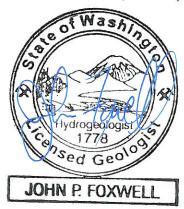


## SVE Installation Report Cascade Plaza Everett, Washington

Prepared for: Regency Centers LP

May 25, 2023 REGEN-611




## SVE Installation Report Cascade Plaza Everett, Washington

Prepared for: Regency Centers LP

May 25, 2023 REGEN-611

A Utter

Anders Utter Project Manager



John Foxwell Principal

## **Table of Contents**

| 1.0 INTRODUCTION                       | 1 |
|----------------------------------------|---|
| 2.0 SITE BACKGROUND                    |   |
| 2.1 Site Location and Description      |   |
| 2.2 Site Geology/Hydrogeology          |   |
| 2.3 Previous Work                      | 2 |
| 3.0 REMEDIAL CONSTRUCTION              | 3 |
| 3.1 Preparatory Activities             | 4 |
| 3.2 SVE System Installation Activities | 4 |
| 3.3 Construction Waste Management      | 5 |
| 4.0 SYSTEM MONITORING AND OPERATION    | 6 |
|                                        |   |
| 4.1 System Startup                     | 6 |
| 4.3 Monitoring and Performance         | 6 |
| 5.0 SUMMARY AND CONCLUSIONS            | 7 |
| 6.0 REFERENCES                         |   |
|                                        |   |

#### Tables

- 1 Soil Analytical Results
- 2 Groundwater Analytical Results
- 3 Soil Vapor Analytical Results
- 4 Ambient Air Analytical Results
- 5 SVE Vapor Analytical Results
- 6 SVE System Monitoring Results
- 7 SVE Mass Removal Results

### **Figures**

- 1 Site Location Map
- 2 Site Plan
- 3 Soil Results
- 4 Groundwater Results
- 5 Soil Vapor Results
- 6 Ambient Air Results
- 7 Remedial Action Area and SVE Layout
- 8 SVE System Schematic

## **Appendices**

- A Boring Logs and Well Construction Documentation
- B SVE System Photolog
- C Laboratory Reports

## 1.0 Introduction

This report documents the construction and initial operation of a soil vapor extraction (SVE) system at Cascade Plaza located at 7601 Evergreen Way in Everett, Washington (the Site; Figure 1). Project work includes remediation of the former Classic Cleaners located within Tenant Space B004 (currently Domino's Pizza) shown on Figure 2. The objectives of the cleanup action are to reduce the risk to human health and the environment from the chlorinated solvents released at the Site.

This work is being conducted under the oversight of the Washington Department of Ecology (Ecology) within the Voluntary Cleanup Program (VCP). The Cascade Plaza Feasibility Study/Cleanup Action Plan (FS/CAP) was prepared by Apex in 2019 and was approved by Ecology on July 15, 2020. The Facility Site Identification Number is 1382746 and the VCP number is NW 2745.

An SVE work plan (the Work Plan) was prepared for the Site (Apex, 2021) and approved by Ecology. The cleanup action includes construction and operation of an SVE system with vapor controls. The SVE system will operate until cleanup levels are achieved or until another scenario where system shutdown is justified. This report presents the results of the SVE construction and documentation of the initial operation of the SVE system.

## 2.0 Site Background

This section presents a description of the Site, its geology and hydrogeology, and previous environmental assessment work completed at the Site.

#### 2.1 Site Location and Description

The Site is located at Cascade Plaza, which is a single-story shopping center constructed on two parcels, totaling approximately 19.26 acres within the City of Everett, Washington. The two parcels that comprise Cascade Plaza were historically woodland that was first developed in the 1940s as residential properties and then in the 1950s redeveloped as a drive-in movie theater. The current shopping mall was constructed in the 1980s. The entirety of Cascade Plaza is covered with five retail/office buildings, a retail gas station, cement and asphalt surfaces, and small landscaped areas. The five buildings have historically housed various retail stores, offices, restaurants, an automobile rental agency, and a dry-cleaning facility. Classic Cleaners operated in unit B004 from the early 1980s through 1999. Unit B004 is currently occupied by a Domino's Pizza franchise, and the current layout of unit B004 is shown on Figure 2. The Site is developed for commercial use, and residential development is present east of the Site. There are no dry-cleaning activities currently conducted on the Site.

#### 2.2 Site Geology/Hydrogeology

#### 2.2.1 Site Geology

The Site is in the Puget Lowland physiographic province of Washington State. The Puget Lowland is a broad, low-lying trough located between the Cascade Range to the east, the Olympic Mountains to the northwest, and the Willapa Hills to the southwest. The landscape largely results from repeated cycles of glacial scour and deposition. The Site is located within an area that has been geologically mapped as Vashon Till, which is characterized as a non-sorted, non-stratified mixture of clay, silt, sand, gravel, and cobble up to boulder-size (Yount et al, 1993).

Based on subsurface investigations completed to date, the Site is generally underlain by silty sand, gravel, and gravelly silty sand. Surficial coarse sand and gravel (apparent engineered fill) have been encountered to depths of approximately 2 feet beneath the concrete slab of the building. Relatively shallow refusal in dense soil has been encountered in select borings beneath the building slab at depths ranging from 3 to 7 feet below ground surface (bgs; Apex, 2021).

#### 2.2.2 Site Hydrogeology

Based on historical water level measurements collected at the Site, the water level ranges from 7.62 feet to 10.58 feet bgs. The groundwater flow direction is consistently to the northeast, with a gradient generally ranging from 0.008 to 0.01 foot/foot (ft/ft; Apex, 2021). The Site is currently used for commercial purposes and is supplied by municipal water.

#### 2.3 Previous Work

Site investigations initially began in 1997 and were complete by 2020. Soil, groundwater, soil vapor, and ambient air monitoring were completed to assess the nature and extent of halogenated volatile organic compounds (HVOCs) within the former dry cleaner and adjacent tenant spaces. Investigation results can be found in Tables 1 through 4 and shown on Figures 3 through 6. A brief summary of investigation findings is provided below.

- Soil Investigations. Tetrachloroethene (PCE) is the only HVOC that has been detected in soil samples during soil investigations. No other VOCs have been detected in soil samples. PCE exceeded the Model Toxics Control Act (MTCA) Method A cleanup level (CUL) in soil samples HB-1 and HB-3 at depths of 8 inches bgs collected in 1997.
- Groundwater Investigations. PCE and chloroform were the only compounds detected in groundwater samples during groundwater investigations. Concentrations of PCE, chloroform, and other HVOCs have never been detected above MTCA Method A groundwater CULs in samples collected from monitoring wells.

- Soil Vapor Investigations. Concentrations of PCE exceeded MTCA Method B soil vapor CULs at locations within the former cleaner. Trichloroethene (TCE) and cis-1,2-dichloroethene (cis-1,2-DCE) were infrequently detected. Soil vapor concentrations outside of the former cleaner (both adjacent tenant spaces and exterior areas) have not been detected above MTCA Method B CULs.
- Ambient Air Investigations. Indoor ambient air samples have been collected on three occasions
  within the former cleaner. PCE was the only HVOC detected in the former cleaner. None of the
  detected PCE concentrations exceeded the MTCA Method B indoor air CUL.

In 2019, a feasibility study/cleanup action plan (FS/CAP) was completed to describe a range of treatment methods for the Site and recommend a proposed cleanup action (Apex, 2019). The range of treatment methods were evaluated, and in July 2020, Ecology approved the FS/CAP which included SVE as the recommended cleanup method for the Site.

In 2021, an SVE work plan and design report was prepared to develop a remedial design and monitoring approach to address concentrations of PCE and associated breakdown products in subsurface soils and soil vapor exceeding cleanup levels at the Site. One SVE extraction well (SVE-1) and one observation well (OBS-1) were constructed at the Site on November 20, 2020. The SVE well (SVE-1) was installed in close proximity to the location of the former dry-cleaning machine in the tenant space (unit B004). The well has a total depth of 8 feet bgs with a well screen that extends from approximately 3 feet to 8 feet bgs. The observation well (OBS-1) was installed within the east parking lot adjacent to the former dry cleaner. The well has a total depth of 9 feet bgs and is screened from approximately 3 feet to 9 feet bgs. The surface completion for each well consists of a flush-mount monument with a secured, locked lid embedded in the concrete floor or pavement surface. Soil samples were collected at depths of 5 feet and the terminus of the borings and analyzed for waste profiling purposes. Well locations are shown on Figure 2. Soil boring logs are included in Appendix A.

On January 8 and February 12, 2021 an SVE pilot test was conducted to evaluate air permeability and vacuum radius of influence (ROI) at the Site. The flow and pressure data collected from SVE-1 and OBS-1 were used in an analytical model (Air2D) developed by the U.S. Geological Survey (USGS) to determine the intrinsic air permeability of the geologic formation in the vicinity of SVE-1. The pilot test suggested an effective ROI of at least 28 feet is feasible at the Site using readily available regenerative blower equipment.

### 3.0 Remedial Construction

The SVE system was constructed in general accordance with the SVE Work Plan (Apex, 2021). In general, the design is based on the recommendations provided in the United States Army Corps of Engineers (USACE) Soil Vapor Extraction Engineering Manual (USACE, 2002). Construction of the SVE system included construction of the SVE extraction well and observation well, which were completed on November 20, 2020. The SVE system equipment was originally installed between November 15, 2021, and November 23, 2021.

Wyser Construction of Snohomish, Washington performed the construction activities. On November 22, 2021, the SVE system was vandalized, causing significant damage. Repairs of the system were delayed due to supply chain logistical challenges resulting from the COVID-19 pandemic. Damaged SVE components were reinstalled on March 30, 2023.

Apex documented the well drilling and installation of the mechanical system components (system piping, vaults, and above-ground equipment). The layout of the system is shown on Figure 7, and a schematic of the SVE system components is shown on Figure 8.

#### 3.1 Preparatory Activities

The following activities were conducted prior to starting work to prepare the site and workers for construction activities.

#### 3.1.1 Utility Locating

The Washington Utility Notification Center was notified of the proposed installation activities at least 48 hours prior to beginning construction. In addition, a private utility locator was retained to locate underground utilities and piping at the vapor extraction wells and trenching locations that might not be located through the One-Call system.

#### 3.1.2 Health and Safety

A health and safety plan (HASP) was prepared prior to beginning construction activities. Tailgate health and safety meetings were conducted every morning prior to the start of each day's activities.

#### 3.2 SVE System Installation Activities

The SVE system was installed between November 15 and 23, 2022. On November 22, 2021 the SVE system was vandalized, causing damage to the programming and electrical components. After repairs were made, the SVE system was restarted on April 18, 2022 and monitored for approximately three days to confirm it was operating within design parameters. On April 20, 2022, system readings were balanced and within design parameters. On May 20, 2022, during monthly monitoring, additional system alarms were encountered and the system was turned off upon arrival at the Site. Troubleshooting efforts determined that the blower had seized because the variable frequency drive (VFD) set points were tampered with by the vandal, causing the SVE blower to fail. New equipment was ordered and the VFD was reprogrammed. In April 2023, a new SVE blower and reprogrammed VFD were installed in the system. The SVE system is expected to run for a period of approximately 2 years. A photolog of SVE system installation activities is available in Appendix B.

#### 3.2.1 System Piping Connection

Wyser Construction of Snohomish, Washington constructed the SVE piping. The piping layout for the SVE system is shown on Figure 7. Wyser first cut the concrete for the SVE well box expansion. Piping connections were constructed according to the details and specifications in the SVE Work Plan (Apex, 2021).

Piping was routed from beneath the floor vertically to the space above the drop-tile ceiling, to the building exterior through the rear wall of the building, and then to the proximity of the system equipment shed. The pipe penetration through the exterior building wall was sealed. Each piping run was sloped either toward the well or toward the system equipment (no local depressions in the piping) to prevent the accumulation of moisture (such as from condensation) in the piping.

During construction activities of SVE-1, a larger monument was built around the existing SVE-1 well casing (a 2-foot square adjacent to the existing wall) to allow access to the well and provide space for the piping connections (as shown on Figure 8). One gate valve and sampling port were installed on the vertical pipe extending from the wellhead. The gate valve allows for adjusting flow from the well over a continuous range from zero to the maximum flow capable from the well. The sampling port allows for either monitoring vacuum and air velocity or collecting a vapor sample.

#### 3.2.2 System Blower and Vacuum Assembly

The SVE system is a self-contained unit that houses the vacuum blower (Rotron EN404), moisture separator, transfer pump, and storage drum. The system is an insulated skid-mounted shed (approximately 4 feet by 6 feet). A single carbon drum and the system control panel are outside of the shed. The system unit was connected to the SVE piping and electrical service in close proximity to the system. The treated discharge from the system exhausts from the top of the system shed through an elevated stack (approximately 20 feet above ground level). The control panel is equipped with alarms and controls to identify potential system faults/errors. A security fence was constructed around the system after their vandalism in 2021.

#### 3.3 Construction Waste Management

Construction waste consisted of concrete from the well box expansion and personal protective equipment (PPE). The wastes were handled as follows.

- Concrete removed from well box area was segregated and disposed of as solid waste; and
- PPE and miscellaneous debris were disposed of as solid waste.

## 4.0 System Monitoring and Operation

The SVE system consists of one SVE well (SVE-1) which targets shallow soils from 2 to 7 feet bgs. The current configuration of the system is depicted on Figure 8. A summary of monitoring and operation activities is provided below.

#### 4.1 System Startup

At the startup of the SVE system, valves to the SVE well were opened and the SVE system was operated for approximately six hours. The pressure to the SVE well was monitored hourly using Dwyer® Magnehelic 0- to 100-inch H2O pressure gauges to determine the vacuum distribution in the piping network of the system. In 2021, the system was monitored for approximately 2 days prior to system anomalies occurring and eventual shutdown. In 2023, the system was monitored on a daily basis for approximately three days after system startup, then on a weekly basis for three weeks. A sample of the pre-treatment vapor and effluent vapor were taken approximately one month after system startup.

#### 4.2 Initial Operations

The system startup measurements collected in 2021 became relatively balanced at the system well after approximately one day of monitoring, with pressure readings gradually decreasing from 50 to 24 inches of water vacuum at the SVE wellhead. In 2023, measurements were consistent with the design criteria and were balanced at the system, with pressure readings consistently around 32 inches of water at the SVE wellhead.

Routine maintenance of the SVE system equipment includes inspection of the system and operating parameters (vacuum pressures and flow rates), maintenance of the blower motor in accordance with the manufacturer's recommendations, and removal of water that may collect in the moisture separator.

### 4.3 Monitoring and Performance

Routine monitoring is outlined in the table below.

| Remedial Action<br>Component(s) | Location                                        | Monitoring                                                  | Frequency                                                                                              |
|---------------------------------|-------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| SVF System                      | SVE-1, OBS-1, before and after carbon treatment | Photoionization detector (PID), vacuum, and flow monitoring | Daily for three days after<br>system startup; weekly for<br>three weeks, then monthly<br>for two years |
| SVE System                      | Before and after carbon treatment               | Vapor analytical sampling<br>(Method TO-15)                 | One day after constant operation, then monthly for approximately two years.                            |

The SVE system data collected during these monitoring events were used to assess the effectiveness of the system. Operation of the systems will continue as described in the table above.

#### 4.3.1 Vapor Sample Results

Vapor samples were collected from pre-treatment SVE discharge and discharge air after carbon treatment during the first and second rounds of system startup monitoring. Samples were submitted to the analytical laboratory (Eurofins Air Toxics of Folsom, California). Vapor samples were analyzed for VOCs using Environmental Protection Agency (EPA) TO-15. Vapor analytical results are presented in Table 5, and the laboratory analytical reports are provided in Appendix C. The analytical results show a range of PCE concentrations from 3,800 to 160 micrograms per cubic meter (µg/m³) before carbon treatment and non-detect after carbon treatment from the most recent round of vapor sampling. The system flow rate is about 64 cubic feet per minute (cfm). The startup concentration in 2023 equates to an annual removal rate of approximately 0.34 pounds per year.

#### 4.3.2 SVE System Assessment

The flow and vacuum data collected during system startup monitoring in 2023 was consistent with the SVE design criteria. The SVE system had a vacuum between 24 and 33 inches of water before stabilizing at 33 inches of water. Vacuum data collected in 2023 from the observation well (OBS-1) indicate the SVE system achieved an average vacuum of -0.626 inches of water throughout the remedial action area. This data supports that the SVE system was running at the designed radius of influence of 28 feet according to the analytical model (Air2D) completed in 2021. Results of the SVE system monitoring are presented in Tables 5 through 7. The calculated ROI around SVE-1 is shown on Figure 3.

## 5.0 Summary and Conclusions

A summary of the remedial activities and data conclusions are provided below.

- The SVE system was constructed according to the SVE Work Plan (Apex, 2021). Construction began in November 2021. The SVE system was vandalized in 2021, causing damage to electrical components and the blower. Repairs were completed in March 2023 and the system was restarted.
- The designed ROI for the constructed SVE system of 28 feet indicates that the full-scale SVE system is covering the target treatment area (including beneath the Site building).
- Monitoring for the SVE system indicates an annual removal rate of approximately 0.34 pounds per year of PCE.

These data indicate that the system is operating as intended and that a large source of PCE may not be present in the subsurface near the former Custom Cleaners tenant space. Continued monitoring during

operation (via a combination of laboratory samples and PID measurements) will be used to assess system operation and track mass removal.

### 6.0 References

- Apex Companies, LLC, 2019. Feasibility Study/Cleanup Action Plan, Cascade Plaza, Everett, Washington. October 31, 2019.
- Apex, 2021. Soil Vapor Extraction Work Plan and Design, Former Classic Cleaners Cascade Plaza. June 2, 2021.
- U.S. Army Corps of Engineers (USACE), 2002. Soil Vapor Extraction and Bioventing Engineering Manual (EM 1110-1-4001). June 2002.
- Yount, James C.; James P. Minard; and Glenn R. Dembroff, 1993. *Geologic Map of Surficial Deposits in the Seattle 30' X 60' Quadrangle, Washington*.

| Occupied a confirm (Dentity) | Occurdo Dat      |                   |                   | HVOC concent     | rations (mg/kg)  |                  |            |
|------------------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|------------|
| Sample Location (Depth)      | Sample Date      | PCE               | TCE               | cis-1,2-DCE      | Vinyl Chloride   | Chloroform       | 1,1,2 -TCA |
|                              | MTCA CUL (mg/kg) | 0.05 <sup>a</sup> | 0.03 <sup>a</sup> | 160 <sup>b</sup> | 240 <sup>b</sup> | 800 <sup>b</sup> | 2ª         |
| HB-1 (8")                    | 6/9/1997         | 0.32              | <0.05             | <0.05            | <0.05            | <0.05            | <0.05      |
| HB-2 (8")                    | 6/9/1997         | < 0.05            | <0.05             | <0.05            | <0.05            | < 0.05           | <0.05      |
| HB-3 (8")                    | 6/9/1997         | 0.13              | <0.05             | <0.05            | <0.05            | < 0.05           | < 0.05     |
| HB-3 (3')                    | 6/9/1997         | <0.05             | <0.05             | <0.05            | <0.05            | < 0.05           | <0.05      |
| B-1 (5')                     | 6/9/1997         | < 0.05            | <0.05             | <0.05            | <0.05            | < 0.05           | <0.05      |
| B-1 (7.5')                   | 6/9/1997         | < 0.05            | <0.05             | <0.05            | <0.05            | < 0.05           | <0.05      |
| B-1 (10')                    | 6/9/1997         | < 0.05            | <0.05             | <0.05            | <0.05            | < 0.05           | <0.05      |
| B-2 (5')                     | 6/9/1997         | < 0.05            | <0.05             | <0.05            | <0.05            | < 0.05           | <0.05      |
| B-2 (7.5')                   | 6/9/1997         | < 0.05            | <0.05             | <0.05            | <0.05            | < 0.05           | <0.05      |
| B-2 (10')                    | 6/9/1997         | < 0.05            | <0.05             | <0.05            | <0.05            | < 0.05           | <0.05      |
| B-3 (5')                     | 6/9/1997         | < 0.05            | <0.05             | <0.05            | <0.05            | < 0.05           | <0.05      |
| B-3 (7.5')                   | 6/9/1997         | < 0.05            | <0.05             | <0.05            | <0.05            | < 0.05           | <0.05      |
| B-3 (10')                    | 6/9/1997         | < 0.05            | <0.05             | <0.05            | <0.05            | < 0.05           | <0.05      |
| MW-1 (10')                   | 7/30/1997        | ND*               | ND*               | ND*              | ND*              | ND*              | ND*        |
| MW-2 (10')                   | 7/30/1997        | ND*               | ND*               | ND*              | ND*              | ND*              | ND*        |
| MW-3 (10')                   | 7/30/1997        | ND*               | ND*               | ND*              | ND*              | ND*              | ND*        |
| Core 1 (1')                  | 5/6/1999         | < 0.0094          | <0.0094           | <0.0094          | <0.0094          | <0.0094          | < 0.0094   |
| Core 2 (1')                  | 5/6/1999         | <0.0092           | <0.0092           | <0.0092          | <0.0092          | <0.0092          | <0.0092    |
| Core 3 (1')                  | 5/6/1999         | < 0.009           | <0.009            | <0.009           | <0.009           | <0.009           | < 0.009    |
| MW-4/S-3 (12.5')             | 5/7/1999         | <0.01             | <0.01             | <0.01            | <0.01            | <0.01            | <0.01      |
| HB-4 (1')                    | 12/10/2002       | 0.0013            | <1.28             | <1.28            | <1.28            | <1.28            | <1.28      |
| HB-5 (1')                    | 12/10/2002       | 0.00919           | <1.12             | <1.12            | <1.12            | <1.12            | <1.12      |
| HB-6 (3')                    | 12/10/2002       | 0.00514           | <1.21             | <1.21            | <1.21            | <1.21            | <1.21      |
| B-4 (1-2')                   | 9/22/2014        | 0.0097            | <0.00028          | <0.00028         | <0.00028         | NA               | NA         |
| B-4 (3')                     | 9/22/2014        | 0.0029            | < 0.00035         | < 0.00035        | <0.00035         | NA               | NA         |
| B-5 (2'-3')                  | 9/22/2014        | 0.006             | <0.0003           | <0.0003          | <0.0003          | NA               | NA         |
| B-5 (4.5')                   | 9/22/2014        | 0.0013            | <0.00027          | <0.00027         | <0.00027         | NA               | NA         |
| B-6 (2'-3')                  | 9/22/2014        | 0.00057           | <0.0003           | <0.0003          | <0.0003          | NA               | NA         |
| B-6 (4')                     | 9/22/2014        | 0.0016            | <0.00033          | <0.00033         | <0.00033         | NA               | NA         |
| B-7 (0-1')                   | 9/22/2014        | 0.00095           | <0.00029          | <0.00029         | <0.00029         | NA               | NA         |
| B-7 (7')                     | 9/22/2014        | 0.00065           | <0.00037          | <0.00037         | <0.00037         | NA               | NA         |
| B-7 (1')                     | 4/27/2016        | 0.0129            | <0.0050           | <0.0050          | <0.0050          | <0.0050          | <0.0050    |
| B-8 (1')                     | 4/27/2016        | 0.0225            | <0.0044           | <0.0044          | <0.0044          | <0.0044          | <0.0044    |
| B-8 (4')                     | 4/27/2016        | 0.0167            | <0.0051           | <0.0051          | <0.0051          | <0.0051          | <0.0051    |
| B-8 (9')                     | 4/27/2016        | 0.0024 J          | <0.0048           | <0.0048          | <0.0048          | <0.0048          | <0.0048    |
| B-9 (1')                     | 4/27/2016        | 0.0011 J          | <0.0024           | <0.0024          | <0.0024          | <0.00024         | <0.00024   |
| VP-1 (1')                    | 4/27/2016        | 0.0130            | <0.0052           | <0.0052          | <0.0052          | <0.0052          | <0.0052    |
| VP-1 (3')                    | 4/27/2016        | 0.0024 J          | <0.0056           | <0.0056          | <0.0056          | <0.0056          | <0.0056    |
| VP-2 (1')                    | 4/27/2016        | 0.0029 J          | <0.0044           | <0.0044          | <0.0044          | <0.0044          | <0.0044    |
| VP-2 (4')                    | 4/27/2016        | 0.0067            | <0.0056           | <0.0056          | <0.0056          | <0.0056          | <0.0056    |
| SVE-1-(5')                   | 11/20/2020       | 0.0758 J+         | <0.00121          | <0.00303         | <0.00303         | NA               | NA         |
| SVE-1-(8')                   | 11/20/2020       | 0.0523 J+         | <0.00115          | <0.00288         | <0.00288         | NA               | NA         |
| OBS-1-(5')                   | 11/20/2020       | 0.143 J+          | <0.00166          | <0.00415         | <0.00415         | NA               | NA         |
| OBS-1-(9')                   | 11/20/2020       | 0.00956 J+        | <0.00118          | <0.00296         | <0.00296         | NA               | NA         |
| SB-1-2                       | 5/14/2021        | 0.00380           | <0.00112          | <0.00281         | <0.00281         | <0.00281         | <0.00281   |
| SB-1-5                       | 5/14/2021        | <0.00299          | <0.00120          | <0.00299         | <0.00299         | <0.00299         | <0.00299   |
| SB-1-8                       | 5/14/2021        | <0.00378          | <0.00151          | <0.00378         | <0.00378         | <0.00378         | <0.00378   |

- 1. HVOC = Halogenated volatile organic compound.
- 2. PCE = Tetrachloroethene.
- 3. TCE = Trichloroethene.
- 4. DCE = Dichloroethene.
- 5. TCA = Trichloroethane.
- 6. MTCA CUL = Model Toxics Control Act Cleanup Level.
- 7. mg/kg = milligram per kilogram.
- 8. a = MTCA Method A Unrestricted Land Use Table Value.
- 9. b = MTCA Method B Non-Carcinogen CUL Standard Formula Value (Unrestricted Land Use).
- 10. ND\* = Not detected at a concentration above the method detection limit, which is not available for this report.
- 11. <= Not detected at a concentration above the method reporting limit or practical quantitation limit.
- 12. Bold = analyte was detected at a concentration above the method detection limit.
- 13. Shaded = concentration exceeds the CUL.
- 14. J = Estimated value. Concentration detected between the method reporting limit and method detection limit.
- 15. J+ = Result is estimated and may be biased high.

Table 2 – Groundwater Analytical Results Cascade Plaza Everett, Washington

| Updated Section  B-2-W B-3-W  MW-1 | Sample Date  MTCA CUL (ug/L)  Vapor Intrusion SL (ug/L)  6/6/1997  6/6/1997  7/31/1998  11/9/1998  5/6/1999  8/11/1999  8/11/1999  3/30/2000  8/2/2000  7/16/2013  3/27/2014  6/25/2014  6/25/2014  11/12/2014 | PCE 5° 22.9 1.3 3.6 <0.5 <10 <2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.1 <0.5 <0.1 <0.5 <0.1 | TCE 5° 1.6 <0.5 <0.5 <0.5 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 | cis-1,2-DCE  16 <sup>b</sup> <0.5 <0.5 <0.5 <10 <2 <0.4 <0.4 <0.4 <0.4 <1     | Vinyl Chloride   0.28   0.347     <0.5   <0.5   <10   <2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2   <0.2 | \$0 <sup>b</sup> 1.2 5.3 16 0.9 <10 <2 <0.4 <0.4 <0.4 <0.4 <0.4      | 1,1,1-TCA 200° 5,240 <0.5 <0.5 <0.5 <10 <2 <0.4 <0.4 <0.4 <0.4     |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
| B-2-W<br>B-3-W                     | Vapor Intrusion SL (ug/L) 6/6/1997 6/6/1997 7/31/1997 2/11/1998 11/9/1998 5/6/1999 8/11/1999 12/28/1999 3/30/2000 8/2/2000 7/16/2013 3/27/2014 6/25/2014 6/25/2014 11/12/2014                                  | 22.9  1.3  3.6  <0.5 <10 <2 <0.4 <0.4 <0.4 <0.4 <1 <0.5 <0.1                      | 1.6 <0.5 <0.5 <0.5 <10 <2 <0.4 <0.4 <0.4 <0.4 <0.4 <1                                           | <br><0.5<br><0.5<br><0.5<br><10<br><2<br><0.4<br><0.4<br><0.4<br><0.4<br><0.4 | 0.347 <0.5 <0.5 <0.5 <10 <2 <0.2 <0.2 <0.2 <0.2 <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2<br>5.3<br>16<br>0.9<br><10<br><2<br><0.4<br><0.4<br><0.4<br><0.4 | 5,240<br><0.5<br><0.5<br><0.5<br><10<br><2<br><0.4<br><0.4<br><0.4 |
| B-2-W<br>B-3-W                     | 6/6/1997 6/6/1997 7/31/1997 2/11/1998 11/9/1998 5/6/1999 8/11/1999 12/28/1999 3/30/2000 8/2/2000 7/16/2013 3/27/2014 6/25/2014 DUP 9/22/2014 11/12/2014                                                        | 1.3 3.6 <0.5 <10 <2 <0.4 <0.4 <0.4 <0.4 <1 <0.5 <1                                | <0.5 <0.5 <0.5 <10 <2 <0.4 <0.4 <0.4 <0.4 <0.4 <1                                               | <0.5<br><0.5<br><10<br><2<br><0.4<br><0.4<br><0.4<br><0.4<br><0.4             | <0.5<br><0.5<br><0.5<br><10<br><2<br><0.2<br><0.2<br><0.2<br><0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.3<br>16<br>0.9<br><10<br><2<br><0.4<br><0.4<br><0.4<br><0.4        | <0.5<br><0.5<br><0.5<br><10<br><2<br><0.4<br><0.4                  |
| B-3-W                              | 6/6/1997 7/31/1997 2/11/1998 11/9/1998 5/6/1999 8/11/1999 12/28/1999 3/30/2000 8/2/2000 7/16/2013 3/27/2014 6/25/2014 6/25/2014 11/12/2014                                                                     | 3.6<br><0.5<br><10<br><2<br><0.4<br><0.4<br><0.4<br><0.4<br><1<br><0.5<br><0.1    | <0.5 <0.5 <10 <2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <1                                               | <0.5<br><0.5<br><10<br><2<br><0.4<br><0.4<br><0.4<br><0.4<br><0.4             | <0.5<br><0.5<br><10<br><2<br><0.2<br><0.2<br><0.2<br><0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16<br>0.9<br><10<br><2<br><0.4<br><0.4<br><0.4<br><0.4               | <0.5<br><0.5<br><10<br><2<br><0.4<br><0.4                          |
|                                    | 7/31/1997 2/11/1998 11/9/1998 5/6/1999 8/11/1999 12/28/1999 3/30/2000 8/2/2000 7/16/2013 3/27/2014 6/25/2014 DUP 9/22/2014 11/12/2014                                                                          | <0.5 <10 <2 <0.4 <0.4 <0.4 <0.4 <0.4 <1 <0.5 <0.1                                 | <0.5<br><10<br><2<br><0.4<br><0.4<br><0.4<br><0.4<br><0.4<br><1                                 | <0.5<br><10<br><2<br><0.4<br><0.4<br><0.4<br><0.4<br><0.4                     | <0.5<br><10<br><2<br><0.2<br><0.2<br><0.2<br><0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9<br><10<br><2<br><0.4<br><0.4<br><0.4<br><0.4                     | <0.5<br><10<br><2<br><0.4<br><0.4                                  |
| MW-1                               | 2/11/1998<br>11/9/1998<br>5/6/1999<br>8/11/1999<br>12/28/1999<br>3/30/2000<br>8/2/2000<br>7/16/2013<br>3/27/2014<br>6/25/2014<br>6/25/2014 DUP<br>9/22/2014<br>11/12/2014                                      | <10 <2 <0.4 <0.4 <0.4 <0.4 <0.4 <1 <0.5 <0.1                                      | <10 <2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <1.4 <0.4 <1.4 <1.4 <1.4                                   | <10 <2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4                                          | <10<br><2<br><0.2<br><0.2<br><0.2<br><0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <10<br><2<br><0.4<br><0.4<br><0.4<br><0.4                            | <10<br><2<br><0.4<br><0.4<br><0.4                                  |
| MW-1                               | 11/9/1998<br>5/6/1999<br>8/11/1999<br>12/28/1999<br>3/30/2000<br>8/2/2000<br>7/16/2013<br>3/27/2014<br>6/25/2014<br>6/25/2014 DUP<br>9/22/2014<br>11/12/2014                                                   | <2 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <1 <0.5 <0.1                                     | <2<br><0.4<br><0.4<br><0.4<br><0.4<br><0.4<br><1                                                | <2<br><0.4<br><0.4<br><0.4<br><0.4<br><0.4                                    | <2<br><0.2<br><0.2<br><0.2<br><0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <2<br><0.4<br><0.4<br><0.4<br><0.4                                   | <2<br><0.4<br><0.4<br><0.4                                         |
| MW-1                               | 5/6/1999<br>8/11/1999<br>12/28/1999<br>3/30/2000<br>8/2/2000<br>7/16/2013<br>3/27/2014<br>6/25/2014<br>6/25/2014 DUP<br>9/22/2014<br>11/12/2014                                                                | <0.4<br><0.4<br><0.4<br><0.4<br><0.4<br><1<br><0.5<br><0.1                        | <0.4<br><0.4<br><0.4<br><0.4<br><0.4                                                            | <0.4<br><0.4<br><0.4<br><0.4<br><0.4                                          | <0.2<br><0.2<br><0.2<br><0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.4<br><0.4<br><0.4<br><0.4                                         | <0.4<br><0.4<br><0.4                                               |
| MW-1                               | 8/11/1999<br>12/28/1999<br>3/30/2000<br>8/2/2000<br>7/16/2013<br>3/27/2014<br>6/25/2014<br>6/25/2014 DUP<br>9/22/2014<br>11/12/2014                                                                            | <0.4<br><0.4<br><0.4<br><0.4<br><1<br><0.5<br><0.1                                | <0.4<br><0.4<br><0.4<br><0.4<br><1                                                              | <0.4<br><0.4<br><0.4<br><0.4                                                  | <0.2<br><0.2<br><0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.4<br><0.4<br><0.4                                                 | <0.4<br><0.4                                                       |
| MW-1                               | 12/28/1999<br>3/30/2000<br>8/2/2000<br>7/16/2013<br>3/27/2014<br>6/25/2014<br>6/25/2014 DUP<br>9/22/2014<br>11/12/2014                                                                                         | <0.4<br><0.4<br><0.4<br><1<br><0.5<br><0.1                                        | <0.4<br><0.4<br><0.4<br><1                                                                      | <0.4<br><0.4<br><0.4                                                          | <0.2<br><0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.4<br><0.4                                                         | <0.4                                                               |
| MW-1                               | 3/30/2000<br>8/2/2000<br>7/16/2013<br>3/27/2014<br>6/25/2014<br>6/25/2014 DUP<br>9/22/2014<br>11/12/2014                                                                                                       | <0.4<br><0.4<br><1<br><0.5<br><0.1                                                | <0.4<br><0.4<br><1                                                                              | <0.4<br><0.4                                                                  | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.4                                                                 |                                                                    |
| MW-1                               | 8/2/2000<br>7/16/2013<br>3/27/2014<br>6/25/2014<br>6/25/2014 DUP<br>9/22/2014<br>11/12/2014                                                                                                                    | <0.4<br><1<br><0.5<br><0.1                                                        | <0.4<br><1                                                                                      | <0.4                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                      | <0.4                                                               |
| MW-1                               | 7/16/2013<br>3/27/2014<br>6/25/2014<br>6/25/2014 DUP<br>9/22/2014<br>11/12/2014                                                                                                                                | <1<br><0.5<br><0.1                                                                | <1                                                                                              |                                                                               | -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                                                                    |
|                                    | 3/27/2014<br>6/25/2014<br>6/25/2014 DUP<br>9/22/2014<br>11/12/2014                                                                                                                                             | <0.5<br><0.1                                                                      |                                                                                                 | _1                                                                            | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.4                                                                 | <0.4                                                               |
|                                    | 6/25/2014<br>6/25/2014 DUP<br>9/22/2014<br>11/12/2014                                                                                                                                                          | <0.1                                                                              | <0.5                                                                                            | <b>\</b> 1                                                                    | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1                                                                   | <1                                                                 |
|                                    | 6/25/2014 DUP<br>9/22/2014<br>11/12/2014                                                                                                                                                                       |                                                                                   |                                                                                                 | <0.5                                                                          | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.5                                                                 | <0.5                                                               |
|                                    | 9/22/2014<br>11/12/2014                                                                                                                                                                                        | <0.1                                                                              | <0.1                                                                                            | <0.1                                                                          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                 | <0.1                                                               |
|                                    | 11/12/2014                                                                                                                                                                                                     | .0.1                                                                              | <0.1                                                                                            | <0.1                                                                          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                 | <0.1                                                               |
|                                    |                                                                                                                                                                                                                | <0.1                                                                              | <0.1                                                                                            | <0.1                                                                          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                 | <0.1                                                               |
|                                    | F/0.4/00/43                                                                                                                                                                                                    | <0.1                                                                              | <0.1                                                                                            | <0.1                                                                          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                 | <0.1                                                               |
|                                    | 5/24/2016                                                                                                                                                                                                      | <1.0                                                                              | <1.0                                                                                            | <1.0                                                                          | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1.0                                                                 | <1.0                                                               |
|                                    | 7/31/1997                                                                                                                                                                                                      | 3.8                                                                               | <0.5                                                                                            | <0.5                                                                          | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                   | <0.5                                                               |
| ı                                  | 2/11/1998                                                                                                                                                                                                      | <2                                                                                | <2                                                                                              | <2                                                                            | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <2                                                                   | <2                                                                 |
|                                    | 11/9/1998                                                                                                                                                                                                      | 3                                                                                 | <0.4                                                                                            | <0.4                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                    | 8                                                                  |
|                                    | 5/6/1999                                                                                                                                                                                                       | 1.1                                                                               | <0.4                                                                                            | <0.4                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.4                                                                 | <0.4                                                               |
|                                    | 8/11/1999                                                                                                                                                                                                      | 1.2                                                                               | <0.4                                                                                            | <0.4                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.37                                                                 | <0.4                                                               |
|                                    | 12/28/1999                                                                                                                                                                                                     | 1                                                                                 | <0.4                                                                                            | <0.4                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.71                                                                 | <0.4                                                               |
|                                    | 3/30/2000                                                                                                                                                                                                      | 0.62                                                                              | <0.4                                                                                            | <0.4                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.4                                                                 | <0.4                                                               |
|                                    | 8/2/2000                                                                                                                                                                                                       | 0.82                                                                              | <0.4                                                                                            | <0.4                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.4                                                                 | <0.4                                                               |
| MW-2                               | 7/16/2013                                                                                                                                                                                                      | <1                                                                                | <1                                                                                              | <1                                                                            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1                                                                   | <1                                                                 |
|                                    | 7/16/2013 DUP                                                                                                                                                                                                  | <1                                                                                | <1                                                                                              | <1                                                                            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1                                                                   | <1                                                                 |
|                                    | 3/27/2014                                                                                                                                                                                                      | <0.5                                                                              | <0.5                                                                                            | <0.5                                                                          | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.5                                                                 | <0.5                                                               |
|                                    | 3/27/2014 DUP                                                                                                                                                                                                  | <0.5                                                                              | <0.5                                                                                            | <0.5                                                                          | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.5                                                                 | <0.5                                                               |
|                                    | 6/25/2014                                                                                                                                                                                                      | 0.24                                                                              | <0.1                                                                                            | <0.1                                                                          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                 | <0.1                                                               |
|                                    | 10/8/2014                                                                                                                                                                                                      | 0.15                                                                              | 0.06 J                                                                                          | 0.026                                                                         | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                 | <0.1                                                               |
|                                    | 11/12/2014                                                                                                                                                                                                     | 0.2                                                                               | <0.1                                                                                            | <0.1                                                                          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                 | <0.1                                                               |
|                                    | 5/24/2016                                                                                                                                                                                                      | <1.0                                                                              | <1.0                                                                                            | <1.0                                                                          | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1.0                                                                 | <1.0                                                               |
|                                    | 5/24/16 DUP                                                                                                                                                                                                    | <1.0                                                                              | <1.0                                                                                            | <1.0                                                                          | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1.0                                                                 | <1.0                                                               |
|                                    | 7/31/1997                                                                                                                                                                                                      | 3.9                                                                               | <0.5                                                                                            | <0.5                                                                          | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                   | <0.5                                                               |
|                                    | 2/11/1998                                                                                                                                                                                                      | <b>3.9</b><br><2                                                                  | <2                                                                                              | <2                                                                            | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.2                                                                  | <2                                                                 |
|                                    | 11/9/1998                                                                                                                                                                                                      | 3                                                                                 | <0.4                                                                                            | <0.4                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                    | <0.4                                                               |
|                                    | 5/6/1999                                                                                                                                                                                                       | 1.3                                                                               | <0.4                                                                                            | <0.4                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.51                                                                 | <0.4                                                               |
|                                    | 8/11/1999                                                                                                                                                                                                      | 1.4                                                                               | <0.4                                                                                            | <0.4                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.64                                                                 | 3                                                                  |
|                                    | 12/28/1999                                                                                                                                                                                                     | 1.4                                                                               | <0.4                                                                                            | <0.4                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.4                                                                 | <0.4                                                               |
|                                    | 3/30/2000                                                                                                                                                                                                      | 1.4                                                                               | <0.4                                                                                            | <0.4                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.4                                                                 | <0.4                                                               |
|                                    | 8/2/2000                                                                                                                                                                                                       | 1.2                                                                               | <0.4                                                                                            | <0.4                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.4                                                                 | <0.4                                                               |
| MW-3                               | 7/16/2013                                                                                                                                                                                                      | <1<br><1                                                                          | <1                                                                                              | <1                                                                            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1                                                                   | <1                                                                 |
|                                    | 3/27/2014                                                                                                                                                                                                      | <0.5                                                                              | <0.5                                                                                            | <0.5                                                                          | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.5                                                                 | <0.5                                                               |
|                                    | 6/25/2014                                                                                                                                                                                                      | 0.18                                                                              | <0.1                                                                                            | <0.1                                                                          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                 | <0.5                                                               |
|                                    | 9/22/2014                                                                                                                                                                                                      | 0.16                                                                              | 0.073                                                                                           | 0.13 J                                                                        | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                 | <0.1                                                               |
|                                    | 10/8/2014                                                                                                                                                                                                      | 0.17                                                                              | 0.073<br>0.087 J                                                                                | 0.13 3                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.1                                                                 | <0.1                                                               |
|                                    | 10/8/2014 DUP                                                                                                                                                                                                  | 0.21                                                                              | 0.067 J                                                                                         | 0.12                                                                          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                 | <0.1                                                               |
|                                    | 11/12/2014                                                                                                                                                                                                     | 0.21                                                                              | <0.1                                                                                            | 0.13                                                                          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                 | <0.1                                                               |
|                                    | 5/24/2016                                                                                                                                                                                                      | <1.0                                                                              | <1.0                                                                                            | <1.0                                                                          | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1.0                                                                 | <1.0                                                               |

Please see notes at end of table.

Table 2 – Groundwater Analytical Results Cascade Plaza

#### Everett, Washington

| Sample Location                   | Comula Data    |         |         | HVOC conc       | entration (ug/L) |                 |           |
|-----------------------------------|----------------|---------|---------|-----------------|------------------|-----------------|-----------|
| Sample Location                   | Sample Date    | PCE     | TCE     | cis-1,2-DCE     | Vinyl Chloride   | Chloroform      | 1,1,1-TCA |
| MTCA CUL (ug/L)                   |                | 5ª      | 5ª      | 16 <sup>b</sup> | 0.2 <sup>a</sup> | 80 <sup>b</sup> | 200ª      |
| Updated Vapor Intrusion SL (ug/L) |                | 22.9    | 1.6     |                 | 0.347            | 1.2             | 5,240     |
|                                   | 5/6/1999       | 0.41    | <0.4    | <0.4            | <0.2             | 2.1             | <0.5      |
|                                   | 8/11/1999      | 0.16    | <0.4    | <0.4            | <0.2             | 0.99            | <0.4      |
|                                   | 12/28/1999     | 0.11    | <0.4    | <0.4            | <0.2             | 0.46            | <0.4      |
|                                   | 3/30/2000      | <0.4    | <0.4    | <0.4            | <0.2             | <0.4            | <0.4      |
|                                   | 8/2/2000       | <0.4    | <0.4    | <0.4            | <0.2             | 0.4             | < 0.4     |
| 101/4                             | 7/16/2013      | <1      | <1      | <1              | <1               | <1              | <1        |
| MW-4                              | 3/27/2014      | <0.5    | <0.5    | <0.5            | <0.5             | <0.5            | <0.5      |
|                                   | 6/25/2014      | <0.5    | <0.5    | <0.5            | <0.5             | 0.36            | <0.5      |
|                                   | 9/22/2014      | 0.062 J | < 0.025 | < 0.025         | <0.013           | 0.36            | < 0.025   |
|                                   | 11/12/2014     | <0.1    | <0.1    | <0.1            | <0.02            | 0.33            | <0.1      |
|                                   | 11/12/2014 DUP | <0.1    | <0.1    | <0.1            | <0.02            | 0.31            | <0.1      |
|                                   | 5/24/2016      | <1.0    | <1.0    | <1.0            | <1.0             | <1.0            | <1.0      |
| HB-4 GW                           | 12/10/2002     | 9.36    | <1      | <1              | <0.4             | 3.08            | <1        |
| HB-5 GW                           | 12/10/2002     | 4.92    | <1      | <1              | <0.4             | <1              | <1        |

- 1. HVOC = Halogenated volatile organic compound.
- 2. PCE = Tetrachloroethene.
- 3. TCE = Trichloroethene.
- 4. DCE = Dichloroethene.
- 5. TCA = Trichloroethane.
- 6. MTCA CUL = Model Toxics Control Act Cleanup Level.
- 7. Updated Air and Vapor Intrusion Screening Levels (SL) from updated SL table at http://www.ecy.wa.gov/programs/tcp/policies/VaporIntrusion/2015-changes.html
- 8. -- = SL not available
- 9. ug/L = microgram per liter.
- 10. a = MTCA Method A Table Value.
- 11. b = MTCA Method B Non-Carcinogen CUL Standard Formula Value (Unrestricted Land Use).
- 12. < = Not detected at a concentration above the method reporting limit or practical quantitation limit.
- 13. Bold = analyte was detected at a concentration above the method detection limit.
- 14. Shaded concentration exceeds the groundwater CUL.
- 15. Italicized concentration exceeds the vapor intrusion SL.

Table 3 – Soil Vapor Analytical Results Cascade Plaza Everett, Washington

| Sample Location (Depth)               | Sample Date           |        | HVOC concer | ntrations (ug/m³) |                |
|---------------------------------------|-----------------------|--------|-------------|-------------------|----------------|
| Sample Location (Deptil)              | Sample Date           | PCE    | TCE         | cis-1,2-DCE       | Vinyl Chloride |
| Method                                | B Soil Gas SL (ug/m3) | 320    | 12          |                   | 9.4            |
| Temporary Soil Vapor Sample Locations |                       |        |             |                   |                |
| VS-1 (3")                             | 10/4/2013             | 2,500  | <1.3        | <6.5              | <4.2           |
| VS-2 (3")                             | 10/4/2013             | 3,600  | <2.7        | <9.9              | <6.4           |
| VS-3 (3")                             | 11/20/2013            | 2,400  | <5.2        | <3.8              | <2.4           |
| VS-4 (3")                             | 11/20/2013            | 990    | <5.1        | <3.8              | <2.4           |
| VS-5 (3")                             | 12/6/2013             | <8.1   | <6.4        | <4.7              | <3.0           |
| VS-6 (3")                             | 12/6/2013             | 8.4    | <5.7        | <4.2              | <2.7           |
| VS-7 (3")                             | 12/6/2013             | <7.1   | <5.6        | <4.1              | <2.7           |
| VS-8 (5')                             | 12/19/2013            | <8.3   | <6.6        | <4.9              | <3.1           |
| VS-9 (5')                             | 12/19/2013            | <7.1   | <5.6        | <4.1              | <2.7           |
| VS-10 (5')                            | 12/19/2013            | <7.0   | <5.6        | <4.1              | <2.6           |
| VS-11 (5')                            | 12/19/2013            | <6.8   | <5.4        | <4.0              | <2.6           |
| VS-12 (5')                            | 12/19/2013            | <7.1   | <5.6        | <4.1              | <2.7           |
| VS-13 (5')                            | 12/19/2013            | <6.8   | <5.4        | <4.0              | <2.6           |
| VS-14 (5')                            | 12/19/2013            | <7.0   | 10          | <4.1              | <2.6           |
| VS-15 (5')                            | 12/19/2013            | <7.0   | <5.5        | <4.2              | <2.6           |
| VS-16 (3")                            | 9/22/2014             | 150    | 8.4         | 1.9               | <0.58          |
| VS-17 (3")                            | 9/22/2014             | 5,600  | <23         | <17               | <11            |
| VS-18 (3")                            | 9/22/2014             | 9      | <1.3        | <0.99             | <0.32          |
| Permanent Soil Vapor Locations        |                       |        |             |                   |                |
| VP-1                                  | 5/24/2016             | 8,800  | <19         | <14               | <8.9           |
| VP-2                                  | 5/24/2016             | 10,000 | <21         | <16               | <10            |

- 1. HVOC = Halogenated Volatile Organic Compound.
- 2. PCE = Tetrachloroethene.
- 3. TCE = Trichloroethene.
- 4. DCE = Dichloroethene.
- 5. ug/m<sup>3</sup> = microgram per cubic meter.
- 6. Updated Vapor Intrusion Screening Levels (SL) from updated SL table at https://www.ezview.wa.gov/Portals/\_1987/Documents/Documents/CLARC\_VI\_MethodB.pdf
- 7. Bold = analyte was detected at a concentration above the method detection limit.
- 8. Shaded = concentration exceeds the SL.
- 9. <= Not detected at a concentration above the method reporting limit or practical quantitation limit.

Table 4 – Ambient Air Results Cascade Plaza Everett, Washington

| Sample Leastian (Denth) | Sample Date                           |       | HVOC concent | trations (ug/m³) |                |
|-------------------------|---------------------------------------|-------|--------------|------------------|----------------|
| Sample Location (Depth) | Sample Date                           | PCE   | TCE          | cis-1,2-DCE      | Vinyl Chloride |
| Method B Indoor A       | ir Cleanup Level (ug/m <sup>3</sup> ) | 9.6   | 0.37         |                  | 0.28           |
| Ambient Air Stations    |                                       |       |              |                  |                |
| AA-1 (Backgound)        | 12/6/2013                             | <0.21 | <0.16        | <0.12            | <0.039         |
| AA-2 (Indoors)          | 11/20/2013                            | <5.6  | <4.5         | <3.3             | <2.1           |
| AA-3 (Indoors)          | 11/20/2013                            | <5.6  | <4.5         | <3.3             | <2.1           |
| AA-4 (Background)       | 9/22/2014                             | <0.23 | 0.2          | <0.14            | <0.044         |
| AA-5 (Indoors)          | 9/22/2014                             | 0.52  | <0.17        | <0.13            | <0.041         |
| AA-6 (Indoors)          | 9/22/2014                             | <0.23 | <0.18        | <0.13            | < 0.043        |
| AA-7 (Background)       | 5/24/2016                             | 1.3   | <0.22        | <0.16            | < 0.053        |
| AA-8 (Indoor)           | 5/24/2016                             | 5.4   | <0.19        | <0.14            | <0.044         |

- 1. HVOC = Halogenated Volatile Organic Compound.
- 2. PCE = Tetrachloroethene.
- 3. TCE = Trichloroethene.
- 4. DCE = Dichloroethene.
- 5. ug/m³ = microgram per cubic meter.
- 6. MTCA CUL = Model Toxics Control Act Cleanup Level (Unrestricted Land Use).
- 7. Bold = analyte was detected at a concentration above the method detection limit.
- 8. Shaded = concentration exceeds the SL.
- 9. <= Not detected at a concentration above the method reporting limit or practical quantitation limit.
- 10. Ambient air samples collected on May 24, 2016 named AA-1 (Background) and AA-2 (Indoor) were renamed AA-7 (Background) and AA-8 (Indoor) post sample collection and analytical analyses to maintain cohesion in the sampling timeline. Tables and figures reflect the nomenclature change.
- 11. Updated Cleanup Levels from updated table at https://www.ezview.wa.gov/Portals/\_1987/Documents/Documents/CLARC\_VI\_MethodB.pdf

Table 5 – SVE Vapor Analytical Results Cascade Plaza Everett, Washington

| Sample Location | Sample Date | Sample Date HVOC concentrations (µg/m³) |       |             |               |         |                |  |
|-----------------|-------------|-----------------------------------------|-------|-------------|---------------|---------|----------------|--|
|                 | Sample Date | PCE                                     | TCE   | cis-1,2-DCE | trans-1,2-DCE | 1,1-DCE | Vinyl Chloride |  |
| Pre-Carbon      | 4/19/2022   | 3,800                                   | <80   | <59         | <59           | <59     | <38            |  |
| Post-Carbon     | 4/19/2022   | <0.96                                   | <0.76 | <0.56       | <0.56         | <0.56   | <0.36          |  |
| Effluent        | 4/28/2023   | <5.2                                    | <4.2  | <3.1        | <3.1          | <3.1    | <2.0           |  |
|                 | 5/31/2023   | <4.6                                    | <3.6  | <2.7        | <2.7          | <2.7    | <1.7           |  |
| Influent        | 4/28/2023   | 160                                     | <4.0  | <3.0        | <3.0          | <3.0    | <1.9           |  |
|                 | 5/31/2023   | 22                                      | <3.8  | <2.8        | <2.8          | <2.8    | <1.8           |  |

- 1. HVOC = Halogenated Volatile Organic Compound.
- 2. PCE = Tetrachloroethene.
- 3. TCE = Trichloroethene.
- 4. DCE = Dichloroethene.
- 5.  $\mu$ g/m<sup>3</sup> = Micrograms per cubic meter.
- 6. Bold = Analyte was detected at a concentration above the minimum reporting limit.
- 7. < = Not detected at a concentration above the minimum reporting limit.

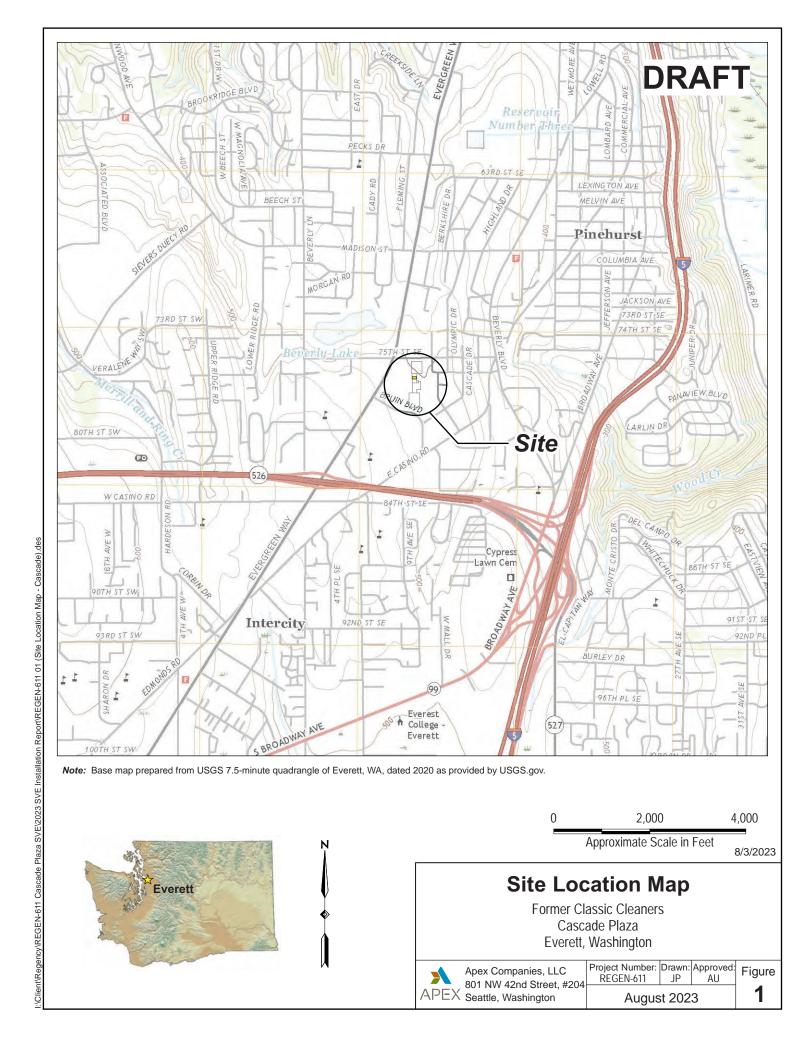
Table 6 – SVE System Monitoring Results Cascade Plaza Everett, Washington

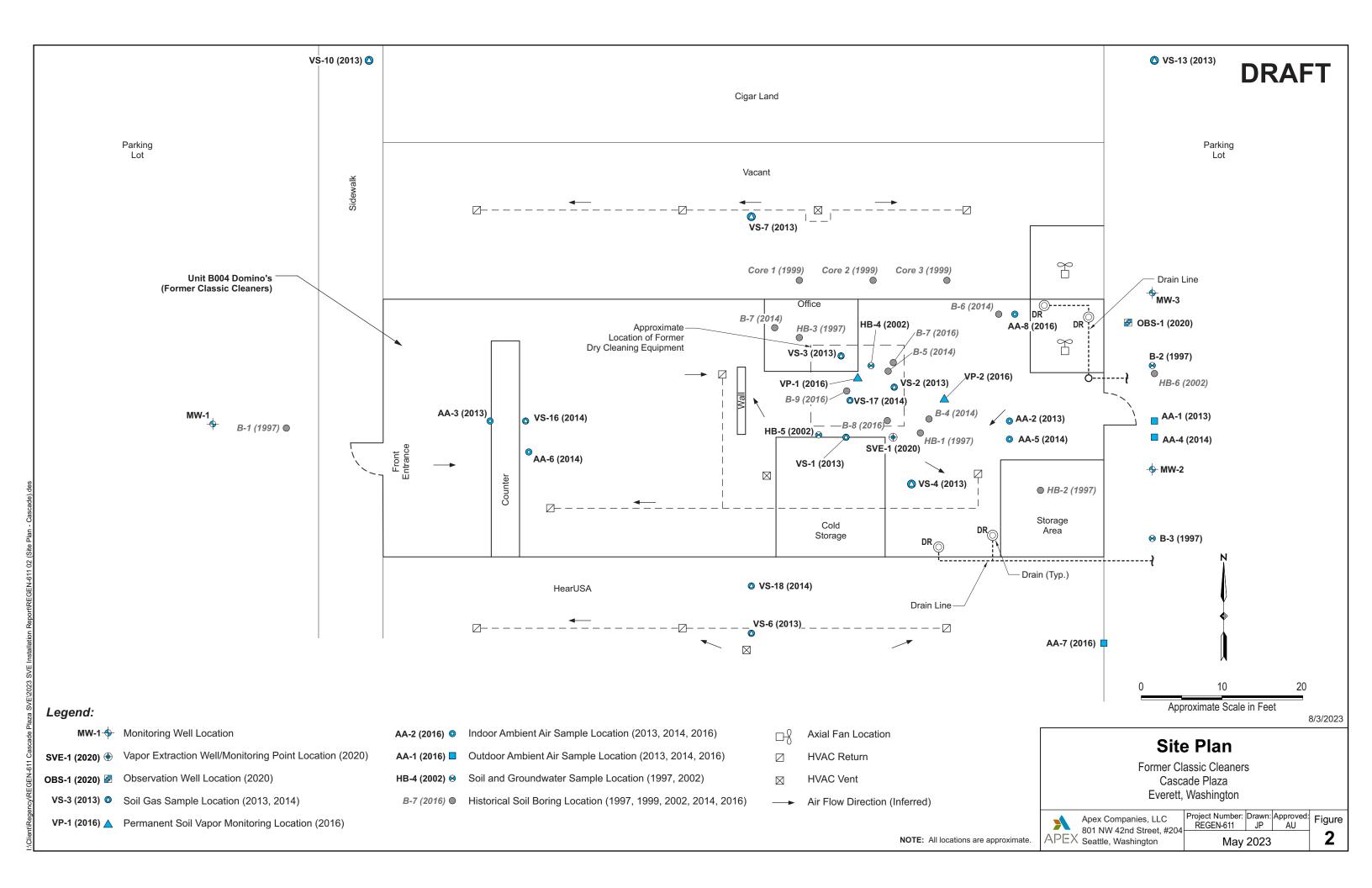
| Monitoring Point | Pre-Blov       | wer       | Effluent/Post    | Blower    |                |           | SVE-1            |                 | OBS            | G-1       | VFD        | j    |
|------------------|----------------|-----------|------------------|-----------|----------------|-----------|------------------|-----------------|----------------|-----------|------------|------|
| Date             | Vacuum (in. W) | PID (ppm) | Pressure (in. W) | PID (ppm) | Vacuum (in. W) | PID (ppm) | Flow Rate (FPM)* | Flow Rate (CFM) | Vacuum (in. W) | PID (ppm) | Hertz (Hz) | Amps |
| 4/18/2022        | 24             |           | 12.161           | 0         | -5.959         | 33.5      |                  |                 | -0.026         | 0         |            |      |
| 4/19/2022        | 26             |           | 12.137           | 0         | -5.953         | 20.2      |                  |                 | -0.032         | 0         |            |      |
| 3/30/2023        | 24             |           | 2.14             | 0         | > -15          |           |                  |                 | -0.047         | 0         |            |      |
| 3/31/2023        | 24             |           | 2.192            | 0         | > -15          |           |                  |                 | -0.081         | 0         |            |      |
| 4/6/2023         | 24             |           | 2.055            | 0         | -2.529         |           |                  |                 | -0.022         | 0         | 30.1       | 3.3  |
| 4/14/2023        | 26             |           | 1.965            | 0         | -12.062        |           |                  |                 | -0.069         | 0         | 30.2       | 3.4  |
| 4/21/2023        | 32             |           | 7.87             | 0         | -32            |           |                  |                 | -0.214         | 0         | 50         |      |
| 4/28/2023        | 32             |           | 8.186            | 0         | -24            |           |                  |                 | -0.076         | 0         |            |      |
| 5/5/2023         | 33             |           | 8.472            | 0         | -28.5          |           | 2426             | 211.29          | -0.117         | 0         | 50.1       | 9.6  |
| 5/31/2023        | 32             | 0.1       | 8.347            | 0         | -29.5          | 0.1       | 1099.5           | 95.76           | -0.037         | 0         | 50.1       | 9.5  |

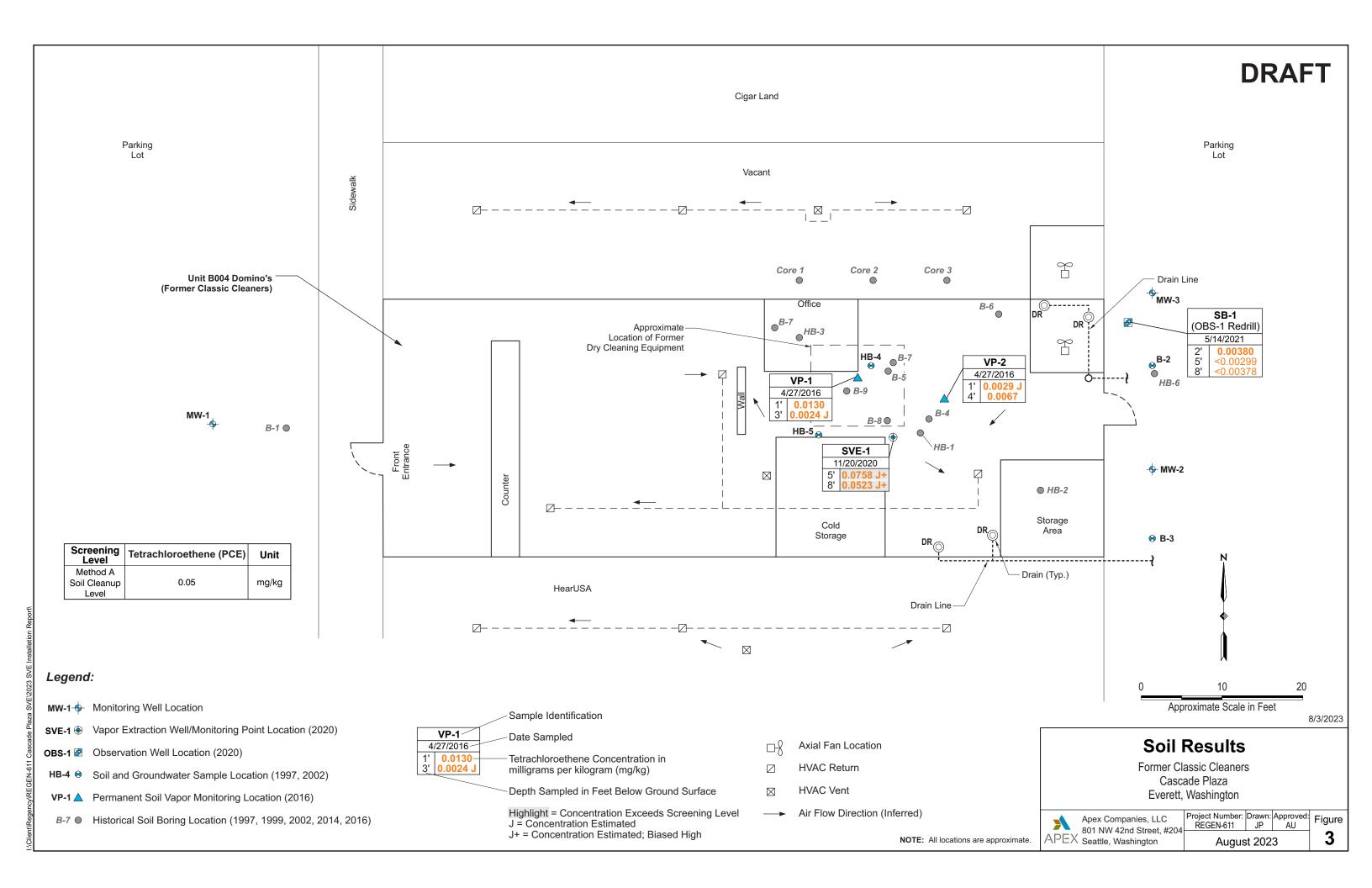
Pressures measured in inches of H<sub>2</sub>O

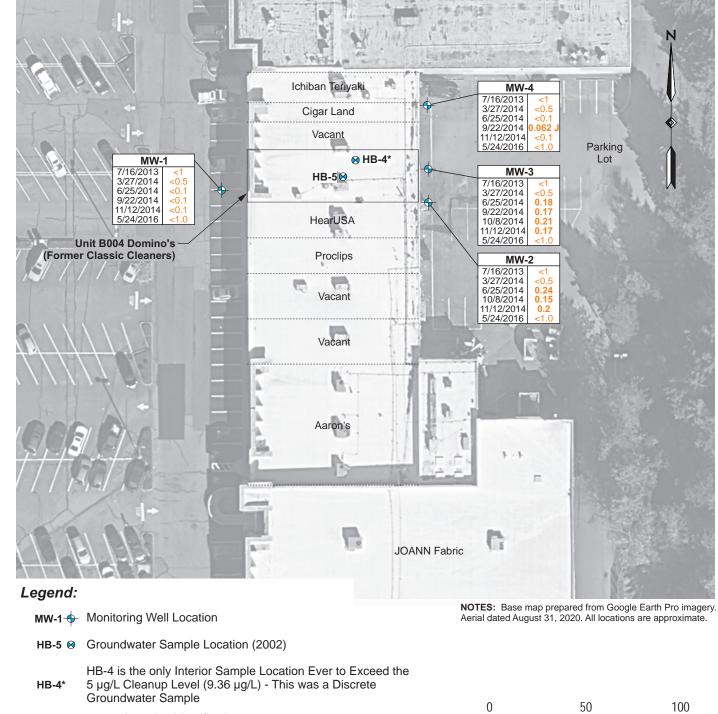
--- = Not measured.

Photoionization detector (PID) readings in parts per million (ppm).


SVE System shut off from 11/22/2021 to 4/17/2022, and 4/20/2022 to 3/29/2023


SVE System originally started on 4/18/2022, and restarted on 3/30/2023


Table 7 – SVE Mass Removal Results Cascade Plaza Everett, Washington


| Location                   | SVE                 | SVE                 |  |  |  |  |  |  |  |
|----------------------------|---------------------|---------------------|--|--|--|--|--|--|--|
| Sample Name                | Precarbon           | Influent            |  |  |  |  |  |  |  |
| Date                       | 4/19/2022           | 4/28/2023           |  |  |  |  |  |  |  |
| Operating Period           | 4/19/2022-4/20/2022 | 3/30/2023-4/28/2023 |  |  |  |  |  |  |  |
| Days Per Operating Period  | 2                   | 30                  |  |  |  |  |  |  |  |
| Air Flow and Conversions   |                     |                     |  |  |  |  |  |  |  |
| Air Velocity (fpm)         | 2426                | 2426                |  |  |  |  |  |  |  |
| ft^2                       | 0.0907              | 0.0907              |  |  |  |  |  |  |  |
| Air flow Rate (cf/m)       | 64.00               | 64.00               |  |  |  |  |  |  |  |
| 1 day (min)=               | 1,440               | 1,440               |  |  |  |  |  |  |  |
| Air flow Rate (cf/day)     | 92,160              | 92,160              |  |  |  |  |  |  |  |
| 1 cf (m^3)=                | 0.0283              | 0.0283              |  |  |  |  |  |  |  |
| Air flow Rate (m³ per day) | 2,610               | 2,610               |  |  |  |  |  |  |  |
|                            | PCE Mass            |                     |  |  |  |  |  |  |  |
| PCE Concentration (µg/m³)  | 3,800               | 160                 |  |  |  |  |  |  |  |
| Total PCE Mass (µg/day)    | 9.92E+06            | 4.18E+05            |  |  |  |  |  |  |  |
| 1 μg (lb)                  | 2.20E-09            | 2.20E-09            |  |  |  |  |  |  |  |
| Total PCE Mass (lb)        | 0.0437              | 0.0276              |  |  |  |  |  |  |  |
|                            | TAC Mass            |                     |  |  |  |  |  |  |  |
| TAC conc (µg/m³)           | 3,800               | 160                 |  |  |  |  |  |  |  |
| Total TAC Mass (µg/day)    | 9.92E+06            | 4.18E+05            |  |  |  |  |  |  |  |
| 1 μg (lb)                  | 2.20E-09            | 2.20E-09            |  |  |  |  |  |  |  |
| Total TAC Mass (lb)        | 0.044               | 0.028               |  |  |  |  |  |  |  |

- 1. TAC = Toxic Air Contaminant
- 2. lb = Pounds
- 3. ug/m3 = microgram per cubic meter.









Safeway

Location Identification

Tetrachloroethene Concentration in micrograms per Liter (µg/L) J = Concentration Estimated

Sampling Date

| Screening<br>Level                            | Tetrachloroethene (PCE) | Unit |
|-----------------------------------------------|-------------------------|------|
| MTCA Method A<br>Groundwater<br>Cleanup Level | 5                       | μg/L |
| Updated<br>Vapor Intrusion<br>Screening Level | 22.9                    | μg/L |

stallation Report\REGEN-611 04 (GW Results - Cascade).des

MW-4

7/16/2013 3/27/2014

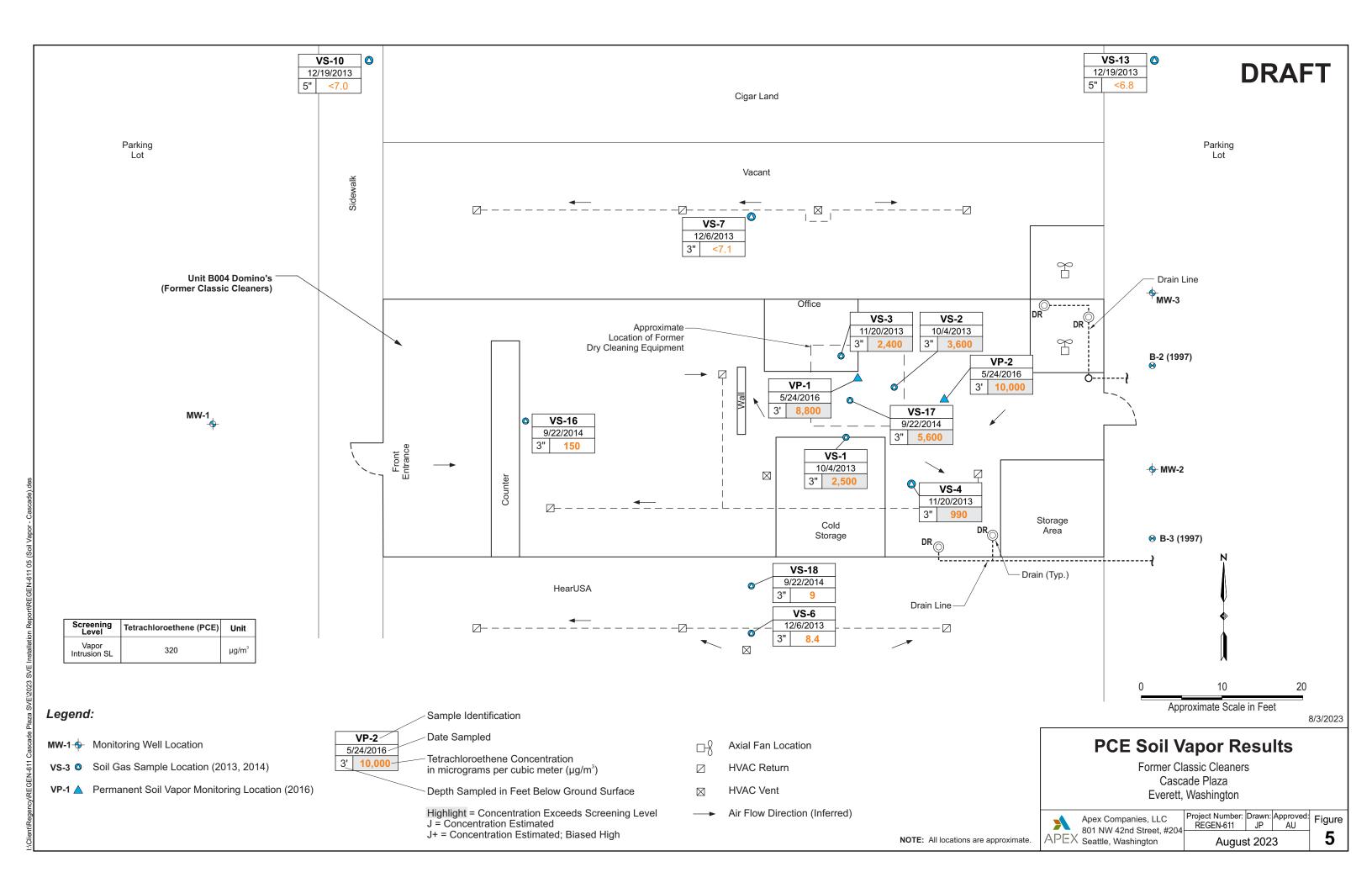
6/25/2014

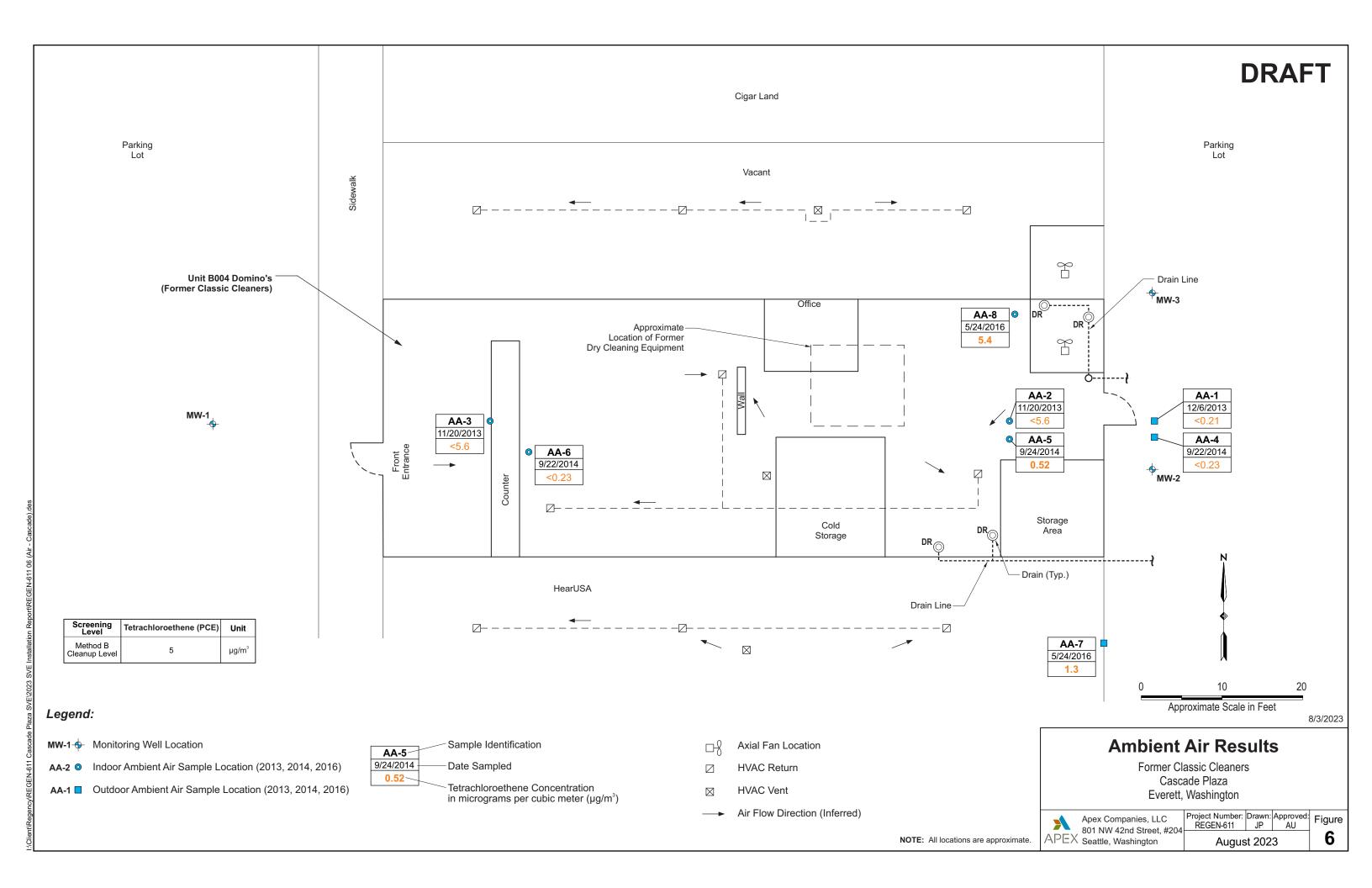
9/22/2014 11/12/2014

5/24/2016

Approximate Scale in Feet

## **Groundwater Results**


Former Classic Cleaners Cascade Plaza Everett, Washington


| -    | Apex Companies, LLC                             | Pr |
|------|-------------------------------------------------|----|
| APEX | 801 NW 42nd Street, #204<br>Seattle, Washington |    |

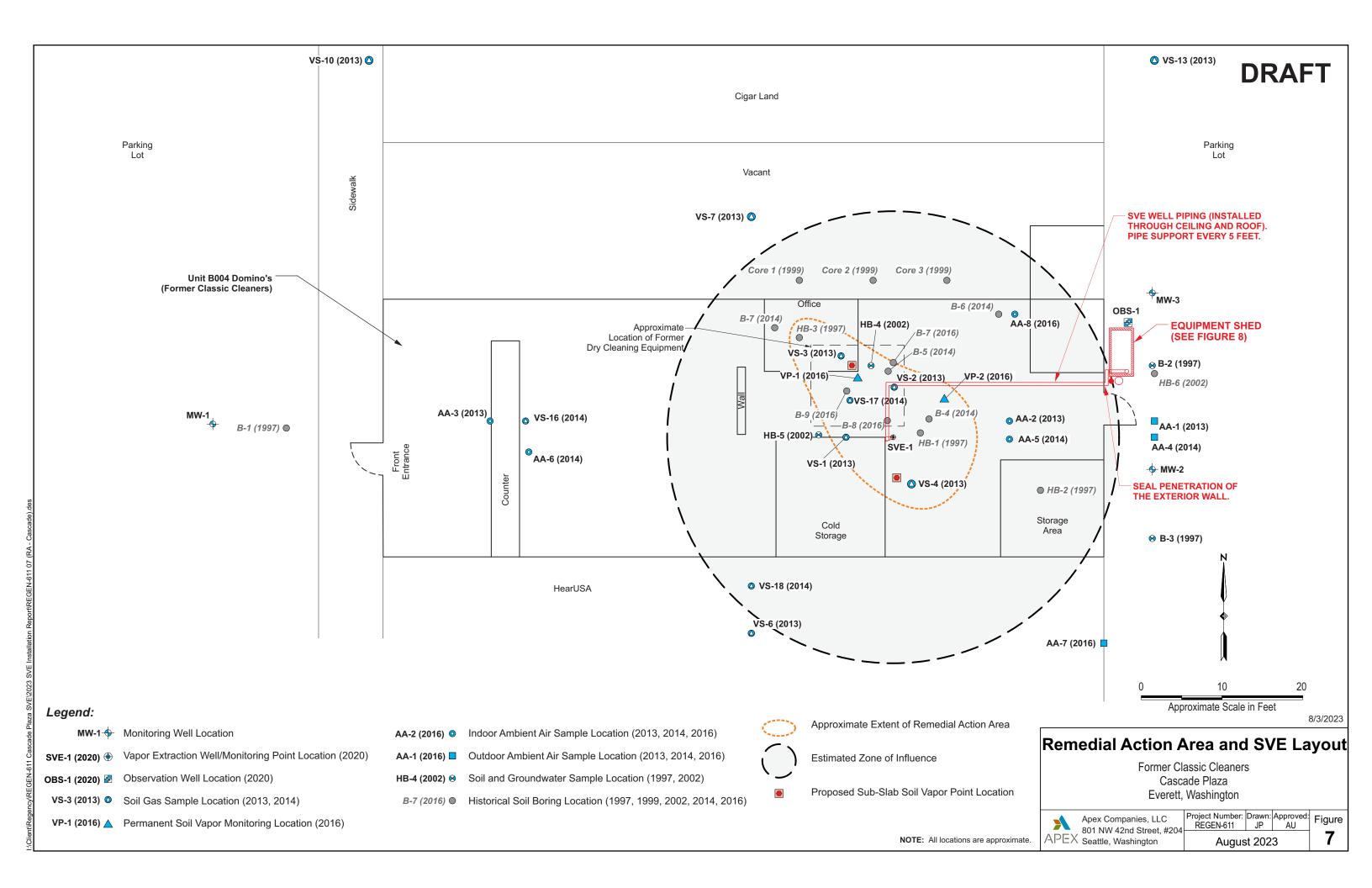
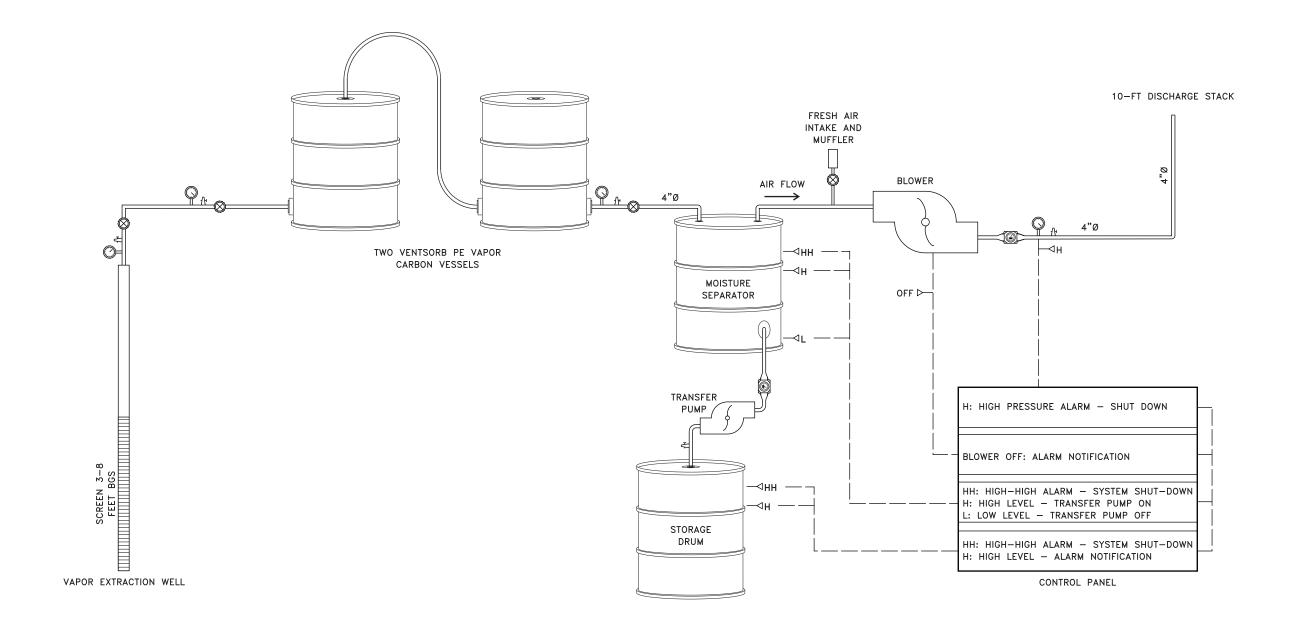

| Project Number: | Drawn: | Approved: |
|-----------------|--------|-----------|
| REGEN-611       | JP     | AU        |
| Augus           | t 202  | 3         |

Figure 4


8/3/2023







## **DRAFT**



#### LEGEND:

- FLOW METER
- PRESSURE GAUGE
- SAMPLE PORT
- FLOW CONTROL VALVE
- → SYSTEM CONTROL INPUT
- 4"Ø PIPE DIAMETER, IN INCHES

#### **EQUIPMENT NOTES:**

- 1. MOISTURE SEPARATOR = MINIMUM 40-GALLON VESSEL WITH INTRINSIC SECONDARY CONTAINMENT AND VISUAL INDICATION OF INTERSTITIAL FLUIDS.
- 2. BLOWER = ENVIRONMENTAL-GRADE REGENERATIVE BLOWER CAPABLE OF MINIMUM 70 CFM AT VACUUM PRESSURE OF 30 INCHES OF WATER (GAUGE PRESSURE) - ROTRON EN-404.
- 3. CARBON VESSELS = TWO(2) 75-GALLON VENTSORB PE VAPOR CARBON VESSELS (OR EQUIVALENT) CONNECTED IN SERIES.
- 4. MAXIMUM OPERATING NOISE LEVEL = 60 DBA AT A DISTANCE OF 10 FEET.
- 5. TRANSFER PUMP = SELF-PRIMING CENTRIFUGAL WATER PUMP (NOMINAL 0.25HP, 10 GPM)

8/3/2023

## **SVE System Schematic**

Former Classic Cleaners Cascade Plaza Everett, Washington

|      | Apex Companies, LLC   |  |  |
|------|-----------------------|--|--|
|      | 801 NW 42nd Street, # |  |  |
| \PEX | Seattle, Washington   |  |  |

Project Number: Drawn: Approved: Figure August 2023



#### Sample Descriptions

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, and grain size, and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

MAJOR CONSTITUENT with additional remarks; color, moisture, minor constituents, density/consistency.

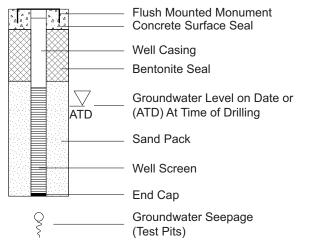
#### **Density/Consistency**

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and push probe explorations is estimated based on visual observation and is presented parenthetically on test pit and push probe exploration logs.

| SAND and GRAVEL                                            | Standard<br>Penetration<br>Resistance        | SILT or CLAY                                      | Standard<br>Penetration<br>Resistance               | Approximate<br>Shear<br>Strength                                       |
|------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|
| <u>Density</u>                                             | in Blows/Foot                                | <u>Density</u>                                    | in Blows/Foot                                       | in TSF                                                                 |
| Very loose<br>Loose<br>Medium dense<br>Dense<br>Very dense | 0 - 4<br>4 - 10<br>10 - 30<br>30 - 50<br>>50 | Very soft Soft Medium stiff Stiff Very Stiff Hard | 0 - 2<br>2 - 4<br>4 - 8<br>8 - 15<br>15 - 30<br>>30 | <0.125<br>0.125 - 0.25<br>0.25 - 0.5<br>0.5 - 1.0<br>1.0 - 2.0<br>>2.0 |

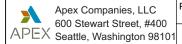
| Moist     | ure                                                | Minor Constituents             | Estimated Percentage |
|-----------|----------------------------------------------------|--------------------------------|----------------------|
| Dry       | Little perceptible moisture.                       | Not identified in description  | 0 - 5                |
| SI. Moist | Some perceptible moisture, probably below optimum. | Slightly (clayey, silty, etc.) | 5 - 12               |
| Moist     | Probably near optimum moisture content.            | Clayey, silty, sandy, gravelly | 12 - 30              |
| Wet       | Much perceptible moisture, probably above optimum. | Very (clayey, silty, etc.)     | 30 - 50              |

#### Sampling Symbols


BORING AND PUSH-PROBE SYMBOLS

|        | Recovery                               |
|--------|----------------------------------------|
|        | No Recovery                            |
|        | Temporarily Screened Interval          |
| PID    | Photoionization Detector Reading       |
| W      | Water Sample                           |
|        | Sample Submitted for Chemical Analysis |
| NS     | No Sheen                               |
| SS     | Slight Sheen                           |
| MS     | Moderate Sheen                         |
| HS     | Heavy Sheen                            |
| BF     | Biogenic Film                          |
| ST DIT | SOIL SAMPLES                           |

#### TEST PIT SOIL SAMPLES


| <br>COIL O/ WIII LL |
|---------------------|
| Grab (Jar)          |
| Bag                 |
| Shelby Tube         |
|                     |

# **Groundwater Observations and Monitoring Well Construction**



## **Key to Exploration Logs**

Former Cascade Cleaners Cascade Plaza Everett, Washington



| APE:        | Apex Companies, LLC 600 Stewart Street, #400 APEX Seattle, Washington 98101  Former Cascade Cleaners Cascade Plaza Everett, Washington |                        |                   |                | t, #400 Cascade Plaza                                                                                                                                                                        | Boring Number: SVE-1 Project Number: REGEN-520 Logged By: J. Guillotte Date: November 20, 2020                                                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth, feet | Core Interval/Recovery                                                                                                                 | Laboratory Sample ID   | PID               | Sheen          | Lithologic Description                                                                                                                                                                       | Site Conditions: Clear, Cool  Drilling Contractor: Cascade Drilling  Drilling Equipment: Vac Truck  Sampler Type: Hand Auger  Depth to Water (ATD):  Surface Elevation: Not Measured  Boring Details and Notes:   |
| 5— 10— —    | Hand Auger                                                                                                                             | SVE-1-(8') SVE-1-(5')  | <5 <5 <5 <5       | NS - NS - NS - | Ceramic tile on concrete over sandy SILT; light brown, fine to medium-grained.  - Encountered marble-sized gravel.  - Becomes reddish light brown 10% gravel.  Bottom of Boring at 8.0' BGS. | Flush-Mount Monument Concrete Surface Seal Bentonite Grout 6" Diameter Borehole 4" Diameter Schedule 40 PVC Screen (0.010-Inch Slot Size) End Cap                                                                 |
|             |                                                                                                                                        |                        |                   |                |                                                                                                                                                                                              | Boring Number: OBS-1  Logged By: J. Guillotte  Date: November 20, 2020                                                                                                                                            |
| Depth, feet | Core Interval/Recovery                                                                                                                 | Laboratory Sample ID   | PID               | Sheen          | Lithologic Description                                                                                                                                                                       | Site Conditions: Overcast. Cool Drilling Contractor: Cascade Drilling Drilling Equipment: Vac Truck, HSA Sampler Type: Hand Auger Depth to Water (ATD): Surface Elevation: Not Measured Boring Details and Notes: |
| 5— 10— —    | Hand Auger Co                                                                                                                          | OBS-1-(9) OBS-1-(5) La | <5 <5 <5 <5 <5 <5 | NS NS - NS -   | Asphalt over silty SAND; medium to dark brown, fine-granied.  — Becomes medium brown-red.  Silty SAND (FILL); light gray, medium to fine-grained. 25% grave.  Bottom of Boring at 9.0' BGS.  | Flush-Mount Monument Concrete Surface Seal Bentonite Grout 6" Diameter Borehole #2/12 Filter Pack Sand  1" Diameter Schedule 40 PVC Screen (0.010-Inch Slot Size)                                                 |
|             |                                                                                                                                        |                        |                   |                |                                                                                                                                                                                              | Page 1/1                                                                                                                                                                                                          |

| Apex Companies, LLC<br>600 Stewart Street, #400<br>APEX Seattle, Washington 98101 |                                           | LLC                  | Former Cascade Cleaners | Boring Number: SB-1       |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------|-------------------------------------------|----------------------|-------------------------|---------------------------|-----------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                   |                                           | et, #400             | Cascade Plaza           | Project Number: REGEN-520 |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           | on 98101             | Everett, Washington     | Logged By: H. Hiscox      |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           | ·                                             | Date: May 14, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                   |                                           |                      |                         |                           |           |                                               | Site Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                   | Š                                         |                      |                         |                           |           |                                               | Drilling Contractor: Cascade Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                   | ove                                       | <u> </u>             |                         |                           |           |                                               | Drilling Equipment: Geoprobe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                   | Sec                                       | ldu                  |                         |                           |           |                                               | Sampler Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                   | a/F                                       | Sal                  |                         |                           |           |                                               | Depth to Water (ATD):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| eet                                                                               | e.                                        | ory                  |                         |                           |           |                                               | Surface Elevation: Not Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| h, f                                                                              | <u>lu</u>                                 | rat                  |                         | LE                        | Litha     | ologia Description                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Depth, feet                                                                       | Core Interval/Recovery                    | Laboratory Sample ID | PID                     | Sheen                     |           | ologic Description                            | Boring Details and Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                   | 0                                         |                      | <u>п</u>                | 0)                        |           |                                               | , in the second |
|                                                                                   |                                           |                      |                         |                           | Concre    | te (4") over sandy CLAY; dark brown/dark red, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   | 11 /                                      |                      |                         |                           | dry, fine | e to medium-grained.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                                                                                 |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           | SB-1-(2')            | <5                      | NS                        |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           | SB.                  | ŭ                       |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                                                                                 |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                                                                                 |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5—                                                                                | Н                                         |                      |                         |                           | Cilty CI  | AV. dark brown alightly maint fine grained    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                   | II /                                      |                      |                         |                           | Silly CL  | AY; dark brown, slightly moist, fine-grained. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   | 11 /                                      | SB-1-(6')            | <5                      | NS                        |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   | /                                         | SB-1                 | \3                      | INO                       |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   | /                                         |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                                                                                 | $\parallel \parallel \parallel$           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           | (%) <sub>Z</sub>     | <b>4</b> F              | NC                        |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   | $\parallel \parallel \parallel \parallel$ | SB-1-(8')            | <5                      | NS                        | Sandy     | CLAY; dark brown, dry, fine-grained.          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                   | $\parallel \parallel \parallel \parallel$ |                      |                         |                           | ,         | , , , ,                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                                                                                 | Ш                                         |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10—                                                                               |                                           |                      |                         |                           |           |                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10                                                                                |                                           |                      |                         |                           | Datta     | of Position at 10 01 PCC                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                   |                                           |                      |                         |                           | Bollom    | of Boring at 10.0' BGS.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                                                                                 |                                           |                      |                         |                           |           |                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                                                                                 |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                                                                                 |                                           |                      |                         |                           |           |                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15—                                                                               |                                           |                      |                         |                           |           |                                               | <del></del> 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                   |                                           |                      |                         |                           |           |                                               | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                                                                                 |                                           |                      |                         |                           |           |                                               | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                                                                                 |                                           |                      |                         |                           |           |                                               | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |                                           |                      |                         |                           |           |                                               | Page 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



**SVE System Photolog** 

Photograph 1

Description:

Position of sve system and carbon before installation



Photograph

Description:

Floor around sve well prior to trenching



Photograph

Description: Cutting concrete around sve well for

trench





Photograph 4

Description: Tile cut for trenching



Photograph 5

Breaking concrete around sve well Description:



Photograph

Description:

Removing soil from trench 1 foot below the concrete

bottom





Photograph 7

Description:

Sve-1 trench and piping going up the wall, (nothing attached to the freezer door)



Photograph

Description:

Cones around the

trenches area



Photograph Description:

9

Concrete poured and new well box around the surrounding area





Photograph 10

Description: Pve piping coming out of dominos

attached to outside of door, and going to sve system.



Photograph 11

Piping along sve system side Description:



Photograph 12

Description:

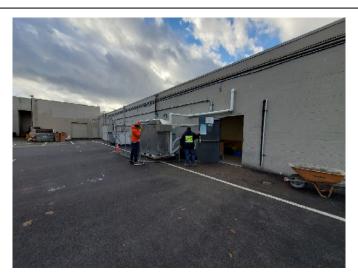
Tubing connecting carbon to sve system, the tub attaching to the sve system will be connected once temporary fence temporary fence is down





Photograph 13

Description:


Temporary fencing up around system facing southwest



Photograph 14

Description:

Temporary fencing up with dominos door completely openinh



Photograph 15

Description: View facing north of system and fence





Photograph 16

Photograph

Description:

View facing west of SVE system with caution tape and cone up around temporary fencing



| Description:            |  |
|-------------------------|--|
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
| Photograph Description: |  |
| Description:            |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |





**Laboratory Reports** 



# ANALYTICAL REPORT

December 02, 2020

Sample Delivery Group: L1289130

Samples Received: 11/21/2020

Project Number: REGEN-520

Description: Cascade Cleaners

Apex Companies, LLC - Portland, OR

Report To: Jie Xu

600 Stewart St.

Ste 400

Seattle, WA 98101

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.



















| Cp: Cover Page                                     | 1  |  |  |  |  |
|----------------------------------------------------|----|--|--|--|--|
| Tc: Table of Contents                              | 2  |  |  |  |  |
| Ss: Sample Summary                                 | 3  |  |  |  |  |
| Cn: Case Narrative                                 | 4  |  |  |  |  |
| Sr: Sample Results                                 | 5  |  |  |  |  |
| SVE-1-(5') L1289130-01                             | 5  |  |  |  |  |
| OBS-1-(5') L1289130-02                             | 6  |  |  |  |  |
| SVE-1-(8') L1289130-05                             | 7  |  |  |  |  |
| OBS-1-(9') L1289130-06                             | 8  |  |  |  |  |
| Qc: Quality Control Summary                        | 9  |  |  |  |  |
| Total Solids by Method 2540 G-2011                 | 9  |  |  |  |  |
| Volatile Organic Compounds (GC/MS) by Method 8260D | 10 |  |  |  |  |
| GI: Glossary of Terms                              | 11 |  |  |  |  |
| Al: Accreditations & Locations                     | 12 |  |  |  |  |
| Sc: Sample Chain of Custody                        |    |  |  |  |  |























|                                                    |           |          | 0 11           | 0.11                |               |                |
|----------------------------------------------------|-----------|----------|----------------|---------------------|---------------|----------------|
|                                                    |           |          | Collected by   | Collected date/time | Received da   |                |
| SVE-1-(5') L1289130-01 Solid                       |           |          | J. Guillotte   | 11/20/20 03:12      | 11/21/20 09:0 | )()            |
| Method                                             | Batch     | Dilution | Preparation    | Analysis            | Analyst       | Location       |
|                                                    |           |          | date/time      | date/time           |               |                |
| Total Solids by Method 2540 G-2011                 | WG1584500 | 1        | 12/01/20 23:29 | 12/01/20 23:38      | KBC           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260D | WG1584264 | 1        | 11/20/20 03:12 | 11/30/20 21:20      | BMB           | Mt. Juliet, TN |
|                                                    |           |          | Collected by   | Collected date/time | Received da   | te/time        |
| OBS-1-(5') L1289130-02 Solid                       |           |          | J. Guillotte   | 11/20/20 07:20      | 11/21/20 09:0 | 00             |
| Method                                             | Batch     | Dilution | Preparation    | Analysis            | Analyst       | Location       |
|                                                    |           |          | date/time      | date/time           |               |                |
| Total Solids by Method 2540 G-2011                 | WG1584500 | 1        | 12/01/20 23:29 | 12/01/20 23:38      | KBC           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260D | WG1584264 | 1        | 11/20/20 07:20 | 11/30/20 21:39      | BMB           | Mt. Juliet, TN |
|                                                    |           |          | Collected by   | Collected date/time | Received da   | te/time        |
| SVE-1-(8') L1289130-05 Solid                       |           |          | J. Guillotte   | 11/20/20 04:00      | 11/21/20 09:0 | 00             |
| Method                                             | Batch     | Dilution | Preparation    | Analysis            | Analyst       | Location       |
|                                                    |           |          | date/time      | date/time           |               |                |
| Total Solids by Method 2540 G-2011                 | WG1584500 | 1        | 12/01/20 23:29 | 12/01/20 23:38      | KBC           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260D | WG1584264 | 1        | 11/20/20 04:00 | 11/30/20 21:57      | BMB           | Mt. Juliet, TN |
|                                                    |           |          | Collected by   | Collected date/time | Received da   | te/time        |
| OBS-1-(9') L1289130-06 Solid                       |           |          | J. Guillotte   | 11/20/20 07:55      | 11/21/20 09:0 | 00             |
| Method                                             | Batch     | Dilution | Preparation    | Analysis            | Analyst       | Location       |
|                                                    |           |          | date/time      | date/time           |               |                |
| Total Solids by Method 2540 G-2011                 | WG1584500 | 1        | 12/01/20 23:29 | 12/01/20 23:38      | KBC           | Mt. Juliet, TN |

WG1584264



















Volatile Organic Compounds (GC/MS) by Method 8260D

11/20/20 07:55

11/30/20 22:16

BMB

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.



Ss











Brian Ford Project Manager

Buar Ford

#### SAMPLE RESULTS - 01 L1289130

ONE LAB. NATIONWIDE.

Collected date/time: 11/20/20 03:12

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 90.8   |           | 1        | 12/01/2020 23:38 | WG1584500 |





# ³Ss











Αl





#### Volatile Organic Compounds (GC/MS) by Method 8260D

|                           | Result (dry) | <u>Qualifier</u> | MDL (dry) | RDL (dry)       | Dilution | Analysis         | <u>Batch</u> |
|---------------------------|--------------|------------------|-----------|-----------------|----------|------------------|--------------|
| Analyte                   | mg/kg        |                  | mg/kg     | mg/kg           |          | date / time      |              |
| cis-1,2-Dichloroethene    | U            |                  | 0.000890  | 0.00303         | 1        | 11/30/2020 21:20 | WG1584264    |
| Tetrachloroethene         | 0.0758       | <u>C5</u>        | 0.00109   | 0.00303         | 1        | 11/30/2020 21:20 | WG1584264    |
| Trichloroethene           | U            |                  | 0.000708  | 0.00121         | 1        | 11/30/2020 21:20 | WG1584264    |
| Vinyl chloride            | U            |                  | 0.00141   | 0.00303         | 1        | 11/30/2020 21:20 | WG1584264    |
| (S) Toluene-d8            | 103          |                  |           | <i>75.0-131</i> |          | 11/30/2020 21:20 | WG1584264    |
| (S) 4-Bromofluorobenzene  | 109          |                  |           | 67.0-138        |          | 11/30/2020 21:20 | WG1584264    |
| (S) 1,2-Dichloroethane-d4 | 91.6         |                  |           | 70.0-130        |          | 11/30/2020 21:20 | WG1584264    |

Apex Companies, LLC - Portland, OR

Analyte

cis-1,2-Dichloroethene

Tetrachloroethene

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

Trichloroethene

Vinyl chloride

## SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 11/20/20 07:20

## Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 76.1   |           | 1        | 12/01/2020 23:38 | WG1584500 |

RDL (dry)

mg/kg

0.00415

0.00415

0.00166

0.00415

75.0-131

67.0-138

70.0-130

Dilution

1

Analysis

date / time

11/30/2020 21:39

11/30/2020 21:39

11/30/2020 21:39

11/30/2020 21:39

11/30/2020 21:39

11/30/2020 21:39

11/30/2020 21:39

Batch

WG1584264

WG1584264

WG1584264

WG1584264

WG1584264

WG1584264

WG1584264





# Ss

| <sup>4</sup> Cn |  |
|-----------------|--|
|-----------------|--|











Volatile Organic Compounds (GC/MS) by Method 8260D

mg/kg

0.143

U

U

U

101

109

91.6

Result (dry)

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 76.1   |           | 1        | 12/01/2020 23:38 | WG1584500 |

Qualifier

<u>C5</u>

MDL (dry)

mg/kg

0.00122

0.00149

0.000970

0.00193

#### ACCOUNT: Apex Companies, LLC - Portland, OR

Analyte

cis-1,2-Dichloroethene

Tetrachloroethene

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

Trichloroethene

Vinyl chloride

# SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

MDL (dry)

0.000845

0.00103

0.000672

0.00134

mg/kg

Qualifier

<u>C5</u>

#### Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC/MS) by Method 8260D

mg/kg

0.0523

U

U

U

102

109

91.3

Result (dry)

Collected date/time: 11/20/20 04:00

|              | Result | Qualifier | Dilution | Analysis         | Batch     |
|--------------|--------|-----------|----------|------------------|-----------|
| Analyte      | %      |           |          | date / time      |           |
| Total Solids | 93.5   |           | 1        | 12/01/2020 23:38 | WG1584500 |

RDL (dry)

0.00288

0.00288

0.00115

0.00288

75.0-131

67.0-138

70.0-130

mg/kg

Dilution

1

Analysis

date / time

11/30/2020 21:57

11/30/2020 21:57

11/30/2020 21:57

11/30/2020 21:57

11/30/2020 21:57

11/30/2020 21:57

11/30/2020 21:57

Batch

WG1584264

WG1584264

WG1584264

WG1584264

WG1584264

WG1584264

WG1584264



















#### ACCOUNT: Apex Companies, LLC - Portland, OR

Analyte

cis-1,2-Dichloroethene

Tetrachloroethene

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

Trichloroethene

Vinyl chloride

# SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 11/20/20 07:55

#### Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC/MS) by Method 8260D

Result (dry)

mg/kg

0.00956

U

U

U

104

112

92.7

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 91.6   |           | 1        | 12/01/2020 23:38 | WG1584500    |

RDL (dry)

0.00296

0.00296

0.00118

0.00296

75.0-131

67.0-138

70.0-130

mg/kg

Dilution

1

Analysis

date / time

11/30/2020 22:16

11/30/2020 22:16

11/30/2020 22:16

11/30/2020 22:16

11/30/2020 22:16

11/30/2020 22:16

11/30/2020 22:16

Batch

WG1584264

WG1584264

WG1584264

WG1584264

WG1584264

WG1584264

WG1584264

MDL (dry)

0.000870

0.00106

0.000692

0.00137

mg/kg

Qualifier

<u>C5</u>

# Тс



















#### QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L1289130-01,02,05,06

#### Method Blank (MB)

Total Solids

| (MB) R3599386-1 12/01/20 23:38 |           |              |        |        |  |  |  |  |
|--------------------------------|-----------|--------------|--------|--------|--|--|--|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |  |  |
| Analyte                        | %         |              | %      | %      |  |  |  |  |



#### L1289128-01 Original Sample (OS) • Duplicate (DUP)

0.00100

| 'OS | ) I 1289128-01 | 12/01/20 2 | '3:38 • (I | DUP) | R3599386-3 | 12/01/20 2 | 23:38 |
|-----|----------------|------------|------------|------|------------|------------|-------|
|     |                |            |            |      |            |            |       |

|              | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|--------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte      | %               | %          |          | %       |               | %                 |
| Total Solids | 80.7            | 81.1       | 1        | 0.524   |               | 10                |



Ss

#### Laboratory Control Sample (LCS)

| (LCS) R3599386-2 12/01/20 23:38 |
|---------------------------------|
|---------------------------------|

| (LCS) KSS99380-2 12/01/2 | Spike Amount | t LCS Resu | lt LCS Rec. | Rec. Limits | LCS Qualifie |
|--------------------------|--------------|------------|-------------|-------------|--------------|
| Analyte                  | %            | %          | %           | %           |              |
| Total Solids             | 50.0         | 50.0       | 100         | 85.0-115    |              |





#### QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260D

L1289130-01,02,05,06

#### Method Blank (MB)

| MB Result | MB Qualifier          | MB MDL                | MB RDL                                                 |
|-----------|-----------------------|-----------------------|--------------------------------------------------------|
| mg/kg     |                       | mg/kg                 | mg/kg                                                  |
| U         |                       | 0.000734              | 0.00250                                                |
| U         |                       | 0.000896              | 0.00250                                                |
| U         |                       | 0.000584              | 0.00100                                                |
| U         |                       | 0.00116               | 0.00250                                                |
| 101       |                       |                       | 75.0-131                                               |
| 108       |                       |                       | 67.0-138                                               |
| 91.6      |                       |                       | 70.0-130                                               |
|           | mg/kg U U U U 101 108 | mg/kg U U U U 101 108 | mg/kg mg/kg U 0.000734 U 0.000896 U 0.000584 U 0.00116 |

#### Laboratory Control Sample (LCS)

| (LCS) R3598789-1 11/30/2  | 0 14:14      |            |          |             |               |
|---------------------------|--------------|------------|----------|-------------|---------------|
|                           | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                   | mg/kg        | mg/kg      | %        | %           | L             |
| cis-1,2-Dichloroethene    | 0.125        | 0.128      | 102      | 73.0-125    |               |
| Tetrachloroethene         | 0.125        | 0.164      | 131      | 70.0-136    |               |
| Trichloroethene           | 0.125        | 0.152      | 122      | 76.0-126    |               |
| Vinyl chloride            | 0.125        | 0.120      | 96.0     | 63.0-134    |               |
| (S) Toluene-d8            |              |            | 104      | 75.0-131    |               |
| (S) 4-Bromofluorobenzene  |              |            | 107      | 67.0-138    |               |
| (S) 1.2-Dichloroethane-d4 |              |            | 91.3     | 70 0-130    |               |

#### L1290253-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1290253-06 11/30/2  | 20 18:30 • (MS) | R3598789-3 11   | /30/20 23:13 • | (MSD) R35987 | 789-4 11/30/20 | 23:32    |          |             |              |               |      |            |
|---------------------------|-----------------|-----------------|----------------|--------------|----------------|----------|----------|-------------|--------------|---------------|------|------------|
|                           | Spike Amount    | Original Result | MS Result      | MSD Result   | MS Rec.        | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                   | mg/kg           | mg/kg           | mg/kg          | mg/kg        | %              | %        |          | %           |              |               | %    | %          |
| cis-1,2-Dichloroethene    | 0.102           | U               | 0.127          | 0.119        | 125            | 117      | 1        | 10.0-149    |              |               | 6.50 | 37         |
| Tetrachloroethene         | 0.102           | U               | 0.173          | 0.162        | 170            | 159      | 1        | 10.0-156    | <u>J5</u>    | <u>J5</u>     | 6.57 | 39         |
| Trichloroethene           | 0.102           | U               | 0.159          | 0.147        | 156            | 144      | 1        | 10.0-156    |              |               | 7.84 | 38         |
| Vinyl chloride            | 0.102           | U               | 0.114          | 0.112        | 112            | 110      | 1        | 10.0-160    |              |               | 1.77 | 37         |
| (S) Toluene-d8            |                 |                 |                |              | 100            | 101      |          | 75.0-131    |              |               |      |            |
| (S) 4-Bromofluorobenzene  |                 |                 |                |              | 111            | 113      |          | 67.0-138    |              |               |      |            |
| (S) 1,2-Dichloroethane-d4 |                 |                 |                |              | 92.8           | 91.3     |          | 70.0-130    |              |               |      |            |



















#### **GLOSSARY OF TERMS**

#### ONE LAB. NATIONWIDE.

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| (dry) Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for some MDL Method Detection Limit. MDL (dry) Method Detection Limit. RDL Reported Detection Limit. RDL Reported Detection Limit. RPDL Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate of Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected detected in all environmental media. U Not detected at the Reporting Limit (or MDL where applicable). The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple anareported. If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this result reported has already been corrected for this factor. These are the target % recovery ranges or % difference value that the laboratory has historically determined as a for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality sample. The Original Sample may not be included within the reported SDG. | oils].     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| MDL (dry) Method Detection Limit.  RDL Reported Detection Limit.  RDL (dry) Reported Detection Limit.  Rec. Recovery.  RPD Relative Percent Difference.  SDG Sample Delivery Group.  Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate a Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected detected in all environmental media.  U Not detected at the Reporting Limit (or MDL where applicable).  Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple anareported.  If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this result reported has already been corrected for this factor.  These are the target % recovery ranges or % difference value that the laboratory has historically determined as a for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                         |            |
| RDL (dry) Reported Detection Limit.  RDL (dry) Reported Detection Limit.  Rec. Recovery.  RPD Relative Percent Difference.  SDG Sample Delivery Group.  Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate a Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected detected in all environmental media.  U Not detected at the Reporting Limit (or MDL where applicable).  Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analyse are not expected.  If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this result reported has already been corrected for this factor.  Limits These are the target recovery ranges or % difference value that the laboratory has historically determined as for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                      |            |
| RDL (dry) Reported Detection Limit. Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate a Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected detected in all environmental media.  U Not detected at the Reporting Limit (or MDL where applicable).  Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple anareported.  If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this result reported has already been corrected for this factor.  These are the target % recovery ranges or % difference value that the laboratory has historically determined as a for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                        |            |
| Rec. Recovery.  RPD Relative Percent Difference.  SDG Sample Delivery Group.  (S) Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected detected in all environmental media.  U Not detected at the Reporting Limit (or MDL where applicable).  Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple and reported.  If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be dilluted for analysis. If a value different than 1 is used in this result reported has already been corrected for this factor.  Limits These are the target % recovery ranges or % difference value that the laboratory has historically determined as for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample The Original Sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                              |            |
| RPD Relative Percent Difference.  SDG Sample Delivery Group.  (S) Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected detected in all environmental media.  U Not detected at the Reporting Limit (or MDL where applicable).  The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple anareported.  If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this result reported has already been corrected for this factor.  These are the target % recovery ranges or % difference value that the laboratory has historically determined as for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample  The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                            |            |
| SDG Sample Delivery Group.  Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected detected in all environmental media.  U Not detected at the Reporting Limit (or MDL where applicable).  The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple anareported.  If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this result reported has already been corrected for this factor.  These are the target % recovery ranges or % difference value that the laboratory has historically determined as a for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample  The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                |            |
| Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate at Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected detected in all environmental media.  U Not detected at the Reporting Limit (or MDL where applicable).  The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple and reported.  If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this result reported has already been corrected for this factor.  These are the target % recovery ranges or % difference value that the laboratory has historically determined as a for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample  The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |            |
| Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected detected in all environmental media.  U Not detected at the Reporting Limit (or MDL where applicable).  The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple and reported.  If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this result reported has already been corrected for this factor.  These are the target % recovery ranges or % difference value that the laboratory has historically determined as a for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample  The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Analyte  The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple and reported.  If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this result reported has already been corrected for this factor.  These are the target % recovery ranges or % difference value that the laboratory has historically determined as a for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample  The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| Pollution  Dilution  If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this result reported has already been corrected for this factor.  These are the target % recovery ranges or % difference value that the laboratory has historically determined as a for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample  The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this result reported has already been corrected for this factor.  These are the target % recovery ranges or % difference value that the laboratory has historically determined as a for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample  The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | alytes     |
| Limits for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.  Original Sample The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | normal     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | control    |
| This column provides a letter and/or number designation that corresponds to additional information concerning reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page a potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If the no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "Result (Below Detectable Levels). The information in the results column should always be accompanied by either an MI (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory coul or report for this analyte.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BDL"<br>DL |
| Uncertainty (Radiochemistry) Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| A brief discussion about the included sample results, including a discussion of any non-conformances to protoco observed either at sample receipt by the laboratory from the field or during the analytical process. If present, the be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Quality Control Summary (Qc)  This section of the report includes the results of the laboratory quality control analyses required by procedure o analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| This is the document created in the field when your samples were initially collected. This is used to verify the time Sample Chain of Custody (Sc)  This is the document created in the field when your samples were initially collected. This is used to verify the time date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perfor chain of custody also documents all persons (excluding commercial shippers) that have had control or possessic samples from the time of collection until delivery to the laboratory for analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m. This    |
| This section of your report will provide the results of all testing performed on your samples. These results are properties are properties as a properties of the sample (Sr) by sample ID and are separated by the analyses performed on each sample. The header line of each analysis see each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| Sample Summary (Ss)  This section of the Analytical Report defines the specific analyses performed for each sample ID, including the ditimes of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ates and   |

| Qualifier Description |
|-----------------------|
|-----------------------|

| C5 | The reported concentration is an estimate. The continuing calibration standard associated with this data responded high. Data is likely to show a high bias concerning the result. |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J5 | The sample matrix interfered with the ability to make any accurate determination; spike value is high.                                                                             |









Qc









#### **ACCREDITATIONS & LOCATIONS**





#### **State Accreditations**

| Alabama                 | 40660       |
|-------------------------|-------------|
| Alaska                  | 17-026      |
| Arizona                 | AZ0612      |
| Arkansas                | 88-0469     |
| California              | 2932        |
| Colorado                | TN00003     |
| Connecticut             | PH-0197     |
| Florida                 | E87487      |
| Georgia                 | NELAP       |
| Georgia <sup>1</sup>    | 923         |
| Idaho                   | TN00003     |
| Illinois                | 200008      |
| Indiana                 | C-TN-01     |
| lowa                    | 364         |
| Kansas                  | E-10277     |
| Kentucky <sup>1 6</sup> | 90010       |
| Kentucky <sup>2</sup>   | 16          |
| Louisiana               | Al30792     |
| Louisiana <sup>1</sup>  | LA180010    |
| Maine                   | TN0002      |
| Maryland                | 324         |
| Massachusetts           | M-TN003     |
| Michigan                | 9958        |
| Minnesota               | 047-999-395 |
| Mississippi             | TN00003     |
| Missouri                | 340         |
| Montana                 | CERT0086    |
|                         |             |

| Nebraska                    | NE-OS-15-05      |
|-----------------------------|------------------|
| Nevada                      | TN-03-2002-34    |
| New Hampshire               | 2975             |
| New Jersey-NELAP            | TN002            |
| New Mexico <sup>1</sup>     | n/a              |
| New York                    | 11742            |
| North Carolina              | Env375           |
| North Carolina 1            | DW21704          |
| North Carolina <sup>3</sup> | 41               |
| North Dakota                | R-140            |
| Ohio-VAP                    | CL0069           |
| Oklahoma                    | 9915             |
| Oregon                      | TN200002         |
| Pennsylvania                | 68-02979         |
| Rhode Island                | LAO00356         |
| South Carolina              | 84004            |
| South Dakota                | n/a              |
| Tennessee 1 4               | 2006             |
| Texas                       | T104704245-18-15 |
| Texas <sup>5</sup>          | LAB0152          |
| Utah                        | TN00003          |
| Vermont                     | VT2006           |
| Virginia                    | 460132           |
| Washington                  | C847             |
| West Virginia               | 233              |
| Wisconsin                   | 9980939910       |
| Wyoming                     | A2LA             |
|                             |                  |

#### Third Party Federal Accreditations

| A2LA – ISO 17025   | 1461.01 |
|--------------------|---------|
| A2LA - ISO 17025 5 | 1461.02 |
| Canada             | 1461.01 |
| EPA-Crypto         | TN00003 |

| AIHA-LAP,LLC EMLAP | 100789        |
|--------------------|---------------|
| DOD                | 1461.01       |
| USDA               | P330-15-00234 |
|                    |               |

<sup>&</sup>lt;sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

#### Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



















|                                                                                   |                              |                                       | Billing Info                  | rmation:                        | ž.                 | T             |               |                      | Analysis          | / Conta | ainer / Preserva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ative  |                                                                                            |                | Chain of Custody                                                   | Page of          | f /                                                       |  |
|-----------------------------------------------------------------------------------|------------------------------|---------------------------------------|-------------------------------|---------------------------------|--------------------|---------------|---------------|----------------------|-------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------|------------------|-----------------------------------------------------------|--|
| Apex Companies, LLC  600 Stewart St. Ste 400 Seattle WA 98101                     | - Portland,                  | OR                                    | Account<br>3015 SW            |                                 |                    |               |               |                      |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            |                | Pace                                                               | Analytical®      |                                                           |  |
| Report to:                                                                        |                              |                                       | Email To:                     | avcos com:ka                    | lsi.evans@apexc    | os com:       |               | Syr                  | e f               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            |                | 12065 Lebanon Rd<br>Mount Juliet, TN 3                             |                  | Į,                                                        |  |
| ie Xu<br>Project Description:<br>CASCA DE C                                       | LEANIDES                     | City/State                            |                               |                                 | Please C           | Circle:       |               | 10ml/                |                   |         | State of the state |        |                                                                                            |                | Phone: 615-758-58<br>Phone: 800-767-58<br>Fax: 615-758-5859        | 58 <b>2 2</b> 59 | ş                                                         |  |
| hone: 503-924-4704                                                                | Client Project # Lal         |                                       |                               | Lab Project # ASHCREPOR-CASCADE |                    |               | Pres          | 40mlAmb/MeOH10ml/Syr |                   | 4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            | in the second  | SDG#   2<br>F21                                                    | 89130            | 3                                                         |  |
| ollected by (print):                                                              | Site/Facility ID             | )#                                    |                               | P.O. #<br>Regen-520             |                    |               | 2ozClr-NoPres | nIAmb/               |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            |                | Acctnum: ASH                                                       | ICREPOR          |                                                           |  |
| follected by (signature):                                                         | Same Da                      | ab MUST Be<br>ay Five I<br>y 5 Day    | Day<br>(Rad Only)             | Only) Date Results Needed       |                    |               |               |                      | * 00928<br>8560D* |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            |                |                                                                    |                  | Template:T177269  Prelogin: P808178  PM: 110 - Brian Ford |  |
| nmediately acked on Ice N Y \rightarrow                                           | Two Day                      |                                       | y (Rad Only)                  | of                              |                    | No.<br>of     |               |                      |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            | PB:            | (A) N                                                              |                  |                                                           |  |
| Sample ID                                                                         | Comp/Grab                    | Matrix *                              | Depth                         |                                 |                    | te Time Cntrs |               | Vocs                 |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            |                | Shipped Via: F                                                     | Sample # (lab or | inly)                                                     |  |
| Sve-1-(5')                                                                        | 6                            | SS                                    | 51                            | 11/20/20                        | 2 0312             | 2             | X Mbcs        | X                    | lang self         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            |                |                                                                    | -01              |                                                           |  |
| SVE-1-18")                                                                        | 6                            | SS                                    | 8                             | 1                               | 0400               | 12            | X             | لا                   | 1/2               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            |                | HOLD                                                               |                  |                                                           |  |
| 035-1-(51)                                                                        | G                            | SS                                    | 51                            |                                 | 0720               | 2             | X             | ×                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            |                |                                                                    | -02              |                                                           |  |
| 085-1-197                                                                         | 6                            | SS                                    | 91                            |                                 | 0755               | 2             | X             | X                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2      |                                                                                            |                | HOLD                                                               |                  |                                                           |  |
|                                                                                   |                              | SS                                    |                               |                                 |                    |               |               |                      |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            |                |                                                                    |                  |                                                           |  |
|                                                                                   |                              | SS                                    | 199                           |                                 | 2 2 2 2 2          |               |               |                      |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            |                | All and the second                                                 |                  |                                                           |  |
|                                                                                   |                              | SS                                    |                               |                                 |                    |               |               |                      | 1 to              | 4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            | 100 27.02      | 4-14.                                                              |                  |                                                           |  |
|                                                                                   |                              | SS                                    |                               |                                 |                    |               |               | 1                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            |                |                                                                    |                  |                                                           |  |
|                                                                                   |                              |                                       |                               |                                 |                    | 74            |               | 2/                   |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            |                | STATE SHIP                                                         |                  |                                                           |  |
|                                                                                   |                              | · · · · · · · · · · · · · · · · · · · | - 7                           |                                 | -142 C             |               |               |                      |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                            | 100            |                                                                    |                  |                                                           |  |
| Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater | Remarks:*VOCs chloride only. | 8260D: PCE                            | , trichloro                   | ethene [TCE                     | , cis-1,2- dichlo  | proethy       | lene [[       | OCE], and            | рН                | v       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | COC Si                                                                                     | eal Preigned/A | e Receipt Chesent/Intact<br>Accurate:<br>ive intact:<br>tles used: | YP Y             |                                                           |  |
| W - Drinking Water<br>T - Other                                                   | Samples returnedUPSFedEx     |                                       | Tracking# 915                 |                                 |                    |               | 18            | 78                   | 066:              | 53      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      | Suffic                                                                                     | cient v        | volume sent:<br>If Applicab                                        | 1                | _N                                                        |  |
| Relinquished by : (Signature)                                                     | 10 SOVE 1 1 SOVE             | te:<br>1/20/22                        | Time: Received by: (Signature |                                 |                    | iture)        |               |                      | Trip Bla          | nk Rece | ived: Yes / N<br>HCL/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | VOA Zero Headspace: _Y _N Preservation Correct/Checked: _Y _N RAD Screen <0.5 mR/hr: _Y _N |                |                                                                    |                  |                                                           |  |
| Relinquished by : (Signature)                                                     | Da                           | te:                                   | 7-36-4                        |                                 | eceived by: (Signa | iture)        | , T.          |                      | Temp: 2.21        |         | C Bottles Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eived: | If prese                                                                                   | ervation       | required by Log                                                    | in: Date/Time    |                                                           |  |
| Relinquished by : (Signature)                                                     | Da                           | te:                                   | Time                          | e: Re                           | eceived for lab by | : (Signat     | ure)          |                      | Date:             | 2.0     | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10)    |                                                                                            | 11             | -187                                                               | Condition        |                                                           |  |

R5

# L1289130 ASHCREPOR add off hold

Please add to L1289130, do not create a new SDG. Hold#11-187.

V826oC, TS, TERRACORE

SVE-1-(8')

OBS-1-(6,)

Time estimate: oh Time spent: oh

Members

Brian Ford



# Pace Analytical® ANALYTICAL REPORT

May 18, 2021

# Apex Companies, LLC - Portland, OR

Sample Delivery Group:

L1353606

Samples Received:

05/15/2021

Project Number:

REGEN-250

Description:

Cascade

Report To:

Jie Xu

600 Stewart St.

Ste 400

Seattle, WA 98101

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com















## TABLE OF CONTENTS

| Cp: Cover Page                                     | 1  |
|----------------------------------------------------|----|
| Tc: Table of Contents                              | 2  |
| Ss: Sample Summary                                 | 3  |
| Cn: Case Narrative                                 | 4  |
| Sr: Sample Results                                 | 5  |
| SB-1-2 L1353606-01                                 | 5  |
| SB-1-5 L1353606-02                                 | 7  |
| SB-1-8 L1353606-03                                 | 9  |
| Qc: Quality Control Summary                        | 11 |
| Total Solids by Method 2540 G-2011                 | 11 |
| Volatile Organic Compounds (GC/MS) by Method 8260D | 12 |
| GI: Glossary of Terms                              | 17 |
| Al: Accreditations & Locations                     | 18 |
| Sc: Sample Chain of Custody                        | 19 |



















PAGE:

2 of 20

#### SAMPLE SUMMARY

|                                                    |           |          | Collected by   | Collected date/time | Received da  | te/time        |
|----------------------------------------------------|-----------|----------|----------------|---------------------|--------------|----------------|
| SB-1-2 L1353606-01 Solid                           |           |          | H Hiscox       | 05/14/21 09:30      | 05/15/21 09: | 30             |
| Method                                             | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                                                    |           |          | date/time      | date/time           |              |                |
| Total Solids by Method 2540 G-2011                 | WG1671809 | 1        | 05/17/21 10:17 | 05/17/21 10:27      | KDW          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260D | WG1672295 | 1        | 05/17/21 20:47 | 05/17/21 22:09      | DWR          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260D | WG1672625 | 1        | 05/14/21 09:30 | 05/18/21 13:52      | JAH          | Mt. Juliet, TN |
|                                                    |           |          | Collected by   | Collected date/time | Received da  | te/time        |
| SB-1-5 L1353606-02 Solid                           |           |          | H Hiscox       | 05/14/21 09:35      | 05/15/21 09: | 30             |
| Method                                             | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                                                    |           |          | date/time      | date/time           |              |                |
| Total Solids by Method 2540 G-2011                 | WG1671809 | 1        | 05/17/21 10:17 | 05/17/21 10:27      | KDW          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260D | WG1672295 | 1        | 05/17/21 20:47 | 05/17/21 22:28      | DWR          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260D | WG1672625 | 1        | 05/14/21 09:35 | 05/18/21 12:36      | JAH          | Mt. Juliet, TN |
|                                                    |           |          | Collected by   | Collected date/time | Received da  | te/time        |
| SB-1-8 L1353606-03 Solid                           |           |          | H Hiscox       | 05/14/21 09:40      | 05/15/21 09: | 30             |
| Method                                             | Batch     | Dilution | Preparation    | Analysis            | Analyst      | Location       |
|                                                    |           |          | date/time      | date/time           |              |                |
| Total Solids by Method 2540 G-2011                 | WG1671809 | 1        | 05/17/21 10:17 | 05/17/21 10:27      | KDW          | Mt. Juliet, TN |

WG1672295

1

05/14/21 09:40

05/17/21 22:47

DWR

Mt. Juliet, TN



















Volatile Organic Compounds (GC/MS) by Method 8260D

#### CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

















Brian Ford Project Manager

Buar Ford

#### SAMPLE RESULTS - 01 L1353606

Collected date/time: 05/14/21 09:30

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 89.0   |           | 1        | 05/17/2021 10:27 | WG1671809    |





| Analyte                            | Result (dry) | Qualifier    | MDL (dry) | RDL (dry)          | Dilution | Analysis                             | Batch            |
|------------------------------------|--------------|--------------|-----------|--------------------|----------|--------------------------------------|------------------|
| Analyte                            | mg/kg        |              | mg/kg     | mg/kg              |          | date / time                          |                  |
| cetone                             | U            | <u>C3 J3</u> | 0.0410    | 0.0562             | 1        | 05/17/2021 22:09                     | WG1672295        |
| crylonitrile                       | U            | <u>J3</u>    | 0.00406   | 0.0140             | 1        | 05/17/2021 22:09                     | <u>WG1672295</u> |
| enzene                             | U            |              | 0.000525  | 0.00112            | 1        | 05/17/2021 22:09                     | <u>WG1672295</u> |
| romobenzene                        | U            |              | 0.00101   | 0.0140             | 1        | 05/17/2021 22:09                     | WG1672295        |
| romodichloromethane                | U            |              | 0.000814  | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| romoform                           | U            |              | 0.00131   | 0.0281             | 1        | 05/17/2021 22:09                     | WG1672295        |
| romomethane                        | U            |              | 0.00221   | 0.0140             | 1        | 05/17/2021 22:09                     | WG1672295        |
| Butylbenzene                       | U            |              | 0.00590   | 0.0140             | 1        | 05/17/2021 22:09                     | WG1672295        |
| ec-Butylbenzene                    | U            |              | 0.00324   | 0.0140             | 1        | 05/17/2021 22:09                     | WG1672295        |
| rt-Butylbenzene                    | U            |              | 0.00219   | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| arbon tetrachloride                | U            |              | 0.00101   | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| nlorobenzene                       | U            |              | 0.000236  | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| hlorodibromomethane                | U            |              | 0.000687  | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| nloroethane                        | U            |              | 0.00191   | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| nloroform                          | U            |              | 0.00116   | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| nloromethane                       | U            |              | 0.00489   | 0.0140             | 1        | 05/17/2021 22:09                     | WG1672295        |
| Chlorotoluene                      | U            |              | 0.000972  | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| Chlorotoluene                      | U            |              | 0.000506  | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| 2-Dibromo-3-Chloropropane          | U            |              | 0.00438   | 0.0281             | 1        | 05/17/2021 22:09                     | WG1672295        |
| 2-Dibromoethane                    | U            |              | 0.000728  | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| bromomethane                       | U            |              | 0.000843  | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| 2-Dichlorobenzene                  | U            |              | 0.000477  | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| 3-Dichlorobenzene                  | U            |              | 0.000674  | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| 4-Dichlorobenzene                  | U            |              | 0.000786  | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| ichlorodifluoromethane             | U            |              | 0.00181   | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| l-Dichloroethane                   | U            |              | 0.000552  | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| 2-Dichloroethane                   | U            |              | 0.000729  | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| I-Dichloroethene                   | U            |              | 0.000681  | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| s-1.2-Dichloroethene               | U            |              | 0.000825  | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| ans-1,2-Dichloroethene             | U            |              | 0.00117   | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| 2-Dichloropropane                  | U            |              | 0.00160   | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| -Dichloropropene                   | U            |              | 0.000909  | 0.00382            | 1        | 05/17/2021 22:09                     | WG1672295        |
| 3-Dichloropropane                  | U            |              | 0.000563  | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| s-1,3-Dichloropropene              | U            |              | 0.000850  | 0.00382            | 1        | 05/17/2021 22:09                     | WG1672295        |
| ans-1,3-Dichloropropene            | U            |              | 0.00128   | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| 2-Dichloropropane                  | U            |              | 0.00128   | 0.00382            | 1        | 05/17/2021 22:09                     | WG1672295        |
| -isopropyl ether                   | U            |              | 0.00033   | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| hylbenzene                         | U            |              | 0.000401  | 0.00112            | 1        | 05/17/2021 22:09                     | WG1672295        |
| exachloro-1,3-butadiene            | U            | C2           | 0.000828  | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |
| ,                                  | U            | <u>C3</u>    | 0.00074   |                    | 1        |                                      | WG1672295        |
| opropylbenzene<br>Isopropyltoluene | U            |              | 0.000477  | 0.00281<br>0.00562 |          | 05/17/2021 22:09<br>05/17/2021 22:09 |                  |
|                                    |              |              |           |                    | 1        |                                      | WG1672295        |
| Butanone (MEK)                     | U            |              | 0.0713    | 0.112              | 1        | 05/17/2021 22:09                     | WG1672295        |
| ethylene Chloride                  | U            |              | 0.00746   | 0.0281             | 1        | 05/17/2021 22:09                     | WG1672295        |
| Methyl-2-pentanone (MIBK)          | U            |              | 0.00256   | 0.0281             | 1        | 05/17/2021 22:09                     | WG1672295        |
| ethyl tert-butyl ether             | U            |              | 0.000393  | 0.00112            | 1        | 05/17/2021 22:09                     | WG1672295        |
| aphthalene                         | U            | <u>J4</u>    | 0.00616   | 0.0158             | 1        | 05/18/2021 13:52                     | WG1672625        |
| Propylbenzene                      | U            |              | 0.00107   | 0.00562            | 1        | 05/17/2021 22:09                     | WG1672295        |
| yrene                              | U            |              | 0.000257  | 0.0140             | 1        | 05/17/2021 22:09                     | WG1672295        |
| ,1,2-Tetrachloroethane             | U            |              | 0.00106   | 0.00281            | 1        | 05/17/2021 22:09                     | <u>WG1672295</u> |
| I,2,2-Tetrachloroethane            | U            |              | 0.000781  | 0.00281            | 1        | 05/17/2021 22:09                     | WG1672295        |













(S) 1,2-Dichloroethane-d4

Collected date/time: 05/14/21 09:30

## SAMPLE RESULTS - 01

L1353606

Volatile Organic Compounds (GC/MS) by Method 8260D

93.1

|                                | Result (dry) | Qualifier    | MDL (dry) | RDL (dry) | Dilution | Analysis         | Batch     |
|--------------------------------|--------------|--------------|-----------|-----------|----------|------------------|-----------|
| Analyte                        | mg/kg        |              | mg/kg     | mg/kg     |          | date / time      |           |
| 1,1,2-Trichlorotrifluoroethane | U            |              | 0.000847  | 0.00281   | 1        | 05/17/2021 22:09 | WG1672295 |
| Tetrachloroethene              | 0.00380      |              | 0.00101   | 0.00281   | 1        | 05/17/2021 22:09 | WG1672295 |
| Toluene                        | U            |              | 0.00146   | 0.00562   | 1        | 05/17/2021 22:09 | WG1672295 |
| 1,2,3-Trichlorobenzene         | U            | <u>C4 J4</u> | 0.00823   | 0.0140    | 1        | 05/17/2021 22:09 | WG1672295 |
| 1,2,4-Trichlorobenzene         | U            | <u>C3</u>    | 0.00494   | 0.0140    | 1        | 05/17/2021 22:09 | WG1672295 |
| 1,1,1-Trichloroethane          | U            |              | 0.00104   | 0.00281   | 1        | 05/17/2021 22:09 | WG1672295 |
| 1,1,2-Trichloroethane          | U            |              | 0.000671  | 0.00281   | 1        | 05/17/2021 22:09 | WG1672295 |
| Trichloroethene                | U            |              | 0.000656  | 0.00112   | 1        | 05/17/2021 22:09 | WG1672295 |
| Trichlorofluoromethane         | U            | <u>C3</u>    | 0.000929  | 0.00281   | 1        | 05/17/2021 22:09 | WG1672295 |
| 1,2,3-Trichloropropane         | U            |              | 0.00182   | 0.0140    | 1        | 05/17/2021 22:09 | WG1672295 |
| 1,2,4-Trimethylbenzene         | 0.00261      | <u>J</u>     | 0.00199   | 0.00631   | 1        | 05/18/2021 13:52 | WG1672625 |
| 1,2,3-Trimethylbenzene         | U            | C3 J4        | 0.00177   | 0.00562   | 1        | 05/17/2021 22:09 | WG1672295 |
| 1,3,5-Trimethylbenzene         | U            |              | 0.00253   | 0.00631   | 1        | 05/18/2021 13:52 | WG1672625 |
| Vinyl chloride                 | U            |              | 0.00130   | 0.00281   | 1        | 05/17/2021 22:09 | WG1672295 |
| Xylenes, Total                 | U            |              | 0.000989  | 0.00730   | 1        | 05/17/2021 22:09 | WG1672295 |
| (S) Toluene-d8                 | 109          |              |           | 75.0-131  |          | 05/17/2021 22:09 | WG1672295 |
| (S) Toluene-d8                 | 103          |              |           | 75.0-131  |          | 05/18/2021 13:52 | WG1672625 |
| (S) 4-Bromofluorobenzene       | 89.6         |              |           | 67.0-138  |          | 05/17/2021 22:09 | WG1672295 |
| (S) 4-Bromofluorobenzene       | 113          |              |           | 67.0-138  |          | 05/18/2021 13:52 | WG1672625 |
| (S) 1,2-Dichloroethane-d4      | 81.6         |              |           | 70.0-130  |          | 05/17/2021 22:09 | WG1672295 |

70.0-130

















WG1672625

05/18/2021 13:52

## SAMPLE RESULTS - 02

Collected date/time: 05/14/21 09:35

#### Total Solids by Method 2540 G-2011

|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 83.6   |           | 1        | 05/17/2021 10:27 | WG1671809    |





|                           | Result (dry) | Qualifier    | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u>     |
|---------------------------|--------------|--------------|-----------|-----------|----------|------------------|------------------|
| nalyte                    | mg/kg        |              | mg/kg     | mg/kg     |          | date / time      |                  |
| cetone                    | U            | <u>C3 J3</u> | 0.0437    | 0.0598    | 1        | 05/17/2021 22:28 | WG1672295        |
| crylonitrile              | U            | <u>J3</u>    | 0.00432   | 0.0150    | 1        | 05/17/2021 22:28 | <u>WG1672295</u> |
| enzene                    | U            |              | 0.000559  | 0.00120   | 1        | 05/17/2021 22:28 | WG1672295        |
| omobenzene                | U            |              | 0.00108   | 0.0150    | 1        | 05/17/2021 22:28 | WG1672295        |
| omodichloromethane        | U            |              | 0.000868  | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| omoform                   | U            |              | 0.00140   | 0.0299    | 1        | 05/17/2021 22:28 | WG1672295        |
| romomethane               | U            |              | 0.00236   | 0.0150    | 1        | 05/17/2021 22:28 | WG1672295        |
| Butylbenzene              | U            |              | 0.00628   | 0.0150    | 1        | 05/17/2021 22:28 | WG1672295        |
| ec-Butylbenzene           | U            |              | 0.00345   | 0.0150    | 1        | 05/17/2021 22:28 | WG1672295        |
| rt-Butylbenzene           | U            |              | 0.00233   | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| arbon tetrachloride       | U            |              | 0.00107   | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| nlorobenzene              | U            |              | 0.000251  | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| nlorodibromomethane       | U            |              | 0.000732  | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| lloroethane               | U            |              | 0.00203   | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| nloroform                 | U            |              | 0.00123   | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| nloromethane              | U            |              | 0.00521   | 0.0150    | 1        | 05/17/2021 22:28 | WG1672295        |
| Chlorotoluene             | U            |              | 0.00104   | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| Chlorotoluene             | U            |              | 0.000538  | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| 2-Dibromo-3-Chloropropane | U            |              | 0.00467   | 0.0299    | 1        | 05/17/2021 22:28 | WG1672295        |
| 2-Dibromoethane           | U            |              | 0.000775  | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| bromomethane              | U            |              | 0.000897  | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| -Dichlorobenzene          | U            |              | 0.000509  | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| I-Dichlorobenzene         | U            |              | 0.000303  | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| 1-Dichlorobenzene         | U            |              | 0.000718  | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| chlorodifluoromethane     | U            |              | 0.000030  | 0.00330   | 1        | 05/17/2021 22:28 | WG1672295        |
| -Dichloroethane           | U            |              | 0.000588  | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| 2-Dichloroethane          | U            |              | 0.000388  | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
|                           |              |              |           |           |          |                  |                  |
| -Dichloroethene           | U            |              | 0.000725  | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| s-1,2-Dichloroethene      | U            |              | 0.000878  | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| nns-1,2-Dichloroethene    | U            |              | 0.00124   | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| 2-Dichloropropane         | U            |              | 0.00170   | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| -Dichloropropene          | U            |              | 0.000968  | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| 3-Dichloropropane         | U            |              | 0.000599  | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| s-1,3-Dichloropropene     | U            |              | 0.000906  | 0.00299   | 1        | 05/17/2021 22:28 | <u>WG1672295</u> |
| ans-1,3-Dichloropropene   | U            |              | 0.00136   | 0.00598   | 1        | 05/17/2021 22:28 | <u>WG1672295</u> |
| 2-Dichloropropane         | U            |              | 0.00165   | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| -isopropyl ether          | U            |              | 0.000491  | 0.00120   | 1        | 05/17/2021 22:28 | <u>WG1672295</u> |
| hylbenzene                | U            |              | 0.000882  | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| exachloro-1,3-butadiene   | U            | <u>C3</u>    | 0.00718   | 0.0299    | 1        | 05/17/2021 22:28 | WG1672295        |
| propylbenzene             | U            |              | 0.000509  | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| sopropyltoluene           | U            |              | 0.00305   | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| Butanone (MEK)            | U            |              | 0.0760    | 0.120     | 1        | 05/17/2021 22:28 | WG1672295        |
| ethylene Chloride         | U            |              | 0.00795   | 0.0299    | 1        | 05/17/2021 22:28 | WG1672295        |
| Methyl-2-pentanone (MIBK) | U            |              | 0.00273   | 0.0299    | 1        | 05/17/2021 22:28 | WG1672295        |
| ethyl tert-butyl ether    | U            |              | 0.000419  | 0.00120   | 1        | 05/17/2021 22:28 | WG1672295        |
| phthalene                 | U            | <u>C3</u>    | 0.00584   | 0.0150    | 1        | 05/17/2021 22:28 | WG1672295        |
| Propylbenzene             | U            |              | 0.00114   | 0.00598   | 1        | 05/17/2021 22:28 | WG1672295        |
| yrene                     | U            |              | 0.000274  | 0.0150    | 1        | 05/17/2021 22:28 | WG1672295        |
| ,1,2-Tetrachloroethane    | U            |              | 0.00113   | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |
| ,2,2-Tetrachloroethane    | U            |              | 0.000832  | 0.00299   | 1        | 05/17/2021 22:28 | WG1672295        |













(S) 1,2-Dichloroethane-d4

Collected date/time: 05/14/21 09:35

## SAMPLE RESULTS - 02

Volatile Organic Compounds (GC/MS) by Method 8260D

98.6

|                                | Result (dry) | Qualifier    | MDL (dry) | RDL (dry)       | Dilution | Analysis         | Batch     |
|--------------------------------|--------------|--------------|-----------|-----------------|----------|------------------|-----------|
| Analyte                        | mg/kg        |              | mg/kg     | mg/kg           |          | date / time      |           |
| 1,1,2-Trichlorotrifluoroethane | U            |              | 0.000902  | 0.00299         | 1        | 05/17/2021 22:28 | WG1672295 |
| Tetrachloroethene              | U            |              | 0.00107   | 0.00299         | 1        | 05/17/2021 22:28 | WG1672295 |
| Toluene                        | U            |              | 0.00156   | 0.00598         | 1        | 05/17/2021 22:28 | WG1672295 |
| 1,2,3-Trichlorobenzene         | U            | <u>C4 J4</u> | 0.00877   | 0.0150          | 1        | 05/17/2021 22:28 | WG1672295 |
| 1,2,4-Trichlorobenzene         | U            | <u>C3</u>    | 0.00526   | 0.0150          | 1        | 05/17/2021 22:28 | WG1672295 |
| 1,1,1-Trichloroethane          | U            |              | 0.00110   | 0.00299         | 1        | 05/17/2021 22:28 | WG1672295 |
| 1,1,2-Trichloroethane          | U            |              | 0.000714  | 0.00299         | 1        | 05/17/2021 22:28 | WG1672295 |
| Trichloroethene                | U            |              | 0.000699  | 0.00120         | 1        | 05/17/2021 22:28 | WG1672295 |
| Trichlorofluoromethane         | U            | <u>C3</u>    | 0.000990  | 0.00299         | 1        | 05/17/2021 22:28 | WG1672295 |
| 1,2,3-Trichloropropane         | U            |              | 0.00194   | 0.0150          | 1        | 05/17/2021 22:28 | WG1672295 |
| 1,2,4-Trimethylbenzene         | U            |              | 0.00228   | 0.00722         | 1        | 05/18/2021 12:36 | WG1672625 |
| 1,2,3-Trimethylbenzene         | U            | <u>C3 J4</u> | 0.00189   | 0.00598         | 1        | 05/17/2021 22:28 | WG1672295 |
| 1,3,5-Trimethylbenzene         | U            |              | 0.00239   | 0.00598         | 1        | 05/17/2021 22:28 | WG1672295 |
| Vinyl chloride                 | U            |              | 0.00139   | 0.00299         | 1        | 05/17/2021 22:28 | WG1672295 |
| Xylenes, Total                 | U            |              | 0.00105   | 0.00778         | 1        | 05/17/2021 22:28 | WG1672295 |
| (S) Toluene-d8                 | 107          |              |           | <i>75.0-131</i> |          | 05/17/2021 22:28 | WG1672295 |
| (S) Toluene-d8                 | 103          |              |           | 75.0-131        |          | 05/18/2021 12:36 | WG1672625 |
| (S) 4-Bromofluorobenzene       | 89.8         |              |           | 67.0-138        |          | 05/17/2021 22:28 | WG1672295 |
| (S) 4-Bromofluorobenzene       | 110          |              |           | 67.0-138        |          | 05/18/2021 12:36 | WG1672625 |
| (S) 1,2-Dichloroethane-d4      | 84.3         |              |           | 70.0-130        |          | 05/17/2021 22:28 | WG1672295 |
|                                |              |              |           |                 |          |                  |           |

70.0-130

















WG1672625

05/18/2021 12:36

#### SAMPLE RESULTS - 03

Collected date/time: 05/14/21 09:40

#### Total Solids by Method 2540 G-2011

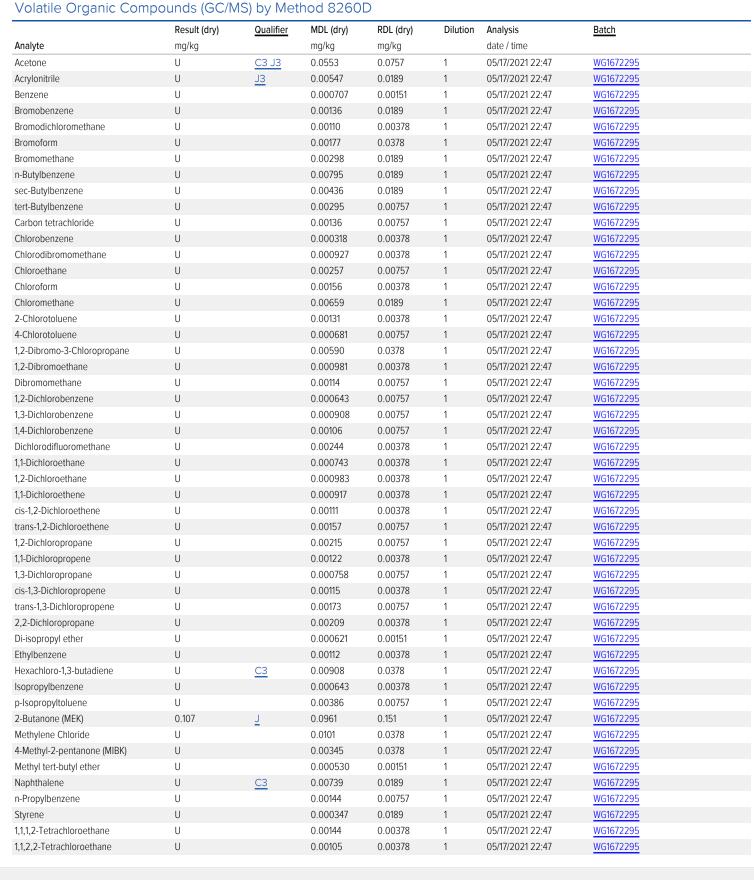
|              | Result | Qualifier | Dilution | Analysis         | <u>Batch</u> |
|--------------|--------|-----------|----------|------------------|--------------|
| Analyte      | %      |           |          | date / time      |              |
| Total Solids | 80.7   |           | 1        | 05/17/2021 10:27 | WG1671809    |





# Ss

| ⁴Cn |
|-----|














Apex Companies, LLC - Portland, OR

(S) 1,2-Dichloroethane-d4

Collected date/time: 05/14/21 09:40

## SAMPLE RESULTS - 03

Volatile Organic Compounds (GC/MS) by Method 8260D

82.0

|                                | Result (dry) | Qualifier | MDL (dry) | RDL (dry) | Dilution | Analysis         | <u>Batch</u> |
|--------------------------------|--------------|-----------|-----------|-----------|----------|------------------|--------------|
| Analyte                        | mg/kg        |           | mg/kg     | mg/kg     |          | date / time      |              |
| 1,1,2-Trichlorotrifluoroethane | U            |           | 0.00114   | 0.00378   | 1        | 05/17/2021 22:47 | WG1672295    |
| Tetrachloroethene              | U            |           | 0.00136   | 0.00378   | 1        | 05/17/2021 22:47 | WG1672295    |
| Toluene                        | U            |           | 0.00197   | 0.00757   | 1        | 05/17/2021 22:47 | WG1672295    |
| 1,2,3-Trichlorobenzene         | U            | C4 J4     | 0.0111    | 0.0189    | 1        | 05/17/2021 22:47 | WG1672295    |
| 1,2,4-Trichlorobenzene         | U            | <u>C3</u> | 0.00666   | 0.0189    | 1        | 05/17/2021 22:47 | WG1672295    |
| 1,1,1-Trichloroethane          | U            |           | 0.00140   | 0.00378   | 1        | 05/17/2021 22:47 | WG1672295    |
| 1,1,2-Trichloroethane          | U            |           | 0.000904  | 0.00378   | 1        | 05/17/2021 22:47 | WG1672295    |
| Trichloroethene                | U            |           | 0.000884  | 0.00151   | 1        | 05/17/2021 22:47 | WG1672295    |
| Trichlorofluoromethane         | U            | <u>C3</u> | 0.00125   | 0.00378   | 1        | 05/17/2021 22:47 | WG1672295    |
| 1,2,3-Trichloropropane         | U            |           | 0.00245   | 0.0189    | 1        | 05/17/2021 22:47 | WG1672295    |
| 1,2,4-Trimethylbenzene         | U            |           | 0.00239   | 0.00757   | 1        | 05/17/2021 22:47 | WG1672295    |
| 1,2,3-Trimethylbenzene         | U            | C3 J4     | 0.00239   | 0.00757   | 1        | 05/17/2021 22:47 | WG1672295    |
| 1,3,5-Trimethylbenzene         | U            |           | 0.00303   | 0.00757   | 1        | 05/17/2021 22:47 | WG1672295    |
| Vinyl chloride                 | U            |           | 0.00176   | 0.00378   | 1        | 05/17/2021 22:47 | WG1672295    |
| Xylenes, Total                 | U            |           | 0.00133   | 0.00984   | 1        | 05/17/2021 22:47 | WG1672295    |
| (S) Toluene-d8                 | 108          |           |           | 75.0-131  |          | 05/17/2021 22:47 | WG1672295    |
| (S) 4-Bromofluorobenzene       | 89.0         |           |           | 67.0-138  |          | 05/17/2021 22:47 | WG1672295    |

70.0-130

05/17/2021 22:47

WG1672295

















#### WG1671809

#### QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1353606-01,02,03

#### Method Blank (MB)

| (MB) R3655661-1 | 05/17/21 10:27 |              |        |        |
|-----------------|----------------|--------------|--------|--------|
|                 | MB Result      | MB Qualifier | MB MDL | MB RDL |
| Analyte         | %              |              | %      | %      |
| Total Solids    | 0.000          |              |        |        |



#### L1353592-03 Original Sample (OS) • Duplicate (DUP)

| (OS) L135 | 53592-03 | 05/17/21 10:27 • | (DUP | ) R3655661-3 | 05/17/21 10:27 |
|-----------|----------|------------------|------|--------------|----------------|

| ` '          | Original Resu | ult DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|--------------|---------------|----------------|----------|---------|---------------|-------------------|
| Analyte      | %             | %              |          | %       |               | %                 |
| Total Solids | 84.3          | 84.4           | 1        | 0.0334  |               | 10                |



Ss

#### Laboratory Control Sample (LCS)

| $(I \subset S)$ | R3655661-2 | N5/17/21 | 10.27 |
|-----------------|------------|----------|-------|
|                 |            |          |       |

| (LCS) R3655661-2 U5/17/2 |              |            |          |             |               |
|--------------------------|--------------|------------|----------|-------------|---------------|
|                          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                  | %            | %          | %        | %           |               |
| Total Solids             | 50.0         | 50.0       | 100      | 85.0-115    |               |





#### QUALITY CONTROL SUMMARY

L1353606-01,02,03

Volatile Organic Compounds (GC/MS) by Method 8260D

#### Method Blank (MB)

| (MB) R3655669-3 05/17/2     | 1 19:50   |              |          |         |  |
|-----------------------------|-----------|--------------|----------|---------|--|
|                             | MB Result | MB Qualifier | MB MDL   | MB RDL  |  |
| Analyte                     | mg/kg     |              | mg/kg    | mg/kg   |  |
| Acetone                     | U         |              | 0.0365   | 0.0500  |  |
| Acrylonitrile               | U         |              | 0.00361  | 0.0125  |  |
| Benzene                     | U         |              | 0.000467 | 0.00100 |  |
| Bromobenzene                | U         |              | 0.000900 | 0.0125  |  |
| Bromodichloromethane        | U         |              | 0.000725 | 0.00250 |  |
| Bromoform                   | U         |              | 0.00117  | 0.0250  |  |
| Bromomethane                | U         |              | 0.00197  | 0.0125  |  |
| n-Butylbenzene              | U         |              | 0.00525  | 0.0125  |  |
| sec-Butylbenzene            | U         |              | 0.00288  | 0.0125  |  |
| tert-Butylbenzene           | U         |              | 0.00195  | 0.00500 |  |
| Carbon tetrachloride        | U         |              | 0.000898 | 0.00500 |  |
| Chlorobenzene               | U         |              | 0.000210 | 0.00250 |  |
| Chlorodibromomethane        | U         |              | 0.000612 | 0.00250 |  |
| Chloroethane                | U         |              | 0.00170  | 0.00500 |  |
| Chloroform                  | U         |              | 0.00103  | 0.00250 |  |
| Chloromethane               | U         |              | 0.00435  | 0.0125  |  |
| 2-Chlorotoluene             | U         |              | 0.000865 | 0.00250 |  |
| 4-Chlorotoluene             | U         |              | 0.000450 | 0.00500 |  |
| 1,2-Dibromo-3-Chloropropane | U         |              | 0.00390  | 0.0250  |  |
| 1,2-Dibromoethane           | U         |              | 0.000648 | 0.00250 |  |
| Dibromomethane              | U         |              | 0.000750 | 0.00500 |  |
| 1,2-Dichlorobenzene         | U         |              | 0.000425 | 0.00500 |  |
| 1,3-Dichlorobenzene         | U         |              | 0.000600 | 0.00500 |  |
| 1,4-Dichlorobenzene         | U         |              | 0.000700 | 0.00500 |  |
| Dichlorodifluoromethane     | U         |              | 0.00161  | 0.00250 |  |
| 1,1-Dichloroethane          | U         |              | 0.000491 | 0.00250 |  |
| 1,2-Dichloroethane          | U         |              | 0.000649 | 0.00250 |  |
| 1,1-Dichloroethene          | U         |              | 0.000606 | 0.00250 |  |
| cis-1,2-Dichloroethene      | U         |              | 0.000734 | 0.00250 |  |
| trans-1,2-Dichloroethene    | U         |              | 0.00104  | 0.00500 |  |
| 1,2-Dichloropropane         | U         |              | 0.00142  | 0.00500 |  |
| 1,1-Dichloropropene         | U         |              | 0.000809 | 0.00250 |  |
| 1,3-Dichloropropane         | U         |              | 0.000501 | 0.00500 |  |
| cis-1,3-Dichloropropene     | U         |              | 0.000757 | 0.00250 |  |
| trans-1,3-Dichloropropene   | U         |              | 0.00114  | 0.00500 |  |
| 2,2-Dichloropropane         | U         |              | 0.00138  | 0.00250 |  |
| Di-isopropyl ether          | U         |              | 0.000410 | 0.00100 |  |
| Ethylbenzene                | U         |              | 0.000737 | 0.00250 |  |
| Hexachloro-1,3-butadiene    | U         |              | 0.00600  | 0.0250  |  |
| Isopropylbenzene            | U         |              | 0.000425 | 0.00250 |  |

#### WG1672295

#### QUALITY CONTROL SUMMARY

L1353606-01,02,03

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260D

| Method Blank (MB)              | <i>)</i>  |              |          |          | - 1' |
|--------------------------------|-----------|--------------|----------|----------|------|
| (MB) R3655669-3 05/17/2        | 21 19:50  |              |          |          | -    |
|                                | MB Result | MB Qualifier | MB MDL   | MB RDL   | F    |
| Analyte                        | mg/kg     |              | mg/kg    | mg/kg    | ľ    |
| p-Isopropyltoluene             | U         |              | 0.00255  | 0.00500  | - L  |
| 2-Butanone (MEK)               | U         |              | 0.0635   | 0.100    |      |
| Methylene Chloride             | U         |              | 0.00664  | 0.0250   |      |
| 4-Methyl-2-pentanone (MIBK)    | U         |              | 0.00228  | 0.0250   | L D  |
| Methyl tert-butyl ether        | U         |              | 0.000350 | 0.00100  |      |
| Naphthalene                    | U         |              | 0.00488  | 0.0125   | 1 5  |
| n-Propylbenzene                | U         |              | 0.000950 | 0.00500  |      |
| Styrene                        | U         |              | 0.000229 | 0.0125   | H    |
| 1,1,1,2-Tetrachloroethane      | U         |              | 0.000948 | 0.00250  |      |
| 1,1,2,2-Tetrachloroethane      | U         |              | 0.000695 | 0.00250  |      |
| Tetrachloroethene              | U         |              | 0.000896 | 0.00250  |      |
| Toluene                        | U         |              | 0.00130  | 0.00500  |      |
| 1,1,2-Trichlorotrifluoroethane | U         |              | 0.000754 | 0.00250  |      |
| 1,2,3-Trichlorobenzene         | U         |              | 0.00733  | 0.0125   | L    |
| 1,2,4-Trichlorobenzene         | U         |              | 0.00440  | 0.0125   |      |
| 1,1,1-Trichloroethane          | U         |              | 0.000923 | 0.00250  | L    |
| 1,1,2-Trichloroethane          | U         |              | 0.000597 | 0.00250  |      |
| Trichloroethene                | U         |              | 0.000584 | 0.00100  |      |
| Trichlorofluoromethane         | U         |              | 0.000827 | 0.00250  |      |
| 1,2,3-Trichloropropane         | U         |              | 0.00162  | 0.0125   |      |
| 1,2,3-Trimethylbenzene         | U         |              | 0.00158  | 0.00500  |      |
| 1,2,4-Trimethylbenzene         | U         |              | 0.00158  | 0.00500  |      |
| 1,3,5-Trimethylbenzene         | U         |              | 0.00200  | 0.00500  |      |
| Vinyl chloride                 | U         |              | 0.00116  | 0.00250  |      |
| Xylenes, Total                 | U         |              | 0.000880 | 0.00650  |      |
| (S) Toluene-d8                 | 106       |              |          | 75.0-131 |      |
|                                |           |              |          |          |      |

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3655669-1 05/17 | /21 18:33 • (LCSE | ) R3655669- | 2 05/17/21 18:5 | 3        |           |             |               |                |       |            |  |
|------------------------|-------------------|-------------|-----------------|----------|-----------|-------------|---------------|----------------|-------|------------|--|
|                        | Spike Amount      | LCS Result  | LCSD Result     | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |  |
| Analyte                | mg/kg             | mg/kg       | mg/kg           | %        | %         | %           |               |                | %     | %          |  |
| Acetone                | 0.625             | 0.489       | 0.718           | 78.2     | 115       | 10.0-160    |               | <u>J3</u>      | 37.9  | 31         |  |
| Acrylonitrile          | 0.625             | 0.752       | 0.539           | 120      | 86.2      | 45.0-153    |               | <u>J3</u>      | 33.0  | 22         |  |
| Benzene                | 0.125             | 0.117       | 0.110           | 93.6     | 88.0      | 70.0-123    |               |                | 6.17  | 20         |  |
| Bromobenzene           | 0.125             | 0.116       | 0.118           | 92.8     | 94.4      | 73.0-121    |               |                | 1.71  | 20         |  |
| Bromodichloromethane   | 0.125             | 0.111       | 0.111           | 88.8     | 88.8      | 73.0-121    |               |                | 0.000 | 20         |  |

ACCOUNT:

89.1

74.6

(S) 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 67.0-138

70.0-130

#### QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1353606-01,02,03

| Laboratory Control         | Sample (Lo       | CS) • Labo   | ratory Con      | trol Sampl | e Duplicate | e (LCSD)    |               |                |       |            |  |
|----------------------------|------------------|--------------|-----------------|------------|-------------|-------------|---------------|----------------|-------|------------|--|
| (LCS) R3655669-1 05/17/2   | 21 18:33 • (LCSD | ) R3655669-2 | 2 05/17/21 18:5 | 3          |             |             |               |                |       |            |  |
|                            | Spike Amount     |              | LCSD Result     | LCS Rec.   | LCSD Rec.   | Rec. Limits | LCS Qualifier | LCSD Qualifier |       | RPD Limits |  |
| Analyte                    | mg/kg            | mg/kg        | mg/kg           | %          | %           | %           |               |                | %     | %          |  |
| Bromoform                  | 0.125            | 0.112        | 0.104           | 89.6       | 83.2        | 64.0-132    |               |                | 7.41  | 20         |  |
| Bromomethane               | 0.125            | 0.130        | 0.126           | 104        | 101         | 56.0-147    |               |                | 3.12  | 20         |  |
| n-Butylbenzene             | 0.125            | 0.123        | 0.114           | 98.4       | 91.2        | 68.0-135    |               |                | 7.59  | 20         |  |
| ec-Butylbenzene            | 0.125            | 0.118        | 0.118           | 94.4       | 94.4        | 74.0-130    |               |                | 0.000 | 20         |  |
| ert-Butylbenzene           | 0.125            | 0.108        | 0.111           | 86.4       | 88.8        | 75.0-127    |               |                | 2.74  | 20         |  |
| arbon tetrachloride        | 0.125            | 0.101        | 0.100           | 80.8       | 80.0        | 66.0-128    |               |                | 0.995 | 20         |  |
| hlorobenzene               | 0.125            | 0.115        | 0.115           | 92.0       | 92.0        | 76.0-128    |               |                | 0.000 | 20         |  |
| hlorodibromomethane        | 0.125            | 0.115        | 0.115           | 92.0       | 92.0        | 74.0-127    |               |                | 0.000 | 20         |  |
| hloroethane                | 0.125            | 0.114        | 0.117           | 91.2       | 93.6        | 61.0-134    |               |                | 2.60  | 20         |  |
| hloroform                  | 0.125            | 0.0997       | 0.0940          | 79.8       | 75.2        | 72.0-123    |               |                | 5.89  | 20         |  |
| hloromethane               | 0.125            | 0.123        | 0.119           | 98.4       | 95.2        | 51.0-138    |               |                | 3.31  | 20         |  |
| -Chlorotoluene             | 0.125            | 0.118        | 0.118           | 94.4       | 94.4        | 75.0-124    |               |                | 0.000 | 20         |  |
| -Chlorotoluene             | 0.125            | 0.119        | 0.123           | 95.2       | 98.4        | 75.0-124    |               |                | 3.31  | 20         |  |
| 2-Dibromo-3-Chloropropane  | 0.125            | 0.116        | 0.108           | 92.8       | 86.4        | 59.0-130    |               |                | 7.14  | 20         |  |
| 2-Dibromoethane            | 0.125            | 0.120        | 0.118           | 96.0       | 94.4        | 74.0-128    |               |                | 1.68  | 20         |  |
| bromomethane               | 0.125            | 0.122        | 0.108           | 97.6       | 86.4        | 75.0-122    |               |                | 12.2  | 20         |  |
| 2-Dichlorobenzene          | 0.125            | 0.117        | 0.110           | 93.6       | 88.0        | 76.0-124    |               |                | 6.17  | 20         |  |
| B-Dichlorobenzene          | 0.125            | 0.113        | 0.112           | 90.4       | 89.6        | 76.0-125    |               |                | 0.889 | 20         |  |
| 4-Dichlorobenzene          | 0.125            | 0.113        | 0.114           | 90.4       | 91.2        | 77.0-121    |               |                | 0.881 | 20         |  |
| chlorodifluoromethane      | 0.125            | 0.137        | 0.136           | 110        | 109         | 43.0-156    |               |                | 0.733 | 20         |  |
| 1-Dichloroethane           | 0.125            | 0.117        | 0.110           | 93.6       | 88.0        | 70.0-127    |               |                | 6.17  | 20         |  |
| 2-Dichloroethane           | 0.125            | 0.108        | 0.0993          | 86.4       | 79.4        | 65.0-131    |               |                | 8.39  | 20         |  |
| -Dichloroethene            | 0.125            | 0.104        | 0.0994          | 83.2       | 79.5        | 65.0-131    |               |                | 4.52  | 20         |  |
| -1,2-Dichloroethene        | 0.125            | 0.104        | 0.102           | 83.2       | 81.6        | 73.0-125    |               |                | 1.94  | 20         |  |
| ans-1,2-Dichloroethene     | 0.125            | 0.101        | 0.0983          | 80.8       | 78.6        | 71.0-125    |               |                | 2.71  | 20         |  |
| 2-Dichloropropane          | 0.125            | 0.117        | 0.112           | 93.6       | 89.6        | 74.0-125    |               |                | 4.37  | 20         |  |
| 1-Dichloropropene          | 0.125            | 0.107        | 0.101           | 85.6       | 80.8        | 73.0-125    |               |                | 5.77  | 20         |  |
| 3-Dichloropropane          | 0.125            | 0.122        | 0.124           | 97.6       | 99.2        | 80.0-125    |               |                | 1.63  | 20         |  |
| s-1,3-Dichloropropene      | 0.125            | 0.111        | 0.108           | 88.8       | 86.4        | 76.0-127    |               |                | 2.74  | 20         |  |
| ans-1,3-Dichloropropene    | 0.125            | 0.119        | 0.121           | 95.2       | 96.8        | 73.0-127    |               |                | 1.67  | 20         |  |
| 2-Dichloropropane          | 0.125            | 0.129        | 0.126           | 103        | 101         | 59.0-135    |               |                | 2.35  | 20         |  |
| i-isopropyl ether          | 0.125            | 0.120        | 0.114           | 96.0       | 91.2        | 60.0-136    |               |                | 5.13  | 20         |  |
| hylbenzene                 | 0.125            | 0.112        | 0.110           | 89.6       | 88.0        | 74.0-126    |               |                | 1.80  | 20         |  |
| exachloro-1,3-butadiene    | 0.125            | 0.0891       | 0.0942          | 71.3       | 75.4        | 57.0-150    |               |                | 5.56  | 20         |  |
| opropylbenzene             | 0.125            | 0.107        | 0.102           | 85.6       | 81.6        | 72.0-127    |               |                | 4.78  | 20         |  |
| Isopropyltoluene           | 0.125            | 0.107        | 0.102           | 85.6       | 86.4        | 72.0-133    |               |                | 0.930 | 20         |  |
| -Butanone (MEK)            | 0.625            | 0.809        | 0.647           | 129        | 104         | 30.0-160    |               |                | 22.3  | 24         |  |
| Methylene Chloride         | 0.025            | 0.108        | 0.103           | 86.4       | 82.4        | 68.0-123    |               |                | 4.74  | 20         |  |
| -Methyl-2-pentanone (MIBK) | 0.625            | 0.698        | 0.667           | 112        | 107         | 56.0-143    |               |                | 4.54  | 20         |  |
| lethyl tert-butyl ether    | 0.023            | 0.038        | 0.007           | 96.8       | 88.0        | 66.0-132    |               |                | 9.52  | 20         |  |



















(S) 1,2-Dichloroethane-d4

#### QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1353606-01,02,03

#### Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

93.8

89.2

| // CC/ DOCEECCO 1 | OF /17/21 10.22 | (LCSD) R3655669-2 | OF /17/21 10.F2 |
|-------------------|-----------------|-------------------|-----------------|
|                   |                 |                   |                 |

|                                | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |
|--------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|
| Analyte                        | mg/kg        | mg/kg      | mg/kg       | %        | %         | %           |               |                | %     | %          |
| Naphthalene                    | 0.125        | 0.0913     | 0.0842      | 73.0     | 67.4      | 59.0-130    |               |                | 8.09  | 20         |
| n-Propylbenzene                | 0.125        | 0.126      | 0.128       | 101      | 102       | 74.0-126    |               |                | 1.57  | 20         |
| Styrene                        | 0.125        | 0.113      | 0.110       | 90.4     | 88.0      | 72.0-127    |               |                | 2.69  | 20         |
| 1,1,1,2-Tetrachloroethane      | 0.125        | 0.107      | 0.100       | 85.6     | 80.0      | 74.0-129    |               |                | 6.76  | 20         |
| 1,1,2,2-Tetrachloroethane      | 0.125        | 0.141      | 0.141       | 113      | 113       | 68.0-128    |               |                | 0.000 | 20         |
| Tetrachloroethene              | 0.125        | 0.116      | 0.116       | 92.8     | 92.8      | 70.0-136    |               |                | 0.000 | 20         |
| Toluene                        | 0.125        | 0.118      | 0.114       | 94.4     | 91.2      | 75.0-121    |               |                | 3.45  | 20         |
| 1,1,2-Trichlorotrifluoroethane | 0.125        | 0.110      | 0.110       | 88.0     | 88.0      | 61.0-139    |               |                | 0.000 | 20         |
| 1,2,3-Trichlorobenzene         | 0.125        | 0.0676     | 0.0691      | 54.1     | 55.3      | 59.0-139    | <u>J4</u>     | <u>J4</u>      | 2.19  | 20         |
| 1,2,4-Trichlorobenzene         | 0.125        | 0.0906     | 0.0811      | 72.5     | 64.9      | 62.0-137    |               |                | 11.1  | 20         |
| 1,1,1-Trichloroethane          | 0.125        | 0.104      | 0.0961      | 83.2     | 76.9      | 69.0-126    |               |                | 7.90  | 20         |
| 1,1,2-Trichloroethane          | 0.125        | 0.117      | 0.115       | 93.6     | 92.0      | 78.0-123    |               |                | 1.72  | 20         |
| Trichloroethene                | 0.125        | 0.104      | 0.101       | 83.2     | 80.8      | 76.0-126    |               |                | 2.93  | 20         |
| Trichlorofluoromethane         | 0.125        | 0.0787     | 0.0790      | 63.0     | 63.2      | 61.0-142    |               |                | 0.380 | 20         |
| 1,2,3-Trichloropropane         | 0.125        | 0.128      | 0.124       | 102      | 99.2      | 67.0-129    |               |                | 3.17  | 20         |
| 1,2,3-Trimethylbenzene         | 0.125        | 0.0876     | 0.0858      | 70.1     | 68.6      | 74.0-124    | <u>J4</u>     | <u>J4</u>      | 2.08  | 20         |
| 1,2,4-Trimethylbenzene         | 0.125        | 0.116      | 0.112       | 92.8     | 89.6      | 70.0-126    |               |                | 3.51  | 20         |
| 1,3,5-Trimethylbenzene         | 0.125        | 0.104      | 0.106       | 83.2     | 84.8      | 73.0-127    |               |                | 1.90  | 20         |
| Vinyl chloride                 | 0.125        | 0.119      | 0.116       | 95.2     | 92.8      | 63.0-134    |               |                | 2.55  | 20         |
| Xylenes, Total                 | 0.375        | 0.344      | 0.341       | 91.7     | 90.9      | 72.0-127    |               |                | 0.876 | 20         |
| (S) Toluene-d8                 |              |            |             | 101      | 103       | 75.0-131    |               |                |       |            |
| (S) 4-Bromofluorobenzene       |              |            |             | 94.4     | 94.6      | 67.0-138    |               |                |       |            |

70.0-130



















#### WG1672625

#### QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1353606-01,02

#### Method Blank (MB)

| (MB) R3655902-2 05/18/2   | 21 11:17  |              |         |          |
|---------------------------|-----------|--------------|---------|----------|
|                           | MB Result | MB Qualifier | MB MDL  | MB RDL   |
| Analyte                   | mg/kg     |              | mg/kg   | mg/kg    |
| Naphthalene               | U         |              | 0.00488 | 0.0125   |
| 1,2,4-Trimethylbenzene    | U         |              | 0.00158 | 0.00500  |
| 1,3,5-Trimethylbenzene    | U         |              | 0.00200 | 0.00500  |
| (S) Toluene-d8            | 104       |              |         | 75.0-131 |
| (S) 4-Bromofluorobenzene  | 108       |              |         | 67.0-138 |
| (S) 1,2-Dichloroethane-d4 | 98.4      |              |         | 70.0-130 |
|                           |           |              |         |          |

# 3





#### Laboratory Control Sample (LCS)

| (LCS) R3655902-1 05/18/   | 21 10:20     |            |          |             |               |
|---------------------------|--------------|------------|----------|-------------|---------------|
|                           | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                   | mg/kg        | mg/kg      | %        | %           |               |
| Naphthalene               | 0.125        | 0.165      | 132      | 59.0-130    | <u>J4</u>     |
| 1,2,4-Trimethylbenzene    | 0.125        | 0.142      | 114      | 70.0-126    |               |
| 1,3,5-Trimethylbenzene    | 0.125        | 0.134      | 107      | 73.0-127    |               |
| (S) Toluene-d8            |              |            | 97.9     | 75.0-131    |               |
| (S) 4-Bromofluorobenzene  |              |            | 119      | 67.0-138    |               |
| (S) 1.2-Dichloroethane-d4 |              |            | 102      | 70.0-130    |               |









#### **GLOSSARY OF TERMS**

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Ss

Cn

Sr

Qc

GI

Sc

#### Abbreviations and Definitions

| Appleviations and               | Deminions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (dry)                           | Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].                                                                                                                                                                                                                                                                                                                                                                                                   |
| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MDL (dry)                       | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RDL (dry)                       | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

| Qualifier | Description |
|-----------|-------------|
|-----------|-------------|

| C3 | The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Method sensitivity check is acceptable.                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C4 | The reported concentration is an estimate. The continuing calibration standard associated with this data responded low. Data is likely to show a low bias concerning the result. |
| J  | The identification of the analyte is acceptable; the reported value is an estimate.                                                                                              |
| J3 | The associated batch QC was outside the established quality control range for precision.                                                                                         |
| J4 | The associated batch QC was outside the established quality control range for accuracy.                                                                                          |

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Apex Companies, LLC - Portland, OR
 REGEN-250
 L1353606
 05/18/21 18:39
 17 of 20

#### **ACCREDITATIONS & LOCATIONS**

#### Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

| Alabama               | 40660       | Nebraska                    | NE-OS-15-05      |
|-----------------------|-------------|-----------------------------|------------------|
| Alaska                | 17-026      | Nevada                      | TN000032021-1    |
| Arizona               | AZ0612      | New Hampshire               | 2975             |
| Arkansas              | 88-0469     | New Jersey-NELAP            | TN002            |
| California            | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado              | TN00003     | New York                    | 11742            |
| Connecticut           | PH-0197     | North Carolina              | Env375           |
| Florida               | E87487      | North Carolina 1            | DW21704          |
| Georgia               | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>  | 923         | North Dakota                | R-140            |
| Idaho                 | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois              | 200008      | Oklahoma                    | 9915             |
| Indiana               | C-TN-01     | Oregon                      | TN200002         |
| lowa                  | 364         | Pennsylvania                | 68-02979         |
| Kansas                | E-10277     | Rhode Island                | LAO00356         |
| Kentucky 1 6          | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup> | 16          | South Dakota                | n/a              |
| Louisiana             | Al30792     | Tennessee 1 4               | 2006             |
| Louisiana             | LA018       | Texas                       | T104704245-20-18 |
| Maine                 | TN00003     | Texas <sup>5</sup>          | LAB0152          |
| Maryland              | 324         | Utah                        | TN000032021-11   |
| Massachusetts         | M-TN003     | Vermont                     | VT2006           |
| Michigan              | 9958        | Virginia                    | 110033           |
| Minnesota             | 047-999-395 | Washington                  | C847             |
| Mississippi           | TN00003     | West Virginia               | 233              |
| Missouri              | 340         | Wisconsin                   | 998093910        |
| Montana               | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025      | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA - ISO 17025 5    | 1461.02     | DOD                         | 1461.01          |
| Canada                | 1461.01     | USDA                        | P330-15-00234    |



<sup>\*</sup> Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto



















 $<sup>^* \, \</sup>text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$ 

| ompany Name/Address:                                | Billing Information:                 |                                  |                               |                                                            |             |            |                      | Analysis /  | Contain                      | Chain of Custody Page 1 of Z |                                                            |                                                                 |                                                                                       |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------|--------------------------------------|----------------------------------|-------------------------------|------------------------------------------------------------|-------------|------------|----------------------|-------------|------------------------------|------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------|------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Apex Companies, LLC - Portland, OR  600 Stewart St. |                                      |                                  |                               | Accounts Payable 3015 SW First Ave. Portland OR 97701-4707 |             |            |                      |             |                              |                              |                                                            |                                                                 |                                                                                       |            | - Pac                                          | e Analytical <sup>°</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ste 400                                             |                                      |                                  |                               | Portland, OR 97201-4707                                    |             |            |                      |             |                              |                              |                                                            | 25.                                                             |                                                                                       |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| eattle. WA 98101                                    |                                      |                                  |                               | - 35 °                                                     | 100         |            |                      |             |                              |                              |                                                            |                                                                 | 1 a                                                                                   |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| port to:                                            |                                      |                                  | Email To:                     | evens ent                                                  | m·kelsi ev  | ans@apexco | s.com:               |             | *                            |                              |                                                            |                                                                 |                                                                                       |            | 12065 Lebanon Rd Mo<br>Submitting a sample via | a this chain of custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2 Xu                                                |                                      | City/State                       | Jan                           | excos.coi                                                  | A           |            |                      |             | 1/5                          |                              |                                                            |                                                                 |                                                                                       |            | Pace Terms and Condit                          | gment and acceptance of the<br>ions found at:<br>om/hubfs/pas-standard-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| oject Description:                                  | freiett                              |                                  |                               | Please Ci<br>PT MT C                                       |             |            | 110m                 |             |                              |                              |                                                            |                                                                 | terms.pdf                                                                             | 435 3506   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| one: 503-924-4704                                   | -250 Lab Project # ASHCREPOR-CASCADE |                                  |                               |                                                            |             |            | 40mlAmb/MeOH10ml/Syr |             |                              |                              |                                                            |                                                                 | SDG # D                                                                               | 250        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lected by (print):                                  | Site/Facility II                     | D#                               | P.O. #<br>REGEN-574           |                                                            |             |            |                      | ozCir-NoPr  | Amb                          |                              |                                                            |                                                                 |                                                                                       |            | Acctnum: ASF                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lected by (signature):                              | Rush? (                              | Lab MUST Be                      |                               | Quote                                                      | #           |            |                      | 252C        |                              |                              |                                                            |                                                                 |                                                                                       |            | Template:T18 Prelogin: P84                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mediately cked on Ice N Y                           | Next Da Two Da Three D               | y 5 Da                           | y (Rad Only)<br>ay (Rad Only) | Da                                                         | ate Results | Needed     | No.<br>of            | 8260D       | 8260D                        |                              |                                                            |                                                                 |                                                                                       | 14.<br>14. | PM: 110 - Brial                                | n Ford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample ID                                           | Comp/Grab                            | Matrix *                         | Depth                         | D                                                          | ate         | Time       | Cntrs                | VOCs        | VOCs                         |                              |                                                            |                                                                 |                                                                                       |            | Shipped Via:                                   | Sample # (lab only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| * 5B-1-2<br>* 5B-1-5                                | G                                    | SS                               | 2                             | 5                                                          | 14/21       | 930        | 2                    | RESERVE BEE | X                            |                              |                                                            |                                                                 |                                                                                       |            | ZU TAT                                         | ŭ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| * 53-1.5                                            | G                                    | SS                               | 6                             |                                                            | 1           | 935        | 2                    | X           | X                            |                              |                                                            |                                                                 |                                                                                       |            | Carlo B                                        | CONTRACTOR OF THE PARTY OF THE  |
| e 58-1-8                                            | G                                    | SS                               | 8                             | 1                                                          |             | 940        | 2                    | ×           | X                            |                              |                                                            |                                                                 |                                                                                       |            |                                                | _ 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 58-2-2                                              | 6                                    | SS                               | 2                             |                                                            |             | 900        | 2                    | ×           | X                            |                              |                                                            |                                                                 |                                                                                       |            | an Hold                                        | 114 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SB-Z-0                                              | 6                                    | SS                               | 6                             |                                                            |             | 908        | 2                    | ×           | X                            |                              |                                                            |                                                                 |                                                                                       |            | on Holo                                        | The second secon |
| 58-2-8                                              | G                                    | SS                               | 8                             |                                                            |             | 915        | 2                    | ×           | X                            |                              |                                                            |                                                                 |                                                                                       |            | on Hold                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58-3-2                                              | G                                    | SS                               | 1                             |                                                            |             | 950        | 2                    | X           | X                            |                              |                                                            |                                                                 |                                                                                       |            | on Holo                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58-6-6                                              | G                                    | SS                               | 6                             |                                                            |             | 1006       | 2                    | X           | X                            |                              |                                                            |                                                                 |                                                                                       |            | on Hole                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58-3-9                                              | G                                    | SS                               | a                             |                                                            |             | 1005       | 12                   | K           | X                            |                              |                                                            |                                                                 |                                                                                       |            | on Hol.                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58-4-2                                              | 6                                    | SS                               | 2                             |                                                            | 1           | 1010       | 7                    | X           | X                            |                              |                                                            |                                                                 |                                                                                       |            | on Ho                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                     | sampl<br>ore c                       | Hold" hold analysis u  *ZYHR TAT |                               |                                                            |             |            | (58-                 | 1 - 2, 5B   |                              | Temp                         | and the second                                             | COC Seal<br>COC Sign<br>Bottles                                 | ample Receipt Ch<br>Present/Intact<br>ed/Accurate:<br>arrive intact:<br>bottles used: |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Other                                             | ups FedEx                            |                                  | Trackin                       |                                                            | 181         | 2508       |                      |             | 138Cm                        |                              | Sufficient volume sent:  If Applicable VOA Zero Headspace: |                                                                 | Y N                                                                                   |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| linquished by : (Signature)                         | D                                    | Received by: (Signature)         |                               |                                                            |             |            |                      | Trip Blar   | Trip Blank Received Yes 7 Vo |                              |                                                            | Preservation Correct/Checked; Y N<br>RAD Screen <0.5 mR/hr: Y N |                                                                                       |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| delinquished by : (Signature) Date:                 |                                      |                                  | Time                          | Time: Received by: (Signat                                 |             |            |                      |             |                              | Remote 2. 4                  | 2.4.026 30                                                 |                                                                 |                                                                                       |            | ation required by Lo                           | gin: Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| elinquished by : (Signature) Date:                  |                                      | Time                             | Time: Received for lab by:    |                                                            |             |            | ture)                |             | 8/14/                        | 4                            | Time:                                                      | 30                                                              | 05                                                                                    | -146       | Condition:<br>NCF / OK                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Apex Companies, LLC - Portland, OR                                                                  |                                                                          | Billing Info                                | ormation:         |                     |                 | 98,000    | 1               | Analysis / (         | Container / Pres  | servative   | Chain of Custody Page 2 of 2                  |                                                                                                                              |                                                  |                                                                         |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------|-------------------|---------------------|-----------------|-----------|-----------------|----------------------|-------------------|-------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|--|
| 500 Stewart St.<br>Ste 400<br>Seattle. WA 98101                                                     | 3015 SV                                                                  | ts Payable<br>V First Ave.<br>d, OR 97201-4 | 707               | Pre<br>Chk          | \$1.442.2000    |           |                 |                      |                   |             | - Pac                                         | e Analytical®                                                                                                                |                                                  |                                                                         |  |
| eport to:<br>ie Xu                                                                                  | Email To:<br>Jie.Xu@ap                                                   | excos.com;kelsi.                            | evans@apexc       | os.con              | 1;              | 1.        |                 |                      |                   |             | 12065 Lebanon Rd Mo<br>Submitting a sample vi | a this chain of custody                                                                                                      |                                                  |                                                                         |  |
| Project Description: City/State Collected:                                                          |                                                                          |                                             |                   | - WD                | Please C        |           |                 | S/Imic               | The second second |             |                                               |                                                                                                                              | Pace Terms and Condit                            | gment and acceptance of the<br>ions found at:<br>om/hubfs/pas-standard- |  |
| none: 503-924-4704                                                                                  | Client Projec                                                            |                                             | Lab Project #     |                     |                 |           |                 | 40mlAmb/MeOH10ml/Syr |                   |             |                                               |                                                                                                                              | SDG# U                                           | 453606                                                                  |  |
| ollected by (print):                                                                                | Site/Facility I                                                          | D#                                          |                   | P.O. #<br>REGEN-574 |                 |           | NoPr<br>mb/n    |                      |                   |             |                                               |                                                                                                                              | Table # Acctnum: ASH                             | ICREPOR                                                                 |  |
| Collected by (signature):                                                                           | Same D                                                                   | Lab MUST Be                                 | Day<br>(Rad Only) | Notified) Quote #   |                 |           | D 2ozCir-NoPres | D 40mlA              |                   |             |                                               |                                                                                                                              | Template:T18 Prelogin: P84                       | 6717<br>4618                                                            |  |
| mmed detely racked on Ice N Y                                                                       | Two Da                                                                   | y 10 Da                                     | ay (Rad Only)     | The results receded |                 | No.<br>of | VOCs 8260D      | 8260D                |                   |             |                                               |                                                                                                                              | PM: 110 - Brian                                  | n Ford                                                                  |  |
| Sample IÓ                                                                                           | - Indiana                                                                |                                             | Depth             | Date                | Time            | Cntrs     | /OCs            | VOCs                 |                   |             |                                               |                                                                                                                              | Shipped Via:                                     |                                                                         |  |
| SB-4-6                                                                                              | 6                                                                        | SS                                          | 6                 | 5 14/21             | 1070            | 12        | -               | x                    |                   |             |                                               | E AND E                                                                                                                      | on Hold                                          |                                                                         |  |
| 5B-4-8<br>5B-5-2                                                                                    | 6                                                                        | SS                                          | 4                 |                     | 1024            | 2         | X               | X                    |                   |             |                                               |                                                                                                                              | on Hob                                           |                                                                         |  |
| 5B-5 A                                                                                              | 6                                                                        | SS                                          | 2                 |                     | 1032            | 2         | ×               | X                    |                   |             |                                               |                                                                                                                              | on Hale                                          |                                                                         |  |
| 58-5-6                                                                                              | 6                                                                        | SS                                          | 0                 |                     | 1043            | 2         | 1 +             | X                    |                   |             |                                               |                                                                                                                              | on Hold                                          | <b>建构设于设计运动图积的建筑</b>                                                    |  |
| 58-5-8                                                                                              | 6                                                                        | SS                                          | 8                 |                     | 1048            | 1         | 14              | X                    |                   |             |                                               | . 14                                                                                                                         | on Hol                                           | <b>明</b> (宋史] [[[[] [[] [] [] [] [] [] [] [] [] [] [                    |  |
| 58-6-2                                                                                              | G                                                                        | SS                                          | 2                 |                     | 1102            | 2         | X               | X                    |                   |             |                                               |                                                                                                                              | on Hole                                          | 医多种性 医多种性 医皮肤                                                           |  |
| 58-6-6                                                                                              | G                                                                        | SS                                          | 6                 |                     | 1112            | 1         | ×               | X                    |                   |             |                                               |                                                                                                                              | on Ho                                            | The second second second second second                                  |  |
| 58-6-8                                                                                              | 6                                                                        | SS                                          | 8                 |                     | 1117            | 2         | 1               | X                    | Total Control     |             |                                               |                                                                                                                              | on Hol                                           |                                                                         |  |
|                                                                                                     |                                                                          | SS                                          |                   | 133                 |                 | 1         | 1               |                      |                   |             |                                               |                                                                                                                              | 1011                                             |                                                                         |  |
|                                                                                                     |                                                                          | SS                                          |                   |                     |                 |           |                 |                      |                   |             |                                               |                                                                                                                              |                                                  |                                                                         |  |
| - Soil AIR - Air F - Filter<br>V - Groundwater B - Bioassay<br>W - WasteWater<br>V - Drinking Water | oil AIR-Air F-Filter Groundwater B-Bioassay WasteWater  Hold Samples Ord |                                             | 111 58-1          | + results           | TAT             |           |                 |                      | pH                | TempOther   |                                               | Sample Receipt Checklist COC Seal Present/Intact: NP Y COC Signed/Accurate: Bottles arrive intact: Y Correct bottles used: Y |                                                  |                                                                         |  |
| F-Other                                                                                             | Samples returned s UPS FedEx                                             |                                             |                   | Trackin             | ng#             |           |                 |                      |                   |             |                                               |                                                                                                                              | it volume sent:                                  | e Zy _N<br>e                                                            |  |
| elinquished by : (Signature)                                                                        | Dat                                                                      |                                             | Time:             | Receive             | ed by: (Signatu | ıre)      |                 |                      | Trip Blank R      |             | No<br>//MeoH                                  | Preservat                                                                                                                    | Headspace:<br>tion Correct/Che<br>en <0.5 mR/hr: | YN                                                                      |  |
| linquished by : (Signature)                                                                         | Dat                                                                      | e:                                          | Time:             | Receive             | ed by: (Signatu | ıre)      |                 |                      | remo:             | °C Bottles  | Received:                                     | If preservat                                                                                                                 | ion required by Log                              | in: Date/Time                                                           |  |
| linquished by : (Signature)                                                                         | Date                                                                     | e:                                          | Time:             | Receive             | d for lab Wy./! | Signatu   | re)             | ~                    | 0319/2            | Time: 1 9 s | 30                                            | Hold:                                                                                                                        |                                                  | Condition:                                                              |  |