survey

One of the earliest maps of the site was completed in 1855 by McMurtrie as part of a USCS Hydrographic Survey (Figure 8). This shows Pattle Point as a prominent feature, which is the current location of Woods Coffee in Boulevard Park. Further north, the shoreline within the site is much further landward, in the range of 100-250 FT. Figure 8 shows buildings of the Puget Sound Coal Company mine village at Pattle Point in 1855.

Figure 8. USCS Hydrographic Survey of the site and vicinity from 1855. Green line represents shoreline as of 2002. Map from Wahl (2009).

1887 – USCGS Topographic Survey

In 1883 or 1884, a sawmill was built at Pattle Point. In 1887, a topographic survey was conducted by the US Coast and Geodetic Survey's captain J.J. Gilbert. Figure 9 shows the shore bank/bluff lines and tidal flats overlaid on a 2002 aerial photo imagery. Contour lines on the original 1887 T-Sheet indicate Pattle's house was perched up to 40 FT above the elevation of the high tide, where today's lower park and railroad elevations are now 19 or 20 FT above sea level.

Figure 9. USCGS map from 1887 on 2002 orthophoto. Map from Wahl (2009).

1891 – USCGS Topographic Survey

The mainline BNSF Railway grade was cut directly through Pattle Point and the Morrison Point headland to the south, in 1889 or 1890. During or just prior to 1891, a spur line from the Great Northern Railway (GNRW) was constructed through the site to the sawmill, as shown in Figure 10. The spur line appears to run beside the north side of the bedrock headland, but likely required some rock removal. The difference between the 1887 and 1891 may be due to apparent filling.

Figure 10. 1891 USCGS Harbor Survey with the GNRW constructed. Green line represents shoreline as of 2002 (Wahl, 2009).

Circa 1901, the Bellingham Bay and Eastern Railroad was built through the site and was in use until the 1940s. The era of intense and profitable milling started around this time, peaking in the late teens, but then dwindled with decreasing timber supplies and ceased in 1925 when the sawmill was destroyed in a fire. Stacked lumber on the site tidelands is thought to be a relic associated with the fire.

20th Century Aerial Photographs

The open water around Pattle Point and to its northeast was gradually filled during the development of the lumber mill but took place mostly after the mill burned in 1925. Maps made between 1920 and 1952 suggest that areas where today is filled were inundated enough that it was mapped as partly bay bedland. By 1943, the tideland fill was comparable to, or even slightly more extensive than the current site park area (Figure 11). North of where Woods Coffee stands currently appears to have had more extensive filling, however it is likely that wave action may have eroded the less stable fill material.

Various other filling and industrial activities have occurred since the 1940s including placement of brick fill from the demolition of the Fairhaven Hotel in 1955, boat building, extensive log booming (Figures 11 and 12), and rip rap placement with broken concrete from public streets. The waterward portions of the

park away from the current coffee shop were filled and then leveled for park construction in the early 1980s. Figures 11-16 show the progression of the site from 1943 to 2016.

Figure 11. 1943 aerial photo. Earliest aerial of the site following the sawmill fire in 1925 (Wahl, 2009). Red markings were used to georeferenced imagery (Wahl, 2009).

Figure 12. 1950 aerial photograph of the site and vicinity (Landau Associates, Inc. and GeoEngineers, 2019).

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 16 - Final COASTAL GEOLOGIC SERVICES, INC.

Figure 13. 1963 aerial photograph of the site and vicinity (Landau Associates, Inc. and GeoEngineers, 2019).

Figure 14. 1977 oblique aerial photograph of the site and vicinity (WDOE, 2016).

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 17 - Final COASTAL GEOLOGIC SERVICES, INC.

Figure 15. 1994 oblique aerial photograph of the site and vicinity (WDOE, 2016).

Figure 16. 2016 oblique aerial photograph of the site and vicinity (WDOE, 2016).

MetOcean Conditions

MetOcean data available and relevant to the site were collected and evaluated to assess site conditions and data adequacy in support of cleanup design in the next phase of the project. Figure 17 shows the locations of different MetOcean data stations. Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 18 - Final COASTAL GEOLOGIC SERVICES, INC.

Tides and Water Levels

Tides

Tides at the project site are semi-diurnal. Tidal levels published by NOAA for the Bellingham Station, WA (ID 9449880) are presented in Table 1. The elevation of the High Tide Line, defined by US Army Corps of Engineers (USACE) as the national water jurisdiction boundary, was sourced from USACE.

All elevations for this project are in reference to the NAVD 88 datum. The conversion from MLLW datum to NAVD 88 is -0.48 FT according to NOAA tidal datum sheet for the Bellingham Station.

Table 1. Tidal elevations at the project site (NOAA).

Tides	Tidal Level (FT, NAVD88)
High Tide Line (HTL)	9.29
Mean Higher High Water (MHHW)	8.03
Mean High Water (MHW)	7.31
Mean Tidal Level (MTL)	4.59
Mean Sea Level (MSL)	4.47
Mean Low Water (MLW)	1.87
North American Vertical Datum (NAVD88)	0.00
Mean Lower Low Water (MLLW)	-0.48

Extreme Water Levels

Extreme water level is a combination of storm surge and a high astronomical tide (spring tide, king tide). The recurrence extreme water levels at the NOAA stations at Friday Harbor (10.1 miles northwest of the site) have been published by NOAA. The extreme water level conditions at Bellingham were derived based on the storm surge ratio as predicted by Pacific Northwest National Laboratory (PNNL) Coastal Sciences Division wave hindcast model (Yang et al., 2019) and the known tidal differences between the Bellingham and Friday Harbor reference sites.

The resulting return-period extreme water levels for the project area are presented in Table 2.

Table 2. Extreme water levels.

Return Period (year)	2	10	30	50	100
Water level, Bellingham (FT, MLLW)	10.4	11.0	11.2	11.3	11.4
Water Level, Friday Harbor (FT, MLLW)	9.67	10.26	10.5 <mark>1</mark>	10.60	10.68

It should be noted that the extreme water levels given in Table 2 have not accounted for the effect of sea level rise (SLR) and wave runup.

Sea Level Rise

Climate-change induced SLR is projected to increase water elevations because of global warming, melting of glaciers and ice sheets, and land water storage changes, which will generally lead to higher coastal water levels that pose a high risk for low-lying coasts and communities (IPCC, 2019).

According to recent study completed by Miller et al. (2018), the projected SLR by year 2100 for Washington State for the high greenhouse gas emission scenario (Representative Concentration Pathways (RCP) 8.5, Lavin et al., 2019) is presented in Table 3, with two probability levels, the 50% likelihood and 10% likelihood levels.

Table 3. SLR projections for the high greenhouse gas scenarios (RCP 8.5, Miller et al., 2018) and Bellingham's SLR standard for 2120.

Year	SLR (FT, 10% likelihood)	SLR (FT, 50% likelihood)
2030	0.3	0.2
2050	0.9	0.6
2070	1.6	1.1
2100	3.0	2.0
2120	4.2 (City of	Bellingham)

The City of Bellingham has adopted a stringent SLR projection as a standard for all critical shoreline infrastructure and development projects, which is 50-inches (4.2 FT) of SLR by 2120 (Table 3). This is in line with Miller et al. (2018)'s high emission and 10% likelihood projection. This SLR projection is required for the cleanup design consideration for this project.

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 20 - Final COASTAL GEOLOGIC SERVICES, INC.

Currents

Currents in Bellingham Bay are primarily caused by the rise and fall of the tides. Tidal currents are generally weak inside the bay due to its large and wide, (nearly) semi-enclosed water body. Rivers or large streams discharging runoff water into the bay may only affect a very limited shallow water area nearshore. Wind-driven currents can be large compared to the tidal current under the storm conditions, however wind driven currents or circulations are only limited to surface waters which would have little effect on the stability of the seabed within the subtidal zone.

Figure 18 shows typical peak flood and ebb tidal currents in the Bellingham Bay for a spring tide event as modeled by Yang et al. (2021). These results were provided by PNNL extracted from a calibrated 3-D Salish Sea tidal hydrodynamics model. The maximum depth averaged tidal currents, whether flood or ebb current, are less than 0.1 m/s or 0.3 FT/sec along the coast of the City of Bellingham, including the project site. The near-bed current would be even less. Therefore tidal currents are not expected to cause significant disturbance to the settled seabed in the project area outside the shallow areas near the shore. Currents may play a role in maintaining a dynamic balance of very fine sediment material in the near-bed boundary layer but do not have enough velocity to cause substantial net sediment transport.

It can be concluded that the tidally-induced currents are too weak to alter the stability of the proposed cap material in the intertidal and subtidal areas or in deeper waters proposed for natural recovery. As a result, currents caused by wind-driven wave action would be the predominant natural force in the shoreline and intertidal area for consideration in the cleanup action design.

Figure 18. Snapshots of peak flood and ebb currents in the Bellingham Bay, spring tide (Yang et al., 2021).

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 21 - Final COASTAL GEOLOGIC SERVICES, INC.

Winds

Data Sources

In Bellingham Bay, regional storm winds are the primary driving force of waves. Long-term wind records were obtained and analyzed from two weather stations in the area, one from Bellingham International Airport (Station KBLI) and the other from Fairhaven Ferry Terminal Dock (Station FH -D8969). The locations of these wind gage stations are shown in Figure 17.

The KBLI data set consists of 66 years of data from 1948 to 2021, excluding missing data for the period of 1965 to 1972. The station is located 2 miles inland north of Bellingham Bay and 4.5 miles from the project site. The FH data set consists of only 10 years of wind data from 2012 to 2021. The station is located only 0.8 miles south of the project site at the shore, therefore this wind data better represents local wind climate, especially for wind directions. However, the station location is quite shielded inside a small semi-circular bay and the wind anemometer is only 10 FT from the deck of the floating dock. Height and overwater (shore effect) corrections have been made to this wind data set following recommendations of Coastal Engineering Manual (USACE, 2002).

Wind Climate

The wind data sets were processed and then plotted in wind roses to describe predominant wind climate of the area. Figure 19 shows the annual average wind roses of KBLI winds and FH winds in comparison. Tables 4 and 5 show the joint frequency of the wind occurrence for different directions and wind speeds.

The KBLI wind rose and the joint occurrence frequency distribution show winds from more concentrated directions, largely from southern directions (S and SSE, 39%) and secondly from northerly directions (NNE and N, 14%), but very low percentage of winds from SW-W-NW directions (10%). It is also noted that the KBLI winds have higher occurrence of strong northerly (NNE and N) storm winds even when at times the winds in Bellingham Bay were blowing westerly or southwesterly.

The FH wind rose shows more distributed winds from different directions. Even though the directional pattern looks similar, the SW winds, which have the longest direct fetch length to the project site, are observed more frequently at the FH station. This further indicates that the wind direction recorded at KBLI station may not well represent the actual wind directions in Bellingham Bay. This could likely be due to the changing direction of a strong weather system as it moves over from Bellingham Bay to the northern area landward. Data quality and accuracy in recording actual wind directions in earlier time periods could also be a potential cause. Therefore, for this project the KBLI wind data will be mainly used for extremal wind analysis without considering wind directions.

Based on our analysis of the wind rose and joint frequency distribution the FH wind data after station height and land-effect corrections (Figure 19 and Table 5) are considered to better reflect the general wind climate of Bellingham Bay, in particular the variations and occurrence frequencies of windstorms in different directions. Storm wind directions are also critical to the design of remedial actions. Table 5 shows that SW winds of speed greater than 25 mph has only slightly less frequency (0.03%) compared to strong winds from S (0.04%) and SSW (0.03%). On the other hand, the FH wind data does not well capture actual offshore extreme wind conditions in the Bellingham Bay due to its relatively short data record and the local shielding effect at the weather station. The station height and land-effect correction

approaches following Coastal Engineering Manual (2003) are rather simplified and unilateral. The speed of winds in the bay from South and North may still be underestimated.

As a result, for this study the extreme wind speed for the southerly and northerly winds will be derived in the next section based on the KBLI wind data. The extreme winds from other directions such as southwesterly and westerly may be factored lower based on the directional wind data from FH station.

Figure 19. Wind roses, (a) Bellingham Airport (KBLI); (b) Fairhaven Ferry Terminal (FH-D8969).

N=576160	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	sw	wsw	w	WNW	NW	NNW	⊤otal	Cumul.
0-0 (Calm)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16.68	100.00
0–5	2.98	1.63	1.03	0.34	0.44	0.44	1.10	1.40	3.09	1.12	0.70	0.41	0.78	0.44	0.53	0.69	17.13	83.32
5-10	3.52	3.50	1.71	0.40	0.35	0.67	1.99	4.57	11.75	3.79	1.51	0.83	1.65	1.15	0.75	0.72	38.86	66.19
10-15	0.51	1.21	0.60	0.07	0.05	0.19	0.95	3.09	7.52	2.20	0.48	0.18	0.29	0.31	0.17	0.10	17.91	27.33
15-20	0.11	0.56	0.33	0.04	0.01	0.06	0.46	1.42	2.67	0.63	0.14	0.04	0.04	0.03	0.02	0.01	6.55	9.42
20-25	0.03	0.29	0.18	0.01	*	0.01	0.18	0.60	0.68	0.10	0.03	•	*	•	*	•	2.14	2.87
25-30	*	0.10	0.06	•	-	•	0.04	0.15	0.10	*	•	•	,	•	*	•	0.48	0.74
30-35	*	0.04	0.02	•	-	•	0.01	0.06	0.03	•	•	-	-	•	-	-	0.17	0.25
35-40	*	0.02	*	*	*	*	*	0.02	*	*	*	-	-	-	-	-	0.06	0.08
40-45	•	•	•	-	-	-	•	•	•	•	-	-	-	-	-	-	0.01	0.02
45-50	•	•	-	-	-	-	•	•	•	-	-	•	-	-	-	-	*	*
50-55	-	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	×	*
55-60	-	•	-	-	-	-	-	*	-	-	-	-	-	-	-	-	*	*
>60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total **	8.19	8.40	4.98	1.92	1.90	2.41	5.79	12.36	26.90	8.90	3.89	2.51	3.80	2.98	2.51	2.56		
Cumul.	8.19	16.59	21.58	23.49	25.39	27.80	33.59	45.95	72.85	81.75	85.64	88.16	91. 9 5	94.93	97.44	100.00		

Table 4. Joint frequency of wind speed (mph) against wind direction at KBLI Station.

Note: * denotes values less than 0.01%; - denotes no record in bin.

Table 5. Joint frequency of wind speed (mph) against wind direction at FH Station (after height correction factor of1.185 and land correction factor of 1.2).

N=89184	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	w	WNW	NW	NNW	Total	Cumul.
0-0 (Calm)	-	+			+	-				-		*			-	4	17.27	100.00
0-5	1.17	1.87	2.09	1.17	0.96	1.66	2.63	5.20	6.40	5.77	4.58	211	2.28	2.27	1.04	0.76	41.97	82.73
5-10	0.61	1.19	1.54	0.40	0.18	0.38	0.79	2.62	5.84	5.50	2.55	0.37	0.42	0.76	0.37	0.38	23.91	40.76
10-15	0.19	0.43	0.74	0.23	0.05	0.09	0.34	1.26	2.69	2.83	1.15	0.07	0.09	0.25	0.07	0.15	10.63	16.85
15-20	0.06	0.22	0.38	0.11	0.02	0.05	0.18	0.62	1.10	1.09	0.57	0.02	0.05	0.06	0.02	0.07	4.63	6.22
20-25	0.02	0.07	0.17	0.08			0.05	0.16	0.22	0.18	0.09	+	•	•	0.01	0.02	1.12	1.59
25-30	0.01	0.05	0.10	0.03	•			0.03	0.04	0.03	0.03			•			0.36	0.47
30-35	*	0.01	0.02	*		-	*	*		•			•	*	-		0.07	0.11
35-40	•		0.01			1.	+		-					÷			0.02	0.04
40-45		1.5			-								÷	-	*		٠	0.01
45-50											4			-	1.	1.8	•	
>50															-	× .	4	- 4
Total **	3.16	4.93	6.14	3,12	2.30	3.27	5.07	10.97	17.38	16.50	10.06	3.67	3.93	4.43	2.60	2.48		
Cumul.	3.16	8 09	14.23	17.36	19.65	22.92	27.99	38.96	56.34	72.84	82.90	86.56	90.49	94.93	97.52	100.00	1.11	

Note: * denotes values less than 0.01%; - denotes no record in bin.

Extreme Winds

The preliminary extreme wind speeds were derived utilizing the 66-year hourly wind speed data from KBLI airport. The 48 highest-ranking historic wind storm events were selected to fit the Gumbel Distribution. The resulting return-period hourly wind speeds are presented in Table 6.

Table 6. Extreme winds.

Return Period (year)	10	30	50	100
Design Wind Speed (mph)	49	53	55	58

The extreme wind speeds given by Table 6 can be considered as the design wind speeds for the Southerly and Northerly storms. The reduction factors for design winds from other directions will be further derived in the EDR phase as longer wind data at FH station or other weather station data become available.

Waves

The project site is exposed to winds and waves almost entirely from the southwest to west (Figure 20). However, the fetch length varies from southwesterly directions (approximately 7 miles) to northerly directions (less than 1.3 miles). Waves from the longest fetch of 12 miles in the SSW or S directions may also reach and significantly impact the site through wave diffraction.

For this study a 5-year wave hindcast data (2011 - 2015) for a location approximately 900 FT off the Boulevard Park shore was acquired and analyzed. The 5-year wave data is the only available data modeled and provided by PNNL, extracted from PNNL Puget Sound Wave Hindcast Model (Yang et al., 2019). The data is not long enough to derive extreme design waves, such as the 100-year return period wave conditions required for the design of remedial action for this cleanup project, but it provides sitespecific annual-average wave climate information, including seasonal variations and occurrence distributions of wave conditions.

Figure 20 and Table 7 below presents the wave rose and the joint frequency distribution table.

Figure 20. Wave rose off the coast of project site.

Table 7. Wave joint occurrence frequency table, wave height vs. wave direction

N=43824	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	w	WNW	NW	NNW	Total	Cumul.
0-0.2 (Calm)	-		-	-		-		-	-	-	- 1		-	-	-	-	72.88	100.00
0.2-0.2	121	-	-	-		-	-		-	-	1 mil 1	1.5~1		-	-	- 1		27.12
0.2-0.4	0.03	0.02	-	-	-	-	-	-	-	0.03	7.59	0.61	0.18	0.05	-		8.51	27.12
0.4-0.6	-		1	-	\sim	-	-		~	0.01	8.83	0.24	0.06	0.02	-		9.17	18.61
0.6-0.8	-	-	-	-	-	-	1.000	-			4.05	0.17	0.02	-	-		4.26	9.44
0.8-1	-			-	-	-	-	-		-	2.17	0.15	0.06		-	+	2.38	5.18
1-1.2	+	-	-	-		1.	-	-	- 1		0.95	0.16	0.13		-	-	1.25	2.80
1.2-1.4	-	-	1	-		4	1 m 1	-	-	0.02	0.46	0.10	0.10				0.69	1.55
1.4-1.6	-	-				1.211	1000	1.2	1.2	0.02	0.26	0.07	0.03	1.122	1.1.2		0.38	0.86
1.6-1.8		1.4			- 21-	1 m		-12-1	•	0.01	0.18	0.07	0.02	1-2-			0.28	0.49
1.8-2	+	-	-	-		-	·				0.05	0.02	•	-		-	0.08	0.20
2-2.2	-	-	-	-	-	-		-			0.05		*	-	-		0.07	0.13
2.2-2.4		1.20	-	-	~	-		~	~	~	0.01	1		-	~		0.02	0.05
2.4-2.6	-	1.20	÷	-		1-11	-		-		1. 19. 1	1.200		-	-	1.2.1	0.01	0.04
2.6-2.8		1.3-01	-	-	-	1.4	1.2-1	1.1-0	10-11	1-1-01	1. T. C.			-	-		0.02	0.02
2.8-3	-	1540.0	-	-	~	1	-	5-00			-	(Sec)	5-01	-			1	· · · · · ·
3-3.2	1.1	1.5+1.5	-		- 1+1 -	-	-	- 1+ -		in the lite	-	1.54(1)	- 7 - 5-1	-	-		CHO I	
3.2-3.4		-	1.00			1.00				-	1.1011	1.000		-	1.2		-	· · · • · · ·
3.4-3.6	4	1.2	-	-	~	-	-	- 24	-	~	-	1.141	-	+	× .	\sim	1.00	
3.6-3.8	-	- (-	- 14 C	-	-	-	-	1	-	*	-	-		-	*	- A -
3.8-4	-		-		-	-	-		-	-	-			-	-	- 1	-	4
>4	-	-	-	-	-	-	~	-	-	-	-		-	-	-	-	141	+
subTot.	0.03	0.02		-	-	-			0.02	0.11	24.61	1.61	0.63	0.09	-	0.03	1	
Total **	4.58	4.57	4.56	4.56	4.56	4.58	4.56	4.56	4.57	4.66	29.16	6.16	5.18	4.64	4.56	4.58		
Cumul.	4.58	9.16	13.71	18.27	22.82	27.38	31.93	36.49	41.06	45.72	74.88	81.04	86.22	90.86	95.42	100.00	1	

Note: * denotes values less than 0.01%; - denotes no record in bin.

According to the data, waves for the site are mostly from the SW direction. However, high storm waves with wave height ranging 2.2 to 2.6 FT can also be from WSW and W directions. The significant wave height at the top 0.01% is 2.8 FT with a period of 3.9 seconds. The wave heights at the 1% and 5% exceedance levels are much lower, at 1.4 FT and 0.8 FT respectively, indicating that the site is generally in calm conditions except during southerly or westerly storm events. The maximum significant wave height that occurred during the 5-year period is 4.1 FT with a peak wave period of 4.3 seconds and an approaching direction of 240 °N.
For the design of remedial action, wind-growth wave modeling would be required to determine the 100year design extreme wave conditions, taking into account complex nearshore bathymetry and shoreline geometry and varying fetch lengths over the Bellingham Bay region for different wind directions. This will be conducted in the next phase of the project as the design wind conditions are further confirmed.

Geomorphologic Assessment

Bathymetric Change Analysis

An assessment of the historical changes in site bathymetry was performed to evaluate bathymetric changes over time and to assess the rates and areas of accretion and erosion of sediment at the site. The assessment of historical changes in site bathymetry was performed based on direct comparison of the current bathymetry (2021) to the historical site bathymetry (2019 and 2005). A few other bathymetry survey datasets were initially processed and evaluated but were abandoned due to survey resolution or data quality reasons.

The existing nearshore bathymetry and inter-tidal to upland topography for the site were surveyed by David Evans and Associates Inc. (DEA) in 2021 and by Larry Steele and Associates in 2021-2022 respectively. The survey is a part of the PRDI to support the geomorphologic assessment and to serve as the basis for developing cleanup action design for the Marine Unit. The bathymetric survey was performed during a high tide with a multibeam echosounder system deployed from a marine vessel. Along the upper beach and backshore, land-based topographic survey methods were used to survey the areas above where the multibeam survey were not able to cover due to shallow water.

More details of the three datasets used in this analysis are as follows:

- 2021 David Evans Associates Inc (DEA) Multibeam Bathymetric Survey (Figure 21) The provided data has a 50-cm spatial resolution, collected using a Teledyne Reason Seabat Multibeam sonar operating at 240KHZ equipped with an APPLANIX POS/MV. The land-based topographic survey was performed in accordance with WAC 332-130 and other Washington State requirements for land surveys. The results of the multibeam and topographic surveys were combined to provide a complete bathymetric survey of the site.
- 2005 National Oceanic and Atmospheric Administration (NOAA) bathymetric survey (H11420) of Anacortes and Bellingham, WA (Figure 22) – The provided data has a 0.5-m grid resolution, collected with a Reason 8101 and 8125 multibeam echosounder and a Knudsen 320M echosounder. The dataset was referenced to the MLLW, tidally corrected based on the tide records from NOAA Friday Harbor tidal station.
- 2019 United States Geologic Survey (USGS) of eelgrass and bathymetry in Bellingham Bay, WA

 The dataset consists of point data along a series of single-boat track lines running back and
 forth in cross-shore directions. Figure 23 shows the survey line track in the vicinity of the site.
 The spacing between cross-shore track lines are approximately 83 FT on average. The survey
 used a single beam sonar system (echosounder) and global navigation satellite system (GNSS)
 receiver. Depths from the echosounder were computed with sound velocity data collected with
 a YSI Cast Away CTD (CTD stands for conductivity, turbidity, and depth). For comparison with the
 multibeam survey data, 6 cross-sections (A to F) were designated in line closely with the 2019
 USGS survey track lines (Figure 28), and the extracted cross-section bathy profile data along
 these section lines were compared.

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 26 - Final COASTAL GEOLOGIC SERVICES, INC.

Figure 21. DEA 2021 bathymetry survey map in the project area.

Figure 22. NOAA 2005 bathymetry survey map in the project area.

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 27 - Final COASTAL GEOLOGIC SERVICES, INC.

Figure 23. USGS 2019 bathymetry survey track lines.

Results

Bathymetric difference between the 2021 DEA data and the 2005 NOAA data under the same resolution is shown in Figure 24. This provides an approximately 16-year period to evaluate recently changing conditions at the site and vicinity.

A summary of the primary observations from Figure 24 are as follows:

- Areas with the highest erosion are visible in the southeastern part of the area alongshore. This is along the edge of the 2005 survey in the shallowest water area, where the 2005 NOAA dataset has been purposely cut out due to quality concerns. Therefore, data quality along this edge area is uncertain, and there is no additional information to explain such dramatic and consistent seabed erosions/changes in a water depth of 10 to 20 FT.
- There are two noticeable spots with significant erosion at the bed, one just off cross section D at the west of Starr Rock (the south underwater mound), the other just on the south side of cross section C (Figure 24). It is not known what has caused increased seabed depressions at these two spots.
- High levels of accretion appear on the southeastern side of Starr Rock off cross section C, and around the northern underwater mound near cross section F.
- Figure 24 shows clear striping erosion pattern near the eastern part of cross sections D, E and F, which continues southwestward. Such strips are visible in the 2005 bathymetry map (Figure 22) but not in the 2021 bathymetry map (Figure 21). The stripping lines of erosion look superficial and unexplainable in nature, as under such water depths both wave actions and tidal currents

High erosion spot Starr Rock **High accretion High accretion** Stripping erosion High erosion spot High erosion along edge of 2005 survey limt Stripping erosion pattern Stripping erosion pattern ation difference (FT) < -0.5 - -0.2 ≤ -1.5 <-0.2 - 0.2 > -1.5 - -1.0 > 0.2 - 0.5 -1.0 - -0.5 0.5 500

are minimal, and do not create this type of change. Further investigation was conducted and the findings are explained below.

Figure 24. Bathymetry change over the period of 2005 to 2021.

After contacting NOAA's survey department, it was conveyed that there was sizeable freshwater runoff from rivers and streams during the 2005 survey period. Varying water density in the nearshore (due to freshwater discharge) would affect sound velocity measurements, which was not corrected in the postprocessing of the survey data. Therefore, lower accuracy of bathymetry would be expected in the northeastern part of the Bellingham coast. However, such effects may be limited in the project area as it is not close to any significant freshwater discharge sources.

Further looking into NOAA 2005 bathymetry survey documentations, it was understood that the 2005 multibeam water depth survey was conducted during the period of Oct. 15 – Nov. 09, 2005 and was tidally corrected to seabed elevation utilizing recorded tidal data from NOAA Friday Harbor tidal station (ID 9449880). The Friday Harbor tide was adjusted by a fixed factor of 1.1 for the tidal range relative to MLLW and a fixed phase lag of 18 minutes to represent the real-time tides of Bellingham Bay during the period the survey was conducted. Errors could have been introduced in such a process of tidal correction when there was no simultaneous and more relevant local tide measurement for tidal correction.

To analyze potential errors from tidal correction in the 2005 NOAA bathymetry dataset, we duplicated the adjusted tide time series during the 2005 survey period potentially used for the tidal correction. Figure 25 shows the predicted Friday Harbor tides (blue line) and its high- and low-tide points (blue) after adjusted by a factor of 1.1 (according to NOAA documents), as compared to the predicted high and low tides at Bellingham station (ID 9449211) (orange points). In terms of tidal magnitude, the adjusted

higher-high tides and lower-low tides from Friday Harbor match relatively well with those at the Bellingham station, but there are large differences for most of the higher low tides. A magnitude of approximately 0.5 to 1 FT error on the high end could have been introduced as the survey was likely conducted during those high-tide periods during daylight. Over-correction of tides to the surveyed data would result in lower seabed elevation, and as a result, higher erosion areas. On the other hand, timelag statistics for all high tide and low tide occurrences during the period revealed that the average time lag is only 5.3 minutes (vs. 18 mins used for the tide correction). Inaccurate time-lag adjustment would also introduce error from tidal corrections.

Figure 25. Comparison between Friday Harbor predicted tide adjusted for Bellingham Bay (used by NOAA 2005 bathy survey correction) and Bellingham predicted tide.

It is believed that the striping lines of erosion/accretion, and erosion in particular, as shown in Figure 24 is likely caused by the inaccuracy of real-time tide correction. If these errors were corrected these stripping lines of erosion areas could mostly disappear.

It can be concluded based on the above assessment that the erosion patterns shown in Figure 24 are not reliable due to expected errors from tidal correction in the 2005 NOAA bathymetry dataset. However, the two survey dataset can still be compared at a qualitative level as both multibeam sidescan surveys are capable of resolving large seabed features.

Figure 26 and Figure 27 shows the zoomed-in views of seabed topographic features at and surrounding the two underwater mounds. Both images from 2005 map and 2021 map have the same spatial resolution. It can be seen that in both zoomed-in areas, features such as oversized logs/pilings and likely boulders are all visible and look undisturbed and unchanged in locations. The 2021 map also shows a slightly smoother bed surface and more burial of some features surrounding the south sides of the mounds, indicating potential accretion in the area. There is no identifiable evidence of erosion except for the two depression spots as revealed in Figure 24.

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 30 - Final COASTAL GEOLOGIC SERVICES, INC.

Figure 26. Comparison of seabed elevation features revealed by 2005 and 2021 multibeam surveys, northeastern underwater mound area. Some features are called out as examples.

Figure 27. Comparison of seabed elevation features revealed by 2005 and 2021 multibeam surveys, Starr Rock area. Some features are called out as examples.

Bathymetric data were also compared along 6 cross sections (A-F, Figure 28; the locations of the cross sections are shown on Figure 24). Trends observed from the eight cross sections of the 2021 DEA, 2019 USGS and 2005 NOAA bathymetric data include the following:

- Cross sections of all three bathymetric datasets shared similar profile trends. The 2021 DEA and 2019 USGS cross sections consistently and closely match each other, showing no notable differences or bathymetric changes over the period, except for Section F. The 2019 cross section profile appears to have a slight horizontal shift in the cross-shore direction.
- The 2005 NOAA profiles had visible elevation high points closest to shore. This was apparent in cross sections A through C, while less discernable in the subsequent cross sections. The 2005 profiles also show slight highs and lows (fluctuation) across the profiles, which are more apparent in Sections D, E and F. As discussed above these likely resulted from the errors introduced in the inaccurate tidal correction.
- Cross sections C and F appeared to cross sandstone exposures with shallower depths that decreased eastward in the profiles. At cross section C the top elevation of the underwater sandstone is approximately -11.5 FT, while at cross section F the top elevation is 16 FT.
- Cross sections A and B had the steepest slopes observed. In cross section A this occurred between approximately 600 FT and 650 FT horizontal, while in cross section B this occurred between approximately 540 FT and 625 FT.

Figure 28. Cross section bathymetry comparison.

Figure 28 (continued). Cross section bathymetry comparison.

Historic Seabed Erosion and Accretion

The depositional history of the existing sediment deposits and potential for accretion and erosion was evaluated based on review of previous investigations of the site and sediment coring and sampling performed as a part of the PRDI. Dating of sediment deposition was based on core sample collection and radiocarbon dating and radioisotope analysis to estimate sediment accumulation rates (SARs) and to understand seabed stability and accretion and erosion potential.

Sediment Core Sampling and Analysis

Seven (7) sediment core locations (PRDI-35-SC to PRDI-41-SC, Figure 29) were collected to between approximately 3 to 7 FT bml (Table 8). The sediment core samples were collected by GeoEngineers from a vibracore sampler between 9/14/21 to 9/15/21 using a subcontracted marine research vessel (see Section 3.7 of the PRDI report for details and field procedures).

Figure 29. Vibracore sample locations. Imagery Whatcom County 2019. Elevation source DEA 2021 in FT NAVD88.

Cores were capped and picked up by CGS and inspected by the principal engineering geologist and coastal geologist. Preliminary visual classification of sediment layers was logged, and cores were photographed (Attachments A-B). Depth intervals to be sampled for laboratory analyses were identified. Visual observations and sample collection for grain size analysis by Materials Testing & Consulting (Attachment C) and sediment dating (radiocarbon and/or radioisotope analysis) was completed to assess depositional history.

Core sediment samples were sent to General Engineering Laboratories (GEL) LLC to analyze SARs and absolute sediment ages using ²¹⁰Pb and ¹³⁷Cs radiochemistry. These methods are explained in detail in the final Report from GEL labs (General Engineering Laboratories and Burnett, 2022; Attachment D).

Many of the samples contained an abundant amount of wood chips and therefore, a correction was applied by determining the ash weight after ignition. One core (PRDI-29-SC) was also analyzed for activities of ¹³⁷Cs to corroborate the ²¹⁰Po analysis for sediment ages and accumulation rates.

Results

The seven cores (PRDI-25-SC – PRDI-41-SC) were logged and sampled, with samples sent to two analytical labs to be analyzed for grain size and SARs. Core logs include depth below ground surface (bgs; same as below mud line or bml), locations of samples collected, illustrative symbology, description, and wet and dry weights used to calculate the mass accumulation rates (MARs) and are found in Attachment D. Table 8 provides a summary of the results for each core. Wood waste, often in the form of sawdust, was common in cores from the shallow subtidal in the southern portion of the Marine Unit.

The SARs for all seven cores fell into a relatively narrow range from 0.77 ± 0.06 cm/yr to 1.8 ± 0.2 cm/yr with an average of 1.2 ± 0.2 cm/yr. This is very similar to a current unpublished USGS study which analyzed SARS from cores within Bellingham Bay, where the average SAR was 1.27 cm/yr near the site (Liam Horner, USGS, per communication, 2022).

Table 8. Summary of core elevations, lengths, descriptions, sediment accumulation rates (SARs), and mass accumulation rates (MARs) (from GEL labs final report; Attachment D). See core logs (Attachment A) for more details.

Core	Core Top Elev. (FT, NAVD88)	Core Bottom Elev. (FT, NAVD88)	Core Length (FT)	Description	SAR cm/yr	MAR mg/cm ² yr
PRDI-35-SC	-6.8	-12.5	5.7	Top 0-60 cm bgs clay-silt with trace organics. 60 cm bgs to base clay- sand with wood and bark fragments, increasing from approx. 20% to 90% with depth.	1.3±0.2	1870±330
PRDI-36-SC	-15.7	-21.6	5.9	Clay-silt with fine wood fragments increasing with depth, with trace shell. Some larger wood (~10 cm long).	1.2±0.3	1800±400
PRDI-37-SC	-23.7	-31.1	7.4	Clay-silt with trace sand, no wood until approx. 96 cm bgs then trace wood (bark) increasing to approx. 25-35%. Trace shell.	1.6±0.1	2200±160
PRDI-38-SC	-3.7	-6.8	3.1	Wood chips and saw dust >60% and increasing with depth to >90%. Minor silt-coarse sand.	0.9±0.2	460±40
PRDI-39-SC	-17.1	-22.1	5.0	Wood chips, saw dust, wood splinters (bark) >50% with clay-silt. Trace shells.	0.77±0.06	500±50
PRDI-40-SC	-32.8	-37.4	4.6	Clay-silt with small amounts of wood fragments and bark, increasing with depth.	1.8±0.2	2060±300
PRDI-41-SC	-33.1	-37.2	4.1	Clay-silt with up to approx. 10% wood chips/splinters. Trace shell. Pebbles and sand from 86 cm bgs increasing at depth to approx. 60%.	1.0±0.01	520±50

Figure 30. Age in years before present (yBP) compared to depth (cm) for all cores except PRDI-38-SC (too few layers to allow estimation of CRS ages). Comparison of Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) models ages show good to excellent agreement between the two age models except at cores PRDI-35-SC and PRDI-39-SC. GEL labs favored CF:CS model when the two approaches do not agree (cores PRDI-35-SC and PRDI-39-SC). See GEL's final report for more details (Attachment D).

Comparing the ages to the depth plotted in Figure 30, these data show a general transition to less sediment accumulation in the last 35-45 years shown by a change in steepness of the Constant Rate of Supply (CRS) model curve. PRDI-37-SC shows some of the fastest and most consistent SAR which we attribute to the closer proximity to Whatcom Creek and the Nooksack River as well as being more sheltered from southerly storms by the northwest point of Boulevard Park.

While PRDI-39-SC did not show great agreement between the models, it had peak activity of ¹³⁷Cs at 40 cm which indicates an approximate age of 1963 and the CF:CS model produced an age of the same layer of 1970 (See Figure 7 in Attachment D). This represents excellent agreement according to GEL labs. Using this we can estimate that the SAR for the last approximately 50 years was approximately 0.7 cm/yr. We attribute the slower SAR for PRDI-39-SC to its location on the steeper slope between the intertidal and deep-water region where it is more difficult to accumulate and retain sediment. PRDI-38-SC also had a relatively slower SAR, which is likely due to it being affected by wave energy in the shallow nearshore region.

There is some evidence that SARs are slowing in the last 10-15 years based on the gentler slope shown at the top of PRDI-36-SC, PRDI-39-SC, and PRDI-40-SC. Decreased logging in the Nooksack watershed starting in the late 1990's, partially due to improved Washington State forest practice rules (the Forest & Fish Law, 1999¹), likely led to less sediment input into the Nooksack River. This as well as possible increased storminess in the region in the last decade or so is likely the driving factor for slowing SARs within the site.

Sediment Grab Sampling and Analysis

Seven (7) intertidal surface samples were collected (PRDI-SS-100 through PRDI-SS-106, Figure 31) using hand tools as part of the PRDI. The samples were collected from 0 to 15 cm bml and submitted for laboratory analysis of:

- ASTM D422 Hydrometer Analysis
- ASTM C136 Sieve Analysis
- ASTM 2487 Unified Soil Classification System (USCS)

Twenty-two (22) subtidal surface sediment samples (PRDI-13-SS to PRDI-34-SS) were collected using a Power Grab sampler operated off of a subcontracted marine research vessel (see Section 3.7 of the PRDI report for details and field procedures). At each sample station, discrete surface grab samples were collected from the upper 12 cm from the sampler for processing on board the vessel.

All sediment samples were analyzed by Materials Testing & Consulting, and their results are found in Attachment C.

¹ https://www.forestsandfish.com/about/

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 37 - Final COASTAL GEOLOGIC SERVICES, INC.

Figure 31. Surface sediment sample locations. Imagery Whatcom County 2019. Elevation source DEA 2021 in FT NAVD88.

Results

A summary of the results of surface samples is shown in Table 9, which presents the D10, D50, and D90 sizes in mm. These correspond to the particle diameter representing the 10%, 50%, and 90% cumulative percentile value. In other words, for example, 10% of the particles in the sample are finer than the D10 grain size.

Table 9. Surface and shallow subsurface (0 to 15 cm bml) sediment samples D50 and Unified Soil ClassificationSystem description. See Figure 31 for sample locations.

Sample ID	D10 (mm)	D50 (mm)	D90 (mm)	USCS Description/Visual Inspection
PRDI-15-SS	0.02	0.09	0.57	SM, Silty Sand
PRDI-16-SS	0.01	0.04	0.07	Clayey Silt with Sand
PRDI-18-SS	0.01	0.07	1.79	Silty Sand with Clay
PRDI-19-SS	0.01	0.04	1.29	Clayey Silt with Sand
PRDI-20-SS	0.01	0.04	0.07	Clayey Silt
PRDI-21-SS	0.00	0.05	3.76	Silt with Sand and Organics
PRDI-22-SS	0.01	0.06	1.21	Sandy Silt with Clay
PRDI-23-SS	0.01	0.06	4.37	Silt with Sand and Organics
PRDI-24-SS	0.02	0.11	1.42	SM, Silty Sand

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 38 - Final COASTAL GEOLOGIC SERVICES, INC.

PRDI-25-SS	0.02	0.06	1.70	Sandy Silt with Clay
PRDI-26-SS	0.01	0.04	0.00	Clayey Silt with Sand
PRDI-27-SS	0.01	0.04	0.07	Clayey Silt with Sand
PRDI-28-SS	0.01	0.06	3.70	Silt with Sand and Organics
PRDI-29-SS	0.05	0.31	21.87	SM, Silty Sand with Gravel
PRDI-30-SS	0.02	0.14	3.11	SM, Silty Sand
PRDI-31-SS	0.01	0.06	4.07	Sandy Silt with Clay
PRDI-32-SS	0.01	0.04	0.07	Silty and Clay
PRDI-SS-100	0.35	27.87	65.78	GP, Poorly graded gravel and sand
PRDI-SS-101	0.14	3.35	48.93	SW-SC, Well-graded sand with silty clay and gravel
PRDI-SS-102	0.81	4.61	15.85	SP, Poorly graded sand with gravel
PRDI-SS-103	0.06	3.08	31.20	SM, Silty sand with gravel
PRDI-SS-104	0.08	1.99	26.86	SW-SC, Well-graded sand with silty clay and gravel
PRDI-SS-105	0.10	2.16	32.33	SW-SC, Well-graded sand with silty clay and gravel
PRDI-SS-106	0.11	6.72	40.22	GW-GC, Well-graded gravel with silty clay and sand

Figures 32-33 show the location and grain sizes, with the symbol size changing based on sediment size measured on the Wentworth scale (Wentworth, 1922). These maps illustrate that sediment sizes range from coarse sand to fine cobble in the intertidal transitioning to finer material offshore, however still retaining minor gravel at the surface. Below approximately -5 FT (NAVD88), the D50 surface grain sizes (which can be used as a proxy for mean grain size) were all sand sized or finer and were largely categorized as coarse silt with trace fine silt and gravel.

Comparing the core SARs to the D50 grain size shown in Figure 35, generally we see a trend that areas with finer surface grain sizes correspond to higher SARs. Finer surface grains sizes indicates that these sediments were deposited in lower energy environments than coarser grain sizes.

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 39 - Final COASTAL GEOLOGIC SERVICES, INC.

Figure 32. Surface sediment sample D10 grain size. Imagery Whatcom County 2019. Elevation source DEA 2021 in FT NAVD88.

Figure 33. Surface sediment sample D50 grain size. Imagery Whatcom County 2019. Elevation source DEA 2021 in FT NAVD88.

Pre-Remedial Design Investigation, SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment 9/28/2022, p. 40 - Final COASTAL GEOLOGIC SERVICES, INC.

Figure 34. Surface sediment sample D90 grain size. Imagery Whatcom County 2019. Elevation source DEA 2021 in FT NAVD88.

Figure 35. Surface sediment sample D50 grain size (mm) and sediment accumulation rates (cm/yr) from core data. Imagery Whatcom County 2019. Elevation source DEA 2021 in FT NAVD88.

Conclusions

The data presented in this report developed as part of the PRDI will be used to support the design of remedial actions to be performed at the Site. The information concerning site conditions, coastal processes, MetOcean conditions, geomorphology and historic seabed erosion and accretion will be used to evaluate the remedial actions that can be implemented in the shoreline, intertidal and subtidal areas of the marine portion of the Site. The information will also be used to model coastal conditions as a result of SLR at the Site.

Data collected and analyzed as part of this study have identified general erosion and accretion patterns at the site based on new and existing data. The shoreline and intertidal area exposed to marine forces are subject to erosion. This includes the entire intertidal shore which is almost completely armored with rock, concrete, bricks, and other debris. Data collected as part of the PRDI and abundant observational evidence indicates the erosional nature at these elevations. Historical filling along with Bay-wide installation of the railroad revetment has reduced littoral sediment transport in the intertidal area which has greatly limited littoral sediment transport (and input) to replenish beach features and elevations.

Wood waste, in the shallow subtidal in the southern portion of the Marine Unit was deposited many decades ago and the lack of sediment cover is indicative of erosion. These shallow subtidal elevations (0 to -5 FT or deeper) and intertidal beaches receive a moderate amount of wave energy as the causation for erosion. This erosional zone also appears to extend waterward into the shallow subtidal due to wave scour at low tide in combination with steeper slopes between -10 and -15 FT NAVD88 on the west shore. The potentially erosional area is interpreted to extend to as low as elevation -15 FT NAVD88 on the west shore of the site and to lesser depths (-5 to -7 FT NAVD88) on the northeast shore of the site, as shown in Figure 36.

Figure 36. Erosion and Accretion Areas, shown on top of surface sediment D50 grain size and sediment accumulation rate data.

Subtidal areas waterward and deeper than the erosional intertidal and shallow subtidal (described above) appear to be accreting sediment. This includes areas up to approximately -6 FT NAVD88 in the area near the railroad and the north end of the site where wave energy is much less than at the west shore. As described in the *MetOcean* section above, wave energy does not generally affect these depths and near-bottom current velocities are very low. Sediment core age data shows these deeper areas as generally having a SAR of 0.8 – 1.8 cm/yr. These areas may be suitable for natural recovery based on contamination levels.

References

- Easterbrook, D.J., 1976. Map Showing Engineering Characteristics of Geologic Materials, Western Whatcom County, Washington.
- General Engineering Laboratories, Burnett, W.C., 2022. Pb-210 Dating Report.
- GeoEngineers, 2020. Pre-Remedial Design Investigation Work Plan.
- Herrenkohl Consulting, LLC, Landau Associates, Inc., Reid Middleton, Inc., 2009. Final Report Focused Environmental Site Assessment - Boulevard Park Shoreline & Overwater Walkway Bellingham, WA.
- IPCC, 2019. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
- Jacobsen, E.E., 1980. Net Shore-drift of Whatcom County, Washington (Unpublished Masters). Western Washington University, Bellingham, WA.
- Jacobsen, E.E., Schwartz, M.L., 1981. The Use of Geomorphic Indicators to Determine the Direction of Net Shore-Drift. Shore and Beach 49, 38–43.
- Johnson, S.Y., 1984. Stratigraphy, age, and paleogeography of the Eocene Chuckanut Formation, northwest Washington. Can. J. Earth Sci. 21, 92–106. https://doi.org/10.1139/e84-010
- Landau Associates, Inc., GeoEngineers, 2019. Remedial Investigation and Feasibility Study Report South State Street Manufactured Gas Plant.
- Lapen, T., 2000. Geologic Map of the Bellingham 1:100,000 Quadrangle, Washington. Open File Report 2000-5.
- Lavin, P., Roop, H.A., Neff, P.D., Morgan, H., Cory, D., Correll, M., Kosara, R., Norheim, R., 2019. Interactive Washington State Sea Level Rise Data Visualizations. Prepared by the Climate Impacts Group, University of Washington, Seattle. Updated 7/20.
- MacLennan, A., Johannessen, J., 2008. Net Shore-drift QA/QC Methods for Puget Sound and the Northwest Straits, Prepared for the USACE and Puget Sound Nearshore Partnership under contract to Anchor Environmental LLC for integration in to the Puget Sound Change Analysis Geodatabase.
- Miller, I.M., Morgan, H., Mauger, G., Newton, T., Weldon, R., Schmidt, D., Welch, M., Grossman, E.E., 2018. Projected Sea Level Rise for Washington State - A 2018 Assessment. A collaboration of Washington Sea Grant, University of Washington Climate Impacts Group, University of Oregon, University of Washington, and US Geological Survey. Prepared for the Washington Coastal Resilience Project.
- Mustoe, G.E., 1982. The origin of honeycomb weathering. Geol Soc America Bull 93, 108. https://doi.org/10.1130/0016-7606(1982)93<108:TOOHW>2.0.CO;2
- Schwartz, M.L., Harp, B.D., Taggart, B.E., Crzastowski, M., 1991. Net shore-drift of Washington State. Washington Department of Ecology, Shorelands and Coastal Zone Management Program, Olympia, WA.

 Simenstad, C.A., Ramirez, M., Burke, J., Logsdon, M., Shipman, H., Tanner, C., Toft, J., Craig, B., Davis, C., Fung, J., Bloch, P., Fresh, K., Campbell, S., Myers, D., Iverson, E., Bailey, A., Schlenger, P., Kiblinger, C., Myre, P., Gerstel, W.I., MacLennan, A., 2011. Historical Change and Impairment of Puget Sound Shorelines: Atlas and Interpretation of Puget Sound Nearshore Ecosystem Restoration Project Change Analysis (Technical Report No. 2011–01). Washington Department of Fish and Wildlife, Olympia, WA, and US Army Corps of Engineers, Seattle, WA.

- USACE, 2002. Coastal Engineering Manual. Department of the Army.
- Wahl, T., 2009. Boulevard Park Structures & Shore Features, 1855-2009.
- WDOE, 2016. Washington State Coastal Atlas: Shoreline Photos.
- Wentworth, C.K., 1922. A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology 30, 377–392.
- Yang, Z., Garcia-Medina, G., Wu, W.C., Wang, T., Leung, L.R., Castrucci, L., Mauger, G.S., 2019. Modeling analysis of the swell and wind-sea climate in the Salish Sea. Estuarine, Coastal and Shelf Science, 224, 289–300. https://doi.org/10.1016/j.ecss.2019.04.043
- Yang, Z., Wang, T., Branch, R., Xiao, Z., Deb, M., 2021. Tidal stream energy resource characterization in the Salish Sea. Renewable Energy 172, 188–208. https://doi.org/10.1016/j.renene.2021.03.028

Attachments:

- Attachment A Core logs
- Attachment B Core Mosaics
- Attachment C MTC sediment size reports
- Attachment D GEL labs final report

Date Collected:9/16/2021 Logged By:JWJ + AFM Photos:332-0268-332-0287

COASTAL GEOLOGIC SERVICES 17/11 Ellis 51 suite 103 Bellinghom WA 98225 360-647-1845 coastalgeb.com

Depth cm bgs	Sample IDs	Depth cm bgs	Symbol	Description	Wet Weight (g)	Dry) Weight (g)
	PRDI-35-01: 0-4 cm PRDI-35-SC-06: 6 cm	0	X	*Possibly off by ~10cm because top of core was liquid Gray, saturated, fines, clay-silts, no wood waste, massive, trace organics	602.2	521.8
	PRDI-35-02: 9-11 cm	10		(leaf and twigs), with trace sand	189.0	147.0
24—	PRDI-35-03: 19-21 cm	20—		Trace barls	214.4	153.5
	PRDI-35-SC-28: 27-29 cm	30—		Trace Dark		
35—			Le se	Increased organics	1	
39—	PRDI-35-04: 39-41 cm	40			221.0	164.5
		50—		Shell with barnacles at 48 cm		
62—	PRDI-35-05: 59-61 cm	60		Clay-silt ~60%, sand ~20%, wood ~20%, wood splintery bark, not saw- dust	257.5	181.9
		70—				
80—	PRDI-35-06: 79-81 cm	80		Silt-clay ~40-50%, wood fragments	- 252.9	172.9
12.1				~50-60%		

Core #/ID: PRDI-36-SC Project Name: South State Street MGP Project Site: Boulevard Park Total Depth: 180 cm Date Collected: 9/16/2021 Logged By: JWJ + AFM Photos: 332-0288-332-0298

Depth cm bgs	Sample IDs	Depth cm bgs	Symbol	Description	Wet Weight (g)	Dry Weight (g)
8	PRDI-36-01: 0-8 cm*	0		*Possibly off by 5 cm or more at the top because of water at top of core barrel Wood chips ~15-20%, silt-clay ~60-75%, sand ~10-20%	349.3	255.1
5	PRDI-36-02: 9-11 cm PRDI-36-SC-13: 11-13cm	10		Fine wood fragments ~30-40%, silt-clay ~40-50%, sand ~10-20%	293.1	248.5
21—	PRDI-36-03: 19-21 cm	20—			338.2	262.7
		30—		Grades to more fine woody waste & organics Fine wood fragments ~50-60%, silt-clay ~30-40%, sand <10% Trace shell		
41	PRDI-36-04: 39-41 cm	40		•	372.0	281.5
		50—		Large woody waste, bark, splinters, misc. wood fragments Wood ~50-60%, silt-clay ~30-40%, sand <10-20% Trace shell		
	PRDI-36-05: 59-61 cm	60—			390.4	295.4
74		70—		Large wood fragment ~10 cm long @ 70cm		
14	PRDI-36-06: 79-81 cm	80—		Slightly finer wood waste Wood ~40-50%, silt-clay 30-40%, sand <10%, shell fragments ~5%	345.9	271.7
1			FAT	<u> </u>		

Page 2 of 3

Core #/J Project N Project S Total De	ID: PRDI-36-SC Name: South State St Site: Boulevard Park pth: 180 cm	reet MGP	Date Collected:9/16/2021 Logged By: JWJ + AFM Photos:332-0288-332-0298				
Depth cm bgs	Sample IDs	Depth cm bgs Symbo	Description	Wet Dry Weight (g) Weight (g)			
164—		160	Wood (splinters, no saw dust) ~80-90%, ~10% silt-clay, trace shell Core catcher had massive amount of wood at 180 cm (bottom)				

Page <u>3</u> of <u>3</u>

Core #/ Project I Project S Total De	ID: PRDI-38-SC Name: South State Str Site: Boulevard Park opth: 94 cm	eet MGP		Date Collected: 9/16/2021 Logged By: AFM +JJ Photos: 330-0223 - 330-0232	COASTAL GEOL 1711 Ellis 51 suite 103 360-647-1845	OGIC SERVICES Bellinghom WA 98225 coostalgee.com
Depth cm bgs	Sample IDs	Depth cm bgs	Symbol	Description	Wet Weight (g	Dry g) Weight (g)
	PRDI-38-01: 9-11cm	0		Wood chips ~60-70%, up to 1" long, coarse sand ~30-40%, trace silt and fine sand, no bedding Decreasing sand at depth	422.4	302.4
	PRDI-38-02: 19-21cm PRDI-38-SC-24: Grain size	20—			510.8	385.5
	PRDI-38-03: 39-41cm	30— 40—			424.4	308.7
		50—				
	PRDI-38-04 : 59-61cm	60—		Grades into more pure sawdust	404.1	287.3
68		70—		Sawdust ~50%, wood chips ~50%, trace sand and silt		
80		- 80		Sawdust >90% with trace sand and silt until bottom of core at 94cm		

Core #/I Project N Project S Total De	ID: PRDI-39-SC Vame: South State Stree Site: Boulevard Park pth: 154 cm	t MGP		Date Collected:9/16/2021 Logged By: JWJ + AFM Photos:331-0233-331-0255	COASTAL GEOLO 711 Ellis 51 suite 103 Be 360-647-1845	GIC SERVICES Hingham WA 98225 coastalgee.com
Depth cm bgs	Sample IDs	Depth cm bgs	Symbol	Description	Wet Weight (g)	Dry Weight (g)
	PRDI-39-01: 0-4 cm	0		Silt-clay ~30-40%, saw dust ~50%, wood chips ~10-20%	419.1	225.2
11—	_PRDI-39-02: 9-11 cm	, 10—		Silt-clay ~20%, saw dust ~40%, wood chips ~20-30%, trace shell 1 cm x 3 cm wood chips	266.6	179.6
	PRDI-39-03: 19-21 cm	20—		Whole bivalve shell	305.4	188.4
5.4		30—		Large wood chip 4 cm x 6 cm		
39—	PRDI-39-04: 39-41 cm	40—		Large wood chip, 3 cm x 5 cm Clay-sand ~20%, saw dust ~40-50%, wood chips ~30-40%, trace shell	243.8	155.2
		50—				
	PRDI-39-05: 59-61 cm	60—		Slightly more wood splinters, trace leaves, organics, and twig, slightly less shells	264.2	167.0
		70—				
	PRDI-39-06: 79-81 cm	80—			280.7	171.4

Date Collected:9/16/2021 Core #/ID: PRDI-39-SC Project Name: South State Street MGP Logged By: JWJ + AFM COASTAL GEOLOGIC SERVICES Project Site: Boulevard Park Photos:331-0233-331-0255 1711 Ellis St suite 103 Bellingham WA 98225 360-647-1845 coastalaeo.com Total Depth: 154 cm Depth Depth Wet Dry Sample IDs Symbol Description cm bgs Weight (g) Weight (g) cm bgs 80 Silt-clay ~40-50%, wood chips ~50-60%, trace shell and organics Splinters up to 10 cm long 90 PRDI-39-07: 100 353.7 272.1 99-101 cm 104. Silt-clay ~50-60%, wood chips ~40-50%, gradually no shells 110 120-128-Grades back into more wood 130 Silt-clay ~40%, wood chips 60% 135-Increasingly more wood Silt-clay 30-40%, 60-70% wood chips, PRDI-39-08: 140 trace shells 366.8 282.3 139-141 cm 150 160-

Page 2 of 2

Core #/ Project Project Total De	ID: PRDI-41-SC Name: South State Stre Site: Boulevard Park epth: 124 cm	eet MGP		Date Collected: 9/16/2021 Logged By: AFM +JWJ Photos: 331-0256 - 331-0267	COASTAL GEOLO 1711 Ellis 51 suite 103 B 360-647-1845	CIC SERVICES
Depth cm bgs	Sample IDs	Depth cm bgs	Symbol	Description	Wet Weight (g	Dry) Weight <mark>(</mark> g)
86	PRDI-41-06: 79-81cm PRDI-41-SC-S2: Shell at 82cm	80		Decreasing wood, clay-silt ~95%, splintery wood ~5%, mostly intact shell at 82 cm Silt-clay ~90%, ~5-10% pebbles with max	626. <mark>1</mark>	546.7
		90		size 1 x 2cm, trace shell fragments and wood Pebbles and sand increases at depth		
	PRDI-41-07: 99-101cm PRDI-41-SC-100: Grain size at 102-104cm	100-	A 000	PRDI-41-SC-100: Silt-clay ~80-90%, small gravels ~10-15%, trace fossils and wood	676.7	600.0
109		110		Increasing grain size, silt-clay ~60-70%, shell fragments ~5%. 30-40% fine sand-pebbles Very pebbly at base of core, pebbles up to 3/4" diameter with silt and clay, no wood		
124 —	PRDI-41-08: 119-121cm PRDI-41-SC-120: Grain size at 120-124cm Bottom of core	120—		visible Sandstone pebbles disintegrates easily, ~40% rock fragments Angular metamorphic rock, sub-angular, very hard. ~60% of rock fragments	716.5	678.1
		130				
		140—				
		150—				
		160—				

Client:	GeoEngineers	Date:	March 15, 2022
Address:	17425 NE Union Hill Rd., Suite 250	Project:	Q.C South State Street Preliminary Remedial Design Investigation
	Redmond, WA 98052	Project #:	21B288
Attn:	Neil Morton	Sample #:	B22-0201 - B22-0210
Revised on:		Date sampled:	September 14, 2021 & March 1, 2022

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
x	Sieve Analysis	See Attached Reports	Sulfate Soundness	
	Proctor	1	Bulk Density & Voids	
ŗ.	Sand Equivalent		WSDOT Degradation	
	Fracture Count	1 h	LA Abrasion	
	Moisture Content			
-	Specific Gravity, Coarse			
1	Specific Gravity, Fine			
X	Hydrometer Analysis	See Attached Reports		
	Atterberg Limits			
		- 11		
	1	B. U.		

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

Alex Effig

Respectfully Submitted, Alex Eifrig WABO Supervising Laboratory Technician

Project: Project #: Client: Source: Sample#:	Q.C South State S 21B288 GeoEngineers PRDI - SS - 100 B22-0201	treet Preliminary Remedial De	sign Investigation	Date Received: Sampled By: Date Tested: Tested By:	Unified GP, Poo Sample gray-bro	Unified Soil Classification System, ASTM-2487 GP, Poorly graded Gravel with Sand Sample Color: gray-brown			
			ASTM	D2216, ASTM D	2419, ASTM I	04318, ASTM D5	281		
	Specifications No Specs	Sample Meets Spe	ees ? N/A		Du	$\begin{array}{c} D_{(5)}= \ 0.109\\ D_{(10)}= \ 0.347\\ D_{(15)}= \ 0.970\\ D_{(30)}= \ 9.511\\ D_{(50)}= \ 27.874\\ D_{(60)}= \ 37.537\\ D_{(90)}= \ 65.776\\ \text{tot Ratio}= \ 16/51 \end{array}$	mm mm mm mm mm mm	% Gravel = 73.3% % Sand = 23.2% % Silt & Clay = 3.5% Liquid Limit = n/a Plasticity Index = n/a Sand Equivalent = n/a Fracture %, 1 Frace = n/a Fracture %, 2+Faces = n/a	$ \begin{array}{l} \mbox{Coeff} \ \mbox{of} Curvature, C_{C} = 6.95 \\ \mbox{Coeff} \ \ \mbox{of} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
			AS	TM C136, ASTM D	6913, ASTM C	117, ASTM D1140		and the state of the state	and the second second
		Actual Cumul:	Interpolated ative Cumulative					Grain Size Distribution	
Sieve	Size	Percent	Percent	Specs	Specs		5.64		89.88
US	Metric	Passing	Passing	Max	Min	10		**************************************	100.0%
12.00"	300.00		100%	100.0%	0.0%				
10.00"	250.00		100%	100.0%	0.0%		-		
8.00"	200.00		100%	100.0%	0.0%		~		
0.00"	100.00		100%	100.0%	0.0%		- E		
4.00	100.00	1008/	100%	100.0%	0.0%	8	×	╫╫┼┼┼╶╫╫┼┼┼╶╫╫┼┼┼╶	
3.00"	/5.00	100%	100%	100.0%	0.0%	1.			
2.50"	63.00	728/	8/%	100.0%	0.0%				
2.00	00.00	/3%	/3%	100.0%	0.0%	70	78.		70.0%
1.75	43.00		0876	100.0%	0.0%				
1.30	21.50		549/	100.0%	0.0%	0			
1.00"	25.00	479/	17%	100.0%	0.0%				
3/4"	19.00	30%	30%	100.0%	0.0%	1			
5/8"	16.00	3376	36%	100.0%	0.0%	R 5	×.	·******	Store &
1/2"	12.50	32%	32%	100.0%	0.0%				
3/8"	9.50	30%	30%	100.0%	0.0%				
1/4"	6.30		28%	100.0%	0.0%				
#4	4.75	27%	27%	100.0%	0.0%				
#8	2.36		23%	100.0%	0.0%	34	28		30.0%
#10	2.00	22%	22%	100.0%	0.0%		E		
#16	1.18		16%	100.0%	0.0%		-11		
#20	0.850		14%	100.0%	0.0%				30.8
#30	0.600		12%	100.0%	0.0%		E		
#40	0.425	11%	11%	100.0%	0.0%	10	18.		10.0%
#50	0.300		9%	100.0%	0.0%				
#60	0.250		8%	100.0%	0.0%		11		
#80	0.180		7%	100.0%	0.0%		100	1,000 10,000 1,000	0.100 0.010 0.001
#100	0.150	7%	7%	100.0%	0.0%				
#140	0.106		5%	100.0%	0.0%			Porticite Size (mm)	
#170	0.090		4%	100.0%	0.0%	1			
#200	0.075	3.5%	3.5%	100.0%	0.0%	5ies	ver Sizzes		pecs Seve Really
Copyright	Spears Engineering & Technical Se	mices PS, 1996-98	ALC: NOT A	and the second second	and the second second		_		

Alex Efrig

Assumed Sp Gr : Sample Weight: Hydrosconic Moist.:	ASTM D422, HYDE 2.70	OMETER ANALVEL					
Assumed Sp Gr : Sample Weight: Ivdroscopic Moist.:	2.70	UMETER ANALISI	S		2 21	ASTM	C136
Adj. Sample Wgt : Hydrometer Reading Minutes 2 5 15 30 60 250 1440 % Gravel: % Sand: % Silt: % Clay:	99,94 2,08% 97,90 Corrected Reading 6 5,5 5,5 5,5 5,5 3 1 73,3% 23,2% 2,7% 0,9%	grams grams Percent Passing 1.3% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2	Soils Particle Diameter 0.0372 mm 0.0137 mm 0.0037 mm 0.0068 mm 0.0034 mm 0.0014 mm 9.0014 mm quid Limit: n/a sstic Limit: n/a	CORRECTED Lettificate #: 1500.01	Sieve Size 3.0" 1.5" 1.25" 1.0" 3/4" 5/8" 1/2" 3/8" 1/4" #4 #10 #20 #40 #100 #200 Silts	Sieve An. Grain Size Di Percent Passing 100% 100% 73% 60% 54% 36% 32% 36% 32% 36% 32% 22% 22% 14% 11% 7% 3.5% 3.5% 3.5% 2.1% 2.1% 2.1%	alysis stribution Soils Particle Diameter 75.000 mm 37.500 mm 31.500 mm 25.000 mm 12.500 mm 12.500 mm 9.500 mm 6.300 mm 4.750 mm 0.850 mm 0.425 mm 0.425 mm 0.075 mm 0.075 mm 0.074 mm 0.020 mm
	USDA Soil Tex	tural Classification			Colloids	0.2%	0.001 mm
% Sand: % Silt: % Clay:		Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm < 0.002 mm					

All recal approval to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclu apply only to m or regarding our reports is reserved pend

Comments:

Reviewed by:

alex Eifrig

Project: Project #: Client: Source: Sample#:	Q.C South State Sta 21B288 GeoEngineers PRDI - SS - 101 B22-0202	reet Preliminary Remedial Desig	n Investigation	Date Received: Sampled By: Date Tested: Tested By:	3-Mar-22 Other 14-Mar-22 K. Mendez	Unifier SW-SC Sampl gray-br	d Soil C C, Well-g e Color: rown	B7 iravel	
			ASTM	D2216, ASTM D	2419, ASTM I	04318, ASTM D	5281		
	Specifications No Specs	Sample Meets Specs	? N/A		Du	$\begin{array}{c} D_{(5)}=0.073\\ D_{(10)}=0.136\\ D_{(15)}=0.301\\ D_{(30)}=1.174\\ D_{(50)}=3.349\\ D_{(60)}=7.485\\ D_{(90)}=48.931\\ \text{st Ratio}=23/81 \end{array}$	mm mm mm mm mm mm	% Gravel = 42.8% % Sand = 52.1% % Silt & Clay = 5.2% Liquid Limit = n/a Plasticity Index = n/a Sand Equivalent = n/a Fracture %, 1 Face = n/a Fracture %, 2+ Faces = n/a	Coeff. of Curvature, C ₀ = 1.3 Coeff. of Uniformity, C ₀ = 55. Fineness Modulus = 4.9 Plastic Limit = n/a Moisture %, as sampled = n/a Req'd Sand Equivalent = Req'd Fracture %, 1 Face = Req'd Fracture %, 2+ Faces =
			AS	TM C136, ASTM E	06913, ASTM C	117, ASTM DI14)		
		Cumulativ	e Cumulative		_			Grain Size Distribution	
Sieve	Size	Percent	Percent	Specs	Specs		266	ANNE	8 88 89
US	Metric	Passing	Passing	Max	Min			······································	100.0%
12.00"	300.00		100%	100.0%	0.0%				
10.00"	250.00		100%	100.0%	0.0%		-		
8.00	200.00		100%	100.0%	0.0%				
0.00"	100.00		100%	100.0%	0.0%		E		1 100111 1 100111 1 3
4.00	75.00	100%	100%	100.0%	0.0%		808.		
3.00	62.00	100%	059/	100.0%	0.0%		E I		
2.00"	50.00	019/	019/	100.0%	0.0%			- HILLIN - HILLI - HILLI	
1.75"	15.00	9176	21/6	100.0%	0.0%		708		70.0%
1.50"	37.50		939/	100.0%	0.0%				
1.25"	31.50		80%	100.0%	0.0%		308		1005
1.00"	25.00	76%	76%	100.0%	0.0%	0			
3/4"	19.00	69%	69%	100.0%	0.0%	10			
5/8"	16.00		67%	100.0%	0.0%		508		50.08
1/2"	12.50	64%	64%	100.0%	0.0%				
3/8"	9.50	62%	62%	100.0%	0.0%		105	NO	40.0%
1/4"	6.30		59%	100.0%	0.0%				
#4	4.75	57%	57%	100.0%	0.0%				
#8	2.36		45%	100.0%	0.0%		308.		
#10	2.00	43%	43%	100.0%	0.0%				
#16	1.18		30%	100.0%	0.0%		205		
#20	0.850		25%	100.0%	0.0%				
#30	0.600		21%	100.0%	0.0%				
#40	0.425	18%	18%	100.0%	0.0%	4	108.	╶╫╫╪┊┊╪╴╴╢╫╞┼╡╶┠╶╌╢╢┼╞╶┟	10.05
#50	0.300		15%	100.0%	0.0%		E		
#60	0.250		14%	100.0%	0.0%		-		
#80	0.180	1000	12%	100.0%	0.0%		10	00.000 10.000 1.000	0.100 0.010 0.001
¥100	0.150	11%	11%	100.0%	0.0%				
¥140	0.106		8%	100.0%	0.0%			Porticite Size (mm)	
#170	0.090		6%	100.0%	0.0%				
#200	0.075	5.2%	5.2%	100.0%	0.0%	+ 9	ever Sizes		n Speca Sleve Results
Copyright	Spears Engineering & Technical Serv	nices PS, 1996-98			and the second		_		

Alex Efrig

Project: Project #: Client : Source: Sample#:	Q.C South State 21B288 GeoEngineers PRDI - SS - 101 B22-0202	e Street Preliminary Remed	ial Design Investigation	Date Recei Sampled Date Te Tested	ved: 3-Mar-22 By: Other sted: 14-Mar-22 By: K. Mendez	Unified Soil Cl SW-SC, Well-g Sample Color gray-brown	assification Syste graded Sand with S	m, ASTM-2487 Silty Clay and Gravel
a la martin de la composition	A	ASTM D422, HYDROM	ETER ANALYSIS			1	ASTM	C136
Assumed Sp Gr : Sample Weight: Hydroscopic Moist.: Adj. Sample Wgt : Hydrometer Reading Minutes 2 5 15 30 60 250 1440 % Gravel: % Sand: % Silt: % Silt: % Clay:		2.70 100.30 2.51% 97.84 Corrected Reading 6 5.5 5 4.5 4.5 4.5 3 2 4.2.8% 52.1% 3.5% 1.6%	grams grams Percent Passing 2.6% 2.4% 2.2% 2.0% 2.0% 1.3% 0.9% Liqui Plasticit	Soils Particle Diameter 0.0372 mm 0.0237 mm 0.0137 mm 0.0059 mm 0.0059 mm 0.0054 mm 0.0014 mm d Limit: n/a c Limit: n/a y Index: n/a	ACCREDITE Lettificate #: 1306.01	Sieve Size 3.0" 1.5" 1.25" 1.0" 3/4" 5/8" 1/2" 3/8" 1/4" #10 #10 #100 #100 #200 Silts	Sieve An Grain Size Di Percent Passing 100% 91% 83% 60% 67% 64% 66% 67% 64% 62% 59% 62% 59% 43% 25% 18% 11% 5.2% 5.1% 5.1% 5.1% 5.1%	alysis istribution Soils Particle Diameter 75.000 mm 37.500 mm 31.500 mm 25.000 mm 19.000 mm 16.000 mm 12.500 mm 6.300 mm 4.750 mm 0.850 mm 0.425 mm 0.075 mm 0.075 mm 0.074 mm 0.020 mm
% Sand: % Silt:	_	USDA Soil Textura	l Classification Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm		_	Clays Colloids	1.6% 1.0% 0.6%	0.005 mm 0.002 mm 0.001 mm
% Clay:		USDA Soil Textura	< 0.002 mm l Classification Sand					

All recal approval to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publi apply only to cation of state n or regarding our reports is reserved pen

Comments:

Reviewed by:

alex Eifrig

Project: Project #: Client: Source: Sample#:	Q.C South State Stre 21B288 GeoEngineers PRDI - SS - 102 B22-0203	eet Preliminary Remedial Design	Investigation	Date Received: Sampled By: Date Tested: Tested By:	3-Mar-22 Other 14-Mar-22 K. Mendez	Unifie SP, Po Sampl gray-br	d Soil C orly grad e Color: rown	ACCREDITED Certificate #: 1360	
			ASTM	D2216, ASTM D	2419, ASTM I	04318, ASTM D	5281	Charles and a share	
2	Specifications No Specs Sample Meets Specs ? N/A			Du	$\begin{array}{l} D_{(3)}=0.466\\ D_{(10)}=0.806\\ D_{(13)}=1.145\\ D_{(30)}=2.282\\ D_{(50)}=4.613\\ D_{(60)}=6.617\\ D_{(50)}=15.845\\ \mathrm{stRatio}=11/26 \end{array}$	mm mn mn mn mn mn mn	% Gravel = 48.8% % Sand = 49.3% % Sit & Clay = 1.9% Liquid Limit = n/a Plasticity Index = n/a Sand Equivalent = n/a Fracture %, 1 Face = n/a	Coeff of Curvature, C _C = 0.98 Coeff of Uniformity, C _U = 8.21 Fineness Modulus = 5.18 Plastic Limit = n/a Moisture %, as sampled = n/a Req'd Sand Equivalent = Req'd Fracture %, 1 Face = Req'd Fracture %, 2+ Faces =	
			AS	TM C136, ASTM D	6913, ASTM C	117, ASTM DI14)		
		Actual	Cumulative					Grain Size Distribution	
Sie	Size	Paraant	Danaant	Smaar	Space			2 2 4	P2 22
TIS	Matria	Passing	Passing	Max	Min		266	THE NELL YE REPORT	
12.00"	300.00	A HOVANG	100%	100.0%	0.0%		t		HOUX -
10.00"	250.00		100%	100.0%	0.0%				
8.00"	200.00		100%	100.0%	0.0%		90%		90.0%
5.00"	150.00		100%	100.0%	0.0%				
.00"	100.00		100%	100.0%	0.0%				
8.00"	75.00		100%	100.0%	0.0%		80%		
2.50"	63.00		100%	100.0%	0.0%				
2.00"	50.00	100%	100%	100.0%	0.0%		705		70.0%
.75"	45.00	11 m	100%	100.0%	0.0%			10000 I NUMBER 1	
.50"	37.50	and the second sec	100%	100.0%	0.0%				
1.25"	31.50		100%	100.0%	0.0%	1 m m	2008	╶╫╫┼┼┼╴╢╠╢┼┼┼	
1.00"	25.00	100%	100%	100.0%	0.0%	2	E		2
3/4"	19.00	96%	96%	100.0%	0.0%	2	-		
5/8"	16.00		90%	100.0%	0.0%		- 1		
1/2"	12.50	83%	83%	100.0%	0.0%		E		
3/8"	9.50	74%	74%	100.0%	0.0%		408	╶╫╫┼┼┼╴╫╫┼╿┫╶┼╴╴╢╢┼╎┼┼	
L/4"	6.30		59%	100.0%	0.0%				
#4	4.75	51%	51%	100.0%	0.0%	1.			
#8	2.36	Carta Inc. 197	31%	100.0%	0.0%		305		30.0%
¥10	2.00	28%	28%	100.0%	0.0%				
#16	1.18		16%	100.0%	0.0%	and the second	205		
ŧ20	0.850		11%	100.0%	0.0%				
¥30	0.600		7%	100.0%	0.0%				
#40	0.425	4%	4%	100.0%	0.0%	4	10%	- <u> </u>	10.0%
#50	0.300		4%	100.0%	0.0%			News 1	
#60	0.250		4%	100.0%	0.0%		on the		***
#80	0.180		4%	100.0%	0.0%		10	00.000 10.000 1.000	0.100 0.010 0.001
#100	0.150	4%	4%	100.0%	0.0%			Broth-In Tim Invest	
140	0.106		3%	100.0%	0.0%			Paracae see grang	
#170	0.090	1.000	2%	100.0%	0.0%				
200	0.075	1.9%	1.9%	100.0%	0.0%	s	ever Sizes	Max Specs Min Sp	acs Save Reasts
Copyright	Spears Engineering & Technical Servic	545 PS, 1990-98					-		

Alex Efrig

Project: Q.C Sc Project #: 21B288 Client : GeoEng Source: PRDI - S Sample#: B22-020	outh State Street Preliminary Re ineers 58 - 102 3	medial Design Investigatio	Date Received: 3-Mar Sampled By: Other Date Tested: 14-Ma Tested By: K. Me	-22 Unified Soil Cl SP, Poorly grad ar-22 Sample Color ndez gray-brown	assification Syste ed Sand with Gra	em, ASTM-2487 vel
Ale and the second	ASTM D422, HYDR	OMETER ANALYSI	S	2	ASTM	C136
Assumed Sp Gr : Sample Weight: Hydroscopic Moist.: Adj. Sample Wgt : Hydrometer Reading Minutes 2 5 15 30 60 250 1440 % Gravel: % Sand: % Silt: % Clay:	2.70 100.12 2.65% 97.54 Corrected Reading 3 2.5 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	grams grams Percent Passing 0.8% 0.7% 0.6% 0.6% 0.3% 0.3% 0.3% 0.3% 1.Liq Plasti	Sods Particle Diameter 0.0378 mm 0.0240 mm 0.0139 mm 0.0038 mm 0.0070 mm 0.0034 mm 0.0014 mm 0.0014 mm estic Limit: n/a stic Limit: n/a	Sieve Size 3.0" 1.5" 1.25" 1.0" 3.4" 5/8" 1/2" 3.8" 1/4" 44 #10 #20 #40 #100 #200 Silts Clays	Sieve An Grain Size D Percent Passing 100% 100% 100% 100% 90% 90% 90% 90% 83% 74% 59% 51% 28% 11% 4% 4% 1.9% 1.8% 1.2% 0.6% 0.3%	alysis istribution Soils Particle Diameter 75.000 mm 30.000 mm 31.500 mm 25.000 mm 19.000 mm 10.000 mm 10.000 mm 4.750 mm 0.300 mm 0.425 mm 0.425 mm 0.150 mm 0.075 mm 0.075 mm 0.076 mm 0.075 mm
	USDA Soil Text	ural Classification				
% Sand: % Silt: % Clay:	USDA Soil Text	Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm < 0.002 mm ural Classification Sand				

All recal approval to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclu apply only to m or regarding our reports is reserved pend

Comments:

Reviewed by:

alex Eifrig

No Specification: No Spec: No Specification: Sample Mest: Spect ? N/A Dog = 0.058 No Specification: Dog = 0.057 Some Specification: Dog = 0.057 Control Specification: Dog = 0.055 Control Specification: Dog = 0.055 Control Specification: Dog = 0.000 Control Spec	C South State Str B288 oEngineers DI - SS - 103 2-0204	eet Preliminary Remedial D	esign Investigation	Date Received: Sampled By: Date Tested: Tested By:	3-Mar-22 Other 14-Mar-22 K. Mendez	Unified SM, Sil Sample gray-br	l Soil C hy Sand e Color: own	lassification System, AST <mark>M</mark> -2487 l with Gravel :	ACCREDITE Certificate #: 136
Specification: No Spec: No construction of the set of the			ASTM	D2216, ASTM D	2419, ASTM I	04318, ASTM D:	5281	100 C	
Astructic Astru Dolla, Astru Clif, Astru Clif, Astru Dilde Cumulative Cumulative Cumulative Parsing Nax Na Netric Parsing Nax Na 1200" 300.00 Cumulative Parsing Nax Na Na Cumulative Parsing Nax Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Spect Spect Na Na Na Na Na Na Na Na	ecifications Specs	Sample Meets Specs ? N/A		<u>D</u>		$\begin{array}{l} D_{(5)}=\ 0.038\\ D_{(10)}=\ 0.056\\ D_{(15)}=\ 0.074\\ D_{(30)}=\ 0.387\\ D_{(50)}=\ 3.075\\ D_{(50)}=\ 3.075\\ D_{(50)}=\ 3.1199\\ \text{st Ratio}=\ 1/2 \end{array}$	mm mm mm mm mm mm	% Gravel = 38.0% % Sand = 46.7% % Silt & Clay = 15.3% Liquid Limit = n/a Plasticity Index = n/a Sand Equivalent = n/a Fracture %, 1 Face = n/a	Coeff. of Curvature, C _C = 0 & Coeff. of Uniformity, C _U = 79 Fineness Modulus = 4.1 Plastic Limit = n/a Moisture %, as sampled = µ/a Req'd Sand Equivalent = Req'd Fracture %, 1 Face = Req'd Fracture %, 2+ Faces =
Actual interpolated Cumulative Cumulative Cumulative Cumulative Cumulative Spece Spece Spece			AS	TM C136, ASTM I	06913, A5TM C	117, ASTM D1140		and the second second second	and the second second
Sizer Size Percent Spect		Actual	Interpolated lative Cumulative					Grain Size Distribution	
US Metric Passing Max Min 12.00° 300.00 100% 100.0% 0.00% 0.0% 8.00° 250.00 100% 100.0% 0.0% 0.0% 6.00° 150.00 100% 100.0% 0.0% 0.0% 4.00° 150.00 100% 100.0% 0.0% 0.0% 3.00° 75.00 100% 100.0% 0.0% 0.0% 2.00° 50.00 100% 100.0% 0.0% 0.0% 2.00° 50.00 100% 100.0% 0.0% 0.0% 1.35° 37.50 53% 100.0% 0.0% 0.0% 1.00° 25.00 87% 87% 100.0% 0.0% 3.4" 19.00 81% 77% 100.0% 0.0% 3.4" 19.00 73% 100.0% 0.0% 0.0% 3.6% 0.5% 0.5% 0.0% 0.5% 0.5% 3.6% 0.2%	Part of the second s	Percent	Percent	Specs	Specs		5.64		89.28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Metric	Passing	Passing	Max	Min	70		· · · · · · · · · · · · · · · · · · ·	100.0%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	300.00		100%	100.0%	0.0%				
0.00 200.00 100.00 100.05 100.05 0.05 0.00 100.00 100.05 100.05 0.05 0.05 0.00 100.05 100.05 0.05 0.05 2.00 50.00 100.55 100.55 0.05 2.00 50.00 100.55 100.55 0.05 2.00 50.00 100.55 100.55 0.05 1.57 31.50 93.5 100.05 0.05 1.00 25.00 87.5 87.5 100.05 0.05 1.00 25.00 87.5 87.5 100.05 0.05 1.27 31.50 93.5 100.05 0.05 0.05 1.27 12.50 73.54 73.5 100.05 0.05 58" 1600 75.6 65% 100.05 0.05 1/4" 6.30 69% 100.05 0.05 #4 4.75 62% 65% 100.05 0.05 #40 0.425 31% 100.05 0.05 #40 0.425 31% 100.05 0.05 #50 0.300 25% 100.05 0.05 #60 0.180 25%	230.00		100%	100.0%	0.0%		-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	150.00		100%	100.0%	0.0%				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100.00		100%	100.0%	0.0%	100 100			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	75.00		100%	100.0%	0.0%		90%		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	63.00		100%	100.0%	0.0%	1.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.00	100%	100%	100.0%	0.0%				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45.00	10078	07%	100.0%	0.0%	,	108		70.0%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	37.50		03%	100.0%	0.0%			NULL NULL NULL	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.50		00%	100.0%	0.0%		108		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.00	87%	87%	100.0%	0.0%				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.00	81%	81%	100.0%	0.0%	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.00	0170	77%	100.0%	0.0%	P 5	908.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 50	73%	73%	100.0%	0.0%				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.50	69%	69%	100.0%	0.0%		105		40.0%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.30		64%	100.0%	0.0%				
#8 2.36 43% 100.0% 0.0% #10 2.00 42% 43% 100.0% 0.0% #16 1.18 36% 100.0% 0.0% #20 0.850 34% 100.0% 0.0% #30 0.600 32% 100.0% 0.0% #40 0.425 31% 31% 100.0% 0.0% #80 0.300 25% 100.0% 0.0% 0.0% #80 0.180 25% 100.0% 0.0% 0.0% #100 0.150 25% 100.0% 0.0% 10% #140 0.106 19% 100.0% 0.0% 10% #140 0.106 19% 100.0% 0.0% 10% #140 0.106 19% 100.0% 0.0% 10%	4.75	62%	62%	100.0%	0.0%				
#10 2.00 42% 100.0% 0.0% #16 1.18 36% 100.0% 0.0% #20 0.850 34% 100.0% 0.0% #30 0.600 32% 100.0% 0.0% #40 0.425 31% 31% 0.0% 0.0% #50 0.300 27% 100.0% 0.0% 0.0% #60 0.250 27% 100.0% 0.0% 0.0% #80 0.180 25% 100.0% 0.0% 0.0% #100 0.150 25% 100.0% 0.0% 0.0% #140 0.106 19% 100.0% 0.0% 4.0% #170 0.090 17% 100.0% 0.0% 4.0%	2.36		45%	100.0%	0.0%	3	308.		
#16 1.18 36% 100.0% 0.0% 0.0% #20 0.850 34% 100.0% 0.0% 0.0% #30 0.600 33% 100.0% 0.0% 0.0% #40 0.425 31% 31% 100.0% 0.0% 0.0% #50 0.300 25% 100.0% 0.0% 0.0% 0.0% #60 0.250 27% 100.0% 0.0% 0.0% 0.0% #100 0.150 25% 25% 100.0% 0.0% 0.0% #140 0.106 19% 100.0% 0.0% Fatisa Sae prey #170 0.009 0.0% 0.0% Fatisa Sae prey	2.00	42%	42%	100.0%	0.0%				
#20 0.850 34% 100.0% 0.0% #30 0.600 32% 100.0% 0.0% #40 0.425 31% 31% 100.0% 0.0% #50 0.300 28% 100.0% 0.0% 0.0% #60 0.250 27% 100.0% 0.0% 0.0% #80 0.180 25% 100.0% 0.0% 0.0% #100 0.150 25% 25% 100.0% 0.0% 0.0% #140 0.106 19% 100.0% 0.0% Factors Sar prot #170 0.000 10% 0.0% 0.0% Factors Sar prot	1.18		36%	100.0%	0.0%		2015		A mar
#30 0.600 32% 100.0% 0.0% #40 0.425 31% 31% 100.0% 0.0% #50 0.300 28% 100.0% 0.0% 0.0% #60 0.250 27% 100.0% 0.0% 0.0% #80 0.180 25% 100.0% 0.0% 0.0% #100 0.150 25% 100.0% 0.0% 0.0% #140 0.106 19% 100.0% 0.0% # #170 0.090 17% 100.0% 0.0% #	0.850		34%	100.0%	0.0%				
#40 0.425 31% 31% 100.0% 0.0% #50 0.300 28% 100.0% 0.0% #60 0.250 27% 100.0% 0.0% #80 0.180 25% 100.0% 0.0% #100 0.150 25% 25% 100.0% 0.0% #170 0.060 17% 100.0% 0.0% Particip Size (not) #170 0.095 0.0% 0% Particip Size (not) 0.010	0.600		32%	100.0%	0.0%				ĥ.
#50 0.300 28% 100.0% 0.0% #60 0.250 27% 100.0% 0.0% #80 0.180 25% 100.0% 0.0% #100 0.150 25% 100.0% 0.0% #140 0.106 19% 100.0% 0.0% #170 0.096 0.0% Fatica Ske pret	0.425	31%	31%	100.0%	0.0%	a	108.	╶╫╫┾┊┊╪╴╴╢╢╞┼╡╶╴╶╢╢┼╡┾╶╡	10.0%
#60 0.250 27% 100.0% 0.0% #80 0.180 25% 100.0% 0.0% #100 0.150 25% 100.0% 0.0% #140 0.106 19% 100.0% 0.0% #170 0.066 17% 100.0% 0.0%	0.300		28%	100.0%	0.0%		E		
#80 0.180 25% 100.0% 0.0% 00.0% 100.000 1000 1000 0.0	0.250		27%	100.0%	0.0%		- Har		
#100 0.150 25% 25% 100.0% 0.0% #140 0.106 19% 100.0% 0.0% #170 0.090 17% 100.0% 0.0%	0.180		25%	100.0%	0.0%		10000	000.00 000.00 000.00	0.100 0.010 0.001
#140 0.106 19% 100.0% 0.0% Porticip Saw (new)	0.150	25%	25%	100.0%	0.0%				
#170 0.090 17% 100.0% 0.0%	0.106		19%	100.0%	0.0%			Particite Size (mm)	
	0.090		17%	100.0%	0.0%	1			
#200 0.075 15.3% 15.3% 100.0% + Save State:	0.075	15.3%	15.3%	100.0%	0.0%	+ Se	ever Sizes		Seve Results

Alex Efrig

Project: Q.C Sc Project #: 21B288 Client : GeoEng Source: PRDI - S Sample#: B22-020	outh State Street Preliminary Re ineers SS - 103 14	medial Design Investigati	on Date Recei Sampled Date Tes Tested	ved: 3-Mar-22 By: Other ted: 14-Mar-22 By: K. Mendez	Unified Soil Cl SM, Silty Sand Sample Color gray-brown	assification Syste with Gravel	em, ASTM-2487
an and the second	ASTM D422, HYDR	OMETER ANALYS	S		201	ASTM	C136
Assumed Sp Gr : Sample Weight: Hydroscopic Moist.: Adj. Sample Wgt : Hydrometer Reading Minutes 2 5 15 30 60 250 1440 % Gravel: % Sand: % Silt: % Clay:	2.70 100.60 31.04% 76.77 Corrected Reading 8.5 8 8 7.5 5.5 5 3 38.0% 46.7% 12.5% 2.9%	grams grams Percent Passing 4.6% 4.4% 4.4% 4.4% 4.4% 4.4% 4.1% 3.0% 2.7% 1.6% Li Plast	Soils Particle Diameter 0.0368 mm 0.0134 mm 0.0036 mm 0.0068 mm 0.0068 mm 0.0033 mm 0.0014 mm 0.0014 mm quid Limit: n/a astic Limit: n/a	ACCREDITED LeftIRCate #: 1350.01	Sieve Size 3.0" 2.0" 1.5" 1.25" 1.0" 3/4" 5/8" 1/2" 3/8" 1/4" #4 #10 #200 #40 #100 #200 Silts	Sieve An Grain Size Di Percent Passing 100% 100% 93% 90% 81% 77% 73% 69% 64% 62% 64% 62% 42% 34% 31% 25% 15.3% 15.1% 8.3% 4.4% 2.9%	alysis stribution Soils Particle Diameter 75.000 mm 37.500 mm 37.500 mm 25.000 mm 19.000 mm 16.000 mm 6.300 mm 6.300 mm 0.850 mm 0.425 mm 0.150 mm 0.074 mm 0.074 mm 0.050 mm 0.050 mm
	USDA Soil Text	ural Classification	_		Colloids	2.0% 1.2%	0.002 mm 0.001 mm
% Sand: % Silt: % Clay:		Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm < 0.002 mm			1		
	USDA Soil Text	ural Classification Loamy Sand					

All wealts apply only to actual locations and materials tended. As a mutual protections to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and sutherination for publication of statements, conclusions or estructs from or regording our reports is reserved pending our written approval.

Comments:

-

alex Eifrig Reviewed by:

Project: Project #: Client: Source: Sample#:	Q.C South State Stre 21B288 GeoEngineers PRDI - SS - 104 B22-0205	eet Preliminary Remedial D	esign Investigation	Date Received: Sampled By: Date Tested: Tested By:	3-Mar-22 Other 14-Mar-22 K. Mendez	Unified Soil Classification System, ASTM-2487 SW-SC, Well-graded Sand with Silty Clay and Grav Sample Color: gray-brown					AC	CREDITED
-			ASTM	D2216, ASTM D	2419, ASTM I	04318, ASTM D	5281					
	Specifications No Specs Sample Meets Specs ? N/A		Specs ? N/A		Du	$\begin{array}{l} D_{(5)}=0.045\\ D_{(10)}=0.075\\ D_{(15)}=0.133\\ D_{(30)}=0.804\\ D_{(50)}=1.990\\ D_{(60)}=3.483\\ D_{(90)}=26.857\\ \text{st Ratio}=23/54 \end{array}$		% % Silt Liquin Plasticity Sand Equ Fracture %, Fracture %, 2-4	Gravel = 31.6% & Sand = 58.3% & Clay = 10.1% I Limit = n/a / Index = n/a ivalent = n/a I Face = n/a - Faces = n/a	Coeff Coeff Moist Req Req'd I Req'd Fra	f. of Curvati of Uniform Fineness M Plastic ture %, as sa 'd Sand Equ Fracture %, 2+	rre, C _C = 2.48 ity, C _U = 46.6 odulus = 4.23 : Limit = n/a impled = n/a ivalent = 1 Face = -Faces =
			AS	TM C136, ASTM I	06913, ASTM C	17, ASTM D1140						
_		Actual	lative Cumulative		_			Grain Size Did	ribution			
Sieve	Size	Percent	Percent	Specs	Specs	1.	266	46 NA. 5 842	28 28 8 9 88	89 89		
US	Metric	Passing	Passing	Max	Min	3		111 CT + 1 + 1 + 1	***			100.0%
12.00"	300.00		100%	100.0%	0.0%							1
8.00"	230.00		100%	100.0%	0.0%		100					90.0%
6.00"	150.00		100%	100.0%	0.0%							1
4.00"	100.00		100%	100.0%	0.0%							1.4
3.00"	75.00		100%	100.0%	0.0%		90%					80.0%
2.50"	63.00		100%	100.0%	0.0%	1.	E					1
2.00"	50.00	100%	100%	100.0%	0.0%		-	IIIIII NI				1
1.75"	45.00	10070	98%	100.0%	0.0%							10,0%
1.50"	37.50		95%	100.0%	0.0%							11
1.25"	31 50		92%	100.0%	0.0%	1L. G	108					50.0%
1.00"	25.00	89%	89%	100.0%	0.0%	9			λ			9
3/4"	19.00	82%	82%	100.0%	0.0%	1						1 1
5/8"	16.00		79%	100.0%	0.0%		50%					50.0% #
1/2"	12.50	77%	77%	100.0%	0.0%							
3/8"	9.50	74%	74%	100.0%	0.0%		105.					40.0%
1/4"	6.30		70%	100.0%	0.0%							
#4	4.75	68%	68%	100.0%	0.0%				N			1.4
#8	2.36		53%	100.0%	0.0%	4	308					30.0%
#10	2.00	50%	50%	100.0%	0.0%							
#16	1.18		36%	100.0%	0.0%		205		N.			31.0%
#20	0.850		31%	100.0%	0.0%							
#30	0.600		27%	100.0%	0.0%					N		
#40	0.425	24%	24%	100.0%	0.0%	9	10%	****				10.0%
#50	0.300		20%	100.0%	0.0%		1					
#60	0.250		19%	100.0%	0.0%		-	باللليا ومحمل والملكان				* Same
#80	0.180		17%	100.0%	0.0%		100	10.000	1.000	0.100	0.010	0.001
#100	0.150	16%	16%	100.0%	0.0%				Ches Arrest			
#140	0.106		13%	100.0%	0.0%			Partici	a real fund			
#170	0.090	10.10	11%	100.0%	0.0%	1			100 101		-	
#200	0.075	10.1%	10.1%	100.0%	0.0%	+ 94	ever Sizes	Max Specs	- Min S	pecs -	Slove Reud	N .

Alex Efrig

Project: Project #: Client : Source: Sample#:	Q.C South State 21B288 GeoEngineers PRDI - SS - 104 B22-0205	Street Preliminary Rer	nedial Design Investigation	Date Recei Sampled Date Tes Tested	ved: 3-Mar-22 By: Other sted: 14-Mar-22 By: K. Mendez	Unified Soil Cl SW-SC, Well-g Sample Color gray-brown	assification Syste graded Sand with S	em, ASTM-2487 Silty Clay and Gravel
	A	STM D422, HYDR	OMETER ANALYSIS			2	ASTM	C136
Assumed Sp Gr : Sample Weight: Hydroscopic Moist.: Adj. Sample Wgt : Hydrometer Reading Minutes 2 5 15 30 60 250 1440 % Gravel: % Sand: % Silt: % Clay:		2.70 101.06 12.14% 90.12 Corrected Reading 6.5 6 6 5.5 5 3.5 3 3 31.6% 58.3% 7.7% 2.3%	grams grams Percent Passing 3.6% 3.3% 3.3% 3.3% 3.3% 4.3% 1.9% 1.9% 1.7%	Soils Particle Diameter 0.0372 mm 0.0235 mm 0.0036 mm 0.0068 mm 0.00034 mm 0.0014 mm d Limit: n/a c Limit: n/a y Index: n/a	ACCREDITED Leftificate #: 1399.01	Sieve Size 3.0" 2.0" 1.5" 1.25" 1.0" 3/4" 5/8" 1/2" 3/8" 1/4" #4 #10 #200 #40 #100 #200 Silts	Sieve An Grain Size D: Percent Passing 100% 100% 95% 92% 82% 79% 77% 74% 74% 74% 74% 74% 74% 74% 74% 74	alysis sistribution Soils Particle Diameter 75.000 mm 37.500 mm 37.500 mm 25.000 mm 19.000 mm 16.000 mm 12.500 mm 9.500 mm 6.300 mm 0.850 mm 0.425 mm 0.150 mm 0.074 mm 0.074 mm 0.020 mm
		USDA Soil Text	rral Classification		_	Colloids	1.7% 1.2%	0.002 mm 0.001 mm
% Sand: % Silt: % Clay:			Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm < 0.002 mm					
		USDA Soil Text	ural Classification Sand					

to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for pub All regits apply only to cation of statements, conclu ects from or regarding our reports is reserved pend

Comments:

Reviewed by:

alex Eifrig

Project: Project #: Client: Source: Sample#:	Q.C South State Stra 21B288 GeoEngineers PRDI - SS - 105 B22-0206	eet Preliminary Remedial Des	sign Investigation	Date Received: Sampled By: Date Tested: Tested By:	3-Mar-22 Other 14-Mar-22 K. Mendez	Unified SW-SC Sample gray-br	l Soil Cl , Well-g e Color: own	ACCREDITED Certificate #: 136	
			ASTM	D2216, ASTM D	2419, ASTM]	D4318, ASTM D	5281		
	Specifications No Specs	Sample Meet: Spe	es? N/A		D	$\begin{array}{c} D_{(5)}=0.051\\ D_{(10)}=0.104\\ D_{(15)}=0.210\\ D_{(30)}=0.963\\ D_{(50)}=2.159\\ D_{(50)}=4.727\\ D_{(50)}=32.334\\ \text{ust Ratio}=19/49 \end{array}$		% Gravel = 39.9% % Sand = 52.4% % Silt & Clay = 7.7% Liquid Limit = n/a Plasticity Index = n/a Sand Equivalent = n/a Fracture %, 1 Face = n/a Fracture %, 2+ Faces = n/a	Coeff. of Curvature, C _c = 1.8 Coeff. of Uniformity, C _u = 45: Fineness Mochulus = 4.5 Plastic Limit = n/a Moisture %, as sampled = n/a Req'd Sand Equivalent = Req'd Fracture %, 1 Face = Req'd Fracture %, 2+ Faces =
			AS	TM C136, ASTM D	06913, ASTM C	117, ASTM D1140			
		Actual Cumula	tive Cumulative					Grain Size Distribution	
Sieve	Size	Percent	Percent	Specs	Specs		266		28
05	Metric 200.00	Passing	Passing	Max	Min	70			100.0%
10.00"	250.00		100%	100.0%	0.0%				
8.00"	200.00		100%	100.0%	0.0%		205		90.05
5.00"	150.00		100%	100.0%	0.0%				
00"	100.00		100%	100.0%	0.0%	100 - 2			
2.00"	75.00		100%	100.0%	0.0%		2018.		80.0%
0.00	63.00		100%	100.0%	0.0%	1.11	E		
2.00"	50.00	100%	100%	100.0%	0.0%		- FI		
1.75"	45.00	100%	97%	100.0%	0.0%		05		100
1 50"	37.50		93%	100.0%	0.0%			NULL NULL	
1.25"	31 50		90%	100.0%	0.0%		208		40.0%
1 00"	25.00	86%	86%	100.0%	0.0%	9			
3/4"	19.00	81%	81%	100.0%	0.0%	10			
5/8"	16.00		78%	100.0%	0.0%		2015.		50.08 #
1/2"	12.50	74%	74%	100.0%	0.0%				
3/8"	9.50	70%	70%	100.0%	0.0%		05		40.0%
1/4"	6.30		63%	100.0%	0.0%				
#4	4.75	60%	60%	100.0%	0.0%				
#8	2.36		51%	100.0%	0.0%	3	108	- <u> </u>	2005
#10	2.00	49%	49%	100.0%	0.0%			NULL NULL NULL	
#16	1.18		34%	100.0%	0.0%	- 4	-		
#20	0.850		28%	100.0%	0.0%				
#30	0.600		23%	100.0%	0.0%		E		
#40	0.425	20%	20%	100.0%	0.0%	9	08.	╶╫╫╄┼┼┼╴╴╢╢┼┼┼┼╴╴╢╢┼┟┼┼╴╲	10.0x
#50	0.300		17%	100.0%	0.0%		E		
#60	0.250		16%	100.0%	0.0%		- H		
#80	0.180		14%	100.0%	0.0%		10	0.000 10.000 0.	00 0.010 0.001
¥100	0.150	14%	14%	100.0%	0.0%				
¥140	0.106		10%	100.0%	0.0%			Planticite Size (men)	
¥170	0.090		9%	100.0%	0.0%	1			
#200	0.075	7.7%	7.7%	100.0%	0.0%	Se	wer Sizies		Slove Reads
Copyright	Spears Engineering & Technical Service	cas PS, 1996-98	11	1	The second		_		

Com ents:

Alex Efrig

Environmental • Geotechnical Engineering • Special Inspection • Non-Destructive Testing • Materials Testing Burlington | Olympia | Bellingham | Silverdale | Tukwila 360.755.1990 www.mtc-inc.net

Project: Q.C Project #: 21B28 Client : GeoEr Source: PRDI Sample#: B22-0	South State Street Preliminary Re 8 Igineers - SS - 105 206	medial Design Investigati	on Date Receive Sampled H Date Teste Tested H	ed: 3-Mar-22 By: Other ed: 14-Mar-22 By: K. Mendez	Unified Soil Cl SW-SC, Well-g Sample Color gray-brown	lassification Syste graded Sand with S	em, ASTM-2487 Silty Clay and Gravel
and and the second	ASTM D422, HYDR	OMETER ANALYSI	S		21	ASTM	C136
Assumed Sp Gr : Sample Weight: Hydroscopic Moist.: Adj. Sample Wgt : Hydrometer Reading Minutes 2 5 15 30 60 250 1440 % Gravel: % Sand: % Silt: % Silt: % Clay:	2.70 100.65 9.69% 91.76 Corrected Reading 6.5 5 4.5 4 3.5 2.5 2.5 39.9% 52.4% 6.2% 1.6%	grams grams Percent Passing 3.5% 2.7% 2.4% 2.1% 1.9% 1.3% 1.3% 1.3%	Soils Particle Diameter 0.0372 mm 0.0137 mm 0.0037 mm 0.0069 mm 0.0034 mm 0.0014 mm nuid Linit: n/a astic Limit: n/a citiy Index: n/a	ACCREDITE CONTRACTOR NO. 1390.01	Sieve Size 3.0" 1.5" 1.25" 1.0" 3/4" 5/8" 1/4" 44 #10 #20 #40 #100 #200 Silts	Sieve An Grain Size Di Percent 100% 100% 93% 90% 81% 78% 78% 78% 78% 70% 63% 60% 49% 28% 20% 14% 7.7% 7.6% 4.9% 2.6% 2.6%	alysis istribution Soils Particle Diameter 75.000 mm 30.000 mm 31.500 mm 25.000 mm 19.000 mm 10.000 mm 10.000 mm 4.500 mm 4.750 mm 0.425 mm 0.425 mm 0.075 mm 0.076 mm 0.076 mm 0.076 mm
	USDA Soil Text	ural Classification			Colloids	1.0% 1.3% 0.9%	0.002 mm 0.001 mm
% Sand: % Silt: % Clay:		Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm < 0.002 mm					
	USDA Soil Text	ural Classification Sand					

All recal approval to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclu apply only to m or regarding our reports is reserved pend

Comments:

Reviewed by:

alex Eifrig

Spr No Sieve Siz. US	ecifications Specs Metric 300.00	Sample Meets Sp Actual Percent Passing	ASTM ecs? N/A Interpolated ative Cumulative Dument	D2216, ASTM D	2419, ASTM 1 Du 6913, ASTM C	$\begin{array}{l} \textbf{b4318, ASTM D} \\ D_{(5)} = 0.055 \\ D_{(10)} = 0.112 \\ D_{(15)} = 0.301 \\ D_{(30)} = 1.541 \\ D_{(30)} = 6.717 \\ D_{(80)} = 40.216 \\ oxtract = 6/13 \\ tract = 6/13 \\$	5281 mm mm mm mm mm mm mm	% S. Liq Plasti Sand F Fracture Fracture %	% Gravel = % Sand = lit & Clay = uid Limit = city Index = 2quivalent = %, 1 Face = 2+ Faces =	53.3% 38.6% 8.1% n/a n/a n/a n/a		Coeff. o Coeff. of Fin Moisture Req'd S Reg'd Fra	f Curvatu Uniformi eeness Mo Plastic %, as sa and Equi	re, $C_C = 1.57$ ty, $C_U = 120$. odulus = 5.21 Limit = n/a mpled = n/a valent =
Spe No Sieve Sizu US	ecifications Specs Metric 300.00	Sample Meets Sp Actual Percent Passing	ecs ? N/A AST Interpolated ative Cumulative Dument	TM C136, ASTM D	Du 6913, ASTM C	$D_{(3)} = 0.055$ $D_{(10)} = 0.112$ $D_{(13)} = 0.301$ $D_{(30)} = 1.541$ $D_{(50)} = 6.717$ $D_{(60)} = 13.510$ $D_{(80)} = 40.216$ st Ratio = 6/13	mm mm mm mm mm mm	% S Lic Plasti Sand F Fracture Fracture %	% Gravel = % Sand = ilt & Clay = und Limit = city Index = Quivalent = %, 1 Face = 2+ Faces =	53.3% 38.6% 8.1% n/a n/a n/a n/a		Coeff. of Fin Moisture Req'd S	f Curvatu Uniformi eness Mo Plastic %, as sa and Equi	$re, C_C = 1.57$ $ty, C_U = 120$ $sdulus = 5.21$ $Limit = n/a$ $mpled = n/a$ $valent =$
Sieve Siz	e <u>Metric</u> 300.00	Actual Cumul: Percent Passing	AST Interpolated Cumulative	IM C136, ASTM D	6913, ASTM C	117, ASTM D1140				n/a	Re	eq'd Fract	cture %, tre %, 2+	Face = Faces =
Sieve Size	e Metric 300.00	Actual Cumul: Percent Passing	ative Cumulative						-	-	_			
Sieve Size	e Metric 300.00	Percent	Democrat	-				Grain Size	Distribution					
US	Metric 300.00	Passing	rercent	Specs	Specs			5 N.S. 2 8	. ge 2		889.88			
	300.00	A HOVENING	Passing	Max	Min	70		······································		***			mm	100.0%
2.00"	250.00		100%	100.0%	0.0%									
8.00"	200.00		100%	100.0%	0.0%		NOR .							90.0%
6.00"	150.00		100%	100.0%	0.0%						1 111			
4.00"	100.00		100%	100.0%	0.0%			11 N I - 11						
3.00"	75.00		100%	100.0%	0.0%	4	90%.							80.0%
2.50"	63.00		100%	100.0%	0.0%		E	N 1						
2 00"	50.00	100%	100%	100.0%	0.0%			N N						10.00
1.75"	45.00	10070	95%	100.0%	0.0%									Auna
1 50"	37.50		87%	100.0%	0.0%	1.1.1.1.1.1.1								
1.25"	31 50		81%	100.0%	0.0%		108			₩₩₩			****	50.0%
1 00"	25.00	74%	74%	100.0%	0.0%	9								9
3/4"	19.00	68%	68%	100.0%	0.0%	10 A		111 I N						1 1
5/8"	16.00		64%	100.0%	0.0%		90%							51.08 #
1/2"	12.50	58%	58%	100.0%	0.0%				N					
3/8"	9.50	55%	55%	100.0%	0.0%		105		N					40.0%
1/4"	6.30		49%	100.0%	0.0%				II N					1
#4	4.75	47%	47%	100.0%	0.0%				III N					1
#8	2.36		37%	100.0%	0.0%	4	308.				1 111			30.0%
#10	2.00	35%	35%	100.0%	0.0%									
#16	1.18		26%	100.0%	0.0%		-							
#20	0.850		22%	100.0%	0.0%									
#30	0.600		19%	100.0%	0.0%		E I							1
#40	0.425	18%	18%	100.0%	0.0%	0	10%							10.0%
#50	0.300		15%	100.0%	0.0%						IN			
#60	0.250		14%	100.0%	0.0%							*		
#80	0.180		13%	100.0%	0.0%		100.	00 10.000	1.00	00	0,100	0.0	10	0.001
#100	0.150	12%	12%	100.0%	0.0%									
#140	0.106		10%	100.0%	0.0%			Po	rificite Size (men)					
#170	0.090		9%	100.0%	0.0%	1								
#200	0.075	8.1%	8.1%	100.0%	0.0%	+ Si	ever Sizes	Max Spe	ks —	- Min	Specs		Slove Result	6

Alex Efrig

Project: Project #: Client : Source: Sample#:	Q.C South State 21B288 GeoEngineers PRDI - SS - 106 B22-0207	Street Preliminary Remedi	al Design Investigation	Date Recei Sampled Date Te Tested	ved: 3-Mar-22 By: Other sted: 14-Mar-22 By: K. Mendez	Unified Soil Cl GW-GC, Well- Sample Color gray-brown	assification Syste graded Gravel wit	em, ASTM-2487 th Silty Clay and Sand
a low of the second	A	STM D422, HYDROM	ETER ANALYSIS			201	ASTM	C136
Assumed Sp Gr : Sample Weight: Hydroscopic Moist.: Adj. Sample Wgt : Hydrometer Reading Minutes 2 5 15 30 60 250 1440 % Gravel: % Sand: % Silt: % Silt: % Clay:		2.70 100.39 13.68% 88.31 Corrected Reading 5.5 5.5 5.5 4.5 4 3 1.5 53.3% 38.6% 6.7% 1.4%	grams grams Percent Passing 2.2% 2.2% 2.0% 1.8% 1.8% 1.2% 0.6% Liqui Plast Plasticit	Soils Particle Diameter 0.0237 mm 0.0137 mm 0.0059 mm 0.0059 mm 0.0054 mm 0.0014 mm 0.0014 mm d Limit: n/a ic Limit: n/a y Index: n/a	ACCREDITED Leftificate #: 1309.01	Sieve Size 3.0" 1.5" 1.25" 1.0" 3/4" 5/8" 1/2" 3/8" 1/4" #4 #10 #100 #200 Silts	Sieve An Grain Size Di Percent Passing 100% 100% 87% 81% 68% 64% 55% 49% 47% 35% 22% 18% 12% 8.1% 7.9% 4.1% 2.1%	alysis istribution Soils Particle Dianeter 75.000 mm 37.500 mm 31.500 mm 15.000 mm 15.000 mm 16.000 mm 16.000 mm 6.300 mm 4.750 mm 0.850 mm 0.425 mm 0.425 mm 0.075 mm 0.074 mm 0.074 mm 0.020 mm
1		USDA Soil Textural	Classification Particle Size			Clays Colloids	1.4% 0.8% 0.4%	0.005 mm 0.002 mm 0.001 mm
% Sand: % Silt: % Clay:		USDA Soil Textural	2.0 - 0.05 mm 0.05 - 0.002 mm < 0.002 mm Classification Sand					

All recal approval to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for public apply only to cation of state n or regarding our reports is reserved pen

Comments:

Reviewed by:

alex Eifrig

Project: Project #: Client: Source: Sample#:	Q.C South State 21B288 GeoEngineers PRDI - 23 - SS B22-0208	Street Preliminary Remedial Des	ign Investigation	Date Received: Sampled By: Date Tested: Tested By:	3-Mar-22 Other 14-Mar-22 K. Mendez	Visual Silt wit Sampl brown	Soils C th Sand : e Color:	lassification and Organics	ACCREDITED Certificate #: 1366.
			ASTM	D2216, ASTM D	2419, ASTM I	04318, ASTM D	5281	Charles and a charles	
	Specifications No Specs	Sample Meets Spe	es ? N/A		Dr	$\begin{array}{l} D_{(5)}=0.006\\ D_{(10)}=0.011\\ D_{(15)}=0.035\\ D_{(30)}=0.048\\ D_{(50)}=0.064\\ D_{(60)}=0.072\\ D_{(50)}=4.372\\ \text{ust Ratio}=61/62 \end{array}$	mm mm mm mm mm mm	% Gravel = 6.3% % Sand = 29.4% % Sit & Clay = 64.3% Liquid Limit = n/a Plasticity Index = n/a Sand Equivalent = n/a Fracture %, 1 Face = n/a Fracture %, 2+ Faces = n/a	Coeff of Curvature, C _C = 3.04 Coeff of Uniformity, C _U = 6.71 Fineness Modulus = 1.74 Plastic Limit = n/a Moisture %, as sampled = n/a Req'd Sand Equivalent = Req'd Fracture %, 1 Face = Req'd Fracture %, 2+ Faces =
			AS	TM C136, ASTM D	6913, ASTM C	117, ASTM D1140	0		And a state of the
		Actual Cumula	tive Cumulative					Grain Size Distribution	
Sieve	Size	Percent	Percent	Specs	Specs		5.66	LANK. " 1 1 1 2 2889988	89 88
US	Metric	Passing	Passing	Max	Min		005	······································	100.0%
12.00"	300.00		100%	100.0%	0.0%				
10.00"	230.00		100%	100.0%	0.0%		one		
5.00"	200.00		100%	100.0%	0.0%				
4.00"	100.00		100%	100.0%	0.0%	100			
2.00"	75.00		100%	100.0%	0.0%	4	80%	╶╫╫┼┼┼╴╶╢╢┼┼╏╴╴╴╢╢┼┼┤╶┿	
3.00	62.00		100%	100.0%	0.0%	10.00			
2.00"	50.00	1009/	100%	100.0%	0.0%	1.		1000111 0001 N 000111	
1.75"	45.00	100%	100%	100.0%	0.0%		70%		70.0%
1.50"	37.50		100%	100.0%	0.0%				•••••
1.25"	31 50		100%	100.0%	0.0%	12. 0	408		- IT suos
1.00"	25.00	100%	100%	100.0%	0.0%	9			9
3/4"	19.00	100%	100%	100.0%	0.0%	1			- III - III - I
5/8"	16.00		100%	100.0%	0.0%	R	908		20.08
1/2"	12.50	100%	100%	100.0%	0.0%				
3/8"	9.50	100%	100%	100.0%	0.0%		408		40.0%
1/4"	6.30		96%	100.0%	0.0%				
#4	4.75	94%	94%	100.0%	0.0%				
#8	2.36		70%	100.0%	0.0%		30%		
#10	2.00	67%	67%	100.0%	0.0%				
#16	1.18		66%	100.0%	0.0%		205		2005
#20	0.850		66%	100.0%	0.0%				
#30	0.600		65%	100.0%	0.0%				X 1
#40	0.425	65%	65%	100.0%	0.0%	4	108		10.05
#50	0.300		65%	100.0%	0.0%				
#60	0.250		65%	100.0%	0.0%		m lan		
#80	0.180	1111	65%	100.0%	0.0%		10	0.000 10.000 1.000	0.100 0.010 0.001
#100	0.150	65%	65%	100.0%	0.0%			Burdent Charlesont	
#140	0.106		65%	100.0%	0.0%			Porticite Size (mm)	
#170	0.090		64%	100.0%	0.0%				and the second second
#200	0.075	64.3%	64.3%	100.0%	0.0%		ever Sizes		secs Sleve Results
Copyright	Spears Engineering & Technic	al Services PS, 1996-98			-				

Alex Efrig

Project: Q.C Sc Project #: 21B288 Client : GeoEngi Source: PRDI - 2 Sample#: B22-020	outh State Street Preliminary Re neers 3 - SS 8	medial Design Investigati	on Date Receiv Sampled J Date Test Tested J	ed: 3-Mar-22 By: Other ed: 14-Mar-22 By: K. Mendez	Visual Soils Cl Silt with Sand a Sample Color brown	assification and Organics	
an and the first	ASTM D422, HYDR	OMETER ANALYSI	S		201	ASTM	C136
Assumed Sp Gr : Sample Weight: lydroscopic Moist.: Adj. Sample Wgt : Hydrometer Reading Minutes 2 5 15 30 60 250 1440 % Gravel: % Sand: % Silt: % Clay:	2:70 50.27 21.02% 41.54 Corrected Reading 9.5 9 8.5 5.5 4 1 1 1 6.3% 29.4% 60.5% 3.8%	grams grams Percent Passing 15.1% 14.3% 13.5% 8.7% 6.3% 1.6% 1.6% 1.6% Li Plast	Soils Particle Diameter 0.0366 mm 0.0231 mm 0.0134 mm 0.0069 mm 0.0069 mm 0.0034 mm 0.0014 mm quid Limit: n/a astic Limit: n/a		Sieve Size 3.0" 1.5" 1.25" 1.0" 3/4" 5/8" 1/2" 3/8" 1/4" #4 #10 #20 #40 #100 #200 Silts	Sieve An Grain Size Di Percent Passing 100% 100% 100% 100% 100% 100% 100% 100	alysis sistribution Soils Particle Diameter 75.000 mm 37.500 mm 31.500 mm 25.000 mm 19.000 mm 16.000 mm 12.500 mm 9.500 mm 6.300 mm 0.850 mm 0.425 mm 0.150 mm 0.075 mm 0.075 mm 0.074 mm 0.020 mm
	USDA Soil Text	ural Classification			Colloids	1.1%	0.001 mm
% Sand: % Silt: % Clay:	-	Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm < 0.002 mm					
	USDA Soil Text	ural Classification Sandy Loam					

All wealts apply only to actual locations and materials tended. As a mutual protections to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and sutherination for publication of statements, conclusions or estructs from or regording our reports is reserved pending our written approval.

Comments:

-

Reviewed by:

alex Eifrig

Project: Project #: Client: Source: Sample#:	Q.C South Stat 21B288 GeoEngineers PRDI - 28 - SS B22-0209	e Street Preliminary Remedial Desi	gn Investigation	Date Received: Sampled By: Date Tested: Tested By:	3-Mar-22 Other 14-Mar-22 K. Mendez	Visual Silt wi Sampl brown	Soils C th Sand a le Color:	lassification and Organics :	ACCREDITED Certificate #: 1366.0
			ASTM	D2216, ASTM D	2419, ASTM I	04318, ASTM D	5281	Charles and Charles	and the second second second
	Specifications No Specs	Sample Meets Spec	:? N/A		Du	$\begin{array}{l} D_{(5)}=0.003\\ D_{(10)}=0.006\\ D_{(15)}=0.011\\ D_{(30)}=0.044\\ D_{(50)}=0.058\\ D_{(60)}=0.065\\ D_{(90)}=3.639\\ \text{sst Ratio}=61/62 \end{array}$	mm mm mm mm mm mm	% Gravel = 0.2% % Sand = 26.5% % Sit & Clay = 73.3% Liquid Limit = n/a Plasticity Index = n/a Sand Equivalent = n/a Fracture %, 1 Face = n/a	$ \begin{array}{l} Coeff. of Curvature, C_{C}=4.51\\ Coeff. of Uniformity, C_{U}=10.09\\ Fineness Modulus=1.23\\ Plastic Limit = n/a\\ Moisture \%, as sampled = n/a\\ Req'd Sand Equivalent =\\ Req'd Fracture \%, 1 Face =\\ Req'd Fracture \%, 2+ Faces =\\ \end{array} $
			AS	TM C136, ASTM D	6913, ASTM C	117, ASTM D114	0		And a set of the set o
-		Actual Cumulati	ve Cumulative		_			Grain Size Distribution	
Sieve	Size	Percent	Percent	Specs	Specs		264	LA NA. 2 845 28 2889888	BRRS
US	Metric	Passing	Passing	Max	Min	1.1	005		100.0%
10.00" 8.00" 6.00" 4.00" 3.00" 2.50" 2.50" 1.75" 1.50" 1.25" 1.50" 1.25" 1.00" 3/4" 5/8" 1/2" 3/8" 1/4"	250.00 200.00 150.00 75.00 63.00 45.00 37.50 31.50 25.00 19.00 16.00 12.50 9.50 6.30	100% 100% 100% 100%	100% 100% 100% 100% 100% 100% 100% 100%	100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Damy's	40%		90.0K
#4 #8 #10 #16 #20	4.75 2.36 2.00 1.18 0.850	100% 76%	100% 79% 76% 75%	100.0% 100.0% 100.0% 100.0%	0.0% 0.0% 0.0% 0.0%		305		30.0%
#20 #30 #40 #50 #60 #80	0.600 0.425 0.300 0.250	74%	75% 74% 74% 74%	100.0% 100.0% 100.0% 100.0%	0.0% 0.0% 0.0% 0.0%		10%		10.05
#100 #140 #170 #200 Copyright	0.150 0.150 0.106 0.090 0.075 Spears Engineering & Technic	74% 73.3% al Service P5, 1996-98	74% 74% 73% 73.3%	100.0% 100.0% 100.0% 100.0%	0.0% 0.0% 0.0% 0.0%	+ 5	inver Sizies	90,000 10,000 1,000 Paritais Size (mm) 	0.300 0.010 0.001 Necs

Alex Efrig

Project: Q.C So Project #: 21B288 Client : GeoEngin Source: PRDI - 28 Sample#: B22-0209	uth State Street Preliminary Re ueers 3 - SS	medial Design Investigati	on Date Recei Sampled Date Tes Tested	ved: 3-Mar-22 By: Other ted: 14-Mar-22 By: K. Mendez	Visual Soils Cl Silt with Sand a Sample Color brown	assification and Organics	
at work of the	ASTM D422, HYDR	OMETER ANALYS	S		2.21	ASTM	C136
Assumed Sp Gr : Sample Weight: Hydroscopic Moist.: Adj. Sample Wgt : Hydrometer Reading Minutes 2 5 15 30 60 250 1440 % Gravel: % Sand: % Sand: % Sand: % Sand:	2.70 50.77 9.02% 46.57 Corrected Reading 12 11 10 9 6.5 3.5 1 0.2% 26.5% 65.4% 7.9%	grams grams Percent Pasing 19.3% 17.7% 16.1% 14.4% 10.4% 16% 16% 16%	Soils Particle Diameter 0.0359 mm 0.0133 mm 0.0034 mm 0.0068 mm 0.0034 mm 0.0014 mm quid Limit: n/a astic Limit: n/a	ACCREDITED Lertificate #: 1500.01	Sieve Size 3.0" 1.5" 1.25" 1.0" 3/4" 5/8" 1/2" 3/8" 1/4" #4 #10 #200 #40 #100 #200 Silts	Sieve An Grain Size Di Percent Passing 100% 100% 100% 100% 100% 100% 100% 100	alysis istribution Soils Particle Diameter 75.000 mm 50.000 mm 31.500 mm 31.500 mm 19.000 mm 19.000 mm 10.000 mm 6.300 mm 4.750 mm 0.850 mm 0.850 mm 0.150 mm 0.075 mm
	USDA Soil Text	ural Classification		- 2		2013	
% Sand: % Silt: % Clay:	USDA Soil Text	Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm < 0.002 mm ural Classification Sandy Loam					

All wealts apply only to actual locations and materials tended. As a mutual protections to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and sutherination for publication of statements, conclusions or estructs from or regording our reports is reserved pending our written approval.

Comments:

-

Reviewed by:

alex Eifrig

Project: Project #: Client: Source: Sample#:	Q.C South State 21B288 GeoEngineers PRDI - 21 - SS B22-0210	Street Preliminary Remedial Des	gn Investigation	Date Received: Sampled By: Date Tested: Tested By:	3-Mar-22 Other 14-Mar-22 K. Mendez	Visual Silt wi Sampl brown	Soils Cl th Sand a le Color:	assification nd Organics	ACCREDITED Certificate #: 1366.0
			ASTM	D2216, ASTM D	2419, ASTM I	04318, ASTM D	5281	Charles and Charles	and the second se
	Specifications No Specs	Sample Meets Spec	s? N/A		Du	$\begin{array}{l} D_{(5)}=0.001\\ D_{(10)}=0.003\\ D_{(15)}=0.005\\ D_{(30)}=0.021\\ D_{(50)}=0.051\\ D_{(60)}=0.062\\ D_{(50)}=3.756\\ \text{st Ratio}=1 \end{array}$	mm mm mm mm mm mm	% Gravel = 0.1% % Sand = 28.1% % Slit & Clay = 71.8% Liquid Limit = n/a Plasticity Index = n/a Sand Equivalent = n/a Fracture %, 1 Face = n/a Fracture %, 2+ Faces = n/a	$ \begin{array}{l} \mbox{Coeff. of Curvature, C_{C}=2.50} \\ \mbox{Coeff. of Uniformity, C_{U}=21.43} \\ \mbox{Fineness Modulus}=1.35 \\ \mbox{Plastic Limit = } n/a \\ \mbox{Moisture } \%, as sampled = n/a \\ \mbox{Req'd Sand Equivalent = } \\ \mbox{Req'd Fracture } \%, 1 \mbox{Face = } \\ \mbox{Req'd Fracture } \%, 2 + \mbox{Face = } \\ \end{array} $
			AS	TM C136, ASTM D	06913, ASTM C	117, ASTM D114	0		And a second sec
_		Actual Cumulat	ive Cumulative					Grain Size Distribution	
Sieve	Size	Percent	Percent	Specs	Specs		264		8 ²² 58
US	Metric	Passing	Passing	Max	Min	1.	008	10000000000000000000000000000000000000	100.0%
10.00" 8.00" 6.00" 4.00" 2.50" 2.50" 2.00" 1.75" 1.50" 1.25" 1.00" 3/4" 5/8" 1/2" 3/8" 1/4" #8	250.00 200.00 150.00 75.00 63.00 50.00 45.00 37.50 31.50 25.00 19.00 16.00 12.50 9.50 6.30 4.75 2.36	100% 100% 100% 100% 100%	100% 100% 100% 100% 100% 100% 100% 100%	100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	CHINA S.	90%		****C*********************************
#10 #16 #20	2.00 1.18 0.850	73%	73% 72% 72%	100.0% 100.0% 100.0%	0.0% 0.0% 0.0%		20%		20.0%
#30 #40 #50 #60	0.600 0.425 0.300 0.250	72%	72% 72% 72% 72%	100.0% 100.0% 100.0% 100.0%	0.0% 0.0% 0.0% 0.0%		108		10.05
#80 #100 #140 #170 #200	0.180 0.150 0.106 0.090 0.075	72%	72% 72% 72% 72% 71.8%	100.0% 100.0% 100.0% 100.0%	0.0% 0.0% 0.0% 0.0%		Tox iover Sizes	1000 (1.000 1.000 Paritain Size (mm) 	aliadi a.olo a.dol

Alex Efrig

Project: Q.C So Project #: 21B288 Client : GeoEngin Source: PRDI - 2 Sample#: B22-0210	uth State Street Preliminary Re neers 1 - SS)	medial Design Investigati	on Date Recei Sampled Date Tes Tested	ved: 3-Mar-22 By: Other ted: 14-Mar-22 By: K. Mendez	Visual Soils Cl Silt with Sand a Sample Color brown	assification nd Organics	
an and the second	ASTM D422, HYDR	OMETER ANALYS	S		1	ASTM	C136
Assumed Sp Gr : Sample Weight: Hydroscopic Moist.: Adj. Sample Wgt : Hydrometer Reading Minutes 2 5 15 30 60 250 1440 % Gravel: % Sand: % Silt: % Clay:	2.70 51.18 7.44% 47.64 Corrected Reading 22.5 20 18 16 13 7.5 3.5 0.1% 28.1% 56.2% 15.6%	grams grams Percent Passing 33.9% 27.1% 24.1% 19.6% 11.3% 5.3% Li Plast	Soils Particle Diameter 0.0339 mm 0.0217 mm 0.0017 mm 0.0065 mm 0.0065 mm 0.0033 mm 0.0014 mm quid Limit: n/a astic Limit: n/a	ACCREDITED LeftIncate #: 1500.01	Sieve Size 3.0" 1.5" 1.25" 1.0" 3/4" 5/8" 1/2" 3/8" 1/4" #4 #10 #20 #40 #100 #200 Silts	Sieve An Grain Size Di Percent Passing 100% 100% 100% 100% 100% 100% 100% 100	lalysis istribution Soils Particle Diameter 75.000 mm 37.500 mm 31.500 mm 25.000 mm 19.000 mm 19.000 mm 12.500 mm 6.300 mm 6.300 mm 0.850 mm 0.425 mm 0.425 mm 0.150 mm 0.075 mm 0.075 mm 0.075 mm
	USDA Soil Text	ural Classification			Colloids	3.7%	0.001 mm
% Sand: % Silt: % Clay:	USDA Soil Text	Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm < 0.002 mm ural Classification Silt Loam					

to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for pub All regits apply only to cation of statements, conclu m or regarding our reports is reserved pend

Comments:

Reviewed by:

alex Eifrig

Regional Offices: Olympia ~ 360.534,9777 Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila~206.241.1974

Visit our website: www.mtc-inc.net

Limits of Liability: MTC will perform all requested services in accordance with appropriate methodology following MTC standard Operating Procedures and the MTC Quality Assureance Program. This program meets standards for the industry. The total liability of MTC, it is officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the invoiced amount for stud services. The acceptance by the client of a proposal for services by MTC release MTC from any liability in excess thereof, not withstanding any provision to the contrary in any contrast, pareliase or outer or os-signed agreement between MTC and the Client.

		N. N.	Ph.Cl	77171C	5.70	cc 1	10 he		A STATE AND A STATE
Date & Time:	2 2 2 4 C	Date & Time:	01	ate & Time	211.0	1 20	2/1	Date & Time	
Company:		Company:		Company	0	C	Chs	Company:	of nesults.
Printed Name:		Printed Name:	phot	rinted Name	male F	Mary	Nen	Printed Nam	rieur province
Received By:	5 1 Pil 1	Relinquished By:	motist	teceived By:	vend B	insMa	IBY: AVE	Relinquished	Special Instructions:
1 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	822-0210	2	+	4	V	14:25	9/14/21	55-12-12di
11 00		Bzz-czcq					15140	9/14/21	55-82-102d.
Brow silt ut organics	CON UNIT NEWS	812-0208		1.	-	-	6:20	9/14/2	PR01-23-55
1 is	10 CP-0	B22-0207	14	4	4	4	d:htb	4	PRD1-55-106
11 1	an a	822-0206	12 N				9:43pm		·PRDI-SS-105
11 22	UNA REAL	B22-0205	No.				9:33		PRD1-55-104
11 11	2-40	B22-0204	7				of: 25 pm		PRD1-55-103
11 11	P.P.	B22-0203	per LING				1:20pm		PRP1-55 - 102
11	10	812-0202	a si	-			9:15pm	-	·PRD1-55-101
ing-brun sind al origin	ine ine	822-0201*	phot	× ×	1	5	9:04pm	22/1/22	PRD1-55-100
Illegic 12 los / 11	e Br		De la	si	# of Containers	Matrix	Time	Date	Sample ID
hethods as	at to	10-4 10-4 10-4 10-4 10-4 10-4 10-4 10-4	0.000	eve dumo	ndu.	Maver	Avery	Samplers:	Client Project #: 6-980-03
Please use same	5.5 50	Analysis Requested	1	ter	invest.	nedian (M	Inn. Ren	test. Pre	Client Project Name: -S. Sta
Contraction		S	Cooler Temps	of Coolers:	67 #	1766	Phone: 4	k	Client Contact: AVENJ Maron 7
3-3-22 in Burl	Received	1 COL	Ice Present;	ate: 3/2/22				eers	Client Company: Geo Greying
			of:	age:	tuested: P	standa	Turn-arour	282	MTC Project Number: 218:
10		Den Den		1.1.0.1.1					

C. SE

4

Chain of Custody Record & Laboratory Analysis Request

Materials Testing & Consulting, Inc. Geotechnical Engineering · Special Inspection · Materials Testing · Environmental Consulting

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	October 14, 2021
Address:	17425 NE Union Hill Rd., Suite 250	Project:	Q.C South State St. Preliminary Remedial Design Investigation
	Redmond, WA 98052	Project #:	21B288
Attn:	Neil Morton	Sample #:	B21-1897 - 1916
Date Revised	1:	Date Sampled:	9-14-21 through 9-21-21

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
x	Sieve Analysis	Please See Attached Reports	Sulfate Soundness	
	Proctor		Bulk Density & Voids	
1	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
	Moisture Content	1.		
	Specific Gravity, Coarse			
	Specific Gravity, Fine			
X	Hydrometer Analysis	Please See Attached Reports		1
	Atterberg Limits			
	Asphalt Extraction/Gradation		1. 1.	
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

Respectfully Submitted, Meghan Blodgett-Carrillo WABO Supervising Laboratory Technician

 Corporate ~ 777 Chrysler Drive
 Burlington, WA 98233
 Phone (360) 755-1990
 Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net
 Visit our website: www.mtc-inc.net
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

Comments:

ingh Elabort On Mo

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Hydrometer Report

Client : (Source: 1 Sample#: 1	GeoEngineer PRDI-40-SC B21-1897	rs -25	Date Tested: 30-S Tested By: C. K	ep-21 Sample Color riss gray		
		ASTM D-422, HYDRO	OMETER ANALYSIS		ASTM	C-136
Assumed Sp Gr :	2.65				Sieve An	alysis
Sample Weight:	52.71	grams			Grain Size Di	stribution
Hydroscopic Moist.:	7.33%			Sieve	Percent	Soils Particle
Adj. Sample Wgt :	49.11	grams	ACCRED	Size	Passing	Diameter
			Cartflooty 4: 1925 41, 1	3.0"	100%	75.000 mm
Hydrometer				2.0"	100%	50.000 mm
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm
2	42	85.5%	0.0296 mm	1.0"	100%	25.000 mm
5	40	81.4%	0.0190 mm	3/4"	100%	19.000 mm
15	35	71.3%	0.0115 mm	5/8"	100%	16.000 mm
30	31	63.1%	0.0083 mm	1/2"	100%	12.500 mm
60	26.5	54.0%	0.0061 mm	3/8"	100%	9.500 mm
250	17.5	35.6%	0.0032 mm	1/4"	100%	6.300 mm
1440	9.5	19.3%	0.0014 mm	#4	100%	4.750 mm
				#10	100%	2.000 mm
% Gravel:	0.0%		Liquid Limit: n/a	#20	99%	0.850 mm
% Sand:	4.0%		Plastic Limit: n/a	#40	98%	0.425 mm
% Silt:	48.9%		Plasticity Index: n/a	#100	97%	0.150 mm
% Clay:	47.1%			#200	96.0%	0.075 mm
				Silts	95.8%	0.074 mm
					90.2%	0.050 mm
				the second se	81.8%	0.020 mm
				Clays	47.1%	0.005 mm
					25.0%	0.002 mm
				Colloids	14.0%	0.001 mm
		USDA Soil Textu	ral Classification			
		Particle Size				
% Sand:		2.0 - 0.05 mm				
% Silt:		0.00 - 0.002 mm				
% Clay:		~ 0.002 mm				
			1.63			
		USDA Soil Textu	ral Classification			
		Silt Loam				

All results apply only to a on to clisant, the public and ourselves, all reports are submitted as the confidential property of clisant, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

ligh Elikyd Grillo

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Silverdale ~ 360.698.6787 Bellingham ~ 360.647.6111 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client : GeoEngineers Source: PRDI-40-SC-92 Sample#: B21-1898			Sampled By: Client Date Tested: 30-Sep-2 Tested By: C. Kriss	Silty Clay with Sample Color gray	Sifty Clay with Sand Sample Color gray			
Sampies.	521-1070	ASTM D-422, HYDR	OMETER ANALYSIS	1	ASTM	0-136		
Assumed Sp Gr :	2.65				Sieve An Cusin Size Di	alysis		
Sample Weight:	7 63%	grams		Sieve	Percent	Soils Particle		
Adi, Sample Wat :	57.47	grams		Size	Passing	Diameter		
rid). Sample 11 St.	21.41	Frans	ACCREDITE	3.0"	100%	75.000 mm		
Hydrometer				2.0"	100%	50.000 mm		
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm		
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm		
2	50	81.1%	0.0275 mm	1.0"	100%	25.000 mm		
5	46.5	75.4%	0.0181 mm	3/4"	100%	19.000 mm		
15	42	68.1%	0.0108 mm	5/8"	99%	16.000 mm		
30	37	60.0%	0.0080 mm	1/2"	97%	12.500 mm		
60	34	55.1%	0.0058 mm	3/8"	96%	9.500 mm		
250	24	38.9%	0.0030 mm	1/4"	96%	6.300 mm		
1440	14.5	23.5%	0.0013 mm	#4	95%	4.750 mm		
				#10	93%	2.000 mm		
% Gravel:	4.7%		Liquid Limit: n/a	#20	91%	0.850 mm		
% Sand:	8.2%		Plastic Limit: n/a	#40	90%	0.425 mm		
% Silt:	36.6%		Plasticity Index: n/a	#100	88%	0.150 mm		
% Clay:	50.6%		and the second se	#200	87.2%	0.075 mm		
				Silts	87.0%	0.074 mm		
					84.0%	0.050 mm		
				and the second sec	76.5%	0.020 mm		
				Clays	50.6%	0.005 mm		
					29.5%	0.002 mm		
				Colloids	17.5%	0.001 mm		
		USDA Soil Text	ural Classification					
		Particle Size						
% Sand:		2.0 - 0.05 mm						
% Silt: % Clay:		0.05 - 0.002 mm < 0.002 mm						
		USDA Soil Text	ural Classification					

Hydrometer Report

All results apply only to act

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

all tested. As a mutual protection to cliants, the public and ourselves, all reports us submitted as the confidential property of cliants, and anthorization for publication of statements, conclusions or extracts from or regarding our seports is reserved pending our

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

ligh Elikyd Grillo

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Hydrometer Report

Project #: 2 Project #: 2 Client : 0 Source: 1 Sample#: 1	Q.C South 21B288 GeoEngineer PRDI-38-SC B21-1899	State St. Preliminary Ken rs -24	adiai Design investigation Date Received: 27-Sep Sampled By: Client Date Tested: 30-Sep Tested By: C. Kris	5-21 United Solis C SM, Silty Sand 5-21 Sample Color 55 brown	Sitty Sand Sample Color brown			
	-	ASTM D-422, HYDR	OMETER ANALYSIS		ASTM C-136			
Assumed Sp Gr :	2.65				Sieve An	alysis		
Sample Weight:	100.11	grams			Grain Size Di	istribution		
Hydroscopic Moist.:	3.80%			Sieve	Percent	Soils Particle		
Adj. Sample Wgt :	96.45	grams	ACCREDIT	Size	Passing	Diameter		
		-	Cartificate 4: 1305.61, 1346.	3.0"	100%	75.000 mm		
Hydrometer				2.0"	100%	50.000 mm		
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm		
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm		
2	11	9.5%	0.0368 mm	1.0"	100%	25.000 mm		
5	10	8.6%	0.0234 mm	3/4"	100%	19.000 mm		
15	8	6.9%	0.0137 mm	5/8"	100%	16.000 mm		
30	7	6.0%	0.0097 mm	1/2"	100%	12.500 mm		
60	6.5	5.6%	0.0069 mm	3/8"	93%	9.500 mm		
250	3.5	3.0%	0.0034 mm	1/4"	90%	6.300 mm		
1440	2.5	2.2%	0.0014 mm	#4	89%	4.750 mm		
				#10	83%	2.000 mm		
% Gravel:	11.2%		Liquid Limit: n/a	#20	73%	0.850 mm		
% Sand:	76.1%		Plastic Limit: n/a	#40	70%	0.425 mm		
% Silt:	8.5%		Plasticity Index: n/a	#100	28%	0.150 mm		
% Clay:	4.2%			#200	12.7%	0.075 mm		
				Silts	12.7%	0.074 mm		
					10.6%	0.050 mm		
				and the second second	8.0%	0.020 mm		
				Clays	4.2%	0.005 mm		
				1 N N	2.4%	0.002 mm		
				Colloids	1.5%	0.001 mm		
		USDA Soil Texts	rral Classification					
		Particle Size						
% Sand:		2.0 - 0.05 mm						
% Silt:		0.05 - 0.002 mm						
% Clay:		< 0,002 mm						
		USDA Soil Text	ral Classification					
		Sand						

All results apply only to a

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

ted. As a mutual protection to clisant, the public and ourselves, all reports are mitmitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pearling our

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

ligh Elikyd Grillo

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Silverdale ~ 360.698.6787 Bellingham ~ 360.647.6111 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Hydrometer Report

Project #: 21B288 Client : GeoEngineers Source: PRDI-41-SC-25 Sample#: B21-1900			Sampled By: Client Date Tested: 30-Sep Tested By: C. Kris	Silty Clay Sample Color ss gray	Silty Clay Sample Color gray			
oumpress .		ASTM D-422, HYDRO	OMETER ANALYSIS		ASTM (C-136		
Assumed Sp Gr :	2.65				Sieve An	alysis		
Sample Weight:	50.26	grams			Grain Size Di	stribution		
Hydroscopic Moist.:	11.78%			Sieve	Percent	Soils Particle		
Adj. Sample Wgt :	44.96	grams	ACCREDIT	Size	Passing	Diameter		
			Cartificato 4: 1205.61, 1246	3.0"	100%	75.000 mm		
Hydrometer				2.0"	100%	50.000 mm		
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm		
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm		
2	42.5	93.1%	0.0296 mm	1.0"	100%	25.000 mm		
5	40	87.6%	0.0190 mm	3/4"	100%	19.000 mm		
15	35.5	77.7%	0.0115 mm	5/8"	100%	16.000 mm		
30	32	70.1%	0.0083 mm	1/2"	100%	12.500 mm		
60	28.5	62.4%	0.0060 mm	3/8"	100%	9.500 mm		
250	19	41.6%	0.0031 mm	1/4"	100%	6.300 mm		
1440	11.5	25.2%	0.0014 mm	#4	99%	4.750 mm		
				#10	98%	2.000 mm		
% Gravel:	0.7%		Liquid Limit: n/a	#20	97%	0.850 mm		
% Sand:	4.2%		Plastic Limit: n/a	#40	97%	0.425 mm		
% Silt:	40.1%		Plasticity Index: n/a	#100	96%	0.150 mm		
% Clay:	55.0%			#200	95.1%	0.075 mm		
				Silts	95.1%	0.074 mm		
					94.0%	0.050 mm		
					88.1%	0.020 mm		
				Clays	55.0%	0.005 mm		
					31.0%	0.002 mm		
				Colloids	18.4%	0.001 mm		
		USDA Soil Textu	ral Classification					
		Particle Size						
% Sand:		2.0 - 0.05 mm						
% Silt:		0.05 - 0.002 mm						
% Clay:		< 0.002 mm						
		USDA Soil Textu	ral Classification					
		Silty Clay Loam						

All results apply only to actual is unittan approval.

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

rials tested. As a mutual protection to clisant, the public and ourselves, all reports are submitted as the confidential property of clisant, and suthorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

Comments:

by the Balget Bills

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Hydrometer Report

Client : Source: Sample#:	GeoEngineer PRDI-41-SC B21-1901	rs -100	Date Tested: 30-Sep- Tested By: C. Kriss	21 Sample Color gray					
		ASTM D-422, HYDR	OMETER ANALYSIS		ASTM C-136 Sieve Analysis Grain Size Distribution Sieve Percent Soils Particl Size Passing Diameter 3.0" 100% 75.000 mm 2.0" 100% 37.500 mm 1.2" 100% 37.500 mm 1.2" 100% 31.500 mm 1.2" 100% 25.000 mm 3/4" 100% 19.000 mm 5/8" 99% 16.000 mm 1/2" 97% 12.500 mm 3/4" 100% 9.500 mm 1/4" 91% 6.300 mm 1/4" 91% 6.300 mm 1/4" 91% 0.300 mm #40 66% 0.425 mm #100 54% 0.150 mm #200 48.2% 0.075 mm #100 54% 0.050 mm 58its 48.1% 0.074 mm 46.0% 0.050 mm 46.0% 0.020 mm Calys 24.7%<				
Assumed Sp Gr :	2.65				Sieve Analysis				
Sample Weight:	75.17	grams			Grain Size Di	stribution			
Hydroscopic Moist.:	1.97%			Sieve	Percent	Soils Particle			
Adj. Sample Wgt :	73.72	grams	ACCREDITE	Size	Passing	Diameter			
			Cardinate 4: 1205-01, 1206-02	a 1395.04 3.0"	100%	75.000 mm			
Hydrometer				2.0"	100%	50.000 mm			
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm			
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm			
2	41.5	44.2%	0.0299 mm	1.0"	100%	25.000 mm			
5	37.5	40.0%	0.0195 mm	3/4"	100%	19.000 mm			
15	33.5	35.7%	0.0116 mm	5/8"	99%	16.000 mm			
30	30	32.0%	0.0084 mm	1/2"	97%	12.500 mm			
60	26	27.7%	0.0061 mm	3/8"	95%	9.500 mm			
250	18.5	19.7%	0.0031 mm	1/4"	91%	6.300 mm			
1440	11.5	12.3%	0.0014 mm	#4	89%	4.750 mm			
				#10	79%	2.000 mm			
% Gravel:	10.8%		Liquid Limit: n/a	#20	70%	0.850 mm			
% Sand:	41.0%		Plastic Limit: n/a	#40	66%	0.425 mm			
% Silt:	23.5%		Plasticity Index: n/a	#100	54%	0.150 mm			
% Clay:	24.7%			#200	48.2%	0.075 mm			
				Silts	48.1%	0.074 mm			
					46.0%	0.050 mm			
				and the second sec	40.2%	0.020 mm			
				Clays	24.7%	0.005 mm			
				1	14.9%	0.002 mm			
				Colloids	8.9%	0.001 mm			
		USDA Soil Textu	ural Classification						
		Particle Size							
% Sand:		2.0 - 0.05 mm							
% Silt:		0.05 - 0.002 mm							
% Clay:		< 0.002 mm							
		USDA Soil Text	Iral Classification						
		Loam							

All results apply only to a

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

tection to clisarts, the public and ourselves, all reports are submitted as the confidential property of clisarts, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

Comments:

ligh Elikyd Grillo

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project #: Project #: Client : Source: Sample#:	Q.C South 21B288 GeoEngineer PRDI-41-SC B21-1902	state St. Preliminary Reme rs 2120	dial Design Investigation Date Received: 2/-Sep-21 Sampled By: Client Date Tested: 30-Sep-21 Tested By: C. Kriss	Unified Soils C GM, Silty Grav Sample Color gray	GM, Silty Gravel with Sand Sample Color gray								
		ASTM D-422, HYDRO	METER ANALYSIS		ASTM C-136 Sieve Analysis Grain Size Distribution Sieve Percent Soil Size Passing Di 3.0" 100% 75.01 2.0" 100% 37.51 1.5" 100% 37.51 1.0" 86% 25.00 3/4" 81% 19.00 5/8" 81% 16.00 1/2" 80% 12.51 3/8" 74% 9.50 1/2" 80% 12.51 3/8" 74% 9.50 1/4" 63% 6.33 #4 57% 4.77 #10 53% 2.00 #20 42% 0.83 #40 38% 0.41 #100 28% 0.01 \$17.5% 0.00 12.2% 0.00 \$12.5% 0.9% 0.00 \$17.5% 0.00 12.2% 0.00 <					ASTM C-136			
Assumed Sp Gr : Sample Weight: Hydroscopic Moist.: Adj. Sample Wgt : Hydrometer Reading Minutes 2 5 15 30 60 250 1440 % Gravel: % Slat: % Clay:	2.65 75.21 2.56% 73.33 Corrected Reading 20.5 17.5 13 12 7 5 42.9% 35.3% 14.9% 6.9%	grams grams Percent Passing 14.9% 12.7% 10.9% 9.4% 8.7% 5.1% 3.6%	Soils Particle Diameter 0.0348 mm 0.0224 mm 0.0224 mm 0.0131 mm 0.0094 mm 0.0067 mm 0.0067 mm 0.0014 mm Liquid Limit: n/a Plastic Limit: n/a Plasticity Index: n/a	Sieve Size 3.0° 2.0° 1.5° 1.5° 1.25° 1.0° 3/4° 5/8° 1/2° 3/8° 1/2° 3/8° 1/4° #4 #4 #10 #20 #40 #100 #200 Silts	Sieve An Grain Size Di Percent Passing 100% 100% 100% 86% 81% 81% 80% 74% 63% 57% 53% 42% 38% 28% 28% 21.7% 17.5% 12.2% 69%	Joo Alysis istribution Soils Particle Diameter 75.00 mm 31.500 mm 31.500 mm 25.000 mm 16.000 mm 6.300 mm 6.300 mm 6.300 mm 6.300 mm 0.75 mm 0.150 mm 0.075 mm 0.075 mm 0.050 mm 0.050 mm							
% Sand: % Silt: % Clay:		USDA Soil Textur Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm < 0.002 mm	al Classification	Colloids	4.1% 2.6%	0.002 mm 0.001 mm							
		USDA Soil Textur Sandy Loam	al Classification										

Hydrometer Report

All results apply or ted. As a mutual protection to cliants, the public and ourselves, all reports are submitted as the confidential property of cliants, and authorization for publication of stat tracts from or regarding our reports is reserved pending ou

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

Comments:

by the Balget Bills

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Materials Testing & Consulting, Inc. Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

ons or extracts from or regarding our reports is reserved pending ou

Project: Q.C. - South State St. Preliminary Remedial Design Investigation Date Received: 27-Sep-21 Unified Soils Classification System, ASTM D-2487 Project #: 21B288 Sampled By: Client SM. Silty Sand Client : GeoEngineers Date Tested: 30-Sep-21 Sample Color Source: PRDI-15-SS Tested By: C. Kriss gray Sample#: B21-1903 ASTM D-422, HYDROMETER ANALYSIS ASTM C-136 2.65 Assumed Sp Gr : Sieve Analysis Grain Size Distribution Sample Weight: 50.38 grams Hydroscopic Moist.: Adj. Sample Wgt : 7.98% Soils Particle Sieve Percent Size Diameter 46.66 grams Passing ACCREDITED 75.000 mm 3.0" 100% 2.0" Hydrometer 100% 50.000 mm 37.500 mm Reading Soils Particle 100% Corrected Percent Minutes Reading 1.25" 100% 31.500 mm Passing Diameter 2 18.5 38 3% 0.0352 mm 1.0' 100% 25.000 mm 3/4" 0.0227 mm 100% 19.000 mm 5 15.5 32.1% 15 13.5 28.0% 0.0133 mm 5/8" 100% 16.000 mm 30 60 11.5 23.8% 0.0095 mm 1/2' 100% 12.500 mm 9.5 19 7% 0 0068 mm 3/8 99% 9 500 mm 7.5 1/4" 99% 250 15.5% 0.0034 mm 6.300 mm 1440 4.5 9.3% 0.0014 mm #4 00% 4.750 mm #10 2.000 mm 97% Liquid Limit: n/a 0.850 mm 0.9% #20 91% % Gravel: 52.4% % Sand: Plastic Limit: n/a #40 89% 0.425 mm Plasticity Index: n/a #100 69% 0.150 mm % Silt: 0.075 mm 17.5% #200 46.8% % Clay: Silts 46.5% 0.074 mm 41 5% 0.050 mm 30.9% 0.020 mm 0.005 mm Clays 17.5% 11.2% 0.002 mm Colloids 0 001 mm 6 6% USDA Soil Textural Classification Particle Size % Sand: 2.0 - 0.05 mm % Silt: 0.05 - 0.002 mm < 0.002 mm % Clay: **USDA Soil Textural Classification** Sandy Loam

ted. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclu

Hydrometer Report

All results apply o niv to actual loca

Comments:

Black

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

by the Balget Bills

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Silverdale ~ 360.698.6787 Bellingham ~ 360.647.6111 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Hydrometer Report

Project #: 2 Project #: 2 Client : 0 Source: 1 Sample#: 1	Q.C South 21B288 GeoEngineer PRDI-16-SS 821-1904	State St. Preliminary Ren	edual Design Investigation Date Received: 27-Sep Sampled By: Client Date Tested: 30-Sep Tested By: C. Kris	-21 Visual Identifi Clayey Silt with -21 Sample Color is brown	Clayey Silt with Sand Sample Color brown			
		ASTM D-422, HYDRO	OMETER ANALYSIS	1	ASTM C-136			
Assumed Sp Gr :	2.65				Sieve An	alysis		
Sample Weight: 74.02		grams			Grain Size Di	stribution		
Hydroscopic Moist.:	10.46%			Sieve	Percent	Soils Particle		
Adj. Sample Wgt :	67.01	grams	LAGODE DUT	Size	Passing	Diameter		
			Continues 4: 1225.41, 1285.	3.0"	100%	75.000 mm		
Hydrometer				2.0"	100%	50.000 mm		
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm		
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm		
2	53	77.1%	0.0266 mm	1.0"	100%	25.000 mm		
5	51	74.1%	0.0172 mm	3/4"	100%	19.000 mm		
15	45	65.4%	0.0105 mm	5/8"	100%	16.000 mm		
30	39	56.7%	0.0078 mm	1/2"	100%	12.500 mm		
60	33	48.0%	0.0058 mm	3/8"	99%	9.500 mm		
250	21	30.5%	0.0031 mm	1/4"	99%	6.300 mm		
1440	13	18.9%	0.0014 mm	#4	99%	4.750 mm		
				#10	97%	2.000 mm		
% Gravel:	1.4%		Liquid Limit: n/a	#20	95%	0.850 mm		
% Sand:	7.4%		Plastic Limit: n/a	#40	94%	0.425 mm		
% Silt:	48.4%		Plasticity Index: n/a	#100	92%	0.150 mm		
% Clay:	42.7%			#200	91.1%	0.075 mm		
				Silts	90.8%	0.074 mm		
					83.8%	0.050 mm		
				and the second second	75.0%	0.020 mm		
				Clays	42.7%	0.005 mm		
				1 N N	23.2%	0.002 mm		
				Colloids	13.9%	0.001 mm		
		USDA Soil Textu	ral Classification					
		Particle Size						
% Sand:		2.0 - 0.05 mm						
% Silt:		0.05 - 0.002 mm						
% Clay:		< 0.002 mm						
		USDA Soil Textu	ral Classification					
		Silt Loam						

All results apply only to actual is unitten approval.

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

rials tested. As a mutual protection to clisant, the public and ourselves, all reports are submitted as the confidential property of clisant, and suthorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

by the Balget Bills

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Silverdale ~ 360.698.6787 Bellingham ~ 360.647.6111 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Hydrometer Report

Project #: 21B288 Client : GeoEngineers Source: PRDL-18-SS Sample#: B21-1905			Sampled By: Client Date Received: 27-Sep- Sampled By: Client Date Tested: 30-Sep- Tested By: C. Kriss	21 Visual Identifi Silty Sand with 21 Sample Color 8 gray	Silty Sand with Clay Sample Color gray		
Jampiew.	521-1705	ASTM D-422, HYDR	OMETER ANALYSIS	- 11	ASTM	C-136	
Assumed Sp Gr :	2.65				Sieve An	alysis	
Sample Weight:	50.17	grams			Grain Size Di	stribution	
Hydroscopic Moist.:	11.44%			Sieve	Percent	Soils Particle	
Adj. Sample Wgt :	45.02	grams	LACODE DITE	Size	Passing	Diameter	
			Certification 4: 1205.01, 1206.02	a 19864 3.0"	100%	75.000 mm	
Hydrometer				2.0"	100%	50.000 mm	
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm	
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm	
2	22	44.6%	0.0344 mm	1.0"	100%	25.000 mm	
5	19.5	39.6%	0.0222 mm	3/4"	100%	19.000 mm	
15	17	34.5%	0.0129 mm	5/8"	100%	16.000 mm	
30	14.5	29.4%	0.0093 mm	1/2"	100%	12.500 mm	
60	13	26.4%	0.0066 mm	3/8"	100%	9.500 mm	
250	9.5	19.3%	0.0033 mm	1/4"	99%	6.300 mm	
1440	6	12.2%	0.0014 mm	#4	98%	4.750 mm	
				#10	91%	2.000 mm	
% Gravel:	1.9%		Liquid Limit: n/a	#20	84%	0.850 mm	
% Sand:	43.4%		Plastic Limit: n/a	#40	81%	0.425 mm	
% Silt:	31.8%		Plasticity Index: n/a	#100	68%	0.150 mm	
% Clay:	22.9%			#200	54.7%	0.075 mm	
				Silts	54.5%	0.074 mm	
					48.5%	0.050 mm	
					38.4%	0.020 mm	
				Clays	22.9%	0.005 mm	
					14.4%	0.002 mm	
				Colloids	8.7%	0.001 mm	
		USDA Soil Textu	ral Classification				
		Particle Size					
% Sand:		2.0 - 0.05 mm					
% Silt:		0.05 - 0.002 mm					
% Clay:		< 0.002 mm					
			1.61 10 11				
		USDA Sou Textu	Iral Classification				
		Loam					

All results apply only to a

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

on to clisant, the public and ourselves, all reports are submitted as the confidential property of clisant, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

Comments:

legt Childer Coillo

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Silverdale ~ 360.698.6787 Bellingham ~ 360.647.6111 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Hydrometer Report

Jampie#, 1	3/1 = 1.200		Tested By: C. Kriss	brown	Clayey Sift with Sand Sample Color brown			
		ASTM D-422, HYDR	OMETER ANALYSIS		ASTM C-136 Sieve Analysis			
Assumed Sp Gr :	2.65							
Sample Weight: 72.62		grams			Grain Size Distribution			
vdroscopic Moist.:	13.97%			Sieve	Percent	Soils Particle		
Adj. Sample Wgt :	63.72	grams	ACCORDUTE!	Size	Passing	Diameter		
			Conflictor 4: 1705.51, 1706.02.6.	3.0"	100%	75.000 mm		
Hydrometer				2.0"	100%	50.000 mm		
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm		
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm		
2	49	70.7%	0.0278 mm	1.0"	100%	25.000 mm		
5	47	67.8%	0.0179 mm	3/4"	100%	19.000 mm		
15	40.5	58.4%	0.0110 mm	5/8"	99%	16.000 mm		
30	34.5	49.7%	0.0082 mm	1/2"	98%	12.500 mm		
60	28.5	41.1%	0.0060 nm	3/8"	98%	9.500 mm		
250	18.5	26.7%	0.0031 mm	1/4"	96%	6.300 mm		
1440	12	17.3%	0.0014 mm	#4	94%	4.750 mm		
				#10	92%	2.000 mm		
% Gravel:	5.7%		Liquid Limit: n/a	#20	89%	0.850 mm		
% Sand:	10.3%		Plastic Limit: n/a	#40	88%	0.425 mm		
% Silt:	48.1%		Plasticity Index: n/a	#100	85%	0.150 mm		
% Clay:	35.9%			#200	84.0%	0.075 mm		
				Silts	83.7%	0.074 mm		
					76.9%	0.050 mm		
				and the second sec	68.4%	0.020 mm		
				Clays	35.9%	0.005 mm		
				10 M 10	20.7%	0.002 mm		
				Colloids	12.7%	0.001 mm		
		USDA Soil Text	ural Classification					
		Particle Size						
% Sand:		2.0 - 0.00 mm						
% Silt:		0.03 - 0.002 mm						
% Clay:		~ 0.002 mm						
		TODA C 17						
		USDA Soll Text	ural Classification					

All results apply only to a

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

ed. As a mutual protection to clisarts, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pearling our

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

Comments:

legt Childer Couldo

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Silverdale ~ 360.698.6787 Bellingham ~ 360.647.6111 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Hydrometer Report

Project #: 1 Project #: 1 Client : 0 Source: 1	Q.C South 21B288 GeoEngineer PRDI-20-SS	State St. Preliminary Ren	nedial Design Investigation Date Received: 27-Sep-21 Sampled By: Client Date Tested: 30-Sep-21 Tested By: C. Kriss	Visual Identifi Clayey Silt Sample Color brown	cation		
Sample#: 1	B21-1907	ACTALD 412 HVDP	OMETER ANALVER	ACTA (C 126			
Assumed Sn Gr :	2.65	ASIM D-422, HIDK	OMETER ANALISIS		Sieve An	alvsis	
Sample Weight:	73.93	mame		1 (The second s	Grain Size Di	stribution	
Hydrosconic Moist	715%	Erams		Sieve	Percent	Soils Particle	
Adi Sample Wot	68 90	grams		Size	Passing	Diameter	
ridi ompie inge .	00.20	Grands	ACCREDITED	3.0"	100%	75 000 mm	
Hydrometer			G anteriosty 41 (1006.0), 1046-02-0, 1086-	2.0"	100%	50 000 mm	
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37,500 mm	
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm	
2	54	77.8%	0.0263 mm	1.0"	100%	25.000 mm	
5	52.5	75.7%	0.0170 mm	3/4"	100%	19.000 mm	
15	44.5	64.1%	0.0106 mm	5/8"	100%	16.000 mm	
30	38	54.8%	0.0079 mm	1/2"	100%	12.500 mm	
60	26	37.5%	0.0061 mm	3/8"	100%	9.500 mm	
250	23	33.1%	0.0031 mm	1/4"	100%	6.300 mm	
1440	14	20.2%	0.0013 mm	#4	99%	4.750 mm	
				#10	99%	2.000 mm	
% Gravel:	0.6%		Liquid Limit: n/a	#20	99%	0.850 mm	
% Sand:	2.0%		Plastic Limit: n/a	#40	98%	0.425 mm	
% Silt:	61.5%		Plasticity Index: n/a	#100	98%	0.150 mm	
% Clay:	35.9%			#200	97.4%	0.075 mm	
				Silts	97.0%	0.074 mm	
					87.4%	0.050 mm	
				and the second sec	76.4%	0.020 mm	
				Clays	35.9%	0.005 mm	
				1 N N	25.1%	0.002 mm	
				Colloids	15.0%	0.001 mm	
		USDA Soil Text	mal Classification				
% Sand: % Silt: % Clay:	4	Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm < 0.002 mm					
		USDA Soil Text Silt Loam	ural Classification				

All results apply only to a

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

ion to clisant, the public and ourselves, all reports are submitted as the confidential property of clisant, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

by the Balget Bills

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Silverdale ~ 360.698.6787 Bellingham ~ 360.647.6111 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Project: Q.C. - South State St. Preliminary Remedial Design Investigation Date Received: 27-Sep-21 Visual Identification Project #: 21B288 Sampled By: Client Sandy Silt with Clay Client : GeoEngineers Date Tested: 30-Sep-21 Sample Color Source: PRDI-22-SS Tested By: C. Kriss nword Sample#: B21-1908 ASTM D-422, HYDROMETER ANALYSIS ASTM C-136 Assumed Sp Gr : 2.65 Sieve Analysis Grain Size Distribution Sample Weight: 70.31 grams Hydroscopic Moist.: Adj. Sample Wgt : Soils Particle 13.61% Sieve Percent Size Diameter 61.89 grams Passing ACCREDITED 75.000 mm 3.0" 100% 2.0" Hydrometer 100% 50.000 mm 37.500 mm Reading Soils Particle 100% Corrected Percent Minutes Reading 1.25" 100% 31.500 mm Passing Diameter 2 37 56.2% 0.0308 mm 1.0' 100% 25.000 mm 0.0203 mm 3/4" 32.5 49 3% 100% 19.000 mm 5 15 27 41.0% 0.0122 mm 5/8" 100% 16.000 mm 30 60 23 34.9% 0.0088 mm 1/2' 100% 12.500 mm 19 28 8% 0.0064 mm 3/8 100% 9 500 mm 250 1/4" 0.0033 mm 99% 6.300 mm 13.5 20.5% 1440 13.7% 0.0014 mm #4 08% 4.750 mm 9 #10 2 000 mm 94% Liquid Limit: n/a 0.850 mm 1.8% #20 88% % Gravel: % Sand: 33.5% Plastic Limit: n/a #40 86% 0.425 mm 39.5% Plasticity Index: n/a #100 75% 0.150 mm % Silt: 0.075 mm 25.1% #200 64.6% % Clay: Silts 64.5% 0.074 mm 59.9% 0.050 mm 49.0% 0.020 mm 0.005 mm Clays 25.1% 15.9% 0.002 mm Colloids 0 001 mm 9 9% USDA Soil Textural Classification Particle Size % Sand: 2.0 - 0.05 mm % Silt: 0.05 - 0.002 mm < 0.002 mm % Clay: **USDA Soil Textural Classification** Loam

Hydrometer Report

All results apply o niv to actual locat rials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclu ons or extracts from or regarding our reports is reserved pending ou

Comments:

1 Black Contra

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

legt Childer Couldo

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Hydrometer Report

Project # Project #: 2 Client : 0 Source: 1 Sample#: 1	Q.C South 21B288 GeoEngineer PRDI-24-SS B21-1909	State St. Preliminary Rer	nedial Design Investigation Date Received: 27-Sep-21 Sampled By: Client Date Tested: 30-Sep-21 Tested By: C. Kriss	Unified Soils C SM, Silty Sand Sample Color dark brown	lassification Syst	tem, ASTM D-2487	
	-	ASTM D-422, HYDR	OMETER ANALYSIS	ASTM C-136			
Assumed Sp Gr :	2.65			A 12	Sieve An	alysis	
Sample Weight:	74.15	grams			Grain Size Di	istribution	
ydroscopic Moist.:	8.10%			Sieve	Percent	Soils Particle	
Adj. Sample Wgt :	68.59	grams	ACCBEDITED	Size	Passing	Diameter	
			Cardination 41 (138), 61, 1346,02 & 1395.4	м 3.0"	100%	75.000 mm	
Hydrometer				2.0"	100%	50.000 mm	
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm	
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm	
2	24	33.2%	0.0340 mm	1.0"	100%	25.000 mm	
5	22	30.5%	0.0218 mm	3/4"	100%	19.000 mm	
15	19.5	27.0%	0.0128 mm	5/8"	100%	16.000 mm	
30	17	23.5%	0.0092 mm	1/2"	100%	12.500 mm	
60	15.5	21.5%	0.0065 mm	3/8"	100%	9.500 mm	
250	10	13.8%	0.0033 mm	1/4"	100%	6.300 mm	
1440	6.5	9.0%	0.0014 mm	#4	100%	4.750 mm	
				#10	95%	2.000 mm	
% Gravel:	0.4%		Liquid Limit: n/a	#20	85%	0.850 mm	
% Sand:	59.3%		Plastic Limit: n/a	#40	82%	0.425 mm	
% Silt:	22.5%		Plasticity Index: n/a	#100	64%	0.150 mm	
% Clay:	17.8%			#200	40.3%	0.075 mm	
				Silts	40.1%	0.074 mm	
					36.0%	0.050 mm	
				and the second sec	29.8%	0.020 mm	
				Clays	17.8%	0.005 mm	
				1 St. 1	10.5%	0.002 mm	
				Colloids	6.4%	0.001 mm	
		USDA Soil Text	ural Classification				
% Sand: % Silt:		Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm					
% Clay:		< 0.002 mm					
		USDA Soil Texts Sandy Loam	ural Classification				

All results apply only to a staction to clisant, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

by the Balget Bills

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Hydrometer Report

Project #: 21B288 Sampled By: Cli Client : GeoEngineers Date Tested : 30- Source: PRDI-25-SS Tested By: C. Sample#: B21-1910				21 Visual Identifi Sandy Silt with 21 Sample Color dark brown	Sandy Silt with Clay Sample Color dark brown			
cumpient a		ASTM D-422, HYDR	OMETER ANALYSIS	- 1	ASTM C-136			
Assumed Sp Gr :	2.65				Sieve An	alysis		
Sample Weight:	73.07	grams			Grain Size Di	stribution		
Hydroscopic Moist.:	15.05%			Sieve	Percent	Soils Particle		
Adj. Sample Wgt :	63.51	grams	ACODEDITE.	Size	Passing	Diameter		
			Gertfladte 4: 1305.01, 1305.02	s 1395 04 3.0"	100%	75.000 mm		
Hydrometer				2.0"	100%	50.000 mm		
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm		
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm		
2	40.5	59.4%	0.0301 mm	1.0"	100%	25.000 mm		
5	36.5	53.5%	0.0197 mm	3/4"	100%	19.000 mm		
15	23.5	34.5%	0.0125 mm	5/8"	100%	16.000 mm		
30	17	24.9%	0.0092 mm	1/2"	100%	12.500 mm		
60	14.5	21.3%	0.0066 mm	3/8"	100%	9.500 mm		
250	10.5	15.4%	0.0033 mm	1/4"	100%	6.300 mm		
1440	7	10.3%	0.0014 mm	#4	99%	4.750 mm		
				#10	93%	2.000 mm		
% Gravel:	0.6%		Liquid Limit: n/a	#20	81%	0.850 mm		
% Sand:	33.8%		Plastic Limit: n/a	#40	76%	0.425 mm		
% Silt:	47.2%		Plasticity Index: n/a	#100	71%	0.150 mm		
% Clay:	18.4%			#200	65.7%	0.075 mm		
				Silts	65.5%	0.074 mm		
				100 C	62.2%	0.050 mm		
				and the second sec	53.7%	0.020 mm		
				Clays	18.4%	0.005 mm		
					11.9%	0.002 mm		
				Colloids	7.3%	0.001 mm		
		USDA Soil Texts	ral Classification					
		Particle Size						
% Sand:		2.0 - 0.05 mm						
% Silt:		0.05 - 0.002 mm						
% Clay:		< 0.002 mm						
		USDA Soil Text	Iral Classification					
		Silt Loam						

All results apply only to a

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

ted. As a mutual protection to clisant, the public and ourselves, all reports are mitmitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pearling our

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

ingto Balget Brillo

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

ions or extracts from or regarding our reports is reserved pending our

Hydrometer Report

Project # Project #: 2 Client : 0 Source: 1	Q.C South 21B288 GeoEngineer PRDI-26-SS	State St. Preliminary Rer	nedial Design Investigation Date Received: 27-Sep-21 Sampled By: Client Date Tested: 30-Sep-21 Tested By: C. Kriss	Visual Identifi Clayey Silt with Sample Color dark brown	cation 1 Sand		
Sample#. 1	321-1911	ASTM D-422, HYDR	OMETER ANALYSIS	ASTM C-136			
Assumed Sp Gr :	2.65			1	Sieve An	alysis	
Sample Weight:	50.39	grams			Grain Size Di	istribution	
Hydroscopic Moist.:	11.21%			Sieve	Percent	Soils Particle	
Adj. Sample Wgt :	45.31	grams	ACCREDITED	Size	Passing	Diameter	
			Gertfleeter 4: 1305.61, 1346.02.6.1346	··· 3.0"	100%	75.000 mm	
Hydrometer				2.0"	100%	50.000 mm	
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm	
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm	
2	38.5	84.4%	0.0307 mm	1.0"	100%	25.000 mm	
5	36	78.9%	0.0197 mm	3/4"	100%	19.000 mm	
15	30	65.8%	0.0119 mm	5/8"	100%	16.000 mm	
30	26.5	58.1%	0.0086 mm	1/2"	100%	12.500 mm	
60	22.5	49.3%	0.0063 nm	3/8"	100%	9.500 mm	
250	14.5	31.8%	0.0032 mm	1/4"	100%	6.300 mm	
1440	8.5	18.6%	0.0014 mm	#4	100%	4.750 mm	
				#10	99%	2.000 mm	
% Gravel:	0.1%		Liquid Limit: n/a	#20	95%	0.850 mm	
% Sand:	10.4%		Plastic Limit: n/a	#40	93%	0.425 mm	
% Silt:	47.5%		Plasticity Index: n/a	#100	91%	0.150 mm	
% Clay:	42.0%			#200	89.5%	0.075 mm	
				Silts	89.4%	0.074 mm	
					86.6%	0.050 mm	
					79.1%	0.020 mm	
				Clays	42.0%	0.005 mm	
				1 State 1997	23.0%	0.002 mm	
				Colloids	13.4%	0.001 mm	
		USDA Soil Text	mal Classification				
% Sand: % Silt:		Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm					
% Clay:		< 0.002 mm USDA Soil Texts Silt Loam	ural Classification				

ion to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclus

All results apply only to a

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

by the Balget Bills

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Hydrometer Report

Project #: 21B288 Client : GeoEngineers Source: PRDI-27-SS Sample#: B21-1912			Sampled By: Client Date Tested: 30-Sep-21 Tested By: C. Kriss	Clayey Silt with Sample Color brown	Clayey Silt with Sand Sample Color brown		
		ASTM D-422, HYDR	OMETER ANALYSIS	ASTM C-136			
Assumed Sp Gr :	2.65				Sieve An	alysis	
Sample Weight:	75.59	grams		A	Grain Size Di	stribution	
Hydroscopic Moist.:	12.77%			Sieve	Percent	Soils Particle	
Adj. Sample Wgt :	67.03	grams	A COREDUTED	1 Size	Passing	Diameter	
			Certification 4: 1705.01, 1706.02 & 13	3.0"	100%	75.000 mm	
Hydrometer				2.0"	100%	50.000 mm	
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm	
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm	
2	53	77.4%	0.0266 mm	1.0"	100%	25.000 mm	
5	51	74.5%	0.0172 mm	3/4"	100%	19.000 mm	
15	43	62.8%	0.0107 mm	5/8"	100%	16.000 mm	
30	37	54.1%	0.0080 mm	1/2"	100%	12.500 mm	
60	31	45.3%	0.0059 mm	3/8"	100%	9.500 mm	
250	20	29.2%	0.0031 mm	1/4"	100%	6.300 mm	
1440	12.5	18.3%	0.0014 mm	#4	99%	4.750 mm	
				#10	98%	2.000 mm	
% Gravel:	0.7%		Liquid Limit: n/a	#20	95%	0.850 mm	
% Sand:	9.1%		Plastic Limit: n/a	#40	94%	0.425 mm	
% Silt:	50.1%		Plasticity Index: n/a	#100	92%	0.150 mm	
% Clay:	40.1%			#200	90.2%	0.075 mm	
				Silts	90.0%	0.074 mm	
				and the second sec	83.6%	0.050 mm	
				and the second sec	75.4%	0.020 mm	
				Clays	40.1%	0.005 mm	
				1.00	22.3%	0.002 mm	
				Colloids	13.4%	0.001 mm	
		USDA Soil Text	mal Classification				
		Particle Size					
% Sand:		2.0 - 0.05 mm					
% Silt:		0.05 - 0.002 mm					
% Clay:		< 0.002 mm					
		USDA Soil Text	ural Classification				
		Silt Loam		1			

All results apply only to a

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

staction to clisant, the public and ourselves, all reports are submitted as the confidential property of clisant, and suthorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

ligh Elikyd Grillo

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Hydrometer Report

Project #: 21B288 Client : GeoEngineers Source: PRDI-29-SS Sample#: B21-1913			Sampled By: Client Date Tested: 30-Sep-21 Tested By: C. Kriss	SM, Silty Sand Sample Color dark brown	SM, Silty Sand with Gravel Sample Color dark brown		
	-	ASTM D-422, HYDR	OMETER ANALYSIS		ASTM	C-136	
Assumed Sp Gr :	2.65			1	Sieve An	alysis	
Sample Weight:	100.09	grams		A	Grain Size Di	stribution	
Hydroscopic Moist.:	4.67%			Sieve	Percent	Soils Particle	
Adj. Sample Wgt :	95.62	grams	ACCREDITED	Size	Passing	Diameter	
		6 mm	Gertificative 41, 17305, 61, 1746-92, 6, 17	3.0"	100%	75.000 mm	
Hydrometer				2.0"	100%	50.000 mm	
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm	
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm	
2	14	10.7%	0.0361 mm	1.0"	100%	25.000 mm	
5	13	9.9%	0.0230 mm	3/4"	81%	19.000 mm	
15	11.5	8.8%	0.0134 mm	5/8"	80%	16.000 mm	
30	11	8.4%	0.0095 mm	1/2"	79%	12.500 mm	
60	10	7.6%	0.0068 mm	3/8"	78%	9.500 mm	
250	6.5	5.0%	0.0034 mm	1/4"	77%	6.300 mm	
1440	4.5	3.4%	0.0014 mm	#4	77%	4.750 mm	
				#10	73%	2.000 mm	
% Gravel:	23.0%		Liquid Limit: n/a	#20	65%	0.850 mm	
% Sand:	62.5%		Plastic Limit: n/a	#40	61%	0.425 mm	
% Silt:	8.3%		Plasticity Index: n/a	#100	34%	0.150 mm	
% Clay:	6.3%			#200	14.5%	0.075 mm	
				Silts	14.4%	0.074 mm	
				100 C	12.1%	0.050 mm	
				and the second sec	9.6%	0.020 mm	
				Clays	6.3%	0.005 mm	
				1.	3.9%	0.002 mm	
				Colloids	2.4%	0.001 mm	
		USDA Soil Text	nal Classification				
		Particle Size					
% Sand:		2.0 - 0.05 mm		1			
% Silt:		0.05 - 0.002 mm		1			
% Clay:		< 0.002 mm		1			
		USDA Soil Texts	ural Classification	1			
		Loamy Sand	and Sanostatention	1			

All results apply only to ac ted. As a mutual protection to clisant, the public and ourselves, all reports are mitmitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pearling our

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

legt Childer Couldo

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Hydrometer Report

Project: (Project #: 2 Client : (Source: H Sample#: H	Q.C South 1B288 GeoEngineer PRDI-30-SS 321-1914	State St. Preliminary Rem	edial Design Investigation Date Received: 27-Sep-21 Sampled By: Client Date Tested: 30-Sep-21 Tested By: C. Kriss	Unified Soils C SM, Silty Sand Sample Color light brown	lassification Syst	em, ASTM D-2487		
	-	ASTM D-422, HYDRO	DMETER ANALYSIS		ASTM C-136			
Assumed Sp Gr :	2.65				Sieve An	alysis		
Sample Weight:	100.06	grams			Grain Size Di	stribution		
Iydroscopic Moist.:	70.12%			Sieve	Percent	Soils Particle		
Adj. Sample Wgt :	58.82	grams	ACCREDITED	Size	Passing	Diameter		
			Gardiony 4: 1205.61, 1206.02.6.13	3.0"	100%	75.000 mm		
Hydrometer				2.0"	100%	50.000 mm		
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm		
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm		
2	18	26.2%	0.0352 mm	1.0"	100%	25.000 mm		
5	13.5	19.6%	0.0230 mm	3/4"	100%	19.000 mm		
15	12	17.4%	0.0133 mm	5/8"	100%	16.000 mm		
30	11	16.0%	0.0095 mm	1/2"	100%	12.500 mm		
60	10	14.5%	0.0068 mm	3/8"	100%	9.500 mm		
250	5	7.3%	0.0034 mm	1/4"	98%	6.300 mm		
1440	4	5.8%	0.0014 mm	#4	97%	4.750 mm		
				#10	86%	2.000 mm		
% Gravel:	3.3%		Liquid Limit: n/a	#20	68%	0.850 mm		
% Sand:	51.4%		Plastic Limit: n/a	#40	61%	0.425 mm		
% Silt:	34.5%		Plasticity Index: n/a	#100	51%	0.150 mm		
% Clav:	10.7%			#200	45.2%	0.075 mm		
				Silts	44.7%	0.074 mm		
				10.00	33.3%	0.050 mm		
					18.9%	0.020 mm		
				Clavs	10.7%	0.005 mm		
					6.2%	0.002 mm		
				Colloids	4.1%	0.001 mm		
		USDA Soil Textu	ral Classification					
		Particle Size						
% Sand:		2.0 - 0.05 mm						
% Silt:		0.05 - 0.002 mm						
% Clay:		< 0.002 mm						
		USDA Soil Textu	ral Classification					
		Sandy Loam						

All results apply only to actual la unitten annroval rials build. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and sutherization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

by the Balget Bills

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Hydrometer Report

Project #: 21B288 Client : GeoEngineers Source: PRDI-31-SS Sample#: B21-1915			Sampled By: Client Date Tested: 30-Sep-21 Tested By: C. Kriss	Sandy Silt with Sample Color dark brown	Sandy Silt with Clay Sample Color dark brown			
	-	ASTM D-422, HYDR	OMETER ANALYSIS		ASTM C-136			
Assumed Sp Gr :	2.65				Sieve An	alysis		
Sample Weight:	73.74	grams			Grain Size Di	stribution		
Iydroscopic Moist.:	15.27%			Sieve	Percent	Soils Particle		
Adj. Sample Wgt :	63.97	grams	ACCREDITED	Size	Passing	Diameter		
		F	Gentleont 4: 1205.41, 1395.42 & 1	3.0"	100%	75.000 mm		
Hydrometer				2.0"	100%	50.000 mm		
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm		
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm		
2	40.5	51.4%	0.0301 mm	1.0"	100%	25.000 mm		
5	38	48.2%	0.0194 mm	3/4"	100%	19.000 mm		
15	29	36.8%	0.0120 mm	5/8"	100%	16.000 mm		
30	22	27.9%	0.0089 mm	1/2"	100%	12.500 mm		
60	17.5	22.2%	0.0065 mm	3/8"	98%	9.500 mm		
250	11	13.9%	0.0033 mm	1/4"	95%	6.300 mm		
1440	8	10.1%	0.0014 mm	#4	93%	4.750 mm		
				#10	81%	2.000 mm		
% Gravel:	7.1%		Liquid Limit: n/a	#20	74%	0.850 mm		
% Sand:	34.7%		Plastic Limit: n/a	#40	72%	0.425 mm		
% Silt:	39.8%		Plasticity Index: n/a	#100	66%	0.150 mm		
% Clay:	18.4%			#200	58.2%	0.075 mm		
				Silts	58.0%	0.074 mm		
					54.4%	0.050 mm		
					48.4%	0.020 mm		
				Clays	18.4%	0.005 mm		
					11.4%	0.002 mm		
				Colloids	7.3%	0.001 mm		
		USDA Soil Texts	ral Classification					
% Sand: % Silt:	1	Particle Size 2.0 - 0.05 mm 0.05 - 0.002 mm						
% Clay:		< 0.002 mm USDA Soil Textu Silt Loam	rral Classification					

All results apply only to a

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

ion to clisant, the public and ourselves, all reports are submitted as the confidential property of clisant, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

by the Balget Brillo

Reviewed by:

Meghan Blodgett-Carrillo

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Silverdale ~ 360.698.6787 Bellingham ~ 360.647.6111 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Hydrometer Report

	B21-1916		And the second s			
		ASTM D-422, HYDR	OMETER ANALYSIS		ASTM (C-136
Assumed Sp Gr :	2.65				Sieve An	alysis
Sample Weight:	50.41	grams			Grain Size Di	stribution
Hydroscopic Moist.:	10.23%			Sieve	Percent	Soils Particle
Adj. Sample Wgt :	45.73	grams	ACCREDITE	Size	Passing	Diameter
			Cartellouty 4: 1285.61, 1246.02 6.	1395.04 3.O"	100%	75.000 mm
Hydrometer				2.0"	100%	50.000 mm
Reading	Corrected	Percent	Soils Particle	1.5"	100%	37.500 mm
Minutes	Reading	Passing	Diameter	1.25"	100%	31.500 mm
2	43.5	94.1%	0.0293 mm	1.0"	100%	25.000 mm
5	39	84.3%	0.0192 mm	3/4"	100%	19.000 mm
15	34	73.5%	0.0115 mm	5/8"	100%	16.000 mm
30	30	64.9%	0.0084 mm	1/2"	100%	12.500 mm
60	25	54.1%	0.0062 mm	3/8"	100%	9.500 mm
250	16	34.6%	0.0032 mm	1/4"	100%	6.300 mm
1440	9.5	20.5%	0.0014 mm	#4	100%	4.750 mm
				#10	99%	2.000 mm
% Gravel:	0.2%		Liquid Limit: n/a	#20	98%	0.850 mm
% Sand:	4.4%		Plastic Limit: n/a	#40	97%	0.425 mm
% Silt:	48.9%		Plasticity Index: n/a	#100	97%	0.150 mm
% Clay:	46.5%			#200	95.4%	0.075 mm
				Silts	95.3%	0.074 mm
					94.7%	0.050 mm
				and the second se	85.1%	0.020 mm
				Clays	46.5%	0.005 mm
				10 M 10	25.3%	0.002 mm
				Colloids	14.8%	0.001 mm
		USDA Soil Text	ural Classification			
		Particle Size				
% Sand:		2.0 - 0.05 mm				
% Silt:		0.05 - 0.002 mm				
% Clay:		< 0.002 mm				
		USDA Soil Text	ural Classification			
		Silt Loam				

All results apply only to act ted. As a mutual protection to clister, the public and ourselves, all reports us unbuilted as the confidential property of clister, and authorization for publication of statements, conclusions or extracts from or regarding our supers is reserved pending our

Comments:

Reviewed by:

Meghan Blodgett-Carrill

Client:	GeoEngineers	Date:	December 15, 2021	
Address:	17425 NE Union Hill Road, Suite 250	Project:	Q.C South State Street Preliminary Remedial Design Investigation	
	Redmond, WA 98052	Project #:	21B288	
Attn:	Neil Morton	Sample #: B21-2438-2444		
Revised on:		Date sampled:	Date sampled: September 16, 2021	

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

T	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
X	Sieve Analysis	Please See Attached Reports	Sulfate Soundness	
	Proctor		Bulk Density & Voids	
	Sand Equivalent	-17	WSDOT Degradation	
	Fracture Count	- 1	LA Abrasion	
	Moisture Content			
	Specific Gravity, Coarse	- 1		
	Specific Gravity, Fine			
	Hydrometer Analysis			
	Atterberg Limits		0	
11				
11	/		0	

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

Aphort.

Respectfully Submitted, Meghan Blodgett-Carrillo WABO Supervising Laboratory Technician

Comments:

Reviewed by:

Nep Bales Ballo

Comments:

Reviewed by:

Nep Bales Ballo

Attachment D, Pre-Remedial Design Investigation SSSMGP, Coastal MetOcean Conditions and Geomorphologic Assessment

Pb-210 Dating Report

Coastal Geologic Services, Inc. 1711 Ellis St, #103 Bellingham, WA 98225 Tel: 360.647.1845 <u>ATTN</u>: Avery Maverick

W.C. Burnett Department of Earth, Ocean & Atmospheric Sciences Florida State University Tallahassee, FL 32306 <u>wburnett@fsu.edu</u> Tel: 850-566-8743

for

General Engineering Laboratories Charleston, SC

Jan. 17, 2022

Introduction

Pb-210 is a powerful method for dating sediments of various compositions (Goldberg, 1963; Koide et al., 1972; Robbins, 1978). As a decay product in the ²³⁸U decay series with a half-life of 22.26 years, it provides an accurate geochronometer for many recent environmental and anthropogenically related changes recorded in sediments (Norton and Kahl, 1986; Sonke et al., 2003) and peat deposits (Shotyk et al., 1998). The open character of sedimentary systems with respect to sedimentation, compaction, nutrient recycling and diagenesis, and the nature of ²¹⁰Pb pathways (Fig. 1) over time requires the use of different models to interpret ²¹⁰Pb activity profiles in terms of sediment accumulation rates (SARs) and absolute sediment ages. The use of other, independent geochronological methods to validate a particular ²¹⁰Pb model is desirable, yet often not feasible.

Figure 1. Schematic drawing illustrating the sources and pathways of ²¹⁰Pb in the environment. In addition to decay from its radioactive parent ²²⁶Ra, ²¹⁰Pb in lake or ocean sediments can be derived from direct atmospheric fallout onto the lake surface or via deposition on land with subsequent runoff.

Experimental

Determinations of ²¹⁰Pb were performed by analysis of ²¹⁰Po via alpha spectrometry. Ra-226 and ¹³⁷Cs were determined by gamma spectrometry using the 662 keV photopeak for ¹³⁷Cs and
radon daughter peaks for ²²⁶Ra (295, 352, and 609 keV; Kim and Burnett, 1986). All radionuclide measurements were made at General Engineering Laboratories (GEL) in Charleston, South Carolina. "Excess ²¹⁰Pb" (not supported by decay of ²²⁶Ra in the sediment) is determined either by subtracting the measured ²²⁶Ra activity in each interval or estimating a "background" ²¹⁰Pb activity in each sample from the total ²¹⁰Pb assuming that what is subtracted represents the supported ²¹⁰Pb. All excess ²¹⁰Pb activities were corrected for radioactive decay between sampling and analysis. Standard quality control measures (blanks, spiked samples, etc.) were applied to ensure that the precisions are within the stated uncertainties.

Bulk densities and porosities were calculated from sediment moisture contents, assuming an average mineral density of 2.45 g/cm³. Based on the observed trends of the excess ²¹⁰Pb (ex ²¹⁰Pb) activities we applied both the "Constant Flux: Constant Sedimentation" (CF:CS) model and the "Constant Rate of Supply" (CRS) model to estimate sediment ages (see following section on modeling). All ages were calculated for mid-layer depths. Cs-137 activities were measured in order to be used as a potential guide to a dateable horizon. Generally, the maximum ¹³⁷Cs activity in a sediment core should represent 1963, the year of maximum atmospheric fall-out of ¹³⁷Cs from nuclear testing.

Theory: ²¹⁰Pb models

We used two models to estimate ²¹⁰Pb SARs and ages. A detailed overview of these models can be found in Appleby and Oldfield (1992). In the simplest approach, the Constant Flux, Constant Sedimentation (CF:CS) model, a constant ²¹⁰Pb flux and a constant sedimentation rate are assumed. Log-linear regression of cumulative core length (cm) versus ex ²¹⁰Pb activity yields a slope (m) from which an average long-term SAR can be calculated. The ex ²¹⁰Pb activity is the activity above that supported by the long-lived parent ²²⁶Ra present in the sediment. We evaluate the supported ²¹⁰Pb level by judging where the declining ²¹⁰Pb trend has become more-or-less asymptotic to a constant down-core level. The age relationship is based on the basic equation of radioactive decay:

$$A = A_o e^{-\lambda t} \tag{1}$$

3

where A is the ex ²¹⁰Pb activity at time t, A₀ is the ex ²¹⁰Pb initial activity and λ is the ²¹⁰Pb decay constant (0.0312 y⁻¹). We can substitute core depth (x) divided by SAR for t (i.e., t = x/SAR) and take the natural log of both sides of equation 1:

$$Ln A = Ln A_o - x \frac{\lambda}{SAR}$$
⁽²⁾

which is in the form of a linear equation with a y-intercept of $Ln A_o$ and slope (m) equal to λ /SAR. Thus, we can derive the SAR (cm/y) by plotting the natural logarithm of the ex ²¹⁰Pb activity versus depth and dividing the ²¹⁰Pb decay constant by the derived slope of the linear regression. Or, if the axes are reversed as done in the examples shown in this report (x-axis = Ln ex ²¹⁰Pb, and y-axis = depth), one would multiply the derived slope by the decay constant to estimate the SAR.

In the Constant Rate of Supply (CRS) model, the ²¹⁰Pb flux is assumed to be constant over the time scale under consideration. The sediment flux is allowed to vary over time and may result in non-exponential depth versus ²¹⁰Pb activity profiles. Ages are assessed by first calculating a total ex ²¹⁰Pb inventory (A_{inv}) by integrating the ex ²¹⁰Pb activities by depth downcore. This is done by summing the ex ²¹⁰Pb inventories (dpm/cm²) within each individual layer (ex ²¹⁰Pb x dry bulk density x interval thickness). The total inventory is then related to the cumulative residual ex ²¹⁰Pb activity, A(t), below sediment layers of age t:

$$t = \frac{1}{\lambda} \times Ln\left(\frac{A_{inv}}{A(t)}\right) \tag{3}$$

Note that when analyzing long cores in 1-cm thick slices, as done here, there are usually missing layers and the total integrated ex ²¹⁰Pb (A_{inv}) can be estimated by at least two different integration styles: (1) by interpolating the necessary values (interval thickness, dry bulk density, ex ²¹⁰Pb) for missing layers between adjacent upper and lower measured intervals; and (2) by extrapolating measured values from one analyzed layer to the next. We used the extrapolation approach here, which has been shown to result in inventories and CRS ages that are within the uncertainty of the interpolation technique (Bidorn et al., 2021).

Mass accumulation rates (MARs; $mg/cm^2 y$) can be estimated on a layer-by-layer basis by dividing the change in the integrated "mass depth" (MD, $g/cm^2 =$ interval thickness (cm)

multiplied by dry bulk density, g/cm^3) by the change in the CRS ages (t) between two respective intervals (*i*):

$$MAR \left(\frac{mg}{cm^2 y}\right) = 1000 \frac{mg}{g} \times \frac{(MD_i - MD_{i-1}) \left(\frac{g}{cm^2}\right)}{(t_i - t_{i-1}) \left(y\right)}$$
(4)

As mentioned earlier, we estimated the bulk densities in each interval by calculation based on the measured moisture content and an assumed average grain density using the expression:

$$B_{D} = \frac{1}{\left(\left(\frac{1}{100 - \%M}\right) \cdot 100 + \frac{1}{\rho_{s}}\right) - 1}$$
(5)

where B_D is the dry bulk density (g/cm³), %M is the percent moisture, and ρ_s is the average grain density, taken to be 2.5 g/cm³.

Results:

All radionuclide results from GEL were sent to W. Burnett at Florida State University (FSU) for age interpretation. Pb-210 dates were obtained by using both the CF:CS and CRS models as described above. All calculations and additional data plots are shown on the accompanying spreadsheet.

Figure 2. Results for core 35. (a) Total ²¹⁰Pb vs core depth; (b) Natural logarithm vs core depth (cm); and (c) Natural logarithm vs mass depth (g/cm²). CF:CS interpretation of these data indicates an average SAR of 1.3 ± 0.2 cm/y and a MAR of 1870 ± 330 mg/cm² y.

Core 36:

Figure 3. Results for core 36. (a) Total ²¹⁰Pb vs core depth (cm); (b) Natural logarithm vs core depth (cm); and (c) Natural logarithm vs mass depth (g/cm²). CF:CS interpretation of these data indicates an average SAR of 1.2 ± 0.3 cm/y and a MAR of 1800 ± 400 mg/cm² y.

Figure 4. Results for core 37. (a) Total ²¹⁰Pb vs core depth (cm); (b) Natural logarithm vs core depth (cm); and (c) Natural logarithm vs mass depth (g/cm²). CF:CS interpretation of these data indicates an average SAR of 1.6 ± 0.1 cm/y and a MAR of 2200 ± 160 mg/cm² y.

Figure 5. Results for core 38. (a) Total ²¹⁰Pb vs core depth (cm) shown as both the raw uncorrected data (red triangles) and with a correction for wood chip abundance by determining the ash weight after ignition (blue circles); (b) Natural logarithm vs core depth (cm) based on the ash-corrected ²¹⁰Pb activities; and (c) Natural logarithm vs mass depth (g/cm²). CF:CS interpretation of these data indicates an average SAR of 0.9 ± 0.2 cm/y and a MAR of 460 ± 40 mg/cm² y.

Figure 6. Results for core 39. (a) Total ²¹⁰Pb vs core depth (cm) shown as both the raw uncorrected data (red triangles) and with a correction for wood chip abundance by determining the ash weight after ignition (blue circles); (b) Natural logarithm vs core depth (cm) based on the ash-corrected ²¹⁰Pb activities; and (c) Natural logarithm vs mass depth (g/cm²). CF:CS interpretation of these data indicates an average SAR of 0.77 ± 0.06 cm/y and a MAR of 500 ± 50 mg/cm² y.

Figure 7. Activities of ¹³⁷Cs at various depths in core 39. Based on the CF:CS ²¹⁰Pb model, the calendar age at 40 cm, the approximate peak in the ¹³⁷Cs activity, is about 1970. Considering the uncertainties in both the CF:CS model age and the location of the ¹³⁷Cs peak, this represents excellent agreement.

Figure 8. Results for core 40. (a) Total ²¹⁰Pb vs core depth (cm); (b) Natural logarithm vs core depth (cm); and (c) Natural logarithm vs mass depth (g/cm²). CF:CS interpretation of these data indicates an average SAR of 1.8 ± 0.2 cm/y and a MAR of 2060 ± 300 mg/cm² y.

Figure 9. Results for core 41. (a) Total ²¹⁰Pb vs core depth (cm); (b) Natural logarithm vs core depth (cm); and (c) Natural logarithm vs mass depth (g/cm²). CF:CS interpretation of these data indicates an average SAR of 1.0 ± 0.1 cm/y and a MAR of 520 ± 50 mg/cm² y.

Summary of Results:

We present below a comparison of the CF:CS and CRS model results (Figure 10) and a summary of the main findings (Table 1).

Figure 10. Comparison of CF:CS and CRS model ages for all cores except core 38 that had too few layers to allow estimation of CRS ages. Four of the six cores show good to excellent agreement between the two age models. We favor the CF:CS model when the two approaches do not agree (cores 35 and 39). Core 39 had a ¹³⁷Cs pattern that showed a peak activity at 40 cm depth that indicates an approximate age of about 1963. The CF:CS model produced an age of that same layer at 1970. Considering the uncertainties in both the CF:CS approach and the location of the ¹³⁷Cs peak, this suggests excellent agreement.

Core #	SAR cm/y	MAR mg/cm² y	²¹⁰ Pb Inventories pCi/cm ²	²¹⁰ Pb Fluxes* pCi/cm ² y	Notes
35	1.3±0.2	1870±330	34.5	1.08	
36	1.2±0.3	1800±400	18.1	0.56	Close to expected atmospheric flux
37	1.6±0.1	2200±160	111	3.47	
38	0.9±0.2	460±40	2.4	0.08	Ash correction Limited to 4 layers
39	0.77±0.06	500±50	112	3.5	Ash correction ¹³⁷ Cs confirmation
40	1.8±0.2	2060±300	79.4	2.5	
41	1.0±0.01	520±50	12.8	0.4	Close to expected atmospheric flux

Table 1. A summary of the sediment accumulation rates (SARs), mass accumulation rates (MARs), total ²¹⁰Pb inventories, and estimated steady state ²¹⁰Pb fluxes.

*Average atmospheric ²¹⁰Pb flux for this latitude is approximately 0.5 pCi/cm² y (Baskaran, 2011).

The sediment accumulation rates (SARs) for all 7 cores fall in the relatively narrow range of 0.77 ± 0.06 cm/y to 1.8 ± 0.2 cm/y with an overall average of 1.2 ± 0.2 cm/y. The mass accumulation rates (MARs) appear to fall into two groups: one at an MAR of 500 ± 50 mg/cm² y; and a higher grouping at about 2000 ± 300 mg/cm² y. The ex ²¹⁰Pb inventories and estimated fluxes are mostly higher than expected based on reported values for around 50° N latitude. This may indicate sediment focusing into the areas where these cores were collected or the presence of another unknown ²¹⁰Pb source (e.g., higher ²²⁶Ra in the coastal waters).

References

- Appleby, P.G., and Oldfield, F., 1992, Application of lead-210 to sedimentation studies., *in* Ivanovich, M., and Harmon, R.S., eds., Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Problems.: Oxford, UK, Clarendon Press, p. 731-778.
- Baskaran, M., 2011. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. Journal of Environmental Radioactivity. 102, 500-513.
- Goldberg, E.D., 1963, Geochronology with Pb-210: Radioactive dating. International Atomic Energy Agency., p. 121-131.
- Bidorn, B., Sok, K., Bidorn, K., Burnett, W.C., 2021. An analysis of the factors responsible for the shoreline retreat of the Chao Phraya Delta (Thailand). Science of the Total Environment, 769, 1-13.
- Kim, K.H., and Burnett, W.C., 1986, Uranium-series growth history of a Quaternary phosphatic crust From the Peruvian continental margin: Chemical Geology, v. 58, p. 227-244.
- Koide, M., Soutar, A., and Goldberg, E.D., 1972, Marine geochronology with Pb-210: Earth and Planetary Science Letters, v. 11, p. 407-414.
- Norton, S.A., and Kahl, J.S., 1986, Atmospheric deposition of Pb in lake sediments and peat., *in* Stokes, P.M., ed., Pathways, cycling and transformation of lead in the environment.: Ottawa, Royal Society of Canada, p. 97-132.
- Robbins, J.A., 1978, Geochemical and geophysical applications of radioactive lead., *in* Nriagu, J.O., ed., Biogeochemistry of lead in the environment.: Amsterdam, Elsevier Scientific, p. 285-393.
- Shotyk, W., Weiss, D., Appleby, P.G., Cheburkin, A.K., Frei, R., Gloor, M., Kramers, J.D., Reese, S., and Van der Knaap, W.O., 1998, History of atmospheric lead deposition since 12,370 C-14 yr BP from a peat bog, Jura Mountains, Switzerland: Science, v. 281, p. 1635-1640.
- Shukla, B.S., 1996. Sedimentation rate through environmental radioactivity (software); Part I: ²¹⁰Pb dating of sediments. Environmental Research & Publications, Inc., Hamilton, Ontario, Canada, 55 p.
- Sonke, J.E., W.C. Burnett, J.A. Hoogewerff, S.R. van der Laan, J. Vangronsveld, and D. R. Corbett, 2003. Reconstructing 20th century lead pollution and sediment focusing in a peat land pool (Kempen, Belgium), via ²¹⁰Pb dating. Journal of Paleolimnology, 29, 95-107.

