

August 24, 2023

Mr. Chang Kim 23886 SE Kent-Kangley Road Maple Valley, Washington 98038-6848 jbangiek@gmail.com

RE: Technical Memorandum – Cleanup Progress Report

4 Corners Cleaners 23886 SE Kent-Kangley Road Maple Valley, Washington 98038-6848 AEG Atlas Project: 17-126

VCP ID No.: NW3234

Dear Mr. Kim:

AEG Atlas, LLC (AEG) has prepared this Technical Memorandum to provide an update on the progress of cleanup actions for 4 Corners Cleaners, located at the above-referenced address in Maple Valley, Washington (Site). A soil vapor extraction (SVE) system has been operating at the Site as presented in AEG's Cleanup Action Plan, dated May 29, 2019. The system was designed to extract and remove adsorbed vapor-phase tetrachloroethylene (PCE) and other volatile organic compounds (VOCs) from subsurface soil beneath the building, and treat the vapors using granular activated carbon (GAC). The system also mitigates the potential for vapor intrusion of VOCs detected beneath the dry cleaner space into the indoor air. This memorandum includes a summary of the operation and maintenance (O&M) activities performed to date, a summary of the groundwater monitoring results, and recommendations for continued operations and monitoring for the Site. Figure 1, Site Location Map, presents the general vicinity of the Site. The Site's current layout, including soil boring and SVE extraction well locations, are illustrated in Figure 2, Site Map.

BACKGROUND

PCE and its anaerobic sequential degradation chain constituents, including trichloroethylene (TCE), cis-1,2-dichloroethylene (DCE), trans-1,2-DCE, and vinyl chloride, are the contaminants of concern (COCs) for the Site. Soil and soil vapor are the media affected. Groundwater was encountered at various depths from 25 to 33 feet below ground surface (bgs) in six of the ten borings and did not contain detectable VOCs. Soil impacts at the Site are likely the result of use and storage of PCE formerly used in the dry cleaner machine and dry-cleaning process.

PCE was the only COC detected in soil above Model Toxics Control Act (MTCA) cleanup levels. PCE exceeded the MTCA Method A cleanup level in AEG soil samples B1-22 (1.8 feet bgs) and

B3-23 (1.9 feet bgs). Both borings were located inside the building. The vertical extent of PCE in these borings could not be determined due to the very dense soils encountered and the limitations of drilling in these soils inside the building. PCE was also detected in boring B-11 at 18 feet bgs, which is outside the building to the north. Soil boring locations are illustrated on Figure 2, *Site Map*.

GROUNDWATER MONITORING

On May 18-20, 2020, AEG constructed four groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-5) to allow for quarterly sampling of Site groundwater to address Ecology's comments. The target depth for the borings was 50 feet below ground surface (bgs) to evaluate the subsurface conditions. On the day of drilling, groundwater was encountered at 35 feet bgs. Samples of soil and groundwater were collected during drilling for field screening and laboratory analyses. Several attempts were made to advance to depth in the area proposed for MW-4; however, refusal was consistently encountered. As such, MW-4 was never installed.

Groundwater monitoring was performed on these wells in July 2022, and in January and July 2023. Groundwater samples collected from the wells were submitted for laboratory analysis for PCE and daughter products using EPA Method 8260. No constituents of concern were detected in groundwater samples above the laboratory detection limits for monitoring wells MW-1, MW-2, MW-3, or MW-5. Analytical results for these sampling events are presented in Table 2, *Summary of Groundwater Analytical Results*.

The calculated groundwater gradient for the Site has ranged from 0.025 to 0.05 feet per foot, and has been generally consistent to the north-northwest as illustrated on Figure 3, *Groundwater Elevation Contour Map 7/14/2022*, Figure 4, *Groundwater Elevation Contour Map 01/12/2023*, and Figure 5, *Groundwater Elevation Contour Map 07/07/2023*. A summary of groundwater elevations is presented as Table 1, *Summary of Groundwater Elevations*.

SVE SYSTEM INSTALLATION

Five SVE wells were installed on August 9 and 10, 2019 by Cascade Drilling, LP (Cascade) using sonic drilling technology. Four SVE wells (SVE-1 through SVE-4) are outside the tenant space and are 15 feet in depth with slotted screens from 2 to 15 feet bgs. SVE-5 was installed inside the tenant space using vacuum extraction to a depth of 3 feet bgs and completed with slotted screen from 6 inches to 3 feet bgs. All wells were sealed at the surface with bentonite and concrete grout.

Sub-slab vapor monitoring points (VP-1 to VP-4) were installed by drilling through the existing concrete slab, placement, and sealing of the stainless steel VaporPin® sampling points. The vapor points were completed with accessible lids in locations for easy monitoring. Vapor monitoring points and SVE well locations are illustrated on Figure 2, *Site Map*.

The SVE system underground conveyance piping installation was completed in August through September 2019, and startup occurred on October 9, 2019. The system was constructed to meet the Site conditions and requirements of the property management company. The system started with GAC filters in-place to be in compliance with the required Puget Sound Clean Air Agency (PSCAA) regulations.

SYSTEM PERFORMANCE AND ONGOING O&M

As of the date of the previous progress report, DH Environmental, Inc. (DHE) has continued routine operations and maintenance (O&M) work and the SVE system has been operating normally. The only system shutdowns have been the result of general power failures and intended shutdowns during sampling events. Routine system O&M is scheduled to occur at the beginning of each month, plus call outs when system alarm notifications are received.

On February 2, 2022, DHE replaced four non-functioning vacuum gauges (SVE 1, 2, 3, 4) on the SVE well manifold. Additionally, testing was conducted on SVE-4 to determine whether the well was under vacuum. Subsequent results determined the well-maintained adequate suction at the wellhead and water was noted in the SVE-4 manifold line. All five vacuum gauges have since properly functioned and provided accurate readings of the vacuum maintained on each well.

Ongoing monitoring noted PCE continued to be present in sub-slab vapors in the southern half of the tenant space following the replacement and testing of the original four SVE wells. As such, on April 10, 2022, DHE mobilized to the Site to install three additional SVE wells (SVE-6, SVE-7, and SVE-8). The addition of these three wells will provide adequate air flow beneath the building foundation to mitigate the exposure to PCE vapors. These additional SVE well locations are illustrated on Figure 2, *Site Map*.

The SVE system is currently operating with wells SVE-4 through SVE-8 and has experienced one unintentional shut down this year due to a power outage. It has since operated as expected and without issues. Past problems involving system shutdowns had typically involved high-water level alarms in the knockout tank. On June 15, 2022, to mitigate the high-water level alarms, DHE installed an auto drain pump in the knockout tank, which discharges the knockout tank water into a 55-gallon drum.

The latest sub-slab vapor and SVE system sampling event was performed on March 23, 2023. Sub-slab vapor samples were collected from all four vapor monitoring points (VP-1 through VP-4). As shown in Table 3, *Summary of Sub-Slab Vapor Analytical Results*, the results indicate that PCE and daughter products were either non-detect or below MTCA Method B cleanup levels.

As of the March 23, 2023, monitoring date, the SVE system had been operational at the Site for 990 days. From the startup date of October 9, 2019, the SVE system has had multiple shutdown

events caused by the previously noted water in the moisture knockout tank, which has since been resolved. Additionally, the SVE system is shut down during routine sub-slab vapor sampling and maintenance.

The carbon filtration was removed from the system in January 2020 and the performance sample location has since been the effluent air from the vacuum system stack output sample port. A 10-minute Summa canister sample was collected from the effluent air on March 24, 2023, to evaluate compliance with the PSCAA maximum allowable emission rates. PCE and related constituents were not detected in the effluent air sample analysis. The analytical results of the effluent sample and potential to emit (PTE) toxic constituents are shown on Table 4, *Potential to Emit Summary*. Results from the air sampling are presented in Appendix A, Supporting Documents, *Laboratory Datasheets*. Approximately 1.388 pounds of halogenated volatile organic compounds (HVOCs) have been removed in vapor phase from the Site to date.

O&M is currently being conducted on a monthly basis by DHE.

RECOMMENDED NEXT STEPS

Based on the recent O&M observations and performance data, AEG recommends the following:

- Shut down the system and check for any rebound of sub-slab vapors.
- Continue system operation as need based on rebound results.
- Perform confirmation sampling once asymptotic conditions are reached.

If you have comments or questions, please contact our office at your convenience at 360.352.9835.

Sincerely,

AEG Atlas, LLC

Scott Rose, L.H.G.

Director of Technical Services

<u>Attachments</u>: Figure 1 – *Vicinity Map*

Figure 2 – *Site Map*

Figure 3 – Groundwater Elevation Contour Map 07/14/2022 Figure 4 – Groundwater Elevation Contour Map 01/12/2023 Figure 5 – Groundwater Elevation Contour Map 07/07/2023

Table 1 – *Summary of Groundwater Elevations*

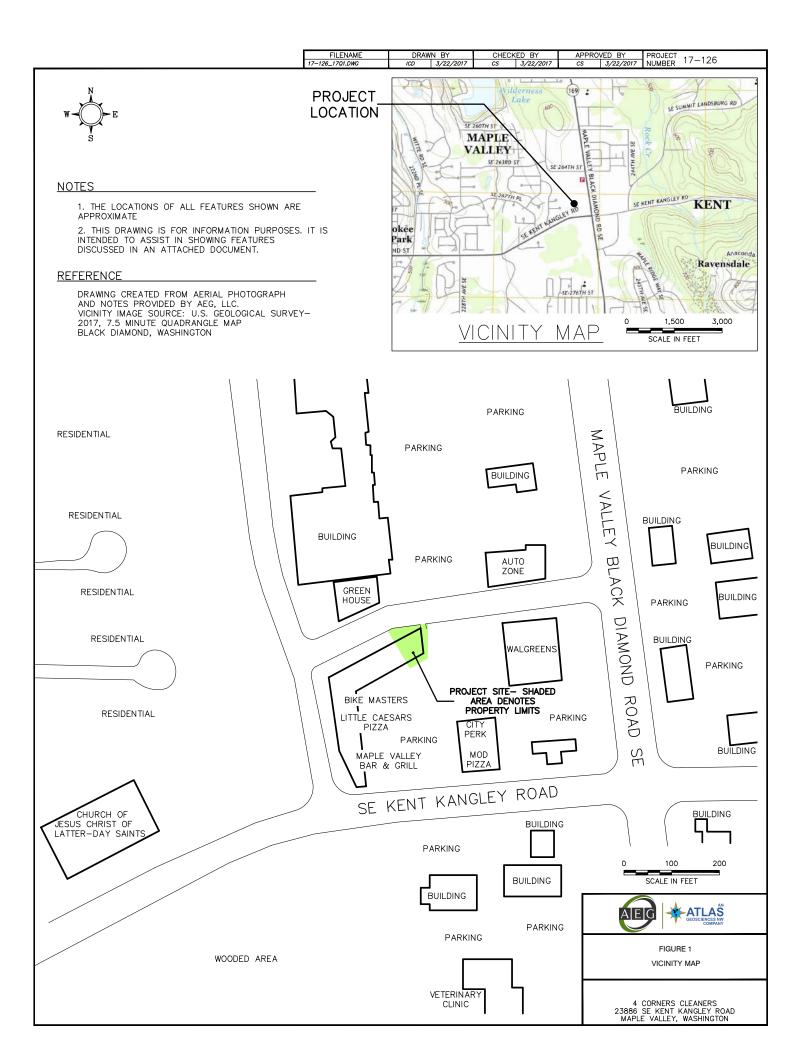

Table 2 – Summary of Groundwater Analytical Results
Table 3 – Summary of Sub-Slab Vapor Analytical Results

Table 4 – *Potential to Emit Summary*

Appendix A – Supporting Documents

Laboratory Datasheets

FIGURES

TABLES

Table 1 - Summary of Groundwater Elevations

4 Corners Cleaners (17-126) Maple Valley, Washington

Well No./ TOC Elevation	Date	Depth to Water	Depth to Free Product	Free Product Thickness	Actual Groundwater Elevation	Change in Elevation
MW-1	6/23/2020	22.67			540.04	
562.71	9/14/2020	28.97			533.74	-6.30
	12/11/2020	20.40			542.31	8.57
	3/19/2021	20.28			542.43	0.12
	7/14/2022	21.77	1	-	540.94	-1.49
	1/12/2023	19.42	1	1	543.29	2.35
	7/7/2023	24.65			538.06	-5.23
MW-2	6/23/2020	22.04			540.35	
562.39	9/14/2020	28.29			534.10	-6.25
	12/11/2020	20.25	-		542.14	8.04
	3/19/2021	19.46			542.93	0.79
	7/14/2022	22.12			540.27	-2.66
	1/12/2023	20.14			542.25	1.98
	7/7/2023	24.03			538.36	-3.89
MW-3	6/23/2020	24.82	-	-	539.06	
563.88	9/14/2020	31.08			532.80	-6.26
	12/11/2020	22.22			541.66	8.86
	3/19/2021	22.25			541.63	-0.03
	7/14/2022	24.99			538.89	-2.74
	1/12/2023	21.58			542.30	3.41
	7/7/2023	26.82			537.06	-5.24
MW-5	6/23/2020	22.22			540.50	
562.72	9/14/2020	28.60			534.12	-6.38
	12/11/2020	19.75			542.97	8.85
	3/19/2021	19.41			543.31	0.34
	7/14/2022	22.03			540.69	-2.62
	1/12/2023	19.51			543.21	2.52
	7/7/2023	24.40			538.32	-4.89

Notes:

All values reported in feet

TOC = Top of casing elevation relative to assigned benchmark.

-- = Not measured, not available, or not applicable

Table 2 - Summary of Groundwater Analytical Results

4 Corners Cleaners (17-126) Maple Valley, Washington

Sample Number	Date Collected	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride		
Boring Groundwater Data								
B4-W	7/17/2018	<1.0	<1.0	<1.0	<1.0	< 0.2		
B5-W	7/17/2018	<1.0	<1.0	<1.0	<1.0	< 0.2		
B6-W	7/18/2018	<1.0	<1.0	<1.0	<1.0	< 0.2		
B7-W	7/18/2018	<1.0	<1.0	<1.0	<1.0	< 0.2		
B8-W	7/19/2018	<1.0	<1.0	<1.0	<1.0	< 0.2		
B9-W	7/19/2018	<1.0	<1.0	<1.0	<1.0	< 0.2		
	Monitoring	Well Grou	ıdwater Da	ıta ¹				
	6/23/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	9/14/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	12/11/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2		
MW-1	3/19/2021	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	7/15/2022	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	1/12/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	7/7/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	6/23/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	9/14/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	12/11/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2		
MW-2	3/19/2021	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	7/15/2022	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	1/12/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	7/7/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	6/23/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	9/14/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	12/11/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2		
MW-3	3/19/2021	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	7/15/2022	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	1/12/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	7/7/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	6/23/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	9/14/2020	<1.0	< 0.4	<1.0	<1.0	< 0.2		
MW-5	12/11/2020	<1.0	<0.4	<1.0	<1.0	< 0.2		
	3/19/2021	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	7/15/2022	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	1/12/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	7/7/2023	<1.0	< 0.4	<1.0	<1.0	< 0.2		
	PQL	1.0	0.4/1.0	1.0	1.0	0.2		
MTCA Metho	od A Cleanup Levels	5.0	5.0	160*	16*	0.2		

Notes:

All values present are micrograms per liter ($\mu g/L$)

- -- = Not analyzed for constituent
- < = Not detected at the listed laboratory detection limits

PQL = Practical Quantification Limit (laboratory detection limit)

Red Bold indicates the detected concentration exceeds Ecology MTCA Method A cleanup level

Bold indicates the detected concentration is below Ecology MTCA Method A cleanup levels

PCE = Tetrachloroethene

TCE = Trichloroethene

DCE = Dichloroethene

¹Refusal was consistently encountered throughout the area proposed for well MW-4; it was never installed.

^{*} MTCA Method B cleanup level; Method A cleanup level not established

Table 3 - Summary of Sub-Slab Vapor Analytical Results

4 Corners Cleaners Maple Valley, Washington

Sample	Depth	Date		PCE	and Daught	er Products		Other Det	ected Volatile Orga	nnic Compounds
Number	Collected (feet)	Collected	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride	Chloroform	Dichloro- difluoromethane	1,1,2- Trichloroethane
SV-1	SUB-SLAB	3/31/2017	1,600	<10	<10	<10	<10	<10	<10	<10
SV-2	SUB-SLAB	3/31/2017	1,800	<10	<10	<10	<10	<10	8,600	<10
SV-3	SUB-SLAB	3/31/2017	1,500	<10	<10	<10	<10	<10	12,000	<10
SV-4	SUB-SLAB	3/31/2017	790	<10	<10	<10	<10	<10	15,000	<10
SV-5	SUB-SLAB	3/31/2017	940	<10	<10	<10	<10	<10	8,200	<10
SV-6	SUB-SLAB	3/31/2017	850	<10	<10	<10	<10	<10	7,200	<10
SV-7	SUB-SLAB	3/31/2017	1,700	<10	<10	<10	<10	<10	870	<10
SV-8	SUB-SLAB	3/31/2017	1,100	<10	<10	<10	<10	<10	290	<10
SV-9	SUB-SLAB	3/31/2017	2,800	<10	<10	<10	<10	310	2,500	<10
SV-10	SUB-SLAB	3/31/2017	2,100	<10	<10	<10	<10	31,000	3,100	380
SV-11	SUB-SLAB	3/31/2017	6,300	<10	<10	<10	<10	<10	2,800	<10
SV-12	SUB-SLAB	3/31/2017	2,600	<10	<10	<10	<10	<10	3,400	<10
SV-13	SUB-SLAB	3/31/2017	180	<10	<10	<10	<10	<10	9,000	<10
SV-14	SUB-SLAB	3/31/2017	2,600	<10	<10	<10	<10	<10	610	<10
						TUP OCTO			310	
		10/9/2019	586	4.48	< 0.793	< 0.793	< 0.511			
ľ		12/16/2019	4.03	1.95	< 0.793	< 0.793	<0.511			
		1/16/2020	264E	3.18	< 0.793	< 0.793	<0.511			
		2/25/2020	198	3.92	< 0.793	< 0.793	<0.511			
		3/16/2020	270	3.7	<2.7	<2.7	<1.7			
		5/20/2020	570	4.3	<5.6	<5.6	<3.6			
		7/8/2020	580	4.6	<2.8	<2.8	<1.8			
		8/26/2020	42	<1.0	<1.5	<1.5	<0.97			<0.41
VP-1 ¹	SUB-SLAB	9/16/2020	<45	<0.71	<2.6	<2.6	<1.7			<0.36
V1-1	SOB SEAR	12/17/2020	420	2.7	<8.3	<8.3	<5.4			<1.1
		4/20/2021	150	1.8	<2.5	<2.5	<1.6			<0.34
		6/21/2021	53	1.2	<2.8	<2.8	<1.8			
		8/17/2021	68	<2.1	<7.9	<7.9	<5.1			<1.1
		11/2/2021	240	1.8	<2.5	<2.5	<1.6			<0.35
		5/9/2022	<28	<0.44	<1.6	<1.6	<1.0			
		10/6/2022	<39	< 0.62	<2.3	<2.3	<1.5			
		3/23/2023	69	1.1	<2.3	<2.3	<1.5			
		10/9/2019	<2.03	<1.07	<0.793	<0.793	<0.511			
		12/16/2019	4.77	<1.07	<0.793	<0.793	<0.511			
		1/16/2020	101	1.49	<0.793	<0.793	<0.511			
		2/25/2020	72	<1.07	<0.793	<0.793	<0.511			
		3/16/2020	66	<1.07	<2.7	<2.7	<1.7			
		5/20/2020	230	<1.07	<2.7	<2.7	<1.7			
		7/8/2020	170	<1.9	<2.7	<2.7	<1.7			
		8/26/2020	120	<2.7	<4	<4	<2.6			<5.5
VP-2 ¹	SUB-SLAB	9/16/2020	<44	<0.7	<2.6	<2.6	<1.7			<0.35
v r -2	SOD-SLAD	12/17/2020	87	<1.1	<4.0	<4	<2.6			<0.55
		4/20/2021	190	0.76	<2.3	<2.3	<1.5			<0.32
		6/21/2021	86	0.78	<2.3	<2.3	<1.5			
		8/17/2021		<0.75	<2.8	<2.8	<1.8			<0.38
			53 79					-		<0.38
		5/9/2022		<0.73	<2.7	<2.7	<1.7		-	
		5/9/2022	<35	0.90	<2	<2	<1.3			
		10/6/2022	<38	<0.6	<2.2	<2.2	<1.4			
		3/23/2023	<39	2.40	<2.3	<2.3	<1.5			

Table 3 - Summary of Sub-Slab Vapor Analytical Results

4 Corners Cleaners Maple Valley, Washington

Sample Depth Date		Date		PCE	and Daught	er Products		Other Det	ected Volatile Orga	nic Compounds
Number	Collected (feet)	Collected	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride	Chloroform	Dichloro- difluoromethane	1,1,2- Trichloroethane
		10/9/2019	743	1.32	< 0.793	< 0.793	< 0.511		-	
		12/16/2019	2.53	<1.07	< 0.793	< 0.793	< 0.511			
		1/16/2020	423	<1.07	< 0.793	< 0.793	< 0.511			-
		2/25/2020	457	1.13	< 0.793	< 0.793	< 0.511			
		3/16/2020	960	<9.4	<14	<14	<8.9			-
		5/20/2020	1,300	<9.4	<14	<14	<8.9			
		7/8/2020	970	<3.8	< 5.6	< 5.6	<3.6			
		8/26/2020	420	1.8	<1.6	<1.6	<1.6			< 0.44
VP-3 ¹	SUB-SLAB	9/16/2020	720	< 5.6	<21	<21	<13			<2.8
		12/17/2020	690	<2.1	<7.9	<7.9	<5.1			<1.1
		4/20/2021	890 ve	1.6	<2.3	<2.3	<1.5			< 0.32
		6/21/2021	830 ve	1.8	<2.6	<2.6	<1.7			
		8/17/2021	720	2.6	<8.3	<8.3	<5.4			<1.1
		11/2/2021	950	1.0	<2.7	<2.7	<1.7			< 0.37
		5/9/2022	65	1.1	<1.9	<1.9	<1.2			
		10/6/2022	78	1.3	<2.3	<2.3	<1.5			
		3/23/2023	260	< 0.92	<3.4	<3.4	<2.2			
		7/8/2020	<32	<1.3	<1.9	<1.9	<1.2			
		8/26/2020	290	<13	<19	<19	<13			<13
		9/16/2020	56	<2.4	<3.4	<2.4	<1.5			< 0.33
		12/17/2020	400	<2.1	<7.9	<7.9	<5.1			<1.1
		4/20/2021	340	1.2	<2.9	<2.9	<1.8			< 0.39
VP-4 ¹	SUB-SLAB	6/21/2021	280	0.8	<2.5	<2.5	<1.6			
		8/17/2021	72	<1.1	<3.9	<3.9	<2.5			< 0.54
		11/2/2021	370	< 0.68	<2.5	<2.5	<1.6			< 0.34
		5/9/2022	<31	< 0.49	<1.8	<1.8	<1.2			
		10/6/2022	<37	< 0.58	<2.1	<2.1	<1.4			
		3/23/2023	<56	< 0.89	<3.3	<3.3	<2.1			
	PQL				PQL Va	ries		10.0	10.0	PQL varies
	MTCA Method E Slab Screening L		321	12.3	NL	NL	9.33	3.62	1,520	5.21

Notes

¹ - Collected from the permanent vapor monitoring point.

 $\label{eq:pce} PCE = Tetrachloroethene$

All values are presented in micrograms per cubic meter ($\mu g/m^3$)

TCE = Trichloroethene

< = Not detected at the listed laboratory detection limits

DCE = Dichloroethene

 $ve = \!\! The \ analyte \ response \ exceeded \ the \ valid \ instrument \ calibration \ range. \ The \ value \ reported \ is \ an \ estimate.$

PQL = Practical Quantification Limit (laboratory detection limit)

NL = Not Listed; no sub-slab screening levels have been established for this constituent

Red Bold indicates the detected concentration exceeds Ecology MTCA Method B sub-slab screening level

Bold indicates the detected concentration is below Ecology MTCA Method B sub-slab screening levels

Table 4 - Potential to Emit Summary

4 Corners Cleaners Maple Valley, Washington

Date	Sample ID	Contaminant	Laboratory Sample Results parts per million volume (ppmv)	Molecular Weight (1) grams per - mole (g/mole)	Flowrate Measured (2) cubic feet per minute (cfm)	Potential To Emit Estimated pounds per day (lb/day)	*Maximum Allowable Emission Rate pounds per day (lb/day)
1/16/2020	INPUT	Tetrachloroethene (PCE)	0.0229	165.85	120	0.0016785	2.74
	14:08:00	Trichloroethene (TCE)					1.37
	Flow Temp = 60 F						
	50-inches W.C.			Cotal Pounds of Total			0.420000
0/05/0000	Total System Vacuum	T (11 (1 (DCF)		Total Pounds of Total			0.046998
2/25/2020	INPUT 9:27:00	Tetrachloroethene (PCE) Trichloroethene (TCE)	0.0450	165.85	120	0.0032983	
	Flow Temp = 60 F	Tricinoroethelie (TCE)					
	50-inches W.C.						
	Total System Vacuum		Estim	nated Total Pounds of	Total HVOCs Remo	oved 2/1/20 to 3/5/20	0.108845
3/16/2020	OUPUT	Tetrachloroethene (PCE)	0.0023		120		01200010
	10:34:00	Trichloroethene (TCE)	0.00019		120		
	Flow Temp = 60 F				-		
	50-inches W.C.						
	Total System Vacuum		Estimate	ed Total Pounds of To	otal HVOCs Remove	ed 3/16/20 to 4/09/20	0.005927
5/20/2020	OUPUT	Tetrachloroethene (PCE)	0.0003	165.85	120	0.0000220	
	11:56:00	Trichloroethene (TCE)	0.006	131.4	120	0.0003484	
	Flow Temp = 60 F						
	50-inches W.C.						
	Total System Vacuum			Total Pounds of Total			0.015187
7/8/2020	OUPUT	Tetrachloroethene (PCE)	0.0056		120		
	11:56:00	Trichloroethene (TCE)	0.006	131.4	120	0.0003484	
	Flow Temp = 60 F 50-inches W.C.						
	Total System Vacuum		Estimated	d Total Pounds of To	tal HVOCs Removed	1.5/20/2020 to 7/8/20	0.037186
8/20/2020	4CC-Inlet SVE	Tetrachloroethene (PCE)	0.0014		110		0.027100
0 0 0	13:16:00	Trichloroethene (TCE)	0.000		110		
	Flow Temp = 55 F	, ,					
	55-inches W.C.						
	Total System Vacuum		Estimated	d Total Pounds of To	tal HVOCs Removed		0.004503
9/16/2020	Effluent-091620	Tetrachloroethene (PCE)	0.0034	165.85	120	0.0002492	
	11:56:00	Trichloroethene (TCE)	0.000	131.4	120	0.0000075	
	Flow Temp = 60 F						
	50-inches W.C.						
10/17/2020	Total System Vacuum	T . 11		Total Pounds of Total			0.006932
12/17/2020	Influent-121720	Tetrachloroethene (PCE)	0.0110 0.000		120 120		
	13:20:00 Flow Temp = 60 F	Trichloroethene (TCE)	0.000	131.4	120	0.0000093	
	55-inches W.C.						
	Total System Vacuum		Estimated	d Total Pounds of To	tal HVOCs Removed	19/16/20 to 12/17/20	0.075031
4/21/2021	SVE-0UT-42021	Tetrachloroethene (PCE)	0.0360		120		00.2001
	15:50:00	Trichloroethene (TCE)	0.000		120		
	Flow Temp = 60 F	, ,			-		
	55-inches W.C.						
	Total System Vacuum		Estimated	Total Pounds of Tota	al HVOCs Removed	12/17/20 to 04/21/21	0.331503

Potential to Emit Summary AEG Atlas, LLC

Table 4 - Potential to Emit Summary

4 Corners Cleaners Maple Valley, Washington

Date	Sample ID	Contaminant	Laboratory Sample Results parts per million volume (ppmv)	Molecular Weight (1) grams per - mole (g/mole)	Flowrate Measured (2) cubic feet per minute (cfm)	Potential To Emit Estimated pounds per day (lb/day)	*Maximum Allowable Emission Rate pounds per day (lb/day)
8/17/2021	INF-08122021	Tetrachloroethene (PCE)	0.0043	165.85	120	0.0003152	
	13:20:00	Trichloroethene (TCE)	0.000	131.4	120	0.0000081	
	Flow Temp = 60 F						
	55-inches W.C.						
	Total System Vacuum		Estimated To	tal Pounds of Total H	HVOCs Removed 04/		0.037827
11/2/2021	INF-110221	Tetrachloroethene (PCE)	0.0066	165.85	120	0.0004838	
	12:38:00	Trichloroethene (TCE)	0.000	131.4	120	0.0000075	
	Flow Temp = 60 F						
	55-inches W.C.						
	Total System Vacuum			1	l HVOCs Removed (1	0.037831
5/9/2022	SVE-IN	Tetrachloroethene (PCE)	0.0047	165.85	120	0.0003445	
	12:30:00	Trichloroethene (TCE)	0.000	131.4	120	0.0000055	
	Flow Temp = 60 F						
	55-inches W.C.						
	Total System Vacuum				l HVOCs Removed	11/02/21 to 05/09/22	0.065791
3/24/2023	SVE-IN	Tetrachloroethene (PCE)	0.0082	165.85	120	0.0006003	
	12:52:00	Trichloroethene (TCE)	0.000	131.4	120	0.0000093	
	Flow Temp = 60 F						
	55-inches W.C.						
	Total System Vacuum		Estimated To	tal Pounds of Total H	HVOCs Removed 05/	09/22 to 03/24/2023	0.194459
			Estimated	Total Pounds of Tot	al HVOCs Removed	990 Days Operating	1.388018

* PSCAA Maximum Allowable Emission Rate for soil and groundwater remediation projects involving

<1,000 pounds per year of toxic air contaminants. (ref. PSCAA, Regulation I, Section 6.03)

<15 pounds per year of benzene or vinyl chloride, <500 pounds per year of perchloroethylene (PCE), and

Notes:

CFM = Flow rate of gas (standard cubic feet per minute)

PPMV = Concentration of gas in parts per million by volume

1 Pound = 453.6 grams

1 Liter = 0.03531 cubic feet

1 Mole of gas = 24.46 Liters volume at STP (77"F and 29.92 "w.c.)

ft/min = feet per minute

inches W.C. = Inches of Water Column

TO CALCULATE TOTAL POUNDS REMOVED:

TOTAL LBS	= MW g x	1 lb x	1 mole x	1 L x	SCFM std cu ft	x CONC ppmv
REMOVED	1 mole	453.6 g	24.46 std L	0.03531 cu ft	min	$1x10^6/ppmv$

- (1) = Taken from the National Institute for Occupational Safety and Health (NIOSH) Pocket Guide to Chemical Hazards.
- (2) = Velocity estimated from FPZ Blower Model SCL-K05 flow curves based on 40 inches W.C. vacuum at the system inlet.

Potential to Emit Summary AEG Atlas, LLC

APPENDIX A

Supporting Documents Laboratory Datasheets

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 21, 2022

Scott Rose, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Rose

Included are the results from the testing of material submitted on January 13, 2022 from the 4-Corners Cleaners 17-126, F&BI 201161 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: AEG A/P AEG0121R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 13, 2022 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners 17-126, F&BI 201161 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>AEG</u>
201161 -01	4C-CARBON-011222-01
201161 -02	4C-KOW-011222-02

The 8260D calibration standard failed the acceptance criteria for methylene chloride. The data were flagged accordingly.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: 4C-CARBON-011222-01 Client: AEG

Date Received: 01/13/22 Project: 4-Corners Cleaners 17-126, F&BI 201161

Lab ID: 201161-01 Date Extracted: 01/18/22 Date Analyzed: 01/18/22 Data File: 011810.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight RFOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	90	109
Toluene-d8	94	89	112
4-Bromofluorobenzene	114	84	115

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	<0.5 ca	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: AEG

Date Received: Not Applicable Project: 4-Corners Cleaners 17-126, F&BI 201161

01/18/22 Lab ID: Date Extracted: 02-119 mbDate Analyzed: 01/18/22 Data File: $011805.\mathrm{D}$ Soil GCMS4 Matrix: Instrument: Units: mg/kg (ppm) Dry Weight Operator: RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	90	109
Toluene-d8	96	89	112
4-Bromofluorobenzene	100	84	115

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	<0.5 ca	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

	Client Sample ID:	4C-KOW-011222-02	Client:	AEG
--	-------------------	------------------	---------	-----

Date Received: 01/13/22 Project: 4-Corners Cleaners 17-126, F&BI 201161

Lab ID: Date Extracted: 01/14/22 201161-02 Date Analyzed: 01/18/22 Data File: 018010.DMatrix: Water Instrument: GCMS13Units: ug/L (ppb) RFOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	85	117
Toluene-d8	97	88	112
4-Bromofluorobenzene	105	90	111

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Method Blank Client: AEG

Date Received: Not Applicable Project: 4-Corners Cleaners 17-126, F&BI 201161

01/14/22 Lab ID: Date Extracted: 02-113 mbDate Analyzed: 01/14/22 Data File: 011407.DGCMS11 Matrix: Water Instrument: Units: ug/L (ppb) Operator: RF

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	78	126
Toluene-d8	98	87	115
4-Bromofluorobenzene	94	92	112

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	< 50	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/22 Date Received: 01/13/22

Project: 4-Corners Cleaners 17-126, F&BI 201161

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 201161-01 (Matrix Spike)

· ·	1 /		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	5 ip	5 ip	10-142	0
Chloromethane	mg/kg (ppm)	1	< 0.5	19	21	10-126	10
Vinyl chloride Bromomethane	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.5	13 33	12 28	10-138 10-163	8 16
Chloroethane	mg/kg (ppm)	1	< 0.5	24	26 25	10-165	4
Trichlorofluoromethane	mg/kg (ppm)	1	< 0.5	14	14	10-176	0
Acetone	mg/kg (ppm)	5	<5	54	53	10-163	2
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	13	12	10-160	8
Hexane	mg/kg (ppm)	1	< 0.25	4 ip	4 ip	10-137	0
Methylene chloride	mg/kg (ppm)	1	< 0.5	0 ip	0 ip	10-156	
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	43	43	21-145	0
trans-1,2-Dichloroethene 1,1-Dichloroethane	mg/kg (ppm)	1 1	<0.05 <0.05	8 ip 23	8 ip 22	14-137 $19-140$	0 4
2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	1	<0.05	23 27	22 28	19-140	4
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	12 ip	11 ip	25-135	9
Chloroform	mg/kg (ppm)	1	< 0.05	19 ip	18 ip	21-145	5
2-Butanone (MEK)	mg/kg (ppm)	5	<1	40	38	19-147	5
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	18	18	12-160	0
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	18	19	10-156	5
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	6 ip	6 ip	17-140	0
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	12	13	9-164	8
Benzene	mg/kg (ppm)	1	< 0.03	3 ip	3 ip	29-129	0
Trichloroethene	mg/kg (ppm)	1	< 0.02	4 ip	4 ip	21-139	0
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.05	15 ip 13 ip	15 ip 12 ip	30-135 23-155	0 8
Dibromomethane	mg/kg (ppm)	1	< 0.05	18 ip	17 ip	23-145	6
4-Methyl-2-pentanone	mg/kg (ppm)	5	<1	28	27	24-155	4
cis-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	9 ip	8 ip	28-144	12
Toluene	mg/kg (ppm)	1	< 0.05	2 ip	2 ip	35-130	0
trans-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	8 ip	7 ip	26-149	13
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	14	14	10-205	0
2-Hexanone	mg/kg (ppm)	5	< 0.5	15	14 ip	15-166	7
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm)	1 1	<0.05 <0.025	15 ip	13 ip	31-137 20-133	14 0
Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	1	<0.025	2 ip 11 ip	2 ip 10 ip	28-150	10
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	10 ip	10 ip	28-142	0
Chlorobenzene	mg/kg (ppm)	1	< 0.05	1 ip	1 ip	32-129	0
Ethylbenzene	mg/kg (ppm)	1	< 0.05	2 ip	2 ip	32-137	0
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	10 ip	10 ip	31-143	0
m,p-Xylene	mg/kg (ppm)	2	< 0.1	1 ip	1 ip	34-136	0
o-Xylene	mg/kg (ppm)	1	< 0.05	1 ip	2 ip	33-134	67 ip
Styrene	mg/kg (ppm)	1	< 0.05	1 ip	1 ip	35-137	0
Isopropylbenzene	mg/kg (ppm)	1 1	< 0.05	2 ip	2 ip	31-142	0 13
Bromoform n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	1	<0.05 <0.05	7 ip 1 ip	8 ip 1 ip	21-156 23-146	0
Bromobenzene	mg/kg (ppm)	1	< 0.05	1 ip	2 ip	34-130	67 ip
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	1 ip	2 ip	18-149	67 ip
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	13 ip	14 ip	28-140	7
1,2,3-Trichloropropane	mg/kg (ppm)	1	< 0.05	13 ip	13 ip	25-144	0
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	1 ip	2 ip	31-134	67 ip
4-Chlorotoluene	mg/kg (ppm)	1	< 0.05	1 ip	2 ip	31-136	67 ip
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	3 ip	3 ip	30-137	0
1,2,4-Trimethylbenzene sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 <0.05	1 ip 2 ip	2 ip 2 ip	10-182 23-145	67 ip 0
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	2 ip 1 ip	2 ip 1 ip	21-149	0
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	1 ip	2 ip	30-131	67 ip
1.4-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	1 ip	2 ip	29-129	67 ip
1,2-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	1 ip	2 ip	31-132	67 ip
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	< 0.5	5 ip	6 ip	11-161	18
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	1 ip	1 ip	22-142	0
Hexachlorobutadiene	mg/kg (ppm)	1	< 0.25	4 ip	4 ip	10-142	0
Naphthalene	mg/kg (ppm)	1	< 0.05	1 ip	1 ip	14-157	0
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	1 ip	1 ip	20-144	0

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/22 Date Received: 01/13/22

Project: 4-Corners Cleaners 17-126, F&BI 201161

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Eastratory coat. Eastratory co	meror sumpre		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	47	10-146
Chloromethane	mg/kg (ppm)	1 1	68	27-133
Vinyl chloride Bromomethane	mg/kg (ppm) mg/kg (ppm)	1	77 85	22-139 38-114
Chloroethane	mg/kg (ppm)	1	88	9-163
Trichlorofluoromethane	mg/kg (ppm)	1	85	10-196
Acetone	mg/kg (ppm)	5	89	52-141
1,1-Dichloroethene	mg/kg (ppm)	1	100	47-128
Hexane	mg/kg (ppm)	1	95	43-142
Methylene chloride	mg/kg (ppm)	1	68	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	91	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1 1	93	67-129
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	1	93 118	68-115 52-170
cis-1.2-Dichloroethene	mg/kg (ppm)	1	98	72-127
Chloroform	mg/kg (ppm)	1	94	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	91	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	96	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	92	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	95	69-128
Carbon tetrachloride	mg/kg (ppm)	1	81	60-139
Benzene	mg/kg (ppm)	1 1	97 91	71-118
Trichloroethene 1,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	1	91	63-121 72-127
Bromodichloromethane	mg/kg (ppm)	1	82 82	57-126
Dibromomethane	mg/kg (ppm)	1	99	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	96	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	91	67-122
Toluene	mg/kg (ppm)	1	106	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	99	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	98	64-115
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	5 1	100 105	33-152 72-130
Tetrachloroethene	mg/kg (ppm)	1	110	72-130
Dibromochloromethane	mg/kg (ppm)	1	89	55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	109	74-132
Chlorobenzene	mg/kg (ppm)	1	104	76-111
Ethylbenzene	mg/kg (ppm)	1	108	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	94	64-121
m,p-Xylene	mg/kg (ppm)	2	112	78-122
o-Xylene	mg/kg (ppm)	1 1	107	77-124
Styrene Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	1	105 108	74-126 76-127
Bromoform	mg/kg (ppm)	1	84	56-132
n-Propylbenzene	mg/kg (ppm)	1	113	74-124
Bromobenzene	mg/kg (ppm)	1	111	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	109	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	111	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	107	61-137
2-Chlorotoluene	mg/kg (ppm)	1 1	109 112	74-121
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	1	112	75-122 73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	110	76-125
sec-Butylbenzene	mg/kg (ppm)	1	114	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	115	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	113	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	111	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	107	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	88	58-138
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm)	1 1	112 121	64-135 50-153
Naphthalene	mg/kg (ppm) mg/kg (ppm)	1	108	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	112	63-138
	(FF)	-		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/22 Date Received: 01/13/22

Project: 4-Corners Cleaners 17-126, F&BI 201161

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 201163-01 (Matrix Spike)

Laboratory Code. 201103-01 (W	iatrix spike			Percent	
	Reporting	Spike	Sample		Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	102	50-150
Chloromethane	ug/L (ppb)	10	<10	84	50-150
Vinyl chloride	ug/L (ppb)	10	< 0.02	103	50-150
Bromomethane	ug/L (ppb)	10	<5	115	50-150
Chloroethane	ug/L (ppb)	10	<1	107	50-150
Trichlorofluoromethane	ug/L (ppb)	10	<1	112	50-150
Acetone	ug/L (ppb)	50	<50	72	50-150
1,1-Dichloroethene	ug/L (ppb)	10	<1	96	50-150
Hexane Methylene chloride	ug/L (ppb)	10	<5	79	50-150
Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	10 10	<5 <1	58 95	50-150 50-150
trans-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	10	<1	102	50-150
1,1-Dichloroethane	ug/L (ppb)	10	<1	95	50-150
2,2-Dichloropropane	ug/L (ppb)	10	<1	147	50-150
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	103	50-150
Chloroform	ug/L (ppb)	10	<1	100	50-150
2-Butanone (MEK)	ug/L (ppb)	50	<20	78	50-150
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	98	50-150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	104	50-150
1,1-Dichloropropene	ug/L (ppb)	10	<1	92	50-150
Carbon tetrachloride	ug/L (ppb)	10	< 0.5	102	50-150
Benzene	ug/L (ppb)	10	< 0.35	96	50-150
Trichloroethene	ug/L (ppb)	10	2.0	92	50-150
1,2-Dichloropropane	ug/L (ppb)	10	<1	83	50-150
Bromodichloromethane	ug/L (ppb)	10	< 0.5	102	50-150
Dibromomethane	ug/L (ppb)	10	<1	99	50-150
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	89	50-150
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	84	50-150
Toluene	ug/L (ppb)	10 10	<1 <0.4	96 82	50-150 50-150
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ug/L (ppb) ug/L (ppb)	10	< 0.4	82 94	50-150 50-150
2-Hexanone	ug/L (ppb)	50	<10	77	50-150
1.3-Dichloropropane	ug/L (ppb)	10	<1	90	50-150
Tetrachloroethene	ug/L (ppb)	10	<1	109	50-150
Dibromochloromethane	ug/L (ppb)	10	< 0.5	96	50-150
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	97	50-150
Chlorobenzene	ug/L (ppb)	10	<1	96	50-150
Ethylbenzene	ug/L (ppb)	10	<1	96	50-150
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	102	50-150
m,p-Xylene	ug/L (ppb)	20	<2	98	50-150
o-Xylene	ug/L (ppb)	10	<1	97	50-150
Styrene	ug/L (ppb)	10	<1	95	50-150
Isopropylbenzene	ug/L (ppb)	10	<1	97	50-150
Bromoform	ug/L (ppb)	10	<5	92	50-150
n-Propylbenzene Bromobenzene	ug/L (ppb)	10 10	<1 <1	89 86	50-150 50-150
1,3,5-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	10	<1	92	50-150
1.1.2.2-Tetrachloroethane	ug/L (ppb)	10	<0.2	89	50-150
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	85	50-150
2-Chlorotoluene	ug/L (ppb)	10	<1	89	50-150
4-Chlorotoluene	ug/L (ppb)	10	<1	82	50-150
tert-Butylbenzene	ug/L (ppb)	10	<1	89	50-150
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	89	50-150
sec-Butylbenzene	ug/L (ppb)	10	<1	88	50-150
p-Isopropyltoluene	ug/L (ppb)	10	<1	93	50-150
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	90	50-150
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	91	50-150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	89	50-150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	86	50-150
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	87	50-150
Hexachlorobutadiene Naphthalene	ug/L (ppb)	10 10	<0.5 <1	82 85	50-150 50-150
	ug/L (ppb)	10	<1 <1	85 90	
1,2,3-Trichlorobenzene	ug/L (ppb)	10	~1	90	50-150

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/22 Date Received: 01/13/22

Project: 4-Corners Cleaners 17-126, F&BI 201161

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Lastratory court Lastratory con	itioi zampio		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	92	89	46-206	3
Chloromethane	ug/L (ppb)	10	82	84	70-142	2
Vinyl chloride	ug/L (ppb)	10	97	97	70-130	0
Bromomethane	ug/L (ppb)	10	108	107	56-197	1
Chloroethane	ug/L (ppb)	10	102	102	70-130	0
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	10 50	106 72	$\frac{104}{71}$	70-130 10-140	$\frac{2}{1}$
1,1-Dichloroethene	ug/L (ppb) ug/L (ppb)	10	90	91	70-130	1
Hexane	ug/L (ppb)	10	80	80	54-136	0
Methylene chloride	ug/L (ppb)	10	68	69	43-134	1
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	91	91	70-130	0
trans-1,2-Dichloroethene	ug/L (ppb)	10	95	96	70-130	1
1,1-Dichloroethane	ug/L (ppb)	10	91	91	70-130	0
2,2-Dichloropropane	ug/L (ppb)	10	142 vo	135 vo	70-130	5
cis-1,2-Dichloroethene	ug/L (ppb)	10	98	98	70-130	0
Chloroform	ug/L (ppb)	10 50	96	99	70-130	3 13
2-Butanone (MEK) 1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	50 10	88 95	77 95	17-154 70-130	0
1.1.1-Trichloroethane	ug/L (ppb) ug/L (ppb)	10	99	99	70-130	0
1,1-Dichloropropene	ug/L (ppb)	10	89	90	70-130	1
Carbon tetrachloride	ug/L (ppb)	10	100	98	70-130	2
Benzene	ug/L (ppb)	10	93	92	70-130	1
Trichloroethene	ug/L (ppb)	10	91	91	70-130	0
1,2-Dichloropropane	ug/L (ppb)	10	83	78	70-130	6
Bromodichloromethane	ug/L (ppb)	10	83	88	70-130	6
Dibromomethane	ug/L (ppb)	10	94	100	70-130	6
4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	50 10	92 88	94 86	68-130	$\frac{2}{2}$
cis-1,3-Dichloropropene Toluene	ug/L (ppb) ug/L (ppb)	10	88 98	97	69-131 70-130	1
trans-1,3-Dichloropropene	ug/L (ppb)	10	90	87	70-130	3
1,1,2-Trichloroethane	ug/L (ppb)	10	95	95	70-130	0
2-Hexanone	ug/L (ppb)	50	85	84	45-138	1
1,3-Dichloropropane	ug/L (ppb)	10	91	105	70-130	14
Tetrachloroethene	ug/L (ppb)	10	109	108	70-130	1
Dibromochloromethane	ug/L (ppb)	10	102	103	60-148	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	98	97	70-130	1
Chlorobenzene	ug/L (ppb)	10	101 100	100 100	70-130	1 0
Ethylbenzene 1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10 10	100	100	70-130 70-130	0 1
m,p-Xylene	ug/L (ppb) ug/L (ppb)	20	101	101	70-130	0
o-Xylene	ug/L (ppb)	10	100	100	70-130	0
Styrene	ug/L (ppb)	10	100	100	70-130	0
Isopropylbenzene	ug/L (ppb)	10	101	101	70-130	0
Bromoform	ug/L (ppb)	10	101	100	69-138	1
n-Propylbenzene	ug/L (ppb)	10	94	94	70-130	0
Bromobenzene	ug/L (ppb)	10	92	90	70-130	2
1,3,5-Trimethylbenzene	ug/L (ppb)	10	96	97	70-130	1 0
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	10 10	93 91	93 89	70-130 70-130	$\frac{0}{2}$
2-Chlorotoluene	ug/L (ppb)	10	97	95	70-130	2
4-Chlorotoluene	ug/L (ppb)	10	91	89	70-130	2
tert-Butylbenzene	ug/L (ppb)	10	96	93	70-130	3
1,2,4-Trimethylbenzene	ug/L (ppb)	10	96	94	70-130	2
sec-Butylbenzene	ug/L (ppb)	10	97	95	70-130	2
p-Isopropyltoluene	ug/L (ppb)	10	100	99	70-130	1
1,3-Dichlorobenzene	ug/L (ppb)	10	95	94	70-130	1
1,4-Dichlorobenzene	ug/L (ppb)	10	96	95	70-130	$\frac{1}{2}$
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	10 10	96 90	94 89	70-130 70-130	2 1
1,2.4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	10	90 95	89 95	70-130 70-130	0
Hexachlorobutadiene	ug/L (ppb)	10	99	96	70-130	3
Naphthalene	ug/L (ppb)	10	93	92	70-130	1
1,2,3-Trichlorobenzene	ug/L (ppb)	10	97	95	70-130	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

4C-KOW-011222-02 Phone 760-32-95 & Email SPOSTE NEGWICON Ph. (Seat 3012 Address 2633 Paknow Like SW. Juste A Company____ Frie AC-CUERON-011225-01 014-E 11/12/57 1200 201172 201161 tTo Scott Marc Sample ID 02 A-C 11/12/22 15 15 Lab ID Date Sampled SAMPLE CHAIN OF CUSTODY Time Sampled SAMPLERS (signature) Project Specific RLs - Yes / No REMARKS PROJECT NAME 4-Comen Cleaner Sample Type ٤ # of Jars S NWTPH-Dx NWTPH-Gx BTEX EPA 8021 VOCs EPA 8260 17-126 17-126 ANALYSES REQUESTED PAHs EPA 8270 INVOICE TO SOR SOR 01-13-22 PCBs EPA 8082

⊀Standard Turnaround RUSH Rush charges authorized by:

Page#

ADI/WWI/WS)

TURNAROUND TIME

Archive Samples Dispose after 30 days

Notes

SAMPLE DISPOSAL

	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
edman & Bruya, Inc.	Relinquished by:	Tony Behnich	AGIONE	1/10/22	
12 16th Avenue West	Received by: AddMM	Amulbus	FRB	1(13/2/13/7	718
ttle, WA 98119-2029	Relinquished by:	0			•
(206) 285-8282	Received by:		Samples received at°C	ceived at	 ဝိ
*	WWW.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.	·	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COL		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 8, 2022

Scott Rose, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Rose:

Included are the results from the testing of material submitted on May 20, 2022 from the 4-Corners Cleaners 17-126, F&BI 205354 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: AEG A/P AEG0608R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 20, 2022 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners 17-126, F&BI 205354 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	$\underline{\text{AEG}}$
205354 -01	SVE-IN
205354 -02	VP-1
205354 -03	VP-2
205354 -04	VP-3
205354 -05	VP-4

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: S	SVE-IN	Client:	AEG
---------------------	--------	---------	-----

Date Received: 05/20/22 Project: 4-Corners Cleaners 17-126

Date Collected: 05/09/22 Lab ID: 205354-01 1/4.7 Date Analyzed: 05/26/22 Data File: 052612.D

Matrix: Air Instrument: GCMS8
Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	90	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	<1.2	< 0.47
trans-1,2-Dichloroethene	< 1.9	< 0.47
cis-1,2-Dichloroethene	< 1.9	< 0.47
Trichloroethene	< 0.51	< 0.094
Tetrachloroethene	<32	<4.7

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

	Client Sample ID:	VP-1	Client:	AEG
--	-------------------	------	---------	-----

Date Received: 05/20/22 Project: 4-Corners Cleaners 17-126

Date Collected: 05/09/22 Lab ID: 205354-02 1/4.1 Date Analyzed: 05/26/22 Data File: 052613.D

Matrix: Air Instrument: GCMS8 Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	92	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	<1	< 0.41
trans-1,2-Dichloroethene	<1.6	< 0.41
cis-1,2-Dichloroethene	<1.6	< 0.41
Trichloroethene	< 0.44	< 0.082
Tetrachloroethene	<28	<4.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	VP-2	Client:	AEG
Chem Sample 1D.	V 1 - 2	Chent.	ALG

Date Received: 05/20/22 Project: 4-Corners Cleaners 17-126

 Date Collected:
 05/09/22
 Lab ID:
 205354-03 1/5.1

 Date Analyzed:
 05/26/22
 Data File:
 052614.D

Matrix: Air Instrument: GCMS8 Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	90	70	130

Compounds:	Concent ug/m3	tration ppbv
Vinyl chloride	<1.3	< 0.51
trans-1,2-Dichloroethene	<2	< 0.51
cis-1,2-Dichloroethene	<2	< 0.51
Trichloroethene	0.90	0.17
Tetrachloroethene	<35	< 5.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Received: 05/20/22 Project: 4-Corners Cleaners 17-126

Date Collected: 05/09/22 Lab ID: 205354-04 1/4.8

Date Analyzed: 05/26/22 Data File: 052615.D Matrix: Air Instrument: GCMS8 Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	92	70	130

	Concent	ration
Compounds:	ug/m3	ppbv
Vinyl chloride	<1.2	< 0.48
trans-1,2-Dichloroethene	<1.9	< 0.48
cis-1,2-Dichloroethene	< 1.9	< 0.48
Trichloroethene	1.1	0.20
Tetrachloroethene	65	9.6

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Received: 05/20/22 Project: 4-Corners Cleaners 17-126

Date Collected: 05/09/22 Lab ID: 205354-05 1/4.6

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130

	Concentration		
Compounds:	ug/m3	ppbv	
57: 1 11 :1	-1.0	-0.40	
Vinyl chloride	<1.2	< 0.46	
trans-1,2-Dichloroethene	<1.8	< 0.46	
cis-1,2-Dichloroethene	<1.8	< 0.46	
Trichloroethene	< 0.49	< 0.092	
Tetrachloroethene	<31	<4.6	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Mathod Blank	Client:	AEG
Cheffi Sample 1D.	Method Diank	Chent.	ALG

Date Received: Not Applicable Project: 4-Corners Cleaners 17-126

Date Collected: Not Applicable Lab ID: 02-1228 MB
Date Analyzed: 05/26/22 Data File: 052611.D
Matrix: Air Instrument: GCMS8
Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	89	70	130

	Concent	ration
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
Trichloroethene	< 0.11	< 0.02
Tetrachloroethene	<6.8	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 06/08/22 Date Received: 05/20/22

Project: 4-Corners Cleaners 17-126, F&BI 205354

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 205435-01 1/4.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.2	<1.2	nm
trans-1,2-Dichloroethene	ug/m3	<1.9	<1.9	nm
cis-1,2-Dichloroethene	ug/m3	<1.9	<1.9	nm
Trichloroethene	ug/m3	0.78	0.61	24
Tetrachloroethene	ug/m3	1,100	1,000	10

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	96	70-130
trans-1,2-Dichloroethene	ug/m3	54	104	70-130
cis-1,2-Dichloroethene	ug/m3	54	98	70-130
Trichloroethene	ug/m3	73	104	70-130
Tetrachloroethene	ug/m3	92	116	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Scoti Rate

Address 2633 Rodoment beca JW JINE N Company____ 100

City, State, ZIP Phypora WN 95522 Phone 360 357 9855 Email SROJE AGGING, WA

	AMPLE CHAIN
	OF.
	OF CUSTODY
	8
.	ĸ

PROJECT NAME & ADDRESS SAMPLERS (signature) 4-Corners Cleaners 17-126 INVOICE TO P0#

ACELTICE & DIGINGHIGH ALGODICIA 1866

Page#_

X,Standard □ RUSH____ Rush charges authorized by: TURNAROUND TIME

SAMPLE DISPOSAL

□ Default: Clean after 3 days

□ Archive (Fee may apply)

Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.					h-da	VP-3	VP-2:	UP-	SVE- IN	Sample Name	,		SAMPLE INFORMATION																										
Received by:		Received by:	Relinquished by						05 The 100	O4 725)	03 2433	02 3256 259	01 3254 304		Captage	·	ON																										
	San S			SIGNATURE	*				5	255	64	2.59	304	 	Flow																												
	VICUSION	11. 1.1.		Œ/		IA / SG	IA / SG	IA / SG	IA / (SG)	IA / SG	IA //SG)	IA / (SG)		(Circle One)	Reporting Level: IA=Indoor Air	,*																											
	7000	W	70%	ad	en ende que es	The second secon			1/11/28/1181	7115111 Sc 12141/5	11/21/18/2/1/2(61/7	5/19/24/26/130/3	1/19/12 28" 1130	Ď.	Initial																												
		Maddin	1 m	INT NAM	INT NAM	MAN TINI	NT NAMI	NT NAMI	NT NAMI	INT NAM	PRINT NAME		-4.					N MY	1051		Time	Field																					
	W.2.0x		<i>></i>	.E3	*				1 49	1 49	6n 11			("Hg)																													
			-		٠,				1259	23	1249	1309	1238	Time	Field																												
	1	17	Ĺ	a											O15 Full Sca	n.	ANALYSIS REQUESTED																										
Samples received at	1	N L		ン 		2)	2	5	2	\leq	2	2	2	5	2)	3	3	3	3	3	3	3	以図	公園	シ 	ン 以 関			/ M	COMPANY					\times	X	×	~	$\overline{\times}$		TO15 BTEXN	4	YSIS
ples				ANY											APH		REQU																										
rece													,		Helium,		JEST																										
93. Ve	-4		<u>.</u>	\dashv					\times	゙゙゚	×	×		PCE/	t(E'\Davglite produci	7	Œ																										
dat 下心	11/2/102	$\overline{}$	۲	DATE T						,		who will clouded it clou	usheded (You provided d	Notes	July of 1	JUK Jyoka																											
	10			TIME					•		160	ad all the	Plothon			75 N																											
	•										3),	Z																															

FORMS\COC\COCTO-15.DOC Samples received at 11 co

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 17, 2022

Scott Rose, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Rose:

Included are the results from the testing of material submitted on October 6, 2022 from the 4-Corners Cleaner 17-126, F&BI 210077 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: AEG A/P AEG1017R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 6, 2022 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaner 17-126, F&BI 210077 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	\underline{AEG}
210077 -01	VP-4
210077 -02	VP-2
210077 -03	VP-3
210077 -04	VP-1

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: VP-4	Client:	AEG
------------------------	---------	-----

Date Received: 10/06/22 Project: 4-Corners Cleaner 17-126, F&BI 210077

 Date Collected:
 10/06/22
 Lab ID:
 210077-01 1/5.4

 Date Analyzed:
 10/11/22
 Data File:
 101115.D

 Matrix:
 Air
 Instrument:
 GCMS7

Matrix: Air Instrument: GCM Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	97	70	130

	Concentration		
Compounds:	ug/m3	ppbv	
Vinyl chloride	<1.4	< 0.54	
trans-1,2-Dichloroethene	< 2.1	< 0.54	
cis-1,2-Dichloroethene	< 2.1	< 0.54	
Trichloroethene	< 0.58	< 0.11	
Tetrachloroethene	<37	< 5.4	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Received: 10/06/22 Project: 4-Corners Cleaner 17-126, F&BI 210077

 Date Collected:
 10/06/22
 Lab ID:
 210077-02 1/5.6

 Date Analyzed:
 10/11/22
 Data File:
 101116.D

 Matrix:
 Air
 Instrument:
 GCMS7

Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	95	70	130

Concent	ation	
ug/m3	ppbv	
<1.4	< 0.56	
< 2.2	< 0.56	
< 2.2	< 0.56	
< 0.6	< 0.11	
<38	< 5.6	
	<1.4 <2.2 <2.2 <0.6	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: VP-3 Client: AEG

Date Received: 10/06/22 Project: 4-Corners Cleaner 17-126, F&BI 210077

Date Collected: 10/06/22 Lab ID: 210077-03 1/5.9 Date Analyzed: 10/11/22 Data File: 101117.D

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	98	70	130

Compounds:	Concentug/m3	tration ppbv
Vinyl chloride	<1.5	< 0.59
trans-1,2-Dichloroethene	< 2.3	< 0.59
cis-1,2-Dichloroethene	< 2.3	< 0.59
Trichloroethene	1.3	0.24
Tetrachloroethene	78	11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Received: 10/06/22 Project: 4-Corners Cleaner 17-126, F&BI 210077

Operator:

bat

 Date Collected:
 10/06/22
 Lab ID:
 210077-04 1/5.8

 Date Analyzed:
 10/11/22
 Data File:
 101118.D

 Matrix:
 Air
 Instrument:
 GCMS7

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	98	70	130

	Concent	ration
Compounds:	ug/m3	ppbv
Vinyl chloride	<1.5	< 0.58
trans-1,2-Dichloroethene	< 2.3	< 0.58
cis-1,2-Dichloroethene	< 2.3	< 0.58
Trichloroethene	< 0.62	< 0.12
Tetrachloroethene	<39	< 5.8

ug/m3

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Cheffi Sample 1D. Method Diank Cheffi. At	Client Sample ID	: Method Blank	Client:	AEG
---	------------------	----------------	---------	-----

Date Received: Not Applicable Project: 4-Corners Cleaner 17-126, F&BI 210077

Date Collected: Not Applicable Lab ID: 02-2308 mb
Date Analyzed: 10/11/22 Data File: 101111.D
Matrix: Air Instrument: GCMS7
Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	96	70	130

	Concent	ration
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
trans-1,2-Dichloroethene	< 0.4	<0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
Trichloroethene	< 0.11	< 0.02
Tetrachloroethene	<6.8	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 10/17/22 Date Received: 10/06/22

Project: 4-Corners Cleaner 17-126, F&BI 210077

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 210122-01 1/4.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.2	<1.2	nm
trans-1,2-Dichloroethene	ug/m3	<1.9	<1.9	nm
cis-1,2-Dichloroethene	ug/m3	<1.9	<1.9	nm
Trichloroethene	ug/m3	0.96	0.91	5
Tetrachloroethene	ug/m3	<32	<32	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	107	70-130
trans-1,2-Dichloroethene	ug/m3	54	104	70-130
cis-1,2-Dichloroethene	ug/m3	54	101	70-130
Trichloroethene	ug/m3	73	106	70-130
Tetrachloroethene	ug/m3	92	105	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- $\rm jl$ The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Phone 365-2529 B35 Email SPOYER 166 TIKE COM PC6/166 SMIDGIFFER PRODUCTY City, State, ZIP OL YMOJA, WM 9801 Address_ Company_ Report To_ 440013

		JEK A			∞
DICTURA CADOSCOSIO A DO	NOTES:	4-Corney Cleaner	PROJECT NAME & ADDRESS	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
ر ا ا	INVOICE TO	17-176	/ PO#		10/06
Default:Clean following	SAMPLE DISPOSAL	Rush charges authorized by:	Standard	Page #of	10/06/22

final report delivery □Hold (Fee may apply):

										IA / SG					
	+	-													
										IA / SG					
										IA / SG					
	4	1							,	(0
,	X	X		<u>,</u>	SHOT	5		186	10/6/22 28" 1333	.IA /SG	69	04 3252		1-81 HI-345	1
here is included and	Jampie,	X		\top	The		M	301	10/1/02	IA / SG)	304	3615 304		1-X 101-1	4
velve/	×	×			1354	State	4481	2 St	EAR! 422 2219101	IA / SG)	202	03 2672 303	50	UP-3	<u></u>
	×	X		-	102	5 15	13451	1,62	1016/22 29" 1315	IA / SG	5	01 2298 51	20	UP-2	
	X	×			13/3	5	1303	181	10/6/22 28" 1303	IA / SG)	25	01 3483	0	HAN	
Notes	PCO					("Hg)	Time	_	ď	1	ID	ID	B	Sample Name	70
	F				Final	Final Vac.	Field Initial	Vac.	Date	SG=Soil Gas	Cont.	Canister	Lab		
	APH Ielium	5 cVO	5 BTE	Full S			<u>:</u>			Reporting Level:	<u> </u>	- Of assess		÷	· ·
	KINGA DXX	Cs		Scan		,			82 000 100						
	ANALYSIS REQUESTED	SIS RE	ALY	AN										SAMELE LINFORMATION	DAMEL
														יייייייייייייייייייייייייייייייייייייי	Tanko

FORMS\COC\COCTO-15.DOC Fax (206) 283-5044 Friedman & Bruya, Inc 3012 16th Avenue West Seattle, WA-98119-20 Ph. (206) 285-8282

			9099	Vest
Received by:	Keinquisned by:	Mule	Received by:	Relinquished by:
		ANH PHAN	1000 BANNOCK	17
Samples received at 21 °C		F8B	1166	COMPANY
at 21 °	8	10/06/27	12/9/01	DATE
, a		0/06/22 15:42		TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 31, 2023

Scott Rose, Project Manager AEG 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr Rose:

Included are the results from the testing of material submitted on March 24, 2023 from the 4-Corners Cleaners Maple Valley, WA 17-126, F&BI 303407 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: AEG A/P AEG0331R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 24, 2023 by Friedman & Bruya, Inc. from the AEG 4-Corners Cleaners Maple Valley, WA 17-126, F&BI 303407 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	$\underline{ ext{AEG}}$
303407 -01	VP-1
303407 -02	VP-2
303407 -03	VP-4
303407 -04	SVE-IN
303407 -05	VP-3

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Received: 03/24/23 Project: 4-Corners Cleaners Maple Valley

 Date Collected:
 03/23/23
 Lab ID:
 303407-01 1/5.7

 Date Analyzed:
 03/29/23
 Data File:
 032827.D

 Matrix:
 Air
 Instrument:
 GCMS7

Matrix: Air Instrument: GCM Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	88	70	130

Concentration	
bv	
57	
57	
57	
21	
10	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Received: 03/24/23 Project: 4-Corners Cleaners Maple Valley

Lab ID: Date Collected: 303407-02 1/5.8 03/23/23 03/29/23 Date Analyzed: Data File: $032826.\mathrm{D}$ GCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	87	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Vinyl chloride	<1.5	< 0.58
trans-1,2-Dichloroethene	< 2.3	< 0.58
cis-1,2-Dichloroethene	< 2.3	< 0.58
Trichloroethene	2.4	0.45
Tetrachloroethene	<39	< 5.8

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Received: 03/24/23 Project: 4-Corners Cleaners Maple Valley

Date Collected: Lab ID: 303407-03 1/8.3 03/23/23 $032829.\mathrm{D}$ Date Analyzed: 03/29/23 Data File: Matrix: Instrument: GCMS7Air ug/m3 Units: Operator: bat

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 82 70 130

Compounds:	Concerug/m3	ntration ppbv
Vinyl chloride	<2.1	< 0.83
trans-1,2-Dichloroethene	<3.3	< 0.83
cis-1,2-Dichloroethene	<3.3	< 0.83
Trichloroethene	< 0.89	< 0.17
Tetrachloroethene	< 56	<8.3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: S	SVE-IN	Client:	AEG
---------------------	--------	---------	-----

Date Received: 03/24/23 Project: 4-Corners Cleaners Maple Valley

 Date Collected:
 03/23/23
 Lab ID:
 303407-04 1/8.2

 Date Analyzed:
 03/29/23
 Data File:
 032828.D

 Matrix:
 Air
 Instrument:
 GCMS7

Matrix: Air Instrument: GCM Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	85	70	130

Concentration	
ug/m3	ppbv
< 2.1	< 0.82
<3.3	< 0.82
<3.3	< 0.82
< 0.88	< 0.16
< 56	<8.2
	ug/m3 <2.1 <3.3 <3.3 <0.88

ENVIRONMENTAL CHEMISTS

130

Analysis For Volatile Compounds By Method TO-15

Date Received: 03/24/23 Project: 4-Corners Cleaners Maple Valley

 Date Collected:
 03/23/23
 Lab ID:
 303407-05 1/8.6

 Date Analyzed:
 03/29/23
 Data File:
 032830.D

 Matrix:
 Air
 Instrument:
 GCMS7

 Units:
 ug/m3
 Operator:
 bat

Units: ug/m3 Operator: bat

% Lower Upper
Surrogates: Recovery: Limit: Limit:

4-Bromofluorobenzene	86	70	
	Concentration		
Compounds:	ug/m3	ppbv	
Vinyl chloride	<2.2	< 0.86	
trans-1,2-Dichloroethene	<3.4	< 0.86	
cis-1,2-Dichloroethene	< 3.4	< 0.86	
Trichloroethene	< 0.92	< 0.17	
Tetrachloroethene	260	38	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Mathod Blank	Client:	AEG
Cheffi Sample 1D.	Method Diank	Chent.	ALG

Date Received: Not Applicable Project: 4-Corners Cleaners Maple Valley

Date Collected: Not Applicable Lab ID: 03-0682 MB
Date Analyzed: 03/28/23 Data File: 032811.D
Matrix: Air Instrument: GCMS7
Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	81	70	130

	Concer	ntration
Compounds:	ug/m3	ppbv
Vinyl chloride	< 0.26	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1
Trichloroethene	< 0.11	< 0.02
Tetrachloroethene	< 6.8	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/23 Date Received: 03/24/23

Project: 4-Corners Cleaners Maple Valley, WA 17-126, F&BI 303407

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 303447-01 1/5.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.3	<1.3	nm
trans-1,2-Dichloroethene	ug/m3	< 2.1	< 2.1	nm
cis-1,2-Dichloroethene	ug/m3	< 2.1	< 2.1	nm
Trichloroethene	ug/m3	< 0.56	< 0.56	nm
Tetrachloroethene	ug/m3	<35	<35	nm

Laboratory Code: Laboratory Control Sample

		Percent										
	Reporting	Spike	Recovery	Acceptance								
Analyte	Units	Level	LCS	Criteria								
Vinyl chloride	ug/m3	35	88	70-130								
trans-1,2-Dichloroethene	ug/m3	54	94	70-130								
cis-1,2-Dichloroethene	ug/m3	54	88	70-130								
Trichloroethene	ug/m3	73	110	70-130								
Tetrachloroethene	ug/m3	92	128	70-130								

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

City, State, ZIP Ormpia WA 95522 Address 2633 Parkment in sin Sin wie A Company____ JCOTT ROLF UEB- NILLY SAMPLE CHAIN OF CUSTODY

Phone 360-352-7835 Email SPOSED MESTAL COM PCE/TCE Saughier Reducts PROJECT NAME & ADDRESS, 4-Corner Cleaner SAMPLERS (signature) maple walley was 17-126 756 INVOICE TO P0#

Rush charges authorized by: TURNAROUND TIME
Standard
RUSH SAMPLE DISPOSAL Default:Clean following Page #

Hold (Fee may apply): final report delivery

			VP-3	NE-IN	NP-4	VIII.	VP-00400 2 02 3389 220	VP-)	Sample Name	· · · · · · · · · · · · · · · · · · ·			SAMPLE INFORMATION
			05	ЪО	03		20	0	ID	Lab			
			05 2295 228	hoz 6622 ho	2303	822 6622	3389	01 3554	ID	Canister			
			228	402	231	822	220	305	Ħ	Cont.	Flow		
	IA / SG	IA / SG	IA / &G)	IA //SG)	IA 1/SG) 3/2/17 30" 1100 5	1A / (6G) HISTO	111 (SG) 3/13/12 (38/1 AI	IA 1/89 3/277 27" 1236 5	(Circle One)	SG=Soil Gas	Level: IA=Indoor Air	Reporting	
			3/13/13	J10 /2 27" 1252 5"	3p2/17	Hisho	Sh3h3	ברובוצ	Sampled ("Hg) Time ("Hg)	Date			
			761	1,22	1,08	79	2911	11.72	("Hg)	Vac.	Initial		
			1271	1252	1100	17.77	1212	1236	Time	Vac. Initial Vac.	Initial Field	· · · · · · · · · · · · · · · · · · ·	
			اأس	511	511		2	ر کے	("Hg)	Vac.	Final		t
			1234	1202	1210	itt	122	9421		Final	Field		
						4	ļ			гоз	5 Fi	ıll Scan	ANALYSIS REQUESTED
ŀ	တ္တ			\ <u>\</u>	~/	\downarrow		Y				TEXN	- SISX
ŀ	Samples			Δ	Δ	4	1	<u> </u>	ļ	ТС		VOCs	
ŀ	13 E.S.					+	 				AP		–SŒ
ł	<u>ර</u> වේ			\j	<u></u>	\rightarrow	1	乂.	FC	710	Heli	um SUGN TG/A BODUCTS	
	roce ved at <u>20 °</u> C		(Cle review)			Chap"			Notes				

FORMS\COC\COCTO-15.DOC	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98108	5500 4th Avenue South	Friedman & Bruya, Inc.
	Received by:	Relinquished by:	Received by:	Relinquished by:	SIGNATURE
			ANHPHAN	Tony Richnick	PRINT NAME
			F8B	0110	COMPANY
			03/24/23 11:56	3/24/23	DATE
			11:56		TIME

July 21, 2022

Scott Rose Associated Environmental Group, LLC 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Mr. Rose:

Please find enclosed the analytical data report for the 4 Corners Cleaners project located in Maple Valley, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L22G056 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	MW-1	MW-2	MW-3	MW-5	MW-5 Dup
		Blank					
Date Sampled		N/A	7/15/2022	7/15/2022	7/15/2022	7/15/2022	7/15/2022
Date Analyzed	PQL	7/19/2022	7/19/2022	7/19/2022	7/19/2022	7/19/2022	7/19/2022
	$(\mu g/L)$	(µg/L)					
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane		120	130	108	122	121	121
1,2-Dichloroethane-d4		130	130	128	127	126	124
Toluene-d8		86	88	51 S	86	89	90
4-Bromofluorobenzene		78	83	86	83	79	80

[&]quot;nd" Indicates not detected at listed detection limit.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 65% TO 135%

ANALYSES PERFORMED BY: Sherry Chilcutt

[&]quot;int" Indicates that interference prevents determination.

[&]quot;S" Spike compound recovery is outside acceptance limits.

4 CORNERS CLEANERS PROJECT AEG, LLC Maple Valley, Washington Libby Project # L22G056 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

Matrix Spike Sample Identification: MW-5													
		Da	ate Analyzed:	7/19/2022									
	Spiked	MS	RPD	Limits	Data								
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag					
	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(%)	(%)	(%)	(%)						
Vinyl Chloride (VC)	5.0	3.4	3.9	69	78	12.3	65-135						
1,1-Dichloroethene	5.0	5.4	6.0	109	120	9.6	65-135						
trans-1,2-Dichloroethene	5.0	6.2	6.2	125	123	1.3	65-135						
cis-1,2-Dichloroethene	5.0	5.9	5.9	117	117	0.0	65-135						
Trichloroethene (TCE)	5.0	4.8	5.1	97	101	4.8	65-135						
Tetrachloroethene (PCE)	5.0	5.7	6.3	113	127	11.2	65-135						
Surrogate Recovery (%)				MS	MSD								
Dibromofluoromethane				122	136		65-135	S					
1,2-Dichloroethane-d4				132	102		65-135						
Toluene-d8				92	78		65-135						
4-Bromofluorobenzene				110	100		65-135						

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt

Laboratory Control Sample

Date Analyzed: 7/19/2022													
	Spiked	LCS	LCS	LCS	Data								
	Conc.	Response	Recovery	Recovery	Flag								
	$(\mu g/L)$	$(\mu g/L)$	(%)	Limits (%)									
Vinyl Chloride (VC)	5.0	5.2	103	80-120									
1,1-Dichloroethene	5.0	4.8	96	80-120									
trans-1,2-Dichloroethene	5.0	5.1	102	80-120									
cis-1,2-Dichloroethene	5.0	4.8	97	80-120									
Trichloroethene (TCE)	5.0	4.2	84	80-120									
Tetrachloroethene (PCE)	5.0	4.8	95	80-120									
Surrogate Recovery													
Dibromofluoromethane			178	65-135	S								
1,2-Dichloroethane-d4			135	65-135									
Toluene-d8			88	65-135									
4-Bromofluorobenzene			109	65-135									

[&]quot;S" Spike compound recovery is outside acceptance limits.

ANALYSES PERFORMED BY: Sherry Chilcutt

[&]quot;S" Spike recovery outside accepted recovery limits.

4 CORNERS CLEANERS PROJECT AEG, LLC Libby Project # L22G056 Date Received 7/18/22 11:50 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By JC

Sample Receipt Checklist

Chain of Custody					
1. Is the Chain of Custody complete?	√	Yes	☐ No		
2. How was the sample delivered?	√	Hand Delivered	☐ Picked Up)	☐ Shipped
<u>Log In</u>					
3. Cooler or Shipping Container is present.	√	Yes	☐ No		□ N/A
4. Cooler or Shipping Container is in good condition.	√	Yes	☐ No		□ N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes	✓ No		□ N/A
6. Was an attempt made to cool the samples?	✓	Yes	☐ No		□ N/A
7. Temperature of cooler (0°C to 8°C recommended)		0.4	_		
8. Temperature of sample(s) (0°C to 8°C recommended)		2.1	°C		
9. Did all containers arrive in good condition (unbroken)?	√	Yes	☐ No		
10. Is it clear what analyses were requested?	√	Yes	☐ No		
11. Did container labels match Chain of Custody?	√	Yes	☐ No		
12. Are matrices correctly identified on Chain of Custody?	√	Yes	☐ No		
13. Are correct containers used for the analysis indicated?	√	Yes	☐ No		
14. Is there sufficient sample volume for indicated analysis?	✓	Yes	☐ No		
15. Were all containers properly preserved per each analysis?	√	Yes	☐ No		
16. Were VOA vials collected correctly (no headspace)?	√	Yes	☐ No		□ N/A
17. Were all holding times able to be met?	✓	Yes	☐ No		
Discrepancies/ Notes					
18. Was client notified of all discrepancies?		Yes	☐ No		✓ N/A
Person Notified:				Date:	
By Whom:				Via:	
Regarding:					
19. Comments.					

Libb	y Environm	ental,	Inc.		CI	nain	of C	ust	tod	y R	Rec	orc	k							www.	LibbyE	nviron	mental.com
4139 Lib	by Road NE		360-352-				Dat	e:	7/	15/	22	_					Page	e:		1	of	: 1	
Client:	AEG							ject N					se										
Address	s: 2633 Parkmount	Lane SW	/, Suite A					ject N			4 Co			aners	3								
City: 0			State:	WA Zip	98502		Location: 23886 Se Kent-Kangley Rd City, State											te:	Maple	Valle	ey, WA	1	
Phone:	(360) 352-9835		Fax:	(360) 352								-		,						ction:			
	roject # 17-126					Email: Srose@AEGWA.com																	
Sa	Imple Number	Depth	Time	Sample Type	Container Type	/s ⁴ /	Ct wilds	audited								//	//				Field N	Notes	
1 /	MW-1	-	1158	G	Vocis	×																	
2 /	1W-2	_	1255	1	1	X										_ [
3 /	NW-3	_	1129			1																	
	MW-5	_	1226	1	4	X																	
5																							
6																							
7																							
8																							
9																							
10																							
11																							
12																							
13																							
14																							
15																							
16																							
17 Relinquish																							
Relinquish	ned by:		/ Time		Received by:	5			7/		/ Time				ple	Rec			Rer	marks:			
Relinquist	ned by:) ///:	5/22 <u>@</u> /Time	1430	Received by:	_			//1		/ Time		1	Cond	ition?		Υ	N	-				
Ciriquisi	5			1150	Neceived by.	-11	1/1	1	, -		27		Temp		12	Υ	N	°C	-				
Relinquish	ned by:		/Time	130	Received by:	JOH	CMC			101	/ Time		+	Intac Numb		1	IA	N/A	1				
					/	/								ontaine					TA	T: 2	4HR	48HI	5-DAY

January 18, 2023

Scott Rose AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

Dear Scott Rose:

Please find enclosed the analytical data report for the 4 Corners Cleaners project located in Maple Valley, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt Senior Chemist

Libby Environmental, Inc.

Libby Environm	of Custody Record									www.LibbyEnvironmental.com														
4139 Libby Road NE Olympia, WA 98506	Ph:	360-352-2 360-352-4					Date:	6	1/1	2/	23						Pag	e:		1		of	١	
Client: AEG							Project Manager: Scott Rose																	
Address: 2633 Parkmount	Lane SW	. Suite A			Project Name: 4 Corners Cleaners																٦			
City: Olympia			WA Zip	98502		-	Locat								y Rd		City	Stat	e:	Мар	le Va	lley, \	NA	
Phone: (360) 352-9835			(360) 352-				Colle	ctor:	C	ori	5+11	na	r	nrc	12		Date	e of C	Collec	ction:	01	/12	123	
Client Project # 17-126							Emai	l:	Sros															
Sample Number	Depth	Time	Sample Type	Container Type	\\&\		w Davi	Tree of													Field	Note	es	
1 MW-1	_	0811	GW	VOA	\times																			
2 MW-2	_	0907	- (X																			
3 MW-3	_	1008			X																			
4 MW-5	_	0938	V	V	X																			
5																								
6																								
7																								
8																								
9																								
10																								
11																								
12																								
13																								
14																								
15																								
16																								
17																								
Relinquished by:	1/12	/Time -/23	1140	Received by:	/				VI	1/23	/ Time	40	God		nple		eipt Y	N	Ren	nark	s:			
Relinquished by:	Date	/ Time		Received by:						Daté	/ Time		Ten	ip. Is Inta	ct?	Υ	N	°C N/A						
Relinquished by:	Date	/ Time		Received by:						Date	/ Time		Tota		ber of	_	14	. 4// (TA	T:	24HR	48	HR (5-DA	Ì

4 CORNERS CLEANERS PROJECT AEG an Atlas Geosciences NW Company Maple Valley, Washington Libby Project # L23A043 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Volatile Organic Compounds by EPA Method 8260D in Water

Sample Description		Method	MW-1	MW-2	MW-3	MW-5	
		Blank					
Date Sampled		N/A	1/12/2023	1/12/2023	1/12/2023	1/12/2023	
Date Analyzed	PQL	1/15/2023	1/15/2023	1/15/2023	1/15/2023	1/15/2023	
	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	
Vinyl Chloride (VC)	0.2	nd	nd	nd	nd	nd	_
1,1-Dichloroethene	0.5	nd	nd	nd	nd	nd	
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
Trichloroethene (TCE)	0.4	nd	nd	nd	nd	nd	
Tetrachloroethene (PCE)	1.0	nd	nd	nd	nd	nd	
G	Acceptable						
Surrogate Recovery	Limits (%)						
Dibromofluoromethane	27-188	107	105	106	111	109	
1,2-Dichloroethane-d4	17-212	99	98	101	105	102	
Toluene-d8	41-142	96	95	95	94	96	
4-Bromofluorobenzene	47-167	90	90	91	85	93	

[&]quot;nd" Indicates not detected at listed detection limit.

ANALYSES PERFORMED BY: Sherry Chilcutt

[&]quot;int" Indicates that interference prevents determination.

4 CORNERS CLEANERS PROJECT AEG an Atlas Geosciences NW Company Maple Valley, Washington Libby Project # L23A043 Client Project # 17-126 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Water

	Matrix Spik	e Sample Ide	entification:	L23A042-0)7			
		Date	e Analyzed:	1/15/2023				_
	Spiked	MS	MSD	MS	MSD	RPD	Recovery	Data
	Conc.	Response	Response	Recovery	Recovery		Limits	Flag
	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(%)	(%)	(%)	(%)	
Vinyl chloride	5.0	4.1	4.2	82	84	2.4	10-234	
1,1-Dichloroethene	5.0	4.9	5.4	97	108	10.5	15-233	
trans -1,2-Dichloroethene	5.0	5.0	5.3	100	105	4.8	54-165	
cis-1,2-Dichloroethene	5.0	5.1	5.1	102	103	1.0	35-167	
Trichloroethene (TCE)	5.0	5.7	5.6	114	112	2.4	64-141	
Tetrachloroethene (PCE)	5.0	6.2	6.1	124	122	1.8	42-173	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				108	109		27-188	_
1,2-Dichloroethane-d4				100	98		17-212	
Toluene-d8				96	98		41-142	
4-Bromofluorobenzene				97	96		47-167	

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Sherry Chilcutt

Laboratory Control Sample

Date Analyzed:	1/15/2023				
	Spiked	LCS	LCS	Recovery	Data
	Conc.	Response	Recovery	Limits	Flag
	$(\mu g/L)$	$(\mu g/L)$	(%)	(%)	
Vinyl chloride	5.0	4.0	80	15-226	
1,1-Dichloroethene	5.0	5.1	102	38-193	
trans-1,2-Dichloroethene	5.0	5.5	109	53-156	
cis-1,2-Dichloroethene	5.0	5.2	104	10-219	
Trichloroethene (TCE)	5.0	6.0	120	37-121	
Tetrachloroethene (PCE)	5.0	6.6	133	46-159	
Surrogate Recovery					
Dibromofluoromethane			109	27-188	
1,2-Dichloroethane-d4			96	17-212	
Toluene-d8			98	41-142	
4-Bromofluorobenzene			97	47-167	

ANALYSES PERFORMED BY: Sherry Chilcutt

4 CORNERS CLEANERS PROJECT AEG an Atlas Geosciences NW Company Libby Project # L23A043 Date Received 1/12/23 11:40 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By AR

Sample Receipt Checklist

Chain of Custody					
1. Is the Chain of Custody complete?	✓	Yes	□ N	0	
2. How was the sample delivered?	V	Hand Delivered	☐ Pi	cked Up	Shipped
<u>Log In</u>					
3. Cooler or Shipping Container is present.	✓	Yes	□ N	0	□ N/A
4. Cooler or Shipping Container is in good condition.	✓	Yes	□ N	0	□ N/A
5. Cooler or Shipping Container has Custody Seals present.		Yes	✓ N	0	□ N/A
6. Was an attempt made to cool the samples?	✓	Yes	□ N	0	□ N/A
7. Temperature of cooler (0°C to 8°C recommended)		0.2	$^{\circ}C$		
8. Temperature of sample(s) (0°C to 8°C recommended)		0.6	°C		
9. Did all containers arrive in good condition (unbroken)?	V	Yes	□ N	0	
10. Is it clear what analyses were requested?	✓	Yes	□ N	0	
11. Did container labels match Chain of Custody?	√	Yes	□ N	0	
12. Are matrices correctly identified on Chain of Custody?	✓	Yes	□ N	0	
13. Are correct containers used for the analysis indicated?	✓	Yes	□ N	0	
14. Is there sufficient sample volume for indicated analysis?	✓	Yes	□ N	0	
15. Were all containers properly preserved per each analysis?	✓	Yes	□ N	0	
16. Were VOA vials collected correctly (no headspace)?	✓	Yes	□ N	0	□ N/A
17. Were all holding times able to be met?	✓	Yes	□ N	0	
Discrepancies/ Notes					
18. Was client notified of all discrepancies?		Yes	□ N	0	✓ N/A
Person Notified:				Date:	
By Whom:				Via:	
Regarding:					
19. Comments.					

3322 South Bay Road NE • Olympia, WA 98506-2957 Phone (360) 352-2110 • libbyenv@gmail.com

July 13, 2023

Scott Rose AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A Olympia, WA 98502

RE: 4 Corners Cleaners

Work Order Number: L23G015

Enclosed are the results of analyses for samples received by our laboratory on 7/7/2023.

Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please feel free to contact us. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry Chilcutt Senior Chemist

Libby Environm	ental,	Inc.		CI	nain	0	f Cust	od	y Re	ecore	d							www.LibbyE	nvironme	ntal.con
4139 Libby Road NE Olympia, WA 98506		360-352-2 360-352-4					Date:	7/	7	123					Page	:	,	of	4	
Client: <u>AEG</u>							Project N	lanag	ger: S	Scott Ro	se									
Address: 2633 Parkmount	Lane SV	V, Suite A					Project N	lame:	4	Corner	rs Cle	aners	s							<u></u>
City: Olympia		State:	WA Zip	98502			Location		23886	Se Ke	nt-Ka	ingley	Rd		City, S	State	e:	Maple Valle	ey, WA	
Phone: (360) 352-9835		Fax:	(360) 352	-8164			Collector	· A	im	re	121	ke			Date	of C	ollec	tion: 7	7/2	3
Client Project # 17-126							Email:	Sros		GWA.co								7		
Sample Number	Depth	Time	Sample Type	Container Type	80		w Daigher											Field N	lotes	
1 MW-1	_	1045	GW	VOA	X															
2 MW-2		1018	1		X															
3 MW-3	_	0856			X															
4 MW-5	_	0935	4	4	X															
5																				
6																				
7																				
8																				
9								5.5												
10																				
11																				
12																				
13					П															
14																				
15																				
16					П															
17																				
Relinquished by:	7/7/z	7 Time	300	Received by:	1/	A	7	-	Date / 7-23	Time 1300	Good	Sam		Rec		N	Rem	arks:		
Relinquished by:	Date	/ Time		Received by:			1		Date /		Temp			Υ	۰	C V/A				
Relinquished by:	- "	/ Time		Received by:					Date / 1		Total	Numb ontaine	er of				TAT		48HR (5-DAY
LEGAL ACTION CLAUSE: In the event of default of pe	ayment and/or failur	re to pay, Client age	rees to pay the costs	of collection including court	costs and n	easonab	le attorney fees to	be determ	ined by a co	out of law.						Dis	stributio	n: White - Lab, Y	ellow - File, Pir	k - Originator

AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A

Olympia, WA 98502

Project: 4 Corners Cleaners **Project Number:** 17-126 **Project Manager:** Scott Rose City/State: Maple Valley, WA Work Order: L23G015 Reported: 07/13/2023 16:07

Notes and Definitions

 Item
 Definition

 RL
 Reporting Limit

 ND
 Analyte NOT DETECTED at or above the reporting limit

 DET
 Analyte DETECTED at or above the reporting limit

 Qual
 Qualifier

 All results reported on an "as received" basis unless indicated by "Dry"

Work Order Sample Summary

Lab ID	Sample	Matrix	Date Sampled	Date Received
L23G015-01	MW-1	Water	07/07/2023	07/07/2023
L23G015-02	MW-2	Water	07/07/2023	07/07/2023
L23G015-03	MW-3	Water	07/07/2023	07/07/2023
L23G015-04	MW-5	Water	07/07/2023	07/07/2023

AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A

Olympia, WA 98502

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose

City/State: Maple Valley, WA Work Order: L23G015 Reported: 07/13/2023 16:07

Sample Results

Client Sample ID: MW-1

Lab ID: L23G015-01 (Water)

					Date	Analyst
Analyte	Result	Qual	RL	Units	Analyzed	Initials
olatile Organic Compounds by EF	A Method 826	<u>0D</u>				
/inyl Chloride (SIM)	ND		0.20	ug/L	07/11/2023	AR
,1-Dichloroethene	ND		0.50	ug/L	07/11/2023	AR
rans-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR
is-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR
richloroethene (SIM)	ND		0.40	ug/L	07/11/2023	AR
etrachloroethene (SIM)	ND		1.0	ug/L	07/11/2023	AR
Surrogate: Dibromofluoromethane	105%		22.9-220	7	07/11/2023	AR
Surrogate: 1,2-Dichloroethane-d4	94.4%		<i>32.2-196</i>	5	07/11/2023	AR
Surrogate: Toluene-d8	97.8%		47.3-146	5	07/11/2023	AR
Surrogate: 4-Bromofluorobenzene	94.4%		38.4-136	5	07/11/2023	AR

AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A

Olympia, WA 98502

Project: 4 Corners Cleaners
Project Number: 17-126
Project Manager: Scott Rose

City/State: Maple Valley, WA Work Order: L23G015 Reported: 07/13/2023 16:07

Sample Results (Continued)

Client Sample ID: MW-2 Lab ID: L23G015-02 (Water)

					Date	Analyst
Analyte	Result	Qual	RL	Units	Analyzed	Initials
Volatile Organic Compounds by EP	A Method 826	<u>0D</u>				
Vinyl Chloride (SIM)	ND		0.20	ug/L	07/11/2023	AR
1,1-Dichloroethene	ND		0.50	ug/L	07/11/2023	AR
trans-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR
cis-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR
Trichloroethene (SIM)	ND		0.40	ug/L	07/11/2023	AR
Tetrachloroethene (SIM)	ND		1.0	ug/L	07/11/2023	AR
Surrogate: Dibromofluoromethane	108%		22.9-220)	07/11/2023	AR
Surrogate: 1,2-Dichloroethane-d4	95.8%		32.2-196	;	07/11/2023	AR
Surrogate: Toluene-d8	99.8%		47.3-146	;	07/11/2023	AR
Surrogate: 4-Bromofluorobenzene	89.0%		38.4-136	;	07/11/2023	AR

AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A

Olympia, WA 98502

Project: 4 Corners Cleaners
Project Number: 17-126
Project Manager: Scott Rose

City/State: Maple Valley, WA Work Order: L23G015 Reported: 07/13/2023 16:07

Sample Results (Continued)

Client Sample ID: MW-3

Lab ID: L23G015-03 (Water)

Analyte	Result	Qual	RL	Units	Date Analyzed	Analyst Initials
platile Organic Compounds by EF		<u>-</u>				
nyl Chloride (SIM)	ND	<u></u>	0.20	ug/L	07/11/2023	AR
1-Dichloroethene	ND		0.50	ug/L	07/11/2023	AR
ans-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR
s-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR
chloroethene (SIM)	ND		0.40	ug/L	07/11/2023	AR
rachloroethene (SIM)	ND		1.0	ug/L	07/11/2023	AR
ırrogate: Dibromofluoromethane	111%		22.9-220	7	07/11/2023	AR
ırrogate: 1,2-Dichloroethane-d4	96.0%		32.2-190	5	07/11/2023	AR
rrogate: Toluene-d8	102%		47.3-140	5	07/11/2023	AR
ırrogate: 4-Bromofluorobenzene	87.0%		38.4-136	5	07/11/2023	AR

AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A

Olympia, WA 98502

Project: 4 Corners Cleaners
Project Number: 17-126
Project Manager: Scott Rose

City/State: Maple Valley, WA Work Order: L23G015 Reported: 07/13/2023 16:07

Sample Results (Continued)

Client Sample ID: MW-5

Lab ID: L23G015-04 (Water)

Analyte	Result	Qual	RL	Units	Date Analyzed	Analyst Initials
Volatile Organic Compounds by EF	PA Method 826	<u>0D</u>				
Vinyl Chloride (SIM)	ND		0.20	ug/L	07/11/2023	AR
1,1-Dichloroethene	ND		0.50	ug/L	07/11/2023	AR
trans-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR
cis-1,2-Dichloroethene	ND		1.0	ug/L	07/11/2023	AR
Trichloroethene (SIM)	ND		0.40	ug/L	07/11/2023	AR
Tetrachloroethene (SIM)	ND		1.0	ug/L	07/11/2023	AR
Surrogate: Dibromofluoromethane	109%		22.9-220	9	07/11/2023	AR
Surrogate: 1,2-Dichloroethane-d4	99.3%		32.2-190	5	07/11/2023	AR
Surrogate: Toluene-d8	101%		47.3-140	5	07/11/2023	AR
Surrogate: 4-Bromofluorobenzene	92.8%		38.4-136	5	07/11/2023	AR

AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A

Olympia, WA 98502

Project: 4 Corners Cleaners Project Number: 17-126 Project Manager: Scott Rose

City/State: Maple Valley, WA Work Order: L23G015 Reported: 07/13/2023 16:07

Quality Control

Volatile Organic Compounds by EPA Method 8260D

					Spike	Source		%REC		RPD
Analyte	Result	Qual	RL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BXG0032 - VOA										
Blank (BXG0032-BLK1)					Prepare	red & Analyzed	1: 7/11/2023			
Vinyl Chloride (SIM)	ND		0.20	ug/L	•	•				
1,1-Dichloroethene	ND		0.50	ug/L						
trans-1,2-Dichloroethene	ND		1.0	ug/L						
cis-1,2-Dichloroethene	ND		1.0	ug/L						
Trichloroethene (SIM)	ND		0.40	ug/L						
Tetrachloroethene (SIM)	ND		1.0	ug/L						
Surrogate: Dibromofluoromethane	1		22.2	ug/L	20.0		111	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			20.2	ug/L	20.0		101	32.2-196		
Surrogate: Toluene-d8			20.4	ug/L	20.0		102	47.3-146		
Surrogate: 4-Bromofluorobenzene	_		18.2	ug/L	20.0		91.0	38.4-136		
LCS (BXG0032-BS1)					Prepare	red & Analyzed	1: 7/11/2023			
Vinyl Chloride (SIM)	5.01		0.20	ug/L	5.00	•	100	44.2-183		
1,1-Dichloroethene	5.17		0.50	ug/L	5.00		103	39.6-181		
trans-1,2-Dichloroethene	4.82		1.0	ug/L	5.00		96.5	39.6-177		
cis-1,2-Dichloroethene	5.18		1.0	ug/L	5.00		104	29.5-182		
Trichloroethene (SIM)	4.57		0.40	ug/L	5.00		91.4	28.8-130		
Tetrachloroethene (SIM)	4.72		1.0	ug/L	5.00		94.5	30.4-159		
Surrogate: Dibromofluoromethane	1		21.5	ug/L	20.0		107	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			19.7	ug/L	20.0		98.6	32.2-196		
Surrogate: Toluene-d8			21.7	ug/L	20.0		108	47.3-146		
Surrogate: 4-Bromofluorobenzene			22.6	ug/L	20.0		113	38.4-136		
Duplicate (BXG0032-DUP1)		Parent	: L23G023-	02RE2	Prepar	red & Analyzed	1: 7/11/2023			
Vinyl Chloride (SIM)	ND		0.20	ug/L	•	ND				35
1,1-Dichloroethene	ND		0.50	ug/L		ND				35
trans-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
cis-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
Trichloroethene (SIM)	ND		0.40	ug/L		ND				35
Tetrachloroethene (SIM)	ND		1.0	ug/L		ND				35
Surrogate: Dibromofluoromethane	1		22.4	ug/L	20.0		112	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			20.0	ug/L	20.0		100	32.2-196		
Surrogate: Toluene-d8			20.4	ug/L	20.0		102	47.3-146		
Surrogate: 4-Bromofluorobenzene			20.8	ug/L	20.0		104	38.4-136		

AEG an Atlas Geosciences NW Company 2633 Parkmont Lane SW, Suite A

Olympia, WA 98502

Project: 4 Corners Cleaners
Project Number: 17-126
Project Manager: Scott Rose

City/State: Maple Valley, WA Work Order: L23G015 Reported: 07/13/2023 16:07

Quality Control (Continued)

Volatile Organic Compounds by EPA Method 8260D (Continued)

					Spike	Source		%REC		RPD
Analyte	Result	Qual	RL	Units	Level	Result	%REC	Limits	RPD	Limit
Duplicate (BXG0032-DUP2)		Parent	L23G015-	01RE1	Prepar	red & Analyze	d: 7/11/2023			
Vinyl Chloride (SIM)	ND		0.20	ug/L		ND				35
1,1-Dichloroethene	ND		0.50	ug/L		ND				35
trans-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
cis-1,2-Dichloroethene	ND		1.0	ug/L		ND				35
Trichloroethene (SIM)	ND		0.40	ug/L		ND				35
Tetrachloroethene (SIM)	ND		1.0	ug/L		ND				35
Surrogate: Dibromofluoromethane			22.6	ug/L	20.0		113	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			20.0	ug/L	20.0		100	32.2-196		
Surrogate: Toluene-d8			20.3	ug/L	20.0		102	47.3-146		
Surrogate: 4-Bromofluorobenzene			17.2	ug/L	20.0		86.2	38.4-136		
Matrix Spike (BXG0032-MS1)		Parent	L23G023-	02RE2	Prepar	red & Analyze	d: 7/11/2023			
Vinyl Chloride (SIM)	5.10		0.20	ug/L	5.00	ND	102	10.7-223		
1,1-Dichloroethene	5.27		0.50	ug/L	5.00	ND	105	21.7-199		
trans-1,2-Dichloroethene	4.46		1.0	ug/L	5.00	ND	89.3	10-216		
cis-1,2-Dichloroethene	4.52		1.0	ug/L	5.00	ND	90.3	10-246		
Trichloroethene (SIM)	4.50		0.40	ug/L	5.00	ND	89.9	25.2-172		
Tetrachloroethene (SIM)	4.56		1.0	ug/L	5.00	ND	91.1	43.2-139		
Surrogate: Dibromofluoromethane			20.2	ug/L	20.0		101	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			18.8	ug/L	20.0		93.8	32.2-196		
Surrogate: Toluene-d8			19.9	ug/L	20.0		99.6	47.3-146		
Surrogate: 4-Bromofluorobenzene			22.7	ug/L	20.0		113	38.4-136		
Matrix Spike Dup (BXG0032-MSD1)		Parent	L23G023-	02RE2	Prepar	red & Analyze	d: 7/11/2023			<u> </u>
Vinyl Chloride (SIM)	5.23		0.20	ug/L	5.00	ND	105	10.7-223	2.46	35
1,1-Dichloroethene	5.45		0.50	ug/L	5.00	ND	109	21.7-199	3.28	35
trans-1,2-Dichloroethene	4.63		1.0	ug/L	5.00	ND	92.6	10-216	3.61	35
cis-1,2-Dichloroethene	4.87		1.0	ug/L	5.00	ND	97.3	10-246	7.46	35
Trichloroethene (SIM)	4.40		0.40	ug/L	5.00	ND	88.1	25.2-172	2.07	35
Tetrachloroethene (SIM)	4.34		1.0	ug/L	5.00	ND	86.7	43.2-139	4.95	35
Surrogate: Dibromofluoromethane			21.1	ug/L	20.0		105	22.9-220		
Surrogate: 1,2-Dichloroethane-d4			19.5	ug/L	20.0		97.5	32.2-196		
Surrogate: Toluene-d8			20.2	ug/L	20.0		101	47.3-146		
Surrogate: 4-Bromofluorobenzene			22.0	ug/L	20.0		110	38.4-136		

4 CORNERS CLEANERS PROJECT AEG an Atlas Geosciences NW Company Libby Project # L23G015 Date Received 7/7/2023

Time Received 1:00 PM Received By SC

Sample Receipt Checklist

Chain of Custody 1. Is the Chain of Custody is complete? ✓ Yes ☐ No 2. How was the sample delivered? ✓ Hand Delivered ☐ Picked Up Shipped Log In 3. Cooler or Shipping Container is present. ✓ Yes ■ No N/A 4. Cooler or Shipping Container is in good condition. ✓ Yes ■ No ■ N/A 5. Cooler or Shipping Container has Custody Seals present. Yes ✓ No N/A 6. Was an attempt made to cool the samples? ✓ Yes ☐ No ☐ N/A 0.3 °C 7. Temperature of cooler (0°C to 8°C recommended) 6.4 °C 8. Temperature of sample(s) (0°C to 8°C recommended) 9. Did all containers arrive in good condition (unbroken)? ✓ Yes ■ No 10. Is it clear what analyses were requested? ✓ Yes ☐ No 11. Did container labels match Chain of Custody? ✓ Yes ☐ No 12. Are matrices correctly identified on Chain of Custody? ✓ Yes __ No ☐ No 13. Are correct containers used for the analysis indicated? ✓ Yes 14. Is there sufficient sample volume for indicated analysis? ✓ Yes ■ No 15. Were all containers properly preserved per each analysis? ☑ Yes ☐ No 16. Were VOA vials collected correctly (no headspace)? ✓ Yes ☐ No ☐ N/A 17. Were all holding times able to be met? ✓ Yes __ No Discrepancies/ Notes 18. Was client notified of all discrepancies? Yes ☐ No ✓ N/A Person Notified: Date: By Whom: Via: Regarding: 19. Comments.

3322 South Bay Road NE

Olympia, WA 98506

Phone: (360) 352-2110

Email: libbyenv@gmail.com

FAX: (360) 352-4154