

Remedial Investigation

Snohomish County Airport C-1 Building and C-1 Hangar 3220 100th Street SW, Suite A Everett, Washington

for **Snohomish County Airports**

June 30, 2023

1101 Fawcett Avenue, Suite 200 Tacoma, Washington 98402 253.383.4940

Remedial Investigation

Snohomish County Airport C-1 Building and C-1 Hangar 3220 100th Street SW Everett, Washington

File No. 5530-014-02 June 30, 2023

Prepared for:

Snohomish County Airports 3220 100th Street SW, Suite A Everett, Washington 98204-1303

Attention: Andrew Rardin

Prepared by:

GeoEngineers, Inc. 1101 Fawcett Avenue, Suite 200 Tacoma, Washington 98402 253.383.4940

Jacob M. Letts, LG, LHG Senior Hydrogeologist

Tim L. Syverson, LHG

Associate Environmental Geologist

Timothy L. Syverson

06/30/2023

JML:TLS:leh:ch:tlm

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

LIST OF ABBREVIATIONS AND ACRONYMS	IV
EXECUTIVE SUMMARY	ES-1
1.0 INTRODUCTION	1
1.1. Objectives	1
1.2. Regulatory Framework	
2.0 PROPERTY CONDITIONS	2
2.1. Location and Description	2
2.2. Historical, Current and Future Land Use	
2.3. Utility Infrastructure	2
2.4. Adjacent Property Uses	3
3.0 SITE CHARACTERIZATION	3
3.1. 1986 Preliminary Site Assessment	3
3.1.1. Catch Basin Investigation Summary	3
3.2. 1997 and 1998 Phase I and Phase II Environment	ntal Site Assessments4
9	ary4
3.3. 2000 and 2001 Subsurface Investigations Inside	•
	nmary4
3.4. 2009 Remedial Excavation/32nd Avenue West Im	•
3.5. 2018 Phase I and II Environmental Site Assessm	
	ary6
3.6. 2020 Vapor Intrusion Evaluation	
3.7. 2021 Phase II Environmental Site Assessment	
3.8. 2022 Supplemental Phase II Environmental Site	
3.9. 2022 to 2023 Remedial Investigation	
•	
<u> </u>	
•	
5	
, ,	15
4.1. Physical Setting	
4.2. Geology and Hydrogeology	
4.3. Sources of Contamination	
4.4. Potential Receptors and Exposure Pathways	
•	
	17
6.0 NATURE AND EXTENT OF CONTAMINATION	17
6.1. Contaminants and Media of Concern	
6.1.3. Soil Vapor and Indoor Air	

6.2.	Soil		18
6	5.2.1.	Beneath the C-1 Building	18
6	5.2.2.	C-1 Building Storage Yard	19
6.3.	Groun	ndwater	19
6	3.3.1.	C-1 Building Storage Yard	19
6	5.3.2.	Beneath/Adjacent to the C-1 Hangar	20
6.4.	Soil Va	apor and Indoor Air	20
6	5.4.1.	C-1 Building	20
6	5.4.2.	C-1 Hangar	21
7.0	CONT	AMINANT FATE AND TRANSPORT	21
	DATA	GAPS	22
8.0		GAPS	
8.0 8.1.	C-1 B		23
8.0 8.1. 8.2.	C-1 Bu	GAPSuilding – Vertical Extent of TCE in Soil	23 23
8.0 8.1. 8.2. 8.3.	C-1 Bu C-1 Bu Groun	GAPSuilding – Vertical Extent of TCE in Soiluilding – Vertical Extent of Mineral Spirits Contamination	23 23 23
8.0 8.1. 8.2. 8.3. 8.4.	C-1 Bu C-1 Bu Groun Soil -	GAPSuilding – Vertical Extent of TCE in Soiluilding – Vertical Extent of Mineral Spirits Contamination	23 23 23
8.0 8.1. 8.2. 8.3. 8.4. 9.0	C-1 Bu C-1 Bu Groun Soil –	uilding – Vertical Extent of TCE in Soil	23 23 23 23
8.0 8.1. 8.2. 8.3. 8.4. 9.0	C-1 Bu C-1 Bu Groun Soil – SUMN LIMITA	GAPS uilding – Vertical Extent of TCE in Soil uilding – Vertical Extent of Mineral Spirits Contamination ndwater – C-1 Building Storage Yard C-1 Building Storage Yard/32 nd Avenue West ROW	23 23 23 23 24

LIST OF TABLES

- Table 1. Soil Vapor Sample Chemical Analytical Results 2020 VI Evaluation
- Table 2. Unadjusted Indoor Air and Outdoor Air Sample Chemical Analytical Result 2020 VI Evaluation
- Table 3. Adjusted Indoor Air Sample Chemical Analytical Results
- Table 4. Soil Chemical Analytical Results 2021 and 2022 Petroleum Hydrocarbons and BTEX
- Table 5. Soil Chemical Analytical Results 2021 and 2022 Volatile Organic Compounds (VOCs) and Polychlorinated Biphenyls (PCBs)
- Table 6. Soil Chemical Analytical Results 2021 and 2022 Total Metals
- Table 7. Groundwater Chemical Analytical Results 2021 through 2023 Petroleum Hydrocarbons, VOCs, and Metals
- Table 8. Monitoring Well Design and Groundwater Elevations

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Sub-Slab, Indoor Air and Outdoor Air Sampling Locations
- Figure 3. Phase II ESA and Supplemental Phase II ESA Exploration Locations (2021 and 2022)
- Figure 4. Remedial Investigation Exploration Locations
- Figure 5. Remedial Investigation Groundwater Elevations (January 9 and 10, 2023)
- Figure 6. Remedial Investigation Locations with Soil Exceeding PCUL
- Figure 7. Remedial Investigation Locations with Groundwater Exceeding PCUL January 2023
- Figure 8. Geologic Cross Section A-A'

APPENDICES

Appendix A. Excerpts from 2018 Phase I and Phase II Environmental Site Assessment by HWA Geosciences, Inc.

Appendix B. C-1 Hangar and C-1 Building Vapor Intrusion Evaluation Report

Appendix C. Phase II Environmental Site Assessment Report

Appendix D. Remedial Investigation Boring and Monitoring Well Construction Logs and Groundwater Sampling Field Data

Appendix E. Remedial Investigation Laboratory Analytical Reports

Appendix F. Remedial Investigation Field Procedures

Appendix G. Investigation Derived Waste Disposal Documentation

Appendix H. Report Limitations and Guidelines for Use

LIST OF ABBREVIATIONS AND ACRONYMS

AST aboveground storage tank

ASTM ASTM International

ATS Aviation Technical Services, Inc.

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CAP Cleanup Action Plan

CDM Camp Dresser & McKee Inc.
CID contained-in determination
COCs contaminants of concern

CRECs Controlled Recognized Environmental Conditions

CSM Conceptual Site Model

CUL cleanup level

CVOCs chlorinated volatile organic compounds

DOT Department of Transportation

Ecology Washington State Department of Ecology

EPA United States Environmental Protection Agency

ESA Environmental Site Assessment

F&B Friedman & Bruya Inc.

FS Feasibility Study

GPR ground penetrating radar
HCID hydrocarbon identification

HSA hollow-stem auger

IDW investigation derived waste IPG Integrated Planning Grant

MEK 2-butanone, methyl ethyl ketone

mg/kg milligrams per kilogram
mg/m³ milligrams per cubic meter
MTCA Model Toxics Control Act

mV millivolts

NAVD 88 North American Vertical Datum of 1988

NFA no further action

ORP oxidation reduction potential PCBs polychlorinated biphenyls

PCE tetrachloroethylene/perchloroethylene

PCULs preliminary cleanup levels
PID photoionization detector

ppm parts per million
PVC polyvinyl chloride

RCRA Resource Control and Recovery Act
RECs Recognized Environmental Conditions

RI Remedial Investigation

ROW right-of-way

Site C-1 Building and C-1 Hangar Properties and surrounding area

SLs screening levels

TAT Technical Assistance Team

TCA 1,1,2-trichloroethane

TCE trichloroethene

TEE Terrestrial Ecological Evaluation
TPH total petroleum hydrocarbons

TPH-D Diesel-range total petroleum hydrocarbons
TPH-G Gasoline-range total petroleum hydrocarbons
TPH-O Heavy oil-range total petroleum hydrocarbons

Tramco, Inc.

μg/L micrograms per liter

µg/m³ micrograms per cubic meter
UST underground storage tank

VI Vapor Intrusion

VCP Voluntary Cleanup Program
VOCs volatile organic compound

WAC Washington Administrative Code

EXECUTIVE SUMMARY

Paine Field/Snohomish County Airport is the recipient of an Integrated Planning Grant (IPG) from Ecology and the RI is being completed under the IPG.

This Remedial Investigation (RI) Report has been prepared for the C-1 Building and C-1 Hangar Site located in Everett, Washington. The C-1 Building Property is listed by the Washington State Department of Ecology (Ecology) as the Precision Engines LLC site (Cleanup Site ID: 3526; Facility/Site ID: 84613634). The C-1 Hangar is not listed separately in Ecology's contaminated sites database. For the purposes of this report, the C-1 Building and C-1 Hangar Properties and relevant portions of the surrounding area where contamination has come to be located are referred to as the Site.

The RI Report has been prepared consistent with the RI Work Plan and Ecology guidance to document the investigation completed to define the nature and extent of contamination at the Site. The results of the RI will be used as the basis for the Feasibility Study (FS) that will identify and evaluate remedial alternatives and recommend a preferred cleanup action to address contamination in the media of concern and prepare a Cleanup Action Plan (CAP) in accordance with the requirements of the Model Toxics Control Act (MTCA) (Washington Administrative Code [WAC] 173-340-750).

Environmental investigations completed at the Site between 1986 and 2023 included sampling and laboratory chemical analysis of soil, groundwater, soil vapor and indoor air, and water and sediment from storm drains. Contaminants of concern (COCs) for soil, groundwater and indoor air were established for the RI based on the results of previous investigations, historical land use, potential source(s), and potential ecological receptors. Potential exposure pathways including direct contact, drinking water, and indoor air were evaluated for the Site.

Based on the current Conceptual Site Model (CSM), preliminary cleanup levels (PCULs) were selected based on complete exposure pathways for unrestricted land use for soil, groundwater, and indoor air in accordance with MTCA (WAC 173-340-720 through 750). Additionally, screening levels (SLs) for commercial worker exposure were developed consistent with commercial/office uses at the Site and in accordance with Ecology's Vapor Intrusion (VI) Guidance. COCs identified for the Site were characterized to document the nature and extent of contamination. A summary of prior Site uses, contaminant sources, and the nature and extent of contamination are as follows:

- Historical Aircraft Engine Overhaul and Aircraft Parking/Maintenance Prior use, handling, and storage of hazardous materials inside the C-1 Building and C-1 Hangar, including Soltrol (mineral spirits), trichloroethene (TCE), naphthalene, carbon tetrachloride, and various oils and calibrating fluids, resulted in releases to soil beneath the two buildings.
 - TCE contamination is present in soil beneath the C-1 Building at the location of a former trench drain at concentrations greater than the PCUL.
 - Residual mineral spirits contamination in soil at one location beneath the C-1 Building based on the results of investigations conducted in 2000 and 2001.
 - 1,2-dichloroethane, TCE, naphthalene, carbon tetrachloride, chloroform, and benzene were detected in indoor air inside the C-1 Building and C-1 Hangar at concentrations greater than PCULs; the detected concentrations are less than the MTCA Method B indoor air screening levels for commercial exposure, which is the appropriate screening level for current uses in these two buildings.

- Chemical Spills/Releases to Stormwater Conveyance System Releases to the former trench drain beneath the C-1 Building and to catch basins outside the building drained to the 55 plus year old stormwater pipes located in the C-1 Building storage yard and then leaked from pipe cracks or joints to soil and groundwater.
 - Vinyl chloride and arsenic are present in groundwater in the C-1 Building storage yard at concentrations greater than the PCUL. TCE was detected in soil samples collected adjacent to stormwater pipes and a catch basin located in the storage yard and the results of the RI indicate that the TCE released to the stormwater system migrated to groundwater and subsequently degraded to vinyl chloride.
- Chemical Storage, C-1 Building Storage Yard The former use of an underground storage tank (UST) and an aboveground storage tank (AST), and the storage of spent solvents in drums in the C-1 Building storage yard resulted in releases of COCs to soil and groundwater.
 - TCE contamination is present in soil near the former AST at concentrations greater than the PCUL. The detected concentrations ranged in depth from 4 to 20 feet below ground surface (bgs) and indicate a likely surface spill/release.
 - Mineral spirits were detected in soil adjacent to the former AST at concentrations greater than the PCUL during a road improvement project and were subsequently remediated during construction activities in 2009.

The results of the RI document the nature and source(s) for the COCs, and identify data gaps in the extent of the COCs that will require additional investigation to identify and evaluate cleanup alternatives for contaminated media at the site and prepare the FS and CAP.

1.0 INTRODUCTION

This Remedial Investigation (RI) report describes environmental drilling and sampling conducted in 2022 and 2023 to address data gaps and complete characterization for the C-1 Building and C-1 Hangar Properties and surrounding area (Site) at Paine Field/Snohomish County Airport to support development of a RI, Feasibility Study (FS) and Cleanup Action Plan (CAP) for the Site. The RI report also includes relevant Site data from previous investigations to inform the nature and extent of contamination. The Site includes two properties located at 3220 100th Street SW in Everett, Washington, is approximately 2.35-acres in size and includes two adjoining buildings (Figure 1). The C-1 Building Property is developed with an approximately 25,000-square-foot building and an adjacent 12,000-square-foot exterior storage yard, and the C-1 Hangar Property is developed with an approximately 53,000-square-foot airplane hangar.

The Site has been the subject of several environmental investigations since at least 1998. These investigations include a Phase II Environmental Site Assessment (ESA) (AGI 1998), a Soil Investigation (URS 2001) and a combined Phase I and II ESA (HWA 2018). GeoEngineers completed a vapor intrusion (VI) evaluation in November and December 2020 (GEI 2021a), a Phase II ESA in March 2021 (GEI 2021b), and a supplemental soil and groundwater investigation in April 2022. The results of the investigations completed at the Site prior to 2022 are summarized in Sections 3.1 through 3.7, and the results of soil and groundwater sampling completed as part of the RI are summarized in Sections 3.8 and 3.9.

The purpose of the RI is to evaluate and document the nature and extent of contamination, including the identification of any remaining data gaps, to complete the Site characterization. The Paine Field/Snohomish County Airport plans to complete an RI, FS, and ultimately a CAP for the Site consistent with Ecology) Model Toxics Control Act (MTCA) requirements (Washington Administrative Code [WAC] 173-340).

Paine Field/Snohomish County Airport is the recipient of an Integrated Planning Grant (IPG) from Ecology and the RI work to date is being completed under the IPG.

1.1. Objectives

Objectives for the RI included the following to complete the Site characterization:

- Document the extent of the contaminants of concern (COCs) detected in soil and groundwater at concentrations greater than the preliminary MTCA cleanup levels during the investigations conducted between 1997 and 2021.
- Assess and document groundwater quality, connectivity, and flow direction by installing permanent monitoring wells at the Site.
- Support the development of a draft conceptual site model (CSM) to evaluate the need for and scope of a cleanup action.
- Identify any data gaps that need to be filled to complete a MTCA-compliant RI and prepare the FS and CAP.

1.2. Regulatory Framework

As noted above, the RI is being completed through an IPG from Ecology and under Ecology guidance and regulations. Paine Field/Snohomish County Airport plans to pursue Site closure in close coordination with Ecology and in accordance with all applicable requirements of the MTCA and its implementing regulations

2.0 PROPERTY CONDITIONS

The following summary includes information from the prior reports summarized in Section 3.0 regarding current and historical land use and the environmental setting for the Site. Figure 1 shows the general Site location and Figures 2 through 4 show the Site layout and exploration locations for investigations completed between 2020 and 2023.

2.1. Location and Description

The Site is located at 3220 100th Street SW in Everett, Washington at Paine Field/Snohomish County Airport which is zoned by Snohomish County for light industrial uses. The C-1 Building Property is approximately 0.85-acres and consists of one approximately 25,000 square-foot building and an adjacent 12,000-square-foot exterior storage yard. The C-1 Hangar is located adjacent to the C-1 Building and is approximately 1.5-acres developed with an approximately 53,000-square-foot aircraft hangar and the adjacent covered outdoor space referred to as the Hangar Annex.

2.2. Historical, Current and Future Land Use

The C-1 Building was developed in 1956 by Alaska Airlines and used for aircraft engine repair and overhaul. The building was sold to a parent company of Precision Engines in 1962 and continued to be used for aircraft engine repair and overhaul, and the manufacture of fuel injection systems by Precision Engines and sister company Precision Airmotive (HWA 2018). The C-1 Building was occupied by Precision Engines from 1997 until 2020. The building is currently vacant.

The C-1 Hangar was leased to Aviation Technical Services, Inc. (ATS) starting on April 1, 1999. The Hangar Annex was constructed and added to the lease in September 2011, and both leases were terminated on December 31, 2020. During the lease, the space was used for airplane storage, maintenance, general workshop, and office space. The C-1 Hangar is currently leased to Alaska Airlines for aircraft maintenance activities.

2.3. Utility Infrastructure

The C-1 Building and C-1 Hangar are supplied by municipal potable water sources. Stormwater captured on the C-1 Building roof is conveyed through vertical interior drainpipes located near the central portion of the building and to sub-slab piping. Utility locating activities, including a ground penetrating radar (GPR) survey and communications with Paine Field/Snohomish County Airport maintenance staff, indicate the sub-slab stormwater pipes lead southeast to a stormwater conveyance system located beneath the C-1 Building storage yard. Based on RI field observations, a portion of the stormwater collected from the C-1 Building roof is conveyed to a vertical drainpipe located near the northeast corner of the building and then discharged to an unpaved planter located adjacent to the C-1 building.

Stormwater originating from the paved C-1 Building storage yard drains to four exterior catch basins and is routed through the stormwater conveyance system to the northeast toward the parking lot adjacent to the C-1 Building. A wash tank and former trench drain located inside the C-1 Building (see Figure 2) were historically connected to the stormwater conveyance system and are identified as sources of contamination, as discussed in Section 3.1.1. The former trench drain was active as recent as 2003 and was planned to be decommissioned by filling with concrete in 2004 (HWA 2018), though the actual date of decommissioning was not confirmed in the reports reviewed. Stormwater captured on the C-1 Building

roof and routed to exterior drains may locally influence groundwater levels outside the C-1 Building, as discussed in Sections 4.2 and 4.3.

2.4. Adjacent Property Uses

Surrounding property uses include Paine Field/Snohomish County Airport administrative offices, airport taxiways and runways, airline terminal and ramp, airplane hangars and associated storage yards, and paved parking. Two properties located within 1/8-mile of the Site are listed on Ecology databases of known or suspected contaminated sites: the Paine Field 32nd Avenue West right-of-way (ROW) and the Everett Paine Field Aviation School, both of which have site statuses listed as NFA.

3.0 SITE CHARACTERIZATION

Multiple environmental investigations have been completed to evaluate subsurface conditions at the C-1 Building between 1986 and 2023. Investigations were conducted at the adjacent C-1 Hangar in 2020 (VI Evaluation), 2021 (Phase II ESA) and 2022 (Supplemental Phase II ESA and RI). A summary of relevant information from the environmental investigations completed at the C-1 Building and the C-1 Hangar is included below.

3.1. 1986 Preliminary Site Assessment

A site assessment was completed in July 1986 by the U.S. Environmental Protection Agency (EPA) Region 10 Technical Assistance Team (TAT) in response to a reported complaint related to improper handling and disposal of chemicals by Tramco, Inc. (Tramco), the tenant of the C-1 Hangar (Weston 1986). The assessment indicates that Ecology had responded to reports of an oil spill at the property and that Tramco employees had dumped solvent and paint wastes into the storm sewer systems located east of the Hangar. A representative of Tramco stated to TAT personnel that employees had previously disposed used solvent waste into a drainage ditch and adjacent storm drains at the Tramco (C-1) Hangar, but current practices included placing all wastes into drums for off-site disposal.

3.1.1. Catch Basin Investigation Summary

Four sediment and three water samples were collected from storm drain catch basins located east of the Tramco (C-1) Hangar in the C-1 Building storage yard (see Figure 2) and submitted for laboratory chemical analysis for toluene, methylene chloride, benzene, tetrachloroethylene/perchloroethylene (PCE), trichloroethylene (TCE) and metals. Toluene and methyl ethyl ketone/2- butanone (MEK) and elevated concentrations of metals (antimony, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, tin, and zinc) were detected in the water and sediment samples collected from the storm line servicing the Tramco (C-1) Hangar. Detected concentrations of lead in sediment samples collected from the stormwater catch basins were reportedly between 4 and 60 times greater than published background soil concentrations. One catch basin was observed to receive effluent discharge from a pipe connecting to the C-1 Building, which was occupied by Precision Airmotive Corporation. The effluent was observed to be milky white/green in appearance and a sample of the effluent from this pipe was found to contain TCE, toluene, MEK, methylene chloride and benzene. Based on the findings of the investigation, the TAT recommended routine inspections of the stormwater drainage system and mitigative actions based on the completion of a thorough downstream storm sewer sampling program. Details regarding the completion of additional sampling were not available.

3.2. 1997 and 1998 Phase I and Phase II Environmental Site Assessments

A Phase I ESA was completed in March 1997 to assess the potential for contamination related to past and present property uses at several locations at Paine Field/Snohomish County Airport, including the C-1 Building (AGI 1997). The ESA identified surficial petroleum staining in the C-1 Building storage yard and past use of chlorinated solvents and mineral spirits based on review of available building records and the 1986 Site Assessment Report.

3.2.1. Soil and Groundwater Investigation Summary

A limited Phase II ESA was conducted by AGI Technologies at the C-1 Building on June 4, 1998 (AGI 1998) based on the findings and recommendations of the 1997 Phase I ESA. The purpose of the investigation was to assess soil inside the C-1 Building adjacent to drain lines located inside the building and stormwater conveyance lines that were identified as likely sources of contamination based on the 1986 assessment and the results of the Phase I ESA. Due to the presence of utilities within the C-1 Building concrete slab, borings were not completed inside the building. The investigation consisted of drilling two borings; one boring was completed adjacent to the storm drain catch basin located in the storage yard area with one soil sample collected at a depth of 8.5 feet below ground surface (bgs), and one boring was completed at the location of a former solvent underground storage tank (UST) adjacent to the C-1 Hangar (see Figure 2), with two soil samples collected at depths of 4 and 5.5 feet bgs. The UST was reportedly removed in 1991 but no documentation of the UST removal or environmental sampling was identified (HWA 2018). The soil samples were submitted for laboratory chemical analysis of petroleum hydrocarbons and halogenated volatile organic compounds (VOCs). The soil samples collected from the boring completed adjacent to the stormwater catch basin contained TCE at a concentration of 0.015 milligrams per kilogram (mg/kg) and the soil samples collected from a depth of 4 feet bgs within the former UST excavation contained dieseland oil-range total petroleum hydrocarbons (TPH-D and TPH-O) at concentrations of 240 mg/kg and 620 mg/kg, respectively. The 1998 report concluded that the presence of TCE adjacent to the storm drain line indicated that solvents were discharged through the storm drain system and that solvent concentrations were likely greater in soil beneath the building. The report recommended additional drilling be completed inside the building once adequate utility locates were performed.

3.3. 2000 and 2001 Subsurface Investigations Inside the C-1 Building

In 2000 Camp Dresser & McKee Inc. (CDM) conducted an indoor air and subsurface soil investigation inside the C-1 Building (CDM 2001). Eighteen soil samples and two soil vapor samples were collected from the Precision Equipment Room/Fire Riser Room and the adjacent Airport office hallway, and four indoor samples were collected from the hallway and inside Airport offices.

3.3.1. Soil and Vapor Intrusion Investigation Summary

TPH-D were detected in soil samples collected from depths between 8 and 42 inches below the floor in Precision's Equipment Room/Fire Riser Room at concentrations ranging from 680 mg/kg to 23,000 mg/kg. Sub-slab soil vapor samples and indoor air samples contained petroleum hydrocarbons at concentrations between 210 and 220 milligrams per cubic meter (mg/m³) and between 1.0 and 5.1 mg/m³, respectively. Laboratory chromatograms show that the petroleum hydrocarbons detected in soil and indoor air matched Soltrol® 170, which was reportedly used by Precision Engines and Precision Airmotive as a calibrating fluid. The chromatogram profile of Soltrol® 170 shows the product falls within the C_{12} to C_{15} range and is similar in composition to mineral spirits (CDM 2001).

A supplemental soil investigation was completed by URS in 2001 (HWA 2018) to delineate the lateral and vertical extent of soil containing petroleum hydrocarbons/mineral spirits at concentrations greater than the MTCA Method A cleanup levels beneath the Precision Equipment and Fire Riser Rooms. Five soil borings were completed in the mineral spirits-impacted soil area from depths between 2 and 15 feet bgs. Petroleum hydrocarbons/mineral spirits were detected in 4 of 10 soil samples collected at concentrations ranging from 200 to 5,500 mg/kg. The lateral extent of contaminated soil was delineated based on the results of the investigation; however, vertical delineation was not achieved because the deepest sample collected (15 feet bgs) had a detected petroleum concentration of 5,500 mg/kg and drilling refusal due to dense soils prevented drilling below that depth. The previous exploration locations inside the fire riser room and associated chemical analytical results for collected soil samples are included in Appendix A (excerpts from HWA 2018).

A remedial excavation was reportedly completed in the fire riser room some time before 2011 that consisted of the excavation and removal of approximately 14, 55-gallon barrels of contaminated soil. However, no documentation of associated confirmation soil sampling was identified (HWA 2018).

3.4. 2009 Remedial Excavation/32nd Avenue West Improvements

A road improvement project for the 32nd Avenue West ROW in 2009 identified soils containing a petroleum hydrocarbon odor in the ROW adjacent to the mineral spirits aboveground storage tank (AST) formerly located in the C-1 Building storage yard. Five soil borings were completed to depths up to 3 feet bgs in this area to evaluate and document the extent of potential petroleum-impacted soil. Gasoline-range TPH (TPH-G), TPH-O and ethylbenzene were detected in one soil sample at concentrations less than the MTCA Method A cleanup levels. Approximately 13 cubic yards of suspect petroleum-impacted soils were excavated and stockpiled pending characterization and disposal. Two soil samples were collected from the soil stockpile and analyzed for TPH-G, TPH-D and VOCs. The results of chemical analysis indicated the stockpiled soil contained TPH-G at concentrations greater than the MTCA Method A cleanup level of 100 mg/kg. Based on a review of sample chromatograms, the TPH-G product was identified as mineral spirits (CDM 2009). TPH-D, TPH-O, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene were also detected at concentrations less than their respective cleanup levels, and these chemicals were interpreted to be associated with the mineral spirits detected in the stockpiled soil (CDM 2009).

Four soil borings were completed in the area surrounding the remedial excavation and one boring was completed within the remedial excavation footprint. One soil sample was collected from each boring and analyzed for one or more of the following: petroleum hydrocarbon identification by NWTPH-HCID, TPH-G, TPH-D, and/or benzene, toluene, ethylbenzene, and xylenes (BTEX). TPH-G, TPH-O and ethylbenzene were detected at concentrations less than their respective MTCA cleanup levels; no other chemicals were detected at concentrations greater than laboratory reporting limits. Soil samples collected from the borings were not analyzed for VOCs.

3.5. 2018 Phase I and II Environmental Site Assessments

A combined Phase I and II ESA was conducted at the Site between March and May 2018, and the findings and results are presented in the report dated July 10, 2018 (HWA 2018). The 2018 Phase II ESA investigation scope was established based on the identified Recognized Environmental Condition (RECs) and Controlled REC (CREC) in the Phase I ESA. Phase II ESA sampling was completed in May 2018. The explorations were completed adjacent to features located in the C-1 Building storage yard: former UST excavation, former sump, distilling shed, compressor shed, stormwater catch basin, and the mineral spirits

AST. Excerpts from the 2018 HWA report are included in Appendix A, which show exploration locations and associated tabulated chemical analytical data.

3.5.1. Soil and Groundwater Investigation Summary

Phase II ESA sampling consisted of drilling six soil borings to depths between 10 and 15 feet bgs and the completion of one hand-auger boring in the C-1 Building storage yard, and installation of six sub-slab soil vapor probes inside the C-1 Building. Nine soil samples were collected from the direct-push and hand auger borings, and six soil vapor samples and one ambient indoor air sample were collected inside the building. Groundwater was encountered in four of the six borings at depths between 4 and 10 feet bgs and grab groundwater samples were collected from temporary wells installed in these borings. Soil and groundwater samples were submitted for laboratory chemical analysis for petroleum hydrocarbons, Resource Control and Recovery Act (RCRA) 8 metals (total and dissolved), and VOCs. Soil vapor and ambient air samples were submitted for analysis of VOCs and TPH-G. The results of the Phase II ESA sampling are summarized below.

- Historical Solvent UST. Two soil samples collected from depths of 5 feet bgs within and adjacent to the former UST contained acetone, 1,2-dichlorobenzene and naphthalene at concentrations less than MTCA Method A cleanup levels. The grab groundwater sample collected from the boring within the UST excavation footprint contained vinyl chloride at a concentration of 0.32 micrograms per liter (μg/L), which is greater than the MTCA Method A cleanup level. Chlorobenzene, 2-chlorofotoluene and 1,2-dichlorobenzene were also detected at concentrations less than the MTCA Method A cleanup levels.
- **Inactive Sump.** One soil sample collected from a depth of 3.5 feet bgs contained barium and chromium at concentrations less than applicable MTCA cleanup levels.
- **Distilling and Compressor Sheds.** TPH-O were detected in the hand-auger soil sample collected adjacent to the compressor shed at a concentration less than the MTCA Method A cleanup level. No other analytes were detected in soil from this area.
- **Stormwater Catch Basin.** One soil sample collected from a depth of 3 feet bgs adjacent to the northern-most stormwater catch basin (see Figure 2) contained TCE at a concentration of 0.12 mg/kg, which is greater than the MTCA Method A cleanup level. Acetone, vinyl chloride, (trans) 1,2-dichloroethene, (cis) 1,2-dichloroethene, barium, chromium and lead were also detected at concentrations less than the applicable MTCA cleanup levels. A grab groundwater sample collected from the boring at this location contained vinyl chloride and TCE at concentrations of 0.38 µg/L and 7 µg/L, which are greater than their respective MTCA cleanup levels. Acetone, chlorobenzene, 2-chlorotoluene, (cis) 1,2-dichloroethene, 1,2,4-trimethylbenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, arsenic, and barium were detected at concentrations less than the applicable cleanup levels.
- **Mineral Spirits AST.** One soil sample collected from a depth of 3 feet bgs in the vicinity of the mineral spirits AST contained acetone and 2-butanone (MEK) at concentrations less than the MTCA cleanup levels. A grab groundwater sample collected from the boring at this location contained vinyl chloride at a concentration of 0.62 μg/L, which is greater than the MTCA Method A cleanup level. TPH-D, benzene, acetone, and 1,2,4-trimethylbenzene were detected at concentrations less than applicable MTCA cleanup levels.
- **Soil Vapor and Ambient Air Inside C-1 Building.** Four sub-slab soil vapor samples were collected in the vicinity of the former wash tank and former trench drain located inside the C-1 Building and two

soil vapor samples were collected in the western and northern portions of the building. Outdoor air samples were not collected as part of the investigation. Sub-slab soil vapor and indoor air chemical analytical data were compared to the MTCA Method B soil vapor screening levels and MTCA Method B indoor air cleanup levels, both of which are based on residential exposure (also referred to as "unrestricted land use"). VOCs were detected in all six collected soil vapor samples at concentrations greater than the soil vapor screening level or the indoor air cleanup level. Additionally, gasoline-range petroleum hydrocarbons were detected in all soil vapor samples at concentrations less than the applicable screening and cleanup levels. TCE was detected in all collected soil vapor samples at concentrations ranging from 15.1 micrograms per cubic meter (µg/m³) to 37,000 µg/m³. Other VOCs detected at concentrations greater than the MTCA Method B soil vapor screening levels were PCE, 1,1,2-trichloroethane (TCA), 1,1-dichloroethane, 1,2,4-trimethylbenzene, 1,4-dichlorobenzene, acrolein, benzene, carbon tetrachloride, chloroform, and naphthalene. The highest detected VOC concentrations were from the soil vapor samples collected adjacent to the former wash tank (see Figure 2). Additionally, benzene, carbon tetrachloride, and TCE were detected in the indoor air sample at concentrations greater than the MTCA Method B indoor air cleanup levels.

Based on the results of the investigation, the 2018 Phase II ESA report concluded that the contaminant impacts to environmental media had not been fully characterized.

3.6. 2020 Vapor Intrusion Evaluation

A VI Evaluation was conducted at the Site in December 2020 to evaluate indoor air at the C-1 Hangar and portions of the C-1 Building based on commercial uses of the buildings. The findings of the evaluation are included in the C-1 Hangar and C-1 Building Vapor Evaluation Report (GEI 2021a; included as Appendix B), dated April 27, 2021, and were used to evaluate the nature and extent of contaminants in soil vapor and indoor air for this RI report. Twelve sub-slab soil vapor (SV-1 through SV-12), 13 indoor air (IA-1 through IA-13), and two outdoor air samples (OA-1 and OA-2) were collected during the VI Evaluation and submitted for laboratory chemical analysis for total petroleum hydrocarbons (TPH) and VOCs. Twelve sub-slab soil vapor and seven indoor air samples were collected inside the C-1 Hangar and six indoor air samples were collected within the C-1 Building as shown on Figure 2.

Two soil vapor samples (SV-10 and SV-12) were collected in the C-1 Hangar near the wall abutting the C-1 Building to assess soil vapor in areas closest to the C-1 Building where soil vapor sampling conducted in 2018 identified contaminant concentrations greater than the MTCA Method B soil vapor screening levels. Indoor air samples were collected in areas of the C-1 Building where soil or indoor air samples collected during previous investigations indicated the presence of one or more COCs at concentrations greater than the respective MTCA Method B indoor air cleanup levels. Two outdoor air samples were collected at locations upwind and downwind of the C-1 Hangar and C-1 Building at the time of sampling. Ecology guidance allows outdoor air results to be evaluated in conjunction with indoor air sampling to better estimate whether contaminants detected in indoor air are likely, or not likely, due to vapor intrusion (Ecology 2022a). Consistent with Ecology guidance, the minimum detected outdoor air sample concentrations for each analyte are subtracted from the indoor air sample results to account for background conditions (see Table 3). Soil vapor samples were not collected from the C-1 Building during the 2020 investigation.

For screening purposes, the sub-slab soil vapor sampling results were compared to the MTCA Method B soil vapor screening levels for residential exposure and to the soil vapor screening levels for commercial exposure (Table 1). Indoor air sample analytical results were evaluated by comparison to the MTCA Method

B indoor air cleanup levels for residential exposure and to indoor air screening levels for commercial exposure. The tabulated soil vapor and indoor air chemical analytical results are presented in Tables 1 and 2, respectively.

The TCE results for the indoor air samples were also compared to the TCE Short-Term Residential and Commercial Worker Indoor Air Action Levels of 2.0 μ g/m³ and 7.5 μ g/m³, respectively (Ecology 2022a). TCE indoor air concentrations are less than both Indoor Air Action Levels.

The findings of the 2020 VI Evaluation indicate that the detected concentrations of COCs in indoor air were detected at concentrations greater than the MTCA Method B indoor air cleanup levels for residential exposure, but not greater than the indoor air screening levels for commercial exposure. The commercial values are applicable to the commercial/office uses at the C-1 Building. Note that the report was published prior to Ecology's March 2022 update to the Commercial Worker Scenario (Ecology 2022a); a review of the 2020 data relative to the revised commercial worker screening levels indicate that the detected COC concentrations remain protective of commercial/office uses for the buildings. As noted above, the TCE results for the indoor air samples were also less than the TCE Short-Term Residential and Commercial Worker Indoor Air Action Levels.

The following is a summary of the soil vapor sample results for the 2020 VI Evaluation for samples with concentrations that are greater than the applicable screening or cleanup levels. Chemical analytical results for sub-slab vapor are presented in Table 1.

- TCE was detected in soil vapor at concentrations greater than the MTCA Method B soil vapor screening level for residential exposure in sample SV-10 and for residential and commercial exposure in sample SV-12 located in the C-1 Hangar near the wall that adjoins the C-1 Building.
- Naphthalene was detected in soil vapor at concentrations greater than the MTCA Method B soil vapor screening level for residential exposure in nine samples (SV-2, SV-3, SV-4, SV-6 through SV-10, and SV-12) collected inside the C-1 Hangar.
- TPH (the sum of individual petroleum fractions, BTEX and naphthalene) was detected in soil vapor in eight samples (SV-3, SV-4, SV-6, SV-7, and SV-9 through SV-12) located inside the C-1 Hangar at concentrations greater than the MTCA Method B soil vapor screening level for residential exposure, and in sample SV-6 at a concentration greater than the MTCA Method B soil vapor screening level for commercial exposure.
- PCE, 1,1-dichloroethane and chloroform were detected in one soil vapor sample (SV-12) located in the C-1 Hangar near the wall abutting the C-1 Building at concentrations greater than the MTCA Method B soil vapor screening level for residential exposure. The detected 1,1-dichloroethane and chloroform concentrations are greater than the MTCA Method B soil vapor screening level for commercial exposure.

The following is a summary of the indoor and outdoor air sample results for the 2020 VI Evaluation for samples with concentrations greater than the applicable screening or cleanup levels. Chemical analytical results for indoor and outdoor air samples are presented in Table 2. Table 3 presents the indoor air chemical analytical results adjusted to account for contributions from outdoor air. The chemicals listed below were detected in indoor air or soil vapor at concentrations greater than the MTCA Method B indoor air cleanup levels or soil vapor screening levels, respectively.

- TCE was detected in indoor air at one location inside the C-1 Hangar (IA-7) and at five locations inside the C-1 Building (IA-8, and IA-10 through IA-13) at concentrations greater than the MTCA Method B indoor air cleanup level for residential exposure. The adjusted TCE concentrations are also greater than the MTCA Method B indoor air cleanup level for residential exposure. However, TCE was not detected in any indoor air samples at concentrations greater than the MTCA Method B indoor air screening level for commercial exposure.
- Naphthalene was detected at concentrations greater than the MTCA Method B indoor air cleanup level for residential exposure in six indoor air samples (IA-1 through IA-6) collected inside the C-1 Hangar and in six indoor air samples (IA-8 through IA-13) collected inside the C-1 Building. The adjusted naphthalene concentrations were greater than the MTCA Method B indoor air cleanup level for residential exposure in seven samples (IA-1 through IA-6 and IA-10). However, naphthalene was not detected in any indoor air samples at concentrations greater than the MTCA Method B indoor air screening level for commercial exposure.
- TPH (the sum of individual petroleum fractions, BTEX and naphthalene) was detected in indoor air at concentrations greater than the MTCA Method B indoor air cleanup level for residential exposure in seven samples (IA-1 through IA-6 and IA-8) collected inside the C-1 Hangar and in six samples (IA-8 through IA-13) collected inside the C-1 Building. The adjusted TPH concentrations for these samples are also greater than the MTCA Method B indoor air cleanup level for residential exposure. However, TPH was not detected in any indoor air samples at concentrations greater than the MTCA Method B indoor air screening level for commercial exposure.
- Chloroform was detected at concentrations greater than the MTCA Method B indoor air cleanup level for residential exposure in seven indoor air samples (IA-7 through IA-13); two of the adjusted indoor air concentrations (IA-10 and IA-11) are also greater than the MTCA Method B indoor air cleanup level for residential exposure. However, chloroform was not detected in any indoor air samples at concentrations greater than the MTCA Method B indoor air screening level for commercial exposure.
- Benzene was detected in all twelve indoor air samples collected (IA-1 through IA-12) at concentrations greater than the MTCA Method B indoor air cleanup level for residential exposure. However, benzene was not detected in soil vapor at concentrations greater than the MTCA Method B soil vapor screening level for residential exposure. The adjusted benzene concentrations are also less than the MTCA Method B indoor air cleanup level for residential exposure and the MTCA Method B indoor air screening level for commercial exposure.
- 1,2-dichloroethane and carbon tetrachloride were detected at concentrations greater than the MTCA Method B indoor air cleanup level for residential exposure in one or more indoor air samples collected during the 2020 investigation. However, 1,2-dichloroethane and carbon tetrachloride were not detected in soil vapor at concentrations greater than the MTCA Method B soil vapor screening level for residential exposure. The adjusted 1,2-dichloroethane and carbon tetrachloride concentrations are also less than the MTCA Method B indoor air cleanup level for residential exposure and the MTCA Method B soil vapor screening level for commercial exposure.
- PCE and 1,1-dichloroethane were not detected at concentrations greater than the laboratory reporting limits in any of the indoor air or outdoor air samples.

Chemical analytical results for the air samples collected within the C-1 Building indicate that the adjusted indoor air concentration of chloroform, naphthalene, TCE and TPH are greater than the respective MTCA Method B indoor air cleanup levels for residential exposure. However, the VI Evaluation findings note that

the adjusted indoor air concentrations of these analytes are less than the indoor air screening levels for commercial exposure, which are applicable for the commercial/office uses at the C-1 Building.

3.7. 2021 Phase II Environmental Site Assessment

A Phase II ESA was conducted in March 2021 to further assess the potential impacts to soil and groundwater identified at the Site during previous investigations. The 2021 investigation focused on the C-1 Hangar and portions of the C-1 Building and adjacent storage yard. The results of the Phase II ESA are presented in the Phase II Environmental Site Assessment report (GEI 2021b; included as Appendix C), dated June 1, 2021, and were used to evaluate the nature and extent of COC contamination at the Site for this RI. Fifteen soil borings (C-1 DP1 through C-1 DP15) were completed in the C-1 Hangar, the C-1 Building and southeast adjacent storage yard to depths of between 7 and 15 feet bgs. Twenty-nine soil samples and four grab groundwater samples were collected from the borings and submitted for laboratory chemical analysis for TPH, VOCs, polychlorinated biphenyls (PCBs), and RCRA metals. Of these samples, two soil samples were collected from one boring completed within the C-1 Building and four soil samples and two grab groundwater samples were collected from two borings completed in the storage yard. Soil boring and grab groundwater sampling locations are presented in Figure 3. Soil chemical analytical results are presented in Tables 3 through 5. Groundwater chemical analytical results are presented in Table 7. The following is a summary of the chemical analytical results for soil and groundwater samples with contaminant concentrations greater than the applicable cleanup levels.

- TCE was detected in two soil samples collected from depths of 4 and 7 feet bgs from boring C-1 DP15 at concentrations greater than the MTCA Method A cleanup level. Boring C-1 DP15 was located in the C-1 Building adjacent to the former location of the wash tank (see Figure 2).
- Total arsenic was detected in three grab groundwater samples collected from temporary wells installed in borings C-1 DP2, C-1 DP3 and C-1 DP14 at concentrations greater than the MTCA Method A cleanup level. Total arsenic was detected in the groundwater sample collected from boring C-1 DP13 at a concentration of 6.62 μg/L, which is greater than the MTCA cleanup level at the time of publication of the report; however, the cleanup level for arsenic has recently been revised by Ecology since publication of the report (Ecology 2022b).
- Total chromium and total lead were detected in three grab groundwater samples collected from temporary wells installed in borings C-1 DP2, C-1 DP3 and C-1 DP14 at concentrations greater than the MTCA Method A cleanup level.

The results of the grab groundwater sampling during the 2018 and 2020 Phase II ESAs indicate that further evaluation was needed to assess groundwater conditions at the Site, including the installation of permanent monitoring wells.

3.8. 2022 Supplemental Phase II Environmental Site Assessment

A supplemental Phase II ESA was conducted in April 2022 to further evaluate soil and groundwater conditions surrounding the C-1 Hangar and C-1 Building. The results of the investigation were published in the RI Work Plan (GEI 2022) and are summarized in this report. Four soil borings (C-1 HSA1 through C-1 HSA4) were completed to depths of between 16.6 and 25 feet bgs. Three of these borings were drilled in the vicinity of the C-1 Building while the fourth was drilled southwest of the C-1 Hangar (Figure 3).

Groundwater was encountered during drilling at borings C-1 HSA3 and C-1 HSA4 at depths of approximately 12 feet bgs and 4.5 feet bgs, respectively, and the borings were completed as permanent groundwater monitoring wells. Groundwater in monitoring well C-1 HSA4 was observed to recharge quickly with minimal drawdown during low-flow groundwater sampling. Well C-1 HSA3 was observed to recharge slowly following groundwater sampling. The results of the Site investigation, including the detection of COCs in near-by soil and groundwater that were reportedly historically discharged from the C-1 Building to the stormwater conveyance system, suggest that groundwater in the vicinity of monitoring well C-1 HSA4 may be influenced by the adjacent stormwater line. Groundwater was not encountered during drilling of borings C-1 HSA1 and C-1 HSA2.

Eleven soil samples were collected from the four borings and submitted for analysis for TPH, VOCs and RCRA metals. One groundwater sample was collected from each of the two monitoring wells and submitted for analysis for TPH, VOCs, and total and dissolved RCRA metals. The soil and groundwater chemical analytical results are presented in Tables 3 through 6 and summarized below:

- TCE was detected in two soil samples collected from boring C-1 HSA4, located near the storm drain east of the C-1 Building, at depths of 15 feet bgs (0.0022 mg/kg) and 20 feet bgs (0.067 mg/kg). The detected TCE concentration in the soil sample collected from 20 feet bgs is greater than the MTCA Method A cleanup level of 0.03 mg/kg. Toluene, total xylenes, and TCE breakdown products cis-1,2-dichloroethene and trans-1,2-dichloroethene were also detected in one or both soil samples at concentrations less than MTCA Method A cleanup levels.
- 1,2-dichloroethane was detected in soil samples collected from boring C-1 HSA2, located adjacent to the drainpipe connecting the stormwater catch basin to the C-1 Building, at depths of 10 and 15 feet bgs. The detected concentrations were less than the MTCA Method A cleanup level.
- The detected metals concentrations in the collected soil samples were consistent with naturally occurring background metals concentrations for Puget Sound (Table 6).
- Vinyl chloride was detected in the groundwater sample collected from monitoring well C-1 HSA4 at a concentration of 0.36 μg/L, which is greater than the MTCA Method A cleanup level of 0.20 μg/L. TPH-D, chlorobenzene and 1,2-dichlorobenzene were also detected in the collected groundwater sample at concentrations less than the MTCA cleanup levels.
- Total arsenic was detected in the groundwater samples collected from monitoring wells C-1 HSA3 and C-1 HSA4 at concentrations of 9.99 and 10.2 μg/L, respectively, which are greater than the MTCA Method A cleanup level of 8 μg/L. Dissolved arsenic concentrations in the two collected samples were less than the MTCA cleanup level.

Chemical analytical results for the 2021 Phase II ESA and the 2022 supplemental Phase II ESA investigation indicate that TCE-contaminated soil is present beneath the southern portion of the C-1 Building, within the building footprint. Additionally, vinyl chloride was detected at a concentration greater than the MTCA Method A cleanup level in groundwater from the monitoring well located in the storage yard (C-1 HSA4).

3.9. 2022 to 2023 Remedial Investigation

The objectives of the RI included completing additional field investigation and sampling to address data gaps in the Site characterization, further developing the CSM, and identifying the data needed to select an approach for Site cleanup. RI boring and monitoring well construction logs are presented in Appendix D,

laboratory analytical reports are included in Appendix E, and RI field procedures are presented in Appendix F.

3.9.1. Pre-RI Data Gaps

The following data gaps were identified based on review of available data and the results of the previous investigations, including the 2020 VI Evaluation, the 2021 Phase II ESA, and the 2022 Supplemental Phase II ESA, as identified in the RI Work Plan:

- Soil and groundwater within the C-1 Building footprint. Previous soil sampling within the building footprint consisted of one boring completed during the 2021 Phase II ESA and the 2001 soil sampling associated with the mineral spirits-contaminated soil in the northwestern corner of the building. No evaluation had been completed of groundwater beneath the presumed source area near the south corner of the C-1 Building.
- TCE and vinyl chloride in soil and groundwater in the C-1 Building storage yard. Chlorinated solvents were previously detected in three grab groundwater samples collected from soil borings and one groundwater sample collected from a monitoring well; however, the vertical and lateral extent of TCE and vinyl chloride detected in soil and groundwater in the storage yard had not been documented.
- Soil and groundwater conditions near the former mineral spirits AST location. Diesel-range total petroleum hydrocarbons were detected in a 2018 grab groundwater sample collected in the vicinity of the former AST; the detected concentration was less than the MTCA Method A cleanup level, however groundwater in the vicinity of the former AST had not been fully evaluated.
- Groundwater conditions beneath the C-1 Hangar. Groundwater was encountered during the 2021 investigation at only one location beneath the C-1 Hangar near the southern end of the hangar. Groundwater conditions could not be further evaluated due to refusal during direct-push drilling. Groundwater conditions beneath the hangar adjacent to the presumed source area in the C-1 Building (northeast wall of C-1 Hangar; see Figure 4) had not been evaluated.
- The vertical extent of mineral spirits-contaminated soil beneath the C-1 Building. The vertical extent of mineral oil-impacted soil beneath the northeast portion of the C-1 Building had not been evaluated.

3.9.2. Soil Borings

Thirteen soil borings (C-1 RI1 through C-1 RI13, see Figure 4) were advanced to assess soil and groundwater beneath the C-1 Building and C-1 Hangar to document the lateral and vertical extent of VOC contamination identified in 2021 in the southern portion of the C-1 Building and assess soil and groundwater conditions in the C-1 Building storage yard.

Drilling and monitoring well installation activities were conducted from December 19 through 22, 2022. The soil borings were drilled using hollow stem auger (HSA) techniques by a licensed driller, Holocene Drilling of Puyallup, Washington. The borings were advanced to depths between 4 and 35.5 feet bgs depending on the area being investigated.

Soil samples collected during drilling were field screened using methods outlined in Appendix F, Field Procedures. Soil photoionization detector (PID) readings ranged from less than one part per million (<1 ppm) to 121.5 ppm in the borings. Up to four soil samples were collected from each boring at selected depth intervals between 4 and 20 feet bgs for laboratory chemical analysis. Soil samples were submitted

to Friedman & Bruya Inc. (F&B) in Seattle, Washington for analysis for the following COCs identified in the RI Work Plan:

- TPH-G by method NWTPH-Gx;
- TPH-D/-O by method NWTPH-Dx;
- VOCs by EPA Method 8260; and
- Metals (RCRA 8) by EPA 6000/7000 series (Samples C-1 RI-1 to C-1 RI-5 only)

Forty soil samples (39 plus one duplicate) were submitted to F&B for the TPH and BTEX chemical analyses, 33 soil samples (32 plus one duplicate) were submitted for VOC chemical analysis, and 15 soil samples were submitted for total metals chemical analysis. Soil samples were collected from depths between 4 and 25 feet bgs. Laboratory analytical reports are included in Appendix C. Chemical analytical results are summarized in Tables 3 through 5 and Figure 5. Soil chemical analytical results are summarized below:

- TCE was detected in seven soil samples collected from borings C-1 Rl-2 and C-1 Rl-3, located adjacent to the former trench drain inside the C-1 Building, at depths between 4 and 20 feet bgs. The detected TCE concentrations ranged from 0.0034 mg/kg to 0.73 mg/kg, with TCE concentrations greater than the cleanup level (CUL) of 0.03 mg/kg in five of the seven soil samples. 1,1-dichoroethene, 1,1-dichoroethane, and 1,1,1-trichloroethane, cis-1,2-dichloroethene, and/or tetrachloroethene were detected in the soil samples at concentrations less than the CULs.
- TCE and/or cis-1,2-dichloroethene were detected in soil samples collected from borings C-1 RI-1, C-1 RI-6 and C-1 RI-9, located north of the former trench drain. The detected concentrations were less than the CULs.
- TCE was detected in three of four soil samples collected from boring C-1 RI-12 at concentrations ranging from 0.058 mg/kg to 0.061 mg/kg, which are greater than the CUL of 0.03 mg/kg. Cis-1,2-dichloroethene was detected in the three soil samples at concentrations less than the CULs.
- The detected metals concentrations in the collected soil samples were within naturally occurring background metals concentrations for Puget Sound (Table 6).

3.9.3. Groundwater Monitoring Wells

Groundwater monitoring wells were constructed in selected soil borings (C-1 RI10, C-1 RI12 and C-1 RI13), as shown on Figure 4, to assess groundwater conditions in areas of the Site that had not been previously evaluated. The monitoring wells were installed in the borings to depths between 15 and 25 feet bgs.

Wet soil conditions were observed in borings C-1 RI10, C-1 RI12 and C-1 RI13 between 10 and 20 feet bgs. Groundwater or wet soil conditions were not observed in the other 12 borings. The monitoring wells were constructed with 2-inch-diameter polyvinyl chloride (PVC) casing. A 10-foot-long, 0.010-slot screen was installed between 5 and 15 feet bgs in C-1 RI10 and C-1 RI13; and between 15 and 25 feet bgs in C-1 RI12. The monitoring wells were completed with a flush-mount, traffic-rated box at the surface. Copies of the boring logs and well construction diagrams are included in Appendix D.

The casing rim elevation of each new monitoring well was surveyed relative to North American Vertical Datum of 1988 (NAVD 88). Depth to groundwater measurements were taken prior to and during monitoring

well sampling and elevations were calculated to evaluate the groundwater flow direction and gradient at the Site. Groundwater elevations are shown in Table 8 and in Figure 5.

Groundwater samples were collected for laboratory chemical analysis from five monitoring wells as part of the investigation (C-1 HSA3, C-1 HSA-4, C-1 RI-10, C-1 RI-12, and C-1 RI-13). Six groundwater samples (five samples plus one duplicate) were submitted to F&B for analysis for the following COCs identified in the RI Work Plan:

- Petroleum hydrocarbons by NWTPH-Gx and NWTPH-Dx
- VOCs by EPA Method 8260
- Total and Dissolved Metals (RCRA 8) by EPA 6000/7000 series

F&B's laboratory report is included in Appendix E, Analytical Laboratory Reports. The chemical analytical results are summarized and compared to Ecology MTCA Method A CULs, in the attached Table 7. A summary of the groundwater analytical results is follows:

- TPH-O was detected in the groundwater samples collected from monitoring wells C-1 HSA-4, C-1 RI-10, C-1 RI-12, and C-1 RI-13. The detected concentrations ranged from 200 μg/L to 300 μg/L and were less than the CUL of 500 μg/L.
- Vinyl chloride was detected in the groundwater samples collected from monitoring wells C-1 HSA-4, C-1 RI-10, C-1 RI-12, and C-1 RI-13 at concentrations ranging from 0.12 μg/L to 0.47 μg/L. The detected vinyl chloride concentrations in groundwater samples collected from monitoring wells C-1 HSA-4, C-1 RI-12 and C-1 RI-13 were greater than the cleanup level CUL of 0.20 μg/L.
- Chlorobenzene, 1,2-dichlorobenzene, cis-1,2-dichloroethene, and/or 1,2-dichloroethane were detected in the groundwater samples collected for monitoring wells C-1 HSA-4, C-1 RI-10, and C-1 RI-12 at concentrations less than the respective CUL.
- Total and dissolved arsenic were detected in five of five groundwater samples collected during 2022/2023. The detected total and dissolved arsenic concentrations were similar in each groundwater sample and ranged from 6.14 μg/L to 33.7 μg/L. The total and dissolved arsenic concentrations detected in groundwater samples collected from monitoring wells C-1 HSA-4, C-1 RI-10 and C-1 RI-13 were greater than the CUL of 8 μg/L.
- Total and dissolved barium were detected in all five of the groundwater samples collected at concentrations ranging from 41.4 μg/L to 103 μg/L, which are less than the CUL of 3,200 μg/L. Total and dissolved selenium were detected in four of five groundwater samples collected at concentrations ranging from 1.85 μg/L to 2.71 μg/L, which were less than the CUL of 80 μg/L. The detected total and dissolved barium and selenium concentrations were similar in each analyzed groundwater sample. Total chromium was detected in the groundwater sample collected from monitoring well C-1 RI-12 at a concentration of 1.10 μg/L, which is less than the CUL of 50 μg/L.

3.9.4. Investigation Derived Waste

Investigation derived waste (IDW), including soil and water, generated during the Phase II ESA and RI drilling and sampling activities was contained in Department of Transportation (DOT)-approved 55-gallon drums and temporarily stored on site pending characterization and disposal. The IDW is currently pending disposal

at a facility licensed to receive the material. Soil and purge water IDW were characterized using the soil and groundwater sample data presented in Tables 2 through 6. Soil containing detectable concentrations of TCE or other chlorinated solvents were disposed under a contained-in determination (CID) from Ecology. Copies of the disposal receipts and the CID letter are included as Appendix G.

4.0 CONCEPTUAL SITE MODEL (CSM)

This section presents the preliminary CSM developed for the Site. The CSM was developed primarily based on the results of the 2020 VI Evaluation, the 2021 and 2022 Phase II ESAs and the RI. The results of investigations completed prior to 2020 were also used to supplement the more recent Site data for development of the CSM. The CSM will be refined, as warranted, following any additional investigations.

4.1. Physical Setting

The Site is located at Paine Field/Snohomish County Airport in Everett, Washington at an elevation of approximately 600 feet above mean sea level. Local surface topography in the Site vicinity is relatively flat. Approximately 1 mile west of the Site, topography slopes to the west toward Big Gulch Creek, which discharges into Possession Sound. The Site and surrounding area are primarily developed with airport buildings, associated paved parking, roads, and landscaping.

4.2. Geology and Hydrogeology

Soil conditions encountered at the Site generally consist of a fill layer up to approximately 4 to 10 feet thick overlying glacial till. The fill unit is comprised of a mixture of sand and silt, with varying amounts of gravel. The underlying glacial till is comprised of dense to very dense sand with interbedded silt and varying amounts of gravel. The upper portion of the till (generally 5 to 10 feet) is weathered and less dense than the underlying, unweathered till.

Groundwater at the Site occurs in discontinuous zones within the fill and upper portion of the weathered till and, where present, appears to be perched on top of the unweathered till. Groundwater has not been observed beneath the C-1 Building or C-1 Hangar but was observed beneath the C-1 Building storage yard. Groundwater was encountered in borings C-1 DP2, C-1 DP3, C-1 DP13, C-1 DP14, C-1 HSA3, C-1 HAS4, C-1 RI-10, C-1 RI-12, and C-1 RI-13. The groundwater flow direction is inferred to be generally toward the north across the C-1 Building storage yard based on the results of the RI (Figure 5). The results of the RI indicate that the stormwater conveyance pipes located in the C-1 Building storage yard have likely leaked over time, as discussed in Section 4.3, and the presence of groundwater in this area may be seasonally related to stormwater leaking from pipe cracks, holes or pipe joints, and discharge from the roof drain pipes.

A regional aquifer is interpreted to be present within advance outwash deposits beneath the airport and vicinity at depths of greater than 130 feet bgs with a regional groundwater flow direction toward the north (CDM 2000). Exploration logs are presented in Appendix D.

4.3. Sources of Contamination

Prior Site activities included the use of TCE, petroleum hydrocarbons and other VOCs associated with aircraft maintenance activities, which were spilled/released inside and surrounding the C-1 Building. The source of arsenic in groundwater was not identified during the RI.

The findings of the RI have identified the following confirmed or likely contaminant sources:

- Wash tank and former trench drain located inside the C-1 Building. These features were observed to be connected to the stormwater conveyance system, and chemicals were reportedly disposed of in these features during prior building operations. TCE was detected in soil collected below the former trench drain during the RI. Although chloroform and naphthalene were not identified in Site soil during the RI, both chemicals were detected in soil vapor beneath the C-1 Hangar in 2020 (soil vapor sample SV-12 located closest to the former trench drain) and in soil vapor samples collected adjacent to the former trench drain in the C-1 Building in 2018 (see Appendix A). The highest detected concentrations of chloroform and naphthalene in soil vapor were from samples collected closest to the former trench drain indicating the drain is the likely source for these chemicals in soil vapor beneath the C-1 Building and C-1 Hangar.
- Direct discharge to stormwater catch basins. Prior reports indicate chemicals were historically observed to have been discharged directly to the stormwater system.
- **Stormwater conveyance system.** Chemicals discharged to the former trench drain and directly to the storm system catch basins likely leaked at one or more locations resulting in the TCE and vinyl chloride detections identified in soil and groundwater near stormwater lines and catch basins in the C-1 Building storage yard.
- Former UST adjacent to the C-1 Hangar. Diesel- and oil-range petroleum hydrocarbons, acetone, 1,2-dichlorobenzene and naphthalene were historically detected in soil collected from within the UST excavation area footprint. Chlorobenzene, 2-chlorofotoluene, 1,2-dichlorobenzene and vinyl chloride were detected in a grab groundwater sample collected within the UST excavation footprint during the 2018 Phase II ESA.
- Former mineral spirits AST. TPH-G, TPH-D, benzene, toluene, ethylbenzene and xylenes were detected in soil adjacent to the former location of the AST during the 2009 road improvement project for the 32nd Avenue West ROW. Diesel-range petroleum hydrocarbons were detected in a 2018 grab groundwater sample collected in the vicinity of the former AST.
- Surface releases/spills in the C-1 Building storage yard. TCE was detected in soil samples collected from boring C-1 RI-12 at depths between 4 and 20 feet bgs. The TCE concentrations decreased with depth in the boring suggesting a surface release or spill that migrated downward through the fill soil and into the underlying native till.
- Releases/spills inside the C-1 Building Precision Equipment Room/Fire Riser Room. Mineral spirits/TPH-D were detected in soil samples collected in 2000 and 2001.

4.4. Potential Receptors and Exposure Pathways

The following potential exposure pathways and receptors have been identified based on the current and anticipated future land use at the Site:

Direct Contact. Contaminated soil is located beneath building slabs and paved and/or improved surfaces of the Site; therefore, the direct contact pathway is not complete. Construction workers are the primary human receptor and may potentially be exposed through direct contact with contaminated soil during excavation activities that disturb the overlying improved/paved surfaces.

- **Drinking Water.** Groundwater beneath the Site is not considered to be a current source of drinking water. Drinking water is supplied by municipal water supplies (Mukilteo Water). However, drinking water is still considered a potential exposure pathway as required by Ecology and the MTCA regulations.
- **Surface Water.** Surface water discharge is not considered to be a current exposure pathway because the ground surface is mostly capped with improved/paved hardscapes and surface water is not present at the Site.
- Indoor Air. Soil vapor to indoor air is considered a complete exposure pathway for the Site based on the detected COC concentrations in soil vapor and indoor air in the C-1 Building during the 2018 investigation and in the C-1 Hangar during the 2020 VI evaluation. The potential for VI and impacts to indoor air is further discussed below in Section 6.4.

4.4.1. Terrestrial Ecological Evaluation

The Site qualifies for a Terrestrial Ecological Evaluation (TEE) exclusion because the Site meets the conditions of a TEE exclusion under WAC 173-340-7491(1)(b) and (1)(c). Contaminant-containing soil at the Site is covered by buildings, paved roads and paved parking areas and there are less than 1.5 acres of contiguous undeveloped land on the Site or within 500 feet of any area of the Site.

5.0 PRELIMINARY CLEANUP STANDARDS

MTCA Method A or Method B cleanup levels for unrestricted land use are the preliminary cleanup levels (PCULs) for soil and groundwater. Site cleanup levels and points of compliance for Site media will be developed following completion of supplemental RI activities to address the remaining data gaps identified in Section 8.0 and further define the extent of contamination at the Site.

6.0 NATURE AND EXTENT OF CONTAMINATION

The following section describes the nature and extent of contamination to soil, groundwater, soil vapor and indoor air based on the results of the RI. Exploration locations and detected TCE soil concentrations greater than the PCUL are shown in Figure 6. Monitoring well locations and detected vinyl chloride and/or arsenic groundwater concentrations greater than the PCUL are shown on Figure 7. Geologic cross section A-A' shows the approximate vertical extent of soil contamination and the TCE and arsenic groundwater plume (Figure 8).

6.1. Contaminants and Media of Concern

Potential COCs include potentially hazardous or toxic compounds which have a history of use at the Site, or which were detected in environmental media during environmental investigations. The COCs for each media are identified below based on the findings of the Site investigations and applicable MTCA criteria.

6.1.1. Soil

TPH and VOCs were identified as soil COCs for the Site based on the sources of contamination to soil and the site characterization results. TPH-D/mineral spirits and TCE contaminated soil remains in place at concentrations greater than the soil CULs beneath and adjacent to the C-1 Building. The nature and extent

of soil COCs are further discussed in Section 6.2. Chemical analytical results for soil samples collected at the Site between 2021 and 2023 are summarized in Tables 3 through 5.

6.1.2. Groundwater

TPH, VOCs and arsenic were identified as groundwater COCs for the Site based on results of the RI. Vinyl chloride and arsenic were identified as the primary groundwater COCs because they are present in groundwater at concentrations greater than the groundwater PCULs in one or more groundwater sample collected at the Site between 2021 and 2023 and were detected in groundwater during the 2018 investigation.

Total chromium and/or total lead were present in groundwater at concentrations greater than the PCULs in three grab groundwater samples collected from borings in 2021; however, dissolved chromium and lead were not detected in these samples at concentrations greater than the PCULs. The elevated total chromium and total lead detected in these grab groundwater samples is attributed to the nature of grab sampling from open boreholes and not to a specific contaminant source at the Site.

The nature and extent of groundwater COCs is further discussed in Section 6.3. Chemical analytical results for groundwater samples collected at the Site between 2021 and 2023 are summarized in Table 7. Groundwater chemical analytical results for samples collected in 2018 are shown in Appendix A.

6.1.3. Soil Vapor and Indoor Air

Based on screening of the soil and groundwater data, TPH and VOCs were identified as COCs with the potential to migrate into enclosed spaces through VI at concentrations that could be greater than the Method B indoor air CULs and/or the screening level (SL) for the protection of commercial workers. An evaluation for VI potential is further discussed in Section 6.4. Chemical analytical results for soil vapor sampling completed at the C-1 Building and C-1 Hangar during the 2020 investigation are summarized in Tables 1 and 2.

6.2. Soil

The nature and extent of COCs in soil is based on the analytical data from soil samples collected at the Site between 2018 and 2023 because these data are relatively recent and considered most representative of current Site conditions. Soil data from the 2000 and 2001 investigation completed in the C-1 Building Precision Equipment Room/Fire Riser Room were used to inform the RI due to a lack of more recent data from this area.

TCE was the only soil COC that was detected at concentrations greater than the PCUL based on the results of the RI. Previous investigations in 2000 and 2001 identified mineral spirits in soil locally within the C-1 Building Precision Equipment Room/Fire Riser Room at concentrations greater than the PCUL. The nature and extent of COCs in soil at concentrations greater than the CUL is summarized below and shown in Figure 6.

6.2.1. Beneath the C-1 Building

TCE at concentrations greater than the PCUL is present in soil in the vicinity of the former C-1 Building former trench drain at depths ranging from approximately 4 to 20 feet bgs. The detected concentrations ranged from 0.044 mg/kg to 0.73 mg/kg for soil samples collected during the RI, which are greater than

the PCUL of 0.03 mg/kg. Soil samples collected from borings completed to the north and northeast of the former trench drain (C-1 RI-1, C-1 RI-6, and C-1 RI-9) and to the southwest in the adjacent C-1 Hangar (C-1 RI-4 and C-1 RI-5) did not contain TCE at concentrations greater than the PCUL. Based on the data, the extent of TCE in soil at concentrations greater than the PCUL is interpreted to be limited to the area beneath and possibly immediately adjacent to the former trench drain inside the C-1 Building.

Four soil samples collected during investigations completed in 2000 and 2001 in the former Precision Equipment Room/Fire Riser Room (see Appendix A) had TPH-D (mineral spirits) concentrations greater than the PCUL. The lateral extent of TPH-D containing soil was delineated based on the results of the investigation; however, vertical delineation was not achieved. The deepest sample collected at a depth of 15 feet bgs had a detected TPH-D (mineral spirits) concentration of 5,500 mg/kg, which is greater than the CUL. A remedial investigation was reportedly completed in this area to remove soil from the area with the elevated TPH-D (mineral spirits) concentration; however, no documentation of the excavation or associated confirmation sampling is available. Attempts to complete a soil boring in this area in 2022 were not successful due to refusal in shallow dense soils before the 15-foot depth could be reached. Therefore, there is no information to assess if the soil with concentrations greater than the PCUL was removed or remains in place at this location.

6.2.2. C-1 Building Storage Yard

TCE at concentrations greater than the PCUL is present in soil in the vicinity of the stormwater conveyance pipes. TCE was detected at a concentration of 0.067 mg/kg in the RI soil sample collected from a depth of 20 feet bgs in boring C-1 HSA4, which is greater than the PCUL of 0.03 mg/kg. Additionally, one soil sample collected during the 2018 investigation from a depth of 3 feet bgs (boring B-5; see Appendix A) contained TCE at a concentration of 0.12 mg/kg.

TCE at concentrations greater than the PCUL is also present in soil near the southeastern edge of the C-1 Building storage yard, and in soil collected from boring C-1 RI-12 at depths of 4, 10, and 20 feet bgs. TCE was not detected at a concentration greater than the laboratory reporting limit in the soil sample collected from a depth of 25 feet bgs in boring-C-1 RI-12.

6.3. Groundwater

The nature and extent of COCs in groundwater for the RI is based on the analytical data from groundwater samples collected from monitoring wells constructed at the Site between 2022 and 2023, which are representative of current conditions. Groundwater samples collected at the Site prior to 2022 were grab samples collected from open boreholes for preliminary assessment purposes and are not considered representative of current conditions.

The extent of vinyl chloride and arsenic contamination in groundwater is shown in Figure 7 and the groundwater chemical analytical data are summarized in Table 7.

6.3.1. C-1 Building Storage Yard

Vinyl chloride at concentrations greater than the PCUL is present in groundwater in the northeastern half of the C-1 Building storage yard at monitoring wells C-1 HSA4, C-1 RI-12 and C-1 RI-13 with concentrations ranging from $0.25 \,\mu\text{g/L}$ to $0.47 \,\mu\text{g/L}$.

Arsenic (total and dissolved) is present in groundwater at concentrations greater than the PCUL in monitoring wells C-1 HSA4, C-1 RI-10 and C-1 RI-13. The detected total and dissolved arsenic concentrations were similar for each sample analyzed indicating that most of the arsenic detected in groundwater is in the dissolved phase. Total and dissolved arsenic was detected at concentrations greater than the PCUL in a grab groundwater sample collected from boring C-1 DP14 during the 2021 Phase II ESA; however, groundwater was not present in this area at the time of monitoring well installation in 2022, so additional groundwater samples could not be collected from this area.

Based on the detected concentrations of vinyl chloride and arsenic in groundwater greater than the PCUL near the northern and eastern edge of the C-1 Building storage yard, the groundwater COC plume in this area likely extends beneath adjacent paved roads and parking areas to the northeast and southeast.

6.3.2. Beneath/Adjacent to the C-1 Hangar

Groundwater was identified at only one location (C-1 DP2) inside the C-1 Hangar and at one location immediately adjacent to the Hangar (C-1 DP3) during the 2021 Phase II ESA (see Figure 7). Total arsenic, chromium and lead were detected at concentrations greater than the PCULs in the grab groundwater samples collected from the borings; however, concentrations of dissolved arsenic, chromium and lead were less than the PCUL in the groundwater samples. These results suggest that the elevated total metals concentrations detected in the grab samples are likely related to suspended solids in the grab samples obtained from the borings and are not considered representative of groundwater conditions at these two locations. The drilling and sampling during the RI did not encounter groundwater beneath the C-1 Building.

6.4. Soil Vapor and Indoor Air

The nature and extent of Site COCs in soil vapor and indoor air is summarized below. The COCs in soil vapor and indoor air are TPH and VOCs. As discussed in Section 4.3, specific source areas for the carbon tetrachloride, chloroform and naphthalene detected in soil vapor and indoor air inside the C-1 Building and C-1 Hangar were not identified during the RI. Soil vapor and indoor air sampling locations are shown in Figures 2 and 3, respectively.

6.4.1. C-1 Building

Soil vapor sampling was not completed inside the C-1 Building during the 2020 VI Evaluation. Therefore, the results of indoor air sampling completed inside the C-1 Building in 2018 (HWA 1018) were used to evaluate the nature and extent of COC contamination in soil vapor beneath the C-1 Building for this RI. Three sub-slab soil vapor samples were collected in 2018 in the C-1 Building adjacent to former trench drain and adjacent to the wall abutting the C-1 Hangar and three samples were collected in the central and western portions of the C-1 Building.

In general, the detected VOC concentrations were highest in the soil vapor samples collected nearest the former trench drain indicating proximity to a source. TCE was detected at concentrations greater than the laboratory reporting limit in all six soil vapor samples at concentrations ranging from 15.1 μ g/m³ to 37,000 μ g/m³, which are greater than the soil vapor SL (see Appendix A). PCE, 1,1-dichloroetheane, 1,4-dichlorobenzenebenzene, naphthalene, benzene and/or TCE were also detected at concentrations greater than the soil vapor SL in one or more samples.

The results of indoor and outdoor air sampling identified 1,2-dichloroethane, benzene, carbon tetrachloride, chloroform, naphthalene, and TCE in indoor air inside the C-1 Building. The adjusted indoor air analytical results indicate that chloroform, naphthalene, TCE and TPH (the sum of individual petroleum fractions,

BTEX and naphthalene) were present in one or more indoor air samples collected inside the C-1 Building at concentrations greater than the MTCA Method B cleanup level for residential exposure. TCE concentrations were greater than the MTCA Method B cleanup level for residential exposure in five of six air samples collected inside the C-1 Building.

No analytes were detected at concentrations greater than the MTCA Method B indoor air screening levels for commercial exposure.

6.4.2. C-1 Hangar

The results of sub-slab soil vapor sampling completed inside the C-1 Hangar in 2020 identified 1,1-dichloroethane (1,1-DCA), chloroform, naphthalene, PCE, TCE, and TPH (the sum of individual petroleum fractions, BTEX and naphthalene) in at least one soil vapor sample at a concentration greater than the MTCA Method B soil vapor screening levels for residential exposure. Additionally, 1,1-DCA, chloroform, naphthalene, and TCE were detected at concentrations greater than the MTCA Method B soil vapor screening levels for commercial exposure. Naphthalene detections in soil vapor were widespread throughout the C-1 Hangar and did not appear to be associated with any specific potential source of contamination. TCE, PCE, 1-1-dichloroethane and chloroform were detected in soil vapor at concentrations greater than the MTCA Method B soil vapor screening levels in samples SV-10 and SV-12, located close to the wall abutting the C-1 Building.

The results of the indoor and outdoor air sampling identified benzene, carbon tetrachloride, naphthalene, and TCE inside the C-1 Hangar. The adjusted indoor air analytical results indicate that naphthalene and TPH (the sum of individual petroleum fractions, BTEX and naphthalene) were present in all six indoor air samples collected inside the C-1 Hangar at concentrations greater than the MTCA Method B cleanup level for residential exposure. One indoor air sample (IA-7) collected near the wall abutting the C-1 Building also had a detected TCE concentrations greater than the MTCA Method B cleanup level for residential exposure. The naphthalene concentrations were greater than the MTCA Method B cleanup level for residential exposure in all six of the air samples collected inside the C-1 Hangar.

Chloroform and TCE were detected at concentrations greater than the respective MTCA Method B indoor air cleanup levels in only one indoor air sample (IA-7) collected near the wall abutting the C-1 Building, indicating the detected TCE and chloroform in indoor air are likely originating from soil beneath the adjacent C-1 Building.

No analytes were detected at concentrations greater than the MTCA Method B indoor air screening levels for commercial exposure.

7.0 CONTAMINANT FATE AND TRANSPORT

The fate and transport of contaminants are affected by the contaminant's chemical properties and the physical, chemical, and biological processes that they are exposed to. Factors influencing the transport of COCs at the Site include the location of contaminant sources, geology and hydrogeology, and storm sewer utility networks. Soil and groundwater contamination associated with the Site is situated beneath buildings and hardscape areas (paved parking areas and ROWs), which prevent direct exposure. TCE soil contamination is present beneath the former trench drain in the C-1 Building and in the storage yard area. Vinyl chloride and arsenic contamination in Site groundwater is limited to the C-1 Building storage yard and

east of the C-1 Building. Source areas for the Site and lines of evidence supporting historical operations as the contaminant source(s) are discussed in Section 4.3.

In general, TCE, and to a lesser extent TPH, were discharged/spilled to the former trench drain inside the C-1 Building and into stormwater catch basins located in the storage yard, entered the stormwater pipes, and leaked through cracks or loose joints into the surrounding soil. TCE was also discharged/spilled to the ground from the containers staged in the C-1 building storage yard. TCE and TPH migrated vertically through the soil column to the groundwater table. Dissolved phase TCE and petroleum hydrocarbons then migrated horizontally and vertically downgradient of the source areas within preferential flow paths (including but not limited to along the fill and till contact) and laterally by dispersion and diffusion. TCE in groundwater degraded over time to other breakdown chemicals (cis-1,2-dichloroethene and trans-1,2-dichloroethene) due to the anoxic conditions documented in Site groundwater as discussed below. Further degradation converted the remaining chlorinated volatile organic compounds (CVOCs) to vinyl chloride. TCE in soil above the groundwater table remained as residual TCE in the vadose zone.

TCE and other VOCs released to the former trench drain have volatilized over time and intruded into indoor air within the C-1 Building and C-1 Hangar through cracks in the building slabs. TCE and other VOCs remaining in vadose zone soil beneath the former trench drain likely continue to volatilize into indoor air.

Groundwater geochemical conditions at the Site are favorable for reductive dichlorination due to low (0.06 to 0.72 ppm) dissolved oxygen concentrations and oxidation-reductive potential (ORP) values between -25 and -60 millivolts (mV) based on the results of the RI (see Appendix D). Degradation of TCE is evident due to the presence of vinyl chloride and the relative absence of middle-chain products (cis-1,2-dichloroethene was detected in only one of 12 groundwater samples collected at the Site between 2021 and 2023). The limited presence of cis-1,2-dichloroethene and the absence of trans-1,2-dichloroethene suggest the TCE plume in groundwater in the C-1 Building storage yard area has largely been degraded to vinyl chloride. The dissolved oxygen concentration observed in monitoring well C-1 RI-10 (3.18 ppm), located adjacent to the stormwater line, was significantly higher than other locations and may indicate the presence of oxygenated stormwater entering the Site aquifer through the leaking stormwater pipe. The absence of detected vinyl chloride in this well suggests the input of oxygen has locally degraded vinyl chloride to ethene.

The source of arsenic in Site groundwater is unknown. Dissolved arsenic concentrations were only slightly elevated above the PCUL of 8 μ g/L in the RI groundwater sample collected from monitoring well C-1 RI-10 in January 2023, while dissolved arsenic concentrations in groundwater samples collected from monitoring wells C-1 HSA4 and C-1 RI-13, located near the northern portion of the C-1 Building storage yard, were between 28 and 30 μ g/L. However, the dissolved arsenic concentration detected in the groundwater sample collected from monitoring well C-1 HSA4 in April 2022 was 7.62 μ g/L, which is less than the PCUL and significantly less than the concentration detected in January 2023.

8.0 DATA GAPS

The following data gaps were identified during the RI and will be addressed during future investigations to supplement Site data necessary to complete the FS for the Site.

8.1. C-1 Building - Vertical Extent of TCE in Soil

TCE was identified in soil near the location of the former trench drain inside the C-1 Building at depths ranging from 4 to 20 feet bgs. The TCE concentrations greater than the PCUL in soil were delineated laterally in the area surrounding the former trench drain but not vertically beneath the former trench drain. However, the detected TCE concentration in the deepest soil sample collected (20 feet bgs) was 0.047 mg/kg, which is only slightly greater than the PCUL of 0.03 mg/kg and likely indicates the sample was collected near the deepest extent of soil with TCE at a concentration greater than the PCUL at that location. Based on the limited lateral extent of the TCE in soil at concentrations greater than the PCUL, the presence of the underlying dense till, and the absence of groundwater beneath the C-1 Building, the TCE is unlikely to extend much deeper than 20 feet bgs. Therefore, the lack of vertical delineation of the TCE in soil at this location is not considered a significant data gap.

8.2. C-1 Building – Vertical Extent of Mineral Spirits Contamination

Mineral spirits were identified in soil beneath the C-1 Building in the Precision Equipment Room/Fire Riser Room at concentrations greater than the applicable CULs during investigations in 2000 and 2001. The extent of mineral spirits greater than the CUL in soil were delineated laterally but not vertically. The deepest soil sample collected from a depth of 15 feet bgs had a detected mineral spirits concentration of 5,500 mg/kg. Additional deeper samples could not be collected due to drilling refusal at the dense till. The lack of vertical delineation at this location is not considered a significant data gap for the following reasons: the mineral spirits contamination in soil in this area was laterally delineated; mineral spirits soil contamination is unlikely to extend much deeper into the dense till; groundwater is not present beneath the C-1 Building; previous remedial actions may have removed a portion or all of the contaminated soil; and residual mineral spirits concentrations detected in soil may have degraded/decreased since 2000 and 2001.

8.3. Groundwater - C-1 Building Storage Yard

Vinyl chloride and arsenic concentrations were greater than the PCULs in the groundwater samples collected during the RI from the C-1 Building storage yard. The extent of vinyl chloride and arsenic in groundwater at concentrations were greater than the PCULs has not been delineated to the northeast and southeast of the storage yard into the adjacent paved parking areas and airport ROWs.

8.4. Soil - C-1 Building Storage Yard/32nd Avenue West ROW

TCE was detected in soil from boring C-1 RI-12 located in the eastern edge of the C-1 Building storage yard at concentrations greater than the PCUL (see Figure 6). The detected concentrations ranged in depth from 4 to 20 feet bgs and are likely related to a separate release/source area from other locations where TCE has been detected in soil. The extent of TCE in soil at concentrations were greater than the PCUL in this area is not known and may be associated with the former mineral spirits AST that was located in the vicinity or the storage of other chemicals in the C-1 Building storage yard. Confirmation sampling associated with the remedial excavation completed in the adjacent 32nd Avenue West ROW in 2009 did not identify contaminants in soil greater than the applicable cleanup levels; however, the soil confirmation samples collected were not analyzed for VOCs and therefore, there is no data to evaluate if the TCE detected in soil at boring C-1 RI-12 extends into the adjacent 32nd Avenue West ROW.

9.0 SUMMARY AND CONCLUSIONS

Investigations completed at the Site since 2000 have confirmed the presence of mineral spirits and TCE in soil at concentrations greater than the PCULs. Groundwater monitoring completed as part of the RI indicates that arsenic and vinyl chloride are present in groundwater in the C-1 Building storage yard at concentrations greater than the PCULs. Identified sources of contamination to soil and groundwater at the Site include a former trench drain located inside the C-1 Building, the stormwater conveyance system and a former AST located in the C-1 Building storage yard.

Soil with COC concentrations greater than the PCULs is limited to two locations beneath the C-1 Building and portions of the C-1 Building storage yard. The extent of groundwater with arsenic and vinyl chloride at concentrations greater than the PCULs is primarily beneath the C-1 Building storage yard and may extend to the northeast and southeast of the storage yard beneath the parking and ROW areas. Soil and groundwater contamination at the Site is capped by improved/paved surfaces and buildings and does not pose a risk for direct contact exposure under current Site conditions.

The adjusted chloroform, naphthalene, TCE, and TPH concentrations in the indoor air samples collected within the C-1 Hangar and/or C-1 Building were greater than the MTCA Method B indoor air cleanup levels for unrestricted land use. However, the adjusted COC concentrations in indoor air within the C-1 Building and C-1 Hangar were less than the MTCA Method B indoor air screening levels for commercial exposure, which are the appropriate screening levels based on the current uses of these buildings.

The data gaps identified in Section 8.0 of this report will be further investigated and addressed as required for development of the FS for the Site.

10.0 LIMITATIONS

We have prepared this report for the exclusive use of the Snohomish County Airport and their authorized agents and regulatory agencies.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment, and experience. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile, or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments should be considered a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to Appendix H, Report Limitations and Guidelines for Use, for additional information pertaining to use of this report.

11.0 REFERENCES

AGI Technologies (AGI) 1997. "Findings Update, Phase 2 Environmental Site Assessment, Precision Aviation Products Corporation" dated June 3, 1997.

- AGI Technologies (AGI) 1998. "Phase I Environmental Assessment, Terminal Ramp Facilities, Snohomish County Airport, prepared by AGI Technologies" dated August 31, 1998.
- CDM Smith (CDM) 2000. "Aquifer Investigation All Fab (Former), Snohomish County Airport, Everett, Washington," prepared by CDM Smith dated December 12, 2000.
- CDM Smith (CDM) 2001. "Indoor Air Quality and Subsurface Soil Investigation, Snohomish County Airport Offices, Snohomish County, Washington," prepared by CDM Smith dated May 22, 2001.
- CDM Smith (CDM) 2009. "Remedial Excavation, 32nd Avenue W Road Improvement, Paine Field, Everett, Washington," prepared by CDM Smith dated December 31, 2009.
- CDM Smith (CDM) 2017. "Limited Phase I and Phase 2 Environmental Site Assessment, Precision Engines Test Cell Site," prepared by CDM Smith dated August 3, 2017.
- GeoEngineers (GEI), Inc. 2021a. "C-1 Hangar and C-1 Building Vapor Evaluation Report December 2020." Prepared for Snohomish County Airport, dated April 27, 2021.
- GeoEngineers (GEI), Inc. 2021b. "Phase II Environmental Site Assessment, Snohomish County Airport, C-1 Hangar and C-1 Building, 3220 100th Street SW, Suite A, Everett, Washington." Prepared for Snohomish County Airport, dated June 1, 2021.
- GeoEngineers (GEI), Inc. 2022. "Remedial Investigation Work Plan, Snohomish County Airport, C-1 Building and C-1 Hangar, 3220 100th Street SW, Suite A, Everett, Washington." Prepared for Snohomish County Airport, dated September 2, 2022.
- HWA Geosciences, Inc. (HWA) 2018. "Phase I and Phase II Environmental Site Assessment: Precision Engines Property, Everett, Washington" dated July 10, 2018.
- URS 2001. "Soil Investigation Report, Precision Engines Facility, Everett, Washington." November 15, 2001.
- Washington State Department of Ecology (Ecology) 1994. "Natural Background Soil Metals Concentrations in Washington State." Toxics Cleanup Program Publication #94-115. October 1994.
- Washington State Department of Ecology (Ecology) 2018. Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings Implementation Memo No. 18. January 10, 2018.
- Washington State Department of Ecology (Ecology) 2019. Vapor Intrusion (VI) Investigations and Short-term Trichloroethene (TCE) Toxicity Implementation Memo No. 22. October 1, 2019.
- Washington State Department of Ecology (Ecology) 2022a. Guidance for Evaluating Vapor Intrusion in Washington State: Investigation and Remedial Action. Publication No. 09-09-047. Updated March 2022.
- Washington State Department of Ecology (Ecology) 2022b. Natural Background Groundwater Arsenic Concentrations in Washington State: Study Results. Publication No. 14-09-044. Dated January 2022.

- Washington State Department of Ecology (Ecology) 2023. "Cleanup Levels and Risk Calculation Master Spreadsheet." 2023. Updated January 2023.
- Weston 1986. TAT Activities Report Preliminary Site Assessment (Tramco, Incorporated), prepared by Roy F. Weston, Inc. on behalf of the U.S. Environmental Protection Agency (Region 10), dated March 11, 1986.

Table 1

Soil Vapor Sample Chemical Analytical Results - 2020 VI Evaluation C-1 Hangar and C-1 Building, Paine Field, Snohomish County Airport

C-1 Hangar and Building, Snohomish County Airport Everett, Washington

		Air-Phase Pe	etroleum Hydroca	rbons (µg/m³)¹						Volatile Orga	anic Compou	nds (µg/m³)²				
Sample ID	Sample Date	APH C5-C8 Aliphatics	APH C9-C12 Aliphatics	APH C9-C10 Aromatics	Sum of TPH/BTEXN	1,1,1-Trichloroethane	1,1,2,2.Tetrachloroethane	1,1,2-Trichloro-1,2,2- trifluoroethane (CFC-113)	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethylene	1,2,4-Trimethylbenzene	1,2-Dibromoethane	1,4-Dioxane	1-Propene	2,2,4-Trimethylpentane
SV-1	11/30/20	750	270 U	140 U	752	3.6	0.76 U	4.2 U	0.30 U	2.2 U	2.2 U	14 U	0.42 U	2.0 U	6.6 U	26 U
SV-2	11/30/20	380	290	590	1,277	8.7	0.49 U	8.4	0.20 U	1.5 U	1.4 U	8.8 U	0.28 U	1.3 U	4.3 U	17 U
SV-3	11/30/20	2,000	310	220	2,554	3.1 U	0.78 U	4.4 U	0.31 U	2.3 U	2.3 U	14 U	0.44 U	2.1 U	6.9 U	27 U
SV-4	12/01/20	3,000	260 U	130 U	3,010	2.9 U	0.73 U	4.8	0.29 U	2.1 U	2.1 U	13 U	0.41 U	1.9 U	6.4 U	25 U
SV-5	12/01/20	370	240	310	968	1.9 U	0.47 U	2.6 U	0.19 U	1.4 U	1.3 U	11	0.26 U	1.2 U	4.1 U	16 U
SV-6	12/01/20	22,000	1,800	460	24,547	32	1.1 U	340	0.44 U	3.3 U	3.2 U	43	0.62 U	5.5	65	40
SV-7	12/01/20	2,300	390	1,400	4,678	3.0 U	0.76 U	260	0.30 U	2.2 U	4.5	95	0.42 U	2.0 U	100	26 U
SV-8	12/01/20	200	170 U	180	395	1.9 U	0.47 U	2.6 U	0.19 U	1.4 U	1.3 U	8.4 U	0.26 U	1.2 U	4.1 U	16 U
SV-9	12/01/20	2,400	910	210	3,598	6.5	0.78 U	54	0.31 U	2.3 U	2.3 U	18	0.44 U	2.1 U	6.9 U	27 U
SV-10	12/01/20	1,300	480	220	2,047	3.2 U	0.80 U	28	0.32 U	2.3 U	2.3 U	14 U	0.45 U	2.1 U	7.0 U	27 U
SV-11	12/01/20	1,400	510	150 U	1,921	13	0.84 U	16	0.33 U	2.5 U	2.4 U	15 U	0.47 U	2.2 U	7.3 U	28 U
SV-12	12/01/20	4,600	850 U	800	5,429	7,900 J	2.3 U	13 U	1.8	530	930	42 U	1.3 U	6.1 U	20 U	79 U
MTCA Method B Soil V for Residential Exposu	ire ³	NE	NE	NE	1,500	76,000	1.4	76,000	3	52	3,000	910	0.14	17	NE	NE
MTCA Soil Vapor Scree Commericial Exposure		NE	NE	NE	13,000				-	240	-	-				

Table 1

Soil Vapor Sample Chemical Analytical Results - 2020 VI Evaluation C-1 Hangar and C-1 Building, Paine Field, Snohomish County Airport

C-1 Hangar and Building, Snohomish County Airport Everett, Washington

								Volati	le Organic Co	mpounds (µg	:/m3)²						
Sample ID	Sample Date	Acetone	Acrolein	Allyl Chloride (3-Chloropropene)	Benzene	Butane	Carbon Tetrachloride	Chloroform	cis-1,2-Dichloroethylene	Dichlorodifluoromethane	Ethanol	Ethylbenzene	Isopropyl Alcohol	Methyl ethyl ketone (MEK)	Naphthalene	Pentane	Tetrachloroethylene
SV-1	11/30/20	510 J	11 U	8.6 U	2.4	13 U	1.7 U	0.27 U	2.2 U	2.7 U	180	2.4 U	670 J	16 U	1.4 U	16 U	37 U
SV-2	11/30/20	360 J	7.4 U	5.6 U	3.7	36	1.1 U	0.51	1.4 U	3.1	220 J	1.6 U	97	11	5.5	18	24 U
SV-3	11/30/20	1,200 J	12 U	8.9 U	1.8 U	15	1.8 U	0.28 U	2.3 U	3.0	150	3.1	270	42	4.8	17 U	39 U
SV-4	12/01/20	2,000 J	11 U	8.3 U	1.7 U	13 U	1.7 U	0.26 U	2.1 U	2.9	270 J	2.3 U	3,600 J	16 U	2.9	16 U	36 U
SV-5	12/01/20	410 J	7.0 U	5.3 U	2.6	8.1 U	1.1 U	0.17 U	1.3 U	2.5	210 J	7.4	120	10 U	2.1	10 U	23 U
SV-6	12/01/20	2,000 J	17 U	13 U	2.6 U	29	2.5 U	0.40 U	3.2 U	4.0 U	640 J	51	1 ,000 J	140	6.5	24 U	93
SV-7	12/01/20	580 J	11 U	8.6 U	4.7	36	7.5	0.27 U	2.2 U	3.2	400 J	27	320	41	31	28	37 U
SV-8	12/01/20	240 J	7.0 U	5.3 U	1.1 U	8.1 U	1.1 U	0.55	1.3 U	2.8	490 J	1.5 U	67	10 U	6.7	10 U	23 U
SV-9	12/01/20	430 J	12 U	8.9 U	1.8 U	14 U	1.8 U	0.28 U	2.3 U	2.8 U	370 J	12	110	17 U	6.2	17 U	39 U
SV-10	12/01/20	460 J	12 U	9.1 U	1.9 U	14 U	1.8 U	0.28 U	2.3 U	2.9 U	240	6.1	83	17 U	8.8	17 U	39 U
SV-11	12/01/20	220	13 U	9.5 U	1.9 U	15 U	1.9 U	0.30 U	2.4 U	3.0 U	260	2.6 U	200	18 U	2.0	18 U	41 U
SV-12	12/01/20	190	35 U	27 U	5.4 U	40 U	5.3 U	170	20	8.4 U	150	7.4 U	150 U	50 U	12	50 U	740
MTCA Method B Soil Level for Residential	Exposure ³	470,000	0.3	14	11	NE	14	3.6	NE	1,500	NE	15,000	NE	76,000	2.5	NE	320
MTCA Soil Vapor Scr Commericial Exposu	_							17							11		1.500

Soil Vapor Sample Chemical Analytical Results - 2020 VI Evaluation C-1 Hangar and C-1 Building, Paine Field, Snohomish County Airport

C-1 Hangar and Building, Snohomish County Airport
Everett, Washington

				Volatile Orga	anic Compour	nds (µg/m3)²		
Sample ID	Sample Date	Tetrahydrofuran	Toluene	Trichloroethylene	Vinyl Bromide	Xylene, m-,p-	Xylene, o-	Total Xylenes ⁵
SV-1	11/30/20	1.6 U	100 U	0.59 U	2.4 U	4.8 U	2.4 U	4.8 U
SV-2	11/30/20	1.1 U	68 U	0.58	1.6 U	6.1	1.8	7.9
SV-3	11/30/20	2.5	110 U	0.64	2.5 U	12	3.7	15.7
SV-4	12/01/20	2.0	100 U	0.83	2.3 U	6.7	2.3 U	6.7
SV-5	12/01/20	15	64 U	0.37	1.5 U	29	6.9	35.9
SV-6	12/01/20	26	150 U	0.87 U	3.5 U	180	49	229
SV-7	12/01/20	18	390	0.74	2.4 U	98	37	135
SV-8	12/01/20	1.4	64 U	0.38	1.5 U	5.6	2.2	7.8
SV-9	12/01/20	2.6	110 U	2.8	2.5 U	44	16	60
SV-10	12/01/20	13	110 U	22	2.5 U	24	7.7	31.7
SV-11	12/01/20	7.1	110 U	0.66 U	2.7 U	6.4	2.6	9.0
SV-12	12/01/20	5.0 U	320 U	30,000 J	7.4 U	17	7.4 U	17
MTCA Method B Soil Level for Residential		30,000	76,000	11	2.6	1,500	1,500	1,500
MTCA Soil Vapor Scr Commericial ³	eening Level for			95				

Notes:

NE = not established

- U = Constituent not detected above the laboratory reporting limit
- -- = Commercial worker screening level not presented; VOC did not exceed the MTCA Method B Soil Vapor Screening Level.
- J = Estimated concentration

Bold font type indicates the analyte was detected at a concentration greater than the laboratory reporting limit.

Gray shaded value indicates the detected concentration in soil vapor is greater than the MTCA Method B soil vapor screening level for residential exposure.

Yellow shaded value indicates the detected concentration in soil vapor is greater than the MTCA soil vapor screening levels for residential and commercial exposure.

Blue shading indicates the non-detect concentration was greater than the MTCA Method B indoor air cleanup level for residential exposure.

¹ Air-phase petroleum hydrocarbons analyzed using Massachusetts Department of Environmental Protection Method MA-APH. Chemical analytical laboratory reports are included in Appendix E.

² VOCs analyzed using United States Environmental Protection Agency (EPA) Method TO-15.

³ Model Toxics Control Act (MTCA) Method B soil vapor screening levels are from Ecology's "CLARC Master Spreadsheet.xlsx" dated January 2023.

³ Model Toxics Control Act (MTCA) Commercial Worker soil vapor screening levels are from Ecology's "CLARC Master Spreadsheet.xlsx" dated January 2023.

⁵ Sum of m,p-xylene and o-xylene. Where xylenes are non-detect, the highest laboratory reporting limit is shown.

 $[\]mu g/m^3$ = micrograms per cubic meter

Unadjusted Indoor Air and Outdoor Air Sample Chemical Analytical Results - 2020 VI Evaluation C-1 Hangar and C-1 Building, Paine Field, Snohomish County Airport

C-1 Hangar and Building, Snohomish County Airport Everett, Washington

		Air-Pha	se Petroleum H	lydrocarbons (µ	ug/m³)¹					Volat	ile Organic Co	mpounds (µg	·/m³)²				
Sample ID	Sample Date	APH C5-C8 Aliphatics	APH C9-C12 Aliphatics	APH, C9-C10 Aromatics	Sum of TPH/BTEXN	1,1,2,2. Tetrachloroethane	1,2-Dibromoethane	1,2-Dichloroethane	1-Propene	Acetone	Acrolein	Allyl Chloride (3- Chloropropene)	Benzene	Benzyl chloride	Butane	Carbon Tetrachloride	Chloroform
IA-1_120120	12/01/20	45	140	25 U	188	0.14 U	0.077 U	0.061	1.2 U	7.5	2.1 U	1.6 U	0.45	0.052 U	3.4	0.40	0.11
IA-2_120120	12/01/20	40 U	130	25 U	133	0.14 U	0.077 U	0.077	1.2 U	10	2.1 U	1.6 U	0.63	0.052 U	3.1	0.46	0.11
IA-3_120120	12/01/20	43	180	25 U	226	0.14 U	0.077 U	0.077	1.2 U	11	2.1 U	1.6 U	0.63	0.052 U	4.2	0.47	0.098
IA-4_120120	12/01/20	43	130	25 U	176	0.14 U	0.077 U	0.069	1.2 U	9.6	2.1 U	1.6 U	0.51	0.052 U	3.6	0.47	0.10
IA-5_120120	12/01/20	40 U	96	25 U	99	0.14 U	0.077 U	0.077	1.2 U	7.6	2.1 U	1.6 U	0.65	0.052 U	3.9	0.44	0.11
IA-6_120120	12/01/20	40 U	140	25 U	143	0.14 U	0.077 U	0.077	1.2 U	10	2.1 U	1.6 U	0.58	0.052 U	3.8	0.46	0.10
IA-7_120120	12/01/20	40 U	50 U	25 U	0.54	0.14 U	0.077 U	0.073	1.6	6.0	2.1 U	1.6 U	0.44	0.052 U	2.4 U	0.43	0.12
IA-8_120120	12/01/20	45	90	25 U	139	0.14 U	0.077 U	0.073	1.2 U	8.2	2.1 U	1.6 U	0.59	0.052 U	3.1	0.45	0.15
IA-9_120120	12/01/20	67	130	25 U	201	0.14 U	0.077 U	0.073	1.2 U	13	2.1 U	1.6 U	0.59	0.052 U	9.2	0.42	0.15
IA-10_120120	12/01/20	58	99	25 U	161	0.14 U	0.077 U	0.081	1.2 U	9.7	2.1 U	1.6 U	0.63	0.052 U	3.6	0.48	0.22
IA-11_120120	12/01/20	42	98	25 U	144	0.14 U	0.077 U	0.069	1.2 U	9.9	2.1 U	1.6 U	0.68	0.052 U	3.7	0.53	0.25
IA-12_120120	12/01/20	65	72	25 U	141	0.14 U	0.077 U	0.10	1.2 U	15	2.1 U	1.6 U	0.63	0.052 U	4.2	0.47	0.16
IA-13_120120	12/01/20	51	100	25 U	155	0.14 U	0.077 U	0.061	1.2 U	7.5	2.1 U	1.6 U	0.55	0.052 U	4.0	0.40	0.19
OA-1_120120	12/01/20	40 U	50 U	25 U	NA	0.14 U	0.077 U	0.073	1.2 U	5.0	2.1 U	1.6 U	0.42	0.052 U	2.4 U	0.47	0.093
OA-2_120120	12/01/20	59	52	25 U	NA	0.14 U	0.077 U	0.097	4.4	37	2.1 U	1.6 U	0.59	0.052 U	2.4 U	0.52	0.098
MTCA Method B Indoo	r Air Cleanup Level for																
Residential Exposure 3		NE	NE	NE	46	0.043	0.0042	0.096	NE	14,000	0.0091	0.42	0.32	0.051	NE	0.42	0.11
MTCA Method B Indoo	r Air Screening Level																
for Commercial Exposu	ure ⁴	NE	NE	NE	390			0.45	-				1.5			1.9	0.51

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NE = not established

NA = not applicable

- = Commercial worker screening level not presented; VOC did not exceed the MTCA Method B Indoor Air Cleanup Level.

U = Constituent not detected above the laboratory reporting limit

Bold font type indicates the analyte was detected at a concentration greater than the laboratory reporting limit.

Gray shaded value indicates the unadjusted detected concentration in indoor air is greater than the MTCA Method B indoor air cleanup level for residential exposure.

Blue shading indicates the non-detect concentration was greater than the MTCA Method B indoor air cleanup level for residential exposure.

¹ Air-phase petroleum hydrocarbons analyzed using Massachusetts Department of Environmental Protection Method MA-APH. Chemical analytical laboratory reports are included in Appendix E. Indoor air concentrations were adjusted to account for contributions from outdoor air (see Table 3).

² VOCs analyzed using United States Environmental Protection Agency (EPA) Method TO-15, except where noted. Indoor air cleanup levels.

³ Model Toxics Control Act (MTCA) Method B indoor air cleanup levels for residential exposure are from Ecology's "CLARC Master Spreadsheet.xlsx" dated January 2023. Residential exposure scenario assumes 365 days/year, 24 hours/day for 30 years (carcinogenic chemicals) or for 6 years (non-carcinogenic chemicals).

⁴ Model Toxics Control Act (MTCA) Method B indoor air screening levels for commercial worker exposure are from Ecology's "CLARC Master Spreadsheet.xlsx" dated January 2023. The commercial worker exposure scenario assumes 250 days/year, 9 hours/day for 25 years.

⁵ Naphthalene analyzed using EPA Method TO-17.

⁶ Sum of m,p-xylene and o-xylene. Where xylenes are non-detect, the highest laboratory reporting limit is shown.

Unadjusted Indoor Air and Outdoor Air Sample Chemical Analytical Results - 2020 VI Evaluation C-1 Hangar and C-1 Building, Paine Field, Snohomish County Airport

C-1 Hangar and Building, Snohomish County Airport Everett, Washington

									Volat	ile Organic Co	ompounds (µg	/m³)²							
Sample ID	Sample Date	Dichlorodifluoromethane	Ethanol	Ethylbenzene	Hexachlorobutadiene	Hexane	Methylene Chloride	Naphthalene	Naphthalene ⁵	Pentane	Tetrahydrofuran	Trichloroethylene	Vinyl Bromide	Xylene, m.,p-	Xylene, o-	Total Xylenes ⁶	Butane	Pentane	Нехапе
IA-1_120120	12/01/20	2.4	7.5 U	0.43 U	0.21 U	4.0	60 U	0.21	0.11	3.0 U	0.29 U	0.15	0.44 U	1.4	0.63	2.03	3.4	3.0 U	4.0
IA-2_120120	12/01/20	2.3	7.5 U	0.43 U	0.21 U	3.5 U	35 U	0.18	0.11	3.0 U	0.29 U	0.14	0.44 U	1.6	0.72	2.32	3.1	3.0 U	3.5 U
IA-3_120120	12/01/20	2.7	7.5 U	0.43 U	0.21 U	3.6	65 U	0.20	0.11	3.0 U	0.29 U	0.13	0.44 U	1.5	0.66	2.16	4.2	3.0 U	3.6
IA-4_120120	12/01/20	2.8	7.5 U	0.43 U	0.21 U	3.5 U	35 U	0.27	0.10	3.0 U	0.29 U	0.13	0.44 U	1.5	0.66	2.16	3.6	3.0 U	3.5 U
IA-5_120120	12/01/20	3.0	9.8	0.43 U	0.21 U	3.5 U	35 U	0.14	0.12	3.0 U	0.29 U	0.12	0.44 U	1.3	0.55	1.85	3.9	3.0 U	3.5 U
IA-6_120120	12/01/20	2.9	7.5 U	0.43 U	0.21 U	3.5 U	35 U	0.19	0.11	3.0 U	0.29 U	0.19	0.44 U	1.6	0.70	2.30	3.8	3.0 U	3.5 U
IA-7_120120	12/01/20	2.9	7.5 U	0.43 U	0.21 U	3.5 U	41 U	0.057 J	0.10	3.0 U	0.29 U	1.1	0.44 U	0.87 U	0.43 U	0.87 U	2.4 U	3.0 U	3.5 U
IA-8_120120	12/01/20	2.2	16	0.48	0.21 U	3.5 U	35 U	0.094	0.12	7.4	0.31	0.37	0.44 U	1.7	0.66	2.36	3.1	7.4	3.5 U
IA-9_120120	12/01/20	2.5	11	0.48	0.21 U	3.5 U	35 U	0.13	0.15	29	0.29 U	0.31	0.44 U	1.8	0.73	2.53	9.2	29	3.5 U
IA-10_120120	12/01/20	2.9	84 J	0.60	0.21 U	3.5 U	40 U	0.15	0.14	13	0.31	0.44	0.44 U	2.3	0.79	3.09	3.6	13	3.5 U
IA-11_120120	12/01/20	2.8	95 J	0.57	0.21 U	3.5 U	35 U	0.084	0.13	12	0.29 U	0.41	0.44 U	2.1	0.77	2.87	3.7	12	3.5 U
IA-12_120120	12/01/20	2.9	37	0.46	0.21 U	7.3	110 U	0.084	0.12	7.3	0.31	0.70	0.44 U	1.7	0.60	2.30	4.2	7.3	7.3
IA-13_120120	12/01/20	2.5	25	0.51	0.21 U	3.5 U	47 U	0.13	0.13	7.9	0.29 U	0.60	0.44 U	1.9	0.67	2.57	4.0	7.9	3.5 U
OA-1_120120	12/01/20	2.9	7.5 U	0.43 U	0.21 U	3.5 U	35 U	0.057 J	0.061	3.0 U	0.29 U	0.11 U	0.44 U	0.87 U	0.43 U	0.87 U	2.4 U	3.0 U	3.5 U
OA-2_120120	12/01/20	3.0	7.5 U	0.43 U	0.21 U	3.9	64 U	0.079	0.058	3.0 U	0.29 U	0.11 U	0.44 U	0.91	0.43 U	0.91	2.4 U	3.0 U	3.9
MTCA Method B Inc		46	NE	460	0.11	320	66	0.074	0.074	NE	910	0.33	0.078	46	46	46	NE	NE	320
MTCA Method B Inc	door Air Screening	-				-	-	0.34	0.34		-	2.8	-		-	-			

Notes:

µg/m³ = micrograms per cubic meter

NE = not established

NE = not established

- = Commercial worker screening levels not presented; VOC did not exceed the MTCA Method B Indoor Air Cleanup Level.

U = Constituent not detected above the laboratory reporting limit

Bold font type indicates the analyte was detected at a concentration greater than the laboratory reporting limit.

Gray shaded value indicates the detected concentration in soil vapor is greater than the MTCA Method B indoor air cleanup level for residential exposure.

Blue shading indicates the non-detect concentration was greater than the MTCA Method B indoor air cleanup level for residential exposure.

¹Air-phase petroleum hydrocarbons analyzed using Massachusetts Department of Environmental Protection Method MA-APH. Chemical analytical laboratory reports are included in Appendix E. Indoor air concentrations were adjusted to account for contributions from outdoor air (see Table 3).

²VOCs analyzed using United States Environmental Protection Agency (EPA) Method TO-15, except where noted. Indoor air cleanup levels.

³ Model Toxics Control Act (MTCA) Method B indoor air cleanup levels for residential exposure are from Ecology's "CLARC Master Spreadsheet.xlsx" dated fJanuary 2023. Residential exposure scenario assumes 365 days/year, 24 hours/day for 30 years (carcinogenic chemicals) or for 6 years (non-carcinogenic chemicals).

⁴ Model Toxics Control Act (MTCA) Method B indoor air screening levels for commercial worker exposure are from Ecology's "CLARC Master Spreadsheet.xlsx" dated January 2023. The commercial worker exposure scenario assumes 250 days/year, 9 hours/day for 25 years.

⁴ Naphthalene analyzed using EPA Method TO-17.

⁵ Sum of m,p-xylene and o-xylene. Where xylenes are non-detect, the highest laboratory reporting limit is shown.

Adjusted Indoor Air Sample Chemical Analytical Results C-1 Hangar and C-1 Building, Paine Field, Snohomish County Airport

C-1 Hangar and Building, Snohomish County Airport Everett, Washington

		Air-Phase Petroleum Hydrocarbons (μg/m³) ^{1,2}		Vol	atile Organ	nic Compou	nds (µg/m [°]	³) ^{1,3}	
Sample ID	Sample Date	Sum of TPH/BTEXN	1,2-Dichloroethane	Benzene	Carbon Tetrachloride	Chloroform	Naphthalene	Naphthalene ⁴	Trichloroethylene
IA-1_120120	12/01/20	187	0	0.03	0	0.017	0.15	0.052	0.15
IA-2_120120	12/01/20	133	0.0040	0.21	0	0.017	0.12	0.052	0.14
IA-3_120120	12/01/20	225	0.0040	0.21	0	0.005	0.14	0.052	0.13
IA-4_120120	12/01/20	175	0	0.09	0	0.007	0.21	0.042	0.13
IA-5_120120	12/01/20	98	0.0040	0.23	0	0.017	0.083	0.062	0.12
IA-6_120120	12/01/20	143	0.0040	0.16	0	0.007	0.13	0.052	0.19
IA-7_120120	12/01/20	0.06	0	0.02	0	0.027	0	0.042	1.1
IA-8_120120	12/01/20	138	0	0.17	0	0.057	0.037	0.062	0.37
IA-9_120120	12/01/20	200	0	0.17	0	0.057	0.073	0.092	0.31
IA-10_120120	12/01/20	161	0.0080	0.21	0.01	0.127	0.093	0.082	0.44
IA-11_120120	12/01/20	144	0	0.26	0.06	0.157	0.027	0.072	0.41
IA-12_120120	12/01/20	140	0.027	0.21	0	0.067	0.027	0.062	0.7
IA-13_120120	12/01/20	154	0	0.13	0	0.097	0.073	0.072	0.6
MTCA Method B Inde	oor Air Cleanup								
Level for Residentia	Exposure ⁵	46	0.096	0.32	0.42	0.11	0.074	0.074	0.33
MTCA Method B Inde		390	0.045	1.5	1.9	0.51	0.34	0.34	2.8

Notes:

µg/m³ = micrograms per cubic meter

NE = not established

Gray shaded value indicates the adjusted concentration in indoor air is greater than the MTCA Method B indoor air cleanup level for residential exposure.

¹ Indoor air concentrations are adjusted to account for contributions from outdoor air. The lowest detected outdoor air concentration was used to adjust indoor air concentrations. If a VOC was not detected in outdoor air, the indoor air concentration was not adjusted. Only VOCs that were detected at concentrations greater than the MTCA Method B indoor air cleanup level for residential exposure (see Table 2) are listed in Table 3. A value of zero indicates the detected outdoor air concentration was equal to or greater than the detected indoor air concentration.

² Air-phase petroleum hydrocarbons analyzed using Massachusetts Department of Environmental Protection Method MA-APH.

³ VOCs analyzed using United States Environmental Protection Agency (EPA) Method TO-15, except where noted.

⁴ Naphthalene analyzed using EPA Method TO-17.

⁵ Model Toxics Control Act (MTCA) Method B indoor air cleanup levels for residential exposure are from Ecology's "CLARC Master Spreadsheet.xlsx" dated January 2023. Residential exposure scenario assumes 365 days/year, 24 hours/day for 30 years (carcinogenic chemicals) or for 6 years (non-carcinogenic

⁶ Model Toxics Control Act (MTCA) Method B indoor air screening levels for commercial worker exposure are from Ecology's "CLARC Master Spreadsheet.xlsx" dated January 2023. The commercial worker exposure scenario assumes 250 days/year, 9 hours/day for 25 years.

Soil Chemical Analytical Results 2021 and 2022¹

Petroleum Hydrocarbons and BTEX

C-1 Hangar and C-1 Building, Snohomish County Airport Everett, Washington

			Field Scre Result	_			BTEX ⁴		Total Per	troleum Hydr (mg/kg) ⁶	ocarbons
Sample Identification ²	Sample Date	Sample Depth (feet bgs)	Headspace Vapors (ppm)	Sheen	Benzene	Toluene	ng/kg) Ethylbenzene	Total Xylenes ⁵	Gasoline Range	Diesel Range	Lube Oil Range
2021 Phase II ESA ⁷											
C-1 DP1-3.5	3/31/2021	3.5	3.1	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP1-11.0	3/31/2021	11.0	8.9	MS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP2-5.0	3/31/2021	5.0	3.8	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP2-11.0	3/31/2021	11.0	4.3	MS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP3-4.0	3/30/2021	4.0	0.7	MS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP3-7.0	3/30/2021	7.0	1,684	MS	0.005 U	0.005 U	0.005 U	0.01 U	7.5	50 U	250 U
C-1 DP4-3.5	3/30/2021	3.5	<1	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP4-5.0	3/30/2021	5.0	3.7	MS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP4-7.0	3/30/2021	7.0	<1	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP5-3.0	3/30/2021	3.0	<1	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP5-6.0	3/30/2021	6.0	<1	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP6-3.0	3/31/2021	3.0	<1	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP6-6.0	3/31/2021	6.0	<1	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP7-4.0	3/31/2021	4.0	3.0	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP7-9.0	3/31/2021	9.0	4.6	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP8-4.5	3/31/2021	4.5	1.9	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
	· · · · · · · · · · · · · · · · · · ·										
C-1 DP8-9.0	3/31/2021	9.0	4.9	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP9-3.0	3/31/2021	3.0	3.4	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP9-7.5	3/31/2021	7.5	4.8	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP10-4.0	3/31/2021	4.0	3.7	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP11-4.0	3/31/2021	4.0	2.6	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP12-3.0	3/31/2021	3.0	2.2	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP12-8.0	3/31/2021	8.0	1.1	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP13-2.0	3/30/2021	2.0	2.5	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP13-5.0	3/30/2021	5.0	2.3	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP14-5.0	3/30/2021	5.0	<1	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP14-10.0	3/30/2021	10.0	2.3	MS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP15-4.0	3/30/2021	4.0	218	MS	0.005 U	0.005 U	0.005 U	0.01 U	51	50 U	250 U
C-1 DP15-7.0	3/30/2021	7.0	1.9	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
2022 Supplemental Phase II	ESA Investigation	on ⁸									
C-1 HSA1-5	4/4/2022	5.0	<1	SS	0.001 U	0.001 U	0.001 U	0.002 U	5 U	50 U	250 U
C-1 HSA1-15	4/4/2022	15.0	<1	NS	0.001 U	0.001 U	0.001 U	0.002 U	5 U	50 U	250 U
C-1 HSA2-4	4/4/2022	4.0	<1	NS	0.001 U	0.001 U	0.001 U	0.002 U	5 U	50 U	250 U
C-1 HSA2-10	4/4/2022	10.0	<1	SS	0.001 U	0.001 U	0.001 U	0.002 U	5 U	50 U	250 U
C-1 HSA2-15	4/4/2022	15.0	<1	NS	0.001 U	0.001 U	0.001 U	0.002 U	_	_	
C-1 HSA3-5	4/5/2022	5.0	<1	NS	0.001 U	0.001 U	0.001 U	0.002 U	5 U	50 U	250 U
C-1 HSA3-10	4/5/2022	10.0	<1	NS	0.001 U	0.001 U	0.001 U	0.002 U	5 U	50 U	250 U
C-1 HSA4-5	4/5/2022	5.0	<1	SS	0.001 U	0.001 U	0.001 U	0.002 U	5 U	50 U	250 U
C-1 HSA4-10	4/5/2022	10.0	<1	MS	0.001 U	0.001 U	0.001 U	0.002 U	5 U	50 U	250 U
C-1 HSA4-15	4/5/2022	15.0	1.5	MS	0.001 U	0.001 U	0.001 U	0.002 U	5 U	50 U	250 U
C-1 HSA4-20	4/5/2022	20.0	<1.3	SS	0.001 U	0.0010	0.001 U	0.002 0	5 U	50 U	250 U
		20.0	\1	33	0.0010	0.0032	0.0010	0.0004	3.0	30 0	230 0
2022 to 2023 Remedial Inve C-1 RI-1-4		4.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
	12/19/2022										
C-1 RI-1-8	12/19/2022	8.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-1-10	12/19/2022	10.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-2-4	12/19/2022	4.0	9.1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-2-8	12/19/2022	8.0	4.9	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-2-10	12/19/2022	10.0	6.5	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-2-20	12/19/2022	20.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U	-		-
C-1 RI-3-4	12/19/2022	4.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-3-8	12/19/2022	8.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-3-10	12/19/2022	10.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-4-4	12/19/2022	4.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-4-8	12/19/2022	8.0	1.2	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-4-10	12/19/2022	10.0	1.3	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-4-20	12/19/2022	20.0	1.5	NS	0.001 U	0.001 U	0.001 U	0.003 U			-
C-1 RI-5-4	12/19/2022	4.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-5-8	12/19/2022	8.0	1.1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-5-10	12/19/2022	10.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-5-20	12/19/2022	20.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U			-
C-1 RI-6-4	12/19/2022	4.0	121.5	SS	0.001 U	0.001 U	0.0010	0.418	5 U	50 U	250 U
C-1 RI-6-8	12/20/2022	8.0	3.1	NS NS	0.001 U	0.001 U	0.003 0.001 U	0.0074	6.2	50 U	250 U
C-1 RI-7-8	12/20/2022	8.0	1.2	SS	0.001 U	0.001 U	0.001 U	0.0074	5 U	50 U	250 U
		+				ł					.
C-1 RI-8-4	12/20/2022	4.0	13.2	SS	0.001 U	0.001 U	0.001 U	0.0051	5 U	50 U	250 U
C-1 RI-8-8	12/20/2022	8.0	11.1	NS	0.0011	0.0027	0.0035	0.0078	5 U	50 U	250 U
C-1 RI-9-4	12/20/2022	4.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-9-8	12/20/2022	8.0	1.2	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-10-4	12/21/2022	4.0	<1	MS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U

File No. 5530-014-02 Table 4 | June 30, 2023

Soil Chemical Analytical Results 2021 and 2022¹

Petroleum Hydrocarbons and BTEX

C-1 Hangar and C-1 Building, Snohomish County Airport
Everett, Washington

			Field Scree	ening		E	BTEX ⁴		Total Pet	troleum Hydr (mg/kg) ⁶	ocarbons
		Sample Depth	Results Headspace	s ³		(n	ng/kg)	Total	Gasoline	Diesel	Lube Oil
Sample Identification ²	Sample Date	(feet bgs)	Vapors (ppm)	Sheen	Benzene	Toluene	Ethylbenzene	Xylenes ⁵	Range	Range	Range
C-1 RI-10-10	12/21/2022	10.0	<1	SS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-10-17	12/21/2022	17.0	1.4	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-11-2	12/21/2022	2.0	<1	MS	-		-		5 U	50 U	250 U
C-1 RI-Dup-1 ¹⁰	12/21/2022	2.0	<1	MS					5 U	75	250 U
C-1 RI-11-4	12/21/2022	4.0	2.4	SS					5 U	180	880
C-1 RI-12-4	12/20/2022	4.0	2.3	MS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-12-10	12/20/2022	10.0	7.6	SS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-12-20	12/20/2022	20.0	13	MS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-12-25	12/20/2022	25.0	<1	MS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-12-30	12/20/2022	30.0	<1	SS	-					-	
C-1 RI-12-35	12/20/2022	35.0	<1	NS	-					-	
C-1 RI-13-4	12/21/2022	4.0	<1	SS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-13-10	12/21/2022	10.0	<1	SS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
C-1 RI-13-20	12/21/2022	20.0	<1	NS	0.001 U	0.001 U	0.001 U	0.003 U	5 U	50 U	250 U
N	ITCA Method A or	B Cleanup Level	for Unrestricted	Land Use	0.03	7	6	9	30/100 ¹¹	2,0	00 ¹²

Notes:

- = Not analyzed bgs = below ground surface NS = No sheen mg/kg = milligrams per kilogram

SS = Slight sheen U = Analyte not detected at a concentration greater than the listed reporting limit.

ESA = Environmental Site Assessment

Bold value indicates analyte detected at the concentration shown.

¹Chemical analyses performed by Friedman and Bruya, Inc. of Seattle, Washington. Chemical analytical laboratory reports are included in Appendix E.

 $^{^{\}rm 2}\,\mbox{The}$ approximate sample locations are shown in Figure 2.

 $^{^{\}rm 3}$ Field screening methods are described in Appendix A.

 $^{^{\}rm 4}\,{\rm BTEX}$ compounds were analyzed by EPA Method 8260C.

 $^{^{5}}$ Sum of m,p-xylene and o-xylene. Where xylenes are non-detect, the highest laboratory reporting limit is shown.

⁶ Petroleum hydrocarbons analyzed by NWTPH-Gx and NWTPH-Dx.

 $^{^{\}rm 7}$ Phase II Environmental Site Assessment conducted by GeoEngineers in March 2021.

⁸ Supplemental Site Investigation conducted by GeoEngineers in April 2022.

 $^{^{\}rm 9}\,{\rm Remedial}$ Investigation conducted by GeoEngineers in December 2022.

 $^{^{\}rm 10}\,{\rm Duplicate}$ parent sample is C-1 RI-11-2.

 $^{^{11}}$ Cleanup level is 30 mg/kg when benzene present or 100 mg/kg when benzene is present.

 $^{^{\}rm 12}\!$ Cleanup level is the sum of diesel- and oil-range petroleum hydrocarbons.

Soil Chemical Analytical Results 2021 and 2022¹

Volatile Organic Compounds (VOCs) and Polychlorinated Biphenyls (PCBs)

C-1 Hangar and C-1 Building, Snohomish County Airport Everett, Washington

										,	VOCs ³ (mg/kg	3)								<u> </u>
					Chlorina	ted VOCs						,								(mg/kg)
Sample Identification ²	Sample Date	Sample Depth (feet bgs)	Tetrachloroethene (PCE)	Trichloroethene (TCE)	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1-Dichloroethane	1,2-Dichloroethane (EDC)	1,1,1-Trichloroethane	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dichlorobenzene	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2-Chlorotoluene	Polychlorinated Biphenyls 4 (m
2021 Phase II ESA											T 1									
C-1 DP1-3.5	03/31/21	3.5	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP1-11.0	03/31/21	11.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP2-5.0	03/31/21	5.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP2-11.0	03/31/21	11.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP3-4.0	03/30/21	4.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP3-7.0	03/30/21	7.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP4-3.5	03/30/21	3.5	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP4-5.0	03/30/21	5.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP4-7.0	03/30/21	7.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.013	0.005 U	0.025 U	0.025 U	0.027	0.005 U	0.022	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP5-3.0	03/30/21	3.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP5-6.0	03/30/21	6.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP6-3.0	03/31/21	3.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP6-6.0	03/31/21	6.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP7-4.0	03/31/21	4.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP7-9.0	03/31/21	9.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP8-4.5	03/31/21	4.5	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP8-9.0	03/31/21	9.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP9-3.0	03/31/21	3.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP9-7.5	03/31/21	7.5	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP10-4.0	03/31/21	4.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP11-4.0	03/31/21	4.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP12-3.0	03/31/21	3.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP12-8.0	03/31/21	8.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP13-2.0	03/30/21	2.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP13-5.0	03/30/21	5.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP14-5.0	03/30/21	5.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP14-10.0	03/30/21	10.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP15-4.0	03/30/21	4.0	0.028	0.62	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.04	0.038	0.055	0.005 U	0.04	0.005 U	0.65	1.7	0.052	0.02 U
C-1 DP15-7.0	03/30/21	7.0	0.005 U	0.14	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 U	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U

Soil Chemical Analytical Results 2021 and 2022¹

Volatile Organic Compounds (VOCs) and Polychlorinated Biphenyls (PCBs)

C-1 Hangar and C-1 Building, Snohomish County Airport Everett, Washington

	1	ı										_								
					Chlorina	had 1/00a				<u>'</u>	VOCs ³ (mg/kg)								ķ
					Ciliorina				1	6										ls ⁴ (mg/kg)
Sample Identification ²	Sample Date	Sample Depth (feet bgs)	Tetrachloroethene (PCE)	Trichloroethene (TCE)	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1-Dichloroethane	1,2-Dichloroethane (EDC)	1,1,1-Trichloroethane	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dichlorobenzene	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2-Chlorotoluene	Polychlorinated Biphenyls ⁴ (
2022 Supplement	al Phase II ESA I	nvestigation	1 ⁶																	
C-1 HSA1-5	4/4/2022	5.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
C-1 HSA1-15	4/4/2022	15.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 HSA2-4	4/4/2022	4.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 HSA2-10	4/4/2022	10.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.0026	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
C-1 HSA2-15	4/4/2022	15.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.029	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 HSA3-5	4/5/2022	5.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 HSA3-10	4/5/2022	10.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 HSA4-5 C-1 HSA4-10	4/5/2022 4/5/2022	5.0 10.0	0.001 U 0.001 U	0.001 U 0.001 U	0.001 U 0.001 U	0.002 U 0.002 U	0.001 U 0.001 U	0.001 U 0.001 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.25 U 0.25 U	0.25 U 0.25 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	
C-1 HSA4-10 C-1 HSA4-15	4/5/2022	15.0	0.001 U	0.0010	0.0010	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 HSA4-15	4/5/2022	20.0	0.001 U	0.0022	0.0014	0.002 0	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
2022 to 2023 Ren	, ,		0.0010	0.001	0.010	0.0023	0.0010	0.0010	0.002 0	0.002 0	0.002 0	0.200	0.23 0	0.000	0.000	0.000	0.000	0.000	0.00 0	
C-1 RI-1-4	12/19/2022	4.0	0.001 U	0.0020	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-1-8	12/19/2022	8.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-1-10	12/19/2022	10.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-2-4	12/19/2022	4.0	0.0078	0.43	0.001 U	0.002 U	0.0014	0.001 U	0.0036	0.002 U	0.0091	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	_
C-1 RI-2-8	12/19/2022	8.0	0.0021	0.29	0.0010	0.002 U	0.0035	0.001 U	0.0043	0.002 U	0.0030	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-2-10	12/19/2022	10.0	0.0031	0.73	0.0040	0.002 U	0.011	0.001 U	0.0067	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
C-1 RI-2-20 ⁸	12/19/2022	20.0	-	0.044				-	-			-					-			-
C-1 RI-3-4	12/19/2022	4.0	0.0026	0.047	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
C-1 RI-3-8	12/19/2022	8.0	0.001 U	0.0049	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-3-10	12/19/2022	10.0	0.001 U	0.0034	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
C-1 RI-4-4	12/19/2022	4.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-4-8	12/19/2022	8.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
C-1 RI-4-10 C-1 RI-5-4	12/19/2022	10.0 4.0	0.001 U	0.001 U	0.001 U 0.001 U	0.002 U 0.002 U	0.001 U	0.001 U 0.001 U	0.002 U 0.002 U	0.002 U	0.002 U 0.002 U	0.25 U	0.25 U 0.25 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U 0.05 U	0.05 U	
C-1 RI-5-4 C-1 RI-5-8	12/19/2022	8.0	0.001 U 0.001 U	0.001 U 0.001 U	0.001 U	0.002 U	0.001 U 0.001 U	0.001 U	0.002 U	0.002 U 0.002 U	0.002 U	0.25 U 0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U 0.05 U	
C-1 RI-5-8	12/19/2022		0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-6-4	12/19/2022	4.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-6-8	12/20/2022	8.0	0.001 U	0.0027	0.0010	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-7-8	12/20/2022	8.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-8-4	12/20/2022	4.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-8-8	12/20/2022	8.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-9-4	12/20/2022	4.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
C-1 RI-9-8	12/20/2022	8.0	0.001 U	0.001 U	0.0013	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-10-4	12/21/2022	4.0	0.001 U	0.0014	0.0047	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-10-10	12/21/2022	10.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-10-17	12/21/2022	17.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
C-1 RI-12-4	12/20/2022	4.0	0.001 U	0.61	0.051	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-12-10	12/20/2022	10.0	0.001 U	0.075	0.0077	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-12-20	12/20/2022	20.0	0.001 U	0.058	0.0074	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	-
C-1 RI-12-25	12/20/2022	25.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	

Soil Chemical Analytical Results 2021 and 2022¹

Volatile Organic Compounds (VOCs) and Polychlorinated Biphenyls (PCBs)

C-1 Hangar and C-1 Building, Snohomish County Airport
Everett, Washington

										١	/OCs³ (mg/kg	·)								ğ
					Chlorina	ted VOCs														1∕8
Sample Identification ²	Sample Date	Sample Depth (feet bgs)	Tetrachloroethene (PCE)	rrichloroethene (TCE)	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride	1,1-Dichloroethane	1,2-Dichloroethane (EDC)	1,1,1-Trichloroethane	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dichlorobenzene	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2-Chlorotoluene	Polychlorinated Biphenyls 4 (n
C-1 RI-13-4	12/21/2022	4.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-13-10	12/21/2022	10.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
C-1 RI-13-20	12/21/2022	20.0	0.001 U	0.001 U	0.001 U	0.002 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.25 U	0.25 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
MTCA Metho	od A or B Cleanup Unrestricted I	0	0.05	0.03	160	1,600	4,0009	0.67 ⁹	180 ⁹	11	2	NE	34.0	NE	7,200	800	NE	190	1,600	1

Notes:

bgs = below ground surface; mg/kg = milligrams per kilogram

U = Analyte not detected at a concentration greater than the listed reporting limit.

-- = Not analyzed; NA = Not available; NE = Not established

Bold value indicates analyte detected at the concentration shown.

Gray shaded value indicates the detected concentration exceeded the applicable cleanup level.

¹Chemical analyses performed by Friedman and Bruya, Inc. of Seattle, Washington. Chemical analytical laboratory reports are included in Appendix E.

² The approximate exploration locations are shown in Figure 2.

³ Volatiles were analyzed by EPA Method 8260D. Only volatiles that were detected are listed; all other volatiles are non-detect for all samples. BTEX results are presented in Table 1.

⁴ PCBs analyzed by EPA Method 8082A.

⁵ Phase II Environmental Site Assessment conducted by GeoEngineers in March 2021.

 $^{^{\}rm 6} \text{Supplemental Site Investigation conducted by GeoEngineers in April 2022.}$

 $^{^{7}\,\}mathrm{Remedial}$ Investigation conducted by GeoEngineers in December 2022.

⁸ Sample C-1 RI-2-20 was analyzed for TCE outside of the hold time. Results should be considered an estimate value.

⁹ Cleanup level shown is the MTCA Method A cleanup level for unrestricted land use. If no MTCA Method A value is available, the most conservative MTCA Method B cleanup level is presented.

Soil Chemical Analytical Results 2021 and 2022¹ Total Metals

C-1 Hangar and C-1 Building, Snohomish County Airport Everett, Washington

Sample	Sample Date	Sample Depth				Total Metal	s ³ (mg/kg)			
Identification ²		(feet bgs)	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
2021 Phase II ESA ⁴					T			T	1	
C-1 DP1-3.5	3/31/2021	3.5	2.69	42.7	1.00 U	19.1	2.0	1.00 U	1.00 U	1.00 U
C-1 DP1-11.0	3/31/2021	11.0	2.92	50.5	1.00 U	65.7 ⁵	2.5	1.00 U	1.00 U	1.00 U
C-1 DP2-5.0	3/31/2021	5.0	4.74	34.5	1.00 U	21.1	1.74	1.00 U	1.00 U	1.00 U
C-1 DP2-11.0	3/31/2021	11.0	2.31	36.0	1.00 U	21.1	1.69	1.00 U	1.00 U	1.00 U
C-1 DP3-4.0	3/30/2021	4.0	2.25	26.0	1.00 U	23.3	4.86	1.00 U	1.00 U	1.00 U
C-1 DP3-7.0	3/30/2021	7.0	1.83	41.6	1.00 U	22.4	2.39	1.00 U	1.00 U	1.00 U
C-1 DP4-3.5	3/30/2021	3.5	1.78	50.1	1.00 U	20.3	2.14	1.00 U	1.00 U	1.00 U
C-1 DP4-5.0	3/30/2021	5.0	2.59	44.6	1.00 U	21.9	2.09	1.00 U	1.00 U	1.00 U
C-1 DP4-7.0	3/30/2021	7.0	1.83	35.6	1.00 U	19.4	1.62	1.00 U	1.00 U	1.00 U
C-1 DP5-3.0	3/30/2021	3.0	1.79	40.5	1.00 U	18.0	1.71	1.00 U	1.00 U	1.00 U
C-1 DP5-6.0	3/30/2021	6.0	2.08	48.0	1.00 U	24.6	2.37	1.00 U	1.00 U	1.00 U
C-1 DP6-3.0	3/31/2021	3.0	2.49	42.3	1.00 U	16.0	1.83	1.00 U	1.00 U	1.00 U
C-1 DP6-6.0	3/31/2021	6.0	2.63	48.0	1.00 U	20.0	2.13	1.00 U	1.00 U	1.00 U
C-1 DP7-4.0	3/31/2021	4.0	3.01	40.5	1.00 U	18.2	1.95	1.00 U	1.00 U	1.00 U
C-1 DP7-9.0	3/31/2021	9.0	2.01	38.3	1.00 U	18.2	1.75	1.00 U	1.00 U	1.00 U
C-1 DP8-4.5	3/31/2021	4.5	2.10	41.0	1.00 U	20.4	2.05	1.00 U	1.00 U	1.00 U
C-1 DP8-9.0	3/31/2021	9.0	2.93	47.2	1.00 U	18.8	2.22	1.00 U	1.00 U	1.00 U
C-1 DP9-3.0	3/31/2021	3.0	2.96	44.7	1.00 U	18.3	2.09	1.00 U	1.00 U	1.00 U
C-1 DP9-7.5	3/31/2021	7.5	2.36	44.2	1.00 U	20.8	2.36	1.00 U	1.00 U	1.00 U
C-1 DP10-4.0	3/31/2021	4.0	3.27	43.6	1.00 U	19.7	2.04	1.00 U	1.00 U	1.00 U
C-1 DP11-4.0	3/31/2021	4.0	2.98	46.5	1.00 U	18.3	2.22	1.00 U	1.00 U	1.00 U
C-1 DP12-3.0	3/31/2021	3.0	2.97	44.9	1.00 U	21.5	2.31	1.00 U	1.00 U	1.00 U
C-1 DP12-8.0	3/31/2021	8.0	3.02	39.3	1.00 U	21.4	2.11	1.00 U	1.00 U	1.00 U
C-1 DP13-2.0	3/30/2021	2.0	3.11	82.9	1.00 U	19.2	1.9	1.00 U	1.00 U	1.00 U
C-1 DP13-5.0	3/30/2021	5.0	3.35	40.7	1.00 U	14.7	1.59	1.00 U	1.00 U	1.00 U
C-1 DP14-5.0	3/30/2021	5.0	3.02	68.0	1.00 U	22.5	2.43	1.00 U	1.00 U	1.00 U
C-1 DP14-10.0	3/30/2021	10.0	1.71	32.5	1.00 U	16.4	1.31	1.00 U	1.00 U	1.00 U
C-1 DP15-4.0	3/30/2021	4.0	3.33	61.4	1.00 U	25.8	2.44	1.00 U	1.00 U	1.00 U
C-1 DP15-7.0	3/30/2021	7.0	3.24	56.5	1.00 U	19.6	2.15	1.00 U	1.00 U	1.00 U
2022 Supplementa	Phase II ESA Inves	stigation ⁶								
C-1 HSA1-5	4/4/2022	5.0	1.70	46.2	1 U	15.9	1.59	1 U	1 U	1 U
C-1 HSA1-15	4/4/2022	15.0	2.14	48.5	1 U	22.3	2.26	1 U	1 U	1 U
C-1 HSA2-4	4/4/2022	4.0	2.36	43.5	1 U	19.4	2.03	1 U	1 U	1 U
C-1 HSA4-5	4/5/2022	5.0	2.13	52.3	1 U	18.2	1.90	1 U	1 U	1 U
2022 to 2023 Rem						<u> </u>			<u> </u>	
C-1 RI-1-4	12/19/2022	4.0	2.82	51.5	1.0 U	25.7	2.40	1.0 U	1.0 U	1.0 U
C-1 RI-1-8	12/19/2022	8.0	3.40	47.6	1.0 U	29.5	2.33	1.0 U	1.0 U	1.0 U
C-1 RI-1-10	12/19/2022	10.0	2.19	57.0	1.0 U	24.5	2.67	1.0 U	1.0 U	1.0 U
C-1 RI-2-4	12/19/2022	4.0	2.93	45.0	1.0 U	19.7	1.76	1.0 U	1.0 U	1.0 U
C-1 RI-2-8	12/19/2022	8.0	3.28	43.4	1.0 U	19.4	2.27	1.0 U	1.0 U	1.0 U
C-1 RI-2-10	12/19/2022	10.0	1.97	39.5	1.0 U	19.4	2.03	1.0 U	1.0 U	1.0 U
C-1 RI-3-4	12/19/2022	4.0	2.28	43.5	1.0 U	20.3	2.08	1.0 U	1.0 U	1.0 U
C-1 RI-3-8	12/19/2022	8.0	2.99	43.6	1.0 U	20.9	2.30	1.0 U	1.0 U	1.0 U
C-1 RI-3-10	12/19/2022	10.0	4.10	45.7	1.0 U	21.0	2.15	1.0 U	1.0 U	1.0 U
C-1 RI-4-4	12/19/2022	4.0	2.50	47.0	1.0 U	22.6	2.42	1.0 U	1.0 U	1.0 U
C-1 RI-4-8	12/19/2022	8.0	2.11	50.1	1.0 U	24.0	2.34	1.0 U	1.0 U	1.0 U
C-1 RI-4-10	12/19/2022	10.0	1.79	42.1	1.0 U	18.4	1.88	1.0 U	1.0 U	1.0 U
C-1 RI-5-4	12/19/2022	4.0	1.84	43.9	1.0 U	24.9	1.84	1.0 U	1.0 U	1.0 U
C-1 RI-5-8	12/19/2022	8.0	2.18	56.6	1.0 U	24.4	2.83	1.0 U	1.0 U	1.0 U
C-1 RI-5-8	12/19/2022	10.0	2.16	52.3	1.0 U	25.5	2.47	1.0 U	1.0 U	1.0 U
O-T I/II-O-TO		or B Cleanup Level	20	1,600 ⁸	2	2,000 8	250	2	400 ⁸	400 8
Natu	ally Occurring Back	kground Metals in	_							
	- P	uget Sound Soils ⁹	7	NA	1	48	24	0.07	NA	NA

Notes:

- ¹Chemical analyses performed by Friedman and Bruya, Inc. of Seattle, Washington. Chemical analytical laboratory reports are included in Appendix
- ² The approximate exploration locations are shown in Figure 2.

bgs = below ground surface

mg/kg = milligrams per kilogram

 $\mbox{\bf U}$ = Analyte not detected at a concentration greater than the listed reporting limit.

NA = Not available

Bold value indicates analyte has been detected at the concentration shown.

³ Metals analyzed by EPA Method 6020B.

 $^{^{\}rm 4}\,\text{Phase II}$ Environmental Site Assessment conducted by GeoEngineers in March 2021.

⁵ Sample was analyzed for hexavalent chromium using EPA method 7196; hexavalent chromium was not detected and the cleanup level presented is for chromium III, which is the most common form of chromium.

 $^{^{\}rm 6}$ Supplemental Site Investigation conducted by GeoEngineers in April 2022.

 $^{^{\}rm 7}\,{\rm Remedial}$ Investigation conducted by GeoEngineers in December 2022.

⁸ Cleanup level shown is the most conservative MTCA Method B cleanup level available for protection of groundwater; if no cleanup level is available for protection of groundwater, the MTCA Method B cleanup level for direct contact is shown.

⁹ 90th Percentile for natural background soil metals concentrations in Puget Sound region, Department of Ecology, publication #94-115, dated October 1994.

Groundwater Chemical Analytical Results 2021 through 2023¹

Petroleum Hydrocarbons, VOCs, and Metals

C-1 Hangar and Building, Snohomish County Airport
Everett, Washington

		Total Petro	oleum Hyd	rocarbons	³ (µg/L)	Volatile Organic Compounds ⁵ (VOCs) (μg/L)											Metals ⁷ (μg/L)											
								e		ene	eue		Arsenic		Barium		Cadmium		Chromium		Lead		Mercury		Selenium		Silver	
Exploration Identification ²	Sample Date	Gasoline Range	Stoddard Solvent Range ⁴	Diesel Range	Motor Oil Range	Vinyl Chloride	Chlorobenzene	1,2-Dichlorobenzer	Methylene Chloride	cis-1,2-Dichloroeth	1,2-Dichloroethane (EDC)	PCBs ⁶ (µg/L)	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total
2021 Phase II ESA ⁸																												_
C-1 DP2-033121W	3/31/2021	100 U		50.0 U	250 U	0.2 U	1 U	1 U	12 .0 ⁹	1 U	1 U	0.100 U	3.48	29.5	16.7	539	1.00 U	1.08	4.57	187	1.98	24.6	1.00 U	1.00 U	1.00 U	1.55	6.28	1.00 U
C-1 DP3-033021W	3/30/2021	100 U		110	330	0.2 U	1 U	1 U	5.00 U	1 U	1 U	0.100 U	2.68	34.7	8.11	752	1.00 U	4.46	1.41	210	1.13	120	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
C-1 DP13-033121W	3/31/2021	100 U		50.0 U	250 U	0.2 U	1 U	1 U	5.00 U	1 U	1 U	0.100 U	1.00 U	6.62	14.7	129	1.00 U	1.00 U	1.00 U	24.7	1.00 U	2.99	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
C-1 DP14-033121W	3/31/2021	100 U		50.0 U	250 U	0.2 U	1 U	1 U	5.00 U	1 U	1 U	0.100 U	9.53	30.8	48.3	595	1.00 U	1.00 U	1.00 U	69.2	1.00 U	10.9	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
2022 Supplemental Phas	e II ESA Investi	igation ¹⁰																										
C-1 HSA3	4/21/2022	100 U		50 U	250 U	0.020 U	1.0 U	1.0 U	5 UJ	1 U	0.2 U		7.41	9.99	65.4	71.8	1.0 U	1.0 U	1.0 U	2.23	1.0 U	1.0 U	1.0 U	1.0 U	3.03	3.26	1.0 U	1.0 U
C-1 HSA4	4/21/2022	100 U		230	250 U	0.36	3	1.4	5 UJ	1 U	0.2 U		7.62	10.2	52.7	55.9	1.0 U	1.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.37	1.5	1.0 U	1.0 U
2022 to 2023 Remedial	nvestigation ¹¹																											
C-1 HSA-3-20230110	1/10/2023		100 U	50 U	250 U	0.02 U	1 U	1 U	5 U	1 U	0.2 U		7.53	7.67	103	99.8	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
C-1 HSA-4-20230109	1/9/2023	100 U		200 ¹²	250 U	0.47	3.6	1.5	5 U	1 U	0.2 U		28.3	28.6	45	41.4	1.0 U	1.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.87	1.97	1.0 U	1.0 U
C-1 RI-10-20230109	1/9/2023	100 U		210 ¹²	250 U	0.12	1.3	1 U	5 U	1 U	0.2 U		9.01	9.49	100	99.7	1.0 U	1.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.85	1.90	1.0 U	1.0 U
C-1 DUP-1-20230109 ¹³	1/9/2023					0.13	1.3	1 U	5 U	1 U	0.2 U		-				-				-						-	
C-1 RI-12-20230110	1/10/2023	100 U		220 ¹²	250 U	0.39	1 U	1 U	5 U	1.3	0.27		6.26	6.14	82.2	77.0	1.0 U	1.0 U	1.0 U	1.10	1.0 U	1.0 U	1.0 U	1.0 U	2.71	2.35	1.0 U	1.0 U
C-1 RI-13-20230110	1/10/2023	100 U		300 ¹²	250 U	0.25	1 U	1 U	5 U	1 U	0.2 U		29.9	33.7	76.9	78.9	1.0 U	1.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.56	2.37	1.0 U	
MTCA Method A or E	3 Cleanup Level	1,000 ¹⁴		50	00	0.20	160 ¹⁵	720 ¹⁵	5	16 ¹⁵	5	0.1	8		3,200) ¹⁵	5		50 ¹	16	15	5	2		80 ²	L5	80	15

Notes:

bgs = below ground surface -= Not analyzed

μg/L = micrograms per liter

NA = Not Available

 $\mbox{\bf U}$ = Analyte not detected at a concentration greater than the listed reporting limit.

UJ = The analytical laboratory reported that the calibration results for this analyte were outside of acceptance criteria. The reported value is an estimate

Bold value indicates analyte detected at the concentration shown.

Gray shaded value indicates the detected concentration exceeded the applicable cleanup level.

¹Chemical analyses performed by Friedman & Bruya of Seattle, Washington. Chemical analytical laboratory reports are included in Appendix E.

 $^{^{2}\}mbox{\sc The}$ approximate exploration locations are shown on Figure 2.

³ Petroleum hydrocarbons analyzed by NWTPH-Gx and NWTPH-Dx

⁴ Carbon values range from C8 to C11 for quantification of Stoddard Solvents.

⁵ Volatiles were analyzed by EPA Method 8260C. Only volatiles that were detected or not detected above cleanup levels in one or more samples are presented in this table.

⁶ PCBs analyzed by EPA Method 8082A.

⁷ Metals analyzed by EPA Method 6020B.

 $^{^{\}rm 8}\,\text{Phase II}$ Environmental Site Assessment conducted by GeoEngineers in March 2021.

⁹The detected concentration was qualified by the analytical laboratory as the result of laboratory contamination.

 $^{^{\}rm 10}\,{\rm Supplemental}$ Site Investigation conducted by GeoEngineers in April 2022.

¹¹ Remedial Investigation conducted by GeoEngineers in December 2022.

¹²The diesel-range chromatogram did not match the laboratory standard and detected concentrations are likely attributed to the presence of organics in the sample.

¹³ Duplicate parent sample is C-1 RI-10-20230109.

¹⁴ Cleanup level when no benzene is present.

¹⁵ Cleanup levels are presented for Method B carcinogenic values, which are the most conservative cleanup levels available.

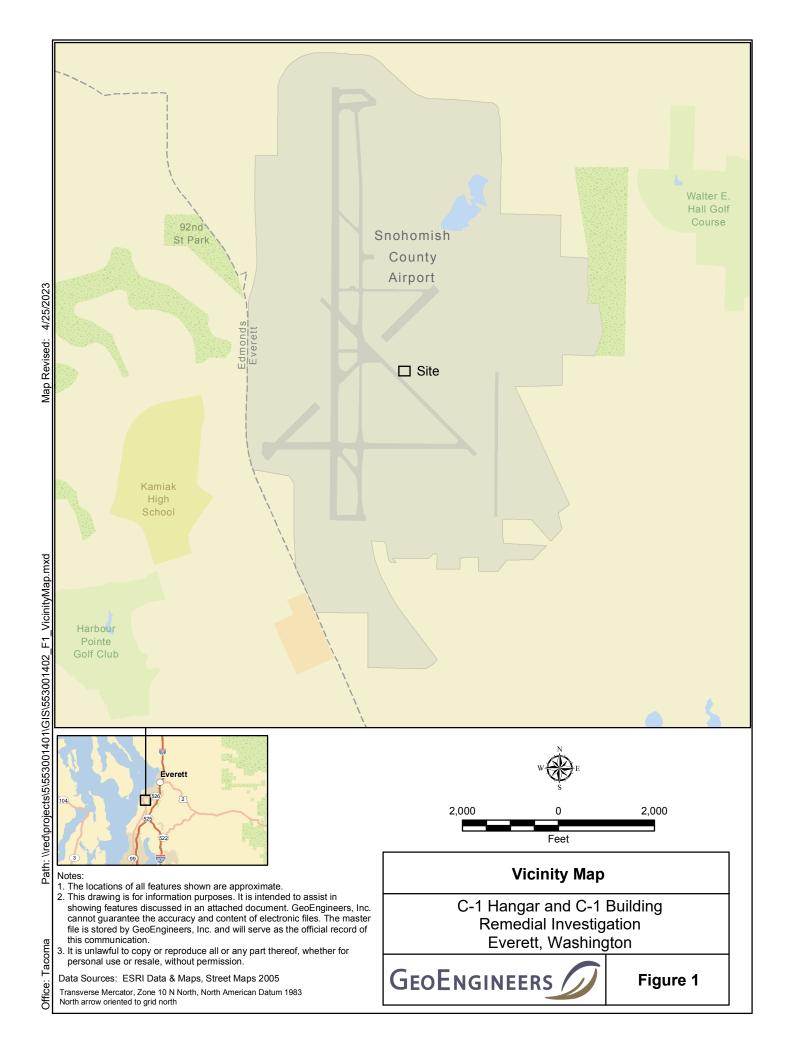
¹⁶ Cleanup levels are presented for Total Chromium.

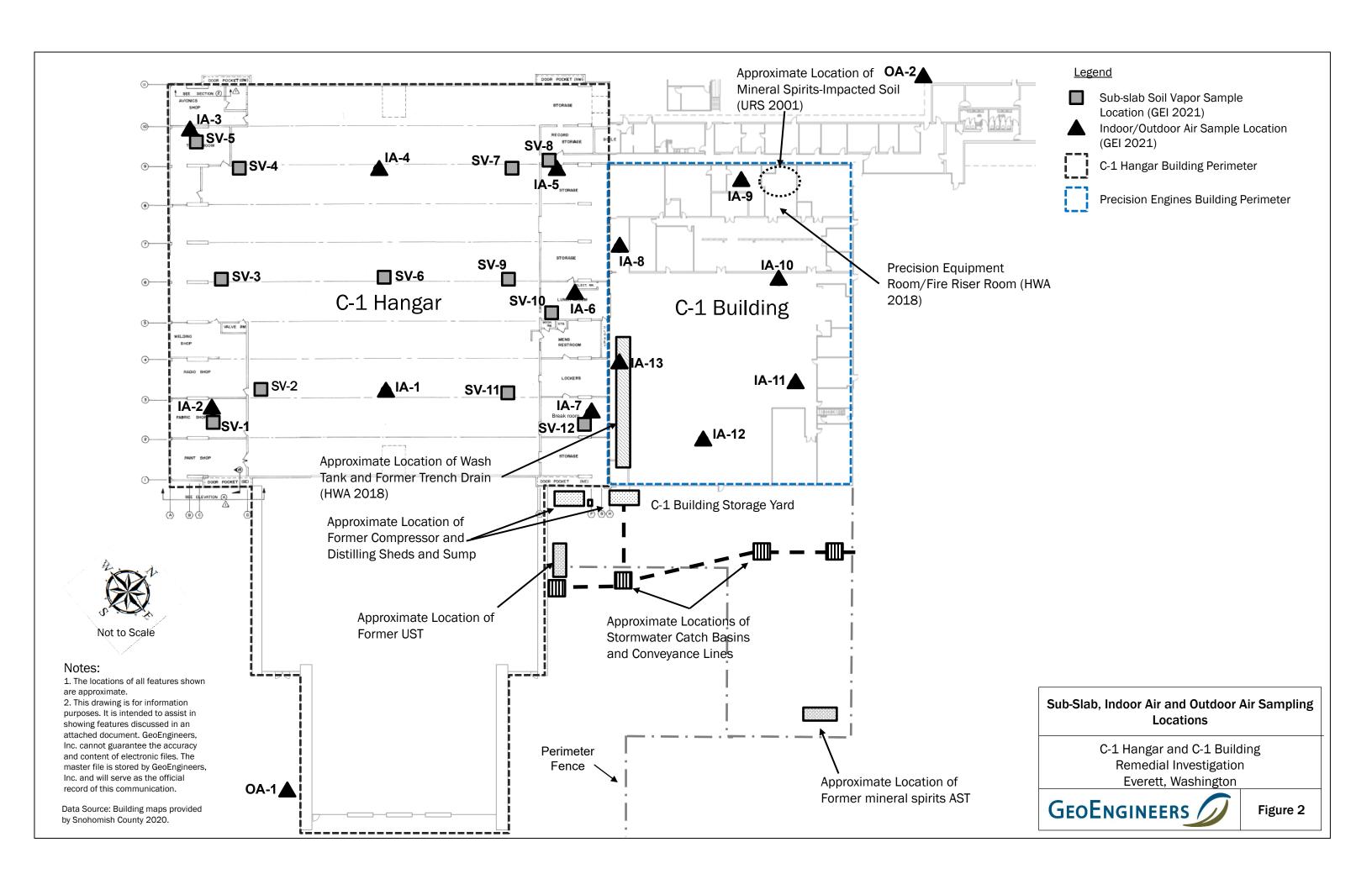
Monitoring Well Design and Groundwater Elevations

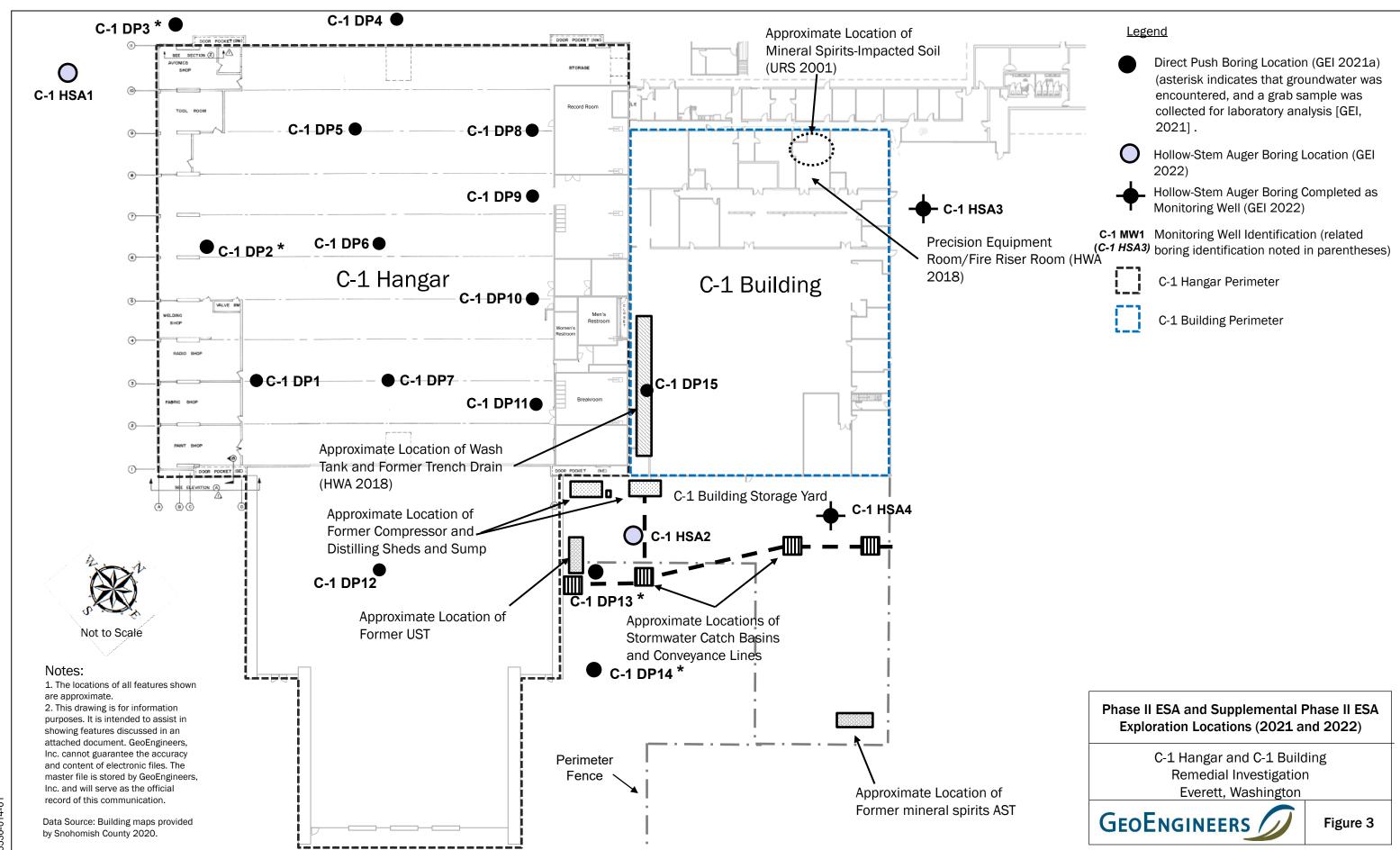
C-1 Hangar and Building, Snohomish County Airport Everett, Washington

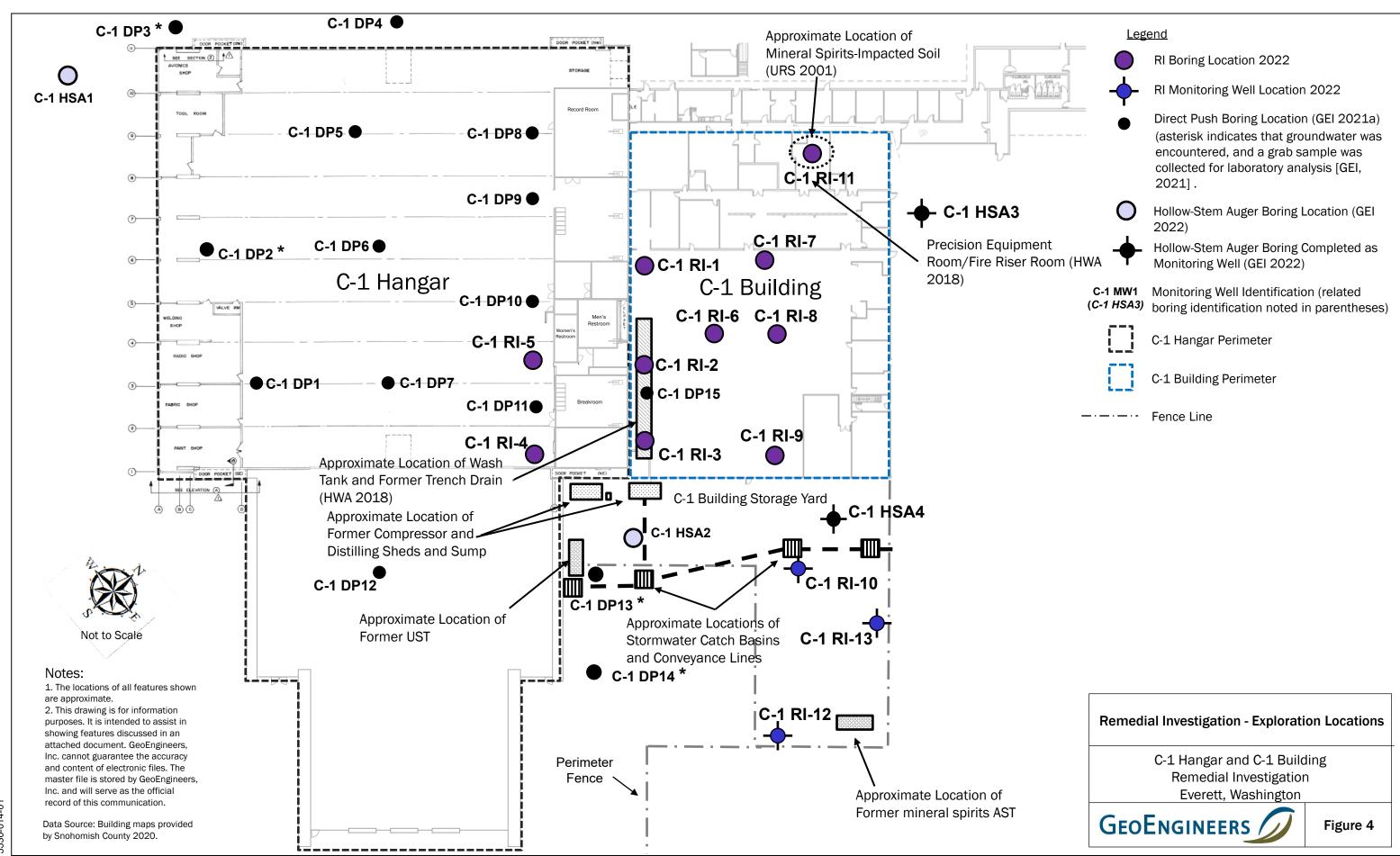
Monitoring Well Identification ²	Date	Depth to Groundwater in Well or Boring (ft bTOC/bgs) ²	Top of Monitoring Well Casing Elevation (NAVD88)	Groundwater Elevation (NAVD88)
2021 Phase II ESA				
C-1 DP2-033121W	3/31/2021	11.0	NA	NA
C-1 DP3-033021W	3/30/2021	4.0	NA	NA
C-1 DP13-033121W	3/31/2021	4.0	NA	NA
C-1 DP14-033121W	3/31/2021	10.0	NA	NA
2022 Supplemental Phas	e II ESA Invest	igation		
C-1 HSA3	4/21/2022	12.04	598.67	586.63
C-1 HSA4	4/21/2022	4.32	598.20	593.88
2022 to 2023 Remedial I	nvestigation			
C-1 HSA-3-20230110	1/10/2023	6.28	598.67	592.39
C-1 HSA-4-20230109	1/9/2023	4.27	598.20	593.93
C-1 RI-10-20230109	1/9/2023	5.01	597.72	592.71
C-1 RI-12-20230110	1/10/2023	3.88	598.24	594.36
C-1 RI-13-20230110	1/10/2023	4.86	598.75	593.89

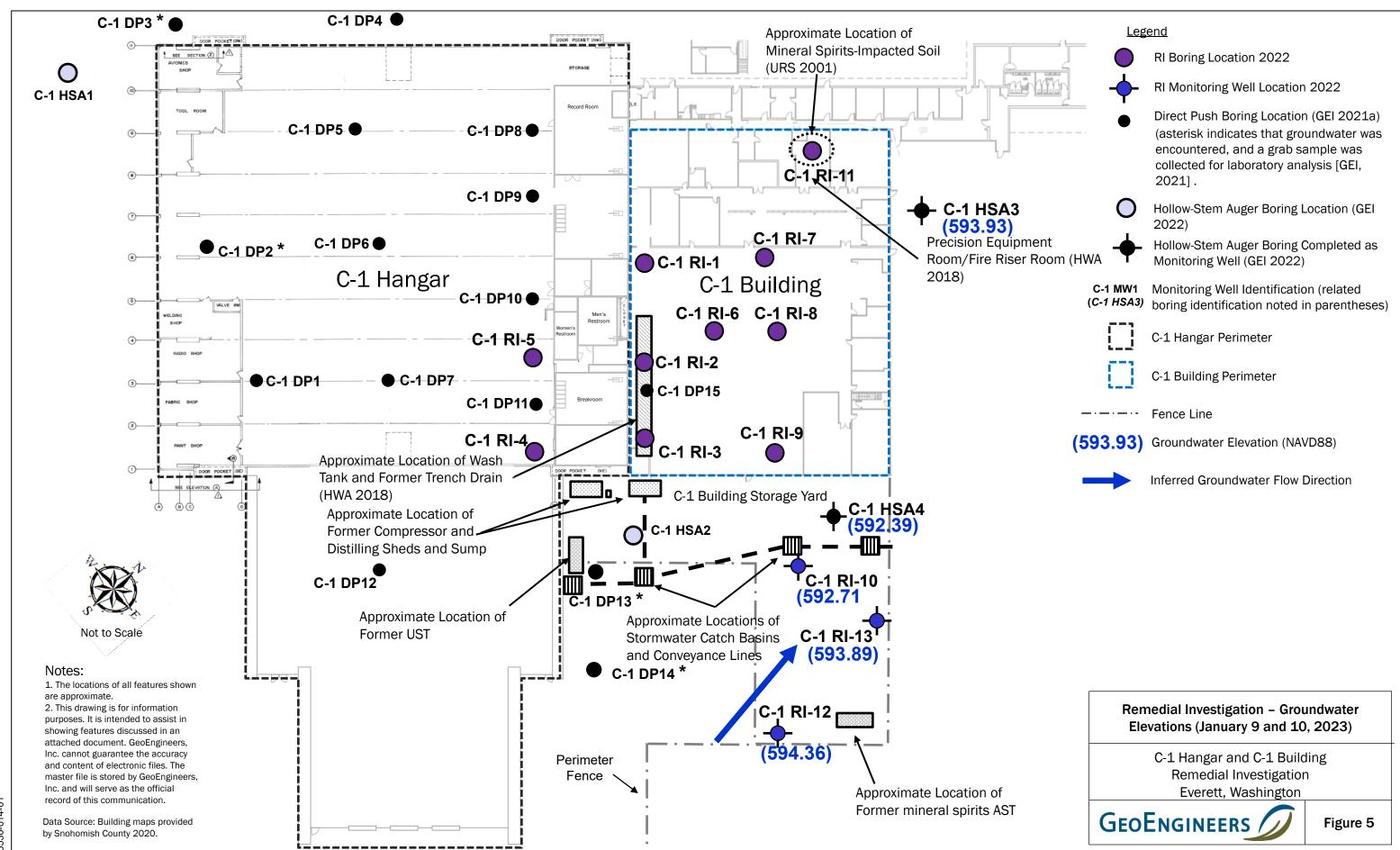
Notes:

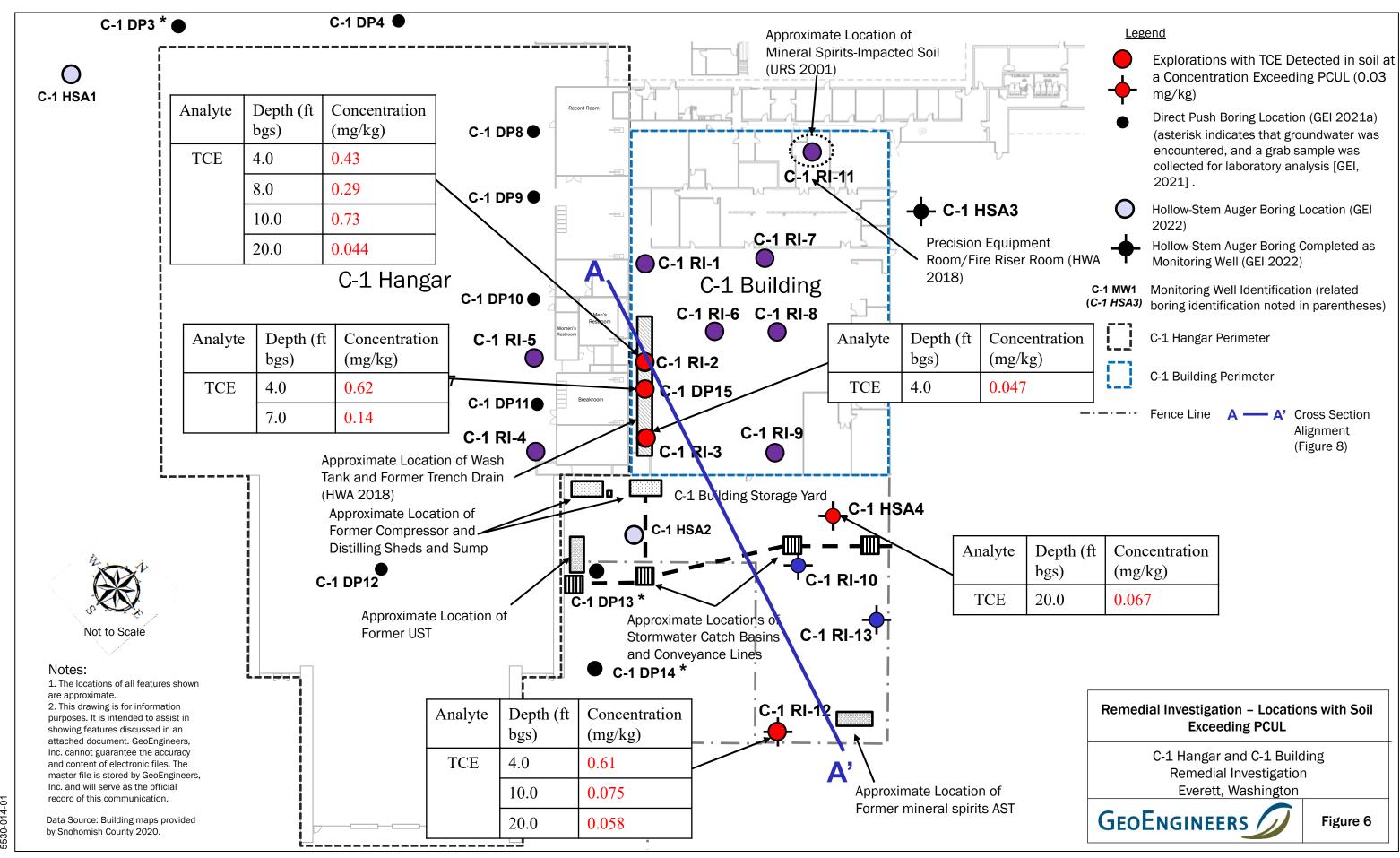

NA = Monitoring well not constructed in boring, elevation not surveyed.

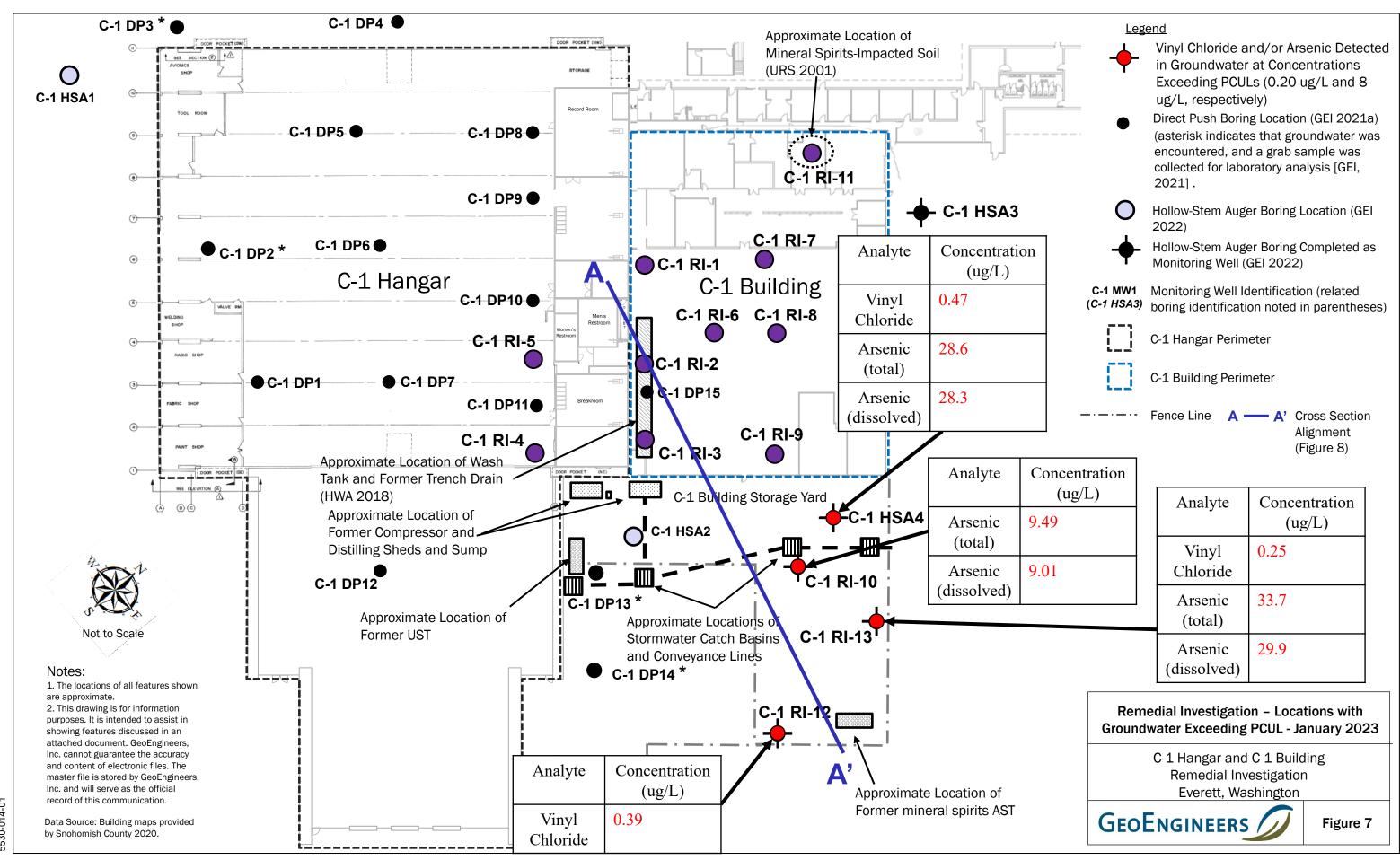


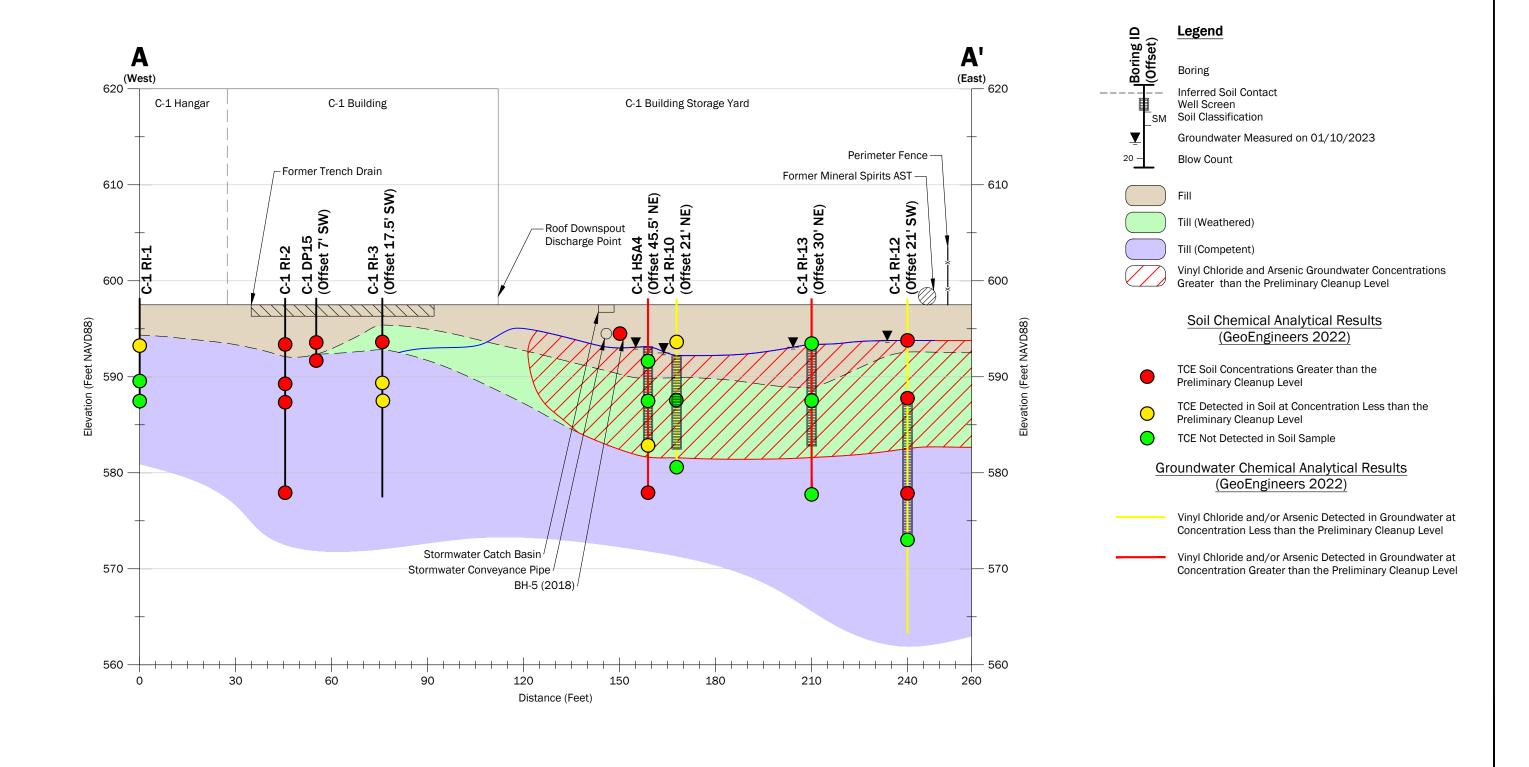

 $^{^{\}mbox{\scriptsize 1}}\mbox{The approximate exploration locations}$ are shown on Figure 2.


² Depth to groundwater in well measured in feet below top of casing (feet bTOC) on January 9 and 10, 2023. Groundwater elevation for each monitoring well is estimated based on ground surface elevations (NAVD88) determined during a survey completed on April 27, 2023.









Notes

- The subsurface conditions shown are based on interpolation between widely spaced explorations and should be considered approximate; actual subsurface conditions may vary from those shown.
- 2. This figure is for informational purposes only. It is intended to assist in the identification of features discussed in a related document. Data were compiled from sources as listed in this figure. The data sources do not guarantee these data are accurate or complete. There may have been updates to the data since the publication of this figure. This figure is a copy of a master document. The hard copy is stored by GeoEngineers, Inc. and will serve as the official document of record.

Horizontal Scale in Feet

O

Vertical Scale in Feet
Vertical Exaggeration = 3X

Cross Section A-A'

C-1 Hangar and C-1 Building Remedial Investigation Everett, Washington

Figure 8

Datum: NAVD 88, unless otherwise noted.

APPENDIX A

Excerpts from 2018 Phase I and Phase II Environmental Site Assessment by HWA Geosciences, Inc.

PHASE I AND PHASE II ENVIRONMENTAL SITE ASSESSMENT

Precision Engines Property Everett, Washington

HWA Project No. 2018-058-22

Prepared for Precision Engines, LLC

July 10, 2018

HWA GEOSCIENCES INC.

- Geotechnical Engineering
- $\cdot \ Hydrogeology$
- · Geoenvironmental Services
- Inspection & Testing

Precision Engines Table 2: Sub-Slab Soil Gas and Indoor Ambient Air Sampling Results All values in ug/m³ except as noted 2015 Sub-Slab Soil 2015 Sub-Slab Soil Gas MTCA Method B 2015 MTCA Method B 2015 MTCA Method B Gas MTCA Method B Screening Level¹ Indoor Air Cleanup Indoor Air Cleanup Screening Level¹ Indoor Ambient Air Level (Noncancer) Level (Cancer) Sample ID SG-1 SG-3 SG-4 SG-5 SG-6 (Noncancer) (Cancer) SG-2 Trench Drain **Trench Drain** Penetrant Room | Wash Tank Area Terminus (in Open Shop Area Cleaning Room | Wash Tank Area Terminus (in Sand Blast Room) Open Shop Area) Location NA Sample depth Sub-Slab Sub-Slab Sub-Slab Sub-Slab Sub-Slab Sub-Slab 5/22/2018 Sample Date 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 5/22/2018 1,1,1-Trichloroethane 527 18100 919 58.8 <2.18 <2.18 <2.18 76190 2286 <2.73 <34.1 <34.1 <2.73 <2.73 <2.73 3.05 5.21 0.09 0.16 1,1,2-Trichloroethane (TCA) 238 1.21 1350 239 <10.1 < 0.810 < 0.810 < 0.810 NF 52 08 NF 1.1-Dichloroethane 1.56 1,1-Dichloroethene (DCE) <1.59 428 206 <19.8 <1.59 <1.59 <1.59 3048 NE 91 NE <1.47 <1.47 106.67 3.2 1,2,4-Trimethylbenzene 50.1 31 <18.4 210 26.8 NE NE 1.2-Dichlorobenzene 7.63 382 <30.1 108 <2.40 < 2.40 <2.40 3048 NE 91 NE 1,3,5-Trimethylbenzene 19.2 <18.4 54.9 <1.47 <1.47 NE NE NE 21.3 7.31 NE <13.8 30.48 0.91 1.3-Butadiene 2.28 <13.8 <13.8 <1.11 <1.11 <1.11 2.78 0.08 <22.5 1,3-Dichlorobenzene <1.80 50.2 <22.5 <1.80 <1.80 <1.80 NE NE NE NE 1,4-Dichlorobenzene 1.83 73 <22.5 <22.5 4.77 <1.80 <1.80 12190 7.58 366 0.23 35.7 <36.9 <36.9 4.01 76190 2286 (MEK) 2-Butanone <36.9 41.7 4.1 NE NE 37.9 89.1 43 <30.7 33.4 83.3 55.9 NE NE NE NE Isopropyl Alcohol 45714 1371 4-Methyl-2-pentanone (MIBK) <51.2 NE 40.5 <51.2 <51.2 5.56 <4 10 <4.10 NE 985 NE Acetone 271 1040 192 590 203 141 NE NE NE Acrolein 3.24 <14.3 <14.3 <14.3 <1.15 <1.15 <1.15 0.30 NE 0.0091 NE 12 24.2 3.97 5.43 5.33 <0.286 0.407 457.14 13.71 Benzene 10.68 0.32 Carbon disulfide <4.67 <58.4 <58.4 <58.4 5.37 <4.67 <4.67 10667 NE 320 NE Volatile <0.413 1524 45.71 Carbon tetrachloride <5 17 <5.17 <5.17 < 0.413 < 0.413 0.445 13 89 0.42 Organic Chloroform 59.9 1160 13.1 <12.2 4.46 <0.977 < 0.977 1493 3.62 44.80 0.11 Compounds Chloromethane 1.49 <12.9 <12.9 <12.9 <1.03 <1.03 <1.03 1371 NE 41 14 NE cis-1.2-Dichloroethene 0.803 24.4 <9.91 <9.91 <0.793 <0.793 <0.793 NE NF NE NE Cyclohexane <1.38 <17.2 <17.2 <17.2 3.86 <1.38 1.91 NE NE NE NE 15238 457 155 219 120 230 173 <1.74 <1.74 NE NE Ethylbenzene Gasoline Range Organics 11400 77500 201000 34700 8230 817 5860 NE NE NE NE 28.5 <20.1 <20.1 6.99 <1.61 <1.61 NE NE ΝE <20.1 <3 47 1524 NE 45.71 NE m,p-Xylene 548 638 439 803 630 6.61 Methylene chloride <6.95 <86.9 <86.9 <86.9 <6.95 40.3 <6.95 9143 8333 274 250 2.45 0.07 Naphthalene < 0.524 12 18.3 9.44 < 0.524 <0.524 <0.524 45.71 <17.6 <17.6 <17.6 10667 320 NF 36.2 NF n-Hexane 7.48 1.8 <1 41 156 166 163 116 <1.74 <1.74 1524 NE 45.71 NE o-Xylene 147 4-Ethyltoluene 7.77 <24.6 <24.6 <24.6 <1.97 <1.97 <1.97 NE NE NE NE Propylene 46.4 65 <8.61 <8.61 13.5 <0.688 11.5 NE NE NE NE Tetrachloroethene (PCE) 172 10500 920 126 6.09 <1.36 <1.36 609.52 320.51 18.29 9.62 <1.18 <14.7 <14.7 <14.7 <1.18 <1.18 NE Tetrahydrofuran 15.8 NE NE NE <18.8 <18.8 76190 NE 2286 NE 25.4 19.6 31.3 109 Toluene 6.9 12 33 0.91 0.37 Trichloroethene (TCE) 4910 30.48

Notes:

1 Ecology MTCA Method B/C sub-slab soil gas screening levels from the updated (2015) Toxicity Values and Sub-Slab Screening Levels of the Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State (Ecology, 2009). The screening levels provided in this document are not site or building-specific and may not apply to the Subject Property and were only utilized as a screening level indication of the sub-slab soil gas conditions at the Subject Property.
ug/m³ – microgram per cubic meter

NE - Not Established

NA – Not Applicable

< - Analyte not detected at listed reporting limit

Bold – Analyte Detected

Bold / highlighted - Analyte exceeds screening levels provided in the Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State. Analytes did not exceed the OSHA recommended TWA PELs for an 8-hour shift of a 40-hour workweek.

Table 3- Soil Sampling Results All values in mg/kg except as noted MTCA Method A/B BH-5 BH-6 HH-1 BH-1 BH-2 BH-3 BH-4 **BKGD** Cleanup Level¹ **Boring Mineral Spirits** Adjacent to Within Suspect **AST / Hazardous Air Compressor Storm Water Suspect UST** Sump **Distillery Shed** Materials Storage **UST Excavation Catch Basin** Shed Excavation Container Location Sample interval, ft bgs 5 3.5 2 3 1.5 5 3 1 ND TPHo ND ND ND ND ND TPHo NE **HCID** NA Petroleum Gasoline Range NA 100/30* **Hydrocarbons** 2.000 Diesel Range <27 NA <40 Oil Range 770 220 NA 2,000 Acetone 0.01 0.029 <0.0046 <0.0046 0.084 0.096 NA 72,000 (B) 0.00096 <0.00088 < 0.00091 <0.00091 <0.0013 <0.00085 7200 (B) 1,2-Dichlorobenzene NA <0.00083 <0.00088 < 0.00091 < 0.00091 <0.00085 **Vinyl Chloride** 0.0014 NA 240 (B) (trans) 1,2-Dichloroethene <0.00083 <0.00088 < 0.00091 < 0.00091 0.0037 <0.00085 NA 1,600 (B) VOCs** (cis) 1,2-Dichloroethene <0.00083 <0.00088 <0.00091 <0.00091 0.15 <0.00085 NA 160 (B) <0.00083 <0.00088 < 0.00091 <0.00091 <0.00085 NA Trichloroethene (TCE) 0.12 0.03 <0.0044 <0.0046 48,000 (B) 2-Butanone (MEK) < 0.0042 < 0.0046 < 0.0064 0.014 NA Naphthalene 0.0021 0.0013 <0.00091 <0.00091 < 0.0013 <0.00085 NA 5 Arsenic <11 <15 20 Barium 49 130 16.000 (B) Cadmium < 0.57 < 0.74 1 2 19/2,000*** Chromium 38 59 48 **RCRA Metals** Lead <5.7 24 250 8 Mercury <0.28 < 0.37 0.07 2 <11 <15 400 (B) Selenium Silver <1.1 <1.5 400 (B)

Precision Engines

Notes:

¹MTCA A / B – Ecology MTCA Method A / B soil cleanup levels, Chapter 173-340 WAC, shown for reference only. These cleanup levels may not apply at the Subject Property, and are provided as a screening level indication of the environmental quality of the Subject Property only.

BKGD - Natural Background Soil Metals Concentrations in Washington State (Ecology, 1994)

mg/kg – milligrams per kilogram

TPHo - oil range total petroleum hydrocarbons

NE - Not Established

NA - Not Applicable

< - Analyte not detected at listed reporting limit

Blank - Not Analyzed

ND - None of the selected analytes detected.

Bold – Analyte Detected

Bold / highlighted – Analyte exceeds cleanup level

- * The Method A Soil cleanup levels for gasoline mixtures without benzene and the total of ethylbenzene, toluene, and xylenes are less than 1% of the gasoline mixture is 100 mg/kg; all other mixtures are 30 mg/kg
- ** Only VOCs with detections above laboratory reporting limits shown (see Appendix C for complete list of compounds analyzed).
- *** The MTCA Method A soil cleanup level for trivalent chromium is 2,000 mg/kg. Geochemical conditions on the Subject Property would not cause oxidation to hexavalent chromium having a cleanup level of 19 mg/kg.

	F	Precision Eng	ines									
Table 4- Groundwater Sampling Results												
All values in ug/L except as noted												
	Boring	BH-1	BH-2	BH-5	BH-6	MTCA Method A/B Cleanup Level ¹						
	Location	Within Suspect UST Excavation	Adjacent to Suspect UST Excavation	Storm Water Catch Basin	Mineral Spirits AST / Hazardous Materials Storage Container							
Approximate	Depth to Water (ft bgs)	4	4.5	5	10							
	HCID	ND	ND	ND	TPHd	NE						
Petroleum	Gasoline Range					800/1000*						
Hydrocarbons	Diesel Range				410	500						
	Oil Range				<420	500						
	Benzene	<0.20	<0.20	<0.20	0.3	5						
	Acetone	<5.0	5.9	34	5.2	7,200						
	Vinyl Chloride	0.32	<0.20	0.38	0.62	0.2						
	Chlorobenzene	3.0	<0.20	1.1	<0.20	160						
\/OO-##	2-Chlorotoluene	0.22	<0.20	0.38	NE	NE						
VOCs**	(cis) 1,2-Dichloroethene	<0.20	<0.20	14	<0.20	16 (B)						
	Trichloroethene (TCE)	<0.20	<0.20	7	<0.20	5.0						
	1,2,4-Trimethylbenzene	<0.20	<0.20	0.3	0.34	NE						
	1,4-Dichlorobenzene	<0.20	<0.20	0.29	<0.20	560 (B)						
	1,2-Dichlorobenzene	1.7	<0.20	2.2	<0.20	720 (B)						
	Arsenic			5.6		5						
	Barium			74		3200 (B)						
	Cadmium			<4.0		5						
RCRA Metals	Chromium			<10		50						
(Dissovled)	Lead			<1.0		15						
	Mercury			<0.50		2						
	Selenium			<5.0		80 (B)						
	Silver			<10		80 (B)						

Notes:

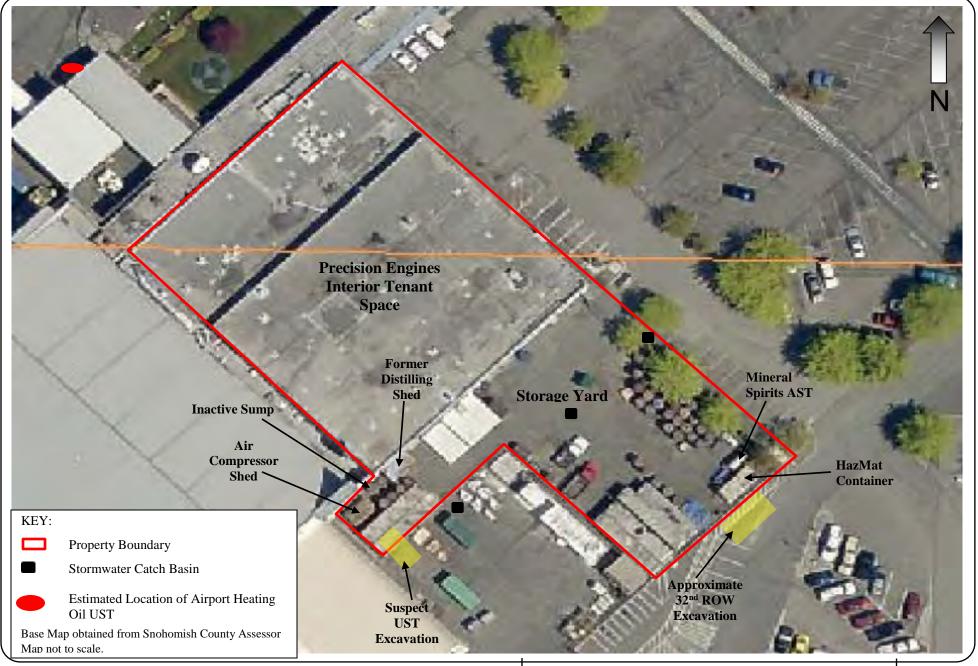
MTCA A / B — Ecology MTCA Method A / B ground water cleanup levels, Chapter 173-340 WAC, shown for reference only. These cleanup levels may not apply at the Subject Property, and are provided as a screening level indication of the environmental quality of the Subject Property only.

ug/L- micrograms per liter

TPHd - diesel range total petroleum hydrocarbons

NE - Not Established

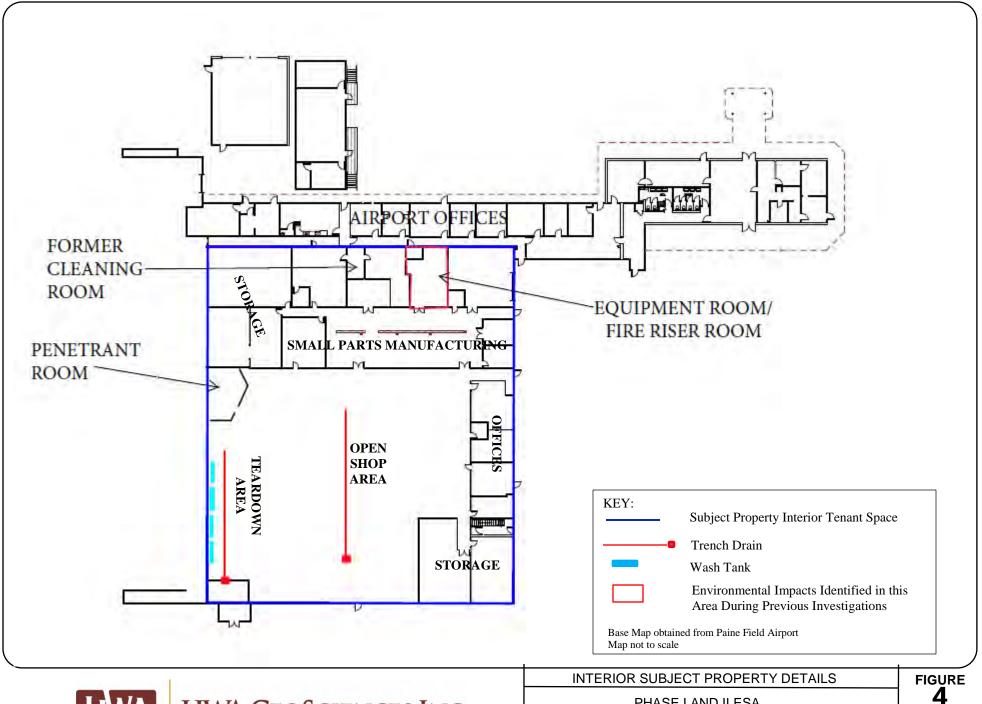
< - Analyte not detected at listed reporting limit

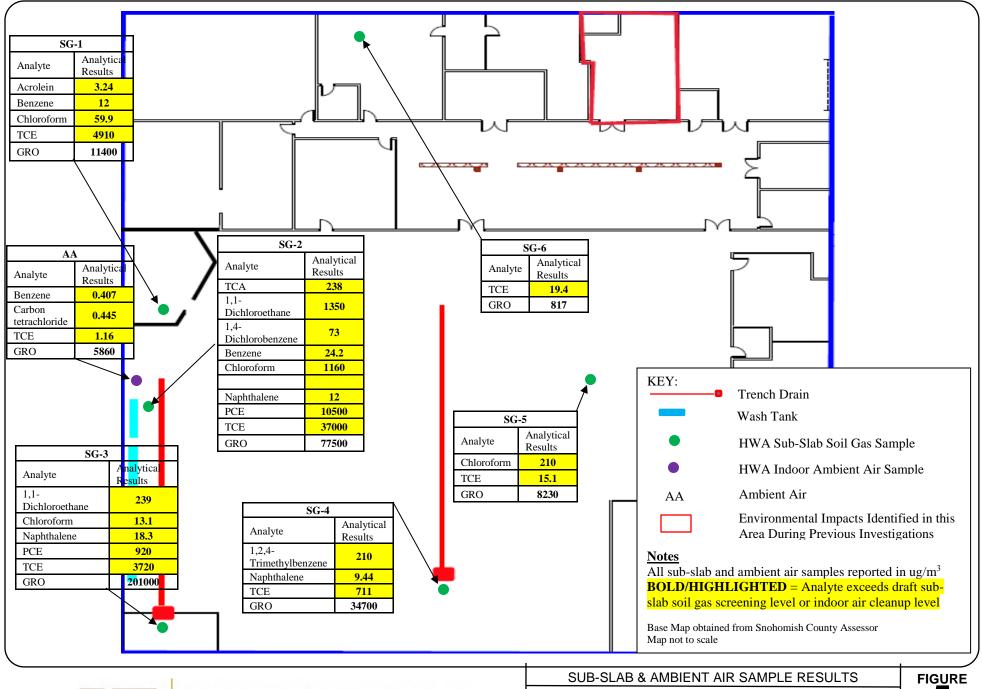

Blank - Not Analyzed

ND – None of the selected analytes detected.

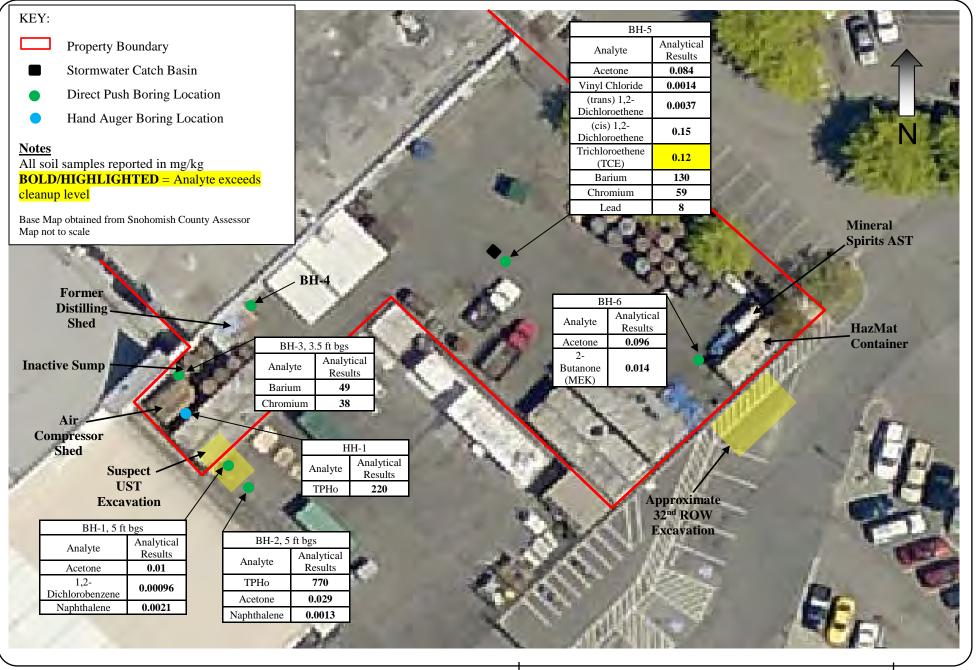
Bold – Analyte Detected

Bold / highlighted – Analyte exceeds cleanup level


- * The Method A Ground Water cleanup levels for gasoline mixtures without benzene and the total of ethylbenzene, toluene, and xylenes are less than 1% of the gasoline mixture is 800 ug/L; all other mixtures are 1000 ug/L
- ** Only VOCs with detections above laboratory reporting limits shown (see Appendix M for complete list of compounds analyzed).

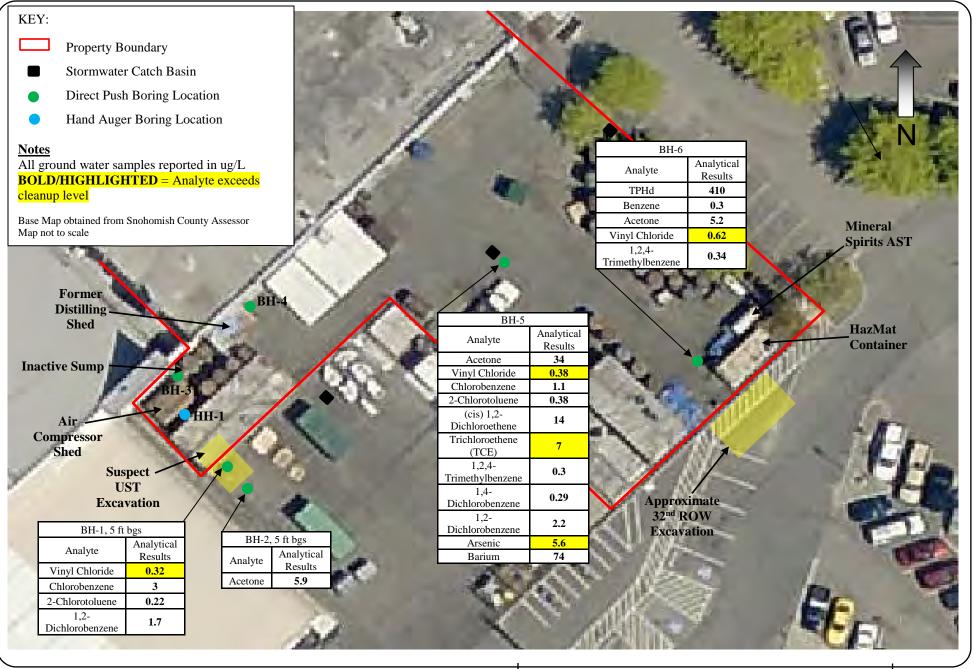

SUBJECT PROPERTY DETAILS

PHASE I AND II ESA PRECISION ENGINES PROPERTY EVERETT, WASHINGTON FIGURE 3



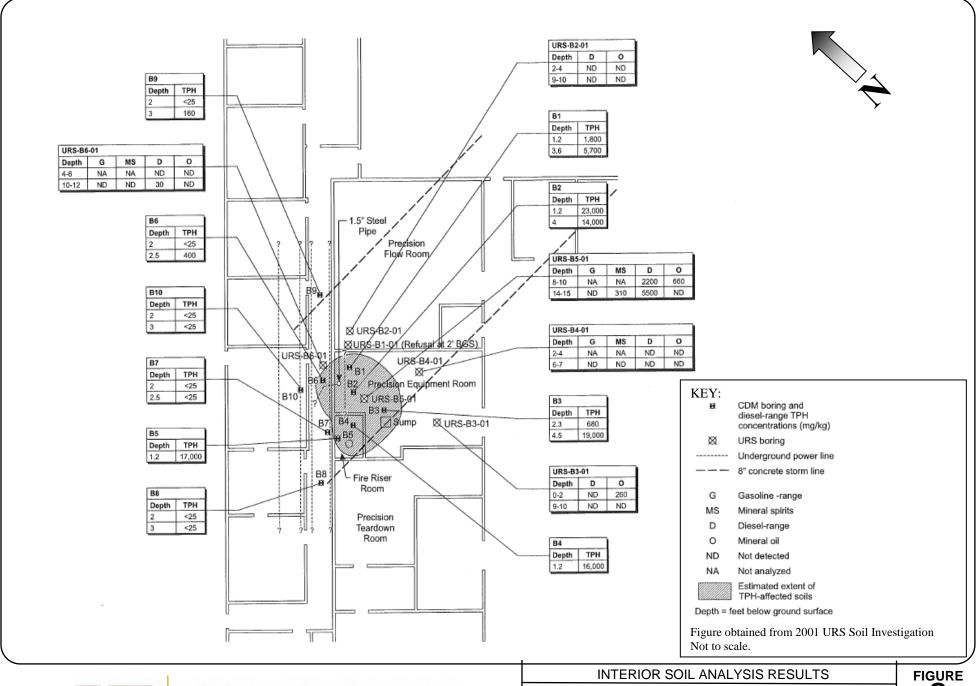
PHASE I AND II ESA
PRECISION ENGINES PROPERTY
EVERETT, WASHINGTON

PHASE I AND II ESA PRECISION ENGINES PROPERTY EVERETT, WASHINGTON FIGURE **5**



SOIL ANALYTICAL RESULTS

PHASE I AND II ESA PRECISION ENGINES PROPERTY EVERETT, WASHINGTON



GROUNDWATER ANALYTICAL RESULTS

PHASE I AND II ESA PRECISION ENGINES PROPERTY EVERETT, WASHINGTON

PHASE I AND II ESA
PRECISION ENGINES PROPERTY
EVERETT, WASHINGTON

FIGURE 8

APPENDIX B
C-1 Hangar and C-1 Building
Vapor Intrusion Evaluation Report

April 27, 2021

Paine Field/Snohomish County Airport 3220 – 100th Street SW, Suite A Everett, Washington 98204-1303

Attention: Andrew Rardin

Subject: C-1 Hangar and C-1 Building Vapor Intrusion Evaluation – December 2020

Paine Field/Snohomish County Airport

Former ATS Hangar Property and Former Prevision Engines Property

Everett, Washington File No. 5530-014-00

INTRODUCTION, BACKGROUND AND PURPOSE

This report presents the results of the November and December 2020 focused sub-slab and indoor air vapor intrusion (VI) evaluation for the C-1 Hangar and C-1 Building Properties (site) at Paine Field/Snohomish County Airport (Paine Field) in Everett, Washington (Figure 1). Paine Field is conducting a MTCA-compliant Remedial Investigation (RI) as part of planning for future cleanup of the site through the Washington State Department of Ecology's (Ecology's) Voluntary Cleanup Program (VCP). The VI evaluation is being conducted as part of characterization of the site conditions, and the results will be included in the RI report.

The C-1 Hangar Property is approximately 1.5-acres in area and is developed with an approximately 53,000 square-foot aircraft hangar and an adjacent covered outdoor space. The C-1 Hangar Property was most recently occupied by Aviation Technical Services (ATS). The C-1 Building Property is located adjacent to the east-northeast of the C-1 Hangar and is approximately 0.85-acres and consists of one approximately 25,000 square-foot building and an adjacent 12,000 square-foot exterior storage yard. The C-1 Building Property was most recently occupied by Precision Engines, LLC. The site is shown on Figure 2.

The C-1 Building Property is listed by Ecology as the Precision Engines LLC site (Cleanup Site ID: 3526; Facility/Site ID: 84613634) with status listed as "cleanup started" and has been the subject of investigations and focused remedial actions since at least 1998. The results of the investigations conducted to date have identified the presence of petroleum hydrocarbons, mineral spirits, chlorinated solvents and/or arsenic in soil, groundwater, soil vapor and ambient indoor air at concentrations greater than the applicable MTCA screening/cleanup levels (HWA 2018). The C-1 Hangar Property is not listed in Ecology's contaminated sites database; however, previous investigation findings suggest that contamination in soil, groundwater, and soil vapor may exist at the C-1 Hangar Property.

1.0 VAPOR INTRUSION (VI) EVALUATION

Overview and Scope

The VI evaluation for the site was conducted in accordance with Ecology's "Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action," updated April 2018 (Ecology 2018a) and Ecology's Implementation Memoranda #18, #21 and #22 (Ecology 2018b, 2018c and 2019).

The scope of services for the November and December 2020 VI evaluation was as follows:

- Conduct a physical survey of the C-1 Hangar and C-1 Building characteristics and building interior to identify features relevant to indoor air quality, air circulation, and potential indoor sources for the contaminants of concern.
- Install vapor pins for the sampling of sub-slab soil vapor and collect sub-slab soil vapor samples to help estimate the vapor intrusion contribution to measured indoor air concentrations.
- Collect indoor and background (ambient) outdoor air samples.
- Submit the samples for laboratory analysis for volatile organic compounds (VOCs) and air-phase petroleum hydrocarbons (APH).
- Background (ambient) outdoor air samples were collected, consistent with Ecology guidance, to assist in identifying whether outdoor air may be a source of VOCs or APH if detected in the indoor air samples. Per the guidance, the minimum concentrations of each analyte detected in the outdoor air samples are subtracted from the indoor air sample results account for background conditions. The resulting indoor air concentrations are referred to as the "adjusted indoor air concentrations."
- Interpret the findings of the building survey and the sample analytical data in accordance with Ecology guidance. The VI evaluation was performed, and the conclusions developed, following the Ecology "lines-of-evidence" approach described in Implementation Memorandum #21 (Ecology 2018c). Per Ecology guidance, when adjusted indoor air concentrations are less than applicable air cleanup or screening levels, "it is reasonable to conclude that vapor intrusion is not currently posing a problem requiring action."

Cleanup and Screening Levels

The sub-slab soil vapor sampling results were compared to the Model Toxics Control Act (MTCA) Method B soil vapor screening levels for residential exposure (cancer or non-cancer, whichever is lower) published in Ecology's updated Cleanup Levels and Risk Calculation (CLARC) database (Ecology 2021) and to commercial exposure soil vapor screening levels. The commercial exposure soil vapor screening levels were calculated by dividing the MTCA Method B commercial exposure indoor air screening levels (described below) by the Ecology sub-slab vapor intrusion attenuation factor of 0.03 (see Ecology Implementation Memorandum #21; "Frequently Asked Question No. 3."). Ecology used this same approach to calculate the MTCA Method B soil vapor screening levels. The screening levels are included in Table 1.

Indoor air sample analytical results were evaluated by comparison to the MTCA Method B indoor air cleanup levels for residential exposure and to the MTCA Method B commercial exposure screening levels. The trichloroethylene (TCE) results for the indoor air samples were also compared to the Short-Term Commercial Worker Indoor Air Action Level for TCE published in Ecology Implementation Memo 22 (Ecology 2018d).

The respective cleanup and screening levels are shown in Table 2. The commercial exposure screening levels were calculated according to Ecology Implementation Memorandum #21 (see "Frequently Asked Question No. 17").

A comparison of the exposure assumptions for the MTCA Method B indoor air cleanup levels for residential exposure and for the MTCA Method B indoor air commercial exposure screening levels is included below:

MTCA Method B Indoor Air Cleanup Levels for Residential Exposure	MTCA Method B Indoor Air Commercial Exposure Screening Levels
365 days/year, 24 hours/day for 30 years (carcinogenic chemicals) or for 6 years (non-carcinogenic chemicals)	250 days/year, 10 hours/day for 20 years

Building Survey

Ecology guidance for indoor air VI evaluation acknowledges that indoor air quality can be affected by volatiles emitted from materials or products stored indoors (Ecology 2018a). Following Ecology guidance, and before sample collection, GeoEngineers completed a building interior survey on November 30, 2020 to observe and document building conditions and identify potential indoor sources for contaminants to indoor air. The building survey was completed for both the C-1 Hangar Property and the C-1 Building Property. A copy of the completed building survey form is included in Appendix A.

Field Investigation

Utilities and Concrete Survey

Prior to sampling, a subcontracted private utility locate and concrete survey were completed for the proposed sample locations to identify below-grade utilities and determine the thickness of the concrete slab for sample planning purposes. The results of the concrete survey indicate that the concrete floor in the C-1 Hangar is comprised of two or more separate, overlying concrete slabs and ranges between 4 and 16 inches in thickness. A copy of the concrete survey report is included as Appendix B.

Sample Collection

GeoEngineers collected three sub-slab soil vapor samples (SV-1 through SV-3) on November 30, 2020, and nine sub-slab soil vapor samples (SV-4 through SV-12), thirteen indoor air samples (IA-1 through IA-13), and two ambient outdoor air samples (OA-1 and OA-2) on December 1, 2020. The approximate sample locations are shown on Figure 2.

■ **Sub-Slab Soil Vapor Samples.** Twelve sub-slab soil vapor samples were collected throughout the C-1 Hangar, with additional sample density on the side of the hangar adjacent to the C-1 Building to assess soil vapor in areas closest to the C-1 Building where previous soil vapor sampling identified contaminant concentrations greater than the MTCA Method B soil vapor screening levels. Sub-slab soil vapor sampling was not conducted in the C-1 Building during the current VI evaluation because sub-slab soil vapor samples were collected in the building during the 2018 investigation(HWA 2018).

Indoor Air Samples.

Two indoor air samples were collected from locations within the open space of the C-1 Hangar, and five indoor air samples were collected from locations within perimeter offices and

- workshop spaces. The perimeter rooms were previously used for tool storage, as paint/fabric shops, a break room, and for general storage.
- Four indoor air samples were collected at locations within the open space of the C-1 Building, and two indoor air samples were collected from locations within the segregated shop spaces and office areas. Sample location IA-9 was collected at the location where previous sample analytical results in 2001 indicated total petroleum hydrocarbons (TPH) in soil (URS 2001). Sample location IA-13 was collected at the location where a 2018 indoor air sample indicated concentrations of benzene and TCE greater than the MTCA screening levels (HWA 2018). Three sample locations within the open space of the building (IA-8, IA-11, and IA-12) corresponded to locations where 2018 sub-slab soil vapor samples indicated concentrations of one or more contaminant of concern greater than the MTCA screening levels (HWA 2018).
- Outdoor Air Samples. Ecology's Draft VI Guidance indicates that building-specific ambient (outdoor) air samples are to be collected as part of the Tier II VI evaluation at the same time indoor air samples are collected. Outdoor air sample results are used to assess how background outdoor air conditions can influence indoor air quality. Ecology guidance allows outdoor air results to be evaluated in conjunction with indoor air sampling to better estimate whether contaminants detected in indoor air are likely, or not likely, to be due to vapor intrusion (Ecology 2018a). The minimum detected outdoor air sample concentrations for each analyte are subtracted from the indoor air sample results to account for background conditions. The December 2020 outdoor air sample locations were at the north end of the Badging office and at the south end of the C-1 Hangar, both downwind and upwind on the day of sampling.

Weather and Building Conditions

The weather on December 1, 2020, at the time of indoor and outdoor air sampling at the site ranged between 37- and 43-degrees Fahrenheit. Wind speed during the sampling was reported at about 7 miles per hour to the north. Over the three days leading up to the December 1, 2020 sampling, barometric pressures ranged from 29.81 to 30.63 inches of mercury with pressures decreasing slightly over time (Weather Spark, Inc., Snohomish County Airport Station 2020).

Indoor air sampling was conducted under conservative building operational conditions to the extent practicable. The sampling was performed during the day from 8 AM to 4 PM. During this time, the HVAC systems for the buildings were operational, bay doors for both buildings were kept closed, and ingress and egress activities during sampling activities were minimized. The intent was to obtain indoor air samples that were representative of normal conditions, but to reduce potential interferences by collecting samples when few to no building occupants are present and when exterior doors are not regularly opening and closing.

Sampling Procedures

Sampling procedures are described in Appendix A. A summary of the procedures is provided below.

■ Sub-Slab Soil Vapor Samples. Following utility clearance and determining concrete thickness, soil Vapor PinsTM (Pins) were installed into the concrete flooring. The Pins were capped and allowed to equilibrate with the subsurface soil vapor for a minimum of two hours before sampling. Soil vapor samples were collected from the Pins directly into the laboratory-provided 1-liter vacuum Summa canisters.

Indoor and Outdoor Air Samples. Indoor and outdoor air samples were obtained over an approximately 8-hour period using 6-liter Summa with flow controllers and sorbent tubes connected to personal sampling pumps. Tubing was connected to each canister and sorbent tube to elevate the sample intake into the breathing zone at approximately 3 to 5 feet above the floor surface.

The Summa canister samples were submitted on December 1, 2020 to Friedman and Bruya, Inc. in Seattle, Washington for chemical analysis for petroleum hydrocarbons (C5-C8 Aliphatics, C9-C12 Aliphatics and C9-C10 Aromatics) Massachusetts Department of Environmental Protection (Massachusetts DEP) APH Method, VOCs by United States Environmental Protection Agency (EPA) Method T0-15, and helium (sub-slab soil vapor samples only) by American Society for Testing and Materials (ASTM) Method D1946.

The sorbent tube samples were submitted on December 1, 2020 to Friedman and Bruya, Inc. in Seattle, Washington for chemical analysis for naphthalene by EPA Method T0-17.

Comprehensive laboratory reports are presented in Appendix C.

Chemical Analytical Results

The November and December 2020 sub-slab soil vapor and indoor and outdoor air chemical analytical results for analytes with detected concentrations greater than cleanup or screening levels are presented in Tables 1 and 2, respectively. The indoor air sample results shown in Table 2 are values that have been adjusted to account for influences due to outdoor air (ambient air). The adjustment calculations are consistent with the Ecology Draft VI Guidance (Ecology 2018a).

Chemical analytical results for all analytes are presented in Tables 3 and 4 for sub-slab soil vapor and indoor and outdoor air samples, respectively. The indoor air concentrations in Table 4 were not adjusted for contributions from outdoor air.

Sub-Slab Soil Vapor Results

As shown in Table 1, 1,1-dichloroethane (1,1-DCA), chloroform, naphthalene, tetrachloroethene (PCE), trichloroethylene (TCE), and Total TPH (the sum of individual petroleum fractions, benzene, toluene, ethylbenzene, xylene and naphthalene) were detected in at least one soil vapor sample at a concentration greater than the MTCA Method B soil vapor screening level for residential exposure. Only 1,1-DCA, chloroform, naphthalene, and TCE were detected at concentrations greater than the MTCA Method B soil vapor screening level for commercial exposure.

Indoor Air Sample Results

As shown in Table 2, chloroform, naphthalene, TCE and Total TPH were detected in at least one indoor air sample at a concentration greater than the MTCA Method B indoor air cleanup level for residential exposure. No analytes were detected at concentrations greater than the MTCA Method B indoor air screening level for commercial exposure.

¹ Two outdoor air samples were obtained (OA-1 and OA-2). As noted in Table 2, the adjusted indoor air concentration equals the raw (or original) indoor air concentration minus the minimum outdoor air concentration.

Benzene and carbon tetrachloride were detected at concentrations greater than the MTCA Method B indoor air cleanup level in the outdoor air samples. Adjusted indoor air concentrations for these two analytes were less than the MTCA Method B indoor air cleanup level.

DISCUSSION AND CONCLUSIONS

The C-1 Hangar and C-1 Building are commercial workspaces; therefore, in accordance with Ecology guidance, the commercial worker screening and action levels are considered appropriate for comparison purposes for this evaluation. Specifically, the November and December 2020 VI results were evaluated relative to the MTCA Method B indoor air and soil vapor commercial exposure screening levels; we also note that the findings were compared to the MTCA Method B indoor air cleanup levels and soil vapor screening levels for residential (unrestricted) exposure.

As noted earlier, adjusted indoor air concentrations are used to conclude whether "vapor intrusion is currently posing a problem requiring action." Sub-slab soil vapor concentrations are another line of evidence that are used to estimate the vapor intrusion contribution to the concentrations measured in indoor air.

- Commercial Exposure. No analytes were detected in indoor air at concentrations greater than the MTCA Method B indoor air screening level for commercial exposure. 1,1-DCA, chloroform, naphthalene, and TCE were detected in soil vapor at concentrations greater than the MTCA Method B soil vapor screening level for commercial exposure.
- Residential Exposure. Chloroform, naphthalene, TCE and Total TPH were detected in indoor air at concentrations greater than the MTCA Method B indoor air cleanup level for residential exposure. 1,1-DCA, chloroform, naphthalene, PCE, TCE, and Total TPH were detected in soil vapor at concentrations greater than the MTCA Method B soil vapor screening level for residential exposure.

The presence of chloroform, naphthalene, TCE and Total TPH in soil vapor and indoor air at concentrations greater than residential regulatory criteria indicate that there is a potential pathway for soil vapor to indoor air for the C-1 Hangar and C-1 Buildings. However, while the results indicate that the detected concentrations of these four analytes are greater than the MTCA Method B indoor air cleanup levels for residential exposure, the detected concentrations are not greater than the MTCA Method B indoor air screening levels for commercial exposure which are applicable at this facility. Therefore, based on the results of the November and December 2020 VI evaluation and in accordance with Ecology's VI guidance, the detected concentrations of chlorinated and petroleum-related VOCs in indoor air at the C-1 Hangar and C-1 Building are less than the applicable regulatory screening levels. The results of the VI evaluation indicate that vapor intrusion is not occurring at levels of regulatory concern for a commercial building, and that the hangar and building are suitable for commercial uses.

LIMITATIONS

We have prepared this letter for the exclusive use of the Snohomish County Airport. No other party may place reliance on the product of our services unless we agree in advance and in writing to such reliance. Our services were provided in accordance with our agreement with the Snohomish County Airport, dated December 24, 2018.

This report is based on conditions that existed at the time our site studies were performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Our interpretations are based on field observations and chemical analytical data from widely spaced sampling locations. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion. Our report, conclusions and interpretations should not be construed as a warranty of contaminant conditions. Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

REFERENCES

- Ecology 2018a. Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action. Publication No. 09-09-047. Review Draft, Updated April 2018.
- Ecology 2018b. Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings Implementation Memo No. 18. January 10, 2018.
- Ecology 2018c. Frequently Asked Questions (FAQs) Regarding Vapor Intrusion (VI) and Ecology's 2009 Draft VI Guidance Implementation Memo No. 21. November 15, 2018.
- Ecology 2019. Vapor Intrusion (VI) Investigations and Short-term Trichloroethene (TCE) Toxicity Implementation Memo No. 22. October 1, 2019.
- HWA Geosciences, Inc. (HWA) 2018. Phase I and Phase II Environmental Site Assessment: Precision Engines Property, Everett, Washington. July 10, 2018.
- URS 2001. Soil Investigation Report, Precision Engines Facility, Everett, Washington. November 15, 2001.
- Washington State Department of Ecology (Ecology). 2021. Cleanup Levels and Risk Calculation Master Spreadsheet. 2021. Updated February 2021.
- Weather Spark, Inc. 2020. Historical Weather. Accessed on Internet on December 2020. https://weatherspark.com/y/145237/Average-Weather-at-Snohomish-County-Airport-(Paine-Field)-Washington-United-States-Year-Round

If you have any questions about this letter, please let us know. Thank you.

Sincerely,

GeoEngineers, Inc.

Jacob Letts, LHG Project Manager Neil Morton Project Manager

lei Mox

Tim Syverson, LHG

Associate

JML:TLS:Iw

Attachments:

Table 1. Soil Vapor Sample Chemical Analytical Results Exceeding MTCA Criteria

Table 2. Indoor and Outdoor Air Sample Chemical Analytical Results Exceeding MTCA Criteria

Table 3. Soil Vapor Sample Chemical Analytical Results (All Analytes)

Table 4. Indoor and Outdoor Air Sample Chemical Analytical Results (All Analytes)

Figure 1. Vicinity Map

Figure 2. Site Plan with Sample Locations

Appendix A. Field Procedures and Building Survey

Appendix B. Concrete Survey Report

Appendix C. Data Validation and Chemical Analytical Laboratory Reports

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Soil Vapor Sample Chemical Analytical Results Exceeding MTCA Criteria* C-1 Hangar, Paine Field, Snohomish County Airport Everett, Washington

						Sample ID and Sample Date ¹										
Analyte	Method	Units	MTCA Method B Soil Vapor Screening Level for Residential Exposure ^{2,3}	MTCA Method B Soil Vapor Screening Levels for Commercial Exposure ^{3,4}	SV-1 11/30/20	SV-2 11/30/20	SV-3 11/30/20	SV-4 12/01/20	SV-5 12/01/20	SV-6 12/01/20	SV-7 12/01/20	SV-8 12/01/20	SV-9 12/01/20	SV-10 12/01/20	SV-11 12/01/20	SV-12 12/01/20
1,1-Dichloroethane	EPA-TO-15	μg/m ³	52	270	2.2 U	1.5 U	2.3 U	2.1 U	1.4 U	3.3 U	2.2 U	1.4 U	2.3 U	2.3 U	2.5 U	530
Chloroform	EPA-TO-15	μg/m ³	3.6	19	0.27 U	0.51	0.28 U	0.26 U	0.17 U	0.40 U	0.27 U	0.55	0.28 U	0.28 U	0.30 U	170
Naphthalene	EPA-TO-15	$\mu g/m^3$	2.5	13	1.4 U	5.5	4.8	2.9	2.1	6.5	31	6.7	6.2	8.8	2.0	12
Tetrachloroethylene	EPA-TO-15	$\mu g/m^3$	320	1,700	37 U	24 U	39 U	36 U	23 U	93	37 U	23 U	39 U	39 U	41 U	740
Trichloroethylene	EPA-TO-15	μg/m ³	11	110	0.59 U	0.58	0.64	0.83	0.37	0.87 U	0.74	0.38	2.8	22	0.66 U	30,000 J
Total TPH 5	Calculated	μg/m ³	4,700 4	33,000 4	800	1,300	2,600	3,000	970	25,000	4,700	390	3,600	2,000	1,900	5,400

Notes

μg/m³ = micrograms per cubic meter

U = Constituent not detected above the laboratory reporting limit

Bold font type indicates the analyte was detected at a concentration greater than the laboratory reporting limit.

Gray shaded value indicates the detected concentration in soil vapor is greater than the MTCA Method B soil vapor screening level for residential exposure.

Orange shading indicates the detected concentration is greater than the MTCA Method B soil vapor screening levels for residential exposrue and commercial workers.

 $\mbox{\ensuremath{\star}}$ - Analytes detected with one or more concentration greater than the MTCA screening level.

 $^{^{1}}$ All constituents analyzed using United States Environmental Protection Agency (EPA) Method TO-15.

² Model Toxics Control Act (MTCA) Method B soil vapor screening levels for residential exposure are from Ecology's "CLARC Master Spreadsheet.xisx" dated August 2020. Residential exposure scenario assumes 365 days/year, 24 hours/day for 30 years (carcinogenic chemicals) or for 6 years (non-carcinogenic chemicals).

³ MTCA Method B soil vapor screening levels for commercial workers assume an exposure scenario of 250 days/year, 10 hours/day for 20 years. See Ecology's Implementation Memorandum #21; "Frequently Asked Question No. 17."

⁴ Soil vapor screening levels were calculated by dividing air cleanup or screening levels by Ecology's sub-slab vapor intrusion attenuation factor of 0.03. See Ecology's Implementation Memorandum #21; "Frequently Asked Question No. 3."

⁵ Total TPH results were calculated by summing results for individual petroleum fractions, benzene, toluene, ethylbenzene, xylene and napthalene.

Indoor and Outdoor Air Sample Chemical Analytical Results Exceeding MTCA Criteria C-1 Hangar and C-1 Building, Paine Field, Snohomish County Airport Everett, Washington

			MTCA Method B	MTCA Method B		Sample ID and Sample Date 1												
Analyte	Method	Units	Indoor Air Cleanup Level for Residential Exposure ²	Indoor Air Screening levels for Commercial Exposure ³	IA-1 12/01/20	IA-2 12/01/20	IA-3 12/01/20	IA-4 12/01/20	IA-5 12/01/20	IA-6 12/01/20	IA-7 12/01/20	IA-8 12/01/20	IA-9 12/01/20	IA-10 12/01/20	IA-11 12/01/20	IA-12 12/01/20	IA-13 12/01/20	Minimum Outdoor Air
Benzene	EPA-TO-15	μg/m ³	0.32	1.7	0.03	0.21	0.21	0.09	0.23	0.16	0.02	0.17	0.17	0.21	0.26	0.21	0.13	0.42
Carbon Tetrachloride	EPA-TO-15	μg/m ³	0.42	2.2	-0.07	-0.01	0	0	-0.03	-0.01	-0.04	-0.02	-0.05	0.01	0.06	0	-0.07	0.47
Chloroform	EPA-TO-15	μg/m ³	0.11	0.57	0.017	0.017	0.005	0.007	0.017	0.007	0.027	0.057	0.057	0.127	0.157	0.067	0.097	0.093
Naphthalene	EPA-TO-15	μg/m³	0.074	0.39	0.153	0.123	0.143	0.213	0.083	0.133	0	0.037	0.073	0.093	0.027	0.027	0.073	0.057
Naphthalene	EPA-TO-17	μg/m ³	0.074	0.39	0.052	0.052	0.052	0.042	0.062	0.052	0.042	0.062	0.092	0.082	0.072	0.062	0.072	0.058
Trichloroethylene	EPA-TO-15	μg/m³	0.33	3.2	0.15	0.14	0.13	0.13	0.12	0.19	1.1	0.37	0.31	0.44	0.41	0.70	0.60	0.11 U
Total TPH 4	Calculated	μg/m³	140	1,000	188	133	226	176	99	143	0.54	139	201	162	144	141	155	0.481

Notes:

U = Constituent not detected above the laboratory reporting limit

Bold font type indicates the analyte was detected at a concentration greater than the laboratory reporting limit.

Gray shaded value indicates the detected concentration in an indoor air sample is greater than the MTCA Method B indoor air cleanup level for residential exposure.

Orange shading indicates the detected concentration is greater than the MTCA Method B indoor air cleanup level for residental exposure and screening level for commercial workers.

¹ All constituents analyzed using United States Environmental Protection Agency (EPA) Method T0-15, except where noted. Following Ecology's draft vapor intrusion guidance (Ecology 2018a), indoor air sample results have been adjusted for background contributions using the December 1, 2020 outdoor air sample results.

² Model Toxics Control Act (MTCA) Method B indoor air cleanup levels for residential exposure are from Ecology's "CLARC Master Spreadsheet.xisx" dated February 2021. Residential exposure scenario assumes 365 days/year, 24 hours/day for 30 years (carcinogenic chemicals) or for 6 years (non-carcinogenic chemicals).

³ MTCA Method B indoor air screening levels for commercial workers assume an exposure scenario of 250 days/year, 10 hours/day for 20 years. See Ecology's Implementation Memorandum #21; "Frequently Asked Question No. 17."

⁴ Sum of TPH/BTEXN results were calculated by summing results for individual petroleum fractions, benzene, toluene, ethylbenzene, xylene and napthalene. µg/m³ = micrograms per cubic meter

 $[\]boldsymbol{\star}$ - Analytes detected with one or more concentration greater than the MTCA screening level.

Soil Vapor Sample Chemical Analytical Results (All Analytes) C-1 Hangar, Paine Field, Snohomish County Airport Everett, Washington

		Sample ID and Sample Date ¹											
Analyte	MTCA Method B Soil Vapor Screening Level ^{2,3}	SV-1 11/30/20	SV-2 11/30/20	SV-3 11/30/20	SV-4 12/01/20	SV-5 12/01/20	SV-6 12/01/20	SV-7 12/01/20	SV-8 12/01/20	SV-9 12/01/20	SV-10 12/01/20	SV-11 12/01/20	SV-12 12/01/20
Air-Phase Petroleum Hydrocarbons (APH) (μg/		•	11/00/20	11/00/20	12/01/20	12/01/20	12/ 01/ 20	12/01/20	12/01/20	12/ 01/ 20	12/01/20	12/01/20	12/01/20
APH C5-C8 Aliphatics	NE NE	750 J+	380 J+	2,000 J+	3,000 J+	370 J+	22,000 J+	2,300 J+	200 J+	2,400 J+	1,300 J+	1,400 J+	4,600 J+
APH C9-C12 Aliphatics	NE NE	270 U	290	310	260 U	240	1,800	390	170 U	910	480	510	850 U
APH C9-C10 Aromatics	NE NE	140 U	590	220	130 U	310	460	1,400	180	210	220	150 U	800
Volatile Organic Compounds (µg/m³) by Method		1400	330	220	130 0	310	400	1,400	100	210	220	1300	000
1,1,1-Trichloroethane	76,000	3.6	8.7	3.1 U	2.9 U	1.9 U	32	3.0 U	1.9 U	6.5	3.2 U	13	7,900 J
1,1,2,2-Tetrachloroethane	1.4	0.76 U	0.49 U	0.78 U	0.73 U	0.47 U	1.1 U	0.76 U	0.47 U	0.78 U	0.80 U	0.84 U	2.3 U
1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113)	76,000	4.2 U	8.4	4.4 U	4.8	2.6 U	340	260	2.6 U	54	28	16	13 U
1,1,2-Trichloroethane	3	0.30 U	0.20 U	0.31 U	0.29 U	0.19 U	0.44 U	0.30 U	0.19 U	0.31 U	0.32 U	0.33 U	1.8
1,1-Dichloroethane	52	2.2 U	1.5 U	2.3 U	2.1 U	1.4 U	3.3 U	2.2 U	1.4 U	2.3 U	2.3 U	2.5 U	530
1,1-Dichloroethylene	3,000	2.2 U	1.4 U	2.3 U	2.1 U	1.3 U	3.2 U	4.5	1.3 U	2.3 U	2.3 U	2.4 U	930
1,2,4-Trimethylbenzene	910	14 U	8.8 U	14 U	13 U	11	43	95	8.4 U	18	14 U	15 U	42 U
1,2-Dibromoethane	0.14	0.42 U	0.28 U	0.44 U	0.41 U	0.26 U	0.62 U	0.42 U	0.26 U	0.44 U	0.45 U	0.47 U	1.3 U
1,3,5-Trimethylbenzene	900	14 U	8.8 U	14 U	13 U	8.4 U	20 U	16	8.4 U	14 U	14 U	15 U	42 U
1,4-Dioxane	17	2.0 U	1.3 U	2.1 U	1.9 U	1.2 U	5.5	2.0 U	1.2 U	2.1 U	2.1 U	2.2 U	6.1 U
1-Propene	NE	6.6 U	4.3 U	6.9 U	6.4 U	4.1 U	65	100	4.1 U	6.9 U	7.0 U	7.3 U	20 U
2,2,4-Trimethylpentane	NE	26 U	17 U	27 U	25 U	16 U	40	26 U	16 U	27 U	27 U	28 U	79 U
Acetone	470,000	510 J	360 J	1,200 J	2,000 J	410 J	2,000 J	580 J	240 J	430 J	460 J	220	190
Acrolein	0.3	11 U	7.4 U	12 U	11 U	7.0 U	17 U	11 U	7.0 U	12 U	12 U	13 U	35 U
Allyl Chloride (3-Chloropropene)	14	8.6 U	5.6 U	8.9 U	8.3 U	5.3 U	13 U	8.6 U	5.3 U	8.9 U	9.1 U	9.5 U	27 U
Benzene	11	2.4	3.7	1.8 U	1.7 U	2.6	2.6 U	4.7	1.1 U	1.8 U	1.9 U	1.9 U	5.4 U
Butane	NE	13 U	36	15	13 U	8.1 U	29	36	8.1 U	14 U	14 U	15 U	40 U
Carbon Tetrachloride	14	1.7 U	1.1 U	1.8 U	1.7 U	1.1 U	2.5 U	7.5	1.1 U	1.8 U	1.8 U	1.9 U	5.3 U
Chloroform	3.6	0.27 U	0.51	0.28 U	0.26 U	0.17 U	0.40 U	0.27 U	0.55	0.28 U	0.28 U	0.30 U	170
cis-1,2-Dichloroethylene	NE	2.2 U	1.4 U	2.3 U	2.1 U	1.3 U	3.2 U	2.2 U	1.3 U	2.3 U	2.3 U	2.4 U	20
Dichlorodifluoromethane	1,500	2.7 U	3.1	3.0	2.9	2.5	4.0 U	3.2	2.8	2.8 U	2.9 U	3.0 U	8.4 U
Ethanol	NE	180	220 J	150	270 J	210 J	640 J	400 J	490 J	370 J	240	260	150
Ethylbenzene	15,000	2.4 U	1.6 U	3.1	2.3 U	7.4	51	27	1.5 U	12	6.1	2.6 U	7.4 U
Isopropyl Alcohol	NE	670 J	97	270	3,600 J	120	1,000 J	320	67	110	83	200	150 U
Methyl ethyl ketone (MEK)	76,000	16 U	11	42	16 U	10 U	140	41	10 U	17 U	17 U	18 U	50 U
Naphthalene	2.5	1.4 U	5.5	4.8	2.9	2.1	6.5	31	6.7	6.2	8.8	2.0	12
Pentane	NE	16 U	18	17 U	16 U	10 U	24 U	28	10 U	17 U	17 U	18 U	50 U
Tetrachloroethylene	320	37 U	24 U	39 U	36 U	23 U	93	37 U	23 U	39 U	39 U	41 U	740
Tetrahydrofuran	30,000	1.6 U	1.1 U	2.5	2.0	15	26	18	1.4	2.6	13	7.1	5.0 U
Toluene	76,000	100 U	68 U	110 U	100 U	64 U	150 U	390	64 U	110 U	110 U	110 U	320 U
Trichloroethylene	11	0.59 U	0.58	0.64	0.83	0.37	0.87 U	0.74	0.38	2.8	22	0.66 U	30,000 J
Vinyl Bromide	2.6	2.4 U	1.6 U	2.5 U	2.3 U	1.5 U	3.5 U	2.4 U	1.5 U	2.5 U	2.5 U	2.7 U	7.4 U
Xylene, m-,p-	1,500	4.8 U	6.1	12	6.7	29	180	98	5.6	44	24	6.4	17
Xylene, o-	1,500	2.4 U	1.8	3.7	2.3 U	6.9	49	37	2.2	16	7.7	2.6	7.4 U
Total Xylenes	1,500	4.8 U	7.9	16	6.7	36	230	140	7.8	60	32	9.0	17

Notes:

¹ All constituents analyzed using United States Environmental Protection Agency (EPA) Method TO-15.

² Model Toxics Control Act (MTCA) Method B soil vapor screening levels for residential exposure are from Ecology's "CLARC Master Spreadsheet.xlsx" dated February 2021. Residential exposure scenario assumes 365 days/year, 24 hours/day for 30 years (carcinogenic chemicals) or for 6 years (non-carcinogenic chemicals).

³ Soil vapor screening levels were calculated by dividing air cleanup or screening levels by Ecology's sub-slab vapor intrusion attenuation factor of 0.03. See Ecology's Implementation Memorandum #21; "Frequently Asked Question No. 3."

µg/m³ = micrograms per cubic meter

NE = not established

U = Constituent not detected above the laboratory reporting limit

Bold font type indicates the analyte was detected at a concentration greater than the laboratory reporting limit.

Gray shaded value indicates the detected concentration in soil vapor is greater than the MTCA Method B soil vapor screening level for residential exposure.

Blue shading indicates the non-detect concentration was greater than the MTCA Method B soil vapor screening level.

Indoor and Outdoor Air Sample Chemical Analytical Results (All Analytes) C-1 Hangar and C-1 Building, Paine Field, Snohomish County Airport Everett, Washington

								Sample	ID and Samp	le Date ¹						
	MTCA Method B Indoor Air Cleanup															
Analyte	Level ²	IA-1_120120 12/01/20	IA-2_120120 12/01/20	IA-3_120120 12/01/20	IA-4_120120 12/01/20	IA-5_120120 12/01/20	IA-6_120120 12/01/20	IA-7_120120 12/01/20	IA-8_120120 12/01/20	IA-9_120120 12/01/20	IA-10_120120 12/01/20	IA-11_120120 12/01/20	IA-12_120120 12/01/20	IA-13_120120 12/01/20	0A-1_120120 12/01/20	0A-2_120120 12/01/20
Air-Phase Petroleum Hydrocarbons	(APH) (μg/m ³) by Me	thod MA-API	H													
APH C5-C8 Aliphatics	NE	45	40 U	43	43	40 U	40 U	40 U	45	67	58	42	65	51	40 U	59
APH C9-C12 Aliphatics	NE	140	130	180	130	96	140	50 U	90	130	99	98	72	100	50 U	52
Volatile Organic Compounds (µg/n	n ³) by Method EPA TO	-15 and TO-1	.7													
1,1,2,2-Tetrachloroethane	0.043	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U									
1,2-Dibromoethane	0.0042	0.077 U	0.077 U	0.077 U	0.077 U	0.077 U	0.077 U									
1,2-Dichloroethane	0.096	0.061	0.077	0.077	0.069	0.077	0.077	0.073	0.073	0.073	0.081	0.069	0.10	0.061	0.073	0.097
1-Propene	NE	1.2 U	1.6	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	4.4					
Acetone	14000	7.5	10	11	9.6	7.6	10	6.0	8.2	13	9.7	9.9	15	7.5	5.0	37
Acrolein	0.0091	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U									
Allyl Chloride (3-Chloropropene)	0.42	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U									
Benzene	0.32	0.45	0.63	0.63	0.51	0.65	0.58	0.44	0.59	0.59	0.63	0.68	0.63	0.55	0.42	0.59
Benzyl chloride	0.051	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U									
Butane	NE	3.4	3.1	4.2	3.6	3.9	3.8	2.4 U	3.1	9.2	3.6	3.7	4.2	4.0	2.4 U	2.4 U
Carbon Tetrachloride	0.42	0.40	0.46	0.47	0.47	0.44	0.46	0.43	0.45	0.42	0.48	0.53	0.47	0.40	0.47	0.52
Chloroform	0.11	0.11	0.11	0.098	0.10	0.11	0.10	0.12	0.15	0.15	0.22	0.25	0.16	0.19	0.093	0.098
Dichlorodifluoromethane	46	2.4	2.3	2.7	2.8	3.0	2.9	2.9	2.2	2.5	2.9	2.8	2.9	2.5	2.9	3.0
Ethanol	NE	7.5 U	7.5 U	7.5 U	7.5 U	9.8	7.5 U	7.5 U	16	11	84 J	95 J	37	25	7.5 U	7.5 U
Ethylbenzene	460	0.43 U	0.48	0.48	0.60	0.57	0.46	0.51	0.43 U	0.43 U						
Hexachlorobutadiene	0.11	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U									
Hexane	320	4.0	3.5 U	3.6	3.5 U	3.5 U	7.3	3.5 U	3.5 U	3.9						
Methyl ethyl ketone (MEK)	2300	2.9 U	2.9 U	2.9 U	2.9 U	2.9 U	16									
Methylene Chloride	66	60 U	35 U	65 U	35 U	35 U	35 U	41 U	35 U	35 U	40 U	35 U	110 U	47 U	35 U	64 U
Naphthalene	0.074	0.21	0.18	0.20	0.27	0.14	0.19	0.057 J	0.094	0.13	0.15	0.084	0.084	0.13	0.057 J	0.079
Naphthalene ³	0.074	0.11	0.11	0.11	0.10	0.12	0.11	0.10	0.12	0.15	0.14	0.13	0.12	0.13	0.061	0.058
Pentane	NE	3.0 U	7.4	29	13	12	7.3	7.9	3.0 U	3.0 U						
Tetrahydrofuran	910	0.29 U	0.31	0.29 U	0.31	0.29 U	0.31	0.29 U	0.29 U	0.29 U						
Trichloroethylene	0.33	0.15	0.14	0.13	0.13	0.12	0.19	1.1	0.37	0.31	0.44	0.41	0.70	0.60	0.11 U	0.11 U
Vinyl Bromide	0.078	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U									
Xylene, m-,p-	46	1.4	1.6	1.5	1.5	1.3	1.6	0.87 U	1.7	1.8	2.3	2.1	1.7	1.9	0.87 U	0.91
Xylene, o-	46	0.63	0.72	0.66	0.66	0.55	0.70	0.43 U	0.66	0.73	0.79	0.77	0.60	0.67	0.43 U	0.43 U
Total Xylenes	46	2.0	2.3	2.2	2.2	1.8	2.3	0.87 U	2.4	2.5	3.1	2.9	2.3	2.6	0.87 U	0.91

Notes:

µg/m3 = micrograms per cubic meter

NE = not established

U = Constituent not detected above the laboratory reporting limit

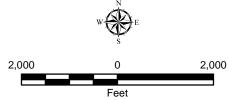
Bold font type indicates the analyte was detected at a concentration greater than the laboratory reporting limit.

Gray shaded value indicates the detected concentration in soil vapor is greater than the MTCA Method B indoor air cleanup level for residential exposure.

Blue shading indicates the non-detect concentration was greater than the MTCA Method B indoor air cleanup level for residential exposure.

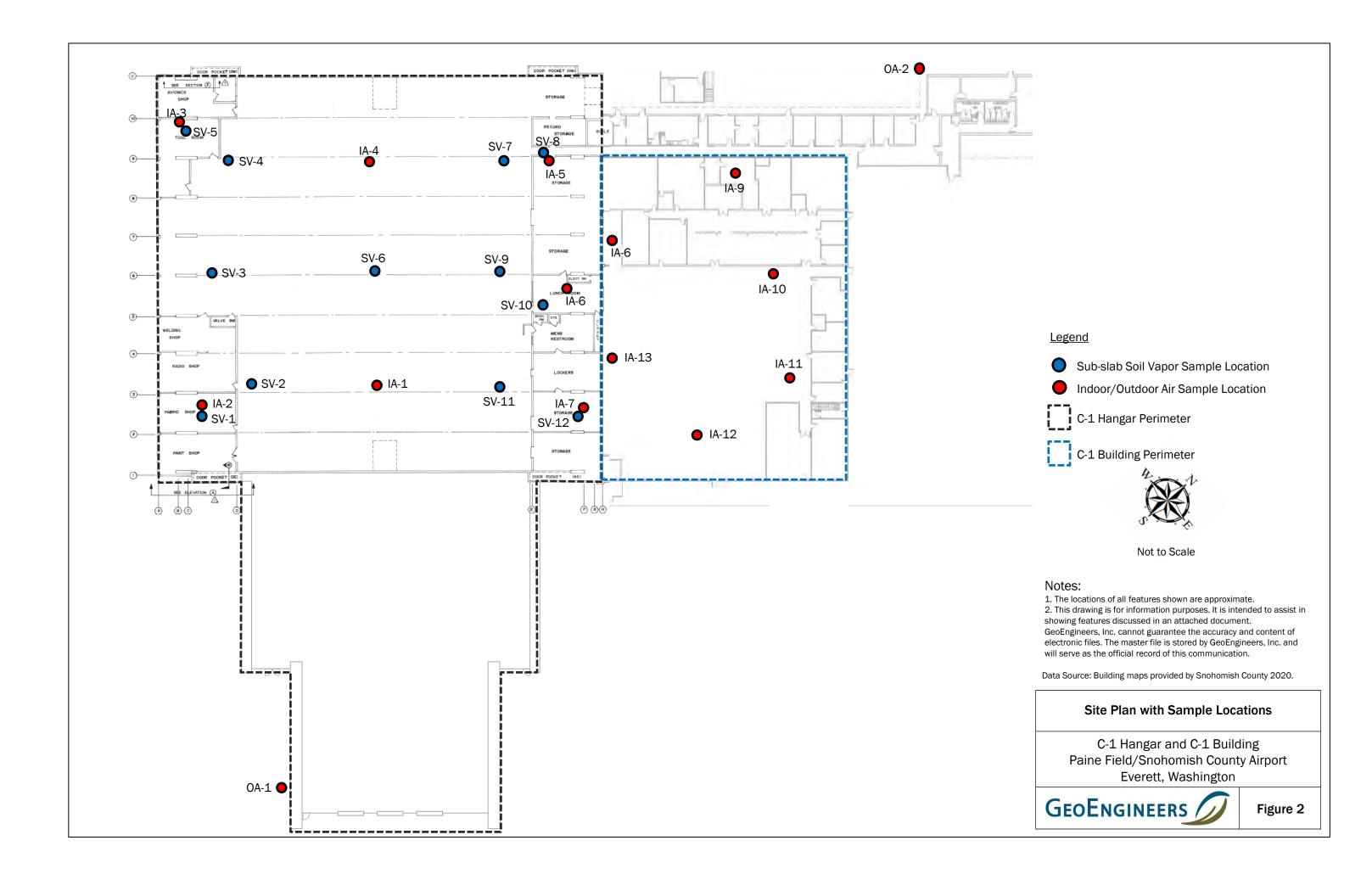
¹ All constituents analyzed using United States Environmental Protection Agency (EPA) Method TO-15, except where noted. Indoor air data are not adjusted to account for contributions from outdoor air.

² Model Toxics Control Act (MTCA) Method B indoor air cleanup levels for residential exposure are from Ecology's "CLARC Master Spreadsheet.xisx" dated February 2021. Residential exposure scenario assumes 365 days/year, 24 hours/day for 30 years (carcinogenic chemicals) or for 6 years (non-carcinogenic chemicals).


³ Naphthalene analyzed using EPA Method TO-17.

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- 3. It is unlawful to copy or reproduce all or any part thereof, whether for personal use or resale, without permission.

Data Sources: ESRI Data & Maps, Street Maps 2005 Transverse Mercator, Zone 10 N North, North American Datum 1983 North arrow oriented to grid north



Vicinity Map

C-1 Hangar and C-1 Building Paine Field/Snohomish County Airport Everett, Washington

Figure 1

APPENDIX A Field Procedures and Building Survey

APPENDIX A FIELD PROCEDURES AND BUILDING SURVEY

General

Sub-slab soil vapor, indoor air, and outdoor air samples were collected.

Meteorological Data

Relevant meteorological data that can influence vapor intrusion was recorded prior to and during sampling. Barometric pressure data over a 2-week time span around the sampling event were reviewed, based on data from readily available data sources (e.g., regional weather stations). General weather conditions such as wind speed, snow or ice cover, significant precipitation was noted at the time of sampling based on direct observation (e.g., for snow or ice cover) or readily available data sources (e.g., regional weather stations).

Sub-Slab Soil Vapor Probe Installation

Sub-slab soil vapor samples were collected inside the building using Vapor Pin[™] sampling devices. The Vapor Pins[™] were installed following the manufacturers' standard operating procedures (SOPs) attached to this appendix.

General installation procedures for the sub-slab sampling device were as follows:

- Checked for buried obstacles (pipes, electrical lines, etc.) prior to proceeding. Applied Professional Services, Inc. completed a private utility locate and cleared the sub-slab soil vapor sample locations.
- Set up vacuum to collect drill cuttings.
- Drilled a %-inch-diameter hole through the slab and approximately 1 inch into the underlying soil to form a void.
- Removed the drill bit, brushed the hole with the bottle brush and removed the loose cuttings with the vacuum.
- Placed the lower end of sampling device assembly into the drilled hole. Placed the small hole located in the handle of the extraction/installation tool over the sampling device to protect the barb fitting and cap and tapped the sampling device into place using a dead-blow hammer. Aligned the extraction/installation tool parallel to the sampling device to avoid damaging the barb fitting.
- The silicone sleeve formed a slight bulge between the slab and the sample device shoulder during installation. Placed the protective cap on sampling device to prevent vapor loss prior to sampling.
- Allowed at least 2 hours for the sub-slab soil vapor conditions to equilibrate prior to sampling.

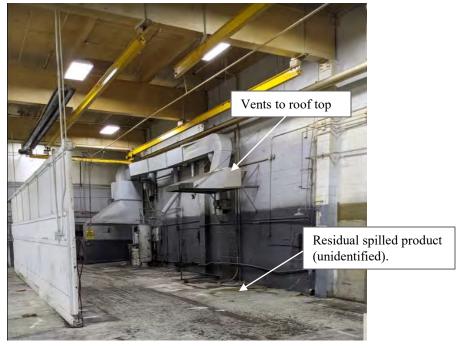
Sub-Slab Soil Vapor Sampling Procedure

The following procedure was followed to collect sub-slab soil vapor samples:

- New fluoropolymer (Teflon®) tubing was connected to the sub-slab soil vapor probe using the barb fitting on the top of the sampling device.
- The tubing (aboveground) was connected to a sampling manifold.

- The sampling manifold was vacuum-tested (shut-in test) by introducing a vacuum to the aboveground portion of the sampling train and checking for loss of vacuum after 5 minutes. If vacuum loss was observed, connections and fittings in the sample train were checked and adjusted followed by another vacuum test. This test was repeated until the sampling train demonstrated that tightness was achieved.
- A tracer gas shroud (clear plastic bag) was placed around the entire sample train (that is, the sub-slab soil vapor probe where it enters the ground surface, the 1-liter Summa canister and associated tubing and manifold).
 - The shroud was charged (filled) with a tracer gas (spec-grade 99.995 percent helium gas) and the tracer gas concentration within the shroud was measured using a hand-held monitor (Dielectric MGD-2002 Multi-Gas Leak Detector). The hand-held monitor is capable of measuring helium in air to a concentration of 0.5 percent) prior to, during and after completion of the sampling event. A Teflon tube with a ball valve was inserted under the shroud to connect with the compressed helium bottle to charge the shroud. This same tube was used to monitor the helium concentration within the shroud periodically throughout the sampling process. The purpose of the periodic monitoring is to make sure helium is in contact with the sample train and the ground surface while the sub-slab vapor sample is collected.
- The sampling train (aboveground and belowground components) was purged using a vacuum purge pump or a multi-gas meter. Purge volumes were calculated based on the flow rate of the purge pump and the volume of the soil vapor probe and sample train. The helium concentration within the sampling train was measured and recorded after purging three sampling train volumes. If the helium concentration in the sample train is greater than or equal to 5 percent of the helium concentration in the shroud, the bentonite seal was re-applied, fittings were tightened, and the previous purging and measurement tests was repeated (Cal-EPA/DTSC 2015).
- The soil vapor samples were obtained using a 1-liter evacuated Summa canister (with approximately 30 inches of mercury vacuum set by the laboratory) and tedlar bag (helium analysis) with a regulated flow rate of less than or equal to approximately 150 milliliters per minute (DTSC/Cal-EPA 2015). The canister was filled with soil vapor for approximately 5 minutes or until a vacuum equivalent of approximately 5 inches of mercury remains in the Summa canister, whichever comes first. The initial and final canister vacuums were recorded on a soil vapor sampling field form. Canisters were then prepared and delivered to the laboratory under chain-of-custody procedures.

Air Sampling Methodology


The following methods were used to collect the indoor air and outdoor air samples.

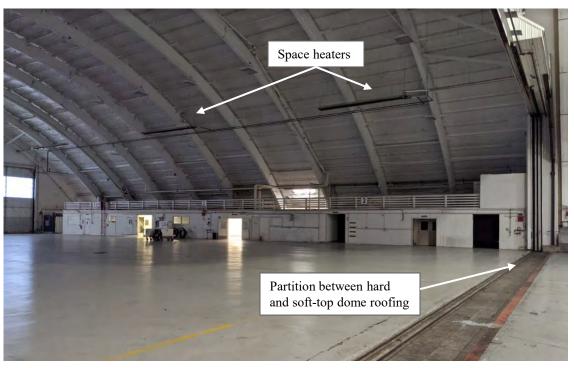
- Indoor and outdoor air samples were obtained at the same time over an 8-hour period using laboratory-prepared evacuated 6-Liter Summa canisters and sorbent tubes (for naphthalene analysis only). Sorbent tube samples were obtained to achieve reporting limits for naphthalene that are less than the MTCA Method B indoor air cleanup level.
- Summa canister samples were obtained using a vacuum gauge and an 8-hour flow controller. Sorbent tube samples were collected using calibrated personal sampling pumps.
- The canisters and sorbent tubes for indoor air samples were placed on the building floor and the sample intakes were situated approximately 4- to 5-feet aboveground to collect samples representative of the breathing zone for future building occupants.

- Initial canister pressure, start date and start time were recorded on a field data form. The inlet valve on the canister was opened to collect the sample. The canisters were filled until a vacuum equivalent of approximately 5 inches of mercury remained in each canister. At that time, the inlet valve was closed and the canister pressure, stop date and stop time were recorded on the field data form. Canisters were then prepared and delivered to the laboratory under chain-of-custody procedures.
- Air sampling using sorbent tubes followed laboratory recommended procedures. Tubing was connected to the sorbent tubes and the calibrated personal sampling pumps. The start date and start time was recorded on the field data form. The pump was calibrated to collect the laboratory recommended volume of air over the 8-hour period. Sorbent tubes were stored and shipped following laboratory recommended procedures and delivered to the laboratory under chain-of-custody procedures for chemical analysis of naphthalene only.
- Outdoor air samples were collected using methodology similar to the indoor air sampling described above. Outdoor samples were collected upwind of the building, based on meteorological observations at the time of sampling, and on the building roof above the showroom/office areas adjacent to the HVAC intake.
- Indoor air sampling was conducted under conservative (i.e., "worst case") conditions as recommended by Ecology guidance. Specifically, windows were kept closed and ingress and egress activities were minimized to the extent possible during sampling. As noted previously, indoor air samples were collected prior to building occupancy; however, the HVAC system operated for approximately 1 week prior and during the sampling period as if the building were occupied to maintain normal indoor air temperatures. The intent was to obtain indoor air samples that are representative of normal conditions, but sample when few to no building occupants are present and few windows and exterior doors are opening and closing, to reduce potential interferences.

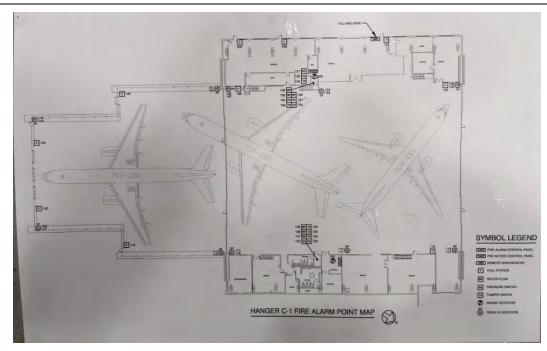
Photograph 1. Inside C-1 Building at sample location IA-13 along the shared wall with C-1 Hangar to the south. Multiple hood vents are present with adjoining roof outlets as viewed in Photograph 2.

Photograph 2. C-1 Building roof vents above the equipment workshop area. Small metal shed attached to building also pictured.

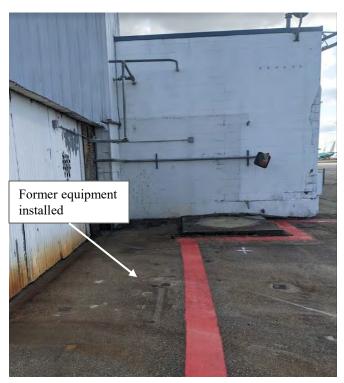
Photograph 3. Floor drain identified in C-1 Building near in office areas near sample location IA-9. No strong odors were observed.



Photograph 4. Main workshop area in C-1 Building with view of 2nd floor office space. Sample location for IA-12. Roll up garage doors lead to outdoor, gated parking lot.



Photograph 5. C-1 Hangar offices located on west-southwest side of building. Sample locations SS-1, -2, -3, IA-2, and DP-2 were located in this area.



 $Photograph \, 6. \, North \, side \, of \, C-1 \, Hangar \, with \, internal \, of fice \, spaces, \, workshops, \, restrooms, \, and \, breakrooms \, pictured.$

Photograph 7. C-1 Hangar layout posted at fire alarm service point.

Photograph 8. Exterior corner at west end of C-1 Hangar. Metal-sided workshop imaged on left with outlines of former equipment anchored to asphalt.

C-1 BUILDING SURVEY FORM

This form must be completed for each building involved in indoor air testing.

Preparer's Name <u>Katy Ata</u>	kturk	_ Date/Time Prepared _	11/30/2020
Preparer's Affiliation <u>Envir</u>	onmental Consultant	Phone No	(206)419-4290
Purpose of Investigation <u>Er</u>	nvironmental Investigati	on	
1. OCCUPANT:			
Interviewed: Y N			
Last Name:	First Nan	ne:	
Address:			
County:			
Home Phone:	Office Phone:		_
Number of Occupants/perso	ns at this location	Age of Occupants _	
2. OWNER OR LANDLORD: (C	Check if same as occupa	ant)	
Interviewed: N			
Last Name: Rardin	Fir	rst Name: <u>Andrew</u>	
Address:(On Site)			
County: <u>Snohomish</u>			
Home Phone:	Office Phone	:	_
3. BUILDING CHARACTERIST	ICS		
Type of Building: (Circle appr	opriate response)		
Residential	Commercial Multi-us	se Other	:
If the property is residential,	type? (Circle appropriat	e response)	
2-Family	3-Family		
Raised Ranch	Split Level	Colonial	
Cape Cod	Contemporary	Mobile Home	
Duplex	Apartment House	Townhouses/Condos	5
Modular	Other:		

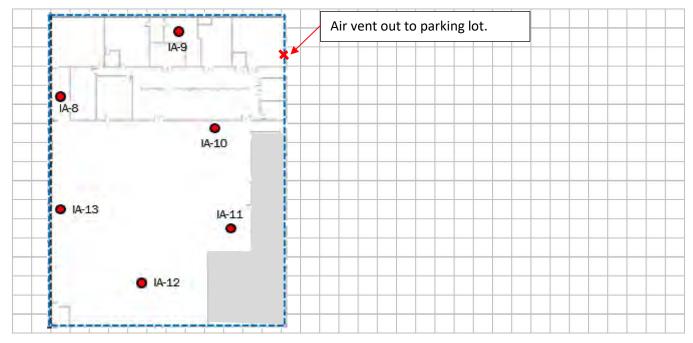
If multiple units, how many? _			
If the property is commercial,	type?		
Business Type(s)Aviatio	on company (former	tenant); vacant at ti	me of investigation
Does it include residences	s (i.e., multi-use)?	Y (N) f y	es, how many?
Other characteristics:			
Number of floors_2_	Building ag	e	
Is the building insulated?	N How air tigh	nt? Tight Average	/ Not Tight
4. BASEMENT AND CONSTRUC	CTION CHARACTERIS	TICS (Circle all that a	apply)
Above grade construction:	wood frame cor	crete stone	brick
Foundation type:	crawlspace slal	o-on-grade other _	
Foundation walls:	poured blo	stone	other
Foundation walls:	unsealed sea	led sealed v	vith
If building has a crawlspace, p	lease answer the fo	lowing questions:	
1) Does the crawlspace has	ve air vents leading	out of the house or b	ouilding? Y/N
 Does the crawlspace has Crawl space vents: 	ve air vents leading always open alw		ouilding? Y/N open/closed based on season
	always open alw		open/closed based on season
2) Crawl space vents:	always open alw N/A dirt	ays closed concrete	open/closed based on season
2) Crawl space vents:3) Crawlspace floor:	always open alw N/A dirt	ays closed concrete apor barrier)?	open/closed based on season e other
2) Crawl space vents:3) Crawlspace floor:4) Is the crawlspace lined vents.	always open alw N/A dirt vith a plastic liner (vi	concrete apor barrier)?	open/closed based on season e other Y / N Attached to foundation
 2) Crawl space vents: 3) Crawlspace floor: 4) Is the crawlspace lined vents 5) Position of the liner: 	always open alw N/A dirt vith a plastic liner (vi	ays closed concrete apor barrier)? ached to floor joist	open/closed based on season e other Y / N Attached to foundation
 Crawl space vents: Crawlspace floor: Is the crawlspace lined vents Position of the liner: Condition of liner: 	always open alw N/A dirt with a plastic liner (v. On ground Atta whole wet dar	ays closed concrete apor barrier)? ached to floor joist of partial to	open/closed based on season e other Y / N Attached to foundation torn moldy
 Crawl space vents: Crawlspace floor: Is the crawlspace lined vertical floor. Position of the liner: Condition of liner: Crawlspace is: 	always open alw N/A dirt with a plastic liner (v. On ground Atta whole wet dar grade, please answer	ays closed concrete apor barrier)? ached to floor joist of partial to	open/closed based on season e other Y / N Attached to foundation torn moldy tions:
 Crawl space vents: Crawlspace floor: Is the crawlspace lined vents Position of the liner: Condition of liner: Crawlspace is: 	always open alw N/A dirt with a plastic liner (v. On ground Atta whole wet dar grade, please answe	concrete apor barrier)? ached to floor joist partial approached to floor joist partial approached to floor joist sealed with	open/closed based on season e other Y / N Attached to foundation torn moldy tions:
 Crawl space vents: Crawlspace floor: Is the crawlspace lined vents Position of the liner: Condition of liner: Crawlspace is: If house or building is slab-on- Concrete floor: unseal 	always open alw N/A dirt with a plastic liner (v. On ground Atta whole wet dar grade, please answe ed sealed ered covered	concrete apor barrier)? ached to floor joist partial apple dry ar the following quest sealed with covered with	open/closed based on season e other Y / N Attached to foundation torn moldy tions: inyl tiling and uncovered
 Crawl space vents: Crawlspace floor: Is the crawlspace lined vents Position of the liner: Condition of liner: Crawlspace is: Crawlspace is: Concrete floor: unseal Concrete floor: uncover 	always open alw N/A dirt with a plastic liner (v. On ground Atta whole wet dar grade, please answe ed sealed ered covered sump, please answe	concrete apor barrier)? ached to floor joist partial apple dry ar the following quest sealed with covered with	open/closed based on season e other Y / N Attached to foundation torn moldy tions: inyl tiling and uncovered

Lowest level depth below gra	de: (feet)							
Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)								
Cracks in concrete are prevalent in the workshop space. Occasional drains are present through out the workshop. Utility Ports are sparse but present in the workshop and office space.								
5. HEATING, VENTING and All	R CONDITIONING (Circ	le all that apply)						
Type of heating system(s) use primary)	ed in the house or build	ding: (circle all that apply	– note					
Hot air circulation	Heat pump	Hot water baseboard						
Space Heaters	Stream radiation	Radiant floor						
Electric baseboard	Wood stove	Outdoor wood boiler	Other					
The primary type of fuel used	is:							
Natural Gas	Fuel Oil	Kerosene						
Electric	Propane	Solar						
Wood	Coal							
Domestic hot water tank fuel	ed by: <u>Natural gas</u>							
Where is Boiler/furnace/air of	onditioning located: E	quipment Shop and Janit	or room first floor office space.					
Are there air distribution duct	s present (Y) N							
Describe the air intakes (whe where visible, including whet locations on the floor plan did	her there is a cold air r							
Air intake vents observed at in okay condition. Chemical hocondition. Spilled substance	ood vents present in t	he workshop space along						
6. OCCUPANCY								
Is lowest level occupied?	Full-time Occa	asionally Seldom	Almost Never					
Level General Use of Each Flo	oor (e.g., family room,	store, laundry, workshop	, storage)					
1 st Floor <u>Equipment workshop and office space.</u>								
2 nd FloorOffice space only	V							

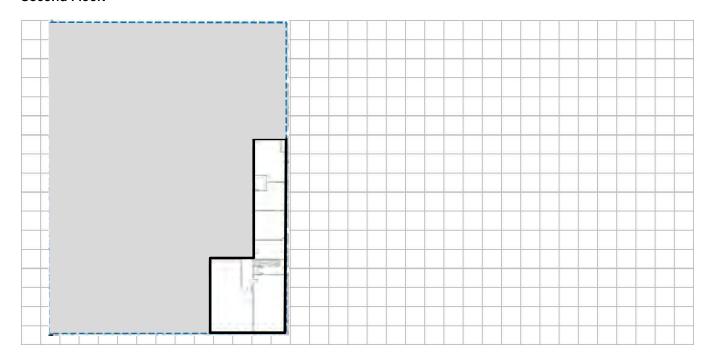
7. FACTORS THAT MAY INFLUENCE INDOOR AIR QUA	LITY
a. Is there an attached garage?	(Y) N
b. Does the garage have a separate heating unit?	Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	Y N / NA Please specify <u>Aviation engine workshop</u>
d. Has the building ever had a fire?	Y / N When?
e. Is a kerosene or unvented gas space heater prese	ent? Y / N Where?
f. Is there a workshop or hobby/craft area?	(Y) N Where & Type? 1st floor
g. Is there smoking in the building?	Y NHow frequently?
h. Have cleaning products been used recently?	Y NWhen & Type?
i. Have cosmetic products been used recently?	Y N When & Type?
j. Has painting/staining been done in the last 6 mon	ths? Y/NWhere & When?
k. Is there new carpet, drapes or other textiles?	Y N Where & When?
I. Have air fresheners been used recently?	Y NWhen & Type?
m. Is there a kitchen exhaust fan?	Y / N If yes, where vented?
n. Is there a bathroom exhaust fan?	Y / N If yes, where vented?
o. Is there a clothes dryer?	Y N f yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y NWhen & Type?
Are there odors in the house or building?	Y / N
If yes, please describe: Yes, solvent and/or petroleu	m odors in workshop.
Do any of the house or building occupants use solve (e.g., chemical manufacturing or laboratory, auto me boiler mechanic, pesticide application, cosmetologis	chanic or auto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used? _Aviation e	engine solvents used by former tenant_
If yes, are their clothes washed at work?	Y/N
Do any of the house or building occupants regularly appropriate response)	use or work at a dry-cleaning service? (Circle
Yes, use dry-cleaning regularly (weekly)	No
Yes, use dry-cleaning infrequently (monthly o	r less) Unknown

Yes, work at a dry-cleaning service

Is there a radon mitigation system for the house/building? Y	N	Date of Installation:
--	---	-----------------------

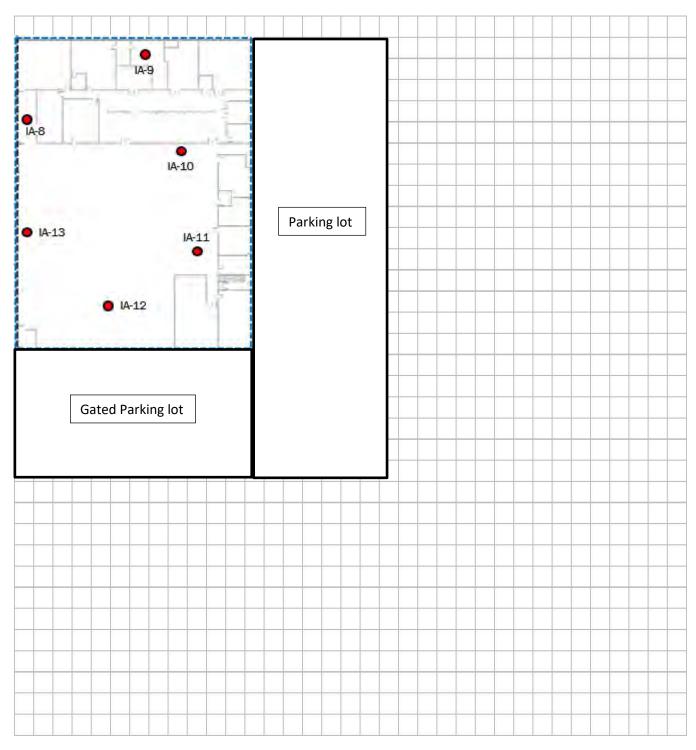

Is the system active or passive?

Active/Passive


8. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the house/building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the house/building does not have a basement, please note.

First Floor:



Second Floor:

9. OUTDOOR PLOT (Draw a sketch of the area surrounding the house/building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.)

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

10. PRODUCT INVENTORY FORM Make & Model of field instrument used: Not available. Space is vacant.

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description*	Comments	PID Reading
NA			

^{*} Describe the condition of the product containers as **Unopened (UO), Used (U),** or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

C-1 HANGAR SURVEY FORM

This form must be completed for each building involved in indoor air testing.

Preparer's Name <u>Katy A</u>	takturk	_ Date/Time Prepared _	11/30/2020
Preparer's Affiliation <u>En</u>	vironmental Consultant	Phone No	(206)419-4290
Purpose of Investigation_	Environmental Investigati	on	
1. OCCUPANT:			
Interviewed: Y N			
Last Name:	First Nan	ne:	
Address:			
County:	_		
Home Phone:	Office Phone:		_
Number of Occupants/per	rsons at this location	Age of Occupants _	
2. OWNER OR LANDLORD	: (Check if same as occupa	ant)	
Interviewed Y N			
Last Name: Rardin	Fir	rst Name: <u>Andrew</u>	
Address:(On Site)			
County: Snohomish			
Home Phone:	Office Phone	:	_
3. BUILDING CHARACTERI	STICS		
Type of Building: (Circle ap	opropriate response)		
Residential	Commercial Multi-us	se Other	:
If the property is residentia	al, type? (Circle appropriat	e response)	
2-Family	3-Family		
Raised Ranch	Split Level	Colonial	
Cape Cod	Contemporary	Mobile Home	
Duplex	Apartment House	Townhouses/Condos	
Modular	Other:		

If multiple units, how many? _						
If the property is commercial,	type?					
Business Type(s) <u>Aviation</u>	on Hangar			_		
Does it include residences (i.e., multi-use)?			Y N f yes,	how many?		
Other characteristics:						
Number of floors_2_	Buildin	g age				
Is the building insulated?	Y N How ai	r tight? Tight 🕻	Average / No	ot Tight		
4. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)						
Above grade construction:	wood frame	concrete	stone	brick		
Foundation type:	crawlspace (slab-on-grade	other			
Foundation walls:	poured	block	stone	other		
Foundation walls:	unsealed (sealed	sealed with			
If building has a crawlspace, please answer the following questions:						
8) Does the crawlspace ha	ve air vents lead	ling out of the h	ouse or build	ling? Y/N		
8) Does the crawlspace ha9) Crawl space vents:		ling out of the ho		ling? Y/N n/closed based on seaso		
9) Crawl space vents:		always closed		n/closed based on seaso		
9) Crawl space vents:	always open	always closed	ope concrete	n/closed based on seaso		
9) Crawl space vents:10) Crawlspace floor:	always open N/A with a plastic line	always closed dirt er (vapor barrier	ope concrete)?	n/closed based on seaso		
9) Crawl space vents:10) Crawlspace floor:11) Is the crawlspace lined vents.	always open N/A with a plastic line On ground	always closed dirt er (vapor barrier Attached to floo	ope concrete)? or joist Atta	n/closed based on seaso other Y / N ched to foundation		
9) Crawl space vents:10) Crawlspace floor:11) Is the crawlspace lined vents12) Position of the liner:	always open N/A with a plastic line On ground	always closed dirt er (vapor barrier Attached to floo	ope concrete)? or joist Atta	n/closed based on seaso other Y / N ched to foundation		
 9) Crawl space vents: 10) Crawlspace floor: 11) Is the crawlspace lined vents 12) Position of the liner: 13) Condition of liner: 	always open N/A with a plastic line On ground whole wet	always closed dirt er (vapor barrier Attached to floo partial damp	ope concrete)? or joist Atta torn dry mol	n/closed based on seaso other Y / N ched to foundation dy		
9) Crawl space vents: 10) Crawlspace floor: 11) Is the crawlspace lined vents: 12) Position of the liner: 13) Condition of liner: 14) Crawlspace is:	always open N/A with a plastic line On ground whole wet grade, please ar	always closed dirt er (vapor barrier Attached to floo partial damp	ope concrete)? or joist Atta torn dry mol ing question	n/closed based on seaso other Y / N ched to foundation dy		
 9) Crawl space vents: 10) Crawlspace floor: 11) Is the crawlspace lined vents 12) Position of the liner: 13) Condition of liner: 14) Crawlspace is: If house or building is slab-on- 	always open N/A with a plastic line On ground whole wet grade, please ar led sealed	always closed dirt er (vapor barrier Attached to floo partial damp nswer the follow sealed	ope concrete)? or joist Atta torn dry mol ing question with	n/closed based on seaso other Y / N ched to foundation dy		
9) Crawl space vents: 10) Crawlspace floor: 11) Is the crawlspace lined of 12) Position of the liner: 13) Condition of liner: 14) Crawlspace is: If house or building is slab-on-3) Concrete floor: unsea	always open N/A with a plastic line On ground whole wet grade, please ar led sealed ered covered	always closed dirt er (vapor barrier Attached to floo partial damp nswer the follow sealed covered	ope concrete)? or joist Atta torn dry mol ing question with	n/closed based on seaso other Y / N ched to foundation dy s: tiling and uncovered		
9) Crawl space vents: 10) Crawlspace floor: 11) Is the crawlspace lined vents: 12) Position of the liner: 13) Condition of liner: 14) Crawlspace is: If house or building is slab-on- 3) Concrete floor: unsea 4) Concrete floor: uncover	always open N/A with a plastic line On ground whole wet grade, please ar led sealed ered covered sump, please ar	always closed dirt er (vapor barrier Attached to floo partial damp nswer the follow sealed covered	ope concrete)? or joist Atta torn dry mol ing question with	n/closed based on seaso other Y / N ched to foundation dy s: tiling and uncovered		

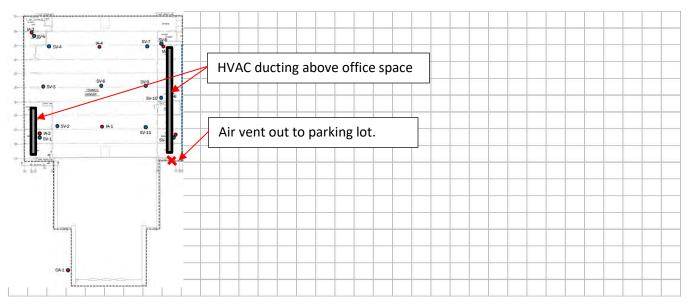
Lowest level depth below grade:(feet)						
Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)						
Break room sink along shared wall with C-1 building. Trench stormwater drains throughout hangar space (2 indoors) and 1 immediately outdoors. No visible cracks in concrete of hangar space.						
5. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)						
Type of heating system(s) used in the house or building: (circle all that apply – note primary)						
Hot air circulation	Heat pump	Hot water baseboard				
Space Heaters	Stream radiation	Radiant floor				
Electric baseboard	Wood stove	Outdoor wood boiler	Other			
The primary type of fuel used is:						
Natural Gas	Fuel Oil	Kerosene				
Electric	Propane	Solar				
Wood	Coal					
Domestic hot water tank fueled by: Natural gas						
Where is Boiler/furnace/air conditioning located: Not identified.						
Are there air distribution ducts present N						
Describe the air intakes (where applicable), supply and cold air return ductwork, and their condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.						
Air ducts observed above office buildings within hangar running to exterior of hangar to SE end of building by soft-top hangar transition in good shape.						
6. OCCUPANCY						
Is lowest level occupied?	Full-time Oc	casionally Seldom	Almost Never			
Level General Use of Each Floor (e.g., family room, store, laundry, workshop, storage)						
1 st Floor <u>Hangar, workshops, and office space.</u>						

2 nd Floor Office space only	
7. FACTORS THAT MAY INFLUENCE INDOOR AIR QUA	LITY
a. Is there an attached garage?	Y /N
b. Does the garage have a separate heating unit?	Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	N / NA Please specify Planes when in use
d. Has the building ever had a fire?	Y / N When?
e. Is a kerosene or unvented gas space heater prese	ent? Y N Where?
f. Is there a workshop or hobby/craft area?	(Y) N Where & Type? 1st floor workshops in N corner
g. Is there smoking in the building?	Y NHow frequently?
h. Have cleaning products been used recently?	Y N When & Type?
i. Have cosmetic products been used recently?	Y NWhen & Type?
j. Has painting/staining been done in the last 6 mon	ths? Y / N Where & When?
k. Is there new carpet, drapes or other textiles?	Y N Where & When?
I. Have air fresheners been used recently?	Y NWhen & Type?
m. Is there a kitchen exhaust fan?	Y / N If yes, where vented?
n. Is there a bathroom exhaust fan?	Y / N If yes, where vented?
o. Is there a clothes dryer?	Y N f yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y / N When & Type?
Are there odors in the house or building?	Y /N
If yes, please describe:	
Do any of the house or building occupants use solve (e.g., chemical manufacturing or laboratory, auto me boiler mechanic, pesticide application, cosmetologis	chanic or auto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used? Paint wor	rkshop and general workshop spaces
If yes, are their clothes washed at work?	Y/N
Do any of the house or building occupants regularly appropriate response)	use or work at a dry-cleaning service? (Circle
Yes, use dry-cleaning regularly (weekly)	No

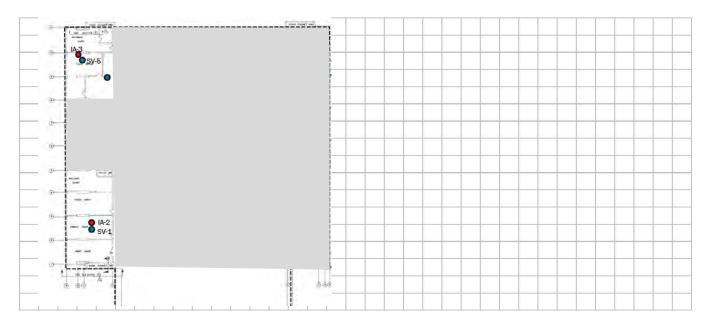
Yes, use dry-cleaning infrequently (monthly or less) Unknown

Yes, work at a dry-cleaning service

Is there a radon mitigation system for the house/building? Y N pate of Installation: _____

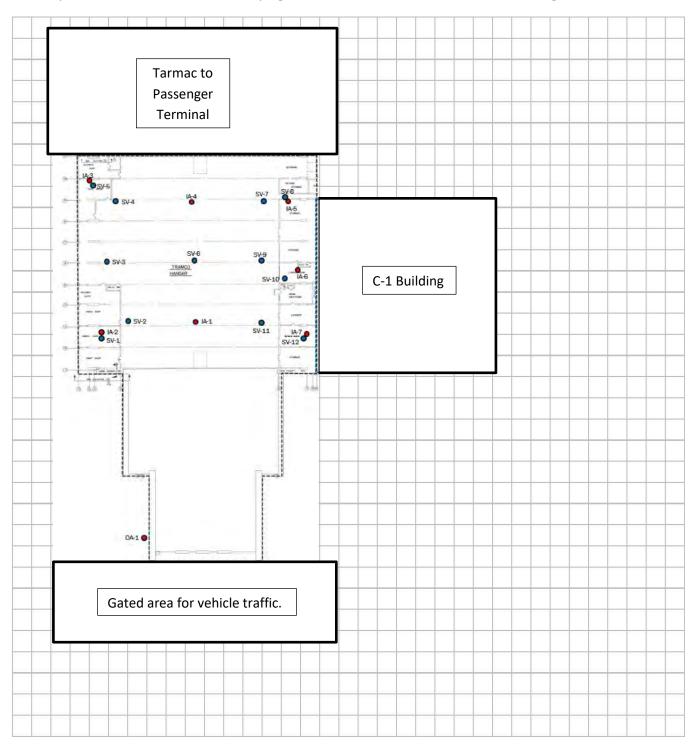

Is the system active or passive?

Active/Passive


8. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the house/building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the house/building does not have a basement, please note.

First Floor:



Second Floor:

9. OUTDOOR PLOT (Draw a sketch of the area surrounding the house/building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.)

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

10. PRODUCT INVENTORY FORM Make & Model of field instrument used: Not available. Space is vacant.

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description*	Comments	PID Reading
NA			

^{*} Describe the condition of the product containers as **Unopened (UO), Used (U),** or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX B Concrete Survey Report

UNDERGROUND UTILITY DETECTION & INSPECTION SERVICES

Concrete Scanning Report

Project:
3220 100th St SW
Everett, WA 98204

Prepared For: Geo Engineers

Prepared By:
C-N-I Locates Ltd.
EM & GPR Technicians
PO Box 7740
Bonney Lake, WA 98391

Ph: 253-826-1177 Fax: 253-826-2232

INTRODUCTION

C-N-I Locates Ltd. was hired by Geo Engineers to concrete scan the reinforcement in 12 areas for avoidance for vapor pin installations throughout the Western half of an aircraft hangar.

GEOPHYSICAL METHODOLOGY AND EQUIPMENT

The Geophysical Survey Systems SIR 3000 Concrete Scanner with the 2000 MHz palm antenna was used to identify the variations in subsurface conditions that indicate a significant change in material.

GPR is a non-destructive geophysical device used for subsurface exploration and operates by transmitting an electromagnetic pulse from an antenna into the ground and then capturing the partial reflections from subsurface layers. Any other material of carried density will either speed up the signal creating a hyperbola trail. This is similar to a rock in a creek, the water bends around the rock leaving a tail wake.

SITE AREA

The work area consisted of 12 locations that were adjusted based on varying slab conditions inside the Western half of the hangar. The hangar in question presented unique conditions with layers of concrete constructed on top of the initial slab at different times.

ANALYSES / INTERPRETATIONS AND FINDINGS

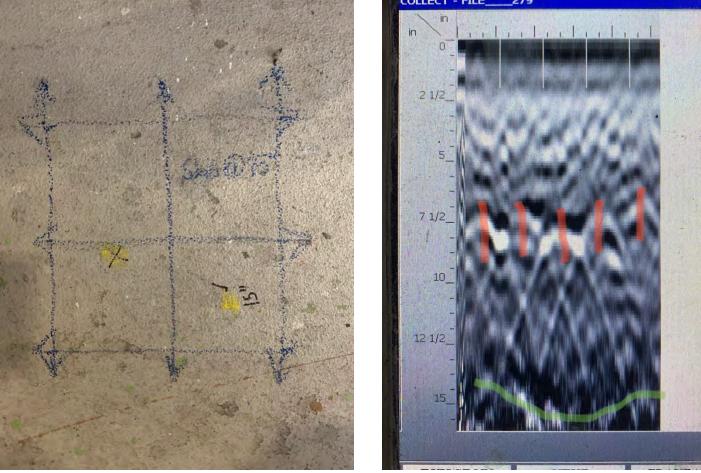
The hangar, most likely due to it's age, presented unique scanning conditions. The hangar appeared to have been renovated at one point in time, with some areas having new concrete and reinforcement placed directly on top of the original slab, potentially up to 14" of new concrete in some areas.

This made determining the slab depth with certainty very difficult and in some areas impossible, resulting in some areas having to be adjusted to new locations. As can be seen in the images below, the slab depth varies widely from location to location and an unusual separation layer can be seen at one of the reinforcement mats in certain locations.

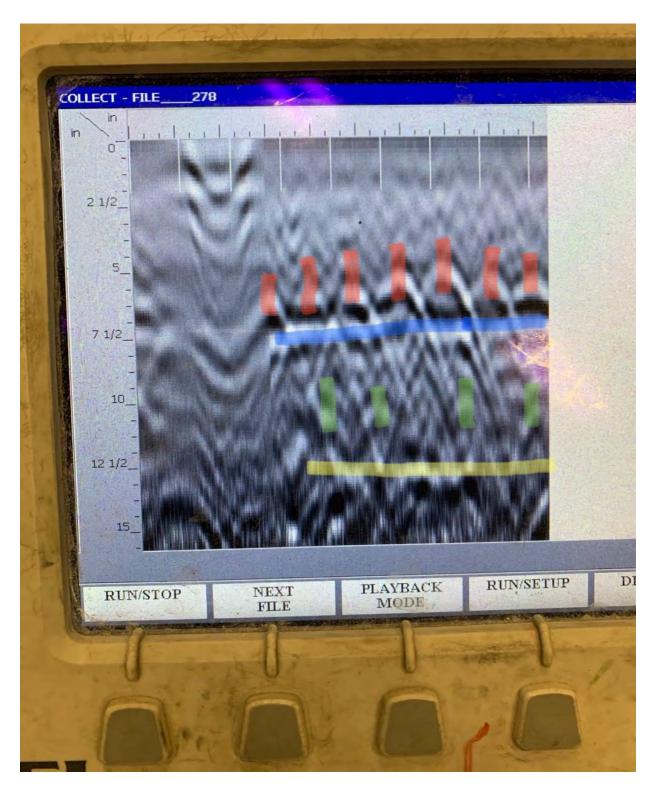
However, despite all of the difficulties in determining the slab depth, the reinforcement was otherwise fairly standard and unremarkable with a regular pattern throughout the hangar.

Pictures Below....

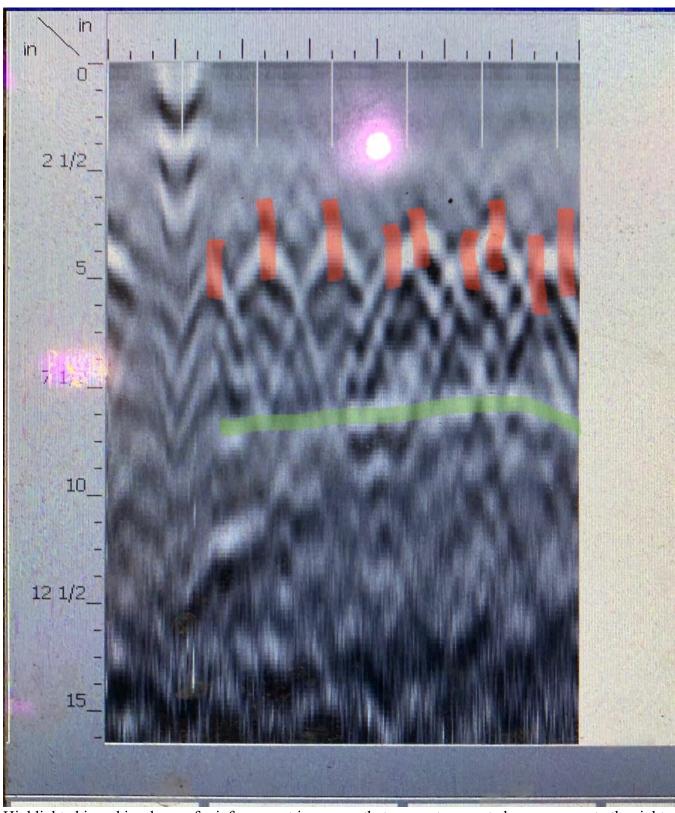
PO BOX 7740 ◆ BONNEY LAKE, WA 98391


TOLL FREE: 1-877-826-1177 ◆ PHONE: 253-826-1177 ◆ FAX: 253-826-2232

VISIT OUR WEBSITE AT: WWW.CNILOCATES.COM OR E-MAIL US AT: INFO@CNILOCATES.COM


GPR ◆ METALIC LINE DETECTION ◆ NON-METALLIC PIPE DETECTION ◆ VIDEO PIPE INSPECTION ◆ ELECTRICAL FAULT DETECTION

LEAK DETECTION ◆ MAGNETIC DETECTION ◆ UTILITY DESIGN SURVEYS ◆ CONTRACT LOCATING ◆ STRURCTURAL & CONCRETE IMAGING


"IT'S A JUNGLE OUT THERE."

Highlighted in green on the right is a representation of the lower limit of the scan, i.e. the lowest point in which the frequency of radio pulses can penetrate. In red, rebar matting at 7". This is a good example of the difficulties encountered in the area in trying to determine slab depth as the depth here appears to be very near the edge of the scan limit.

Highlighted in yellow is the base of the original slab. In green is the reinforcement of the original slab, barely visible. In blue is presumed to be a separation layer between the two pours. In red is the top reinforcement mat.

Highlighted in red is a layer of reinforcement in an area that was not renovated, you can see to the right of the scan where the two mats double at the beginning of a new reinforcement mat. In green, the bottom of the slab is clearly visible at 8".

APPENDIX C Data Validation and Chemical Analytical Laboratory Reports

Data Validation Report

2101 4th Avenue, Suite 950, Seattle, Washington 98121, Telephone: 206.239.3242, Fax: 206.728.2732

www.geoengineers.com

Project: Snohomish County Airports – Paine Field C-1 Hangar and Building Regulatory

Support

November/December 2020 Samples

GEI File No: 05530-014-00

Date: December 16, 2020

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2A data validation (USEPA Guidance on Environmental Data Verification and Validation (EPA-240-R-02-004, USEPA 2002) and Guidance for Labeling Validated Analytical Data for Superfund Use (EPA-R-541-08-005; USEPA 2009) of chemical analytical data from the analyses of air samples collected as part of the November 2020 soil vapor intrusion sampling event, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Paine Field C-1 Hanger and Building in Everett, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings # 18 (Ecology 2018), guidance in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review (USEPA 2017), and USEPA Methods TO-15 and TO-17 (USEPA 1999), as appropriate, for the GC/MS analyses of Summa cannisters. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide detection and reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Field Sampling Plan, ATS Hangar Shop_GEI Proposed VI, IA and DP Locations (GeoEngineers 2020), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates

- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Field Duplicates (FDs)
- Reporting Limits

VALIDATED SAMPLE DELIVERY GROUPS

This data validation summary included review of the sample delivery groups (SDGs) listed below in Table 1.

Table 1: Summary of Validated Sample Delivery Groups

Laboratory SDG	Samples Validated
012022	IA-1_120120, IA-2_120120, IA-3_120120, IA-4_120120, IA-5_120120, IA-6_120120, IA-7_120120, IA-8_120120, IA-9_120120, IA-10_120120, IA-11_120120, IA-12_120120, IA-13_120120, OA-1_120120, OA-2_120120, SV-1_113020, SV-2_113020, SV-3_113020, SV-4_113020, SV-5_113020, SV-6_113020, SV-7_113020, SV-8_113020, SV-9_113020, SV-10_113020, SV-11_113020, SV-12_113020
012023 Naphthalene ONLY	IA-1_120120, IA-2_120120, IA-3_120120, IA-4_120120, IA-5_120120, IA-6_120120, IA-7_120120, IA-8_120120, IA-9_120120, IA-10_120120, IA-11_120120, IA-12_120120, IA-13_120120, OA-1_120120, OA-2_120120

CHEMICAL ANALYSIS PERFORMED

Friedman & Bruya, Inc. (FBI) located in Seattle, Washington, performed laboratory analysis on the air samples using the following methods:

- Air-phase Petroleum Hydrocarbons by Massachusetts Department of Environmental Protection as Footnoted in Ecology 2018 document
- Volatile Organic Compounds (VOCs) by Modified EPA Method TO-15 using GC/MS in full scan mode; and EPA Method TO-17 using GC/MS in full scan mode.
- Helium by Modified ASTM Method D-1946 using GC/TCD.

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

DATA PACKAGE COMPLETENESS

FBI analyzed the air samples evaluated as part of this data validation. The laboratory provided all required deliverables for the data validation. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the case narrative.

GEOENGINEERS

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. All COC documentation parameters were met.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection.

Established holding times were met for the requested analyses.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis.

All surrogate recoveries for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of 1 per 20 samples.

For the sample batches, method blanks were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in the method blanks; however, the laboratory noted in the case narrative that the samples below may have been affected by method blank contamination.

SDG 012022: The positive results for methylene chloride in the Samples IA-1_120120, IA-3_120120, IA-7_120120, IA-10_120120, IA-12_120120, IA-13_120120, OA-2_120120 were qualified as not detected (U) because of possible method blank contamination. The reporting limits were also raised to the levels of reported concentrations by the laboratory.

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

The laboratory did not perform any MS/MSD sample sets because the air sampling methods obtain measurements of accuracy and precision from the laboratory control sample/laboratory control sample duplicate sample set.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. As there is no actual sample matrix (such as soil or groundwater) in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every 20 field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents, as are the relative percent difference (RPD) control limits for LCS/LCSD sample sets.

The frequency requirements were met for all analyses, and the percent recovery and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate samples were analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the RPD between each pair of samples. The RPD control limit is 30 percent for all parameters, unless one or more of the samples has a result that is less than five times the lowest reporting limits. In this case, the absolute difference is used to measure precision instead of the RPD. The absolute difference control limit in air samples is equivalent to the lowest reporting limit of the parent and duplicate samples.

The frequency requirements were met for all analyses, and the RPD and absolute difference values were within the proper control limits.

Field Duplicates (FDs)

No field duplicates were planned or used for this sampling event.

Reporting Limits and Miscellaneous

SDG 012022:

(T0-15): The sample concentrations of several target analytes (ethanol, acetone, 1,1,1-Trichloroethane, isopropyl alcohol, trichloroethylene) exceeded the linear calibration range of the instrument. The positive results of one or more of these analytes were qualified as estimated (J) in Samples IA-10_120120, IA-11_120120, SV-1_113020, SV-2_113020, SV-3_113020, SV-4_113020, SV-5_113020, SV-6_113020, SV-7_113020, SV-8_113020, SV-9_113020, SV-10_113020, and SV-12_113020.

(MA-APH): The sample concentration of APH EC5-8 Aliphatic range in Sample SV-6_113020 exceeded the linear calibration range of the instrument. The positive result of this aliphatic range was qualified as estimated (J) in Sample SV-6_113020.

Also, the chromatographic patterns for APH EC5-8 Aliphatic range in all of the 'SV' samples did not adequately match the standard chromatography used in the initial calibration standards for the instrument. The positive results for this hydrocarbon range in the Soil Vapor samples were found to be biased high and qualified as estimated (J+) in these samples.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate and LCS/LCSD percent recovery values. Precision was acceptable, as demonstrated by the internal laboratory duplicates RPD and absolute difference values.

GEOENGINEERS

Data were qualified as not-detected because of Method Blank contamination.

Data were qualified as estimated because of analytes exceeding the linear calibration range of the instrument, and chromatography not matching the calibration standards.

The data, as qualified, are considered acceptable for the intended use.

REFERENCES

- U.S. Environmental Protection Agency (USEPA). 1999. "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd edition," EPA-625-R-96-010b. January 1999.
- U.S. Environmental Protection Agency (USEPA). 2002. "Guidance on Environmental Data Verification and Data Validation," EPA-240-R-02-004. November 2002.
- U.S. Environmental Protection Agency (USEPA). 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (USEPA). 2017. "Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review," EPA-540-R-2017-002. January 2017.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 11, 2020

Jacob Letts, Project Manager GeoEngineers, Inc 1101 Fawcett Ave 200 Tacoma, WA 98402

Dear Mr Letts:

Included are the results from the testing of material submitted on December 1, 2020 from the C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022 project. There are 74 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures
GNR1211R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 1, 2020 by Friedman & Bruya, Inc. from the GeoEngineers, Inc C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	GeoEngineers, Inc
012022 -01	IA-1_120120
012022 -02	IA-2_120120
012022 -03	IA-3_120120
012022 -04	IA-4_120120
012022 -05	IA-5_120120
012022 -06	IA-6_120120
012022 -07	IA-7_120120
012022 -08	IA-8_120120
012022 -09	IA-9_120120
012022 -10	IA-10_120120
012022 -11	IA-11_120120
012022 -12	IA-12_120120
012022 -13	IA-13_120120
012022 -14	OA-1_120120
012022 -15	OA-2_120120
012022 -16	SV-1_113020
012022 -17	SV-2_113020
012022 -18	SV-3_113020
012022 -19	SV-4_120120
012022 -20	SV-5_120120
012022 -21	SV-6_120120
012022 -22	SV-7_120120
012022 -23	SV-8 120120
012022 -24	SV-9 120120
012022 -25	SV-10_120120
012022 -26	SV-11 120120
012022 -27	SV-12 120120
•	

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

APH (air) - Analysis Method MA-APH

Non-petroleum compounds identified in the air phase hydrocarbon ranges were subtracted per the MA-APH method.

The APH EC5-8 aliphatics concentration in sample SV-6_120120 exceeded the calibration range of the instrument. The data were flagged accordingly. All quality control requirements were acceptable.

The APH EC5-8 concentrations reported in the SV samples (012022-16 through 012022-27) show the presence of a possible non-petroleum interferent. The compound was tentatively identified as 1-butanol. The GC/MS tentative identification quality score did not meet the method criteria for subtraction. Affected concentrations were reported with an x qualifier.

Volatiles (air) - Analysis Method TO-15

The concentration of several analytes exceeded the calibration range of the instrument. The data were flagged accordingly. All quality control requirements were acceptable.

The methylene chloride concentrations present in the IA and OA samples (012022-01 through 012022-15) were flagged as possibly due to laboratory contamination.

Helium (air) - Analysis Method ASTM D1946

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-1_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-01Date Analyzed: 12/04/20 Data File: 120420.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 94 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 45 APH EC9-12 aliphatics 140 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-2_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-02 Date Analyzed: 12/04/20 Data File: 120422.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 92 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40 APH EC9-12 aliphatics 130 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-3_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022 - 03Date Analyzed: 12/04/20 Data File: 120423.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 103 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 43 APH EC9-12 aliphatics 180 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-4_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022 - 04Date Analyzed: 12/04/20 Data File: 120424.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 43 APH EC9-12 aliphatics 130 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-5_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Date Collected: Lab ID: 12/01/20 012022-05Date Analyzed: 12/05/20 Data File: 120425.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 88 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40 APH EC9-12 aliphatics 96 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-6_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-06 Date Analyzed: 12/05/20 Data File: 120426.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 97 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40 APH EC9-12 aliphatics 140 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-7_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022 - 07Date Analyzed: 12/05/20 Data File: 120427.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-8_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022 - 08Date Analyzed: 12/05/20 Data File: 120428.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 98 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 45 APH EC9-12 aliphatics 90 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-9_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-09Date Analyzed: 12/05/20 Data File: 120429.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 111 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 67 APH EC9-12 aliphatics 130 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-10_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-10 Date Analyzed: 12/05/20 Data File: 120430.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 58 APH EC9-12 aliphatics 99 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-11_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022 - 11Date Analyzed: 12/05/20 Data File: 120431.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 118 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 42 APH EC9-12 aliphatics 98 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-12_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-12 Date Analyzed: 12/05/20 Data File: 120432.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 86 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 65 APH EC9-12 aliphatics 72 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-13_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-13 Date Analyzed: 12/05/20 Data File: 120433.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 51 APH EC9-12 aliphatics 100 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: OA-1_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-14 Date Analyzed: 12/05/20 Data File: 120434.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: OA-2_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022 - 15Date Analyzed: 12/05/20 Data File: 120435.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 59 APH EC9-12 aliphatics 52 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-1_113020 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-16 1/5.5 Date Analyzed: 12/03/20 Data File: 120311.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 750 x APH EC9-12 aliphatics <270 APH EC9-10 aromatics <140

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-2_113020 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: 012022-17 1/3.6 Date Collected: 12/01/20 Date Analyzed: 12/03/20 Data File: 120313.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 91 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 380 x APH EC9-12 aliphatics 290 APH EC9-10 aromatics 590

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-3_113020 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-18 1/5.7 Date Analyzed: 12/03/20 Data File: 120314.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 97 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 2,000 \text{ x} \\ \text{APH EC9-12 aliphatics} & 310 \\ \text{APH EC9-10 aromatics} & 220 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-4_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-19 1/5.3 Date Analyzed: 12/03/20 Data File: 120315.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 109 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 3,000 \text{ x} \\ \text{APH EC9-12 aliphatics} & <260 \\ \text{APH EC9-10 aromatics} & <130 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-5_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-20 1/3.4 Date Analyzed: 12/03/20 Data File: 120316.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit:

4-Bromofluorobenzene 97 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 370 x APH EC9-12 aliphatics 240 APH EC9-10 aromatics 310

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-6_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Date Collected: Lab ID: 12/01/20 012022-21 1/8.1 Date Analyzed: 12/03/20 Data File: 120317.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 89 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 22,000 ve x APH EC9-12 aliphatics 1,800 APH EC9-10 aromatics 460

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-7_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: 012022-22 1/5.5 Date Collected: 12/01/20 Date Analyzed: 12/03/20 Data File: 120318.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 2,300 \text{ x} \\ \text{APH EC9-12 aliphatics} & 390 \\ \text{APH EC9-10 aromatics} & 1,400 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-8_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-23 1/3.4 Date Analyzed: 12/03/20 Data File: 120319.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit:

4-Bromofluorobenzene 100 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 200 \text{ x} \\ \text{APH EC9-12 aliphatics} & <170 \\ \text{APH EC9-10 aromatics} & 180 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-9_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-24 1/5.7 Date Analyzed: 12/03/20 Data File: 120320.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 103 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 2,400 \text{ x} \\ \text{APH EC9-12 aliphatics} & 910 \\ \text{APH EC9-10 aromatics} & 210 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-10_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-25 1/5.8 Date Analyzed: 12/03/20 Data File: 120321.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

4-Bromofluorobenzene 96 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 1,300 \text{ x} \\ \text{APH EC9-12 aliphatics} & 480 \\ \text{APH EC9-10 aromatics} & 220 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-11_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-26 1/6.1 Date Analyzed: 12/03/20 Data File: 120322.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 92 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 1,400 \text{ x} \\ \text{APH EC9-12 aliphatics} & 510 \\ \text{APH EC9-10 aromatics} & <150 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-12_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-27 1/17 Date Analyzed: 12/03/20 Data File: 120323.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 92 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 4,600 \text{ x} \\ \text{APH EC9-12 aliphatics} & <850 \\ \text{APH EC9-10 aromatics} & 800 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: GeoEngineers, Inc

Date Received: Not Applicable Project: 5531-014-01, F&BI 012022

Not Applicable Lab ID: Date Collected: 00-2756 MBDate Analyzed: 12/04/20 Data File: 120419.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 85 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: GeoEngineers, Inc

Date Received: Not Applicable Project: 5531-014-01, F&BI 012022

Not Applicable Lab ID: Date Collected: $00\text{-}2554~\mathrm{MB}$ Date Analyzed: 12/03/20 Data File: 120310.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-1_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-01 Date Analyzed: 12/04/20 Data File: 120420.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	90	70	130

	Concent	ration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.4	0.49	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.4	1.4	Trichloroethene	0.15	0.028
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	< 6.8	<1
Acetone	7.5	3.2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	60 lc	17 lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.4	0.33
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.63	0.14
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	4.0	1.1	Bromoform	< 2.1	< 0.2
Chloroform	0.11	0.022	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.061	0.015	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.40	0.063	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.45	0.14	Naphthalene	0.21	0.04
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
•		_			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-2_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-02 Date Analyzed: 12/04/20 Data File: 120422.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	88	70	130

	Concent	tration		Concer	itration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.3	0.47	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.1	1.3	Trichloroethene	0.14	0.026
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	10	4.3	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.6	0.36
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.72	0.17
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	<3.5	<1	Bromoform	<2.1	< 0.2
Chloroform	0.11	0.022	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.077	0.019	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.46	0.073	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.63	0.20	Naphthalene	0.18	0.034
Cyclohexane	<6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-3_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-03 Date Analyzed: 12/04/20 Data File: 120423.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	98	70	130

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	.1.0	.0. =	1 0 D: 11	.0.00	.0.0
Propene	<1.2	< 0.7	1,2-Dichloropropane	<0.23	< 0.05
Dichlorodifluoromethane	2.7	0.54	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	4.2	1.8	Trichloroethene	0.13	0.024
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	11	4.7	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	65 lc	19 lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.5	0.34
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.66	0.15
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	3.6	1.0	Bromoform	<2.1	< 0.2
Chloroform	0.098	0.020	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	<2.5	< 0.5
2-Butanone (MEK)	<2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.077	0.019	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.47	0.075	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.47	0.20	Naphthalene	0.2	0.038
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
Cyclonexame	٠٠.٥	~2	110Aaciiioi obataaticiie	-0.21	-0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-4_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-04 Date Analyzed: 12/04/20 Data File: 120424.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	106	70	130

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	.1.0	.0. =	1 0 D: 11	.0.00	.0.0
Propene	<1.2	< 0.7	1,2-Dichloropropane	<0.23	< 0.05
Dichlorodifluoromethane	2.8	0.56	1,4-Dioxane	<0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.6	1.5	Trichloroethene	0.13	0.024
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	9.6	4.1	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.5	0.35
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.66	0.15
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	0.10	0.021	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.069	0.017	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.47	0.075	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.51	0.16	Naphthalene	0.27	0.052
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
- /		_		~ · - -	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-5_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-05 Date Analyzed: 12/05/20 Data File: 120425.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	84	70	130

	Concent	ration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	3.0	0.60	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.9	1.6	Trichloroethene	0.12	0.022
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	9.8	5.2	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	7.6	3.2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.3	0.30
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.55	0.13
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	0.11	0.022	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.077	0.019	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.44	0.070	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.65	0.20	Naphthalene	0.14	0.026
Cyclohexane	<6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
•		_			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-6_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Date Collected: Lab ID: 12/01/20 012022-06 Date Analyzed: 12/05/20 Data File: 120426.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.9	0.59	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.8	1.6	Trichloroethene	0.19	0.035
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	10	4.3	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.6	0.37
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.70	0.16
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	0.10	0.021	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.077	0.019	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.46	0.073	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.58	0.18	Naphthalene	0.19	0.037
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
- 0	0.0	_		V. - 1	J.U.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-7_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-07 Date Analyzed: 12/05/20 Data File: 120427.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	100	70	130

	Concent	tration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	1.6	0.91	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.9	0.59	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	< 2.4	<1	Trichloroethene	1.1	0.20
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	6.0	2.5	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	41 lc	12 lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	<3.5	<1	Bromoform	<2.1	< 0.2
Chloroform	0.12	0.024	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.073	0.018	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.43	0.069	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.44	0.14	Naphthalene	<0.057 j	<0.011 j
Cyclohexane	<6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-8_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-08 Date Analyzed: 12/05/20 Data File: 120428.DMatrix: Air Instrument: GCMS7Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	94	70	130

	Concent	ration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.2	0.44	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.1	1.3	Trichloroethene	0.37	0.068
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	16	8.5	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	7.4	2.5	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	8.2	3.5	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	0.48	0.11
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.7	0.40
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.66	0.15
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	0.15	0.031	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	0.31	0.10	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.073	0.018	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.45	0.072	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.59	0.18	Naphthalene	0.094 j	0.018 j
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
•					

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-9_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-09 Date Analyzed: 12/05/20 Data File: 120429.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	106	70	130

	Concent	tration		Concen	itration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.5	0.50	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	9.2	3.9	Trichloroethene	0.31	0.057
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	11	5.9	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	29	9.8	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	13	5.6	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	0.48	0.11
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.8	0.42
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.73	0.17
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	<3.5	<1	Bromoform	<2.1	< 0.2
Chloroform	0.15	0.030	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	<0.6	< 0.1
1,2-Dichloroethane (EDC)	0.073	0.018	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.42	0.067	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.59	0.18	Naphthalene	0.13	0.025
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-10_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-10 Date Analyzed: 12/05/20 Data File: 120430.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	102	70	130

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.9	0.58	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.6	1.5	Trichloroethene	0.44	0.081
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	84 ve	44 ve	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	13	4.3	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	< 6.8	<1
Acetone	9.7	4.1	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	0.60	0.14
Methylene chloride	40 lc	12 lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	2.3	0.52
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.79	0.18
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	<2.1	< 0.2
Chloroform	0.22	0.045	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	<7.2	<2	1,3,5-Trimethylbenzene	<2.5	< 0.5
Tetrahydrofuran	0.31	0.10	1,2,4-Trimethylbenzene	<2.5	< 0.5
2-Butanone (MEK)	<2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.081	0.020	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	<0.1	1,2-Dichlorobenzene	<0.6	<0.1
Carbon tetrachloride	0.48	0.076	1,2,4-Trichlorobenzene	< 0.74	<0.1
Benzene	0.63	0.20	Naphthalene	0.15	0.028
Cyclohexane	<6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
CJ CICHONAIIC	-0.0	74	110Auditio100utuutione	·0.21	-0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-11_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-11 Date Analyzed: 12/05/20 Data File: 120431.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	113	70	130

	Concent	ration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.8	0.58	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.7	1.6	Trichloroethene	0.41	0.076
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	95 ve	50 ve	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	12	4.1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	9.9	4.2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	0.57	0.13
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	2.1	0.48
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.77	0.18
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	0.25	0.052	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.069	0.017	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.53	0.084	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.68	0.21	Naphthalene	0.084 j	0.016 j
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
=					

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-12_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

12/01/20 Lab ID: Date Collected: 012022-12 Date Analyzed: 12/05/20 Data File: 120432.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	83	70	130

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.9	0.59	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	4.2	1.8	Trichloroethene	0.70	0.13
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	37	19	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	7.3	2.5	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	< 6.8	<1
Acetone	15	6.5	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	0.46	0.10
Methylene chloride	110 ve lc	32 ve lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBF	E) <1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.7	0.38
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.60	0.14
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	7.3	2.1	Bromoform	<2.1	< 0.2
Chloroform	0.16	0.033	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	<7.2	<2	1,3,5-Trimethylbenzene	<2.5	< 0.5
Tetrahydrofuran	0.31	0.11	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	<2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.10	0.025	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	<0.1	1,2-Dichlorobenzene	< 0.6	<0.1
Carbon tetrachloride	0.47	0.075	1,2,4-Trichlorobenzene	< 0.74	<0.1
Benzene	0.63	0.20	Naphthalene	0.084 j	0.016 j
Cyclohexane	<6.9	<2	Hexachlorobutadiene	<0.21	<0.01
C _J Siolichaire	٠٠.٥	~2	110Addinorobatation	·0.21	-0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-13_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-13 Date Analyzed: 12/05/20 Data File: 120433.DMatrix: Air Instrument: GCMS7Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	100	70	130

	Concent	tration		Concer	itration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.5	0.51	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	4.0	1.7	Trichloroethene	0.60	0.11
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	25	13	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	7.9	2.7	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	7.5	3.1	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	0.51	0.12
Methylene chloride	47 lc	13 lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.9	0.44
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.67	0.15
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	<3.5	<1	Bromoform	<2.1	< 0.2
Chloroform	0.19	0.038	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.061	0.015	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.40	0.063	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.55	0.17	Naphthalene	0.13	0.024
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: OA-1_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-14 Date Analyzed: 12/05/20 Data File: 120434.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	98	70	130

	Concen	tration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D.,	~ 1.0	< 0.7	1 0 Diallananana	~ 0.99	<0.05
Propene Dichlorodifluoromethane	<1.2 2.9		1,2-Dichloropropane	<0.23	< 0.05
		0.58	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	< 3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	<2.4	<1	Trichloroethene	<0.11	< 0.02
Bromomethane	<2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	<7.5	<4	Toluene	<19	<5
Acrolein	<2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	5.0	2.1	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	0.093	0.019	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.073	0.018	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.47	0.074	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.42	0.13	Naphthalene	<0.057 j	<0.011 j
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	<0.21	< 0.01
o _j diolioliulio	.0.0			·0. 2 1	.0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: OA-2_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-15 Date Analyzed: 12/05/20 Data File: 120435.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	107	70	130

Concent	ration		Concer	itration
ug/m3	ppbv	Compounds:	ug/m3	ppbv
4.4	2.6	1,2-Dichloropropane	< 0.23	< 0.05
3.0	0.60	1,4-Dioxane	< 0.36	< 0.1
<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
< 0.26	< 0.1	Heptane	<4.1	<1
< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
< 2.4	<1	Trichloroethene	< 0.11	< 0.02
< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
< 7.5	<4	Toluene	<19	<5
< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
<3	<1	2-Hexanone	<4.1	<1
< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
37	16	Dibromochloromethane	< 0.085	< 0.01
<8.6	<3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
64 lc	19 lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
<12	<4	Nonane	< 5.2	<1
<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
< 6.2	<2	Propylbenzene	< 2.5	< 0.5
<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
<7	<2	m,p-Xylene	0.91	0.21
< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
< 0.4	< 0.1	Styrene	< 0.85	< 0.2
3.9	1.1	Bromoform	<2.1	< 0.2
0.098	0.020	Benzyl chloride	< 0.052	< 0.01
< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
< 0.29		1,2,4-Trimethylbenzene		< 0.5
16	5.4	1,3-Dichlorobenzene	< 0.6	< 0.1
0.097	0.024	1,4-Dichlorobenzene	< 0.23	< 0.038
< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
0.52	0.082	1,2,4-Trichlorobenzene	< 0.74	< 0.1
0.59	0.18	Naphthalene	$0.079 \; { m j}$	$0.015 \mathrm{j}$
< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
	ug/m3 4.4 3.0 <3.7 <0.7 <0.26 <0.044 <2.4 <2.3 <2.6 <0.44 <7.5 <2.1 <3 <2.2 37 <8.6 <0.4 <0.4 64 lc <12 <1.6 <0.77 <6.2 <1.8 <7 <0.4 <0.4 3.9 0.098 <7.2 <0.29 16 0.097 <0.55 0.52 0.59	4.4 2.6 3.0 0.60 <3.7 <1.8 <0.7 <0.1 <0.26 <0.1 <0.044 <0.02 <2.4 <1 <2.3 <0.6 <2.6 <1 <0.44 <0.1 <7.5 <4 <2.1 <0.9 <3 <1 <2.2 <0.4 37 16 <8.6 <3.5 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.5 <0.77 <10.1 <10.2 <4 <1.6 <0.5 <10.77 <10.1 <10.2 <4 <1.6 <0.5 <10.77 <10.1 <10.2 <4 <1.6 <10.5 <10.77 <10.1 <10.09 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10	ug/m3 ppbv Compounds: 4.4 2.6 1,2-Dichloropropane 3.0 0.60 1,4-Dioxane <3.7	ug/m3 ppbv Compounds: ug/m3 4.4 2.6 1,2-Dichloropropane <0.23

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-1_113020 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-16 1/5.5 Date Analyzed: 12/03/20 Data File: 120311.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	-0.0	40.0	10 D: 11	-1.0	40.00
Propene	<6.6	<3.8	1,2-Dichloropropane	<1.3	< 0.28
Dichlorodifluoromethane	< 2.7	< 0.55	1,4-Dioxane	<2	< 0.55
Chloromethane	<20	< 9.9	2,2,4-Trimethylpentane	<26	< 5.5
F-114	<3.8	< 0.55	Methyl methacrylate	<23	< 5.5
Vinyl chloride	<1.4	< 0.55	Heptane	<23	< 5.5
1,3-Butadiene	< 0.24	< 0.11	Bromodichloromethane	< 0.37	< 0.055
Butane	<13	< 5.5	Trichloroethene	< 0.59	< 0.11
Bromomethane	<13	<3.3	cis-1,3-Dichloropropene	< 2.5	< 0.55
Chloroethane	<15	< 5.5	4-Methyl-2-pentanone	<23	< 5.5
Vinyl bromide	<2.4	< 0.55	trans-1,3-Dichloropropene	< 2.5	< 0.55
Ethanol	180	97	Toluene	<100	<27
Acrolein	<11	<4.9	1,1,2-Trichloroethane	< 0.3	< 0.055
Pentane	<16	< 5.5	2-Hexanone	<23	< 5.5
Trichlorofluoromethane	<12	< 2.2	Tetrachloroethene	<37	< 5.5
Acetone	510 ve	210 ve	Dibromochloromethane	< 0.47	< 0.055
2-Propanol	670 ve	270 ve	1,2-Dibromoethane (EDB)	< 0.42	< 0.055
1,1-Dichloroethene	< 2.2	< 0.55	Chlorobenzene	< 2.5	< 0.55
trans-1,2-Dichloroethene	< 2.2	< 0.55	Ethylbenzene	< 2.4	< 0.55
Methylene chloride	<190	< 55	1,1,2,2-Tetrachloroethane	< 0.76	< 0.11
t-Butyl alcohol (TBA)	<67	<22	Nonane	<29	< 5.5
3-Chloropropene	<8.6	< 2.7	Isopropylbenzene	<14	< 2.7
CFC-113	<4.2	< 0.55	2-Chlorotoluene	<28	< 5.5
Carbon disulfide	<34	<11	Propylbenzene	<14	< 2.7
Methyl t-butyl ether (MTBE)	<9.9	< 2.7	4-Ethyltoluene	<14	< 2.7
Vinyl acetate	<39	<11	m,p-Xylene	<4.8	<1.1
1,1-Dichloroethane	< 2.2	< 0.55	o-Xylene	< 2.4	< 0.55
cis-1,2-Dichloroethene	< 2.2	< 0.55	Styrene	<4.7	<1.1
Hexane	<19	< 5.5	Bromoform	<11	<1.1
Chloroform	< 0.27	< 0.055	Benzyl chloride	< 0.28	< 0.055
Ethyl acetate	<40	<11	1,3,5-Trimethylbenzene	<14	< 2.7
Tetrahydrofuran	<1.6	< 0.55	1,2,4-Trimethylbenzene	<14	<2.7
2-Butanone (MEK)	<16	< 5.5	1,3-Dichlorobenzene	<3.3	< 0.55
1,2-Dichloroethane (EDC)	< 0.22	< 0.055	1,4-Dichlorobenzene	<1.3	< 0.21
1,1,1-Trichloroethane	3.6	0.65	1,2-Dichlorobenzene	<3.3	< 0.55
Carbon tetrachloride	<1.7	< 0.28	1,2,4-Trichlorobenzene	<4.1	< 0.55
Benzene	2.4	0.74	Naphthalene	<1.4	< 0.28
Cyclohexane	<38	<11	Hexachlorobutadiene	<1.4	<0.20
CJ CICIICAUIIC	-90	11	110Au0111010Duvuutotto	-1.4	-0.11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-2_113020 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-17 1/3.6 Date Analyzed: 12/03/20 Data File: 120313.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	-4.0	-0 F	1 0 D' 11	40.00	-0.10
Propene	<4.3	< 2.5	1,2-Dichloropropane	< 0.83	< 0.18
Dichlorodifluoromethane	3.1	0.62	1,4-Dioxane	<1.3	< 0.36
Chloromethane	<13	< 6.5	2,2,4-Trimethylpentane	<17	<3.6
F-114	< 2.5	< 0.36	Methyl methacrylate	<15	<3.6
Vinyl chloride	< 0.92	< 0.36	Heptane	<15	<3.6
1,3-Butadiene	< 0.16	< 0.072	Bromodichloromethane	< 0.24	< 0.036
Butane	36	15	Trichloroethene	0.58	0.11
Bromomethane	<8.4	< 2.2	cis-1,3-Dichloropropene	<1.6	< 0.36
Chloroethane	< 9.5	<3.6	4-Methyl-2-pentanone	<15	<3.6
Vinyl bromide	<1.6	< 0.36	trans-1,3-Dichloropropene	<1.6	< 0.36
Ethanol	220 ve	110 ve	Toluene	<68	<18
Acrolein	<7.4	<3.2	1,1,2-Trichloroethane	< 0.2	< 0.036
Pentane	18	6.1	2-Hexanone	<15	<3.6
Trichlorofluoromethane	<8.1	<1.4	Tetrachloroethene	<24	<3.6
Acetone	360 ve	$150 \mathrm{\ ve}$	Dibromochloromethane	< 0.31	< 0.036
2-Propanol	97	39	1,2-Dibromoethane (EDB)	< 0.28	< 0.036
1,1-Dichloroethene	<1.4	< 0.36	Chlorobenzene	<1.7	< 0.36
trans-1,2-Dichloroethene	<1.4	< 0.36	Ethylbenzene	<1.6	< 0.36
Methylene chloride	<130	<36	1,1,2,2-Tetrachloroethane	< 0.49	< 0.072
t-Butyl alcohol (TBA)	<44	<14	Nonane	<19	<3.6
3-Chloropropene	< 5.6	<1.8	Isopropylbenzene	<8.8	<1.8
CFC-113	8.4	1.1	2-Chlorotoluene	<19	<3.6
Carbon disulfide	<22	< 7.2	Propylbenzene	<8.8	<1.8
Methyl t-butyl ether (MTBE)	< 6.5	<1.8	4-Ethyltoluene	<8.8	<1.8
Vinyl acetate	<25	< 7.2	m,p-Xylene	6.1	1.4
1,1-Dichloroethane	<1.5	< 0.36	o-Xylene	1.8	0.41
cis-1,2-Dichloroethene	<1.4	< 0.36	Styrene	< 3.1	< 0.72
Hexane	<13	<3.6	Bromoform	< 7.4	< 0.72
Chloroform	0.51	0.10	Benzyl chloride	< 0.19	< 0.036
Ethyl acetate	<26	< 7.2	1,3,5-Trimethylbenzene	<8.8	<1.8
Tetrahydrofuran	<1.1	< 0.36	1,2,4-Trimethylbenzene	<8.8	<1.8
2-Butanone (MEK)	11	3.9	1,3-Dichlorobenzene	<2.2	< 0.36
1,2-Dichloroethane (EDC)	< 0.15	< 0.036	1,4-Dichlorobenzene	< 0.83	< 0.14
1,1,1-Trichloroethane	8.7	1.6	1,2-Dichlorobenzene	<2.2	< 0.36
Carbon tetrachloride	<1.1	< 0.18	1,2,4-Trichlorobenzene	<2.7	< 0.36
Benzene	3.7	1.2	Naphthalene	5.5	1.0
Cyclohexane	<25	<7.2	Hexachlorobutadiene	< 0.77	< 0.072
o j didilonalio	-20		220111011010001110110		.0.0.2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-3_113020 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-18 1/5.7 Date Analyzed: 12/03/20 Data File: 120314.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Duomomo	<6.9	<4	1.0 Dishlanannanana	<1.3	< 0.28
Propene Dichlorodifluoromethane	3.0	0.60	1,2-Dichloropropane 1,4-Dioxane	<2.1	<0.28
Chloromethane	<21	<10	2,2,4-Trimethylpentane	<27	< 5.7
F-114	<4	< 0.57	Methyl methacrylate	<23	< 5.7
Vinyl chloride	<1.5	< 0.57	Heptane	<23	< 5.7
1,3-Butadiene	< 0.25	< 0.11	Bromodichloromethane	< 0.38	< 0.057
Butane	15	6.1	Trichloroethene	0.64	0.12
Bromomethane	<13	<3.4	cis-1,3-Dichloropropene	< 2.6	< 0.57
Chloroethane	<15	< 5.7	4-Methyl-2-pentanone	<23	< 5.7
Vinyl bromide	< 2.5	< 0.57	trans-1,3-Dichloropropene	< 2.6	< 0.57
Ethanol	150	79	Toluene	<110	<28
Acrolein	<12	< 5.1	1,1,2-Trichloroethane	< 0.31	< 0.057
Pentane	<17	< 5.7	2-Hexanone	<23	< 5.7
Trichlorofluoromethane	<13	< 2.3	Tetrachloroethene	<39	< 5.7
Acetone	1,200 ve	500 ve	Dibromochloromethane	< 0.49	< 0.057
2-Propanol	270	110	1,2-Dibromoethane (EDB)	< 0.44	< 0.057
1,1-Dichloroethene	< 2.3	< 0.57	Chlorobenzene	< 2.6	< 0.57
trans-1,2-Dichloroethene	< 2.3	< 0.57	Ethylbenzene	3.1	0.71
Methylene chloride	<200	<57	1,1,2,2-Tetrachloroethane	< 0.78	< 0.11
t-Butyl alcohol (TBA)	<69	<23	Nonane	<30	< 5.7
3-Chloropropene	<8.9	< 2.8	Isopropylbenzene	<14	< 2.8
CFC-113	<4.4	< 0.57	2-Chlorotoluene	<30	< 5.7
Carbon disulfide	<36	<11	Propylbenzene	<14	< 2.8
Methyl t-butyl ether (MTBE)	<10	< 2.8	4-Ethyltoluene	<14	< 2.8
Vinyl acetate	<40	<11	m,p-Xylene	12	2.8
1,1-Dichloroethane	< 2.3	< 0.57	o-Xylene	3.7	0.85
cis-1,2-Dichloroethene	< 2.3	< 0.57	Styrene	<4.9	<1.1
Hexane	<20	< 5.7	Bromoform	<12	<1.1
Chloroform	< 0.28	< 0.057	Benzyl chloride	< 0.3	< 0.057
Ethyl acetate	<41	<11	1,3,5-Trimethylbenzene	<14	<2.8
Tetrahydrofuran	2.5	0.84	1,2,4-Trimethylbenzene	<14	<2.8
2-Butanone (MEK)	42	14	1,3-Dichlorobenzene	<3.4	< 0.57
1,2-Dichloroethane (EDC)	< 0.23	< 0.057	1,4-Dichlorobenzene	<1.4	< 0.22
1,1,1-Trichloroethane	<3.1	< 0.57	1,2-Dichlorobenzene	<3.4	< 0.57
Carbon tetrachloride	<1.8	< 0.28	1,2,4-Trichlorobenzene	<4.2	< 0.57
Benzene	<1.8	< 0.57	Naphthalene	4.8	0.92
Cyclohexane	<39	<11	Hexachlorobutadiene	<1.2	< 0.11
Cyclonexame	-00	~11	116Aaciii010butaui6ile	~1.4	~0.11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-4_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-19 1/5.3 Date Analyzed: 12/03/20 Data File: 120315.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concen	itration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<6.4	<3.7	1,2-Dichloropropane	<1.2	< 0.26
Dichlorodifluoromethane	2.9	0.58	1,4-Dioxane	<1.9	< 0.53
Chloromethane	<20	<9.5	2,2,4-Trimethylpentane	<25	< 5.3
F-114	< 3.7	< 0.53	Methyl methacrylate	<22	< 5 .3
Vinyl chloride	<1.4	< 0.53	Heptane	<22	<5.3
1,3-Butadiene	< 0.23	< 0.11	Bromodichloromethane	< 0.36	< 0.053
Butane	<13	< 5.3	Trichloroethene	0.83	0.15
Bromomethane	<12	<3.2	cis-1,3-Dichloropropene	<2.4	< 0.53
Chloroethane	<14	< 5.3	4-Methyl-2-pentanone	<22	< 5.3
Vinyl bromide	<2.3	< 0.53	trans-1,3-Dichloropropene	<2.4	< 0.53
Ethanol	270 ve	140 ve	Toluene	<100	<26
Acrolein	<11	<4.8	1,1,2-Trichloroethane	< 0.29	< 0.053
Pentane	<16	< 5.3	2-Hexanone	<22	< 5.3
Trichlorofluoromethane	<12	<2.1	Tetrachloroethene	<36	< 5.3
Acetone	2,000 ve	820 ve	Dibromochloromethane	< 0.45	< 0.053
2-Propanol	3,600 ve	1,500 ve	1,2-Dibromoethane (EDB)	< 0.41	< 0.053
1,1-Dichloroethene	<2.1	< 0.53	Chlorobenzene	<2.4	< 0.53
trans-1,2-Dichloroethene	<2.1	< 0.53	Ethylbenzene	<2.3	< 0.53
Methylene chloride	<180	<53	1,1,2,2-Tetrachloroethane	< 0.73	< 0.11
t-Butyl alcohol (TBA)	<64	<21	Nonane	<28	< 5.3
3-Chloropropene	<8.3	< 2.6	Isopropylbenzene	<13	< 2.6
CFC-113	4.8	0.63	2-Chlorotoluene	<27	< 5.3
Carbon disulfide	<33	<11	Propylbenzene	<13	< 2.6
Methyl t-butyl ether (MTBE	< 9.6	< 2.6	4-Ethyltoluene	<13	< 2.6
Vinyl acetate	<37	<11	m,p-Xylene	6.7	1.5
1,1-Dichloroethane	< 2.1	< 0.53	o-Xylene	< 2.3	< 0.53
cis-1,2-Dichloroethene	< 2.1	< 0.53	Styrene	<4.5	<1.1
Hexane	<19	< 5.3	Bromoform	<11	<1.1
Chloroform	< 0.26	< 0.053	Benzyl chloride	< 0.27	< 0.053
Ethyl acetate	<38	<11	1,3,5-Trimethylbenzene	<13	< 2.6
Tetrahydrofuran	2.0	0.68	1,2,4-Trimethylbenzene	<13	< 2.6
2-Butanone (MEK)	<16	< 5.3	1,3-Dichlorobenzene	< 3.2	< 0.53
1,2-Dichloroethane (EDC)	< 0.21	< 0.053	1,4-Dichlorobenzene	<1.3	< 0.2
1,1,1-Trichloroethane	< 2.9	< 0.53	1,2-Dichlorobenzene	< 3.2	< 0.53
Carbon tetrachloride	<1.7	< 0.26	1,2,4-Trichlorobenzene	<3.9	< 0.53
Benzene	< 1.7	< 0.53	Naphthalene	2.9	0.56
Cyclohexane	<36	<11	Hexachlorobutadiene	<1.1	< 0.11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-5_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-20 1/3.4 Date Analyzed: 12/03/20 Data File: 120316.DMatrix: Air Instrument: GCMS7ug/m3 Units: Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
1	O	11	1	J	11
Propene	<4.1	< 2.4	1,2-Dichloropropane	< 0.79	< 0.17
Dichlorodifluoromethane	2.5	0.50	1,4-Dioxane	<1.2	< 0.34
Chloromethane	<13	< 6.1	2,2,4-Trimethylpentane	<16	< 3.4
F-114	< 2.4	< 0.34	Methyl methacrylate	<14	< 3.4
Vinyl chloride	< 0.87	< 0.34	Heptane	<14	< 3.4
1,3-Butadiene	< 0.15	< 0.068	Bromodichloromethane	< 0.23	< 0.034
Butane	<8.1	< 3.4	Trichloroethene	0.37	0.068
Bromomethane	< 7.9	<2	cis-1,3-Dichloropropene	<1.5	< 0.34
Chloroethane	<9	< 3.4	4-Methyl-2-pentanone	<14	< 3.4
Vinyl bromide	<1.5	< 0.34	trans-1,3-Dichloropropene	<1.5	< 0.34
Ethanol	210 ve	110 ve	Toluene	<64	<17
Acrolein	<7	< 3.1	1,1,2-Trichloroethane	< 0.19	< 0.034
Pentane	<10	< 3.4	2-Hexanone	<14	< 3.4
Trichlorofluoromethane	< 7.6	<1.4	Tetrachloroethene	<23	< 3.4
Acetone	410 ve	170 ve	Dibromochloromethane	< 0.29	< 0.034
2-Propanol	120	48	1,2-Dibromoethane (EDB)	< 0.26	< 0.034
1,1-Dichloroethene	<1.3	< 0.34	Chlorobenzene	<1.6	< 0.34
trans-1,2-Dichloroethene	<1.3	< 0.34	Ethylbenzene	7.4	1.7
Methylene chloride	<120	<34	1,1,2,2-Tetrachloroethane	< 0.47	< 0.068
t-Butyl alcohol (TBA)	<41	<14	Nonane	<18	< 3.4
3-Chloropropene	< 5.3	<1.7	Isopropylbenzene	< 8.4	<1.7
CFC-113	< 2.6	< 0.34	2-Chlorotoluene	<18	< 3.4
Carbon disulfide	<21	< 6.8	Propylbenzene	<8.4	<1.7
Methyl t-butyl ether (MTBE)	< 6.1	<1.7	4-Ethyltoluene	<8.4	<1.7
Vinyl acetate	<24	< 6.8	m,p-Xylene	29	6.8
1,1-Dichloroethane	<1.4	< 0.34	o-Xylene	6.9	1.6
cis-1,2-Dichloroethene	<1.3	< 0.34	Styrene	< 2.9	< 0.68
Hexane	<12	< 3.4	Bromoform	<7	< 0.68
Chloroform	< 0.17	< 0.034	Benzyl chloride	< 0.18	< 0.034
Ethyl acetate	<25	< 6.8	1,3,5-Trimethylbenzene	<8.4	<1.7
Tetrahydrofuran	15	5.1	1,2,4-Trimethylbenzene	11	2.2
2-Butanone (MEK)	<10	< 3.4	1,3-Dichlorobenzene	<2	< 0.34
1,2-Dichloroethane (EDC)	< 0.14	< 0.034	1,4-Dichlorobenzene	< 0.79	< 0.13
1,1,1-Trichloroethane	<1.9	< 0.34	1,2-Dichlorobenzene	<2	< 0.34
Carbon tetrachloride	<1.1	< 0.17	1,2,4-Trichlorobenzene	< 2.5	< 0.34
Benzene	2.6	0.81	Naphthalene	2.1	0.41
Cyclohexane	<23	< 6.8	Hexachlorobutadiene	< 0.73	< 0.068

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-6_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Date Collected: Lab ID: 12/01/20 012022-21 1/8.1 12/03/20 Date Analyzed: Data File: 120317.DMatrix: Air Instrument: GCMS7Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	85	70	130

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	65	38	1,2-Dichloropropane	<1.9	< 0.4
Dichlorodifluoromethane	<4	< 0.81	1,4-Dioxane	5.5	1.5
Chloromethane	<30	<15	2,2,4-Trimethylpentane	40	8.7
F-114	<5.7	< 0.81	Methyl methacrylate	<33	<8.1
Vinyl chloride	<0.7 <2.1	< 0.81		<33	<8.1
	<0.36	< 0.16	Heptane Bromodichloromethane	< 0.54	<0.081
1,3-Butadiene Butane	29	12	Trichloroethene	< 0.87	< 0.16
		<4.9			<0.16
Bromomethane	<19 <21		cis-1,3-Dichloropropene	<3.7	<0.81 <8.1
Chloroethane		< 8.1	4-Methyl-2-pentanone	<33	
Vinyl bromide	< 3.5	< 0.81	trans-1,3-Dichloropropene	< 3.7	< 0.81
Ethanol	640 ve	340 ve	Toluene	<150	<40
Acrolein	<17	<7.3	1,1,2-Trichloroethane	<0.44	< 0.081
Pentane	<24	<8.1	2-Hexanone	<33	<8.1
Trichlorofluoromethane	<18	<3.2	Tetrachloroethene	93	14
Acetone	2,000 ve	830 ve	Dibromochloromethane	< 0.69	< 0.081
2-Propanol	1,000 ve	410 ve	1,2-Dibromoethane (EDB)	< 0.62	< 0.081
1,1-Dichloroethene	<3.2	< 0.81	Chlorobenzene	<3.7	< 0.81
trans-1,2-Dichloroethene	<3.2	< 0.81	Ethylbenzene	51	12
Methylene chloride	<280	<81	1,1,2,2-Tetrachloroethane	<1.1	< 0.16
t-Butyl alcohol (TBA)	<98	<32	Nonane	<42	<8.1
3-Chloropropene	<13	<4	Isopropylbenzene	<20	<4
CFC-113	340	45	2-Chlorotoluene	<42	<8.1
Carbon disulfide	< 50	<16	Propylbenzene	<20	<4
Methyl t-butyl ether (MTBE		<4	4-Ethyltoluene	<20	<4
Vinyl acetate	<57	<16	m,p-Xylene	180	43
1,1-Dichloroethane	<3.3	< 0.81	o-Xylene	49	11
cis-1,2-Dichloroethene	<3.2	< 0.81	Styrene	<6.9	<1.6
Hexane	<29	<8.1	Bromoform	<17	<1.6
Chloroform	< 0.4	< 0.081	Benzyl chloride	< 0.42	< 0.081
Ethyl acetate	< 58	<16	1,3,5-Trimethylbenzene	<20	<4
Tetrahydrofuran	26	8.8	1,2,4-Trimethylbenzene	43	8.7
2-Butanone (MEK)	140	46	1,3-Dichlorobenzene	<4.9	< 0.81
1,2-Dichloroethane (EDC)	< 0.33	< 0.081	1,4-Dichlorobenzene	<1.9	< 0.31
1,1,1-Trichloroethane	32	5.9	1,2-Dichlorobenzene	<4.9	< 0.81
Carbon tetrachloride	< 2.5	< 0.4	1,2,4-Trichlorobenzene	<6	< 0.81
Benzene	< 2.6	< 0.81	Naphthalene	6.5	1.2
Cyclohexane	<56	<16	Hexachlorobutadiene	<1.7	< 0.16

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-7_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-22 1/5.5 Date Analyzed: 12/03/20 Data File: 120318.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
To the state of th	400		4 0 Pt 11		0.00
Propene	100	59	1,2-Dichloropropane	<1.3	< 0.28
Dichlorodifluoromethane	3.2	0.65	1,4-Dioxane	<2	< 0.55
Chloromethane	<20	<9.9	2,2,4-Trimethylpentane	<26	< 5.5
F-114	<3.8	< 0.55	Methyl methacrylate	<23	< 5.5
Vinyl chloride	<1.4	< 0.55	Heptane	<23	< 5.5
1,3-Butadiene	< 0.24	< 0.11	Bromodichloromethane	< 0.37	< 0.055
Butane	36	15	Trichloroethene	0.74	0.14
Bromomethane	<13	<3.3	cis-1,3-Dichloropropene	< 2.5	< 0.55
Chloroethane	<15	< 5.5	4-Methyl-2-pentanone	<23	< 5.5
Vinyl bromide	< 2.4	< 0.55	trans-1,3-Dichloropropene	< 2.5	< 0.55
Ethanol	400 ve	210 ve	Toluene	390	100
Acrolein	<11	<4.9	1,1,2-Trichloroethane	< 0.3	< 0.055
Pentane	28	9.5	2-Hexanone	<23	< 5.5
Trichlorofluoromethane	<12	< 2.2	Tetrachloroethene	<37	< 5.5
Acetone	580 ve	$250 \mathrm{\ ve}$	Dibromochloromethane	< 0.47	< 0.055
2-Propanol	320	130	1,2-Dibromoethane (EDB)	< 0.42	< 0.055
1,1-Dichloroethene	4.5	1.1	Chlorobenzene	< 2.5	< 0.55
trans-1,2-Dichloroethene	< 2.2	< 0.55	Ethylbenzene	27	6.1
Methylene chloride	<190	< 55	1,1,2,2-Tetrachloroethane	< 0.76	< 0.11
t-Butyl alcohol (TBA)	<67	<22	Nonane	<29	< 5.5
3-Chloropropene	<8.6	< 2.7	Isopropylbenzene	<14	< 2.7
CFC-113	260	33	2-Chlorotoluene	<28	< 5.5
Carbon disulfide	<34	<11	Propylbenzene	<14	< 2.7
Methyl t-butyl ether (MTBE)	< 9.9	< 2.7	4-Ethyltoluene	<14	< 2.7
Vinyl acetate	<39	<11	m,p-Xylene	98	22
1,1-Dichloroethane	< 2.2	< 0.55	o-Xylene	37	8.5
cis-1,2-Dichloroethene	<2.2	< 0.55	Styrene	<4.7	<1.1
Hexane	<19	< 5.5	Bromoform	<11	<1.1
Chloroform	< 0.27	< 0.055	Benzyl chloride	< 0.28	< 0.055
Ethyl acetate	<40	<11	1,3,5-Trimethylbenzene	16	3.3
Tetrahydrofuran	18	5.9	1,2,4-Trimethylbenzene	95	19
2-Butanone (MEK)	41	14	1,3-Dichlorobenzene	<3.3	< 0.55
1,2-Dichloroethane (EDC)	< 0.22	< 0.055	1,4-Dichlorobenzene	<1.3	< 0.21
1,1,1-Trichloroethane	<3	< 0.55	1,2-Dichlorobenzene	<3.3	< 0.55
Carbon tetrachloride	7.5	1.2	1,2,4-Trichlorobenzene	<4.1	< 0.55
Benzene	$\frac{7.5}{4.7}$	1.5	Naphthalene	31	5.9
Cyclohexane	<38	<11	Hexachlorobutadiene	<1.2	< 0.11
Cyclonexame	~30	\11	Hexaciiiofobutaulelle	~1.2	\0.11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-8_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-23 1/3.4 Date Analyzed: 12/03/20 Data File: 120319.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	-11	<2.4	1 9 Diallananana	<0.70	< 0.17
Propene	<4.1	0.56	1,2-Dichloropropane	<0.79	
Dichlorodifluoromethane	2.8		1,4-Dioxane	<1.2	< 0.34
Chloromethane	<13	< 6.1	2,2,4-Trimethylpentane	<16	< 3.4
F-114	<2.4	< 0.34	Methyl methacrylate	<14	<3.4
Vinyl chloride	< 0.87	< 0.34	Heptane	<14	<3.4
1,3-Butadiene	< 0.15	< 0.068	Bromodichloromethane	< 0.23	< 0.034
Butane	<8.1	<3.4	Trichloroethene	0.38	0.071
Bromomethane	< 7.9	<2	cis-1,3-Dichloropropene	<1.5	< 0.34
Chloroethane	<9	<3.4	4-Methyl-2-pentanone	<14	<3.4
Vinyl bromide	<1.5	< 0.34	trans-1,3-Dichloropropene	<1.5	< 0.34
Ethanol	490 ve	$260 \mathrm{\ ve}$	Toluene	<64	<17
Acrolein	<7	< 3.1	1,1,2-Trichloroethane	< 0.19	< 0.034
Pentane	<10	< 3.4	2-Hexanone	<14	<3.4
Trichlorofluoromethane	< 7.6	<1.4	Tetrachloroethene	<23	<3.4
Acetone	240 ve	100 ve	Dibromochloromethane	< 0.29	< 0.034
2-Propanol	67	27	1,2-Dibromoethane (EDB)	< 0.26	< 0.034
1,1-Dichloroethene	<1.3	< 0.34	Chlorobenzene	<1.6	< 0.34
trans-1,2-Dichloroethene	<1.3	< 0.34	Ethylbenzene	<1.5	< 0.34
Methylene chloride	<120	<34	1,1,2,2-Tetrachloroethane	< 0.47	< 0.068
t-Butyl alcohol (TBA)	<41	<14	Nonane	<18	< 3.4
3-Chloropropene	< 5.3	<1.7	Isopropylbenzene	<8.4	<1.7
CFC-113	< 2.6	< 0.34	2-Chlorotoluene	<18	< 3.4
Carbon disulfide	<21	< 6.8	Propylbenzene	<8.4	<1.7
Methyl t-butyl ether (MTBE)	< 6.1	<1.7	4-Ethyltoluene	<8.4	<1.7
Vinyl acetate	<24	< 6.8	m,p-Xylene	5.6	1.3
1,1-Dichloroethane	<1.4	< 0.34	o-Xylene	2.2	0.51
cis-1,2-Dichloroethene	<1.3	< 0.34	Styrene	< 2.9	< 0.68
Hexane	<12	< 3.4	Bromoform	<7	< 0.68
Chloroform	0.55	0.11	Benzyl chloride	< 0.18	< 0.034
Ethyl acetate	<25	< 6.8	1,3,5-Trimethylbenzene	<8.4	<1.7
Tetrahydrofuran	1.4	0.46	1,2,4-Trimethylbenzene	<8.4	<1.7
2-Butanone (MEK)	<10	< 3.4	1,3-Dichlorobenzene	<2	< 0.34
1,2-Dichloroethane (EDC)	< 0.14	< 0.034	1,4-Dichlorobenzene	< 0.79	< 0.13
1,1,1-Trichloroethane	<1.9	< 0.34	1,2-Dichlorobenzene	<2	< 0.34
Carbon tetrachloride	<1.1	< 0.17	1,2,4-Trichlorobenzene	<2.5	< 0.34
Benzene	<1.1	< 0.34	Naphthalene	6.7	1.3
Cyclohexane	<23	<6.8	Hexachlorobutadiene	< 0.73	< 0.068
C) 010110114110	-20	.0.0		.0.10	.0.000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-9_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-24 1/5.7 Date Analyzed: 12/03/20 Data File: 120320.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	40.0	- 1	1 0 D: 11	-1.0	40.00
Propene	<6.9	<4	1,2-Dichloropropane	<1.3	< 0.28
Dichlorodifluoromethane	< 2.8	< 0.57	1,4-Dioxane	<2.1	< 0.57
Chloromethane	<21	<10	2,2,4-Trimethylpentane	<27	< 5.7
F-114	<4	< 0.57	Methyl methacrylate	<23	< 5.7
Vinyl chloride	<1.5	< 0.57	Heptane	<23	< 5.7
1,3-Butadiene	< 0.25	< 0.11	Bromodichloromethane	< 0.38	< 0.057
Butane	<14	< 5.7	Trichloroethene	2.8	0.52
Bromomethane	<13	< 3.4	cis-1,3-Dichloropropene	< 2.6	< 0.57
Chloroethane	<15	< 5.7	4-Methyl-2-pentanone	<23	< 5.7
Vinyl bromide	< 2.5	< 0.57	trans-1,3-Dichloropropene	< 2.6	< 0.57
Ethanol	370 ve	200 ve	Toluene	<110	<28
Acrolein	<12	< 5.1	1,1,2-Trichloroethane	< 0.31	< 0.057
Pentane	<17	< 5.7	2-Hexanone	<23	< 5.7
Trichlorofluoromethane	<13	< 2.3	Tetrachloroethene	<39	< 5.7
Acetone	430 ve	180 ve	Dibromochloromethane	< 0.49	< 0.057
2-Propanol	110	43	1,2-Dibromoethane (EDB)	< 0.44	< 0.057
1,1-Dichloroethene	< 2.3	< 0.57	Chlorobenzene	< 2.6	< 0.57
trans-1,2-Dichloroethene	< 2.3	< 0.57	Ethylbenzene	12	2.7
Methylene chloride	<200	<57	1,1,2,2-Tetrachloroethane	< 0.78	< 0.11
t-Butyl alcohol (TBA)	<69	<23	Nonane	<30	< 5.7
3-Chloropropene	<8.9	< 2.8	Isopropylbenzene	<14	< 2.8
CFC-113	54	7.0	2-Chlorotoluene	<30	< 5.7
Carbon disulfide	<36	<11	Propylbenzene	<14	< 2.8
Methyl t-butyl ether (MTBE)	<10	< 2.8	4-Ethyltoluene	<14	< 2.8
Vinyl acetate	<40	<11	m,p-Xylene	44	10
1,1-Dichloroethane	< 2.3	< 0.57	o-Xylene	16	3.6
cis-1,2-Dichloroethene	< 2.3	< 0.57	Styrene	<4.9	<1.1
Hexane	<20	< 5.7	Bromoform	<12	<1.1
Chloroform	< 0.28	< 0.057	Benzyl chloride	< 0.3	< 0.057
Ethyl acetate	<41	<11	1,3,5-Trimethylbenzene	<14	< 2.8
Tetrahydrofuran	2.6	0.87	1,2,4-Trimethylbenzene	18	3.6
2-Butanone (MEK)	<17	< 5.7	1,3-Dichlorobenzene	<3.4	< 0.57
1,2-Dichloroethane (EDC)	< 0.23	< 0.057	1,4-Dichlorobenzene	<1.4	< 0.22
1,1,1-Trichloroethane	6.5	1.2	1,2-Dichlorobenzene	<3.4	< 0.57
Carbon tetrachloride	<1.8	< 0.28	1,2,4-Trichlorobenzene	<4.2	< 0.57
Benzene	<1.8	< 0.57	Naphthalene	6.2	1.2
Cyclohexane	<39	<11	Hexachlorobutadiene	<1.2	< 0.11
CJ CICIICAUIIC	-00	-11	110Addillo10bdbdddillo	-1.4	-0.11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-10_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-25 1/5.8 Date Analyzed: 12/03/20 Data File: 120321.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	-17	-11	1 9 D' 11	-1.0	* 0.00
Propene	<7	<4.1	1,2-Dichloropropane	<1.3	< 0.29
Dichlorodifluoromethane	<2.9	< 0.58	1,4-Dioxane	<2.1	< 0.58
Chloromethane	<22	<10	2,2,4-Trimethylpentane	<27	< 5.8
F-114	<4.1	< 0.58	Methyl methacrylate	<24	< 5.8
Vinyl chloride	<1.5	< 0.58	Heptane	<24	< 5.8
1,3-Butadiene	< 0.26	< 0.12	Bromodichloromethane	< 0.39	< 0.058
Butane	<14	< 5.8	Trichloroethene	22	4.1
Bromomethane	<14	<3.5	cis-1,3-Dichloropropene	< 2.6	< 0.58
Chloroethane	<15	< 5.8	4-Methyl-2-pentanone	<24	< 5.8
Vinyl bromide	< 2.5	< 0.58	trans-1,3-Dichloropropene	< 2.6	< 0.58
Ethanol	240	130	Toluene	<110	<29
Acrolein	<12	< 5.2	1,1,2-Trichloroethane	< 0.32	< 0.058
Pentane	<17	< 5.8	2-Hexanone	<24	< 5.8
Trichlorofluoromethane	<13	< 2.3	Tetrachloroethene	<39	< 5.8
Acetone	$460 \mathrm{ve}$	190 ve	Dibromochloromethane	< 0.49	< 0.058
2-Propanol	83	34	1,2-Dibromoethane (EDB)	< 0.45	< 0.058
1,1-Dichloroethene	< 2.3	< 0.58	Chlorobenzene	< 2.7	< 0.58
trans-1,2-Dichloroethene	< 2.3	< 0.58	Ethylbenzene	6.1	1.4
Methylene chloride	< 200	<58	1,1,2,2-Tetrachloroethane	< 0.8	< 0.12
t-Butyl alcohol (TBA)	< 70	<23	Nonane	<30	< 5.8
3-Chloropropene	< 9.1	< 2.9	Isopropylbenzene	<14	< 2.9
CFC-113	28	3.6	2-Chlorotoluene	<30	< 5.8
Carbon disulfide	<36	<12	Propylbenzene	<14	< 2.9
Methyl t-butyl ether (MTBE)	<10	< 2.9	4-Ethyltoluene	<14	< 2.9
Vinyl acetate	<41	<12	m,p-Xylene	24	5.5
1,1-Dichloroethane	< 2.3	< 0.58	o-Xylene	7.7	1.8
cis-1,2-Dichloroethene	< 2.3	< 0.58	Styrene	<4.9	<1.2
Hexane	<20	< 5.8	Bromoform	<12	<1.2
Chloroform	< 0.28	< 0.058	Benzyl chloride	< 0.3	< 0.058
Ethyl acetate	<42	<12	1,3,5-Trimethylbenzene	<14	< 2.9
Tetrahydrofuran	13	4.6	1,2,4-Trimethylbenzene	<14	<2.9
2-Butanone (MEK)	<17	< 5.8	1,3-Dichlorobenzene	< 3.5	< 0.58
1,2-Dichloroethane (EDC)	< 0.23	< 0.058	1,4-Dichlorobenzene	<1.4	< 0.22
1,1,1-Trichloroethane	<3.2	< 0.58	1,2-Dichlorobenzene	<3.5	< 0.58
Carbon tetrachloride	<1.8	< 0.29	1,2,4-Trichlorobenzene	<4.3	< 0.58
Benzene	<1.9	< 0.58	Naphthalene	8.8	1.7
Cyclohexane	<40	<12	Hexachlorobutadiene	<1.2	< 0.12
CJ CICIICAUIIC	-10	-14	110Auditio100auditio110	-1.4	-0.12

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-11_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-26 1/6.1 Date Analyzed: 12/03/20 Data File: 120322.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	. .	. 4.0	1 0 D: 11		.0.0
Propene	<7.3	<4.3	1,2-Dichloropropane	<1.4	< 0.3
Dichlorodifluoromethane	<3	< 0.61	1,4-Dioxane	<2.2	< 0.61
Chloromethane	<23	<11	2,2,4-Trimethylpentane	<28	<6.1
F-114	<4.3	< 0.61	Methyl methacrylate	<25	<6.1
Vinyl chloride	<1.6	< 0.61	Heptane	<25	< 6.1
1,3-Butadiene	< 0.27	< 0.12	Bromodichloromethane	< 0.41	< 0.061
Butane	<15	<6.1	Trichloroethene	< 0.66	< 0.12
Bromomethane	<14	<3.7	cis-1,3-Dichloropropene	< 2.8	< 0.61
Chloroethane	<16	<6.1	4-Methyl-2-pentanone	<25	<6.1
Vinyl bromide	< 2.7	< 0.61	trans-1,3-Dichloropropene	< 2.8	< 0.61
Ethanol	260	140	Toluene	<110	<30
Acrolein	<13	< 5.5	1,1,2-Trichloroethane	< 0.33	< 0.061
Pentane	<18	< 6.1	2-Hexanone	<25	<6.1
Trichlorofluoromethane	<14	< 2.4	Tetrachloroethene	<41	<6.1
Acetone	220	93	Dibromochloromethane	< 0.52	< 0.061
2-Propanol	200	80	1,2-Dibromoethane (EDB)	< 0.47	< 0.061
1,1-Dichloroethene	< 2.4	< 0.61	Chlorobenzene	< 2.8	< 0.61
trans-1,2-Dichloroethene	< 2.4	< 0.61	Ethylbenzene	< 2.6	< 0.61
Methylene chloride	<210	<61	1,1,2,2-Tetrachloroethane	< 0.84	< 0.12
t-Butyl alcohol (TBA)	<74	<24	Nonane	<32	< 6.1
3-Chloropropene	< 9.5	<3	Isopropylbenzene	<15	<3
CFC-113	16	2.1	2-Chlorotoluene	<32	< 6.1
Carbon disulfide	<38	<12	Propylbenzene	<15	<3
Methyl t-butyl ether (MTBE)	<11	<3	4-Ethyltoluene	<15	<3
Vinyl acetate	<43	<12	m,p-Xylene	6.4	1.5
1,1-Dichloroethane	< 2.5	< 0.61	o-Xylene	2.6	0.61
cis-1,2-Dichloroethene	< 2.4	< 0.61	Styrene	< 5.2	<1.2
Hexane	<22	< 6.1	Bromoform	<13	<1.2
Chloroform	< 0.3	< 0.061	Benzyl chloride	< 0.32	< 0.061
Ethyl acetate	<44	<12	1,3,5-Trimethylbenzene	<15	<3
Tetrahydrofuran	7.1	2.4	1,2,4-Trimethylbenzene	<15	<3
2-Butanone (MEK)	<18	< 6.1	1,3-Dichlorobenzene	< 3.7	< 0.61
1,2-Dichloroethane (EDC)	< 0.25	< 0.061	1,4-Dichlorobenzene	<1.5	< 0.23
1,1,1-Trichloroethane	13	2.5	1,2-Dichlorobenzene	<3.7	< 0.61
Carbon tetrachloride	<1.9	< 0.3	1,2,4-Trichlorobenzene	<4.5	< 0.61
Benzene	<1.9	< 0.61	Naphthalene	2.0	0.38
Cyclohexane	<42	<12	Hexachlorobutadiene	<1.3	< 0.12
o j didilonario		· + =	222/401110100404410110	1.0	.0.12

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-12_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-27 1/17 Date Analyzed: 12/03/20 Data File: 120323.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concer	ntration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<20	<12	1,2-Dichloropropane	<3.9	< 0.85
Dichlorodifluoromethane	<8.4	<1.7	1,4-Dioxane	<6.1	<1.7
Chloromethane	<63	<31	2,2,4-Trimethylpentane	<79	<17
F-114	<12	<1.7	Methyl methacrylate	<70	<17
Vinyl chloride	<4.3	<1.7	Heptane	<70	<17
1,3-Butadiene	< 0.75	< 0.34	Bromodichloromethane	<1.1	< 0.17
Butane	<40	<17	Trichloroethene	30,000 ve	
Bromomethane	<40	<10	cis-1,3-Dichloropropene	<7.7	<1.7
Chloroethane	<45	<17	4-Methyl-2-pentanone	<70	<17
Vinyl bromide	<7.4	<1.7	trans-1,3-Dichloropropene	<7.7	<1.7
Ethanol	150	77	Toluene	<320	<85
Acrolein	<35	<15	1,1,2-Trichloroethane	1.8	0.32
Pentane	< 50	<17	2-Hexanone	< 70	<17
Trichlorofluoromethane	<38	<6.8	Tetrachloroethene	740	110
Acetone	190	78	Dibromochloromethane	<1.4	< 0.17
2-Propanol	<150	< 59	1,2-Dibromoethane (EDB)	<1.3	< 0.17
1,1-Dichloroethene	930	240	Chlorobenzene	< 7.8	<1.7
trans-1,2-Dichloroethene	< 6.7	<1.7	Ethylbenzene	< 7.4	<1.7
Methylene chloride	< 590	<170	1,1,2,2-Tetrachloroethane	< 2.3	< 0.34
t-Butyl alcohol (TBA)	<210	<68	Nonane	<89	<17
3-Chloropropene	<27	< 8.5	Isopropylbenzene	<42	< 8.5
CFC-113	<13	<1.7	2-Chlorotoluene	<88	<17
Carbon disulfide	<110	<34	Propylbenzene	<42	< 8.5
Methyl t-butyl ether (MTBE)	<31	< 8.5	4-Ethyltoluene	<42	< 8.5
Vinyl acetate	<120	<34	m,p-Xylene	17	3.9
1,1-Dichloroethane	530	130	o-Xylene	< 7.4	<1.7
cis-1,2-Dichloroethene	20	5.0	Styrene	<14	< 3.4
Hexane	<60	<17	Bromoform	<35	<3.4
Chloroform	170	35	Benzyl chloride	< 0.88	< 0.17
Ethyl acetate	<120	<34	1,3,5-Trimethylbenzene	<42	<8.5
Tetrahydrofuran	<5	<1.7	1,2,4-Trimethylbenzene	<42	< 8.5
2-Butanone (MEK)	< 50	<17	1,3-Dichlorobenzene	<10	<1.7
1,2-Dichloroethane (EDC)	< 0.69	< 0.17	1,4-Dichlorobenzene	<4	< 0.65
1,1,1-Trichloroethane		1,400 ve	1,2-Dichlorobenzene	<10	<1.7
Carbon tetrachloride	<5.3	< 0.85	1,2,4-Trichlorobenzene	<13	<1.7
Benzene	<5.4	<1.7	Naphthalene	12	2.2
Cyclohexane	<120	<34	Hexachlorobutadiene	<3.6	< 0.34
Cyclonexame	~120	~ 04	11exaciiioi obutautette	~5.0	~0.04

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: GeoEngineers, Inc

Date Received: Not Applicable Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: Not Applicable $00\text{-}2756~\mathrm{MB}$ 12/04/20 Date Analyzed: Data File: 120419.DMatrix: Air Instrument: GCMS7ug/m3 Units: Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	81	70	130

	Concent	ration		Conce.	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
5 5 112 p 5 112 113 1	8	PP*		g	PP
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	< 0.49	< 0.1	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	< 3.7	<1.8	2,2,4-Trimethylpentane	< 4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	< 2.4	<1	Trichloroethene	< 0.11	< 0.02
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	<4.8	<2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	< 0.049	< 0.01	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	<7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	< 0.31	< 0.05	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	< 0.32	< 0.1	Naphthalene	< 0.26	< 0.05
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	<0.057 j	<0.011 j

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: GeoEngineers, Inc

Date Received: Not Applicable Project: 5531-014-01, F&BI 012022

Lab ID: $00-2554~\mathrm{MB}$ Date Collected: Not Applicable 12/03/20 Date Analyzed: Data File: 120310.DMatrix: Air Instrument: GCMS7Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	100	70	130

Concent	tration		Concer	itration
ug/m3	ppbv	Compounds:	ug/m3	ppbv
<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
< 0.49	< 0.1	1,4-Dioxane	< 0.36	< 0.1
<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
< 0.26	< 0.1	Heptane	<4.1	<1
< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
< 2.4	<1	Trichloroethene	< 0.11	< 0.02
< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
< 7.5	<4	Toluene	<19	<5
< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
<3	<1	2-Hexanone	<4.1	<1
< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
<4.8	<2	Dibromochloromethane	< 0.085	< 0.01
<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
<12	<4	Nonane	< 5.2	<1
<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
< 6.2	<2	Propylbenzene	< 2.5	< 0.5
<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
<7	<2	m,p-Xylene	< 0.87	< 0.2
< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
< 0.4	< 0.1	Styrene	< 0.85	< 0.2
<3.5	<1	Bromoform	< 2.1	< 0.2
< 0.049	< 0.01	Benzyl chloride	< 0.052	< 0.01
< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
< 0.29	< 0.1	1,2,4-Trimethylbenzene		< 0.5
< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
< 0.04	< 0.01	1,4-Dichlorobenzene	< 0.23	< 0.038
< 0.55	< 0.1		< 0.6	< 0.1
< 0.31	< 0.05	1,2,4-Trichlorobenzene	< 0.74	< 0.1
< 0.32	< 0.1	Naphthalene	< 0.26	< 0.05
< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
	ug/m3 <1.2 <0.49 <3.7 <0.7 <0.26 <0.044 <2.4 <2.3 <2.6 <0.44 <7.5 <2.1 <3 <2.2 <4.8 <8.6 <0.4 <0.4 <3.5 <12 <1.6 <0.77 <6.2 <1.8 <7 <0.4 <0.4 <3.5 <0.049 <7.2 <0.29 <2.9 <0.04 <0.55 <0.31 <0.32	<1.2	41.2 <0.7	ug/m3 ppbv Compounds: ug/m3 <1.2

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

Date Extracted: 12/08/20 Date Analyzed: 12/08/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

Sample ID Laboratory ID	<u>Helium</u>
SV-1_113020 012022-16	<0.6
SV-2_113020 012022-17	< 0.6
SV-3_113020 012022-18	<0.6
SV-4_120120 012022-19	< 0.6
SV-5_120120 012022-20	< 0.6
SV-6_120120 012022-21	< 0.6
SV-7_120120 012022-22	< 0.6
SV-8_120120 012022-23	< 0.6
SV-9_120120 012022-24	< 0.6
SV-10_120120 012022-25	< 0.6
SV-11_120120 012022-26	< 0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

Date Extracted: 12/08/20 Date Analyzed: 12/08/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

Sample ID Laboratory ID	<u>Helium</u>
SV-12_120120 012022-27	<0.6
Method Blank	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 012022-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	45	46	2
APH EC9-12 aliphatics	ug/m3	140	160	13
APH EC9-10 aromatics	ug/m3	<25	<25	nm

Laboratory Code: Laboratory Control Sample

	Percent				
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
APH EC5-8 aliphatics	ug/m3	67	79	70-130	
APH EC9-12 aliphatics	ug/m3	67	104	70-130	
APH EC9-10 aromatics	ug/m3	67	96	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 012022-16 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	750	890	17
APH EC9-12 aliphatics	ug/m3	<270	280	nm
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Code: Laboratory Control Sample

	Percent				
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
APH EC5-8 aliphatics	ug/m3	67	83	70-130	
APH EC9-12 aliphatics	ug/m3	67	102	70-130	
APH EC9-10 aromatics	ug/m3	67	99	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 012022-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<1.2	<1.2	nm
Dichlorodifluoromethane	ug/m3	2.4	2.9	19
Chloromethane	ug/m3	<3.7	<3.7	nm
F-114	ug/m3	< 0.7	< 0.7	nm
Vinyl chloride	ug/m3	< 0.26	< 0.26	nm
1,3-Butadiene	ug/m3	< 0.044	< 0.044	nm
Butane	ug/m3	3.4	4.8	34 vo
Bromomethane	ug/m3	< 2.3	< 2.3	nm
Chloroethane	ug/m3	< 2.6	< 2.6	nm
Vinyl bromide	ug/m3	< 0.44	< 0.44	nm
Ethanol	ug/m3	< 7.5	< 7.5	nm
Acrolein	ug/m3	< 2.1	< 2.1	nm
Pentane	ug/m3	<3	<3	nm
Trichlorofluoromethane	ug/m3	< 2.2	< 2.2	nm
Acetone	ug/m3	7.5	11	38 vo
2-Propanol	ug/m3	<8.6	<8.6	nm
1,1-Dichloroethene	ug/m3	< 0.4	< 0.4	nm
trans-1,2-Dichloroethene	ug/m3	< 0.4	< 0.4	nm
Methylene chloride	ug/m3	60	81	30
t-Butyl alcohol (TBA)	ug/m3	<12	<12	nm
3-Chloropropene	ug/m3	<1.6	<1.6	nm
CFC-113	ug/m3	< 0.77	< 0.77	nm
Carbon disulfide	ug/m3	< 6.2	< 6.2	nm
Methyl t-butyl ether (MTBE)	ug/m3	<1.8	<1.8	nm
Vinyl acetate	ug/m3	<7	<7	nm
1,1-Dichloroethane	ug/m3	< 0.4	< 0.4	nm
cis-1,2-Dichloroethene	ug/m3	< 0.4	< 0.4	nm
Hexane	ug/m3	4.0	4.6	14
Chloroform	ug/m3	0.11	0.11	0
Ethyl acetate	ug/m3	< 7.2	< 7.2	nm
Tetrahydrofuran	ug/m3	< 0.29	< 0.29	nm
2-Butanone (MEK)	ug/m3	< 2.9	< 2.9	nm
1,2-Dichloroethane (EDC)	ug/m3	0.061	0.077	23
1,1,1-Trichloroethane	ug/m3	< 0.55	< 0.55	nm
Carbon tetrachloride	ug/m3	0.40	0.43	7
Benzene	ug/m3	0.45	0.53	16
Cyclohexane	ug/m3	< 6.9	< 6.9	nm
1,2-Dichloropropane	ug/m3	< 0.23	< 0.23	nm
1,4-Dioxane	ug/m3	< 0.36	< 0.36	nm
2,2,4-Trimethylpentane	ug/m3	<4.7	<4.7	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 012022-01 (Duplicate) (continued)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<4.1	<4.1	nm
Heptane	ug/m3	<4.1	<4.1	nm
Bromodichloromethane	ug/m3	< 0.067	< 0.067	nm
Trichloroethene	ug/m3	0.15	0.19	24
cis-1,3-Dichloropropene	ug/m3	< 0.45	< 0.45	nm
4-Methyl-2-pentanone	ug/m3	<4.1	<4.1	nm
trans-1,3-Dichloropropene	ug/m3	< 0.45	< 0.45	nm
Toluene	ug/m3	<19	<19	nm
1,1,2-Trichloroethane	ug/m3	< 0.055	< 0.055	nm
2-Hexanone	ug/m3	<4.1	<4.1	nm
Tetrachloroethene	ug/m3	< 6.8	< 6.8	nm
Dibromochloromethane	ug/m3	< 0.085	< 0.085	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.077	< 0.077	nm
Chlorobenzene	ug/m3	< 0.46	< 0.46	nm
Ethylbenzene	ug/m3	< 0.43	< 0.43	nm
1,1,2,2-Tetrachloroethane	ug/m3	< 0.14	< 0.14	nm
Nonane	ug/m3	< 5.2	< 5.2	nm
Isopropylbenzene	ug/m3	< 2.5	< 2.5	nm
2-Chlorotoluene	ug/m3	< 5.2	< 5.2	nm
Propylbenzene	ug/m3	< 2.5	< 2.5	nm
4-Ethyltoluene	ug/m3	< 2.5	< 2.5	nm
m,p-Xylene	ug/m3	1.4	1.7	19
o-Xylene	ug/m3	0.63	0.73	15
Styrene	ug/m3	< 0.85	< 0.85	nm
Bromoform	ug/m3	< 2.1	< 2.1	nm
Benzyl chloride	ug/m3	< 0.052	< 0.052	nm
1,3,5-Trimethylbenzene	ug/m3	< 2.5	< 2.5	nm
1,2,4-Trimethylbenzene	ug/m3	< 2.5	< 2.5	nm
1,3-Dichlorobenzene	ug/m3	< 0.6	< 0.6	nm
1,4-Dichlorobenzene	ug/m3	< 0.23	< 0.23	nm
1,2-Dichlorobenzene	ug/m3	< 0.6	< 0.6	nm
1,2,4-Trichlorobenzene	ug/m3	< 0.74	< 0.74	nm
Naphthalene	ug/m3	< 0.26	< 0.26	nm
Hexachlorobutadiene	ug/m3	< 0.21	< 0.21	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

v	1		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ug/m3	23	113	70-130
Dichlorodifluoromethane	ug/m3	67	109	70-130
Chloromethane	ug/m3	28	117	70-130
F-114	ug/m3	94	108	70-130
Vinyl chloride	ug/m3	35	118	70-130
1,3-Butadiene	ug/m3	30	105	70-130
Butane	ug/m3	32	99	70-130
Bromomethane	ug/m3	52	100	70-130
Chloroethane	ug/m3	36	95	70-130
Vinyl bromide	ug/m3	59	114	70-130
Ethanol	ug/m3	25	85	70-130
Acrolein	ug/m3	31	123	70-130
Pentane	ug/m3	40	99	70-130
Trichlorofluoromethane	ug/m3	76	103	70-130
Acetone	ug/m3	32	109	70-130
2-Propanol	ug/m3	33	104	70-130
1,1-Dichloroethene	ug/m3	54	106	70-130
trans-1,2-Dichloroethene	ug/m3	54	98	70-130
Methylene chloride	ug/m3	94	91	70-130
t-Butyl alcohol (TBA)	ug/m3	41	108	70-130
3-Chloropropene	ug/m3	42	93	70-130
CFC-113	ug/m3	100	99	70-130
Carbon disulfide	ug/m3	42	94	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	101	70-130
Vinyl acetate	ug/m3	48	115	70-130
1,1-Dichloroethane	ug/m3	55	109	70-130
cis-1,2-Dichloroethene	ug/m3	54	102	70-130
Hexane	ug/m3	48	83	70-130
Chloroform	ug/m3	66	100	70-130
Ethyl acetate	ug/m3	49	101	70-130
Tetrahydrofuran	ug/m3	40	95	70-130
2-Butanone (MEK)	ug/m3	40	120	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	99	70-130
1,1,1-Trichloroethane	ug/m3	74	99	70-130
Carbon tetrachloride	ug/m3	85	99	70-130
Benzene	ug/m3	43	95	70-130
Cyclohexane	ug/m3	46	92	70-130
1,2-Dichloropropane	ug/m3	62	96	70-130
1,4-Dioxane	ug/m3	49	105	70-130
2,2,4-Trimethylpentane	ug/m3	63	99	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample (continued)

		(00	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	106	70-130
Heptane	ug/m3	55	103	70-130
Bromodichloromethane	ug/m3	90	106	70-130
Trichloroethene	ug/m3	73	106	70-130
cis-1,3-Dichloropropene	ug/m3	61	109	70-130
4-Methyl-2-pentanone	ug/m3	55	106	70-130
trans-1,3-Dichloropropene	ug/m3	61	96	70-130
Toluene	ug/m3	51	103	70-130
1,1,2-Trichloroethane	ug/m3	74	107	70-130
2-Hexanone	ug/m3	55	101	70-130
Tetrachloroethene	ug/m3	92	113	70-130
Dibromochloromethane	ug/m3	120	120	70-130
1,2-Dibromoethane (EDB)	ug/m3	100	128	70-130
Chlorobenzene	ug/m3	62	126	70-130
Ethylbenzene	ug/m3	59	113	70-130
1,1,2,2-Tetrachloroethane	ug/m3	93	110	70-130
Nonane	ug/m3	71	106	70-130
Isopropylbenzene	ug/m3	66	110	70-130
2-Chlorotoluene	ug/m3	70	110	70-130
Propylbenzene	ug/m3	66	112	70-130
4-Ethyltoluene	ug/m3	66	110	70-130
m,p-Xylene	ug/m3	120	113	70-130
o-Xylene	ug/m3	59	112	70-130
Styrene	ug/m3	58	108	70-130
Bromoform	ug/m3	140	118	70-130
Benzyl chloride	ug/m3	70	118	70-130
1,3,5-Trimethylbenzene	ug/m3	66	110	70-130
1,2,4-Trimethylbenzene	ug/m3	66	115	70-130
1,3-Dichlorobenzene	ug/m3	81	117	70-130
1,4-Dichlorobenzene	ug/m3	81	107	70-130
1,2-Dichlorobenzene	ug/m3	81	108	70-130
1,2,4-Trichlorobenzene	ug/m3	100	83	70-130
Naphthalene	ug/m3	71	88	70-130
Hexachlorobutadiene	ug/m3	140	112	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 012022-16 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	< 6.6	<6.6	nm
Dichlorodifluoromethane	ug/m3	< 2.7	< 2.7	nm
Chloromethane	ug/m3	<20	<20	nm
F-114	ug/m3	<3.8	<3.8	nm
Vinyl chloride	ug/m3	<1.4	<1.4	nm
1,3-Butadiene	ug/m3	< 0.24	< 0.24	nm
Butane	ug/m3	<13	<13	nm
Bromomethane	ug/m3	<13	<13	nm
Chloroethane	ug/m3	<15	<15	nm
Vinyl bromide	ug/m3	< 2.4	< 2.4	nm
Ethanol	ug/m3	180	190	5
Acrolein	ug/m3	<11	<11	nm
Pentane	ug/m3	<16	<16	nm
Trichlorofluoromethane	ug/m3	<12	<12	nm
Acetone	ug/m3	510	500	2
2-Propanol	ug/m3	670	670	0
1,1-Dichloroethene	ug/m3	< 2.2	< 2.2	nm
trans-1,2-Dichloroethene	ug/m3	<2.2	< 2.2	nm
Methylene chloride	ug/m3	<190	<190	nm
t-Butyl alcohol (TBA)	ug/m3	<67	<67	nm
3-Chloropropene	ug/m3	<8.6	<8.6	nm
CFC-113	ug/m3	<4.2	<4.2	nm
Carbon disulfide	ug/m3	<34	<34	nm
Methyl t-butyl ether (MTBE)	ug/m3	<9.9	<9.9	nm
Vinyl acetate	ug/m3	<39	<39	nm
1,1-Dichloroethane	ug/m3	< 2.2	< 2.2	nm
cis-1,2-Dichloroethene	ug/m3	< 2.2	< 2.2	nm
Hexane	ug/m3	<19	<19	nm
Chloroform	ug/m3	< 0.27	< 0.27	nm
Ethyl acetate	ug/m3	<40	<40	nm
Tetrahydrofuran	ug/m3	<1.6	<1.6	nm
2-Butanone (MEK)	ug/m3	<16	<16	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.22	< 0.22	nm
1,1,1-Trichloroethane	ug/m3	3.6	3.5	3
Carbon tetrachloride	ug/m3	<1.7	<1.7	nm
Benzene	ug/m3	2.4	2.3	4
Cyclohexane	ug/m3	<38	<38	nm
1,2-Dichloropropane	ug/m3	<1.3	<1.3	nm
1,4-Dioxane	ug/m3	<2	<2	nm
2,2,4-Trimethylpentane	ug/m3	<26	<26	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 012022-16 1/5.5 (Duplicate) (continued)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<23	<23	nm
Heptane	ug/m3	<23	<23	nm
Bromodichloromethane	ug/m3	< 0.37	< 0.37	nm
Trichloroethene	ug/m3	< 0.59	< 0.59	nm
cis-1,3-Dichloropropene	ug/m3	< 2.5	< 2.5	nm
4-Methyl-2-pentanone	ug/m3	<23	<23	nm
trans-1,3-Dichloropropene	ug/m3	< 2.5	< 2.5	nm
Toluene	ug/m3	<100	<100	nm
1,1,2-Trichloroethane	ug/m3	< 0.3	< 0.3	nm
2-Hexanone	ug/m3	<23	<23	nm
Tetrachloroethene	ug/m3	<37	<37	nm
Dibromochloromethane	ug/m3	< 0.47	< 0.47	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.42	< 0.42	nm
Chlorobenzene	ug/m3	< 2.5	< 2.5	nm
Ethylbenzene	ug/m3	< 2.4	< 2.4	nm
1,1,2,2-Tetrachloroethane	ug/m3	< 0.76	< 0.76	nm
Nonane	ug/m3	<29	<29	nm
Isopropylbenzene	ug/m3	<14	<14	nm
2-Chlorotoluene	ug/m3	<28	<28	nm
Propylbenzene	ug/m3	<14	<14	nm
4-Ethyltoluene	ug/m3	<14	<14	nm
m,p-Xylene	ug/m3	<4.8	<4.8	nm
o-Xylene	ug/m3	< 2.4	< 2.4	nm
Styrene	ug/m3	<4.7	<4.7	nm
Bromoform	ug/m3	<11	<11	nm
Benzyl chloride	ug/m3	< 0.28	< 0.28	nm
1,3,5-Trimethylbenzene	ug/m3	<14	<14	nm
1,2,4-Trimethylbenzene	ug/m3	<14	<14	nm
1,3-Dichlorobenzene	ug/m3	<3.3	<3.3	nm
1,4-Dichlorobenzene	ug/m3	<1.3	<1.3	nm
1,2-Dichlorobenzene	ug/m3	<3.3	<3.3	nm
1,2,4-Trichlorobenzene	ug/m3	<4.1	<4.1	nm
Naphthalene	ug/m3	<1.4	<1.4	nm
Hexachlorobutadiene	ug/m3	<1.2	<1.2	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Dasoratory code. Dasoratory cor	ici oi zampio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ug/m3	23	94	70-130
Dichlorodifluoromethane	ug/m3	67	94	70-130
Chloromethane	ug/m3	28	82	70-130
F-114	ug/m3	94	7 9	70-130
Vinyl chloride	ug/m3	35	80	70-130
1,3-Butadiene	ug/m3	30	82	70-130
Butane	ug/m3	32	78	70-130
Bromomethane	ug/m3	52	84	70-130
Chloroethane	ug/m3	36	78	70-130
Vinyl bromide	ug/m3	59	89	70-130
Ethanol	ug/m3	25	70	70-130
Acrolein	ug/m3	31	95	70-130
Pentane	ug/m3	40	114	70-130
Trichlorofluoromethane	ug/m3	76	101	70-130
Acetone	ug/m3	32	97	70-130
2-Propanol	ug/m3	33	98	70-130
1,1-Dichloroethene	ug/m3	54	110	70-130
trans-1,2-Dichloroethene	ug/m3	54	103	70-130
Methylene chloride	ug/m3	94	99	70-130
t-Butyl alcohol (TBA)	ug/m3	41	111	70-130
3-Chloropropene	ug/m3	42	110	70-130
CFC-113	ug/m3	100	104	70-130
Carbon disulfide	ug/m3	42	102	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	101	70-130
Vinyl acetate	ug/m3	48	113	70-130
1,1-Dichloroethane	ug/m3	55	114	70-130
cis-1,2-Dichloroethene	ug/m3	54	108	70-130
Hexane	ug/m3	48	98	70-130
Chloroform	ug/m3	66	110	70-130
Ethyl acetate	ug/m3	49	128	70-130
Tetrahydrofuran	ug/m3	40	114	70-130
2-Butanone (MEK)	ug/m3	40	115	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	110	70-130
1,1,1-Trichloroethane	ug/m3	74	105	70-130
Carbon tetrachloride	ug/m3	85	100	70-130
Benzene	ug/m3	43	102	70-130
Cyclohexane	ug/m3	46	93	70-130
1,2-Dichloropropane	ug/m3	62	89	70-130
1,4-Dioxane	ug/m3	49	95	70-130
2,2,4-Trimethylpentane	ug/m3	63	93	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample (continued)

		(00	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	98	70-130
Heptane	ug/m3	55	96	70-130
Bromodichloromethane	ug/m3	90	98	70-130
Trichloroethene	ug/m3	73	98	70-130
cis-1,3-Dichloropropene	ug/m3	61	100	70-130
4-Methyl-2-pentanone	ug/m3	55	101	70-130
trans-1,3-Dichloropropene	ug/m3	61	85	70-130
Toluene	ug/m3	51	96	70-130
1,1,2-Trichloroethane	ug/m3	74	98	70-130
2-Hexanone	ug/m3	55	88	70-130
Tetrachloroethene	ug/m3	92	97	70-130
Dibromochloromethane	ug/m3	120	101	70-130
1,2-Dibromoethane (EDB)	ug/m3	100	101	70-130
Chlorobenzene	ug/m3	62	124	70-130
Ethylbenzene	ug/m3	59	110	70-130
1,1,2,2-Tetrachloroethane	ug/m3	93	112	70-130
Nonane	ug/m3	71	109	70-130
Isopropylbenzene	ug/m3	66	113	70-130
2-Chlorotoluene	ug/m3	70	114	70-130
Propylbenzene	ug/m3	66	117	70-130
4-Ethyltoluene	ug/m3	66	111	70-130
m,p-Xylene	ug/m3	120	116	70-130
o-Xylene	ug/m3	59	114	70-130
Styrene	ug/m3	58	112	70-130
Bromoform	ug/m3	140	121	70-130
Benzyl chloride	ug/m3	70	115	70-130
1,3,5-Trimethylbenzene	ug/m3	66	113	70-130
1,2,4-Trimethylbenzene	ug/m3	66	117	70-130
1,3-Dichlorobenzene	ug/m3	81	116	70-130
1,4-Dichlorobenzene	ug/m3	81	107	70-130
1,2-Dichlorobenzene	ug/m3	81	108	70-130
1,2,4-Trichlorobenzene	ug/m3	100	80	70-130
Naphthalene	ug/m3	71	84	70-130
Hexachlorobutadiene	ug/m3	140	111	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 03	11481-01 (Duյ	olicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	< 0.6	nm	0-20
Laboratory Code: 03	12022-20 (Duյ	olicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	< 0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE INFORMATION Address 2101 gr Ave Swite 950 City, State, ZIP Seatlle, WA 98121 Company (NE) Report To Phone Fax (206) 2 Ph. (206) 2 Seattle, WA 3012 16th A Friedman d Amon - 2-11 A-2176170 A-3-170170 A-4-110100 12-6-12012 A-8-RTI TOTO Sample Name 20170) acob letts न्त्राज्या. Email \ Lethopoeropierscom 03 02 2 9 000 \supseteq 90 S Lab U Canister ID 23229 20546 32100 72581 21437 18566 18562 23230 Cont. 6607 Flow 1 1 Ħ) IA=Indoor Air SG-Soil Gas (Circle One) IA) ÎA) / Reporting TA) K M) IA) / SG IAIA) / SG SAMPLE CHAIN OF CUSTODY ME Level C-1 Hangar & Precision Res. SAMPLERS (signature) PROJECT NAME & ADDRESS SG SG SG SG SG SG 12/1/20 Sampled Date ("Hg) Initial g 8 Vac. ςς Ο 80 28 2 ر ا 80 85 Time Initial Field 830 <u>ره</u> 806 823 84S 28 28 88 ("Hg) Vac. Final G 6 6 S O٩ 5 S 16.5 Field 489 1522 Time Final 1609 |5531-014-01 89 1633 ¥¥ 53

 \times

メ

 \times

Notes

 \prec

INVOICE TO

□ Archive (Fee may apply) □ Default: Clean after 3 days P0#

Standard

Page#

TURNAROUND TIME

Rush charges authorized by:

SAMPLE DISPOSAL

ANALYSIS REQUESTED

TO15 Full Scan TO15 BTEXN

TO15 cVOCs

APH

Helium

And decompts to the second to				aived by:	283-5044 Rece
					いる
				Relinquished by:	285-8282
					1
0 0		X	(2504) (476)	Received by:	7A 98119-2029
367	2/2			Canal Canal	
10-0	772	9万1	スタインを見せてオ	Relinquished by	Avenue West
ラクス	1/2/2		* A A . I	Carolinatore	, & Bruya, Inc.
	202.2.2.2.2.	COMMETATAL	PRINT NAME	ロアンドルコング	,
TIME		COMBANIA			

 $\overline{\times}$

 \times

 \prec

 \prec

Samples received at b cC

FORMS\COC\COCTO-15.DOC

Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Esiedman & Brive Inc		5//-1 1/2075	$ \mathcal{C} $	- 1	- 13	-13	- 11		12-9 17077	Sample Name			SAMPLE INFORMATION	Phone	City, State, ZIP	Address	Company	Report To	Japak	012022
Received by:	Reling	Received by:	Reling			اله	57	عَدِ	7.7	72	=	5	8	Lab ID				Email		P			-	
ed by:	Relinquished by:	ed by:	Relinquished by:	SI	, ,	3317	18561	23233	21453	18568	23131	205 V3	LLS81	Canister ID					10	ر ا	*		7	
			decur	SAACE!	١,	SS	Lh&L		11.81	7870	7848	7850	Zh8L	Cont.	Flow					\\ \\				
		1)		RE,		IA / SG	(LA) / SG	(h) / sg	(A) / sg	na)/ sg	(IA) / SG	(IA) / SG	(IA)/ SG	(Circle One)	Reporting Level: IA=Indoor Air				 NOTE	Support	チ <u>つ</u>	PROJI	SAMP	SAMPL
	And the state of t) C				W/30/w	+						12/1/20	Sampled					ά	port Sc	CHANGERS R	PROJECT NAME & ADDRESS	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
	The state of the s	BISKA	7	PRII		30	30	30	8	30	30	30	30	("Hg)	Initial					200	Res	& AD)	ature)	N OF
			Azakturk	PRINT NAME		1340	912	921	885	101	824	Oh8	Sh8	Time						1	Recision	DRESS	402	cusir
	- Processing	ANTE SE	777			S		Ø	ထ	2	0	親	**	("Hg)	Final						آ گ وي		7	ODY
	And the state of t	A -				1347	1630	1642	h191	9191	leso .	l bas	1 book	Time	Field				<u> </u>		10-40-1853			JAL
			6			Z	~	~	~	×	×	×	<u>×</u>	ľ	'O15 Ful	Scan	ANALYSIS REQUESTED		, CTC	OU SOLONIA	<u>구</u>	PO#		2
		d	36	NON NO		<u> </u>									TO15 BT	··· ·· · · · · · · · · · · · · · · · ·	SISK		, 1	3	0	11-		0
				COMPANY		>	, _	(- ×	+	×	Ļ	$\overline{}$	\downarrow	_	TO15 eV APH		REQ							
				Y		K	_		}_						Heliu		UES.		□ Def		Rush	⊠ Sta		9
-			 	-															ault: (SAM	charg	₩ Standard	Page #	:
		a/1/20	12/1/20	DATE										No					Default: Clean after 3 days Archive (Fee may apply)	SAMPLE DISPOSAL	Rush charges authorized by:	, -	TURNAROUND TIME	10
***************************************		8	Q.	SIM										Notes					3 days ply))SAL	∍d by:		TIME	ָב י

HMIL 100 m

FORMS\COC\COCTO-15.DOC

City, State, ZIP	Address	Company	Report To	012022
200		<u> </u>	J. UM J	1

Phone_

Email

SAMPLE CHAIN OF CUSTODY WE

SAMPLERS (signature) ARA
PROJECT NAME & ADDRESS
PO#
C-1 Hangar & Precision Res ST31-014-01
Support (SNO-CO)
NOTES: INVOICE TO

Page # 3 of

TURNAROUND TIME

Standard

RUSH

Rush charges authorized by:

SAMPLE DISPOSAL

SAMPLE DISPOSAL

O Archive (Fee may apply)

orant bins	SV-8-120120	SV-7_17000	ara-6-12	SV-5-12020	021021- h-NS	SV-3-113020	SV-2_113020	Sample Name	-			SAMPLE INFORMATION
24	23	22	21	ω	ાવ	රු	口	Lab ID				
24 2294 225	3260	3667	2664	3251	2432	3674	3311	Canister ID				
225	224	220	281	221	277	240	228	Cont. ID	Flow			
1A / (SG)	IA /(SG)	IA / (SG)	1A / (SG)	1A / (SG)	ы / 🗐	IA /(SG)	и / 🚱	SG=Soil Gas (Circle One)	IA=Indoor Air	Reporting Level:		
(12/01/20	11/30/20 30 1506	11/30/20	Date Sampled				
30	30	30	30	30	30	30	28	Vac. ("Hg)	Initial			
30 1232 5	1157	1135	1114	1057	lovo	1506	20 Myz	Initial V Time (".	Field			
5	5	N	S	5	1	S	S	Vac. ("Hg)	Final			
1238	1203	1140	1120	1103	1046	1513	8mh1	Final Time	Field			
×	<u>×</u>	$ \times $	$ \times $	<u>~</u>	×	×	×	TO)15	Full S	Scan	ANALYSIS REQUESTED
		-		-				Т	015	BTE	XN	TSX
	×	+	-	×	 ×	 ×	Ę			5 cVC	Cs	-RE
				×			Ŕ		******	APH elium		-KE
<u> </u>					 		ļ		11	enun	L	CELE
								Notes			-	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

FORMS\COC\COCTO-15.DOC

a, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	HWILL
	Relinquished by:	Patr Atakturk	6 <i>E</i>)	12/1/20	1846
3-2029	Received by:	BISRAT PADEST	778	12/1/20	J8 45
	Relinquished by: (A STATE OF THE STA	And the second s	
4	Received by:				Paradalan managan mana
		The state of the s			

FORMS\COC\COCTO-15.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.							SV-12_120120	SV-11-120120	01101101VS	Sample Name	ation was properly and the second	SAMPLE INFORMATION	PhoneE	City, State, ZIP	Address	Сотрапу	Report To C	
	Received by:	Relinquished by:	Received by:	Relinquished by:								27 32	26 33	25 41	Lab Cau			Email				せん	-
		by:	, د	by: Y	SIGN							3754	3388	4176	Canister ID (16)				ececentary control of the control of	+	>		
	A A A A A A A A A A A A A A A A A A A		Y	WH/	SIGNATURE							200	203	1254	Cont.	Flow		· ·	***************************************				
and the second s	made i ke indig ger ein gegeben gebeure		1	1:			IA / SG	1A / (GC)	1A / (60)	IA / (\$G)	SG=Soil Gas (Circle One)	Reporting Level: IA=Indoor Air			NOTES:	25- CJ	PROJI	SAMP	,				
. [THE PROPERTY OF THE PROPERTY O) (T	Kas								(12/1/20	Date Sampled				Ç.	MAG.	PROJECT NAME & ADDRESS	SAMPLERS (signature)	
	The state of the s		PUSEAT	が ろ	PRIN			,				125	27	29	Vac. ("Hg)	Initial				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	£ & AD	rature)	
			₹	aty Ataletu	PRINT NAME							N SI	STAIL	1331-	1	Field				ing specionarkeg.	DRESS	Q	
	PROPERTY AND DESCRIPTION OF THE PROPERTY OF TH		ADES SE	K	চ							ک	2	5	1	Final		NAME AND ADDRESS OF THE PERSON		on Res	3	40	
	Active to the state and active to the state of the state		/ !\ 									1520	1431	1337	Final Time	Field			—— 2	3,553		,	***************************************
***************************************	HART I PROPERTY AND	-	#	D								×	<u> </u>	×	1	15 Full Scar	ANAI		INVOICE TO	5531-014-01	#Oq		
		,	- 22 	D	COMPANY											D15 BTEXN D15 cVOCs	SISX		E TO	4-0	714		The state of the s
	A CHECK TO THE PARTY OF THE PROPERTY OF THE PR				ANY							×	×	XX	1	APH	ANALYSIS REQUESTED) () > ()	<u> </u>			
	the control of the co	1		12/1/20	DATE										Notes	Helium	STED	о лите (гее шау аррлу)	SAMPLE DISPOSAL Default: Clean after 3 days Archive (France: carely)	Rush charges authorized by:	M Standard	Page #ofof	
2	TO THE PERSON OF		5778	をあり	HMIL	** ·									es			(Ara)	SAL 3 days	ıd by:		TIME	****

Samples received at 16 °C

SAMPLE CONDITION UPON RECEIPT CHECKLIST

PROJECT # 0/2022 CLIENT Geo Ensineers	INITIAI DATE:_	.s/ 12	101/20
If custody seals are present on cooler, are they intact?	D-NA	□ YES	
Cooler/Sample temperature	^		o °C
Were samples received on ice/cold packs?		□ YES	- NC
How did samples arrive? □ Picked up by F&BI □ FedEx/UPS/GSO			>1 NO
Number of days samples have been sitting prior to receipt at	laborato	ory <i>D-</i> /	days
Is there a Chain-of-Custody* (COC)? *or other representative documents, letters, and/or shipping memos		☑ YES	□ NO
Are the samples clearly identified? (explain "no" answer below)		⊵ YES	□ NO
Is the following information provided on the COC*? (explain "no	" answer b	elow)	-
Sample ID'sYes□ No# of ContainersYesDate SampledYes□ NoRelinquishedYesTime SampledYes□ NoRequested analysisYes	□ No □ No □ No		
Were all sample containers received intact (i.e. not broken, leaking etc.)? (explain "no" answer below)	· · · · · · · · · · · · · · · · · · ·	₽ YES	□ №
Were appropriate sample containers used? (explain "no" answer belo	w)	yes	
If custody seals are present on samples, are they intact?	NA	□ YES	□ NO
Are samples requiring no headspace, headspace free?	b NA	☐ YES	□ №
Air Samples: Were any additional canisters received? If Yes, number of unused 1L canisters number of unused 6L canisters / 205	□ NA Io: 49)	DYES.	□ №
Explain "no" items from above (use the back if	needed)		***************************************

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 14, 2020

Jacob Letts, Project Manager GeoEngineers 2101 4th Ave, Suite 950 Seattle, WA 98121

Dear Mr Letts:

Included are the results from the testing of material submitted on December 1, 2020 from the C-1 Hangar&Precision Reg. Support (SNO-CO) PO 5530-014-01, F&BI 012023 project. There are 19 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures GNR1214R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 1, 2020 by Friedman & Bruya, Inc. from the GeoEngineers C-1 Hangar&Precision Reg. Support (SNO-CO) PO 5530-014-01, F&BI 012023 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	GeoEngineers
012023 -01	IA-1_120120
012023 -02	IA-2_120120
012023 -03	IA-3_120120
012023 -04	IA-4_120120
012023 -05	IA-5_120120
012023 -06	IA-6_120120
012023 -07	IA-7_120120
012023 -08	IA-8_120120
012023 -09	IA-9_120120
012023 -10	IA-10_120120
012023 -11	IA-11_120120
012023 -12	IA-12_120120
012023 -13	IA-13_120120
012023 -14	OA-1_120120
012023 -15	OA-2_120120

 $\underline{Naphthalene~(air)} - \underline{Analysis~Method~TO\text{-}17}$

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-1_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-01 1/0.047

Date Analyzed: 12/08/20 Data File: 120819.D Matrix: Air Instrument: GCMS10 Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-2_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-02 1/0.034

Date Analyzed: 12/08/20 Data File: 120820.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-3_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-03 1/0.035

Date Analyzed: 12/08/20 Data File: 120821.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-4_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-04 1/0.036

Date Analyzed: 12/08/20 Data File: 120822.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-5_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-05 1/0.038

Date Analyzed: 12/08/20 Data File: 120823.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-6_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-06 1/0.039

Date Analyzed: 12/09/20 Data File: 120824.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-7_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-07 1/0.041

Date Analyzed: 12/09/20 Data File: 120825.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-8_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-08 1/0.039

Date Analyzed: 12/09/20 Data File: 120826.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-9_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-09 1/0.038

Date Analyzed: 12/09/20 Data File: 120827.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-10_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-10 1/0.038

Date Analyzed: 12/09/20 Data File: 120828.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-11_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-11 1/0.036

Date Analyzed: 12/09/20 Data File: 120829.D Matrix: Air Instrument: GCMS10 Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-12_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-12 1/0.040

Date Analyzed: 12/09/20 Data File: 120830.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-13_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-13 1/0.039

Date Analyzed: 12/09/20 Data File: 120831.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: OA-1_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-14 1/0.043

Date Analyzed: 12/09/20 Data File: 120832.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

Naphthalene 0.061

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: OA-2_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-15 1/0.041

Date Analyzed: 12/09/20 Data File: 120833.D Matrix: Air Instrument: GCMS10 Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

Naphthalene 0.058

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: 5530-014-01, F&BI 012023

Date Collected: Not Applicable Lab ID: 00-2765 mbDate Analyzed: 12/08/20 Data File: 120810.DInstrument: GCMS10 Matrix: Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

Naphthalene <1

ENVIRONMENTAL CHEMISTS

Date of Report: 12/14/20 Date Received: 12/01/20

Project: C-1 Hangar&Precision Reg. Support (SNO-CO) PO 5530-014-01, F&BI 012023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-17

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Naphthalene	ng/tube	50	101	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY ME

12-01-20

FORMS\COC\COC.DOC Ph. (206) 285-8282 Fax (206) 283-5044 Friedman & Bruya, Inc. Seattle, WA-98119-2029 3012 16th Avenue West Phone City, State, ZIP Address Company_ Report To 1A-10_ 02-1-120120 A-12-12010 A-11 _ 170170 4-13-17000 Sample Name B 1801 Emails Letts Of Congression Relinquished by: Received by: Received by: Relinquished by চ ID ID 7 Ę \sqrt{a} 5 311363 1333889 309143 333885 128 SZP 172.55h Tube ID oi/h Sample Date SAMPLE CHAIN OF CUSTODY ME C-1 Hangar & precision Reg. SAMPLERS (signature) PROJECT NAME 8 Flow g Rate Pre-හි ફ Š g Collection Information g g Postð 8 8 Og Flow Rate PRINT NAME A TONG TONG 90 824 912 958 Start 921 Time 883 11310 (312 JANES/S 1318 1228 2 Time Sampled End 1302 26.2 TENT TO THE PROPERTY OF THE PR Volume 25,5 トナマ 25.1 240 23.0 \mathcal{C} 2530-014-01 INVOICE TO Benzene TO-17 Analytes Requested PO# Toluene R COMPANY Ethylbenzene 101-20 Xylenes \times \times Naphthalene Other_ ☐ Dispose after 30 days
☐ Archive Samples Rush charges authorized by: O RUSH VStandard Turnaround TPH-DRO 2-Propanol TURNAROUND TIME SAMPLE DISPOSAL <u>[</u>_ 12/1/20 DATE Notes HME

SAMPLE CONDITION UPON RECEIPT CHECKLIST

PROJECT # 0/2023 CLIENT Geo Engineers DATE:	s/ fl	/ ₂
If custody seals are present on cooler, are they intact?	□ YES	
Cooler/Sample temperature	4	°C
Were samples received on ice/cold packs?	YES	□ NO
How did samples arrive? Over the Counter Picked up by F&BI FedEx/UPS/GSO		
Number of days samples have been sitting prior to receipt at laborato	ry	_ days
Is there a Chain-of-Custody* (COC)? *or other representative documents, letters, and/or shipping memos	✓ YES	□ №
Are the samples clearly identified? (explain "no" answer below)	√YES	
Is the following information provided on the COC*? (explain "no" answer be Sample ID's	elow) ##ES	□ NO
leaking etc.)? (explain "no" answer below) Were appropriate sample containers used? (explain "no" answer below)	□ YES	
If custody seals are present on samples, are they intact?	□ YES	
Are samples requiring no headspace, headspace free?	D YES	□ NO
Air Samples: Were any additional canisters received? If Yes, number of unused 1L canisters number of unused 6L canisters	DYES AMBIZ/Z	⊌ NO
Explain "no" items from above (use the back if needed) 2 extra tubes unt used		

APPENDIX C Phase II Environmental Site Assessment Report

Phase II Environmental Site Assessment

Snohomish County Airport – C-1 Hangar and C1 Building 3220 – 100th Street SW, Suite A Everett, Washington

for **Snohomish County Airport**

June 1, 2021

1101 Fawcett Ave, Suite 200 Tacoma, Washington 98402 253.383.4940

Phase II Environmental Site Assessment

Snohomish County Airport – C-1 Hangar and C-1 Building 3220 100th Street SW

Everett, Washington

File No. 5530-014-01

June 1, 2021

Prepared for:

Snohomish County Airport 3220 – 100th Street SW, Suite A Everett, Washington 98204-1303

Attention: Andrew Rardin

Prepared by:

GeoEngineers, Inc. 1101 Fawcett Ave, Suite 200 Tacoma, Washington 98402 253.383.4940

Jacob Letts, LG, LHG Project Manager

Tim Syverson, LHG

Associate Environmental Geologist

KRA:JML:TS:lw:leh

June 1, 2021

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRODUCTION	1
2.0	POTENTIAL CHEMICALS OF CONCERN AND SCREENING LEVELS	1
	PHASE II ESA SCOPE OF SERVICES	
	PHASE II ESA FINDINGS	
	General	
	Focused Concrete Survey	
	Phase II Environmental Site Assessment	
	4.3.1. Soil Conditions	
	4.3.2. Groundwater Conditions	
	Soil Field Screening	
	Soil Chemical Analytical Results	
4	4.5.1. Petroleum Hydrocarbons and BTEX (Table 1)	4
4	4.5.2. VOCs and PCBs (Table 2)	5
4	4.5.3. Metals (Table 3)	5
4.6.	Groundwater Chemical Analytical Results (Table 4)	5
5.0	LIMITATIONS	6
6.0	REFERENCES	6

LIST OF TABLES

- Table 1. Soil Chemical Analytical Results Petroleum Hydrocarbons and BTEX
- Table 2. Soil Chemical Analytical Results VOCs and PCBs
- Table 3. Soil Chemical Analytical Results Metals
- Table 4. Groundwater Chemical Analytical Results Petroleum Hydrocarbons, VOCs, PCBs, and Metals

LIST OF FIGURES

Figure 1. Vicinity Map

Figure 2. Site Plan with Soil and Groundwater Sample Results Exceeding MTCA Cleanup Levels

APPENDICES

Appendix A. Field Procedures and Exploration Logs

Figure A-1 - Key to Exploration Logs

Figure A-2 through A-16 – Log of Borings

Appendix B. Laboratory Chemical Analytical Data Report

Appendix C. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

This report presents the results of the Phase II Environmental Site Assessment (ESA) completed in May 2021 for the Snohomish County Airport at Paine Field's C-1 Hangar and C-1 Building (Site) located at 3200 – 100th Street SW in Everett, Washington (Figure 1). The purpose of the Phase II ESA was to evaluate soil and groundwater conditions at the C-1 Hangar and C-1 Building properties, including locations where contaminants of concern were detected in soil vapor during the Vapor Intrusion (VI) Evaluation completed in 2020 (GeoEngineers, 2021), in accordance with applicable Model Toxics Control Act (MTCA) regulatory criteria and guidance. The building layout and Phase II ESA sample locations are shown on Figure 2.

The C-1 Hangar is approximately 1.5-acres and developed with an approximately 53,000 square-foot aircraft hangar and adjacent covered outdoor space referenced as the Hangar Annex. The C-1 Hangar was last leased to Aviation Technical Services, Inc. (ATS) starting on April 1, 1999. The Hangar Annex was constructed and added to the lease in September 2011, and both leases were terminated on December 31, 2020. The space was used for airplane storage, general workshop, and office spaces during the time of the lease. The C-1 Hangar Property is not listed in Ecology's contaminated sites database.

The C-1 Building property is located adjacent to the C-1 Hangar and is approximately 0.85-acres and consists of one approximately 25,000 square-foot building and an adjacent 12,000 square-foot exterior storage yard. The C-1 Building was last occupied by Precision Engines starting in 1997. The C-1 Building Property is listed by Ecology as the Precision Engines LLC site (Cleanup Site ID: 3526; Facility/Site ID: 84613634) with status listed as "cleanup started" and has been the subject of investigations and focused remedial actions since at least 1998 (AGI, 1998; URS, 2001; HWA, 2018). The C-1 Building is currently vacant with remnant equipment left in place from the previous tenants (i.e., HVAC infrastructure such as vent hoods, general plumbing fixtures, and work benches).

2.0 POTENTIAL CHEMICALS OF CONCERN AND SCREENING LEVELS

Based on the findings of prior investigations and applicable MTCA criteria, the chemicals of concern (COCs) identified for evaluation during this Phase II ESA included petroleum hydrocarbons, volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and metals. The media evaluated for the Phase II ESA were soil and groundwater. MTCA Method A cleanup levels for unrestricted land use were used for screening purposes for the Phase II ESA; published values for natural background metals concentrations in Puget Sound soils were also used for comparison purposes. Where no MTCA Method A values exist, Method B cleanup levels were used when available. The corresponding MTCA cleanup levels are presented in Tables 1 through 4. The MTCA cleanup levels are considered appropriate and conservative screening levels for the purpose of this Phase II ESA to evaluate and document Site conditions and assess the potential need for further action relative to protection of human health and the environment. Final applicable cleanup standards will be determined in accordance with MTCA requirements including consideration of the historical and current industrial setting and use of the Site.

3.0 PHASE II ESA SCOPE OF SERVICES

A total of 15 explorations (soil borings [C-1 DP-1 through DP-15]) were completed in March 2021 to assess potential impacts to soil and groundwater at the Site. In addition, a focused geophysical (i.e., ground-penetrating radar [GPR]) survey was conducted to assess the potential presence of underground utilities and other potential physical obstructions at the selected sample locations.

The Phase II ESA scope included the following:

- 1. Communications with Paine Field relative to project background, Site access, and schedule.
- 2. Prepare a sampling and analysis plan (SAP) and site health and safety plan prior to the start of field work and submit to the County for review and comment.
- Mark proposed exploration locations and notify service providers to mark utilities in the vicinity of the proposed exploration locations. Subcontract a private utility locate service to locate underground utilities on the property using GPR technologies.
- 4. Subcontract a concrete coring company to core 4-inch holes in the C-1 Hangar and C-1 Building concrete slabs at each exploration location.
- 5. Observe direct-push drilling of 15 borings to depths up to 15 feet or to refusal and obtain continuous core soil samples.
- 6. Field screen soil samples from the borings for evidence of petroleum hydrocarbons and VOCs using visual, water sheen and headspace vapor screening methods. Visually classify the samples in general accordance with ASTM D 2488 and maintain a detailed log of each boring.
- 7. Submit selected soil samples for laboratory chemical analysis for the following analyses: gasoline-range total petroleum hydrocarbons by NWTPH-Gx (including mineral spirits); diesel- and heavy oil-range total petroleum hydrocarbons by NWTPH-Dx Method; VOCs by EPA 8260; PCBs by EPA 8082; and metals (RCRA 8) by EPA Method 6000/7000 series.
- 8. Collect grab groundwater samples from the direct-push borings if sufficient groundwater is encountered during drilling. Submit groundwater samples for the following analyses: gasoline-range total petroleum hydrocarbons by NWTPH-Gx (including mineral spirits); diesel- and heavy oil-range total petroleum hydrocarbons by NWTPH-Dx Method; VOCs by EPA 8260; PCBs by EPA 8082; and total and dissolved metals (RCRA 8) by EPA Method 6000/7000 series.
- 9. Observe the restoration of the concrete slab by the subcontracted concrete coring company.
- 10. Temporarily store investigation-derived wastes on site pending characterization and appropriate offsite disposal at a permitted facility.

4.0 PHASE II ESA FINDINGS

4.1. General

The Phase II ESA investigation was conducted in March 2021. The focused GPR survey was completed on March 29, 2021 prior to concrete coring and exploratory drilling. The Phase II ESA explorations consisted of 15 direct push explorations completed at the approximate locations shown on Figure 2 on March 30 and 31, 2021. A representative of GeoEngineers observed and documented subsurface conditions during drilling and obtained soil and groundwater samples for field screening and chemical analysis. Exploration and sampling field procedures and the exploration logs are presented in Appendix A.

4.2. Focused Concrete Survey

C-N-I Locates, Ltd. performed the focused GPR survey to identify possible underground piping, rebar, and estimate concrete thickness for coring purposes. Each proposed boring location was also cleared for conductible utilities using a hand-held radio detector prior to concrete coring and drilling activities.

No GPR responses indicative of subsurface structures were observed in the survey areas. The only GPR response observed in this area was attributed to a subsurface stormwater drain that is portrayed on historic utility maps.

4.3. Phase II Environmental Site Assessment

Direct-push borings C-1 DP-1 through DP-15 were completed on March 30 and 31, 2021. Two borings (C-1 DP-10 and DP-11) were completed to approximately 4 feet below ground surface (bgs); the remaining borings hit refusal at depths ranging between 7 and 15 feet bgs. Soil and groundwater conditions encountered in the explorations are described below. The exploration locations were targeted based on the findings of prior investigations and distributed to assess the footprint of the property. Phase II ESA field procedures are described in Appendix A. Copies of the chemical analytical laboratory reports are provided in Appendix C. The following matrix presents the soil and groundwater sampling and analysis rationale for the Phase II ESA.

Direct Push (DP) Boring ID	General Description of Exploration Location	Sampling Rationale	Contaminants of Concern (COCs) and Chemical Analyses
C-1 DP-1 through DP-4	Western portion of the Site within the C-1 Hangar.	Evaluate soil and groundwater where COCs were detected in soil vapor in 2020 and adjacent to a storm drain and compressor shed north of the C-1 Hangar.	 Petroleum hydrocarbons by NWTPH-Gx and NWTPH-Dx VOCs by EPA Method 8260 Metals (MTCA 5) by EPA 6000/7000 series PCBs by EPA Method 8082
C-1 DP-5 through DP-11	Central C-1 Hangar spatially distributed locations.	Evaluate soil and groundwater in areas where COCs were detected in soil vapor in 2020 and for lateral coverage across the central and eastern portion of the C-1 Hangar.	 Petroleum hydrocarbons by NWTPH-Gx and NWTPH-Dx VOCs by EPA Method 8260 Metals (MTCA 5) by EPA 6000/7000 series PCBs by EPA Method 8082
C-1 DP-12 through DP-14	Southeast portion of the Site downgradient of C-1 Building	Evaluate soil and groundwater in the Hangar Annex and in outside areas adjacent to locations where COCs were detected in soil and/or groundwater outside the C-1 Building.	 Petroleum hydrocarbons by NWTPH-Gx and NWTPH-Dx VOCs by EPA Method 8260 Metals (MTCA 5) by EPA 6000/7000 series PCBs by EPA Method 8082
C-1 DP-15	Northeastern portion of the Site within C-1 Building footprint	Evaluate soil and groundwater in the area where COCs were detected in soil vapor at the C-1 Building (HWA, 2018).	 Petroleum hydrocarbons by NWTPH-Gx and NWTPH-Dx VOCs by EPA Method 8260 Metals (MTCA 5) by EPA 6000/7000 series PCBs by EPA Method 8082

4.3.1. Soil Conditions

Soil conditions encountered at the Site generally consisted of a fill layer up to approximately 4 to 10 feet thick overlying dense glacial deposits to the total depths explored. The fill consisted of sand, silty sand or sand with silt, with varying amounts of gravel. The fill is underlain by native soil consisting of sand with interbedded silt and varying gravel to the maximum depth explored of 15 feet bgs. Exploration logs are presented in Appendix A.

4.3.2. Groundwater Conditions

At locations where groundwater was encountered (only in borings C-1 DP2, C-1 DP3, C-1 DP13, and C-1 DP14), a grab groundwater sample was collected for laboratory chemical analysis as part of a screening-level evaluation of groundwater quality beneath the Site. No evidence of groundwater was observed in the remaining borings. Based on available information, the area/regional groundwater flow direction at the Site is to the west toward Puget Sound (HWA, 2018), and the occurrence and flow of shallow perched water varies locally.

4.4. Soil Field Screening

Soil from the explorations was field screened for physical evidence of petroleum hydrocarbons and VOCs using visual, water sheen and headspace vapor screening methods. In general field screening did not indicate evidence of potential contamination with the exception of soil headspace measurements using a photoionizing detector (PID) at varying depths in 2 of the 15 explorations (C-1 DP-4 and DP-15). Soil samples that exhibited possible field screening evidence of potential contamination were selected for chemical analysis. Field screening results are shown on the exploration logs and field screening results for samples that were chemically analyzed are presented in Table 1.

4.5. Soil Chemical Analytical Results

Twenty-nine soil samples from the Phase II ESA explorations were submitted for laboratory chemical analysis for petroleum hydrocarbons, VOCs, PCBs, and RCRA metals. The only soil sample locations with detected concentrations of COCs exceeding the applicable MTCA Cleanup Levels (C-1 DP-15-4 and -7) are shown on Figure 2. A summary of the soil analytical data is presented below and the data are included in Tables 1 through 3.

4.5.1. Petroleum Hydrocarbons and BTEX (Table 1)

- Gasoline-range total petroleum hydrocarbons were detected in 2 of 29 soil samples obtained from the western portion of the C-1 Hangar and from within the C-1 Building at concentrations of 7.50 and 51.0 milligrams per kilogram [mg/kg]. The detected gasoline-range total petroleum hydrocarbons were all less than the MTCA cleanup level of 100 mg/kg when benzene is not present. Benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected at concentrations greater than the laboratory reporting limits in any of the soil samples.
- Diesel- and Heavy oil-range total petroleum hydrocarbons were not detected at concentrations greater than the laboratory reporting limits in any of soil samples.

4.5.2. VOCs and PCBs (Table 2)

- Trichloroethylene (TCE) was detected in soil samples from C-1 DP-15, located within the C-1 Building, at depths of 4 feet and 7 feet bgs. The detected concentrations in the two samples were 0.140 and 0.620, and both exceed the MTCA Method B Cleanup Level of 0.03 mg/kg.
- Tetrachloroethylene (PCE) was detected in the soil sample from C-1 DP-15 at 4 feet bgs at a concentration of 0.0280 mg/kg, which is less than the MTCA Method B Cleanup Level of 0.05 mg/kg.
- The following VOCs were detected in the sample from C-1 DP-15 at 4 feet bgs at concentrations less than the MTCA Method A or B Cleanup Levels: 1,1,1-Trichloroethane, 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, and 2-Chlorotoluene.
- The following VOCs were detected in the sample from C-1 DP-4 at 7 feet bgs at concentrations less than the MTCA Method A or B Cleanup Levels: 1,2,4-Trimethylbenzene, 1,2-Dichloroethane, and 1,3,5-Trimethylbenzene.

4.5.3. Metals (Table 3)

- Arsenic, barium, chromium, and lead were detected in all 29 soil samples at concentrations less than the MTCA Method A or B cleanup levels and the detected concentrations were generally near or below naturally occurring background metals concentrations in Puget Sound Soils (Ecology, 1994). The soil sample from C-1 DP-1 at 11 feet bgs, contained a chromium concentration of 65.7 mg/kg, which is approximately 1.4 times the natural background concentration in Puget Sound Soils; a follow-up analysis was completed for hexavalent chromium, which was not detected in the sample.
- Cadmium, mercury, selenium, and silver were not detected at concentrations greater than the laboratory reporting limits in the 29 soil samples analyzed.

4.6. Groundwater Chemical Analytical Results (Table 4)

Grab groundwater samples were collected from the four boring (C-1 DP-2, C-1 DP-3, C-1 DP-13, and C-1 DP-14) where groundwater was encountered during drilling. The grab groundwater samples were collected using low-flow sampling methods and submitted for laboratory chemical analysis for the following: petroleum hydrocarbons, VOCs, PCBs, and Total and Dissolved RCRA metals. A summary of COCs detected in groundwater is presented below and in Table 4. The detected concentrations of COCs in groundwater exceeding the applicable MTCA Cleanup Levels are shown on Figure 2.

- Diesel- and heavy oil-range total petroleum hydrocarbons were detected at concentrations greater than the laboratory reporting limits in the groundwater sample obtained from boring C-1 DP-3 at concentrations of 110 micrograms per liter (μg/L) and 330 μg/L, respectively. The detected concentrations were less than the MTCA Method A cleanup levels for diesel and heavy oil (500 μg/L).
- VOCs were not detected in any of the groundwater samples at concentrations greater than the laboratory reporting limits with the exception of Methylene Chloride, which was detected in the groundwater sample obtained from boring C-1 DP2; however, the detection of methylene chloride in this sample was the result of laboratory contamination, as qualified by the analytical laboratory (Appendix A).

- Dissolved arsenic was detected in the groundwater sample from boring C-1 DP14 at a concentration of 9.53 μg/L, which exceeds the MTCA Method B cleanup level of 5 μg/L. Total arsenic concentrations exceeded the MTCA Method B cleanup level in all four groundwater grab samples with concentrations ranging from 6.62 to 34.7 μg/L; however, turbidity levels were greater than 100 NTU in each sample, which is common for grab samples collected of shallow perched groundwater.
- Total chromium was detected in the groundwater samples collected from borings C-1 DP-2, C-1 DP-3, and C-1 DP14 at concentrations ranging from 69.2 to 210 μg/L, which exceed the MTCA Method B cleanup level of 50 μg/L.
- Total lead was detected in the groundwater samples obtained from borings C-1 DP-2 and C-1 DP-3 at concentrations of 24.6 and 120 μg/L, which exceed the MTCA Method B cleanup level of 15 μg/L.

5.0 LIMITATIONS

This report has been prepared for use by Snohomish County Airport and their authorized agents. This report may be provided to regulatory agencies for review. No third parties should place legal reliance on this report. GeoEngineers has performed this Phase II ESA in accordance with the scope and limitations of our Agreement with Snohomish County dated February 2, 2021. Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to Appendix C titled "Report Limitations and Guidelines for Use" for additional information pertaining to use of this report.

6.0 REFERENCES

- AGI Technologies (AGI), 1998. Findings Update, Phase 2 Environmental Site Assessment, Precision Aviation Products Corporation, dated August 31, 1998.
- GeoEngineers, 2021. "C-1 Hangar and C-1 Building Vapor Evaluation Report December 2020" prepared for Snohomish County Airport, dated April 27, 2021.
- HWA Geosciences, Inc. (HWA) 2018. Phase I and Phase II Environmental Site Assessment: Precision Engines Property, Everett, Washington. July 10, 2018.
- URS 2001. Soil Investigation Report, Precision Engines Facility, Everett, Washington. November 15, 2001.
- Washington State Department of Ecology (Ecology), 1994. Natural Background Soil Metals Concentrations in Washington State. Toxics Cleanup Program Publication #94-115. October 1994.
- Washington State Department of Ecology (Ecology). 2021. Cleanup Levels and Risk Calculation Master Spreadsheet. 2021. Updated February 2021.

Soil Chemical Analytical Results¹

Petroleum Hydrocarbons and BTEX

C-1 Hangar and Building, Snohomish County Airport Everett, Washington

		Sample Depth	Field Scree Results	_			BTEX ⁴ ng/kg)		Total Pet	roleum Hydr (mg/kg) ⁶	ocarbons
Sample Identification ²	Sample Date	(feet bgs)	Headspace Vapors (ppm)	Sheen	Benzene	Toluene	Ethylbenzene	Xylenes ⁵	Gasoline Range	Diesel Range	Lube Oil Range
C-1 DP1-3.5	3/31/2021	3.5	3.1	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP1-11.0	3/31/2021	11.0	8.9	MS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP2-5.0	3/31/2021	5.0	3.8	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP2-11.0	3/31/2021	11.0	4.3	MS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP3-4.0	3/30/2021	4.0	0.7	MS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP3-7.0	3/30/2021	7.0	1,684	MS	0.005 U	0.005 U	0.005 U	0.01 U	7.5	50 U	250 U
C-1 DP4-3.5	3/30/2021	3.5	<1	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP4-5.0	3/30/2021	5.0	3.7	MS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP4-7.0	3/30/2021	7.0	<1	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP5-3.0	3/30/2021	3.0	<1	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP5-6.0	3/30/2021	6.0	<1	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP6-3.0	3/31/2021	3.0	<1	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP6-6.0	3/31/2021	6.0	<1	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP7-4.0	3/31/2021	4.0	3.0	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP7-9.0	3/31/2021	9.0	4.6	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP8-4.5	3/31/2021	4.5	1.9	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP8-9.0	3/31/2021	9.0	4.9	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP9-3.0	3/31/2021	3.0	3.4	NS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP9-7.5	3/31/2021	7.5	4.8	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP10-4.0	3/31/2021	4.0	3.7	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP11-4.0	3/31/2021	4.0	2.6	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP12-3.0	3/31/2021	3.0	2.2	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP12-8.0	3/31/2021	8.0	1.1	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP13-2.0	3/30/2021	2.0	2.5	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP13-5.0	3/30/2021	5.0	2.3	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP14-5.0	3/30/2021	5.0	<1	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP14-10.0	3/30/2021	10.0	2.3	MS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
C-1 DP15-4.0	3/30/2021	4.0	218	MS	0.005 U	0.005 U	0.005 U	0.01 U	51	50 U	250 U
C-1 DP15-7.0	3/30/2021	7.0	1.9	SS	0.005 U	0.005 U	0.005 U	0.01 U	5 U	50 U	250 U
	MTCA Metho	d A Cleanup Level	for Unrestricted	Land Use	0.03	7	6	9	100 ⁷	2,0	008

Notes:

bgs = below ground surface

mg/kg = milligrams per kilogram

U = Analyte not detected at a concentration greater than the listed reporting limit.

NS = No sheen

SS = Slight sheen

MS = Moderate sheen

ppm = parts per million

Bolded value indicates analyte detected at the concentration shown.

¹Chemical analyses performed by Friedman and Bruya, Inc. of Seattle, Washington. Chemical analytical laboratory reports are included in Appendix B.

 $^{^{\}rm 2}\,\mbox{The approximate sample locations}$ are shown in Figure 2.

 $^{^{\}rm 3}\,{\rm Field}$ screening methods are described in Appendix A.

 $^{^{\}rm 4}\,\mathrm{BTEX}$ compounds were analyzed by EPA Method 8260C.

⁵ Sum of m,p-xylene and o-xylene. Where xylenes are non-detect, the highest laboratory reporting limit is shown.

 $^{^{\}rm 6}\,{\rm Petroleum}$ hydrocarbons analyzed by NWTPH-Gx and NWTPH-Dx.

⁷ Cleanup level when benzene is not present.

 $^{^{8}\}mbox{Cleanup}$ level is the sum of diesel- and oil-range petroleum hydrocarbons.

Soil Chemical Analytical Results¹

Volatile Organic Compounds (VOCs) and Polychlorinated Biphenyls (PCBs)

C-1 Hangar and Building, Snohomish County Airport Everett, Washington

								VOCs ³ (mg/	kg)						Polychlorinated
Sample Identification ²	Sample Date	Sample Depth (feet bgs)	1,1,1- Trichloroethane	1,2,3- Trichlorobenzene	1,2,4- Trichlorobenzene	1,2,4- Trimethylbenzene	1,2- Dichlorobenzene	1,2-Dichloroethane	1,3,5- Trimethylbenzene	1,3- Dichlorobenzene	1,4- Dichlorobenzene	2-Chlorotoluene	Tetrachloroeth ylene (PCE)	Trichloroethyle ne (TCE)	Biphenyls ⁴ (mg/kg)
C-1 DP1-3.5	03/31/21	3.5	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP1-11.0	03/31/21	11.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP2-5.0	03/31/21	5.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP2-11.0	03/31/21	11.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP3-4.0	03/30/21	4.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP3-7.0	03/30/21	7.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP4-3.5	03/30/21	3.5	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP4-5.0	03/30/21	5.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP4-7.0	03/30/21	7.0	0.005 U	0.025 U	0.025 U	0.027	0.005 U	0.013	0.022	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP5-3.0	03/30/21	3.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP5-6.0	03/30/21	6.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP6-3.0	03/31/21	3.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP6-6.0	03/31/21	6.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP7-4.0	03/31/21	4.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP7-9.0	03/31/21	9.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP8-4.5	03/31/21	4.5	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP8-9.0	03/31/21	9.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP9-3.0	03/31/21	3.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP9-7.5	03/31/21	7.5	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP10-4.0	03/31/21	4.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP11-4.0	03/31/21	4.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP12-3.0	03/31/21	3.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP12-8.0	03/31/21	8.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP13-2.0	03/30/21	2.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP13-5.0	03/30/21	5.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP14-5.0	03/30/21	5.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP14-10.0	03/30/21	10.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.02 U
C-1 DP15-4.0	03/30/21	4.0	0.04	0.038	0.055	0.005 U	0.04	0.01 U	0.005 U	0.65	1.7	0.052	0.028	0.620	0.02 U
C-1 DP15-7.0	03/30/21	7.0	0.005 U	0.025 U	0.025 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.140	0.02 U
MTCA Method A or	B Cleanup Level for U	nrestricted Land Use ⁵	2	NE	34.0	NE	7200	11	800	NE	190	1600	0.05	0.03	1

Notes:

bgs = below ground surface

mg/kg = milligrams per kilogram

U = Analyte not detected at a concentration greater than the listed reporting limit.

NA = Not available

 $\mbox{\bf Bolded}$ value indicates analyte detected at the concentration shown.

Gray shaded value indicates the detected concentration exceeded the applicable cleanup level.

¹ Chemical analyses performed by Friedman and Bruya, Inc. of Seattle, Washington. Chemical analytical laboratory reports are included in Appendix B.

²The approximate exploration locations are shown in Figure 2.

³ Volatiles were analyzed by EPA Method 8260C. Only volatiles that were detected are listed; all other volatiles are non-detect for all samples. BTEX results are presented in Table 1.

⁴ PCBs analyzed by EPA Method 8082A.

⁵ Cleanup level shown is the MTCA Method A cleanup level for unrestricted land use. If no MTCA Method A value is available, the most conservative MTCA Method B cleanup level is presented.

Soil Chemical Analytical Results¹ Metals

C-1 Hangar and Building, Snohomish County Airport Everett, Washington

Sample Identification ²	Sample Date	Sample Depth (feet bgs)				Total Meta	ls ³ (mg/kg)			
			Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
C-1 DP1-3.5	3/31/2021	3.5	2.69	42.7	1.00 U	19.1	2.0	1.00 U	1.00 U	1.00 U
C-1 DP1-11.0	3/31/2021	11.0	2.92	50.5	1.00 U	65.7 ⁴	2.5	1.00 U	1.00 U	1.00 U
C-1 DP2-5.0	3/31/2021	5.0	4.74	34.5	1.00 U	21.1	1.74	1.00 U	1.00 U	1.00 U
C-1 DP2-11.0	3/31/2021	11.0	2.31	36.0	1.00 U	21.1	1.69	1.00 U	1.00 U	1.00 U
C-1 DP3-4.0	3/30/2021	4.0	2.25	26.0	1.00 U	23.3	4.86	1.00 U	1.00 U	1.00 U
C-1 DP3-7.0	3/30/2021	7.0	1.83	41.6	1.00 U	22.4	2.39	1.00 U	1.00 U	1.00 U
C-1 DP4-3.5	3/30/2021	3.5	1.78	50.1	1.00 U	20.3	2.14	1.00 U	1.00 U	1.00 U
C-1 DP4-5.0	3/30/2021	5.0	2.59	44.6	1.00 U	21.9	2.09	1.00 U	1.00 U	1.00 U
C-1 DP4-7.0	3/30/2021	7.0	1.83	35.6	1.00 U	19.4	1.62	1.00 U	1.00 U	1.00 U
C-1 DP5-3.0	3/30/2021	3.0	1.79	40.5	1.00 U	18.0	1.71	1.00 U	1.00 U	1.00 U
C-1 DP5-6.0	3/30/2021	6.0	2.08	48.0	1.00 U	24.6	2.37	1.00 U	1.00 U	1.00 U
C-1 DP6-3.0	3/31/2021	3.0	2.49	42.3	1.00 U	16.0	1.83	1.00 U	1.00 U	1.00 U
C-1 DP6-6.0	3/31/2021	6.0	2.63	48.0	1.00 U	20.0	2.13	1.00 U	1.00 U	1.00 U
C-1 DP7-4.0	3/31/2021	4.0	3.01	40.5	1.00 U	18.2	1.95	1.00 U	1.00 U	1.00 U
C-1 DP7-9.0	3/31/2021	9.0	2.01	38.3	1.00 U	18.2	1.75	1.00 U	1.00 U	1.00 U
C-1 DP8-4.5	3/31/2021	4.5	2.1	41.0	1.00 U	20.4	2.05	1.00 U	1.00 U	1.00 U
C-1 DP8-9.0	3/31/2021	9.0	2.93	47.2	1.00 U	18.8	2.22	1.00 U	1.00 U	1.00 U
C-1 DP9-3.0	3/31/2021	3.0	2.96	44.7	1.00 U	18.3	2.09	1.00 U	1.00 U	1.00 U
C-1 DP9-7.5	3/31/2021	7.5	2.36	44.2	1.00 U	20.8	2.36	1.00 U	1.00 U	1.00 U
C-1 DP10-4.0	3/31/2021	4.0	3.27	43.6	1.00 U	19.7	2.04	1.00 U	1.00 U	1.00 U
C-1 DP11-4.0	3/31/2021	4.0	2.98	46.5	1.00 U	18.3	2.22	1.00 U	1.00 U	1.00 U
C-1 DP12-3.0	3/31/2021	3.0	2.97	44.9	1.00 U	21.5	2.31	1.00 U	1.00 U	1.00 U
C-1 DP12-8.0	3/31/2021	8.0	3.02	39.3	1.00 U	21.4	2.11	1.00 U	1.00 U	1.00 U
C-1 DP13-2.0	3/30/2021	2.0	3.11	82.9	1.00 U	19.2	1.9	1.00 U	1.00 U	1.00 U
C-1 DP13-5.0	3/30/2021	5.0	3.35	40.7	1.00 U	14.7	1.59	1.00 U	1.00 U	1.00 U
C-1 DP14-5.0	3/30/2021	5.0	3.02	68.0	1.00 U	22.5	2.43	1.00 U	1.00 U	1.00 U
C-1 DP14-10.0	3/30/2021	10.0	1.71	32.5	1.00 U	16.4	1.31	1.00 U	1.00 U	1.00 U
C-1 DP15-4.0	3/30/2021	4.0	3.33	61.4	1.00 U	25.8	2.44	1.00 U	1.00 U	1.00 U
C-1 DP15-7.0	C-1 DP15-7.0 3/30/2021 7.0				1.00 U	19.6	2.15	1.00 U	1.00 U	1.00 U
	MTCA Metho	20	1,600 ⁵	2	2,000 ⁵	250	2	400 ⁵	400 ⁵	
Naturally occ	urring background metals	in Puget Sound Soils	7	NA	1	48	24	0.07	NA	NA

Notes:

bgs = below ground surface

mg/kg = milligrams per kilogram

 $\mbox{\bf U}$ = Analyte not detected at a concentration greater than the listed reporting limit.

NA = Not available

Bolded value indicates analyte has been detected at the concentration shown.

¹ Chemical analyses performed by Friedman and Bruya, Inc. of Seattle, Washington. Chemical analytical laboratory reports are included in Appendix B.

² The approximate exploration locations are shown in Figure 2.

³ Metals analyzed by EPA Method 6020B.

⁴ Sample was analyzed for hexavalent chromium using EPA method 7196; hexavalent chromium was not detected and the cleanup level presented is for chromium III, which is the most common form of chromium.

⁵ Cleanup level shown is the most conservative MTCA Method B cleanup level available for protection of groundwater; if no cleanup level is available for protection of groundwater, the MTCA Method B cleanup level for direct contact is shown.

⁶ 90th Percentile for natural background soil metals concentrations in Puget Sound region, Department of Ecology, publication #94-115, dated October 1994.

Groundwater Chemical Analytical Results¹

Petroleum Hydrocarbons, VOCs, PCBs and Metals

C-1 Hangar and Building, Snohomish County Airport Everett, Washington

			Total Pet	roleum Hydro	ocarbons ³	Volatile Organic Compounds ⁴								Diss	olved M	etals ⁶ (µg/	L)						
Expl	oration Identification ²	Sample Date		(µg/L)		(VOCs) PCBs ⁵ (μg/L) (μg/L)		Arconio		Arsenic Barium		Cadmium		Chromium		Lead		Mercury		Selenium		Silver	
			Gasoline Range	Diesel Range	Lube Oil Range	Methylene Chloride		Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total
	C-1 DP2-033121W	3/31/2021	100 U	50.0 U	250 U	12.0 ⁷	0.100 U	3.48	29.5	16.7	539	1.00 U	1.08	4.57	187	1.98	24.6	1.00 U	1.00 U	1.00 U	1.55	6.28	1.00 U
	C-1 DP3-033021W	3/30/2021	100 U	110	330	5.00 U	0.100 U	2.68	34.7	8.11	752	1.00 U	4.46	1.41	210	1.13	120	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
C	C-1 DP13-033121W	3/31/2021	100 U	50.0 U	250 U	5.00 U	0.100 U	1.00 U	6.62	14.7	129	1.00 U	1.00 U	1.00 U	24.7	1.00 U	2.99	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
C	C-1 DP14-033121W	3/31/2021	100 U	50.0 U	250 U	5.00 U	0.100 U	9.53	30.8	48.3	595	1.00 U	1.00 U	1.00 U	69.2	1.00 U	10.9	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
	MTCA Method A or	B Cleanup Level	1,000 8	50	00	5	0.1	5		3,20	0 9	5		50	10	15		2		80	9	80	9

Notes:

bgs = below ground surface (pre-construction)

µg/L = micrograms per liter

U = Analyte not detected at a concentration greater than the listed reporting limit.

NA = Not Availabl

Bolded value indicates analyte detected at the concentration shown.

Gray shaded value indicates the detected concentration exceeded the applicable cleanup level.

¹ Chemical analyses performed by Friedman & Bruya of Seattle, Washington. Chemical analytical laboratory reports are included in Appendix B.

² The approximate exploration locations are shown in Figure 2.

 $^{^{\}rm 3}$ Petroleum hydrocarbons analyzed by NWTPH-Gx and NWTPH-Dx $^{\rm 1}$

⁴ Volatiles were analyzed by EPA Method 8260C. Only volatiles that were detected or not detected above cleanup levels in one or more samples are presented in this table. TCE, PCE and vinyl chloride were not detected in the samples.

⁵ PCBs analyzed by EPA Method 8082A.

⁶ Metals analyzed by EPA Method 6020B.

⁷ The detected concentration was qualified by the analytical laboratory as the result of laboratory contamination. See Appendix B.

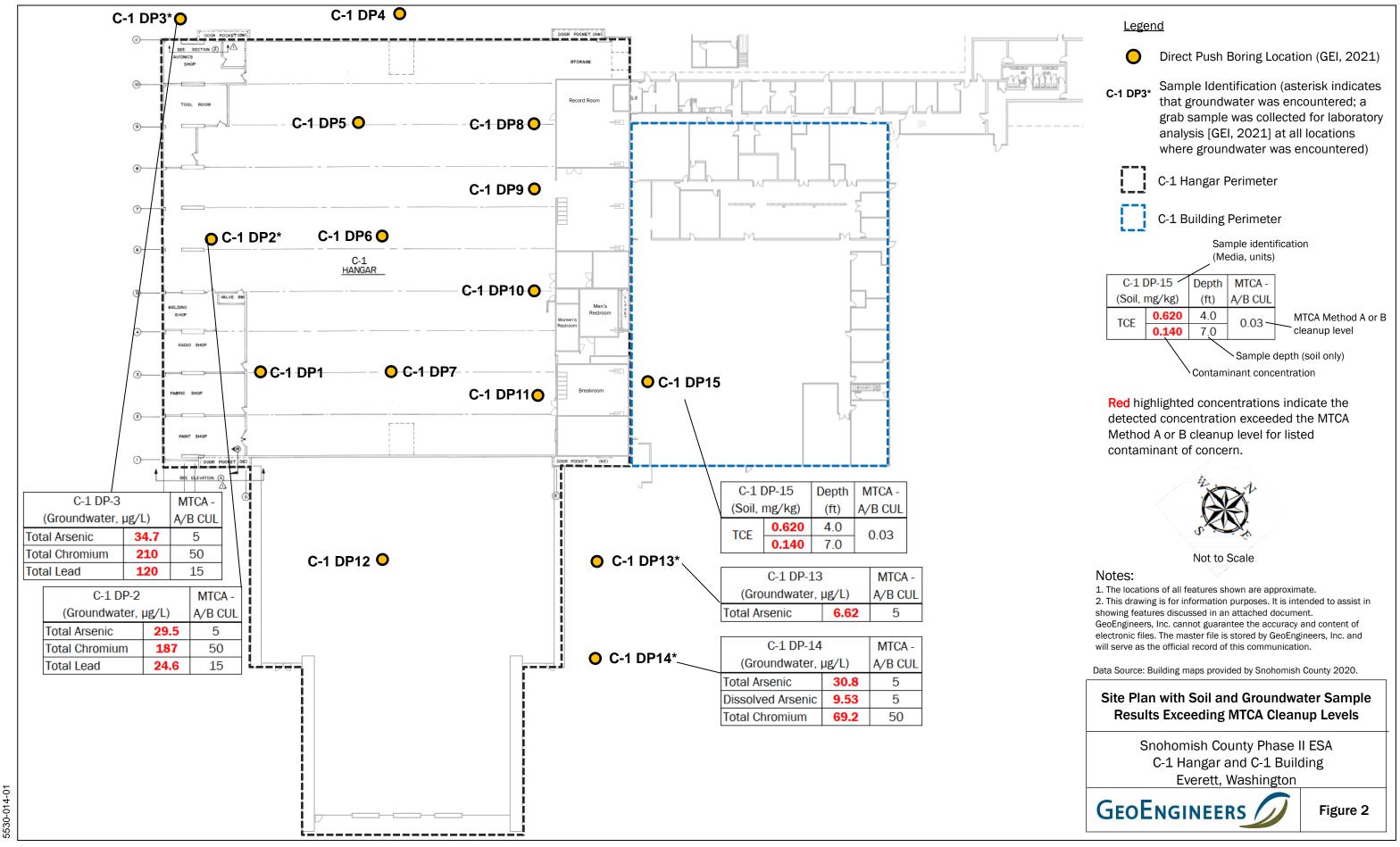
⁸ Cleanup level when no benzene is present.

⁹ Cleanup levels are presented for Method B carcinogenic values, which are the most conservative cleanup levels available.

¹⁰ Cleanup levels are presented for Total Chromium.

2,000 2,000 Feet

- 1. The locations of all features shown are approximate.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.
- 3. It is unlawful to copy or reproduce all or any part thereof, whether for personal use or resale, without permission.


Data Sources: ESRI Data & Maps, Street Maps 2005 Transverse Mercator, Zone 10 N North, North American Datum 1983 North arrow oriented to grid north

Vicinity Map

C-1 Hangar and C-1 Building Phase II ESA Paine Field/Snohomish County Airport Everett, Washington

Figure 1

APPENDIX A Field Procedures and Exploration Logs

APPENDIX A FIELD PROCEDURES AND EXPLORATION LOGS

Underground Utility Locate

Prior to drilling activities, an underground utility locate was conducted in the area of the proposed boring locations to identify subsurface utilities and/or potential underground physical hazards. The underground utility check consisted of contacting a local utility alert service (1-call) and hiring a private utility locating service to use conductible and GPR technologies.

Soil Sampling

The Phase II Environmental Site Assessment (ESA) was completed using direct-push drilling equipment operated by Cascade Drilling of Woodinville, Washington. Continuous soil cores were obtained from the direct push borings using 1.5-inch diameter, 4-foot-long stainless steel sampler rods driven with a pneumatic hammer. The borings extended to depths ranging between approximately 4 and 15 feet below ground surface (bgs). Soil samples were collected in clean, plastic 1.5-inch diameter disposable liners. Soil samples were collected from the center of backhoe bucket using new disposable gloves.

A representative from our staff observed and classified the soil encountered during explorations. Soil in the explorations was visually classified in general accordance with ASTM International (ASTM) D 2488-94. The exploration logs are presented in Figures A-2 through A-16. A portion of each sample was placed in laboratory-prepared sample jars for possible chemical analysis. The remaining portion of each sample was used for field screening.

Selected samples from the borings were submitted for chemical analysis based on field screening results. The soil samples were placed in a cooler with ice for transport to Friedman and Bruya, Inc. laboratory in Seattle, Washington. Standard chain-of-custody procedures were followed in transporting the soil samples to the laboratory.

Drill cuttings and decontamination/purge water generated during drilling activities were temporarily stored at the Site in 55-gallon drums at a location designated by the property owner pending waste characterization and transportation for off-site disposal.

Sample Identification Scheme

Each soil sample obtained during the investigation was identified by a unique sample designation. The sample designation was documented in the field report and exploration log, and included on the sample container label and laboratory chain-of-custody. The soil sample designation scheme is as follows:

Direct-push borings: Boring number C-1 DP-1 etc., followed by the depth from which the soil sample was collected, to the nearest 0.1 foot. For example, sample C-1 DP-1-12.5 is from boring number DP-1 from a depth of 12.5 feet bgs.

Groundwater Sample Collection and Handling

Discrete groundwater samples were obtained at the time of drilling by pushing an approximately 1.25-inch diameter stainless steel rod approximately two feet below the water table. The steel rod was then pulled back to expose a temporary stainless steel screen.

Groundwater samples were collected from the temporary wells using a peristaltic pump with dedicated Teflon tubing at low-flow sampling rates. The groundwater was pumped at approximately 0.5 liter per minute until the water purged clear if adequate groundwater volume was available, after which samples were collected at a flow rate of approximately 0.5 liter per minute (low-flow). Purging generated wastewater which was drummed and temporarily stored on the property pending off-site disposal.

Groundwater samples were transferred directly from the tubing outlet to laboratory-prepared sample containers. New nitrile gloves were worn when collecting each groundwater sample. The sample containers were filled completely and placed in a cooler with ice pending transport to the analytical laboratory. Sample labels were completed for each sample. Chain-of-custody procedures were followed in transporting the samples to the laboratory.

Field Screening of Soil Samples

Soil samples obtained from the borings were screened in the field for evidence of contamination using: (1) visual examination; (2) sheen screening and (3) vapor headspace screening with a photoionization detector (PID). The results of headspace and sheen screening are included in the boring logs and in Table 1 for soil samples tested by chemical analysis.

Visual screening consists of inspecting the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons, such as motor oil or hydraulic oil, or when hydrocarbon concentrations are high. Sheen screening and headspace vapor screening are more sensitive methods that have been effective in detecting contamination at concentrations less than regulatory cleanup guidelines. Sheen screening involves placing soil in a pan of water and observing the water surface for signs of sheen. Sheen classifications are as follows:

No Sheen (NS): No visible sheen on water surface.

Slight Sheen (SS): Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates

rapidly.

Moderate Sheen (MS): Light to heavy sheen, may have some color/iridescence; spread is irregular

to flowing; few remaining areas of no sheen on water surface.

Heavy Sheen (HS): Heavy sheen with color/iridescence; spread is rapid; entire water surface may

be covered with sheen.

Headspace vapor screening involves placing a soil sample in a plastic sample bag. Air is captured in the bag and the bag is shaken to expose the soil to the air trapped in the bag. The probe of a PID is inserted in the bag and the instrument measures the concentration of combustible vapor in the air removed from the sample headspace. The PID measures concentrations in ppm (parts per million) and is calibrated to isobutylene. The PID is designed to quantify combustible gas and organic vapor concentrations up to 2,500 ppm. A lower threshold of significance of 1 ppm was used in this application. Field screening results are Site-specific and vary with soil type, soil moisture content, temperature, and type of contaminant.

SOIL CLASSIFICATION CHART

	MAJOR DIVIS	IONE	SYM	BOLS	TYPICAL		
	MAJOR DIVIS	10143	GRAPH	LETTER	DESCRIPTIONS		
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		
30113	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS		
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELL SAND		
	MORE THAN 50% OF COARSE FRACTION PASSING	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTUR		
	ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES		
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY		
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS LEAN CLAYS		
SOILS				OL	ORGANIC SILTS AND ORGANIC SILT CLAYS OF LOW PLASTICITY		
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		
	HIGHLY ORGANIC	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

2.4-inch I.D. split barrel

Standard Penetration Test (SPT)

Shelby tube

Piston

Direct-Push

Bulk or grab

Continuous Coring

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

"P" indicates sampler pushed using the weight of the drill rig.

"WOH" indicates sampler pushed using the weight of the hammer.

ADDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	cc	Cement Concrete
33	CR	Crushed Rock/ Quarry Spalls
1 71 71 71 71 71 71 71 71 71 71 71 71 71	SOD	Sod/Forest Duff
	TS	Topsoil

Groundwater Contact

T

Measured groundwater level in exploration, well, or piezometer

%F

SA

ΤX

UC

Measured free product in well or piezometer

Graphic Log Contact

- Distinct contact between soil strata

Approximate contact between soil strata

Material Description Contact

Contact between geologic units

Contact between soil of the same geologic unit

Laboratory / Field Tests

Percent gravel %G ΑL Atterberg limits CA Chemical analysis СP Laboratory compaction test CS DD Consolidation test Dry density DS Direct shear HA Hydrometer analysis MC Moisture content MD Moisture content and dry density Mohs Mohs hardness scale OC **Organic content** Permeability or hydraulic conductivity PM Ы Plasticity index Point load test PL PP Pocket penetrometer

Percent fines

Sheen Classification

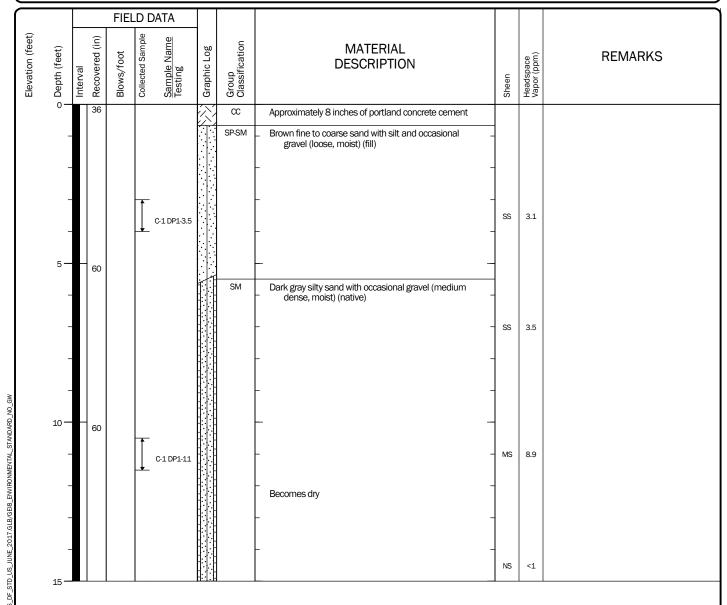
Unconfined compression

Sieve analysis

Vane shear

Triaxial compression

NS No Visible Sheen SS Slight Sheen MS Moderate Sheen HS Heavy Sheen


NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

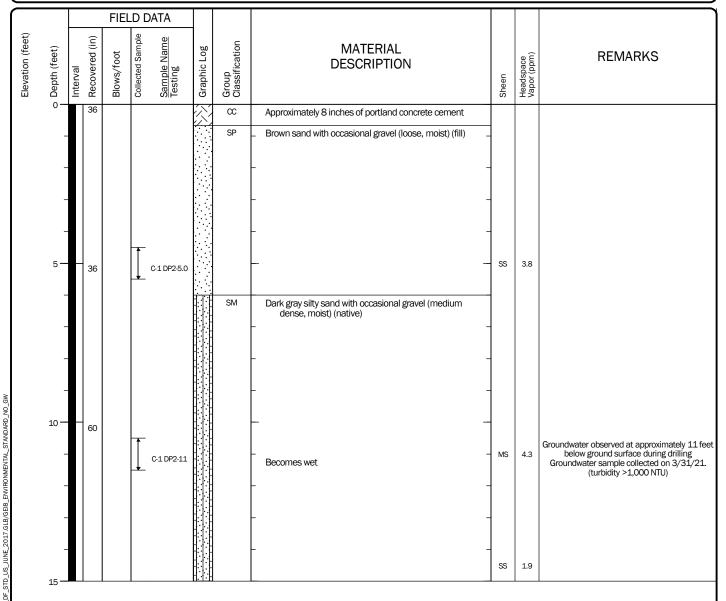
Key to Exploration Logs

Figure A-1

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	15	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring C-1 DP-1


Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

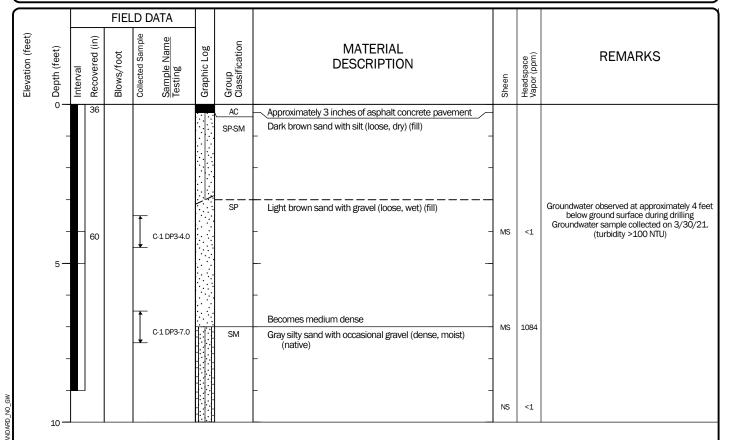
Figure A-2 Sheet 1 of 1

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	15	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			See "Remarl	ks" section for groundwater observed
Notes:									

Note: See Figure A-1 for explanation of symbols.

 ${\bf Coordinates\ Data\ Source:\ Horizontal\ approximated\ based\ on\ .\ Vertical\ approximated\ based\ on\ .}$

Log of Boring C-1 DP-2


Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

Project Location: Snohomish County, Washington

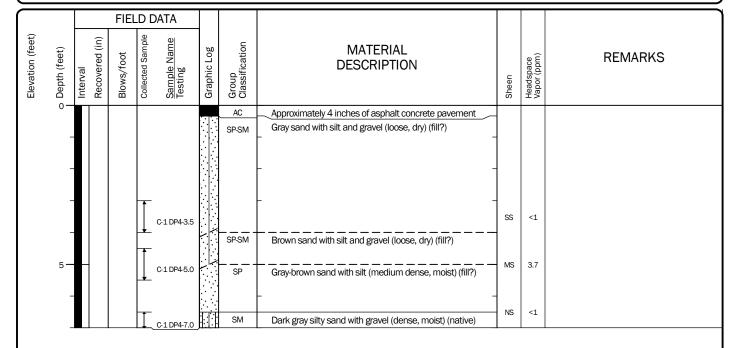
Project Number: 5530-014-01

Figure A-3 Sheet 1 of 1

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Depth (ft)	10	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Elevation (ft) Vertical Datum		Undetermined			Hammer Data N/A		Drilling Equipment	Geoprobe (7822DT)	
	Easting (X) Northing (Y)			System Datum			See "Remarks" section for groundwater observed		
Notes:									

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring C-1 DP-3


Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

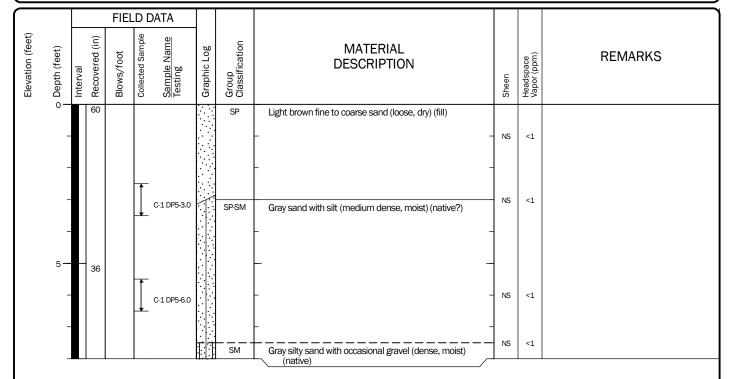
Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-4 Sheet 1 of 1

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Depth (ft)	7	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push	
Surface Vertical	Elevation (ft) Datum	Undetermined			Hammer Data N/A			Drilling Equipment	Geoprobe (7822DT)	
	Easting (X) Northing (Y)				System Datum			Groundwater not observed at time of exploration		
Notes:										

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .


Log of Boring C-1 DP-4

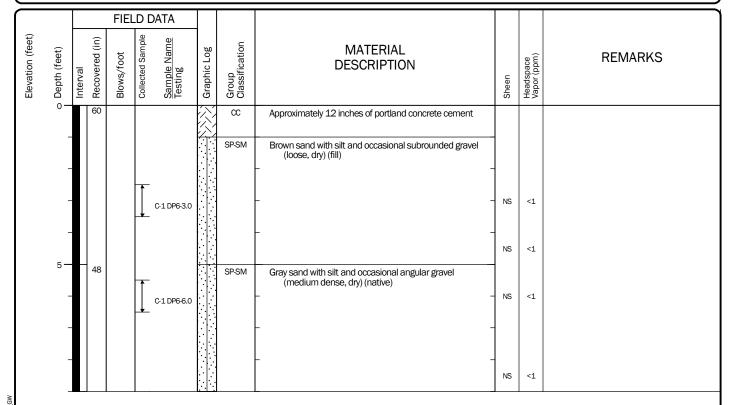
Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

Project Location: Snohomish County, Washington Project Number: 5530-014-01

Figure A-5 Sheet 1 of 1

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Logged By KRA Driller Holocene Drilling, Inc.			Drilling Method Direct-Push		
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data	N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum		Groundwate	er not observed at time of exploration
Notes:								

Log of Boring C-1 DP-5


Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

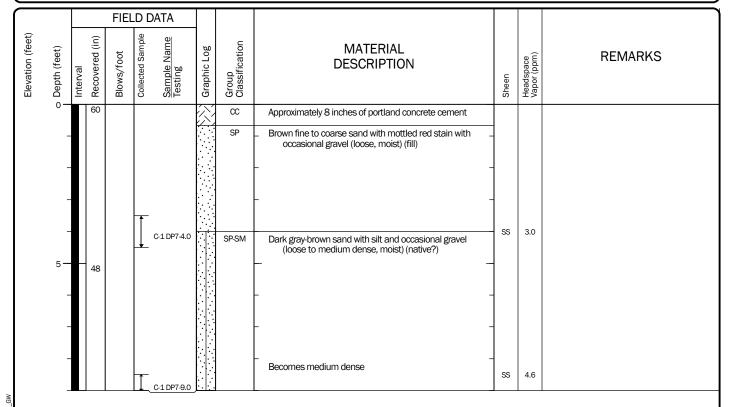
Figure A-6 Sheet 1 of 1

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Depth (ft)	9	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
	Surface Elevation (ft) /ertical Datum		ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	r not observed at time of exploration
Notes:	Notes:								

Note: See Figure A-1 for explanation of symbols.

 $\hbox{\tt Coordinates Data Source: Horizontal approximated based on. Vertical approximated based on.}$

Log of Boring C-1 DP-6


Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

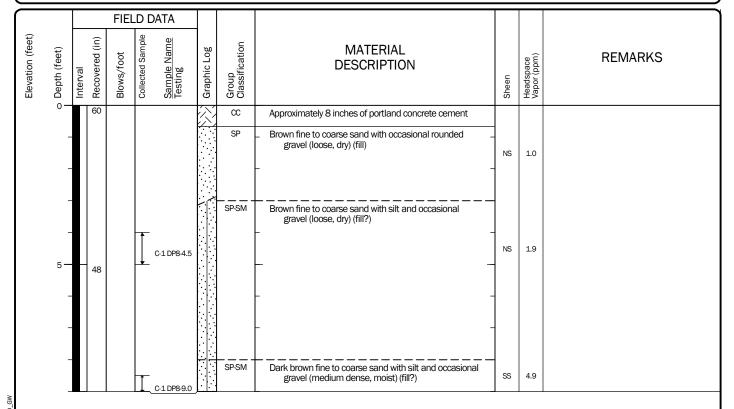
Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-7 Sheet 1 of 1

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	9	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

Log of Boring C-1 DP-7


Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

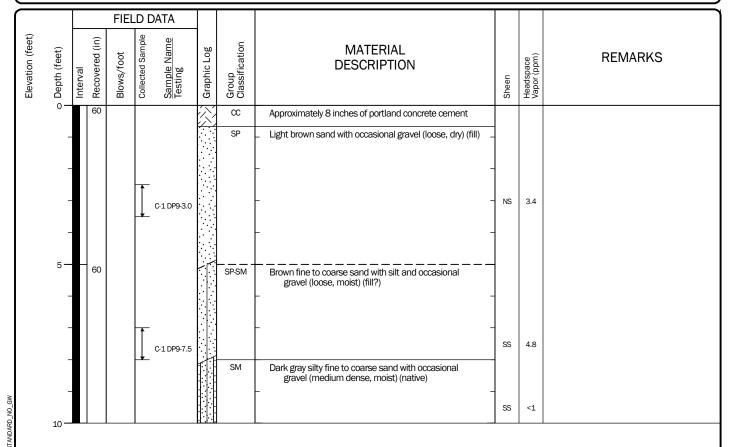
Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-8 Sheet 1 of 1

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	9	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
	Surface Elevation (ft) Vertical Datum		ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	r not observed at time of exploration
Notes:	Notes:								

Log of Boring C-1 DP-8


Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-9 Sheet 1 of 1

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	10	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	r not observed at time of exploration
Notes:	Notes:								

Log of Boring C-1 DP-9

Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-10 Sheet 1 of 1

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	4	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
	urface Elevation (ft) ertical Datum		ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

				FIEL	D D	ATA]
Flevation (feet)	Depth (fe	Interval	Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0.		48					cc	Approximately 6 inches of portland concrete cement			
		_					,	SP-SM	Brown fine to coarse sand with silt and occasional gravel (medium dense, dry) (fill)	SS	4.0	
	4					C-1 DP10-4.0		SM	Dark gray silty fine to coarse sand with occasional gravel (medium dense, dry) (native)	SS	3.7	

Boring terminated at approximately 4 feet below ground surface due to refusal on hard ground

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring C-1 DP-10

Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

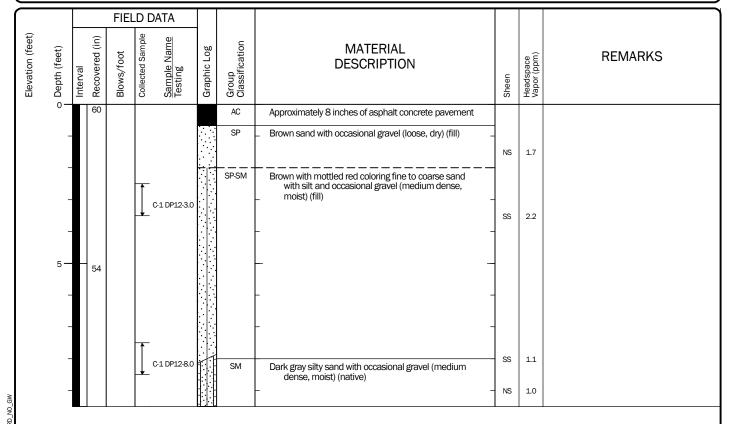
Figure A-11 Sheet 1 of 1

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	4	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
	urface Elevation (ft) ertical Datum		ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

ſ				FIEL	D D	ATA						1
	Elevation (feet) Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 -						$\langle \langle \rangle \rangle$	cc	Portland concrete cement			
								SP-SM	- Brown sand with silt (loose, dry) (fill) -	- NS	1.3	
								SP-SM	Brown sand with silt and occasional gravel (medium dense, moist) (fill)			
	4					C-1 DP11-4.0				SS	2.6	

Log of Boring C-1 DP-11

Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA


Project Location: Snohomish County, Washington

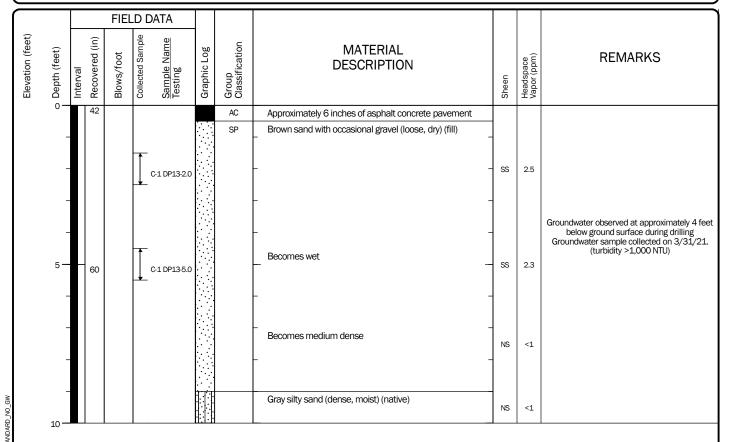
Project Number: 5530-014-01

Figure A-12 Sheet 1 of 1

1\GINT\553001401.GPJ DBLibrary/Library:GEOENGINEERS_DF_STD_US_JUNE_2017.GLB/GE18

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	9.5	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

Log of Boring C-1 DP-12

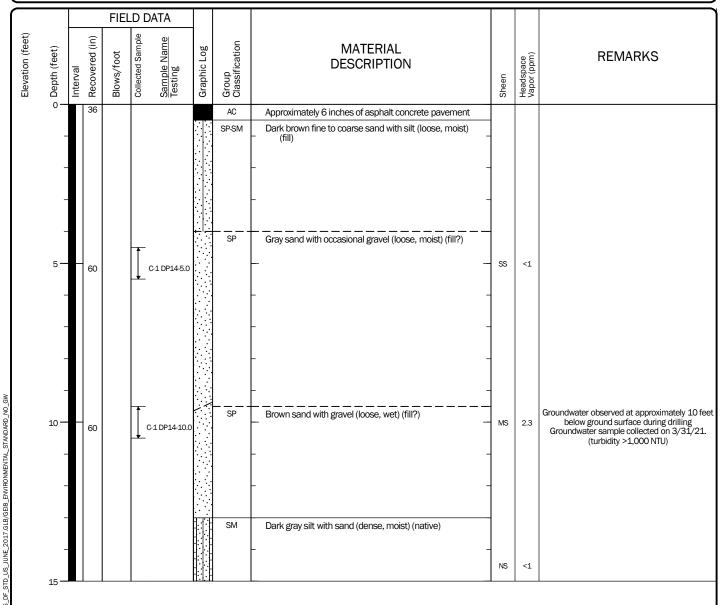

Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-13 Sheet 1 of 1

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Depth (ft)	10	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			See "Remark	ks" section for groundwater observed
Notes:	Notes:								


Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-14 Sheet 1 of 1

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021				Drilling Method Direct-Push		
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data	N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum		See "Remarl	ks" section for groundwater observed
Notes:								

Note: See Figure A-1 for explanation of symbols.

 ${\bf Coordinates\ Data\ Source:\ Horizontal\ approximated\ based\ on\ .\ Vertical\ approximated\ based\ on\ .}$

Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-15 Sheet 1 of 1

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Depth (ft)	7	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

ſ	FI	ELD DA	TA						1
Elevation (feet) Depth (feet) Interval	Recovered (in)	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
0	60		ł	1	CC	Approximately 6 inches of portland concrete cement			
- - - 5— -	24	+	L DP154.0		SPSM	Brown silt with fine to coarse sand and occasional gravel (medium dense, moist) (fill)	MS SS	218	

Log of Boring C-1 DP-15

Project: Snohomish County - C-1 Hangar and C-1 Building Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-16 Sheet 1 of 1

APPENDIX B Laboratory Chemical Analytical Data Report

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 19, 2021

Jacob Letts, Project Manager GeoEngineers 2101 4th Avenue, Suite 150 Seattle, WA 98121

Dear Mr Letts:

Included is the amended report from the testing of material submitted on March 31, 2021 from the Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585 project. Per your request, the reporting limits for several 8260D volatile organic compounds in water were lowered and a qualifier was added to the methylene chloride detection in sample C-1 DP2-033121w.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures GNR0409R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 9, 2021

Jacob Letts, Project Manager GeoEngineers 2101 4th Avenue, Suite 150 Seattle, WA 98121

Dear Mr Letts:

Included are the results from the testing of material submitted on March 31, 2021 from the Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585 project. There are 153 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures GNR0409R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 31, 2021 by Friedman & Bruya, Inc. from the GeoEngineers Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	GeoEngineers
103585 -01	C-1 DP4-3.5
103585 -02	C-1 DP4-5.0
103585 -03	C-1 DP4-7.0
103585 -04	C-1 DP3-4.0
103585 -05	C-1 DP3-7.0
103585 -06	C-1 DP3-033021w
103585 -07	C-1 DP5-3.0
103585 -08	C-1 DP5-6.0
103585 -09	C-1 DP15-4.0
103585 -10	C-1 DP15-7.0
103585 -11	C-1 DP14-5.0
103585 -12	C-1 DP14-10.0
103585 -13	C-1 DP13-2.0
103585 -14	C-1 DP13-5.0
103585 -15	C-1 DP13-033121w
103585 -16	C-1 DP14-033121w
103585 -17	C-1 DP8-4.5
103585 -18	C-1 DP8-9.0
103585 -19	C-1 DP9-3.0
103585 -20	C-1 DP9-7.5
103585 -21	C-1 DP10-4.0
103585 -22	C-1 DP11-4.0
103585 -23	C-1 DP2-5.0
103585 -24	C-1 DP2-11.0
103585 -25	C-1 DP1-3.5
103585 -26	C-1 DP1-11.0
103585 -27	C-1 DP2-033121w
103585 -28	C-1 DP7-4.0
103585 -29	C-1 DP7-9.0
103585 -30	C-1 DP12-3.0
103585 -31	C-1 DP12-8.0
103585 -32	C-1 DP6-3.0
103585 -33	C-1 DP6-6.0
103585 -34	Trip Blank 1
103585 -35	Trip Blank 2
103585 -36	Trip Blank 3

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

<u>Laboratory ID</u>	<u>GeoEngineers</u>
103585 -37	Trip Blank 4
103585 -38	Trip Blank 5

Gasoline by NWTPH-Gx (water)

All quality control requirements were acceptable.

Diesel and Motor Oil by NWTPH-Dx (water)

All quality control requirements were acceptable.

VOCs by 8260D (water)

All quality control requirements were acceptable.

PCBs by 8082A (water)

All quality control requirements were acceptable.

Total Metals by 6020B (water)

All quality control requirements were acceptable.

Dissolved Metals by 6020B (water)

A 6020B internal standard failed the acceptance criteria for sample C-1 DP14-033121w. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported. All other quality control requirements were acceptable.

Gasoline by NWTPH-Gx (soil)

All quality control requirements were acceptable.

Diesel and Motor Oil by NWTPH-Dx (soil)

All quality control requirements were acceptable.

<u>VOCs by 8260D (soil)</u>
The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable. All other quality control requirements were acceptable.

PCBs by 8082A (soil)

For PCB samples analyzed on GC9, the time of analysis in the EQUIS electronic data file is inaccurate due to a software error. All quality control requirements were acceptable.

Total Metals by 6020B (soil)

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/01/21

Date Analyzed: 04/02/21, 04/05/21 and 04/06/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
C-1 DP4-3.5	<5	75
C-1 DP4-5.0 103585-02	<5	73
C-1 DP4-7.0 103585-03	<5	75
C-1 DP3-4.0 103585-04	<5	75
C-1 DP3-7.0 103585-05	7.5	79
C-1 DP5-3.0 103585-07	<5	73
C-1 DP5-6.0 103585-08	<5	77
C-1 DP15-4.0 103585-09	51	78
C-1 DP15-7.0 103585-10	<5	65
C-1 DP14-5.0 103585-11	<5	69
C-1 DP14-10.0 103585-12	<5	72

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/01/21

Date Analyzed: 04/02/21, 04/05/21 and 04/06/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
C-1 DP13-2.0 103585-13	<5	65
C-1 DP13-5.0 103585-14	<5	67
C-1 DP8-4.5 103585-17	<5	68
C-1 DP8-9.0 103585-18	<5	67
C-1 DP9-3.0 103585-19	<5	64
C-1 DP9-7.5 103585-20	<5	68
C-1 DP10-4.0 103585-21	<5	68
C-1 DP11-4.0 103585-22	<5	61
C-1 DP2-5.0 103585-23	<5	71
C-1 DP2-11.0 103585-24	<5	69
C-1 DP1-3.5 103585-25	<5	63

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/01/21

Date Analyzed: 04/02/21, 04/05/21 and 04/06/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
C-1 DP1-11.0 103585-26	<5	62
C-1 DP7-4.0 103585-28	<5	62
C-1 DP7-9.0 103585-29	<5	64
C-1 DP12-3.0 103585-30	<5	63
C-1 DP12-8.0 103585-31	<5	60
C-1 DP6-3.0 103585-32	<5	68
C-1 DP6-6.0 103585-33	<5	66
Method Blank _{01-598 MB}	<5	71
Method Blank _{01-599 MB}	<5	69

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/05/21 Date Analyzed: 04/06/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
C-1 DP3-033021w 103585-06	<100	89
C-1 DP13-033121w 103585-15	<100	88
C-1 DP14-033121w 103585-16	<100	87
C-1 DP2-033121w 103585-27	<100	88
Method Blank	<100	90

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/01/21 Date Analyzed: 04/01/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 53-144)
C-1 DP4-3.5	<50	<250	101
C-1 DP4-5.0 103585-02	<50	<250	101
C-1 DP4-7.0 103585-03	<50	<250	103
C-1 DP3-4.0 103585-04	<50	<250	89
C-1 DP3-7.0 103585-05	<50	<250	88
C-1 DP5-3.0 103585-07	<50	<250	91
C-1 DP5-6.0 103585-08	<50	<250	96
C-1 DP15-4.0 103585-09	<50	<250	91
C-1 DP15-7.0 103585-10	<50	<250	100
C-1 DP14-5.0	<50	<250	102

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/01/21 Date Analyzed: 04/01/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 53-144)
C-1 DP14-10.0 103585-12	<50	<250	103
C-1 DP13-2.0 103585-13	<50	<250	102
C-1 DP13-5.0 103585-14	<50	<250	103
C-1 DP8-4.5 103585-17	<50	<250	99
C-1 DP8-9.0 103585-18	<50	<250	91
C-1 DP9-3.0 103585-19	<50	<250	90
C-1 DP9-7.5 103585-20	<50	<250	92
C-1 DP10-4.0 103585-21	<50	<250	100
C-1 DP11-4.0 103585-22	<50	<250	100
C-1 DP2-5.0 103585-23	<50	<250	102

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/01/21 Date Analyzed: 04/01/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 53-144)
C-1 DP2-11.0 103585-24	<50	<250	89
C-1 DP1-3.5 103585-25	<50	<250	89
C-1 DP1-11.0 103585-26	<50	<250	90
C-1 DP7-4.0 103585-28	<50	<250	100
C-1 DP7-9.0 103585-29	<50	<250	101
C-1 DP12-3.0 103585-30	<50	<250	91
C-1 DP12-8.0 103585-31	<50	<250	99
C-1 DP6-3.0 103585-32	<50	<250	103
C-1 DP6-6.0 103585-33	<50	<250	100
Method Blank 01-772 MB	<50	<250	99
Method Blank 01-774 MB	<50	<250	90

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/02/21 Date Analyzed: 04/02/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

			Surrogate
Sample ID	<u>Diesel Range</u>	Motor Oil Range	(% Recovery)
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}-C_{36})$	(Limit 41-152)
C-1 DP3-033021w 103585-06	110 x	330	49
C-1 DP13-033121w 103585-15	<50	<250	118
C-1 DP14-033121w 103585-16	<50	<250	82
C-1 DP2-033121w 103585-27	<50	<250	ip
Method Blank	<50	<250	128

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 DP3-033021w	Client:	GeoEngineers
------------	-----------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/05/21 103585-06 Date Analyzed: 04/05/21 Data File: 103585-06.131 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	2.68
Barium	8.11
Cadmium	<1
Chromium	1.41
Lead	1.13
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 DP13-033121w	Client:	GeoEngineers
------------	------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/05/21 103585-15Date Analyzed: 04/05/21 Data File: 103585-15.132 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

	Concentration	
Analyte:	ug/L (ppb)	
Arsenic	<1	

 Arsenic
 <1</td>

 Barium
 14.7

 Cadmium
 <1</td>

 Chromium
 <1</td>

 Lead
 <1</td>

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 DP14-033121w	Client:	GeoEngineers
------------	------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/05/21 103585-16Date Analyzed: 04/05/21 Data File: 103585-16.133 Matrix: Instrument: Water ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	9.53
Barium	48.3
Cadmium	<1
Chromium	<1 J
Lead	<1
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: C-1 DP14-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/05/21
 Lab ID:
 103585-16 x5

 Date Analyzed:
 04/06/21
 Data File:
 103585-16 x5.081

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Chromium <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 DP2-033121w	Client:	GeoEngineers
------------	-----------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585-2704/05/21 Date Analyzed: 04/05/21 Data File: 103585-27.134 Matrix: Instrument: Water ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	3.48
Barium	16.7
Cadmium	<1
Chromium	4.57
Lead	1.98
Mercury	<1
Selenium	<1
Silver	6.28

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client	ient: GeoEngine	ers
--------------------------------	-----------------	-----

Date Received: NA Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: I1-215 mb04/05/21 Date Analyzed: 04/05/21 Data File: I1-215 mb.085Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

	Concentration
Analyte:	ug/L (ppb)

Arsenic	<1
Barium	<1
Cadmium	<1
Chromium	<1
Lead	<1
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP3-033021w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/08/21 103585-06 Date Analyzed: 04/08/21 Data File: 103585-06.044 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

 Cadmium
 4.46

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP3-033021w	Client:	GeoEngineers
------------	-----------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/05/21
 Lab ID:
 103585-06 x20

 Date Analyzed:
 04/06/21
 Data File:
 103585-06 x20.085

Concentra	
Analyte:	ug/L (ppb)

 Arsenic
 34.7

 Barium
 752

 Chromium
 210

 Lead
 120

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP13-033121w	Client:	GeoEngineers
------------	------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/05/21 103585 - 15Date Analyzed: 04/05/21 Data File: 103585-15.147 Matrix: Instrument: Water ICPMS2 Units: ug/L (ppb) SPOperator:

	Concentration	
Analyte:	ug/L (ppb)	

Barium	129
Cadmium	<1
Lead	2.99
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP13-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/05/21
 Lab ID:
 103585-15 x10

 Date Analyzed:
 04/06/21
 Data File:
 103585-15 x10.086

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 6.62 Chromium 24.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP14-033121w	Client:	GeoEngineers
------------	------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585-16 04/05/21 Date Analyzed: 04/05/21 Data File: 103585-16.148 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$

 Cadmium
 <1</td>

 Lead
 10.9

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP14-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/05/21 Lab ID: 103585-16 x10
Date Analyzed: 04/05/21 Data File: 103585-16 x10.121

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

 Arsenic
 30.8

 Barium
 595

 Chromium
 69.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP2-033121w	Client:	GeoEngineers
------------	-----------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/05/21 103585-27 Date Analyzed: 04/05/21 Data File: 103585-27.149 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

	Concentration
Analyte:	ug/L (ppb)

 Cadmium
 1.08

 Lead
 24.6

 Mercury
 <1</td>

 Selenium
 1.55

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP2-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Arsenic 29.5
Barium 539
Chromium 187

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: GeoEngineers

Date Received: NA Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/05/21 I1-214 mb Date Analyzed: 04/05/21 Data File: I1-214 mb.083 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$

< 0.2 Arsenic Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: GeoEngineers

Date Received: NA Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/08/21
 Lab ID:
 I1-220 mb2

 Date Analyzed:
 04/08/21
 Data File:
 I1-220 mb2.037

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP4-3.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-01

 Date Analyzed:
 04/02/21
 Data File:
 103585-01.061

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP4-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-02

 Date Analyzed:
 04/02/21
 Data File:
 103585-02.064

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

ConcentrationAnalyte: mg/kg (ppm) 2.59 Arsenic Barium 44.6 Cadmium <1 Chromium 21.9 Lead 2.09 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP4-7.0	Client:	GeoEngineers
------------	-------------	---------	--------------

Date Received: 03/31/21 Snohomish C-1 Hangar 5530-014-01

Project: Lab ID: Date Extracted: 103585-03 04/02/21 Date Analyzed: 04/02/21 Data File: 103585-03.068 Matrix: Instrument: Soil ICPMS2

mg/kg (ppm) Dry Weight Units: SPOperator:

Analyte:	Concentration mg/kg (ppm)
Arsenic	1.83
Barium	35.6
Cadmium	<1
Chromium	19.4
Lead	1.62
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP3-4.0	Client:	GeoEngineers
------------	-------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-04

 Date Analyzed:
 04/02/21
 Data File:
 103585-04.071

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

	Concentration
Analyte:	mg/kg (ppm)
Angonia	9.95

Arsenic 2.25Barium 26.0 Cadmium <1 Chromium 23.3 Lead 4.86Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP3-7.0	Client:	GeoEngineers
------------	-------------	---------	--------------

Date Received: 03/31/21 Snohomish C-1 Hangar 5530-014-01

Project: Lab ID: Date Extracted: 103585-05 04/02/21 Date Analyzed: 04/02/21 Data File: 103585-05.072 Matrix: Instrument: Soil ICPMS2 SP

mg/kg (ppm) Dry Weight Units: Operator:

Analyte:	Concentration mg/kg (ppm)	
Arsenic	1.83	
Barium	41.6	
Cadmium	<1	
Chromium	22.4	
Lead	2.39	
Mercury	<1	
Selenium	<1	
Silver	<1	

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP5-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-07

 Date Analyzed:
 04/02/21
 Data File:
 103585-07.073

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

ConcentrationAnalyte: mg/kg (ppm) 1.79 Arsenic Barium 40.5 Cadmium <1 Chromium 18.0 Lead 1.71Mercury <1 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP5-6.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-08

 Date Analyzed:
 04/02/21
 Data File:
 103585-08.074

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

 Concentration mg/kg (ppm)

 Arsenic
 2.08

 Barium
 48.0

 Cadmium
 <1</td>

 Chromium
 24.6

 Lead
 2.37

 Mercury
 <1</td>

Selenium

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP15-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-09

 Date Analyzed:
 04/02/21
 Data File:
 103585-09.075

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

ConcentrationAnalyte: mg/kg (ppm) 3.33 Arsenic Barium 61.4Cadmium <1 Chromium 25.8 Lead 2.44Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP15-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/02/21 103585-10 Date Analyzed: 04/02/21 Data File: 103585-10.076 Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight SPOperator:

Concentration

Analyte: mg/kg (ppm) 3.24 Arsenic Barium 56.5 Cadmium <1 Chromium 19.6 Lead 2.15Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP14-5.0	Client:	GeoEngineers
------------	--------------	---------	--------------

Date Received: 03/31/21 Snohomish C-1 Hangar 5530-014-01

Project: Lab ID: Date Extracted: 103585-11 04/02/21 Date Analyzed: 04/02/21 Data File: 103585-11.077 Matrix: Soil Instrument: ICPMS2

mg/kg (ppm) Dry Weight Units: SPOperator:

Analyte:	Concentration mg/kg (ppm)
Arsenic	3.02
Barium	68.0
Cadmium	<1
Chromium	22.5
Lead	2.43
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP14-10.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Units: mg/kg (ppm) Dry Weight Operator: SP

Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP13-2.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/02/21 103585-13 Date Analyzed: 04/05/21 Data File: 103585-13.093 Matrix: Soil Instrument: ICPMS2 SP

<1

mg/kg (ppm) Dry Weight Units: Operator:

ConcentrationAnalyte: mg/kg (ppm) 3.11 Arsenic Barium 82.9 Cadmium <1 Chromium 19.2 Lead 1.90 Mercury <1 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP13-5.0	Client:	GeoEngineers
------------	--------------	---------	--------------

Date Received: 03/31/21 Snohomish C-1 Hangar 5530-014-01

Project: Lab ID: Date Extracted: 103585-1404/02/21 Date Analyzed: 04/05/21 Data File: 103585-14.094 Matrix: Soil Instrument: ICPMS2

mg/kg (ppm) Dry Weight Units: SPOperator:

Analyte:	Concentration mg/kg (ppm)
Arsenic	3.35
Barium	40.7
Cadmium	<1
Chromium	14.7
Lead	1.59
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP8-4.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/02/21 103585-17 Date Analyzed: 04/05/21 Data File: 103585-17.095 Matrix: Soil Instrument: ICPMS2 SP

<1

Units: mg/kg (ppm) Dry Weight Operator:

ConcentrationAnalyte: mg/kg (ppm) 2.10 Arsenic Barium 41.0 Cadmium <1 20.4 Chromium Lead 2.05Mercury <1 Selenium <1 Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP8-9.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-18

 Date Analyzed:
 04/05/21
 Data File:
 103585-18.096

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

ConcentrationAnalyte: mg/kg (ppm) 2.93 Arsenic Barium 47.2 Cadmium <1 Chromium 18.8 Lead 2.22Mercury <1 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP9-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-19

 Date Analyzed:
 04/05/21
 Data File:
 103585-19.097

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 2.96
Barium 44.7
Cadmium <1
Chromium 18.3

 Lead
 2.09

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP9-7.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-20

 Date Analyzed:
 04/05/21
 Data File:
 103585-20.098

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

ConcentrationAnalyte: mg/kg (ppm) 2.36 Arsenic Barium 44.2Cadmium <1 20.8 Chromium Lead 2.36Mercury <1 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP10-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-21

 Date Analyzed:
 04/05/21
 Data File:
 103585-21.099

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 3.27
Barium 43.6
Cadmium <1
Chromium 19.7
Lead 2.04

Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP11-4.0	Client:	GeoEngineers
------------	--------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: 103585-22 Date Extracted: 04/02/21 Date Analyzed: 04/05/21 Data File: 103585-22.100 Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight SPOperator:

Concentration

Analyte:	mg/kg (ppm)	
Arsenic	2.98	
Barium	46.5	
Cadmium	<1	
Chromium	18.3	
Lead	2.22	
Mercury	<1	
Selenium	<1	
Silver	<1	

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP2-5.0	Client:	GeoEngineers
------------	-------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-23

 Date Analyzed:
 04/05/21
 Data File:
 103585-23.101

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	4.74
Barium	34.5
Cadmium	<1
Chromium	21.1
Lead	1.74
Mercury	<1
Selenium	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP2-11.0	Client:	GeoEngineers
------------	--------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-24

 Date Analyzed:
 04/05/21
 Data File:
 103585-24.102

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)Arsenic 2.31

 Barium
 36.0

 Cadmium
 <1</td>

 Chromium
 21.1

 Lead
 1.69

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP1-3.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 2.69
Barium 42.7
Cadmium <1
Chromium 19.1

 Lead
 2.00

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP1-11.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-26

 Date Analyzed:
 04/05/21
 Data File:
 103585-26.113

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

2.92 Arsenic Barium 50.5 Cadmium <1 Chromium 65.7 Lead 2.50Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP7-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

3.01 Arsenic Barium 40.5 Cadmium <1 Chromium 18.2 Lead 1.95Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP7-9.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 2.01
Barium 38 3

 Barium
 38.3

 Cadmium
 <1</td>

 Chromium
 18.2

 Lead
 1.75

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP12-3.0	Client:	GeoEngineers
------------	--------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585-30 04/02/21 Date Analyzed: 04/02/21 Data File: 103585-30.170 Matrix: Instrument: Soil ICPMS2 mg/kg (ppm) Dry Weight Units: SPOperator:

<1

Consideration

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.97
Barium	44.9
Cadmium	<1
Chromium	21.5
Lead	2.31
Selenium	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP12-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP12-8.0	Client:	GeoEngineers
------------	--------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-31

 Date Analyzed:
 04/02/21
 Data File:
 103585-31.171

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{ccc} & & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$ $\begin{array}{cccc} Arsenic & & 3.02 \\ Barium & & 39.3 \\ Cadmium & & <1 \\ Chromium & & 21.4 \\ Lead & & 2.11 \\ Selenium & & <1 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP12-8.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-31

 Date Analyzed:
 04/05/21
 Data File:
 103585-31.126

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

C-1 DP6-3.0 Client ID: Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/02/21 103585-32 Date Analyzed: 04/05/21 Data File: 103585-32.127 Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight SPOperator:

Concentration

Analyte: mg/kg (ppm) 2.49 Arsenic Barium 42.3 Cadmium <1 Chromium 16.0 Lead 1.83Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP6-6.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/02/21 103585-33 Date Analyzed: 04/05/21 Data File: 103585-33.128 Matrix: Soil Instrument: ICPMS2 SP

<1

Units: mg/kg (ppm) Dry Weight Operator:

ConcentrationAnalyte: mg/kg (ppm) 2.63 Arsenic Barium 48.0 Cadmium <1 20.0 Chromium Lead 2.13 Mercury <1 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: GeoEngineers

Date Received: NA Project: Snohomish C-1 Hangar 5530-014-01

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: GeoEngineers

Date Received: NA Project: Snohomish C-1 Hangar 5530-014-01

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP4-3.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-01 1/0.5 Date Analyzed: 04/01/21 Data File: 040127.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	84	118
Toluene-d8	96	86	117
4-Bromofluorobenzene	98	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP4-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-02 1/0.5 Date Analyzed: 04/01/21 Data File: 040128.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	84	118
Toluene-d8	92	86	117
4-Bromofluorobenzene	109	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP4-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-03 1/0.5 Date Analyzed: 04/01/21 Data File: 040129.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	84	118
Toluene-d8	102	86	117
4-Bromofluorobenzene	111	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	0.022
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	0.013	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	0.027
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP3-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-04 1/0.5 Date Analyzed: 04/01/21 Data File: 040130.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	84	118
Toluene-d8	96	86	117
4-Bromofluorobenzene	103	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP3-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-05 1/0.5 Date Analyzed: 04/01/21 Data File: 040131.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	84	118
Toluene-d8	103	86	117
4-Bromofluorobenzene	102	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP5-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-07 1/0.5 Date Analyzed: 04/01/21 Data File: 040132.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	84	118
Toluene-d8	94	86	117
4-Bromofluorobenzene	112	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP5-6.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-08 1/0.5 Date Analyzed: 04/01/21 Data File: 040133.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	84	118
Toluene-d8	103	86	117
4-Bromofluorobenzene	108	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP15-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-09 1/0.5 Date Analyzed: 04/01/21 Data File: 040114.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	84	118
Toluene-d8	102	86	117
4-Bromofluorobenzene	97	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	0.028
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	0.052
1,1,1-Trichloroethane	0.040	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	0.62	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	0.65
Bromodichloromethane	< 0.01	1,4-Dichlorobenzene	1.7
Dibromomethane	< 0.025	1,2-Dichlorobenzene	0.040
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	0.055
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	0.038
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP15-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-10 1/0.5 Date Analyzed: 04/02/21 Data File: 040224.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	84	118
Toluene-d8	100	86	117
4-Bromofluorobenzene	102	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	0.14	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP14-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-11 1/0.5 Date Analyzed: 04/01/21 Data File: 040116.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	84	118
Toluene-d8	104	86	117
4-Bromofluorobenzene	97	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP14-10.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-12 1/0.5 Date Analyzed: 04/01/21 Data File: 040117.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	84	118
Toluene-d8	103	86	117
4-Bromofluorobenzene	103	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP13-2.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-13 1/0.5 Date Analyzed: 04/01/21 Data File: 040118.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	89	84	118
Toluene-d8	93	86	117
4-Bromofluorobenzene	107	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP13-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-14 1/0.5 Date Analyzed: 04/01/21 Data File: 040119.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	84	118
Toluene-d8	103	86	117
4-Bromofluorobenzene	104	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP8-4.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-17 1/0.5 Date Analyzed: 04/01/21 Data File: 040120.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	84	118
Toluene-d8	91	86	117
4-Bromofluorobenzene	108	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP8-9.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-18 1/0.5 Date Analyzed: 04/01/21 Data File: 040121.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	84	118
Toluene-d8	101	86	117
4-Bromofluorobenzene	109	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP9-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-19 1/0.5 Date Analyzed: 04/01/21 Data File: 040122.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	112	84	118
Toluene-d8	100	86	117
4-Bromofluorobenzene	111	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP9-7.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: 103585-20 1/0.5 Date Extracted: Date Analyzed: 04/01/21 Data File: 040134.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	113	84	118
Toluene-d8	101	86	117
4-Bromofluorobenzene	108	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP10-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-21 1/0.5 Date Analyzed: 04/01/21 Data File: 040135.DMatrix: GCMS13Soil Instrument: Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	113	84	118
Toluene-d8	105	86	117
4-Bromofluorobenzene	101	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
_			
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	<0.05	Tetrachloroethene	< 0.005
Vinyl chloride	<0.005	Dibromochloromethane	< 0.025
Bromomethane	<0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	<0.5	_,_,_	3.020
2-Hexanone	<0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP11-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/01/21 103585-22 1/0.5 Date Analyzed: 04/02/21 Data File: 040136.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	116	84	118
Toluene-d8	101	86	117
4-Bromofluorobenzene	94	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP2-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/01/21 103585-23 1/0.5 Date Analyzed: 04/02/21 Data File: 040137.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	84	118
Toluene-d8	101	86	117
4-Bromofluorobenzene	105	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP2-11.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/01/21 103585-24 1/0.5 Date Analyzed: 04/02/21 Data File: 040138.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	84	118
Toluene-d8	92	86	117
4-Bromofluorobenzene	105	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP1-3.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-25 1/0.5 Date Analyzed: 04/02/21 Data File: 040139.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	90	84	118
Toluene-d8	95	86	117
4-Bromofluorobenzene	113	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP1-11.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-26 1/0.5 Date Analyzed: 04/02/21 Data File: 040140.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	84	118
Toluene-d8	101	86	117
4-Bromofluorobenzene	106	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP7-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-28 1/0.5 Date Analyzed: 04/02/21 Data File: 040141.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	90	84	118
Toluene-d8	92	86	117
4-Bromofluorobenzene	111	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP7-9.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-29 1/0.5 Date Analyzed: 04/02/21 Data File: 040142.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	88	84	118
Toluene-d8	93	86	117
4-Bromofluorobenzene	115	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP12-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: 103585-30 1/0.5 Date Extracted: Date Analyzed: 04/02/21 Data File: 040143.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	84	118
Toluene-d8	102	86	117
4-Bromofluorobenzene	105	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP12-8.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: 103585-31 1/0.5 Date Extracted: Date Analyzed: 04/02/21 Data File: 040144.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	87	84	118
Toluene-d8	93	86	117
4-Bromofluorobenzene	108	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP6-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: 103585-32 1/0.5 Date Extracted: Date Analyzed: 04/02/21 Data File: 040145.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	84	118
Toluene-d8	100	86	117
4-Bromofluorobenzene	104	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP6-6.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: 103585-33 1/0.5 Date Extracted: Date Analyzed: 04/02/21 Data File: 040146.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	90	84	118
Toluene-d8	99	86	117
4-Bromofluorobenzene	100	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 01-679 mb 1/0.5 Date Analyzed: 04/01/21 Data File: 040125.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: JCM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	84	118
Toluene-d8	94	86	117
4-Bromofluorobenzene	102	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 01-756 mb 1/0.5 Date Analyzed: 04/01/21 Data File: 040126.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	86	84	118
Toluene-d8	93	86	117
4-Bromofluorobenzene	109	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	C-1 DP3-033021w	Client:	${ m GeoEngineers}$
-------------------	-----------------	---------	---------------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585-06 04/02/21 Date Analyzed: 04/02/21 Data File: 040216.DMatrix: GCMS13Water Instrument: Units: ug/L (ppb) JCMOperator:

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	85	117
Toluene-d8	94	88	112
4-Bromofluorobenzene	113 vo	90	111

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<0.01 j
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<0.072 j
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.6	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<0.13 j
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	< 0.7	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP13-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/02/21 103585-15 Date Analyzed: 04/02/21 Data File: 040217.DMatrix: Water Instrument: GCMS13 Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	85	117
Toluene-d8	97	88	112
4-Bromofluorobenzene	114 vo	90	111

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<0.01 j
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<0.072 j
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.6	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<0.13 j
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	< 0.7	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP14-033121w	Client:	GeoEngineers
------------------------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585 - 1604/02/21 Date Analyzed: 04/02/21 Data File: 040218.DMatrix: Instrument: GCMS13Water Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	85	117
Toluene-d8	93	88	112
4-Bromofluorobenzene	112 vo	90	111

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	<0.2	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<0.01 j
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<0.072 j
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<0.6	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<0.13 j
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	< 0.7	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-	-1 DP2-033121w	Client:	GeoEngineers
----------------------	----------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585-27 04/02/21 Date Analyzed: 04/02/21 Data File: 040219.DMatrix: Instrument: GCMS13Water Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	110	85	117
Toluene-d8	94	88	112
4-Bromofluorobenzene	110	90	111

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<0.01 j
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	12 lc	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<0.072 j
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.6	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<0.13 j
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	< 0.7	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Trip Blank 1	Client:	GeoEngineers
--------------------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585-34 04/02/21 Date Analyzed: 04/02/21 Data File: 040215.DMatrix: Instrument: GCMS13Water Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	109	85	117
Toluene-d8	94	88	112
4-Bromofluorobenzene	105	90	111

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<0.01 j
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<0.072 j
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.6	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<0.13 j
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	< 0.7	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: Snohomish C-1 Hangar 5530-014-01

04/02/21 Lab ID: 01-757 mbDate Extracted: Date Analyzed: 04/02/21 Data File: 040211.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) JCMOperator:

		Lower	Upper	
Surrogates:	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-d4	101	86	113	
Toluene-d8	97	88	114	
4-Bromofluorobenzene	99	88	112	

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10 ca	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<0.01 j
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<0.072 j
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.6	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<0.13 j
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	< 0.7	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP4-3.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-01 1/6 Date Analyzed: 04/02/21 Data File: 040206.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 60

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP4-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-02 1/6 Date Analyzed: 04/02/21 Data File: 040218.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 70

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP4-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-03 1/6 Date Analyzed: 04/02/21 Data File: 040217.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 67 23

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP3-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-04 1/6 Date Analyzed: 04/02/21 Data File: 040207.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 59

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP3-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-05 1/6 Date Analyzed: 04/02/21 Data File: 040208.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 59

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP5-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-07 1/6 Date Analyzed: 04/02/21 Data File: 040209.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 55

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP5-6.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-08 1/6 Date Analyzed: 04/02/21 Data File: 040210.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 48

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP15-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-09 1/6 Date Analyzed: 04/02/21 Data File: 040216.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 62 23

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP15-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-10 1/6 Date Analyzed: 04/02/21 Data File: 040211.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 55

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP14-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-11 1/6 Date Analyzed: 04/02/21 Data File: 040212.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 47

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

Aroclor 1268

106

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP14-10.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-12 1/6 Date Analyzed: 04/02/21 Data File: 040222.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 60

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02

Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP13-2.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-13 1/6 Date Analyzed: 04/02/21 Data File: 040213.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 120 100 23 Concentration Compounds: mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP13-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-14 1/6 Date Analyzed: 04/02/21 Data File: 040205.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower % Recovery:

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ Limit: 23 73

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP8-4.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-17 1/6 Date Analyzed: 04/02/21 Data File: 040206.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 75

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP8-9.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-18 1/6 Date Analyzed: 04/02/21 Data File: 040215.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 53

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP9-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-19 1/6 Date Analyzed: 04/02/21 Data File: 040216.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 59

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP9-7.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-20 1/6 Date Analyzed: 04/02/21 Data File: 040217.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 52 23

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP10-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-21 1/6 Date Analyzed: 04/02/21 Data File: 040215.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 62 23

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP11-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-22 1/6 Date Analyzed: 04/02/21 Data File: 040221.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: Lower % Recovery:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ Limit: 120 52 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP2-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-23 1/6 Date Analyzed: 04/02/21 Data File: 040207.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 51

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP2-11.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-24 1/6 Date Analyzed: 04/02/21 Data File: 040208.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 60

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02

Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP1-3.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-25 1/6 Date Analyzed: 04/02/21 Data File: 040209.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 74

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP1-11.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-26 1/6 Date Analyzed: 04/02/21 Data File: 040218.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 120 23 58

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP7-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-28 1/6 Date Analyzed: 04/02/21 Data File: 040219.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 57

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP7-9.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-29 1/6 Date Analyzed: 04/02/21 Data File: 040220.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 120 23 64

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP12-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 103585-30 1/6 Date Extracted: Lab ID: Date Analyzed: 04/02/21 Data File: 040210.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower % Recovery:

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ Limit: 68 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP12-8.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-31 1/6 Date Analyzed: 04/02/21 Data File: 040211.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 23 71 Concentration

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP6-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-32 1/6 Date Analyzed: 04/02/21 Data File: 040212.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 76

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP6-6.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-33 1/6 Date Analyzed: 04/02/21 Data File: 040213.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 71

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 01-751 mb2 1/6 Date Analyzed: 04/02/21 Data File: 040204.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 81

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02

Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 01-773 mb 1/6 Date Analyzed: 04/02/21 Data File: 040204.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 79

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	C-1 DP3-033021w	Client:	GeoEngineers
-------------------	-----------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/06/21 103585-06 Date Analyzed: 04/06/21 Data File: 040613.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: IJL

Surrogates: % Recovery: Lower Limit: Limit: TCMX 25 24 127

Concentration
ug/L (ppb)

Aroclor 1221 <0.1

Aroclor 1232 <0.1

Aroclor 1016 <0.1
Aroclor 1242 <0.1
Aroclor 1248 <0.1
Aroclor 1254 <0.1
Aroclor 1260 <0.1
Aroclor 1262 <0.1
Aroclor 1268 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP13-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/06/21 103585-15 Date Analyzed: 04/06/21 Data File: 040614.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: IJL

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 43 24

Concentration Compounds: ug/L (ppb) Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1 Aroclor 1262 < 0.1 Aroclor 1268 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP14-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/06/21 103585-16 Date Analyzed: 04/06/21 Data File: 040615.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: IJL

Surrogates: % Recovery: Limit: Limit: TCMX 35 24 127

Concentration

Compounds: ug/L (ppb) Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1 Aroclor 1262 < 0.1 Aroclor 1268 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP2-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/06/21 103585-27 Date Analyzed: 04/06/21 Data File: 040616.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: IJL

Surrogates: % Recovery: Lower Limit: Limit: TCMX 8 ip 24 127

Concentration
Compounds: ug/L (ppb)

Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1 Aroclor 1262 < 0.1 Aroclor 1268 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/06/21 Lab ID: 01-791 mb Date Analyzed: 04/06/21 Data File: 040606.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: IJL

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 24 35

Concentration Compounds: ug/L (ppb) Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1 Aroclor 1262 < 0.1 Aroclor 1268 < 0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 103585-12 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	e RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Gasoline	mg/kg (ppm)	20	<5	100	105	50-150	0

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	105	71-131	_

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 103585-33 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			1 ercent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	110	71-131	-

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 104046-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	120	130	8

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	101	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 103585-12 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	94	86	64-133	9

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	88	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 103585-24 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	92	96	64-133	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	96	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	108	108	63-142	0

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 104029-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<1	112	109	75-125	3
Barium	ug/L (ppb)	50	9.89	98	95	75 - 125	3
Cadmium	ug/L (ppb)	5	<1	96	96	75 - 125	0
Chromium	ug/L (ppb)	20	1.70	97	97	75 - 125	0
Lead	ug/L (ppb)	10	<1	91	90	75 - 125	1
Mercury	ug/L (ppb)	5	<1	91	93	75 - 125	2
Selenium	ug/L (ppb)	5	<1	115	112	75 - 125	3
Silver	ug/L (ppb)	5	<1	91	89	75 - 125	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	102	80-120
Barium	ug/L (ppb)	50	97	80-120
Cadmium	ug/L (ppb)	5	99	80-120
Chromium	ug/L (ppb)	20	97	80-120
Lead	ug/L (ppb)	10	98	80-120
Mercury	ug/L (ppb)	5	97	80-120
Selenium	ug/L (ppb)	5	102	80-120
Silver	ug/L (ppb)	5	92	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 104043-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	2.36	102	101	75-125	1
Barium	ug/L (ppb)	50	39.2	105	105	75 - 125	0
Cadmium	ug/L (ppb)	5	<1	97	97	75 - 125	0
Chromium	ug/L (ppb)	20	1.12	101	101	75-125	0
Lead	ug/L (ppb)	10	<1	85	85	75-125	0
Mercury	ug/L (ppb)	5	<1	89	90	75 - 125	1
Selenium	ug/L (ppb)	5	2.92	112	107	75 - 125	5
Silver	ug/L (ppb)	5	<1	85	84	75 - 125	1

			$\operatorname{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	103	80-120
Barium	ug/L (ppb)	50	98	80-120
Cadmium	ug/L (ppb)	5	100	80-120
Chromium	ug/L (ppb)	20	99	80-120
Lead	ug/L (ppb)	10	99	80-120
Mercury	ug/L (ppb)	5	100	80-120
Selenium	ug/L (ppb)	5	105	80-120
Silver	ug/L (ppb)	5	94	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

			Percent	Percent		
	Reporting	$_{ m Spike}$	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	93	93	80-120	0
Barium	ug/L (ppb)	50	101	100	80-120	1
Cadmium	ug/L (ppb)	5	102	101	80-120	1
Chromium	ug/L (ppb)	20	105	104	80-120	1
Lead	ug/L (ppb)	10	94	94	80-120	0
Mercury	ug/L (ppb)	5	95	96	80-120	1
Selenium	ug/L (ppb)	5	102	97	80-120	5
Silver	ug/L (ppb)	5	92	91	80-120	1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 103552-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	88	83	75-125	6
Barium	mg/kg (ppm)	50	33.7	129 b	114 b	75 - 125	12 b
Cadmium	mg/kg (ppm)	10	<5	96	95	75 - 125	1
Chromium	mg/kg (ppm)	50	14.4	101	101	75 - 125	0
Lead	mg/kg (ppm)	50	13.7	113	97	75 - 125	15
Mercury	mg/kg (ppm	5	<5	95	84	75 - 125	12
Selenium	mg/kg (ppm)	5	<5	84	84	75 - 125	0
Silver	mg/kg (ppm)	10	<5	87	87	75 - 125	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	92	80-120
Barium	mg/kg (ppm)	50	104	80-120
Cadmium	mg/kg (ppm)	10	103	80-120
Chromium	mg/kg (ppm)	50	113	80-120
Lead	mg/kg (ppm)	50	98	80-120
Mercury	mg/kg (ppm)	5	99	80-120
Selenium	mg/kg (ppm)	5	92	80-120
Silver	mg/kg (ppm)	10	96	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 103585-12 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	1.54	97	101	75-125	4
Barium	mg/kg (ppm)	50	29.2	$127 \mathrm{\ b}$	$128 \mathrm{\ b}$	75 - 125	1 b
Cadmium	mg/kg (ppm)	10	<1	106	102	75 - 125	4
Chromium	mg/kg (ppm)	50	14.7	113	111	75 - 125	2
Lead	mg/kg (ppm)	50	1.18	94	91	75 - 125	3
Mercury	mg/kg (ppm	5	<1	96	93	75 - 125	3
Selenium	mg/kg (ppm)	5	<1	97	91	75 - 125	6
Silver	mg/kg (ppm)	10	<1	99	93	75 - 125	6

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	91	80-120
Barium	mg/kg (ppm)	50	103	80-120
Cadmium	mg/kg (ppm)	10	101	80-120
Chromium	mg/kg (ppm)	50	111	80-120
Lead	mg/kg (ppm)	50	98	80-120
Mercury	mg/kg (ppm)	5	91	80-120
Selenium	mg/kg (ppm)	5	96	80-120
Silver	mg/kg (ppm)	10	96	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 103339-29 (Matrix Spike)

Education of the control of the cont	o (Mathin Spine)		Sample	Percent	Percent		
	Reporting	Spike	Result		Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	<0.5	5 vo	4 vo	10-142	22 vo
Chloromethane	mg/kg (ppm)	1	< 0.5	21	21	10-126	0
Vinyl chloride	mg/kg (ppm)	1	< 0.005	19	18	10-138	5
Bromomethane	mg/kg (ppm)	1	< 0.5	52	38	10-163	31 vo
Chloroethane	mg/kg (ppm)	1	< 0.5	30	28	10-176	7
Trichlorofluoromethane	mg/kg (ppm)	1	< 0.5	17	15	10-176	12
Acetone	mg/kg (ppm)	5	<5	57	53	10-163	7
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	36	33	10-160	9
Hexane	mg/kg (ppm)	1	< 0.25	14	12	10-137	15
Methylene chloride	mg/kg (ppm)	1	< 0.5	53	50	10-156	6
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	54	50	21-145	8
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	41	39	14-137	5
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm)	1 1	<0.05 <0.05	45 47	42 42	19-140 10-158	7 11
cis-1.2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	48	42 45	25-135	6
Chloroform	mg/kg (ppm)	1	< 0.05	50	47	21-145	6
2-Butanone (MEK)	mg/kg (ppm)	5	< 0.5	56	54	19-147	4
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	52	51	12-160	2
1.1.1-Trichloroethane	mg/kg (ppm)	1	< 0.05	44	41	10-156	7
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	44	40	17-140	10
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	43	40	9-164	7
Benzene	mg/kg (ppm)	1	< 0.03	49	46	29-129	6
Trichloroethene	mg/kg (ppm)	1	< 0.02	48	46	21-139	4
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	50	47	30-135	6
Bromodichloromethane	mg/kg (ppm)	1	< 0.05	47	46	23-155	2
Dibromomethane	mg/kg (ppm)	1	< 0.05	53	51	23-145	4
4-Methyl-2-pentanone	mg/kg (ppm)	5	< 0.5	58	56	24-155	4
cis-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	52	49	28-144	6
Toluene	mg/kg (ppm)	1	< 0.05	55	53	35-130	4
trans-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	52	51	26-149	2
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	58	55	10-205	5
2-Hexanone	mg/kg (ppm)	5	< 0.5	61	58	15-166	5
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	57	56	31-137	2
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	53	50	20-133	6
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	51	49	28-150	4
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	57 50	56 56	28-142 32-129	2
Chlorobenzene	mg/kg (ppm)	1 1	< 0.05	59 56	52		5 7
Ethylbenzene 1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	<0.05 <0.05	55	52 50	32-137 31-143	10
m,p-Xylene	mg/kg (ppm) mg/kg (ppm)	2	< 0.1	58	53	34-136	9
o-Xylene	mg/kg (ppm)	1	< 0.05	57	54	33-134	5
Styrene	mg/kg (ppm)	1	< 0.05	56	53	35-137	6
Isopropylbenzene	mg/kg (ppm)	1	< 0.05	54	51	31-142	6
Bromoform	mg/kg (ppm)	1	< 0.05	50	47	21-156	6
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	55	52	23-146	6
Bromobenzene	mg/kg (ppm)	1	< 0.05	60	57	34-130	5
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	57	53	18-149	7
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	61	55	28-140	10
1,2,3-Trichloropropane	mg/kg (ppm)	1	< 0.05	60	57	25-144	5
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	57	54	31-134	5
4-Chlorotoluene	mg/kg (ppm)	1	< 0.05	57	54	31-136	5
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	57	52	30-137	9
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	56	52	10-182	7
sec-Butylbenzene	mg/kg (ppm)	1	0.051	58	52	23-145	11
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	57	51 50	21-149	11
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	60	56	30-131	7
1,4-Dichlorobenzene	mg/kg (ppm)	1	<0.05	60	56 56	29-129	7
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1 1	<0.05 <0.5	58 49	56 50	31-132 11-161	$\frac{4}{2}$
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	<0.5 <0.25	49 54	50 48	11-161 22-142	2 12
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	1	<0.25	53	48 47	10-142	12 12
Naphthalene	mg/kg (ppm)	1	< 0.05	56	53	14-157	6
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	55	50	20-144	10
-,-,- 11101110100011110110	8. v. 8 (bb)	_	.5.26	30	50	-0 111	10

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code. Laboratory Cor	itroi Sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	42	10-146
Chloromethane	mg/kg (ppm)	1	56	27-133
Vinyl chloride	mg/kg (ppm)	1	57	22-139
Bromomethane	mg/kg (ppm)	1	75	38-114
Chloroethane	mg/kg (ppm)	1	59	9-163
Trichlorofluoromethane	mg/kg (ppm)	1	68	10-196
Acetone	mg/kg (ppm)	5	75	52-141
1,1-Dichloroethene	mg/kg (ppm)	1	88	47-128
Hexane	mg/kg (ppm)	1	74	43-142
Methylene chloride	mg/kg (ppm)	1	88 91	10-184
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	mg/kg (ppm)	1	91 88	60-123 67-129
1,1-Dichloroethane	mg/kg (ppm) mg/kg (ppm)	1	85	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	85	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	90	72-127
Chloroform	mg/kg (ppm)	1	89	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	84	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	92	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	86	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	88	69-128
Carbon tetrachloride	mg/kg (ppm)	1	90	60-139
Benzene	mg/kg (ppm)	1	91	71-118
Trichloroethene	mg/kg (ppm)	1	91	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	89	72-127
Bromodichloromethane Dibromomethane	mg/kg (ppm) mg/kg (ppm)	1 1	85 91	57-126 62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	95 95	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	92	67-122
Toluene	mg/kg (ppm)	1	99	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	95	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	100	64-115
2-Hexanone	mg/kg (ppm)	5	97	33-152
1,3-Dichloropropane	mg/kg (ppm)	1	98	72-130
Tetrachloroethene	mg/kg (ppm)	1	100	72-114
Dibromochloromethane	mg/kg (ppm)	1	93	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	100	74-132
Chlorobenzene Ethylbenzene	mg/kg (ppm)	1 1	103 97	76-111
1,1,1,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	1	97 96	64-123 64-121
m,p-Xylene	mg/kg (ppm)	2	100	78-122
o-Xylene	mg/kg (ppm)	1	99	77-124
Styrene	mg/kg (ppm)	1	99	74-126
Isopropylbenzene	mg/kg (ppm)	1	95	76-127
Bromoform	mg/kg (ppm)	1	91	56-132
n-Propylbenzene	mg/kg (ppm)	1	96	74-124
Bromobenzene	mg/kg (ppm)	1	102	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	96	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	94	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	95	61-137
2-Chlorotoluene 4-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	1 1	96 97	74-121 75-122
tert-Butylbenzene	mg/kg (ppm)	1	96	73-122
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	95	76-125
sec-Butylbenzene	mg/kg (ppm)	1	95	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	94	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	99	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	100	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	99	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	84	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	93	64-135
Hexachlorobutadiene	mg/kg (ppm)	1	92	50-153
Naphthalene	mg/kg (ppm)	1	93	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	95	63-138

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 103585-12 1/0.5 (Matrix Spike)

·	`	,	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1.0	< 0.05	24	14	10-47	53 vo
Chloromethane	mg/kg (ppm)	1.0	< 0.05	48	38	10-88	23 vo
Vinyl chloride	mg/kg (ppm)	1.0	< 0.005	58	46	10-79	23 vo
Bromomethane	mg/kg (ppm)	1.0	< 0.5	78 73	71	10-85	9
Chloroethane Trichlorofluoromethane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	<0.05 <0.05	67	59 51	11-106 10-85	21 vo 27 vo
Acetone	mg/kg (ppm)	5.0	<5	65	59	10-33	10
1.1-Dichloroethene	mg/kg (ppm)	1.0	< 0.005	82	68	11-105	19
Hexane	mg/kg (ppm)	1.0	< 0.025	68	62	10-106	9
Methylene chloride	mg/kg (ppm)	1.0	< 0.5	77	53	10-139	37 vo
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1.0	< 0.005	86	72	18-131	18
trans-1,2-Dichloroethene	mg/kg (ppm)	1.0	< 0.005	85	70	16-122	19
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	<0.005 <0.005	88 75	74 63	19-125 10-184	17 17
cis-1,2-Dichloroethene	mg/kg (ppm)	1.0	< 0.005	87	71	18-129	20
Chloroform	mg/kg (ppm)	1.0	< 0.01	85	71	18-126	18
2-Butanone (MEK)	mg/kg (ppm)	5.0	< 0.5	70	60	10-190	15
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1.0	< 0.005	90	74	19-138	20
1,1,1-Trichloroethane	mg/kg (ppm)	1.0	< 0.005	84	71	16-126	17
1,1-Dichloropropene	mg/kg (ppm)	1.0	< 0.005	85	70	19-129	19
Carbon tetrachloride	mg/kg (ppm)	1.0	< 0.005	84	72	13-125	15
Benzene	mg/kg (ppm)	1.0	<0.005	85	71	15-129	18
Trichloroethene 1,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	<0.005 <0.005	87 89	73 75	14-127 17-137	17 17
Bromodichloromethane	mg/kg (ppm)	1.0	<0.005	90	74	24-130	20
Dibromomethane	mg/kg (ppm)	1.0	< 0.025	81	66	20-138	20
4-Methyl-2-pentanone	mg/kg (ppm)	5.0	< 0.5	85	74	21-139	14
cis-1,3-Dichloropropene	mg/kg (ppm)	1.0	< 0.005	88	75	17-135	16
Toluene	mg/kg (ppm)	1.0	< 0.005	84	77	15-129	9
trans-1,3-Dichloropropene	mg/kg (ppm)	1.0	< 0.005	88	80	18-130	10
1,1,2-Trichloroethane	mg/kg (ppm)	1.0	< 0.005	90	84	29-128	7
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	5.0 1.0	<0.5 <0.025	87 87	80 76	28-142 20-135	8 13
Tetrachloroethene	mg/kg (ppm)	1.0	< 0.025	85	78 78	20-133	9
Dibromochloromethane	mg/kg (ppm)	1.0	< 0.025	86	80	11-138	7
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1.0	< 0.005	87	80	21-130	8
Chlorobenzene	mg/kg (ppm)	1.0	< 0.005	88	80	19-129	10
Ethylbenzene	mg/kg (ppm)	1.0	< 0.005	87	80	23-133	8
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	$\frac{1.0}{2.0}$	< 0.005	85 86	79 79	16-127	7 8
m,p-Xylene o-Xylene	mg/kg (ppm) mg/kg (ppm)	1.0	<0.01 <0.005	86	80	19-134 20-132	8 7
Styrene	mg/kg (ppm)	1.0	< 0.005	85	79	23-127	7
Isopropylbenzene	mg/kg (ppm)	1.0	< 0.005	86	81	21-134	6
Bromoform	mg/kg (ppm)	1.0	< 0.005	83	77	10-142	7
n-Propylbenzene	mg/kg (ppm)	1.0	< 0.005	87	80	10-141	8
Bromobenzene	mg/kg (ppm)	1.0	< 0.005	81	78	10-135	4
1,3,5-Trimethylbenzene	mg/kg (ppm)	1.0	< 0.005	84	80	20-136	5
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	<0.025 <0.025	85 88	77 81	10-234 10-144	10 8
2-Chlorotoluene	mg/kg (ppm)	1.0	< 0.025	83	79	10-139	5
4-Chlorotoluene	mg/kg (ppm)	1.0	< 0.005	87	80	10-139	8
tert-Butylbenzene	mg/kg (ppm)	1.0	< 0.005	86	78	10-144	10
1,2,4-Trimethylbenzene	mg/kg (ppm)	1.0	< 0.005	81	77	24-133	5
sec-Butylbenzene	mg/kg (ppm)	1.0	< 0.005	88	82	23-134	7_
p-Isopropyltoluene	mg/kg (ppm)	1.0	< 0.005	86	80	25-131	7
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg (ppm)	1.0 1.0	<0.005 <0.005	83 86	78 79	10-143 10-146	6 8
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1.0	<0.005 <0.005	86 85	79 78	10-146	8 9
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1.0	< 0.5	85	80	10-163	6
1,2,4-Trichlorobenzene	mg/kg (ppm)	1.0	< 0.025	87	84	10-147	4
Hexachlorobutadiene	mg/kg (ppm)	1.0	< 0.025	81	75	10-162	8
Naphthalene	mg/kg (ppm)	1.0	< 0.005	87	81	30-138	7
1,2,3-Trichlorobenzene	mg/kg (ppm)	1.0	< 0.025	83	75	10-173	10

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Education, code. Education, con	oror zampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1.0	57	10-93
Chloromethane	mg/kg (ppm)	1.0	78	34-101
Vinyl chloride	mg/kg (ppm)	1.0	97	47-106
Bromomethane	mg/kg (ppm)	1.0	89 100	38-123
Chloroethane Trichlorofluoromethane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	93	44-123 56-108
Acetone	mg/kg (ppm)	5.0	94	70-130
1,1-Dichloroethene	mg/kg (ppm)	1.0	116	61-118
Hexane	mg/kg (ppm)	1.0	125	54-142
Methylene chloride	mg/kg (ppm)	1.0	109	10-213
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1.0	112	70-130
trans-1,2-Dichloroethene	mg/kg (ppm)	1.0	113	70-130
1,1-Dichloroethane	mg/kg (ppm)	1.0	116	70-130
2,2-Dichloropropane cis-1.2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	123 112	70-130 70-130
Chloroform	mg/kg (ppm)	1.0	111	70-130
2-Butanone (MEK)	mg/kg (ppm)	5.0	103	70-130
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1.0	116	66-140
1,1,1-Trichloroethane	mg/kg (ppm)	1.0	113	70-130
1,1-Dichloropropene	mg/kg (ppm)	1.0	111	70-130
Carbon tetrachloride	mg/kg (ppm)	1.0	115	70-130
Benzene	mg/kg (ppm)	1.0	109	70-130
Trichloroethene	mg/kg (ppm)	1.0	110	53-133
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	114 118	67-137 70-130
Dibromomethane	mg/kg (ppm)	1.0	106	70-130
4-Methyl-2-pentanone	mg/kg (ppm)	5.0	111	70-130
cis-1,3-Dichloropropene	mg/kg (ppm)	1.0	118	70-130
Toluene	mg/kg (ppm)	1.0	107	63-127
trans-1,3-Dichloropropene	mg/kg (ppm)	1.0	117	70-130
1,1,2-Trichloroethane	mg/kg (ppm)	1.0	115	70-130
2-Hexanone	mg/kg (ppm)	5.0	112	65-148
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	109 108	67-135 66-124
Dibromochloromethane	mg/kg (ppm)	1.0	110	62-139
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1.0	110	70-130
Chlorobenzene	mg/kg (ppm)	1.0	111	70-130
Ethylbenzene	mg/kg (ppm)	1.0	112	70-130
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1.0	109	68-129
m,p-Xylene	mg/kg (ppm)	2.0	111	67-129
o-Xylene	mg/kg (ppm)	1.0	111	70-130
Styrene Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	109 113	70-130 70-130
Bromoform	mg/kg (ppm)	1.0	107	63-141
n-Propylbenzene	mg/kg (ppm)	1.0	108	68-125
Bromobenzene	mg/kg (ppm)	1.0	102	70-130
1,3,5-Trimethylbenzene	mg/kg (ppm)	1.0	108	66-128
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1.0	106	35-184
1,2,3-Trichloropropane	mg/kg (ppm)	1.0	104	70-130
2-Chlorotoluene	mg/kg (ppm)	1.0	105	70-130
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	108 107	70-130 70-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1.0	109	64-133
sec-Butylbenzene	mg/kg (ppm)	1.0	113	70-130
p-Isopropyltoluene	mg/kg (ppm)	1.0	113	70-130
1,3-Dichlorobenzene	mg/kg (ppm)	1.0	104	70-130
1,4-Dichlorobenzene	mg/kg (ppm)	1.0	105	70-130
1,2-Dichlorobenzene	mg/kg (ppm)	1.0	105	70-130
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1.0	112	70-130
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm)	1.0 1.0	119 106	70-130 67-140
Naphthalene	mg/kg (ppm) mg/kg (ppm)	1.0	116	67-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	1.0	113	57-161
	\r/	• •		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 103575-01 (Matrix Spike)

Laboratory Code: 103979-01 (Ma	atrix Spike)			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
A14 -				U	-
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane Chloromethane	ug/L (ppb) ug/L (ppb)	10 10	<1 <10	95 70	10-172 25-166
Vinvl chloride	ug/L (ppb)	10	<0.2	70 79	36-166
Bromomethane	ug/L (ppb)	10	<5	109	47-169
Chloroethane	ug/L (ppb)	10	<1	79	46-160
Trichlorofluoromethane	ug/L (ppb)	10	<1	86	44-165
Acetone	ug/L (ppb)	50	< 50	85	10-182
1,1-Dichloroethene	ug/L (ppb)	10	<1	94	58-142
Hexane	ug/L (ppb)	10	<5	89	38-152
Methylene chloride	ug/L (ppb)	10	<5	105	50-145
Methyl t-butyl ether (MTBE) trans-1.2-Dichloroethene	ug/L (ppb)	10 10	<1 <1	94 94	61-136 61-136
1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	10	<1	94 89	63-135
2,2-Dichloropropane	ug/L (ppb)	10	<1	91	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	92	63-134
Chloroform	ug/L (ppb)	10	<1	93	61-135
2-Butanone (MEK)	ug/L (ppb)	50	<20	94	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<1	93	48-149
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	91	60-146
1,1-Dichloropropene	ug/L (ppb)	10	<1	93	69-133
Carbon tetrachloride	ug/L (ppb)	10	<1	95	56-152
Benzene Trichloroethene	ug/L (ppb)	10 10	<0.35 <1	92 92	57-135
1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10	<1 <1	92 90	66-135 59-136
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	10	<1	85	61-150
Dibromomethane	ug/L (ppb)	10	<1	96	66-141
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	100	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	10	<1	91	52-147
Toluene	ug/L (ppb)	10	<1	97	50-137
trans-1,3-Dichloropropene	ug/L (ppb)	10	<1	90	53-142
1,1,2-Trichloroethane	ug/L (ppb)	10	<1	97	68-131
2-Hexanone	ug/L (ppb)	50	<10	101	10-185
1,3-Dichloropropane Tetrachloroethene	ug/L (ppb)	10 10	<1 <1	98 104	60-135
Dibromochloromethane	ug/L (ppb) ug/L (ppb)	10	<1	89	10-226 52-145
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	100	62-135
Chlorobenzene	ug/L (ppb)	10	<1	102	63-130
Ethylbenzene	ug/L (ppb)	10	<1	96	60-133
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	95	56-143
m,p-Xylene	ug/L (ppb)	20	<2	99	69-135
o-Xylene	ug/L (ppb)	10	<1	100	60-140
Styrene	ug/L (ppb)	10	<1	97	60-133
Isopropylbenzene Bromoform	ug/L (ppb) ug/L (ppb)	10 10	<1 <5	95 84	65-142 54-148
n-Propylbenzene	ug/L (ppb) ug/L (ppb)	10	<1	101	58-144
Bromobenzene	ug/L (ppb)	10	<1	107	61-130
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	102	59-134
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	<1	102	51-154
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	106	53-150
2-Chlorotoluene	ug/L (ppb)	10	<1	100	66-127
4-Chlorotoluene	ug/L (ppb)	10	<1	102	65-130
tert-Butylbenzene	ug/L (ppb)	10	<1	101	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	98	59-146
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	10 10	<1 <1	101 101	64-140 65-141
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	104	60-131
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	105	60-129
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	105	60-130
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	92	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	101	52-138
Hexachlorobutadiene	ug/L (ppb)	10	<1	102	60-143
Naphthalene	ug/L (ppb)	10	<1	101	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	104	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Zasoratory code. Zasoratory co	one of earth	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	81	85	25-158	5
Chloromethane	ug/L (ppb)	10	68	72	45-156	6
Vinyl chloride	ug/L (ppb)	10	74	77	50-154	4
Bromomethane	ug/L (ppb)	10	99	115	55-143	15
Chloroethane	ug/L (ppb)	10	74	80	58-146	8
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	10 50	78 79	86 87	50-150 $22-155$	10 10
1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	10	90	93	67-136	3
Hexane	ug/L (ppb)	10	78	80	57-137	3
Methylene chloride	ug/L (ppb)	10	85	91	19-178	7
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	88	93	64-147	6
trans-1,2-Dichloroethene	ug/L (ppb)	10	87	91	68-128	4
1,1-Dichloroethane	ug/L (ppb)	10	85	88	74-135	3
2,2-Dichloropropane	ug/L (ppb)	10	86	91	55-143	6
cis-1,2-Dichloroethene	ug/L (ppb)	10	87	91	74-136	4
Chloroform 2-Butanone (MEK)	ug/L (ppb)	10 50	88 94	92 97	74-134 37-150	4 3
1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	50 10	90	93	66-129	ა ვ
1.1.1-Trichloroethane	ug/L (ppb) ug/L (ppb)	10	87	90	74-142	о 3
1,1-Dichloropropene	ug/L (ppb)	10	87	91	77-129	4
Carbon tetrachloride	ug/L (ppb)	10	90	96	75-158	6
Benzene	ug/L (ppb)	10	89	92	69-134	3
Trichloroethene	ug/L (ppb)	10	88	92	67-133	4
1,2-Dichloropropane	ug/L (ppb)	10	87	91	71-134	4
Bromodichloromethane	ug/L (ppb)	10	82	85	66-126	4
Dibromomethane	ug/L (ppb)	10	92	94	68-132	2
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	50 10	98 89	99 91	65-138 74-140	1 2
Toluene	ug/L (ppb) ug/L (ppb)	10	93	95	72-122	$\frac{2}{2}$
trans-1,3-Dichloropropene	ug/L (ppb)	10	88	90	80-136	2
1,1,2-Trichloroethane	ug/L (ppb)	10	94	96	75-124	2
2-Hexanone	ug/L (ppb)	50	100	102	60-136	2
1,3-Dichloropropane	ug/L (ppb)	10	94	96	76-126	2
Tetrachloroethene	ug/L (ppb)	10	97	99	76-121	2
Dibromochloromethane	ug/L (ppb)	10	89	93	84-133	4
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	95	99	82-115	$\frac{4}{2}$
Chlorobenzene Ethylbenzene	ug/L (ppb) ug/L (ppb)	10 10	96 93	98 95	83-114 77-124	$\frac{2}{2}$
1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	92	95 95	84-127	3
m,p-Xylene	ug/L (ppb)	20	95	97	81-112	2
o-Xylene	ug/L (ppb)	10	94	96	81-121	2
Styrene	ug/L (ppb)	10	92	94	84-119	2
Isopropylbenzene	ug/L (ppb)	10	91	93	80-117	2
Bromoform	ug/L (ppb)	10	89	90	69-121	1
n-Propylbenzene	ug/L (ppb)	10	93	96	74-126	3
Bromobenzene	ug/L (ppb)	10	100	102	80-121	2 3
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10 10	94 95	97 99	78-123 66-126	4
1,2,3-Trichloropropane	ug/L (ppb)	10	99	102	67-124	3
2-Chlorotoluene	ug/L (ppb)	10	94	98	77-127	4
4-Chlorotoluene	ug/L (ppb)	10	94	97	78-128	3
tert-Butylbenzene	ug/L (ppb)	10	94	97	80-123	3
1,2,4-Trimethylbenzene	ug/L (ppb)	10	91	96	79-122	5
sec-Butylbenzene	ug/L (ppb)	10	93	96	80-116	3
p-Isopropyltoluene	ug/L (ppb)	10	92	96	81-123	4
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L (ppb)	10 10	98 99	101 100	83-113 81-112	3 1
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	99 97	100 99	81-112 84-112	$\frac{1}{2}$
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	92	94	57-141	2
1,2,4-Trichlorobenzene	ug/L (ppb)	10	90	94	72-130	4
Hexachlorobutadiene	ug/L (ppb)	10	88	92	53-141	4
Naphthalene	ug/L (ppb)	10	93	97	64-133	4
1,2,3-Trichlorobenzene	ug/L (ppb)	10	92	96	65-136	4

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 103484-01 1/6 (Matrix Spike) 1/6

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	108	104	29-125	4
Aroclor 1260	mg/kg (ppm)	0.25	< 0.02	332 ip	163 ip	25 - 137	68 b

			Percent	
	Reporting	Spike Level	Recovery	Acceptance
Analyte	Units		LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	104	55-137
Aroclor 1260	mg/kg (ppm)	0.25	115	51 - 150

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 103585-12 1/6 (Matrix Spike) 1/6

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	$\operatorname{Control}$	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	98	90	44-107	9
Aroclor 1260	mg/kg (ppm)	0.25	< 0.02	96	86	38-124	11

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	104	47-158
Aroclor 1260	mg/kg (ppm)	0.25	108	69 - 147

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/L (ppb)	0.25	52	50	25-111	4
Aroclor 1260	ug/L (ppb)	0.25	72	66	23-123	9

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 I 6th Avenue West Friedman & Bruya, Inc. 1 C-1 D24-7.0 07 PAR 1-20 7 City, State, ZIP SCALL, MA 7814 Company GE Address 2101 4th Ave Switc 950 Report 16 OCO DPS-3,0 DP3-7.0 7715-4.0 DP15-7.0 DPS-6,0 DP3-033021w DP3-40 DP 4-3.5 Sample ID Received by: Relinquished by: Received by: Email The Ats O General news roject specific RLs? - Yes / No Relinquished by: 0 [-Y & y a 50 \sim \Diamond \sim 6 0 0 ک) 7A-F Ø 00 SS) Σ. W Lab ID 3 7-4-2430/2 Sampled Date 1350 9 1050 5 GY = 9 000 000 500 Sampled Time REMARKS Shononish PROJECT NAME SAMPLERS OF Amport Col Hampar Sample Type 90 \bigcirc ()S) Khai Horang (Sums) PRINT NAME 6 Ó 6 ō 和光河 Q # of Jars 9 6 5 5 σ NWTPH-Dx NWTPH-Gx BTEX EPA 8021 5530-014-01 NWTPH-HCID INVOICE TO × メ × ANALYSES ><VOCs EPA 8260 Samples received at PO# PAHs EPA 8270 FB 3 \times × メ PCBs EPA 8082 (RCRA 8) MUTAL COMPANY REQUESTED × × \prec \times (RCRAB)
Total meta
(RCRAB)
Dissolvel 1 SAMPLE DISPOSAL

O Archive samples \times Default: Dispose after 30 days Rush charges authorized by: X Standard turnaround TURNAROUND TIME 12/16/2 3/3//2/ . വ DATE Notes 80 TMIT.

~5

BIH, B

03-31-21

SAMPLE CHAIN OF CUSTODY

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 I6th Avenue West Friedman & Bruya, Inc. (-10P9-3,0 C-1089-75 C-1 DPB-9.0 CT P68-712 J-1 PP 13-033121 -1DP14-033/24W (() 0.5-81X DP14-5.0 200-11 전 R13-2.0 Sample ID Relinquished by: Received by: Received by: Relinquished by 8 ٦ \lesssim Lab ID 2 3 <u>۔</u> 7 59,5/3/31/21 これ Stades! Sampled Date 030 22 900 JAN JOSEPH <u>ට</u> ප 1500 Time Sampled 900 1570 446 S 3 (j) م ع Sample Type \cup 5 \bigcirc Key3 KHOI S PRINT NAME 9 Q 0 0 ō # of Jars 5 B T 4 Taktur 7 X NWTPH-Dx × \times × × \times NWTPH-Gx BTEX EPA 8021 NWTPH-HCID メ メ × Χ ኊ \times × VOCs EPA 8260 PAHs EPA 8270 Samples received at . FBI × \times × × PCBs EPA 8082 COMPANY M \prec 3/31/21 3/31/21 time on both widing Yeston vogs DATE ြ ငိ Notes 6.30 HMIL 16:30

SAMPLE CHAIN OF CUSTODY E 03-31-21

PROJECT NAME
PO #
INVOICE TO

Address

Company

City, State,

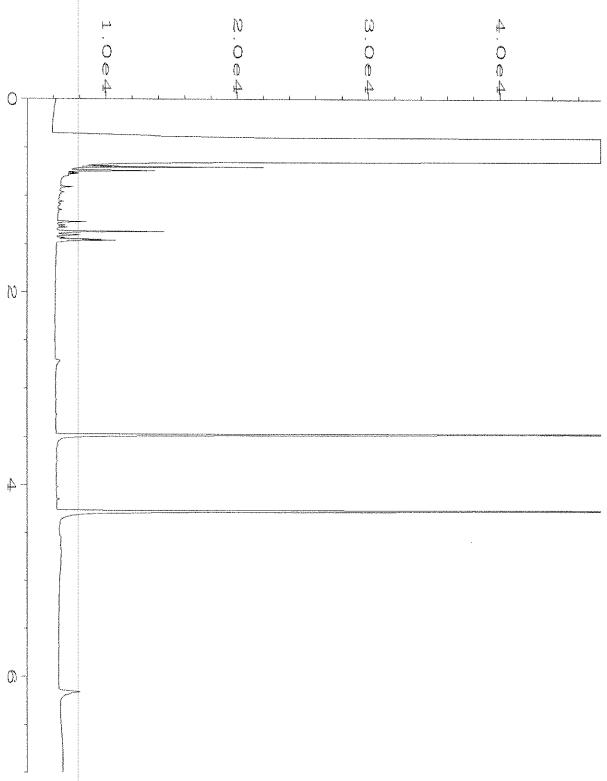
ZIP

Email

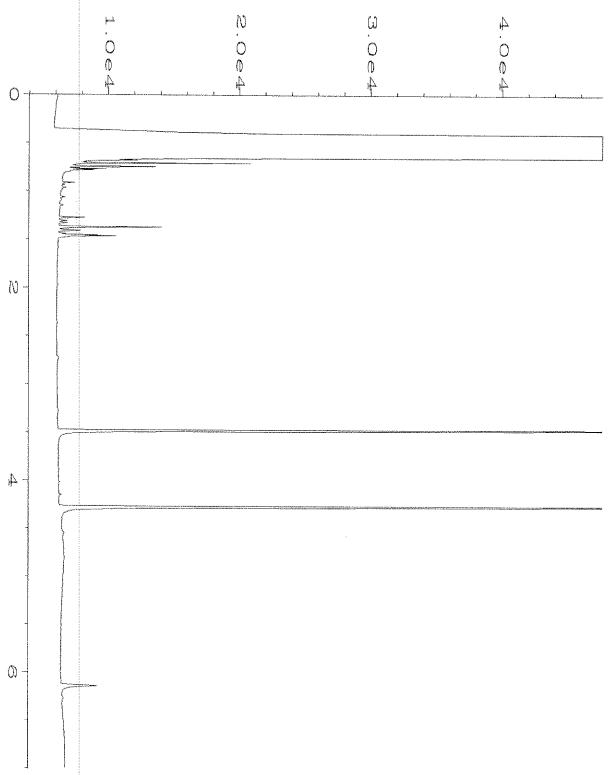
Project specific RLs? - Yes / No

Default: Dispose after 30 days

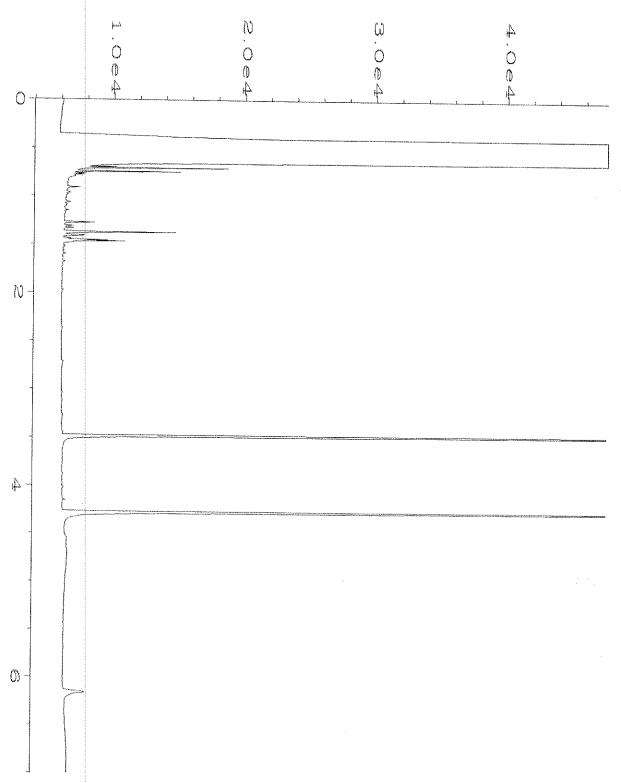
Rush charges authorized by:

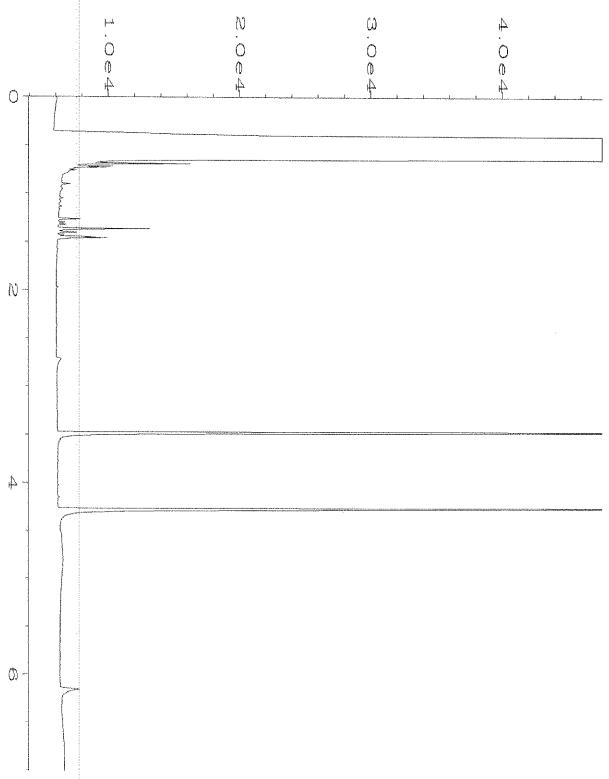

SAMPLE DISPOSAL

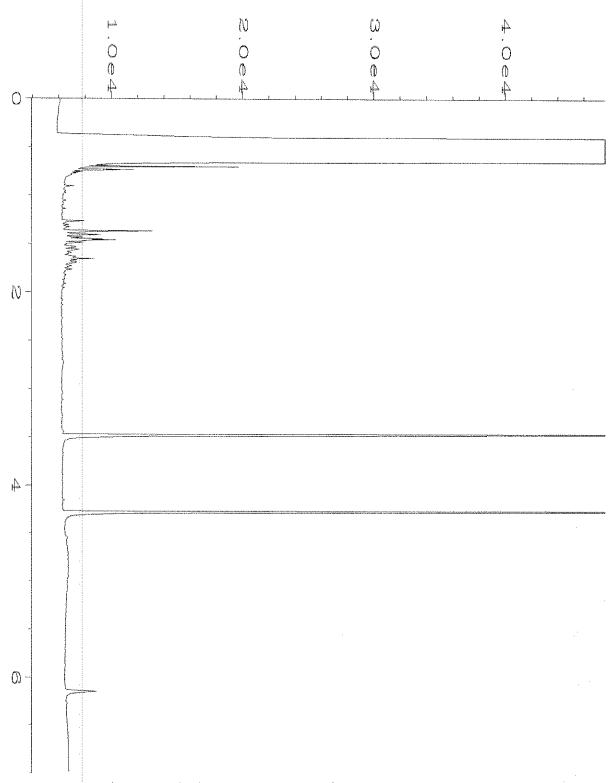
SAMPLE DISPOSAL

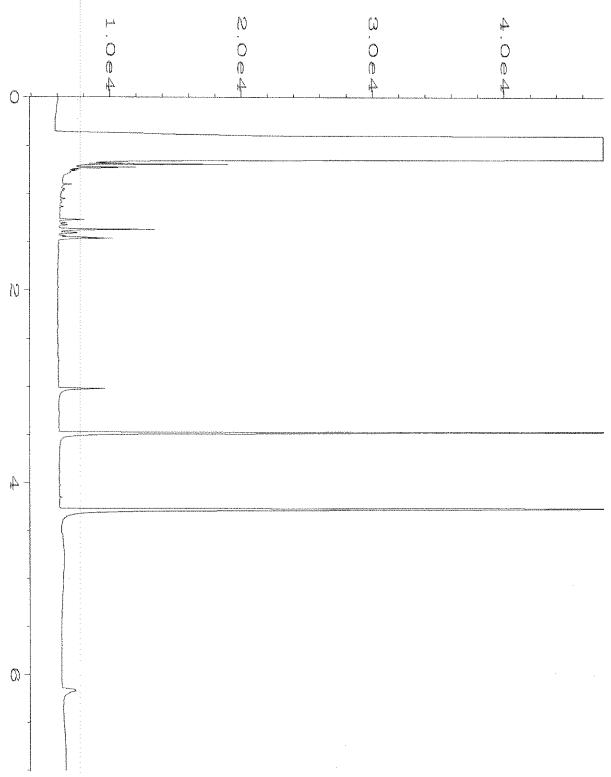

Other

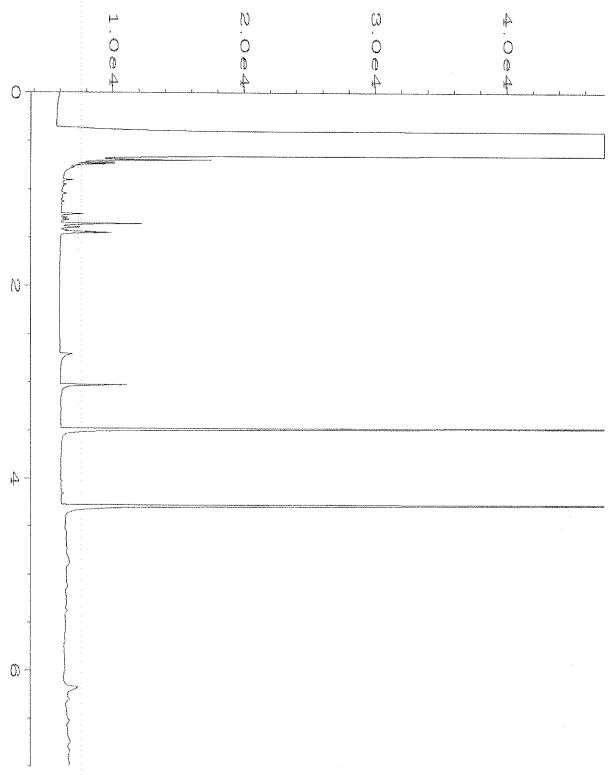
3° 1	Samples received at		THE PROPERTY AND ADDRESS OF THE PROPERTY OF TH	Amount the sy.
				
3/31/21 16:30	FBC	Kho! Horns	A. Carlo	9
3/51/21 16:30	6	Kary Arktin	t about	
DATE TIME	COMPANY	PRINT NAME	SIGNAPURA 	Friedman & Brwya, Inc Relinquished by
		XX	0h2 A	16-04-2-30-30
	× × ×	XX 9 S	1520	DF+-9.0
	X X	X X 9 S	28/15	0.H- E301
	~	X X 01 WB	27/13 1500	-10331121 w
	~	S 6 X X	(220)	CIDP1-11.0 126
	X	S 6 X X	1100	C-1 DP1-3.5 25
	*	XXg	17.6 10.0	C-1 DPZ-11.0 24
	X	S 6 X X	3 11000	1
4/27/21 ME	XXX	S 6 X X	0.50	C1 DV 11-4.0 22
• -peral	× × ×	XX 9 S	21/1/2/ 1000	0-4.0
Hey Chrome.	PCBs EPA 8082 RCRAB METALS TOTAL METAL DISS. METAL	Sample Type # of Jars NWTPH-Dx NWTPH-Gx	Lab ID Date Time Sampled Sampled	
	ANALYSES REQUESTED			
t. Dispose after 30 days	Default:	Project specific RLs? - Yes / No	Projec	PhoneEmail
SAMPLE DISPOSAL Archive samples	INVOICE TO S.	RKS	REMARKS	City, State, ZIP
Rush charges authorized by:	5530-014-01 Rush ch		7227	Address
Standard turnaround	PO# XStand	PROJECT NAME	PROJ	Company
		SAMPLERS (signature)	SAMI	Report To
1503/2 USL , NEW	DY 03-31-21 024,	SAMPLE CHAIN OF CUSTODY	SAMPI	(03585

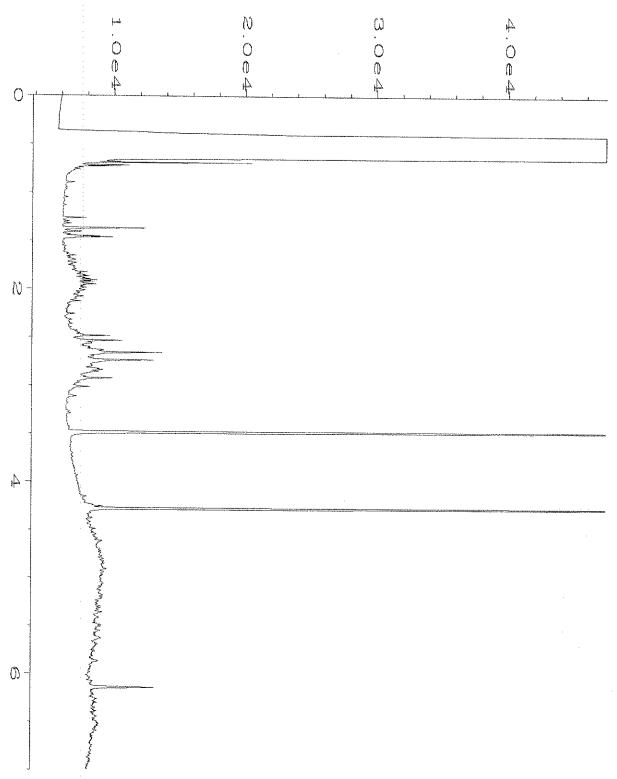

PROJECT NAME	Fn. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	r reuman & bruya, inc.		en egen geografischen der stelle ergen erstelle der der der der der der der der der de	Trip Blanks	Tr.p.Blank 4	Trip Blank 3	1mp Blank 2	Tr.p Black 1	C-1 DP6-40	C7 DP6-30	C7 DP 17-80	Sample ID		Phone	Address	Company
Type # of Jairs PANALYSES REQUEST OSS30-014-07 Sample # of Jairs PANALYSES REQUEST NWTPH-Bx NWTPH-HCID NWTPH-	Received by:	Relinquished by:		Mats 41	7		X 98	27	35	35	1 '	33					Email	SON	
Samples recompany Samples recompany NWTPH-HCID ANALYSES REQUEST NWTPH-HCID ANALYSES REQUEST PAHs EPA 8270 PCBs EPA 8082 REQUEST NWTPH-HCID ANALYSES REQUEST PCBs EPA 8082			T	Z Ž	PRINT NAME	e described (Constanting Constanting Const					-	50:11 5- (8)	Soil 5 ®	S 6 X	Sample #of Jars Type Jars NWTPH-Dx	185/	Vo.	REMARKS	PROJECT NAME
	Samples received at		7) (7)	7		A MATERIAL CONTROL OF THE PROPERTY OF THE PROP					8	8	8	X	NWTPH-HCID	ANALYSES BROTTESTED	······································		

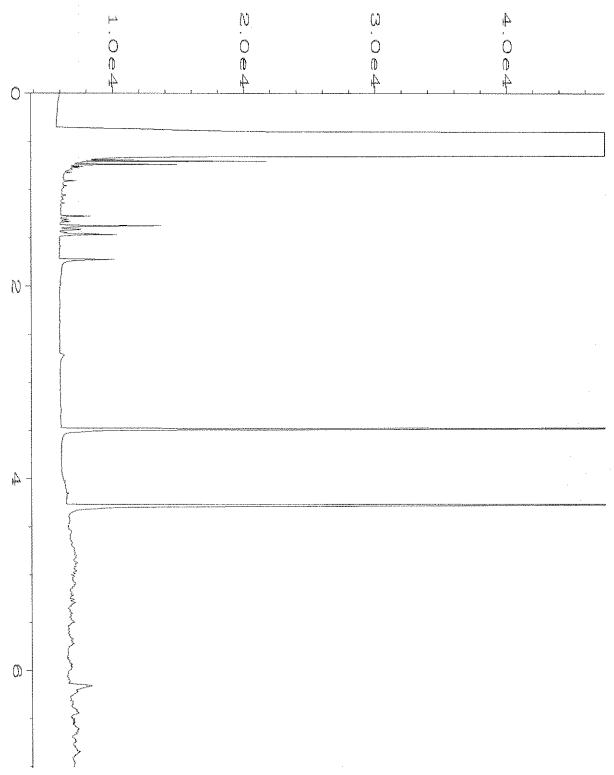

```
: C:\HPCHEM\6\DATA\04-01-21\022F0601.D
Data File Name
                : TL
Operator
                                              Page Number
                                                              : 1
                                              Vial Number
Instrument
                : GC6
                                                               ; 22
Sample Name
                : 103585-01
                                              Injection Number: 1
                                              Sequence Line : 6
Run Time Bar Code:
Acquired on : 01 Apr 21 03:10 PM
                                              Instrument Method: DX.MTH
Report Created on: 02 Apr 21
                                              Analysis Method : DEFAULT.MTH
                            07:45 AM
```

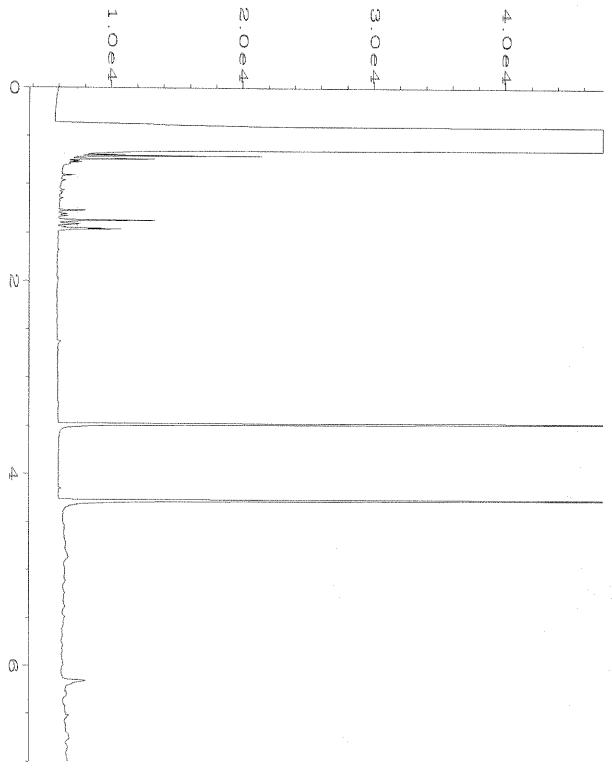


Data File Name :	C:\HPCHEM\6\DATA\04-01-21\02	3F0601.D	
Operator :	TL	Page Number :	1
Instrument :	GC6	Vial Number :	23
Sample Name :		Injection Number :	1
Run Time Bar Code:		Sequence Line :	6
	01 Apr 21 03:21 PM	Instrument Method:	DX.MTH
Report Created on:	02 Apr 21 07:46 AM	Analysis Method :	DEFAULT.MTH

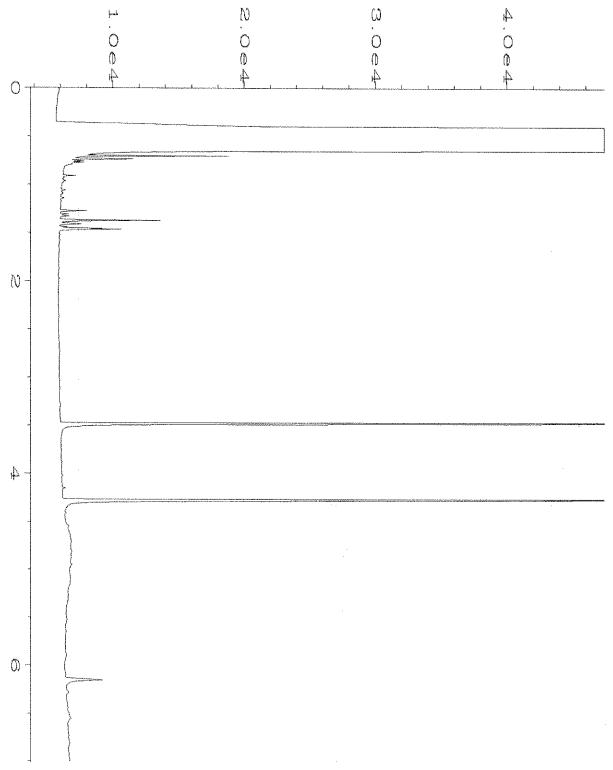

```
: C:\HPCHEM\6\DATA\04-01-21\024F0601.D
Data File Name
Operator
                 : TL
                                               Page Number
                                               Page Number : 1
Vial Number : 24
Instrument
                 : GC6
Sample Name
                : 103585-03
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 6
Acquired on : 01 Apr 21 03:32 PM
                                                Instrument Method: DX.MTH
Report Created on: 02 Apr 21 07:46 AM
                                               Analysis Method : DEFAULT.MTH
```

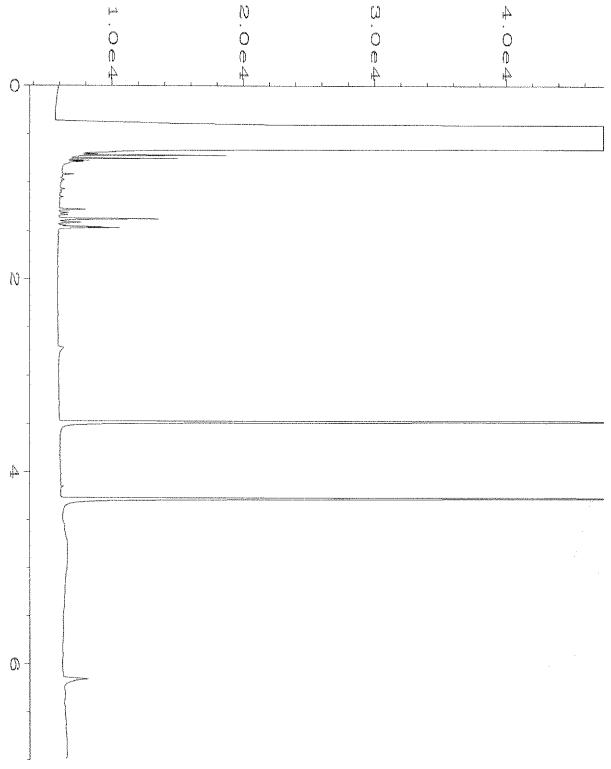


Data File Name :	C:\HPCHEM\6\DATA\04-01-21\025	5F0601.D	
Operator :	TL	Page Number	: 1
Instrument :	GC6	Vial Number	: 25
Sample Name :	103585-04	Injection Number	: 1
Run Time Bar Code:		Sequence Line	: 6
Acquired on :	01 Apr 21 03:43 PM	Instrument Method	: DX.MTH
Report Created on:	02 Apr 21 07:46 AM	Analysis Method	: DEFAULT.MTH


Data File Name :	C:\HPCHEM\6\DATA\04-01-21\026	5F0601.D	
Operator :	TL	Page Number	: 1
Instrument :	GC6	Vial Number	: 26
Sample Name :	103585-05	Injection Number	: 1
Run Time Bar Code:		Sequence Line	: 6
Acquired on :	01 Apr 21 03:54 PM	Instrument Method	DX.MTH
Report Created on:	02 Apr 21 07:46 AM	Analysis Method	DEFAULT.MTH


Data File Name	:	C:\HPCHEM\6\DATA\04-01-21\02	7F0601.D		·
Operator	•	TL	Page Number	*	1
Instrument			Vial Number	;	27
Sample Name	:	103585-07	Injection Number	:	1
Run Time Bar Code	1		Sequence Line	*	6
Acquired on	•	01 Apr 21 04:04 PM	Instrument Method	: £	DX.MTH
Report Created or	1:	02 Apr 21 07:46 AM	Analysis Method	:	DEFAULT.MTH

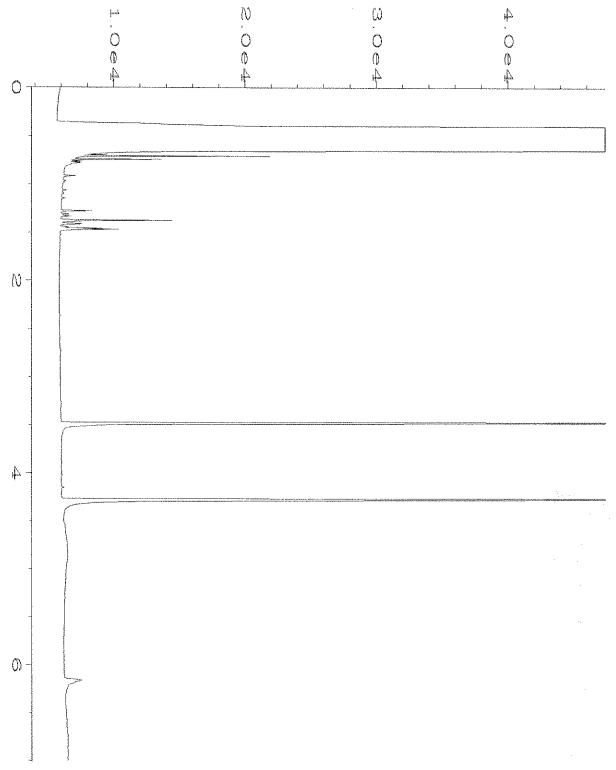

```
: C:\HPCHEM\6\DATA\04-01-21\028F0801.D
Data File Name
                                                Page Number
Vial Number
Operator
                 : TL
                                                                  ; 1
Instrument
                 : GC6
                                                                  : 28
                 : 103585-08
Sample Name
                                                 Injection Number : 1
Run Time Bar Code:
                                                 Sequence Line : 8
Acquired on : 01 Apr 21
                                                 Instrument Method: DX.MTH
                             04:45 PM
Report Created on: 02 Apr 21
                             07:46 AM
                                                 Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\04-01-21\029F0801.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                : GC6
                                              Vial Number
                                                              : 29
Sample Name
                : 103585-09
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 8
                                              Instrument Method: DX.MTH
Acquired on : 01 Apr 21 04:53 PM
Report Created on: 02 Apr 21
                            07:46 AM
                                              Analysis Method : DEFAULT.MTH
```

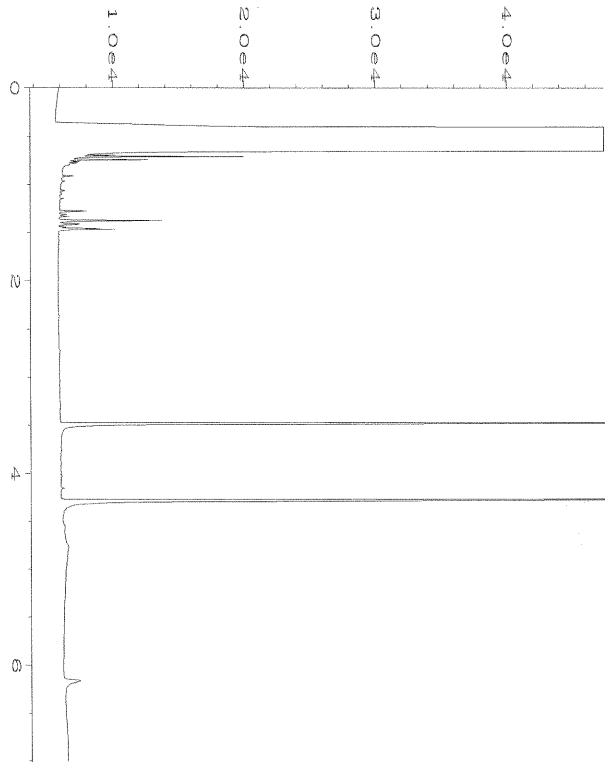


```
: C:\HPCHEM\6\DATA\04-01-21\030F0801.D
Data File Name
                                              Page Number
                                                              : 1
Operator
                : TL
                                              Vial Number
                : GC6
                                                              : 30
Instrument
                                              Injection Number: 1
Sample Name
                : 103585-10
                                              Sequence Line : 8
Run Time Bar Code:
Acquired on : 01 Apr 21 05:04 PM
                                              Instrument Method: DX.MTH
                                              Analysis Method : DEFAULT.MTH
Report Created on: 02 Apr 21 07:47 AM
```



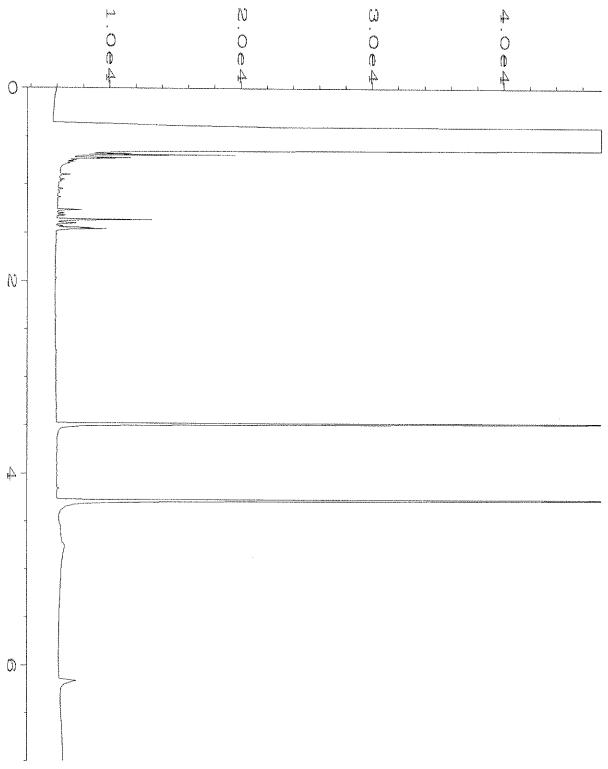
```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\031F0801.D
Operator
                 : TL
                                                 Page Number
Instrument
                 : GC6
                                                 Vial Number
                                                                  : 31
                                                 Injection Number : 1
Sequence Line : 8
Sample Name
                 : 103585-11
Run Time Bar Code:
Acquired on : 01 Apr 21
                             05:15 PM
                                                 Instrument Method: DX.MTH
Report Created on: 02 Apr 21
                              07:47 AM
                                                 Analysis Method : DEFAULT.MTH
```

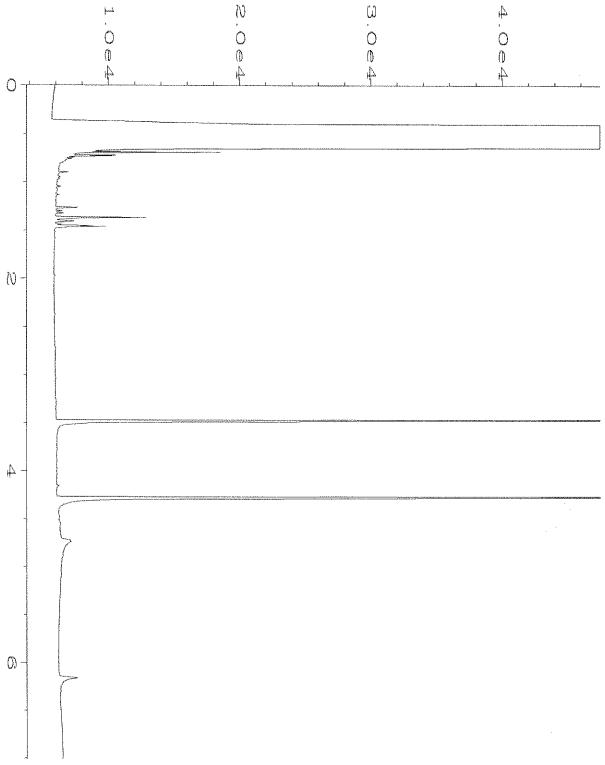


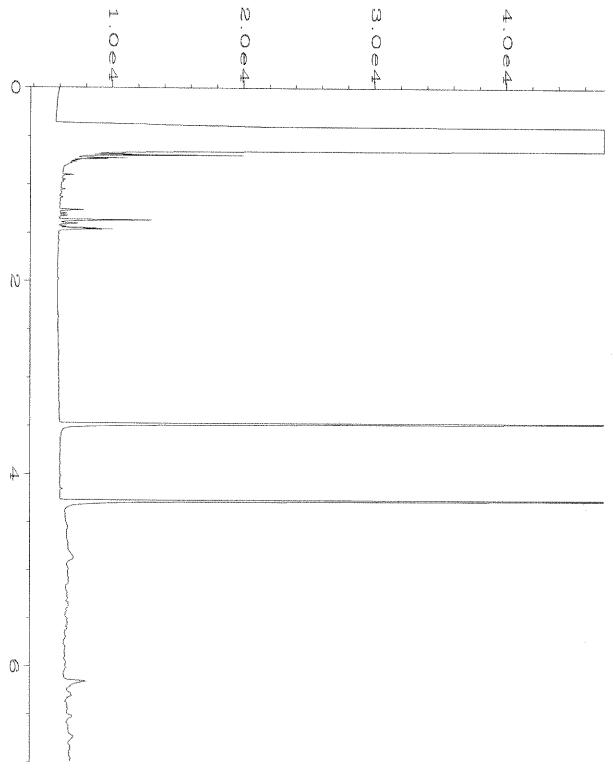

```
: C:\HPCHEM\6\DATA\04-01-21\032F0801.D
Data File Name
                                                                Page Number
Vial Number
Operator
                       : TL
                                                                                       : 1
Instrument
                                                                                       : 32
                       : GC6
                      : 103585-12
                                                                Injection Number : 1
Sequence Line : 8
Sample Name
Run Time Bar Code:
Acquired on : 01 Apr 21 Report Created on: 02 Apr 21
                                                                Instrument Method: DX.MTH
Analysis Method : DEFAULT.MTH
                                        05:26 PM
                                        07:49 AM
```

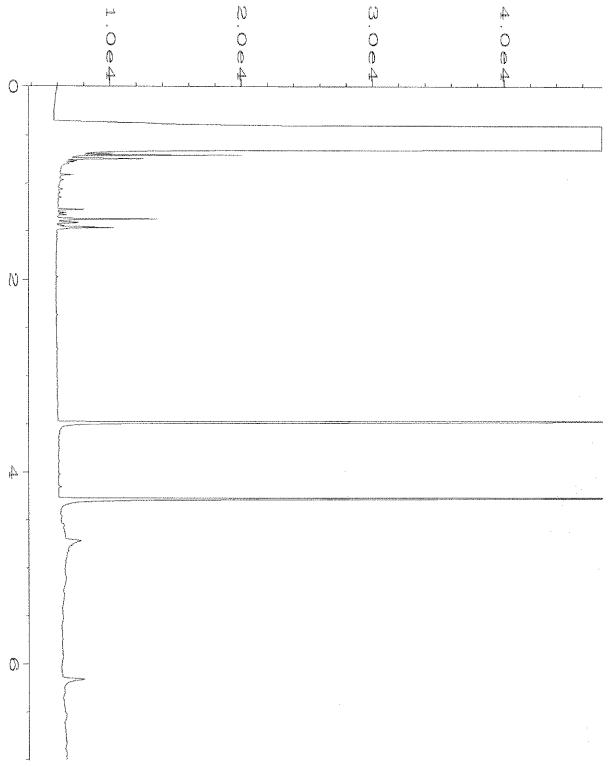


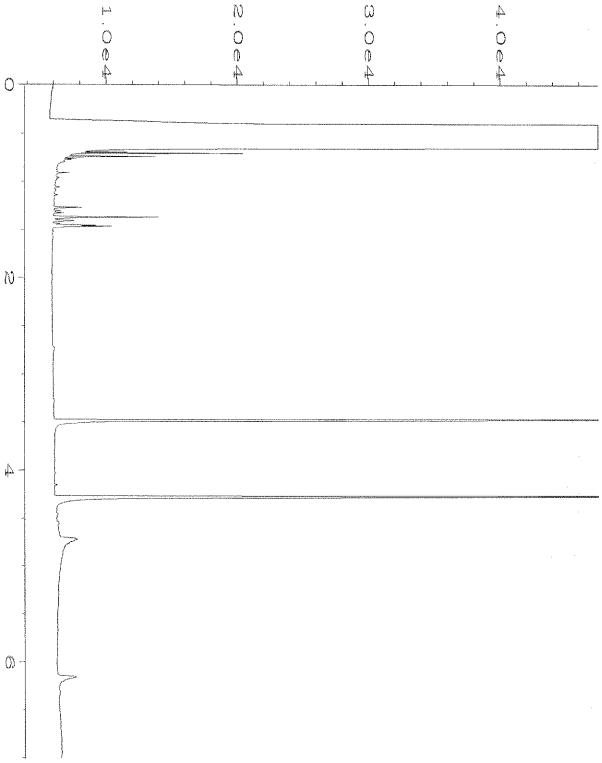

```
: C:\HPCHEM\6\DATA\04-01-21\033F0801.D
Data File Name
Operator
                : TL
                                               Page Number
                                                                : 1
Instrument
                                               Vial Number
                                                                ; 33
                 : GC6
                : 103585-13
Sample Name
                                               Injection Number: 1
                                               Sequence Line : 8
Run Time Bar Code:
Acquired on : 01 Apr 21
                                               Instrument Method: DX.MTH
                            05:37 PM
```

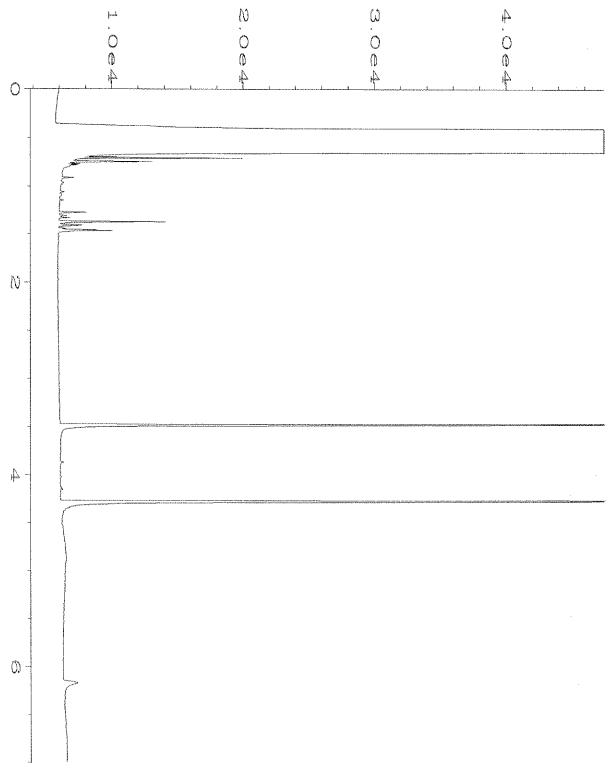

Report Created on: 02 Apr 21 Analysis Method : DEFAULT.MTH 07:49 AM

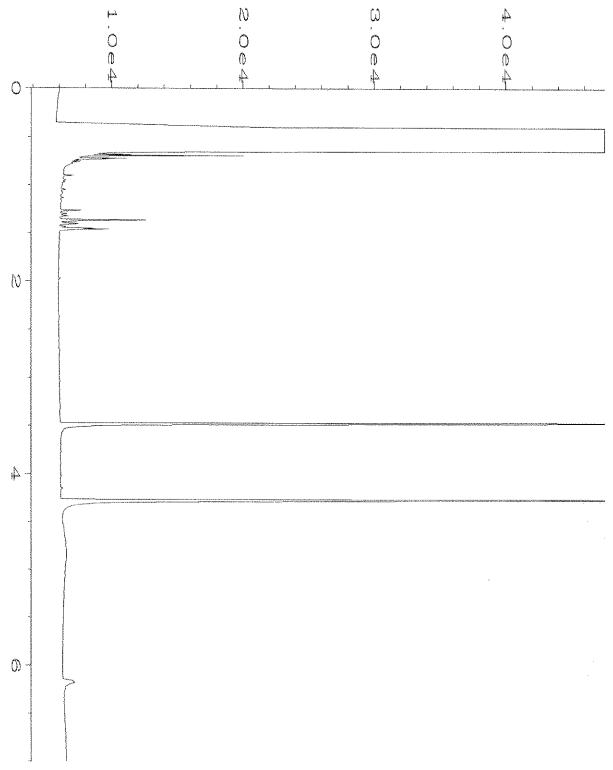

```
Data File Name
                : C:\HPCHEM\6\DATA\04-01-21\034F0801.D
Operator
                : TL
                                               Page Number
                                                                : 1
                                               Vial Number
Instrument
                 : GC6
                                                                : 34
Sample Name
                : 103585-14
                                               Injection Number: 1
                                                                : 8
Run Time Bar Code:
                                               Sequence Line
                                               Instrument Method: DX.MTH
Acquired on
                : 01 Apr 21
                             05:48 PM
                                               Analysis Method : DEFAULT.MTH
Report Created on: 02 Apr 21
                            07:49 AM
```

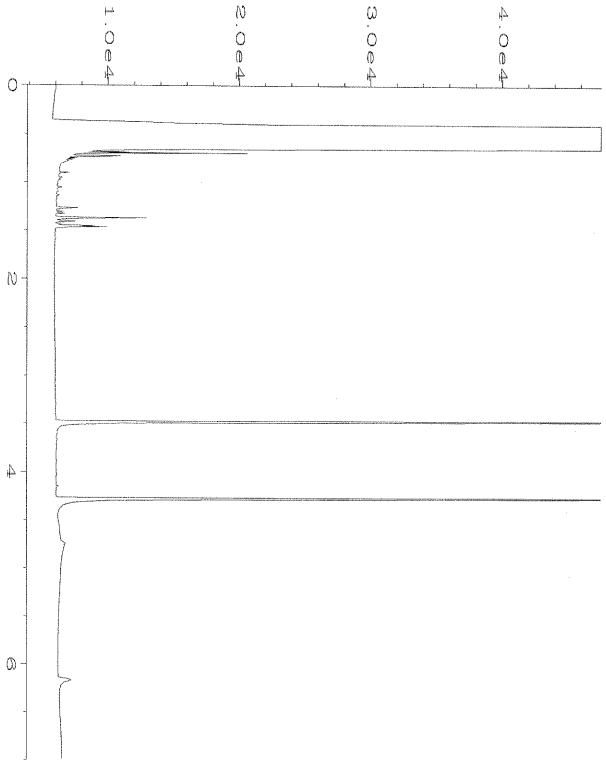


```
: C:\HPCHEM\6\DATA\04-01-21\035F0801.D
Data File Name
                                                 Page Number
                                                                   : 1
Operator
                 : TL
                                                 Vial Number
Instrument
                 : GC6
                                                 Injection Number : 1
Sequence Line : 8
                 : 103585-17
Sample Name
Run Time Bar Code:
                                                 Instrument Method: DX.MTH
Acquired on : 01 Apr 21 05:59 PM
                                                 Analysis Method : DEFAULT.MTH
Report Created on: 02 Apr 21 07:49 AM
```



```
: C:\HPCHEM\6\DATA\04-01-21\036F0801.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                : GC6
                                              Vial Number
                                                               : 36
                : 103585-18
Sample Name
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 8
Acquired on : 01 Apr 21
                            06:10 PM
                                              Instrument Method: DX.MTH
Report Created on: 02 Apr 21
                            07:49 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\037F0801.D
                                              Page Number
Operator
                : TL
Instrument
                : GC6
                                              Vial Number
                                                               : 37
                                              Injection Number: 1
Sample Name
                : 103585-19
Run Time Bar Code:
                                              Sequence Line : 8
                                              Instrument Method: DX.MTH
Acquired on : 01 Apr 21 06:21 PM
Report Created on: 02 Apr 21 07:49 AM
                                              Analysis Method : DEFAULT.MTH
```

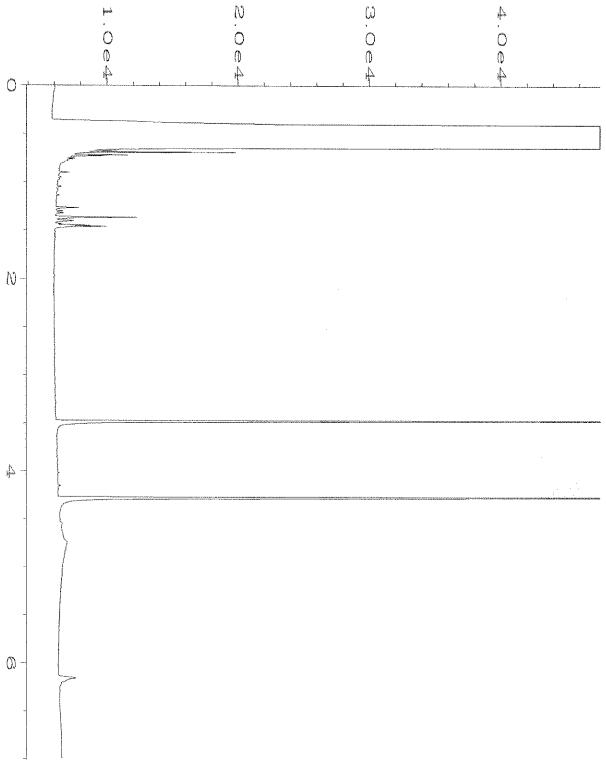


```
Data File Name
              : C:\HPCHEM\6\DATA\04-01-21\038F1001.D
Operator
                : TL
                                             Page Number
Instrument
                : GC6
                                              Vial Number
                                                              : 38
                : 103585-20
Sample Name
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on : 01 Apr 21 06:54 PM
                                              Instrument Method: DX.MTH
Report Created on: 02 Apr 21 07:49 AM
                                             Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\04-01-21\039F1001.D
Data File Name
                                                 Page Number
Operator
                 : TL
                                                 Vial Number
Instrument
                 : GC6
                                                                   : 39
                                                 Injection Number : 1
Sequence Line : 10
Sample Name
                 : 103585-21
Run Time Bar Code:
                                                 Instrument Method: DX MTH
Acquired on : 01 Apr 21
                               07:05 PM
Report Created on: 02 Apr 21 07:49 AM
                                                 Analysis Method : DEFAULT.MTH
```

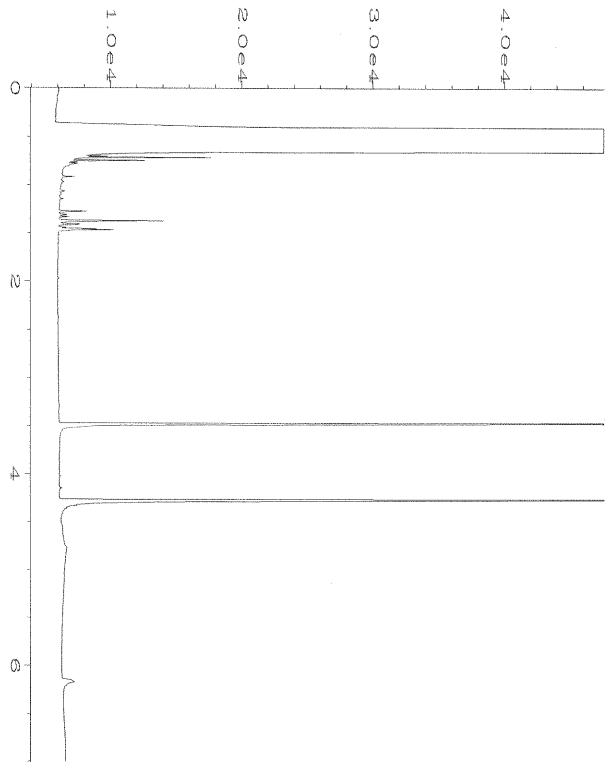


```
Data File Name
                 : C:\HPCHEM\6\DATA\04-01-21\040F1001.D
Operator
                    ; TL
                                                        Page Number
                                                                            : 1
                                                        Vial Number
                                                                            : 40
Instrument
                    : GC6
                                                        Injection Number: 1
Sequence Line: 10
                   : 103585-22
Sample Name
Run Time Bar Code:
Acquired on : 01 Apr 21 07:16 PM Report Created on: 02 Apr 21 07:50 AM
                                                        Instrument Method: DX.MTH
                                                        Analysis Method : DEFAULT.MTH
```



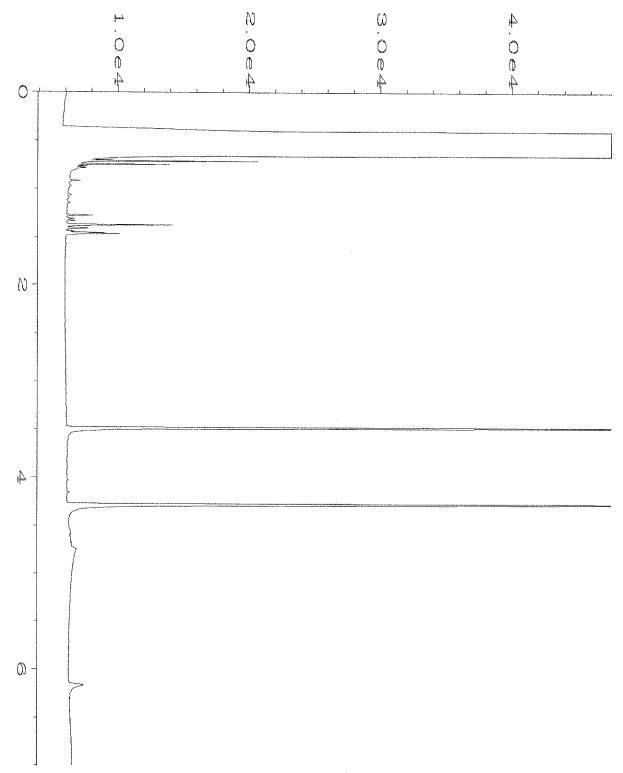
```
Data File Name
               : C:\HPCHEM\6\DATA\04-01-21\041F1001.D
                                                Page Number
Operator
                                                 Vial Number
                                                                  : 41
Instrument
                 : GC6
                                                Injection Number : 1
Sequence Line : 10
Sample Name
                 : 103585-23
Run Time Bar Code:
                                                 Instrument Method: DX.MTH
Acquired on : 01 Apr 21 07:27 PM
Report Created on: 02 Apr 21 07:50 AM
                                                Analysis Method : DEFAULT.MTH
```



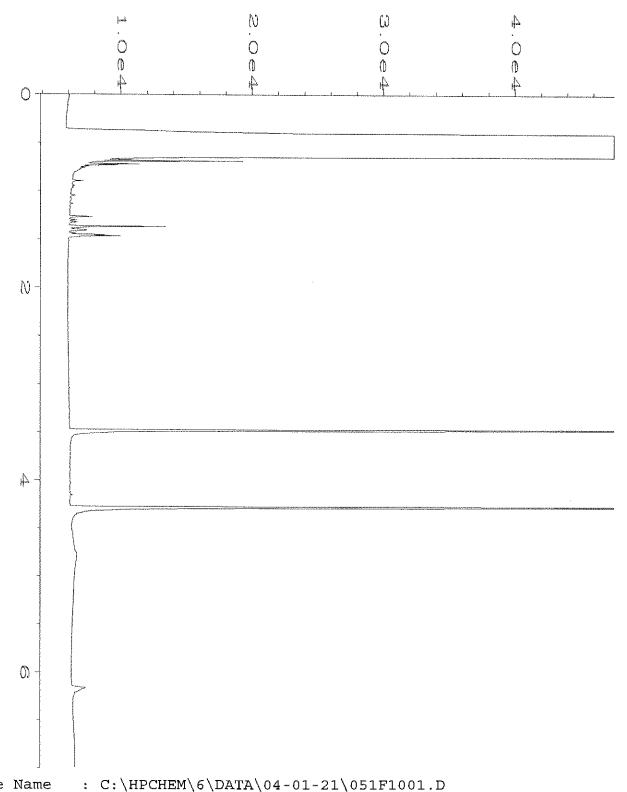

```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\046F1001.D
Operator
                : TL
                                             Page Number
                                                            : 1
                                             Vial Number
Instrument
                : GC6
                                                             : 46
                                             Injection Number: 1
Sample Name
               : 103585-24
                                             Sequence Line : 10
Run Time Bar Code:
Acquired on : 01 Apr 21 08:22 PM
                                             Instrument Method: DX.MTH
Report Created on: 02 Apr 21 07:50 AM
                                             Analysis Method : DEFAULT.MTH
```



```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\047F1001.D
Operator
                                              Page Number
                : TL
                                                               : 1
Instrument
                : GC6
                                              Vial Number
                                                               : 47
Sample Name
                : 103585-25
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on : 01 Apr 21
                            08:33 PM
                                              Instrument Method: DX.MTH
Report Created on: 02 Apr 21
                            07:50 AM
                                              Analysis Method : DEFAULT.MTH
```

.

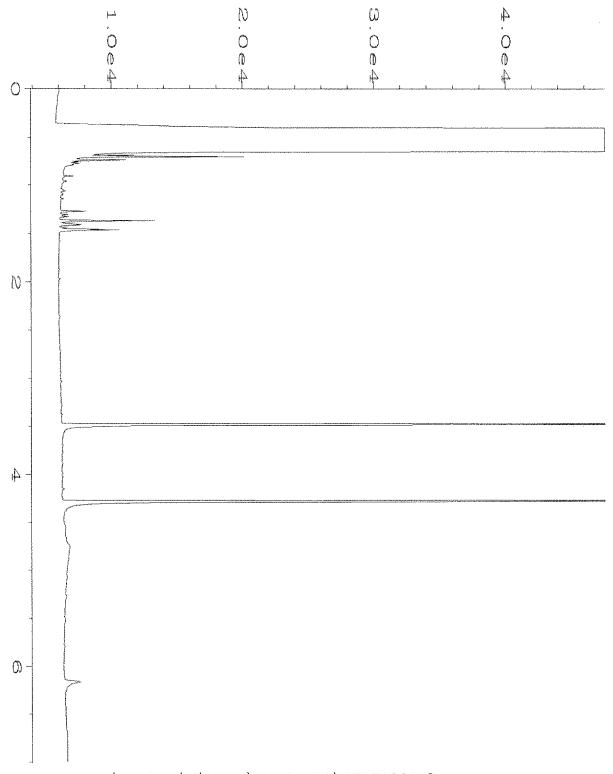

```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\048F1001.D
                                                Page Number
Operator
                : TL
Instrument
                                                Vial Number
                 : GC6
                                                                 : 48
Sample Name
                                                Injection Number : 1
Sequence Line : 10
                : 103585-26
Run Time Bar Code:
Acquired on : 01 Apr 21 08:44 PM
                                                Instrument Method: DX.MTH
Report Created on: 02 Apr 21 07:51 AM
                                                Analysis Method : DEFAULT.MTH
```

·

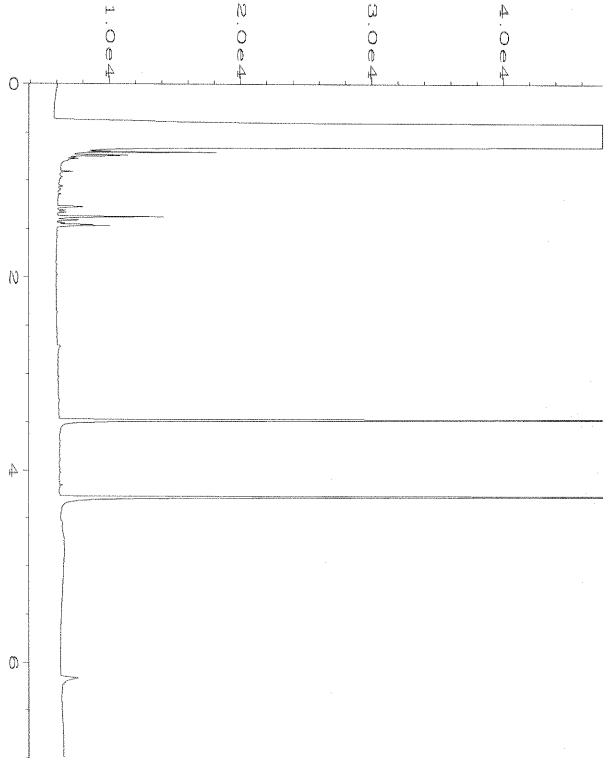


Data File Name : C:\HPCHEM\6\DATA\04-01-21\049F1001.D Page Number Operator : TL Instrument Vial Number : 49 : GC6 Injection Number : 1 Sequence Line : 10 Sample Name : 103585-28 Run Time Bar Code: Acquired on : 01 Apr 21 08:55 PM Instrument Method: DX.MTH Report Created on: 02 Apr 21 07:51 AM Analysis Method : DEFAULT.MTH

Report Created on: 02 Apr 21 07:51 Am Analysis Method : DBFAODI.MIR

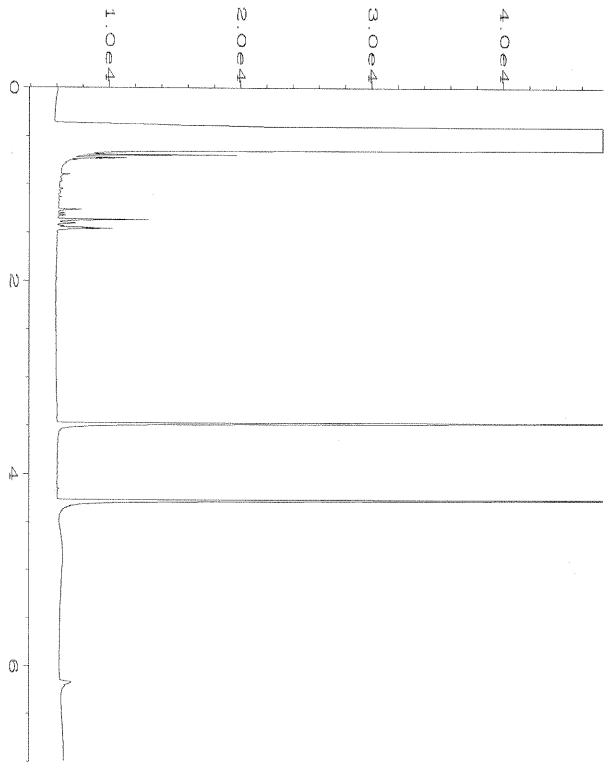


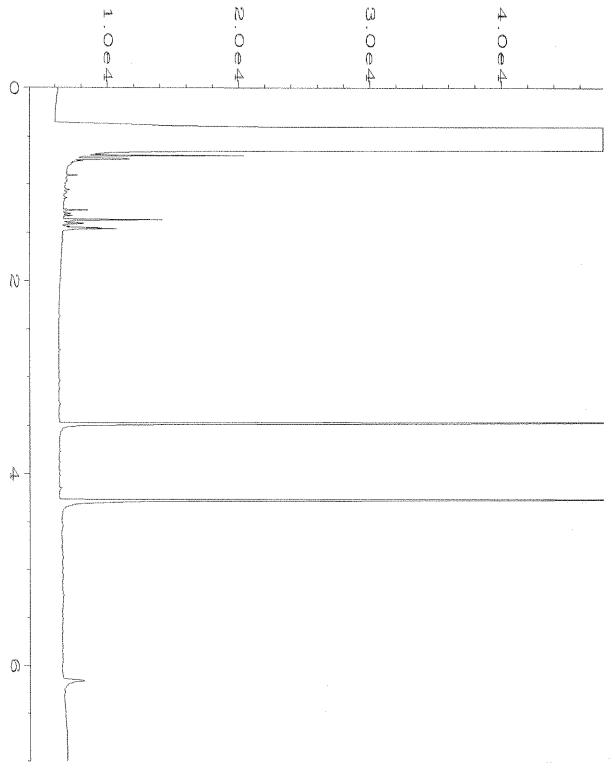

```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\050F1001.D
Operator
                : TL
                                             Page Number
Instrument
                ; GC6
                                             Vial Number
                                                              : 50
Sample Name
                : 103585-29
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 10
Acquired on : 01 Apr 21 09:06 PM
                                              Instrument Method: DX.MTH
Report Created on: 02 Apr 21 07:51 AM
                                             Analysis Method : DEFAULT.MTH
```

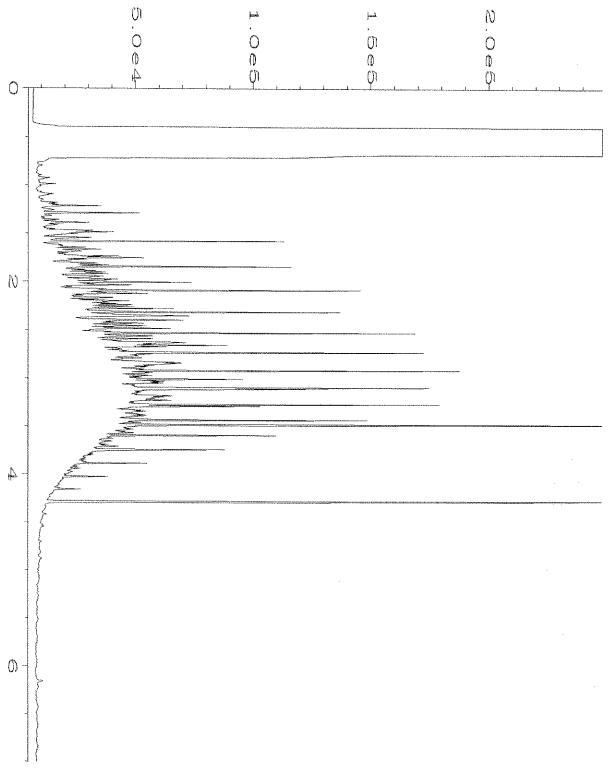


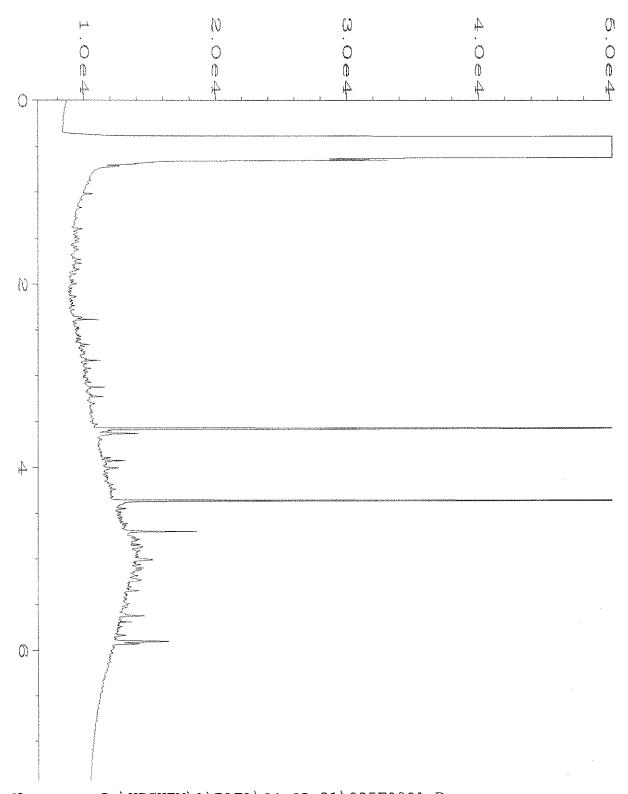
Data File Name Operator ; TL Page Number : 1 Vial Number Instrument : GC6 : 51 Injection Number: 1 Sample Name : 103585-30 Run Time Bar Code: Sequence Line : 10 Acquired on : 01 Apr 21 09:17 PM Instrument Method: DX.MTH Report Created on: 02 Apr 21 07:51 AM Analysis Method : DEFAULT.MTH

Table Carrier of the Land Comment


```
Data File Name
               : C:\HPCHEM\6\DATA\04-01-21\052F1001.D
                                                 Page Number
Operator
                                                                   : 1
                                                 Vial Number
Instrument
                  : GC6
                                                 Injection Number : 1
Sequence Line : 10
Sample Name
                 : 103585-31
Run Time Bar Code:
Acquired on : 01 Apr 21 09:28 PM
                                                 Instrument Method: DX.MTH
                                                 Analysis Method : DEFAULT.MTH
Report Created on: 02 Apr 21 07:51 AM
```

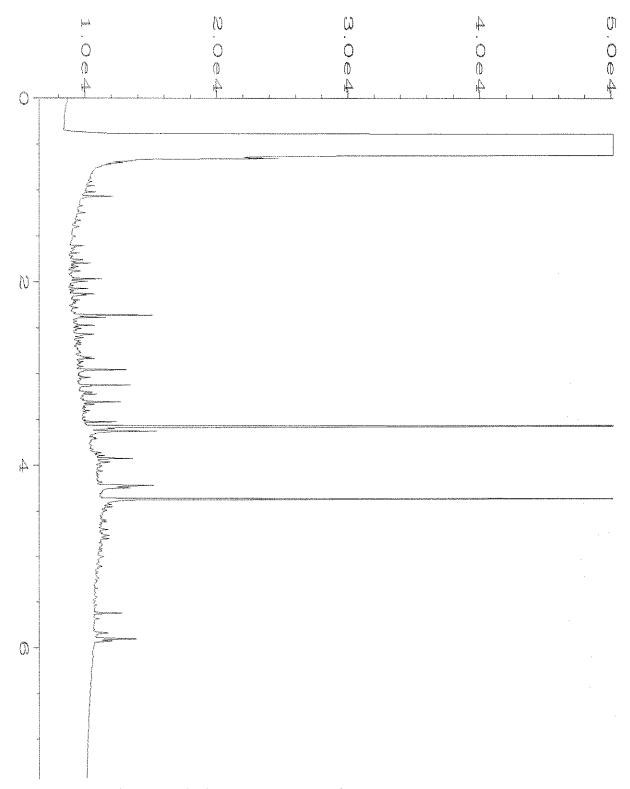


```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\053F1001.D
Operator
                                              Page Number
                : TL
Instrument
                : GC6
                                              Vial Number
                                                               : 53
                                              Injection Number: 1
Sample Name
                : 103585-32
Run Time Bar Code:
                                              Sequence Line
                                                            : 10
Acquired on : 01 Apr 21
                                               Instrument Method: DX.MTH
                            09:38 PM
Report Created on: 02 Apr 21
                            07:51 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
              : C:\HPCHEM\6\DATA\04-01-21\054F1001.D
Operator
                : TL
                                              Page Number
                                              Vial Number
Instrument
                : GC6
                                                              : 54
Sample Name
                : 103585-33
                                              Injection Number: 1
                                              Sequence Line : 10
Run Time Bar Code:
Acquired on : 01 Apr 21 09:49 PM
                                              Instrument Method: DX.MTH
Report Created on: 02 Apr 21
                           07:51 AM
                                              Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\04-01-21\042F1001.D
Data File Name
                                                  Page Number
Operator
                 : TL
                                                                    ; 1
Instrument
                                                 Vial Number
                  : GC6
                                                                   : 42
                                                  Injection Number : 1
Sequence Line : 10
Sample Name
                 : 01-774 mb
Run Time Bar Code:
Acquired on : 01 Apr 21
                                                  Instrument Method: DX.MTH
                               07:38 PM
Report Created on: 02 Apr 21
                                                 Analysis Method : DEFAULT.MTH
                              07:50 AM
```



```
: C:\HPCHEM\6\DATA\04-01-21\018F0601.D
Data File Name
Operator
                                                    Page Number
                                                                      : 1
                  : TL
                                                    Vial Number
Instrument
                  : GC6
                                                                      : 18
                                                    Injection Number: 1
Sample Name
                  : 01-772 mb
                                                    Sequence Line : 6
Run Time Bar Code:
Acquired on : 01 Apr 21 02:27 PM Report Created on: 02 Apr 21 07:52 AM
                                                    Instrument Method: DX.MTH
                                                    Analysis Method : DEFAULT.MTH
```




```
: C:\HPCHEM\6\DATA\04-01-21\003F0201.D
Data File Name
Operator
                                               Page Number
                : TL
Instrument
                : GC6
                                               Vial Number
                                                               : 3
                : 500 Dx 62-142D
                                               Injection Number: 1
Sample Name
Run Time Bar Code:
                                               Sequence Line : 2
Acquired on : 01 Apr 21 08:40 AM
                                               Instrument Method: DX.MTH
Report Created on: 02 Apr 21 07:52 AM
                                              Analysis Method : DEFAULT.MTH
```

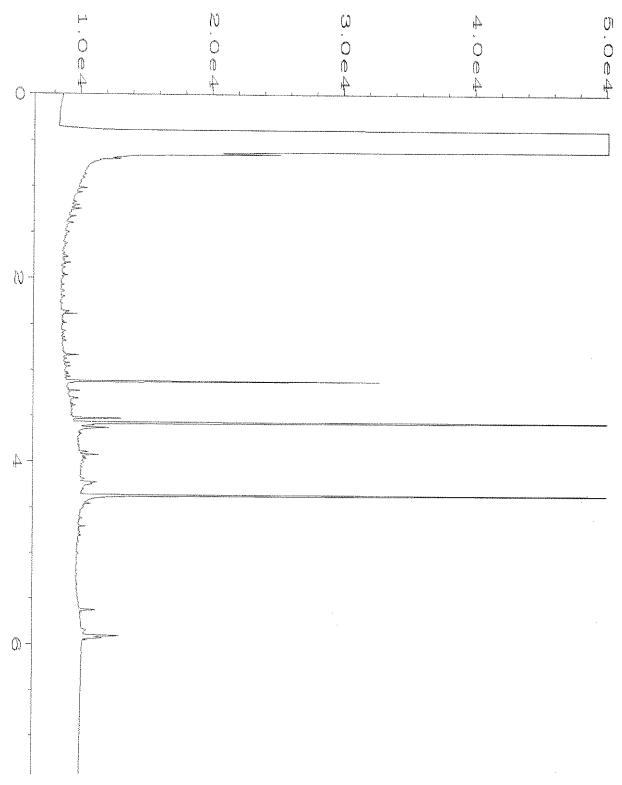


```
: C:\HPCHEM\1\DATA\04-02-21\025F0901.D
Data File Name
Operator
                  : TL
                                                  Page Number
                                                  Vial Number : 29
Injection Number : 1
Instrument
                  : GC1
                                                                    : 25
Sample Name
                 : 103585-06
                                                  Sequence Line
Run Time Bar Code:
                                                                 : 9
                                                  Instrument Method: DX.MTH
Acquired on : 02 Apr 21 02:26 PM
```

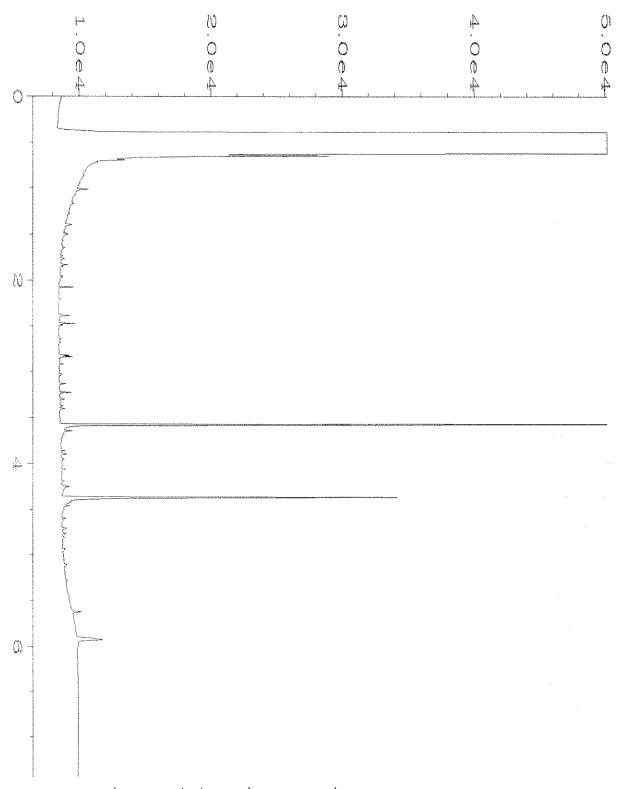
Report Created on: 05 Apr 21 09:11 AM Analysis Method: DEFAULT.MTH


```
Data File Name : C:\HPCHEM\1\DATA\04-02-21\026F0901.D

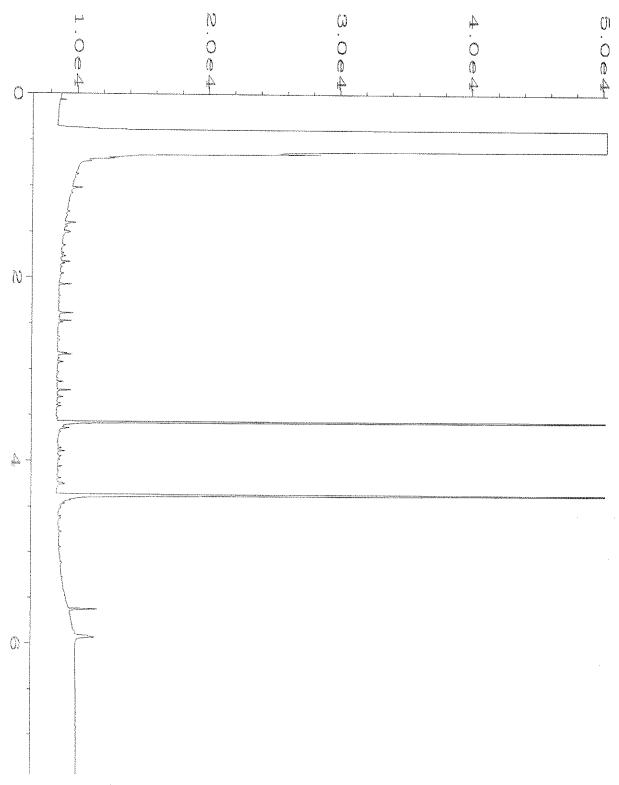
Operator : TL Page Number : 1

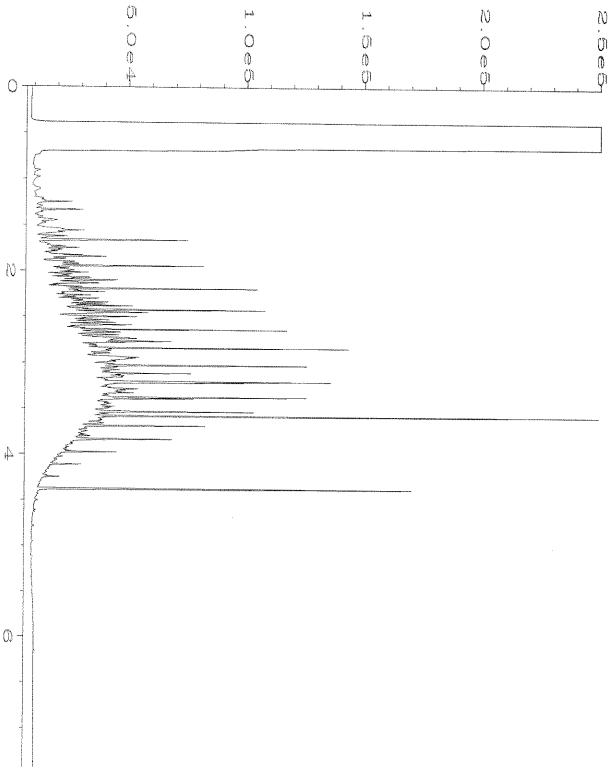

Instrument : GC1 Vial Number : 26

Sample Name : 103585-15 Injection Number : 1


Run Time Bar Code: Sequence Line : 9

Acquired on : 02 Apr 21 02:38 PM Instrument Method: DX.MTH
```


Acquired on : 02 Apr 21 02:38 PM Instrument Method: DX.MTH
Report Created on: 05 Apr 21 09:11 AM Analysis Method : DEFAULT.MTH


```
Data File Name : C:\HPCHEM\1\DATA\04-02-21\027F0901.D
Operator
                  : TL
                                                    Page Number
                                                                       : 1
Instrument
                  : GC1
                                                    Vial Number
                                                                       : 27
Sample Name
                  : 103585-16
                                                    Injection Number: 1
Run Time Bar Code:
                                                    Sequence Line
Acquired on : 02 Apr 21 02:49 PM Report Created on: 05 Apr 21 09:11 AM
                                                    Instrument Method: DX.MTH
                                                    Analysis Method : DEFAULT.MTH
```



```
Data File Name
              : C:\HPCHEM\1\DATA\04-02-21\028F0901.D
Operator
                : TL
                                              Page Number
                                                               : 1
                                              Vial Number
Instrument
                                                               : 28
                : GC1
Sample Name
                : 103585-27
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
                                                            : 9
                                              Instrument Method: DX.MTH
Acquired on : 02 Apr 21 03:01 PM
Report Created on: 05 Apr 21 09:12 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name : C:\HPCHEM\1\DATA\04-02-21\018F0701.D
Operator
                  : TL
                                                    Page Number
Instrument
                  : GC1
                                                    Vial Number
                                                                  : 18
Sample Name
                  : 01-778 mb
                                                    Injection Number: 1
Run Time Bar Code:
                                                    Sequence Line
Acquired on : 02 Apr 21 12:38 PM Report Created on: 05 Apr 21 09:10 AM
                                                    Instrument Method: DX.MTH
                                                    Analysis Method : DEFAULT.MTH
```



```
Data File Name
              : C:\HPCHEM\1\DATA\04-02-21\003F0201.D
Operator
                : TL
                                              Page Number
Instrument
                : GC1
                                              Vial Number
                                                               : 3
Sample Name
                : 500 Dx 62-142D
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 2
Acquired on : 02 Apr 21 05:43 AM
                                              Instrument Method: DX.MTH
Report Created on: 05 Apr 21 09:16 AM
                                              Analysis Method : DEFAULT.MTH
```


3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 103585

Work Order Number: 2104392

May 05, 2021

Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 4/28/2021 for the analyses presented in the following report.

Hexavalent Chromium by EPA Method 7196 Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 103585 **Work Order:** 2104392

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2104392-001 C-1 DP1-11.0 03/31/2021 12:20 PM 04/28/2021 1:28 PM

Case Narrative

WO#: **2104392**Date: **5/5/2021**

CLIENT: Friedman & Bruya

Project: 103585

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2104392**

Date Reported: **5/5/2021**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

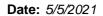
SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2104392**Date Reported: **5/5/2021**


Client: Friedman & Bruya Collection Date: 3/31/2021 12:20:00 PM

Project: 103585

Lab ID: 2104392-001 **Matrix:** Soil

Client Sample ID: C-1 DP1-11.0

Analyses	Result	RL	Qual	ual Units DF I		Date Analyzed
Sample Moisture (Percent Mo	oisture)			Batch	ı ID: Re	66978 Analyst: CJ
Percent Moisture	10.0	0.500		wt%	1	5/4/2021 9:17:29 AM
Hexavalent Chromium by EP	A Method 7196		Batch	n ID: 32	196 Analyst: LB	
Chromium, Hexavalent	ND	0.555	Н	mg/Kg-dry	1	5/5/2021 12:53:00 PM

Work Order: 2104392

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by EPA Method 7196

Project: 103585							Hexava	ent Chrom	ium by Er	'A Wetno	a /19
Sample ID: MB-32196	SampType: MBLK			Units: mg/Kg		Prep Date	e: 5/5/202	1	RunNo: 670	034	
Client ID: MBLKS	Batch ID: 32196					Analysis Date	e: 5/5/202	1	SeqNo: 13	50324	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.500									
Sample ID: LCS-32196	SampType: LCS			Units: mg/Kg		Prep Date	∋: 5/5/202	1	RunNo: 670	034	
Client ID: LCSS	Batch ID: 32196					Analysis Date	e: 5/5/202	1	SeqNo: 13	50325	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.19	0.500	2.500	0	87.6	86.5	114				
Sample ID: 2104305-001ADUP	SampType: DUP			Units: mg/Kg-	dry Prep Date: 5/5/2021		RunNo: 67034				
Client ID: BATCH	Batch ID: 32196					Analysis Date	e: 5/5/202	1	SeqNo: 13	50327	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.532						0		30	
Sample ID: 2104305-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 5/5/202	1	RunNo: 670	034	
Client ID: BATCH	Batch ID: 32196					Analysis Date	e: 5/5/202	1	SeqNo: 13	50328	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.53	0.522	2.611	0	96.9	6.79	138				
Sample ID: 2104305-001AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date	e: 5/5/202	1	RunNo: 670	034	
Client ID: BATCH	Batch ID: 32196					Analysis Date	e: 5/5/202	1	SeqNo: 13	50329	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.57	0.536	2.679	0	95.9	6.79	138	2.531	1.52	30	

Original Page 6 of 8

Sample Log-In Check List

Client Name: FB		Work Order Numb			
Lo	ogged by:	Carissa True	Date Received:	4/28/2021	1:28:00 PM
Cha	ain of Custo	ody			
		ustody complete?	Yes 🗸	No \square	Not Present
2.	How was the	sample delivered?	<u>FedEx</u>		
Log	ı İn				
_	Coolers are p	aresent?	Yes 🗸	No 🗆	na 🗆
ა.	Coolers are p	nesent:	163	NO L	IVA 🗀
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No \square	
5.		s present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present ✓
6.	Was an atten	npt made to cool the samples?	Yes 🗸	No 🗌	na 🗆
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes 🗸	No \square	NA 🗆
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗆	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗹	No 🗆	
10.	Are samples	properly preserved?	Yes 🗸	No 🗌	
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA 🗆
12	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🗹
		es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌	
		ork match bottle labels?	Yes 🗸	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes 🗹	No \square	
17.	Were all hold	ing times able to be met?	Yes	No 🗸	
<u>Spe</u>	ecial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No \square	NA 🗹
	Person	Notified: Date	е:		
	By Who	m: Via:	eMail Pho	one 🗌 Fax [In Person
	Regardi	ng:			
	Client In	structions:			
19.	Additional rer	narks:			
<u>Item</u>	<u>Information</u>				
		Item # Temp °C			

3.6

Sample 1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

SUBCONTRACTER

Page 8 of 8

													Received by:	1	Fax (206) 283-5044
1258	4/20/21		7	Fre		3	CV	Fre	Con in Bride is in	CUR	2	auch	Relinquished by:	2029	Seattle, WA 98119-2029 Ph. (206) 285-8282
OBOO AM	4/28/21	Bruya	an &	Friedman & Bruya				lahl	Michael Erdahl	Micha	1	non	Relimquistled by	Vest	3012 16th Avenue West
TIME	DATE	ANY	COMPANY			E	PRINT NAME	RINI	P		1	SIGNATURE		Inc.	Friedman & Bruya, Inc.
			-	+											
						×				~	Soil	1220	3/31/21		C-1 pp1-11,0
Notes	No					Hex Chrome	VPH	EPH	Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
		D	STE	REQUE	ANALYSES REQUESTED	ANA			3						
ons	☐ Will call with instructions	☐ Will call with in		5	E & C. S. E. C. S.		Gesult	тап 1	Please Email Kesults	Fle	a.com	dmanandbruy	merdahl@frie	-8282	Phone # (206) 285-8282 merdahl@friedmanandbruya.com
SAL	SAMPLE DISPOSAL Dispose after 30 days	SAN Dispose a		7						REMARKS	REA		Seattle, WA 98119	eattle.	City, State, ZIP_S
by:	Rush charges authorized by:	Rush charg		38	6-238		a	103585	10				3012 16th Ave W	012 16	Address 3
	TAT	Standard TAT		PO#	P			NO.	NAME	PROJECT NAME/NO.	PRC	Inc.	Friedman and Bruva, Inc.	riedma	Company F
TME	TURNAROUND TIME	TUR				+	Fremont						Michael Erdahl	Michael	Send Report To 1

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 6, 2021

Jacob Letts, Project Manager GeoEngineers 2101 4th Avenue, Suite 150 Seattle, WA 98121

Dear Mr Letts:

Included are the additional results from the testing of material submitted on March 31, 2021 from the Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585 project. There are 2 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures GNR0506R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 31, 2021 by Friedman & Bruya, Inc. from the GeoEngineers Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	GeoEngineers
103585 -01	C-1 DP4-3.5
103585 -02	C-1 DP4-5.0
103585 -03	C-1 DP4-7.0
103585 -04	C-1 DP3-4.0
103585 -05	C-1 DP3-7.0
103585 -06	C-1 DP3-033021w
103585 -07	C-1 DP5-3.0
103585 -08	C-1 DP5-6.0
103585 -09	C-1 DP15-4.0
103585 -10	C-1 DP15-7.0
103585 -11	C-1 DP14-5.0
103585 -12	C-1 DP14-10.0
103585 -13	C-1 DP13-2.0
103585 -14	C-1 DP13-5.0
103585 -15	C-1 DP13-033121w
103585 -16	C-1 DP14-033121w
103585 -17	C-1 DP8-4.5
103585 -18	C-1 DP8-9.0
103585 -19	C-1 DP9-3.0
103585 -20	C-1 DP9-7.5
103585 -21	C-1 DP10-4.0
103585 -22	C-1 DP11-4.0
103585 -23	C-1 DP2-5.0
103585 -24	C-1 DP2-11.0
103585 -25	C-1 DP1-3.5
103585 -26	C-1 DP1-11.0
103585 -27	C-1 DP2-033121w
103585 -28	C-1 DP7-4.0
103585 -29	C-1 DP7-9.0
103585 -30	C-1 DP12-3.0
103585 -31	C-1 DP12-8.0
103585 -32	C-1 DP6-3.0
103585 -33	C-1 DP6-6.0
103585 -34	Trip Blank 1
103585 -35	Trip Blank 2

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

<u>Laboratory ID</u>	<u>GeoEngineers</u>
103585 -36	Trip Blank 3
103585 -37	Trip Blank 4
103585 -38	Trip Blank 5

Sample C-1 DP1-11.0 was sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 I 6th Avenue West Friedman & Bruya, Inc. 1 C-1 D24-7.0 07 PAR 1-20 7 City, State, ZIP SCALL, MA 7814 Company GE Address 2101 4th Ave Switc 950 Report 16 OCO DPS-3,0 DP3-7.0 7715-4.0 DP15-7.0 DPS-6,0 DP3-033021w DP3-40 DP 4-3.5 Sample ID Received by: Relinquished by: Received by: Email The Ats O General news roject specific RLs? - Yes / No Relinquished by: 0 [-Y & y a 50 \sim \Diamond \sim 6 0 0 ک) 7A-F Ø 00 SS) Σ. W Lab ID 3 7-4-2430/2 Sampled Date 1350 9 1050 5 GY = 9 000 000 500 Sampled Time REMARKS Shononish PROJECT NAME SAMPLERS OF Amount Col Hampair Sample Type 90 \bigcirc ()S) Khai Horang (Sums) PRINT NAME 6 Ó 6 ō 和光点 Q # of Jars 9 6 5 5 σ NWTPH-Dx NWTPH-Gx BTEX EPA 8021 5530-014-01 NWTPH-HCID INVOICE TO × メ × ANALYSES ><VOCs EPA 8260 Samples received at PO# PAHs EPA 8270 FB 3 \times × メ PCBs EPA 8082 (RCRA 8) MUTAL COMPANY REQUESTED × × \prec \times (RCRAB)
Total meta
(RCRAB)
Dissolvel 1 SAMPLE DISPOSAL

O Archive samples \times Default: Dispose after 30 days Rush charges authorized by: X Standard turnaround TURNAROUND TIME 12/16/2 3/3//2/ . വ DATE Notes 80 TMIT.

~5

BIH, B

03-31-21

SAMPLE CHAIN OF CUSTODY

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 I6th Avenue West Friedman & Bruya, Inc. (-10P9-3,0 C-1089-75 C-1 DPB-9.0 CT P68-712 J-1 PP 13-033121 -1DP14-033/24W (() 0.5-81X DP14-5,0 200-11 전 R13-2.0 Sample ID Relinquished by: Received by: Received by: Relinquished by 8 ٦ \lesssim Lab ID 2 3 <u>۔</u> 7 59,5/3/31/21 これ Stades! Sampled Date 030 22 900 JAN JOSEPH <u>ට</u> ප 1500 Time Sampled 900 1570 446 S 3 (j) م ع Sample Type \cup 5 \bigcirc Key3 KHOI S PRINT NAME 9 Q 0 0 ō # of Jars 5 B T 4 Taktur 7 X NWTPH-Dx × \times × × \times NWTPH-Gx BTEX EPA 8021 NWTPH-HCID メ メ × Χ ኊ \times × VOCs EPA 8260 PAHs EPA 8270 Samples received at . FBI × \times × × PCBs EPA 8082 COMPANY M \prec 3/31/21 3/31/21 time on both widing Yeston vogs DATE ြ ငိ Notes 6.30 EMIL 16:30

SAMPLE CHAIN OF CUSTODY E 03-31-21

PROJECT NAME
PO #
INVOICE TO

Address

Company

City, State,

ZIP

Email

Project specific RLs? - Yes / No

Default: Dispose after 30 days

Rush charges authorized by:

SAMPLE DISPOSAL

SAMPLE DISPOSAL

Other

3° 1	Samples received at		THE PROPERTY AND ADDRESS OF THE PROPERTY OF TH	Amount the sy.
				
3/31/21 16:30	FBC	Kho! Horns	A. Carlo	9
3/51/21 16:30	6	Kary Arktin	t about	
DATE TIME	COMPANY	PRINT NAME	SIGNAPURA 	Friedman & Brwya, Inc Relinquished by
		XX	0h2 A	16-04-2-30-30
	× × ×	XX 9 S	1520	DF+-9.0
	X X	X X 9 S	28/15	0.H- E301
	~	X X 01 WB	27/13 1500	-10331121 w
	~	S 6 X X	(220)	CIDP1-11.0 126
	X	S 6 X X	1100	C-1 DP1-3.5 25
	*	XXg	17.6	C-1 DPZ-11.0 24
	X	S 6 X X	3 11000	1
4/27/21 ME	XXX	S 6 X X	0.50	C1 DV 11-4.0 22
• -peral	× × ×	XX 9 S	21/1/2/ 1000	0-4.0
Hey Chrome.	PCBs EPA 8082 RCRAB METALS TOTAL METAL DISS. METAL	Sample Type # of Jars NWTPH-Dx NWTPH-Gx	Lab ID Date Time Sampled Sampled	
	ANALYSES REQUESTED			
t. Dispose after 30 days	Default:	Project specific RLs? - Yes / No	Projec	PhoneEmail
SAMPLE DISPOSAL Archive samples	INVOICE TO S.	RKS	REMARKS	City, State, ZIP
Rush charges authorized by:	5530-014-01 Rush ch		7227	Address
Standard turnaround	PO# XStand	PROJECT NAME	PROJ	Company
		SAMPLERS (signature)	SAMI	Report To
1503/2 USL , NEW	DY 03-31-21 024,	SAMPLE CHAIN OF CUSTODY	SAMPI	(03585

PROJECT NAME	Fn. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	r reuman & bruya, inc.		en egen geografischen der stelle ergen erstelle der der der der der der der der der de	Trip Blanks	Tr.p.Blank 4	Trip Blank 3	1mp Blank 2	Tr.p Black 1	C-1 DPG-40	C7 DP6-30	C7 DP 17-80	Sample ID		Phone	Address	Company
Type # of Jairs PANALYSES REQUEST OSS30-014-07 Sample # of Jairs PANALYSES REQUEST NWTPH-Bx NWTPH-HCID NWTPH-	Received by:	Relinquished by:		Mater 41	7		X 98	27	35	35	1 '	33					Email	SON	
Samples recompany Samples recompany NWTPH-HCID ANALYSES REQUEST NWTPH-HCID ANALYSES REQUEST PAHs EPA 8270 PCBs EPA 8082 REQUEST NWTPH-HCID ANALYSES REQUEST PCBs EPA 8082			T	Z Ž	PRINT NAME	e described (Constanting Constanting Const					-	50:11 5- (8)	Soil 5 ®	S 6 X	Sample #of Jars Type Jars NWTPH-Dx	185/	Vo.	REMARKS	PROJECT NAME
	Samples received at		7) (7)	7		A MATERIAL CONTROL OF THE PROPERTY OF THE PROP					8	8	8	X	NWTPH-HCID	ANALYSES BROTTESTED	······································		

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 103585

Work Order Number: 2104392

May 05, 2021

Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 4/28/2021 for the analyses presented in the following report.

Hexavalent Chromium by EPA Method 7196 Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 103585 **Work Order:** 2104392

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2104392-001 C-1 DP1-11.0 03/31/2021 12:20 PM 04/28/2021 1:28 PM

Case Narrative

WO#: **2104392**Date: **5/5/2021**

CLIENT: Friedman & Bruya

Project: 103585

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2104392**

Date Reported: 5/5/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

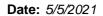
SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2104392**Date Reported: **5/5/2021**


Client: Friedman & Bruya Collection Date: 3/31/2021 12:20:00 PM

Project: 103585

Lab ID: 2104392-001 **Matrix:** Soil

Client Sample ID: C-1 DP1-11.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Sample Moisture (Percent Mo	oisture)			Batch	n ID: Re	66978 Analyst: CJ
Percent Moisture	10.0	0.500		wt%	1	5/4/2021 9:17:29 AM
Hexavalent Chromium by EP	A Method 7196			Batch	n ID: 32	196 Analyst: LB
Chromium, Hexavalent	ND	0.555	Н	mg/Kg-dry	1	5/5/2021 12:53:00 PM

Work Order: 2104392

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by EPA Method 7196

Project: 103585							Hexava	ient Chrom	ium by Er	'A Wetno	a /19
Sample ID: MB-32196	SampType: MBLK			Units: mg/Kg		Prep Date	e: 5/5/202	:1	RunNo: 670	034	
Client ID: MBLKS	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50324	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.500									
Sample ID: LCS-32196	SampType: LCS			Units: mg/Kg		Prep Date	e: 5/5/202		RunNo: 670	034	
Client ID: LCSS	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50325	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.19	0.500	2.500	0	87.6	86.5	114				
Sample ID: 2104305-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 5/5/202	.1	RunNo: 670	034	
Client ID: BATCH	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50327	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.532						0		30	
Sample ID: 2104305-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 5/5/202	<u></u> 1	RunNo: 670	034	
Client ID: BATCH	Batch ID: 32196					Analysis Date	e: 5/5/202	1	SeqNo: 13	50328	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.53	0.522	2.611	0	96.9	6.79	138				
Sample ID: 2104305-001AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date	e: 5/5/202		RunNo: 670	034	
Client ID: BATCH	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50329	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.57	0.536	2.679	0	95.9	6.79	138	2.531	1.52	30	

Original Page 6 of 8

Sample Log-In Check List

С	lient Name:	FB	Work Order Numb	er: 2104392	
Lo	ogged by:	Carissa True	Date Received:	4/28/2021	1:28:00 PM
Cha	ain of Custo	ody			
		ustody complete?	Yes 🗸	No \square	Not Present
2.	How was the	sample delivered?	<u>FedEx</u>		
Log	ı İn				
_	Coolers are p	oresent?	Yes 🗸	No 🗆	na 🗆
ა.	Coolers are p	nesen:	163	110	IVA 🗀
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No \square	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present ✓
6.	Was an atten	npt made to cool the samples?	Yes 🗸	No 🗌	na 🗆
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes 🗸	No \square	NA 🗆
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗆	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗹	No \square	
10.	Are samples	properly preserved?	Yes 🗸	No \square	
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA 🗆
12	Is there head	space in the VOA vials?	Yes	No 🗆	NA 🗹
		es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌	
		ork match bottle labels?	Yes 🗸	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes 🗹	No \square	
17.	Were all hold	ing times able to be met?	Yes	No 🗸	
<u>Spe</u>	ecial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No \square	NA 🗹
	Person	Notified: Date	е:		
	By Who	m: Via:	eMail Pho	ne 🗌 Fax [In Person
	Regardi	ng:			
	Client In	nstructions:			
19.	Additional rer	marks:			
<u>Item</u>	<u>Information</u>				
		Item # Temp °C			

3.6

Sample 1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

SUBCONTRACTER

Page 8 of 8

													Received by:	1	Fax (206) 283-5044
1258	4/20/21		7	Fre		3	CV	Fre	Con in Bride is in	CUR	2	auch	Relinquished by:	2029	Seattle, WA 98119-2029 Ph. (206) 285-8282
OBOO AM	4/28/21	Bruya	an &	Friedman & Bruya				lahl	Michael Erdahl	Micha	1	non	Relimquistled by	Vest	3012 16th Avenue West
TIME	DATE	ANY	COMPANY			E	PRINT NAME	RINI	P		1	SIGNATURE		Inc.	Friedman & Bruya, Inc.
			-	-											
						×				~	Soil	1220	3/31/21		C-1 pp1-11,0
Notes	No					Hex Chrome	VPH	EPH	Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
		D	STE	REQUE	ANALYSES REQUESTED	ANA			3						
ons	☐ Will call with instructions	☐ Will call with in		5	E & C. S. E. C. S.		Gesult	тап 1	Please Email Kesults	Fle	a.com	dmanandbruy	merdahl@frie	-8282	Phone # (206) 285-8282 merdahl@friedmanandbruya.com
SAL	SAMPLE DISPOSAL Dispose after 30 days	SAN Dispose a		7						REMARKS	REA		Seattle, WA 98119	eattle.	City, State, ZIP_S
by:	Rush charges authorized by:	Rush charg		38	6-238		a	103585	10				3012 16th Ave W	012 16	Address 3
	TAT	Standard TAT		PO#	P			NO.	NAME	PROJECT NAME/NO.	PRC	Inc.	Friedman and Bruva, Inc.	riedma	Company F
TME	TURNAROUND TIME	TUR				+	Fremont						Michael Erdahl	Michael	Send Report To 1

APPENDIX C Report Limitations and Guidelines for Use

APPENDIX C

REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geosciences practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of Snohomish County Airport, their authorized agents and regulatory agencies. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment or remedial action study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except the Snohomish County Airport should rely on this report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report Is Based on a Unique Set of Project-Specific Factors

This report applies to the C-1 Hangar and C-1 Building located at 3220 100th Street SW in Everett, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- Not prepared for you,
- Not prepared for your project,
- Not prepared for the specific site explored, or
- Completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

¹ Developed based on material provided by ASFE, The GeoProfessional Association; www.asfe.org.

Reliance Conditions for Third Parties

No third party may rely on the product of our services unless GeoEngineers agrees in advance, and in writing to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions.

Environmental Regulations Are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Subsurface Conditions Can Change

This report is based on conditions that existed at the time our site studies were performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes and slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Client desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk.

Geotechnical, Geologic and Environmental Reports Should Not Be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on Site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject Site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

APPENDIX D
Remedial Investigation Boring and Monitoring Well
Construction Logs and Groundwater Sampling Field Data

SOIL CLASSIFICATION CHART

	MAJOR DIVIS	IONS	SYM	B0LS	TYPICAL
	INJUK DIVISI		GRAPH	LETTER	DESCRIPTIONS
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
30123	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50%	SAND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND
	MORE THAN 50% OF COARSE FRACTION PASSING	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY
	HIGHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

2.4-inch I.D. split barrel / Dames & Moore (D&M)

Standard Penetration Test (SPT)

Shelby tube

Piston

Direct-Pusi

Direct-Push
Bulk or grab

Continuous Coring

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

"P" indicates sampler pushed using the weight of the drill rig.

"WOH" indicates sampler pushed using the weight of the hammer.

ADDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	cc	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SOD	Sod/Forest Duff
	TS	Topsoil

Groundwater Contact

Ţ

Measured groundwater level in exploration, well, or piezometer

Measured free product in well or piezometer

Graphic Log Contact

Distinct contact between soil strata

Approximate contact between soil strata

Material Description Contact

Contact between geologic units

____ Contact between soil of the same geologic

Laboratory / Field Tests

%F Percent fines %G Percent gravel AL Atterberg limits CA Chemical analysis

CP Laboratory compaction test

CS Consolidation test
DD Dry density
DS Direct shear
HA Hydrometer analysis
MC Moisture content

MD Moisture content and dry density

Mohs Mohs hardness scale OC Organic content

PM Permeability or hydraulic conductivity
Pl Plasticity index

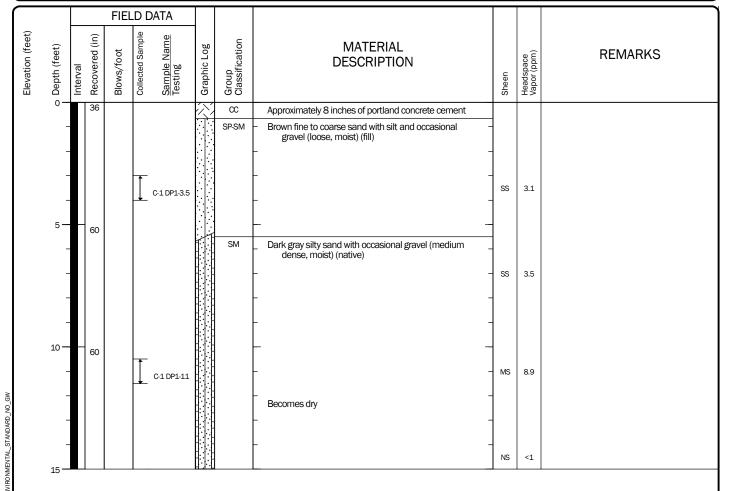
PL Point load test
PP Pocket penetrometer
SA Sieve analysis
TX Triaxial compression

UC Unconfined compression

UU Unconsolidated undrained triaxial compression

VS Vane shear

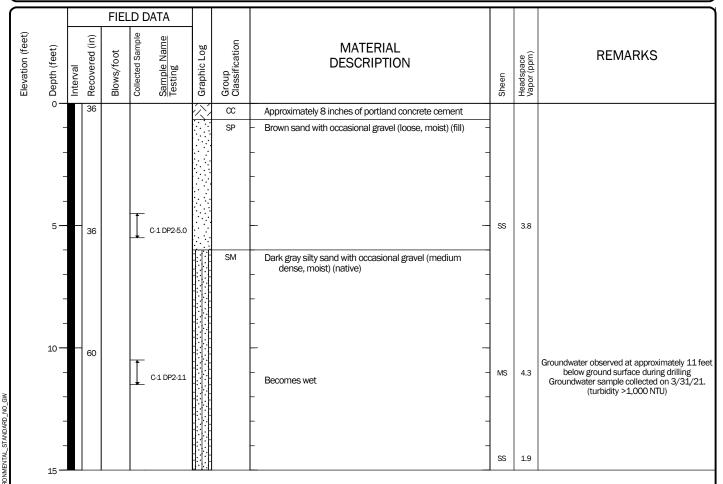
Sheen Classification


NS No Visible Sheen SS Slight Sheen MS Moderate Sheen HS Heavy Sheen

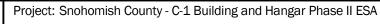
NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Key to Exploration Logs

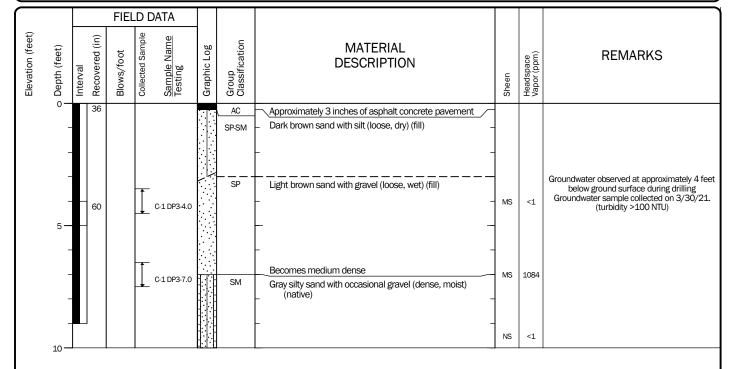
Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	15	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	r not observed at time of exploration
Notes:									


Log of Boring C-1 DP-1

Project: Snohomish County - C-1 Building and Hangar Phase II ESA


Project Location: Snohomish County, Washington

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	15	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			See "Remarl	ks" section for groundwater observed
Notes:									


GEOENGINEERS //

 $\label{thm:county} \textbf{Project Location: Snohomish County, Washington}$

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Depth (ft)	10	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			See "Remark	ks" section for groundwater observed
Notes:									

Log of Boring C-1 DP-3

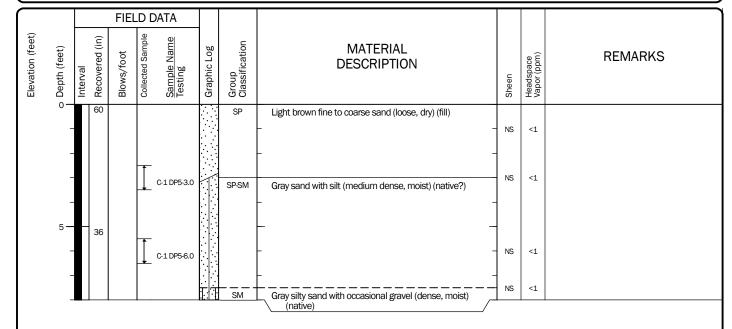
Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Depth (ft)	7	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

			FIEL	D DAT	TA]
Flevation (feet)		Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —					: [: :	AC	Approximately 4 inches of asphalt concrete pavement			
	-						SP-SM	Gray sand with silt and gravel (loose, dry) (fill?)			
	-	-						-			
	-			C-1	1 DP4-3.5				SS	<1	
	-			+			SP-SM	Brown sand with silt and gravel (loose, dry) (fill?)			
	5 —			C-1	1 DP4-5.0		SP	Gray-brown sand with silt (medium dense, moist) (fill?)	MS	3.7	
	-							-			
	-			\prod_{c_1}	1 DP4-7.0		SM	Dark gray silty sand with gravel (dense, moist) (native)	NS	<1	

GEOENGINEERS


Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-5 Sheet 1 of 1

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Depth (ft)	8	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

Log of Boring C-1 DP-5

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

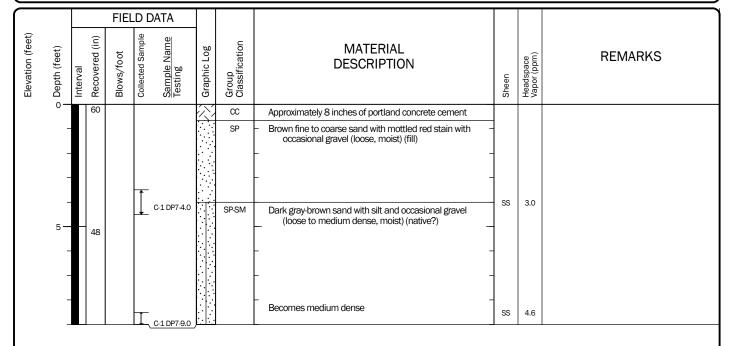
Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-6 Sheet 1 of 1

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Depth (ft)	9	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

			FIE	LD D	ATA						1
Flowering (foot)		Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0	60					CC	Approximately 12 inches of portland concrete cement			
							SP-SM	Brown sand with silt and occasional subrounded gravel (loose, dry) (fill)			
	_			<u> </u>	C-1 DP6-3.0			- - -	- NS	<1	
	5 —								NS	<1	
		48			C-1 DP6-6.0		SP-SM	Gray sand with silt and occasional angular gravel (medium dense, dry) (native) -	NS NS	<1	
									NS	<1	

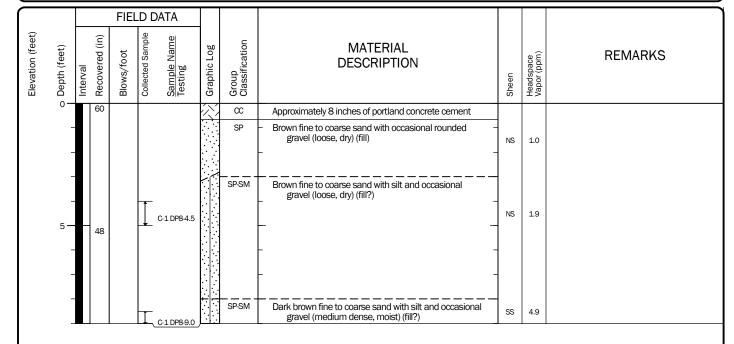


Log of Boring C-1 DP-6

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	9	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

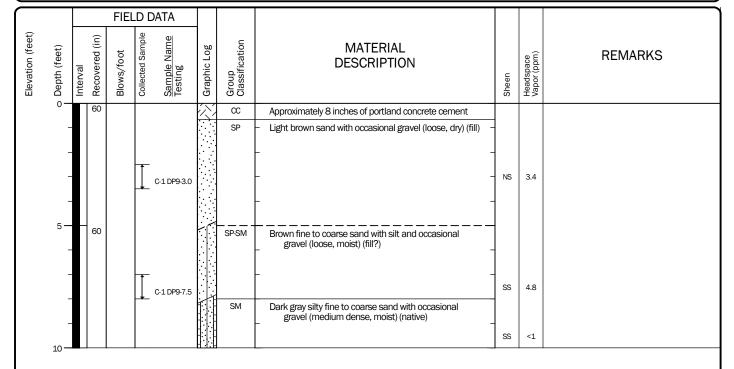


Log of Boring C-1 DP-7

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	9	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									



Log of Boring C-1 DP-8

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	10	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-10 Sheet 1 of 1

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	4	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

			FIE	D D	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	- -	48					CC SP-SM	Approximately 6 inches of portland concrete cement Brown fine to coarse sand with silt and occasional gravel (medium dense, dry) (fill)	SS	4.0	
	4			L,	C-1 DP10-4.0		SM	Dark gray silty fine to coarse sand with occasional gravel (medium dense, dry) (native)	SS	3.7	
1	4 -				7 - 2. 100			Desired to make the destruction of the African Indian			·

Boring terminated at approximately 4 feet below ground surface due to refusal on hard ground

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Boring C-1 DP-10

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

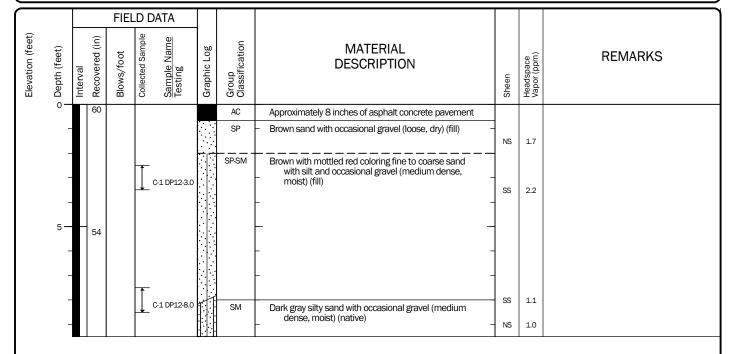
Project Number: 5530-014-01

Figure A-11 Sheet 1 of 1

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	4	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Direct-Push
Surface Elevation (ft) Vertical Datum		Undet	ermined		Hammer N/A			Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

		FIELD DATA					1				
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION		Headspace Vapor (ppm)	REMARKS
	0-						œ	Portland concrete cement			
	-	SPSM - Brown sal		SP-SM	Brown sand with silt (loose, dry) (fill)	NS	1.3				
	_						SP-SM	Brown sand with silt and occasional gravel (medium dense, moist) (fill)			
	4 -			L,	C-1 DP11-4.0				SS	2.6	

Log of Boring C-1 DP-11


Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-12 Sheet 1 of 1

Drilled	<u>Start</u> 3/31/2021	<u>End</u> 3/31/2021	Total Depth (ft)	9.5	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Elevation (ft) Vertical Datum		Undet	ermined		Hammer Data N/A			Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

Log of Boring C-1 DP-12

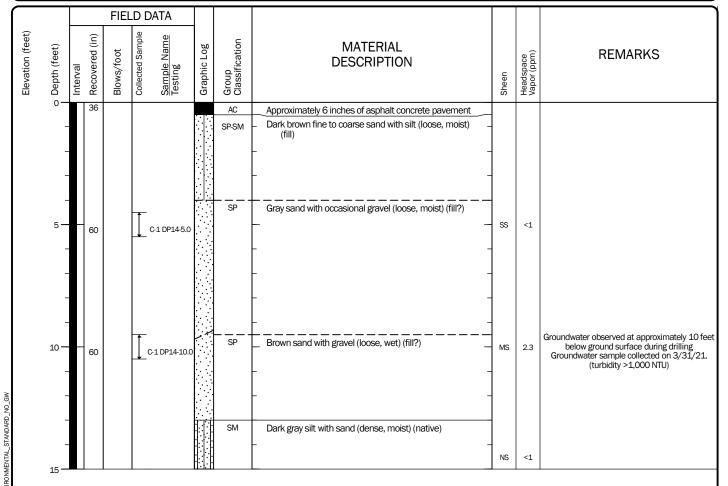

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-13 Sheet 1 of 1

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Depth (ft)	10	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Elevation (ft) Vertical Datum		Undet	ermined		Hammer Data N/A			Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			See "Remarl	ks" section for groundwater observed
Notes:									



Log of Boring C-1 DP-13

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

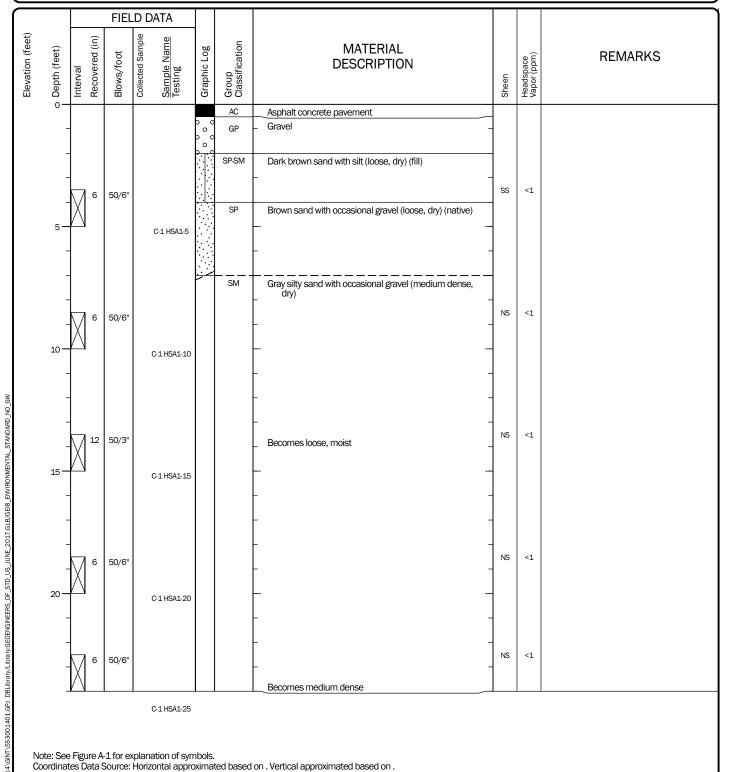
Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Depth (ft)	15	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			See "Remark	ks" section for groundwater observed
Notes:									

Project Location: Snohomish County, Washington

Drilled	<u>Start</u> 3/30/2021	<u>End</u> 3/30/2021	Total Depth (ft)	7	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Direct-Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data		N/A	Drilling Equipment	Geoprobe (7822DT)
Easting Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

		L		FIEI	D D	ATA]
Flowation (foot)			Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	(0	60				$\langle \cdot \rangle$	CC	Approximately 6 inches of portland concrete cement			
		-						SP-SM	 Brown silt with fine to coarse sand and occasional gravel (medium dense, moist) (fill) 			
		-							-			
		-							-			
		_				C-1 DP15-4.0			-	MS	218	
	Ę	5 —	24									
		_							-			
					Щ,	C-1 DP15-7.0				SS	1.9	

Log of Boring C-1 DP-15


Project: Snohomish County - C-1 Building and Hangar Phase II ESA

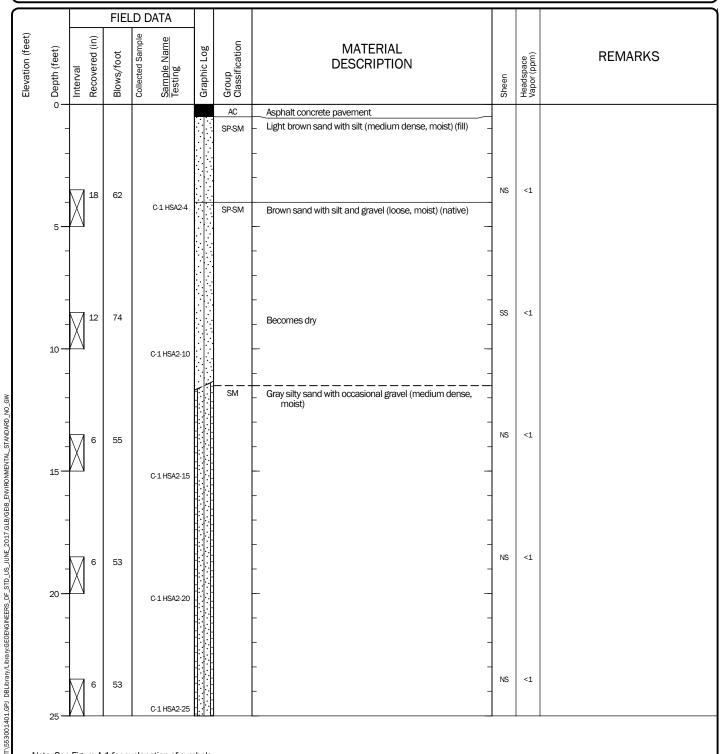
Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-16 Sheet 1 of 1

Drilled	<u>Start</u> 4/4/2022	<u>End</u> 4/4/2022	Total Depth (ft)	24	Logged By Checked By	KRA	Driller Holt Drilling		Drilling Method Hollow-stem Auger
Surface Vertical I	Elevation (ft) Datum	Undet	ermined		Hammer Data	140	Autohammer O (lbs) / 30 (in) Drop	Drilling Equipment	Truck-mounted
Easting (Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

Log of Boring C-1 HSA-1


Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

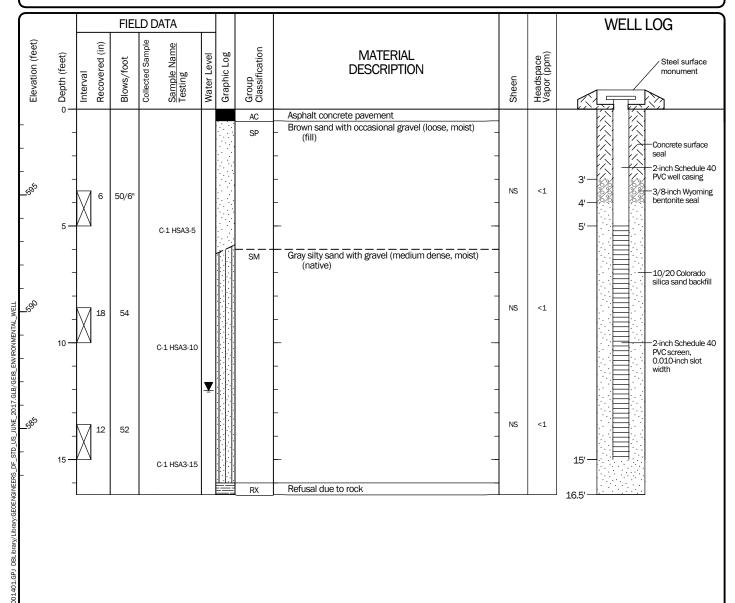
Project Number: 5530-014-01

Figure A-17 Sheet 1 of 1

Drilled	<u>Start</u> 4/4/2022	<u>End</u> 4/4/2022	Total Depth (ft)	25	Logged By Checked By	KRA	Driller Holt Drilling		Drilling Method Hollow-stem Auger
Surface Vertical I	Elevation (ft) Datum	Undet	ermined		Hammer Data	140	Autohammer O (lbs) / 30 (in) Drop	Drilling Equipment	Truck-mounted
Easting (Northing					System Datum			Groundwate	er not observed at time of exploration
Notes:									

Note: See Figure A-1 for explanation of symbols.

 ${\it Coordinates\ Data\ Source: Horizontal\ approximated\ based\ on\ .} Vertical\ approximated\ based\ on\ .$


Project: Snohomish County - C-1 Building and Hangar Phase II ESA

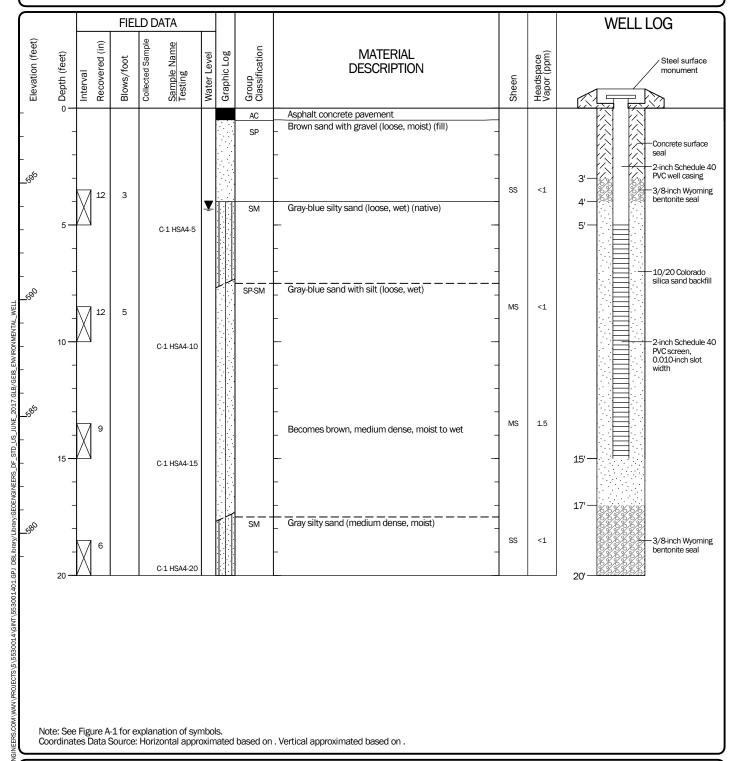
Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-18 Sheet 1 of 1

Start Drilled 4/4/2022	<u>End</u> 4/4/2022	Total Depth (ft)	16.5	Logged By Checked By	KRA	Driller Holt Drilling		Drilling Hollow-ste	m Auger
Hammer Data	Autohan 140 (lbs) / 30			Drilling Equipment		Truck-mounted	A 2-in well was i	nstalled on 4/5/2022 to	a depth of 15 ft.
Surface Elevation (ft) Vertical Datum		98.67 NVD88		Top of Casing Elevation (ft)		598.67	Groundwater	Depth to	
Easting (X) Northing (Y)				Horizontal Datum	WA	State Plane North NAD83 (feet)	<u>Date Measured</u> 4/21/2022	Water (ft) 12.04	Elevation (ft) 586.63
Notes:							'		

Log of Monitoring Well C-1 HSA-3


Project: C-1 Building and C-1 Hangar Supplemental Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-19 Sheet 1 of 1

Start Drilled 4/4/2022	<u>End</u> 4/4/2022	Total Depth (ft)	20	Logged By Checked By	KRA	Driller Holt Drilling		Drilling Method Hollow-ste	m Auger
Hammer Data	Autohan 140 (lbs) / 30			Drilling Equipment		Truck-mounted	A 2-in well was i	nstalled on 4/5/2022 to	a depth of 15 ft.
Surface Elevation (ft) Vertical Datum	_	98.2 NVD88		Top of Casing Elevation (ft)		598.20	Groundwater	Depth to	
Easting (X) Northing (Y)				Horizontal Datum	WA	State Plane North NAD83 (feet)	<u>Date Measured</u> 4/21/2022	Water (ft) 4.32	Elevation (ft) 593.88
Notes:									

Log of Monitoring Well C-1 HSA-4

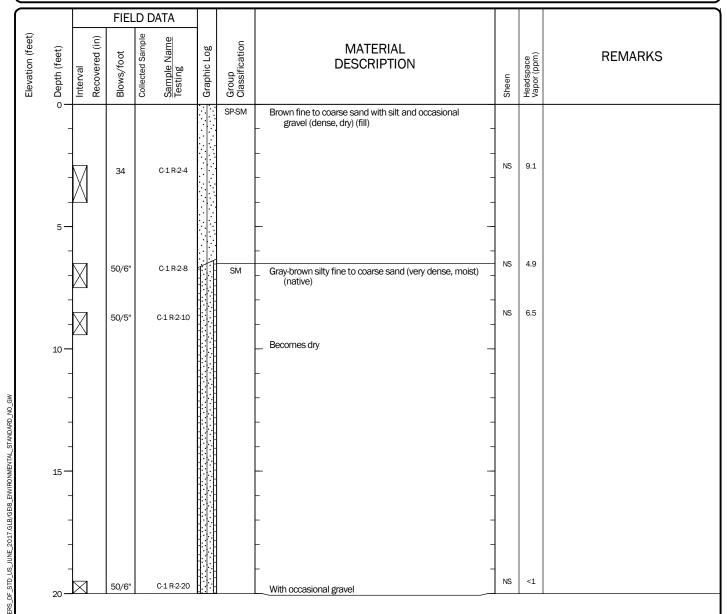
Project: C-1 Building and C-1 Hangar Supplemental Phase II ESA

Project Location: Snohomish County, Washington

Drilled	<u>Start</u> 12/19/2022	<u>End</u> 12/19/2022	Total Depth (ft)	10.5	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Hollow-stem Auger
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data	140	Autohammer O (lbs) / 30 (in) Drop	Drilling Equipment	Truck-mounted
Easting Northin					System Datum			Groundwate	r not observed at time of exploration
Notes:									

ſ				FIEL	D D	DATA						
	Elevation (feet)		Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
ı		0					\(\times\)	cc	Approximately 8 inches of portland concrete cement			
		-	√ 1	64		C-1 R-1-4		SP	Brown fine to coarse sand (very dense, moist) (fill)	NS	<1	
		5						SM	Dark gray-brown silty fine to coarse sand with occasional gravel (very dense, dry) (native)			
		-	\boxtimes	50/5"		C-1 R-1-8			- - -	NS	<1	
		10 —		50/6"		C-1 R1-10			Becomes moist	NS	<1	

Log of Boring C-1 RI-1


Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

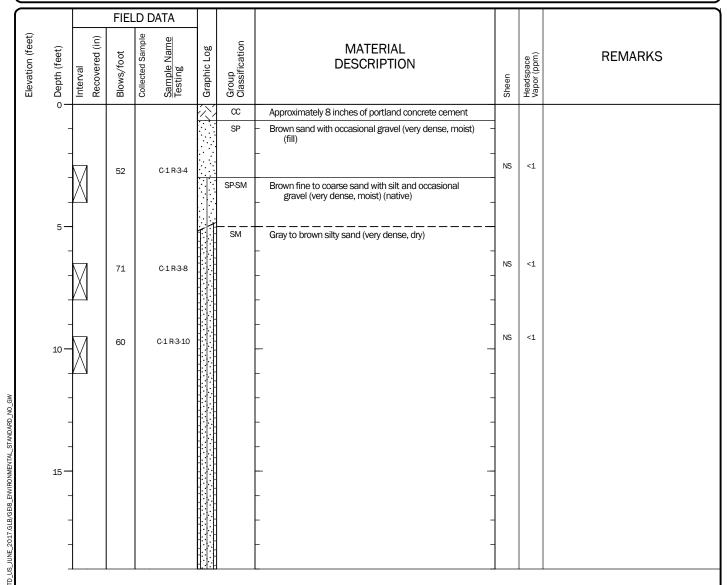
Project Number: 5530-014-01

Figure A-21 Sheet 1 of 1

Drilled	<u>Start</u> 12/19/2022	<u>End</u> 12/19/2022	Total Depth (ft)	20	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Hollow-stem Auger
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data	140	Autohammer O (lbs) / 30 (in) Drop	Drilling Equipment	Truck-mounted
Easting Northin					System Datum			Groundwate	er not observed at time of exploration
Notes:									

Note: See Figure A-1 for explanation of symbols.

 ${\it Coordinates Data Source: Horizontal approximated based on. Vertical approximated based on. } \\$


Project: Snohomish County - C-1 Building and Hangar Phase II ESA

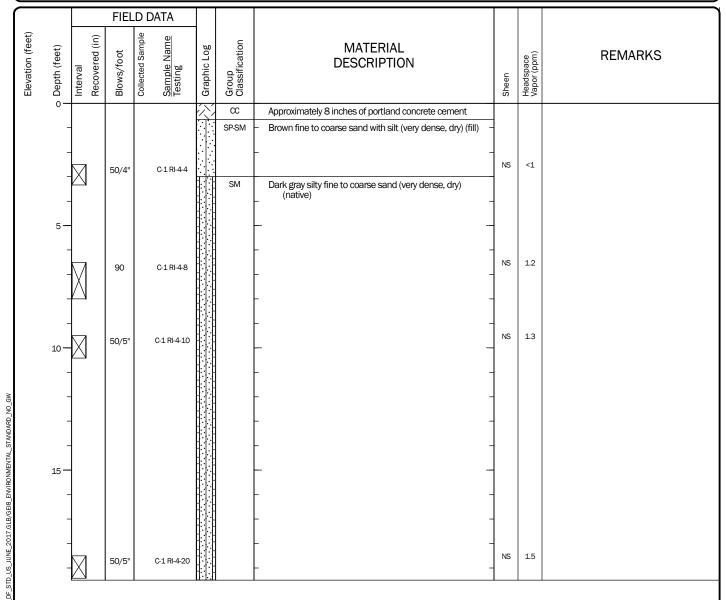
Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-22 Sheet 1 of 1

Drilled	<u>Start</u> 12/19/2022	<u>End</u> 12/19/2022	Total Depth (ft)	19	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Hollow-stem Auger
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data	140	Autohammer O (lbs) / 30 (in) Drop	Drilling Equipment	Truck-mounted
Easting Northin					System Datum			Groundwate	er not observed at time of exploration
Notes:									

Log of Boring C-1 RI-3


Project: Snohomish County - C-1 Building and Hangar Phase II ESA

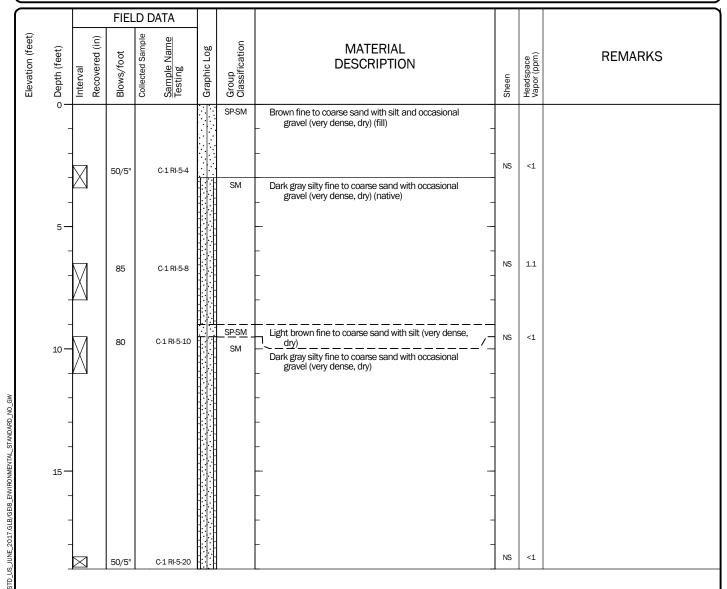
Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-23 Sheet 1 of 1

Drilled	<u>Start</u> 12/19/2022	<u>End</u> 12/19/2022	Total Depth (ft)	19.5	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Hollow-stem Auger
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data	14	Autohammer O (lbs) / 30 (in) Drop	Drilling Equipment	Truck-mounted
Easting Northin					System Datum			Groundwate	er not observed at time of exploration
Notes:									

Log of Boring C-1 RI-4


Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-24 Sheet 1 of 1

Drilled	<u>Start</u> 12/19/2022	<u>End</u> 12/19/2022	Total Depth (ft)	19	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Hollow-stem Auger
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data	140	Autohammer O (lbs) / 30 (in) Drop	Drilling Equipment	Truck-mounted
Easting Northin					System Datum			Groundwate	er not observed at time of exploration
Notes:									

Log of Boring C-1 RI-5

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Drilled	<u>Start</u> 12/20/2022	<u>End</u> 12/20/2022	Total Depth (ft)	9.5	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Hollow-stem Auger
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data	140	Autohammer O (lbs) / 30 (in) Drop	Drilling Equipment	Truck-mounted
Easting Northin					System Datum			Groundwate	r not observed at time of exploration
Notes:									

ĺ			FIEL	D D	ATA						1
		Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0					$\langle \hat{\chi} \rangle$	CC	Approximately 8 inches of portland concrete cement			
	-						SP	Brown fine to coarse sand with occasional gravel (dense, moist) (fill)			
	-		37		C-1 RI-6-4			-	- ss	121.5	
	5 -						SM	Gray to brown silty fine to coarse sand with occasional gravel (dense, moist) (native)			
	- - - -		85		C-1 RI-6-8			Becomes dark gray, very dense, dry	- NS	3.1	

Log of Boring C-1 RI-6

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Drilled	<u>Start</u> 12/20/2022	<u>End</u> 12/20/2022	Total Depth (ft)	9	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Hollow-stem Auger
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data	140	Autohammer O (lbs) / 30 (in) Drop	Drilling Equipment	Truck-mounted
Easting Northin					System Datum			Groundwate	er not observed at time of exploration
Notes:									

			FIEL	D C	DATA						1
		Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	٥٦					$\langle \cdot \rangle$	cc	Approximately 8 inches of portland concrete cement			
	- - -	\boxtimes	50/3"		C-1 RI-7-4		SP-SM	Brown fine to coarse sand with silt and occasional gravel (very dense, moist) (fill)	NS		
	5 —						SM SM	Brown silty fine to coarse sand with gravel (very dense, dry) Dark gray silty fine to coarse sand with occasional gravel (very dense, dry) (native)			
			50/5"		C-1 RI-7-8			Without gravel	SS	1.2	

Log of Boring C-1 RI-7

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-27 Sheet 1 of 1

Drilled	<u>Start</u> 12/20/2022	<u>End</u> 12/20/2022	Total Depth (ft)	9	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Hollow-stem Auger
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data	140	Autohammer O (lbs) / 30 (in) Drop	Drilling Equipment	Truck-mounted
Easting Northin					System Datum			Groundwate	er not observed at time of exploration
Notes:									

1			FIEL	D DA	ATA						1
	Elevation (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —		78		C1RI-84		SP-SM SM SM	Brown fine to coarse sand with silt and occasional gravel (very dense, dry) (fill) Brown-gray silty fine to coarse sand with occasional gravel (very dense, dry) Dark gray silty fine to coarse sand with occasional gravel (very dense, dry) (native)	SS	13.2	

Log of Boring C-1 RI-8

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

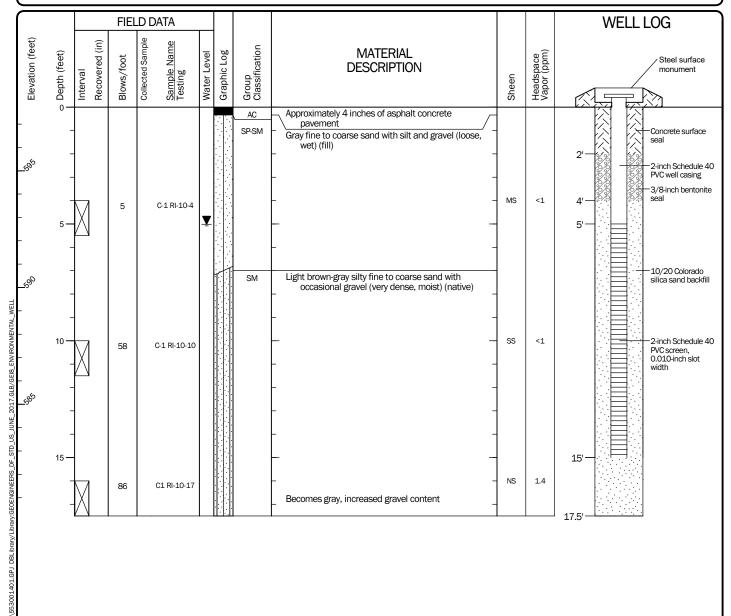
Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-28 Sheet 1 of 1

Drilled	<u>Start</u> 12/20/2022	<u>End</u> 12/20/2022	Total Depth (ft)	9.5	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Hollow-stem Auger
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data	140	Autohammer O (lbs) / 30 (in) Drop	Drilling Equipment	Truck-mounted
Easting Northin					System Datum			Groundwate	r not observed at time of exploration
Notes:									

ſ				FIEL	D D	ATA						1
	Elevation (feet) Depth (feet)	- 1	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0	Т					$\langle \cdot \rangle$	cc	Approximately 8 inches of portland concrete cement			
	5	-		43		C-1 RI-9-4		SP	Brown sand with gravel (dense, moist) (fill)	NS NS	<1	
			$\overline{\mathbf{A}}$	83		C-1 RI-9-8		SM	Brown silty fine to coarse sand with occasional gravel (very dense, moist) (native) -	NS NS	1.2	



Log of Boring C-1 RI-9

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Start Drilled 12/21/2022	End 12/21/2022	Total Depth (ft)	17.5	Logged By Checked By	KRA	Driller Holocene Drilling, Inc).	Drilling Hollow-ste	m Auger
Hammer Data	Autohan 140 (lbs) / 30			Drilling Equipment		Truck-mounted	A 2-in well was i	nstalled on 12/21/2022	2 to a depth of 15 ft.
Surface Elevation (ft) Vertical Datum		97.72 NVD88		Top of Casing Elevation (ft)		597.72	Groundwater	Depth to	
Easting (X) Northing (Y)				Horizontal Datum	WA	State Plane North NAD83 (feet)	<u>Date Measured</u> 1/9/2023	<u>Water (ft)</u> 5.01	Elevation (ft) 592.71
Notes:									

Log of Monitoring Well C-1 RI-10

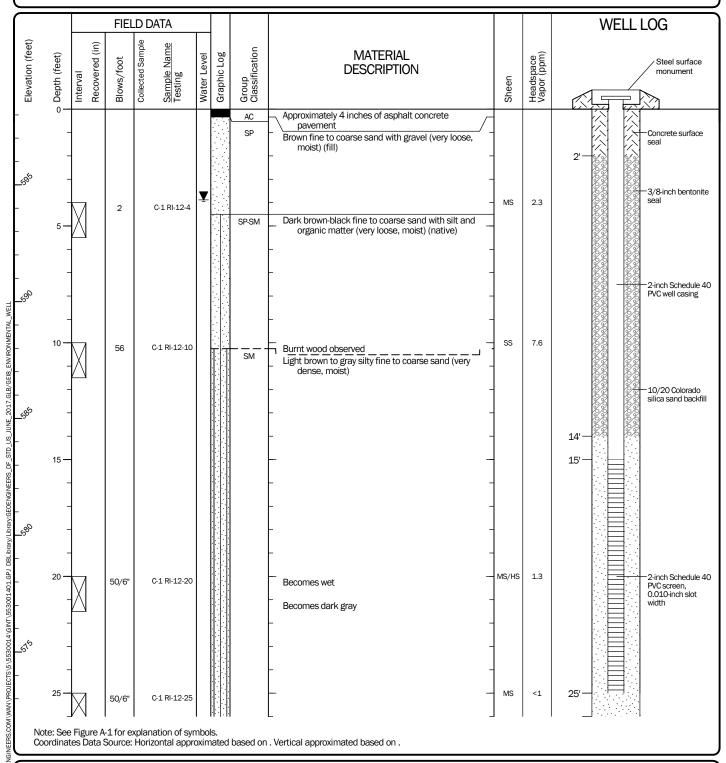
Project: C-1 Building and C-1 Hangar Remedial Investigation

Project Location: Snohomish County, Washington

Drilled	<u>Start</u> 12/21/2022	<u>End</u> 12/21/2022	Total Depth (ft)	4	Logged By Checked By	KRA	Driller Holocene Drilling, Inc.		Drilling Method Direct Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data	140	Autohammer O (lbs) / 30 (in) Drop	Drilling Equipment	Truck-mounted
Easting Northin					System Datum			Groundwate	r not observed at time of exploration
Notes:									

			FIEL	_D D/	ATA						1
Elevation (feet)	o Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	U						CC	Approximately 8 inches of portland concrete cement			
	-	36			C-1 RI-11-2		SP	Brown fine to coarse sand with gravel (loose, dry) (fill)	MS	<1	
	_						SP-SM	Brown fine to coarse sand with silt and gravel (medium dense, dry)			
				(C-1 RI-11-4				SS	2.4	

Log of Boring C-1 RI-11

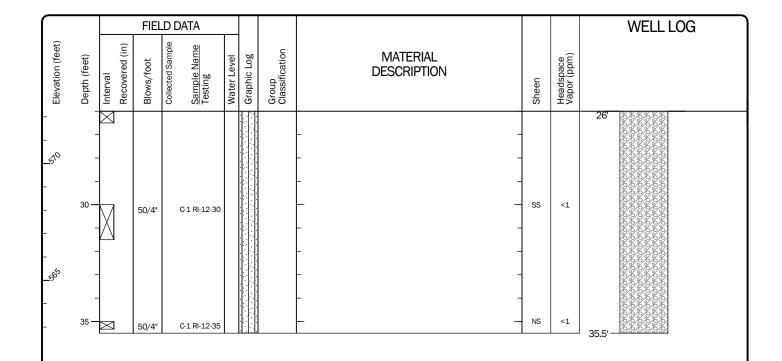

Project: Snohomish County - C-1 Building and Hangar Phase II ESA

Project Location: Snohomish County, Washington

Project Number: 5530-014-01

Figure A-31 Sheet 1 of 1

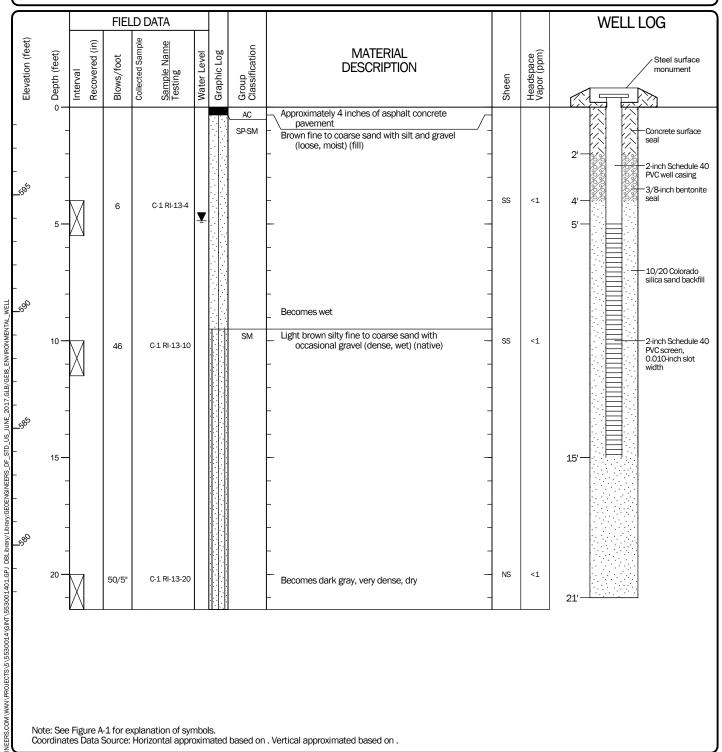
Start Drilled 12/20/2022	<u>End</u> 12/20/2022	Total Depth (ft)	35.5	Logged By Checked By	KRA	Driller Holocene Drilling, Inc		Drilling Method	Hollow-stem Aug	er
Hammer Data	Autohan 140 (lbs) / 30			Drilling Equipment		Truck-mounted	A 2-in well was i	nstalled on 12	2/20/2022 to a d	epth of 25 ft.
Surface Elevation (ft) Vertical Datum		98.24 VD88		Top of Casing Elevation (ft)		598.25	Groundwater		oth to	
Easting (X) Northing (Y)				Horizontal Datum	WA	State Plane North NAD83 (feet)	<u>Date Measured</u> 1/9/2023		<u>ter (ft)</u> .88	Elevation (ft) 594.37
Notes:										



Log of Monitoring Well C-1 RI-12

Project: C-1 Building and C-1 Hangar Remedial Investigation

Project Location: Snohomish County, Washington


Log of Monitoring Well C-1 RI-12 (continued)

Project: C-1 Building and C-1 Hangar Remedial Investigation

Project Location: Snohomish County, Washington

<u>Start</u> Drilled 12/21/2022	End 12/21/2022	Total Depth (ft)	21.5	Logged By Checked By	KRA	Driller Holocene Drilling, Inc).	Drilling Hollow-ste	m Auger
Hammer Data	Autohan 140 (lbs) / 30			Drilling Equipment		Truck-mounted	A 2-in well was i	nstalled on 12/21/2022	2 to a depth of 15 ft.
Surface Elevation (ft) Vertical Datum		98.75 VD88		Top of Casing Elevation (ft)		598.75	Groundwater	Depth to	
Easting (X) Northing (Y)				Horizontal Datum	WA	State Plane North NAD83 (feet)	<u>Date Measured</u> 1/10/2023	<u>Water (ft)</u> 4.86	Elevation (ft) 593.89
Notes:									

Log of Monitoring Well C-1 RI-13

 $\label{project: C-1 Building and C-1 Hangar Remedial Investigation } Project: \ \ C-1 \ Building \ and \ C-1 \ Hangar \ Remedial \ Investigation$

Project Location: Snohomish County, Washington

Project	PAE C-1 RI		Job No.	5530-014-02		Collector	KRA	-	SAMPLE ID:	C-1 HS/	4-3
1882					PURGE	DATA				- V	
	lition: Secure	() Yes [] No	Descri	be Damage	none	,				
	and and number)		0 0	2			-				Volume
Depth to V	Vater (from top o	-	6.2			- 2	-	Diameter	27%		Gal./
Depth to B	Base of Well	14.83		Height of Wa	ater Column	-8		(in.)	OD+	- ID	Linear F
Well Casir	ng Type/Diamete	r 211					_	2	2.375"	2.067"	0.17
One Casin		1,3 (3)				6	_	3	3.500"	3.068"	0.38
Purge Met		Pump (type)	Peristaltic	. 19	Bailer (type)	NA	_	4	4.500"	4.026"	0.66
Ballons Pu	urged 4	u gal						6	6.625"	6.065"	1.50
	inimum of 3 well ve							0.75	1.050"	0.810"	0.023
_	ter Storage/Dispo			n stori	age	Caraller III			t ^2*7.48 gal/ft^	$3 = gal/ft^3$	
Drum Ideni	tification, sample a	naiysis, sampi	e results, st			ear,n	o odor	Shoen			
		,	7		SAMPLIN	G DATA	501	red in			
	cted (mo/dy/yr)	01/1	1/2023	(1.11)		÷1			- 0	11.00	
	cation and Deptile NA	n Myblisc	High Tide	(10'695)		Low Tide at			Time Collected	11:00	4 с
Fidal Cycle	e ΝΑ (ξί pe (Groundwater	Product O	_	Groundwater		Low Tide at	-	- 47	vveatner	Sunn	4 450
		, Floduct, O	[X]P		Other						(75)
	Stainless Ste			Teflon		osable HDPI	E ſ	Other			
	econ Procedure			nd DI water rin		OSADIE HDEI	- [Other			
	escription (color,					Clear	- 12 d.D		nosheu	1	
						AMETERS	/ 0.0	1	708.000		
						AMETERS		т			7
					(*)			Dissolved	Specific V	~	
	Depth to Water (ft bTOC)	Flow Rate	Purge Volume	Temperature	Turbidity	ORP	, nu	O2 V	Conductance	TDS (Salinity
Time	+/-0.3ft	(L/min)	(Gallons)	(F) +/-3%	(NTU) +/-19%	(mV) +/- 10 eV	pH +/- 0.1	(ppm) +/-10%	(us/cm) +/-3%	(mg/l)	(ppt)
0940	6,28	<0.5	0.3	50.6	11.1	168.0	7.08	1.39	1032	670	10.51
0945	6.31	20.5	0,6	50,6	20.5	1533	7.53	1,36	1055	688	0.52
0950	6.43		0,1	50.7	25.7	149,2	7.15	1,35	1070	696	0.53
0955	6.57		1,2	51,2	20.8	142.2	7.81	1.29	1078	701	0.53
1000	6.70		1,5	51.6	19.3	136.8	7,93	1,26	1086	707	0.54
1005	6,91		1.8	51.4	22.4	131,4	7,94	1,20	1109	721	0,55
1010	7.04		2.1	51.3	20.1	129,3	7.95	1.13	1143	743	0.57
1015	7,21		2.4	51.2	28,4	126.7	7.96	1.05	1155	751	0.58
1020	7.31		2.7	51. 1	23.1	123.3	7.97	(8,0	1144	744	0.57
1025	7.44		3,0	51.0	20.9	120.9	7.96	0.62	1149	748	0.57
1030	7.50		3.3	51.2	24.3	118.3	7.96	0.69	1142	739	0,56
1035	7.52	1	3.6	51.3	21.4	116.6	7.96	0.77	1130	734	0.56
1040	7.60	A	3.9	51.4	20.2	115.8	7.96	0.72	1134	738	0,56
	ed for Measurem	nent		10+, Hae		ape	-			758	10.100
	O Instrument Ca		[X] Yes	[] No		ophotometer	NA		E-Tape	wht	R FEI
1, 30.1.,0		77. 200	[] 100				-	-		venta	1-61
Commiss C	Composited Over	timo Distan	20		HONAL II	NFORMATI	UN				MAN W
-	Composited Over Number and Vol			NA	7.	-					1,000
ananyses,	ivumber and vol	urrie of Sam	Die Contain	eis	7x						I DE SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF TH
Tunlicato 9	Sample Number((e)			1 7					12.11.21	10 -0
-	s: (Filtered, Not l		culations of	tc)		dissolv	~ 1 1000	4.1.			7.00
	5. (FINGREU, 1901)	i iileieu, Call	Julations, E	10.)	FF.	215500	ca me	Tour .	814 000	THE EVE	p 10
	9/2230	1		1000 Julius II.							76 7
Signature		lat.	1			Date	1/10	23	Page	1 0	
•	ditional information	on back i	J			-		V 3			7831 21
eck if ad	ditional information	on back []									

*Well is placed in parking lot That was de-iced during the last snow iceEDENGINEERS D

Project	PAE C-1 RI		Job No.	5530-014-02		Collector	KRA		SAMPLE ID:	C-1 HSA	+-4
			-/11		PURGE	DATA	Cha Si	r in	r - weign	1	
	dition: Secure [] No	Descri	ibe Damage	None	water	himme	ment, be	w pu	10
	Vater (from top o		1 427				The same				Volume
	Base of Well			Height of Wa	ater Column	1 ~ 10		Diameter (in.)	OD	ID	Gal./ Linear Ft
	ng Type/Diamete		100			1.0		2	2.375"	2.067"	0.17
	ng Volume (gal.)	1.700	R (3	Sv = 5.19a	()			3	3.500"	3.068"	0.38
Purge Met	thod	Pump (type)	Peristaltic		Bailer (type)	NA		4	4.500"	4.026"	0.66
Gallons P	urged 3.5 9		alki, në					6	6.625"	6.065"	1.50
	ninimum of 3 well v					LOUIS ACT		0.75	1.050"	0.810"	0.023
	ter Storage/Disp		The second secon					V = pi*r in f	t ^2*7.48 gal/ft^	3 = gal/ft^3	
(Drum iden	tification, sample a	nalysis, sampi	le results, sto	orage location, e	-	N					
		Total Control	A STATE OF THE STA		SAMPLIN	G DATA	A- 1				
	ected (mo/dy/yr) o								Time Callantad	13:30	
Tidal Cycl	ocation and Dept e NA M			at —	CONTROL I	Low Tide at			Time Collected	Tainy,	ch.e
	pe (Groundwate					LOW FIGE AL			vveatilei	Tainy,	30 1-
	ollected with						1 Too 1 Too	Vojes de la			
Made of	[] Stainless Ste	eel []P	vc [] Teflon	[X]Disp	osable HDP	E	Other	**************************************		WHE
	Decon Procedure			nd DI water rin			77.5				
Sample D	escription (color,	free product	thickness,	odor, turbidity	, etc.)	Clea	r, odo	reis, r	vo sheem		TOX.
	V			F	ELD PAR	AMETERS		17.574	Wall Box	13168	
Time	Depth to Water (ft bTOC) +/-0.3ft	Flow Rate	Purge Volume (Gallons)	Temperature (F) +/-3%	Turbidity (NTU) +/-10%	ORP (mV) +/- 10 eV	pH +/- 0.1	Dissolved O2 (ppm) +/-10%	Specific Conductance (us/cm) +/-3%	TDS (mg/l)	Salinity (ppt)
Time		<0.5	0.3	54.1							0.34
1225	5.13	10.9	0.3	54.1	15.4	-41.8	6.58	0.35	686	446.1	0.34
1230	5.21	1	0.9	54,2	5.44	-54.4	657	0.17	687	446.3	0.34
1235	5, 23		1.2	54.2	4.83	-62.5	6.57	0.14	687	4464	0.34
1240	5,25		1.5	54.3	-	-68.3	656	0.14	F89	446.5	0.34
1245	5,30		1.9	54.4	_	-70.1	6.56	0.13	889	447.1	0.34
1250	5.31		2.2	53.6		-71.4	6.55	0.12	689	4477	0.37
1255	5,30		2.6	52,9		-72,1	6.56	0.12	688	447,6	0.34
1300	5,31		2.9	52.9	_	- 734	6.56	0.11	689	443.6	034
1305	5,33		3.2	52.8		-74,7	6.57	012	688	417.5	0.34
1310	5.35	V	3.5	52.7	-	-76.8	6.57	011	688	447.5	034
1315					41						
1320		L.:	14 6 2 6	2 11 15	7 1-1		1,				
	ed for Measuren				Turb,	amb at c == =1 =	. NIA		Г.Т	h 0 0 l	0
pH/Con./L	O Instrument Ca	alioration	[X] Yes	[] No		ophotometer			E-Tape	hento	7
				1000	TIONAL II	VFORMATI	ON			- 3	
	Composited Over Number and Vol			NA ers	71						
Duplicate	Sample Number	(s)	_							1 = -	
	s: (Filtered, Not		culations, e	tc.)	FF o	lise m	etals				
1.2		2 9 6	-, -			- Fox 4.72				-	
TIMUL 4	N	100						1		7 1	Hill
Signature	400	M / 11		11111		Date	1/9/	123	Page	l of	
Chook if ad	Iditional information	an book (-			

	PAE C-1 RI -	100	- 173 - 181	5530-014-02	PURGE	Collector	-287-412	ALL TRANSPORT	SAMPLE ID:		
Mall Cana	lition: Secure [N/on I	1.616	D		-				10/	0
	rand and number)	vy res [] No	Descri	be Damage	none	- nater	in monu	menta 60	stomu	Contact.
	Vater (from top o	f well easing	· 601	i.			- Nout	-0116 W	men our juice	24	Volume
							- 1 " - 1	Diameter			Gal./
		14.20,1		Height of Wa	iter Column	29.51		(in.)	OD ·	ID	Linear F
	ng Type/Diamete							2	2.375"	2.067"	0.17
	ng Volume (gal.)			= 4.8 gal)		1233	3	3.500"	3.068"	0.38
urge Met		Pump (type)	Peristaltic	- É	Bailer (type)	NA		4	4.500"	4.026"	0.66
allons P		gal				16 - 1		6	6.625"	6.065"	1.50
	ninimum of 3 well ve				. \			0.75	1.050"	0.810"	0.023
	ter Storage/Dispetification, sample a							v = pi rin i	t ^2*7.48 gal/ft^	S = yai/ir S	
num iden	uncation, sample a	narysis, samp	resuns, sit			CDATA			Car market	_	
. 0 "					SAMPLIN	GDATA					
	ected (mo/dy/yr)	1/9/2		()	- 4- \				Time Collected	11:30	
idal Cycl	ocation and Dept e NA [V	i gw	Migh Tide		0 695)	Low Tide at	·	•			
	e NA (4) pe (Groundwater	Product O	-	Groundwater		LOW HUE A			** Gaulei	grence	~37
		Bailer	[X]P		Other						
	[] Stainless Ste] Teflon		osable HDP	F [Other			
	Decon Procedure			nd DI water rin				-			_
	escription (color,					-clear.	no od	0-(*5)	lightshee	inpur	e washe
A COLUMN			100			AMETERS			0	k in voas	010 00
		r			LED FAR	I	T	1			
	Donth to Water		Duran	Tampana	Turbidity	ORP	/	Dissolved O2	Specific Conductance	-	
	Depth to Water (ft bTOC)	Flow Rate	Purge Volume	Temperature (F)	(NTU)	(mV)	pH	(ppm)	(us/cm)	TDS	Salinity
Time	+/-0.3ft	(L/min)	(Gallons)	+/-3%	+/-10%	+/- 10 eV	+/- 0.1	+/-10%	+/-3%	(mg/l)	(ppt)
1030	5.01	<0.5	0.5	52.9	64.4	-97.0	660	0.61	702	457.0	0.34
1035	5,02		0.8	52.4	85.4	-108.3	6.61	0.43	702	456.3	0.34
1040	5.03		1.1	52.0	84,3	-117.3	6.63	0.27	702	456.0	0.34
1045	5.17		1.3	51.6	71.1	-1034	6.63	0.57	694	453,1	0,34
1050	5.23		1.4	51.4	65.3	-98.7	6.63	0.87	686	446.2	0.34
1055	5.31		1.9	51.3	52.4	-80.3	6.61	0.98	681	4423	0.34
1100	5,34		2.1	81.4	47.3	-56.1	6.60	1.47	679	4399	0.33
1105	5.49		2.5	5114	38.9	-49.1	6,59	2,39	676	439.4	0,33
1110	5,50		2,8	51.5	25.7	-34.4	6.57	2.51	675	439.1	0.33
	5.53		3.1	51.6	24.4	-29.3	6.57	2.87	674	38.3	0.33
1112	5.58		3.4	51.7	16.3	-28.1	6.56	3.10	674	4380	0.33
1112	5.56		3.7	51.5	13.7	-26.0	656	3.21	674	437,4	0.33
The second second second		V	4.1	51.2	11.7	-24.1	6.57	3.18	673	437.0	0,33
1120	5.57	· ·			2100Q	OFRA	Cres	stal 4 p	recalib	atel V	9/23)
1125		nent	951 P	O. HACH	- ZIOUQ	1 4 7 7 9 9 9 9					0
1125 1130 1eters Us	5.57		95) Pi [X] Yes	[] No		ophotomete	NA	THE RELEASE	E-Tape	renta	-
1125 1130 1eters Us	S.57 sed for Measuren			[] No	Spectro				E-Tape	renta	_
1125 1130 Meters Us H/Con./D	5.57 sed for Measuren OO Instrument Ca	alibration	[X] Yes	[] No	Spectro	ophotometer NFORMAT			E-Tape	renta	
1125 1130 Meters Us H/Con./E	5.57 sed for Measuren OO Instrument Ca	alibration rtime, Distan	[X] Yes	[] No ADDI	Spectro TIONAL IN				E-Tape	renta	
1120 1125 1130 Meters Us H/Con./E	5.57 sed for Measuren OO Instrument Ca	alibration rtime, Distan	[X] Yes	[] No ADDI	Spectro				Е-Таре	renta	
It20 It25 It30 Meters Us bH/Con./E	5.57 sed for Measuren OO Instrument Ca	alibration rtime, Distan lume of Sam	[X] Yes	NA ers	Spectro TIONAL IN	FORMAT		23 12+0		renta	
III 25 II 25 II 30 Meters Us H/Con./E Gamples (Analyses,	5.57 sed for Measuren OO Instrument Ca Composited Over Number and Vol	rtime, Distan lume of Sam	[X] Yes ce ple Contain	No ADD NA ers P - 1 - Z0230	Spectro	FORMAT	(C 1/9/	23 12;00		renta	
II20 II25 II30 Meters Us H/Con./E Gamples (analyses,	5.57 sed for Measuren OO Instrument Ca Composited Over Number and Vol Sample Number	rtime, Distan lume of Sam	[X] Yes ce ple Contain	No ADD NA ers P - 1 - Z0230	Spectro	FORMAT	(C 1/9/	23 12÷00		renta	
IIZO IIZO IIZO IIZO IIZO IIZO IIZO IIZO	5.57 sed for Measuren OO Instrument Ca Composited Over Number and Vol Sample Number s: (Filtered, Not	rtime, Distan lume of Sam	[X] Yes ce ple Contain	No ADD NA ers P - 1 - Z0230	Spectro	FORMAT	@ 1/9/				

Project	PAE C-1 RI		Job No.	5530-014-02		Collector	r KRA	Yo	SAMPLE ID:	C-1 R	[-12
		aculti. Th			PURGE	DATA					
	lition: Secure [] Yes [] No	Descri	be Damage						- 15
	and and number)						_				I Volumo
Depth to V	Vater (from top o	f well casing	3.88				_	Diameter	,		Volume Gal./
Depth to B	Base of Well	24.551		Height of Wa		21'	-	(in.)	OD-	- ID	Linear Ft
Well Casir	ng Type/Diamete	1(211) 3.5 9	al (3	wy = 10,7	ne)	-2742		2	2.375"	2.067"	0.17
	ng Volume (gal.)	10	100					3	3.500"	3.068"	0.38
Purge Met	thod	Pump (type)	Peristaltic		Bailer (type)	NA		4	4.500"	4.026"	0.66
Gallons Pu		.4 a	al		1-17-17	7	_	6	6.625"	6.065"	. 1.50
	ninimum of 3 well ve		A CONTRACTOR OF THE PARTY OF TH					0.75	1.050"	0.810"	0.023
	ter Storage/Dispo							V = pi*r in f	t ^2*7.48 gal/ft^	$3 = gal/ft^3$	1720
Drum laeni	tification, sample a	naiysis, samp	ie resuits, st	orage location, e						4	
					SAMPLIN	G DATA				7.70	1
	ected (mo/dy/yr)		2023		- (1) -	-			Time Callantad	13:30)
	ocation and Depti	m	High Tide		20, 222	Low Tide at		4	Time Collected		
Fidal Cycle Sample tvi	e	Product O		Groundwater	Mg. I	Low Tide a			vveauier	Junha	20.1-
CONTRACTOR OF THE PARTY OF THE		Bailer	[X]P		Other				7	U	1480
	[] Stainless Ste] Teflon		osable HDP	E (Other	*		7 "
711 042 101	econ Procedure			nd DI water rin							
	escription (color,							1.17	T-21-		
				F	ELD PAR	AMETERS			4.10		77
-					LLDTAIL	T	100	T		DEST	
	Depth to Water		Purge	Temperature	Turbidity	ORP		Dissolved O2	Specific Conductance	T. T. W.	1.34
	(ft bTOC)	Flow Rate	Volume	(F)	(NTU)	(mV)	рН	(ppm)	(us/cm)	TDS	Salinity
Time	+/-0.3ft	(L/min)	(Gallons)	+/-3%	+/-10%	+/- 10 eV	+/- 0.1	+/-10%	+/-3%	(mg/l)	(ppt)
1205	3.84	L0.5	6.3	54.5	30.4	61.5	7.40	0.7a	920	598	0.46
1210	4.15	2.2	F.0	54.8	-	59.4	7138	0.72	920	598	0,46
1215	4.41		1,1	55,1	_	48.2	7.34	0.72	919	598	046
1220	4.82		1.5	55,3	_	41.8	7.31	0.71	419	598	0.46
1225	5 . 24	Single	9.0	55.8	21.8	334	7.29	0.71	919	597	10.46
1230	5,37	188	2.3	56.5	_	24.6	7.29	0.28	919	598	0.46
1235	5.77		2.6	56,0		-147	7.27	0,27	919	597	0.46
1240	6.19	W	2.9	567		-30,3	7.24	0.25	919	597	0.46
1245	6.43	10.4	3.3	56.9	17.1	-40.4	7.22	0.22	919	597	0.46
1250	6.74	11.1	3.6	57.4	11.4	-44.9	7.16	0.22	919	598	0.46
1255	6.81		3.9	57.6	5,45	-48.3	7.16	0.23	918	597	0.45
1300	7.13		4.1	57.7	4.13	-50.1	7.15	0.22	917	596	aui
1305	7.31	V	4.4	57.8		-52.5	7.15	7.18%	916	595	0.45
	ed for Measuren										
H/Con./D	O Instrument Ca	alibration	[X] Yes	[] No		ophotomete			E-Tape	rentai	
	m, sa isu			ADDI	TIONAL II	NFORMAT	ION			1 5 2 1 1 1	
	Composited Over			NA							2019
Analyses,	Number and Vol	ume of Sam	ple Contain	ers	7 _×						11 199
27/200									100		1 -1 -0
AP. T. LEWIS	Sample Number						, ,		11 - 11		7,00
Comments	s: (Filtered, Not	⊢iltered, Cal	culations, e	tc.)	FF	x d151	olvedu	reforly			
	A STATE OF THE STA	A	7								
Signature.	1	1	1.1			D-4-	1.1	1 2	Daga	1 -	£ 2
Signature	- 40	My.	J			Date	1/10/	25	Page	- 10	f 2
heck if ad	lditional information	on batck t	1								

Project	PAE C-1 RI	Ti .		Job No. <u>5530-014-0</u> 2		Collector	KRA	SAMPLE ID:	SAMPLE ID: C-1 RI-12		
				FI	ELD PARA	METERS	-			- Gyg	- Property
Time	Depth to Water (ft bTOC)	Flow Rate (L/min)	Purge Volume (Gallons)	Temperature (F)	Turbidity (NTU)	ORP (mV)	рН	Dissolved O2 (ppm)	Specific Conductance ()	TDS (g/l)	Salinity (ppt)
1310	7.41 8.07 8.13	20.5	4.7	57.9	_	-58.3	7.13	0,54	915	595	0.45
1315	8:07		5.1	579]	-60.0	7:13	0.20	911	592	74.6
1320	8.13	V	5.4	57.1		-63.4	7.11	0.13	909'	591	0.45
					- 1.	MA					
						9					11 970/1100
									.	1	1 1 1 1 1 1
										- 3	100 HE H
										1	ALILIATURA COL
											100
					j-4						
											Hart.
			Total Control	4.54-37				250			=1770
											- 44
					I SAVE				Y		101-
	111										
	3,000										1 43
	-										791
								V			40059
		1154	17								7025
	-					-					
	-										- 151
									· · · · · · · · · · · · · · · · · · ·		
	1924										100
											1 8
		-									
				k .				-0"			
											1 1 1
											1 1
				6				. v-			8
						-					1510
										1	
107						 	1			1-1-1-	111111
						—		er verry		1	- 128

Page 2 of Z

Project	PAE C-1 RI		Job No.	5530-014-02	11.00	Collecto	r KRA	_	SAMPLE ID:	C-1 R1	- 13
			-30		PURGE	DATA	anu,				
	dition: Secure [rand and number)	Yes [] No	Descr	ibe Damage	none	,		220		220
Depth to V	Nater (from top o	of well casing	1.86						,		Volume
Depth to E	Base of Well	14,5	_	Height of W	ater Column	WID		Diameter (in.)	OD T	ID	Gal./ Linear Ft
Well Casi	ng Type/Diamete					s di Wasy		2	2.375"	2.067"	0.17
One Casir	ng Volume (gal.)	1.70		3NV= 5	(gre)			3	3.500"	3.068"	0.38
Purge Me		Pump (type)	Peristaltic		Baller (type)	NA	1	4	4.500"	4.026"	0.66
Gallons P		3,1	gal	-A1-1-12 -1				6	6.625"	6.065"	1.50
	ninimum of 3 well vo tter Storage/Disp	_		resur di	num s	taono		0.75	1.050" t ^2*7.48 gal/ft^	0.810"	0.023
	tification, sample a			436		1000		v = prrmi	1/2 7.46 yai/it	S = gai/IrS	
					SAMPLIN	G DATA					
Date Colle	ected (mo/dy/yr)	1/10/	2073					-			II.
	ocation and Dept		sover		2				Time Collected	15:0	6
Tidal Cycl			High Tide			Low Tide a	فسين	-	Weather	Sunny	SOFF
	pe (Groundwater			Groundwate	- time					0	610)20
	ollected with Stainless Ste	[]Bailer el []P	[X]P		Other	osable HDP	F .	Other		-	
	Decon Procedure] Teflon nd DI water rir		osable hur		Other			
	escription (color,					Char	100 00	ar/no	Show	1955	4
1				THE STATE OF THE S	ELD PAR		23		roort	15.7 8.7 8.7	
	11.52.2							Discolused	Consider	THE REAL PROPERTY.	F
	Depth to Water		Purge	Temperature	Turbidity	ORP		Dissolved O2	Specific Conductance		
	(ft bTOC)	Flow Rate	Volume	(F)	(NTU)	(mV)	pH	(ppm)	(us/cm)	TDS	Salinity
Time	+/-0.3ft	(L/min)	(Gallons)	+/-3%	+/-10%	+/- 10 eV	+/- 0.1	+/-10%	+/-3%	(mg/l)	(ppt)
1400	4.86	10.5	0.3	55.0	54.9	-35.6	6.63	0.42	712	463.0	0.35
1405	4.92		0.9	55. O	24.3	-35,5	6.60	0.38	718 720	46),7	0,35
1410	5.04		(12	54.8 54.6	20.8	-35.3	6.57	0,32	720	470.0	0,36
1420	5,14	-1	1.5	542	104	-34.9	6.54	0,24	725	471.1	0,36
1425	5.20	-	(.8	53.9	8.43	-36,4	6.51	0.09	734	478.4	0.37
1430	520		2.8	53.7	5.98	-39.9	6.47	0.06	751	488.1	6.37
1435	5.21		2.5	53.9	4.18	-41.3	6.47	0.07	757	492.1	0.37
1440	5,25		2.8	53.9		-42.6	6.48	0.05	159	493.8	0,37
1445	5,30	V	3.1	53.8	-11	-43.4	6.47	0.06	759	494.4	0.37
-11/07					-10		(E) (C)				V 10-
						194	10	L.			
Motoro I Io	l sed for Measurem		11/1/0	1990		31					1
	O Instrument Ca		[X] Yes		en turbe			ape	E.T		,
pri/con./c	o instrument Ca	uibrauon	[X] res	[] No		photometer			E-Tape	renta	
Samples (Composited Over	timo Dietan			TIONAL IN	FORMATI	ION				
	Number and Vol			NA	7x 900	11	535E				
,	174	unio oi oam	or Cornain	3	77 200	was					
	Sample Number(_	****			-		_		Tel
Comments	s: (Filtered, Not l	Filtered, Cald	ulations, et	tc.)	PF for	diss	me	als			
	do	1									
Signature	VION	-	-101-0		222 3000	D-1	11.1.	01.			
Signature	- Mis					Date	1/(0/2	013	Page	1 0	
Check if ad	ditional information	on back []					ı			***	

SAMPLE CHAIN OF CUSTODY SAMPLERS (signature)

			Ph (206) 285-8282	1			TB-20230110	C-1 DUP-1-20230109	C-1 RI-13-20230110	C-1RI-12-20230110	C-1 HSA -3-20230110	C-1 HSA-4-20230109	C-1 RI-10-20230109	Sample ID		PhoneEn	City, State, ZIP Scuth	WH 1017	Company Swothgirens	Report To
Received by:	Relinquished by:	Received by:	Reinquished by:	SI			+	18	5	T	0	1 2	_	Lab ID		Email 5 Letts @ geologicen	WWA 9	AN SUIT 950	rens	SMA
		I'm	Calo T	SIGNATURE			1/10/23	1/9/23	1/10/23	1/10/23	1/10/23	1/9/23	1/01/23	Date Sampled		geologian	1818	920		
						X	1	1200	1500	1330	1100	1330	1130	Time Sampled		H	REMARKS	C-1	PROJE	
		400	て合う				+	+					3-	Sample Type		Project specific RLs? - Yes /	VER WHITE	C-1 KI GW MONITONING	PROJECT NAME	
		MAHD HAN	Atakturi	PRINT NAME			2	1	4	\ \ \	X	×	X	James of NWTPH-Dx		s? - Yes	were	M Mon		7
	= 1 1 1 =1	Z	7	NAMI					×	X		×	×	NWTPH-Gx		/ No		Shire I	. (1
	1-		7	(4)									p i i	BTEX EPA 8021						1
							_	~						NWTPH-HCID	A		Z	5530-014-02		
+						\vdash		×	×	×	×	×	×	VOCs EPA 8260	ANALYSES		INVOICE TO	0-1	PO#	1
			5											PAHs EPA 8270	YSES		CE 1	1	#	
W	7	X	70	8	2					-/		177	\	PCBs EPA 8082			Ó	P		
		٥	ha	COMPANY					×	×	×	×	$\hat{}$	RCRA 8 metals	QUE:					
	À		coEheihean	N	100									Gy quantify to Stod. spirit	REQUESTED	De	0	문민	×	
	-		7				-	-								Other Default	Sz	sh ch	Stand	71
+		\cap														: Dis	AMP) ve sa	arges	ard t	JRNA
	10/00	cillic/ 23	1/0/23	DATE						1 ×				N		pose afte	SAMPLE DISPOSAL Archive samples	Rush charges authorized by:	Standard turnaround	TURNAROUND TIME
		02:51	15:20	TIME										Notes		© Other	SAL	ed by:	d	TIME
_																				

APPENDIX E Remedial Investigation Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 14, 2022

Jacob Letts, Project Manager GeoEngineers 2101 4th Avenue, Suite 150 Seattle, WA 98121

Dear Mr Letts:

Included are the results from the testing of material submitted on April 5, 2022 from the C-1 Hangar Property 5530-014-01, F&BI 204056 project. There are 30 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Katy Atakturk GNR0414R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 5, 2022 by Friedman & Bruya, Inc. from the GeoEngineers C-1 Hangar Property 5530-014-01, F&BI 204056 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	GeoEngineers
204056 -01	C-1 HSA1-5
204056 -02	C-1 HSA1-10
204056 -03	C-1 HSA1-15
204056 -04	C-1 HSA1-20
204056 -05	C-1 HSA1-25
204056 -06	C-1 HSA2-4
204056 -07	C-1 HSA2-10
204056 -08	C-1 HSA2-15
204056 -09	C-1 HSA2-20
204056 -10	C-1 HSA2-25
204056 -11	C-1 HSA3-5
204056 -12	C-1 HSA3-10
204056 -13	C-1 HSA3-15
204056 -14	C-1 HSA4-5
204056 -15	C-1 HSA4-10
204056 -16	C-1 HSA4-15
204056 -17	C-1 HSA4-20
204056 -18	TB-040522

Stoddard Solvent by NWTPH-Gx (soil)

All quality control requirements were acceptable.

Diesel and Motor Oil by NWTPH-Dx (soil)

All quality control requirements were acceptable.

VOCs by 8260D (soil)

Several 8260D compounds exceeded the acceptance criteria in the matrix spike sample. The compounds were not detected, therefore the data were acceptable. All other quality control requirements were acceptable.

VOCs by 8260D (water)

The 8260D calibration standard failed the acceptance criteria for bromomethane and chloroethane. The data were flagged accordingly. All other quality control requirements were acceptable.

Total Metals by 6020B (soil)

Selenium in the 6020B matrix spike and matrix spike duplicate failed the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were due to matrix effect. All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/22 Date Received: 04/05/22

Project: C-1 Hangar Property 5530-014-01, F&BI 204056

Date Extracted: 04/06/22 Date Analyzed: 04/06/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 48-168)
C-1 HSA1-5 204056-01	<50	<250	94
C-1 HSA1-15 204056-03	<50	<250	95
C-1 HSA2-4 204056-06	<50	<250	95
C-1 HSA2-10 204056-07	<50	<250	95
C-1 HSA3-5 204056-11	<50	<250	95
C-1 HSA3-10 204056-12	<50	<250	94
C-1 HSA4-5 204056-14	<50	<250	107
C-1 HSA4-10 204056-15	<50	<250	94
C-1 HSA4-15 204056-16	<50	<250	95
C-1 HSA4-20 204056-17	<50	<250	94
Method Blank _{02-849 MB}	<50	<250	105

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/22 Date Received: 04/05/22

Project: C-1 Hangar Property 5530-014-01, F&BI 204056

Date Extracted: 04/07/22 Date Analyzed: 04/07/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS STODDARD SOLVENT USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Stoddard Solvent Range (C ₈ -C ₁₁)	Surrogate (<u>% Recovery</u>) (Limit 50-150)
C-1 HSA1-5 204056-01	<5	86
C-1 HSA1-15 204056-03	<5	74
C-1 HSA2-4 204056-06	<5	88
C-1 HSA2-10 204056-07	<5	82
C-1 HSA3-5 204056-11	<5	80
C-1 HSA3-10 204056-12	<5	57
C-1 HSA4-5 204056-14	<5	85
C-1 HSA4-10 204056-15	<5	81
C-1 HSA4-15 204056-16	<5	77
C-1 HSA4-20 204056-17	<5	82
Method Blank 02-816 MB	<5	84

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 HSA1-5	Client:	GeoEngineers
------------	------------	---------	--------------

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	1.70
Barium	46.2
Cadmium	<1
Chromium	15.9
Lead	1.59
Mercury	<1
Selenium	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 HSA1-15	Client:	GeoEngineers
------------	-------------	---------	--------------

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

 Date Extracted:
 04/06/22
 Lab ID:
 204056-03

 Date Analyzed:
 04/06/22
 Data File:
 204056-03.112

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.14
Barium	48.5
Cadmium	<1
Chromium	22.3
Lead	2.26
Mercury	<1
Selenium	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 HSA2-4 Client: GeoEngineers

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

ConcentrationAnalyte: mg/kg (ppm) 2.36 Arsenic Barium 43.5Cadmium <1 Chromium 19.4 Lead 2.03Mercury <1 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 HSA4-5	Client:	GeoEngineers
------------	------------	---------	--------------

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

 Date Extracted:
 04/06/22
 Lab ID:
 204056-14

 Date Analyzed:
 04/06/22
 Data File:
 204056-14.114

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.13
Barium	52.3
Cadmium	<1
Chromium	18.2
Lead	1.90
Mercury	<1
Selenium	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: GeoEngineers

Date Received: NA Project: 5530-014-01, F&BI 204056

Date Extracted: 04/06/22 Lab ID: I2-266 mb2
Date Analyzed: 04/06/22 Data File: I2-266 mb2.107
Matrix: Soil Instrument: ICPMS2

Matrix: Soil Instrument: ICPMS
Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 HSA1-5 Client: GeoEngineers

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

Date Extracted: 04/12/22 Lab ID: 204056-01 1/0.25

Date Analyzed:04/12/22Data File:041229.DMatrix:SoilInstrument:GCMS13Units:mg/kg (ppm) Dry WeightOperator:WE

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	84	118
Toluene-d8	102	86	117
4-Bromofluorobenzene	95	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 HSA1-15 Client: GeoEngineers

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

 Date Extracted:
 04/12/22
 Lab ID:
 204056-03 1/0.25

 Date Analyzed:
 04/12/22
 Data File:
 041230.D

 Matrix:
 Soil
 Instrument:
 GCMS13

Units: mg/kg (ppm) Dry Weight Operator: WE

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	93	84	118
Toluene-d8	89	86	117
4-Bromofluorobenzene	101	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 HSA2-4 Client: GeoEngineers

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

Date Extracted: 04/12/22 Lab ID: $204056-06\ 1/0.25$

Date Analyzed:04/12/22Data File:041231.DMatrix:SoilInstrument:GCMS13Units:mg/kg (ppm) Dry WeightOperator:WE

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	88	84	118
Toluene-d8	88	86	117
4-Bromofluorobenzene	102	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 HSA2-10 Client: GeoEngineers

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

 Date Extracted:
 04/12/22
 Lab ID:
 204056-07 1/0.25

 Date Analyzed:
 04/12/22
 Data File:
 041232.D

 Matrix:
 Soil
 Instrument:
 GCMS13

Units: mg/kg (ppm) Dry Weight Operator: WE

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	93	84	118
Toluene-d8	94	86	117
4-Bromofluorobenzene	101	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane		1 2 Diahlamananan	
	<0.5	1,3-Dichloropropane Tetrachloroethene	< 0.05
Chloromethane	< 0.5	Dibromochloromethane	<0.001
Vinyl chloride	<0.001		< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	<0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	0.0026	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5	, ,,, =================================	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 HSA2-15 Client: GeoEngineers

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

Date Extracted: 04/12/22 Lab ID: 204056-08 1/0.25 Date Analyzed: 04/12/22 Data File: 041233.D

Matrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: WE

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 97 84 118 Toluene-d8 90 86 117 4-Bromofluorobenzene 90 98 112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	0.029	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 HSA3-5 Client: GeoEngineers

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

Date Extracted: 04/12/22 Lab ID: 204056-11 1/0.25

Date Analyzed:04/12/22Data File:041234.DMatrix:SoilInstrument:GCMS13Units:mg/kg (ppm) Dry WeightOperator:WE

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	84	118
Toluene-d8	99	86	117
4-Bromofluorobenzene	98	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 HSA3-10 Client: GeoEngineers

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

 Date Extracted:
 04/12/22
 Lab ID:
 204056-12 1/0.25

 Date Analyzed:
 04/12/22
 Data File:
 041235.D

 Matrix:
 Soil
 Instrument:
 GCMS13

Units: mg/kg (ppm) Dry Weight Operator: WE

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	84	118
Toluene-d8	98	86	117
4-Bromofluorobenzene	96	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 HSA4-5 Client: GeoEngineers

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

Date Extracted: 04/12/22 Lab ID: 204056-14 1/0.25 Date Analyzed: 04/12/22 Data File: 041236.D

Matrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: WE

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	84	118
Toluene-d8	102	86	117
4-Bromofluorobenzene	99	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 HSA4-10 Client: GeoEngineers

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

 Date Extracted:
 04/12/22
 Lab ID:
 204056-15 1/0.25

 Date Analyzed:
 04/12/22
 Data File:
 041237.D

 Matrix:
 Soil
 Instrument:
 GCMS13

Units: mg/kg (ppm) Dry Weight Operator: WE

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	89	84	118
Toluene-d8	94	86	117
4-Bromofluorobenzene	99	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 HSA4-15 Client: GeoEngineers

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

Lab ID: Date Extracted: 04/12/22 204056-16 1/0.25 Date Analyzed: 04/12/22 Data File: 041238.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: WE

Lower Upper Surrogates: % Recovery: Limit: Limit:

 1,2-Dichloroethane-d4
 100
 84
 118

 Toluene-d8
 103
 86
 117

 4-Bromofluorobenzene
 102
 90
 112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<0.5	1,3-Dichloropropane	< 0.05
Chloromethane	<0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	<0.001
Bromomethane	<0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	<0.5	Chlorobenzene	<0.05
Trichlorofluoromethane	<0.5	Ethylbenzene	< 0.001
Acetone	<0.5 <5	v	<0.001
		1,1,1,2-Tetrachloroethane	
1,1-Dichloroethene	<0.001	m,p-Xylene	< 0.002
Hexane	<0.25	o-Xylene	< 0.001
Methylene chloride	<0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	<0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	0.0014	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.0022	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5	•	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 HSA4-20 Client: GeoEngineers

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056

Lab ID: Date Extracted: 04/12/22 204056-17 1/0.25 Date Analyzed: 04/12/22 Data File: 041239.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: WE

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 84 118 Toluene-d8 103 86 117 4-Bromofluorobenzene 90 95 112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	0.0053
Hexane	< 0.25	o-Xylene	0.0011
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	0.0029	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	0.018	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.067	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	0.0032	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: 5530-014-01, F&BI 204056

Date Extracted: 04/12/22 Lab ID: 02-802 mb 1/0.25

Date Analyzed:04/12/22Data File:041218.DMatrix:SoilInstrument:GCMS13Units:mg/kg (ppm) Dry WeightOperator:WE

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	84	118
Toluene-d8	96	86	117
4-Bromofluorobenzene	101	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: TB-040522 Clien	nt: GeoEngineers
-----------------------------------	------------------

Date Received: 04/05/22 Project: 5530-014-01, F&BI 204056 Date Extracted: 04/07/22 Lab ID: 204056-18

Date Extracted: 04/07/22 Lab ID: 204056-18
Date Analyzed: 04/13/22 Data File: 041315.D
Matrix: Water Instrument: GCMS13
Units: ug/L (ppb) Operator: WE

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	93	85	117
Toluene-d8	98	88	112
4-Bromofluorobenzene	100	90	111

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5 ca	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1 ca	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

	Client Sample ID:	Method Blank	Client:	GeoEngineers
--	-------------------	--------------	---------	--------------

Date Received: Not Applicable Project: 5530-014-01, F&BI 204056

04/13/22 Lab ID: Date Extracted: 02-807 mbDate Analyzed: 04/13/22 Data File: 041307.DMatrix: Water Instrument: GCMS13Units: ug/L (ppb) Operator: WE

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	85	117
Toluene-d8	97	88	112
4-Bromofluorobenzene	103	90	111

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5 ca	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1 ca	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/22 Date Received: 04/05/22

Project: C-1 Hangar Property 5530-014-01, F&BI 204056

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 204063-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	98	98	73-135	0

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Diesel Extended	mg/kg (ppm)	5,000	98	74-139	-

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/22 Date Received: 04/05/22

Project: C-1 Hangar Property 5530-014-01, F&BI 204056

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR STODDARD SOLVENT USING METHOD NWTPH-Gx

Laboratory Code: 204056-01 (Duplicate)

		Sample	Duplicate		
	Reporting	Result	Result	RPD	
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)	
Stoddard Solvent	mg/kg (ppm)	<5	<5	nm	

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Stoddard Solvent	mg/kg (ppm)	10	90	70-130	-

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/22 Date Received: 04/05/22

Project: C-1 Hangar Property 5530-014-01, F&BI 204056

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 204011-05 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	82	73 vo	75-125	12
Barium	mg/kg (ppm)	50	155	168 b	116	75 - 125	37 b
Cadmium	mg/kg (ppm)	10	<5	101	93	75 - 125	8
Chromium	mg/kg (ppm)	50	7.26	88	81	75 - 125	8
Lead	mg/kg (ppm)	50	19.9	97	81	75 - 125	18
Mercury	mg/kg (ppm	5	<5	98	93	75 - 125	5
Selenium	mg/kg (ppm)	5	<5	74 vo	67 vo	75 - 125	10
Silver	mg/kg (ppm)	10	<5	101	94	75 - 125	7

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	88	80-120
Barium	mg/kg (ppm)	50	100	80-120
Cadmium	mg/kg (ppm)	10	100	80-120
Chromium	mg/kg (ppm)	50	98	80-120
Lead	mg/kg (ppm)	50	99	80-120
Mercury	mg/kg (ppm)	10	93	80-120
Selenium	mg/kg (ppm)	5	89	80-120
Silver	mg/kg (ppm)	10	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/22 Date Received: 04/05/22

Project: C-1 Hangar Property 5530-014-01, F&BI 204056

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 204171-03 (Matrix Spike)

· ·	1 /		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	19	19	10-142	0
Chloromethane	mg/kg (ppm)	1	< 0.5	60	55	10-126	9
Vinyl chloride	mg/kg (ppm)	1 1	<0.05 <0.5	71 74	66 62	10-138 10-163	7 18
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	1	< 0.5	74 82	62 77	10-163	6
Trichlorofluoromethane	mg/kg (ppm)	1	< 0.5	71	66	10-176	7
Acetone	mg/kg (ppm)	5	<5	141	118	10-163	18
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	81	75	10-160	8
Hexane	mg/kg (ppm)	1	< 0.25	76	69	10-137	10
Methylene chloride	mg/kg (ppm)	1	< 0.5	107	95	10-156	12
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	122	108	21-145	12
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	101	91	14-137	10 12
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.05	109 124	97 113	19-140 10-158	9
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	110	98	25-135	12
Chloroform	mg/kg (ppm)	1	< 0.05	106	95	21-145	11
2-Butanone (MEK)	mg/kg (ppm)	5	<1	128	112	19-147	13
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	112	99	12-160	12
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	104	98	10-156	6
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	109	99	17-140	10
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	100	91	9-164	9
Benzene	mg/kg (ppm)	1	< 0.03	109	96	29-129	13
Trichloroethene	mg/kg (ppm)	1 1	<0.02 <0.05	110 119	98 104	21-139 30-135	12 13
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	1	< 0.05	119	97	23-155	13
Dibromomethane	mg/kg (ppm)	1	< 0.05	113	101	23-145	11
4-Methyl-2-pentanone	mg/kg (ppm)	5	<1	127	111	24-155	13
cis-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	117	101	28-144	15
Toluene	mg/kg (ppm)	1	< 0.05	130	112	35-130	15
trans-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	136	118	26-149	14
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	136	116	10-205	16
2-Hexanone	mg/kg (ppm)	5	< 0.5	155	131	15-166	17
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.025	136 129	118 112	31-137 20-133	14 14
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	115	105	28-150	9
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	136	117	28-142	15
Chlorobenzene	mg/kg (ppm)	1	< 0.05	131 vo	114	32-129	14
Ethylbenzene	mg/kg (ppm)	1	< 0.05	135	116	32-137	15
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	119	105	31-143	12
m,p-Xylene	mg/kg (ppm)	2	< 0.1	134	117	34-136	14
o-Xylene	mg/kg (ppm)	1	< 0.05	130	114	33-134	13
Styrene Isopropylbenzene	mg/kg (ppm)	1 1	<0.05 <0.05	133 135	115 118	35-137 31-142	15 13
Bromoform	mg/kg (ppm) mg/kg (ppm)	1	< 0.05	110	96	21-156	14
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	145	127	23-146	13
Bromobenzene	mg/kg (ppm)	1	< 0.05	139 vo	120	34-130	15
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	145	125	18-149	15
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	144 vo	123	28-140	16
1,2,3-Trichloropropane	mg/kg (ppm)	1	< 0.05	138	121	25-144	13
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	142 vo	124	31-134	14
4-Chlorotoluene	mg/kg (ppm)	1	< 0.05	142 vo	123	31-136	14
tert-Butylbenzene 1,2,4-Trimethylbenzene	mg/kg (ppm)	1 1	<0.05 <0.05	145 vo 143	$\frac{125}{124}$	30-137 10-182	$\frac{15}{14}$
sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	1	< 0.05	146 vo	124	23-145	15
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	144	125	21-149	14
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	136 vo	122	30-131	11
1,4-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	135 vo	119	29-129	13
1,2-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	140 vo	121	31-132	15
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	< 0.5	128	113	11-161	12
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	136	120	22-142	12
Hexachlorobutadiene	mg/kg (ppm)	1	< 0.25	137	120	10-142	13
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.25	141 139	122 118	14-157 20-144	14 16
1,2,0-111cmorobenzene	mg/kg (ppm)	1	~0.20	199	110	20-144	10

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/22 Date Received: 04/05/22

Project: C-1 Hangar Property 5530-014-01, F&BI 204056

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Eastratory coat. Eastratory co	meror sumpre		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	47	10-146
Chloromethane	mg/kg (ppm)	1 1	67	27-133
Vinyl chloride Bromomethane	mg/kg (ppm) mg/kg (ppm)	1	86 73	22-139 38-114
Chloroethane	mg/kg (ppm)	1	78	9-163
Trichlorofluoromethane	mg/kg (ppm)	1	78	10-196
Acetone	mg/kg (ppm)	5	107	52-141
1,1-Dichloroethene	mg/kg (ppm)	1	76	47-128
Hexane	mg/kg (ppm)	1	107	43-142
Methylene chloride	mg/kg (ppm)	1	84	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	98	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1 1	89	67-129
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	1	91 105	68-115 52-170
cis-1.2-Dichloroethene	mg/kg (ppm)	1	83	72-127
Chloroform	mg/kg (ppm)	1	78	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	97	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	83	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	86	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	86	69-128
Carbon tetrachloride	mg/kg (ppm)	1	85	60-139
Benzene	mg/kg (ppm)	1 1	82	71-118
Trichloroethene 1,2-Dichloropropane	mg/kg (ppm)	1	85 90	63-121 72-127
Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	1	90 85	57-126
Dibromomethane	mg/kg (ppm)	1	86	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	99	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	90	67-122
Toluene	mg/kg (ppm)	1	96	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	105	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	99	64-115
2-Hexanone	mg/kg (ppm)	5	115	33-152
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm) mg/kg (ppm)	1 1	102 94	72-130 72-114
Dibromochloromethane	mg/kg (ppm)	1	92	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	104	74-132
Chlorobenzene	mg/kg (ppm)	1	95	76-111
Ethylbenzene	mg/kg (ppm)	1	97	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	92	64-121
m,p-Xylene	mg/kg (ppm)	2	97	78-122
o-Xylene	mg/kg (ppm)	1	96	77-124
Styrene Isopropylbenzene	mg/kg (ppm)	1 1	96 97	74-126
Bromoform	mg/kg (ppm) mg/kg (ppm)	1	88	76-127 56-132
n-Propylbenzene	mg/kg (ppm)	1	106	74-124
Bromobenzene	mg/kg (ppm)	1	104	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	105	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	107	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	106	61-137
2-Chlorotoluene	mg/kg (ppm)	1	103	74-121
4-Chlorotoluene	mg/kg (ppm)	1	104	75-122
tert-Butylbenzene 1,2,4-Trimethylbenzene	mg/kg (ppm)	1 1	105 104	73-130 76-125
sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	1	104	76-125 71-130
p-Isopropyltoluene	mg/kg (ppm)	1	103	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	99	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	99	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	102	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	100	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	97	64-135
Hexachlorobutadiene	mg/kg (ppm)	1	101	50-153
Naphthalene	mg/kg (ppm)	1 1	100 97	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	91	63-138

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/22 Date Received: 04/05/22

Project: C-1 Hangar Property 5530-014-01, F&BI 204056

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 204055-01 (Matrix Spike)

Laboratory Code. 204055-01 (Ma	ttrix Spike)			D	
		~ .1	~ .	Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	120	50-150
Chloromethane	ug/L (ppb)	10	<10	97	50-150
Vinyl chloride	ug/L (ppb)	10	< 0.02	100	16-176
Bromomethane	ug/L (ppb)	10	<5	112	10-193
Chloroethane	ug/L (ppb)	10	<1	103	50-150
Trichlorofluoromethane	ug/L (ppb)	10	<1	98	50-150
Acetone	ug/L (ppb)	50	<50	89	15-179
1,1-Dichloroethene	ug/L (ppb)	10	<1	100	50-150
Hexane	ug/L (ppb)	10 10	<5 <5	99	49-161
Methylene chloride Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<0 <1	114 99	40-143 50-150
trans-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	10	<1 <1	99 98	50-150 50-150
1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	10	<1	96	50-150
2,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10	<1	95	10-335
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	95	50-150
Chloroform	ug/L (ppb)	10	<1	99	50-150
2-Butanone (MEK)	ug/L (ppb)	50	<20	98	34-168
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	94	50-150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	98	50-150
1,1-Dichloropropene	ug/L (ppb)	10	<1	100	50-150
Carbon tetrachloride	ug/L (ppb)	10	< 0.5	97	50-150
Benzene	ug/L (ppb)	10	< 0.35	98	50-150
Trichloroethene	ug/L (ppb)	10	< 0.5	98	43-133
1,2-Dichloropropane	ug/L (ppb)	10	<1	93	50-150
Bromodichloromethane	ug/L (ppb)	10	< 0.5	95	50-150
Dibromomethane	ug/L (ppb)	10	<1	94	50-150
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	99	50-150
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	95	48-145
Toluene	ug/L (ppb)	10	<1	96	50-150
trans-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	93	37-152
1,1,2-Trichloroethane	ug/L (ppb)	10	< 0.5	99	50-150
2-Hexanone	ug/L (ppb)	50	<10	102	50-150
1,3-Dichloropropane	ug/L (ppb)	10	<1	94	50-150
Tetrachloroethene	ug/L (ppb)	10	<1	98	50-150
Dibromochloromethane	ug/L (ppb)	10	< 0.5	95	33-164
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1 <1	98	50-150
Chlorobenzene Ethylbenzene	ug/L (ppb)	10 10	<1 <1	102 101	50-150 50-150
1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	<1 <1	101	50-150 50-150
m,p-Xylene	ug/L (ppb) ug/L (ppb)	20	<2	103	50-150
o-Xylene	ug/L (ppb)	10	<1	100	50-150
Styrene	ug/L (ppb)	10	<1	103	50-150
Isopropylbenzene	ug/L (ppb)	10	<1	103	50-150
Bromoform	ug/L (ppb)	10	<5	94	23-161
n-Propylbenzene	ug/L (ppb)	10	<1	99	50-150
Bromobenzene	ug/L (ppb)	10	<1	97	50-150
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	100	50-150
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	93	10-235
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	96	33-151
2-Chlorotoluene	ug/L (ppb)	10	<1	99	50-150
4-Chlorotoluene	ug/L (ppb)	10	<1	99	50-150
tert-Butylbenzene	ug/L (ppb)	10	<1	97	50-150
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	101	50-150
sec-Butylbenzene	ug/L (ppb)	10	<1	99	46-139
p-Isopropyltoluene	ug/L (ppb)	10	<1	102	46-140
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	97	50-150
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	99	50-150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	98	50-150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	89	50-150
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	98 06	50-150
Hexachlorobutadiene	ug/L (ppb)	10 10	<0.5 <1	96 100	42-150
Naphthalene	ug/L (ppb)	10	<1 <1	100 98	50-150
1,2,3-Trichlorobenzene	ug/L (ppb)	10	~1	98	44-155

ENVIRONMENTAL CHEMISTS

Date of Report: 04/14/22 Date Received: 04/05/22

Project: C-1 Hangar Property 5530-014-01, F&BI 204056

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

	•		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	102	107	70-130	5
Chloromethane	ug/L (ppb)	10	92	98	70-130	6
Vinyl chloride	ug/L (ppb)	10	99	103	70-130	$\frac{4}{2}$
Bromomethane Chloroethane	ug/L (ppb) ug/L (ppb)	10 10	105 95	107 107	28-182 70-130	2 12
Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	10	87	97	70-130	11
Acetone	ug/L (ppb)	50	84	96	42-155	13
1.1-Dichloroethene	ug/L (ppb)	10	91	100	70-130	9
Hexane	ug/L (ppb)	10	87	94	50-161	8
Methylene chloride	ug/L (ppb)	10	82	89	29-192	8
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	86	94	70-130	9
trans-1,2-Dichloroethene	ug/L (ppb)	10	87	94	70-130	8
1,1-Dichloroethane 2.2-Dichloropropane	ug/L (ppb)	10 10	86 85	93 88	70-130 70-130	8
cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	10	86	88 92	70-130	3 7
Chloroform	ug/L (ppb)	10	87	96	70-130	10
2-Butanone (MEK)	ug/L (ppb)	50	90	100	50-157	11
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	86	94	70-130	9
1,1,1-Trichloroethane	ug/L (ppb)	10	87	95	70-130	9
1,1-Dichloropropene	ug/L (ppb)	10	90	98	70-130	9
Carbon tetrachloride	ug/L (ppb)	10	84	94	70-130	11
Benzene	ug/L (ppb)	10	89	95	70-130	7
Trichloroethene	ug/L (ppb)	10	88	91	70-130	3
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	10 10	85 86	91 90	70-130 70-130	7 5
Dibromomethane	ug/L (ppb) ug/L (ppb)	10	87	92	70-130	6
4-Methyl-2-pentanone	ug/L (ppb)	50	86	91	70-130	6
cis-1,3-Dichloropropene	ug/L (ppb)	10	84	86	70-130	2
Toluene	ug/L (ppb)	10	86	94	70-130	9
trans-1,3-Dichloropropene	ug/L (ppb)	10	86	92	70-130	7
1,1,2-Trichloroethane	ug/L (ppb)	10	87	96	70-130	10
2-Hexanone	ug/L (ppb)	50	95	105	69-130	10
1,3-Dichloropropane	ug/L (ppb)	10	88	96	70-130	9
Tetrachloroethene Dibromochloromethane	ug/L (ppb)	10 10	86 85	95 90	70-130 63-142	10 6
1,2-Dibromoethane (EDB)	ug/L (ppb) ug/L (ppb)	10	85	95	70-130	11
Chlorobenzene	ug/L (ppb)	10	87	98	70-130	12
Ethylbenzene	ug/L (ppb)	10	88	98	70-130	11
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	85	96	70-130	12
m,p-Xylene	ug/L (ppb)	20	88	98	70-130	11
o-Xylene	ug/L (ppb)	10	87	96	70-130	10
Styrene	ug/L (ppb)	10	88	98	70-130	11
Isopropylbenzene	ug/L (ppb)	10	89	98	70-130	10
Bromoform n-Propylbenzene	ug/L (ppb) ug/L (ppb)	10 10	80 85	90 97	50-157 70-130	12 13
Bromobenzene	ug/L (ppb) ug/L (ppb)	10	84	95	70-130	12
1,3,5-Trimethylbenzene	ug/L (ppb)	10	86	96	52-150	11
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	83	94	70-130	12
1,2,3-Trichloropropane	ug/L (ppb)	10	84	96	70-130	13
2-Chlorotoluene	ug/L (ppb)	10	85	98	70-130	14
4-Chlorotoluene	ug/L (ppb)	10	86	95	70-130	10
tert-Butylbenzene	ug/L (ppb)	10	84	95	70-130	12
1,2,4-Trimethylbenzene	ug/L (ppb)	10	87	98	70-130	12 12
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	10 10	85 86	96 98	70-130 70-130	12 13
1,3-Dichlorobenzene	ug/L (ppb)	10	85	96	70-130	12
1.4-Dichlorobenzene	ug/L (ppb)	10	84	94	70-130	11
1,2-Dichlorobenzene	ug/L (ppb)	10	84	96	70-130	13
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	87	95	70-130	9
1,2,4-Trichlorobenzene	ug/L (ppb)	10	82	92	70-130	11
Hexachlorobutadiene	ug/L (ppb)	10	80	91	70-130	13
Naphthalene	ug/L (ppb)	10	85	95	70-130	11
1,2,3-Trichlorobenzene	ug/L (ppb)	10	81	92	69-143	13

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Address 2101 4th Ave Suite 50 City, State, ZIP HOLK WA 98121 Company Goo Engineers Report To Jacob Letts Emails Letts Copiling of Project specific RLs? - Yes / No

						T	T	1	T	т						
			Friedman & Bruya, Inc. 1 Ph. (206) 285-8282	т	C-1 127-25	P 1540-00	SI- ET 23-15	C-1 HSAA-10	C- Itsua-4	C-1 HS47-25	C- 447-20	P 541-15	C-1 #541-10	C-1 HSA1-5	Sample ID	
Received by:	Kelinquished by:	Received by: Western	Kelinquished	4. [70	09	85	07	90	25	2	93	2	51A-E	Lab ID	
	All the second s	emu.		SICHAPHRE	\(\)		apolitic and a supply							なかった	Date Sampled	
and the property of the state o															Time Sampled	
Name of the Particular Advantage of the same of the sa		Western tourd	THE STATE OF THE S		<			***************************************	-					S	Sample Type	
		ta	4	PRIN	<	<u> 1824 Augustanian (</u>	Once of the second of the	-	- Section of the	- SUMMERSON	физикация	THE REPORT OF THE PARTY.	MICHAEL STATE	-01	#of Jars	
A PARTICULATIVA		R.		PRINT NAME				×	× ×			X		\times	NWTPH-Dx XQ, as Minual NWTPH-Gx	p
			7												BTEX EPA 8021	
							X	$\overline{\times}$	\prec		,	\times	· · · · · · · · · · · · · · · · · · ·	X	NWTPH-HCID VOCs EPA 8260	AN_{ℓ}
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												PAHs EPA 8270	ANALYSES REQUESTED
		超	100 100	2											PCBs EPA 8082	$38~\mathrm{RE}$
San				COMPANY					X		:	X		<u> </u>	Metals	QUES
ples				Ϋ́N							:		·			TED
rece	2															
Samples received at 2		04/03/22	4/5/2	DATE											Notes	
	à	Direct	中的	TIME											es OS	

Ru

SAMPLE CHAIN OF CUSTODY 12-50-ho

SAMPLERS/(signethre)

PROJECT NAME

CI Hange Roses

10-410-0855

PO#

INVOICE TO

20405h

Standard turnaround Rush charges authorized by: Page# TURNAROUND TIME 8 I 3/15 B3/1M

□ Archive samples SAMPLE DISPOSAL

REMARKS

Default: Dispose after 30 days

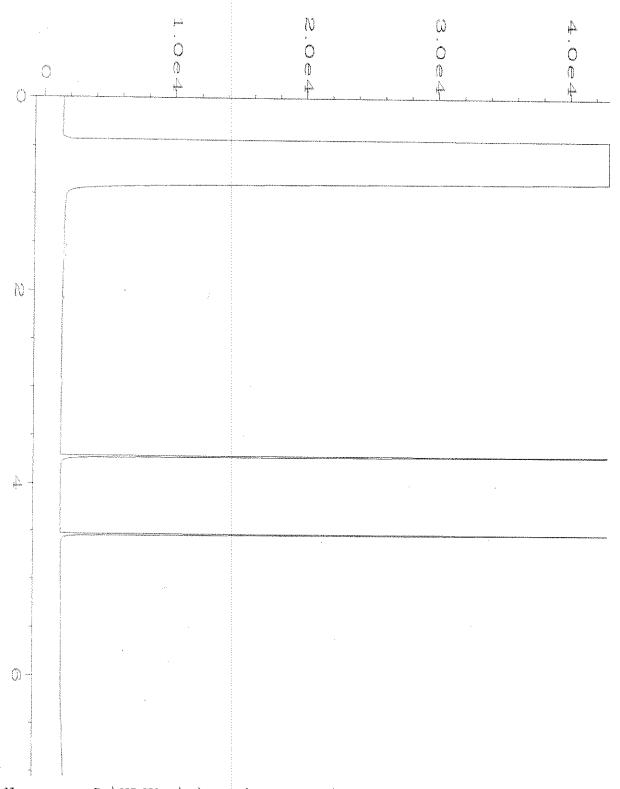
SAMPLE CHAIN OF CUSTODY

ĩ

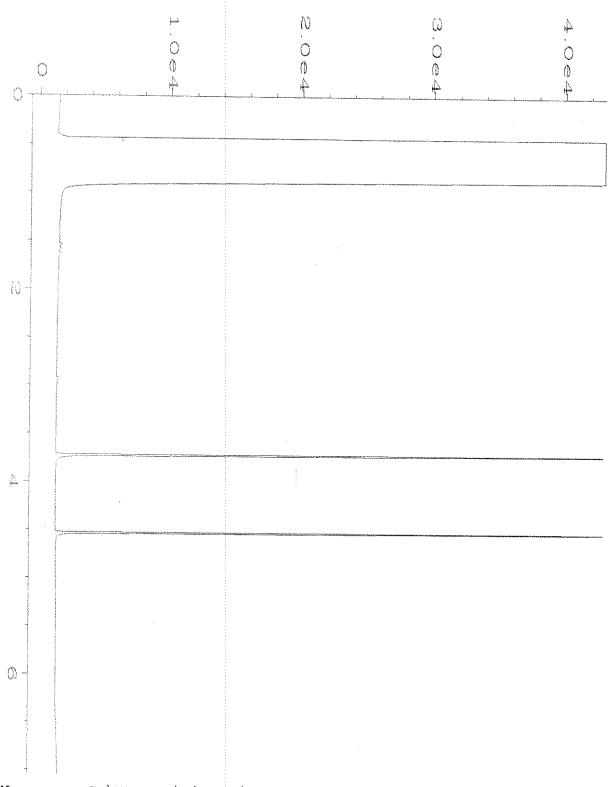
Report To Mub Lets	SAMPLERS (signature)	
Company	PROJECT NAME	P0#
Address OOJA		5330-0NJ-
City, State, ZIP	REMARKS	INVOICE TO
Phone Email	Project energific RI e? - Vec. / No.	

Phone_

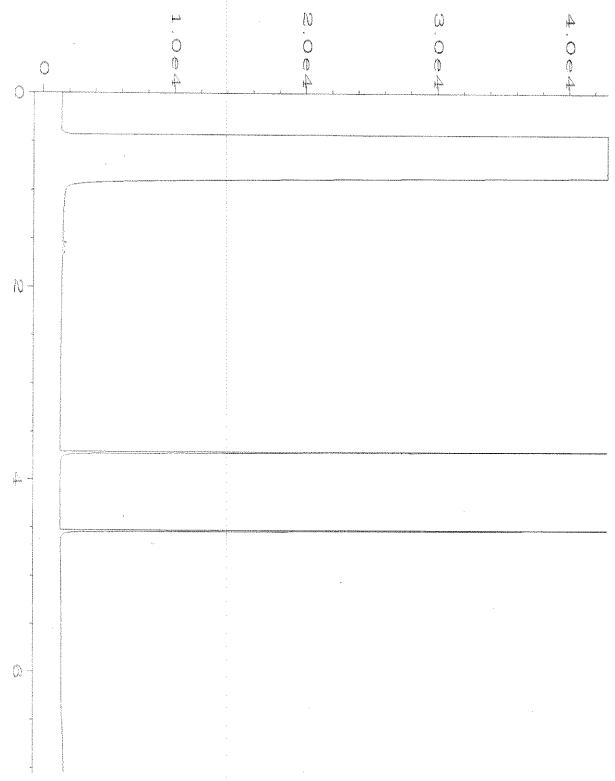
SAMPLE DISPOSAL Rush charges authorized by: Standard turnaround Page#_ TURNAROUND TIME


			TB-0405 92	C-1 HSA4-20	C-1 H844-15	CT HSA4-10	C1 HSA4-5	C1 1882-15	C-1 15/43-10	C-1 HSA3-5	Sample ID	
SX(C			18 A.B	17	7	R	14	13	2	111升企	Lab ID	
SCHATTIRE			<	44*************************************	300000000000000000000000000000000000000	and draw 1991 (well-supply)	E	**************************************		4.5.22	Date Sampled	
	**			1930	93	OFE	1200	226	910	900	Time Sampled	
		į	<	-t-d-rand-woodsjonego	Providence (Augments de provinción)	*violencesses	ALTONOMICS ATTEN	3.4 electrical productive de la companya de la companya de la companya de la companya de la companya de la comp		S	Sample Type	
PRINT NAME			دو	<		- Missan Programme			· comment of the comment of	Û	# of Jars	
-3 Z				×	×	×	25		×	×	NWTPH-Dx	1
ME				×	Z	\leq	×		×.	× .	KQ us Mineral Spir NWTPH-Gx	73
						<u> </u>					BTEX EPA 8021	
	aceción de la constantina della									NWTPH-HCID	A	
_	THE PART WATER		\triangle	 	X	×			<u> </u>	×	VOCs EPA 8260	AL
	Marine de California								<u> </u>		PAHs EPA 8270	SES
2	POTENTIAL PROPERTY.						٠				PCBs EPA 8082	ANALYSES REQUESTED
ğ	TTPA CTTT 1 STOREGY			ļ							Metals	AUE
COMPANY	-											E I
Ì												
	Construction of the Constr											
DATE	**************************************							* .			Notes	
TIME	Action of the second se										, R	

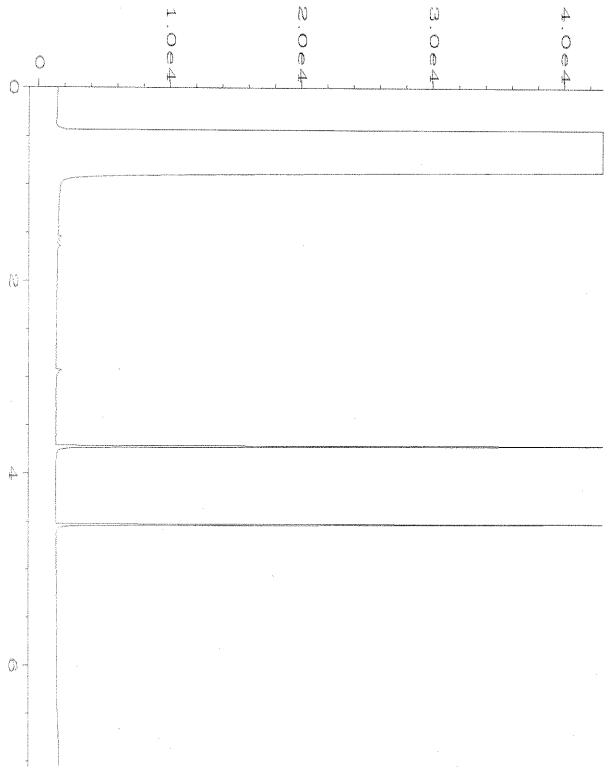
Ph. (206) 285-8282 Friedman & Bruya, Inc.


	PRINT NAME	COMPANY	HIL ALVC	TIME
Relinquished Held Held	Kom Atalean	(4S)	W-F1 F2:5.4	miti
Received by: Wasterflux	(t)	187	04-5-22 17:45	5h(El
Relinquished by:			4	2
Received by:		Samples received at	ecerved at	ا 2

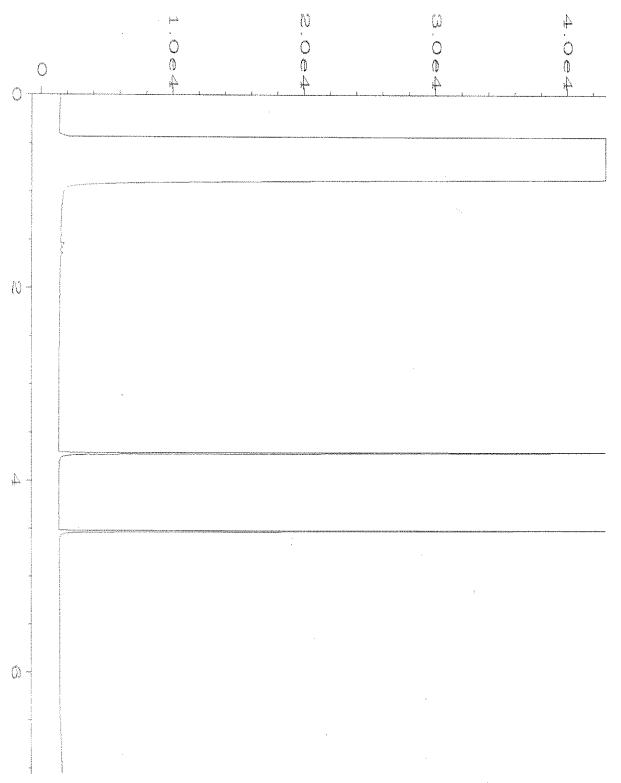
SAMPLE CONDITION UPON RECEIPT CHECKLIST


PROJECT # 204086 CLIENT Geologineers	INITI DATE		04/0	5127
If custody seals are present on cooler, are they intact?	Q NA	, 0	YES	□ NO
Cooler/Sample temperature			_3	s°C
Were samples received on ice/cold packs?		Ø	YES	□ NO
How did samples arrive? ☐ Over the Counter ☐ Picked up by F&BI ☐ FedEx/UPS/GSO				
Number of days samples have been sitting prior to receipt at	labora	atory	0-7	days
Is there a Chain-of-Custody* (COC)? *or other representative documents, letters, and/or shipping memos	-		YES	□ №
Are the samples clearly identified? (explain "no" answer below)		Æ	YES	□ NO
Is the following information provided on the COC*? (explain "not Sample ID's Yes I No # of Containers Yes Date Sampled Yes I No Relinquished Yes Time Sampled I Yes I No Requested analysis I Yes		No No	w)	
Were all sample containers received intact (i.e. not broken, leaking etc.)? (explain "no" answer below)			YES	□ №
Were appropriate sample containers used? YES		NO	JΩ	J nkn own
If custody seals are present on samples, are they intact?	Ø NA	. 0	YES	□ NO
Are samples requiring no headspace, headspace free?	Ø NA	· 🗆	YES	□ №
Air Samples: Were any additional canisters received? If Yes, number of unused 1L canisters number of unused 6L canisters	Ø NA	L □	YES	. i NO
Explain "no" items from above (use the back i				
•				


```
Data File Name
              : C:\HPCHEM\4\DATA\04-06-22\029F0701.D
Operator
                : TL
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
                                                               : 29
Sample Name
                : 204056-01
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
                                                               : 7
Acquired on : 06 Apr 22
                            04:17 PM
                                              Instrument Method: DX.MTH
Report Created on: 07 Apr 22 07:41 AM
                                              Analysis Method : DEFAULT.MTH
```

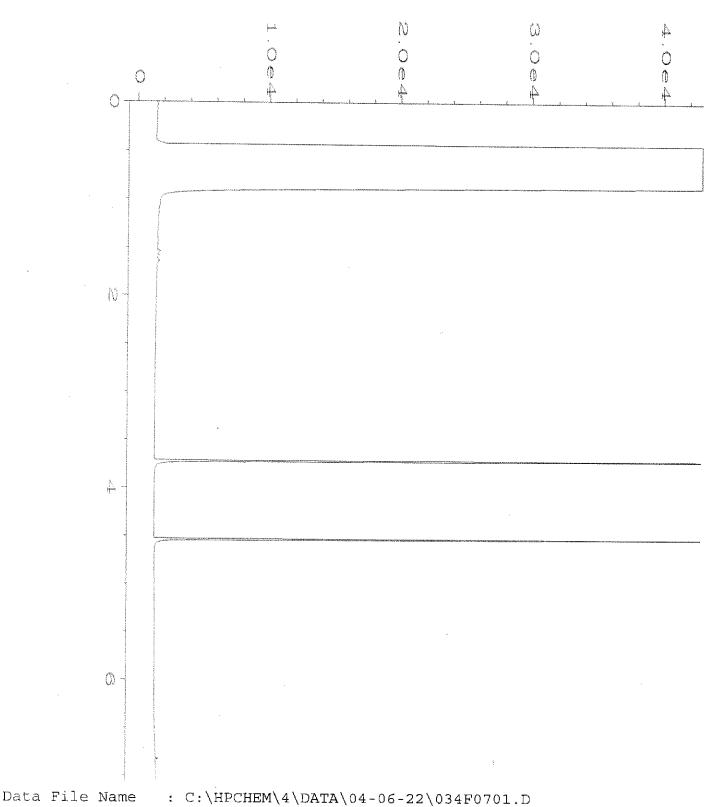



```
Data File Name : C:\HPCHEM\4\DATA\04-06-22\030F0701.D
Operator
                : TL
                                              Page Number
Instrument
                                              Vial Number
                : GC#4
                                                              : 30
Sample Name
                : 204056-03
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 7
Acquired on : 06 Apr 22
                            04:28 PM
                                              Instrument Method: DX.MTH
Report Created on: 07 Apr 22
                                              Analysis Method : DEFAULT.MTH
                            07:41 AM
```

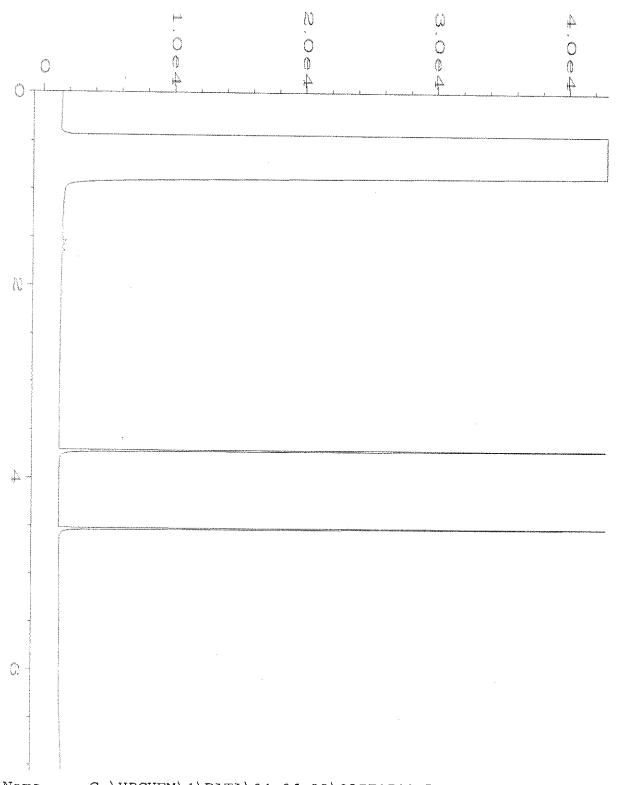



```
Data File Name
               : C:\HPCHEM\4\DATA\04-06-22\031F0701.D
                                                Page Number
Vial Number
Operator
                 : TL
Instrument
                 : GC#4
                                                                  : 31
                                                Injection Number : 1
Sample Name
                 : 204056-06
Run Time Bar Code:
                                                 Sequence Line
                                                               : 7
Acquired on : 06 Apr 22 04:39 PM
                                                 Instrument Method: DX.MTH
```

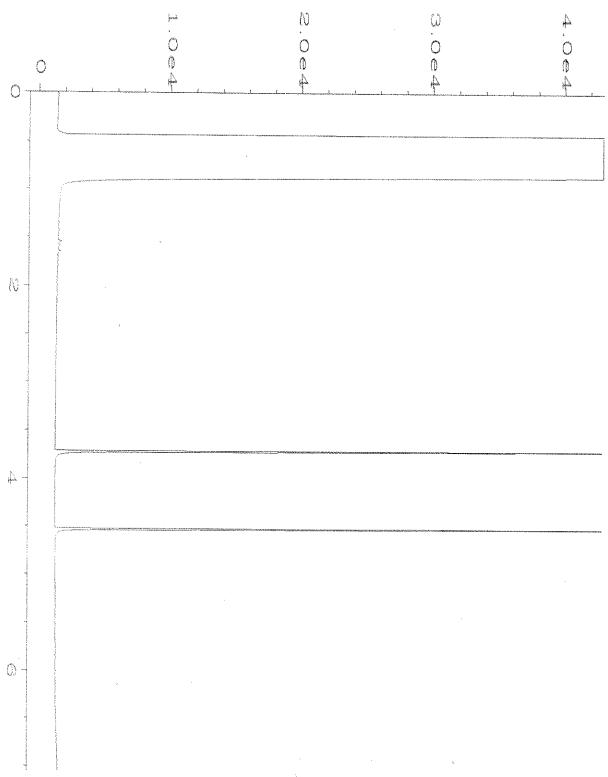
Report Created on: 07 Apr 22 07:41 AM Analysis Method : DEFAULT.MTH

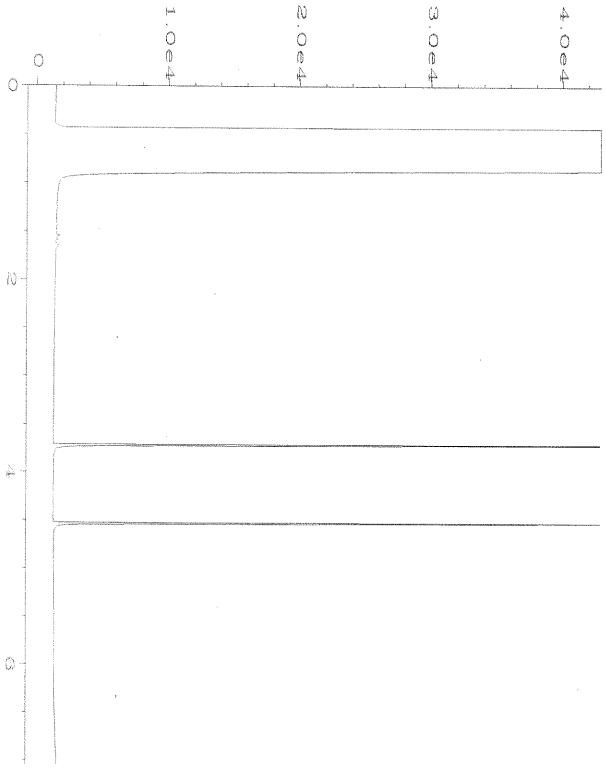



```
Data File Name
                 : C:\HPCHEM\4\DATA\04-06-22\032F0701.D
Operator
                                               Page Number
                 : TL
Instrument
                                               Vial Number
                                                                 : 32
                 : GC#4
Sample Name
                                               Injection Number: 1
                 : 204056-07
Run Time Bar Code:
                                               Sequence Line
                                                                : 7
Acquired on : 06 Apr 22 04:51 PM
                                               Instrument Method: DX.MTH
Report Created on: 07 Apr 22 07:41 AM
                                               Analysis Method : DEFAULT.MTH
```



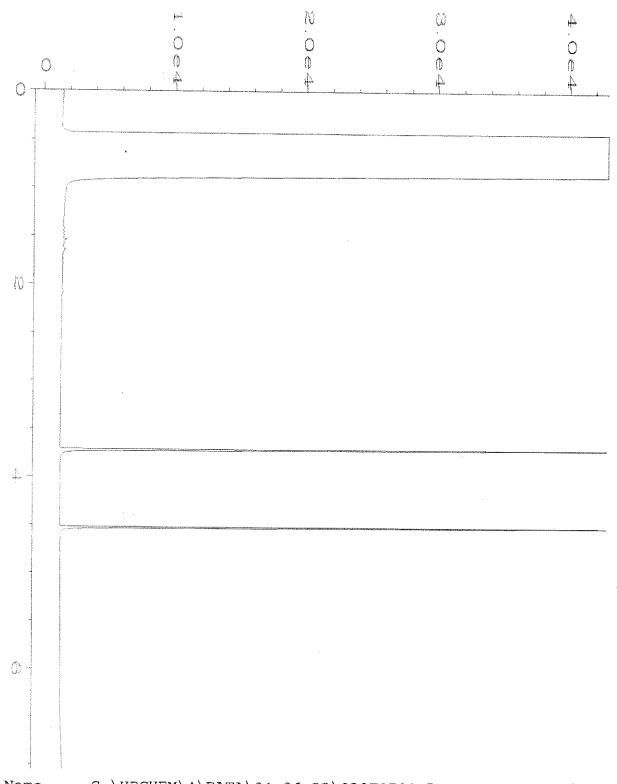

```
Data File Name
                : C:\HPCHEM\4\DATA\04-06-22\033F0701.D
                                               Page Number
Operator
                 : TL
                                               Vial Number
Instrument
                 : GC#4
                                                                : 33
                                               Injection Number: 1
Sample Name
                 : 204056-11
Run Time Bar Code:
                                               Sequence Line
                                                               : 7
Acquired on : 06 Apr 22 05:02 PM
                                               Instrument Method: DX.MTH
```


Report Created on: 07 Apr 22 07:41 AM Analysis Method : DEFAULT.MTH

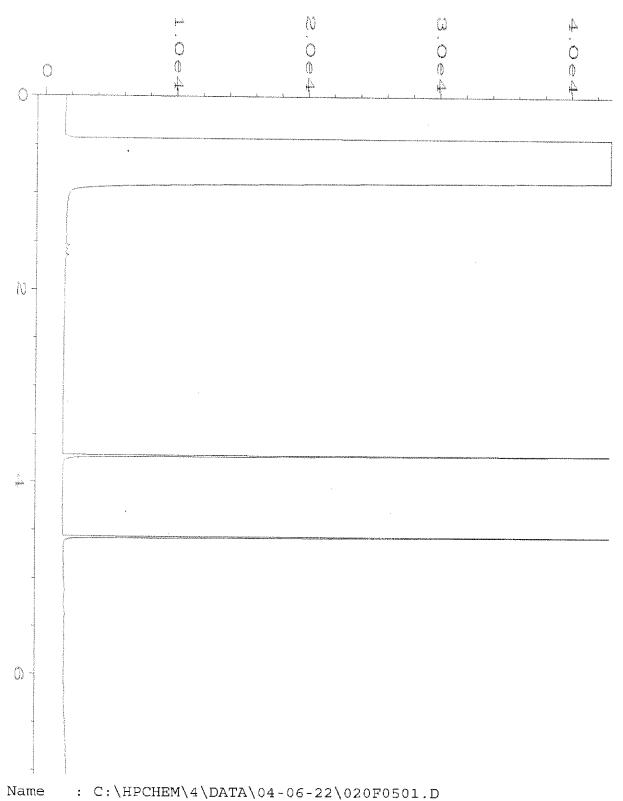

```
Operator
                : TL
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
                                                               : 34
Sample Name
                : 204056-12
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
                                                            : 7
Acquired on : 06 Apr 22 05:13 PM
                                              Instrument Method: DX.MTH
Report Created on: 07 Apr 22 07:42 AM
                                              Analysis Method : DEFAULT.MTH
```



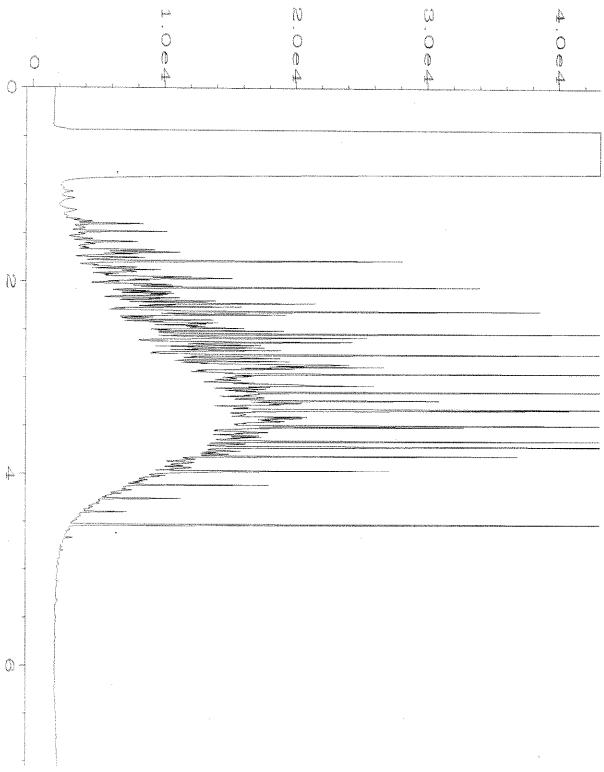
```
Data File Name : C:\HPCHEM\4\DATA\04-06-22\035F0701.D
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                 : GC#4
                                                                 : 35
Sample Name
                : 204056-14
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 7
Acquired on : 06 Apr 22 05:24 PM
                                                Instrument Method: DX.MTH
Report Created on: 07 Apr 22 07:42 AM
                                                Analysis Method : DEFAULT.MTH
```




```
: C:\HPCHEM\4\DATA\04-06-22\036F0701.D
Data File Name
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                 : GC#4
                                                                  : 36
Sample Name
                : 204056-15
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
                                                               : 7
Acquired on : 06 Apr 22 05:35 PM
                                                Instrument Method: DX.MTH
Report Created on: 07 Apr 22 07:42 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\4\DATA\04-06-22\037F0701.D
Operator
                : TL
                                              Page Number
Instrument
                                              Vial Number
                : GC#4
                                                               : 37
Sample Name
                                              Injection Number: 1
                : 204056-16
Run Time Bar Code:
                                              Sequence Line
                                                               : 7
Acquired on : 06 Apr 22 05:47 PM
                                              Instrument Method: DX.MTH
```

Report Created on: 07 Apr 22 07:42 AM Analysis Method: DK.MIR




```
Data File Name
               : C:\HPCHEM\4\DATA\04-06-22\038F0701.D
Operator
                : TL
                                               Page Number
                                                               : 1
Instrument
                                              Vial Number
                : GC#4
                                                               : 38
Sample Name
                : 204056-17
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 7
Acquired on : 06 Apr 22
                            05:58 PM
                                               Instrument Method: DX.MTH
```

Report Created on: 07 Apr 22 07:42 AM Analysis Method : DEFAULT.MTH


```
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
                                                              : 20
Sample Name
                                              Injection Number : 1
                : 02-849 mb
Run Time Bar Code:
                                              Sequence Line : 5
Acquired on : 06 Apr 22 01:40 PM
                                              Instrument Method: DX.MTH
Report Created on: 07 Apr 22 07:42 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\4\DATA\04-06-22\003F0201.D
Operator
                 : TL
                                                 Page Number
Instrument
                                                 Vial Number
                 : GC#4
                                                                   : 3
                                                 Injection Number: 1
Sequence Line: 2
Sample Name
                 : 500 Dx 65-27F
Run Time Bar Code:
Acquired on : 06 Apr 22 05:53 AM
                                                 Instrument Method: DX.MTH
Report Created on: 07 Apr 22 07:43 AM
                                                 Analysis Method : DEFAULT.MTH
```

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 14, 2023

Jacob Letts, Project Manager GeoEngineers, Inc 1101 Fawcett Ave 200 Tacoma, WA 98402

Dear Mr Letts:

Included are the additional results from the testing of material submitted on December 21, 2022 from the C-1 RI 5531-014-02, F&BI 212334 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Katy Ataturk GNR0214R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 21, 2022 by Friedman & Bruya, Inc. from the GeoEngineers, Inc C-1 RI 5531-014-02, F&BI 212334 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	GeoEngineers, Inc
212334 -01	C-1 RI-5-4
212334 -02	C-1 RI-5-8
212334 -03	C-1 RI-5-10
212334 -04	C-1 RI-5-20
212334 -05	C-1 RI-4-4
212334 -06	C-1 RI-4-8
212334 -07	C-1 RI-4-10
212334 -08	C-1 RI-4-20
212334 -09	C-1 RI-2-4
212334 -10	C-1 RI-2-8
212334 -11	C-1 RI-2-10
212334 -12	C-1 RI-2-20
212334 -13	C-1 RI-3-4
212334 -14	C-1 RI-3-8
212334 -15	C-1 RI-3-10
212334 -16	C-1 RI-1-4
212334 -17	C-1 RI-1-8
212334 -18	C-1 RI-1-10

The 8260D analysis of sample C-1 RI-2-20 was requested outside of the holding time. The sample was kept frozen from receipt until removed for analysis. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 RI-2-20 ht Client: GeoEngineers, Inc Date Received: 12/21/22 Project: C-1 RI 5531-014-02 Lab ID: Date Extracted: 02/08/23 212334-12 1/0.25 Date Analyzed: 02/08/23 Data File: 020809.DMatrix: Soil Instrument: GCMS13

Units: mg/kg (ppm) Dry Weight Operator: LM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 105 84 120 Toluene-d8 99 73 128 4-Bromofluorobenzene 97 57 146

Concentration

Compounds: mg/kg (ppm)

Trichloroethene 0.044

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:Method BlankClient:GeoEngineers, IncDate Received:Not ApplicableProject:C-1 RI 5531-014-02Date Extracted:02/08/23Lab ID:03-0271 mb 1/0.25Date Analyzed:02/08/23Data File:020808.D

Matrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: LM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 84 120 Toluene-d8 99 73 128 4-Bromofluorobenzene 93 57 146

Concentration

Compounds: mg/kg (ppm)

Trichloroethene <0.001

ENVIRONMENTAL CHEMISTS

Date of Report: 02/14/23 Date Received: 12/21/22

Project: C-1 RI 5531-014-02, F&BI 212334

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 302102-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Trichloroethene	mg/kg (ppm)	2	< 0.02	86	86	21-139	0

	J			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Trichloroethene	mg/kg (ppm)	2	116	63-121

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Rep Rep Add

TED	ANALYSES REQUESTED		
Default: Dispose after 30 days	2	Project specific RLs? Yes / No	one Email Stet De Glocking Project specific RLs? Yes / No
☐ Archive samples		Society oxygenter co	y, state, air
SAMPLE DISPOSAL	INVOICE TO	REMARKS = COZZ SEMOR	
900	0	(77	dress
Rush charges authorized by:	5631-014-02	(-1 R1	
N Standard turnaround) PO#	PROJECT NAME	λ
TURNAROUND TIME	7 7	Train to	on To alib Letis
Page # of C		SAMPLERS (signature)	
	DY 12/21/22	SAMPLE CHAIN OF CUSTODY	12334
12 (25 / VS - DR)

			.					1	T	1.	T	T	Γ.	1	<u> </u>	$\overline{}$
- 	nije ingazione	(200) 2000 O202	Friedman & Bruya, Inc.		C-1 RI-2-8	C-1 RI-2-4	(-1 RT-1/4-20	C-1 RI-1/4-10	C-1 RI-17-8	C-1 RI-1M-4	C-1 RI-15-20	C-1 RI-15-10	C-1 RI-15-8	C-1 RI-5-4	Sample ID	
	Relinquished by:	Received by:	Relinquished by:	SIS	101	٥	∞		6	5	2	3	2	IA-E	Lab ID	
		/ hale	St. H	SIGNATURE	(1A-E 12/19/22	Date Sampled	
					1340	1320	1030	1020	1010	1000	930	920	910	900	Time Sampled	
		Ar	Kat		←									S	Sample Type	
		~		PRIN	\									5	# of Jars	
		HQ	Ataktur-K	PRINT NAME	\nearrow	χ		×	X	X		X	X	×	NWTPH-Dx	
		A K	Wr.	ME		X		_		×		×		×	NWTPH-Gx	-
		2	7												BTEX EPA 8021 NWTPH-HCID	-
					×	X		\times	\times	\times		X	X	×	VOCs EPA 8260	ANA
T															PAHs EPA 8270	7106
		$\mathcal{I}_{\mathcal{I}}$	GE1	CC											PCBs EPA 8082	72.5
	ŀ	F813	77	COMPANY	\times	×		\times	X	$ \times $		×	×	×	RCFA-8 Metals	ANALYSES REQUESIED
				YW			~								1101 1	J.E.D
							^	-				-			HOLD	1
		12/21/22 10:57	1420/21 080	DATE									12/22 NE	ID, upd-hill put	Notes	
		10:57	083	TIME									NE-	1 po JL	й	

Received by:

Samples received at Boc

Report To Q(Ob Letts

Company GE |

Address

City, State, ZIP

Email

	SAMPLE CHAIN OF CUSTODY
1	12/2
•	ノムム

INVOICE TO	FEMARKS 4PM Froze Xinples 17/10/22
5531-014-02	C-1 RI
PO#	PROJECT NAME
	SAMPLERS (signature)

				. •	
☐ Archive samples ☐ Other Default: Dispose after 30 days	SAMPLE DISPOSAL	Rush charges authorized by:	TURNAROUND TIME Standard turnaround	Page # 2 of 2	ra GS/VSD2

		C-1 RI-1-10	1	G1 RI-1-4	C-1 RT-3-10	C-1 RI-3-8	C-1 RI-3-4	C-1 RI-2-20	C-1 RI-2-10	Sample ID	
JIS		18	エ	16	15	14	13	12	IIA-E	Lab ID	
SICMATITRE		\							11A-E 12/19/12	Date Sampled	
		1620	1610	1600	9121	1500	1440	1415	1350	Time Sampled	
	<i>A.A.</i>	←				·			S	Sample Type	:
DRINT NAME		4							6	# of Jars	
3		\geq	\times	\times	X	X	×		××	NWTPH-Dx	
2		\times	\times	~	×	×	\times		×	NWTPH-Gx	
5										BTEX EPA 8021	
										NWTPH-HCID	7
		$ \times$	\times	\times	\times	×	\times		X	VOCs EPA 8260	NA
										PAHs EPA 8270	ISY
										PCBs EPA 8082	S RI
MAAMOO		~	\times	~	- ×	×	×		×	RCRA-BINETAL	ANALYSES REQUESTED
\ \ 			-					末		HOLD	ŒD
								(V)		TCE	
DATE TIME							2/ 7/23 ME	(Spec JL		Notes	

Friedman & Bruya, In Ph. (206) 285-8282

	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
, Inc.	Relinquished by:	Katu Atakhirk	651	14/20/22 0800	0820
	Received by:	AMHPHAM	F83	12/21/22 10:57	10:57
	Relinquished by:				
	Received by:		Samples received at 6 °C	10°C	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 20, 2022

Jacob Letts, Project Manager GeoEngineers 2101 4th Avenue, Suite 150 Seattle, WA 98121

Dear Mr Letts:

Included are the results from the testing of material submitted on April 21, 2022 from the PAE C-1 Hangar 5530-014-01, F&BI 204363 project. The sample IDs have been amended per your request.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Katy Ataturk GNR0503R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 3, 2022

Jacob Letts, Project Manager GeoEngineers 2101 4th Avenue, Suite 150 Seattle, WA 98121

Dear Mr Letts:

Included are the results from the testing of material submitted on April 21, 2022 from the PAE C-1 Hangar 5530-014-01, F&BI 204363 project. There are 22 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Katy Ataturk GNR0503R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 21, 2022 by Friedman & Bruya, Inc. from the GeoEngineers PAE C-1 Hangar 5530-014-01, F&BI 204363 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>GeoEngineers</u>
204363 -01	C-1 HSA3
204363 -02	C-1 HSA4
204363 -03	TB-04212022

Gasoline by NWTPH-Gx

All quality control requirements were acceptable.

Diesel and Motor Oil by NWTPH-Dx

All quality control requirements were acceptable.

VOCs by 8260D

The 8260D calibration standard failed the acceptance criteria for several analytes. The data were flagged accordingly. All other quality control requirements were acceptable.

Metals by 6020B

Silver in the 6020B matrix spike and the selenium matrix spike and matrix spike duplicate relative percent difference did not meet the acceptance criteria. The laboratory control sample passed the acceptance criteria, therefore the results were due to matrix effect. All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/03/22 Date Received: 04/21/22

Project: PAE C-1 Hangar 5530-014-01, F&BI 204363

Date Extracted: 04/26/22 Date Analyzed: 04/27/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
C-1 HSA3 204363-01	<100	89
C-1 HSA4 204363-02	<100	87
Method Blank 02-890 MB	<100	81

ENVIRONMENTAL CHEMISTS

Date of Report: 05/03/22 Date Received: 04/21/22

Project: PAE C-1 Hangar 5530-014-01, F&BI 204363

Date Extracted: 04/22/22 Date Analyzed: 04/22/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{(\text{C}_{25}\text{-C}_{36})}$	Surrogate (% Recovery) (Limit 41-152)
C-1 HSA3 204363-01	<50	<250	132
C-1 HSA4 204363-02	230 х	<250	128
Method Blank 02-980 MB	<50	<250	126

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 HSA3	Client:	GeoEngineers
------------	----------	---------	--------------

Date Received: 04/21/22 Project: 5530-014-01, F&BI 204363

Lab ID: Date Extracted: 04/26/22 204363-01Date Analyzed: 04/26/22 Data File: 204363-01.044 Matrix: Instrument: ICPMS2 Water Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	9.99
Barium	71.8
Cadmium	<1
Chromium	2.23
Lead	<1
Mercury	<1
Selenium	3.26
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 HSA4	Client:	GeoEngineers
Date Received:	04/21/22	Project:	5530-014-01, Fe

Project: 5530-014-01, F&BI 204363 04/21/22 Lab ID: 204363-02 Date Extracted: 04/26/22 Date Analyzed: 04/26/22 Data File: 204363-02.045 Matrix: Instrument: ICPMS2Water Units: ug/L (ppb) Operator: SP

Concentration ug/L (ppb)
10.2
55.9
<1
<1
<1
1.50
<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 HSA4 Client: GeoEngineers

Date Received: 04/21/22 Project: 5530-014-01, F&BI 204363

 Date Extracted:
 04/26/22
 Lab ID:
 204363-02 x5

 Date Analyzed:
 04/26/22
 Data File:
 204363-02 x5.060

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Chromium <5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: GeoEngineers

Date Received: NA Project: 5530-014-01, F&BI 204363

Date Extracted: 04/26/22 Lab ID: I2-308 mb2
Date Analyzed: 04/26/22 Data File: I2-308 mb2.043

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 HSA3	Client:	GeoEngineers

 Date Received:
 04/21/22
 Project:
 5530-014-01, F&BI 204363

 Date Extracted:
 04/25/22
 Lab ID:
 204363-01

 Date Analyzed:
 04/25/22
 Data File:
 204363-01.077

 Matrix:
 Water
 Instrument:
 ICPMS2

Matrix: Water Instrument: ICPM Units: ug/L (ppb) Operator: SP

Analyte: $\begin{array}{c} \text{Concentration} \\ \text{ug/L (ppb)} \\ \\ \text{Arsenic} \end{array}$ 7.41

 Arsenic
 7.41

 Barium
 65.4

 Cadmium
 <1</td>

 Chromium
 <1</td>

 Lead
 <1</td>

 Mercury
 <1</td>

 Selenium
 3.03

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 HSA4	Client:	GeoEngineers
Date Received:	04/21/22	Project:	5530-014-01, F&BI 204363
Date Extracted:	04/25/22	Lab ID:	204363-02
Data Analyzad	04/25/22	Data File	204363-02 078

Date Analyzed: 04/25/22 Data File: 204363-02.078
Matrix: Water Instrument: ICPMS2
Units: ug/L (ppb) Operator: SP

 $\begin{array}{ccc} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: C-1 HSA4 Client: GeoEngineers

Date Received: 04/21/22 Project: 5530-014-01, F&BI 204363

 Date Extracted:
 04/25/22
 Lab ID:
 204363-02 x5

 Date Analyzed:
 04/25/22
 Data File:
 204363-02 x5.106

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Chromium <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Cheft ID: Method Diank Cheft: Geogligheer	Client ID:	Method Blank	Client:	GeoEngineer
---	------------	--------------	---------	-------------

Date Received: NA Project: 5530-014-01, F&BI 204363

Lab ID: Date Extracted: 04/25/22 I2-308 mb Date Analyzed: 04/25/22 Data File: I2-308 mb.064 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

	Concentration
Analyte:	ug/L (ppb)

Arsenic	<1
Barium	<1
Cadmium	<1
Chromium	<1
Lead	<1
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

 Date Received:
 04/21/22
 Project:
 5530-014-01, F&BI 204363

 Date Extracted:
 04/29/22
 Lab ID:
 204363-01

 Date Analyzed:
 04/29/22
 Data File:
 042926.D

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	85	117
Toluene-d8	99	88	112
4-Bromofluorobenzene	102	90	111

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10 ca	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5 ca	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

 Date Received:
 04/21/22
 Project:
 5530-014-01, F&BI 204363

 Date Extracted:
 04/29/22
 Lab ID:
 204363-02

Date Analyzed: 04/29/22 Data File: 042927.D

Matrix: Water Instrument: GCMS13

Units: ug/L (ppb) Operator: WE

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	92	85	117
Toluene-d8	101	88	112
4-Bromofluorobenzene	101	90	111

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10 ca	Tetrachloroethene	<1
Vinyl chloride	0.36	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	3.0
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5 ca	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	1.4
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	TB-04212022	Client:	GeoEngineers

Date Received: 04/21/22 Project: 5530-014-01, F&BI 204363

Lab ID: 204363-03 Date Extracted: 04/29/22 Date Analyzed: 04/29/22 Data File: $042925.\mathrm{D}$ Matrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: WE

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	85	117
Toluene-d8	98	88	112
4-Bromofluorobenzene	104	90	111

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10 ca	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5 ca	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: 5530-014-01, F&BI 204363

04/29/22 Lab ID: 02-1000 MBDate Extracted: Date Analyzed: 04/29/22 Data File: 042907.DMatrix: Water Instrument: GCMS13 Units: ug/L (ppb) WE Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	85	117
Toluene-d8	105	88	112
4-Bromofluorobenzene	94	90	111

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10 ca	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5 ca	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/03/22 Date Received: 04/21/22

Project: PAE C-1 Hangar 5530-014-01, F&BI 204363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 204351-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	81	69-134	

ENVIRONMENTAL CHEMISTS

Date of Report: 05/03/22 Date Received: 04/21/22

Project: PAE C-1 Hangar 5530-014-01, F&BI 204363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	108	63-142	4

ENVIRONMENTAL CHEMISTS

Date of Report: 05/03/22 Date Received: 04/21/22

Project: PAE C-1 Hangar 5530-014-01, F&BI 204363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 204333-02 x10 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<10	81	92	75-125	13
Barium	ug/L (ppb)	50	172	87	104	75 - 125	18
Cadmium	ug/L (ppb)	5	<10	83	96	75 - 125	15
Chromium	ug/L (ppb)	20	<10	82	88	75 - 125	7
Lead	ug/L (ppb)	10	<10	78	87	75 - 125	11
Mercury	ug/L (ppb)	5	<10	79	85	75 - 125	7
Selenium	ug/L (ppb)	5	<10	80	103	75 - 125	25 vo
Silver	ug/L (ppb)	5	<10	74 vo	83	75 - 125	11

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	85	80-120
Barium	ug/L (ppb)	50	98	80-120
Cadmium	ug/L (ppb)	5	96	80-120
Chromium	ug/L (ppb)	20	97	80-120
Lead	ug/L (ppb)	10	93	80-120
Mercury	ug/L (ppb)	5	97	80-120
Selenium	ug/L (ppb)	5	88	80-120
Silver	ug/L (ppb)	5	87	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/03/22 Date Received: 04/21/22

Project: PAE C-1 Hangar 5530-014-01, F&BI 204363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 204333-02 x10 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<10	81	92	75-125	13
Barium	ug/L (ppb)	50	172	87	104	75 - 125	18
Cadmium	ug/L (ppb)	5	<10	83	96	75 - 125	15
Chromium	ug/L (ppb)	20	<10	82	88	75 - 125	7
Lead	ug/L (ppb)	10	<10	78	87	75 - 125	11
Mercury	ug/L (ppb)	5	<10	79	85	75 - 125	7
Selenium	ug/L (ppb)	5	<10	80	103	75 - 125	25 vo
Silver	ug/L (ppb)	5	<10	74 vo	83	75 - 125	11

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	85	80-120
Barium	ug/L (ppb)	50	98	80-120
Cadmium	ug/L (ppb)	5	96	80-120
Chromium	ug/L (ppb)	20	97	80-120
Lead	ug/L (ppb)	10	93	80-120
Mercury	ug/L (ppb)	5	97	80-120
Selenium	ug/L (ppb)	5	88	80-120
Silver	ug/L (ppb)	5	87	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/03/22 Date Received: 04/21/22

Project: PAE C-1 Hangar 5530-014-01, F&BI 204363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 204474-01 (Matrix Spike)

Laboratory Code. 204474-01 (Ma	Laboratory Code. 204474-01 (Watrix Spike)						
		a•		Percent			
	Reporting	Spike	Sample	Recovery	Acceptance		
Analyte	Units	Level	Result	MS	Criteria		
Dichlorodifluoromethane	ug/L (ppb)	10	<1	110	50-150		
Chloromethane	ug/L (ppb)	10	<10	87	50-150		
Vinyl chloride	ug/L (ppb)	10	< 0.02	89	16-176		
Bromomethane	ug/L (ppb)	10	<5	106	10-193		
Chloroethane	ug/L (ppb)	10	<1	101	50-150		
Trichlorofluoromethane	ug/L (ppb)	10	<1	104	50-150		
Acetone	ug/L (ppb)	50	<50	84	15-179		
1,1-Dichloroethene	ug/L (ppb)	10	<1	112	50-150		
Hexane	ug/L (ppb)	10	<5	71	49-161		
Methylene chloride	ug/L (ppb)	10 10	<5 <1	106 108	40-143		
Methyl t-butyl ether (MTBE)	ug/L (ppb)				50-150		
trans-1,2-Dichloroethene 1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	10 10	<1 <1	97 99	50-150 50-150		
2,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10	<1	80	10-335		
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	98	50-150		
Chloroform	ug/L (ppb)	10	<1	104	50-150		
2-Butanone (MEK)	ug/L (ppb)	50	<20	81	34-168		
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	119	50-150		
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	112	50-150		
1,1-Dichloropropene	ug/L (ppb)	10	<1	95	50-150		
Carbon tetrachloride	ug/L (ppb)	10	< 0.5	109	50-150		
Benzene	ug/L (ppb)	10	< 0.35	96	50-150		
Trichloroethene	ug/L (ppb)	10	< 0.5	97	43-133		
1,2-Dichloropropane	ug/L (ppb)	10	<1	87	50-150		
Bromodichloromethane	ug/L (ppb)	10	< 0.5	101	50-150		
Dibromomethane	ug/L (ppb)	10	<1	101	50-150		
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	99	50-150		
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	85	48-145		
Toluene	ug/L (ppb)	10	<1	90	50-150		
trans-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	83	37-152		
1,1,2-Trichloroethane	ug/L (ppb)	10	< 0.5	89	50-150		
2-Hexanone	ug/L (ppb)	50	<10	83	50-150		
1,3-Dichloropropane	ug/L (ppb)	10	<1	90	50-150		
Tetrachloroethene	ug/L (ppb)	10	<1	98	50-150		
Dibromochloromethane	ug/L (ppb)	10	< 0.5	96	33-164		
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	96	50-150		
Chlorobenzene	ug/L (ppb)	10 10	<1 <1	96 104	50-150 50-150		
Ethylbenzene 1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	<1 <1		50-150 50-150		
m,p-Xylene	ug/L (ppb) ug/L (ppb)	20	<1 <2	107 102	50-150 50-150		
o-Xylene	ug/L (ppb)	10	<1	96	50-150		
Styrene	ug/L (ppb)	10	<1	98	50-150		
Isopropylbenzene	ug/L (ppb)	10	<1	102	50-150		
Bromoform	ug/L (ppb)	10	<5	92	23-161		
n-Propylbenzene	ug/L (ppb)	10	<1	88	50-150		
Bromobenzene	ug/L (ppb)	10	<1	93	50-150		
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	92	50-150		
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	87	10-235		
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	84	33-151		
2-Chlorotoluene	ug/L (ppb)	10	<1	90	50-150		
4-Chlorotoluene	ug/L (ppb)	10	<1	90	50-150		
tert-Butylbenzene	ug/L (ppb)	10	<1	93	50-150		
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	92	50-150		
sec-Butylbenzene	ug/L (ppb)	10	<1	90	46-139		
p-Isopropyltoluene	ug/L (ppb)	10	<1	94	46-140		
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	93	50-150		
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	92	50-150		
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	95	50-150		
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	84	50-150		
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	90	50-150		
Hexachlorobutadiene	ug/L (ppb)	10	< 0.5	86	42-150		
Naphthalene	ug/L (ppb)	10	<1	89	50-150		
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	90	44-155		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/03/22 Date Received: 04/21/22

Project: PAE C-1 Hangar 5530-014-01, F&BI 204363

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

·			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	90	84	70-130	7
Chloromethane	ug/L (ppb)	10	102	104	70-130	2
Vinyl chloride Bromomethane	ug/L (ppb)	10 10	110 126	109 112	70-130 28-182	1 12
Chloroethane	ug/L (ppb) ug/L (ppb)	10	119	117	28-182 70-130	2
Trichlorofluoromethane	ug/L (ppb)	10	97	88	70-130	10
Acetone	ug/L (ppb)	50	86	89	42-155	3
1,1-Dichloroethene	ug/L (ppb)	10	94	89	70-130	5
Hexane	ug/L (ppb)	10	82	81	50-161	1
Methylene chloride	ug/L (ppb)	10	97	88	29-192	10
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	98	94	70-130	4
trans-1,2-Dichloroethene	ug/L (ppb)	10	94 97	88	70-130	7
1,1-Dichloroethane 2.2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10 10	94	92 88	70-130 70-130	5 7
cis-1,2-Dichloroethene	ug/L (ppb)	10	96	90	70-130	6
Chloroform	ug/L (ppb)	10	98	90	70-130	9
2-Butanone (MEK)	ug/L (ppb)	50	94	87	50-157	8
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	95	89	70-130	7
1,1,1-Trichloroethane	ug/L (ppb)	10	97	92	70-130	5
1,1-Dichloropropene	ug/L (ppb)	10	96	88	70-130	9
Carbon tetrachloride	ug/L (ppb)	10	96	88	70-130	9
Benzene	ug/L (ppb)	10	96	93	70-130	3 7
Trichloroethene 1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10 10	93 93	87 91	70-130 70-130	$\frac{7}{2}$
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	10	94	85	70-130	10
Dibromomethane	ug/L (ppb)	10	95	89	70-130	7
4-Methyl-2-pentanone	ug/L (ppb)	50	92	93	70-130	i
cis-1,3-Dichloropropene	ug/L (ppb)	10	90	89	70-130	1
Toluene	ug/L (ppb)	10	94	95	70-130	1
trans-1,3-Dichloropropene	ug/L (ppb)	10	96	98	70-130	2
1,1,2-Trichloroethane	ug/L (ppb)	10	95	98	70-130	3
2-Hexanone 1,3-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 10	95 95	103 100	69-130 70-130	8 5
Tetrachloroethene	ug/L (ppb) ug/L (ppb)	10	94	93	70-130	3 1
Dibromochloromethane	ug/L (ppb)	10	94	97	63-142	3
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	98	97	70-130	1
Chlorobenzene	ug/L (ppb)	10	97	96	70-130	1
Ethylbenzene	ug/L (ppb)	10	100	99	70-130	1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	102	99	70-130	3
m,p-Xylene	ug/L (ppb)	20	100	99	70-130	1
o-Xylene	ug/L (ppb)	10	100	98	70-130	$\frac{2}{2}$
Styrene Isopropylbenzene	ug/L (ppb) ug/L (ppb)	10 10	102 105	100 101	70-130 70-130	4
Bromoform	ug/L (ppb)	10	97	95	50-157	2
n-Propylbenzene	ug/L (ppb)	10	101	99	70-130	2
Bromobenzene	ug/L (ppb)	10	95	94	70-130	1
1,3,5-Trimethylbenzene	ug/L (ppb)	10	102	97	52-150	5
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	104	99	70-130	5
1,2,3-Trichloropropane	ug/L (ppb)	10	96	96	70-130	0
2-Chlorotoluene 4-Chlorotoluene	ug/L (ppb)	10 10	100 100	97 97	70-130 70-130	3 3
tert-Butylbenzene	ug/L (ppb) ug/L (ppb)	10	100	97 96	70-130	ა 5
1,2,4-Trimethylbenzene	ug/L (ppb)	10	103	98	70-130	5
sec-Butylbenzene	ug/L (ppb)	10	102	98	70-130	4
p-Isopropyltoluene	ug/L (ppb)	10	102	97	70-130	5
1,3-Dichlorobenzene	ug/L (ppb)	10	100	96	70-130	4
1,4-Dichlorobenzene	ug/L (ppb)	10	97	94	70-130	3
1,2-Dichlorobenzene	ug/L (ppb)	10	100	96	70-130	4
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	99	96	70-130	3
1,2,4-Trichlorobenzene	ug/L (ppb)	10	96	87 86	70-130	10 8
Hexachlorobutadiene Naphthalene	ug/L (ppb) ug/L (ppb)	10 10	93 103	86 95	70-130 70-130	8 8
1,2,3-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	10	101	95 91	69-143	10
-,-,	agin (ppo)	10	101	O.I.	00 110	10

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- ${\rm d}$ The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

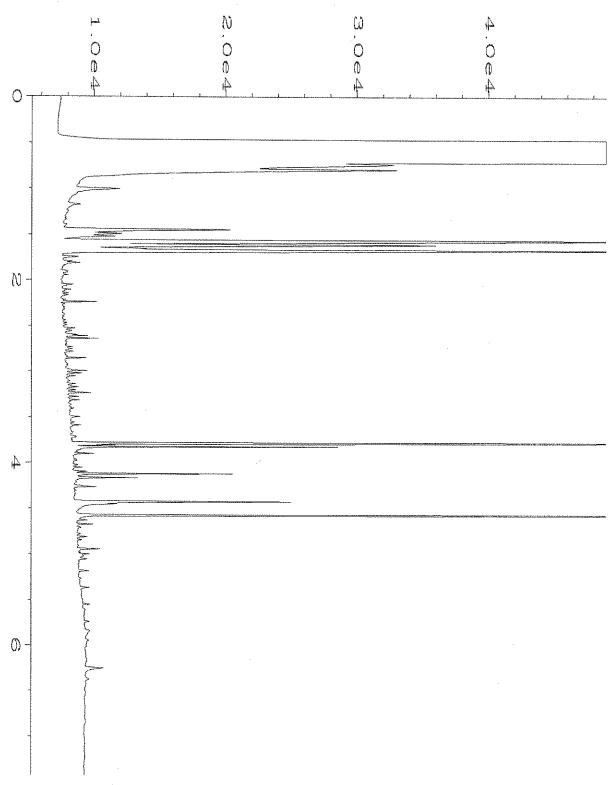
Men

Ph. (206) 285-8282 Friedman & Bruya, Inc. City, State, ZIP SCATTU, WASH Address 2101 47 Ave Suit 957 Company (JEDED MIN LINS るのとなる IDS goddod per JL 3/10/32 ME 22 - 23 FT - 12 TS TEAT WHISAS Sample ID Bmail SLと対ちの介はの自由ののなられるTis?·Yes / No Relinquished by Relinquished by: Received by: Received by: O. A.S 80Ai6 Lab ID **/16/h Sampled Date the 288 1400 Time Sampled REMARKS Pricing PAE C-1 Hangar PROJECT NAME Sample Type 3 ع ک ATTIME THE THE NTO HORAGE Ψ # of Jars PRINT NAME Ü O メ NWTPH-Dx \times NWTPH-Gx BTEX EPA 8021 10-110-083S NWTPH-HCID INVOICE TO INALYSES REQUESTED \times VOCs EPA 8260 P0# PAHs EPA 8270 下 る し PCBs EPA 8082 TOTAL & DISS. RC&AMUTALS COMPANY \times 入 Samples received at 4 oc ☐ Archive samples
☐ Other_____ A Standard turnaround Rush charges authorized by: Default: Dispose after 30 days SAMPLE DISPOSAL Heller! シインジャ DATE Notes 16:05 TIME

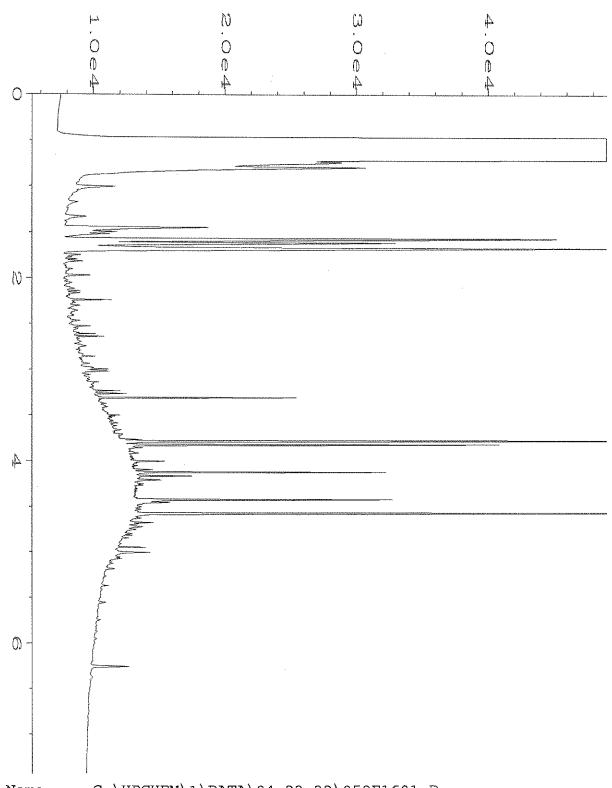
204363 NOLLOB LEXTS

SAMPLE CHAIN OF CUSTODY

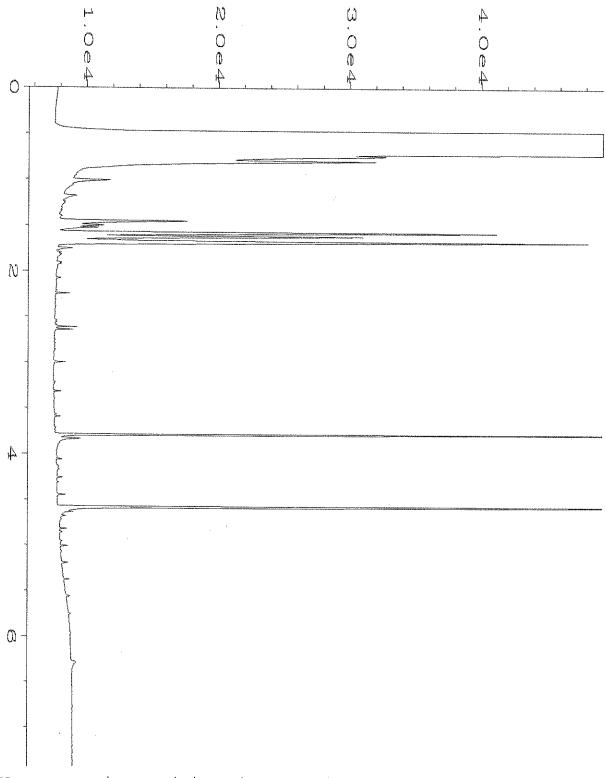
SAMPLERS (signature)

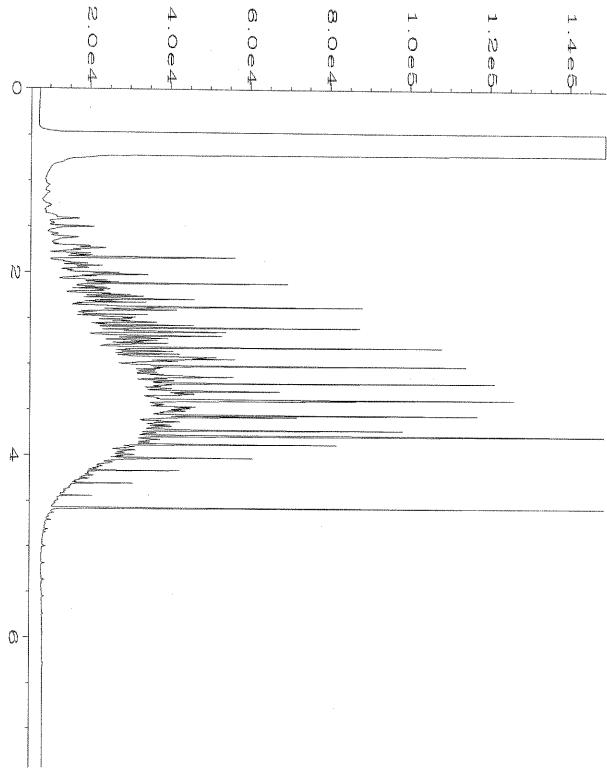

Page#

603/1923/VW3


TURNAROUND TIME

SAMPLE CONDITION UPON RECEIPT CHECKLIST


PROJECT # 904363 CLIENT Geo Engineer		ITIA .TE:	LS/ `	CH 21/22	/
If custody seals are present on cooler, are they intact?		NA	Ģ	YES	
Cooler/Sample temperature				4	°C
Were samples received on ice/cold packs?			Ø	YES	□ №
How did samples arrive? □ Over the Counter □ Picked up by F&BI □ FedEx/UPS/GSO	***				,
Number of days samples have been sitting prior to receipt at	lab	ora	tory	O	days
Is there a Chain-of-Custody* (COC)? *or other representative documents, letters, and/or shipping memos				YES	D NO
Are the samples clearly identified? (explain "no" answer below)			Ø	YES	□ NO
Is the following information provided on the COC*? (explain "no	o" an	swer	below	v)	<u> </u>
Sample ID's		0 N 0 N 0 N	o		
Were all sample containers received intact (i.e. not broken, leaking etc.)? (explain "no" answer below)			卢	YES	□ NO
Were appropriate sample containers used? YES		<u>1</u>	40	ן מ	Jnknown
If custody seals are present on samples, are they intact?	<u>/</u> d	NA	۵	YES	□ NO
Are samples requiring no headspace, headspace free?		NA	1	YES	□ NO
Air Samples: Were any additional canisters received? If Yes, number of unused 1L canisters number of unused 6L canisters	16	NA		YES	□ NO
Explain "no" items from above (use the back i	if ne	ede	d)		


```
Data File Name
                : C:\HPCHEM\1\DATA\04-22-22\058F1601.D
Operator
                                               Page Number
                 : TL
Instrument
                                               Vial Number
                 : GC1
Sample Name
                                               Injection Number: 1
                : 204363-01
Run Time Bar Code:
                                               Sequence Line
Acquired on : 22 Apr 22 11:53 PM
                                               Instrument Method: DX.MTH
Report Created on: 25 Apr 22 02:09 PM
                                               Analysis Method : DX.MTH
```



```
: C:\HPCHEM\1\DATA\04-22-22\059F1601.D
Data File Name
Operator
                                              Page Number
                : TL
                : GC1
Instrument
                                              Vial Number
                                                               : 59
Sample Name
                : 204363-02
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 16
                                              Instrument Method: DX.MTH
Acquired on : 23 Apr 22 00:08 AM
Report Created on: 25 Apr 22 10:22 AM
                                              Analysis Method : DX.MTH
```



```
: C:\HPCHEM\1\DATA\04-22-22\020F0801.D
Data File Name
Operator
                : TL
                                               Page Number
                                                               : 1
Instrument
                : GC1
                                               Vial Number
                                                              : 20
Sample Name
                : 02-980 mb
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on : 22 Apr 22
                            12:46 PM
                                               Instrument Method: DX.MTH
Report Created on: 25 Apr 22
                            02:09 PM
                                               Analysis Method : DX.MTH
```



```
: C:\HPCHEM\1\DATA\04-22-22\003F1301.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                : GC1
                                             Vial Number
                                                              : 3
Sample Name
                : 500 Dx 65-122D
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 13
Acquired on : 22 Apr 22 05:15 PM
                                              Instrument Method: DX.MTH
Report Created on: 25 Apr 22
                           02:09 PM
                                             Analysis Method : DX.MTH
```

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 19, 2021

Jacob Letts, Project Manager GeoEngineers 2101 4th Avenue, Suite 150 Seattle, WA 98121

Dear Mr Letts:

Included is the amended report from the testing of material submitted on March 31, 2021 from the Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585 project. Per your request, the reporting limits for several 8260D volatile organic compounds in water were lowered and a qualifier was added to the methylene chloride detection in sample C-1 DP2-033121w.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures GNR0409R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 9, 2021

Jacob Letts, Project Manager GeoEngineers 2101 4th Avenue, Suite 150 Seattle, WA 98121

Dear Mr Letts:

Included are the results from the testing of material submitted on March 31, 2021 from the Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585 project. There are 153 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures GNR0409R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 31, 2021 by Friedman & Bruya, Inc. from the GeoEngineers Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	GeoEngineers
103585 -01	C-1 DP4-3.5
103585 -02	C-1 DP4-5.0
103585 -03	C-1 DP4-7.0
103585 -04	C-1 DP3-4.0
103585 -05	C-1 DP3-7.0
103585 -06	C-1 DP3-033021w
103585 -07	C-1 DP5-3.0
103585 -08	C-1 DP5-6.0
103585 -09	C-1 DP15-4.0
103585 -10	C-1 DP15-7.0
103585 -11	C-1 DP14-5.0
103585 -12	C-1 DP14-10.0
103585 -13	C-1 DP13-2.0
103585 -14	C-1 DP13-5.0
103585 -15	C-1 DP13-033121w
103585 -16	C-1 DP14-033121w
103585 -17	C-1 DP8-4.5
103585 -18	C-1 DP8-9.0
103585 -19	C-1 DP9-3.0
103585 -20	C-1 DP9-7.5
103585 -21	C-1 DP10-4.0
103585 -22	C-1 DP11-4.0
103585 -23	C-1 DP2-5.0
103585 -24	C-1 DP2-11.0
103585 -25	C-1 DP1-3.5
103585 -26	C-1 DP1-11.0
103585 -27	C-1 DP2-033121w
103585 -28	C-1 DP7-4.0
103585 -29	C-1 DP7-9.0
103585 -30	C-1 DP12-3.0
103585 -31	C-1 DP12-8.0
103585 -32	C-1 DP6-3.0
103585 -33	C-1 DP6-6.0
103585 -34	Trip Blank 1
103585 -35	Trip Blank 2
103585 -36	Trip Blank 3

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

<u>Laboratory ID</u>	<u>GeoEngineers</u>
103585 -37	Trip Blank 4
103585 -38	Trip Blank 5

Gasoline by NWTPH-Gx (water)

All quality control requirements were acceptable.

Diesel and Motor Oil by NWTPH-Dx (water)

All quality control requirements were acceptable.

VOCs by 8260D (water)

All quality control requirements were acceptable.

PCBs by 8082A (water)

All quality control requirements were acceptable.

Total Metals by 6020B (water)

All quality control requirements were acceptable.

Dissolved Metals by 6020B (water)

A 6020B internal standard failed the acceptance criteria for sample C-1 DP14-033121w. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported. All other quality control requirements were acceptable.

Gasoline by NWTPH-Gx (soil)

All quality control requirements were acceptable.

Diesel and Motor Oil by NWTPH-Dx (soil)

All quality control requirements were acceptable.

<u>VOCs by 8260D (soil)</u>
The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable. All other quality control requirements were acceptable.

PCBs by 8082A (soil)

For PCB samples analyzed on GC9, the time of analysis in the EQUIS electronic data file is inaccurate due to a software error. All quality control requirements were acceptable.

Total Metals by 6020B (soil)

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/01/21

Date Analyzed: 04/02/21, 04/05/21 and 04/06/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
C-1 DP4-3.5	<5	75
C-1 DP4-5.0 103585-02	<5	73
C-1 DP4-7.0 103585-03	<5	75
C-1 DP3-4.0 103585-04	<5	75
C-1 DP3-7.0 103585-05	7.5	79
C-1 DP5-3.0 103585-07	<5	73
C-1 DP5-6.0 103585-08	<5	77
C-1 DP15-4.0 103585-09	51	78
C-1 DP15-7.0 103585-10	<5	65
C-1 DP14-5.0 103585-11	<5	69
C-1 DP14-10.0 103585-12	<5	72

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/01/21

Date Analyzed: 04/02/21, 04/05/21 and 04/06/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
C-1 DP13-2.0 103585-13	<5	65
C-1 DP13-5.0 103585-14	<5	67
C-1 DP8-4.5 103585-17	<5	68
C-1 DP8-9.0 103585-18	<5	67
C-1 DP9-3.0 103585-19	<5	64
C-1 DP9-7.5 103585-20	<5	68
C-1 DP10-4.0 103585-21	<5	68
C-1 DP11-4.0 103585-22	<5	61
C-1 DP2-5.0 103585-23	<5	71
C-1 DP2-11.0 103585-24	<5	69
C-1 DP1-3.5 103585-25	<5	63

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/01/21

Date Analyzed: 04/02/21, 04/05/21 and 04/06/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
C-1 DP1-11.0 103585-26	<5	62
C-1 DP7-4.0 103585-28	<5	62
C-1 DP7-9.0 103585-29	<5	64
C-1 DP12-3.0 103585-30	<5	63
C-1 DP12-8.0 103585-31	<5	60
C-1 DP6-3.0 103585-32	<5	68
C-1 DP6-6.0 103585-33	<5	66
Method Blank _{01-598 MB}	<5	71
Method Blank _{01-599 MB}	<5	69

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/05/21 Date Analyzed: 04/06/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
C-1 DP3-033021w 103585-06	<100	89
C-1 DP13-033121w 103585-15	<100	88
C-1 DP14-033121w 103585-16	<100	87
C-1 DP2-033121w 103585-27	<100	88
Method Blank	<100	90

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/01/21 Date Analyzed: 04/01/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 53-144)
C-1 DP4-3.5	<50	<250	101
C-1 DP4-5.0 103585-02	<50	<250	101
C-1 DP4-7.0 103585-03	<50	<250	103
C-1 DP3-4.0 103585-04	<50	<250	89
C-1 DP3-7.0 103585-05	<50	<250	88
C-1 DP5-3.0 103585-07	<50	<250	91
C-1 DP5-6.0 103585-08	<50	<250	96
C-1 DP15-4.0 103585-09	<50	<250	91
C-1 DP15-7.0 103585-10	<50	<250	100
C-1 DP14-5.0	<50	<250	102

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/01/21 Date Analyzed: 04/01/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 53-144)
C-1 DP14-10.0 103585-12	<50	<250	103
C-1 DP13-2.0 103585-13	<50	<250	102
C-1 DP13-5.0 103585-14	<50	<250	103
C-1 DP8-4.5 103585-17	<50	<250	99
C-1 DP8-9.0 103585-18	<50	<250	91
C-1 DP9-3.0 103585-19	<50	<250	90
C-1 DP9-7.5 103585-20	<50	<250	92
C-1 DP10-4.0 103585-21	<50	<250	100
C-1 DP11-4.0 103585-22	<50	<250	100
C-1 DP2-5.0 103585-23	<50	<250	102

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/01/21 Date Analyzed: 04/01/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 53-144)
C-1 DP2-11.0 103585-24	<50	<250	89
C-1 DP1-3.5 103585-25	<50	<250	89
C-1 DP1-11.0 103585-26	<50	<250	90
C-1 DP7-4.0 103585-28	<50	<250	100
C-1 DP7-9.0 103585-29	<50	<250	101
C-1 DP12-3.0 103585-30	<50	<250	91
C-1 DP12-8.0 103585-31	<50	<250	99
C-1 DP6-3.0 103585-32	<50	<250	103
C-1 DP6-6.0 103585-33	<50	<250	100
Method Blank 01-772 MB	<50	<250	99
Method Blank 01-774 MB	<50	<250	90

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

Date Extracted: 04/02/21 Date Analyzed: 04/02/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

			Surrogate
Sample ID	<u>Diesel Range</u>	Motor Oil Range	(% Recovery)
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}-C_{36})$	(Limit 41-152)
C-1 DP3-033021w 103585-06	110 x	330	49
C-1 DP13-033121w 103585-15	<50	<250	118
C-1 DP14-033121w 103585-16	<50	<250	82
C-1 DP2-033121w 103585-27	<50	<250	ip
Method Blank	<50	<250	128

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 DP3-033021w	Client:	GeoEngineers
------------	-----------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/05/21 103585-06 Date Analyzed: 04/05/21 Data File: 103585-06.131 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	2.68
Barium	8.11
Cadmium	<1
Chromium	1.41
Lead	1.13
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 DP13-033121w	Client:	GeoEngineers
------------	------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/05/21 103585-15Date Analyzed: 04/05/21 Data File: 103585-15.132 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

	Concentration	
Analyte:	ug/L (ppb)	
Arsenic	<1	

 Arsenic
 <1</td>

 Barium
 14.7

 Cadmium
 <1</td>

 Chromium
 <1</td>

 Lead
 <1</td>

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 DP14-033121w	Client:	GeoEngineers
------------	------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/05/21 103585-16Date Analyzed: 04/05/21 Data File: 103585-16.133 Matrix: Instrument: Water ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	9.53
Barium	48.3
Cadmium	<1
Chromium	<1 J
Lead	<1
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: C-1 DP14-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/05/21
 Lab ID:
 103585-16 x5

 Date Analyzed:
 04/06/21
 Data File:
 103585-16 x5.081

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Chromium <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 DP2-033121w	Client:	GeoEngineers
------------	-----------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585-2704/05/21 Date Analyzed: 04/05/21 Data File: 103585-27.134 Matrix: Instrument: Water ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	3.48
Barium	16.7
Cadmium	<1
Chromium	4.57
Lead	1.98
Mercury	<1
Selenium	<1
Silver	6.28

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Method Blank Client	ient: GeoEngine	ers
--------------------------------	-----------------	-----

Date Received: NA Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: I1-215 mb04/05/21 Date Analyzed: 04/05/21 Data File: I1-215 mb.085Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

	Concentration
Analyte:	ug/L (ppb)

Arsenic	<1
Barium	<1
Cadmium	<1
Chromium	<1
Lead	<1
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP3-033021w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/08/21 103585-06 Date Analyzed: 04/08/21 Data File: 103585-06.044 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

 Cadmium
 4.46

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP3-033021w	Client:	GeoEngineers
------------	-----------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/05/21
 Lab ID:
 103585-06 x20

 Date Analyzed:
 04/06/21
 Data File:
 103585-06 x20.085

	Concentration
Analyte:	ug/L (ppb)

 Arsenic
 34.7

 Barium
 752

 Chromium
 210

 Lead
 120

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP13-033121w	Client:	GeoEngineers
------------	------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/05/21 103585 - 15Date Analyzed: 04/05/21 Data File: 103585-15.147 Matrix: Instrument: Water ICPMS2 Units: ug/L (ppb) SPOperator:

	Concentration
Analyte:	ug/L (ppb)

Barium	129
Cadmium	<1
Lead	2.99
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP13-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/05/21
 Lab ID:
 103585-15 x10

 Date Analyzed:
 04/06/21
 Data File:
 103585-15 x10.086

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 6.62 Chromium 24.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP14-033121w	Client:	GeoEngineers
------------	------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585-16 04/05/21 Date Analyzed: 04/05/21 Data File: 103585-16.148 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$

 Cadmium
 <1</td>

 Lead
 10.9

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP14-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/05/21 Lab ID: 103585-16 x10
Date Analyzed: 04/05/21 Data File: 103585-16 x10.121

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte: Concentration ug/L (ppb)

 Arsenic
 30.8

 Barium
 595

 Chromium
 69.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP2-033121w	Client:	GeoEngineers
------------	-----------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/05/21 103585-27 Date Analyzed: 04/05/21 Data File: 103585-27.149 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

	Concentration
Analyte:	ug/L (ppb)

 Cadmium
 1.08

 Lead
 24.6

 Mercury
 <1</td>

 Selenium
 1.55

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP2-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Arsenic 29.5 Barium 539 Chromium 187

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: GeoEngineers

Date Received: NA Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/05/21 I1-214 mb Date Analyzed: 04/05/21 Data File: I1-214 mb.083 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$

< 0.2 Arsenic Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: GeoEngineers

Date Received: NA Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/08/21
 Lab ID:
 I1-220 mb2

 Date Analyzed:
 04/08/21
 Data File:
 I1-220 mb2.037

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

 $\begin{array}{c} \text{Concentration} \\ \text{Analyte:} \\ \text{ug/L (ppb)} \end{array}$

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP4-3.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-01

 Date Analyzed:
 04/02/21
 Data File:
 103585-01.061

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP4-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-02

 Date Analyzed:
 04/02/21
 Data File:
 103585-02.064

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

ConcentrationAnalyte: mg/kg (ppm) 2.59 Arsenic Barium 44.6 Cadmium <1 Chromium 21.9 Lead 2.09 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP4-7.0	Client:	GeoEngineers
------------	-------------	---------	--------------

Date Received: 03/31/21 Snohomish C-1 Hangar 5530-014-01

Project: Lab ID: Date Extracted: 103585-03 04/02/21 Date Analyzed: 04/02/21 Data File: 103585-03.068 Matrix: Instrument: Soil ICPMS2

mg/kg (ppm) Dry Weight Units: SPOperator:

Analyte:	Concentration mg/kg (ppm)
Arsenic	1.83
Barium	35.6
Cadmium	<1
Chromium	19.4
Lead	1.62
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP3-4.0	Client:	GeoEngineers
------------	-------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-04

 Date Analyzed:
 04/02/21
 Data File:
 103585-04.071

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

	Concentration
Analyte:	mg/kg (ppm)
Angonia	9.95

Arsenic 2.25Barium 26.0 Cadmium <1 Chromium 23.3 Lead 4.86Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP3-7.0	Client:	GeoEngineers
------------	-------------	---------	--------------

Date Received: 03/31/21 Snohomish C-1 Hangar 5530-014-01

Project: Lab ID: Date Extracted: 103585-05 04/02/21 Date Analyzed: 04/02/21 Data File: 103585-05.072 Matrix: Instrument: Soil ICPMS2 SP

mg/kg (ppm) Dry Weight Units: Operator:

Analyte:	Concentration mg/kg (ppm)	
Arsenic	1.83	
Barium	41.6	
Cadmium	<1	
Chromium	22.4	
Lead	2.39	
Mercury	<1	
Selenium	<1	
Silver	<1	

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP5-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-07

 Date Analyzed:
 04/02/21
 Data File:
 103585-07.073

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

ConcentrationAnalyte: mg/kg (ppm) 1.79 Arsenic Barium 40.5 Cadmium <1 Chromium 18.0 Lead 1.71Mercury <1 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP5-6.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-08

 Date Analyzed:
 04/02/21
 Data File:
 103585-08.074

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

 Concentration mg/kg (ppm)

 Arsenic
 2.08

 Barium
 48.0

 Cadmium
 <1</td>

 Chromium
 24.6

 Lead
 2.37

 Mercury
 <1</td>

Selenium

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP15-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-09

 Date Analyzed:
 04/02/21
 Data File:
 103585-09.075

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

ConcentrationAnalyte: mg/kg (ppm) 3.33 Arsenic Barium 61.4Cadmium <1 Chromium 25.8 Lead 2.44Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP15-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/02/21 103585-10 Date Analyzed: 04/02/21 Data File: 103585-10.076 Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight SPOperator:

Concentration

Analyte: mg/kg (ppm) 3.24 Arsenic Barium 56.5 Cadmium <1 Chromium 19.6 Lead 2.15Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP14-5.0	Client:	GeoEngineers
------------	--------------	---------	--------------

Date Received: 03/31/21 Snohomish C-1 Hangar 5530-014-01

Project: Lab ID: Date Extracted: 103585-11 04/02/21 Date Analyzed: 04/02/21 Data File: 103585-11.077 Matrix: Soil Instrument: ICPMS2

mg/kg (ppm) Dry Weight Units: SPOperator:

Analyte:	Concentration mg/kg (ppm)
Arsenic	3.02
Barium	68.0
Cadmium	<1
Chromium	22.5
Lead	2.43
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP14-10.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Units: mg/kg (ppm) Dry Weight Operator: SP

Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP13-2.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/02/21 103585-13 Date Analyzed: 04/05/21 Data File: 103585-13.093 Matrix: Soil Instrument: ICPMS2 SP

<1

mg/kg (ppm) Dry Weight Units: Operator:

ConcentrationAnalyte: mg/kg (ppm) 3.11 Arsenic Barium 82.9 Cadmium <1 Chromium 19.2 Lead 1.90 Mercury <1 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP13-5.0	Client:	GeoEngineers
------------	--------------	---------	--------------

Date Received: 03/31/21 Snohomish C-1 Hangar 5530-014-01

Project: Lab ID: Date Extracted: 103585-1404/02/21 Date Analyzed: 04/05/21 Data File: 103585-14.094 Matrix: Soil Instrument: ICPMS2

mg/kg (ppm) Dry Weight Units: SPOperator:

Analyte:	Concentration mg/kg (ppm)
Arsenic	3.35
Barium	40.7
Cadmium	<1
Chromium	14.7
Lead	1.59
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP8-4.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/02/21 103585-17 Date Analyzed: 04/05/21 Data File: 103585-17.095 Matrix: Soil Instrument: ICPMS2 SP

<1

Units: mg/kg (ppm) Dry Weight Operator:

ConcentrationAnalyte: mg/kg (ppm) 2.10 Arsenic Barium 41.0 Cadmium <1 20.4 Chromium Lead 2.05Mercury <1 Selenium <1 Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP8-9.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-18

 Date Analyzed:
 04/05/21
 Data File:
 103585-18.096

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

ConcentrationAnalyte: mg/kg (ppm) 2.93 Arsenic Barium 47.2 Cadmium <1 Chromium 18.8 Lead 2.22Mercury <1 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP9-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-19

 Date Analyzed:
 04/05/21
 Data File:
 103585-19.097

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration
mg/kg (ppm)

Arsenic 2.96
Barium 44.7
Cadmium <1
Chromium 18.3
Lead 2.09
Mercury <1

Selenium

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP9-7.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-20

 Date Analyzed:
 04/05/21
 Data File:
 103585-20.098

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

ConcentrationAnalyte: mg/kg (ppm) 2.36 Arsenic Barium 44.2Cadmium <1 20.8 Chromium Lead 2.36 Mercury <1 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP10-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-21

 Date Analyzed:
 04/05/21
 Data File:
 103585-21.099

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 3.27
Barium 43.6
Cadmium <1
Chromium 19.7
Lead 2.04

Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP11-4.0	Client:	GeoEngineers
------------	--------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: 103585-22 Date Extracted: 04/02/21 Date Analyzed: 04/05/21 Data File: 103585-22.100 Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight SPOperator:

Concentration

Analyte:	mg/kg (ppm)
Arsenic	2.98
Barium	46.5
Cadmium	<1
Chromium	18.3
Lead	2.22
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP2-5.0	Client:	GeoEngineers
------------	-------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-23

 Date Analyzed:
 04/05/21
 Data File:
 103585-23.101

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	4.74
Barium	34.5
Cadmium	<1
Chromium	21.1
Lead	1.74
Mercury	<1
Selenium	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP2-11.0	Client:	GeoEngineers
------------	--------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-24

 Date Analyzed:
 04/05/21
 Data File:
 103585-24.102

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)Arsenic 2.31

 Barium
 36.0

 Cadmium
 <1</td>

 Chromium
 21.1

 Lead
 1.69

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP1-3.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 2.69
Barium 42.7
Cadmium <1
Chromium 19.1

 Lead
 2.00

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP1-11.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-26

 Date Analyzed:
 04/05/21
 Data File:
 103585-26.113

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

2.92 Arsenic Barium 50.5 Cadmium <1 Chromium 65.7 Lead 2.50Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP7-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

3.01 Arsenic Barium 40.5 Cadmium <1 Chromium 18.2 Lead 1.95Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP7-9.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 2.01
Barium 38 3

 Barium
 38.3

 Cadmium
 <1</td>

 Chromium
 18.2

 Lead
 1.75

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP12-3.0	Client:	GeoEngineers
------------	--------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585-30 04/02/21 Date Analyzed: 04/02/21 Data File: 103585-30.170 Matrix: Instrument: Soil ICPMS2 mg/kg (ppm) Dry Weight Units: SPOperator:

<1

Consideration

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.97
Barium	44.9
Cadmium	<1
Chromium	21.5
Lead	2.31
Selenium	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP12-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 DP12-8.0	Client:	GeoEngineers
------------	--------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-31

 Date Analyzed:
 04/02/21
 Data File:
 103585-31.171

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{ccc} & & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$ $\begin{array}{cccc} Arsenic & & 3.02 \\ Barium & & 39.3 \\ Cadmium & & <1 \\ Chromium & & 21.4 \\ Lead & & 2.11 \\ Selenium & & <1 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP12-8.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

 Date Extracted:
 04/02/21
 Lab ID:
 103585-31

 Date Analyzed:
 04/05/21
 Data File:
 103585-31.126

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

C-1 DP6-3.0 Client ID: Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/02/21 103585-32 Date Analyzed: 04/05/21 Data File: 103585-32.127 Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight SPOperator:

Concentration

Analyte: mg/kg (ppm) 2.49 Arsenic Barium 42.3 Cadmium <1 Chromium 16.0 Lead 1.83Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 DP6-6.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/02/21 103585-33 Date Analyzed: 04/05/21 Data File: 103585-33.128 Matrix: Soil Instrument: ICPMS2 SP

<1

Units: mg/kg (ppm) Dry Weight Operator:

ConcentrationAnalyte: mg/kg (ppm) 2.63 Arsenic Barium 48.0 Cadmium <1 20.0 Chromium Lead 2.13 Mercury <1 Selenium <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: GeoEngineers

Date Received: NA Project: Snohomish C-1 Hangar 5530-014-01

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: GeoEngineers

Date Received: NA Project: Snohomish C-1 Hangar 5530-014-01

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP4-3.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-01 1/0.5 Date Analyzed: 04/01/21 Data File: 040127.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	84	118
Toluene-d8	96	86	117
4-Bromofluorobenzene	98	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP4-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-02 1/0.5 Date Analyzed: 04/01/21 Data File: 040128.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	84	118
Toluene-d8	92	86	117
4-Bromofluorobenzene	109	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP4-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-03 1/0.5 Date Analyzed: 04/01/21 Data File: 040129.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	84	118
Toluene-d8	102	86	117
4-Bromofluorobenzene	111	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	0.022
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	0.013	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	0.027
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP3-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-04 1/0.5 Date Analyzed: 04/01/21 Data File: 040130.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	84	118
Toluene-d8	96	86	117
4-Bromofluorobenzene	103	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP3-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-05 1/0.5 Date Analyzed: 04/01/21 Data File: 040131.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	84	118
Toluene-d8	103	86	117
4-Bromofluorobenzene	102	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP5-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-07 1/0.5 Date Analyzed: 04/01/21 Data File: 040132.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	84	118
Toluene-d8	94	86	117
4-Bromofluorobenzene	112	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP5-6.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-08 1/0.5 Date Analyzed: 04/01/21 Data File: 040133.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	84	118
Toluene-d8	103	86	117
4-Bromofluorobenzene	108	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP15-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-09 1/0.5 Date Analyzed: 04/01/21 Data File: 040114.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	84	118
Toluene-d8	102	86	117
4-Bromofluorobenzene	97	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	0.028
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	0.052
1,1,1-Trichloroethane	0.040	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	0.62	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	0.65
Bromodichloromethane	< 0.01	1,4-Dichlorobenzene	1.7
Dibromomethane	< 0.025	1,2-Dichlorobenzene	0.040
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	0.055
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	0.038
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP15-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-10 1/0.5 Date Analyzed: 04/02/21 Data File: 040224.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	84	118
Toluene-d8	100	86	117
4-Bromofluorobenzene	102	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	0.14	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP14-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-11 1/0.5 Date Analyzed: 04/01/21 Data File: 040116.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	84	118
Toluene-d8	104	86	117
4-Bromofluorobenzene	97	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP14-10.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-12 1/0.5 Date Analyzed: 04/01/21 Data File: 040117.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	84	118
Toluene-d8	103	86	117
4-Bromofluorobenzene	103	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP13-2.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-13 1/0.5 Date Analyzed: 04/01/21 Data File: 040118.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	89	84	118
Toluene-d8	93	86	117
4-Bromofluorobenzene	107	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP13-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-14 1/0.5 Date Analyzed: 04/01/21 Data File: 040119.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	84	118
Toluene-d8	103	86	117
4-Bromofluorobenzene	104	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP8-4.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-17 1/0.5 Date Analyzed: 04/01/21 Data File: 040120.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	84	118
Toluene-d8	91	86	117
4-Bromofluorobenzene	108	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP8-9.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-18 1/0.5 Date Analyzed: 04/01/21 Data File: 040121.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	84	118
Toluene-d8	101	86	117
4-Bromofluorobenzene	109	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP9-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-19 1/0.5 Date Analyzed: 04/01/21 Data File: 040122.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	112	84	118
Toluene-d8	100	86	117
4-Bromofluorobenzene	111	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP9-7.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: 103585-20 1/0.5 Date Extracted: Date Analyzed: 04/01/21 Data File: 040134.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	113	84	118
Toluene-d8	101	86	117
4-Bromofluorobenzene	108	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP10-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-21 1/0.5 Date Analyzed: 04/01/21 Data File: 040135.DMatrix: GCMS13Soil Instrument: Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	113	84	118
Toluene-d8	105	86	117
4-Bromofluorobenzene	101	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
_			
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	<0.05	Tetrachloroethene	< 0.005
Vinyl chloride	<0.005	Dibromochloromethane	< 0.025
Bromomethane	<0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	<0.5	_,_,_	3.020
2-Hexanone	<0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP11-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/01/21 103585-22 1/0.5 Date Analyzed: 04/02/21 Data File: 040136.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	116	84	118
Toluene-d8	101	86	117
4-Bromofluorobenzene	94	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP2-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/01/21 103585-23 1/0.5 Date Analyzed: 04/02/21 Data File: 040137.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	84	118
Toluene-d8	101	86	117
4-Bromofluorobenzene	105	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP2-11.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/01/21 103585-24 1/0.5 Date Analyzed: 04/02/21 Data File: 040138.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	84	118
Toluene-d8	92	86	117
4-Bromofluorobenzene	105	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP1-3.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-25 1/0.5 Date Analyzed: 04/02/21 Data File: 040139.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	90	84	118
Toluene-d8	95	86	117
4-Bromofluorobenzene	113	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP1-11.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-26 1/0.5 Date Analyzed: 04/02/21 Data File: 040140.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	84	118
Toluene-d8	101	86	117
4-Bromofluorobenzene	106	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP7-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-28 1/0.5 Date Analyzed: 04/02/21 Data File: 040141.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	90	84	118
Toluene-d8	92	86	117
4-Bromofluorobenzene	111	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP7-9.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-29 1/0.5 Date Analyzed: 04/02/21 Data File: 040142.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	88	84	118
Toluene-d8	93	86	117
4-Bromofluorobenzene	115	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP12-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: 103585-30 1/0.5 Date Extracted: Date Analyzed: 04/02/21 Data File: 040143.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	84	118
Toluene-d8	102	86	117
4-Bromofluorobenzene	105	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP12-8.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: 103585-31 1/0.5 Date Extracted: Date Analyzed: 04/02/21 Data File: 040144.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	87	84	118
Toluene-d8	93	86	117
4-Bromofluorobenzene	108	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP6-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: 103585-32 1/0.5 Date Extracted: Date Analyzed: 04/02/21 Data File: 040145.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	84	118
Toluene-d8	100	86	117
4-Bromofluorobenzene	104	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP6-6.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: 103585-33 1/0.5 Date Extracted: Date Analyzed: 04/02/21 Data File: 040146.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	90	84	118
Toluene-d8	99	86	117
4-Bromofluorobenzene	100	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 01-679 mb 1/0.5 Date Analyzed: 04/01/21 Data File: 040125.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: JCM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	84	118
Toluene-d8	94	86	117
4-Bromofluorobenzene	102	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 01-756 mb 1/0.5 Date Analyzed: 04/01/21 Data File: 040126.DMatrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	86	84	118
Toluene-d8	93	86	117
4-Bromofluorobenzene	109	90	112

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.05	1,3-Dichloropropane	< 0.025
Chloromethane	< 0.05	Tetrachloroethene	< 0.005
Vinyl chloride	< 0.005	Dibromochloromethane	< 0.025
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.05	Chlorobenzene	< 0.005
Trichlorofluoromethane	< 0.05	Ethylbenzene	< 0.005
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.005
1,1-Dichloroethene	< 0.005	m,p-Xylene	< 0.01
Hexane	< 0.025	o-Xylene	< 0.005
Methylene chloride	< 0.5	Styrene	< 0.005
Methyl t-butyl ether (MTBE)	< 0.005	Isopropylbenzene	< 0.005
trans-1,2-Dichloroethene	< 0.005	Bromoform	< 0.005
1,1-Dichloroethane	< 0.005	n-Propylbenzene	< 0.005
2,2-Dichloropropane	< 0.005	Bromobenzene	< 0.005
cis-1,2-Dichloroethene	< 0.005	1,3,5-Trimethylbenzene	< 0.005
Chloroform	< 0.01	1,1,2,2-Tetrachloroethane	< 0.025
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.025
1,2-Dichloroethane (EDC)	< 0.01	2-Chlorotoluene	< 0.005
1,1,1-Trichloroethane	< 0.005	4-Chlorotoluene	< 0.005
1,1-Dichloropropene	< 0.005	tert-Butylbenzene	< 0.005
Carbon tetrachloride	< 0.005	1,2,4-Trimethylbenzene	< 0.005
Benzene	< 0.005	sec-Butylbenzene	< 0.005
Trichloroethene	< 0.005	p-Isopropyltoluene	< 0.005
1,2-Dichloropropane	< 0.005	1,3-Dichlorobenzene	< 0.005
Bromodichloromethane	< 0.025	1,4-Dichlorobenzene	< 0.005
Dibromomethane	< 0.025	1,2-Dichlorobenzene	< 0.005
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.005	1,2,4-Trichlorobenzene	< 0.025
Toluene	< 0.005	Hexachlorobutadiene	< 0.025
trans-1,3-Dichloropropene	< 0.005	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.005	1,2,3-Trichlorobenzene	< 0.025
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	C-1 DP3-033021w	Client:	${ m GeoEngineers}$
-------------------	-----------------	---------	---------------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585-06 04/02/21 Date Analyzed: 04/02/21 Data File: 040216.DMatrix: GCMS13Water Instrument: Units: ug/L (ppb) JCMOperator:

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	85	117
Toluene-d8	94	88	112
4-Bromofluorobenzene	113 vo	90	111

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<0.01 j
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<0.072 j
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.6	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<0.13 j
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	< 0.7	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP13-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/02/21 103585-15 Date Analyzed: 04/02/21 Data File: 040217.DMatrix: Water Instrument: GCMS13 Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	85	117
Toluene-d8	97	88	112
4-Bromofluorobenzene	114 vo	90	111

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<0.01 j
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<0.072 j
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.6	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<0.13 j
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	< 0.7	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-1 DP14-033121w	Client:	GeoEngineers
------------------------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585 - 1604/02/21 Date Analyzed: 04/02/21 Data File: 040218.DMatrix: Instrument: GCMS13Water Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	85	117
Toluene-d8	93	88	112
4-Bromofluorobenzene	112 vo	90	111

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	<0.2	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<0.01 j
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<0.072 j
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<0.6	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<0.13 j
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	< 0.7	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: C-	-1 DP2-033121w	Client:	GeoEngineers
----------------------	----------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585-27 04/02/21 Date Analyzed: 04/02/21 Data File: 040219.DMatrix: Instrument: GCMS13Water Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	110	85	117
Toluene-d8	94	88	112
4-Bromofluorobenzene	110	90	111

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<0.01 j
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	12 lc	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<0.072 j
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.6	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<0.13 j
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	< 0.7	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Trip Blank 1	Client:	GeoEngineers
--------------------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 103585-34 04/02/21 Date Analyzed: 04/02/21 Data File: 040215.DMatrix: Instrument: GCMS13Water Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	109	85	117
Toluene-d8	94	88	112
4-Bromofluorobenzene	105	90	111

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<0.01 j
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<0.072 j
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.6	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<0.13 j
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	< 0.7	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: Snohomish C-1 Hangar 5530-014-01

04/02/21 Lab ID: 01-757 mbDate Extracted: Date Analyzed: 04/02/21 Data File: 040211.DMatrix: Water Instrument: GCMS4Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	86	113
Toluene-d8	97	88	114
4-Bromofluorobenzene	99	88	112

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10 ca	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<0.01 j
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<0.072 j
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.6	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<0.13 j
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	< 0.7	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP4-3.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-01 1/6 Date Analyzed: 04/02/21 Data File: 040206.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 60

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP4-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-02 1/6 Date Analyzed: 04/02/21 Data File: 040218.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 70

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP4-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Lab ID: Date Extracted: 103585-03 1/6 Date Analyzed: 04/02/21 Data File: 040217.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 67 23

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP3-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-04 1/6 Date Analyzed: 04/02/21 Data File: 040207.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 59

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP3-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-05 1/6 Date Analyzed: 04/02/21 Data File: 040208.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 59

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP5-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-07 1/6 Date Analyzed: 04/02/21 Data File: 040209.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 55

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP5-6.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-08 1/6 Date Analyzed: 04/02/21 Data File: 040210.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 48

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP15-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-09 1/6 Date Analyzed: 04/02/21 Data File: 040216.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 62 23

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP15-7.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-10 1/6 Date Analyzed: 04/02/21 Data File: 040211.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 55

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP14-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-11 1/6 Date Analyzed: 04/02/21 Data File: 040212.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 47

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

Aroclor 1268

106

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP14-10.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-12 1/6 Date Analyzed: 04/02/21 Data File: 040222.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 60

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02

Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP13-2.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-13 1/6 Date Analyzed: 04/02/21 Data File: 040213.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 120 100 23 Concentration Compounds: mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP13-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-14 1/6 Date Analyzed: 04/02/21 Data File: 040205.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower % Recovery:

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ Limit: 23 73

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP8-4.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-17 1/6 Date Analyzed: 04/02/21 Data File: 040206.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 75

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP8-9.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-18 1/6 Date Analyzed: 04/02/21 Data File: 040215.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 53

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP9-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-19 1/6 Date Analyzed: 04/02/21 Data File: 040216.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 59

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP9-7.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-20 1/6 Date Analyzed: 04/02/21 Data File: 040217.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 52 23

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP10-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-21 1/6 Date Analyzed: 04/02/21 Data File: 040215.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 62 23

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP11-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-22 1/6 Date Analyzed: 04/02/21 Data File: 040221.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: Lower % Recovery:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ Limit: 120 52 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP2-5.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-23 1/6 Date Analyzed: 04/02/21 Data File: 040207.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 51

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP2-11.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-24 1/6 Date Analyzed: 04/02/21 Data File: 040208.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 60

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02

Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP1-3.5 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-25 1/6 Date Analyzed: 04/02/21 Data File: 040209.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 74

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP1-11.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 103585-26 1/6 Date Analyzed: 04/02/21 Data File: 040218.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 120 23 58

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP7-4.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-28 1/6 Date Analyzed: 04/02/21 Data File: 040219.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 57

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP7-9.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-29 1/6 Date Analyzed: 04/02/21 Data File: 040220.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: IJL

Upper Limit: Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 120 23 64

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP12-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 103585-30 1/6 Date Extracted: Lab ID: Date Analyzed: 04/02/21 Data File: 040210.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower % Recovery:

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ Limit: 68 23

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP12-8.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-31 1/6 Date Analyzed: 04/02/21 Data File: 040211.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 71

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP6-3.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-32 1/6 Date Analyzed: 04/02/21 Data File: 040212.DMatrix: Soil Instrument: GC7 Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 76

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02

Aroclor 1262

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP6-6.0 Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

04/01/21 Date Extracted: Lab ID: 103585-33 1/6 Date Analyzed: 04/02/21 Data File: 040213.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 71

< 0.02

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 01-751 mb2 1/6 Date Analyzed: 04/02/21 Data File: 040204.DMatrix: Soil GC7 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Lower

Upper Limit: 127 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 23 81

Concentration Compounds: mg/kg (ppm) < 0.02 Aroclor 1221 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02

Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/01/21 Lab ID: 01-773 mb 1/6 Date Analyzed: 04/02/21 Data File: 040204.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: VM

Upper Limit: Lower

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ % Recovery: Limit: 120 23 79

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	C-1 DP3-033021w	Client:	GeoEngineers
-------------------	-----------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/06/21 103585-06 Date Analyzed: 04/06/21 Data File: 040613.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: IJL

Surrogates: % Recovery: Lower Limit: Limit: TCMX 25 24 127

Concentration
ug/L (ppb)

Aroclor 1221 <0.1

Aroclor 1232 <0.1

Aroclor 1016 <0.1
Aroclor 1242 <0.1
Aroclor 1248 <0.1
Aroclor 1254 <0.1
Aroclor 1260 <0.1
Aroclor 1262 <0.1
Aroclor 1268 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP13-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/06/21 103585-15 Date Analyzed: 04/06/21 Data File: 040614.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: IJL

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 43 24

Concentration Compounds: ug/L (ppb) Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1 Aroclor 1262 < 0.1 Aroclor 1268 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	C-1 DP14-033121w	Client:	GeoEngineers
-------------------	------------------	---------	--------------

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/06/21 103585-16 Date Analyzed: 04/06/21 Data File: 040615.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: IJL

Surrogates: % Recovery: Lower Limit: Limit: TCMX 35 24 127

Concentration
Compounds:

Aroclor 1221

Aroclor 1232

Aroclor 1016

Aroclor 1242

Concentration
ug/L (ppb)

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

Aroclor 1242 <0.1
Aroclor 1248 <0.1
Aroclor 1254 <0.1
Aroclor 1260 <0.1
Aroclor 1262 <0.1
Aroclor 1268 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: C-1 DP2-033121w Client: GeoEngineers

Date Received: 03/31/21 Project: Snohomish C-1 Hangar 5530-014-01

Lab ID: Date Extracted: 04/06/21 103585-27 Date Analyzed: 04/06/21 Data File: 040616.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: IJL

Surrogates: % Recovery: Lower Limit: Limit: TCMX 8 ip 24 127

Concentration
Compounds: ug/L (ppb)

Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1 Aroclor 1262 < 0.1 Aroclor 1268 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: Snohomish C-1 Hangar 5530-014-01

Date Extracted: 04/06/21 Lab ID: 01-791 mb Date Analyzed: 04/06/21 Data File: 040606.DMatrix: Water Instrument: GC7 Units: ug/L (ppb) Operator: IJL

Upper Limit: 127 Lower % Recovery: Limit:

 $\begin{array}{c} Surrogates: \\ TCMX \end{array}$ 24 35

Concentration Compounds: ug/L (ppb) Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1 Aroclor 1262 < 0.1 Aroclor 1268 < 0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 103585-12 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	e RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Gasoline	mg/kg (ppm)	20	<5	100	105	50-150	0

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	105	71-131	_

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 103585-33 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			1 ercent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	110	71-131	-

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 104046-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	120	130	8

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	101	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 103585-12 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	94	86	64-133	9

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	88	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 103585-24 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	92	96	64-133	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	96	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	108	108	63-142	0

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code: 104029-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<1	112	109	75-125	3
Barium	ug/L (ppb)	50	9.89	98	95	75 - 125	3
Cadmium	ug/L (ppb)	5	<1	96	96	75 - 125	0
Chromium	ug/L (ppb)	20	1.70	97	97	75 - 125	0
Lead	ug/L (ppb)	10	<1	91	90	75 - 125	1
Mercury	ug/L (ppb)	5	<1	91	93	75 - 125	2
Selenium	ug/L (ppb)	5	<1	115	112	75 - 125	3
Silver	ug/L (ppb)	5	<1	91	89	75 - 125	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	102	80-120
Barium	ug/L (ppb)	50	97	80-120
Cadmium	ug/L (ppb)	5	99	80-120
Chromium	ug/L (ppb)	20	97	80-120
Lead	ug/L (ppb)	10	98	80-120
Mercury	ug/L (ppb)	5	97	80-120
Selenium	ug/L (ppb)	5	102	80-120
Silver	ug/L (ppb)	5	92	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 104043-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	2.36	102	101	75-125	1
Barium	ug/L (ppb)	50	39.2	105	105	75 - 125	0
Cadmium	ug/L (ppb)	5	<1	97	97	75 - 125	0
Chromium	ug/L (ppb)	20	1.12	101	101	75-125	0
Lead	ug/L (ppb)	10	<1	85	85	75 - 125	0
Mercury	ug/L (ppb)	5	<1	89	90	75 - 125	1
Selenium	ug/L (ppb)	5	2.92	112	107	75 - 125	5
Silver	ug/L (ppb)	5	<1	85	84	75 - 125	1

			$\operatorname{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	103	80-120
Barium	ug/L (ppb)	50	98	80-120
Cadmium	ug/L (ppb)	5	100	80-120
Chromium	ug/L (ppb)	20	99	80-120
Lead	ug/L (ppb)	10	99	80-120
Mercury	ug/L (ppb)	5	100	80-120
Selenium	ug/L (ppb)	5	105	80-120
Silver	ug/L (ppb)	5	94	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

			Percent	Percent		
	Reporting	$_{ m Spike}$	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	93	93	80-120	0
Barium	ug/L (ppb)	50	101	100	80-120	1
Cadmium	ug/L (ppb)	5	102	101	80-120	1
Chromium	ug/L (ppb)	20	105	104	80-120	1
Lead	ug/L (ppb)	10	94	94	80-120	0
Mercury	ug/L (ppb)	5	95	96	80-120	1
Selenium	ug/L (ppb)	5	102	97	80-120	5
Silver	ug/L (ppb)	5	92	91	80-120	1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 103552-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	88	83	75-125	6
Barium	mg/kg (ppm)	50	33.7	129 b	114 b	75 - 125	12 b
Cadmium	mg/kg (ppm)	10	<5	96	95	75 - 125	1
Chromium	mg/kg (ppm)	50	14.4	101	101	75 - 125	0
Lead	mg/kg (ppm)	50	13.7	113	97	75 - 125	15
Mercury	mg/kg (ppm	5	<5	95	84	75 - 125	12
Selenium	mg/kg (ppm)	5	<5	84	84	75 - 125	0
Silver	mg/kg (ppm)	10	<5	87	87	75 - 125	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	92	80-120
Barium	mg/kg (ppm)	50	104	80-120
Cadmium	mg/kg (ppm)	10	103	80-120
Chromium	mg/kg (ppm)	50	113	80-120
Lead	mg/kg (ppm)	50	98	80-120
Mercury	mg/kg (ppm)	5	99	80-120
Selenium	mg/kg (ppm)	5	92	80-120
Silver	mg/kg (ppm)	10	96	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 103585-12 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	1.54	97	101	75-125	4
Barium	mg/kg (ppm)	50	29.2	$127 \mathrm{\ b}$	$128 \mathrm{\ b}$	75 - 125	1 b
Cadmium	mg/kg (ppm)	10	<1	106	102	75 - 125	4
Chromium	mg/kg (ppm)	50	14.7	113	111	75 - 125	2
Lead	mg/kg (ppm)	50	1.18	94	91	75 - 125	3
Mercury	mg/kg (ppm	5	<1	96	93	75 - 125	3
Selenium	mg/kg (ppm)	5	<1	97	91	75 - 125	6
Silver	mg/kg (ppm)	10	<1	99	93	75 - 125	6

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	91	80-120
Barium	mg/kg (ppm)	50	103	80-120
Cadmium	mg/kg (ppm)	10	101	80-120
Chromium	mg/kg (ppm)	50	111	80-120
Lead	mg/kg (ppm)	50	98	80-120
Mercury	mg/kg (ppm)	5	91	80-120
Selenium	mg/kg (ppm)	5	96	80-120
Silver	mg/kg (ppm)	10	96	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 103339-29 (Matrix Spike)

Education of the control of the cont	o (Mathin Spine)		Sample	Percent	Percent		
	Reporting	Spike	Result		Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	<0.5	5 vo	4 vo	10-142	22 vo
Chloromethane	mg/kg (ppm)	1	< 0.5	21	21	10-126	0
Vinyl chloride	mg/kg (ppm)	1	< 0.005	19	18	10-138	5
Bromomethane	mg/kg (ppm)	1	< 0.5	52	38	10-163	31 vo
Chloroethane	mg/kg (ppm)	1	< 0.5	30	28	10-176	7
Trichlorofluoromethane	mg/kg (ppm)	1	< 0.5	17	15	10-176	12
Acetone	mg/kg (ppm)	5	<5	57	53	10-163	7
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	36	33	10-160	9
Hexane	mg/kg (ppm)	1	< 0.25	14	12	10-137	15
Methylene chloride	mg/kg (ppm)	1	< 0.5	53	50	10-156	6
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	54	50	21-145	8
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	41	39	14-137	5
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm)	1 1	<0.05 <0.05	45 47	42 42	19-140 10-158	7 11
cis-1.2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	48	42 45	25-135	6
Chloroform	mg/kg (ppm)	1	< 0.05	50	47	21-145	6
2-Butanone (MEK)	mg/kg (ppm)	5	< 0.5	56	54	19-147	4
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	52	51	12-160	2
1.1.1-Trichloroethane	mg/kg (ppm)	1	< 0.05	44	41	10-156	7
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	44	40	17-140	10
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	43	40	9-164	7
Benzene	mg/kg (ppm)	1	< 0.03	49	46	29-129	6
Trichloroethene	mg/kg (ppm)	1	< 0.02	48	46	21-139	4
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	50	47	30-135	6
Bromodichloromethane	mg/kg (ppm)	1	< 0.05	47	46	23-155	2
Dibromomethane	mg/kg (ppm)	1	< 0.05	53	51	23-145	4
4-Methyl-2-pentanone	mg/kg (ppm)	5	< 0.5	58	56	24-155	4
cis-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	52	49	28-144	6
Toluene	mg/kg (ppm)	1	< 0.05	55	53	35-130	4
trans-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	52	51	26-149	2
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	58	55	10-205	5
2-Hexanone	mg/kg (ppm)	5	< 0.5	61	58	15-166	5
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	57	56	31-137	2
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	53	50	20-133	6
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	51	49	28-150	4
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	57 50	56 56	28-142 32-129	2
Chlorobenzene	mg/kg (ppm)	1 1	< 0.05	59 56	52		5 7
Ethylbenzene 1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	<0.05 <0.05	55	52 50	32-137 31-143	10
m,p-Xylene	mg/kg (ppm) mg/kg (ppm)	2	< 0.1	58	53	34-136	9
o-Xylene	mg/kg (ppm)	1	< 0.05	57	54	33-134	5
Styrene	mg/kg (ppm)	1	< 0.05	56	53	35-137	6
Isopropylbenzene	mg/kg (ppm)	1	< 0.05	54	51	31-142	6
Bromoform	mg/kg (ppm)	1	< 0.05	50	47	21-156	6
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	55	52	23-146	6
Bromobenzene	mg/kg (ppm)	1	< 0.05	60	57	34-130	5
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	57	53	18-149	7
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	61	55	28-140	10
1,2,3-Trichloropropane	mg/kg (ppm)	1	< 0.05	60	57	25-144	5
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	57	54	31-134	5
4-Chlorotoluene	mg/kg (ppm)	1	< 0.05	57	54	31-136	5
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	57	52	30-137	9
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	56	52	10-182	7
sec-Butylbenzene	mg/kg (ppm)	1	0.051	58	52	23-145	11
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	57	51 50	21-149	11
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	60	56	30-131	7
1,4-Dichlorobenzene	mg/kg (ppm)	1	<0.05	60	56 56	29-129	7
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1 1	<0.05 <0.5	58 49	56 50	31-132 11-161	$\frac{4}{2}$
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	<0.5 <0.25	49 54	50 48	11-161 22-142	2 12
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	1	< 0.25	53	48 47	10-142	12 12
Naphthalene	mg/kg (ppm)	1	< 0.05	56	53	14-157	6
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	55	50	20-144	10
-,-,- 11101110100011110110	8. v. 8 (bb)	_	.5.26	30	50	-0 111	10

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code. Laboratory Cor	itroi Sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	42	10-146
Chloromethane	mg/kg (ppm)	1	56	27-133
Vinyl chloride	mg/kg (ppm)	1	57	22-139
Bromomethane	mg/kg (ppm)	1	75	38-114
Chloroethane	mg/kg (ppm)	1	59	9-163
Trichlorofluoromethane	mg/kg (ppm)	1	68	10-196
Acetone	mg/kg (ppm)	5	75	52-141
1,1-Dichloroethene	mg/kg (ppm)	1	88	47-128
Hexane	mg/kg (ppm)	1	74	43-142
Methylene chloride	mg/kg (ppm)	1	88 91	10-184
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	mg/kg (ppm)	1	91 88	60-123 67-129
1,1-Dichloroethane	mg/kg (ppm) mg/kg (ppm)	1	85	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	85	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	90	72-127
Chloroform	mg/kg (ppm)	1	89	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	84	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	92	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	86	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	88	69-128
Carbon tetrachloride	mg/kg (ppm)	1	90	60-139
Benzene	mg/kg (ppm)	1	91	71-118
Trichloroethene	mg/kg (ppm)	1	91	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	89	72-127
Bromodichloromethane Dibromomethane	mg/kg (ppm) mg/kg (ppm)	1 1	85 91	57-126 62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	95 95	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	92	67-122
Toluene	mg/kg (ppm)	1	99	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	95	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	100	64-115
2-Hexanone	mg/kg (ppm)	5	97	33-152
1,3-Dichloropropane	mg/kg (ppm)	1	98	72-130
Tetrachloroethene	mg/kg (ppm)	1	100	72-114
Dibromochloromethane	mg/kg (ppm)	1	93	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	100	74-132
Chlorobenzene Ethylbenzene	mg/kg (ppm)	1 1	103 97	76-111
1,1,1,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	1	97 96	64-123 64-121
m,p-Xylene	mg/kg (ppm)	2	100	78-122
o-Xylene	mg/kg (ppm)	1	99	77-124
Styrene	mg/kg (ppm)	1	99	74-126
Isopropylbenzene	mg/kg (ppm)	1	95	76-127
Bromoform	mg/kg (ppm)	1	91	56-132
n-Propylbenzene	mg/kg (ppm)	1	96	74-124
Bromobenzene	mg/kg (ppm)	1	102	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	96	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	94	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	95	61-137
2-Chlorotoluene 4-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	1 1	96 97	74-121 75-122
tert-Butylbenzene	mg/kg (ppm)	1	96	73-122
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	95	76-125
sec-Butylbenzene	mg/kg (ppm)	1	95	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	94	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	99	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	100	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	99	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	84	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	93	64-135
Hexachlorobutadiene	mg/kg (ppm)	1	92	50-153
Naphthalene	mg/kg (ppm)	1	93	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	95	63-138

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 103585-12 1/0.5 (Matrix Spike)

·	`	,	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1.0	< 0.05	24	14	10-47	53 vo
Chloromethane	mg/kg (ppm)	1.0	< 0.05	48	38	10-88	23 vo
Vinyl chloride	mg/kg (ppm)	1.0	< 0.005	58	46	10-79	23 vo
Bromomethane	mg/kg (ppm)	1.0	< 0.5	78 73	71	10-85	9
Chloroethane Trichlorofluoromethane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	<0.05 <0.05	67	59 51	11-106 10-85	21 vo 27 vo
Acetone	mg/kg (ppm)	5.0	<5	65	59	10-33	10
1.1-Dichloroethene	mg/kg (ppm)	1.0	< 0.005	82	68	11-105	19
Hexane	mg/kg (ppm)	1.0	< 0.025	68	62	10-106	9
Methylene chloride	mg/kg (ppm)	1.0	< 0.5	77	53	10-139	37 vo
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1.0	< 0.005	86	72	18-131	18
trans-1,2-Dichloroethene	mg/kg (ppm)	1.0	< 0.005	85	70	16-122	19
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	<0.005 <0.005	88 75	74 63	19-125 10-184	17 17
cis-1,2-Dichloroethene	mg/kg (ppm)	1.0	< 0.005	87	71	18-129	20
Chloroform	mg/kg (ppm)	1.0	< 0.01	85	71	18-126	18
2-Butanone (MEK)	mg/kg (ppm)	5.0	< 0.5	70	60	10-190	15
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1.0	< 0.005	90	74	19-138	20
1,1,1-Trichloroethane	mg/kg (ppm)	1.0	< 0.005	84	71	16-126	17
1,1-Dichloropropene	mg/kg (ppm)	1.0	< 0.005	85	70	19-129	19
Carbon tetrachloride	mg/kg (ppm)	1.0	< 0.005	84	72	13-125	15
Benzene	mg/kg (ppm)	1.0	<0.005	85	71	15-129	18
Trichloroethene 1,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	<0.005 <0.005	87 89	73 75	14-127 17-137	17 17
Bromodichloromethane	mg/kg (ppm)	1.0	< 0.005	90	74	24-130	20
Dibromomethane	mg/kg (ppm)	1.0	< 0.025	81	66	20-138	20
4-Methyl-2-pentanone	mg/kg (ppm)	5.0	< 0.5	85	74	21-139	14
cis-1,3-Dichloropropene	mg/kg (ppm)	1.0	< 0.005	88	75	17-135	16
Toluene	mg/kg (ppm)	1.0	< 0.005	84	77	15-129	9
trans-1,3-Dichloropropene	mg/kg (ppm)	1.0	< 0.005	88	80	18-130	10
1,1,2-Trichloroethane	mg/kg (ppm)	1.0	< 0.005	90	84	29-128	7
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	5.0 1.0	<0.5 <0.025	87 87	80 76	28-142 20-135	8 13
Tetrachloroethene	mg/kg (ppm)	1.0	< 0.025	85	78 78	20-133	9
Dibromochloromethane	mg/kg (ppm)	1.0	< 0.025	86	80	11-138	7
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1.0	< 0.005	87	80	21-130	8
Chlorobenzene	mg/kg (ppm)	1.0	< 0.005	88	80	19-129	10
Ethylbenzene	mg/kg (ppm)	1.0	< 0.005	87	80	23-133	8
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	$\frac{1.0}{2.0}$	< 0.005	85 86	79 79	16-127	7 8
m,p-Xylene o-Xylene	mg/kg (ppm) mg/kg (ppm)	1.0	<0.01 <0.005	86	80	19-134 20-132	8 7
Styrene	mg/kg (ppm)	1.0	< 0.005	85	79	23-127	7
Isopropylbenzene	mg/kg (ppm)	1.0	< 0.005	86	81	21-134	6
Bromoform	mg/kg (ppm)	1.0	< 0.005	83	77	10-142	7
n-Propylbenzene	mg/kg (ppm)	1.0	< 0.005	87	80	10-141	8
Bromobenzene	mg/kg (ppm)	1.0	< 0.005	81	78	10-135	4
1,3,5-Trimethylbenzene	mg/kg (ppm)	1.0	< 0.005	84	80	20-136	5
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	<0.025 <0.025	85 88	77 81	10-234 10-144	10 8
2-Chlorotoluene	mg/kg (ppm)	1.0	< 0.025	83	79	10-139	5
4-Chlorotoluene	mg/kg (ppm)	1.0	< 0.005	87	80	10-139	8
tert-Butylbenzene	mg/kg (ppm)	1.0	< 0.005	86	78	10-144	10
1,2,4-Trimethylbenzene	mg/kg (ppm)	1.0	< 0.005	81	77	24-133	5
sec-Butylbenzene	mg/kg (ppm)	1.0	< 0.005	88	82	23-134	7_
p-Isopropyltoluene	mg/kg (ppm)	1.0	< 0.005	86	80	25-131	7
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg (ppm)	1.0 1.0	<0.005 <0.005	83 86	78 79	10-143 10-146	6 8
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1.0	<0.005 <0.005	86 85	79 78	10-146	8 9
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1.0	< 0.5	85	80	10-163	6
1,2,4-Trichlorobenzene	mg/kg (ppm)	1.0	< 0.025	87	84	10-147	4
Hexachlorobutadiene	mg/kg (ppm)	1.0	< 0.025	81	75	10-162	8
Naphthalene	mg/kg (ppm)	1.0	< 0.005	87	81	30-138	7
1,2,3-Trichlorobenzene	mg/kg (ppm)	1.0	< 0.025	83	75	10-173	10

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Education, code. Education, con	oror zampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1.0	57	10-93
Chloromethane	mg/kg (ppm)	1.0	78	34-101
Vinyl chloride	mg/kg (ppm)	1.0	97	47-106
Bromomethane	mg/kg (ppm)	1.0	89 100	38-123
Chloroethane Trichlorofluoromethane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	93	44-123 56-108
Acetone	mg/kg (ppm)	5.0	94	70-130
1,1-Dichloroethene	mg/kg (ppm)	1.0	116	61-118
Hexane	mg/kg (ppm)	1.0	125	54-142
Methylene chloride	mg/kg (ppm)	1.0	109	10-213
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1.0	112	70-130
trans-1,2-Dichloroethene	mg/kg (ppm)	1.0	113	70-130
1,1-Dichloroethane	mg/kg (ppm)	1.0	116	70-130
2,2-Dichloropropane cis-1.2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	123 112	70-130 70-130
Chloroform	mg/kg (ppm)	1.0	111	70-130
2-Butanone (MEK)	mg/kg (ppm)	5.0	103	70-130
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1.0	116	66-140
1,1,1-Trichloroethane	mg/kg (ppm)	1.0	113	70-130
1,1-Dichloropropene	mg/kg (ppm)	1.0	111	70-130
Carbon tetrachloride	mg/kg (ppm)	1.0	115	70-130
Benzene	mg/kg (ppm)	1.0	109	70-130
Trichloroethene	mg/kg (ppm)	1.0	110	53-133
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	114 118	67-137 70-130
Dibromomethane	mg/kg (ppm)	1.0	106	70-130
4-Methyl-2-pentanone	mg/kg (ppm)	5.0	111	70-130
cis-1,3-Dichloropropene	mg/kg (ppm)	1.0	118	70-130
Toluene	mg/kg (ppm)	1.0	107	63-127
trans-1,3-Dichloropropene	mg/kg (ppm)	1.0	117	70-130
1,1,2-Trichloroethane	mg/kg (ppm)	1.0	115	70-130
2-Hexanone	mg/kg (ppm)	5.0	112	65-148
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	109 108	67-135 66-124
Dibromochloromethane	mg/kg (ppm)	1.0	110	62-139
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1.0	110	70-130
Chlorobenzene	mg/kg (ppm)	1.0	111	70-130
Ethylbenzene	mg/kg (ppm)	1.0	112	70-130
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1.0	109	68-129
m,p-Xylene	mg/kg (ppm)	2.0	111	67-129
o-Xylene	mg/kg (ppm)	1.0	111	70-130
Styrene Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	109 113	70-130 70-130
Bromoform	mg/kg (ppm)	1.0	107	63-141
n-Propylbenzene	mg/kg (ppm)	1.0	108	68-125
Bromobenzene	mg/kg (ppm)	1.0	102	70-130
1,3,5-Trimethylbenzene	mg/kg (ppm)	1.0	108	66-128
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1.0	106	35-184
1,2,3-Trichloropropane	mg/kg (ppm)	1.0	104	70-130
2-Chlorotoluene	mg/kg (ppm)	1.0	105	70-130
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	108 107	70-130 70-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1.0	109	64-133
sec-Butylbenzene	mg/kg (ppm)	1.0	113	70-130
p-Isopropyltoluene	mg/kg (ppm)	1.0	113	70-130
1,3-Dichlorobenzene	mg/kg (ppm)	1.0	104	70-130
1,4-Dichlorobenzene	mg/kg (ppm)	1.0	105	70-130
1,2-Dichlorobenzene	mg/kg (ppm)	1.0	105	70-130
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1.0	112	70-130
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm)	1.0 1.0	119 106	70-130 67-140
Naphthalene	mg/kg (ppm) mg/kg (ppm)	1.0	116	67-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	1.0	113	57-161
	\r/	• •		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 103575-01 (Matrix Spike)

Laboratory Code: 103979-01 (Ma	atrix Spike)			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
A14 -				U	-
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane Chloromethane	ug/L (ppb) ug/L (ppb)	10 10	<1 <10	95 70	10-172 25-166
Vinvl chloride	ug/L (ppb)	10	<0.2	70 79	36-166
Bromomethane	ug/L (ppb)	10	<5	109	47-169
Chloroethane	ug/L (ppb)	10	<1	79	46-160
Trichlorofluoromethane	ug/L (ppb)	10	<1	86	44-165
Acetone	ug/L (ppb)	50	< 50	85	10-182
1,1-Dichloroethene	ug/L (ppb)	10	<1	94	58-142
Hexane	ug/L (ppb)	10	<5	89	38-152
Methylene chloride	ug/L (ppb)	10	<5	105	50-145
Methyl t-butyl ether (MTBE) trans-1.2-Dichloroethene	ug/L (ppb)	10 10	<1 <1	94 94	61-136 61-136
1,1-Dichloroethane	ug/L (ppb) ug/L (ppb)	10	<1	94 89	63-135
2,2-Dichloropropane	ug/L (ppb)	10	<1	91	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	92	63-134
Chloroform	ug/L (ppb)	10	<1	93	61-135
2-Butanone (MEK)	ug/L (ppb)	50	<20	94	10-129
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<1	93	48-149
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	91	60-146
1,1-Dichloropropene	ug/L (ppb)	10	<1	93	69-133
Carbon tetrachloride	ug/L (ppb)	10	<1	95	56-152
Benzene Trichloroethene	ug/L (ppb)	10 10	<0.35 <1	92 92	57-135
1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10	<1 <1	92 90	66-135 59-136
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	10	<1	85	61-150
Dibromomethane	ug/L (ppb)	10	<1	96	66-141
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	100	10-185
cis-1,3-Dichloropropene	ug/L (ppb)	10	<1	91	52-147
Toluene	ug/L (ppb)	10	<1	97	50-137
trans-1,3-Dichloropropene	ug/L (ppb)	10	<1	90	53-142
1,1,2-Trichloroethane	ug/L (ppb)	10	<1	97	68-131
2-Hexanone	ug/L (ppb)	50	<10	101	10-185
1,3-Dichloropropane Tetrachloroethene	ug/L (ppb)	10 10	<1 <1	98 104	60-135
Dibromochloromethane	ug/L (ppb) ug/L (ppb)	10	<1	89	10-226 52-145
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	100	62-135
Chlorobenzene	ug/L (ppb)	10	<1	102	63-130
Ethylbenzene	ug/L (ppb)	10	<1	96	60-133
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	95	56-143
m,p-Xylene	ug/L (ppb)	20	<2	99	69-135
o-Xylene	ug/L (ppb)	10	<1	100	60-140
Styrene	ug/L (ppb)	10	<1	97	60-133
Isopropylbenzene Bromoform	ug/L (ppb) ug/L (ppb)	10 10	<1 <5	95 84	65-142 54-148
n-Propylbenzene	ug/L (ppb) ug/L (ppb)	10	<1	101	58-144
Bromobenzene	ug/L (ppb)	10	<1	107	61-130
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	102	59-134
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	<1	102	51-154
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	106	53-150
2-Chlorotoluene	ug/L (ppb)	10	<1	100	66-127
4-Chlorotoluene	ug/L (ppb)	10	<1	102	65-130
tert-Butylbenzene	ug/L (ppb)	10	<1	101	65-137
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	98	59-146
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	10 10	<1 <1	101 101	64-140 65-141
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	104	60-131
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	105	60-129
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	105	60-130
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	92	32-164
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	101	52-138
Hexachlorobutadiene	ug/L (ppb)	10	<1	102	60-143
Naphthalene	ug/L (ppb)	10	<1	101	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	104	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Zasoratory code. Zasoratory co	one of earth	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	81	85	25-158	5
Chloromethane	ug/L (ppb)	10	68	72	45-156	6
Vinyl chloride	ug/L (ppb)	10	74	77	50-154	4
Bromomethane	ug/L (ppb)	10	99	115	55-143	15
Chloroethane	ug/L (ppb)	10	74	80	58-146	8
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	10 50	78 79	86 87	50-150 $22-155$	10 10
1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	10	90	93	67-136	3
Hexane	ug/L (ppb)	10	78	80	57-137	3
Methylene chloride	ug/L (ppb)	10	85	91	19-178	7
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	88	93	64-147	6
trans-1,2-Dichloroethene	ug/L (ppb)	10	87	91	68-128	4
1,1-Dichloroethane	ug/L (ppb)	10	85	88	74-135	3
2,2-Dichloropropane	ug/L (ppb)	10	86	91	55-143	6
cis-1,2-Dichloroethene	ug/L (ppb)	10	87	91	74-136	4
Chloroform 2-Butanone (MEK)	ug/L (ppb)	10 50	88 94	92 97	74-134 37-150	4 3
1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	50 10	90	93	66-129	ა ვ
1.1.1-Trichloroethane	ug/L (ppb) ug/L (ppb)	10	87	90	74-142	о 3
1,1-Dichloropropene	ug/L (ppb)	10	87	91	77-129	4
Carbon tetrachloride	ug/L (ppb)	10	90	96	75-158	6
Benzene	ug/L (ppb)	10	89	92	69-134	3
Trichloroethene	ug/L (ppb)	10	88	92	67-133	4
1,2-Dichloropropane	ug/L (ppb)	10	87	91	71-134	4
Bromodichloromethane	ug/L (ppb)	10	82	85	66-126	4
Dibromomethane	ug/L (ppb)	10	92	94	68-132	2
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	50 10	98 89	99 91	65-138 74-140	1 2
Toluene	ug/L (ppb) ug/L (ppb)	10	93	95	72-122	$\frac{2}{2}$
trans-1,3-Dichloropropene	ug/L (ppb)	10	88	90	80-136	2
1,1,2-Trichloroethane	ug/L (ppb)	10	94	96	75-124	2
2-Hexanone	ug/L (ppb)	50	100	102	60-136	2
1,3-Dichloropropane	ug/L (ppb)	10	94	96	76-126	2
Tetrachloroethene	ug/L (ppb)	10	97	99	76-121	2
Dibromochloromethane	ug/L (ppb)	10	89	93	84-133	4
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	95	99	82-115	$\frac{4}{2}$
Chlorobenzene Ethylbenzene	ug/L (ppb) ug/L (ppb)	10 10	96 93	98 95	83-114 77-124	$\frac{2}{2}$
1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	92	95 95	84-127	3
m,p-Xylene	ug/L (ppb)	20	95	97	81-112	2
o-Xylene	ug/L (ppb)	10	94	96	81-121	2
Styrene	ug/L (ppb)	10	92	94	84-119	2
Isopropylbenzene	ug/L (ppb)	10	91	93	80-117	2
Bromoform	ug/L (ppb)	10	89	90	69-121	1
n-Propylbenzene	ug/L (ppb)	10	93	96	74-126	3
Bromobenzene	ug/L (ppb)	10	100	102	80-121	2 3
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10 10	94 95	97 99	78-123 66-126	4
1,2,3-Trichloropropane	ug/L (ppb)	10	99	102	67-124	3
2-Chlorotoluene	ug/L (ppb)	10	94	98	77-127	4
4-Chlorotoluene	ug/L (ppb)	10	94	97	78-128	3
tert-Butylbenzene	ug/L (ppb)	10	94	97	80-123	3
1,2,4-Trimethylbenzene	ug/L (ppb)	10	91	96	79-122	5
sec-Butylbenzene	ug/L (ppb)	10	93	96	80-116	3
p-Isopropyltoluene	ug/L (ppb)	10	92	96	81-123	4
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L (ppb)	10 10	98 99	101 100	83-113 81-112	3 1
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	99 97	100 99	81-112 84-112	$\frac{1}{2}$
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	92	94	57-141	2
1,2,4-Trichlorobenzene	ug/L (ppb)	10	90	94	72-130	4
Hexachlorobutadiene	ug/L (ppb)	10	88	92	53-141	4
Naphthalene	ug/L (ppb)	10	93	97	64-133	4
1,2,3-Trichlorobenzene	ug/L (ppb)	10	92	96	65-136	4

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 103484-01 1/6 (Matrix Spike) 1/6

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	108	104	29-125	4
Aroclor 1260	mg/kg (ppm)	0.25	< 0.02	332 ip	163 ip	25 - 137	68 b

			Percent	
	Reporting	Spike Level	Recovery	Acceptance
Analyte	Units		LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	104	55-137
Aroclor 1260	mg/kg (ppm)	0.25	115	51 - 150

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 103585-12 1/6 (Matrix Spike) 1/6

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	$\operatorname{Control}$	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	98	90	44-107	9
Aroclor 1260	mg/kg (ppm)	0.25	< 0.02	96	86	38-124	11

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	104	47-158
Aroclor 1260	mg/kg (ppm)	0.25	108	69 - 147

ENVIRONMENTAL CHEMISTS

Date of Report: 04/09/21 Date Received: 03/31/21

Project: Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/L (ppb)	0.25	52	50	25-111	4
Aroclor 1260	ug/L (ppb)	0.25	72	66	23-123	9

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 I 6th Avenue West Friedman & Bruya, Inc. 1 C-1 D24-7.0 07 PA 1-20 7 City, State, ZIP SCALL, MA 7814 Company GE Address 2101 4th Ave Switc 950 Report 16 OCO DPS-3,0 DP3-7.0 7715-4.0 DP15-7.0 DPS-6,0 DP3-033021w DP3-40 DP 4-3.5 Sample ID Received by: Relinquished by: Received by: Email The Ats O General news roject specific RLs? - Yes / No Relinquished by: 0 [-Y & y a 50 \sim \Diamond \sim 6 0 0 ک) 7A-F Ø 00 SS) Σ. W Lab ID 3 7-4-2430/2 Sampled Date 1350 9 1050 5 GY = 9 000 000 500 Sampled Time REMARKS Shononish PROJECT NAME SAMPLERS OF Amport Col Hampar Sample Type 90 \bigcirc ()S) Khai Horang (Sums) PRINT NAME 6 Ó 6 ō 和光点 Q # of Jars 9 6 5 5 σ NWTPH-Dx NWTPH-Gx BTEX EPA 8021 5530-014-01 NWTPH-HCID INVOICE TO × メ × ANALYSES ><VOCs EPA 8260 Samples received at PO# PAHs EPA 8270 FB 3 \times × メ PCBs EPA 8082 (RCRA 8) MUTAL COMPANY REQUESTED × × \prec \times (RCRAB)
Total meta
(RCRAB)
Dissolvel 1 SAMPLE DISPOSAL

O Archive samples \times Default: Dispose after 30 days Rush charges authorized by: X Standard turnaround TURNAROUND TIME 12/16/2 3/3//2/ . വ DATE Notes 80 TMIT.

~5

BIH, B

03-31-21

SAMPLE CHAIN OF CUSTODY

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 I6th Avenue West Friedman & Bruya, Inc. (-10P9-3,0 C-1089-75 C-1 DPB-9.0 CT P68-712 J-1 PP 13-033121 -1DP14-033/24W (() 0.5-81X DP14-5,0 200-11 전 R13-2.0 Sample ID Relinquished by: Received by: Received by: Relinquished by 8 ٦ \lesssim Lab ID 2 3 <u>۔</u> 7 59,5/3/31/21 これ Stades! Sampled Date 030 22 900 JAN JOSEPH <u>ට</u> ප 1500 Time Sampled 900 1570 446 S 3 (j) م ع Sample Type \cup 5 \bigcirc Key3 KHOI S PRINT NAME 9 Q 0 0 ō # of Jars 5 B T 4 Taktur 7 X NWTPH-Dx × \times × × \times NWTPH-Gx BTEX EPA 8021 NWTPH-HCID メ メ × Χ ኊ \times × VOCs EPA 8260 PAHs EPA 8270 Samples received at . FBI × \times × × PCBs EPA 8082 COMPANY M \prec 3/31/21 3/31/21 time on both widing Yeston vogs DATE ြ ငိ Notes 6.30 EMIL 16:30

SAMPLE CHAIN OF CUSTODY E 03-31-21

PROJECT NAME
PROJECT NAME
PROJECT NAME
PROJECT NAME
PROJECT NAME
PROJECT NAME
PROJECT NAME
PO #
INVOICE TO

Address

Company

City, State,

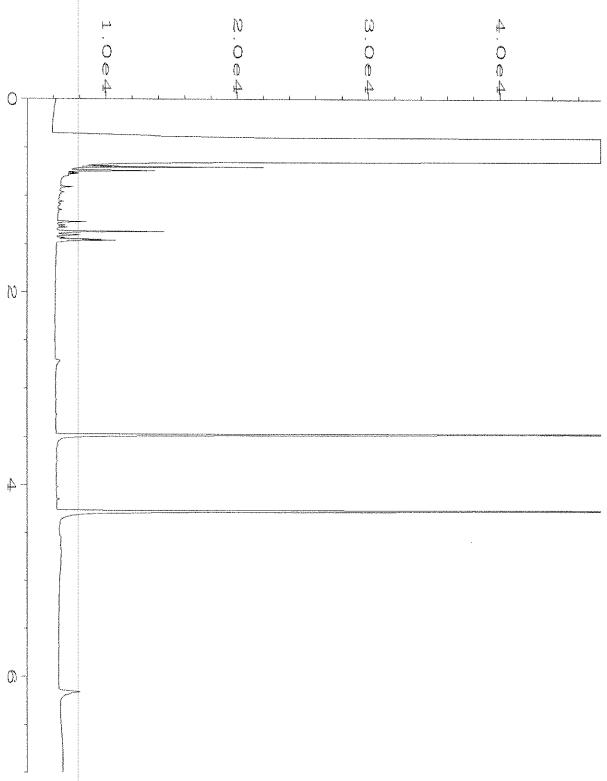
ZIP

Email

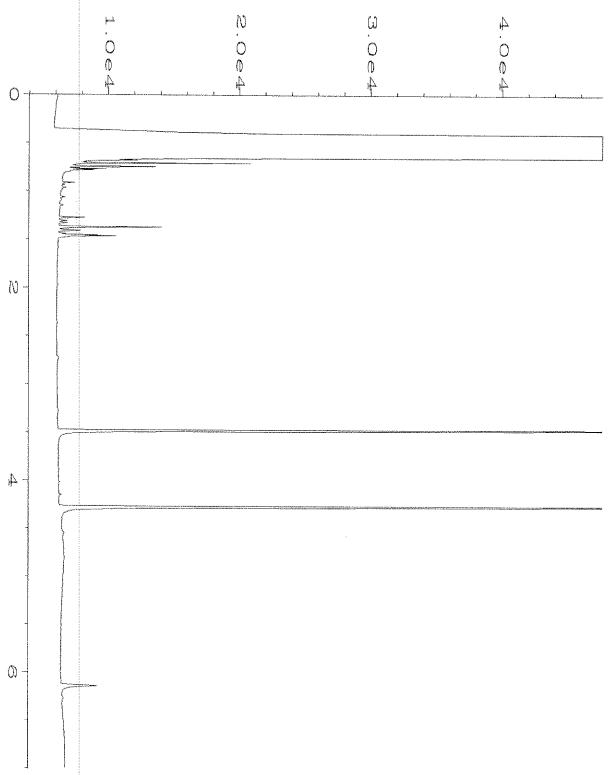
Project specific RLs? - Yes / No

Default: Dispose after 30 days

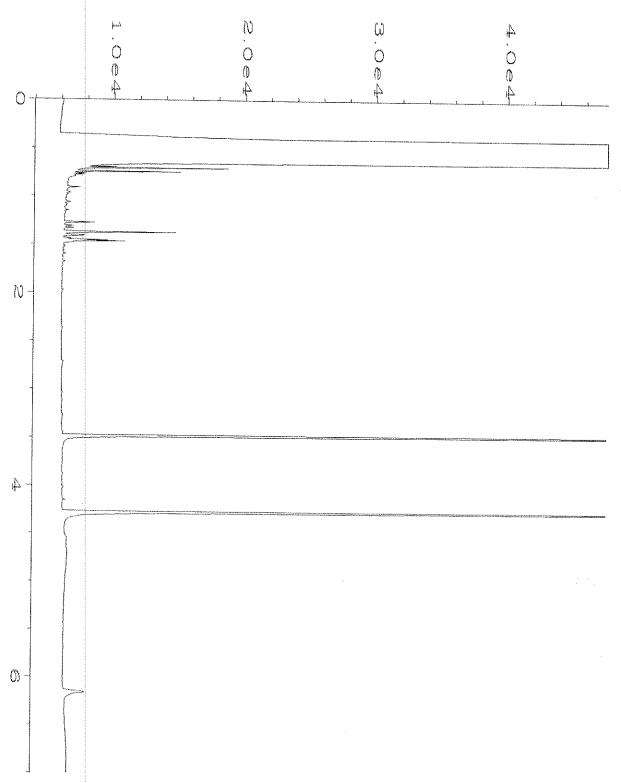
Rush charges authorized by:

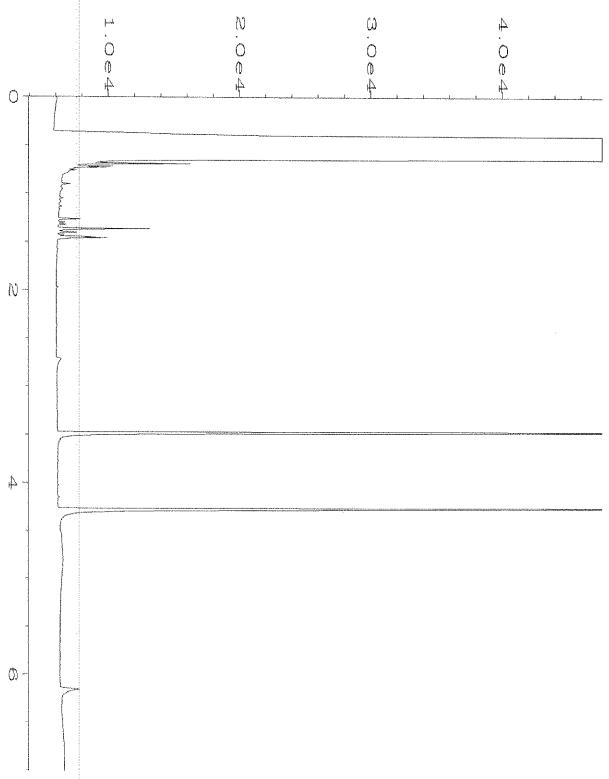

SAMPLE DISPOSAL

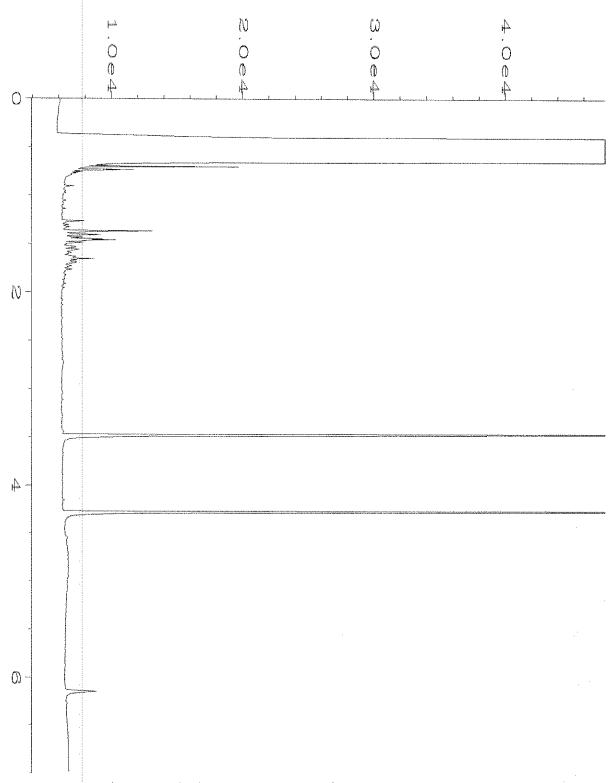
SAMPLE DISPOSAL

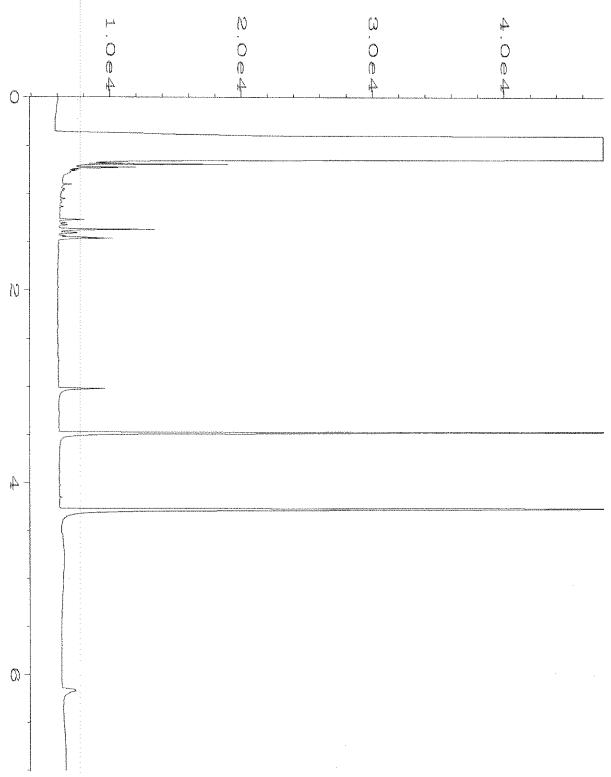

Other

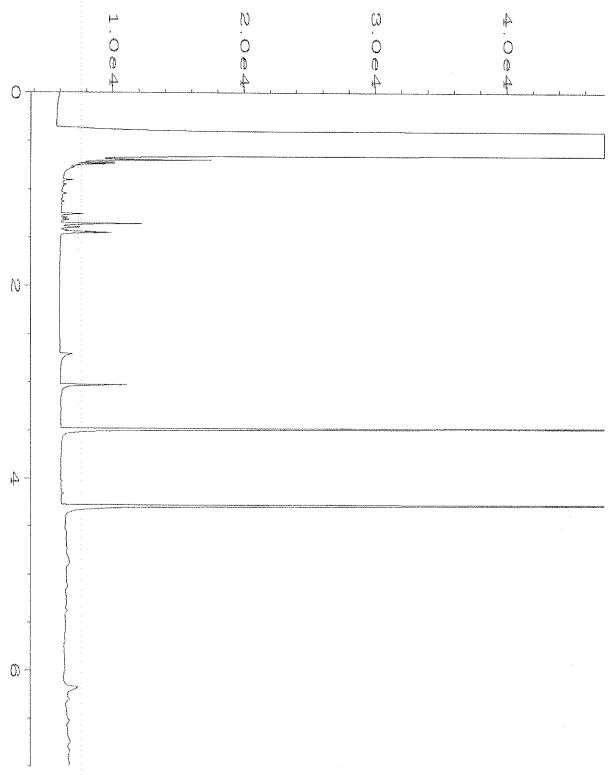
3° 1	Samples received at		THE PROPERTY AND ADDRESS OF THE PROPERTY OF TH	Amount the sy.
				
3/31/21 16:30	FBC	Kho! Horns	A. Carlo	9
3/51/21 16:30	6	Kary Arktin	t about	
DATE TIME	COMPANY	PRINT NAME	SIGNAPURA 	Friedman & Brwya, Inc Relinquished by
		XX	0h2 A	16-04-2-30-30
	× × ×	XX 9 S	1520	DF+-9.0
	X X	X X 9 S	28/15	0.H- E301
	~	X X 01 WB	27/13 1500	-10331121 w
	~	S 6 X X	(220)	CIDP1-11.0 126
	X	S 6 X X	1100	C-1 DP1-3.5 25
	*	XXg	17.6 10.0	C-1 DPZ-11.0 24
	X	S 6 X X	3 11000	1
4/27/21 ME	XXX	S 6 X X	0.50	C1 DV 11-4.0 22
• -peral	× × ×	XX 9 S	21/1/2/ 1000	0-4.0
Hey Chrome.	PCBs EPA 8082 RCRAB METALS TOTAL METAL DISS. METAL	Sample Type # of Jars NWTPH-Dx NWTPH-Gx	Lab ID Date Time Sampled Sampled	
	ANALYSES REQUESTED			
t. Dispose after 30 days	Default:	Project specific RLs? - Yes / No	Projec	PhoneEmail
SAMPLE DISPOSAL Archive samples	INVOICE TO S.	RKS	REMARKS	City, State, ZIP
Rush charges authorized by:	5530-014-01 Rush ch		7227	Address
Standard turnaround	PO# XStand	PROJECT NAME	PROJ	Company
		SAMPLERS (signature)	SAMI	Report To
1503/2 USL , NEW	DY 03-31-21 024,	SAMPLE CHAIN OF CUSTODY	SAMPI	(03585

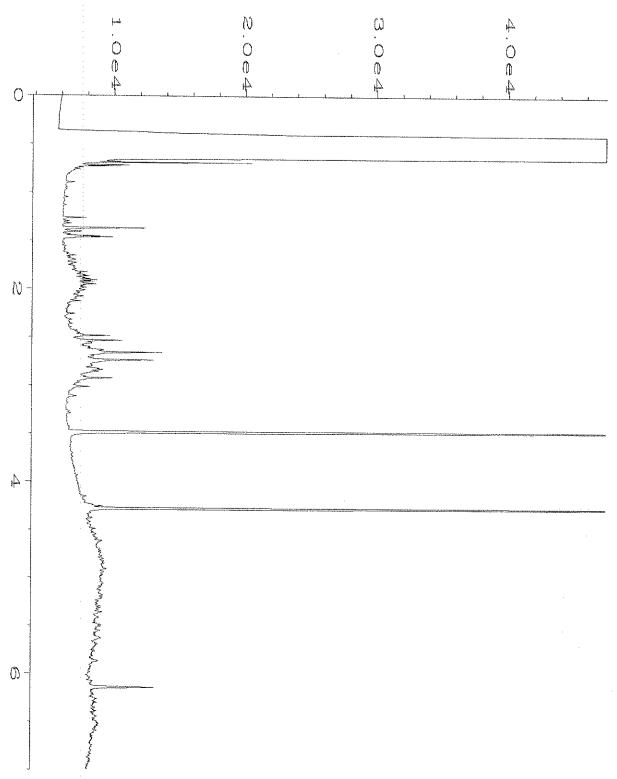

PROJECT NAME	Fn. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	r reuman & bruya, inc.		en egen geografischen der stelle ergen erstelle der der der der der der der der der de	Trip Blanks	Tr.p.Blank 4	Trip Blank 3	1mp Blank 2	Tr.p Black 1	C-1 DP6-40	C7 DP6-30	C7 DP 17-80	Sample ID		Phone	Address	Company
Type # of Jairs PANALYSES REQUEST OSS30-014-07 Sample # of Jairs PANALYSES REQUEST NWTPH-Bx NWTPH-HCID NWTPH-	Received by:	Relinquished by:		Mats 41	7		X 98	27	35	35	1 '	33					Email	SON	
Samples recompany Samples recompany NWTPH-HCID ANALYSES REQUEST NWTPH-HCID ANALYSES REQUEST PAHs EPA 8270 PCBs EPA 8082 REQUEST NWTPH-HCID ANALYSES REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082			T	Z Ž	PRINT NAME	e described (Constanting Constanting Const					-	50:11 5- (8)	Soil 5 ®	S 6 X	Sample #of Jars Type Jars NWTPH-Dx	185/	Vo.	REMARKS	PROJECT NAME
	Samples received at		7) (7)	7		A MATERIAL CONTROL OF THE PROPERTY OF THE PROP					8	8	8	X	NWTPH-HCID	ANALYSES BROTTESTED	······································		

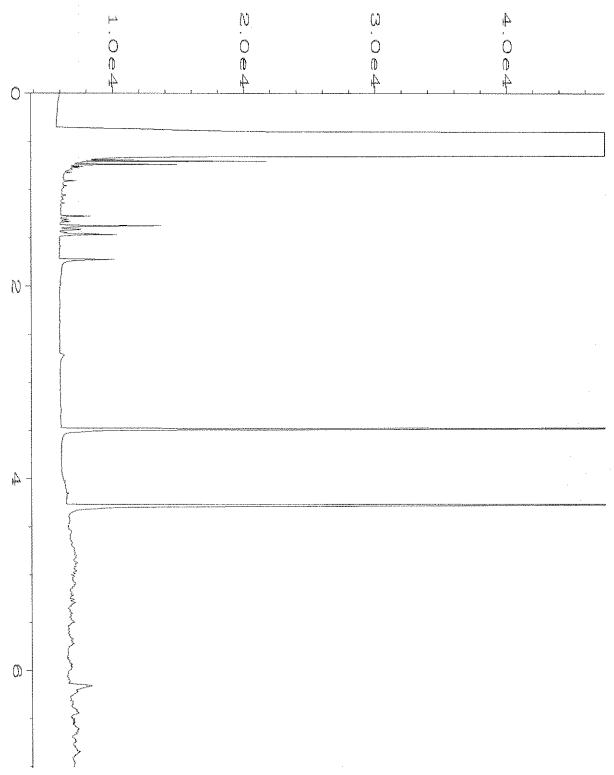

```
: C:\HPCHEM\6\DATA\04-01-21\022F0601.D
Data File Name
                : TL
Operator
                                              Page Number
                                                              : 1
                                              Vial Number
Instrument
                : GC6
                                                               ; 22
Sample Name
                : 103585-01
                                              Injection Number: 1
                                              Sequence Line : 6
Run Time Bar Code:
Acquired on : 01 Apr 21 03:10 PM
                                              Instrument Method: DX.MTH
Report Created on: 02 Apr 21
                                              Analysis Method : DEFAULT.MTH
                            07:45 AM
```

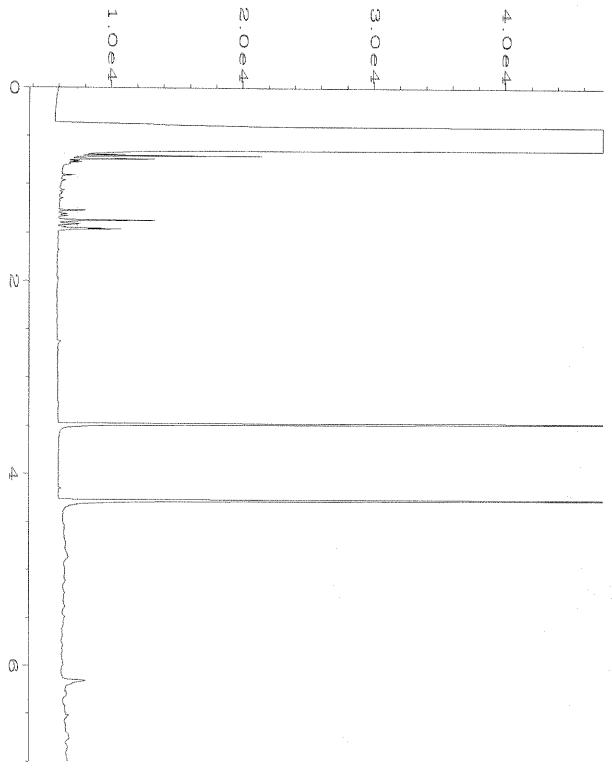


Data File Name :	C:\HPCHEM\6\DATA\04-01-21\02	3F0601.D	
Operator :	TL	Page Number :	1
Instrument :	GC6	Vial Number :	23
Sample Name :		Injection Number :	1
Run Time Bar Code:		Sequence Line :	6
	01 Apr 21 03:21 PM	Instrument Method:	DX.MTH
Report Created on:	02 Apr 21 07:46 AM	Analysis Method :	DEFAULT.MTH

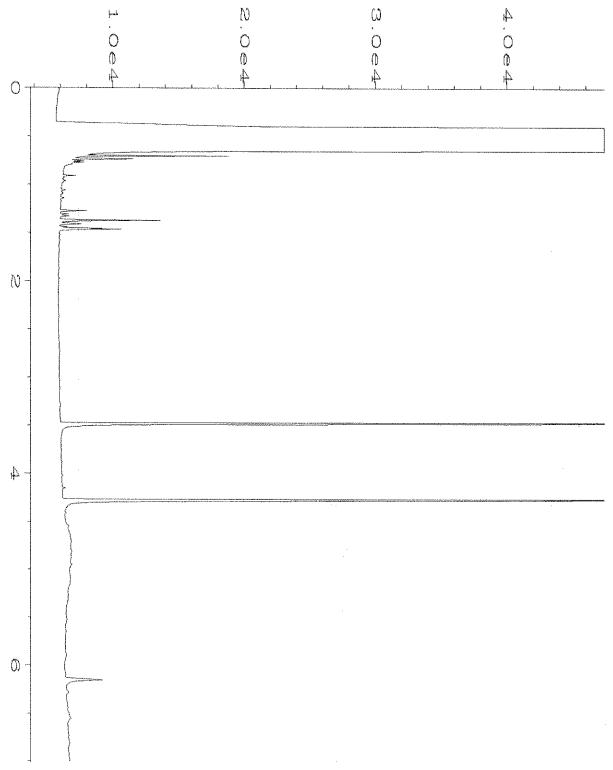

```
: C:\HPCHEM\6\DATA\04-01-21\024F0601.D
Data File Name
Operator
                 : TL
                                               Page Number
                                               Page Number : 1
Vial Number : 24
Instrument
                 : GC6
Sample Name
                : 103585-03
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 6
Acquired on : 01 Apr 21 03:32 PM
                                                Instrument Method: DX.MTH
Report Created on: 02 Apr 21 07:46 AM
                                               Analysis Method : DEFAULT.MTH
```

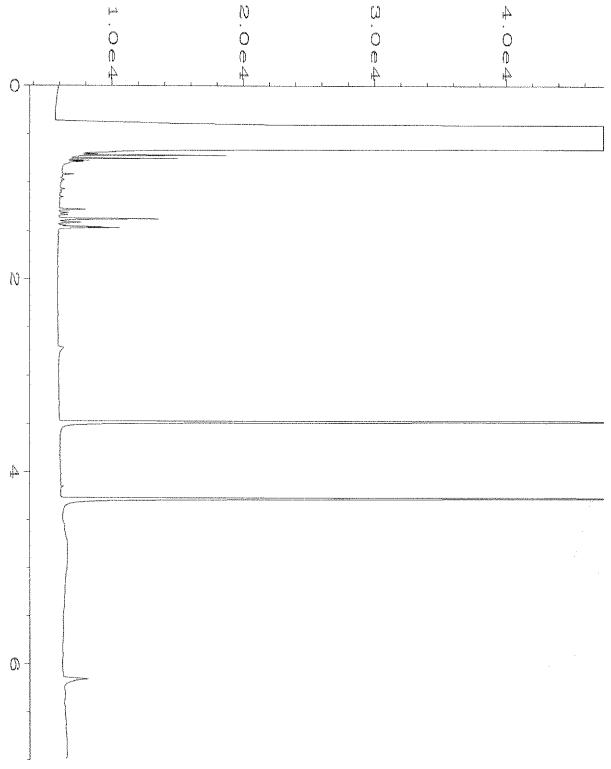


Data File Name :	C:\HPCHEM\6\DATA\04-01-21\025	5F0601.D	
Operator :	TL	Page Number	: 1
Instrument :	GC6	Vial Number	: 25
Sample Name :	103585-04	Injection Number	: 1
Run Time Bar Code:		Sequence Line	: 6
Acquired on :	01 Apr 21 03:43 PM	Instrument Method	: DX.MTH
Report Created on:	02 Apr 21 07:46 AM	Analysis Method	: DEFAULT.MTH


Data File Name :	C:\HPCHEM\6\DATA\04-01-21\026	5F0601.D	
Operator :	TL	Page Number	: 1
Instrument :	GC6	Vial Number	: 26
Sample Name :	103585-05	Injection Number	: 1
Run Time Bar Code:		Sequence Line	: 6
Acquired on :	01 Apr 21 03:54 PM	Instrument Method	DX.MTH
Report Created on:	02 Apr 21 07:46 AM	Analysis Method	DEFAULT.MTH


Data File Name	:	C:\HPCHEM\6\DATA\04-01-21\02	7F0601.D		·
Operator	•	TL	Page Number	*	1
Instrument			Vial Number	;	27
Sample Name	:	103585-07	Injection Number	:	1
Run Time Bar Code	1		Sequence Line	*	6
Acquired on	•	01 Apr 21 04:04 PM	Instrument Method	: £	DX.MTH
Report Created or	1:	02 Apr 21 07:46 AM	Analysis Method	:	DEFAULT.MTH

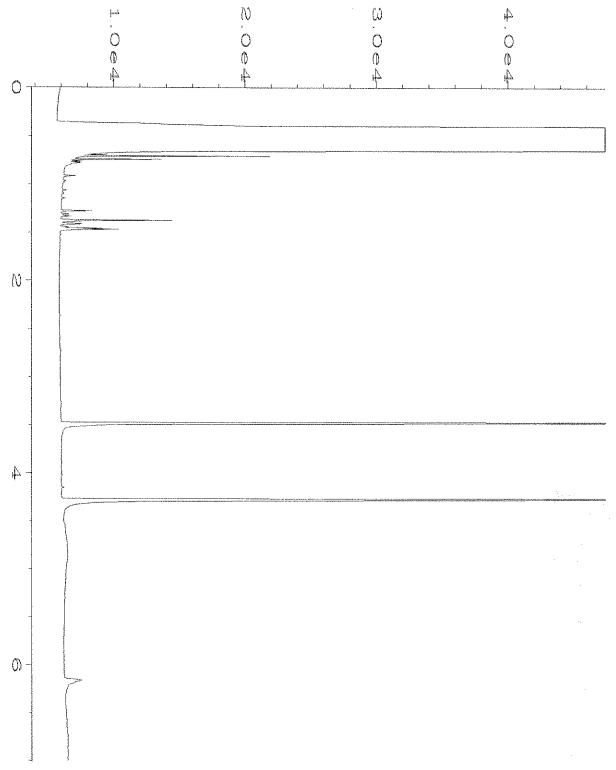

```
: C:\HPCHEM\6\DATA\04-01-21\028F0801.D
Data File Name
                                                Page Number
Vial Number
Operator
                 : TL
                                                                  ; 1
Instrument
                 : GC6
                                                                  : 28
                 : 103585-08
Sample Name
                                                Injection Number : 1
Run Time Bar Code:
                                                Sequence Line : 8
Acquired on : 01 Apr 21
                                                Instrument Method: DX.MTH
                             04:45 PM
Report Created on: 02 Apr 21
                             07:46 AM
                                                Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\04-01-21\029F0801.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                : GC6
                                              Vial Number
                                                              : 29
Sample Name
                : 103585-09
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 8
                                              Instrument Method: DX.MTH
Acquired on : 01 Apr 21 04:53 PM
Report Created on: 02 Apr 21
                            07:46 AM
                                              Analysis Method : DEFAULT.MTH
```

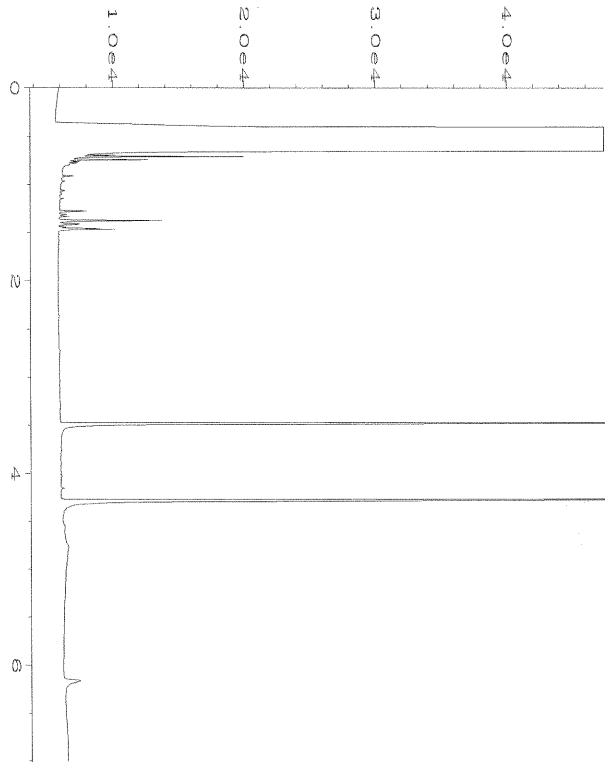


```
: C:\HPCHEM\6\DATA\04-01-21\030F0801.D
Data File Name
                                              Page Number
                                                              : 1
Operator
                : TL
                                              Vial Number
                : GC6
                                                              : 30
Instrument
                                              Injection Number: 1
Sample Name
                : 103585-10
                                              Sequence Line : 8
Run Time Bar Code:
Acquired on : 01 Apr 21 05:04 PM
                                              Instrument Method: DX.MTH
                                              Analysis Method : DEFAULT.MTH
Report Created on: 02 Apr 21 07:47 AM
```



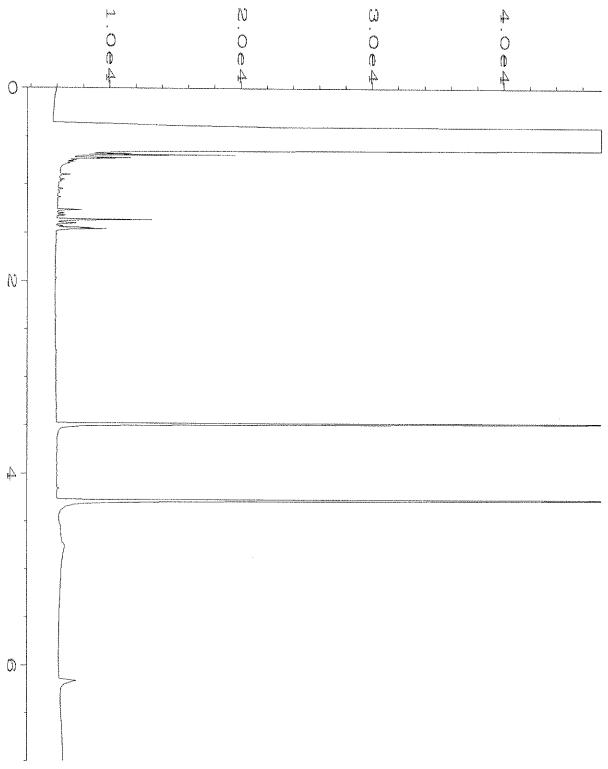
```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\031F0801.D
Operator
                 : TL
                                                 Page Number
Instrument
                 : GC6
                                                 Vial Number
                                                                  : 31
                                                 Injection Number : 1
Sequence Line : 8
Sample Name
                 : 103585-11
Run Time Bar Code:
Acquired on : 01 Apr 21
                             05:15 PM
                                                 Instrument Method: DX.MTH
Report Created on: 02 Apr 21
                              07:47 AM
                                                 Analysis Method : DEFAULT.MTH
```

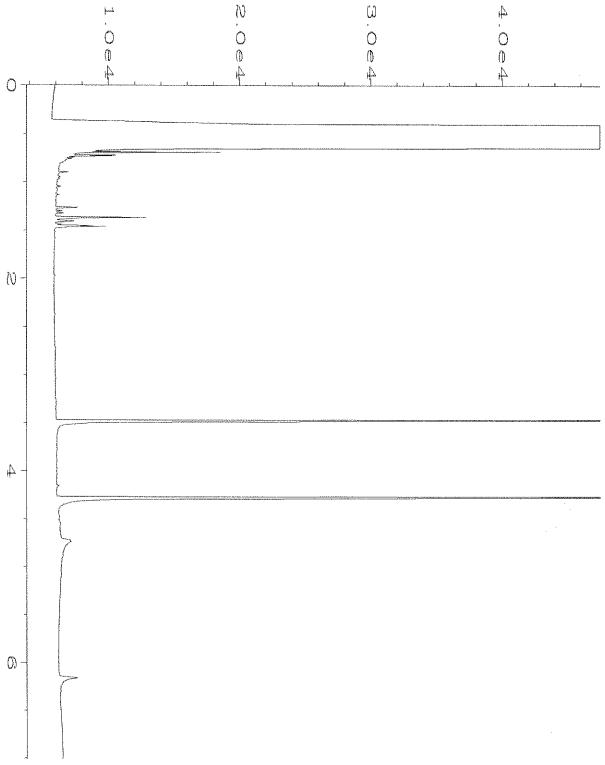


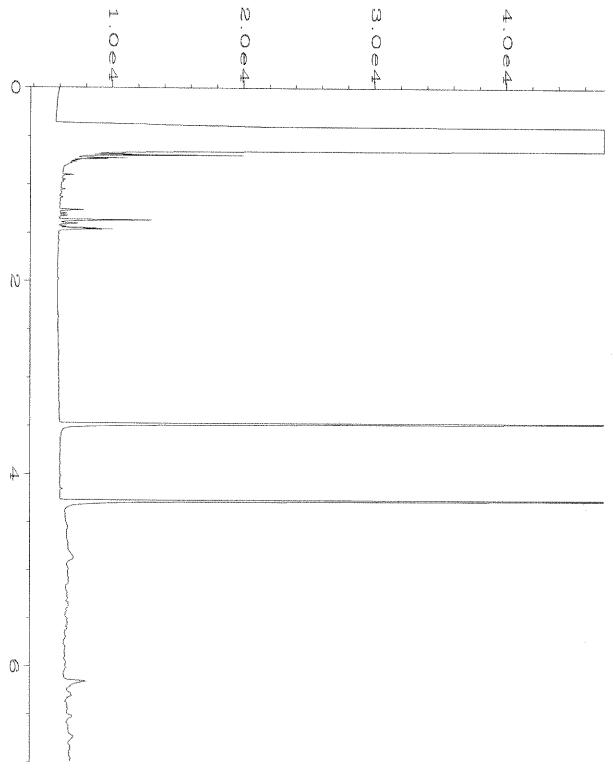

```
: C:\HPCHEM\6\DATA\04-01-21\032F0801.D
Data File Name
                                                                Page Number
Vial Number
Operator
                       : TL
                                                                                       : 1
Instrument
                                                                                       : 32
                       : GC6
                      : 103585-12
                                                                Injection Number : 1
Sequence Line : 8
Sample Name
Run Time Bar Code:
Acquired on : 01 Apr 21 Report Created on: 02 Apr 21
                                                                Instrument Method: DX.MTH
Analysis Method : DEFAULT.MTH
                                        05:26 PM
                                        07:49 AM
```

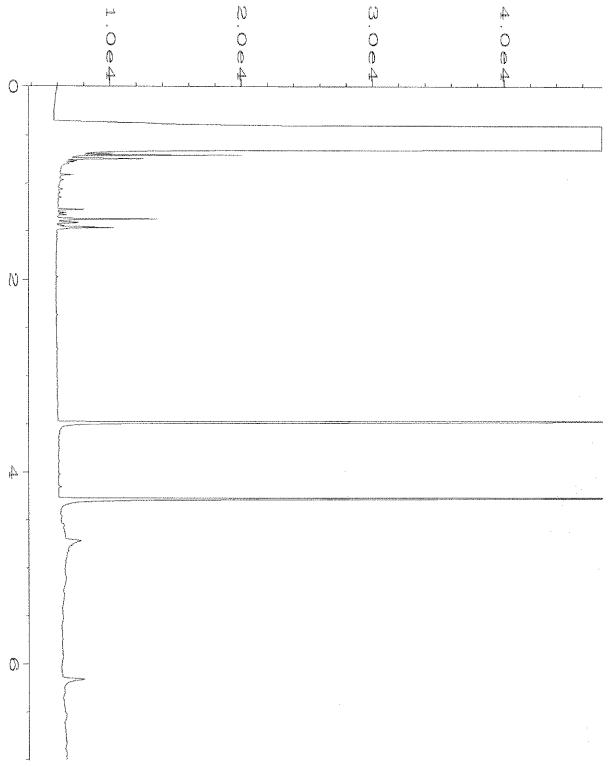


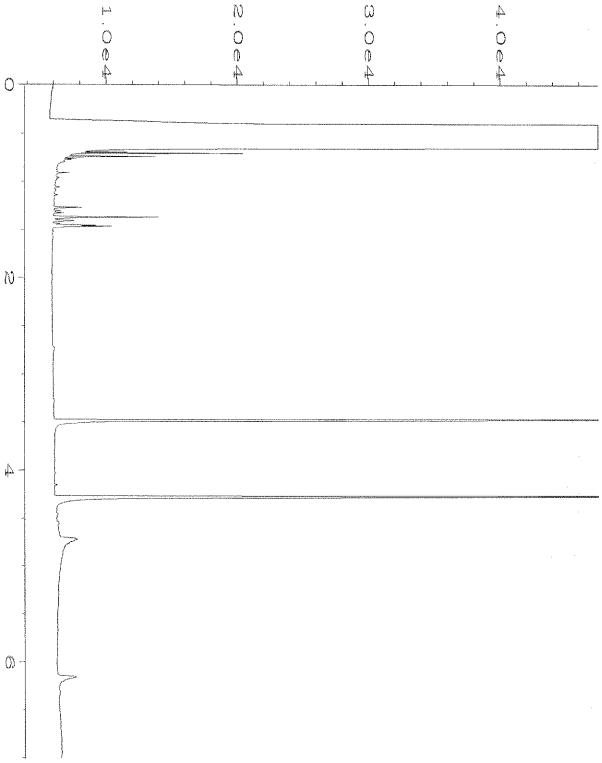

```
: C:\HPCHEM\6\DATA\04-01-21\033F0801.D
Data File Name
Operator
                : TL
                                               Page Number
                                                                : 1
Instrument
                                               Vial Number
                                                                ; 33
                 : GC6
                : 103585-13
Sample Name
                                               Injection Number: 1
                                               Sequence Line : 8
Run Time Bar Code:
Acquired on : 01 Apr 21
                                               Instrument Method: DX.MTH
                            05:37 PM
```

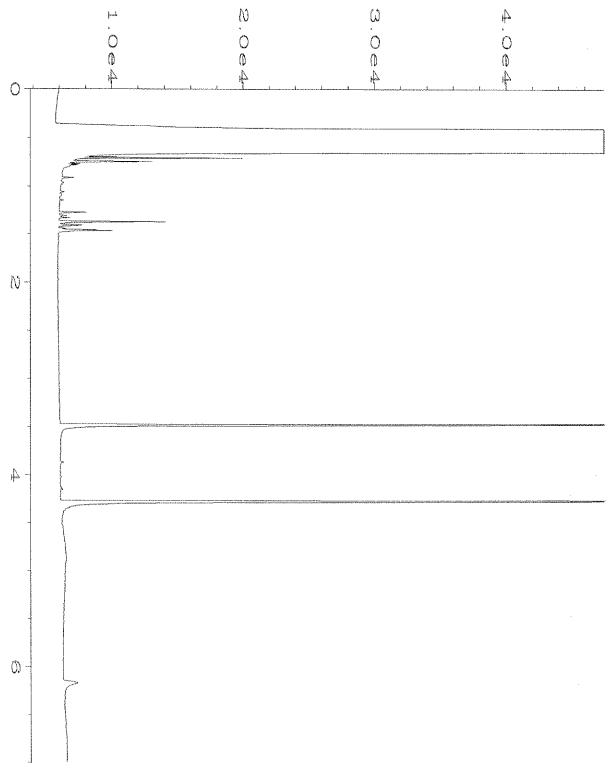

Report Created on: 02 Apr 21 Analysis Method : DEFAULT.MTH 07:49 AM

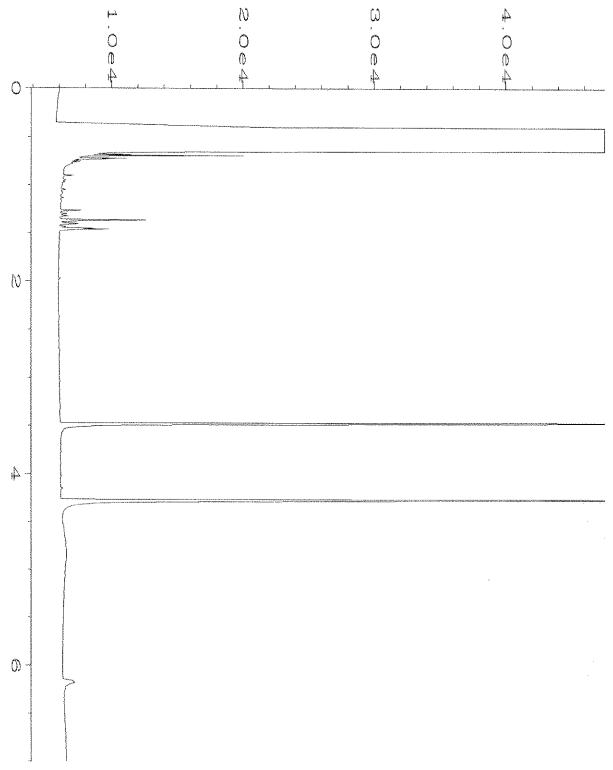

```
Data File Name
                : C:\HPCHEM\6\DATA\04-01-21\034F0801.D
Operator
                : TL
                                               Page Number
                                                                : 1
                                               Vial Number
Instrument
                 : GC6
                                                                : 34
Sample Name
                : 103585-14
                                               Injection Number: 1
                                                                : 8
Run Time Bar Code:
                                               Sequence Line
                                               Instrument Method: DX.MTH
Acquired on
                : 01 Apr 21
                             05:48 PM
                                               Analysis Method : DEFAULT.MTH
Report Created on: 02 Apr 21
                            07:49 AM
```

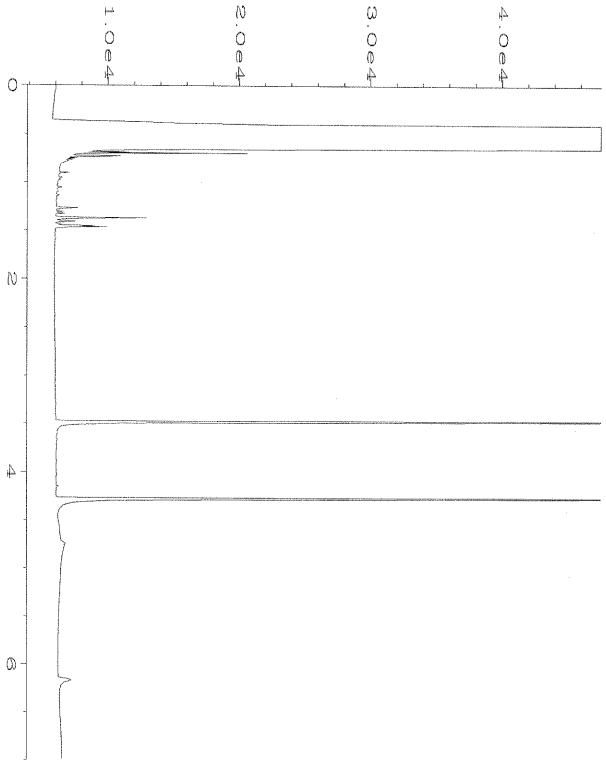


```
: C:\HPCHEM\6\DATA\04-01-21\035F0801.D
Data File Name
                                                 Page Number
                                                                   : 1
Operator
                 : TL
                                                 Vial Number
Instrument
                 : GC6
                                                 Injection Number : 1
Sequence Line : 8
                 : 103585-17
Sample Name
Run Time Bar Code:
                                                 Instrument Method: DX.MTH
Acquired on : 01 Apr 21 05:59 PM
                                                 Analysis Method : DEFAULT.MTH
Report Created on: 02 Apr 21 07:49 AM
```



```
: C:\HPCHEM\6\DATA\04-01-21\036F0801.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                : GC6
                                              Vial Number
                                                               : 36
                : 103585-18
Sample Name
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 8
Acquired on : 01 Apr 21
                            06:10 PM
                                              Instrument Method: DX.MTH
Report Created on: 02 Apr 21
                            07:49 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\037F0801.D
                                              Page Number
Operator
                ; TL
Instrument
                : GC6
                                              Vial Number
                                                               : 37
                                              Injection Number: 1
Sample Name
                : 103585-19
Run Time Bar Code:
                                              Sequence Line : 8
                                              Instrument Method: DX.MTH
Acquired on : 01 Apr 21 06:21 PM
Report Created on: 02 Apr 21 07:49 AM
                                              Analysis Method : DEFAULT.MTH
```

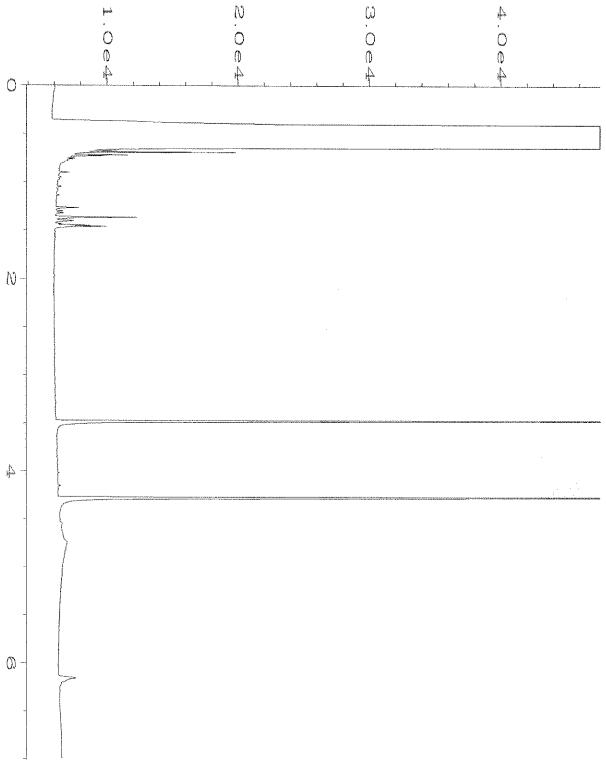


```
Data File Name
              : C:\HPCHEM\6\DATA\04-01-21\038F1001.D
Operator
                : TL
                                             Page Number
Instrument
                : GC6
                                              Vial Number
                                                              : 38
                : 103585-20
Sample Name
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on : 01 Apr 21 06:54 PM
                                              Instrument Method: DX.MTH
Report Created on: 02 Apr 21 07:49 AM
                                             Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\04-01-21\039F1001.D
Data File Name
                                                 Page Number
Operator
                 : TL
                                                 Vial Number
Instrument
                 : GC6
                                                                   : 39
                                                 Injection Number : 1
Sequence Line : 10
Sample Name
                 : 103585-21
Run Time Bar Code:
                                                 Instrument Method: DX MTH
Acquired on : 01 Apr 21
                               07:05 PM
Report Created on: 02 Apr 21 07:49 AM
                                                 Analysis Method : DEFAULT.MTH
```

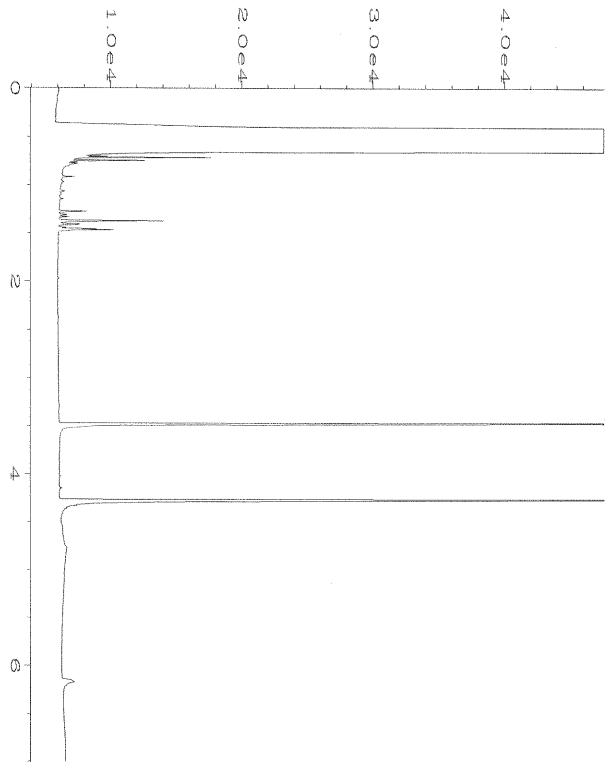


```
Data File Name
                 : C:\HPCHEM\6\DATA\04-01-21\040F1001.D
Operator
                    ; TL
                                                        Page Number
                                                                            : 1
                                                        Vial Number
                                                                            : 40
Instrument
                    : GC6
                                                        Injection Number: 1
Sequence Line: 10
                   : 103585-22
Sample Name
Run Time Bar Code:
Acquired on : 01 Apr 21 07:16 PM Report Created on: 02 Apr 21 07:50 AM
                                                        Instrument Method: DX.MTH
                                                        Analysis Method : DEFAULT.MTH
```



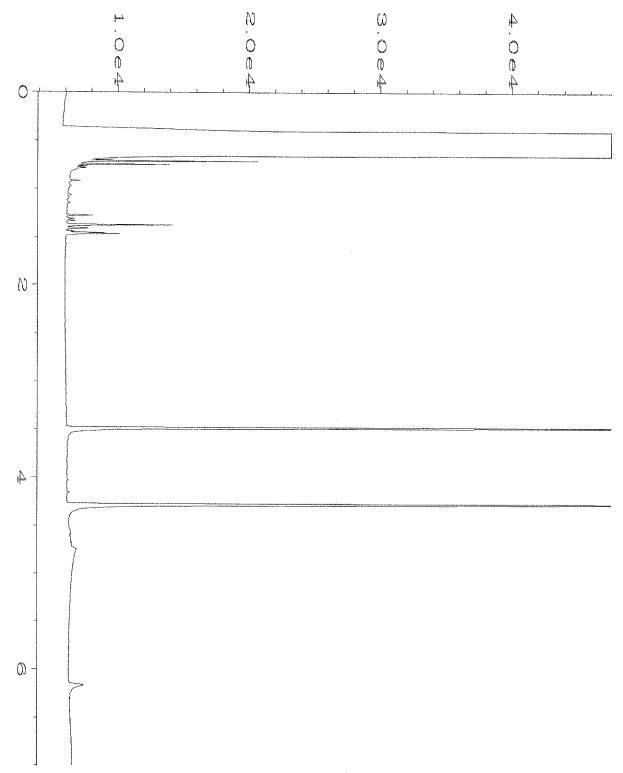
```
Data File Name
               : C:\HPCHEM\6\DATA\04-01-21\041F1001.D
                                                Page Number
Operator
                                                 Vial Number
                                                                  : 41
Instrument
                 : GC6
                                                Injection Number : 1
Sequence Line : 10
Sample Name
                 : 103585-23
Run Time Bar Code:
                                                 Instrument Method: DX.MTH
Acquired on : 01 Apr 21 07:27 PM
Report Created on: 02 Apr 21 07:50 AM
                                                Analysis Method : DEFAULT.MTH
```



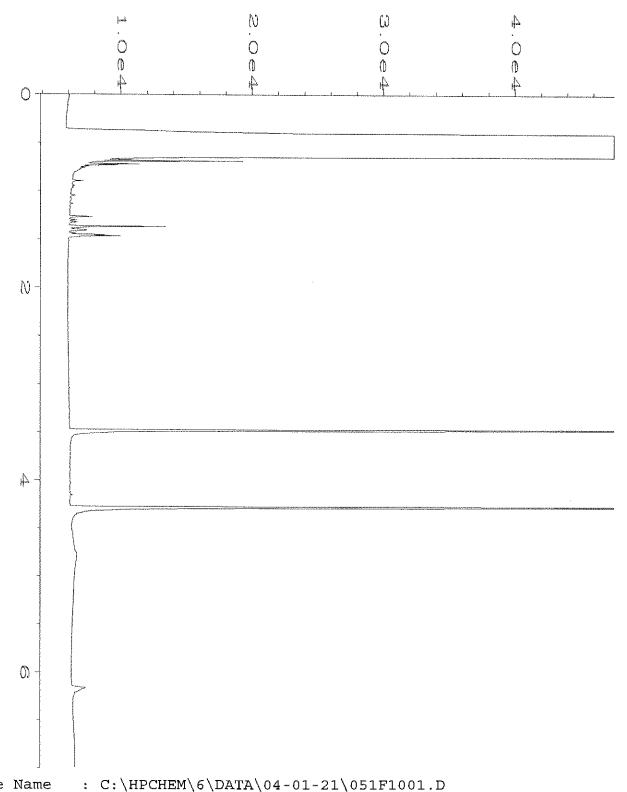

```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\046F1001.D
Operator
                : TL
                                             Page Number
                                                            : 1
                                             Vial Number
Instrument
                : GC6
                                                             : 46
                                             Injection Number: 1
Sample Name
               : 103585-24
                                             Sequence Line : 10
Run Time Bar Code:
Acquired on : 01 Apr 21 08:22 PM
                                             Instrument Method: DX.MTH
Report Created on: 02 Apr 21 07:50 AM
                                             Analysis Method : DEFAULT.MTH
```



```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\047F1001.D
Operator
                                              Page Number
                : TL
                                                               : 1
Instrument
                : GC6
                                              Vial Number
                                                               : 47
Sample Name
                : 103585-25
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 10
Acquired on : 01 Apr 21
                            08:33 PM
                                              Instrument Method: DX.MTH
Report Created on: 02 Apr 21
                            07:50 AM
                                              Analysis Method : DEFAULT.MTH
```

.

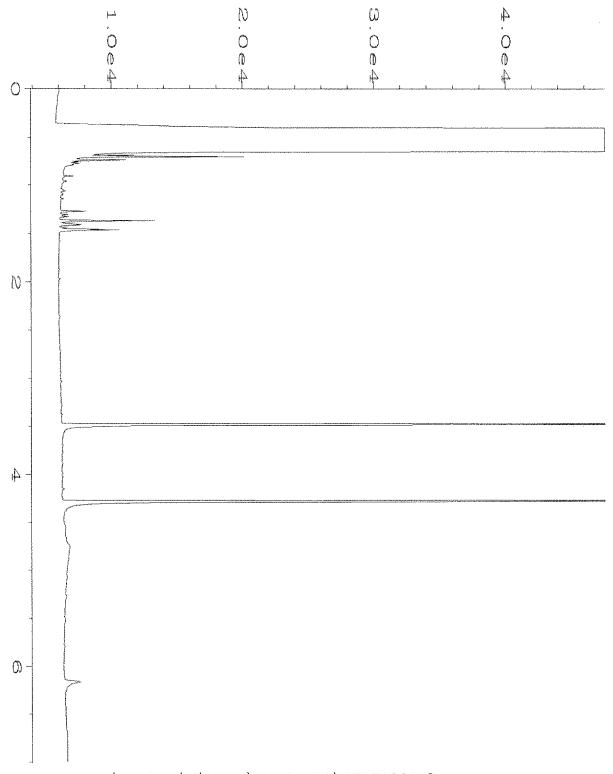

```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\048F1001.D
                                                Page Number
Operator
                : TL
Instrument
                                                Vial Number
                 : GC6
                                                                 : 48
Sample Name
                                                Injection Number : 1
Sequence Line : 10
                : 103585-26
Run Time Bar Code:
Acquired on : 01 Apr 21 08:44 PM
                                                Instrument Method: DX.MTH
Report Created on: 02 Apr 21 07:51 AM
                                                Analysis Method : DEFAULT.MTH
```

·

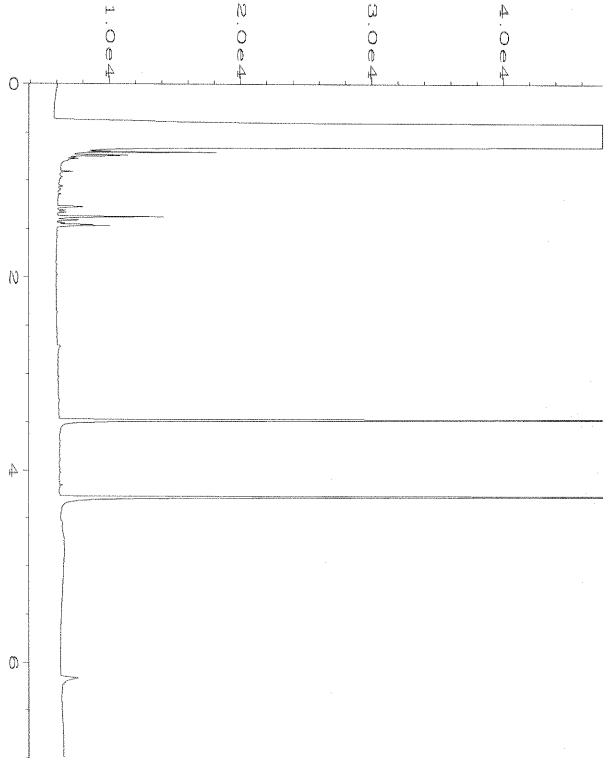


Data File Name : C:\HPCHEM\6\DATA\04-01-21\049F1001.D Page Number Operator : TL Instrument Vial Number : 49 : GC6 Injection Number : 1 Sequence Line : 10 Sample Name : 103585-28 Run Time Bar Code: Acquired on : 01 Apr 21 08:55 PM Instrument Method: DX.MTH Report Created on: 02 Apr 21 07:51 AM Analysis Method : DEFAULT.MTH

Report Created on: 02 Apr 21 07:51 Am Analysis Method : DBFAODI.MIR

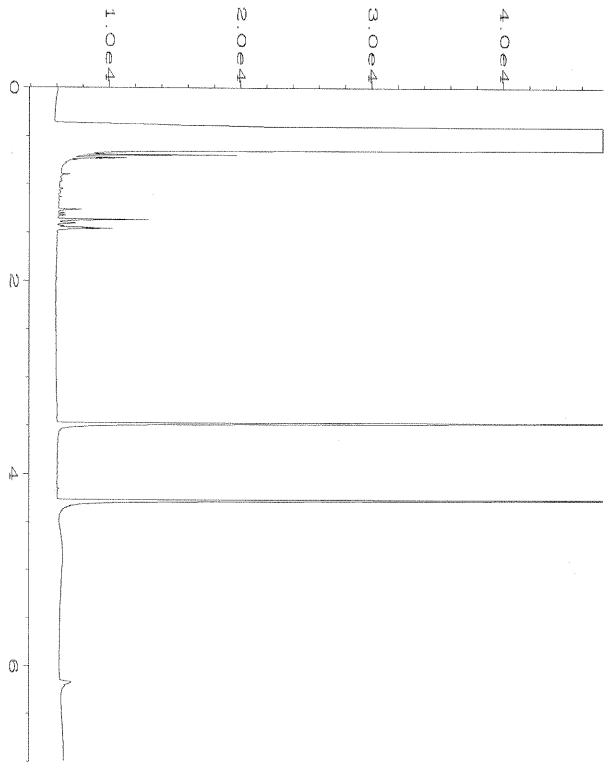


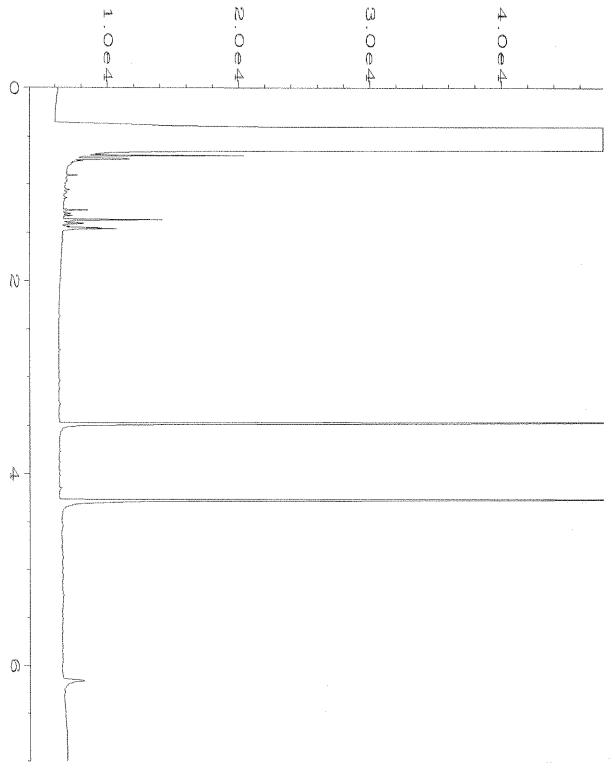

```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\050F1001.D
Operator
                : TL
                                             Page Number
Instrument
                ; GC6
                                             Vial Number
                                                              : 50
Sample Name
                : 103585-29
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 10
Acquired on : 01 Apr 21 09:06 PM
                                              Instrument Method: DX.MTH
Report Created on: 02 Apr 21 07:51 AM
                                             Analysis Method : DEFAULT.MTH
```

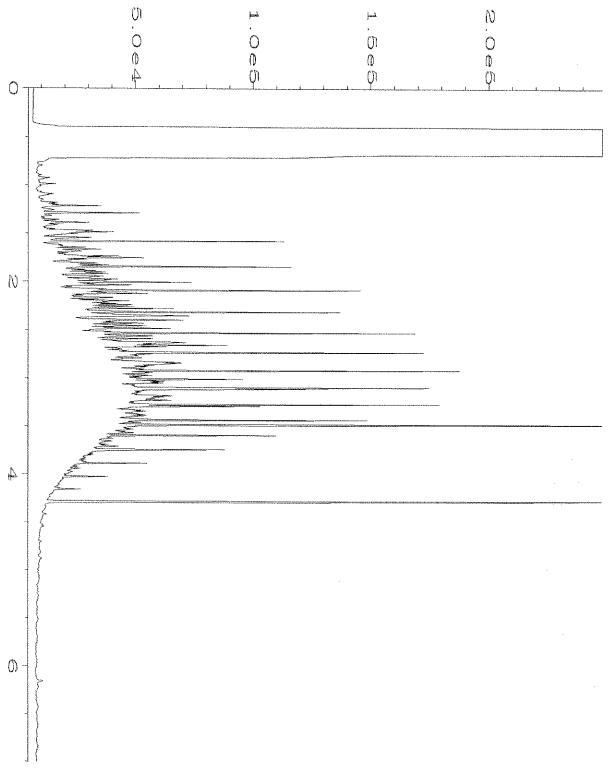


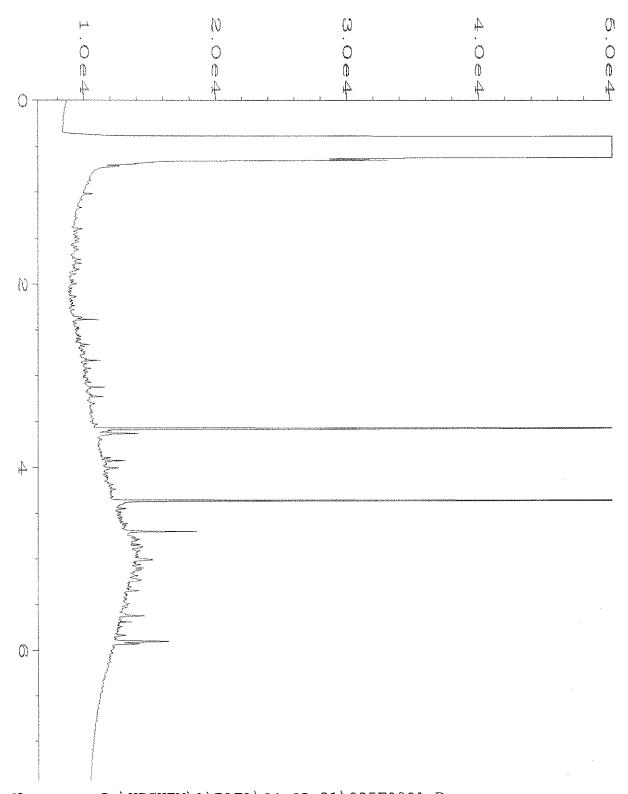
Data File Name Operator ; TL Page Number : 1 Vial Number Instrument : GC6 : 51 Injection Number: 1 Sample Name : 103585-30 Run Time Bar Code: Sequence Line : 10 Acquired on : 01 Apr 21 09:17 PM Instrument Method: DX.MTH Report Created on: 02 Apr 21 07:51 AM Analysis Method : DEFAULT.MTH

Table Carrier of the Land Comment


```
Data File Name
               : C:\HPCHEM\6\DATA\04-01-21\052F1001.D
                                                 Page Number
Operator
                                                                   : 1
                                                 Vial Number
Instrument
                  : GC6
                                                 Injection Number : 1
Sequence Line : 10
Sample Name
                 : 103585-31
Run Time Bar Code:
Acquired on : 01 Apr 21 09:28 PM
                                                 Instrument Method: DX.MTH
                                                 Analysis Method : DEFAULT.MTH
Report Created on: 02 Apr 21 07:51 AM
```

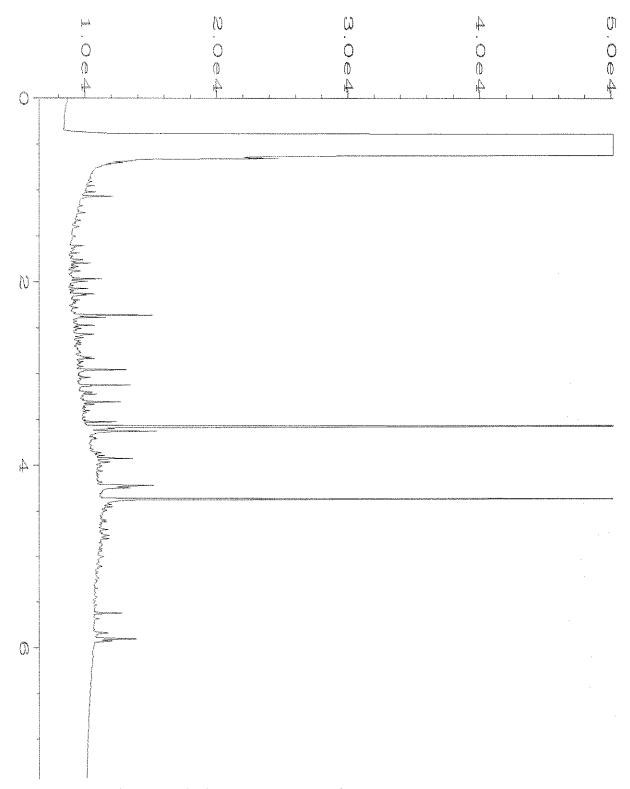


```
Data File Name : C:\HPCHEM\6\DATA\04-01-21\053F1001.D
Operator
                                              Page Number
                : TL
Instrument
                : GC6
                                              Vial Number
                                                               : 53
                                              Injection Number: 1
Sample Name
                : 103585-32
Run Time Bar Code:
                                              Sequence Line
                                                            : 10
Acquired on : 01 Apr 21
                                               Instrument Method: DX.MTH
                            09:38 PM
Report Created on: 02 Apr 21
                            07:51 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
              : C:\HPCHEM\6\DATA\04-01-21\054F1001.D
Operator
                : TL
                                              Page Number
                                              Vial Number
Instrument
                : GC6
                                                              : 54
Sample Name
                : 103585-33
                                              Injection Number: 1
                                              Sequence Line : 10
Run Time Bar Code:
Acquired on : 01 Apr 21 09:49 PM
                                              Instrument Method: DX.MTH
Report Created on: 02 Apr 21
                           07:51 AM
                                              Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\04-01-21\042F1001.D
Data File Name
                                                  Page Number
Operator
                 : TL
                                                                    ; 1
Instrument
                                                 Vial Number
                  : GC6
                                                                   : 42
                                                  Injection Number : 1
Sequence Line : 10
Sample Name
                 : 01-774 mb
Run Time Bar Code:
Acquired on : 01 Apr 21
                                                  Instrument Method: DX.MTH
                               07:38 PM
Report Created on: 02 Apr 21
                                                 Analysis Method : DEFAULT.MTH
                              07:50 AM
```



```
: C:\HPCHEM\6\DATA\04-01-21\018F0601.D
Data File Name
Operator
                                                    Page Number
                                                                      : 1
                  : TL
                                                    Vial Number
Instrument
                  : GC6
                                                                      : 18
                                                    Injection Number: 1
Sample Name
                  : 01-772 mb
                                                    Sequence Line : 6
Run Time Bar Code:
Acquired on : 01 Apr 21 02:27 PM Report Created on: 02 Apr 21 07:52 AM
                                                    Instrument Method: DX.MTH
                                                    Analysis Method : DEFAULT.MTH
```




```
: C:\HPCHEM\6\DATA\04-01-21\003F0201.D
Data File Name
Operator
                                               Page Number
                : TL
Instrument
                : GC6
                                               Vial Number
                                                               : 3
                : 500 Dx 62-142D
                                               Injection Number: 1
Sample Name
Run Time Bar Code:
                                               Sequence Line : 2
Acquired on : 01 Apr 21 08:40 AM
                                               Instrument Method: DX.MTH
Report Created on: 02 Apr 21 07:52 AM
                                              Analysis Method : DEFAULT.MTH
```

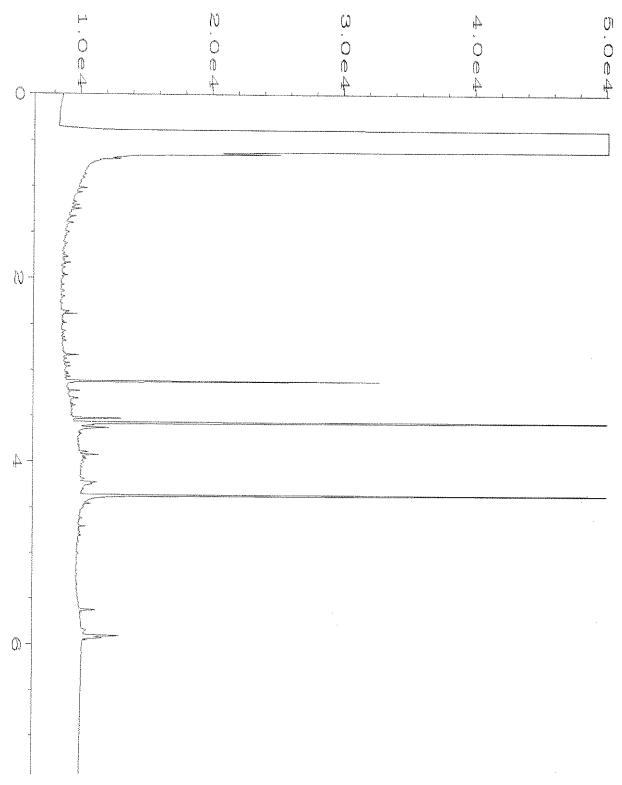


```
: C:\HPCHEM\1\DATA\04-02-21\025F0901.D
Data File Name
Operator
                  : TL
                                                  Page Number
                                                  Vial Number : 29
Injection Number : 1
Instrument
                  : GC1
                                                                    : 25
Sample Name
                 : 103585-06
                                                  Sequence Line
Run Time Bar Code:
                                                                 : 9
                                                  Instrument Method: DX.MTH
Acquired on : 02 Apr 21 02:26 PM
```

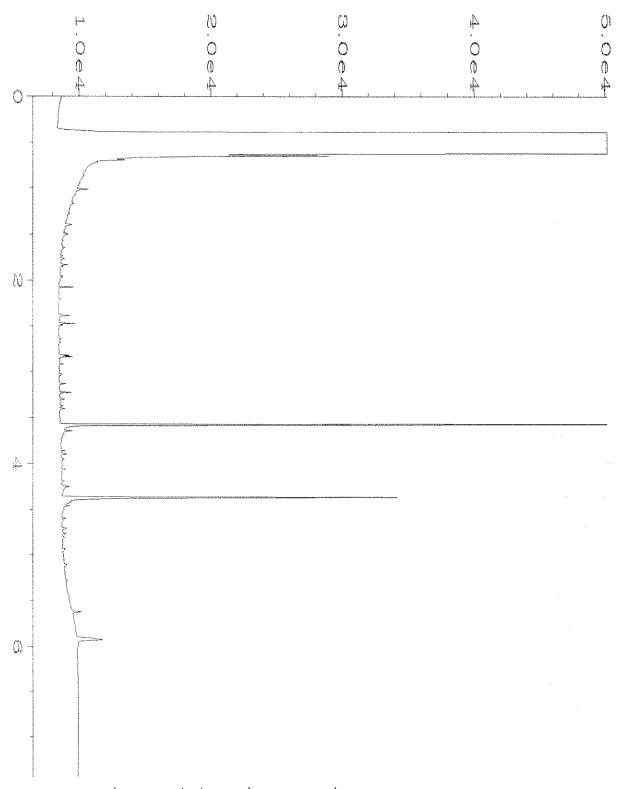
Report Created on: 05 Apr 21 09:11 AM Analysis Method: DEFAULT.MTH


```
Data File Name : C:\HPCHEM\1\DATA\04-02-21\026F0901.D

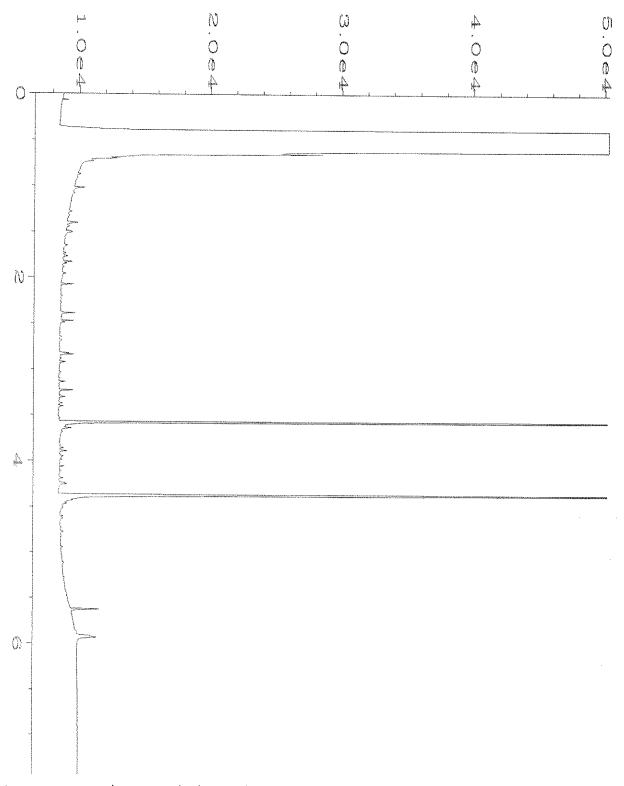
Operator : TL Page Number : 1

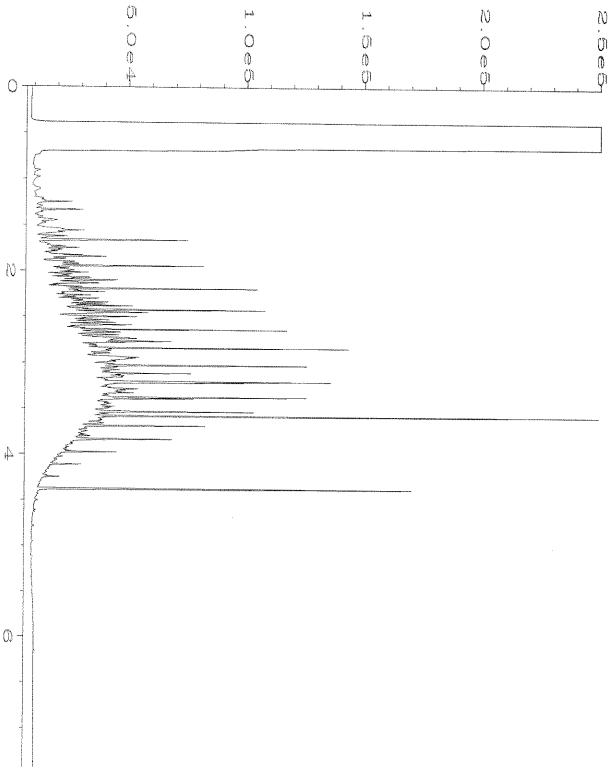

Instrument : GC1 Vial Number : 26

Sample Name : 103585-15 Injection Number : 1


Run Time Bar Code: Sequence Line : 9

Acquired on : 02 Apr 21 02:38 PM Instrument Method: DX.MTH
```


Acquired on : 02 Apr 21 02:38 PM Instrument Method: DX.MTH
Report Created on: 05 Apr 21 09:11 AM Analysis Method : DEFAULT.MTH


```
Data File Name : C:\HPCHEM\1\DATA\04-02-21\027F0901.D
Operator
                  : TL
                                                    Page Number
                                                                       : 1
Instrument
                  : GC1
                                                    Vial Number
                                                                       : 27
Sample Name
                  : 103585-16
                                                    Injection Number: 1
Run Time Bar Code:
                                                    Sequence Line
Acquired on : 02 Apr 21 02:49 PM Report Created on: 05 Apr 21 09:11 AM
                                                    Instrument Method: DX.MTH
                                                    Analysis Method : DEFAULT.MTH
```



```
Data File Name
              : C:\HPCHEM\1\DATA\04-02-21\028F0901.D
Operator
                : TL
                                              Page Number
                                                               : 1
                                              Vial Number
Instrument
                                                               : 28
                : GC1
Sample Name
                : 103585-27
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
                                                            : 9
                                              Instrument Method: DX.MTH
Acquired on : 02 Apr 21 03:01 PM
Report Created on: 05 Apr 21 09:12 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name : C:\HPCHEM\1\DATA\04-02-21\018F0701.D
Operator
                  : TL
                                                    Page Number
Instrument
                  : GC1
                                                    Vial Number
                                                                  : 18
Sample Name
                  : 01-778 mb
                                                    Injection Number: 1
Run Time Bar Code:
                                                    Sequence Line
Acquired on : 02 Apr 21 12:38 PM Report Created on: 05 Apr 21 09:10 AM
                                                    Instrument Method: DX.MTH
                                                    Analysis Method : DEFAULT.MTH
```



```
Data File Name
              : C:\HPCHEM\1\DATA\04-02-21\003F0201.D
Operator
                : TL
                                              Page Number
Instrument
                : GC1
                                              Vial Number
                                                               : 3
Sample Name
                : 500 Dx 62-142D
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 2
Acquired on : 02 Apr 21 05:43 AM
                                              Instrument Method: DX.MTH
Report Created on: 05 Apr 21 09:16 AM
                                              Analysis Method : DEFAULT.MTH
```


3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 103585

Work Order Number: 2104392

May 05, 2021

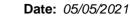
Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 4/28/2021 for the analyses presented in the following report.

Hexavalent Chromium by EPA Method 7196 Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 103585 **Work Order:** 2104392

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2104392-001 C-1 DP1-11.0 03/31/2021 12:20 PM 04/28/2021 1:28 PM

Case Narrative

WO#: **2104392**Date: **5/5/2021**

CLIENT: Friedman & Bruya

Project: 103585

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2104392**

Date Reported: **5/5/2021**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

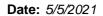
SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2104392**Date Reported: **5/5/2021**


Client: Friedman & Bruya Collection Date: 3/31/2021 12:20:00 PM

Project: 103585

Lab ID: 2104392-001 **Matrix:** Soil

Client Sample ID: C-1 DP1-11.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Sample Moisture (Percent Mo	oisture)			Batch	n ID: Re	66978 Analyst: CJ
Percent Moisture	10.0	0.500		wt%	1	5/4/2021 9:17:29 AM
Hexavalent Chromium by EPA Method 7196 Batch ID: 32196 Analyst: LB					196 Analyst: LB	
Chromium, Hexavalent	ND	0.555	Н	mg/Kg-dry	1	5/5/2021 12:53:00 PM

Work Order: 2104392

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by EPA Method 7196

Project: 103585							Hexava	ient Chrom	ium by Er	'A Wetno	a /19
Sample ID: MB-32196	SampType: MBLK			Units: mg/Kg		Prep Date	e: 5/5/202	:1	RunNo: 670	034	
Client ID: MBLKS	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50324	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.500									
Sample ID: LCS-32196	SampType: LCS			Units: mg/Kg		Prep Date	e: 5/5/202		RunNo: 670	034	
Client ID: LCSS	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50325	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.19	0.500	2.500	0	87.6	86.5	114				
Sample ID: 2104305-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 5/5/202	.1	RunNo: 670	034	
Client ID: BATCH	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50327	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.532						0		30	
Sample ID: 2104305-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 5/5/202	<u>.</u> 1	RunNo: 670	034	
Client ID: BATCH	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50328	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.53	0.522	2.611	0	96.9	6.79	138				
Sample ID: 2104305-001AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date	e: 5/5/202	.1	RunNo: 670	034	
Client ID: BATCH	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50329	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.57	0.536	2.679	0	95.9	6.79	138	2.531	1.52	30	

Original Page 6 of 8

Sample Log-In Check List

С	lient Name:	FB	Work Order Numb	er: 2104392	
Lo	ogged by:	Carissa True	Date Received:	4/28/2021	1:28:00 PM
Cha	ain of Custo	ody			
1.	Is Chain of C	ustody complete?	Yes 🗸	No \square	Not Present
2.	How was the	sample delivered?	<u>FedEx</u>		
Log	ı İn				
_	Coolers are p	oresent?	Yes 🗸	No 🗆	NA \square
ა.	Coolers are p	nesen:	163	110	IVA 🗀
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No \square	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present ✓
6.	Was an atten	npt made to cool the samples?	Yes 🗹	No 🗌	na 🗆
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes 🗸	No \square	NA 🗆
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗆	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗸	No \square	
10.	Are samples	properly preserved?	Yes 🗸	No \square	
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA 🗆
12	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🗹
		es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗆	
		ork match bottle labels?	Yes 🗸	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes 🗸	No \square	
17.	Were all hold	ing times able to be met?	Yes	No 🗸	
Spe	ecial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No \square	NA 🗸
	Person	Notified: Date	e:		
	By Who	m: Via:	eMail Pho	one Fax	In Person
	Regardi	ng:			
	Client In	nstructions:			
19.	Additional rer	marks:			
<u>Item</u>	<u>Information</u>				
		Item # Temp °C			

3.6

Sample 1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

SUBCONTRACTER

Page 8 of 8

													Received by:	1	Fax (206) 283-5044
1258	12/2/2/		7	Fre		3	CVS	224	Con in Bride is in	CUR	3	auch	Relinquished by:	2029	Seattle, WA 98119-2029 Ph. (206) 285-8282
OBOO AM	4/28/21	Bruya	an &	Friedman & Bruya				lahl	Michael Erdahl	Micha	1	non	Relimquistled by	Vest	3012 16th Avenue West
TIME	DATE	ANY	COMPANY			E	PRINT NAME	RINI	P		1	SIGNATURE		Inc.	Friedman & Bruya, Inc.
			1	-											
			1			×				~	Soil	1220	3/31/21		C-1 pp1-11,0
Notes	No					Hex Chrome	VPH	EPH	Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
		D	STE	REQUE	ANALYSES REQUESTED	ANA			3						
ons	☐ Will call with instructions	☐ Will call with in		5	E & C. S. E. C. S.		tesuit	пац	Please Email Kesults	Fie	a.com	dmanandbruya	merdahl@frie	-8282	Phone # (206) 285-8282 merdahl@friedmanandbruya.com
SAL	SAMPLE DISPOSAL Dispose after 30 days	SAN Dispose a		7						REMARKS	REA		Seattle, WA 98119	eattle.	City, State, ZIP_S
by:	Rush charges authorized by:	Rush charg		38	6-238		S	103585	10	14			3012 16th Ave W	012 160	Address 3
	TAT	Standard TAT		PO#	P			NO.	VAME	PROJECT NAME/NO.	PRC	Inc.	Friedman and Bruya, Inc.	riedma	Company F
TME	TURNAROUND TIME	TUR				+	Fremont						Michael Erdahl	Michael	Send Report To

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 19, 2023

Jacob Letts, Project Manager GeoEngineers 2101 4th Avenue, Suite 150 Seattle, WA 98121

Dear Mr Letts:

Included are the results from the testing of material submitted on January 10, 2023 from the C-1 RI GW Monitoring 5530-014-02, F&BI 301128 project. There are 38 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Katy Atakturk GNR0119R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 10, 2023 by Friedman & Bruya, Inc. from the GeoEngineers C-1 RI GW Monitoring 5530-014-02, F&BI 301128 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>GeoEngineers</u>
301128 -01	C-1 RI-10-20230109
301128 -02	C-1 HSA-4-20230109
301128 -03	C-1 HSA-3-20230110
301128 -04	C-1 RI-12-20230110
301128 -05	C-1 RI-13-20230110
301128 -06	C-1 DUP-1-20230109
301128 -07	TB-20230110

The 8260D calibration verification was outside of control limits for several analytes. The data were qualified accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/23 Date Received: 01/10/23

Project: C-1 RI GW Monitoring 5530-014-02, F&BI 301128

Date Extracted: 01/12/23 Date Analyzed: 01/13/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
C-1 RI-10-20230109 301128-01	<100	111
C-1 HSA-4-20230109 301128-02	<100	123
C-1 RI-12-20230110 301128-04	<100	111
C-1 RI-13-20230110 301128-05	<100	116
Method Blank 03-0020 MB	<100	117

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/23 Date Received: 01/10/23

Project: C-1 RI GW Monitoring 5530-014-02, F&BI 301128

Date Extracted: 01/11/23 Date Analyzed: 01/11/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36})}$	Surrogate (% Recovery) (Limit 41-152)
C-1 RI-10-20230109 301128-01	210 x	<250	129
C-1 HSA-4-20230109 301128-02	200 x	<250	128
C-1 HSA-3-20230110 301128-03	<50	<250	129
C-1 RI-12-20230110 301128-04	220 x	<250	127
C-1 RI-13-20230110 301128-05	300 x	<250	129
Method Blank	<50	<250	143

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: C-1 RI-10-20230109	Client:	GeoEngineers
-------------------------------	---------	--------------

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

Lab ID: Date Extracted: 01/11/23 301128-01Date Analyzed: 01/11/23 Data File: 301128-01.169 Matrix: Instrument: Water ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	9.01
Barium	100
Cadmium	<1
Lead	<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: C-1 RI-10-20230109 Client: GeoEngineers

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Chromium <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 HSA-4-20230109	Client:	GeoEngineers
------------	--------------------	---------	--------------

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

Lab ID: Date Extracted: 301128-02 01/11/23 Date Analyzed: 01/11/23 Data File: 301128-02.170 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	28.3
Barium	45.0
Cadmium	<1
Lead	<1
Mercury	<1
Selenium	1.87
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: C-1 HSA-4-20230109 Client: GeoEngineers

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Chromium <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 HSA-3-20230110	Client:	GeoEngineers
------------	--------------------	---------	--------------

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

Lab ID: 01/11/23 Date Extracted: 301128-03Date Analyzed: 01/11/23 Data File: 301128-03.171 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Analyte:	Concentration ug/L (ppb)
Allalyte.	ug/L (ppb)
Arsenic	7.53
Barium	103
Cadmium	<1
Chromium	<1
Lead	<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 RI-12-20230110	Client:	GeoEngineers
			O
Date Received:	01/10/23	Project:	5530-014-02, F&BI 301128
Date Extracted:	01/11/23	Lab ID:	301128-04
Date Analyzed:	01/11/23	Data File:	301128-04.172
	***	-	T C D 3 F C C

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Analyte:	Concentration ug/L (ppb)
Arsenic	6.26
Barium	82.2
Cadmium	<1
Chromium	<1
Lead	<1
Mercury	<1
Selenium	2.71
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	C-1 RI-13-20230110	Client:	GeoEngineers
------------	--------------------	---------	--------------

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

Lab ID: 01/11/23 Date Extracted: 301128-05Date Analyzed: 01/11/23 Data File: 301128-05.175 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

	Concentration
Analyte:	ug/L (ppb)
Arsenic	29.9
Barium	76.9
Cadmium	<1
T 1	.4

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: C-1 RI-13-20230110 Client: GeoEngineers

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Chromium <5

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Cheft ID: Method Diank Cheft: Geogligheer	Client ID:	Method Blank	Client:	GeoEngineer
---	------------	--------------	---------	-------------

Date Received: NA Project: 5530-014-02, F&BI 301128

Lab ID: Date Extracted: 01/11/23I3-23 mb Date Analyzed: 01/11/23 Data File: I3-23 mb.153 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

	Concentration
Analyte:	ug/L (ppb)

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 RI-10-20230109	Client:	GeoEngineers
-------------------------------	---------	--------------

Date Received: 01/10/23 5530-014-02, F&BI 301128

Project: Lab ID: Date Extracted: 01/11/23 301128-01Date Analyzed: 01/11/23 Data File: 301128-01.109 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	9.49
Barium	99.7
Cadmium	<1
Lead	<1
Mercury	<1
Selenium	1.90
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 RI-10-20230109 Client: GeoEngineers

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

 Date Extracted:
 01/11/23
 Lab ID:
 301128-01 x5

 Date Analyzed:
 01/12/23
 Data File:
 301128-01 x5.100

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SPs

Concentration

Analyte: ug/L (ppb)

Chromium <5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 HSA-4-20230109	Client:	GeoEngineers
-------------------------------	---------	--------------

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

Lab ID: Date Extracted: 01/11/23 301128-02Date Analyzed: 01/11/23 Data File: 301128-02.110 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

1.97

<1

Analyte:	Concentration ug/L (ppb)
Arsenic	28.6
Barium	41.4
Cadmium	<1
Lead	<1
Mercury	<1

Selenium

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 HSA-4-20230109 Client: GeoEngineers

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Chromium <5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 HSA-3-20230110	Client:	GeoEngineers
------------	--------------------	---------	--------------

Date Received: 01/10/23 5530-014-02, F&BI 301128

Project: Lab ID: Date Extracted: 01/11/23 301128-03Date Analyzed: 01/11/23 Data File: 301128-03.111 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

	Concentration
Analyte:	ug/L (ppb)

Arsenic	7.67
Barium	99.8
Cadmium	<1
Chromium	<1
Lead	<1
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-12-20230110	Client:	GeoEngineers
------------	--------------------	---------	--------------

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

Lab ID: Date Extracted: 01/11/23 301128-04Date Analyzed: 01/11/23 Data File: 301128-04 .114 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	6.14
Barium	77.0
Cadmium	<1
Chromium	1.10
Lead	<1
Mercury	<1
Selenium	2.35
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client:	GeoEngineers
	Client:

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

Lab ID: Date Extracted: 01/11/23 301128-05Date Analyzed: 01/11/23 Data File: 301128-05.115 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	33.7
Barium	78.9
Cadmium	<1
Lead	<1
Mercury	<1
Selenium	2.37
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: C-1 RI-13-20230110 Client: GeoEngineers

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

 $\begin{array}{cccc} \text{Matrix:} & \text{Water} & \text{Instrument:} & \text{ICPMS2} \\ \text{Units:} & \text{ug/L (ppb)} & \text{Operator:} & \text{SP} \end{array}$

Concentration

Analyte: ug/L (ppb)

Chromium <5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Cheft ID: Method Diank Cheft: Geogligheer	Client ID:	Method Blank	Client:	GeoEngineer
---	------------	--------------	---------	-------------

Date Received: NA Project: 5530-014-02, F&BI 301128

Lab ID: Date Extracted: I3-18 mb201/11/23Date Analyzed: 01/11/23 Data File: I3-18 mb2.053 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

	Concentration
Analyte:	ug/L (ppb)

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: C-1 RI-10-20230109 Client: GeoEng

 Date Received:
 01/10/23
 Project:
 5530-014-02, F&BI 301128

 Date Extracted:
 01/12/23
 Lab ID:
 301128-01

Date Analyzed: 01/12/23 Data File: 011222.D

Matrix: Water Instrument: GCMS11

Units: ug/L (ppb) Operator: LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	78	126
Toluene-d8	101	84	115
4-Bromofluorobenzene	102	72	130

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1 ca	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	0.12	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	1.3
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: C-1 HSA-4-20230109 Client:	GeoEngineers
--	--------------

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

Date Extracted: 01/11/23 Leb ID: 301128 02

01/11/23 Lab ID: 301128-02 Date Extracted: Date Analyzed: 01/11/23 Data File: 011122.DMatrix: Water Instrument: GCMS11 Units: ug/L (ppb) Operator: LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	78	126
Toluene-d8	100	84	115
4-Bromofluorobenzene	97	72	130

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1 ca	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	0.47	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	3.6
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 ca	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20 ca	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	1.5
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: C-1 HSA-3-20230110 Client: G	GeoEngineers
--	--------------

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

Lab ID: 301128-03 Date Extracted: 01/11/23 Date Analyzed: 01/11/23 Data File: 011123.DMatrix: Water Instrument: GCMS11 Units: ug/L (ppb) Operator: LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	78	126
Toluene-d8	102	84	115
4-Bromofluorobenzene	102	72	130

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1 ca	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 ca	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20 ca	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: C-1 RI-12-20230110 Client	: GeoEngineers
---	----------------

 Date Received:
 01/10/23
 Project:
 5530-014-02, F&BI 301128

 Date Extracted:
 01/11/23
 Lab ID:
 301128-04

Date Extracted: 01/11/23 Lab ID: 301128-04
Date Analyzed: 01/11/23 Data File: 011124.D
Matrix: Water Instrument: GCMS11
Units: ug/L (ppb) Operator: LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	78	126
Toluene-d8	102	84	115
4-Bromofluorobenzene	98	72	130

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1 ca	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	0.39	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 ca	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	1.3	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20 ca	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	0.27	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: C-1 RI-13-20230110	Client:	GeoEngineers
--------------------------------------	---------	--------------

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128
Date Extracted: 01/11/23 Lab ID: 301128-05

Date Extracted:01/11/23Lab ID:301128-05Date Analyzed:01/11/23Data File:011125.DMatrix:WaterInstrument:GCMS11Units:ug/L (ppb)Operator:LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	78	126
Toluene-d8	101	84	115
4-Bromofluorobenzene	101	72	130

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1 ca	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	0.25	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 ca	1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20 ca	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

01/11/23 Lab ID: 301128-06 Date Extracted: Date Analyzed: 01/11/23 Data File: 011126.DMatrix: Water Instrument: GCMS11 Units: ug/L (ppb) Operator: LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	78	126
Toluene-d8	102	84	115
4-Bromofluorobenzene	101	72	130

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1 ca	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	0.13	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	1.3
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 ca	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20 ca	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: TB-20230110 Client: GeoEngineers

Date Received: 01/10/23 Project: 5530-014-02, F&BI 301128

Lab ID: 301128-07 Date Extracted: 01/11/23 Date Analyzed: 01/11/23 Data File: 011116.DGCMS11Matrix: Water Instrument: Units: ug/L (ppb) Operator: LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	78	126
Toluene-d8	98	84	115
4-Bromofluorobenzene	96	72	130

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1 ca	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 ca	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20 ca	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: 5530-014-02, F&BI 301128

01/11/23 Lab ID: 03-0066 mbDate Extracted: Date Analyzed: 01/11/23 Data File: 011120.DGCMS11 Matrix: Water Instrument: Units: ug/L (ppb) Operator: LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	78	126
Toluene-d8	102	84	115
4-Bromofluorobenzene	101	72	130

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1 ca	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 ca	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20 ca	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/23 Date Received: 01/10/23

Project: C-1 RI GW Monitoring 5530-014-02, F&BI 301128

Date Extracted: 01/16/23 Date Analyzed: 01/17/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS STODDARD SOLVENT USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Stoddard Solvent Range (C ₈ -C ₁₁)	Surrogate (% Recovery) (Limit 50-150)
C-1 HSA-3-20230110 301128-03	<100	108
Method Blank 03-025 MB	<100	118

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/23 Date Received: 01/10/23

Project: C-1 RI GW Monitoring 5530-014-02, F&BI 301128

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 301144-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	96	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/23 Date Received: 01/10/23

Project: C-1 RI GW Monitoring 5530-014-02, F&BI 301128

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	100	70-130	4

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/23 Date Received: 01/10/23

Project: C-1 RI GW Monitoring 5530-014-02, F&BI 301128

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF DISSOLVED WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 301134-01 x10 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	17.6	78	81	75-125	4
Barium	ug/L (ppb)	50	56.2	98	103	75 - 125	5
Cadmium	ug/L (ppb)	5	<10	92	94	75 - 125	2
Chromium	ug/L (ppb)	20	<10	90	93	75 - 125	3
Lead	ug/L (ppb)	10	<10	89	89	75 - 125	0
Mercury	ug/L (ppb)	5	<10	82	85	75 - 125	4
Selenium	ug/L (ppb)	5	<10	76	69 vo	75 - 125	10
Silver	ug/L (ppb)	5	<10	85	89	75 - 125	5

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	92	80-120
Barium	ug/L (ppb)	50	93	80-120
Cadmium	ug/L (ppb)	5	97	80-120
Chromium	ug/L (ppb)	20	95	80-120
Lead	ug/L (ppb)	10	99	80-120
Mercury	ug/L (ppb)	5	99	80-120
Selenium	ug/L (ppb)	5	99	80-120
Silver	ug/L (ppb)	5	95	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/23 Date Received: 01/10/23

Project: C-1 RI GW Monitoring 5530-014-02, F&BI 301128

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 301116-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<1	99	96	70-130	3
Barium	ug/L (ppb)	50	7.31	100	99	70-130	1
Cadmium	ug/L (ppb)	5	<1	98	97	70-130	1
Chromium	ug/L (ppb)	20	<1	96	93	70-130	3
Lead	ug/L (ppb)	10	<1	89	89	70-130	0
Mercury	ug/L (ppb)	5	<1	88	95	70-130	8
Selenium	ug/L (ppb)	5	<1	104	98	70-130	6
Silver	ug/L (ppb)	5	<1	92	92	70-130	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	87	85-115
Barium	ug/L (ppb)	50	91	85-115
Cadmium	ug/L (ppb)	5	95	85-115
Chromium	ug/L (ppb)	20	95	85-115
Lead	ug/L (ppb)	10	95	85-115
Mercury	ug/L (ppb)	5	96	85-115
Selenium	ug/L (ppb)	5	93	85-115
Silver	ug/L (ppb)	5	95	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/23 Date Received: 01/10/23

Project: C-1 RI GW Monitoring 5530-014-02, F&BI 301128

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 301128-03 (Matrix Spike)

· ·	` '			Percent		
	Reporting	Spike	Sample	Recovery	Acceptance	
Analyte	Units	Level	Result	MS	Criteria	
				,-	0-100-100	
Dichlorodifluoromethane	ug/L (ppb)	10	<1	68	50-150	
Chloromethane	ug/L (ppb)	10	<10	80	50-150	
Vinyl chloride	ug/L (ppb)	10	< 0.02	89	50-150	
Bromomethane Chloroethane	ug/L (ppb)	10 10	<5 <1	97 101	50-150	
Chloroethane Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	10	<1	92	50-150 50-150	
Acetone	ug/L (ppb) ug/L (ppb)	50	<50	40 vo	50-150	
1,1-Dichloroethene	ug/L (ppb)	10	<1	98	50-150	
Hexane	ug/L (ppb)	10	<5	85	50-150	
Methylene chloride	ug/L (ppb)	10	<5	87	50-150	
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	99	50-150	
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	100	50-150	
1,1-Dichloroethane	ug/L (ppb)	10	<1	100	50-150	
2,2-Dichloropropane	ug/L (ppb)	10	<1	88	50-150	
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1 <1	93 98	50-150	
Chloroform 2-Butanone (MEK)	ug/L (ppb) ug/L (ppb)	10 50	<20	72	50-150 50-150	
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	106	50-150	
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	102	50-150	
1,1-Dichloropropene	ug/L (ppb)	10	<1	95	50-150	
Carbon tetrachloride	ug/L (ppb)	10	< 0.5	103	50-150	
Benzene	ug/L (ppb)	10	< 0.35	95	50-150	
Trichloroethene	ug/L (ppb)	10	< 0.5	93	50-150	
1,2-Dichloropropane	ug/L (ppb)	10	<1	99	50-150	
Bromodichloromethane Dibromomethane	ug/L (ppb) ug/L (ppb)	10 10	<0.5 <1	99 98	50-150 50-150	
4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	50	<10	100	50-150	
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	93	50-150	
Toluene	ug/L (ppb)	10	<1	98	50-150	
trans-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	104	50-150	
1,1,2-Trichloroethane	ug/L (ppb)	10	< 0.5	99	50-150	
2-Hexanone	ug/L (ppb)	50	<10	88	50-150	
1,3-Dichloropropane	ug/L (ppb)	10	<1	100	50-150	
Tetrachloroethene	ug/L (ppb)	10	<1 <0.5	102	50-150	
Dibromochloromethane 1,2-Dibromoethane (EDB)	ug/L (ppb) ug/L (ppb)	10 10	<0.5 <1	105 103	50-150 50-150	
Chlorobenzene	ug/L (ppb) ug/L (ppb)	10	<1	101	50-150	
Ethylbenzene	ug/L (ppb)	10	<1	98	50-150	
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	110	50-150	
m,p-Xylene	ug/L (ppb)	20	<2	97	50-150	
o-Xylene	ug/L (ppb)	10	<1	99	50-150	
Styrene	ug/L (ppb)	10	<1	96	50-150	
Isopropylbenzene	ug/L (ppb)	10 10	<1 <5	105 103	50-150	
Bromoform n-Propylbenzene	ug/L (ppb) ug/L (ppb)	10	<5 <1	103	50-150 50-150	
Bromobenzene Bromobenzene	ug/L (ppb) ug/L (ppb)	10	<1	99	50-150	
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	102	50-150	
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	107	50-150	
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	97	50-150	
2-Chlorotoluene	ug/L (ppb)	10	<1	101	50-150	
4-Chlorotoluene	ug/L (ppb)	10	<1	97	50-150	
tert-Butylbenzene	ug/L (ppb)	10	<1	103	50-150	
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	99	50-150	
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	10 10	<1 <1	100 100	50-150 50-150	
1,3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<1	103	50-150	
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	100	50-150	
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	104	50-150	
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	101	50-150	
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	102	50-150	
Hexachlorobutadiene	ug/L (ppb)	10	< 0.5	97	50-150	
Naphthalene	ug/L (ppb)	10	<1	101	50-150	
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	104	50-150	

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/23 Date Received: 01/10/23

Project: C-1 RI GW Monitoring 5530-014-02, F&BI 301128

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Eastratory code. Eastratory c	ontroi campic		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	69	71	46-206	3
Chloromethane	ug/L (ppb)	10	85	81	70-142	5
Vinyl chloride	ug/L (ppb)	10	90	88	70-130	2
Bromomethane	ug/L (ppb)	10	101	105	56-197	4
Chloroethane	ug/L (ppb)	10	100	98	70-130	2
Trichlorofluoromethane	ug/L (ppb)	10	93	89	70-130	4
Acetone	ug/L (ppb)	50	48	44	10-140	9
1,1-Dichloroethene	ug/L (ppb)	10	101	99	70-130	2
Hexane Methylene chloride	ug/L (ppb)	10 10	94 95	89 98	54-136 43-134	5 3
Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	10	102	99	70-130	3
trans-1,2-Dichloroethene	ug/L (ppb)	10	102	101	70-130	2
1.1-Dichloroethane	ug/L (ppb)	10	103	100	70-130	3
2,2-Dichloropropane	ug/L (ppb)	10	91	86	70-130	6
cis-1,2-Dichloroethene	ug/L (ppb)	10	95	97	70-130	2
Chloroform	ug/L (ppb)	10	101	98	70-130	3
2-Butanone (MEK)	ug/L (ppb)	50	75	72	17-154	4
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	110	106	70-130	4
1,1,1-Trichloroethane	ug/L (ppb)	10	104	101	70-130	3
1,1-Dichloropropene	ug/L (ppb)	10	98	95	70-130	3
Carbon tetrachloride Benzene	ug/L (ppb) ug/L (ppb)	10 10	103 98	102 94	70-130 70-130	1 4
Trichloroethene	ug/L (ppb)	10	95	93	70-130	2
1,2-Dichloropropane	ug/L (ppb)	10	102	100	70-130	2
Bromodichloromethane	ug/L (ppb)	10	107	99	70-130	8
Dibromomethane	ug/L (ppb)	10	102	92	70-130	10
4-Methyl-2-pentanone	ug/L (ppb)	50	108	102	68-130	6
cis-1,3-Dichloropropene	ug/L (ppb)	10	102	95	69-131	7
Toluene	ug/L (ppb)	10	96	96	70-130	0
trans-1,3-Dichloropropene	ug/L (ppb)	10	102	100	70-130	2
1,1,2-Trichloroethane	ug/L (ppb)	10	97	97	70-130	0
2-Hexanone	ug/L (ppb)	50 10	91 102	85 103	45-138 70-130	7 1
1,3-Dichloropropane Tetrachloroethene	ug/L (ppb) ug/L (ppb)	10	99	99	70-130	0
Dibromochloromethane	ug/L (ppb)	10	108	105	60-148	3
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	103	101	70-130	2
Chlorobenzene	ug/L (ppb)	10	99	101	70-130	2
Ethylbenzene	ug/L (ppb)	10	97	97	70-130	0
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	105	110	70-130	5
m,p-Xylene	ug/L (ppb)	20	95	96	70-130	1
o-Xylene	ug/L (ppb)	10	97	97	70-130	0
Styrene	ug/L (ppb)	10	101	98	70-130	3
Isopropylbenzene Bromoform	ug/L (ppb) ug/L (ppb)	10 10	100 98	104 97	70-130 69-138	4 1
n-Propylbenzene	ug/L (ppb)	10	102	102	70-130	0
Bromobenzene	ug/L (ppb)	10	99	104	70-130	5
1,3,5-Trimethylbenzene	ug/L (ppb)	10	102	102	70-130	0
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	107	106	70-130	1
1,2,3-Trichloropropane	ug/L (ppb)	10	96	98	70-130	2
2-Chlorotoluene	ug/L (ppb)	10	101	101	70-130	0
4-Chlorotoluene	ug/L (ppb)	10	100	97	70-130	3
tert-Butylbenzene	ug/L (ppb)	10	102	101	70-130	1
1,2,4-Trimethylbenzene	ug/L (ppb)	10	102	99	70-130	3
sec-Butylbenzene	ug/L (ppb)	10	99	99	70-130	0
p-Isopropyltoluene 1.3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10 10	103 101	102 100	70-130 70-130	1 1
1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	101	100	70-130	3
1,4-Dichlorobenzene	ug/L (ppb)	10	103	104	70-130	1
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	105	104	70-130	1
1,2,4-Trichlorobenzene	ug/L (ppb)	10	102	103	70-130	1
Hexachlorobutadiene	ug/L (ppb)	10	101	100	70-130	1
Naphthalene	ug/L (ppb)	10	101	101	70-130	0
1,2,3-Trichlorobenzene	ug/L (ppb)	10	101	104	70-130	3

ENVIRONMENTAL CHEMISTS

Date of Report: 01/19/23 Date Received: 01/10/23

Project: C-1 RI GW Monitoring 5530-014-02, F&BI 301128

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS STODDARD SOLVENT USING NWTPH-Gx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Stoddard Solvent	ug/L (ppb)	500	87	87	70-130	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

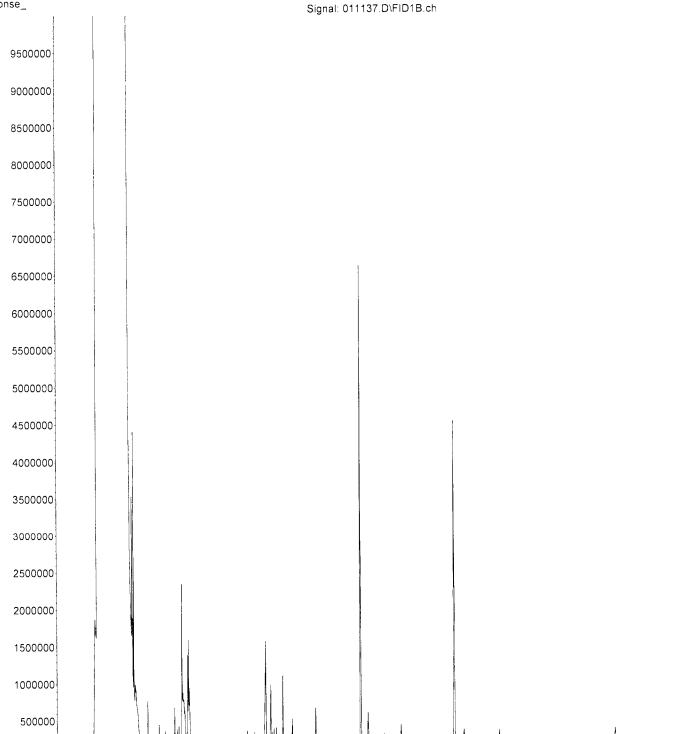
Ph. (206) 285-8282 Friedman & Bruya, Inc. TB-20230110 C-1 RI-12-20230110 Phone_ C-1 HSA -3-20230110 City, State, ZIP Scattly, wit 9814 Address 2101 4M AY, SWILL 950 Company (Two Chairwas Report To Colon lette 1-1 HSA-4-20 230109 501128 RI-10-20230109 DC(p-1 - 20230109 RI-13-20230110 Sample ID Emails 1 ofthe cropsing Relinquished by: Relinquished by: Received by Received by: Lab ID 7-A-B/ 40/23 _[: 6 A-D σ 7 \mathcal{W} A-G SIGNATURE 11/9/23 11/9/23 1/10/24 Y9/23 110/23 1/10/23 Sampled Date SAMPLE CHAIN OF CUSTODY 1200 130 1.000 Sampled 1330 REMARKS

> SSO WELL MUTTERS WELL ON
FICH THE SUBJECT OF THE SUBJEC 5000 が い こ Time SAMPLERS (signature) PROJECT NAME OF RI ON MANINIS Sample Type ANTI PHAN PRINT NAME P 1_ --4 Jars # of +1 4 アスススト NWTPH-Dx NWTPH-Gx 2630-DIH-05 BTEX EPA 8021 NWTPH-HCID INVOICE TO \leq ANALYSES REQUESTED \times \times \times VOCs EPA 8260 01/10/23 PO# PAHs EPA 8270 したったるであると PCBs EPA 8082
TUTHLE DIDA
RCIEN 8 metals
Gx Gwantify to
Stodispin Samples received at 2000 COMPANY J2/C3/VW2 Default: Dispose after 30 days □ Other_ $\begin{array}{c} \textbf{SAMPLE DISPOSAL} \\ \square \ \textbf{Archive samples} \end{array}$ Standard turnaround Rush charges authorized by: TURNAROUND TIME Page # 01/10/23 1/10/23 DATE Notes

اکر: چ0

TIME

File :P:\Proc_GC10\01-11-23\011137.D


Operator : TL

Acquired : 11 Jan 2023 04:34 pm using AcqMethod DX.M

Instrument : GC10
Sample Name: 301128-01

Misc Info : Vial Number: 29

3.50

4.00

3.00

2.00

2.50

1.50

1.00

0.50

Time

4.50

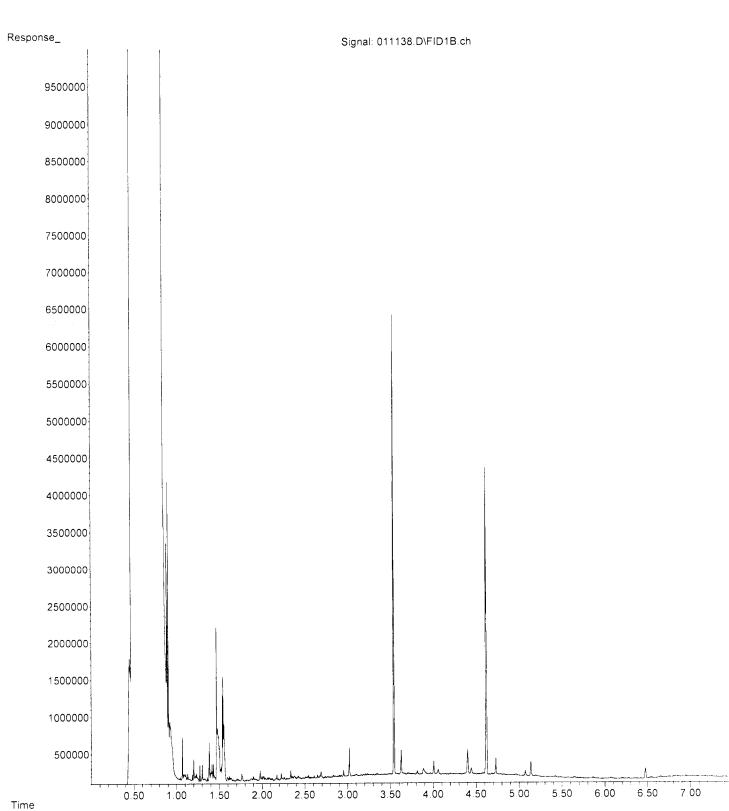
5.00

5.50

6.00

6.50

7.00


File :P:\Proc_GC10\01-11-23\011138.D

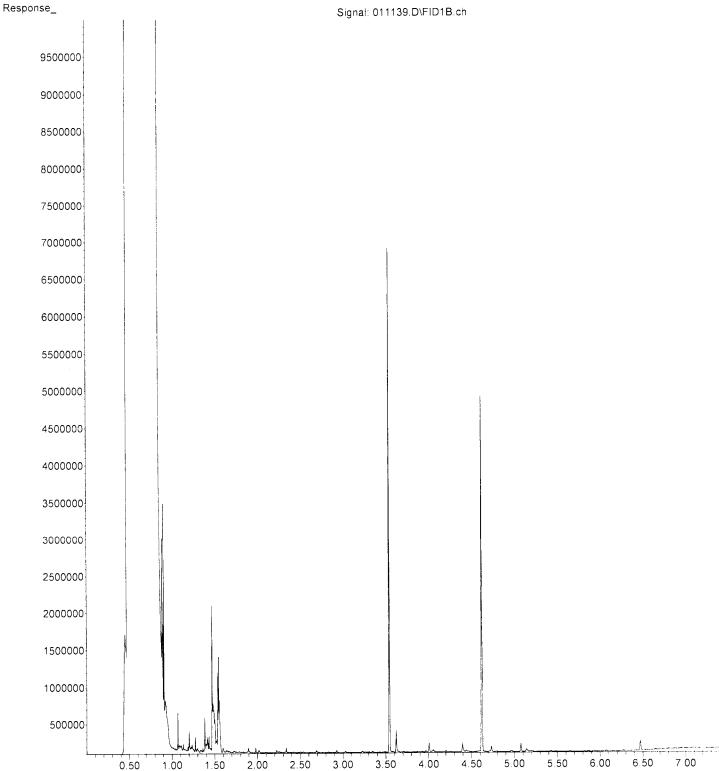
Operator : TL

Acquired : 11 Jan 2023 04:46 pm using AcqMethod DX.M

Instrument : GC10 Sample Name: 301128-02

Misc Info : Vial Number: 30

File :P:\Proc_GC10\01-11-23\011139.D

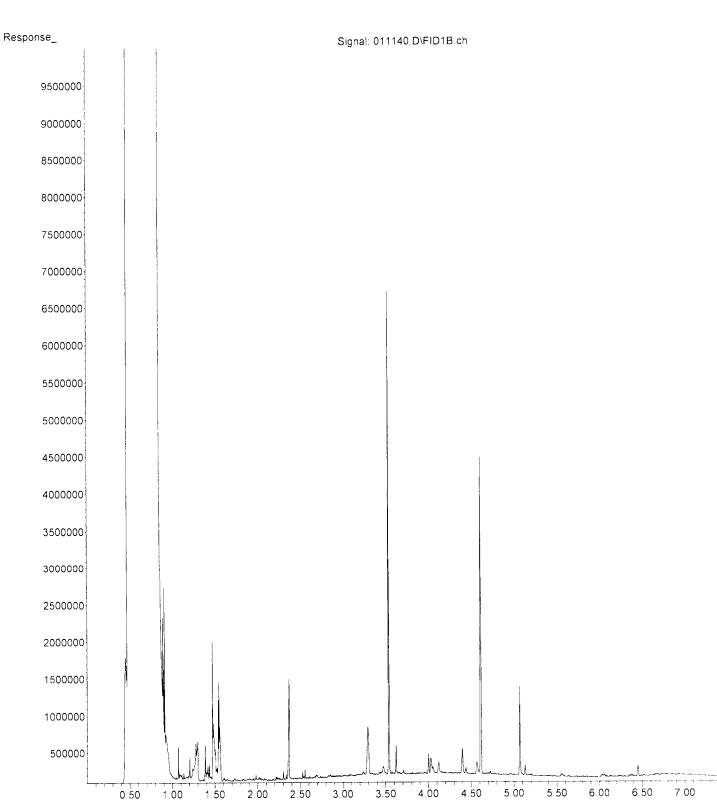

Operator : TL

Acquired : 11 Jan 2023 04:57 pm using AcqMethod DX.M

Instrument : GC10 Sample Name: 301128-03

Misc Info : Vial Number: 31

File :P:\Proc_GC10\01-11-23\011140.D

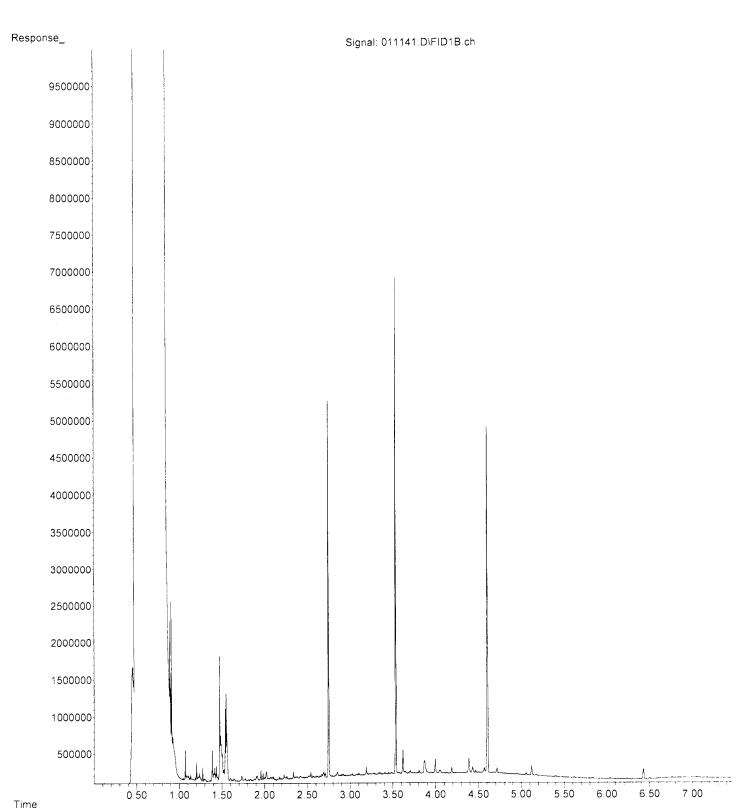

Operator : TL

Acquired : 11 Jan 2023 05:09 pm using AcqMethod DX.M

Instrument : GC10
Sample Name: 301128-04

Misc Info : Vial Number: 32

Time


File :P:\Proc_GC10\01-11-23\011141.D

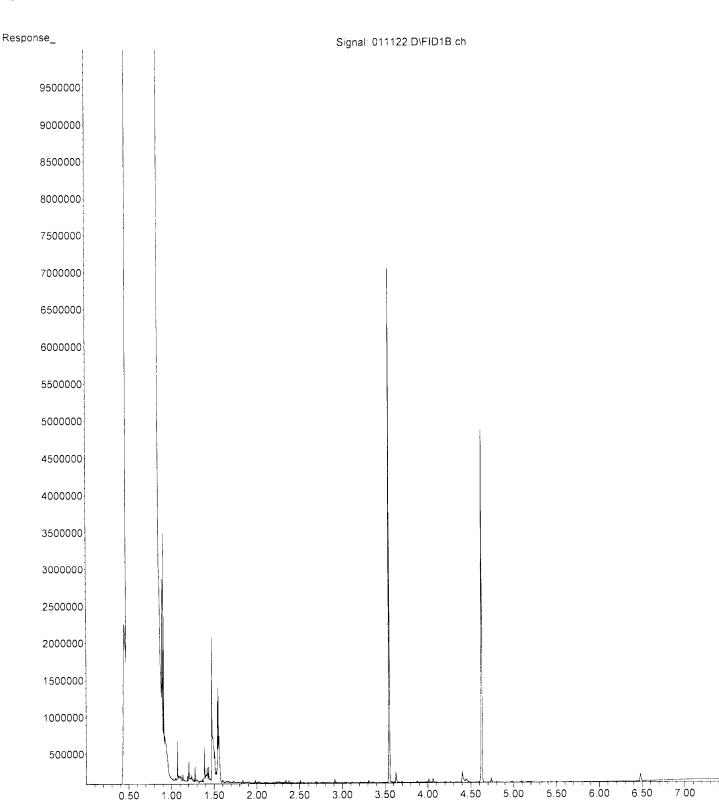
Operator : TL

Acquired : 11 Jan 2023 05:21 pm using AcqMethod DX.M

Instrument : GC10
Sample Name: 301128-05

Misc Info : Vial Number: 33

File :P:\Proc_GC10\01-11-23\011122.D


Operator : TL

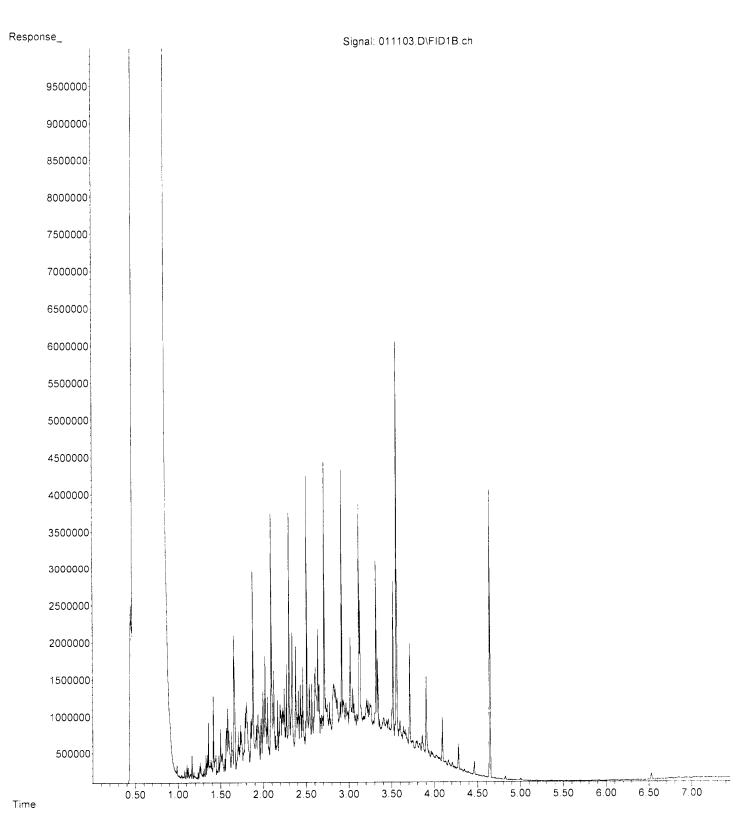
Acquired : 11 Jan 2023 01:10 pm using AcqMethod DX.M

Instrument : GC10
Sample Name: 03-133 mb

Misc Info : Vial Number: 105

Time

File :P:\Proc_GC10\01-11-23\011103.D


Operator : TL

Acquired : 11 Jan 2023 09:24 am using AcqMethod DX.M

Instrument : GC10

Sample Name: 500 DX 67-143B

Misc Info : Vial Number: 3

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 6, 2021

Jacob Letts, Project Manager GeoEngineers 2101 4th Avenue, Suite 150 Seattle, WA 98121

Dear Mr Letts:

Included are the additional results from the testing of material submitted on March 31, 2021 from the Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585 project. There are 2 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures GNR0506R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 31, 2021 by Friedman & Bruya, Inc. from the GeoEngineers Snohomish County Airport C-1 Hangar 5530-014-01, F&BI 103585 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	GeoEngineers
103585 -01	C-1 DP4-3.5
103585 -02	C-1 DP4-5.0
103585 -03	C-1 DP4-7.0
103585 -04	C-1 DP3-4.0
103585 -05	C-1 DP3-7.0
103585 -06	C-1 DP3-033021w
103585 -07	C-1 DP5-3.0
103585 -08	C-1 DP5-6.0
103585 -09	C-1 DP15-4.0
103585 -10	C-1 DP15-7.0
103585 -11	C-1 DP14-5.0
103585 -12	C-1 DP14-10.0
103585 -13	C-1 DP13-2.0
103585 -14	C-1 DP13-5.0
103585 -15	C-1 DP13-033121w
103585 -16	C-1 DP14-033121w
103585 -17	C-1 DP8-4.5
103585 -18	C-1 DP8-9.0
103585 -19	C-1 DP9-3.0
103585 -20	C-1 DP9-7.5
103585 -21	C-1 DP10-4.0
103585 -22	C-1 DP11-4.0
103585 -23	C-1 DP2-5.0
103585 -24	C-1 DP2-11.0
103585 -25	C-1 DP1-3.5
103585 -26	C-1 DP1-11.0
103585 -27	C-1 DP2-033121w
103585 -28	C-1 DP7-4.0
103585 -29	C-1 DP7-9.0
103585 -30	C-1 DP12-3.0
103585 -31	C-1 DP12-8.0
103585 -32	C-1 DP6-3.0
103585 -33	C-1 DP6-6.0
103585 -34	Trip Blank 1
103585 -35	Trip Blank 2

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

<u>Laboratory ID</u>	<u>GeoEngineers</u>
103585 -36	Trip Blank 3
103585 -37	Trip Blank 4
103585 -38	Trip Blank 5

Sample C-1 DP1-11.0 was sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 I 6th Avenue West Friedman & Bruya, Inc. 1 C-1 D24-7.0 07 PAR 1-20 7 City, State, ZIP SCALL, MA 7814 Company GE Address 2101 4th Ave Switc 950 Report 16 OCO DPS-3,0 DP3-7.0 7715-4.0 DP15-7.0 DPS-6,0 DP3-033021w DP3-40 DP 4-3.5 Sample ID Received by: Relinquished by: Received by: Email The Ats O General news roject specific RLs? - Yes / No Relinquished by: 0 [-Y & y a 50 \sim \Diamond \sim 6 0 0 ک) 7A-F Ø 00 SS) Σ. W Lab ID 3 7-4-2430/2 Sampled Date 1350 9 1050 5 GY = 9 000 000 500 Sampled Time REMARKS Shononish PROJECT NAME SAMPLERS OF Amount Col Hampair Sample Type 90 \bigcirc ()S) Khai Horang (Sums) PRINT NAME 6 Ó 6 ō 和光点 Q # of Jars 9 6 5 5 σ NWTPH-Dx NWTPH-Gx BTEX EPA 8021 5530-014-01 NWTPH-HCID INVOICE TO × メ × ANALYSES ><VOCs EPA 8260 Samples received at PO# PAHs EPA 8270 FB 3 \times × メ PCBs EPA 8082 (RCRA 8) MUTAL COMPANY REQUESTED × × \prec \times (RCRAB)
Total meta
(RCRAB)
Dissolvel 1 SAMPLE DISPOSAL

O Archive samples \times Default: Dispose after 30 days Rush charges authorized by: X Standard turnaround TURNAROUND TIME 12/16/2 3/3//2/ . വ DATE Notes 80 TMIT.

~5

BIH, B

03-31-21

SAMPLE CHAIN OF CUSTODY

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 I6th Avenue West Friedman & Bruya, Inc. (-10P9-3,0 C-1089-75 C-1 DPB-9.0 CT P68-712 J-1 PP 13-033121 -1DP14-033/24W (() 0.5-81X DP14-5,0 200-11 전 R13-2.0 Sample ID Relinquished by: Received by: Received by: Relinquished by 8 ٦ \lesssim Lab ID 2 3 <u>۔</u> 7 59,5/3/31/21 これ Stades! Sampled Date 030 22 900 JAN JOSEPH <u>ට</u> ප 1500 Time Sampled 900 1570 446 S 3 (j) م ع Sample Type \cup 5 \bigcirc Key3 KHOI S PRINT NAME 9 Q 0 0 ō # of Jars 5 B T 4 Taktur 7 X NWTPH-Dx × \times × × \times NWTPH-Gx BTEX EPA 8021 NWTPH-HCID メ メ × Χ ኊ \times × VOCs EPA 8260 PAHs EPA 8270 Samples received at . FBI × \times × × PCBs EPA 8082 COMPANY M \prec 3/31/21 3/31/21 time on both widing Yeston vogs DATE ြ ငိ Notes 6.30 HMIL 16:30

SAMPLE CHAIN OF CUSTODY E 03-31-21

PROJECT NAME
PROJECT NAME
PROJECT NAME
PROJECT NAME
PROJECT NAME
PROJECT NAME
PROJECT NAME
PO #
INVOICE TO

Address

Company

City, State,

ZIP

Email

Project specific RLs? - Yes / No

Default: Dispose after 30 days

Rush charges authorized by:

SAMPLE DISPOSAL

SAMPLE DISPOSAL

Other

3° 1	Samples received at		THE PROPERTY AND ADDRESS OF THE PROPERTY OF TH	Amount the sy.
				
3/31/21 16:30	FBC	Kho! Horns	A. Carlo	9
3/51/21 16:30	6	Kary Arktin	t about	
DATE TIME	COMPANY	PRINT NAME	SIGNAPURA 	Friedman & Brwya, Inc Relinquished by
		XX	0h2 A	16-04-2-30-30
	× × ×	XX 9 S	1520	DF+-9.0
	X X	X X 9 S	28/15	0.H- E301
	~	X X 01 WB	27/13 1500	-10331121 w
	~	S 6 X X	(220)	CIDP1-11.0 126
	X	S 6 X X	1100	C-1 DP1-3.5 25
	*	XXg	17.6 10.0	C-1 DPZ-11.0 24
	X	S 6 X X	3 11000	1
4/27/21 ME	XXX	S 6 X X	0.50	C1 DV 11-4.0 22
• -peral	× × ×	XX 9 S	21/1/2/ 1000	0-4.0
Hey Chrome.	PCBs EPA 8082 RCRAB METALS TOTAL METAL DISS. METAL	Sample Type # of Jars NWTPH-Dx NWTPH-Gx	Lab ID Date Time Sampled Sampled	
	ANALYSES REQUESTED			
t. Dispose after 30 days	Default:	Project specific RLs? - Yes / No	Projec	PhoneEmail
SAMPLE DISPOSAL Archive samples	INVOICE TO S.	RKS	REMARKS	City, State, ZIP
Rush charges authorized by:	5530-014-01 Rush ch		7227	Address
Standard turnaround	PO# XStand	PROJECT NAME	PROJ	Company
		SAMPLERS (signature)	SAMI	Report To
1503/2 USL , NEW	DY 03-31-21 024,	SAMPLE CHAIN OF CUSTODY	SAMPI	(03585

PROJECT NAME	Fn. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	r reuman & bruya, inc.		en egen geografischen der stelle ergen seine ergeben der der der der der der der der der der	Trip Blanks	Tr.p.Blank 4	Trip Blank 3	1mp Blank 2	Tr.p Black 1	C-1 DPG-40	C7 DP6-30	C7 DP 17-80	Sample ID		Phone	Address	Company
Type # of Jairs PANALYSES REQUEST OSS30-014-07 Sample # of Jairs PANALYSES REQUEST NWTPH-Bx NWTPH-HCID NWTPH-	Received by:	Relinquished by:		Mater 41	7		X 98	27	35	35	1 '	33					Email	SON	
Samples recompany Samples recompany NWTPH-HCID ANALYSES REQUEST NWTPH-HCID ANALYSES REQUEST PAHs EPA 8270 PCBs EPA 8082 REQUEST NWTPH-HCID ANALYSES REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 REQUEST PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082 PCBs EPA 8082			T	Z Ž	PRINT NAME	e described (Constanting Constanting Const					-	50:11 5- (8)	Soil 5 ®	S 6 X	Sample #of Jars Type Jars NWTPH-Dx	185/	Vo.	REMARKS	PROJECT NAME
	Samples received at		7) (7)	7		A MATERIAL CONTROL OF THE PROPERTY OF THE PROP					8	8	8	X	NWTPH-HCID	ANALYSES BROTTESTED	······································		

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 103585

Work Order Number: 2104392

May 05, 2021

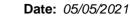
Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 4/28/2021 for the analyses presented in the following report.

Hexavalent Chromium by EPA Method 7196 Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 103585 **Work Order:** 2104392

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2104392-001 C-1 DP1-11.0 03/31/2021 12:20 PM 04/28/2021 1:28 PM

Case Narrative

WO#: **2104392**Date: **5/5/2021**

CLIENT: Friedman & Bruya

Project: 103585

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2104392**

Date Reported: **5/5/2021**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

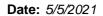
SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2104392**Date Reported: **5/5/2021**


Client: Friedman & Bruya Collection Date: 3/31/2021 12:20:00 PM

Project: 103585

Lab ID: 2104392-001 **Matrix:** Soil

Client Sample ID: C-1 DP1-11.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Sample Moisture (Percent Mo	oisture)			Batch	ı ID: Re	66978 Analyst: CJ
Percent Moisture	10.0	0.500		wt%	1	5/4/2021 9:17:29 AM
Hexavalent Chromium by EP	A Method 7196			Batch	n ID: 32	196 Analyst: LB
Chromium, Hexavalent	ND	0.555	Н	mg/Kg-dry	1	5/5/2021 12:53:00 PM

Work Order: 2104392

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by EPA Method 7196

Project: 103585							Hexava	ient Chrom	ium by Er	'A Wetno	a /19
Sample ID: MB-32196	SampType: MBLK			Units: mg/Kg		Prep Date	e: 5/5/202	:1	RunNo: 670	034	
Client ID: MBLKS	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50324	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.500									
Sample ID: LCS-32196	SampType: LCS			Units: mg/Kg		Prep Date	e: 5/5/202		RunNo: 670	034	
Client ID: LCSS	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50325	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.19	0.500	2.500	0	87.6	86.5	114				
Sample ID: 2104305-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 5/5/202	.1	RunNo: 670	034	
Client ID: BATCH	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50327	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	ND	0.532						0		30	
Sample ID: 2104305-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 5/5/202	<u></u> 1	RunNo: 670	034	
Client ID: BATCH	Batch ID: 32196					Analysis Date	e: 5/5/202	1	SeqNo: 13	50328	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.53	0.522	2.611	0	96.9	6.79	138				
Sample ID: 2104305-001AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date	e: 5/5/202	.1	RunNo: 670	034	
Client ID: BATCH	Batch ID: 32196					Analysis Date	e: 5/5/202	:1	SeqNo: 13	50329	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium, Hexavalent	2.57	0.536	2.679	0	95.9	6.79	138	2.531	1.52	30	

Original Page 6 of 8

Sample Log-In Check List

С	lient Name:	FB	Work Order Numb	er: 2104392	
Lo	ogged by:	Carissa True	Date Received:	4/28/2021	1:28:00 PM
Cha	ain of Custo	ody			
		ustody complete?	Yes 🗸	No \square	Not Present
2.	How was the	sample delivered?	<u>FedEx</u>		
Log	ı İn				
_	Coolers are p	oresent?	Yes 🗸	No 🗆	na 🗆
ა.	Coolers are p	nesen:	163	110	IVA 🗀
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No \square	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present ✓
6.	Was an atten	npt made to cool the samples?	Yes 🗸	No 🗌	na 🗆
7.	Were all item	s received at a temperature of >2°C to 6°C *	Yes 🗸	No \square	NA 🗆
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗆	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗹	No \square	
10.	Are samples	properly preserved?	Yes 🗸	No \square	
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA 🗆
12	Is there head	space in the VOA vials?	Yes	No 🗆	NA 🗹
		es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌	
		ork match bottle labels?	Yes 🗸	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes 🗹	No \square	
17.	Were all hold	ing times able to be met?	Yes	No 🗸	
<u>Spe</u>	ecial Handl	ing (if applicable)			
18.	Was client no	otified of all discrepancies with this order?	Yes	No \square	NA 🗹
	Person	Notified: Date	е:		
	By Who	m: Via:	eMail Pho	ne 🗌 Fax [In Person
	Regardi	ng:			
	Client In	nstructions:			
19.	Additional rer	marks:			
<u>Item</u>	<u>Information</u>				
		Item # Temp °C			

3.6

Sample 1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

SUBCONTRACTER

Page 8 of 8

													Received by:	1	Fax (206) 283-5044
1258	12/22/21		7	Fre		3	CV	Fre	Con in Bride is in	CUR	2	auch	Relinquished by:	2029	Seattle, WA 98119-2029 Ph. (206) 285-8282
OBOO AM	4/28/21	Bruya	an &	Friedman & Bruya				lahl	Michael Erdahl	Micha	1	non	Relimquistled by	Vest	3012 16th Avenue West
TIME	DATE	ANY	COMPANY			E	PRINT NAME	RINI	P		1	SIGNATURE		Inc.	Friedman & Bruya, Inc.
			-	+											
						×				~	Soil	1220	3/31/21		C-1 pp1-11,0
Notes	No					Hex Chrome	VPH	EPH	Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
		D	STE	REQUE	ANALYSES REQUESTED	ANA			3						
ons	☐ Will call with instructions	☐ Will call with in		5	E & C. S. E. C. S.		Gesult	тап 1	Please Email Kesults	Fle	a.com	dmanandbruy	merdahl@frie	-8282	Phone # (206) 285-8282 merdahl@friedmanandbruya.com
SAL	SAMPLE DISPOSAL Dispose after 30 days	SAN Dispose a		7						REMARKS	REA		Seattle, WA 98119	eattle.	City, State, ZIP_S
by:	Rush charges authorized by:	Rush charg		38	6-238		a	103585	10				3012 16th Ave W	012 16	Address 3
	TAT	Standard TAT		PO#	P			NO.	NAME	PROJECT NAME/NO.	PRC	Inc.	Friedman and Bruva, Inc.	riedma	Company F
TME	TURNAROUND TIME	TUR				+	Fremont						Michael Erdahl	Michael	Send Report To 1

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 28, 2022

Jacob Letts, Project Manager GeoEngineers, Inc 1101 Fawcett Ave 200 Tacoma, WA 98402

Dear Mr Letts:

Included are the results from the testing of material submitted on December 21, 2022 from the C-1 RI 5531-014-02, F&BI 212334 project. There are 43 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Katy Ataturk GNR1228R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 21, 2022 by Friedman & Bruya, Inc. from the GeoEngineers, Inc C-1 RI 5531-014-02, F&BI 212334 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	GeoEngineers, Inc
212334 -01	C-1 RI-5-4
212334 -02	C-1 RI-5-8
212334 -03	C-1 RI-5-10
212334 -04	C-1 RI-5-20
212334 -05	C-1 RI-4-4
212334 -06	C-1 RI-4-8
212334 -07	C-1 RI-4-10
212334 -08	C-1 RI-4-20
212334 -09	C-1 RI-2-4
212334 -10	C-1 RI-2-8
212334 -11	C-1 RI-2-10
212334 -12	C-1 RI-2-20
212334 -13	C-1 RI-3-4
212334 -14	C-1 RI-3-8
212334 -15	C-1 RI-3-10
212334 -16	C-1 RI-1-4
212334 -17	C-1 RI-1-8
212334 -18	C-1 RI-1-10

The 8260D calibration standard failed the acceptance criteria for acetone. The data were flagged accordingly.

The 8260D matrix spike, matrix spike duplicate, and laboratory control sample exceeded the acceptance criteria for several analytes. The compounds were not detected, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/28/22 Date Received: 12/21/22

Project: C-1 RI 5531-014-02, F&BI 212334

Date Extracted: 12/22/22 Date Analyzed: 12/22/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 58-139)
C-1 RI-5-4 212334-01	<5	93
C-1 RI-5-8 212334-02	<5	95
C-1 RI-5-10 212334-03	<5	93
C-1 RI-4-4 212334-05	<5	90
C-1 RI-4-8 212334-06	<5	94
C-1 RI-4-10 212334-07	<5	95
C-1 RI-2-4 212334-09	<5	94
C-1 RI-2-8 212334-10	<5	89
C-1 RI-2-10 212334-11	<5	78
C-1 RI-3-4 212334-13	<5	88
C-1 RI-3-8 212334-14	<5	90

ENVIRONMENTAL CHEMISTS

Date of Report: 12/28/22 Date Received: 12/21/22

Project: C-1 RI 5531-014-02, F&BI 212334

Date Extracted: 12/22/22 Date Analyzed: 12/22/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 58-139)
C-1 RI-3-10 212334-15	<5	95
C-1 RI-1-4 212334-16	<5	96
C-1 RI-1-8 212334-17	<5	70
C-1 RI-1-10 212334-18	<5	91
Method Blank 02-2939 MB	<5	88

ENVIRONMENTAL CHEMISTS

Date of Report: 12/28/22 Date Received: 12/21/22

Project: C-1 RI 5531-014-02, F&BI 212334

Date Extracted: 12/22/22 Date Analyzed: 12/22/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36})}$	Surrogate (% Recovery) (Limit 50-150)
C-1 RI-5-4 212334-01	<50	<250	106
C-1 RI-5-8 212334-02	<50	<250	103
C-1 RI-5-10 212334-03	<50	<250	105
C-1 RI-4-4 212334-05	<50	<250	104
C-1 RI-4-8 212334-06	<50	<250	103
C-1 RI-4-10 212334-07	<50	<250	103
C-1 RI-2-4 212334-09	<50	<250	104
C-1 RI-2-8 212334-10	<50	<250	104
C-1 RI-2-10 212334-11	<50	<250	105
C-1 RI-2-20 212334-12	<50	<250	105
C-1 RI-3-8 212334-14	<50	<250	104
C-1 RI-3-10 212334-15	<50	<250	103

ENVIRONMENTAL CHEMISTS

Date of Report: 12/28/22 Date Received: 12/21/22

Project: C-1 RI 5531-014-02, F&BI 212334

Date Extracted: 12/22/22 Date Analyzed: 12/22/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 50-150)
C-1 RI-1-4 212334-16	<50	<250	103
C-1 RI-1-8 212334-17	<50	<250	104
C-1 RI-1-10 212334-18	<50	<250	103
Method Blank 02-3056 mb	<50	<250	104

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-5-4	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-01
Date Analyzed:	12/21/22	Data File:	212334-01.069

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	1.84
Barium	43.9
Cadmium	<1
Chromium	24.9
Lead	1.84
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-5-8	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-02

Date Analyzed: 12/21/22 Data File: 212334-02.072 Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.18
Barium	56.6
Cadmium	<1
Chromium	24.4
Lead	2.83
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-5-10	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-03
Date Analyzed:	12/21/22	Data File:	212334-03.073
Matrix:	Soil	Instrument:	ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

C 11100.	1118/118 (PP111) 21) ((CISITO	Opera
Analyte:	Concentration mg/kg (ppm)	
Arsenic	2.16	
Barium	52.3	
Cadmium	<1	
Chromium	25.5	
Lead	2.47	
Mercury	<1	
Selenium	<1	
Silver	<1	

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-4-4	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-05
Date Analyzed:	12/21/22	Data File:	212334-05.074

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.50
Barium	47.0
Cadmium	<1
Chromium	22.6
Lead	2.42
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Operator:

SP

Analysis For Total Metals By EPA Method 6020B

mg/kg (ppm) Dry Weight

Client ID:	C-1 RI-4-8	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-06
Date Analyzed:	12/21/22	Data File:	212334-06.075

Date Analyzed: 12/21/22 Data File: 212334-06.0 Matrix: Soil Instrument: ICPMS2

Analyte: Concentration mg/kg (ppm)

Arsenic 2.11
Barium 50.1
Cadmium <1
Chromium 24.0

 Chromium
 24.0

 Lead
 2.34

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-4-10	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-07
Date Analyzed:	12/21/22	Data File:	212334-07.076
Matrix	Soil	Instrument:	ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Offics.	mg/kg (ppm) Dry Weight	Operator.	DI.
Analyte:	Concentration mg/kg (ppm)		
Arsenic	1.79		
Barium	42.1		
Cadmium	<1		
Chromium	18.4		
Lead	1.88		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-2-4	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-09

Date Analyzed: 12/21/22 Data File: 212334-09.079 Matrix: Soil Instrument: ICPMS2

mg/kg (ppm) Dry Weight Units: Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.93
Barium	45.0
Cadmium	<1
Chromium	19.7
Lead	1.76
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-2-8	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-10
Date Analyzed:	12/21/22	Data File:	212334-10.080
Matrix	Soil	Instrument	ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

	0 0 1	1 / 0 0
Analyte:		Concentration mg/kg (ppm)
Arsenic		3.28
Barium		43.4
Cadmium		<1
Chromium		19.4
Lead		2.27
Mercury		<1
Selenium		<1
Silver		<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-2-10	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-11

Date Analyzed: 12/21/22 Data File: 212334-11.081 Matrix: Soil Instrument: ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	1.97
Barium	39.5
Cadmium	<1
Chromium	19.4
Lead	2.03
Mercury	<1
Selenium	<1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-3-4	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-13
Data Analyzadı	19/91/99	Data File.	212224 12 022

Date Analyzed: 12/21/22 Data File: 212334-13.082 Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.28
Barium	43.5
Cadmium	<1
Chromium	20.3
Lead	2.08
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-3-8	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-14

Date Analyzed: 12/21/22 Data File: 212334-14.083 Matrix: Instrument: Soil ICPMS2

mg/kg (ppm) Dry Weight Units: Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.99
Barium	43.6
Cadmium	<1
Chromium	20.9
Lead	2.30
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-3-10	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-15
Date Analyzed:	12/21/22	Data File:	212334-15.084
Matrix:	Soil	Instrument:	ICPMS2

Analyte:	Concentration mg/kg (ppm)
Arsenic	4.10
Barium	45.7
Cadmium	<1
Chromium	21.0
Lead	2.15
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-1-4	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-16
Date Analyzed:	12/21/22	Data File:	212334-16.085

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

<1

ConcentrationAnalyte: mg/kg (ppm) 2.82 Arsenic Barium 51.5 Cadmium<1 Chromium 25.7 Lead 2.40Mercury <1 Selenium <1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-1-8	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-17

Date Analyzed: 12/21/22 Data File: 212334-17.086
Matrix: Soil Instrument: ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	3.40
Barium	47.6
Cadmium	<1
Chromium	29.5
Lead	2.33
Mercury	<1
Selenium	<1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	C-1 RI-1-10	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/21/22 14:10	Lab ID:	212334-18
Date Analyzed:	12/21/22	Data File:	212334-18.087

Matrix: Soil Instrument: ICPMS2

mg/kg (ppm) Dry Weight Units: Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.19
Barium	57.0
Cadmium	<1
Chromium	24.5
Lead	2.67
Mercury	<1
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	GeoEngineers, Inc
Date Received:	NA	Project:	C-1 RI 5531-014-02

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

Arsenic <1 Barium <1 Cadmium <1 Chromium <3 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-5-4	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-01 1/0.25
Date Analyzed:	12/22/22	Data File:	122206.D
Matrix:	Soil	Instrument:	GCMS13

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	93	84	120
Toluene-d8	89	73	128
4-Bromofluorobenzene	101	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-5-8	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-02 1/0.25
Date Analyzed:	12/22/22	Data File:	122207.D

Matrix: Soil Instrument: GCMS13
Units: mg/kg (ppm) Dry Weight Operator: lm

Lower UpperSurrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 102 84 120 Toluene-d8 104 73 128 4-Bromofluorobenzene 98 57 146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-5-10	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-03 1/0.25
Date Analyzed:	12/22/22	Data File:	122208.D
Matrix:	Soil	Instrument:	GCMS13

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	84	120
Toluene-d8	97	73	128
4-Bromofluorobenzene	103	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-4-4	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-05 1/0.25
Date Analyzed:	12/22/22	Data File:	122209.D
Matrix:	Soil	Instrument:	GCMS13

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	84	120
Toluene-d8	92	73	128
4-Bromofluorobenzene	100	57	146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-4-8	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-06 1/0.25
Date Analyzed:	12/22/22	Data File:	122210.D
Matrix:	Soil	Instrument:	GCMS13

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	84	120
Toluene-d8	98	73	128
4-Bromofluorobenzene	102	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-4-10	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-07 1/0.25
Date Analyzed:	12/22/22	Data File	122211 D

Date Analyzed:12/22/22Data File:122211.DMatrix:SoilInstrument:GCMS13Units:mg/kg (ppm) Dry WeightOperator:lm

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	84	120
Toluene-d8	101	73	128
4-Bromofluorobenzene	104	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	<0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	<0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-2-4	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-09 1/0.25
Date Analyzed:	12/22/22	Data File:	122212.D
Matrix:	Soil	Instrument:	GCMS13

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	105	84	120
Toluene-d8	96	73	128
4-Bromofluorobenzene	99	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.0078
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	0.0014	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	0.0036	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	0.0091	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.43	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-2-8	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-10 1/0.25
Date Analyzed:	12/22/22	Data File:	122213.D
Matrix:	Soil	Instrument:	GCMS13

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	108	84	120
Toluene-d8	100	73	128
4-Bromofluorobenzene	102	57	146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.0021
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	0.0035	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	0.0043	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	0.0010	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	0.0030	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.29	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-2-10	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-11 1/0.25
Date Analyzed:	12/22/22	Data File:	122214.D

Matrix: Soil Instrument: GCMS13
Units: mg/kg (ppm) Dry Weight Operator: lm

Lower UpperSurrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 89 84 120 Toluene-d8 86 73 128 4-Bromofluorobenzene 103 57 146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.0031
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	0.011	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	0.0067	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	0.0040	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.73	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition ${\rm LL}$

Client Sample ID:	C-1 RI-3-4	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-13 1/0.25
Date Analyzed:	12/22/22	Data File:	122215.D
Matrix	Soil	Instrument:	GCMS13

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	110	84	120
Toluene-d8 4-Bromofluorobenzene	99 101	73 57	128 146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	0.0026
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.047	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-3-8	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-14 1/0.25
Date Analyzed:	12/22/22	Data File:	122216.D
Matrix:	Soil	Instrument:	GCMS13

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	84	120
Toluene-d8	97	73	128
4-Bromofluorobenzene	102	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.0049	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-3-10	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-15 1/0.25
Date Analyzed:	12/22/22	Data File:	122217.D

Matrix: Soil Instrument: GCMS13
Units: mg/kg (ppm) Dry Weight Operator: lm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	84	120
Toluene-d8	100	73	128
4-Bromofluorobenzene	98	57	146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.0034	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-1-4	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-16 1/0.25
Date Analyzed:	12/22/22	Data File:	122218.D
Matrix:	Soil	Instrument:	GCMS13

~		Lower	$_{ m Upper}$
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	84	120
Toluene-d8	100	73	128
4-Bromofluorobenzene	104	57	146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.0020	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-1-8	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-17 1/0.25
Date Analyzed:	12/22/22	Data File:	122219.D
Matrix:	Soil	Instrument:	GCMS13

a .	0/ D	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	84	120
Toluene-d8	99	73	128
4-Bromofluorobenzene	102	57	146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C-1 RI-1-10	Client:	GeoEngineers, Inc
Date Received:	12/21/22	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	212334-18 1/0.25
Date Analyzed:	12/22/22	Data File:	122220.D
Matrix:	Soil	Instrument:	GCMS13

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	102	84	120
Toluene-d8	92	73	128
4-Bromofluorobenzene	99	57	146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	Method Blank	Client:	GeoEngineers, Inc
Date Received:	Not Applicable	Project:	C-1 RI 5531-014-02
Date Extracted:	12/22/22	Lab ID:	02-2980 mb 1/0.25

Date Analyzed: 12/22/22 Data File: 122205.D Matrix: Soil Instrument: GCMS13

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	84	120
Toluene-d8	100	73	128
4-Bromofluorobenzene	97	57	146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/28/22 Date Received: 12/21/22

Project: C-1 RI 5531-014-02, F&BI 212334

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 212334-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	< 5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	20	95	61-153

ENVIRONMENTAL CHEMISTS

Date of Report: 12/28/22 Date Received: 12/21/22

Project: C-1 RI 5531-014-02, F&BI 212334

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 212334-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	2.000	< 50	105	105	70-130	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	2,000	103	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/28/22 Date Received: 12/21/22

Project: C-1 RI 5531-014-02, F&BI 212334

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 212334-01 x5 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result (Wet wt)	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic			<5	104	99	75-125	
	mg/kg (ppm)	10	_				5
Barium	mg/kg (ppm)	50	45.2	99	97	75 - 125	2
Cadmium	mg/kg (ppm)	10	<5	104	103	75 - 125	1
Chromium	mg/kg (ppm)	50	27.8	93	87	75 - 125	7
Lead	mg/kg (ppm)	50	<5	99	97	75 - 125	2
Mercury	mg/kg (ppm	5	<5	102	98	75 - 125	4
Selenium	mg/kg (ppm)	5	<5	112	115	75 - 125	3
Silver	mg/kg (ppm)	10	<5	104	105	75-125	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	105	80-120
Barium	mg/kg (ppm)	50	104	80-120
Cadmium	mg/kg (ppm)	10	103	80-120
Chromium	mg/kg (ppm)	50	112	80-120
Lead	mg/kg (ppm)	50	106	80-120
Mercury	mg/kg (ppm)	5	102	80-120
Selenium	mg/kg (ppm)	5	111	80-120
Silver	mg/kg (ppm)	10	104	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/28/22 Date Received: 12/21/22

Project: C-1 RI 5531-014-02, F&BI 212334

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 212334-01 (Matrix Spike)

Č	, ,		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	30	25	10-142	18
Chloromethane	mg/kg (ppm)	1	< 0.5	55	57	10-126	4
Vinyl chloride	mg/kg (ppm)	1	< 0.05	62	64	10-138	3
Bromomethane	mg/kg (ppm)	1	< 0.5	143	167 vo	10-163	15
Chloroethane	mg/kg (ppm)	1	< 0.5	91	95	10-176	4
Trichlorofluoromethane	mg/kg (ppm)	1	< 0.5	79	84	10-176	6 9
Acetone 1.1-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	5 1	<5 <0.05	180 vo 90	197 vo 96	10-163 10-160	6
Hexane	mg/kg (ppm)	1	< 0.25	85	96 87	10-137	2
Methylene chloride	mg/kg (ppm)	1	< 0.5	120	134	10-156	11
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	102	119	21-145	15
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	95	107	14-137	12
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	101	115	19-140	13
2.2-Dichloropropane	mg/kg (ppm)	1	< 0.05	120	136	10-158	12
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	104	117	25-135	12
Chloroform	mg/kg (ppm)	1	< 0.05	107	121	21-145	12
2-Butanone (MEK)	mg/kg (ppm)	5	<1	90	103	19-147	13
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	109	122	12-160	11
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	100	116	10-156	15
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	105	118	17-140	12
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	103	119	9-164	14
Benzene	mg/kg (ppm)	1	< 0.03	107	119	29-129	11
Trichloroethene	mg/kg (ppm)	1	< 0.02	102	116	21-139	13
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	109	127	30-135	15
Bromodichloromethane	mg/kg (ppm)	1	< 0.05	102	118	23-155	15
Dibromomethane	mg/kg (ppm)	1	< 0.05	110	127	23-145	14
4-Methyl-2-pentanone	mg/kg (ppm)	5 1	<1 <0.05	102 107	$\frac{120}{124}$	24-155 $28-144$	16 15
cis-1,3-Dichloropropene Toluene	mg/kg (ppm)	1	< 0.05	97	113	28-144 35-130	15 15
trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	1	< 0.05	95	110	26-149	15
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	98	115	10-205	16
2-Hexanone	mg/kg (ppm)	5	< 0.5	77	89	15-166	14
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	98	113	31-137	14
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	99	114	20-133	14
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	100	119	28-150	17
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	98	115	28-142	16
Chlorobenzene	mg/kg (ppm)	1	< 0.05	100	116	32-129	15
Ethylbenzene	mg/kg (ppm)	1	< 0.05	97	113	32-137	15
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	95	110	31-143	15
m,p-Xylene	mg/kg (ppm)	2	< 0.1	100	114	34-136	13
o-Xylene	mg/kg (ppm)	1	< 0.05	99	114	33-134	14
Styrene	mg/kg (ppm)	1	< 0.05	93	110	35-137	17
Isopropylbenzene	mg/kg (ppm)	1	< 0.05	94	109	31-142	15
Bromoform	mg/kg (ppm)	1	< 0.05	103	120	21-156	15
n-Propylbenzene	mg/kg (ppm)	1 1	< 0.05	100	117	23-146	16
Bromobenzene	mg/kg (ppm)		< 0.05	99	115	34-130	15
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1 1	<0.05 <0.05	101 101	118 117	18-149 28-140	16 15
1,1,2,2-1 etrachioroethane 1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	1	< 0.05	101	117	25-140 25-144	13
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	101	115	31-134	13
4-Chlorotoluene	mg/kg (ppm)	1	< 0.05	99	115	31-134	15
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	102	118	30-137	15
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	101	115	10-182	13
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	103	118	23-145	14
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	100	118	21-149	17
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	101	117	30-131	15
1,4-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	98	113	29-129	14
1,2-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	100	115	31-132	14
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	< 0.5	95	109	11-161	14
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	92	109	22-142	17
Hexachlorobutadiene	mg/kg (ppm)	1	< 0.25	95	109	10-142	14
Naphthalene	mg/kg (ppm)	1	< 0.05	94	109	14-157	15
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	90	105	20-144	15

ENVIRONMENTAL CHEMISTS

Date of Report: 12/28/22 Date Received: 12/21/22

Project: C-1 RI 5531-014-02, F&BI 212334

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Dichlorodifluoromethane	mg/kg (ppm)	1	61	10-146			
Chloromethane	mg/kg (ppm)	1	73	27-133			
Vinyl chloride	mg/kg (ppm)	1	82	22-139			
Bromomethane	mg/kg (ppm)	1	165 vo	38-114			
Chloroethane Trichlorofluoromethane	mg/kg (ppm)	1 1	108 106	9-163 10-196			
Acetone	mg/kg (ppm) mg/kg (ppm)	5	106 187 vo	52-141			
1.1-Dichloroethene	mg/kg (ppm)	1	103	47-128			
Hexane	mg/kg (ppm)	1	113	43-142			
Methylene chloride	mg/kg (ppm)	1	117	10-184			
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	111	60-123			
trans-1,2-Dichloroethene	mg/kg (ppm)	1	106	67-129			
1,1-Dichloroethane	mg/kg (ppm)	1	112	68-115			
2,2-Dichloropropane	mg/kg (ppm)	1	134	52-170			
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm) mg/kg (ppm)	1 1	112 115	72-127 66-120			
2-Butanone (MEK)	mg/kg (ppm)	5	101	30-197			
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	118	56-135			
1,1,1-Trichloroethane	mg/kg (ppm)	1	111	62-131			
1,1-Dichloropropene	mg/kg (ppm)	1	114	69-128			
Carbon tetrachloride	mg/kg (ppm)	1	117	60-139			
Benzene	mg/kg (ppm)	1	115	71-118			
Trichloroethene	mg/kg (ppm)	1	112	63-121			
1,2-Dichloropropane	mg/kg (ppm)	1 1	120	72-127			
Bromodichloromethane Dibromomethane	mg/kg (ppm) mg/kg (ppm)	1	115 120	57-126 62-123			
4-Methyl-2-pentanone	mg/kg (ppm)	5	111	45-145			
cis-1,3-Dichloropropene	mg/kg (ppm)	1	114	67-122			
Toluene	mg/kg (ppm)	1	106	66-126			
trans-1,3-Dichloropropene	mg/kg (ppm)	1	107	72-132			
1,1,2-Trichloroethane	mg/kg (ppm)	1	110	64-115			
2-Hexanone	mg/kg (ppm)	5	86	33-152			
1,3-Dichloropropane	mg/kg (ppm)	1	106	72-130			
Tetrachloroethene Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	1 1	107 113	72-114 55-121			
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	108	74-132			
Chlorobenzene	mg/kg (ppm)	1	109	76-111			
Ethylbenzene	mg/kg (ppm)	1	105	64-123			
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	105	64-121			
m,p-Xylene	mg/kg (ppm)	2	107	78-122			
o-Xylene	mg/kg (ppm)	1	108	77-124			
Styrene	mg/kg (ppm)	1	101	74-126			
Isopropylbenzene Bromoform	mg/kg (ppm)	1 1	103 115	76-127 56-132			
n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	1	107	74-124			
Bromobenzene	mg/kg (ppm)	1	107	72-122			
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	108	76-126			
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	107	56-143			
1,2,3-Trichloropropane	mg/kg (ppm)	1	108	61-137			
2-Chlorotoluene	mg/kg (ppm)	1	107	74-121			
4-Chlorotoluene	mg/kg (ppm)	1	105	75-122			
tert-Butylbenzene	mg/kg (ppm)	1 1	108	73-130			
1,2,4-Trimethylbenzene sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	1	107 109	76-125 71-130			
p-Isopropyltoluene	mg/kg (ppm)	1	108	70-132			
1,3-Dichlorobenzene	mg/kg (ppm)	1	109	75-121			
1,4-Dichlorobenzene	mg/kg (ppm)	1	106	74-117			
1,2-Dichlorobenzene	mg/kg (ppm)	1	109	76-121			
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	110	58-138			
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	102	64-135			
Hexachlorobutadiene	mg/kg (ppm)	1	101	50-153			
Naphthalene 1.2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1 1	105 103	63-140 63-138			
1,2,0-111CHIOTODEHZEHE	mg/vg (hhm)	1	109	09-190			

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Friedman & Bruya, Inc. C-1 RI-2-8 トし C-1 City, State, ZIP Address_ Company_ C-1 RI -1 M-4 C-1 RI-2-4 C-1 R1--1 RT-1/4-20 8-1-1-1-8 RI-15-20 RI-4/4-10 R1-15-10 Sample ID Jestra mers Email Jette Gloenguet Project specific RLs? Relinquished by: Received by: Relinquished by: Received by: Lab ID Q 6 5 0 2 ∞ Ġ 3 1A-E SIGNATURE 12/19/22 Sampled Date SAMPLE CHAIN OF CUSTODY 1030 000 930 1320 278 910 900 Sampled 1340 1020 8 Time SAMPLERS (signature) REMARKS PROJECT NAME Sensitive explantion of (-1 RI Sample Kat Anthry 5 ANHPHAN # of Jars PRINT NAME S > × \times × NWTPH-Dx NWTPH-Gx BTEX EPA 8021 5531-014-02 NWTPH-HCID INVOICE TO ANALYSES REQUESTED \times VOCs EPA 8260 PO# PAHs EPA 8270 GE1 PCBs EPA 8082 12/21/22 F813 Semples received at 000 COMPANY > \times >× RCFA-8 Metals Standard turnaround Default: Dispose after 30 days □ Other ☐ Archive samples Rush charges authorized by: HOLD TURNAROUND TIME SAMPLE DISPOSAL 46 GS / VS-D2 ાત્ર/ત્રા/ત્રત 1420/21 IDs upd-kill per JL DATE 12/22/22 NE Notes BB 10:57 TIME

City, State, ZIP_ Address_ Company_ _Email_

SAMPLE CH
CHAIN
OF
CUSTODY

REMARKS 4PM	C-1 RI	PROJECT NAME	SAMPLERS (signature)	
INVOICE TO	5531-014-02	# OP		

Project specific RLs? - Yes / No

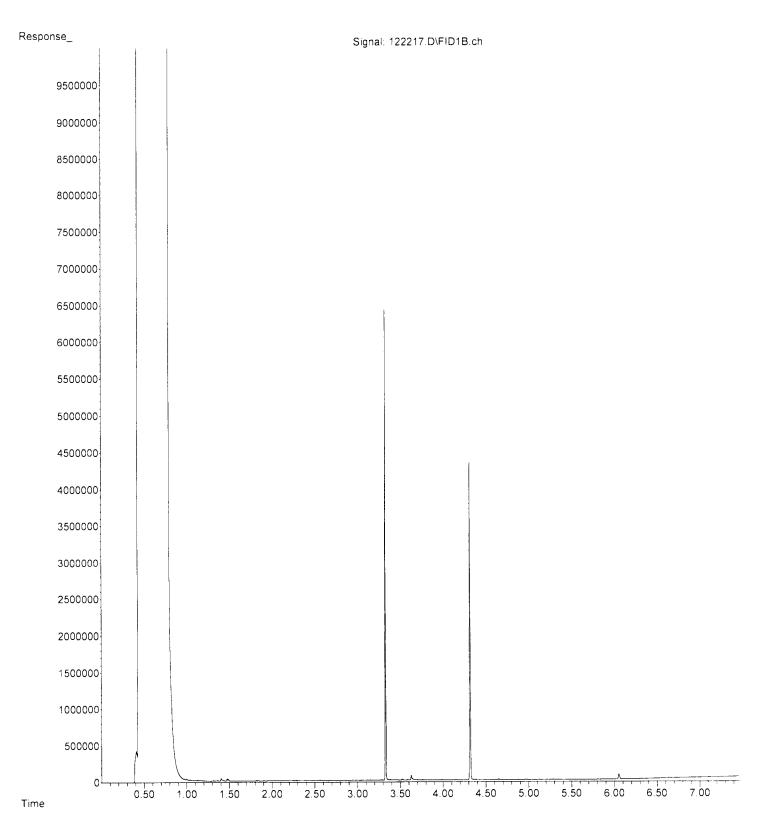
12/21/22 MAGS/VSD2 Default: Dispose after 30 days SAMPLE DISPOSAL Standard turnaround Rush charges authorized by: TURNAROUND TIME

Rece	Relin	Ph. (206) 285-8282 Rece				C-7 RI-1-10	C-1 12-1-8	C1 RI-1-4	(-1 RI-3-10	C-1 RI-3-8	C-1 RI-3-4	C-1 RI-2-20	C-1 RI-2-10	Sample ID	
Received by:	Relinquished by:	Received by:	SIG			18	エ	16	5	互	13	12	NA-E	Lab ID	
	Musc		SIGNATURE			+							11A-E 12/19/12	Date Sampled	
		1.				1620	0101	1600	1510	1500	140	1415	1350	Time Sampled	
	A	Tal			W.A.	+							S	Sample Type	
	ANHPHAN	by Atakhuri	PRINT NAME			\							B	# of Jars	
	PH	ak.	TN,		Ц	\geq	\times	\times	×	×	×		×	NWTPH-Dx	\prod
	Ar	hr	ME		╽	×			×	×	×		×	NWTPH-Gx	
		14		-		<u> </u>								BTEX EPA 8021	
					-				_					NWTPH-HCID	$ _{\underline{\mathcal{S}}} $
		+-	\vdash	_	\vdash	$ \times $	\times	\times	×	×	\times	!	X	VOCs EPA 8260	NA NA
		6		-	\vdash	-	<u> </u>				·		i	PAHs EPA 8270	YSES
Sat	F8 B	<u>621</u>	CO	-	+	ブ	X	~	<u>-</u>	×			<u> </u>	PCBs EPA 8082	REG
solos	(2)		COMPANY	<u> </u>	+	-							$\frac{\times}{}$	RCRA-BINETAL	ANALYSES REQUESTED
Y Teck			NA	-	+									Hall	TED
ived				-	+	1								HOLD	
Samples received at 6°C	12/21/22		DATE											Notes	
	10:57		TIME											ies	

P

DAMELE CONDITION OF ON MECETIFICATION

PROJECT # 2/2334 CLIENT GEI	INITIAL DATE:	12/2/	122		
If custody seals are present on cooler, are they intact?	Ø NA	□ YES	□ NO		
Cooler/Sample temperature			3 _ °C		
Were samples received on ice/cold packs?		YES	□ NO		
How did samples arrive? ☐ Over the Counter ☐ Picked up by F&B ☐ FedEx/UPS/GSO	F&BI				
Number of days samples have been sitting prior to receipt	at laborato	ory	_ days		
Is there a Chain-of-Custody* (COC)? *or other representative documents, letters, and/or shipping memos			□ NO		
Are the samples clearly identified? (explain "no" answer below)		□ YES	Ø NO		
Is the following information provided on the COC*? (explain	n "no" answer	pelow)			
Sample ID's Z Yes D No # of Containers Z Yes Date Sampled Z Yes D No Relinquished Z Yes No Requested analysis Z Yes	Yes □ No)			
Were all sample containers received intact (i.e. not broken leaking etc.)? (explain "no" answer below)	ı ,	□ YES	□ NO		
Were appropriate sample containers used?	ES DN	J D OI	Jnknown		
If custody seals are present on samples, are they intact?	AN DS	□ YES	□ NO		
Are samples requiring no headspace, headspace free?	Ø NA	□ YES	□ NO		
Air Samples: Were any additional canisters received? If Yes, number of unused 1L canisters number of unused 6L canisters	. Ø NA -	□ YES	□ NO		
Explain "no" items from above (use the besomple ID C-1 R1-2-20 does not have time one Sample ID C-1 R1-2-9 closs not have time on Sample ID C-1 R1-1-10 & 8 I-1 K1-2-4. Time with VOAs samples.	ack if neede 402 jars VOAs Sa u on 403	d) compled mples jars do	not mutch		

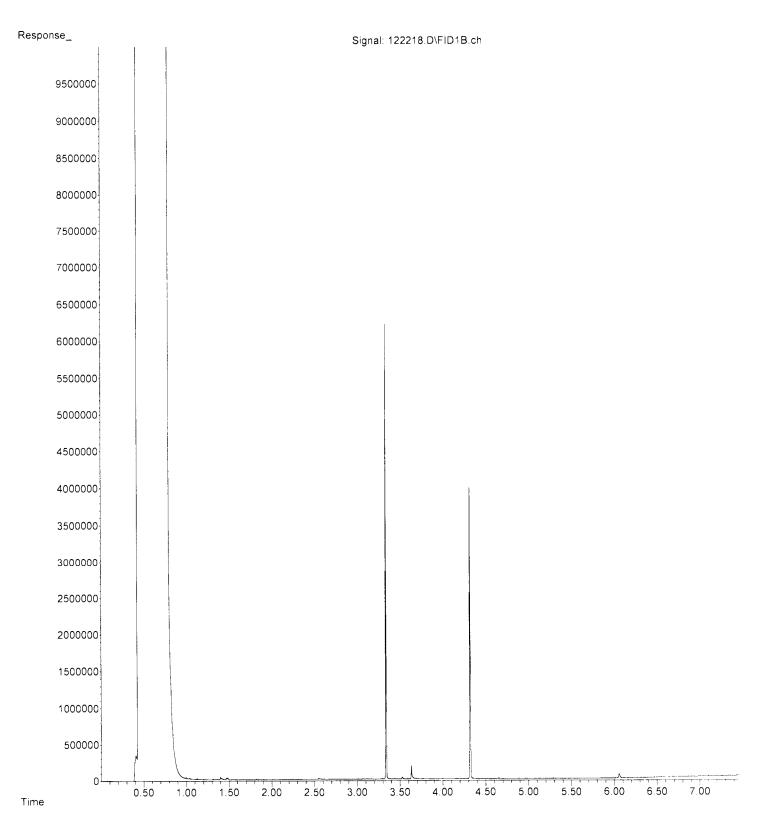

File :P:\Proc_GC14\12-22-22\122217.D

Operator : TL

Acquired : 22 Dec 2022 10:32 am using AcqMethod DX.M

Instrument : GC14
Sample Name: 212334-01

Misc Info : ERR

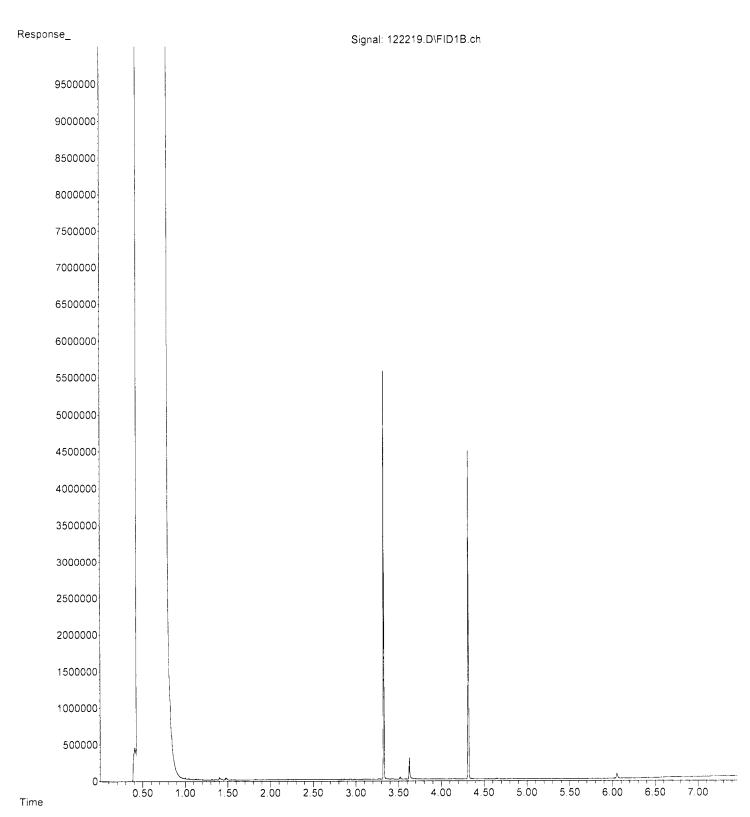

File :P:\Proc_GC14\12-22-22\122218.D

Operator : TL

Acquired : 22 Dec 2022 10:46 am using AcqMethod DX.M

Instrument : GC14
Sample Name: 212334-02

Misc Info : ERR

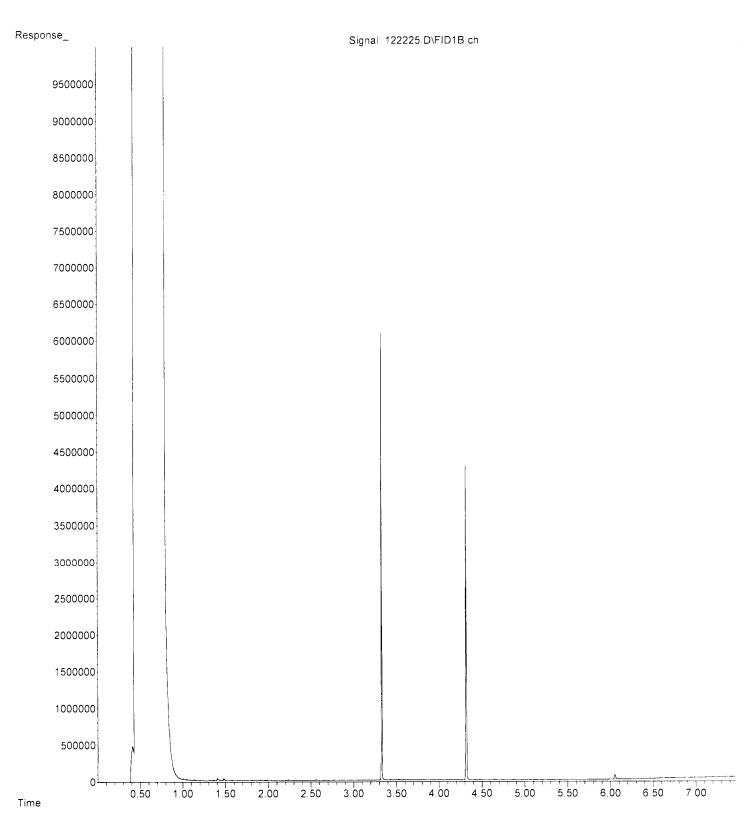

File :P:\Proc_GC14\12-22-22\122219.D

Operator : TL

Acquired : 22 Dec 2022 10:57 am using AcqMethod DX.M

Instrument : GC14 Sample Name: 212334-03

Misc Info : ERR

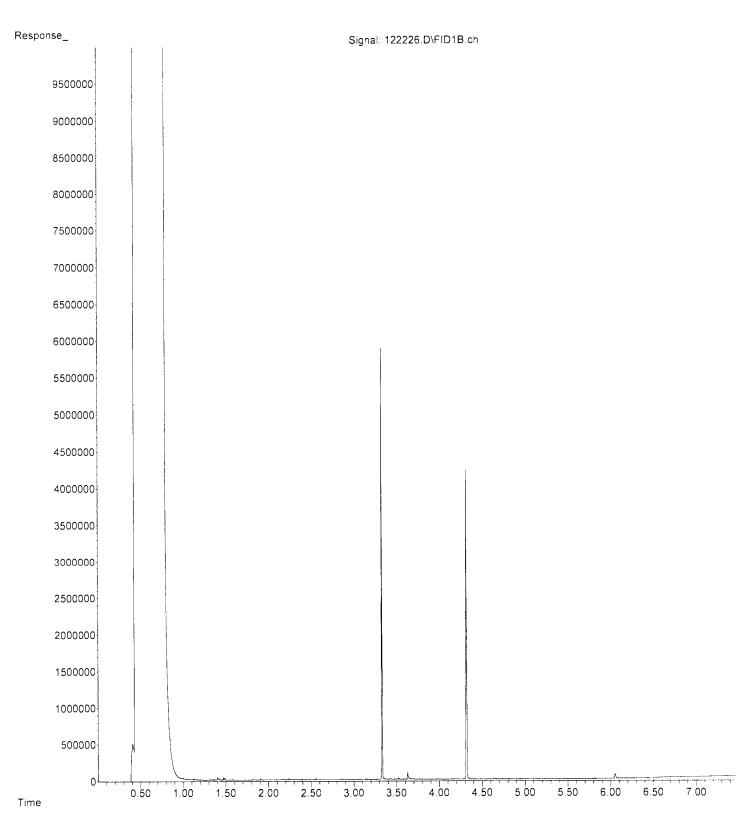

File :P:\Proc_GC14\12-22-22\122225.D

Operator : TL

Acquired : 22 Dec 2022 12:06 pm using AcqMethod DX.M

Instrument : GC14 Sample Name: 212334-05

Misc Info : ERR

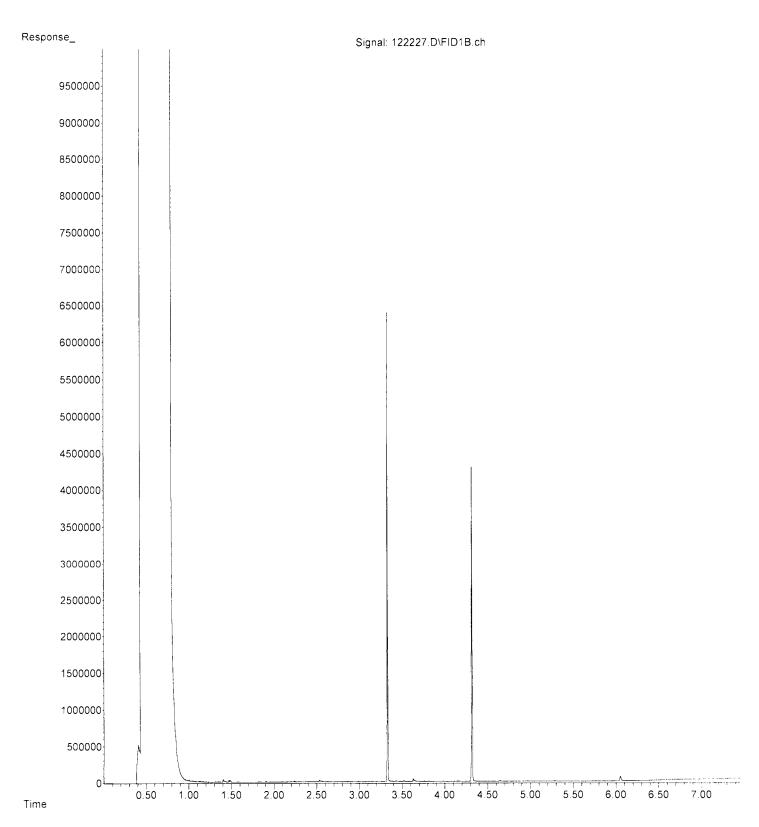

File :P:\Proc_GC14\12-22-22\122226.D

Operator : TL

Acquired : 22 Dec 2022 12:18 pm using AcqMethod DX.M

Instrument : GC14 Sample Name: 212334-06

Misc Info : ERR

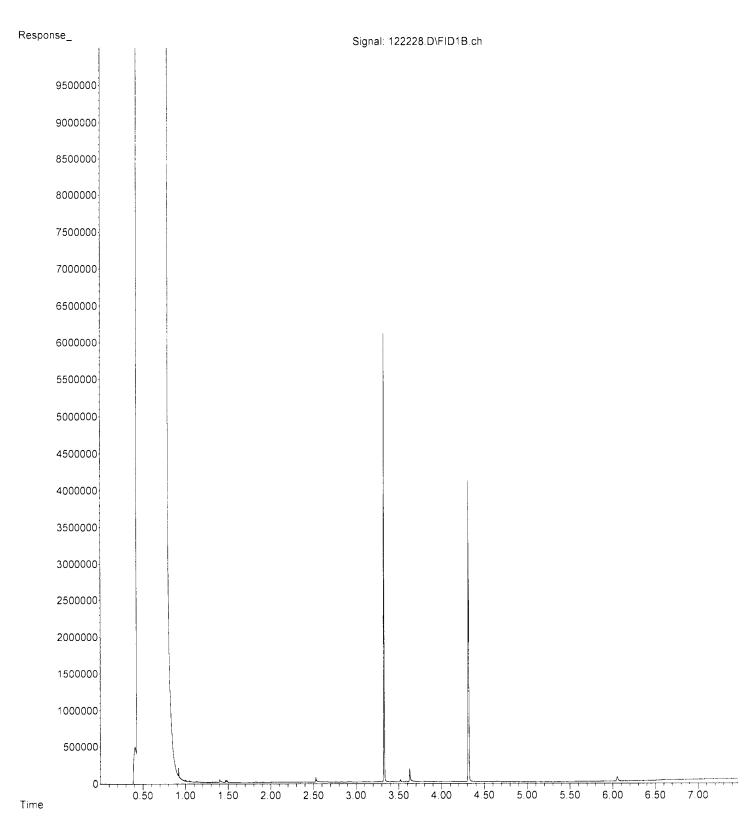

File :P:\Proc_GC14\12-22-22\122227.D

Operator : TL

Acquired : 22 Dec 2022 12:29 pm using AcqMethod DX.M

Instrument : GC14
Sample Name: 212334-07

Misc Info : ERR

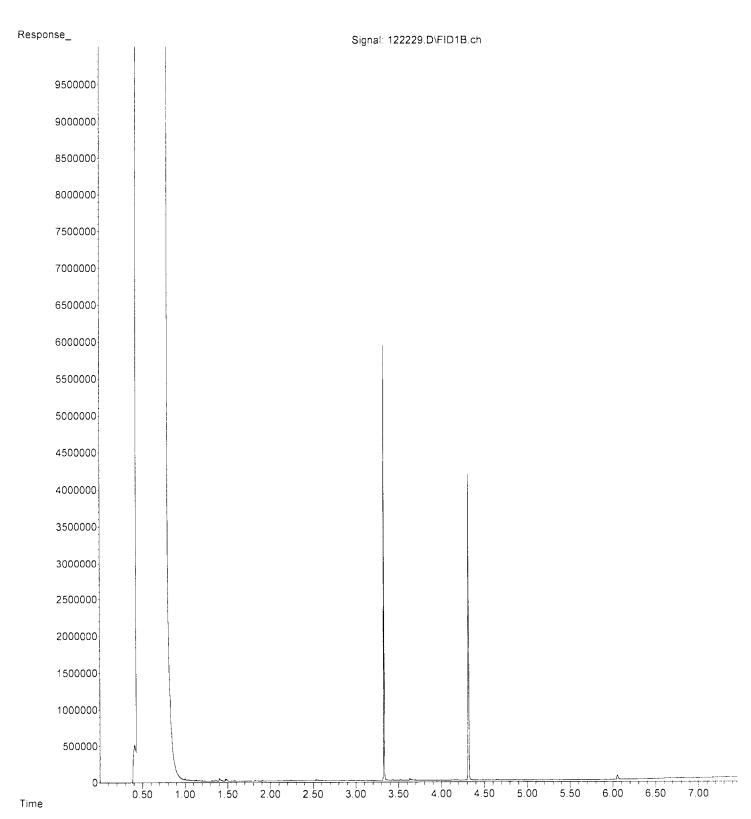

File :P:\Proc_GC14\12-22-22\122228.D

Operator : TL

Acquired : 22 Dec 2022 12:41 pm using AcqMethod DX.M

Instrument : GC14
Sample Name: 212334-09

Misc Info : ERR

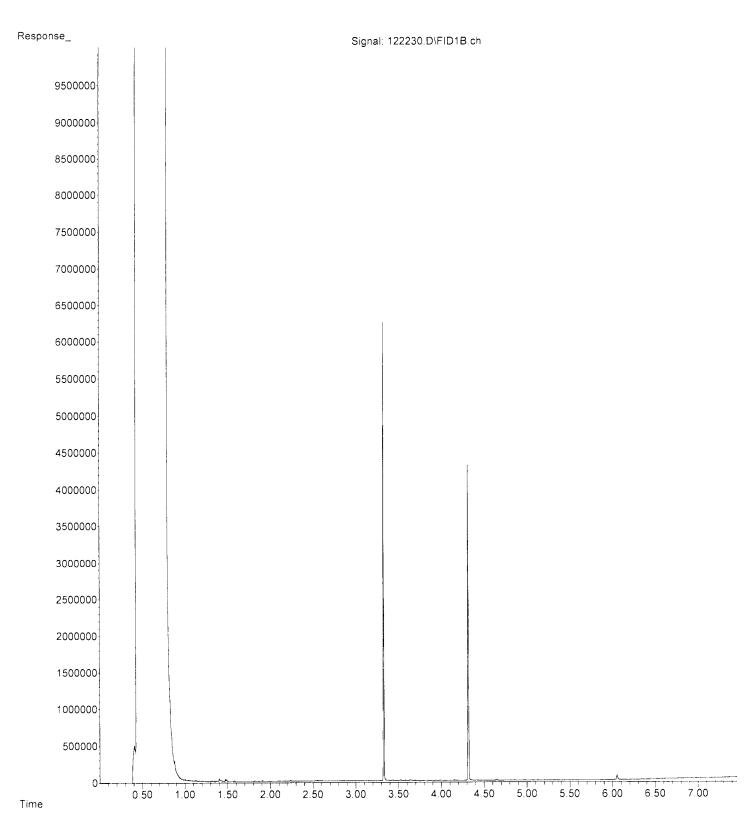


:P:\Proc_GC14\12-22-22\122229.D File

Operator : TL
Acquired : 22 Dec 2022 12:52 pm using AcqMethod DX.M

Instrument : GC14 Sample Name: 212334-10

Misc Info : ERR

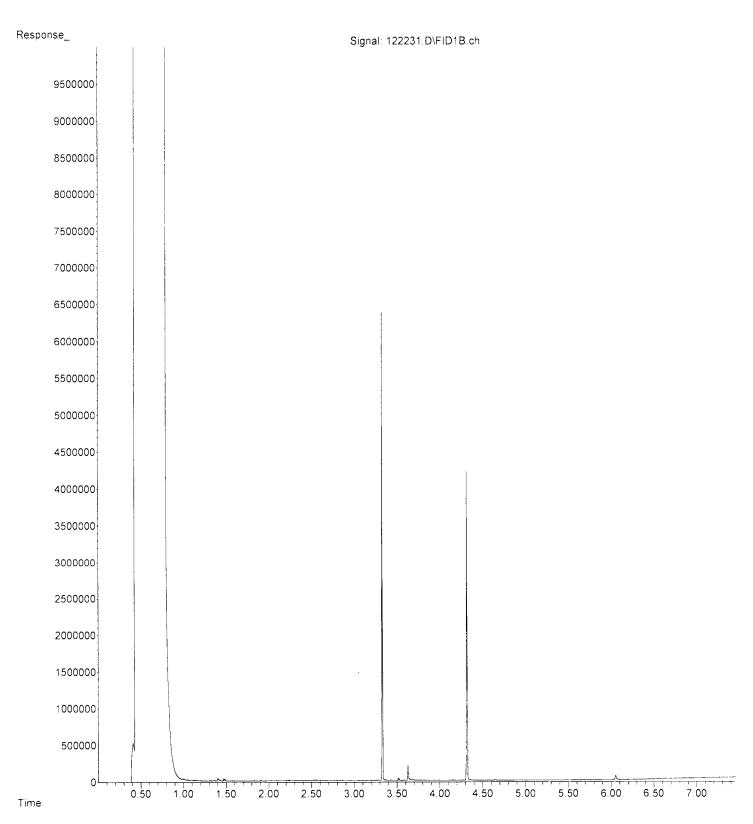

File :P:\Proc_GC14\12-22-22\122230.D

Operator : TL

Acquired : 22 Dec 2022 01:04 pm using AcqMethod DX.M

Instrument : GC14
Sample Name: 212334-11

Misc Info : ERR


File :P:\Proc_GC14\12-22-22\122231.D

Operator : TL

Acquired : 22 Dec 2022 01:16 pm using AcqMethod DX.M

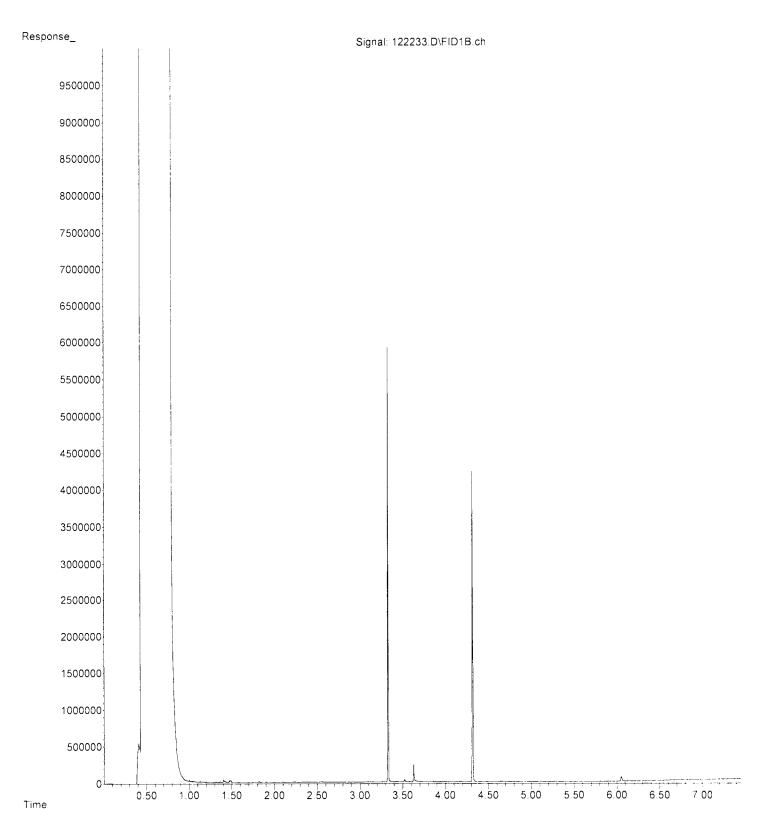
Instrument : GC14
Sample Name: 212334-12

Misc Info : ERR

Acquired : 22 Dec 2022 01:27 pm using AcqMethod DX.M

Instrument: JGC14
Sample Name: 1212334-14
Misc Info May Y W

ERR

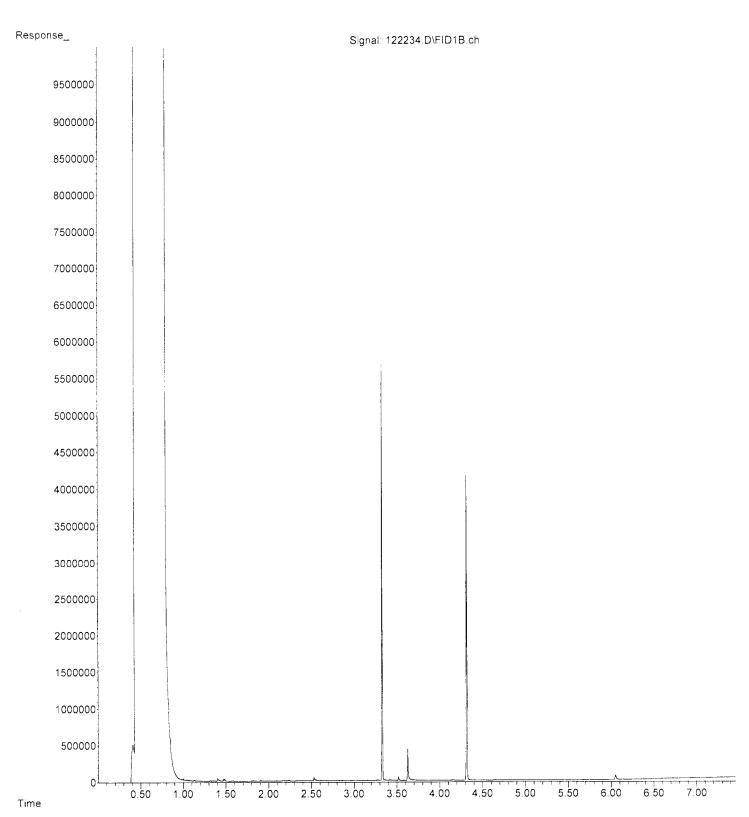

File :P:\Proc_GC14\12-22-22\122233.D

Operator : TL

Acquired : 22 Dec 2022 01:39 pm using AcqMethod DX.M

Instrument: GC14
Sample Name: 1212334-15
Misc Info: 1212334-15

ic Info: MC 79 ERR

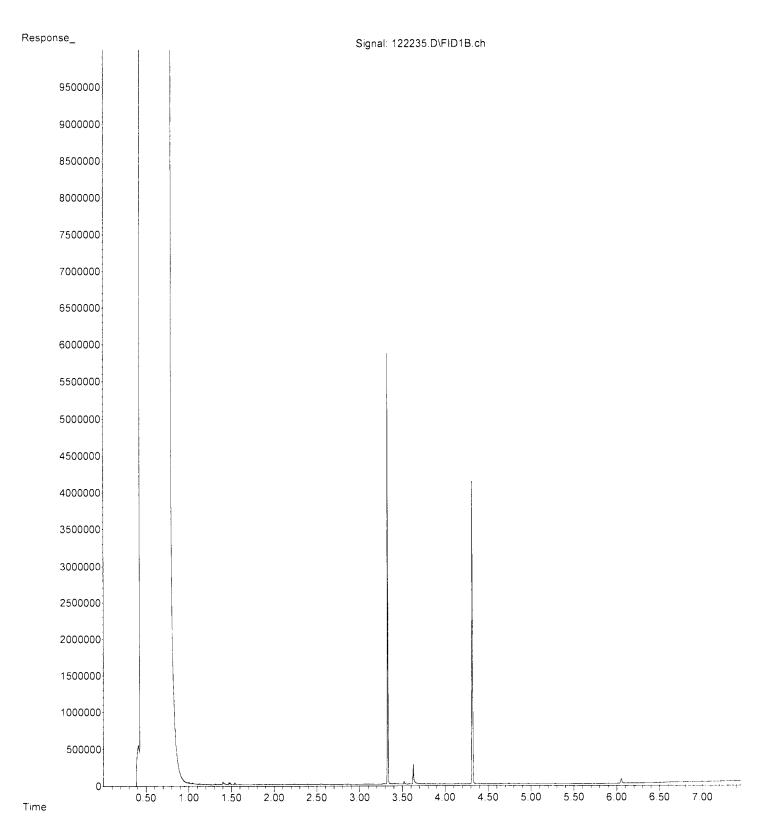

File :P:\Proc_GC14\12-22-22\122234.D

Operator : TL

Acquired : 22 Dec 2022 01:50 pm using AcqMethod DX.M

Instrument: GC14
Sample Name: 1212334-16
Misc Info: 100173
Vial Number: 31

ERR


File :P:\Proc_GC14\12-22-22\122235.D

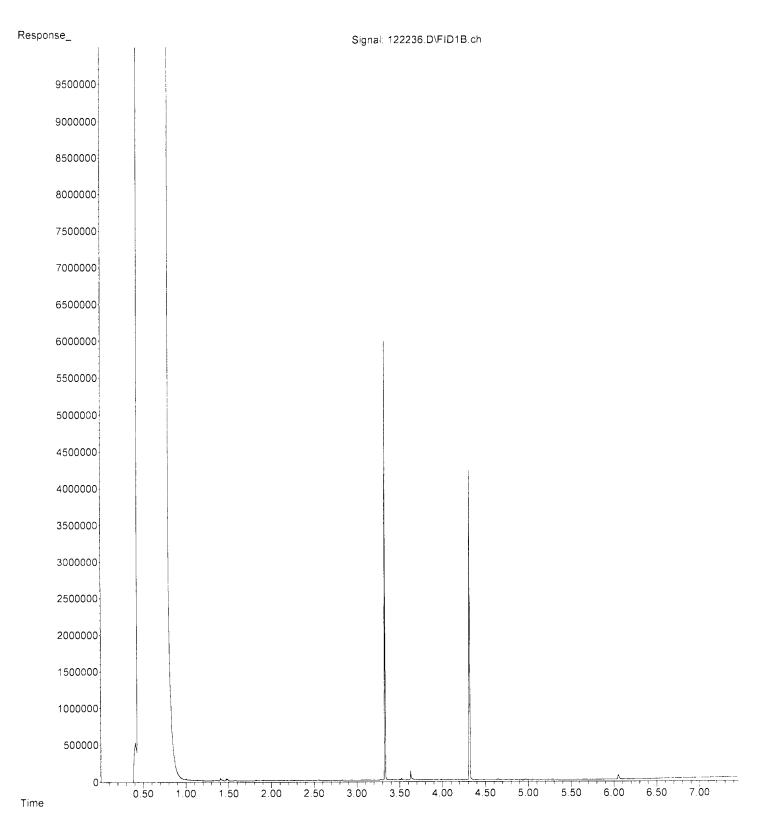
Operator : TL

Acquired : 22 Dec 2022 02:02 pm using AcqMethod DX.M

Instrument: GC14
Sample Name: 1/212334-17
Misc Info: Mallit

Misc Info: Mulzitt ERR

File :P:\Proc_GC14\12-22-22\122236.D

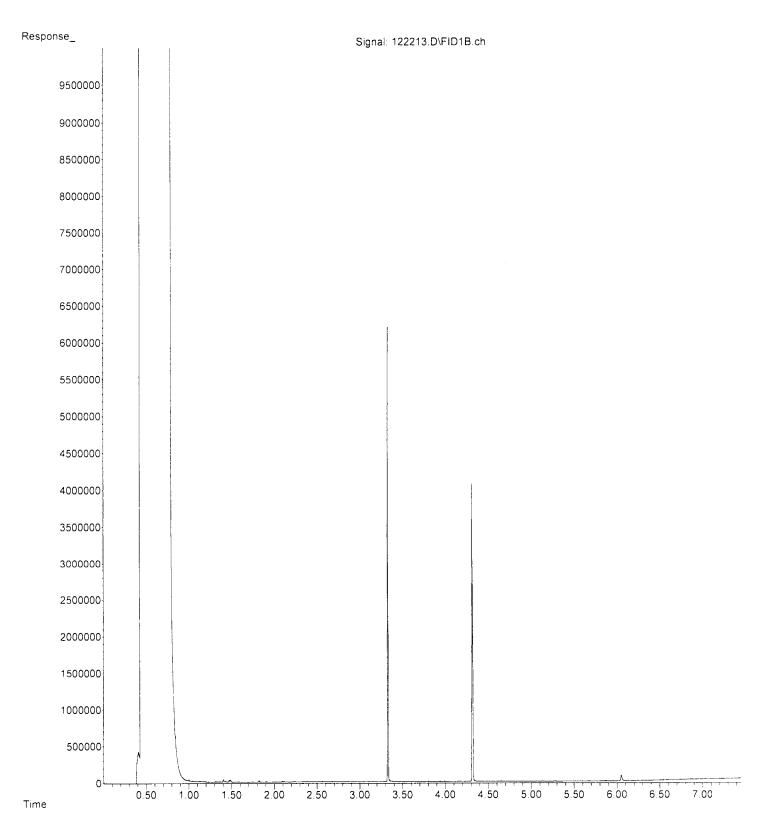

Operator : TL

Acquired : 22 Dec 2022 02:13 pm using AcqMethod DX.M

Instrument : GC14

Sample Name: 1212334-18 Misc Info : 121237

Misc Info: Mo(27) ERR


File :P:\Proc_GC14\12-22-22\122213.D

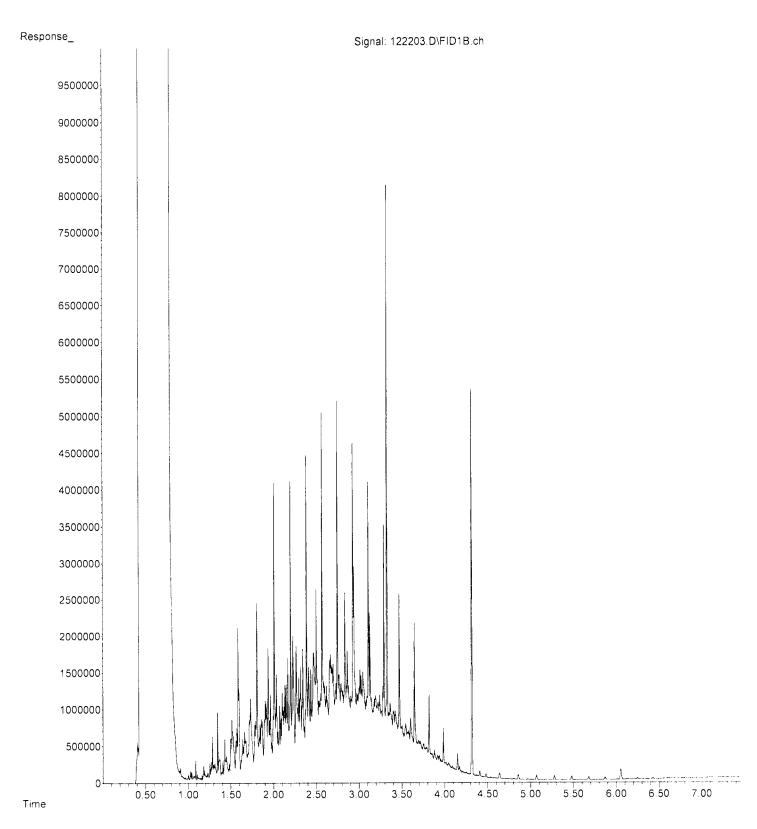
Operator : TL

Acquired : 22 Dec 2022 09:36 am using AcqMethod DX.M

Instrument : GC14
Sample Name: 02-3056 mb

Misc Info : ERR

File :P:\Proc_GC14\12-22-22\122203.D


Operator : TL

Acquired : 22 Dec 2022 07:35 am using AcqMethod DX.M

Instrument : GC14

Sample Name: 500 Dx 67-143B

Misc Info : ERR

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 3, 2023

Jacob Letts, Project Manager GeoEngineers, Inc 1101 Fawcett Ave 200 Tacoma, WA 98402

Dear Mr Letts:

Included are the results from the testing of material submitted on December 21, 2022 from the C-1 RI 5530-014-02, F&BI 212333 project. There are 26 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Katy Ataturk GNR0103R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 21, 2022 by Friedman & Bruya, Inc. from the GeoEngineers, Inc C-1 RI 5530-014-02, F&BI 212333 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	GeoEngineers, Inc
212333 -01	C-1 RI-6-4
212333 -02	C-1 RI-6-8
212333 -03	C-1 RI-7-8
212333 -04	C-1 RI-8-4
212333 -05	C-1 RI-8-8
212333 -06	C-1 RI-9-4
212333 -07	C-1 RI-9-8
212333 -08	C-1 RI-12-4
212333 -09	C-1 RI-12-10
212333 -10	C-1 RI-12-20
212333 -11	C-1 RI-12-25
212333 -12	C-1 RI-12-30
212333 -13	C-1 RI-12-35
212333 -14	TB_20221220

The 8260D soil acetone calibration standard failed the acceptance criteria. The data were flagged accordingly.

Dichlorodifluoromethane did not meet the acceptance criteria in the 8260D soil matrix spike sample or the associated relative percent difference. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

The 8260D laboratory control sample exceeded the acceptance criteria for several analytes. The compounds were not detected, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/21/22

Project: C-1 RI 5530-014-02, F&BI 212333

Date Extracted: 12/27/22

Date Analyzed: 12/27/22 and 12/28/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
C-1 RI-6-4 212333-01	<5	99
C-1 RI-6-8 212333-02	6.2	84
C-1 RI-7-8 212333-03	<5	94
C-1 RI-8-4 212333-04	<5	94
C-1 RI-8-8 212333-05	<5	87
C-1 RI-9-4 212333-06	<5	95
C-1 RI-9-8 ²¹²³³³⁻⁰⁷	<5	90
C-1 RI-12-4 212333-08	<5	90
C-1 RI-12-10 212333-09	<5	85
C-1 RI-12-20 212333-10	<5	97

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/21/22

Project: C-1 RI 5530-014-02, F&BI 212333

Date Extracted: 12/27/22

Date Analyzed: 12/27/22 and 12/28/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
C-1 RI-12-25 212333-11	<5	91
Method Blank	<5	95

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/21/22

Project: C-1 RI 5530-014-02, F&BI 212333

Date Extracted: 12/22/22 Date Analyzed: 12/22/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36})}$	Surrogate (% Recovery) (Limit 50-150)
C-1 RI-6-4 212333-01	<50	<250	122
C-1 RI-6-8 212333-02	<50	<250	101
C-1 RI-7-8 212333-03	<50	<250	106
C-1 RI-8-4 212333-04	<50	<250	114
C-1 RI-8-8 212333-05	<50	<250	114
C-1 RI-9-4 212333-06	<50	<250	107
C-1 RI-9-8 212333-07	<50	<250	108
C-1 RI-12-4 212333-08	<50	<250	110
C-1 RI-12-10 212333-09	<50	<250	125
C-1 RI-12-20 212333-10	<50	<250	105

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/21/22

Project: C-1 RI 5530-014-02, F&BI 212333

Date Extracted: 12/22/22 Date Analyzed: 12/22/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 50-150)
C-1 RI-12-25 212333-11	<50	<250	121
Method Blank 02-3053 MB	<50	<250	110

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 RI-6-4 Client: GeoEngineers, Inc

Date Received: 12/21/22 Project: C-1 RI 5530-014-02, F&BI 212333

 Date Extracted:
 12/23/22
 Lab ID:
 212333-01 1/0.25

 Date Analyzed:
 12/23/22
 Data File:
 122309.D

 Matrix:
 Soil
 Instrument:
 GCMS13

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	105	84	120
Toluene-d8	101	73	128
4-Bromofluorobenzene	106	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	0.033
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	0.34
Hexane	< 0.25	o-Xylene	0.078
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 RI-6-8 Client: GeoEngineers, Inc

Date Received: 12/21/22 Project: C-1 RI 5530-014-02, F&BI 212333

 Date Extracted:
 12/23/22
 Lab ID:
 212333-02 1/0.25

 Date Analyzed:
 12/23/22
 Data File:
 122310.D

 Matrix:
 Soil
 Instrument:
 GCMS13

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	84	120
Toluene-d8	99	73	128
4-Bromofluorobenzene	104	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	0.0058
Hexane	< 0.25	o-Xylene	0.0016
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	0.0027	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.0027	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 RI-7-8 Client: GeoEngineers, Inc

Date Received: 12/21/22 Project: C-1 RI 5530-014-02, F&BI 212333

 Date Extracted:
 12/23/22
 Lab ID:
 212333-03 1/0.25

 Date Analyzed:
 12/23/22
 Data File:
 122311.D

 Matrix:
 Soil
 Instrument:
 GCMS13

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	98	84	120
Toluene-d8	89	73	128
4-Bromofluorobenzene	102	57	146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	0.0023
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 RI-8-4 Client: GeoEngineers, Inc

Date Received: 12/21/22 Project: C-1 RI 5530-014-02, F&BI 212333

 Date Extracted:
 12/23/22
 Lab ID:
 212333-04 1/0.25

 Date Analyzed:
 12/23/22
 Data File:
 122312.D

 Matrix:
 Soil
 Instrument:
 GCMS13

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	107	84	120
Toluene-d8	100	73	128
4-Bromofluorobenzene	107	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	0.0041
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 RI-8-8 Client: GeoEngineers, Inc

Date Received: 12/21/22 Project: C-1 RI 5530-014-02, F&BI 212333

 Date Extracted:
 12/23/22
 Lab ID:
 212333-05 1/0.25

 Date Analyzed:
 12/23/22
 Data File:
 122313.D

 Matrix:
 Soil
 Instrument:
 GCMS13

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	93	84	120
Toluene-d8	92	73	128
4-Bromofluorobenzene	104	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	0.0035
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	0.0068
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	0.0011	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	0.0027	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 RI-9-4 Client: GeoEngineers, Inc

C-1 RI 5530-014-02, F&BI 212333 Date Received: 12/21/22 Project:

GCMS13

12/23/22 Lab ID: Date Extracted: 212333-06 1/0.25 Date Analyzed: 12/23/22 Data File: 122314.D

Instrument: Units: mg/kg (ppm) Dry Weight Operator: lm

Soil

Matrix:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	84	120
Toluene-d8	99	73	128
4-Bromofluorobenzene	101	57	146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 RI-9-8 Client: GeoEngineers, Inc

Date Received: 12/21/22 Project: C-1 RI 5530-014-02, F&BI 212333

 Date Extracted:
 12/23/22
 Lab ID:
 212333-07 1/0.25

 Date Analyzed:
 12/23/22
 Data File:
 122315.D

 Matrix:
 Soil
 Instrument:
 GCMS13

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	84	120
Toluene-d8	91	73	128
4-Bromofluorobenzene	104	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	<0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	0.0013	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 RI-12-4 Client: GeoEngineers, Inc

Date Received: 12/21/22 Project: C-1 RI 5530-014-02, F&BI 212333

Date Extracted: 12/23/22 Lab ID: 212333-08 1/0.25 Date Analyzed: 12/23/22 Data File: 122316.D

Matrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: lm

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	84	120
Toluene-d8	97	73	128
4-Bromofluorobenzene	105	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	<0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	0.051	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.61	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 RI-12-10 Client: GeoEngineers, Inc

Date Received: 12/21/22 Project: C-1 RI 5530-014-02, F&BI 212333

 Date Extracted:
 12/23/22
 Lab ID:
 212333-09 1/0.25

 Date Analyzed:
 12/23/22
 Data File:
 122317.D

 Matrix:
 Soil
 Instrument:
 GCMS13

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	84	120
Toluene-d8	99	73	128
4-Bromofluorobenzene	102	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	0.0077	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.075	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 RI-12-20 Client: GeoEngineers, Inc

Date Received: 12/21/22 Project: C-1 RI 5530-014-02, F&BI 212333

 Date Extracted:
 12/23/22
 Lab ID:
 212333-10 1/0.25

 Date Analyzed:
 12/23/22
 Data File:
 122318.D

 Matrix:
 Soil
 Instrument:
 GCMS13

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	91	84	120
Toluene-d8	90	73	128
4-Bromofluorobenzene	105	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	<0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	0.0074	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.058	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C-1 RI-12-25 Client: GeoEngineers, Inc

Date Received: 12/21/22 Project: C-1 RI 5530-014-02, F&BI 212333

 Date Extracted:
 12/23/22
 Lab ID:
 212333-11 1/0.25

 Date Analyzed:
 12/23/22
 Data File:
 122319.D

 Matrix:
 Soil
 Instrument:
 GCMS13

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	84	120
Toluene-d8	98	73	128
4-Bromofluorobenzene	101	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: Method Blank Client: GeoEngineers, Inc

Date Received: Not Applicable Project: C-1 RI 5530-014-02, F&BI 212333

Date Extracted: 12/23/22 Lab ID: 02-2981 mb2 1/0.25

Date Analyzed: 12/23/22 Data File: 122308.D Matrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: lm

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 93 84 120 Toluene-d8 91 73 128 4-Bromofluorobenzene 103 57 146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: TB 20221220 Client: Geo.	Engineers, In	1C
--	---------------	----

Date Received: 12/21/22 Project: C-1 RI 5530-014-02, F&BI 212333

Lab ID: Date Extracted: 12/28/22 212333-14 Date Analyzed: 12/28/22 Data File: 122810.DMatrix: Instrument: GCMS11 Water Units: ug/L (ppb) Operator: LM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	78	126
Toluene-d8	96	84	115
4-Bromofluorobenzene	99	72	130

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Cheff Dample 1D. Method Diank Cheff, Georgiagneers, inc	Client Sample ID:	Method Blank	Client:	GeoEngineers, Inc
---	-------------------	--------------	---------	-------------------

Date Received: Not Applicable Project: C-1 RI 5530-014-02, F&BI 212333

Date Extracted:12/28/22Lab ID:02-2986 mb2Date Analyzed:12/28/22Data File:122805.DMatrix:WaterInstrument:GCMS11Units:ug/L (ppb)Operator:LM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	78	126
Toluene-d8	96	84	115
4-Bromofluorobenzene	103	72	130

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/21/22

Project: C-1 RI 5530-014-02, F&BI 212333

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 212333-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	90	61-153	_

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/21/22

Project: C-1 RI 5530-014-02, F&BI 212333

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 212333-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5.000	< 50	92	88	70-130	4

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	83	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/21/22

Project: C-1 RI 5530-014-02, F&BI 212333

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 212350-01 (Matrix Spike)

·	, ,		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	<0.5	8 vo	10	10-142	22 vo
Chloromethane	mg/kg (ppm)	1	< 0.5	27	27	10-126	0
Vinyl chloride	mg/kg (ppm)	1	< 0.05	27 67	26	10-138	4 1
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	1 1	<0.5 <0.5	42	68 38	10-163 10-176	10
Trichlorofluoromethane	mg/kg (ppm)	1	< 0.5	34	31	10-176	9
Acetone	mg/kg (ppm)	5	<5	97	92	10-176	5
1.1-Dichloroethene	mg/kg (ppm)	1	< 0.05	42	39	10-160	7
Hexane	mg/kg (ppm)	1	< 0.25	27	31	10-137	14
Methylene chloride	mg/kg (ppm)	1	< 0.5	62	56	10-156	10
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	58	51	21-145	13
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	50	46	14-137	8
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	55	50	19-140	10
2,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	64	55	10-158	15
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	58	51	25-135	13
Chloroform 2-Butanone (MEK)	mg/kg (ppm)	1 5	<0.05 <1	61 51	53 48	21-145 $19-147$	14 6
1,2-Dichloroethane (EDC)	mg/kg (ppm) mg/kg (ppm)	5 1	<0.05	60	48 55	19-147 12-160	9
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	53	48	10-156	10
1.1-Dichloropropene	mg/kg (ppm)	1	< 0.05	53	50	17-140	6
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	55	49	9-164	12
Benzene	mg/kg (ppm)	1	< 0.03	57	52	29-129	9
Trichloroethene	mg/kg (ppm)	1	< 0.02	57	50	21-139	13
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	60	55	30-135	9
Bromodichloromethane	mg/kg (ppm)	1	< 0.05	57	51	23-155	11
Dibromomethane	mg/kg (ppm)	1	< 0.05	62	54	23-145	14
4-Methyl-2-pentanone	mg/kg (ppm)	5	<1	56	51	24-155	9
cis-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	57	53	28-144	7
Toluene	mg/kg (ppm)	1	< 0.05	54	50	35-130	8
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.05	53 58	50 52	26-149 10-205	6 11
2-Hexanone	mg/kg (ppm)	5	< 0.5	44	42	15-166	5
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	55	52	31-137	6
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	54	51	20-133	6
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	59	53	28-150	11
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	55	54	28-142	2
Chlorobenzene	mg/kg (ppm)	1	< 0.05	57	52	32-129	9
Ethylbenzene	mg/kg (ppm)	1	< 0.05	55	50	32-137	10
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	56	50	31-143	11
m,p-Xylene	mg/kg (ppm)	2	<0.1	56	50	34-136	11
o-Xylene Styrene	mg/kg (ppm)	1 1	<0.05 <0.05	57 52	51 48	33-134 35-137	11 8
Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	1	< 0.05	54	48	31-142	12
Bromoform	mg/kg (ppm)	1	< 0.05	59	54	21-156	9
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	55	51	23-146	8
Bromobenzene	mg/kg (ppm)	1	< 0.05	54	52	34-130	4
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	55	51	18-149	8
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	57	52	28-140	9
1,2,3-Trichloropropane	mg/kg (ppm)	1	< 0.05	55	53	25-144	4
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	56	52	31-134	7
4-Chlorotoluene	mg/kg (ppm)	1	< 0.05	55	50	31-136	10
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	56	51	30-137	9
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	56 56	50	10-182	11
sec-Butylbenzene p-Isopropyltoluene	mg/kg (ppm)	1 1	<0.05 <0.05	56 55	51 49	23-145 $21-149$	9 12
1,3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	< 0.05	55 57	52	30-131	9
1.4-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	55	50	29-129	10
1,2-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	57	51	31-132	11
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	< 0.5	54	52	11-161	4
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	53	47	22-142	12
Hexachlorobutadiene	mg/kg (ppm)	1	< 0.25	51	47	10-142	8
Naphthalene	mg/kg (ppm)	1	< 0.05	53	48	14-157	10
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	53	47	20-144	12

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/21/22

Project: C-1 RI 5530-014-02, F&BI 212333

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Laboratory Code. Laboratory Co	nuoi Sampie	Percent				
	Reporting	Spike Recovery Accepta				
Analyte	Units	Level	LCS	Criteria		
Dichlorodifluoromethane		1	61	10-146		
Chloromethane	mg/kg (ppm) mg/kg (ppm)	1	68	27-133		
Vinvl chloride	mg/kg (ppm)	1	77	22-139		
Bromomethane	mg/kg (ppm)	1	158 vo	38-114		
Chloroethane	mg/kg (ppm)	1	105	9-163		
Trichlorofluoromethane	mg/kg (ppm)	1	100	10-196		
Acetone	mg/kg (ppm)	5	171 vo	52-141		
1,1-Dichloroethene	mg/kg (ppm)	1	95	47-128		
Hexane Mathedana ablasida	mg/kg (ppm)	1 1	$\frac{102}{112}$	43-142		
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	1	104	10-184 60-123		
trans-1,2-Dichloroethene	mg/kg (ppm)	1	100	67-129		
1,1-Dichloroethane	mg/kg (ppm)	1	106	68-115		
2,2-Dichloropropane	mg/kg (ppm)	1	121	52-170		
cis-1,2-Dichloroethene	mg/kg (ppm)	1	104	72-127		
Chloroform	mg/kg (ppm)	1	107	66-120		
2-Butanone (MEK)	mg/kg (ppm)	5	90	30-197		
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	108	56-135		
1,1,1-Trichloroethane	mg/kg (ppm)	1 1	104 106	62-131		
1,1-Dichloropropene Carbon tetrachloride	mg/kg (ppm) mg/kg (ppm)	1	106	69-128 60-139		
Benzene	mg/kg (ppm)	1	105	71-118		
Trichloroethene	mg/kg (ppm)	1	104	63-121		
1,2-Dichloropropane	mg/kg (ppm)	1	109	72-127		
Bromodichloromethane	mg/kg (ppm)	1	104	57-126		
Dibromomethane	mg/kg (ppm)	1	111	62-123		
4-Methyl-2-pentanone	mg/kg (ppm)	5	100	45-145		
cis-1,3-Dichloropropene	mg/kg (ppm)	1 1	106 100	67-122		
Toluene trans-1.3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	1	100	66-126 72-132		
1,1,2-Trichloroethane	mg/kg (ppm)	1	100	64-115		
2-Hexanone	mg/kg (ppm)	5	77	33-152		
1,3-Dichloropropane	mg/kg (ppm)	1	99	72-130		
Tetrachloroethene	mg/kg (ppm)	1	99	72-114		
Dibromochloromethane	mg/kg (ppm)	1	106	55-121		
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	100	74-132		
Chlorobenzene	mg/kg (ppm)	1	101	76-111		
Ethylbenzene 1,1,1,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	1 1	98 98	64-123 64-121		
m,p-Xylene	mg/kg (ppm)	2	100	78-122		
o-Xylene	mg/kg (ppm)	1	101	77-124		
Styrene	mg/kg (ppm)	1	95	74-126		
Isopropylbenzene	mg/kg (ppm)	1	95	76-127		
Bromoform	mg/kg (ppm)	1	106	56-132		
n-Propylbenzene	mg/kg (ppm)	1	100	74-124		
Bromobenzene	mg/kg (ppm)	1 1	100	72-122		
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	1	100 101	76-126 56-143		
1,2,3-Trichloropropane	mg/kg (ppm)	1	101	61-137		
2-Chlorotoluene	mg/kg (ppm)	1	101	74-121		
4-Chlorotoluene	mg/kg (ppm)	1	99	75-122		
tert-Butylbenzene	mg/kg (ppm)	1	102	73-130		
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	101	76-125		
sec-Butylbenzene	mg/kg (ppm)	1	103	71-130		
p-Isopropyltoluene	mg/kg (ppm)	1	101	70-132		
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1 1	103 98	75-121 74-117		
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	100	74-117 76-121		
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	99	58-138		
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	96	64-135		
Hexachlorobutadiene	mg/kg (ppm)	1	95	50-153		
Naphthalene	mg/kg (ppm)	1	98	63-140		
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	94	63-138		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/21/22

Project: C-1 RI 5530-014-02, F&BI 212333

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 212362-02 (Matrix Spike)

Laboratory Code. 212362-02 (Ma	urix spike)					
	ъ	Q .1	a 1	Percent		
	Reporting	Spike	Sample	Recovery	Acceptance	
Analyte	Units	Level	Result	MS	Criteria	
Dichlorodifluoromethane	ug/L (ppb)	10	<10	109	50-150	
Chloromethane	ug/L (ppb)	10	<10	101	50-150	
Vinyl chloride	ug/L (ppb)	10	0.51	115	16-176	
Bromomethane	ug/L (ppb)	10	<1	117	10-193	
Chloroethane Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	10 10	<1 <1	123 117	50-150 50-150	
Acetone	ug/L (ppb) ug/L (ppb)	50	<10	60	15-179	
1,1-Dichloroethene	ug/L (ppb)	10	<1	110	50-150	
Hexane	ug/L (ppb)	10	<1	103	49-161	
Methylene chloride	ug/L (ppb)	10	<5	102	40-143	
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	108	50-150	
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	104	50-150	
1,1-Dichloroethane	ug/L (ppb)	10	<1	106	50-150	
2,2-Dichloropropane	ug/L (ppb)	10	<1	141	10-335	
cis-1,2-Dichloroethene Chloroform	ug/L (ppb)	10 10	<1 <1	$\frac{105}{102}$	50-150 50-150	
2-Butanone (MEK)	ug/L (ppb) ug/L (ppb)	50	<10	98	34-168	
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	<10	117	50-150	
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	105	50-150	
1,1-Dichloropropene	ug/L (ppb)	10	<1	107	50-150	
Carbon tetrachloride	ug/L (ppb)	10	<1	101	50-150	
Benzene	ug/L (ppb)	10	< 0.35	106	50-150	
Trichloroethene	ug/L (ppb)	10	<1	101	43-133	
1,2-Dichloropropane	ug/L (ppb)	10	<1	106	50-150	
Bromodichloromethane	ug/L (ppb)	10	<1	107	50-150	
Dibromomethane	ug/L (ppb)	10 50	<1 <10	104 108	50-150 50-150	
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	50 10	<10 <1	108	48-145	
Toluene	ug/L (ppb)	10	<1	107	50-150	
trans-1,3-Dichloropropene	ug/L (ppb)	10	<1	109	37-152	
1,1,2-Trichloroethane	ug/L (ppb)	10	<1	108	50-150	
2-Hexanone	ug/L (ppb)	50	<10	112	50-150	
1,3-Dichloropropane	ug/L (ppb)	10	<1	102	50-150	
Tetrachloroethene	ug/L (ppb)	10	<1	107	50-150	
Dibromochloromethane	ug/L (ppb)	10	<1	105	33-164	
1,2-Dibromoethane (EDB)	ug/L (ppb)	10 10	<1 <1	106 102	50-150	
Chlorobenzene Ethylbenzene	ug/L (ppb) ug/L (ppb)	10	<1 <1	102	50-150 50-150	
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	107	50-150	
m,p-Xylene	ug/L (ppb)	20	<2	108	50-150	
o-Xylene	ug/L (ppb)	10	<1	106	50-150	
Styrene	ug/L (ppb)	10	<1	101	50-150	
Isopropylbenzene	ug/L (ppb)	10	<1	103	50-150	
Bromoform	ug/L (ppb)	10	<1	107	23-161	
n-Propylbenzene	ug/L (ppb)	10	<1	106	50-150	
Bromobenzene	ug/L (ppb)	10	<1	100	50-150	
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10 10	<1 <1	104 115	50-150 10-235	
1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	10	<1	110	33-151	
2-Chlorotoluene	ug/L (ppb)	10	<1	100	50-150	
4-Chlorotoluene	ug/L (ppb)	10	<1	108	50-150	
tert-Butylbenzene	ug/L (ppb)	10	<1	104	50-150	
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	103	50-150	
sec-Butylbenzene	ug/L (ppb)	10	<1	104	46-139	
p-Isopropyltoluene	ug/L (ppb)	10	<1	103	46-140	
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	104	50-150	
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb)	10 10	<1 <1	103 103	50-150 50-150	
1,2-Dichloropenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	10	<10	110	50-150 50-150	
1,2,4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<10	101	50-150	
Hexachlorobutadiene	ug/L (ppb)	10	<1	101	42-150	
Naphthalene	ug/L (ppb)	10	<1	102	50-150	
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	100	44-155	

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/21/22

Project: C-1 RI 5530-014-02, F&BI 212333

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Edsoratory court Edsoratory cor	itioi zampio		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	100	95	70-130	5
Chloromethane	ug/L (ppb)	10	91	91	70-130	0
Vinyl chloride	ug/L (ppb)	10	109	103	70-130	6
Bromomethane	ug/L (ppb)	10	114	108	28-182	5
Chloroethane	ug/L (ppb)	10	116	109	70-130	6
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	10 50	111 54	94 53	70-130 42-155	$^{17}_2$
1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	10	108	100	70-130	8
Hexane	ug/L (ppb)	10	107	99	50-161	8
Methylene chloride	ug/L (ppb)	10	108	100	29-192	8
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	105	97	70-130	8
trans-1,2-Dichloroethene	ug/L (ppb)	10	102	96	70-130	6
1,1-Dichloroethane	ug/L (ppb)	10	107	99	70-130	8
2,2-Dichloropropane	ug/L (ppb)	10	135 vo	124	70-130	8
cis-1,2-Dichloroethene	ug/L (ppb)	10	104	97	70-130	7
Chloroform 2-Butanone (MEK)	ug/L (ppb)	10 50	104 82	97 89	70-130 50-157	7 8
1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	10	82 117	89 109	70-130	8 7
1.1.1-Trichloroethane	ug/L (ppb) ug/L (ppb)	10	103	96	70-130	7
1,1-Dichloropropene	ug/L (ppb)	10	106	99	70-130	7
Carbon tetrachloride	ug/L (ppb)	10	100	92	70-130	8
Benzene	ug/L (ppb)	10	106	98	70-130	8
Trichloroethene	ug/L (ppb)	10	102	95	70-130	7
1,2-Dichloropropane	ug/L (ppb)	10	100	98	70-130	2
Bromodichloromethane	ug/L (ppb)	10	103	100	70-130	3
Dibromomethane	ug/L (ppb)	10	102	95	70-130	7
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	50 10	100 105	93 97	70-130 70-130	7 8
Toluene	ug/L (ppb) ug/L (ppb)	10	107	99	70-130	8
trans-1,3-Dichloropropene	ug/L (ppb)	10	108	99	70-130	9
1,1,2-Trichloroethane	ug/L (ppb)	10	106	99	70-130	7
2-Hexanone	ug/L (ppb)	50	102	100	69-130	2
1,3-Dichloropropane	ug/L (ppb)	10	107	99	70-130	8
Tetrachloroethene	ug/L (ppb)	10	106	96	70-130	10
Dibromochloromethane	ug/L (ppb)	10	103	94	63-142	9
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	102	95	70-130	7
Chlorobenzene Ethylbenzene	ug/L (ppb) ug/L (ppb)	10 10	98 108	94 101	70-130 70-130	4 7
1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	108	95	70-130	9
m,p-Xylene	ug/L (ppb)	20	106	99	70-130	7
o-Xylene	ug/L (ppb)	10	106	96	70-130	10
Styrene	ug/L (ppb)	10	101	93	70-130	8
Isopropylbenzene	ug/L (ppb)	10	103	94	70-130	9
Bromoform	ug/L (ppb)	10	103	92	50-157	11
n-Propylbenzene	ug/L (ppb)	10	106	100	70-130	6
Bromobenzene	ug/L (ppb)	10	101	95	70-130	6
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10 10	104 112	98 107	52-150 70-130	6 5
1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	10	107	104	70-130	3
2-Chlorotoluene	ug/L (ppb)	10	105	99	70-130	6
4-Chlorotoluene	ug/L (ppb)	10	107	101	70-130	6
tert-Butylbenzene	ug/L (ppb)	10	102	96	70-130	6
1,2,4-Trimethylbenzene	ug/L (ppb)	10	103	97	70-130	6
sec-Butylbenzene	ug/L (ppb)	10	104	98	70-130	6
p-Isopropyltoluene	ug/L (ppb)	10	104	98	70-130	6
1,3-Dichlorobenzene	ug/L (ppb)	10	102	96	70-130	6
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10 10	100 100	96 96	70-130 70-130	4
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	10	104	103	70-130	1
1,2,4-Trichlorobenzene	ug/L (ppb)	10	99	91	70-130	8
Hexachlorobutadiene	ug/L (ppb)	10	102	92	70-130	10
Naphthalene	ug/L (ppb)	10	97	90	70-130	7
1,2,3-Trichlorobenzene	ug/L (ppb)	10	96	92	69-143	4

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

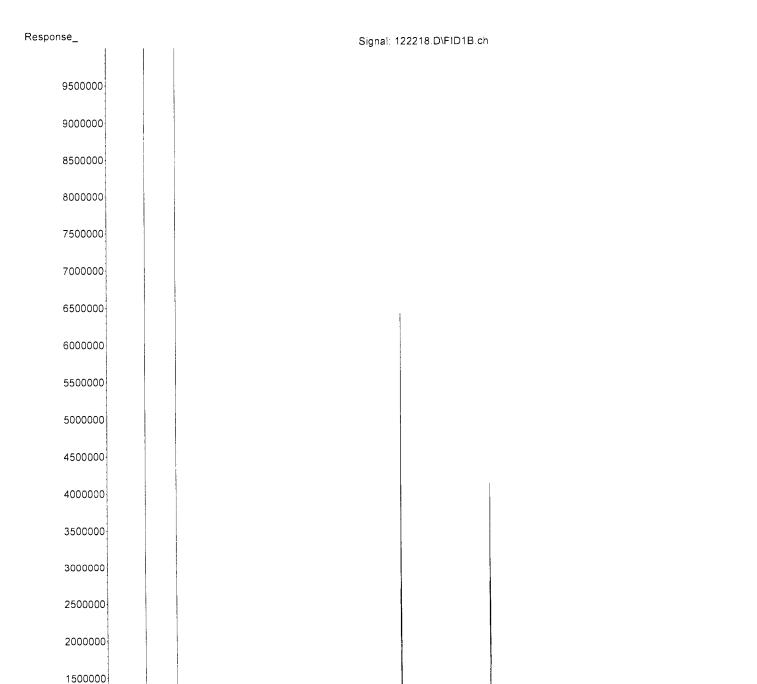
Company () LOTHO WELLS City, State, ZIP Seathy, WA 9817 Address 2101 AT AVE STETISD Report to Jacob Letts Phone. (-I Friedman & Bruya, Inc. Ph. (206) 285-8282 \overline{C} $\frac{1}{2}$ 1 J-1 R1-8-4 -1 R-12-4 12-10 R1-6-4 R1-7-8 R1-6-8 R1-9-8 P1-8-8 R1-12-20 R1-9-4 Sample ID Email Jiets Egoths rus | Project specific RLs? - Yes / No Relinquished by: Relinquished by: Received by: Received by: Lab ID 2 5 3 7 ھ 6 0 I A-E Sampled 11/10/11 Date SAMPLE CHAIN OF CUSTODY 830 Sampled 930 <u>08</u>b 910 07-8 SAMPLERS (signature) REMARKS PROJECT NAME 030 07C) Time C-1 RI 1240 200 975 Sample Type ഗ AMHPHAM Jars # of J PRINT NAME Ataktura NWTPH-Dx NWTPH-Gx 5530-014-02 BTEX EPA 8021 NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 P0# \leftarrow 12/21/22 PAHs EPA 8270 bestryness PCBs EPA 8082 Somples received at COMPANY F8 B Standard turnaround Rush charges authorized by: ☐ Archive samples Default: Dispose after 30 days GS/VW2/VS-DX Page # 1 of 2
TURNAROUND TIME SAMPLE DISPOSAL 1/W/n 12/21/22 DATE Notes 10:57 0900 TIME

Friedma n & Bruya, Inc. Ph. (206) 285-8282		TB 2021720	C-1 R1-12-30 C-1 R1-12-35) 	City, State, ZIP Email	Alass Report To CiCOb Company Cit!
Relinquished by: Received by: Received by: Received by:		144-8	12 (320 13 (340	Date Sampled		SAMPI SAMI PRODE
RINT NAME Kotz Hartwk AMHAHAM				Sample Sample Type d ars of NWTPH-Dx NWTPH-Gx BTEX EPA 802 NWTPH-HCII		SAMPLE CHAIN OF CUSTORY SAMPLERS (signature) PROJECT NAME THE STATE S
(3E) F8 3 12 Sproples received at E			××	PAHs EPA 826 PAHs EPA 827 PCBs EPA 808	LYSES REQUEST	Page # 2 of 2 Page # 2 of 2 Page # 2 of 2 PURNAROUND TIME Standard turnaround RUSH Rush charges authorized by: SAMPLE DISPOSAL Archive samples
2 2	DATE TIME	(AP)		Notes	after 30 days	of 2. Of 2. UD TIME ound orized by: SPOSAL

File :P:\Proc_GC10\12-22-22\122218.D

Operator : TL

Acquired : 22 Dec 2022 11:00 am using AcqMethod DX.M


Instrument : GC10
Sample Name: 212333-01

Misc Info : Vial Number: 20

1000000

500000

Time

2.00

1.00

0.50

1.50

2.50

3.00

3.50

4.00

4.50

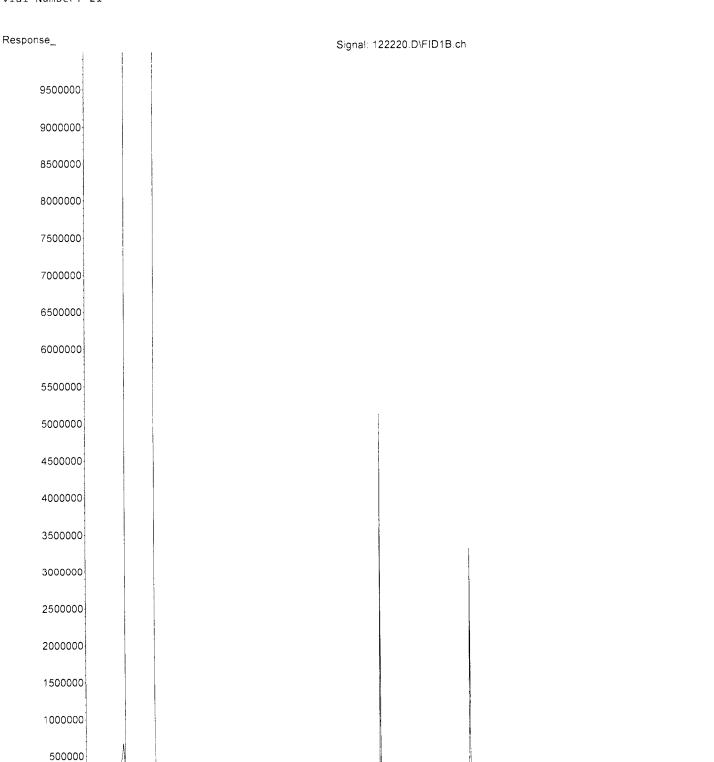
5.00

5.50

6.00

6.50

7.00


File :P:\Proc_GC10\12-22-22\122220.D

Operator : TL

Acquired : 22 Dec 2022 11:23 am using AcqMethod DX.M

Instrument : GC10
Sample Name: 212333-02

Misc Info : Vial Number: 21

4.00

3.50

2.50

1.50

1.00

0.50

Time

2.00

3.00

4.50

5.00

5.50

6.00

6.50

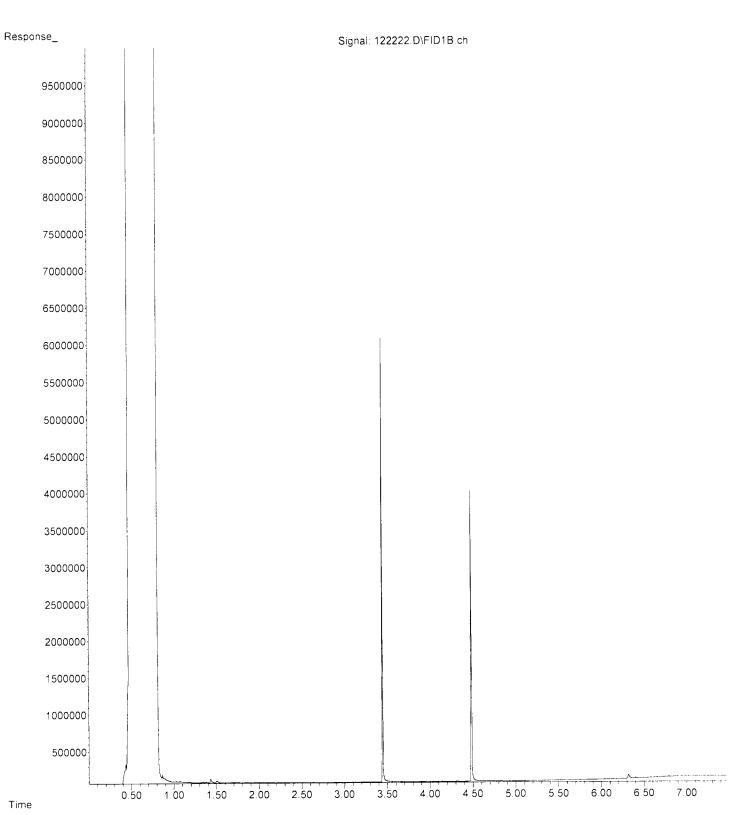
7.00


:P:\Proc_GC10\12-22-22\122221.D File

Operator : TL

Acquired : 22 Dec 2022 11:34 am using AcqMethod DX.M

Instrument : GC10 Sample Name: 212333-03

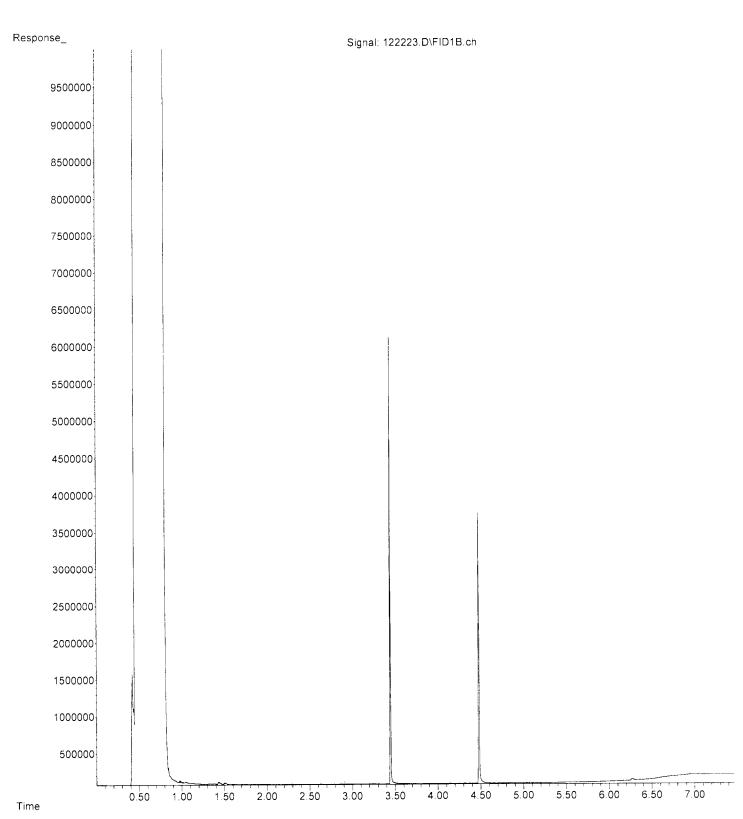


File :P:\Proc_GC10\12-22-22\122222.D

Operator : TL

Acquired : 22 Dec 2022 11:46 am using AcqMethod DX.M

Instrument : GC10 Sample Name: 212333-04



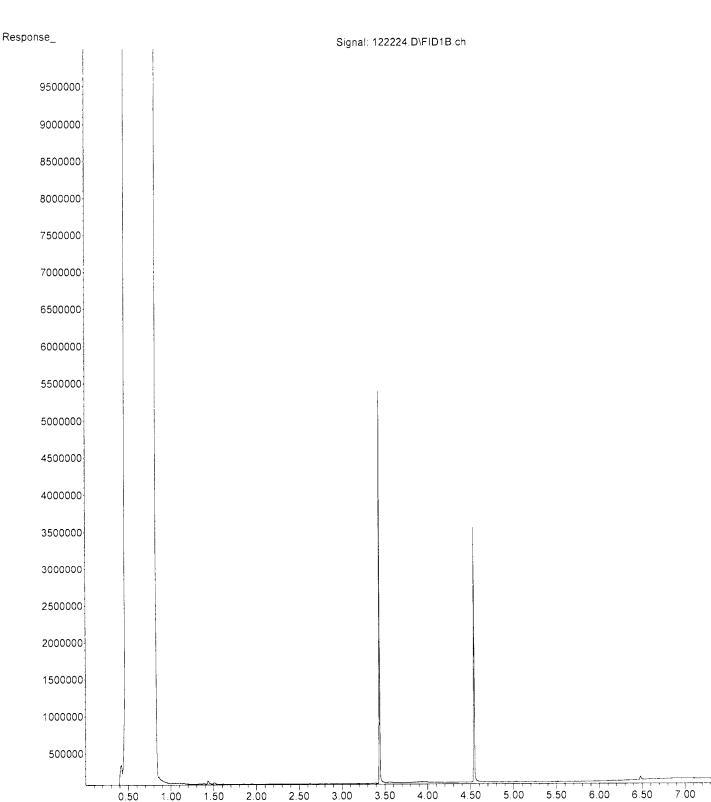
File :P:\Proc_GC10\12-22-22\122223.D

Operator : TL

Acquired : 22 Dec 2022 11:58 am using AcqMethod DX.M

Instrument : GC10 Sample Name: 212333-05

File :P:\Proc_GC10\12-22-22\122224.D

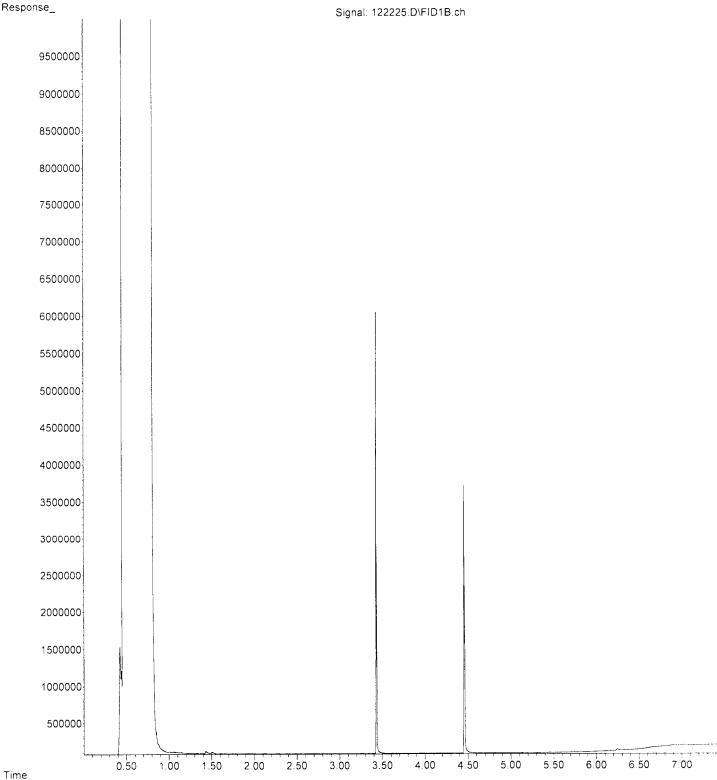

Operator : TL

Acquired : 22 Dec 2022 12:09 pm using AcqMethod DX.M

Instrument : GC10
Sample Name: 212333-06

Misc Info : Vial Number: 25

Time


File :P:\Proc_GC10\12-22-22\122225.D

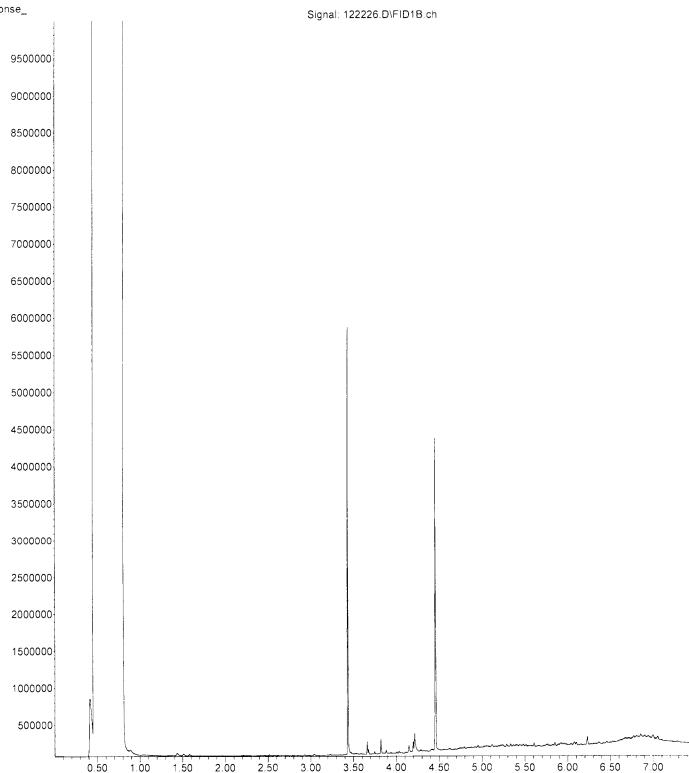
Operator : TL

Acquired : 22 Dec 2022 12:21 pm using AcqMethod DX.M

Instrument : GC10 Sample Name: 212333-07

File :P:\Proc_GC10\12-22-22\122226.D

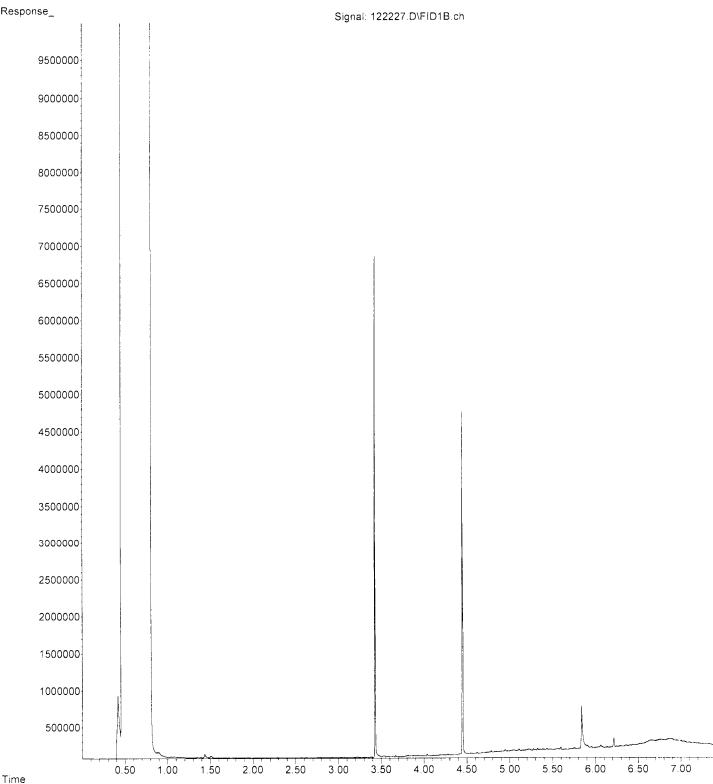
Operator : TL


Acquired : 22 Dec 2022 12:32 pm using AcqMethod DX.M

Instrument : GC10
Sample Name: 212333-08

Misc Info : Vial Number: 27

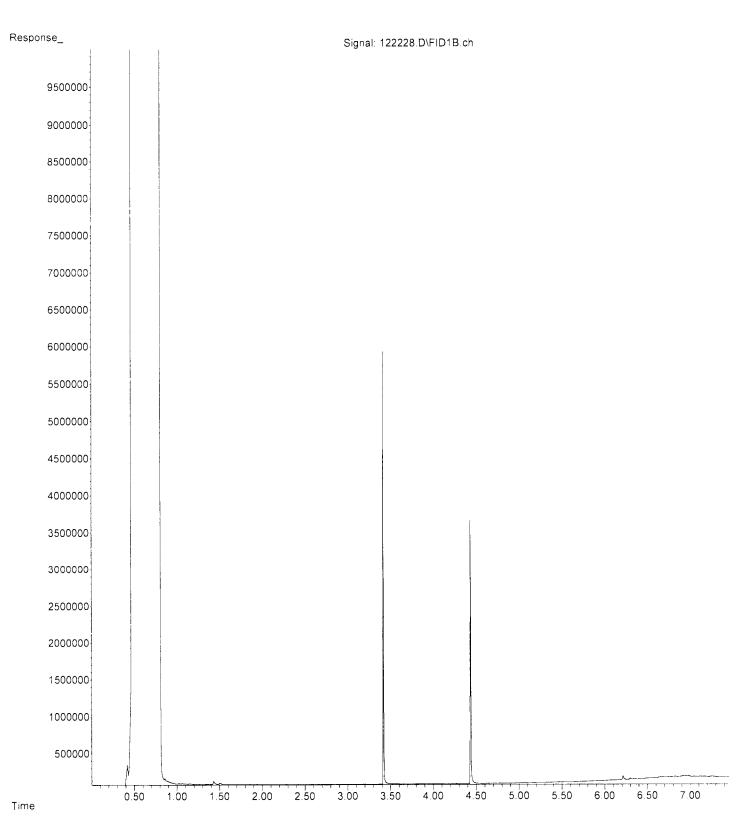
Time


File :P:\Proc_GC10\12-22-22\122227.D

Operator : TL

Acquired : 22 Dec 2022 12:43 pm using AcqMethod DX.M

Instrument : GC10 Sample Name: 212333-09



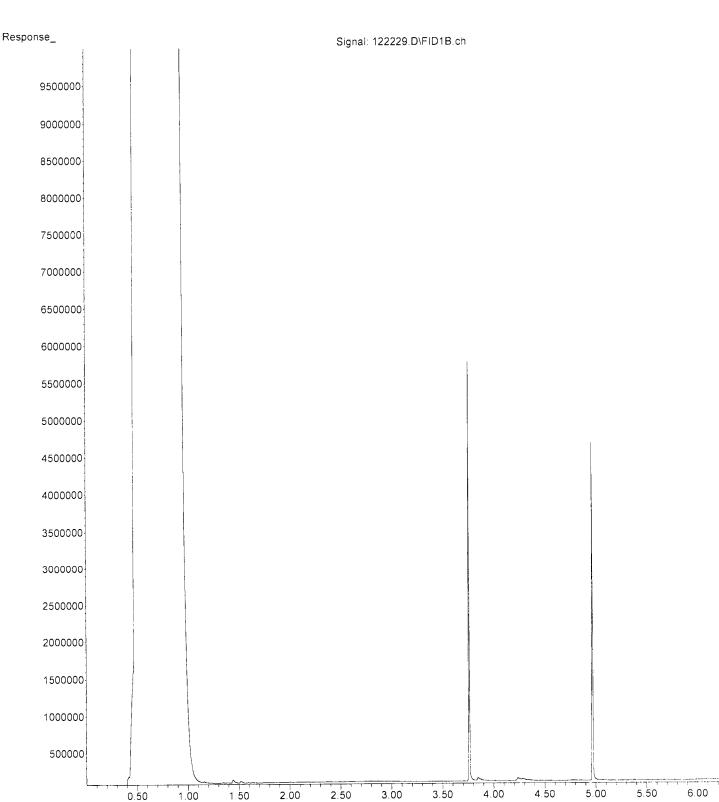
File :P:\Proc_GC10\12-22-22\122228.D

Operator : TL

Acquired : 22 Dec 2022 12:55 pm using AcqMethod DX.M

Instrument : GC10
Sample Name: 212333-10

File :P:\Proc_GC10\12-22-22\122229.D

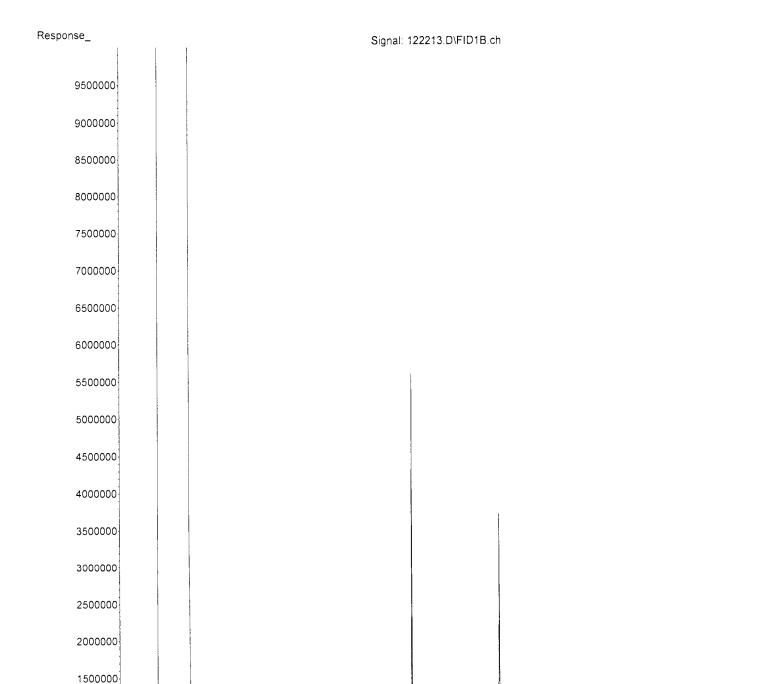

Operator : TL

Acquired : 22 Dec 2022 01:06 pm using AcqMethod DX.M

Instrument : GC10
Sample Name: 212333-11

Misc Info : Vial Number: 30

Time


File :P:\Proc_GC10\12-22-22\122213.D

Operator : TL

Acquired : 22 Dec 2022 09:59 am using AcqMethod DX.M

Instrument : GC10 Sample Name: 02-3053 mb

Misc Info : Vial Number: 15

4.00

4.50

5.00

5.50

6.00

6.50

7.00

3.50

2 50

2.00

1.00

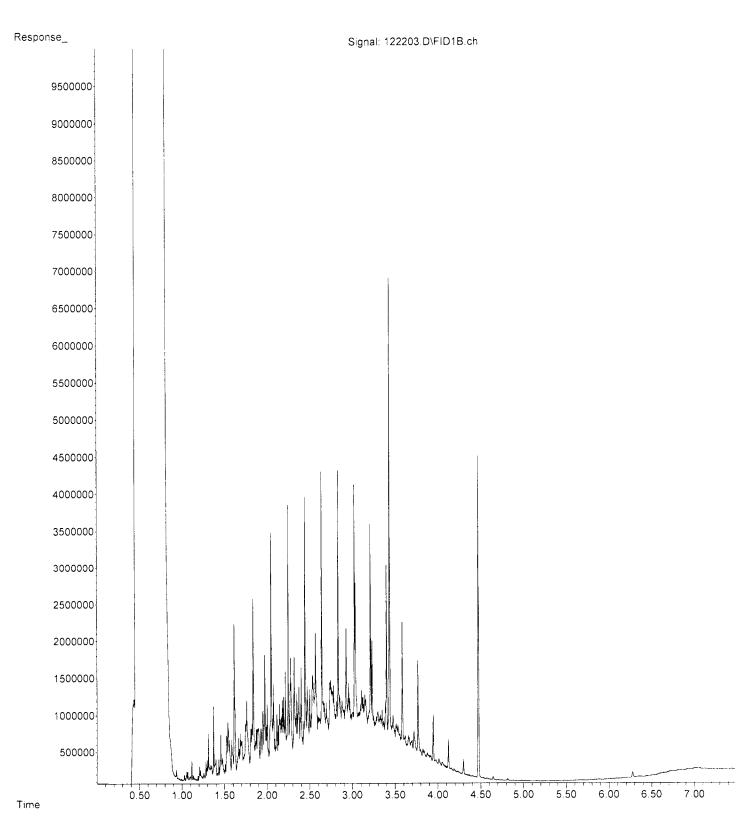
0.50

1.50

3.00

1000000

500000


File :P:\Proc_GC10\12-22-22\122203.D

Operator : TL

Acquired : 22 Dec 2022 08:04 am using AcqMethod DX.M

Instrument : GC10

Sample Name: 500 DX 67-143B

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 3, 2023

Jacob Letts, Project Manager GeoEngineers 2101 4th Avenue, Suite 150 Seattle, WA 98121

Dear Mr Letts:

Included are the results from the testing of material submitted on December 22, 2022 from the C-1 R1 5530-014-02, F&BI 212350 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Katy Ataturk GNR0103R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 22, 2022 by Friedman & Bruya, Inc. from the GeoEngineers C-1 R1 5530-014-02, F&BI 212350 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>GeoEngineers</u>
212350 -01	C1 R1-10-4
212350 -02	C1 R1-10-10
212350 -03	C1 R1-10-17
212350 -04	C1 R1-11-2
212350 -05	C1 R1-11-4
212350 -06	C1 R1-Dup-1
212350 -07	C1 R1-13-4
212350 -08	C1 R1-13-10
212350 -09	C1 R1-13-20

The 8260D soil acetone calibration standard failed the acceptance criteria. The data were flagged accordingly.

Dichlorodifluoromethane did not meet the acceptance criteria in the 8260D soil matrix spike sample or the associated relative percent difference. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

The 8260D laboratory control sample exceeded the acceptance criteria for several analytes. The compounds were not detected, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/22/22

Project: C-1 R1 5530-014-02, F&BI 212350

Date Extracted: 12/28/22 Date Analyzed: 12/28/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 58-139)
C1 R1-10-4 212350-01	<5	88
C1 R1-10-10 212350-02	<5	97
C1 R1-10-17 212350-03	<5	91
C1 R1-11-2 212350-04	<5	93
C1 R1-11-4 212350-05	<5	93
C1 R1-Dup-1 212350-06	<5	89
C1 R1-13-4 212350-07	<5	87
C1 R1-13-10 212350-08	<5	86
C1 R1-13-20 212350-09	<5	91
Method Blank 02-3044 MB	<5	95

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/22/22

Project: C-1 R1 5530-014-02, F&BI 212350

Date Extracted: 12/27/22 Date Analyzed: 12/27/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36})}$	Surrogate (% Recovery) (Limit 50-150)
C1 R1-10-4 212350-01	<50	<250	98
C1 R1-10-10 212350-02	<50	<250	99
C1 R1-10-17 212350-03	<50	<250	99
C1 R1-11-2 212350-04	<50	<250	99
C1 R1-11-4 212350-05	180	880	98
C1 R1-Dup-1 212350-06	75	<250	95
C1 R1-13-4 212350-07	<50	<250	100
C1 R1-13-10 212350-08	<50	<250	100
C1 R1-13-20 ₂₁₂₃₅₀₋₀₉	<50	<250	100
Method Blank 02-3057 MB	<50	<250	101

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/22/22

Project: C-1 R1 5530-014-02, F&BI 212350

Date Extracted: 12/30/22 Date Analyzed: 12/30/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS STODDARD SOLVENT USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Stoddard Solvent Range (C ₈ -C ₁₁)	Surrogate (% Recovery) (Limit 50-150)
C1 R1-11-2 212350-04	<5	109
C1 R1-11-4 212350-05	<5	120
C1 R1-Dup-1 212350-06	<5	109
Method Blank 02-3049 MB	<5	114

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID: C1 R1-10-4 Client: GeoEngineers Date Received: 12/22/22 Project: $\text{C-}1 \; \text{R1} \; 5530\text{-}014\text{-}02$ 12/23/22 Lab ID: Date Extracted: 212350-01 1/0.25 Date Analyzed: 12/23/22 Data File: 122320.DMatrix: Soil Instrument: GCMS13

Units: mg/kg (ppm) Dry Weight Operator: lm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	84	120
Toluene-d8	89	73	128
4-Bromofluorobenzene	106	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	<0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	0.0047	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	0.0014	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

 Client Sample ID:
 C1 R1-10-10
 Client:
 GeoEngineers

 Date Received:
 12/22/22
 Project:
 C-1 R1 5530-014-02

 Date Extracted:
 12/23/22
 Lab ID:
 212350-02 1/0.25

 Date Analyzed:
 12/23/22
 Data File:
 122321.D

Date Analyzed: 12/23/22 Data File: 122321.D

Matrix: Soil Instrument: GCMS13

Units: mg/kg (ppm) Dry Weight Operator: lm

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 106 84 120 Toluene-d8 101 73 128 4-Bromofluorobenzene 103 57 146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C1 R1-10-17	Client:	GeoEngineers
Date Received:	12/22/22	Project:	C-1 R1 5530-014-02
Date Extracted:	12/23/22	Lab ID:	212350-03 1/0.25
Date Analyzed:	12/23/22	Data File:	122322.D

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	110	84	120
Toluene-d8	99	73	128
4-Bromofluorobenzene	104	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C1 R1-13-4	Client:	GeoEngineers
Date Received:	12/22/22	Project:	C-1 R1 5530-014-02
Date Extracted:	12/23/22	Lab ID:	212350-07 1/0.25
Date Analyzed:	12/23/22	Data File:	122323.D
Matrix:	Soil	Instrument:	GCMS13

Units: mg/kg (ppm) Dry Weight Operator: lm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	84	120
Toluene-d8	91	73	128
4-Bromofluorobenzene	103	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C1 R1-13-10	Client:	GeoEngineers
Date Received:	12/22/22	Project:	C-1 R1 5530-014-02
Date Extracted:	12/23/22	Lab ID:	212350-08 1/0.25
Data Analyzad:	19/93/99	Data File:	199394 D

Date Analyzed: 12/23/22 Data File: 122324.D

Matrix: Soil Instrument: GCMS13

Units: mg/kg (ppm) Dry Weight Operator: lm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	84	120
Toluene-d8	101	73	128
4-Bromofluorobenzene	104	57	146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	C1 R1-13-20	Client:	GeoEngineers
Date Received:	12/22/22	Project:	C-1 R1 5530-014-02
Date Extracted:	12/23/22	Lab ID:	212350-09 1/0.25
Date Analyzed:	12/23/22	Data File:	122325.D
Matrix:	Soil	Instrument:	GCMS13

Units: mg/kg (ppm) Dry Weight Operator: lm

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	101	84	120
Toluene-d8	100	73	128
4-Bromofluorobenzene	105	57	146

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition LL

Client Sample ID:	Method Blank	Client:	GeoEngineers
Date Received:	Not Applicable	Project:	C-1 R1 5530-014-02
Date Extracted:	12/23/22	Lab ID:	02-2981 mb2 1/0.25
		T . T	

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	93	84	120
Toluene-d8	91	73	128
4-Bromofluorobenzene	103	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.001
Vinyl chloride	< 0.001	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.005
Chloroethane	< 0.1	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.001
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.001	m,p-Xylene	< 0.002
Hexane	< 0.25	o-Xylene	< 0.001
Methylene chloride	< 0.2	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.001	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.002	Bromoform	< 0.05
1,1-Dichloroethane	< 0.002	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.001	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.002	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.002	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.001	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.001	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.001	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.005
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/22/22

Project: C-1 R1 5530-014-02, F&BI 212350

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 212350-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	20	95	61-153

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/22/22

Project: C-1 R1 5530-014-02, F&BI 212350

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR STODDARD SOLVENT AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 212350-04 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Stoddard Solvent	mg/kg (ppm)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Stoddard Solvent	mg/kg (ppm)	40	85	70-130	_

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/22/22

Project: C-1 R1 5530-014-02, F&BI 212350

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 212352-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	2,000	49,000	83 b	115 b	70-130	32 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	2,000	101	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/22/22

Project: C-1 R1 5530-014-02, F&BI 212350

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 212350-01 (Matrix Spike)

Education, code. 212000 01 (1			Sample	Percent	Percent		
	Reporting	Spike	Result			Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	<0.5	8 vo	10	10-142	22 vo
Chloromethane	mg/kg (ppm)	1	< 0.5	27	27	10-126	0
Vinyl chloride	mg/kg (ppm)	1	< 0.05	27	26	10-138	4
Bromomethane	mg/kg (ppm)	1	< 0.5	67	68	10-163	1
Chloroethane	mg/kg (ppm)	1	< 0.5	42	38	10-176	10
Trichlorofluoromethane	mg/kg (ppm)	1	< 0.5	34	31	10-176	9
Acetone	mg/kg (ppm)	5	<5	97	92	10-163	5
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	42	39	10-160	7
Hexane	mg/kg (ppm)	1 1	<0.25 <0.5	27 62	31 56	10-137 10-156	14 10
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	58	51	21-145	13
trans-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	1	< 0.05	50	46	21-145 14-137	8
1.1-Dichloroethane	mg/kg (ppm)	1	< 0.05	55	50	19-140	10
2,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	64	55	10-158	15
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	58	51	25-135	13
Chloroform	mg/kg (ppm)	1	< 0.05	61	53	21-145	14
2-Butanone (MEK)	mg/kg (ppm)	5	<1	51	48	19-147	6
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	60	55	12-160	9
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	53	48	10-156	10
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	53	50	17-140	6
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	55	49	9-164	12
Benzene	mg/kg (ppm)	1	< 0.03	57	52	29-129	9
Trichloroethene	mg/kg (ppm)	1	< 0.02	57	50	21-139	13
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	60	55	30-135	9
Bromodichloromethane Dibromomethane	mg/kg (ppm)	1 1	<0.05 <0.05	57 62	51 54	23-155 $23-145$	11 14
4-Methyl-2-pentanone	mg/kg (ppm) mg/kg (ppm)	5	<0.05	56	54 51	24-155	9
cis-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	57	53	28-144	7
Toluene	mg/kg (ppm)	1	< 0.05	54	50	35-130	8
trans-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	53	50	26-149	6
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	58	52	10-205	11
2-Hexanone	mg/kg (ppm)	5	< 0.5	44	42	15-166	5
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	55	52	31-137	6
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	54	51	20-133	6
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	59	53	28-150	11
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	55	54	28-142	2
Chlorobenzene	mg/kg (ppm)	1	< 0.05	57	52	32-129	9
Ethylbenzene 1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1 1	<0.05 <0.05	55 56	50 50	32-137 31-143	10 11
m,p-Xylene	mg/kg (ppm) mg/kg (ppm)	2	<0.05	56	50 50	34-136	11
o-Xylene	mg/kg (ppm)	1	< 0.05	56 57	50 51	33-134	11
Styrene	mg/kg (ppm)	1	< 0.05	52	48	35-137	8
Isopropylbenzene	mg/kg (ppm)	1	< 0.05	54	48	31-142	12
Bromoform	mg/kg (ppm)	1	< 0.05	59	54	21-156	9
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	55	51	23-146	8
Bromobenzene	mg/kg (ppm)	1	< 0.05	54	52	34-130	4
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	55	51	18-149	8
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	57	52	28-140	9
1,2,3-Trichloropropane	mg/kg (ppm)	1	< 0.05	55	53	25-144	4
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	56	52	31-134	7
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm)	1 1	< 0.05	55 56	50 51	31-136	10 9
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	<0.05 <0.05	56	50	30-137 10-182	9 11
sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	1	< 0.05	56	50 51	23-145	9
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	55	49	21-149	12
1.3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	57	52	30-131	9
1,4-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	55	50	29-129	10
1,2-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	57	51	31-132	11
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	< 0.5	54	52	11-161	4
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	53	47	22-142	12
Hexachlorobutadiene	mg/kg (ppm)	1	< 0.25	51	47	10-142	8
Naphthalene	mg/kg (ppm)	1	< 0.05	53	48	14-157	10
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	53	47	20-144	12

ENVIRONMENTAL CHEMISTS

Date of Report: 01/03/23 Date Received: 12/22/22

Project: C-1 R1 5530-014-02, F&BI 212350

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	61	10-146
Chloromethane	mg/kg (ppm)	1	68	27-133
Vinyl chloride	mg/kg (ppm)	1	77	22-139
Bromomethane	mg/kg (ppm)	1	158 vo	38-114
Chloroethane	mg/kg (ppm)	1	105	9-163
Trichlorofluoromethane	mg/kg (ppm)	1	100	10-196
Acetone	mg/kg (ppm)	5	171 vo	52-141
1,1-Dichloroethene	mg/kg (ppm)	1	95	47-128
Hexane	mg/kg (ppm)	1	102	43-142
Methylene chloride	mg/kg (ppm)	1	112	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	104	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1	100	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	106	68-115
2,2-Dichloropropane	mg/kg (ppm)	1 1	121	52-170
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm) mg/kg (ppm)	1	104 107	72-127 66-120
2-Butanone (MEK)	mg/kg (ppm)	5	90	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	5 1	108	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	104	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	106	69-128
Carbon tetrachloride	mg/kg (ppm)	1	106	60-139
Benzene	mg/kg (ppm)	1	105	71-118
Trichloroethene	mg/kg (ppm)	1	104	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	109	72-127
Bromodichloromethane	mg/kg (ppm)	1	104	57-126
Dibromomethane	mg/kg (ppm)	1	111	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	100	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	106	67-122
Toluene	mg/kg (ppm)	1	100	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	100	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	100	64-115
2-Hexanone	mg/kg (ppm)	5	77	33-152
1,3-Dichloropropane	mg/kg (ppm)	1	99	72-130
Tetrachloroethene	mg/kg (ppm)	1	99	72-114
Dibromochloromethane	mg/kg (ppm)	1	106	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	100	74-132
Chlorobenzene Ethylbenzene	mg/kg (ppm)	1 1	101 98	76-111 64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	1	98 98	64-123
m,p-Xylene	mg/kg (ppm)	2	100	78-122
o-Xylene	mg/kg (ppm)	1	101	77-124
Styrene	mg/kg (ppm)	1	95	74-126
Isopropylbenzene	mg/kg (ppm)	1	95	76-127
Bromoform	mg/kg (ppm)	1	106	56-132
n-Propylbenzene	mg/kg (ppm)	1	100	74-124
Bromobenzene	mg/kg (ppm)	1	100	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	100	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	101	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	101	61-137
2-Chlorotoluene	mg/kg (ppm)	1	101	74-121
4-Chlorotoluene	mg/kg (ppm)	1	99	75-122
tert-Butylbenzene	mg/kg (ppm)	1	102	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	101	76-125
sec-Butylbenzene	mg/kg (ppm)	1	103	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	101	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	103	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	98	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	100	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	99	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1 1	96 95	64-135
Hexachlorobutadiene Naphthalene	mg/kg (ppm) mg/kg (ppm)	1	95 98	50-153 63-140
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	98 94	63-140 63-138
1,2,0-111cmorobenzene	шаука (ррш)	1	J4	09-190

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

City, State, ZIP Sept the WA 98121 Address 2101 4M Ave STE 950 Company (SE) French letts _Email_

SAMPLE CHAIN OF CUSTODY	DY 12/22/22	2 V5-U2/H2
SAMPLERS (signocure)	,	Page# / of
- Tellist		/TURNAROUND TIME
PROJECT NAME	PO#	WStandard turnaround
- C D -	8-12-C22-2	© RUSH
(- 9		Rush charges authorized by:
REMARKS	INVOICE TO	SAMPLE DISPOSAL
		\square Archive samples
		□ Other
— Project specific RLs? - Yes / No		Default: Disnose after 30 days

VS-D2/H2

Friedman & Rriver Inc. Re	C-1 R1 - 13-20	C-1 R1-13-10	C-1 R1-613-4		2	C-1 RI-Dup-1	C-1 M-11. H	(-1 KI-11-2	C-1 R1-10.17	C-1 R1-10-10	C-1 R1-10-4	Sample ID	
SIG	09	OP	07 A-E 12/21/22			06	20	04	03	02	01A-E	Lab ID	
SIGNATURE	12/21/22 9:00		12/21/22			4					01 A-E 14/21/22	Date Sampled	
	9:00	9:40	8:30 Sai	1		1320	(310	1300	1230	1210	1200	Time Sampled	
			So:	75	21						S	Sample #	
PRINT NAME			Λ			\					ហ	# of Jars	
Z.	\otimes	8	8			X	×	×	×	\times	×	NWTPH-Dx	
AME	<u>®</u>	8	<u> (3)</u>			X	×	×	\prec	×	×	NWTPH-Gx	
	ļ			_			-					BTEX EPA 8021	
	_											NWTPH-HCID	A
	8	\otimes	\otimes						\times	×	X	VOCs EPA 8260	NAL
					\dashv							PAHs EPA 8270	YSE
ျို	-		···		_							PCBs EPA 8082	SRE
COMPANY						>	\prec	×				Quantify for mineral spirits	ANALYSES REQUESTED
DATE TIME			Added at lat							3w 72/22/21	My rad (X)	Notes	

Ph. (206) 285-8282 Friedman & Bruya, Inc.

Relinquished by:

Kary Atorichia

AM HPHAN

F8B

12/22/22

14:00

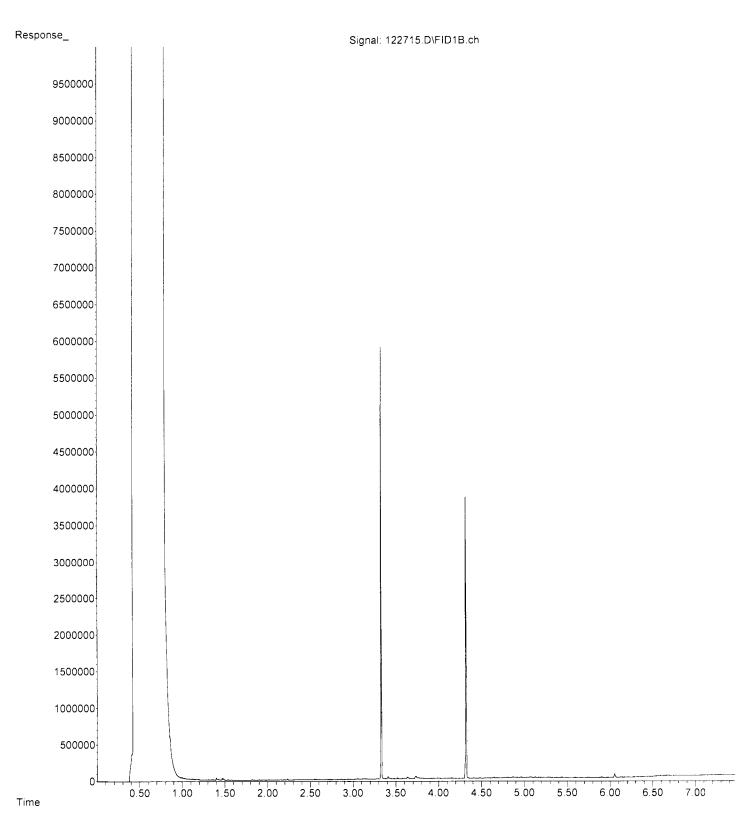
200H 798C/214

Samples received at & oc

Received by:

Received by:

Relinquished by:

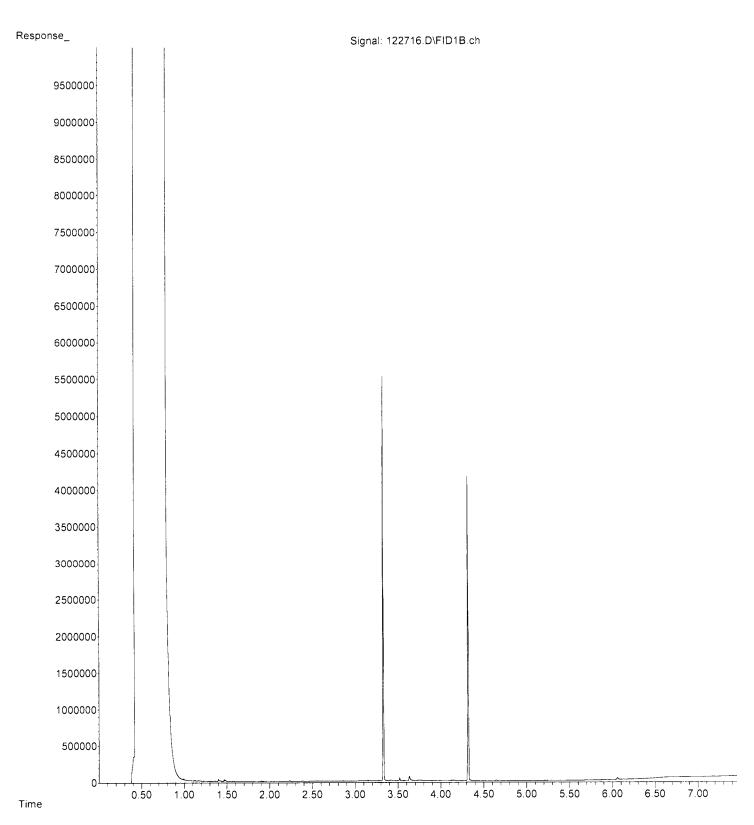

File :P:\Proc_GC14\12-27-22\122715.D

Operator : AL

Acquired : 27 Dec 2022 01:44 pm using AcqMethod DX.M

Instrument : GC14
Sample Name: 212350-01

Misc Info : ERR


File :P:\Proc_GC14\12-27-22\122716.D

Operator : AL

Acquired : 27 Dec 2022 01:56 pm using AcqMethod DX.M

Instrument : GC14 Sample Name: 212350-02

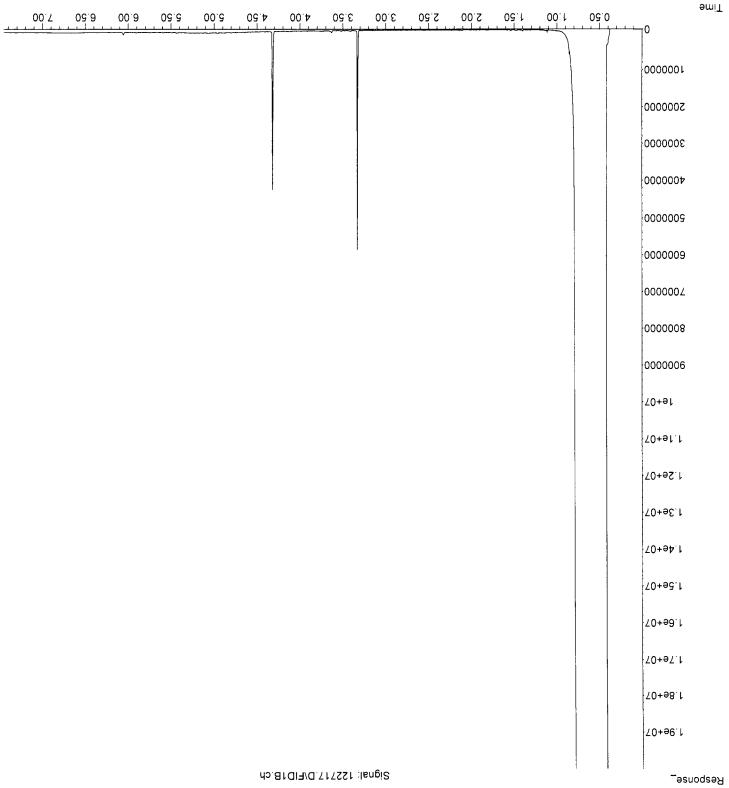
Misc Info : ERR

:D:/GC14/GC14_Data/12-27-22/122717.D File

: ∀۲ Operator

Acquired : 27 Dec 2022 02:08 pm using AcqMethod DX.M

Instrument : GC14

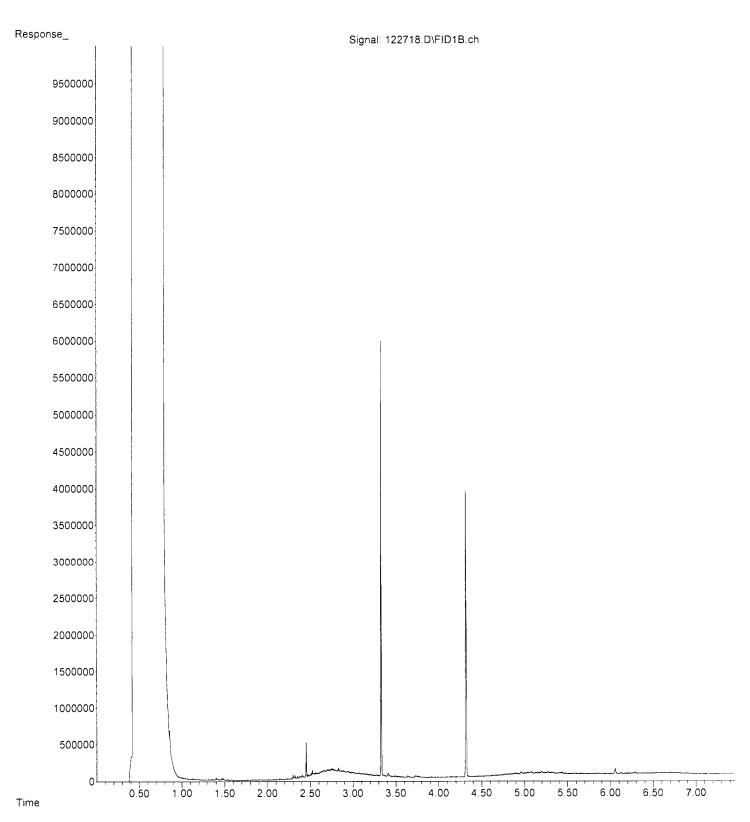

Sample Name: 212350-03

: ofnI osiM

Vial Number: 13

Signal: 122717.D/FID18.ch

ЕВВ

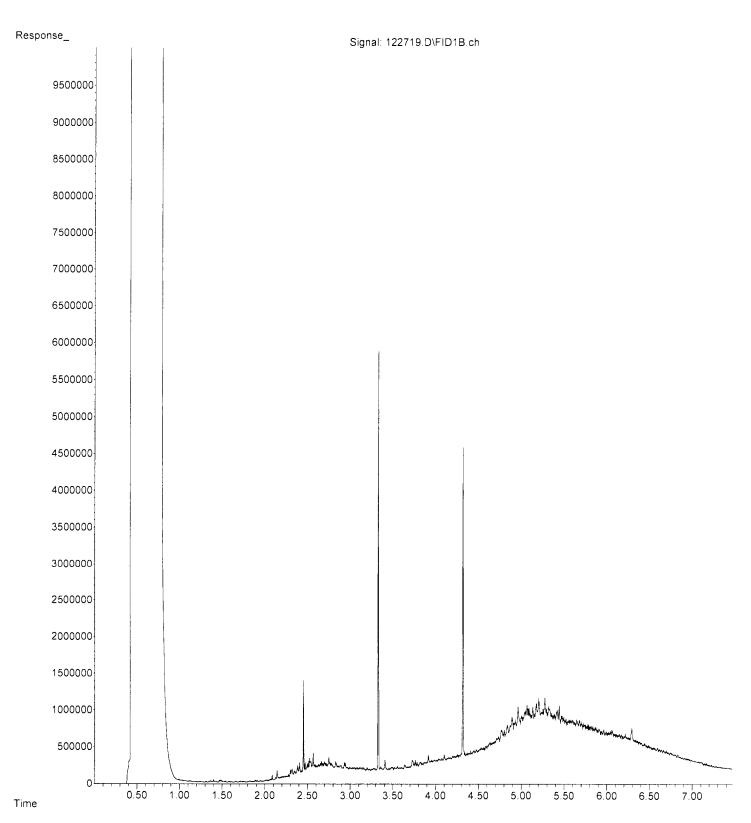

File :P:\Proc_GC14\12-27-22\122718.D

Operator : AL

Acquired : 27 Dec 2022 02:20 pm using AcqMethod DX.M

Instrument : GC14
Sample Name: 212350-04

Misc Info : ERR

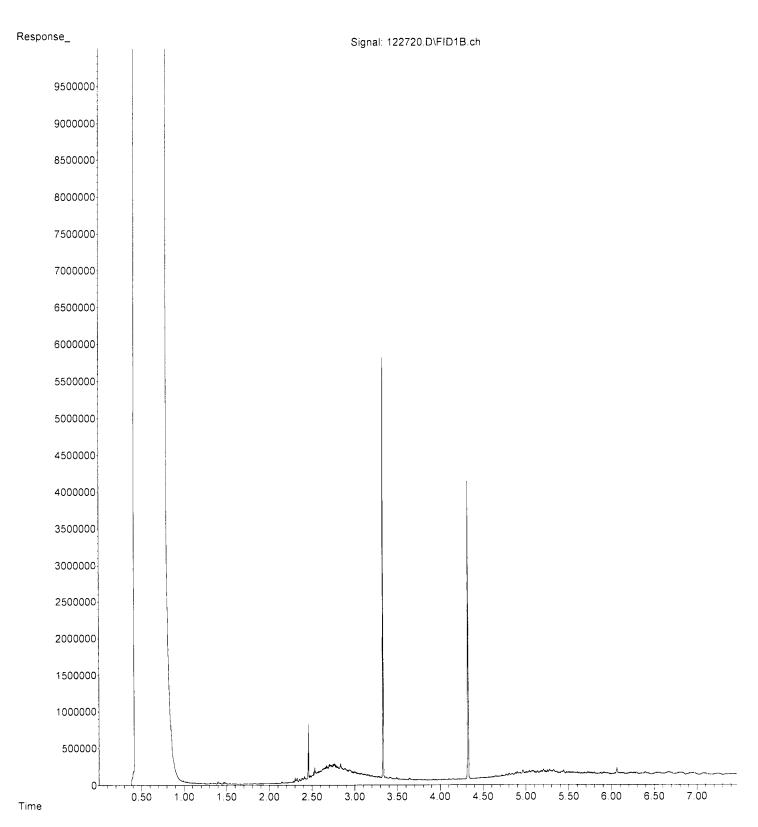

File :P:\Proc_GC14\12-27-22\122719.D

Operator : AL

Acquired : 27 Dec 2022 02:32 pm using AcqMethod DX.M

Instrument : GC14
Sample Name: 212350-05

Misc Info : ERR

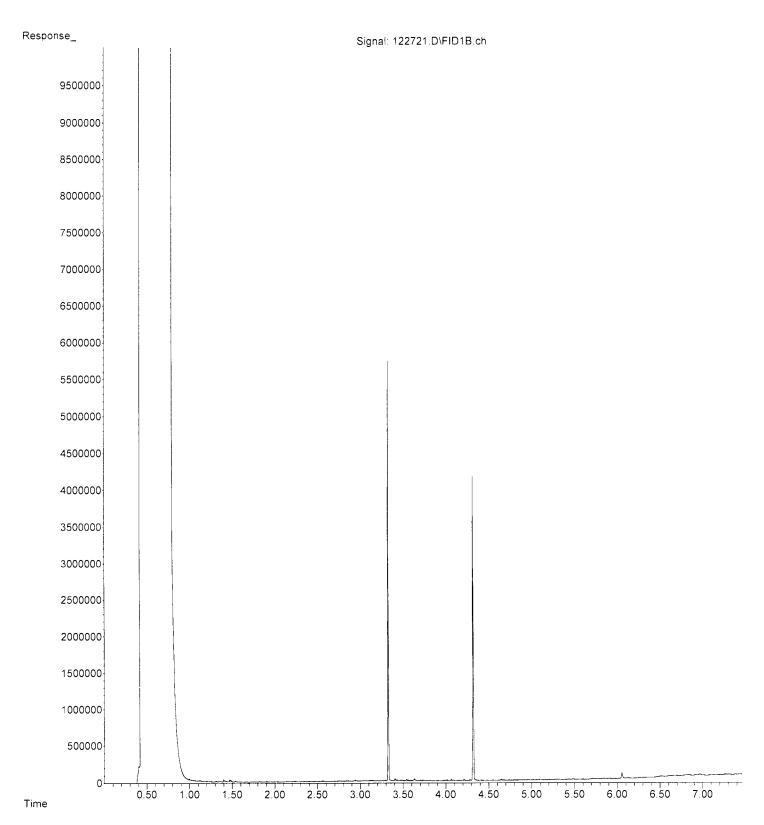

File :P:\Proc_GC14\12-27-22\122720.D

Operator : AL

Acquired : 27 Dec 2022 02:47 pm using AcqMethod DX.M

Instrument : GC14
Sample Name: 212350-06

Misc Info : ERR

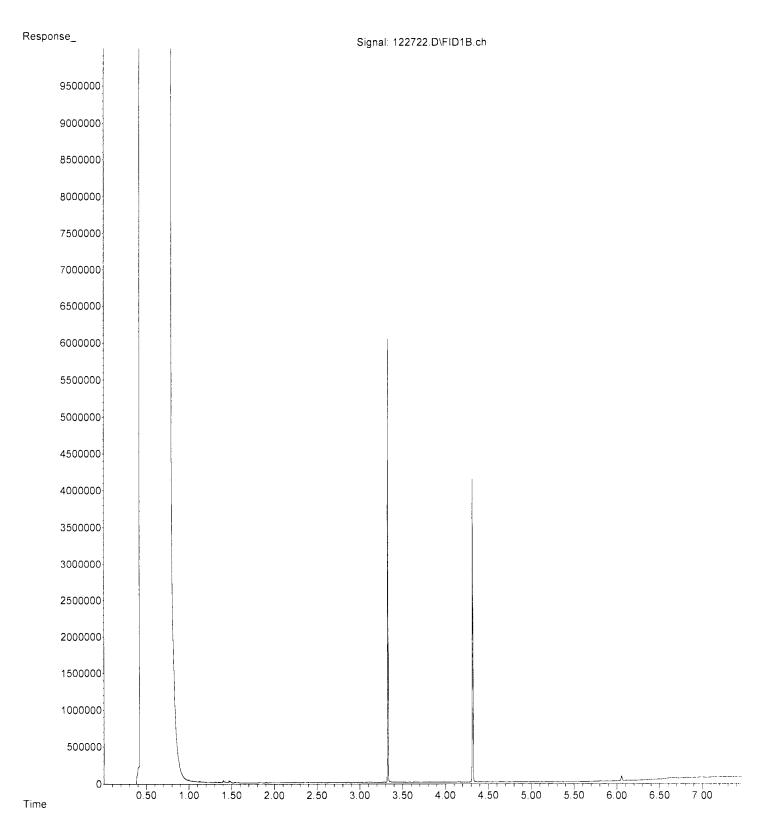

File :P:\Proc_GC14\12-27-22\122721.D

Operator : AL

Acquired : 27 Dec 2022 02:59 pm using AcqMethod DX.M

Instrument : GC14
Sample Name: 212350-07

Misc Info : ERR

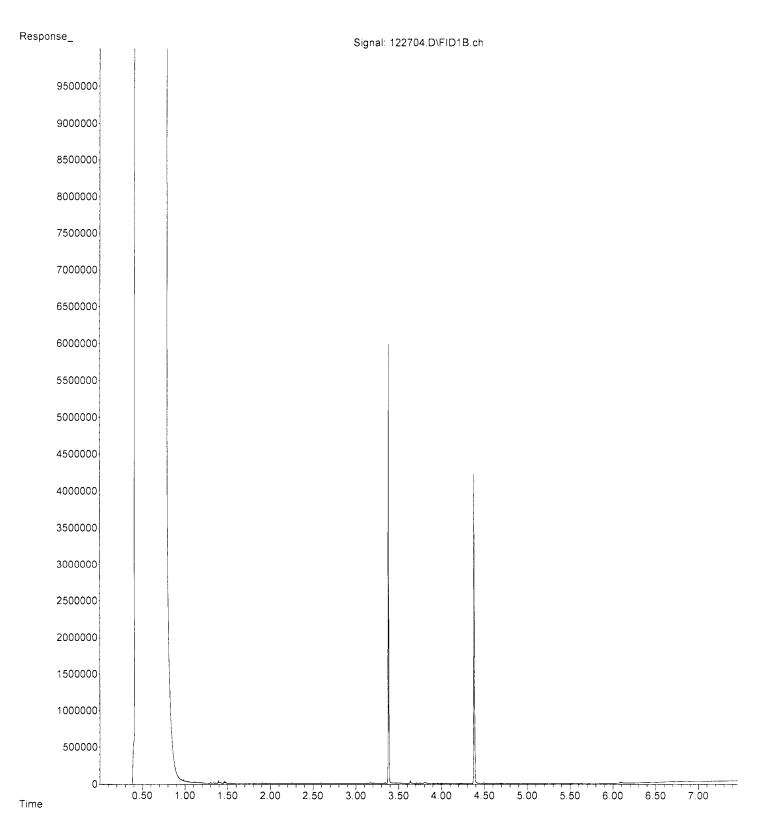

File :P:\Proc_GC14\12-27-22\122722.D

Operator : AL

Acquired : 27 Dec 2022 03:11 pm using AcqMethod DX.M

Instrument : GC14
Sample Name: 212350-08

Misc Info : ERR


File :P:\Proc_GC14\12-27-22\122704.D

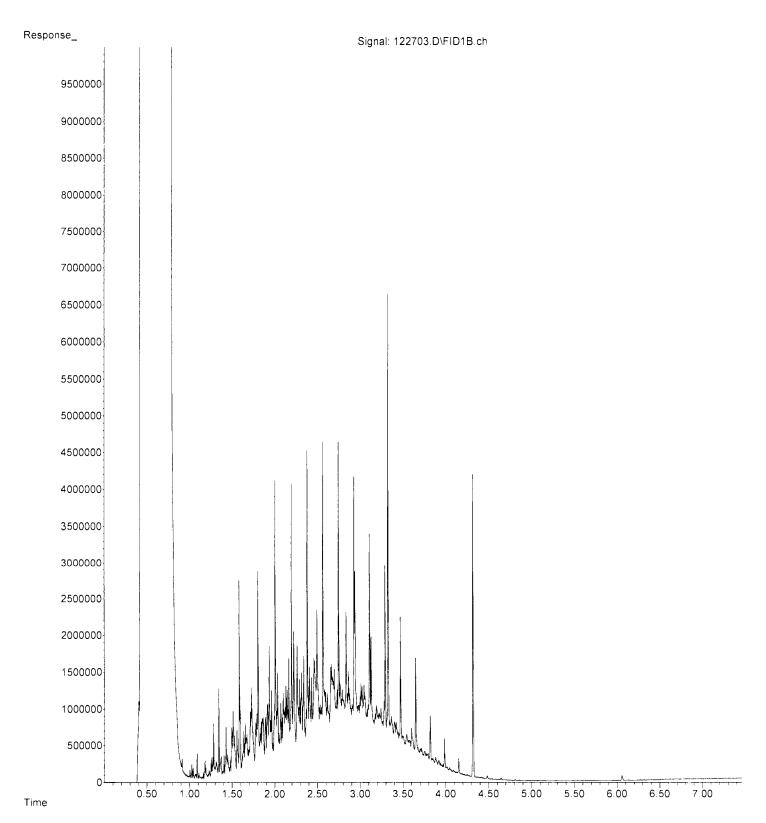
Operator : AL

Acquired : 27 Dec 2022 11:31 am using AcqMethod DX.M

Instrument : GC14 Sample Name: 02-3057 mb

Misc Info : ERR

File :P:\Proc_GC14\12-27-22\122703.D


Operator : AL

Acquired : 27 Dec 2022 09:50 am using AcqMethod DX.M

Instrument : GC14

Sample Name: 500 Dx 67-143B

Misc Info : ERR

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 11, 2020

Jacob Letts, Project Manager GeoEngineers, Inc 1101 Fawcett Ave 200 Tacoma, WA 98402

Dear Mr Letts:

Included are the results from the testing of material submitted on December 1, 2020 from the C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022 project. There are 74 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures
GNR1211R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 1, 2020 by Friedman & Bruya, Inc. from the GeoEngineers, Inc C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	GeoEngineers, Inc
012022 -01	IA-1_120120
012022 -02	IA-2_120120
012022 -03	IA-3_120120
012022 -04	IA-4_120120
012022 -05	IA-5_120120
012022 -06	IA-6_120120
012022 -07	IA-7_120120
012022 -08	IA-8_120120
012022 -09	IA-9_120120
012022 -10	IA-10_120120
012022 -11	IA-11_120120
012022 -12	IA-12_120120
012022 -13	IA-13_120120
012022 -14	OA-1_120120
012022 -15	OA-2_120120
012022 -16	SV-1_113020
012022 -17	SV-2_113020
012022 -18	SV-3_113020
012022 -19	SV-4_120120
012022 -20	SV-5_120120
012022 -21	SV-6_120120
012022 -22	SV-7_120120
012022 -23	SV-8 120120
012022 -24	SV-9 120120
012022 -25	SV-10_120120
012022 -26	SV-11 120120
012022 -27	SV-12 120120
•	

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

APH (air) - Analysis Method MA-APH

Non-petroleum compounds identified in the air phase hydrocarbon ranges were subtracted per the MA-APH method.

The APH EC5-8 aliphatics concentration in sample SV-6_120120 exceeded the calibration range of the instrument. The data were flagged accordingly. All quality control requirements were acceptable.

The APH EC5-8 concentrations reported in the SV samples (012022-16 through 012022-27) show the presence of a possible non-petroleum interferent. The compound was tentatively identified as 1-butanol. The GC/MS tentative identification quality score did not meet the method criteria for subtraction. Affected concentrations were reported with an x qualifier.

Volatiles (air) - Analysis Method TO-15

The concentration of several analytes exceeded the calibration range of the instrument. The data were flagged accordingly. All quality control requirements were acceptable.

The methylene chloride concentrations present in the IA and OA samples (012022-01 through 012022-15) were flagged as possibly due to laboratory contamination.

Helium (air) - Analysis Method ASTM D1946

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-1_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-01Date Analyzed: 12/04/20 Data File: 120420.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 94 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 45 APH EC9-12 aliphatics 140 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-2_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-02 Date Analyzed: 12/04/20 Data File: 120422.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 92 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40 APH EC9-12 aliphatics 130 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-3_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022 - 03Date Analyzed: 12/04/20 Data File: 120423.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 103 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 43 APH EC9-12 aliphatics 180 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-4_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022 - 04Date Analyzed: 12/04/20 Data File: 120424.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 43 APH EC9-12 aliphatics 130 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-5_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Date Collected: Lab ID: 12/01/20 012022-05Date Analyzed: 12/05/20 Data File: 120425.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 88 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40 APH EC9-12 aliphatics 96 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-6_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-06 Date Analyzed: 12/05/20 Data File: 120426.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 97 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40 APH EC9-12 aliphatics 140 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-7_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022 - 07Date Analyzed: 12/05/20 Data File: 120427.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-8_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022 - 08Date Analyzed: 12/05/20 Data File: 120428.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 98 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 45 APH EC9-12 aliphatics 90 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-9_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-09Date Analyzed: 12/05/20 Data File: 120429.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 111 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 67 APH EC9-12 aliphatics 130 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-10_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-10 Date Analyzed: 12/05/20 Data File: 120430.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 58 APH EC9-12 aliphatics 99 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-11_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022 - 11Date Analyzed: 12/05/20 Data File: 120431.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 118 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 42 APH EC9-12 aliphatics 98 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-12_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-12 Date Analyzed: 12/05/20 Data File: 120432.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 86 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 65 APH EC9-12 aliphatics 72 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: IA-13_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-13 Date Analyzed: 12/05/20 Data File: 120433.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 51 APH EC9-12 aliphatics 100 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: OA-1_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-14 Date Analyzed: 12/05/20 Data File: 120434.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: OA-2_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022 - 15Date Analyzed: 12/05/20 Data File: 120435.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 59 APH EC9-12 aliphatics 52 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-1_113020 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-16 1/5.5 Date Analyzed: 12/03/20 Data File: 120311.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 750 x APH EC9-12 aliphatics <270 APH EC9-10 aromatics <140

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-2_113020 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: 012022-17 1/3.6 Date Collected: 12/01/20 Date Analyzed: 12/03/20 Data File: 120313.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 91 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 380 x APH EC9-12 aliphatics 290 APH EC9-10 aromatics 590

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-3_113020 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-18 1/5.7 Date Analyzed: 12/03/20 Data File: 120314.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 97 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 2,000 \text{ x} \\ \text{APH EC9-12 aliphatics} & 310 \\ \text{APH EC9-10 aromatics} & 220 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-4_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-19 1/5.3 Date Analyzed: 12/03/20 Data File: 120315.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 109 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 3,000 \text{ x} \\ \text{APH EC9-12 aliphatics} & <260 \\ \text{APH EC9-10 aromatics} & <130 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-5_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-20 1/3.4 Date Analyzed: 12/03/20 Data File: 120316.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit:

4-Bromofluorobenzene 97 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 370 x APH EC9-12 aliphatics 240 APH EC9-10 aromatics 310

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-6_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Date Collected: Lab ID: 12/01/20 012022-21 1/8.1 Date Analyzed: 12/03/20 Data File: 120317.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 89 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 22,000 ve x APH EC9-12 aliphatics 1,800 APH EC9-10 aromatics 460

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-7_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: 012022-22 1/5.5 Date Collected: 12/01/20 Date Analyzed: 12/03/20 Data File: 120318.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 2,300 \text{ x} \\ \text{APH EC9-12 aliphatics} & 390 \\ \text{APH EC9-10 aromatics} & 1,400 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-8_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-23 1/3.4 Date Analyzed: 12/03/20 Data File: 120319.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit:

4-Bromofluorobenzene 100 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 200 \text{ x} \\ \text{APH EC9-12 aliphatics} & <170 \\ \text{APH EC9-10 aromatics} & 180 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-9_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-24 1/5.7 Date Analyzed: 12/03/20 Data File: 120320.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 103 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 2,400 \text{ x} \\ \text{APH EC9-12 aliphatics} & 910 \\ \text{APH EC9-10 aromatics} & 210 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-10_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-25 1/5.8 Date Analyzed: 12/03/20 Data File: 120321.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

4-Bromofluorobenzene 96 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 1,300 \text{ x} \\ \text{APH EC9-12 aliphatics} & 480 \\ \text{APH EC9-10 aromatics} & 220 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-11_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-26 1/6.1 Date Analyzed: 12/03/20 Data File: 120322.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 92 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 1,400 \text{ x} \\ \text{APH EC9-12 aliphatics} & 510 \\ \text{APH EC9-10 aromatics} & <150 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-12_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-27 1/17 Date Analyzed: 12/03/20 Data File: 120323.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 92 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 4,600 \text{ x} \\ \text{APH EC9-12 aliphatics} & <850 \\ \text{APH EC9-10 aromatics} & 800 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: GeoEngineers, Inc

Date Received: Not Applicable Project: 5531-014-01, F&BI 012022

Not Applicable Lab ID: Date Collected: $00\text{-}2756~\mathrm{MB}$ Date Analyzed: 12/04/20 Data File: 120419.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 85 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: GeoEngineers, Inc

Date Received: Not Applicable Project: 5531-014-01, F&BI 012022

Not Applicable Lab ID: Date Collected: $00-2554~\mathrm{MB}$ Date Analyzed: 12/03/20 Data File: 120310.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-1_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-01 Date Analyzed: 12/04/20 Data File: 120420.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	90	70	130

	Concent	ration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.4	0.49	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.4	1.4	Trichloroethene	0.15	0.028
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	< 6.8	<1
Acetone	7.5	3.2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	60 lc	17 lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.4	0.33
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.63	0.14
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	4.0	1.1	Bromoform	< 2.1	< 0.2
Chloroform	0.11	0.022	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.061	0.015	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.40	0.063	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.45	0.14	Naphthalene	0.21	0.04
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
•		_			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-2_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-02 Date Analyzed: 12/04/20 Data File: 120422.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	88	70	130

	Concent	tration		Concer	itration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.3	0.47	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.1	1.3	Trichloroethene	0.14	0.026
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	10	4.3	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.6	0.36
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.72	0.17
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	<3.5	<1	Bromoform	<2.1	< 0.2
Chloroform	0.11	0.022	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.077	0.019	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.46	0.073	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.63	0.20	Naphthalene	0.18	0.034
Cyclohexane	<6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-3_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-03 Date Analyzed: 12/04/20 Data File: 120423.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	98	70	130

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	.1.0	.0. =	1 0 D: 11	.0.00	.0.0
Propene	<1.2	< 0.7	1,2-Dichloropropane	<0.23	< 0.05
Dichlorodifluoromethane	2.7	0.54	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	4.2	1.8	Trichloroethene	0.13	0.024
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	11	4.7	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	65 lc	19 lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.5	0.34
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.66	0.15
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	3.6	1.0	Bromoform	<2.1	< 0.2
Chloroform	0.098	0.020	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	<7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	<2.5	< 0.5
2-Butanone (MEK)	<2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.077	0.019	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.47	0.075	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.47	0.20	Naphthalene	0.2	0.038
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
Cyclonexame	٠٠.٥	~2	110Aaciiioi obataaticiie	-0.21	-0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-4_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-04 Date Analyzed: 12/04/20 Data File: 120424.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	106	70	130

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	.1.0	.0. =	1 0 D: 11	.0.00	.0.0
Propene	<1.2	< 0.7	1,2-Dichloropropane	<0.23	< 0.05
Dichlorodifluoromethane	2.8	0.56	1,4-Dioxane	<0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.6	1.5	Trichloroethene	0.13	0.024
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	9.6	4.1	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.5	0.35
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.66	0.15
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	0.10	0.021	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.069	0.017	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.47	0.075	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.51	0.16	Naphthalene	0.27	0.052
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
- /		_		~ · - -	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-5_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-05 Date Analyzed: 12/05/20 Data File: 120425.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	84	70	130

	Concent	ration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	3.0	0.60	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.9	1.6	Trichloroethene	0.12	0.022
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	9.8	5.2	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	7.6	3.2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.3	0.30
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.55	0.13
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	0.11	0.022	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.077	0.019	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.44	0.070	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.65	0.20	Naphthalene	0.14	0.026
Cyclohexane	<6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
•		_			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-6_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Date Collected: Lab ID: 12/01/20 012022-06 Date Analyzed: 12/05/20 Data File: 120426.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.9	0.59	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.8	1.6	Trichloroethene	0.19	0.035
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	10	4.3	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.6	0.37
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.70	0.16
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	0.10	0.021	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.077	0.019	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.46	0.073	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.58	0.18	Naphthalene	0.19	0.037
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
- 0	0.0	_		V. - 1	J.U.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-7_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-07 Date Analyzed: 12/05/20 Data File: 120427.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	100	70	130

	Concent	tration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	1.6	0.91	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.9	0.59	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	< 2.4	<1	Trichloroethene	1.1	0.20
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	6.0	2.5	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	41 lc	12 lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	<3.5	<1	Bromoform	<2.1	< 0.2
Chloroform	0.12	0.024	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.073	0.018	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.43	0.069	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.44	0.14	Naphthalene	<0.057 j	<0.011 j
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-8_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-08 Date Analyzed: 12/05/20 Data File: 120428.DMatrix: Air Instrument: GCMS7Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	94	70	130

	Concent	ration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.2	0.44	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.1	1.3	Trichloroethene	0.37	0.068
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	16	8.5	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	7.4	2.5	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	8.2	3.5	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	0.48	0.11
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.7	0.40
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.66	0.15
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	0.15	0.031	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	0.31	0.10	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.073	0.018	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.45	0.072	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.59	0.18	Naphthalene	0.094 j	0.018 j
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
•					

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-9_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-09 Date Analyzed: 12/05/20 Data File: 120429.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	106	70	130

	Concent	tration		Concen	itration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.5	0.50	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	9.2	3.9	Trichloroethene	0.31	0.057
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	11	5.9	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	29	9.8	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	13	5.6	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	0.48	0.11
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.8	0.42
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.73	0.17
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	<3.5	<1	Bromoform	<2.1	< 0.2
Chloroform	0.15	0.030	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	<0.6	< 0.1
1,2-Dichloroethane (EDC)	0.073	0.018	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.42	0.067	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.59	0.18	Naphthalene	0.13	0.025
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-10_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-10 Date Analyzed: 12/05/20 Data File: 120430.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	102	70	130

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.9	0.58	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.6	1.5	Trichloroethene	0.44	0.081
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	84 ve	44 ve	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	13	4.3	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	< 6.8	<1
Acetone	9.7	4.1	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	0.60	0.14
Methylene chloride	40 lc	12 lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	2.3	0.52
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.79	0.18
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	<2.1	< 0.2
Chloroform	0.22	0.045	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	<7.2	<2	1,3,5-Trimethylbenzene	<2.5	< 0.5
Tetrahydrofuran	0.31	0.10	1,2,4-Trimethylbenzene	<2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.081	0.020	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	<0.6	<0.1
Carbon tetrachloride	0.48	0.076	1,2,4-Trichlorobenzene	< 0.74	<0.1
Benzene	0.63	0.20	Naphthalene	0.15	0.028
Cyclohexane	<6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
CJ CICHONAIIC	-0.0	74	110Auditio100utuutione	·0.21	-0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-11_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-11 Date Analyzed: 12/05/20 Data File: 120431.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	113	70	130

	Concent	ration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
_					
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.8	0.58	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	3.7	1.6	Trichloroethene	0.41	0.076
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	95 ve	50 ve	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	12	4.1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	9.9	4.2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	0.57	0.13
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	2.1	0.48
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.77	0.18
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	0.25	0.052	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.069	0.017	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.53	0.084	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.68	0.21	Naphthalene	0.084 j	0.016 j
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
=					

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-12_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

12/01/20 Lab ID: Date Collected: 012022-12 Date Analyzed: 12/05/20 Data File: 120432.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	83	70	130

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.9	0.59	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	4.2	1.8	Trichloroethene	0.70	0.13
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	37	19	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	7.3	2.5	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	< 6.8	<1
Acetone	15	6.5	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	0.46	0.10
Methylene chloride	110 ve lc	32 ve lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBF	E) <1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.7	0.38
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.60	0.14
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	7.3	2.1	Bromoform	<2.1	< 0.2
Chloroform	0.16	0.033	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	<7.2	<2	1,3,5-Trimethylbenzene	<2.5	< 0.5
Tetrahydrofuran	0.31	0.11	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	<2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.10	0.025	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	<0.1	1,2-Dichlorobenzene	< 0.6	<0.1
Carbon tetrachloride	0.47	0.075	1,2,4-Trichlorobenzene	< 0.74	<0.1
Benzene	0.63	0.20	Naphthalene	0.084 j	0.016 j
Cyclohexane	<6.9	<2	Hexachlorobutadiene	<0.21	<0.01
C _J Siolichaire	٠٠.٥	~2	110Addinorobatation	-0.21	-0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: IA-13_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-13 Date Analyzed: 12/05/20 Data File: 120433.DMatrix: Air Instrument: GCMS7Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	100	70	130

	Concent	tration		Concer	itration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	2.5	0.51	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	4.0	1.7	Trichloroethene	0.60	0.11
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	25	13	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	7.9	2.7	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	7.5	3.1	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	0.51	0.12
Methylene chloride	47 lc	13 lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	1.9	0.44
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	0.67	0.15
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	<3.5	<1	Bromoform	<2.1	< 0.2
Chloroform	0.19	0.038	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	<7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.061	0.015	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.40	0.063	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.55	0.17	Naphthalene	0.13	0.024
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: OA-1_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-14 Date Analyzed: 12/05/20 Data File: 120434.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	98	70	130

	Concen	tration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D.,	~ 1.0	< 0.7	1 0 Diallananana	~ 0.99	<0.05
Propene Dichlorodifluoromethane	<1.2 2.9		1,2-Dichloropropane	<0.23	< 0.05
		0.58	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	< 3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	<2.4	<1	Trichloroethene	<0.11	< 0.02
Bromomethane	<2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	<7.5	<4	Toluene	<19	<5
Acrolein	<2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	5.0	2.1	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	0.093	0.019	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	0.073	0.018	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	0.47	0.074	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	0.42	0.13	Naphthalene	<0.057 j	<0.011 j
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	<0.21	<0.011
o _j diolioliulio	.0.0			·0. 2 1	.0.02

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: OA-2_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-15 Date Analyzed: 12/05/20 Data File: 120435.DMatrix: Air Instrument: GCMS7Operator: Units: ug/m3 bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	107	70	130

Concent	ration		Concer	itration
ug/m3	ppbv	Compounds:	ug/m3	ppbv
4.4	2.6	1,2-Dichloropropane	< 0.23	< 0.05
3.0	0.60	1,4-Dioxane	< 0.36	< 0.1
<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
< 0.26	< 0.1	Heptane	<4.1	<1
< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
< 2.4	<1	Trichloroethene	< 0.11	< 0.02
< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
< 7.5	<4	Toluene	<19	<5
< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
<3	<1	2-Hexanone	<4.1	<1
< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
37	16	Dibromochloromethane	< 0.085	< 0.01
<8.6	<3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
64 lc	19 lc	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
<12	<4	Nonane	< 5.2	<1
<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
< 6.2	<2	Propylbenzene	< 2.5	< 0.5
<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
<7	<2	m,p-Xylene	0.91	0.21
< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
< 0.4	< 0.1	Styrene	< 0.85	< 0.2
3.9	1.1	Bromoform	<2.1	< 0.2
0.098	0.020	Benzyl chloride	< 0.052	< 0.01
<7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
< 0.29		1,2,4-Trimethylbenzene		< 0.5
16	5.4	1,3-Dichlorobenzene	< 0.6	< 0.1
0.097	0.024	1,4-Dichlorobenzene	< 0.23	< 0.038
< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
0.52	0.082	1,2,4-Trichlorobenzene	< 0.74	< 0.1
0.59	0.18	Naphthalene	$0.079 \; { m j}$	$0.015 \mathrm{j}$
< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
	ug/m3 4.4 3.0 <3.7 <0.7 <0.26 <0.044 <2.4 <2.3 <2.6 <0.44 <7.5 <2.1 <3 <2.2 37 <8.6 <0.4 <0.4 64 lc <12 <1.6 <0.77 <6.2 <1.8 <7 <0.4 <0.4 3.9 0.098 <7.2 <0.29 16 0.097 <0.55 0.52 0.59	4.4 2.6 3.0 0.60 <3.7 <1.8 <0.7 <0.1 <0.26 <0.1 <0.044 <0.02 <2.4 <1 <2.3 <0.6 <2.6 <1 <0.44 <0.1 <7.5 <4 <2.1 <0.9 <3 <1 <2.2 <0.4 37 16 <8.6 <3.5 <0.4 <0.1 <0.4 <0.1 <0.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.4 <0.1 <10.5 <0.77 <10.1 <10.2 <4 <1.6 <0.5 <10.77 <10.1 <10.2 <4 <1.6 <0.5 <10.77 <10.1 <10.2 <4 <1.6 <10.5 <10.77 <10.1 <10.09 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10	ug/m3 ppbv Compounds: 4.4 2.6 1,2-Dichloropropane 3.0 0.60 1,4-Dioxane <3.7	ug/m3 ppbv Compounds: ug/m3 4.4 2.6 1,2-Dichloropropane <0.23

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-1_113020 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-16 1/5.5 Date Analyzed: 12/03/20 Data File: 120311.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	-0.0	40.0	10 D: 11	-1.0	40.00
Propene	<6.6	< 3.8	1,2-Dichloropropane	<1.3	< 0.28
Dichlorodifluoromethane	<2.7	< 0.55	1,4-Dioxane	<2	< 0.55
Chloromethane	<20	< 9.9	2,2,4-Trimethylpentane	<26	< 5.5
F-114	<3.8	< 0.55	Methyl methacrylate	<23	< 5.5
Vinyl chloride	<1.4	< 0.55	Heptane	<23	< 5.5
1,3-Butadiene	< 0.24	< 0.11	Bromodichloromethane	< 0.37	< 0.055
Butane	<13	< 5.5	Trichloroethene	< 0.59	< 0.11
Bromomethane	<13	<3.3	cis-1,3-Dichloropropene	< 2.5	< 0.55
Chloroethane	<15	< 5.5	4-Methyl-2-pentanone	<23	< 5.5
Vinyl bromide	<2.4	< 0.55	trans-1,3-Dichloropropene	< 2.5	< 0.55
Ethanol	180	97	Toluene	<100	<27
Acrolein	<11	<4.9	1,1,2-Trichloroethane	< 0.3	< 0.055
Pentane	<16	< 5.5	2-Hexanone	<23	< 5.5
Trichlorofluoromethane	<12	< 2.2	Tetrachloroethene	<37	< 5.5
Acetone	510 ve	210 ve	Dibromochloromethane	< 0.47	< 0.055
2-Propanol	670 ve	270 ve	1,2-Dibromoethane (EDB)	< 0.42	< 0.055
1,1-Dichloroethene	< 2.2	< 0.55	Chlorobenzene	< 2.5	< 0.55
trans-1,2-Dichloroethene	< 2.2	< 0.55	Ethylbenzene	< 2.4	< 0.55
Methylene chloride	<190	< 55	1,1,2,2-Tetrachloroethane	< 0.76	< 0.11
t-Butyl alcohol (TBA)	<67	<22	Nonane	<29	< 5.5
3-Chloropropene	<8.6	< 2.7	Isopropylbenzene	<14	< 2.7
CFC-113	<4.2	< 0.55	2-Chlorotoluene	<28	< 5.5
Carbon disulfide	<34	<11	Propylbenzene	<14	< 2.7
Methyl t-butyl ether (MTBE)	<9.9	< 2.7	4-Ethyltoluene	<14	< 2.7
Vinyl acetate	<39	<11	m,p-Xylene	<4.8	<1.1
1,1-Dichloroethane	< 2.2	< 0.55	o-Xylene	< 2.4	< 0.55
cis-1,2-Dichloroethene	< 2.2	< 0.55	Styrene	<4.7	<1.1
Hexane	<19	< 5.5	Bromoform	<11	<1.1
Chloroform	< 0.27	< 0.055	Benzyl chloride	< 0.28	< 0.055
Ethyl acetate	<40	<11	1,3,5-Trimethylbenzene	<14	< 2.7
Tetrahydrofuran	<1.6	< 0.55	1,2,4-Trimethylbenzene	<14	<2.7
2-Butanone (MEK)	<16	< 5.5	1,3-Dichlorobenzene	<3.3	< 0.55
1,2-Dichloroethane (EDC)	< 0.22	< 0.055	1,4-Dichlorobenzene	<1.3	< 0.21
1,1,1-Trichloroethane	3.6	0.65	1,2-Dichlorobenzene	<3.3	< 0.55
Carbon tetrachloride	<1.7	< 0.28	1,2,4-Trichlorobenzene	<4.1	< 0.55
Benzene	2.4	0.74	Naphthalene	<1.4	< 0.28
Cyclohexane	<38	<11	Hexachlorobutadiene	<1.4	<0.20
CJ CICIICAUIIC	-90	11	110Au0111010Duvuutotto	-1.4	-0.11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-2_113020 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-17 1/3.6 Date Analyzed: 12/03/20 Data File: 120313.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	-4.0	-0 F	1 0 D' 11	40.00	-0.10
Propene	<4.3	< 2.5	1,2-Dichloropropane	< 0.83	< 0.18
Dichlorodifluoromethane	3.1	0.62	1,4-Dioxane	<1.3	< 0.36
Chloromethane	<13	< 6.5	2,2,4-Trimethylpentane	<17	<3.6
F-114	< 2.5	< 0.36	Methyl methacrylate	<15	<3.6
Vinyl chloride	< 0.92	< 0.36	Heptane	<15	<3.6
1,3-Butadiene	< 0.16	< 0.072	Bromodichloromethane	< 0.24	< 0.036
Butane	36	15	Trichloroethene	0.58	0.11
Bromomethane	<8.4	< 2.2	cis-1,3-Dichloropropene	<1.6	< 0.36
Chloroethane	< 9.5	<3.6	4-Methyl-2-pentanone	<15	<3.6
Vinyl bromide	<1.6	< 0.36	trans-1,3-Dichloropropene	<1.6	< 0.36
Ethanol	220 ve	110 ve	Toluene	<68	<18
Acrolein	<7.4	<3.2	1,1,2-Trichloroethane	< 0.2	< 0.036
Pentane	18	6.1	2-Hexanone	<15	<3.6
Trichlorofluoromethane	<8.1	<1.4	Tetrachloroethene	<24	<3.6
Acetone	360 ve	$150 \mathrm{\ ve}$	Dibromochloromethane	< 0.31	< 0.036
2-Propanol	97	39	1,2-Dibromoethane (EDB)	< 0.28	< 0.036
1,1-Dichloroethene	<1.4	< 0.36	Chlorobenzene	<1.7	< 0.36
trans-1,2-Dichloroethene	<1.4	< 0.36	Ethylbenzene	<1.6	< 0.36
Methylene chloride	<130	<36	1,1,2,2-Tetrachloroethane	< 0.49	< 0.072
t-Butyl alcohol (TBA)	<44	<14	Nonane	<19	<3.6
3-Chloropropene	< 5.6	<1.8	Isopropylbenzene	<8.8	<1.8
CFC-113	8.4	1.1	2-Chlorotoluene	<19	<3.6
Carbon disulfide	<22	< 7.2	Propylbenzene	<8.8	<1.8
Methyl t-butyl ether (MTBE)	< 6.5	<1.8	4-Ethyltoluene	<8.8	<1.8
Vinyl acetate	<25	< 7.2	m,p-Xylene	6.1	1.4
1,1-Dichloroethane	<1.5	< 0.36	o-Xylene	1.8	0.41
cis-1,2-Dichloroethene	<1.4	< 0.36	Styrene	< 3.1	< 0.72
Hexane	<13	<3.6	Bromoform	< 7.4	< 0.72
Chloroform	0.51	0.10	Benzyl chloride	< 0.19	< 0.036
Ethyl acetate	<26	< 7.2	1,3,5-Trimethylbenzene	<8.8	<1.8
Tetrahydrofuran	<1.1	< 0.36	1,2,4-Trimethylbenzene	<8.8	<1.8
2-Butanone (MEK)	11	3.9	1,3-Dichlorobenzene	<2.2	< 0.36
1,2-Dichloroethane (EDC)	< 0.15	< 0.036	1,4-Dichlorobenzene	< 0.83	< 0.14
1,1,1-Trichloroethane	8.7	1.6	1,2-Dichlorobenzene	<2.2	< 0.36
Carbon tetrachloride	<1.1	< 0.18	1,2,4-Trichlorobenzene	<2.7	< 0.36
Benzene	3.7	1.2	Naphthalene	5.5	1.0
Cyclohexane	<25	<7.2	Hexachlorobutadiene	< 0.77	< 0.072
o j didilonalio	-20		220111011010001110110		.0.0.2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-3_113020 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-18 1/5.7 Date Analyzed: 12/03/20 Data File: 120314.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Duomomo	<6.9	<4	1 9 Dishlanannanan	<1.3	< 0.28
Propene Dichlorodifluoromethane	3.0	0.60	1,2-Dichloropropane 1,4-Dioxane	<2.1	<0.28
Chloromethane	<21	<10	2,2,4-Trimethylpentane	<27	< 5.7
F-114	<4	< 0.57	Methyl methacrylate	<23	< 5.7
Vinyl chloride	<1.5	< 0.57	Heptane	<23	< 5.7
1,3-Butadiene	< 0.25	< 0.11	Bromodichloromethane	< 0.38	< 0.057
Butane	15	6.1	Trichloroethene	0.64	0.12
Bromomethane	<13	<3.4	cis-1,3-Dichloropropene	< 2.6	< 0.57
Chloroethane	<15	< 5.7	4-Methyl-2-pentanone	<23	< 5.7
Vinyl bromide	< 2.5	< 0.57	trans-1,3-Dichloropropene	< 2.6	< 0.57
Ethanol	150	79	Toluene	<110	<28
Acrolein	<12	< 5.1	1,1,2-Trichloroethane	< 0.31	< 0.057
Pentane	<17	< 5.7	2-Hexanone	<23	< 5.7
Trichlorofluoromethane	<13	< 2.3	Tetrachloroethene	<39	< 5.7
Acetone	1,200 ve	$500 \mathrm{ve}$	Dibromochloromethane	< 0.49	< 0.057
2-Propanol	270	110	1,2-Dibromoethane (EDB)	< 0.44	< 0.057
1,1-Dichloroethene	< 2.3	< 0.57	Chlorobenzene	< 2.6	< 0.57
trans-1,2-Dichloroethene	< 2.3	< 0.57	Ethylbenzene	3.1	0.71
Methylene chloride	<200	<57	1,1,2,2-Tetrachloroethane	< 0.78	< 0.11
t-Butyl alcohol (TBA)	<69	<23	Nonane	<30	< 5.7
3-Chloropropene	<8.9	< 2.8	Isopropylbenzene	<14	< 2.8
CFC-113	<4.4	< 0.57	2-Chlorotoluene	<30	< 5.7
Carbon disulfide	<36	<11	Propylbenzene	<14	< 2.8
Methyl t-butyl ether (MTBE)	<10	< 2.8	4-Ethyltoluene	<14	< 2.8
Vinyl acetate	<40	<11	m,p-Xylene	12	2.8
1,1-Dichloroethane	< 2.3	< 0.57	o-Xylene	3.7	0.85
cis-1,2-Dichloroethene	< 2.3	< 0.57	Styrene	<4.9	<1.1
Hexane	<20	< 5.7	Bromoform	<12	<1.1
Chloroform	< 0.28	< 0.057	Benzyl chloride	< 0.3	< 0.057
Ethyl acetate	<41	<11	1,3,5-Trimethylbenzene	<14	<2.8
Tetrahydrofuran	2.5	0.84	1,2,4-Trimethylbenzene	<14	<2.8
2-Butanone (MEK)	42	14	1,3-Dichlorobenzene	<3.4	< 0.57
1,2-Dichloroethane (EDC)	< 0.23	< 0.057	1,4-Dichlorobenzene	<1.4	< 0.22
1,1,1-Trichloroethane	<3.1	< 0.57	1,2-Dichlorobenzene	<3.4	< 0.57
Carbon tetrachloride	<1.8	< 0.28	1,2,4-Trichlorobenzene	<4.2	< 0.57
Benzene	<1.8	< 0.57	Naphthalene	4.8	0.92
Cyclohexane	<39	<11	Hexachlorobutadiene	<1.2	< 0.11
Cyclonexame	-00	~11	116Aaciii010butaui6ile	~1.4	~0.11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-4_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-19 1/5.3 Date Analyzed: 12/03/20 Data File: 120315.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concen	itration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<6.4	<3.7	1,2-Dichloropropane	<1.2	< 0.26
Dichlorodifluoromethane	2.9	0.58	1,4-Dioxane	<1.9	< 0.53
Chloromethane	<20	<9.5	2,2,4-Trimethylpentane	<25	< 5.3
F-114	< 3.7	< 0.53	Methyl methacrylate	<22	<5.3
Vinyl chloride	<1.4	< 0.53	Heptane	<22	<5.3
1,3-Butadiene	< 0.23	< 0.11	Bromodichloromethane	< 0.36	< 0.053
Butane	<13	< 5.3	Trichloroethene	0.83	0.15
Bromomethane	<12	<3.2	cis-1,3-Dichloropropene	<2.4	< 0.53
Chloroethane	<14	< 5.3	4-Methyl-2-pentanone	<22	< 5.3
Vinyl bromide	<2.3	< 0.53	trans-1,3-Dichloropropene	<2.4	< 0.53
Ethanol	270 ve	140 ve	Toluene	<100	<26
Acrolein	<11	<4.8	1,1,2-Trichloroethane	< 0.29	< 0.053
Pentane	<16	< 5.3	2-Hexanone	<22	< 5.3
Trichlorofluoromethane	<12	<2.1	Tetrachloroethene	<36	< 5.3
Acetone	2,000 ve	820 ve	Dibromochloromethane	< 0.45	< 0.053
2-Propanol	3,600 ve	1,500 ve	1,2-Dibromoethane (EDB)	< 0.41	< 0.053
1,1-Dichloroethene	<2.1	< 0.53	Chlorobenzene	<2.4	< 0.53
trans-1,2-Dichloroethene	<2.1	< 0.53	Ethylbenzene	<2.3	< 0.53
Methylene chloride	<180	<53	1,1,2,2-Tetrachloroethane	< 0.73	< 0.11
t-Butyl alcohol (TBA)	<64	<21	Nonane	<28	< 5.3
3-Chloropropene	<8.3	< 2.6	Isopropylbenzene	<13	< 2.6
CFC-113	4.8	0.63	2-Chlorotoluene	<27	< 5.3
Carbon disulfide	<33	<11	Propylbenzene	<13	< 2.6
Methyl t-butyl ether (MTBE	< 9.6	< 2.6	4-Ethyltoluene	<13	< 2.6
Vinyl acetate	<37	<11	m,p-Xylene	6.7	1.5
1,1-Dichloroethane	< 2.1	< 0.53	o-Xylene	< 2.3	< 0.53
cis-1,2-Dichloroethene	< 2.1	< 0.53	Styrene	<4.5	<1.1
Hexane	<19	< 5.3	Bromoform	<11	<1.1
Chloroform	< 0.26	< 0.053	Benzyl chloride	< 0.27	< 0.053
Ethyl acetate	<38	<11	1,3,5-Trimethylbenzene	<13	< 2.6
Tetrahydrofuran	2.0	0.68	1,2,4-Trimethylbenzene	<13	< 2.6
2-Butanone (MEK)	<16	< 5.3	1,3-Dichlorobenzene	< 3.2	< 0.53
1,2-Dichloroethane (EDC)	< 0.21	< 0.053	1,4-Dichlorobenzene	<1.3	< 0.2
1,1,1-Trichloroethane	< 2.9	< 0.53	1,2-Dichlorobenzene	< 3.2	< 0.53
Carbon tetrachloride	<1.7	< 0.26	1,2,4-Trichlorobenzene	<3.9	< 0.53
Benzene	< 1.7	< 0.53	Naphthalene	2.9	0.56
Cyclohexane	<36	<11	Hexachlorobutadiene	<1.1	< 0.11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-5_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-20 1/3.4 Date Analyzed: 12/03/20 Data File: 120316.DMatrix: Air Instrument: GCMS7ug/m3 Units: Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
1	O	11	1	J	11
Propene	<4.1	< 2.4	1,2-Dichloropropane	< 0.79	< 0.17
Dichlorodifluoromethane	2.5	0.50	1,4-Dioxane	<1.2	< 0.34
Chloromethane	<13	< 6.1	2,2,4-Trimethylpentane	<16	< 3.4
F-114	< 2.4	< 0.34	Methyl methacrylate	<14	< 3.4
Vinyl chloride	< 0.87	< 0.34	Heptane	<14	< 3.4
1,3-Butadiene	< 0.15	< 0.068	Bromodichloromethane	< 0.23	< 0.034
Butane	<8.1	< 3.4	Trichloroethene	0.37	0.068
Bromomethane	< 7.9	<2	cis-1,3-Dichloropropene	<1.5	< 0.34
Chloroethane	<9	< 3.4	4-Methyl-2-pentanone	<14	< 3.4
Vinyl bromide	<1.5	< 0.34	trans-1,3-Dichloropropene	<1.5	< 0.34
Ethanol	210 ve	110 ve	Toluene	<64	<17
Acrolein	<7	< 3.1	1,1,2-Trichloroethane	< 0.19	< 0.034
Pentane	<10	< 3.4	2-Hexanone	<14	< 3.4
Trichlorofluoromethane	< 7.6	<1.4	Tetrachloroethene	<23	< 3.4
Acetone	410 ve	170 ve	Dibromochloromethane	< 0.29	< 0.034
2-Propanol	120	48	1,2-Dibromoethane (EDB)	< 0.26	< 0.034
1,1-Dichloroethene	<1.3	< 0.34	Chlorobenzene	<1.6	< 0.34
trans-1,2-Dichloroethene	<1.3	< 0.34	Ethylbenzene	7.4	1.7
Methylene chloride	<120	<34	1,1,2,2-Tetrachloroethane	< 0.47	< 0.068
t-Butyl alcohol (TBA)	<41	<14	Nonane	<18	< 3.4
3-Chloropropene	< 5.3	<1.7	Isopropylbenzene	<8.4	<1.7
CFC-113	< 2.6	< 0.34	2-Chlorotoluene	<18	< 3.4
Carbon disulfide	<21	< 6.8	Propylbenzene	<8.4	<1.7
Methyl t-butyl ether (MTBE)	<6.1	<1.7	4-Ethyltoluene	<8.4	<1.7
Vinyl acetate	<24	< 6.8	m,p-Xylene	29	6.8
1,1-Dichloroethane	<1.4	< 0.34	o-Xylene	6.9	1.6
cis-1,2-Dichloroethene	<1.3	< 0.34	Styrene	< 2.9	< 0.68
Hexane	<12	< 3.4	Bromoform	<7	< 0.68
Chloroform	< 0.17	< 0.034	Benzyl chloride	< 0.18	< 0.034
Ethyl acetate	<25	< 6.8	1,3,5-Trimethylbenzene	<8.4	<1.7
Tetrahydrofuran	15	5.1	1,2,4-Trimethylbenzene	11	2.2
2-Butanone (MEK)	<10	< 3.4	1,3-Dichlorobenzene	<2	< 0.34
1,2-Dichloroethane (EDC)	< 0.14	< 0.034	1,4-Dichlorobenzene	< 0.79	< 0.13
1,1,1-Trichloroethane	<1.9	< 0.34	1,2-Dichlorobenzene	<2	< 0.34
Carbon tetrachloride	<1.1	< 0.17	1,2,4-Trichlorobenzene	< 2.5	< 0.34
Benzene	2.6	0.81	Naphthalene	2.1	0.41
Cyclohexane	<23	< 6.8	Hexachlorobutadiene	< 0.73	< 0.068

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-6_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Date Collected: Lab ID: 12/01/20 012022-21 1/8.1 12/03/20 Date Analyzed: Data File: 120317.DMatrix: Air Instrument: GCMS7Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	85	70	130

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	65	38	1,2-Dichloropropane	<1.9	< 0.4
Dichlorodifluoromethane	<4	< 0.81	1,4-Dioxane	5.5	1.5
Chloromethane	<30	<15	2,2,4-Trimethylpentane	40	8.7
F-114	<5.7	< 0.81	Methyl methacrylate	<33	<8.1
Vinyl chloride	<3.7 <2.1	< 0.81		<33	<8.1
	<0.36	< 0.16	Heptane Bromodichloromethane	<0.54	<0.081
1,3-Butadiene Butane	29	12	Trichloroethene	< 0.54	< 0.16
		<4.9			<0.16
Bromomethane	<19		cis-1,3-Dichloropropene	<3.7	
Chloroethane	<21	< 8.1	4-Methyl-2-pentanone	<33	<8.1
Vinyl bromide	< 3.5	< 0.81	trans-1,3-Dichloropropene	< 3.7	< 0.81
Ethanol	640 ve	340 ve	Toluene	<150	<40
Acrolein	<17	<7.3	1,1,2-Trichloroethane	<0.44	< 0.081
Pentane	<24	<8.1	2-Hexanone	<33	<8.1
Trichlorofluoromethane	<18	<3.2	Tetrachloroethene	93	14
Acetone	2,000 ve	830 ve	Dibromochloromethane	< 0.69	< 0.081
2-Propanol	1,000 ve	410 ve	1,2-Dibromoethane (EDB)	< 0.62	< 0.081
1,1-Dichloroethene	<3.2	< 0.81	Chlorobenzene	<3.7	< 0.81
trans-1,2-Dichloroethene	<3.2	< 0.81	Ethylbenzene	51	12
Methylene chloride	<280	<81	1,1,2,2-Tetrachloroethane	<1.1	< 0.16
t-Butyl alcohol (TBA)	<98	<32	Nonane	<42	<8.1
3-Chloropropene	<13	<4	Isopropylbenzene	<20	<4
CFC-113	340	45	2-Chlorotoluene	<42	<8.1
Carbon disulfide	< 50	<16	Propylbenzene	<20	<4
Methyl t-butyl ether (MTBE		<4	4-Ethyltoluene	<20	<4
Vinyl acetate	<57	<16	m,p-Xylene	180	43
1,1-Dichloroethane	<3.3	< 0.81	o-Xylene	49	11
cis-1,2-Dichloroethene	< 3.2	< 0.81	Styrene	< 6.9	<1.6
Hexane	<29	<8.1	Bromoform	<17	<1.6
Chloroform	< 0.4	< 0.081	Benzyl chloride	< 0.42	< 0.081
Ethyl acetate	< 58	<16	1,3,5-Trimethylbenzene	<20	<4
Tetrahydrofuran	26	8.8	1,2,4-Trimethylbenzene	43	8.7
2-Butanone (MEK)	140	46	1,3-Dichlorobenzene	<4.9	< 0.81
1,2-Dichloroethane (EDC)	< 0.33	< 0.081	1,4-Dichlorobenzene	<1.9	< 0.31
1,1,1-Trichloroethane	32	5.9	1,2-Dichlorobenzene	<4.9	< 0.81
Carbon tetrachloride	< 2.5	< 0.4	1,2,4-Trichlorobenzene	<6	< 0.81
Benzene	< 2.6	< 0.81	Naphthalene	6.5	1.2
Cyclohexane	<56	<16	Hexachlorobutadiene	<1.7	< 0.16

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-7_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-22 1/5.5 Date Analyzed: 12/03/20 Data File: 120318.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
To the state of th	400		4 0 Pt 11		0.00
Propene	100	59	1,2-Dichloropropane	<1.3	< 0.28
Dichlorodifluoromethane	3.2	0.65	1,4-Dioxane	<2	< 0.55
Chloromethane	<20	<9.9	2,2,4-Trimethylpentane	<26	< 5.5
F-114	<3.8	< 0.55	Methyl methacrylate	<23	< 5.5
Vinyl chloride	<1.4	< 0.55	Heptane	<23	< 5.5
1,3-Butadiene	< 0.24	< 0.11	Bromodichloromethane	< 0.37	< 0.055
Butane	36	15	Trichloroethene	0.74	0.14
Bromomethane	<13	<3.3	cis-1,3-Dichloropropene	< 2.5	< 0.55
Chloroethane	<15	< 5.5	4-Methyl-2-pentanone	<23	< 5.5
Vinyl bromide	< 2.4	< 0.55	trans-1,3-Dichloropropene	< 2.5	< 0.55
Ethanol	400 ve	210 ve	Toluene	390	100
Acrolein	<11	<4.9	1,1,2-Trichloroethane	< 0.3	< 0.055
Pentane	28	9.5	2-Hexanone	<23	< 5.5
Trichlorofluoromethane	<12	< 2.2	Tetrachloroethene	<37	< 5.5
Acetone	580 ve	$250 \mathrm{ve}$	Dibromochloromethane	< 0.47	< 0.055
2-Propanol	320	130	1,2-Dibromoethane (EDB)	< 0.42	< 0.055
1,1-Dichloroethene	4.5	1.1	Chlorobenzene	< 2.5	< 0.55
trans-1,2-Dichloroethene	< 2.2	< 0.55	Ethylbenzene	27	6.1
Methylene chloride	<190	< 55	1,1,2,2-Tetrachloroethane	< 0.76	< 0.11
t-Butyl alcohol (TBA)	<67	<22	Nonane	<29	< 5.5
3-Chloropropene	<8.6	< 2.7	Isopropylbenzene	<14	< 2.7
CFC-113	260	33	2-Chlorotoluene	<28	< 5.5
Carbon disulfide	<34	<11	Propylbenzene	<14	< 2.7
Methyl t-butyl ether (MTBE)	< 9.9	< 2.7	4-Ethyltoluene	<14	< 2.7
Vinyl acetate	<39	<11	m,p-Xylene	98	22
1,1-Dichloroethane	< 2.2	< 0.55	o-Xylene	37	8.5
cis-1,2-Dichloroethene	<2.2	< 0.55	Styrene	<4.7	<1.1
Hexane	<19	< 5.5	Bromoform	<11	<1.1
Chloroform	< 0.27	< 0.055	Benzyl chloride	< 0.28	< 0.055
Ethyl acetate	<40	<11	1,3,5-Trimethylbenzene	16	3.3
Tetrahydrofuran	18	5.9	1,2,4-Trimethylbenzene	95	19
2-Butanone (MEK)	41	14	1,3-Dichlorobenzene	<3.3	< 0.55
1,2-Dichloroethane (EDC)	< 0.22	< 0.055	1,4-Dichlorobenzene	<1.3	< 0.21
1,1,1-Trichloroethane	<3	< 0.55	1,2-Dichlorobenzene	<3.3	< 0.55
Carbon tetrachloride	7.5	1.2	1,2,4-Trichlorobenzene	<4.1	< 0.55
Benzene	$\frac{7.5}{4.7}$	1.5	Naphthalene	31	5.9
Cyclohexane	<38	<11	Hexachlorobutadiene	<1.2	< 0.11
Cyclonexame	~50	\11	Hexaciiiofobutauieile	~1.2	\0.11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-8_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-23 1/3.4 Date Analyzed: 12/03/20 Data File: 120319.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	-11	<2.4	1 9 Diallananana	<0.70	< 0.17
Propene	<4.1	0.56	1,2-Dichloropropane	<0.79	
Dichlorodifluoromethane	2.8		1,4-Dioxane	<1.2	< 0.34
Chloromethane	<13	< 6.1	2,2,4-Trimethylpentane	<16	< 3.4
F-114	<2.4	< 0.34	Methyl methacrylate	<14	<3.4
Vinyl chloride	< 0.87	< 0.34	Heptane	<14	<3.4
1,3-Butadiene	< 0.15	< 0.068	Bromodichloromethane	< 0.23	< 0.034
Butane	<8.1	<3.4	Trichloroethene	0.38	0.071
Bromomethane	< 7.9	<2	cis-1,3-Dichloropropene	<1.5	< 0.34
Chloroethane	<9	<3.4	4-Methyl-2-pentanone	<14	<3.4
Vinyl bromide	<1.5	< 0.34	trans-1,3-Dichloropropene	<1.5	< 0.34
Ethanol	490 ve	$260 \mathrm{\ ve}$	Toluene	<64	<17
Acrolein	<7	<3.1	1,1,2-Trichloroethane	< 0.19	< 0.034
Pentane	<10	< 3.4	2-Hexanone	<14	<3.4
Trichlorofluoromethane	<7.6	<1.4	Tetrachloroethene	<23	< 3.4
Acetone	240 ve	100 ve	Dibromochloromethane	< 0.29	< 0.034
2-Propanol	67	27	1,2-Dibromoethane (EDB)	< 0.26	< 0.034
1,1-Dichloroethene	<1.3	< 0.34	Chlorobenzene	<1.6	< 0.34
trans-1,2-Dichloroethene	<1.3	< 0.34	Ethylbenzene	<1.5	< 0.34
Methylene chloride	<120	<34	1,1,2,2-Tetrachloroethane	< 0.47	< 0.068
t-Butyl alcohol (TBA)	<41	<14	Nonane	<18	< 3.4
3-Chloropropene	< 5.3	<1.7	Isopropylbenzene	<8.4	<1.7
CFC-113	< 2.6	< 0.34	2-Chlorotoluene	<18	< 3.4
Carbon disulfide	<21	< 6.8	Propylbenzene	<8.4	<1.7
Methyl t-butyl ether (MTBE)	< 6.1	<1.7	4-Ethyltoluene	<8.4	<1.7
Vinyl acetate	<24	< 6.8	m,p-Xylene	5.6	1.3
1,1-Dichloroethane	<1.4	< 0.34	o-Xylene	2.2	0.51
cis-1,2-Dichloroethene	<1.3	< 0.34	Styrene	< 2.9	< 0.68
Hexane	<12	< 3.4	Bromoform	<7	< 0.68
Chloroform	0.55	0.11	Benzyl chloride	< 0.18	< 0.034
Ethyl acetate	<25	< 6.8	1,3,5-Trimethylbenzene	<8.4	<1.7
Tetrahydrofuran	1.4	0.46	1,2,4-Trimethylbenzene	<8.4	<1.7
2-Butanone (MEK)	<10	< 3.4	1,3-Dichlorobenzene	<2	< 0.34
1,2-Dichloroethane (EDC)	< 0.14	< 0.034	1,4-Dichlorobenzene	< 0.79	< 0.13
1,1,1-Trichloroethane	<1.9	< 0.34	1,2-Dichlorobenzene	<2	< 0.34
Carbon tetrachloride	<1.1	< 0.17	1,2,4-Trichlorobenzene	<2.5	< 0.34
Benzene	<1.1	< 0.34	Naphthalene	6.7	1.3
Cyclohexane	<23	<6.8	Hexachlorobutadiene	< 0.73	< 0.068
0,010110114110	-20	.0.0		.0.10	.0.000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-9_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-24 1/5.7 Date Analyzed: 12/03/20 Data File: 120320.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concent	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	-0.0	- 1	1 0 D' 11	-1.0	40.00
Propene	<6.9	<4	1,2-Dichloropropane	<1.3	< 0.28
Dichlorodifluoromethane	< 2.8	< 0.57	1,4-Dioxane	<2.1	< 0.57
Chloromethane	<21	<10	2,2,4-Trimethylpentane	<27	< 5.7
F-114	<4	< 0.57	Methyl methacrylate	<23	< 5.7
Vinyl chloride	<1.5	< 0.57	Heptane	<23	< 5.7
1,3-Butadiene	< 0.25	< 0.11	Bromodichloromethane	< 0.38	< 0.057
Butane	<14	< 5.7	Trichloroethene	2.8	0.52
Bromomethane	<13	< 3.4	cis-1,3-Dichloropropene	< 2.6	< 0.57
Chloroethane	<15	< 5.7	4-Methyl-2-pentanone	<23	< 5.7
Vinyl bromide	< 2.5	< 0.57	trans-1,3-Dichloropropene	< 2.6	< 0.57
Ethanol	370 ve	200 ve	Toluene	<110	<28
Acrolein	<12	< 5.1	1,1,2-Trichloroethane	< 0.31	< 0.057
Pentane	<17	< 5.7	2-Hexanone	<23	< 5.7
Trichlorofluoromethane	<13	< 2.3	Tetrachloroethene	<39	< 5.7
Acetone	430 ve	180 ve	Dibromochloromethane	< 0.49	< 0.057
2-Propanol	110	43	1,2-Dibromoethane (EDB)	< 0.44	< 0.057
1,1-Dichloroethene	< 2.3	< 0.57	Chlorobenzene	< 2.6	< 0.57
trans-1,2-Dichloroethene	< 2.3	< 0.57	Ethylbenzene	12	2.7
Methylene chloride	<200	<57	1,1,2,2-Tetrachloroethane	< 0.78	< 0.11
t-Butyl alcohol (TBA)	<69	<23	Nonane	<30	< 5.7
3-Chloropropene	<8.9	< 2.8	Isopropylbenzene	<14	< 2.8
CFC-113	54	7.0	2-Chlorotoluene	<30	< 5.7
Carbon disulfide	<36	<11	Propylbenzene	<14	< 2.8
Methyl t-butyl ether (MTBE)	<10	< 2.8	4-Ethyltoluene	<14	< 2.8
Vinyl acetate	<40	<11	m,p-Xylene	44	10
1,1-Dichloroethane	< 2.3	< 0.57	o-Xylene	16	3.6
cis-1,2-Dichloroethene	< 2.3	< 0.57	Styrene	<4.9	<1.1
Hexane	<20	< 5.7	Bromoform	<12	<1.1
Chloroform	< 0.28	< 0.057	Benzyl chloride	< 0.3	< 0.057
Ethyl acetate	<41	<11	1,3,5-Trimethylbenzene	<14	< 2.8
Tetrahydrofuran	2.6	0.87	1,2,4-Trimethylbenzene	18	3.6
2-Butanone (MEK)	<17	< 5.7	1,3-Dichlorobenzene	<3.4	< 0.57
1,2-Dichloroethane (EDC)	< 0.23	< 0.057	1,4-Dichlorobenzene	<1.4	< 0.22
1,1,1-Trichloroethane	6.5	1.2	1,2-Dichlorobenzene	<3.4	< 0.57
Carbon tetrachloride	<1.8	< 0.28	1,2,4-Trichlorobenzene	<4.2	< 0.57
Benzene	<1.8	< 0.57	Naphthalene	6.2	1.2
Cyclohexane	<39	<11	Hexachlorobutadiene	<1.2	< 0.11
CJ CICIICAUIIC	-50	-11	110Aucilio10bauauiciic	-1.4	-0.11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-10_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-25 1/5.8 Date Analyzed: 12/03/20 Data File: 120321.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	-17	-11	1 2 D: 11	-1.0	40.00
Propene	<7	<4.1	1,2-Dichloropropane	<1.3	< 0.29
Dichlorodifluoromethane	<2.9	< 0.58	1,4-Dioxane	<2.1	< 0.58
Chloromethane	<22	<10	2,2,4-Trimethylpentane	<27	< 5.8
F-114	<4.1	< 0.58	Methyl methacrylate	<24	< 5.8
Vinyl chloride	<1.5	< 0.58	Heptane	<24	< 5.8
1,3-Butadiene	< 0.26	< 0.12	Bromodichloromethane	< 0.39	< 0.058
Butane	<14	< 5.8	Trichloroethene	22	4.1
Bromomethane	<14	<3.5	cis-1,3-Dichloropropene	< 2.6	< 0.58
Chloroethane	<15	< 5.8	4-Methyl-2-pentanone	<24	< 5.8
Vinyl bromide	< 2.5	< 0.58	trans-1,3-Dichloropropene	< 2.6	< 0.58
Ethanol	240	130	Toluene	<110	<29
Acrolein	<12	< 5.2	1,1,2-Trichloroethane	< 0.32	< 0.058
Pentane	<17	< 5.8	2-Hexanone	<24	< 5.8
Trichlorofluoromethane	<13	< 2.3	Tetrachloroethene	<39	< 5.8
Acetone	$460 \mathrm{ve}$	190 ve	Dibromochloromethane	< 0.49	< 0.058
2-Propanol	83	34	1,2-Dibromoethane (EDB)	< 0.45	< 0.058
1,1-Dichloroethene	< 2.3	< 0.58	Chlorobenzene	< 2.7	< 0.58
trans-1,2-Dichloroethene	< 2.3	< 0.58	Ethylbenzene	6.1	1.4
Methylene chloride	< 200	<58	1,1,2,2-Tetrachloroethane	< 0.8	< 0.12
t-Butyl alcohol (TBA)	< 70	<23	Nonane	<30	< 5.8
3-Chloropropene	< 9.1	< 2.9	Isopropylbenzene	<14	< 2.9
CFC-113	28	3.6	2-Chlorotoluene	<30	< 5.8
Carbon disulfide	<36	<12	Propylbenzene	<14	< 2.9
Methyl t-butyl ether (MTBE)	<10	< 2.9	4-Ethyltoluene	<14	< 2.9
Vinyl acetate	<41	<12	m,p-Xylene	24	5.5
1,1-Dichloroethane	< 2.3	< 0.58	o-Xylene	7.7	1.8
cis-1,2-Dichloroethene	< 2.3	< 0.58	Styrene	<4.9	<1.2
Hexane	<20	< 5.8	Bromoform	<12	<1.2
Chloroform	< 0.28	< 0.058	Benzyl chloride	< 0.3	< 0.058
Ethyl acetate	<42	<12	1,3,5-Trimethylbenzene	<14	< 2.9
Tetrahydrofuran	13	4.6	1,2,4-Trimethylbenzene	<14	<2.9
2-Butanone (MEK)	<17	< 5.8	1,3-Dichlorobenzene	<3.5	< 0.58
1,2-Dichloroethane (EDC)	< 0.23	< 0.058	1,4-Dichlorobenzene	<1.4	< 0.22
1,1,1-Trichloroethane	<3.2	< 0.58	1,2-Dichlorobenzene	<3.5	< 0.58
Carbon tetrachloride	<1.8	< 0.29	1,2,4-Trichlorobenzene	<4.3	< 0.58
Benzene	<1.9	< 0.58	Naphthalene	8.8	1.7
Cyclohexane	<40	<12	Hexachlorobutadiene	<1.2	< 0.12
CJ CICIICAUIIC	-10	·14	110Auditioi ob utuluidito	·1.4	-0.12

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-11_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-26 1/6.1 Date Analyzed: 12/03/20 Data File: 120322.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	. .	. 4.0	1 0 D: 11		.0.0
Propene	<7.3	<4.3	1,2-Dichloropropane	<1.4	< 0.3
Dichlorodifluoromethane	<3	< 0.61	1,4-Dioxane	<2.2	< 0.61
Chloromethane	<23	<11	2,2,4-Trimethylpentane	<28	<6.1
F-114	<4.3	< 0.61	Methyl methacrylate	<25	<6.1
Vinyl chloride	<1.6	< 0.61	Heptane	<25	<6.1
1,3-Butadiene	< 0.27	< 0.12	Bromodichloromethane	< 0.41	< 0.061
Butane	<15	< 6.1	Trichloroethene	< 0.66	< 0.12
Bromomethane	<14	< 3.7	cis-1,3-Dichloropropene	< 2.8	< 0.61
Chloroethane	<16	<6.1	4-Methyl-2-pentanone	<25	<6.1
Vinyl bromide	< 2.7	< 0.61	trans-1,3-Dichloropropene	< 2.8	< 0.61
Ethanol	260	140	Toluene	<110	<30
Acrolein	<13	< 5.5	1,1,2-Trichloroethane	< 0.33	< 0.061
Pentane	<18	< 6.1	2-Hexanone	<25	<6.1
Trichlorofluoromethane	<14	< 2.4	Tetrachloroethene	<41	< 6.1
Acetone	220	93	Dibromochloromethane	< 0.52	< 0.061
2-Propanol	200	80	1,2-Dibromoethane (EDB)	< 0.47	< 0.061
1,1-Dichloroethene	< 2.4	< 0.61	Chlorobenzene	< 2.8	< 0.61
trans-1,2-Dichloroethene	< 2.4	< 0.61	Ethylbenzene	< 2.6	< 0.61
Methylene chloride	<210	<61	1,1,2,2-Tetrachloroethane	< 0.84	< 0.12
t-Butyl alcohol (TBA)	<74	<24	Nonane	<32	<6.1
3-Chloropropene	< 9.5	<3	Isopropylbenzene	<15	<3
CFC-113	16	2.1	2-Chlorotoluene	<32	<6.1
Carbon disulfide	<38	<12	Propylbenzene	<15	<3
Methyl t-butyl ether (MTBE)	<11	<3	4-Ethyltoluene	<15	<3
Vinyl acetate	<43	<12	m,p-Xylene	6.4	1.5
1,1-Dichloroethane	< 2.5	< 0.61	o-Xylene	2.6	0.61
cis-1,2-Dichloroethene	< 2.4	< 0.61	Styrene	< 5.2	<1.2
Hexane	<22	<6.1	Bromoform	<13	<1.2
Chloroform	< 0.3	< 0.061	Benzyl chloride	< 0.32	< 0.061
Ethyl acetate	<44	<12	1,3,5-Trimethylbenzene	<15	<3
Tetrahydrofuran	7.1	2.4	1,2,4-Trimethylbenzene	<15	<3
2-Butanone (MEK)	<18	<6.1	1,3-Dichlorobenzene	<3.7	< 0.61
1,2-Dichloroethane (EDC)	< 0.25	< 0.061	1,4-Dichlorobenzene	<1.5	< 0.23
1,1,1-Trichloroethane	13	2.5	1,2-Dichlorobenzene	<3.7	< 0.61
Carbon tetrachloride	<1.9	< 0.3	1,2,4-Trichlorobenzene	<4.5	< 0.61
Benzene	<1.9	< 0.61	Naphthalene	2.0	0.38
Cyclohexane	<1. <i>3</i>	<12	Hexachlorobutadiene	<1.3	< 0.12
Cyclonexame	~4 4	\1 2	riexaciiiorobutauiene	~1.5	~U.1Z

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SV-12_120120 Client: GeoEngineers, Inc

Date Received: 12/01/20 Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: 12/01/20 012022-27 1/17 Date Analyzed: 12/03/20 Data File: 120323.DMatrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concer	ntration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<20	<12	1,2-Dichloropropane	<3.9	< 0.85
Dichlorodifluoromethane	<8.4	<1.7	1,4-Dioxane	<6.1	<1.7
Chloromethane	<63	<31	2,2,4-Trimethylpentane	<79	<17
F-114	<12	<1.7	Methyl methacrylate	<70	<17
Vinyl chloride	<4.3	<1.7	Heptane	<70	<17
1,3-Butadiene	< 0.75	< 0.34	Bromodichloromethane	<1.1	<0.17
Butane	<40	<17	Trichloroethene	30,000 ve	
Bromomethane	<40	<10	cis-1,3-Dichloropropene	<7.7	<1.7
Chloroethane	<45	<17	4-Methyl-2-pentanone	<70	<17
Vinyl bromide	<7.4	<1.7	trans-1,3-Dichloropropene	<7.7	<1.7
Ethanol	150	77	Toluene	<320	<85
Acrolein	<35	<15	1,1,2-Trichloroethane	1.8	0.32
Pentane	< 50	<17	2-Hexanone	< 70	<17
Trichlorofluoromethane	<38	<6.8	Tetrachloroethene	740	110
Acetone	190	78	Dibromochloromethane	<1.4	< 0.17
2-Propanol	<150	< 59	1,2-Dibromoethane (EDB)	<1.3	< 0.17
1,1-Dichloroethene	930	240	Chlorobenzene	< 7.8	<1.7
trans-1,2-Dichloroethene	< 6.7	<1.7	Ethylbenzene	< 7.4	<1.7
Methylene chloride	< 590	<170	1,1,2,2-Tetrachloroethane	< 2.3	< 0.34
t-Butyl alcohol (TBA)	<210	<68	Nonane	<89	<17
3-Chloropropene	<27	< 8.5	Isopropylbenzene	<42	< 8.5
CFC-113	<13	<1.7	2-Chlorotoluene	<88	<17
Carbon disulfide	<110	<34	Propylbenzene	<42	< 8.5
Methyl t-butyl ether (MTBE)	<31	< 8.5	4-Ethyltoluene	<42	< 8.5
Vinyl acetate	<120	<34	m,p-Xylene	17	3.9
1,1-Dichloroethane	530	130	o-Xylene	< 7.4	<1.7
cis-1,2-Dichloroethene	20	5.0	Styrene	<14	< 3.4
Hexane	<60	<17	Bromoform	<35	<3.4
Chloroform	170	35	Benzyl chloride	< 0.88	< 0.17
Ethyl acetate	<120	<34	1,3,5-Trimethylbenzene	<42	<8.5
Tetrahydrofuran	<5	<1.7	1,2,4-Trimethylbenzene	<42	< 8.5
2-Butanone (MEK)	< 50	<17	1,3-Dichlorobenzene	<10	<1.7
1,2-Dichloroethane (EDC)	< 0.69	< 0.17	1,4-Dichlorobenzene	<4	< 0.65
1,1,1-Trichloroethane		1,400 ve	1,2-Dichlorobenzene	<10	<1.7
Carbon tetrachloride	<5.3	< 0.85	1,2,4-Trichlorobenzene	<13	<1.7
Benzene	<5.4	<1.7	Naphthalene	12	2.2
Cyclohexane	<120	<34	Hexachlorobutadiene	<3.6	< 0.34
Cyclonexame	~120	~ 04	11exaciiioi obutautette	~5.0	~0.04

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: GeoEngineers, Inc

Date Received: Not Applicable Project: 5531-014-01, F&BI 012022

Lab ID: Date Collected: Not Applicable $00\text{-}2756~\mathrm{MB}$ 12/04/20 Date Analyzed: Data File: 120419.DMatrix: Air Instrument: GCMS7ug/m3 Units: Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	81	70	130

	Concent	ration		Conce.	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
5 5 112 p 5 112 113 1	8	PP*	F	g	PP
Propene	<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	< 0.49	< 0.1	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	< 3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	< 2.4	<1	Trichloroethene	< 0.11	< 0.02
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	<4.8	<2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	< 0.049	< 0.01	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	<7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.29	< 0.1	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	< 0.31	< 0.05	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	< 0.32	< 0.1	Naphthalene	< 0.26	< 0.05
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	<0.057 j	<0.011 j

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: GeoEngineers, Inc

Date Received: Not Applicable Project: 5531-014-01, F&BI 012022

Lab ID: $00-2554~\mathrm{MB}$ Date Collected: Not Applicable 12/03/20 Date Analyzed: Data File: 120310.DMatrix: Air Instrument: GCMS7Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	100	70	130

Concent	tration		Concer	itration
ug/m3	ppbv	Compounds:	ug/m3	ppbv
<1.2	< 0.7	1,2-Dichloropropane	< 0.23	< 0.05
< 0.49	< 0.1	1,4-Dioxane	< 0.36	< 0.1
<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
< 0.26	< 0.1	Heptane	<4.1	<1
< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
< 2.4	<1	Trichloroethene	< 0.11	< 0.02
< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
< 7.5	<4	Toluene	<19	<5
< 2.1	< 0.9	1,1,2-Trichloroethane	< 0.055	< 0.01
<3	<1	2-Hexanone	<4.1	<1
< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
<4.8	<2	Dibromochloromethane	< 0.085	< 0.01
<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
<12	<4	Nonane	< 5.2	<1
<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
< 6.2	<2	Propylbenzene	< 2.5	< 0.5
<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
<7	<2	m,p-Xylene	< 0.87	< 0.2
< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
< 0.4	< 0.1	Styrene	< 0.85	< 0.2
<3.5	<1	Bromoform	< 2.1	< 0.2
< 0.049	< 0.01	Benzyl chloride	< 0.052	< 0.01
<7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
< 0.29	< 0.1	1,2,4-Trimethylbenzene		< 0.5
< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
< 0.04	< 0.01	1,4-Dichlorobenzene	< 0.23	< 0.038
< 0.55	< 0.1		< 0.6	< 0.1
< 0.31	< 0.05	1,2,4-Trichlorobenzene	< 0.74	< 0.1
< 0.32	< 0.1	Naphthalene	< 0.26	< 0.05
< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
	ug/m3 <1.2 <0.49 <3.7 <0.7 <0.26 <0.044 <2.4 <2.3 <2.6 <0.44 <7.5 <2.1 <3 <2.2 <4.8 <8.6 <0.4 <0.4 <3.5 <12 <1.6 <0.77 <6.2 <1.8 <7 <0.4 <0.4 <3.5 <0.049 <7.2 <0.29 <2.9 <0.04 <0.55 <0.31 <0.32	<1.2	41.2 <0.7	ug/m3 ppbv Compounds: ug/m3 <1.2

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

Date Extracted: 12/08/20 Date Analyzed: 12/08/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

Sample ID Laboratory ID	<u>Helium</u>
SV-1_113020 012022-16	<0.6
SV-2_113020 012022-17	< 0.6
SV-3_113020 012022-18	<0.6
SV-4_120120 012022-19	<0.6
SV-5_120120 012022-20	< 0.6
SV-6_120120 012022-21	< 0.6
SV-7_120120 012022-22	<0.6
SV-8_120120 012022-23	<0.6
SV-9_120120 012022-24	< 0.6
SV-10_120120 012022-25	< 0.6
SV-11_120120 012022-26	< 0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

Date Extracted: 12/08/20 Date Analyzed: 12/08/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

Sample ID Laboratory ID	<u>Helium</u>
SV-12_120120 012022-27	<0.6
Method Blank	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 012022-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	45	46	2
APH EC9-12 aliphatics	ug/m3	140	160	13
APH EC9-10 aromatics	ug/m3	<25	<25	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	79	70-130
APH EC9-12 aliphatics	ug/m3	67	104	70-130
APH EC9-10 aromatics	ug/m3	67	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 012022-16 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	750	890	17
APH EC9-12 aliphatics	ug/m3	<270	280	nm
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	83	70-130
APH EC9-12 aliphatics	ug/m3	67	102	70-130
APH EC9-10 aromatics	ug/m3	67	99	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 012022-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<1.2	<1.2	nm
Dichlorodifluoromethane	ug/m3	2.4	2.9	19
Chloromethane	ug/m3	<3.7	<3.7	nm
F-114	ug/m3	< 0.7	< 0.7	nm
Vinyl chloride	ug/m3	< 0.26	< 0.26	nm
1,3-Butadiene	ug/m3	< 0.044	< 0.044	nm
Butane	ug/m3	3.4	4.8	34 vo
Bromomethane	ug/m3	< 2.3	< 2.3	nm
Chloroethane	ug/m3	< 2.6	< 2.6	nm
Vinyl bromide	ug/m3	< 0.44	< 0.44	nm
Ethanol	ug/m3	< 7.5	< 7.5	nm
Acrolein	ug/m3	< 2.1	< 2.1	nm
Pentane	ug/m3	<3	<3	nm
Trichlorofluoromethane	ug/m3	< 2.2	< 2.2	nm
Acetone	ug/m3	7.5	11	38 vo
2-Propanol	ug/m3	<8.6	<8.6	nm
1,1-Dichloroethene	ug/m3	< 0.4	< 0.4	nm
trans-1,2-Dichloroethene	ug/m3	< 0.4	< 0.4	nm
Methylene chloride	ug/m3	60	81	30
t-Butyl alcohol (TBA)	ug/m3	<12	<12	nm
3-Chloropropene	ug/m3	<1.6	<1.6	nm
CFC-113	ug/m3	< 0.77	< 0.77	nm
Carbon disulfide	ug/m3	< 6.2	< 6.2	nm
Methyl t-butyl ether (MTBE)	ug/m3	<1.8	<1.8	nm
Vinyl acetate	ug/m3	<7	<7	nm
1,1-Dichloroethane	ug/m3	< 0.4	< 0.4	nm
cis-1,2-Dichloroethene	ug/m3	< 0.4	< 0.4	nm
Hexane	ug/m3	4.0	4.6	14
Chloroform	ug/m3	0.11	0.11	0
Ethyl acetate	ug/m3	< 7.2	< 7.2	nm
Tetrahydrofuran	ug/m3	< 0.29	< 0.29	nm
2-Butanone (MEK)	ug/m3	< 2.9	< 2.9	nm
1,2-Dichloroethane (EDC)	ug/m3	0.061	0.077	23
1,1,1-Trichloroethane	ug/m3	< 0.55	< 0.55	nm
Carbon tetrachloride	ug/m3	0.40	0.43	7
Benzene	ug/m3	0.45	0.53	16
Cyclohexane	ug/m3	< 6.9	< 6.9	nm
1,2-Dichloropropane	ug/m3	< 0.23	< 0.23	nm
1,4-Dioxane	ug/m3	< 0.36	< 0.36	nm
2,2,4-Trimethylpentane	ug/m3	<4.7	<4.7	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 012022-01 (Duplicate) (continued)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<4.1	<4.1	nm
Heptane	ug/m3	<4.1	<4.1	nm
Bromodichloromethane	ug/m3	< 0.067	< 0.067	nm
Trichloroethene	ug/m3	0.15	0.19	24
cis-1,3-Dichloropropene	ug/m3	< 0.45	< 0.45	nm
4-Methyl-2-pentanone	ug/m3	<4.1	<4.1	nm
trans-1,3-Dichloropropene	ug/m3	< 0.45	< 0.45	nm
Toluene	ug/m3	<19	<19	nm
1,1,2-Trichloroethane	ug/m3	< 0.055	< 0.055	nm
2-Hexanone	ug/m3	<4.1	<4.1	nm
Tetrachloroethene	ug/m3	< 6.8	<6.8	nm
Dibromochloromethane	ug/m3	< 0.085	< 0.085	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.077	< 0.077	nm
Chlorobenzene	ug/m3	< 0.46	< 0.46	nm
Ethylbenzene	ug/m3	< 0.43	< 0.43	nm
1,1,2,2-Tetrachloroethane	ug/m3	< 0.14	< 0.14	nm
Nonane	ug/m3	< 5.2	< 5.2	nm
Isopropylbenzene	ug/m3	< 2.5	< 2.5	nm
2-Chlorotoluene	ug/m3	< 5.2	< 5.2	nm
Propylbenzene	ug/m3	< 2.5	< 2.5	nm
4-Ethyltoluene	ug/m3	< 2.5	< 2.5	nm
m,p-Xylene	ug/m3	1.4	1.7	19
o-Xylene	ug/m3	0.63	0.73	15
Styrene	ug/m3	< 0.85	< 0.85	nm
Bromoform	ug/m3	< 2.1	< 2.1	nm
Benzyl chloride	ug/m3	< 0.052	< 0.052	nm
1,3,5-Trimethylbenzene	ug/m3	< 2.5	< 2.5	nm
1,2,4-Trimethylbenzene	ug/m3	< 2.5	< 2.5	nm
1,3-Dichlorobenzene	ug/m3	< 0.6	< 0.6	nm
1,4-Dichlorobenzene	ug/m3	< 0.23	< 0.23	nm
1,2-Dichlorobenzene	ug/m3	< 0.6	< 0.6	nm
1,2,4-Trichlorobenzene	ug/m3	< 0.74	< 0.74	nm
Naphthalene	ug/m3	< 0.26	< 0.26	nm
Hexachlorobutadiene	ug/m3	< 0.21	< 0.21	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

v	1		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ug/m3	23	113	70-130
Dichlorodifluoromethane	ug/m3	67	109	70-130
Chloromethane	ug/m3	28	117	70-130
F-114	ug/m3	94	108	70-130
Vinyl chloride	ug/m3	35	118	70-130
1,3-Butadiene	ug/m3	30	105	70-130
Butane	ug/m3	32	99	70-130
Bromomethane	ug/m3	52	100	70-130
Chloroethane	ug/m3	36	95	70-130
Vinyl bromide	ug/m3	59	114	70-130
Ethanol	ug/m3	25	85	70-130
Acrolein	ug/m3	31	123	70-130
Pentane	ug/m3	40	99	70-130
Trichlorofluoromethane	ug/m3	76	103	70-130
Acetone	ug/m3	32	109	70-130
2-Propanol	ug/m3	33	104	70-130
1,1-Dichloroethene	ug/m3	54	106	70-130
trans-1,2-Dichloroethene	ug/m3	54	98	70-130
Methylene chloride	ug/m3	94	91	70-130
t-Butyl alcohol (TBA)	ug/m3	41	108	70-130
3-Chloropropene	ug/m3	42	93	70-130
CFC-113	ug/m3	100	99	70-130
Carbon disulfide	ug/m3	42	94	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	101	70-130
Vinyl acetate	ug/m3	48	115	70-130
1,1-Dichloroethane	ug/m3	55	109	70-130
cis-1,2-Dichloroethene	ug/m3	54	102	70-130
Hexane	ug/m3	48	83	70-130
Chloroform	ug/m3	66	100	70-130
Ethyl acetate	ug/m3	49	101	70-130
Tetrahydrofuran	ug/m3	40	95	70-130
2-Butanone (MEK)	ug/m3	40	120	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	99	70-130
1,1,1-Trichloroethane	ug/m3	74	99	70-130
Carbon tetrachloride	ug/m3	85	99	70-130
Benzene	ug/m3	43	95	70-130
Cyclohexane	ug/m3	46	92	70-130
1,2-Dichloropropane	ug/m3	62	96	70-130
1,4-Dioxane	ug/m3	49	105	70-130
2,2,4-Trimethylpentane	ug/m3	63	99	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample (continued)

Percent				
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	106	70-130
Heptane	ug/m3	55	103	70-130
Bromodichloromethane	ug/m3	90	106	70-130
Trichloroethene	ug/m3	73	106	70-130
cis-1,3-Dichloropropene	ug/m3	61	109	70-130
4-Methyl-2-pentanone	ug/m3	55	106	70-130
trans-1,3-Dichloropropene	ug/m3	61	96	70-130
Toluene	ug/m3	51	103	70-130
1,1,2-Trichloroethane	ug/m3	74	107	70-130
2-Hexanone	ug/m3	55	101	70-130
Tetrachloroethene	ug/m3	92	113	70-130
Dibromochloromethane	ug/m3	120	120	70-130
1,2-Dibromoethane (EDB)	ug/m3	100	128	70-130
Chlorobenzene	ug/m3	62	126	70-130
Ethylbenzene	ug/m3	59	113	70-130
1,1,2,2-Tetrachloroethane	ug/m3	93	110	70-130
Nonane	ug/m3	71	106	70-130
Isopropylbenzene	ug/m3	66	110	70-130
2-Chlorotoluene	ug/m3	70	110	70-130
Propylbenzene	ug/m3	66	112	70-130
4-Ethyltoluene	ug/m3	66	110	70-130
m,p-Xylene	ug/m3	120	113	70-130
o-Xylene	ug/m3	59	112	70-130
Styrene	ug/m3	58	108	70-130
Bromoform	ug/m3	140	118	70-130
Benzyl chloride	ug/m3	70	118	70-130
1,3,5-Trimethylbenzene	ug/m3	66	110	70-130
1,2,4-Trimethylbenzene	ug/m3	66	115	70-130
1,3-Dichlorobenzene	ug/m3	81	117	70-130
1,4-Dichlorobenzene	ug/m3	81	107	70-130
1,2-Dichlorobenzene	ug/m3	81	108	70-130
1,2,4-Trichlorobenzene	ug/m3	100	83	70-130
Naphthalene	ug/m3	71	88	70-130
Hexachlorobutadiene	ug/m3	140	112	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 012022-16 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	<6.6	<6.6	nm
Dichlorodifluoromethane	ug/m3	< 2.7	< 2.7	nm
Chloromethane	ug/m3	<20	<20	nm
F-114	ug/m3	<3.8	<3.8	nm
Vinyl chloride	ug/m3	<1.4	<1.4	nm
1,3-Butadiene	ug/m3	< 0.24	< 0.24	nm
Butane	ug/m3	<13	<13	nm
Bromomethane	ug/m3	<13	<13	nm
Chloroethane	ug/m3	<15	<15	nm
Vinyl bromide	ug/m3	< 2.4	< 2.4	nm
Ethanol	ug/m3	180	190	5
Acrolein	ug/m3	<11	<11	nm
Pentane	ug/m3	<16	<16	nm
Trichlorofluoromethane	ug/m3	<12	<12	nm
Acetone	ug/m3	510	500	2
2-Propanol	ug/m3	670	670	0
1,1-Dichloroethene	ug/m3	< 2.2	< 2.2	nm
trans-1,2-Dichloroethene	ug/m3	<2.2	< 2.2	nm
Methylene chloride	ug/m3	<190	<190	nm
t-Butyl alcohol (TBA)	ug/m3	<67	<67	nm
3-Chloropropene	ug/m3	<8.6	<8.6	nm
CFC-113	ug/m3	<4.2	<4.2	nm
Carbon disulfide	ug/m3	<34	<34	nm
Methyl t-butyl ether (MTBE)	ug/m3	<9.9	<9.9	nm
Vinyl acetate	ug/m3	<39	<39	nm
1,1-Dichloroethane	ug/m3	< 2.2	< 2.2	nm
cis-1,2-Dichloroethene	ug/m3	< 2.2	< 2.2	nm
Hexane	ug/m3	<19	<19	nm
Chloroform	ug/m3	< 0.27	< 0.27	nm
Ethyl acetate	ug/m3	<40	<40	nm
Tetrahydrofuran	ug/m3	<1.6	<1.6	nm
2-Butanone (MEK)	ug/m3	<16	<16	nm
1,2-Dichloroethane (EDC)	ug/m3	< 0.22	< 0.22	nm
1,1,1-Trichloroethane	ug/m3	3.6	3.5	3
Carbon tetrachloride	ug/m3	<1.7	<1.7	nm
Benzene	ug/m3	2.4	2.3	4
Cyclohexane	ug/m3	<38	<38	nm
1,2-Dichloropropane	ug/m3	<1.3	<1.3	nm
1,4-Dioxane	ug/m3	<2	<2	nm
2,2,4-Trimethylpentane	ug/m3	<26	<26	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 012022-16 1/5.5 (Duplicate) (continued)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<23	<23	nm
Heptane	ug/m3	<23	<23	nm
Bromodichloromethane	ug/m3	< 0.37	< 0.37	nm
Trichloroethene	ug/m3	< 0.59	< 0.59	nm
cis-1,3-Dichloropropene	ug/m3	< 2.5	< 2.5	nm
4-Methyl-2-pentanone	ug/m3	<23	<23	nm
trans-1,3-Dichloropropene	ug/m3	< 2.5	< 2.5	nm
Toluene	ug/m3	<100	<100	nm
1,1,2-Trichloroethane	ug/m3	< 0.3	< 0.3	nm
2-Hexanone	ug/m3	<23	<23	nm
Tetrachloroethene	ug/m3	<37	<37	nm
Dibromochloromethane	ug/m3	< 0.47	< 0.47	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.42	< 0.42	nm
Chlorobenzene	ug/m3	< 2.5	< 2.5	nm
Ethylbenzene	ug/m3	< 2.4	< 2.4	nm
1,1,2,2-Tetrachloroethane	ug/m3	< 0.76	< 0.76	nm
Nonane	ug/m3	<29	<29	nm
Isopropylbenzene	ug/m3	<14	<14	nm
2-Chlorotoluene	ug/m3	<28	<28	nm
Propylbenzene	ug/m3	<14	<14	nm
4-Ethyltoluene	ug/m3	<14	<14	nm
m,p-Xylene	ug/m3	<4.8	<4.8	nm
o-Xylene	ug/m3	< 2.4	< 2.4	nm
Styrene	ug/m3	<4.7	<4.7	nm
Bromoform	ug/m3	<11	<11	nm
Benzyl chloride	ug/m3	< 0.28	< 0.28	nm
1,3,5-Trimethylbenzene	ug/m3	<14	<14	nm
1,2,4-Trimethylbenzene	ug/m3	<14	<14	nm
1,3-Dichlorobenzene	ug/m3	<3.3	<3.3	nm
1,4-Dichlorobenzene	ug/m3	<1.3	<1.3	nm
1,2-Dichlorobenzene	ug/m3	<3.3	<3.3	nm
1,2,4-Trichlorobenzene	ug/m3	<4.1	<4.1	nm
Naphthalene	ug/m3	<1.4	<1.4	nm
Hexachlorobutadiene	ug/m3	<1.2	<1.2	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Dasoratory code. Dasoratory cor	ici oi zampio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ug/m3	23	94	70-130
Dichlorodifluoromethane	ug/m3	67	94	70-130
Chloromethane	ug/m3	28	82	70-130
F-114	ug/m3	94	7 9	70-130
Vinyl chloride	ug/m3	35	80	70-130
1,3-Butadiene	ug/m3	30	82	70-130
Butane	ug/m3	32	78	70-130
Bromomethane	ug/m3	52	84	70-130
Chloroethane	ug/m3	36	78	70-130
Vinyl bromide	ug/m3	59	89	70-130
Ethanol	ug/m3	25	70	70-130
Acrolein	ug/m3	31	95	70-130
Pentane	ug/m3	40	114	70-130
Trichlorofluoromethane	ug/m3	76	101	70-130
Acetone	ug/m3	32	97	70-130
2-Propanol	ug/m3	33	98	70-130
1,1-Dichloroethene	ug/m3	54	110	70-130
trans-1,2-Dichloroethene	ug/m3	54	103	70-130
Methylene chloride	ug/m3	94	99	70-130
t-Butyl alcohol (TBA)	ug/m3	41	111	70-130
3-Chloropropene	ug/m3	42	110	70-130
CFC-113	ug/m3	100	104	70-130
Carbon disulfide	ug/m3	42	102	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	101	70-130
Vinyl acetate	ug/m3	48	113	70-130
1,1-Dichloroethane	ug/m3	55	114	70-130
cis-1,2-Dichloroethene	ug/m3	54	108	70-130
Hexane	ug/m3	48	98	70-130
Chloroform	ug/m3	66	110	70-130
Ethyl acetate	ug/m3	49	128	70-130
Tetrahydrofuran	ug/m3	40	114	70-130
2-Butanone (MEK)	ug/m3	40	115	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	110	70-130
1,1,1-Trichloroethane	ug/m3	74	105	70-130
Carbon tetrachloride	ug/m3	85	100	70-130
Benzene	ug/m3	43	102	70-130
Cyclohexane	ug/m3	46	93	70-130
1,2-Dichloropropane	ug/m3	62	89	70-130
1,4-Dioxane	ug/m3	49	95	70-130
2,2,4-Trimethylpentane	ug/m3	63	93	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample (continued)

		(00	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	98	70-130
Heptane	ug/m3	55	96	70-130
Bromodichloromethane	ug/m3	90	98	70-130
Trichloroethene	ug/m3	73	98	70-130
cis-1,3-Dichloropropene	ug/m3	61	100	70-130
4-Methyl-2-pentanone	ug/m3	55	101	70-130
trans-1,3-Dichloropropene	ug/m3	61	85	70-130
Toluene	ug/m3	51	96	70-130
1,1,2-Trichloroethane	ug/m3	74	98	70-130
2-Hexanone	ug/m3	55	88	70-130
Tetrachloroethene	ug/m3	92	97	70-130
Dibromochloromethane	ug/m3	120	101	70-130
1,2-Dibromoethane (EDB)	ug/m3	100	101	70-130
Chlorobenzene	ug/m3	62	124	70-130
Ethylbenzene	ug/m3	59	110	70-130
1,1,2,2-Tetrachloroethane	ug/m3	93	112	70-130
Nonane	ug/m3	71	109	70-130
Isopropylbenzene	ug/m3	66	113	70-130
2-Chlorotoluene	ug/m3	70	114	70-130
Propylbenzene	ug/m3	66	117	70-130
4-Ethyltoluene	ug/m3	66	111	70-130
m,p-Xylene	ug/m3	120	116	70-130
o-Xylene	ug/m3	59	114	70-130
Styrene	ug/m3	58	112	70-130
Bromoform	ug/m3	140	121	70-130
Benzyl chloride	ug/m3	70	115	70-130
1,3,5-Trimethylbenzene	ug/m3	66	113	70-130
1,2,4-Trimethylbenzene	ug/m3	66	117	70-130
1,3-Dichlorobenzene	ug/m3	81	116	70-130
1,4-Dichlorobenzene	ug/m3	81	107	70-130
1,2-Dichlorobenzene	ug/m3	81	108	70-130
1,2,4-Trichlorobenzene	ug/m3	100	80	70-130
Naphthalene	ug/m3	71	84	70-130
Hexachlorobutadiene	ug/m3	140	111	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/11/20 Date Received: 12/01/20

Project: C-1 Hangar & Precision Reg Support (SNO-CO) PO 5531-014-01, F&BI 012022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 03	11481-01 (Duյ	olicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	< 0.6	nm	0-20
Laboratory Code: 03	12022-20 (Duյ	olicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	< 0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE INFORMATION Address 2101 gr Ave Swite 950 City, State, ZIP Seatlle, WA 98121 Company (NE) Report To Phone Fax (206) 2 Ph. (206) 2 Seattle, WA 3012 16th A Friedman d Amon1-5-11 A-2176170 A-3-170170 A-4-110100 12-6-12012 A-8-RTI TOTO Sample Name 20170) acob letts न्त्राज्या. Email \ Lether of severy means com 03 02 2 9 000 \supseteq 90 S Lab U Canister ID 23229 20546 32100 72581 21437 18566 18562 23230 Cont. 6607 Flow 1 1 Ħ) IA=Indoor Air SG-Soil Gas (Circle One) IA) ÎA) / Reporting TA) K M) IA) / SG IAIA) / SG SAMPLE CHAIN OF CUSTODY ME Level C-1 Hangar & Precision Res. SAMPLERS (signature) PROJECT NAME & ADDRESS SG SG SG SG SG SG 12/1/20 Sampled Date ("Hg) Initial g 8 Vac. ςς Ο 80 28 2 ر ا 80 85 Time Initial Field 830 <u>ره</u> 806 823 84S 28 28 88 ("Hg) Vac. Final G 6 6 S O٩ 5 S 16.5 Field 489 1522 Time Final 1609 |5531-014-01 89 1633 ¥¥ 53

 \times

メ

 \times

Notes

 \prec

INVOICE TO

□ Archive (Fee may apply) □ Default: Clean after 3 days P0#

Standard

Page#

TURNAROUND TIME

Rush charges authorized by:

SAMPLE DISPOSAL

ANALYSIS REQUESTED

TO15 Full Scan TO15 BTEXN

TO15 cVOCs

APH

Helium

SIGNATURE PRINT NAME COMPANY DATE TIME leinquished by Lath PRINT NAME GET 1848 (2) 1						
SIGNATURE PRINT NAME COMPANY DATE aquished by May Holy APUNK GET 12/1/10 12/1/10 12/1/10 12/1/10 12/1/10 12/1/10	And the second s				aived by:	283-5044 Rece
PRINT NAME COMPANY DATE nquished by: Koch Ablive GE 761 12/1/10 13/10-						
SIGNATURE COMPANY DATE SIGNATURE BISCAT FARRES TEN 12/1/20 FRINT NAME COMPANY DATE 12/1/20					Relinquished by:	285-8282
SIGNATURE COMPANY DATE BY MANY PRINT NAME COMPANY DATE BY MANY PRINT NAME COMPANY DATE THE COMPAN						
IGNATURE COMPANY DATE ONATURE COMPANY DATE ONATURE COMPANY DATE ONATURE COMPANY DATE	O TO	No.		などのようともなが	Received by:	7A 98119-2029
IGNATURE PRINT NAME COMPANY DATE ONATORE PRINT NAME GET 12/1/10	3	3.5		COUNTY I WO INC.	(Many)	
PRINT NAME COMPANY DATE	200	7110		アンディー	Relinquished by	Apenue West
PRINT NAME COMPANY DATE	5	1.1.			SINALOWA	, & Bruya, Inc.
T A THE	FTYATT	DAIL	COMPANY	PRINT NAME	CT CEE TAN A Y LY CHE	
	שוואלט	7				

 $\overline{\times}$

 \times

 \prec

 \prec

Samples received at b cC

FORMS\COC\COCTO-15.DOC

Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Emindman & Brive Inc		5//-1 1/2075	$ \mathcal{C} $	- 1	- 13	-13	- 1		12-9 17077	Sample Name		C. Annual annual	SAMPLE INFORMATION	Phone	City, State, ZIP	Address	Company	Report To	Japak	012022
Received by:	Reling	Received by:	Reling			اله	57	عَدِ	7.7	72	=	5	8	Lab ID				Email		P			-	
ed by:	Relinguished by:	ed by:	Relinquished by:	IS		3317	18561	23233	21453	18568	23231	205 V3	LLS81	Canister ID					10	ر ا	*		7	
			decur	SAACE!	ļ.,	SS	Lh&L		11.81	7870	7848	7850	2h8L		Flow	`			- Turney	\\ \\				
		1)		RE,		IA / SG	(LA) / SG	(h) / sg	(A) / sg	na)/ sg	(IA) / SG	(IA) / SG	(IA)/ SG	SG=Soil Gas (Circle One)	Reporting Level: IA=Indoor Air				- NOTE	Support	チ <u>つ</u>	PROJI	SAMP	SAMPL
	And the state of t) C				w/30/w	+						12/1/20	Date Sampled					ά	port Sc	CHANGERS R	PROJECT NAME & ADDRESS	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
	A CANADA AND A CAN	BISKA	7	PRI		30	30	30	8	30	30	30	30	Vac. ("Hg)	Initial					300	Res	& AD	ature)	VOF
	And the second s		Azakturk	PRINT NAME		1340	912	921	\$85	101	824	ah8	Sh8	Initial Time	Field					1	Recision	DRESS	402	cusir
	The state of the s	ANTE SE	775	8		S		Ø	ထ	9	0	記	嬴	Vac. ("Hg)	Final						آ گ وي			ODY'
	And the second s	A				1347	1630	1642	191	9191	lko O	1605	1606	Time	Field				<u></u>		10-410-1853			7
			6			Z	~	×	~	×	×	\times	<u>×</u>	T	015 Full	Scan	ANALYSIS REQUESTED		A CTC	OU SOLONIA	<u>7</u>	PO#		12
		The last	77	QQ (<u> </u>			_		-				O15 BT	· · · · · · · · · · · · · · · · · · ·	SISX		ti •	3	-0-	**		0
				COMPANY			,	(-/	+	×	Ļ	\downarrow	\downarrow	·····	rO15 eV APH	.,,	- REQ							
				Y		X	_								Heliu	,	-San		□ Def		Rush	□ KI RII	\	6
			 																fault: hive (SAIM	charg	₩ Standard	Page #	
		19/1/20 1	12/1/20	ATE								divin Library - Library		Notes				With the state of	Default: Clean after 3 days Archive (Fee may apply)	SAMPLE DISPOSAL	Rush charges authorized by:	مضم	TURNAROUND TIME	<i>b</i>
		8	Q.											(a)					lays r)	ř.	by:		E	ר ְ

HMIL 100 m

FORMS\COC\COCTO-15.DOC

City, State, ZIP	Address	Company	Report To	012022
200		<u> </u>	J. UM J	1

Phone_

Email

SAMPLE CHAIN OF CUSTODY WE

SAMPLERS (signature) ARA
PROJECT NAME & ADDRESS
PO#
C-1 Hangar & Precision Res ST31-014-01
Support (SNO-CO)
NOTES: INVOICE TO

Page # 3 of

TURNAROUND TIME

Standard

RUSH

Rush charges authorized by:

SAMPLE DISPOSAL

SAMPLE DISPOSAL

O Archive (Fee may apply)

	orionit bins	SV-8-120120	SV-7-12000	oran-9-15	SV-5-12020	021021- h-NS	SV-3-113020	SV-2_113020	Sample Name			SAMPLE INFORMATION
	24	23	22_	21	$ \omega $	ાવ	රු	口	Lab ID			
	24 2294 225	3260	3667	3664	3251	2432	3674	3311	Canister ID	*************************************		
	215	224	220	281	221	277	240	228	Cont. ID	Flow		
+	1A / (SG)	IA /(SG)	IA / (SG)	IA / ÉG	1A / (SG)	ы / 🗐	IA /(SG)	и / 🚱	SG=Soil Gas (Circle One)	Level: IA=Indoor Air	Reporting	
	+					12/01/20	11/30/20 30 1506	11/30/20	Date Sampled			
	30	30	30	30	30	30	30	28	Vac. ("Hg)	Initial		
	30 1232 5	1157	1135	1114	1057	1040	1506	20 Myz	Initial V Time ("	Field		
	5	3	N	S	5	1	S	S	Vac. ("Hg)	Final		
	1238	1203	1140	1120	1103	1046	1513	8mh1	Final Time	Field		
	×	×	×	×	><	×	×	×	TC)15 F	ull Scan	ANALYSIS REQUESTED
	<u> </u>		-		-				Т	015 I	BTEXN	TSY
		×	+	-	×	 ×	 ×	 			cVOCs	- RB
					×			长	_^	14-A]	PH ium	
	-							 		Ter	lum	TELES
									Notes		-	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

FORMS\COC\COCTO-15.DOC

				-	
a, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	HWI.I.
	Relinquished by:	Paty Ataktork	6 <i>E</i>]	12/1/20	1848
-2029	Received by:	BISHAT TADESE	76	12/1/20	1845
	Relinquished by: (•		ALE AND ADDRESS OF THE ADDRESS OF TH	
4	Received by:				A STATE OF THE PARTY OF THE PAR
		The state of the s			

) -	}	, #		,	Т	T	T	-1		1	1		اجرا					ħ	
Fax (206) 283-5044	Seattle, WA 98119-2029 Ph. (206) 285-8282	3012 16th Avenue West	Friedman & Bruya, Inc.						SV-12_120120	SV-11-120120	SV-10-120120	Sample Name	SAMPLE INFORMATION	Phone F	City, State, ZIP	Address CO	Сомрану	Report To	012022
Received by:	Relinguished	Relinqu							42	26	27	Lab ID		Email		O		#	
d by:	Relinquished by:		SIG						3254	3388	476	Canister		9.12		7	>		
Control Control Control Control	1	The state of the s	NATURE						2000	203	12	Flow Cont.			RESPONDE STREET, STREE				
The second term of the second terms of the sec	1) ::	H	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	1A / (G)	1A / 🚱	IA / (5G)	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)			NOTES		PROJ	SAIMP	SAMPI
The state of the s	D.S.	Kash							←		12/1/20	Date Sampled			,	South (South	PROJECT NAME & ADDRESS	SAMPLERS (signature)	SAMPLE CHAIN OF CUST
	BISKAT	* *	PRIN						125	27	29	Initial Vac.				10 X	£ & AD	rature)	N OF
	TAGE TO THE PERSON OF THE PERS	takturk	PRINT NAME						N S1	STHI	1331-	Field Initial Time				Speciarankes, SS31-014-01	DRESS	$\mathcal{Q}_{\!$	CUST
THE PARTY OF THE P	APES SE	K	(3)						ᆚ	2	5	Final Vac.				on Reg		49	ODY ME
	(1)								1520	1431	1337	Field Final Time				3,25;		,	MK 3M
	44								×	×	×	TO15 Full Scan	AN		INVOICE TO	51-0	# O4		
***************************************	27 T	17	CON		-					ļ		TO15 BTEXN	SXT		E 3	7	#	1	7
			COMPANY	ļ				$\perp \downarrow$		-	ļ	TO15 cVOCs	R SI		0	2			19
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN CO			¥		-	ļ			$\stackrel{ \times}{}$	$ \simeq$		APH				Par	 ⊃ RQ		11/
					-	-		+	$\stackrel{\times}{-}$	×	×	Helium	ANALYSIS REQUESTED	Arch	Ş Defai	ush cl	R (2) ∃ (3)	Z Ei	8
	<u> </u>	12,	α					+						we (F	I AM	arge	dard H	Page #	•
THE ALTANAMATE IN STREET	1/20	1/20	DATE											□ Archive (Fee may apply)	SAMPLE DISPOSAL Default: Clean after 3 days	Rush charges authorized by:		TURNAROUND TIME	<u>~</u>
Water Committee		+	_									Notes		ıy apı	ISPO ther:	10TiZe			
of management of the first of the following state of the following s	1845	Bus	TIME) &		(¥j	SAL days	id by:			

FORMS\COC\COCTO-15.DOC

Samples received at 6 °C

SAMPLE CONDITION UPON RECEIPT CHECKLIST

PROJECT # 0/2022 CLIENT Geo Ensineers	INITIAI DATE:_	LS/ 124	101/20
If custody seals are present on cooler, are they intact?	D-NA	□ YES	
Cooler/Sample temperature		. 1	o °C
Were samples received on ice/cold packs?		□ YES	- NC
How did samples arrive? □ Picked up by F&BI □ FedEx/UPS/GSO			>1 NO
Number of days samples have been sitting prior to receipt at	laborato	ory <i>D-</i> /	days
Is there a Chain-of-Custody* (COC)? *or other representative documents, letters, and/or shipping memos		☑ YES	□ NO
Are the samples clearly identified? (explain "no" answer below)		YES	□ NO
Is the following information provided on the COC*? (explain "no	" answer b	elow)	-
Sample ID'sYes□ No# of ContainersYesDate SampledYes□ NoRelinquishedYesTime SampledYes□ NoRequested analysisYes	□ No □ No □ No		
Were all sample containers received intact (i.e. not broken, leaking etc.)? (explain "no" answer below)		₽ YES	□ NO
Were appropriate sample containers used? (explain "no" answer belo	w)	g YES	
If custody seals are present on samples, are they intact?	NA	□ YES	□ NO
Are samples requiring no headspace, headspace free?	b NA	□ YES	□ №
Air Samples: Were any additional canisters received? If Yes, number of unused 1L canisters number of unused 6L canisters / 205	□ NA 10: 49)	□\YES	□ №
Explain "no" items from above (use the back if	needed)		***************************************
	*		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 14, 2020

Jacob Letts, Project Manager GeoEngineers 2101 4th Ave, Suite 950 Seattle, WA 98121

Dear Mr Letts:

Included are the results from the testing of material submitted on December 1, 2020 from the C-1 Hangar&Precision Reg. Support (SNO-CO) PO 5530-014-01, F&BI 012023 project. There are 19 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures GNR1214R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 1, 2020 by Friedman & Bruya, Inc. from the GeoEngineers C-1 Hangar&Precision Reg. Support (SNO-CO) PO 5530-014-01, F&BI 012023 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	GeoEngineers
012023 -01	IA-1_120120
012023 -02	IA-2_120120
012023 -03	IA-3_120120
012023 -04	IA-4_120120
012023 -05	IA-5_120120
012023 -06	IA-6_120120
012023 -07	IA-7_120120
012023 -08	IA-8_120120
012023 -09	IA-9_120120
012023 -10	IA-10_120120
012023 -11	IA-11_120120
012023 -12	IA-12_120120
012023 -13	IA-13_120120
012023 -14	OA-1_120120
012023 -15	OA-2_120120

 $\underline{Naphthalene~(air)} - \underline{Analysis~Method~TO\text{-}17}$

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-1_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-01 1/0.047

Date Analyzed: 12/08/20 Data File: 120819.D Matrix: Air Instrument: GCMS10 Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-2_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-02 1/0.034

Date Analyzed: 12/08/20 Data File: 120820.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-3_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-03 1/0.035

Date Analyzed: 12/08/20 Data File: 120821.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-4_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-04 1/0.036

Date Analyzed: 12/08/20 Data File: 120822.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-5_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-05 1/0.038

Date Analyzed: 12/08/20 Data File: 120823.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-6_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-06 1/0.039

Date Analyzed: 12/09/20 Data File: 120824.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-7_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-07 1/0.041

Date Analyzed: 12/09/20 Data File: 120825.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-8_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-08 1/0.039

Date Analyzed: 12/09/20 Data File: 120826.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-9_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-09 1/0.038

Date Analyzed: 12/09/20 Data File: 120827.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-10_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-10 1/0.038

Date Analyzed: 12/09/20 Data File: 120828.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-11_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-11 1/0.036

Date Analyzed: 12/09/20 Data File: 120829.D Matrix: Air Instrument: GCMS10 Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-12_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-12 1/0.040

Date Analyzed: 12/09/20 Data File: 120830.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: IA-13_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-13 1/0.039

Date Analyzed: 12/09/20 Data File: 120831.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: OA-1_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-14 1/0.043

Date Analyzed: 12/09/20 Data File: 120832.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: OA-2_120120 Client: GeoEngineers

Date Received: 12/01/20 Project: 5530-014-01, F&BI 012023

Date Collected: 12/01/20 Lab ID: 012023-15 1/0.041

Date Analyzed: 12/09/20 Data File: 120833.D

Matrix: Air Instrument: GCMS10

Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID: Method Blank Client: GeoEngineers

Date Received: Not Applicable Project: 5530-014-01, F&BI 012023

Date Collected: Not Applicable Lab ID: 00-2765 mbDate Analyzed: 12/08/20 Data File: 120810.DInstrument: Matrix: Air GCMS10 Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

Naphthalene <1

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/14/20 Date Received: 12/01/20

Project: C-1 Hangar&Precision Reg. Support (SNO-CO) PO 5530-014-01, F&BI 012023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-17

Laboratory Code: Laboratory Control Sample

		Percent				
	Reporting	Acceptance				
Analyte	Units	Level	LCS	Criteria		
Naphthalene	ng/tube	50	101	70-130		

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY ME

12-01-20

FORMS\COC\COC.DOC Ph. (206) 285-8282 Fax (206) 283-5044 Friedman & Bruya, Inc. Seattle, WA-98119-2029 3012 16th Avenue West Phone City, State, ZIP Address Company_ Report To 1A-10_ 02-1-120120 A-12-12010 A-11 _ 170170 4-13-17000 Sample Name CO 1CD Emails Letts Of Congression Relinquished by: Received by: Received by: Relinquished by চ ID U 7 Ę \sqrt{a} 5 311363 1333889 309143 333885 128 SZP 172.55h Tube ID oi/h Sample Date SAMPLE CHAIN OF CUSTODY ME C-1 Hangar & precision Reg. SAMPLERS (signature) PROJECT NAME 8 Flow g Rate Pre-හි ફ Š g Collection Information g g Postð 8 8 Og Flow Rate PRINT NAME A TONG TONG 90 824 912 958 Start 921 Time 883 11310 (312 JANES/S 1318 1228 2 Time Sampled End 1302 26.2 TENT TO THE PROPERTY OF THE PR Volume 25,5 トナマ 25.1 240 23.0 \mathcal{L} 2530-014-01 INVOICE TO Benzene TO-17 Analytes Requested PO# Toluene R COMPANY Ethylbenzene 101-20 Xylenes \times \times Naphthalene Other_ ☐ Dispose after 30 days
☐ Archive Samples Rush charges authorized by: O RUSH VStandard Turnaround TPH-DRO 2-Propanol TURNAROUND TIME SAMPLE DISPOSAL <u>[</u>_ 12/1/20 DATE Notes HME

SAMPLE CONDITION UPON RECEIPT CHECKLIST

PROJECT # 0/2023 CLIENT Geo Engineers DATE:		/z
If custody seals are present on cooler, are they intact?	□ YES	□ NO
Cooler/Sample temperature		°C
Were samples received on ice/cold packs?	YES	□ NO
How did samples arrive? Over the Counter Picked up by F&BI FedEx/UPS/GSO		
Number of days samples have been sitting prior to receipt at laborat	tory	_ days
Is there a Chain-of-Custody* (COC)? *or other representative documents, letters, and/or shipping memos	o YES	□ №
Are the samples clearly identified? (explain "no" answer below)	√YES	□ NO
Is the following information provided on the COC*? (explain "no" answer Sample ID's Ves	0	□ NO
leaking etc.)? (explain "no" answer below) Were appropriate sample containers used? (explain "no" answer below)	⊕ YES	
If custody seals are present on samples, are they intact?	□ YES	□ №0
Are samples requiring no headspace, headspace free?	D YES	□ NO
Air Samples: Were any additional canisters received? If Yes, number of unused 1L canisters number of unused 6L canisters	AWDIZ/Z	√ NO
Explain "no" items from above (use the back if needed 2 extra tubes unt used	•	

APPENDIX F Remedial Investigation Field Procedures

APPENDIX F REMEDIAL INVESTIGATION FIELD PROCEDURES

Underground Utility Locate

Prior to drilling activities, an underground utility locate was conducted in the area of the proposed boring locations to identify subsurface utilities and/or potential underground physical hazards. The underground utility check consisted of contacting a local utility alert service (One call) and hiring a private utility locating service to locate utilities by conductible and ground penetrating radar (GPR) technologies.

Soil Sampling

The remedial investigation (RI) was completed using continuous-flight, hollow-stem auger (HSA) equipment and direct-push drilling equipment. Discrete soil samples from selected depths were collected during hollow-stem auger drilling using a 2-inch diameter, 18-inch long stainless-steel split spoon sampler driven with a 300-pound auto hammer dropped from a distance of 30-inches.

A representative from GeoEngineers observed and classified the soil encountered in general accordance with ASTM International (ASTM) D 2488-94 and maintained a detailed log of each exploration.

The sampling equipment was decontaminated before each sampling attempt with an Alconox® solution wash and a distilled water rinse. Soil samples were obtained from the split spoon sampler for field screening and possible chemical analysis. Undisturbed portions of selected samples were placed in laboratory-prepared vials/jars for chemical analytical testing at Friedman & Bruya Inc (F&B). The soil samples were placed in a cooler with ice for transport to the laboratory within proper hold-times under standard chain-of-custody procedures.

Drill cuttings and decontamination/purge water generated during RI drilling activities were tested for characterization purposes and will be removed from the Site by a licensed waste removal company for off-site disposal. Borings not completed as monitoring wells were backfilled with bentonite and the surface restored to match the surrounding area. Borings completed inside the C-1 Building had the surface restored with concrete.

Sample Identification Scheme

Each environmental sample obtained during the investigation was identified by a unique sample designation. The sample designation was documented in the field report, on the boring log, included on the sample container label and on the laboratory chain-of-custody. The soil sample designation scheme is as follows:

- Soil samples from borings: Boring number C-1 RI1 etc., followed by the depth from which the soil sample was collected, to the nearest 0.5 foot. For example, C-1 RI1-10.0 is from boring number C-1 RI1 sampled at a depth of 10 feet below the ground surface (bgs).
- Groundwater samples from monitoring wells: Boring number C-1 RI1 etc., followed by "GW" and the date. For example, C-1 RI2-GW-091222 is the groundwater sample collected from boring/monitoring well C-1 RI2 sampled on September 12, 2022.

Investigation derived waste (IDW) characterization samples: Sample IDs for IDW characterization samples will be designated as follows: IDW-Soil-1 for the first IDW soil sample, and IDW-Water-1 for the first IDW water sample.

Field Screening of Soil Samples

Soil samples obtained from the borings were screened in the field for evidence of contamination using: (1) visual examination; (2) sheen screening and (3) vapor headspace screening with a photoionization detector (PID). The results of headspace and sheen screening were included in the RI tables and on the boring logs.

Visual screening consisted of inspecting the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons, such as motor oil or hydraulic oil, or when hydrocarbon concentrations are high. Sheen screening and headspace vapor screening are more sensitive methods that have been effective in detecting contamination at concentrations less than regulatory cleanup guidelines. Sheen screening involves placing soil in a pan of water and observing the water surface for signs of sheen. Sheen classifications are as follows:

No Sheen (NS): No visible sheen on water surface.

Slight Sheen (SS): Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates

rapidly.

Moderate Sheen (MS): Light to heavy sheen, may have some color/iridescence; spread is irregular

to flowing; few remaining areas of no sheen on water surface.

Heavy Sheen (HS): Heavy sheen with color/iridescence; spread is rapid; entire water surface may

be covered with sheen.

Headspace vapor screening involves placing a soil sample in a plastic sample bag. Air is captured in the bag and the bag is shaken to expose the soil to the air trapped in the bag. The probe of a PID is inserted in the bag and the instrument measures the concentration of combustible vapor in the air removed from the sample headspace. The PID measures concentrations in parts per million (ppm) and is calibrated to 100 ppm isobutylene gas. The PID is designed to quantify combustible gas and organic vapor concentrations up to 5,000 ppm. A lower threshold of significance of 1 ppm was used in this application. Field screening results are site-specific and vary with soil type, soil moisture content, temperature, and type of contaminant.

Groundwater Monitoring Well Development and Sampling

Following construction of the RI monitoring wells, the wells were developed using surge and purge development methods until the groundwater was relatively clear of suspended solids. Monitoring wells were left to sit undisturbed for at least 24 hours following development prior to groundwater sampling. Groundwater samples were obtained from monitoring wells C-1 HSA1, C-1 HSA2, C-1 RI10, C-1 RI12 and C-1 RI13. Groundwater samples were collected by low-flow methods using dedicated disposable tubing and a peristaltic pump. Groundwater samples were placed in laboratory-prepared vials/jars for chemical analytical testing at F&B. The samples were placed in a cooler with ice for transport to the laboratory within proper hold-times under standard chain-of-custody procedures. Purge water from groundwater sampling

was placed into drums and left on site pending receipt of analytical data for characterization and disposal at a permitted offsite facility.

Investigation-Derived Waste Management

IDW includes drill cuttings, well development water, sampling equipment decontamination water, presampling purge water from monitoring wells, and incidental waste.

Drill cuttings, well development water, decontamination water, and pre-sampling purge water was stored in sealed drums. The drums were temporarily stored on the Site pending waste designation and off-site disposal. The drums were labeled with the following information:

- Material contained in the drum (e.g., drill cuttings, decontamination water, etc.).
- Source of the material (e.g., investigation locations and depths where applicable).
- Date material was generated.
- Name and telephone number of the appropriate contact person.

Incidental waste to be generated during sampling activities includes items such as disposable gloves, plastic sheeting, sample bags, paper towels, and similar expended and discarded field supplies. These materials are considered *de minimis* and were disposed of in a trash receptacle or county disposal facility.

APPENDIX GInvestigation Derived Waste Disposal Documentation

INVOICE

Customer ID:

Customer Name: Service Period: Invoice Date: Invoice Number: 22-16300-83000

GEOENGINEERS INC

06/27/2023 0044804-2236-1

How to Contact Us

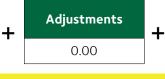
Visit wmsolutions.com

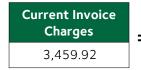
Log in to manage disposal records and tonnage reports. To pay a bill or explore other online tools, visit wm.com/MyWM. Have a question? Fill out the Contact Us Form at WMSolutions.com or contact Customer Service.

Customer Service: (541) 454-2030

Your Payment is Due

Due Upon Receipt


If full payment of the invoiced amount is not received within your contractual terms, you may be charged a monthly late charge of 2.5% of the unpaid amount, with a minimum monthly charge of \$5, or such late charge allowed under applicable law, regulation or contract.


Your Total Due

\$3,459.92

IMPORTANT MESSAGES

AS REQUIRED BY 40 CFR 264.12 (b). WM IS NOTIFYING YOU THAT THIS FACILITY HAS THE APPROPRIATE PERMIT(s) FOR AND WILL ACCEPT THE WASTE YOU THE GENERATOR IS SHIPPING.

Please be advised that due to the recent implementation of the eManifest system combined, with the specialized invoice format you have requested, we are unable to provide information regarding your previous balance, payments, adjustments or the total due for your entire account.

><

CHEMICAL WASTE MANAGEMENT OF THE NORTHWEST, INC. 720 4TH AVENUE SUITE 400 KIRKLAND, WA 98033-8136 (541) 454-2030

	Invoice Date	Invoice Number	Customer ID (Include with your payment)
	06/27/2023	0044804-2236-1	22-16300-83000
	Payment Terms	Total Due	Amount
С	Due Upon Receipt	\$3,459.92	

2236000221630083000000448040000034599200000345992 3

----- Please detach and send the lower portion with payment --- (no cash or staples) ------

12236L01

GEOENGINEERS INC 17425 NE UNION HILL RD STE 250 CHRIS WATKINS REDMOND WA 98052-6190 Remit To: WM CORPORATE SERVICES, INC.
AS PAYMENT AGENT
PO BOX 660345
DALLAS, TX 75266-0345

DETAILS OF SERVICE

Details for Service Location:

Geoengineers Inc, 4000 Kruse Way Pl Bldg 200, Lake Oswego OR

97035-5545

Customer ID: 22-16300-83000

PO#: 5530-012-00

Description	Date	Ticket	Quantity	Unit of Measure	Rate	Amount
TEN DAY SEATTLE DRUMS	06/22/23	74708	3.00	ECH	39.00	117.00
NON CONFORMING WASTE, DRUM			3.00	ECH	24.50	73.50
NON HAZ WASTE			3.00	ECH	78.00	234.00
Energy Surcharge - Landfill			1.00	PCT	6.51	27.63
\$5/TON ODEQ						4.50
Profile # :OR354560						0.00
Generator #:PAINE FIELD SNOHOMISH COUNTY AIRPORT						0.00
3220 1						

EASY WAYS TO PAY

AutoPay

Set up recurring payments with us at wm.com/myaccount.

Use wm.com or My WM for a quick and easy payment.

By Phone

Pay 24/7 by calling 866-964-2729

Fill out your invoice and mail it in. We'll provide the envelope.

HOW TO READ YOUR INVOICE

Previous balance is the total due from your previous invoice. We subtract any Payments Received/Adjustments and add your Current Charges from this billing cycle to get a Total Due on this invoice. If you have not paid all or a portion of your previous balance, please pay the entire Total Due to avoid a late charge or service interruption.

States the date payment is due to WM.

additional charges. Your Total Due is the total amount of current charges and any previous

Anything beyond that date may incur

unpaid balances combined.

Service location details the total current charges of this invoice.

Get More with My WM

Scan to enroll in AutoPay & Paperless Billing, manage your services, view your pick up schedule and see your pick up ETA, all in one place.

Scan the QR code to get started today!

Visit wm.com/MvWM

If your service is suspended for non-payment, you may be charged a Resume charge to restart your service. For each returned check, a charge will be assessed on your next invoice equal to the maximum amount permitted by applicable state law.

☐ Check Here to Change Contact Info		☐ Check Here to Sign Up for Automatic Payment Enrollment						
List your new billing information below. For a change of service ac please contact $\mathbf{W}\mathbf{M}$.	ldress,	If I enroll in Automatic Payment services, I authorize WM to pay my invoice by electronically deducting money from my bank account. I can cancel authorization by notifying WM at						
Address 1		, ,	wm.com or by calling the customer service number listed on my invoice. Your enrollment could take 1–2 billing cycles for Automatic Payments to take effect. Continue to submit					
Address 2		payment until page one of your invoice reflects that your payment will be deducted.						
City								
State		Email						
Zip		Date						
Email Date Valid		Bank Account						
		Holder Signature						

NOTICE: By sending your check, you are authorizing the Company to use information on your check to make a one-time electronic debit to your account at the financial institution indicated on your check. The electronic debit will be for the amount of your check and may occur as soon as the same day we receive your check.

In order for us to service your account or to collect any amounts you may owe (for non-marketing or solicitation purposes), we may contact you by telephone at any telephone number that you provided in connection with your account, including wireless telephone numbers, which could result in charges to you. Methods of contact may include text messages and using pre-recorded/artificial voice messages and/or use of an automatic dialing device, as applicable. We may also contact you by email or other methods as provided in our contract.

Customer ID:

22-16300-83000

GEOENGINEERS INC

06/27/2023 0044804-2236-1

Customer Name: Service Period: Invoice Date: Invoice Number:

Customer ID: 22-16300-83000

DETAILS OF SERVICE - continued

Details for Service Location:

Geoengineers Inc, 4000 Kruse Way Pl Bldg 200, Lake Oswego OR

97035-5545	PO#: 5530-012-00					
Description	Date	Ticket	Quantity	Unit of Measure	Rate	Amount
Manifest # :PFSC51723-ESP1 PO# :5530-012-00 Ticket Total						0.00 0.00 456.63
TEN DAY SEATTLE DRUMS NON HAZ WASTE Energy Surcharge – Landfill \$5/TON ODEQ Profile # :OR354560 Generator #:PAINE FIELD SNOHOMISH COUNTY AIRPORT 3220 1	06/22/23	74709	7.00 7.00 1.00	ECH ECH PCT	39.00 78.00 6.51	273.00 546.00 53.32 10.50 0.00 0.00
Manifest # :PFSC51723-ESP1 PO# :5530-012-00 Ticket Total						0.00 0.00 882.82
TEN DAY SEATTLE DRUMS NON HAZ WASTE Energy Surcharge - Landfill \$5/TON ODEQ Profile # :OR354562 Generator #:PAINE FIELD SNOHOMISH COUNTY AIRPORT 3220 1	06/22/23	74714	8.00 8.00 1.00	ECH ECH PCT	39.00 78.00 6.51	312.00 624.00 60.93 12.00 0.00
Manifest # :PFSC51723-ESP1 PO# :5530-012-00 Ticket Total						0.00 0.00 1,008.93
TEN DAY SEATTLE DRUMS NON CONFORMING WASTE, DRUM NON HAZ WASTE Energy Surcharge - Landfill \$5/TON ODEQ Profile # :OR354562 Generator #:PAINE FIELD SNOHOMISH COUNTY AIRPORT 3220 1	06/22/23	74715	1.00 1.00 1.00 1.00	ECH ECH ECH PCT	39.00 24.50 78.00 6.51	39.00 24.50 78.00 9.21 1.50 0.00
Manifest # :PFSC51723-ESP1 PO# :5530-012-00 Ticket Total						0.00 0.00 152.21
TEN DAY SEATTLE DRUMS NON HAZ WASTE Energy Surcharge – Landfill \$5/TON ODEQ Profile # :OR354565 Generator #:PAINE FIELD SNOHOMISH COUNTY AIRPORT 3220 1	06/22/23	74716	4.00 4.00 1.00	ECH ECH PCT	39.00 185.00 6.51	156.00 740.00 58.33 5.00 0.00 0.00
Manifest # :PFSC51723-ESP1 PO# :5530-012-00 Ticket Total						0.00 0.00 959.33
Total Current Charges						3,459.92

496865 ESP/CWH/LTZ

S. Contessor Name Justing Advances S. Contessor Name Justing Advances S. Contessor Name Justing Advances S. Contessor Name Justing Advances S. Contessor Name JUST FIELD SNOHOMISH COUNTY 3220 IDDITH ST SW. Contessor Name CHEMICAL WASTE MANAGEMENT, INC. CONTESSOR SWEET S. Contessor Name CHEMICAL WASTE MANAGEMENT, INC. CONTESSOR SWEET S. Contessor Name CHEMICAL WASTE MANAGEMENT, INC. CONTESSOR SWEET S. Contessor Name S. Contessor Name CHEMICAL WASTE MANAGEMENT, INC. CONTESSOR SWEET S. C	TA	NON-HAZARDOUS 1. Generator ID Number 2. Page 1 of 3. Emergency Respon				ency Response Phone 4. Waste Tracking			racking Nu	Number	
PAINE FIELD SNOHOMISH COUNTY 3220 IDDITH ST SW GENERIT (425)508-29204 6. Triougnost Note CHEMICAL WASTE MANAGEMENT, INC. 7. Triougnost Note CHEMICAL WASTE MANAGEMENT, INC. 17. Triougnost Note NEW Modes Address CHEMICAL WASTE MANAGEMENT, INC. 17. Triougnost Note NEW Modes Address CHEMICAL WASTE MANAGEMENT, INC. 17. Triougnost Note New Modes Address CHEMICAL WASTE MANAGEMENT, INC. 17. Triougnost Note New Modes Address CHEMICAL WASTE MANAGEMENT, INC. 17. Triougnost Note New Modes Address CHEMICAL WASTE MANAGEMENT, INC. 17. Triougnost Note New Modes New	Iî	WASTE MANIFEST WAZ000011951 2 (800)4				A section of the sect			SC51723-ESP1		
3220 100TH ST SW Generatic Proces Generatic Contents Name CHEMICAL WASTE MANAGEMENT, INC. Transported Expense Management CHEMICAL WASTE MANAGEMENT AND A CONTROL OF Transported CHEMICAL WASTE MANAGEMENT AND A CONTROL OF Transported CHEMICAL WASTE MANAGEMENT AND A CONTROL OF Transported CHEMICAL WASTE MANAGEMENT AND A CONTROL OF Transported CHEM	П	5, Generator's Name and	5. Generator's Name and Mailing Address Generator's Site Address (if different than mailing address)								
Constance Provided Technology Management (425) 5089-88204 6. Transporter Congruent Values and Contents of Chemic Call Washington (Chemic Call Washington) 7. Transporter Zonger Values 8. Disciplinating Facility Provided States of Management (1982) 8. Disciplinating Facility Provided States of Management (1982) 8. Disciplinating Facility Provided States of Management (1982) 8. Disciplinating Facility Provided States of Management (1982) 8. Disciplinating Facility Provided States of Management (1982) 8. Disciplinating Facility Provided States of Management (1982) 8. Disciplinating Facility Provided States of Management (1982) 8. Disciplinating Facility Provided States of Management (1982) 8. Disciplinating Facility Provided States of Management (1982) 8. Disciplinating Facility Provided States of Management (1982) 8. Disciplinating Facility Provided States of Management (1982) 8. Disciplinating Facility Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided Provided States of Management (1982) 8. Disciplinating Provided Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided Provided States of Management (1982) 8. Disciplinating Provided Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinating Provided States of Management (1982) 8. Disciplinat											
8. TREAD FROM CHAIRCAL WASTE MANAGEMENT, INC. 7. Transports 7 Company Name US EPA Namebox US EP	Н	EVERE			1						
CHEMICAL WASTE MANAGEMENT, INC. 7. Transports Captorphyshame UPRR 8. Designated Fedility Name and See Address CHEMICAL WASTE MANAGEMENT, INC. 17620 CEDAR SPRINGS LANE Fedility 1 Proces 10. Septility Name and Desortpoon 10. Containers 11. Total 12. Use FPA ID Nambow Photology Phone (54 1)454-2843 ARLINGTON OR 97812-9709 10. Containers 11. Total 12. Use FPA ID Nambow Phone Ph	Ы	Annual State of the Assessment of the Control of th	Name						U.S. EPA ID	Number	
DERR Dissipation Facility Facines and Description Dissipation Facility Facines and Description Dissipation Facility Facines and Description 17520 CEDAR SPRINGS LANE RARLINGTON OR 97612-9709 10. Containers No. Type DAM (ABO.D. P. D. D. D. D. D. D. D. D. D. D. D. D. D.	П								1	OR	D089452353
Description from and Sale Address CHEMICAL WASTE MANAGEMENT, INC. 17628 CEDAR SPRINGS LANE ARLINGTON OR 97812-9708 10. Containers 11. Total 12. Unit 14. MATERIAL NOT REGULATED BY D.O.T. OR354560 2. MATERIAL NOT REGULATED BY D.O.T. OR354560 3. Waster Subjecting Natural control Proceedings of the Containers 13. Special Handling Natural Control Proceedings of the Containers 13. Special Handling Natural Control Proceedings of the Containers 13. Special Handling Natural Control Proceedings of the Control Proceedings of the Containers 14. GENERAL NOT REGULATED BY D.O.T. OR354560 14. GENERAL NOT REGULATED BY D.O.T. OR354560 15. Special Handling Natural Control Proceedings and the content of the Containers of the Control Proceedings of th	Н	7. Transporter 2 Company	Name						U.S. EPA IO	Number	
CHEMICAL WASTE MANAGEMENT, INC. 17628 CEDAR SPRINGS LANE REDY Phone (S4 1)454-2843 ARLINGTON OR 97912-9709 10. Containers 11. Total 12. Unit 10. Containers 11. Total 12. Unit 13. MATERIAL NOT REGULATED BY D.O.T. OR354560 DM (S60 D P) 2 MATERIAL NOT REGULATED BY D.O.T. OR354560 3 MATERIAL NOT REGULATED BY D.O.T. OR354560 OR354560 3 MATERIAL NOT REGULATED BY D.O.T. OR354560 13. Special Hundring historicines and Additional Information 1 OR354560 3 MATERIAL NOT REGULATED BY D.O.T. OR354560 3 OR354560 3 OR354560 15. Special Hundring historicines and Additional Information 1 OR354560 15. Special Hundring historicines and Additional Information 1 OR354560 15. Special Hundring historicines and Additional Information 1 OR354560 15. Special Hundring historicines and Additional Information 1 OR354560 15. Special Hundring historicines and Additional Information 1 OR354560 15. Special Hundring historicines and Additional Information 1 OR354560 15. Special Hundring historicines and Additional Information 1 OR354560 15. Special Hundring historicines and Additional Information 1 OR354560 15. Special Hundring historicines and Additional Information 1 OR354560 15. Special Hundring historicines and Additional Information 1 OR354560 15. Special Hundring historicines and Additional Information 1 OR354560 15. Material Red Principles Information 15. Material Red Principles Information 15. Material Red Principles Information 15. Material Red Principles Information 15. Material Red Principles Information 16. Disposition Special Red Principles Information 17. Disposition Special Red Principles Information 18. Disposition Special Red Principles Information 18. Disposition Special Red Principles Information 19. Disposition Special Red Principles Information 19. Disposition Special Red Principles Information 19. Disposition Special Red Principles Information 19. Disposition Special Red Principles Information 19. Disposition Special Red Principles Information 19. Disposition Speci	Н	UPRR									D001792910
1762B CEDAR SPRINGS LANE ARLINGTON OR 97812-9709 10 Water Supping Name and Description 10 Water Supping Name and Description 11 MATERIAL NOT REGULATED BY D.O.T. 12 MATERIAL NOT REGULATED BY D.O.T. OR354560 13 MATERIAL NOT REGULATED BY D.O.T. OR354560 14 OR354560 15 MATERIAL NOT REGULATED BY D.O.T. OR354560 15 Special Harding Industrictions and Additional Information 10 Containers 11 Total 12 Unit 12 Unit 13 Special Harding Industrictions and Additional Information 13 Special Harding Industrictions and Additional Information 14 OR354560 15 OR354560 16 OR354560 17 OR354560 18 OR354560 19 OR354560 19 OR354560 19 OR354560 10 OR354560 10 OR354560 10 OR354560 10 OR354560 11 Total 12 Unit 10 OR354560 12 MATERIAL NOT REGULATED BY D.O.T. OR354560 13 Special Harding Industriction and Additional Information 15 OR354560 16 OR354560 17 OR354560 18 OR354560 19 OR354560 19 OR354560 19 OR354560 10 OR	П	8. Designated Facility Nam	ne and				T INC		U.S. EPA ID	Number	
ARLINGTON OR 97812-9709 9. Wests Suppling Name and Description 10. Containers 11. Total 12. Unit 13. MATERIAL NOT REGULATED BY D.O.T. OR354560 14. OR354560 15. Superal Handing Institutions and Additional Information 1. OR354560 15. Superal Handing Institutions and Additional Information 1. OR354560 16. OR354560 17. OR354560 18. Description Note: The Principle of Manual Information 1. OR354560 18. Description Superal Information 19. Total Incomplete Principle Superal Information 19. Total Information Information 19. Total Information Information 19. OR354560 19. OR354560 10. OR354560 10. OR354560 10. OR354560 10. OR354560 11. Total Information Information 19. OR354560 10. OR354560	П						VI, HVC.			0.0	D000450050
9 Weste Supplied Name and Description 10. Constabler No. Typo OR354560 DM GOO P OR354560 DM GOO P OR354560 DM GOO P OR354560 A A ATTERIAL NOT REGULATED BY D.O.T. OR354560 OR354560 A A ATTERIAL NOT REGULATED BY D.O.T. OR354560 OR354560 A A A A ATTERIAL NOT REGULATED BY D.O.T. OR354560 OR354560 A A A A A A A A A A A A A	Ш	(541)4							URD089432333		
9. Wested Subposing Natione and Accordance 1. MATERIAL NOT REGULATED BY D.O.T. OR3545682 2. MATERIAL NOT REGULATED BY D.O.T. OR3545683 3. MATERIAL NOT REGULATED BY D.O.T. OR3546685 1. OR3545685 П	Facility's Phone:				10 Containers			11 Total			
OR354560 2 MATERIAL NOT REGULATED BY D.O.T. OR354660 3. MATERIAL NOT REGULATED BY D.O.T. OR354660 4. OR354660 4. OR354660 4. OR354660 4. OR354660 4. OR354660 4. OR354660 5. OR354660 4. OR354660 6. OR354660 6. OR354660 6. OR354660 7. OR354660 6. OR354660 7. OR354660 10 M Z,000 P 11. OR354660 12 OR354660 13. OR354660 14. OR364600 15. OR354660 15. OR354660 16. OR354660 17. OR354660 18. OR354660 19. OR354660 19. OR354660 10. OR354660 10. OR354660 10. OR354660 10. OR354660 11. OR354660 11. OR354660 12. OR354660 13. OR354660 14. OR3546600 15. OR3546600 15. OR3546600 16. OR3546600 17. OR3546600 18. OR3546600 18. OR3546600 19. OR3546600 19. OR3546600 19. OR3546600 10. OR354600 10. OR3546600 10. OR3546600 10. OR3546000 10. OR3546000	Ш	9. Waste Shipping I	Name :	and Description		l			4		2011 L 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 MATERIAL NOT REGULATED BY D.O.T. OR354569 1. Special Handlery Instructions and Additional Information 1. OR354569 1.	1	1. MATER	IAL	NOT REGULATED BY D.O.T.			10		100	_	No.
13. Special Harding instructions and Additional Information 1. OR 354.560 2. OR 354.560 3. OR 354.560 2. OR 354.560 3. OR 354.56	ğ					ľ	Gr	DM	6,000		
2. MATERIAL NOT REGULATED BY D.O.T. OR 354568 OR 354568 13. Special Handley instructions and Additional Information 1. OR 354569 2. OR 354569 2. OR 354569 3. OR 354569 3. OR 354569 3. OR 354569 4. Description of the Company of t	ERA	a constant			OR3	545 6 0					Good Transport
13. Special Harding instructions and Additional Information 1. OR 354.560 2. OR 354.560 3. OR 354.560 2. OR 354.560 3. OR 354.56	SER	2. MAIER	IAL	NOT REGULATED BY D.O.1.		1	9 47	DM	Silon	P	
13. Special Handling Instructions and Additional Information 1. OR 354.5680 2. OR 354.5680 3. OR 354.5685 14. DENERATOR SIOPFERON'S CERTIFICATION: 1 hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and blobel-placehold, and size in all engineers in a strength short of proper condition to secreed ascorbing to applicable without and short of short of proper condition to secreed ascorbing to applicable without and short of short of proper shipping name, and are classified, packaged, marked and blobel-placehold, and size in all engineers of proper condition to secreed ascorbing to applicable without and short of short of proper shipping name, and are classified, packaged, marked and blobel-placehold, and size in all engineers of the proper condition to applicable without and short of short of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, supplier of proper shipping name, and are classified, packaged, supplier of proper shipping name, and are classified, packaged, supplier of proper shipping name, and are classified, packaged, supplier of proper shipping name, and are classified, packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier	lĭ	Ew)			OR3	54562	(A)	}	3,400		1700
13. Special Handling Instructions and Additional Information 1. OR 354.5680 2. OR 354.5680 3. OR 354.5685 14. DENERATOR SIOPFERON'S CERTIFICATION: 1 hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and blobel-placehold, and size in all engineers in a strength short of proper condition to secreed ascorbing to applicable without and short of short of proper condition to secreed ascorbing to applicable without and short of short of proper shipping name, and are classified, packaged, marked and blobel-placehold, and size in all engineers of proper condition to secreed ascorbing to applicable without and short of short of proper shipping name, and are classified, packaged, marked and blobel-placehold, and size in all engineers of the proper condition to applicable without and short of short of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, marked as a supplier of proper shipping name, and are classified, packaged, supplier of proper shipping name, and are classified, packaged, supplier of proper shipping name, and are classified, packaged, supplier of proper shipping name, and are classified, packaged, supplier of proper shipping name, and are classified, packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier of packaged, supplier	П	MATER	TAI	NOT REGULATED BY DO I			- Th	514	0		
13. Special Handling Instructions and Additional Information 1. OR 354 560 2. OR 354 560 3. OR 354 560 3. OR 354 560 44. GENERATOR SYDEPEROR'S CERTIFICATION: I havely declare that the contents of this consignance are May and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled-lipidecisted, and are in all respects to proper condition for transport according to applicable international and national governmental regulations. Month Day Yea 15. Infernational Stiffgenesis Import to U.S. Signalure	П	J					4	DM	2,000	٢	Market Street
13. Special Handling Instructions and Additional Information 1. OR \$54.560 2. OR \$54.560 3. OR \$354.5605 4. GENERATOR'SI/OFEROR'S CERTIFICATION: I hereby decides that the contents of this consignment are living and accurately described above by the proper shipping name, and are destified, packaged, marked and labeled/placacred, and are in all respects in proper condition for temporary and the superior of temporary and interest in proper condition for temporary and the superior of temporary and interest in proper condition for temporary and the constant of values of temporary and the superior of the constant of					OR3	5456			′		
1. OR354560 2. OR354560 2. OR354560 3. OR354560 3. OR354560 3. OR354560 4. GENERATOR*S/OFFEROR*S CERTIFICATION: 1 hareby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are cleasified, packaged, marked and laceleds/blacarded, and are in all respects in proper condition for trensport according to applicable international and national governmental regulations. Generator Order's Printed/Typed Name 10. Part of entrylenit: Transporter Printed/Typed Name Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Namical Reference U.S. EPA ID Number 10. Allermator Packing, or Generator) Worth Day Yea Transporter Printed/Typed Name Signature Signature Signature Signature Signature Signature Signature Signature Namical Reference U.S. EPA ID Number North Day Yea Transporter of Alternator Facility (or Generator) Worth Day Yea Transporter of Alternator Facility (or Generator) Signature Signature Signature Worth Day Yea Month Day Yea Signature North Day North Day North Day North Day North Day North Day North Day North Day North Day North Day North Day N	Ш	4.						200			34.63
1. OR354560 2. OR354560 2. OR354560 3. OR354560 3. OR354560 4. GENERATOR'S/OFFEROR'S CERTIFICATION: 1 hereby declare that the contents of this consignment are lufty and accurately described above by the proper shipping name, and are classified, packaged, marked and laceleds/blacarded, and are in all respects in proper condition for trensport according to applicable international and national governmental regulations. Generator's Printed/Typed Name 10. Participative (fer regions oright): Transporter in Printed/Typed Name 10. Transporter in Printed/Typed Name 11. Discrepancy 12. Discrepancy Indication Space Obstratify Obstrati						l					
1. OR354560 2. OR354560 2. OR354560 3. OR354560 3. OR354560 4. GENERATOR'S/OFFEROR'S CERTIFICATION: 1 hereby declare that the contents of this consignment are lufty and accurately described above by the proper shipping name, and are classified, packaged, marked and laceleds/blacarded, and are in all respects in proper condition for trensport according to applicable international and national governmental regulations. Generator's Printed/Typed Name 10. Participative (fer regions oright): Transporter in Printed/Typed Name 10. Transporter in Printed/Typed Name 11. Discrepancy 12. Discrepancy Indication Space Obstratify Obstrati			.1							L	
44. DENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national povernmental regulations. Convertor's Printed/Typed Name	Ш			and Additional Information							
14. GENERATOR'SIOFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeledphacarded, and are in all respects in proper condition for transport according to applicable international sind national governmental regulations. Generator's/Cifferor's Printed/Typed Name 15. Memater Signature (for exports orry): 15. Memater Signature (for exports orry): 16. Export from U.S. 17. Discrepancy Indication Space 17.		1. OR354560 2. OR354562									
Concentrative Secretary Secretary described above by the proper shapping name, and are classified, packaged, marked and labeledplacarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. Concentrative Officer's Printed Typed Name	П	3. OR354565									
Concentrative Secretary Secretary described above by the proper shapping name, and are classified, packaged, marked and labeledplacarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. Concentrative Officer's Printed Typed Name	Ш			11211/1/11 - 0	POPE	30)				
marked and labeled/placarded, and are in all respects in proper condition for transport applicable international and national governmental regulations. Signature	Ш	14 CENEDATOD'S MESE	מממ					node hedina	hu the proper ch	innles nam	hanging halissels are bas a
15. Infernational Stipments Import to U.S. Import t	Ш	marked and labeled/pla	carde	d, and are in all respects in proper condition for transport a	cording to applic	able inter	mational and nati	onel governo	nental regulations	hheið ussu	io, and alle dessined, peckeyou,
15. Infernational Stiffments Import to U.S. Export from U.S. Port of entry/exit: Distributing U.S.:		Generator's/Offeror's Printe		, Y.C.	~ - Sig	nalure		Λ	,		Month Day Yea
Transporter Signature (for exports only): Transporter Signature (for exports only): Transporter Signature (for exports only): Transporter Signature (for exports only): Transporter Signature (for exports only): Distribution (U.S.) Pariel Rejection Full Rejection U.S. Pariel Rejection Full Rejection U.S. Pariel Rejection Full Rejection U.S. Pariel Rejection Full Rejection Full Rejection Full Rejection U.S. Parie	Y	Sarabel		45 Andrelander		4	acces				<u> </u>
16. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Pele Laupati Transporter 2 Printed/Typed Name Pele Laupati Transporter 2 Printed/Typed Name Pele Laupati Transporter 2 Printed/Typed Name Signature Month Day Yea 17. Discrepancy Indication Space Lines 0 + 02 - Drums 1-3 and drum 1 contain about 10 free liquid. Liquid is water, 0 k to so (i diffy Manifest Reference Number: 17. Alternate Facility (or Generator) U.S. EPA ID Number 18. Designature of Alternate Facility (or Generator) 18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a Printed/Typed Name Nonth Day Yea Month Day Yea Month Day Yea 18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a Printed/Typed Name Nonth Day Yea Month Day Yea	Ę			A CONTRACTOR 1 TO THE CONTRACTOR 1 TO TH	Export from I	U.S.					
Transporter 1 Printed/Typed Name Pele Laupati Transporter 2 Printed Typed Name Signature Signature Month Day Yes Signature Month Day Nom Month Day Yes Signature Month Month Day Yes Signature Month Month Day Month Day Month Month Day Month Month Month Month Month	_	the same of the sa					Cottriagy	ing U.S.:			
Pele Laupati Transporter 2 Printed Typed Name Signature Month Day Yes Signature Month Day North Day No					Sic	Onthe	11	-			Month Day Yea
17. Discrepancy Indication Space					1		0 %	_	-		15 118 12
17. Discrepancy Indication Space	MS	Transporter 2 Printed Type	d Nam	18	Sig	nakire	P	1		-	
17a. Discrepancy Indication Space Quantity Lines 01+02-Drums 1-3 and drum 1 contain about 10 Feet 1 quid. Liquid is water, 0K to solidify Manifest Reference Number: U.S. EPA ID Number U.S. EPA ID Number 18a. Designature of Alternate Facility (or Generator) Month Day Yes 18b. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a Month Day Yes Signature Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes	표	60	2/	Theiner			0110	0.0	30		15 23 23
Lines 01+02-Drums I-3 and drum 1 contain about 10 free liquid. Liquid is water, 0K to so (idiffuer Andrew Randin. K2 G/8/23 Manifest Reference Number: US. EPA ID Number US. EPA ID Number US. Epa ID Number 17b. Alternate Facility (or Generator) Month Day Yes 18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a Printed/Typed Narme Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes	A	17. Discrepancy			1,0000						
Manifest Reference Number: 17b. Alternate Facility (or Generator) 17c. Signature of Alternate Facility (or Generator) 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Signature Month Day Yes Month Day		17a. Discrepancy Indication	n Spac	Cuantity Type			Residue		Partial Re	ection	Full Rejection
17b. Alternate Facility (or Generator) 17c. Signature of Alternate Facility (or Generator) Month Day Yes 18. Designated Facility Owner or Operator: Cartification of receipt of materials covered by the manifest except as noted in Item 17a Printed/Typed Name Signature Month Day Yes Signature Month Day Yes Day Month Day Yes Day Month Day Yes Day Month Day Mont		Lines 01+02	- DI		about	0 7	free light	guid.	Liquid is	wate	er, ox to solidify
Facility's Phone: 17c. Signature of Alternate Facility (or Generator) Month Day Yes 18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a Printed/Typed Name Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes Month Day Yes	U	ALL DESCRIPTION OF THE PARTY OF				Man	nifest Reference I	Number:	II S EPA ID	Number	
17c. Signature of Alternale Facility (or Generator) Month Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Printed/Typed Name Signature Month Day Yes Work Month Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Nonth Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Nonth Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Nonth Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Nonth Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Nonth Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a											
17c. Signature of Alternale Facility (or Generator) Month Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Printed/Typed Name Signature Month Day Yes Work Month Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Nonth Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Nonth Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Nonth Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Nonth Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a Nonth Day Yes 18. Designated Facility Owner or Operator: Cardification of receipt of materials covered by the manifest except as noted in Item 17a	₹ Facilit's Phone:										
18. Designated Facility Owner or Operator: Cartification of receipt of materials covered by the manifest except as noted in item 17a Printed/Typed Name Month Day Yes Signature Month Day Yes Lo 19 123	9	17c. Signature of Alternate Facility (or Generator)									Month Day Yes
18. Designated Facility Owner or Operator: Cartification of receipt of materials covered by the manifest except as noted in item 17a Printed/Typed Name Month Day Yes Signature Month Day Yes Lo 19 123	MAT										
18. Designated Facility Owner or Operator: Cartification of receipt of materials covered by the manifest except as noted in item 17a Printed/Typed Name Month Day Yes Signature Month Day Yes Lo 19 123											
Printed/Typed Name Month Day Yes Lo 9 23	ă					1					
Printed/Typed Name Month Day Yes 16 9 23		10 Declarated Front C		Country Codification of special of metadate and the	a manifest succession	l na natr	d in Stam 470	1000	HERE		
morgan Noit 1 Huxoff 1618 123	Ш	Contraction of the Contraction o	10 191	Operator: Ceruncation of receipt or materials covered by th			u in 178 178		W -53	-	Month Day Yes
OFFICE TABLE TO A CALLED AT A CALLED AT A CALLED AT A CALLED AT A	W		n	MAN N MIP	1		MIL	OF			
	169			And the second s					DESIGNAT	ED FA	

496865

ESP/CWM/LTZ

4	NON-HAZARDOUS WASTE MANIFEST (Continuation Sheet)	19 Generator 10 Number WAZ000011951	20. Page of 2	21. Waste	e Tracking Num		PFSC51723-ESP1
	22. Generator's Name PAINE FIELD SN	OHOMISH COUNTY					
	23. Transporter 3 Company Name PC	designation of the distribution of the second secon			U.S. EPA ID	Number	2000041180
	24 TransporterCompany Name				U.S. EPA IC	Number	
	25. Waste Shipping Name and Description		26. Contain		27 Total 28. Ur		
	EU. 17030 Unipprig voire and DUSCIPORT		No	Type	Quantity	Wt/Vol	
		ich ib der speechterligeige bliebelter an 1 der seine sonnen					
1							
	P						
	79 Special Handling Instructions and Additional Information	nation				1 1	
	W	mxu- 97693	30				
İ	30 Transporter Acknowledgment of Receipt of	Matenals	- On all use				Month Day Yea
	Printed/Typed Name		y comme		a sille a property		lingwin Day 188
	31. Transporter Acknowledgment of Receipt of Pnnfed/Typed Name		วันระทเล	494			Month Day Yea
	32. Discrepancy						
-							
	THE RESIDENCE OF THE PROPERTY						
בייייייייייייייייייייייייייייייייייייי							

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Northwest Region Office

PO Box 330316, Shoreline, WA 98133-9716 • 206-594-0000

March 30, 2023

Andrew Rardin
Paine Field/Snohomish County Airport
3220 100th Street SW, Suite A
Everett, WA 98204-1303

RE: Contained-In Determination for F002 Contaminated Soils for the Paine Field – C-1
Building and Hangar Site located at 5808 119th Avenue SE, Everett, WA, 98204. Facility ID
84613634; Cleanup Site ID # 3526.

Reference(s): 1. Request for Contained-In Determination from Jacob Letts (GeoEngineers, Inc.) to Paul Bianco (Ecology), dated March 24, 2023

- 2. Electronic Mail for Contained-In Determination from Paul Bianco (Ecology) to Andrew Rardin (Paine Field/Snohomish County Airport), dated March 28, 2023
- 3. Request for Contained-In Determination Revision 1 from Jacob Letts (GeoEngineers, Inc.) to Paul Bianco (Ecology), dated March 30, 2023

Andrew Rardin:

The Washington State Department of Ecology (Ecology) received a contained-in determination request from your environmental consultant, GeoEngineers, Inc. for specific F002 listed waste tetrachloroethylene (PCE) and trichloroethylene (TCE) contaminated soils generated during subsurface investigation activities on the property located at 5805 119th Ave. SE, Everett, WA 98204.

Analytical data were submitted to Ecology to determine if these soils contaminated with F002 listed dangerous waste constituents may be exempt from management as dangerous wastes per the "Contained-In Policy". Ecology understands that these contaminated soils do not designate under federal characteristics (WAC 173-303-090) or State-only criteria (WAC 173-303-100).

Based on the information received and reviewed, Ecology has determined that the **seven (7), 55-gallon drums** of PCE and TCE contaminated soils generated during subsurface investigation activities are contaminated with F002 listed dangerous waste constituents (PCE and TCE) at concentrations that do not warrant management as dangerous wastes. Ecology will not require disposal of these **seven (7), 55-gallon drums** of PCE and TCE contaminated soils as F002 listed

¹ Washington State Department of Ecology Contained-in Policy, dated February 19, 1993

Andrew Rardin March 30, 2023 Page 2

dangerous wastes at a RCRA permitted dangerous waste treatment, storage and disposal (TSD) facility, provided that all of the following conditions are implemented. This contained-in determination applies only to the contaminated soils and does not pertain to contaminated water or any mixture of contaminated soils and fluid.

You or your environmental consultant, GeoEngineers, Inc. shall:

- Ensure that no standing water is present within the containers or trucks holding the
 contaminated soils. All water must be removed to the maximum extent possible from each
 container or truck and managed as F002 dangerous wastes or as otherwise allowed under
 Chapter 173-303 WAC. Adding bentonite or similar materials to absorb standing F002 listed
 waste contaminated water in the containers is not allowed. Mixtures of bentonite or similar
 materials and the listed waste contaminated water must be managed as F002 listed dangerous
 wastes.
- Directly deliver the soils to a solid waste landfill or transfer station permitted under Chapter 173-351 WAC and/or Chapter 173-350 WAC inside Washington State. If taken directly to the solid waste landfill, no off-loading of the contaminated soils is allowed between the cleanup site and the permitted solid waste landfill; If taken to the transfer station, removal of the contaminated soils from the intermodal container at the transfer station is not allowed.
- If you plan to deliver the contaminated soils to a <u>landfill outside Washington State</u>, you must FIRST submit to Ecology <u>written approval for the contaminated soil disposal from the State hazardous waste program and the out of state landfill</u>, **before** the soils are delivered to the out of state landfill.
- If you load the contaminated soils directly onto the truck bed or the contaminated soils are transported in roll-off bins, the truck or the roll-off bins must be lined with plastic and properly covered to prevent leaks, spills, or dispersion due to wind.
- Dispose of the contaminated soils at the permitted solid waste landfill by <u>June 30, 2023</u>. This contained-in determination letter is no longer valid after <u>June 30, 2023</u>, and the contaminated soils shall be managed as dangerous wastes after this date.
- Provide copies of all <u>signed solid waste landfill receipts</u> or a certificate of disposal issued by the receiving landfill for these contaminated soils to Ecology, attention of Paul Bianco, by <u>August 31, 2023</u>. This is an important verification step for you and your consultant to follow in order for this Ecology decision to be valid.
- Do not consolidate these contaminated soils with other soils that do not pertain to this contained-in determination.

- Notify Ecology before disposal of the contaminated soil if the amount exceeds the approved amount. Ecology needs to make sure that the additional soil qualifies for a contained-in determination.
- Notify Ecology via email at least five (5) days before removing the contaminated soils approved
 in this letter. This notice gives Ecology the option of observing the removal. If Ecology chooses
 to observe the removal, we will notify you by phone or email at least 24 hours before the day
 the soil removal begins.
- Ensure that the transporter is properly trained to handle hazardous waste so that the
 transporter manages the contained-in determination soils during transport in a manner that is
 protective of human health and the environment.
- Take measures to prevent unauthorized contact with these contaminated soils at all times.
- Provide instructions to the landfill operator that these soils are not to be used for daily, intermediate, or final cover.
- Provide copies of all soil analytical data to the landfill operator, upon request.
- Do not send these contaminated soils to any incinerator, thermal desorption unit or <u>recycling</u> facility unless that facility is a RCRA Subtitle C permitted dangerous waste TSD facility.

Ecology issued this determination based on the information provided and reviewed to date. This Ecology determination will be rescinded if Ecology finds that the information submitted by the property owner or its environmental consultant is materially false, misleading, otherwise does not accurately represent the site conditions, or if the Ecology requirements listed above are not followed.

This written decision only applies to the **seven (7), 55-gallon drums** of specified PCE and TCE contaminated soils generated during excavation activities from areas described in your request (reference 3). It does not apply to any other media. Any data used for this contained-in determination is intended for use in determining the proper disposal of the above stated PCE and TCE contaminated soil according to the Washington State Dangerous Waste Regulations (Chapter 173-303 WAC) and Ecology Contained-in Policy. This letter is not an Ecology approval for dangerous waste designation or disposal of contaminated soils that may be generated or already excavated from other areas in this property.

This letter is <u>not</u> a No Further Action (NFA) letter and not written approval for any cleanup action plan you may have submitted. Instead, this letter only addresses the procedures for disposal of the contaminated soils according to the Washington State Dangerous Waste Regulations (Chapter 173-303 WAC). Regulatory decisions regarding the cleanup action, applicable soil and groundwater cleanup levels and any other cleanup issues must comply with the requirements under Ecology Model Toxics Control Act (Chapter 173-340 WAC). Local agencies may have the authority to

Andrew Rardin March 30, 2023 Page 4

impose additional requirements on this waste stream.

If you fail to comply with the terms of this letter, Ecology may issue an administrative order and/or penalty as provided by the Revised Code of Washington, Sections 70A.300.090 and/or .120 (Hazardous Waste Management Act).

If you have any questions concerning this letter, please contact me at (425) 466-5161 or paul.bianco@ecy.wa.gov.

Sincerely,

Paul V. Bianco, PE

Environmental Engineer

POVB_

Hazardous Waste and Toxics Reduction Program

Sent by Certified Mail: 9171 9690 0935 0233 2187 67

ecc: Jacob Letts, GeoEngineers, Inc.

Tim L. Syverson, GeoEngineers, Inc. Neil Morton, GeoEngineers, Inc. Lisa Huston, GeoEngineers, Inc.

Christa Colouzis, Ecology Kurt Walker, Ecology Donna Kirkman, Ecology Elaine Snouwaert, Ecology Jason Landskron, Ecology Ron Kauffman, Ecology Brittany McManus, Ecology

Kim Wooten, Ecology

To request an ADA accommodation, contact Ecology by phone at 360-407-6831 or email at ecyadacoordinator@ecy.wa.gov, or visit https://ecology.wa.gov/accessibility. For Relay Service or TTY call 711 or 877-833-6341.

APPENDIX H Report Limitations and Guidelines for Use

APPENDIX H

REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geosciences practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of Snohomish County Airport, their authorized agents and regulatory agencies. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment or remedial action study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except the Snohomish County Airport should rely on this report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report Is Based on a Unique Set of Project-Specific Factors

This report applies to the C-1 Hangar and C-1 Building located at 3220 100th Street SW in Everett, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- Not prepared for you,
- Not prepared for your project,
- Not prepared for the specific site explored, or
- Completed before important project changes were made.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

¹ Developed based on material provided by ASFE, The GeoProfessional Association; www.asfe.org.

Reliance Conditions for Third Parties

No third party may rely on the product of our services unless GeoEngineers agrees in advance, and in writing to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions.

Environmental Regulations Are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Subsurface Conditions Can Change

This report is based on conditions that existed at the time our site studies were performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes and slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Client desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk.

Geotechnical, Geologic and Environmental Reports Should Not Be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on Site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject Site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

