March 2009 Groundwater Monitoring LeatherCare, Inc. 901/921 Elliott Avenue West Seattle, Washington VCP # NW1805

July 6, 2009

Prepared For: LeatherCare, Inc. 901 Elliott Avenue West Seattle, Washington 98119

Prepared By:

CDM

11811 NE 1st Street, Suite 201 Bellevue, Washington 98005 A Report Prepared For: LeatherCare, Inc. 901 Elliott Avenue West Seattle, Washington 98119

MARCH 2009 GROUNDWATER MONITORING LEATHERCARE INC 901/921 ELLIOTT AVENUE W SEATTLE, WASHINGTON VCP #NW1805

July 6, 2009

and for tox

Mary Lou Fox Environmental Scientist

CDM

11811 N.E. 1st Street, Suite 201 Bellevue, Washington 98005 425/453-8383

CDM Project No. 56498-68247

Contents

Section 1 Introduction

11	General	1-1
	Background	
1.3	Purpose and Scope of Work	1-2

Section 2 Field Investigation Methods

Monit	oring Well Installation	2-1
	0	
2.2.3	Laboratory Analysis	2-2
	Groun 2.2.1 2.2.2	Monitoring Well InstallationGroundwater Sampling2.2.1Water Levels2.2.2Water Sampling2.2.3Laboratory Analysis

Section 3 Findings and Discussion

3.1	Drilling (Observations	
3.2	Water Le	vels	
3.3		nitored Parameters	
3.4		ater Analytical Results	
		°CE	
	3.4.2	TCE	3-2
		-1,2-DCE, <i>t</i> -1,2-DCE, 1,1-DCE	
		/inyl Chloride	
	3.4.5 I	Dissolved Gasses	3-3
3.4		ends	
Section 4 Con	clusions a	and Recommendations	4-1
Section 5 Ref	erences		5-1

Distribution

Tables

Figures

Appendices

Appendix A Boring Logs and Well Construction Details Appendix B Analytical Laboratory Reports

Table 1	Groundwater Elevation Data
Table 2	Groundwater Analytical Summary - LeatherCare, Greg Thompson
	Productions, and W. Roy Street Properties
Table 3	Mann-Kendall Statistical Summary

Figures

Figure 1	Vicinity Map
Figure 2	Site Plan and Monitoring Well Location Map
Figure 3	Potentiometric Surface Map – March 25, 2009

Section 1 Introduction

1.1 General

This report presents the results of the eleventh round (March 2009) of ongoing groundwater monitoring for the LeatherCare, Inc. site located at 901 & 921 Elliott Avenue West in Seattle, Washington (Figure 1). Camp Dresser & McKee Inc. (CDM) is conducting this work on behalf of LeatherCare, Inc. (LeatherCare) in accordance with the Master Environmental Services Agreement dated March 18, 2007 between LeatherCare and CDM, and CDM's proposal dated September 12, 2008. Site work is being conducted under the Washington State Department of Ecology's (Ecology) Voluntary Cleanup Program (VCP). The VCP site number is NW1805.

1.2 Background

LeatherCare is a large, industrial dry cleaning facility that has occupied this location since 1985. LeatherCare initially used tetrachloroethene (PCE) as a dry cleaning solvent. PCE use was discontinued in phases beginning in March 2000. The replacement of PCE dry cleaning machines was completed in October 2005.

In July 2006, CDM completed an assessment of volatile organic compounds (VOCs) and petroleum hydrocarbons throughout the LeatherCare parcel, an adjacent parcel to the northwest (also owned by Mr. Ritt), West Roy Street to the southwest, and the Darigold property (formerly referred to as WestFarm Foods) north and central parking lots. (CDM, 2006) The Darigold property is currently owned by Elliott Holding Company, Inc. (Elliott Holding) and is undergoing redevelopment. The two Ritt-owned parcels and W Roy Street are collectively referred to as the "Subject Property." Figure 2 shows the layout of the Subject Property and the former layout of the Darigold property (prior to current ongoing redevelopment activities), collectively referred to as the "Investigation Area".

PCE and/or its degradation products were identified in groundwater in areas of the Subject Property, but at relatively low concentrations. The contaminant profile across the Subject Property was found to be indicative of small, incidental releases that may have occurred at several locations. PCE concentrations are not high enough to be indicative of the presence of free phase product.

Low concentrations of chlorinated VOCs (cVOCs), in particular, vinyl chloride, which is the last degradation product of PCE prior to degradation into nontoxic compounds, also occurred in groundwater at the former north parking lot area of the Darigold property where there was also petroleum hydrocarbon contaminated soil and groundwater that originated on the Darigold property.

In March 2009 CDM completed an offsite investigation to delineate the westerly bounds of the cVOC plume. Three monitoring wells were installed on the Burlington Northern Santa Fe (BNSF) Railroad-owned property to the west (**Figure 2**). None of

the cVOC contaminants of concern were detected in groundwater sampled from these three wells, effectively determining the cVOC plume limits.

CDM's investigations indicate that biological degradation processes are actively occurring to reduce cVOC concentrations, as based on field monitoring and chemical and biological testing data conducted in soil and groundwater, along with historical groundwater chemical data collected throughout the Investigation Area.

Elliott Holding began redevelopment of the Darigold property in 2007. According to a Cleanup Action Plan completed by ENTRIX, Inc., the planned development includes two 4-story commercial buildings, a plaza, and an underground parking structure beneath the entire complex. The parking level foundation will be as much as 20 feet below existing grade. A subsurface impermeable cutoff pile wall has been installed to enable construction of the below ground parking structure. At the time of CDM's March 2009 groundwater monitoring round, construction continued to occur on Elliott Holding's property.

1.3 Purpose and Scope of Work

The purpose of continued groundwater monitoring over time is to establish the natural variation in contaminant concentrations (i.e., seasonal), to confirm that the plume is continuing to collapse, to characterize degradation processes, and to confirm natural attenuation of cVOCs. During the first three groundwater monitoring rounds CDM collected samples from monitoring wells in the Darigold north parking lot. After that, these wells were dropped from the monitoring schedule due to imminent construction activities and limitations on access. ENTRIX continued to sample these wells for a period of time, but it is presumed that groundwater monitoring ceased on the Darigold site by December 2007 when construction began.

The scope of work completed during this sampling event consisted of the following:

- Conducted a complete round of water level measurements for all existing monitoring wells throughout the Subject Property.
- Purged each of the groundwater monitoring wells on the Subject Property and collected data on field measured parameters.
- Collected groundwater samples and submitted them for laboratory analysis of selected cVOCs and dissolved gasses (ethane, ethene, and methane).
- Evaluated the data and prepared this report documenting our findings and conclusions.

In February ENTRIX replaced monitoring wells LC4 and LC5, which had been destroyed during earlier stages of the construction activities. CDM oversaw the monitoring well installation.

Section 2 Field Investigation Methods

2.1 Monitoring Well Installation

On February 24 and 25, 2009, Cascade Drilling of Woodinville, Washington, under contract to ENTRIX, drilled and installed the replacement wells for LC4 and LC5 using hollow-stem auger (HSA) drilling methods. These replacement wells have been designated LC4R and LC5R and their original and current locations are shown on **Figures 2** and **3**. A CDM geologist oversaw all drilling and well installation activities.

Each boring was drilled to 14 feet below ground surface. A 2-inch diameter 13 foot deep monitoring well was installed in each borehole. The bottom 10 feet of each monitoring well was completed with Schedule 40, 0.10 inch factory slotted PVC screen and #2/12 silica sand pack. The upper two feet of each monitoring well was completed with a bentonite chip seal and a traffic rated monument set in concrete. Well construction details and boring logs are provided in **Appendix A**.

ENTRIX developed LC-4R and LC-5R on February 26, 2009. A submersible pump was used to surge the well and evacuate the water. Thirty gallons were purged from LC-4R and 30 gallons were purged from LC-5R (Shatt, 2009).

ENTRIX had Apex Engineering survey the locations and elevations of LC4R and LC5R. Apex Engineering conducted the original survey work for the LeatherCare monitoring wells.

2.2 Groundwater Sampling

Groundwater monitoring was conducted on March 25 and 26, 2009. Monitored wells included GT1 through GT3, LC1 through LC3, LC4R, LC5R, and LC6. This section describes the field and analytical methods employed.

2.2.1 Water Levels

Water levels were measured in all monitoring wells throughout the Subject Property between 0759 am and 1125 am on March 25, 2009. Water levels were measured using a SINCO electronic sounder.

2.2.2 Water Sampling

Each monitoring well/piezometer was purged prior to collecting groundwater samples using dedicated stainless steel bladder pumps with Teflon lined tubing. Each well was purged at a rate of approximately 100 to 200 milliliters per minute (ml/min). Physical parameters were monitored during purging using a YSI meter. In order to minimize contact with ambient air, the YSI meter was secured in a flow-through cell that was situated after the pump and before the purge water tubing discharge. Parameters measured during purging included: pH, temperature, specific conductance (SC), oxidation-reduction potential (ORP), turbidity, and dissolved oxygen (DO). The wells were purged until the physical parameter measurements stabilized.

The samples were collected by disconnecting the tubing from the flow-through cell and directly discharging the water into laboratory-supplied containers appropriate for the analyses to be conducted. Collected samples were stored in chilled coolers and delivered under chain-of-custody protocol to the analytical laboratories described in Section 2.2.3.

2.2.3 Laboratory Analysis

CDM submitted the groundwater samples to Analytical Resources Inc. (ARI) in Tukwila, Washington and MicroSeeps in Pittsburg, Pennsylvania.

ARI conducted analyses for cVOCs by EPA Method 8260B (using a 20-milliliter purge volume for groundwater in order to reach detection limits of 0.2 micrograms per liter [μ g/L]). Specifically, the analytes included PCE, trichloroethene (TCE), *cis*-1,2-dichloroethene (*c*-1,2-DCE), *trans*-1,2-dichloroethene (*t*-1,2-DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride (VC).

MicroSeeps conducted analyses of the dissolved gasses methane, ethane, and ethene by method AM20GAX on all of the groundwater samples.

Section 3 Findings and Discussion

3.1 Drilling Observations

Groundwater was encountered at approximately 3 feet below ground surface (ft bgs) in both borings. Similar to previous conditions encountered during drilling, the site appears to be underlain by approximately 14 ft of fill followed by tideflat sediments. Fill materials consist of varying mixtures of gravel, sand, silt and clay. In LC5R sandy gravel was encountered to a depth of 8 ft bgs, followed by layers of silt, clay and silty sand, and at approximately 12 ft bgs, heaving sands were encountered. At LC4R the first 8 feet was predominantly sand with some gravel, followed by clay and sandy clay to 9 ft bgs, and then silty sand which extended to approximately 14 ft bgs where the original tideflat appeared to have been encountered. No apparent contamination was observed at either boring.

3.2 Water Levels

Depths to water and water table elevations are summarized on **Table 1**. Water levels ranged between 0.84 and 4.89 feet below the top of the well casings (the well casings start approximately 3 to 6 inches below ground surface), which correspond to the water table elevations ranging from 11.25 to 12.16 feet. Water levels declined in all wells, differing by between 0.04 and 0.28 feet between the December 2008 and March 2009 sampling rounds. This is expected during the transition from winter to spring.

Figure 3 shows the potentiometric surface on March 25, 2009, which indicates a northwesterly gradient. Whereas previously the water table in W. Roy Street was very flat, the current data indicates that the groundwater flow direction is towards the northwest, consistent with the rest of the site.

3.3 Field Monitored Parameters

A discussion of field measured parameters is provided below and the data are summarized in Table 2.

Temperature: Groundwater temperatures varied between 9.0 and 16.5 degrees Celsius (°C). As expected, groundwater temperatures are generally higher following the winter lows.

Dissolved Oxygen: DO concentrations ranged from approximately 0.10 to 0.71 milligrams per liter (mg/L). DO concentrations less than 0.5 mg/L are indicative of anoxic conditions, which may be conducive for reductive dechlorination. Overall, the DO values were among the lowest concentrations observed. DO values for all wells except LC3, were less than 0.5 mg/L, with the value for LC3 exceeding 0.5 mg/L only slightly at 0.71 mg/L.

Oxidation-Reduction Potential: The ORP probe was malfunctioning and no usable data was generated.

Specific Conductance: The conductivity probe was malfunctioning during the purging of wells LC4R, LC5R, and LC6. A check of a calibration standard confirmed that the meter was reading a low value, outside the range of acceptance. A separate conductivity meter was used for the remaining wells and the conductivity values for these wells were consistent with previous sampling rounds.

pH: The pH values ranged between approximately 6.92 and 7.26 standard units (SU) for all wells, which are consistent with previous rounds.

Ferrous Iron: Ferrous iron was analyzed in two wells, GT2 and LC3. Both values were low at 0.4 and 0.2 mg/L, respectively. VC is biodegradable by iron reducing bacteria and the presence of ferrous iron is a sign of the presence of iron reducing bacteria.

Turbidity: Turbidity values were less than 10 nephalometric turbidity units (NTU) for all of the wells. GT3 contained orange or brown biofloc as it has in the past and small amounts of biofloc were noted initially in LC3 and LC6 at the beginning of purging.

3.4 Groundwater Analytical Results

Copies of the analytical reports are included in **Appendix B**. Current and historical groundwater analytical data, as well as field measured and general groundwater chemistry data, are summarized in **Table 2**. Contaminant concentrations are compared against Model Toxics Control Act (MTCA) Method A groundwater cleanup levels. In the absence of Method A cleanup levels, contaminant concentrations are compared against Method B cleanup levels as obtained from Ecology's Cleanup Levels and Risk Calculations (CLARC) database.

3.4.1 PCE

PCE was detected in three of the seven groundwater samples and ranged from 0.4 to 6.0 μ g/L when detected. The detections of 6.0 μ g/L in the LC1 sample and 5.6 μ g/L in the LC3 sample exceeded the Method A cleanup level of 5 μ g/L. These concentrations are consistent with previous rounds. The concentration of PCE in sample LC4R at 0.4 μ g/L is significantly lower than in LC4 prior to its destruction; previously, PCE concentrations in LC4 ranged as high as 25 μ g/L.

3.4.2 TCE

TCE was detected in all groundwater samples, except GT1. Concentrations ranged between 0.2 and 3.9 μ g/L. All detected concentrations were below the MTCA Method A cleanup level of 5 μ g/L.

3.4.3 *c*-1,2-DCE, *t*-1,2-DCE, 1,1-DCE

Of these degradation products of PCE, *c*-1,2-DCE was detected in all nine groundwater samples, *t*-1,2-DCE in two samples, and 1,1-DCE was not detected in any sample. Concentrations ranged between 0.2 and 8.4 μ g/L when detected. The

concentrations of c-1,2-DCE and t-1,2-DCE did not exceed their Method B cleanup levels (80 and 160 µg/L, respectively) in any samples.

3.4.4 Vinyl Chloride

Vinyl chloride was detected in seven of the nine groundwater samples ranging between 0.3 and 9.2 μ g/L when detected. VC continues to be below detection limits in the most downgradient well on the GTP parcel (GT1), even with the site's highest VC concentration being observed at the next upgradient well (GT2), only 110 feet away. The VC concentrations in the newly installed wells, LC4R and LC5R, at 1.3 and 1.6 μ g/L, respectively, are consistent with earlier concentrations in LC4 and LC5.

3.4.5 Dissolved Gasses

Methane was detected in every groundwater sample, ranging between $34 \mu g/L$ and $390 \mu g/L$. The presence of methane is indicative of methanogenesis — a favorable condition for reductive dechlorination. Ethene, the end product of the reductive dechlorination of PCE, was detected in five of the groundwater samples at concentrations ranging between $0.035 \mu g/L$ and $0.51 \mu g/L$. Ethane was detected in all nine of the groundwater samples at concentrations ranging between $0.032 \mu g/L$ and $0.240 \mu g/L$.

Ethene concentrations remain the highest at GT2 where the VC concentrations are the highest, indicating complete natural breakdown of PCE to nontoxic compounds and elements. The second highest ethene concentration is at LC5R, which had the second highest vinyl chloride concentration.

3.5 cVOC Trends

CDM applied the Mann-Kendall statistical test to the cVOCs on the Subject Property. The Mann-Kendall test indicates the presence or absence of a statistically significant increasing or decreasing trend in concentrations at a monitoring point. The results of the Mann-Kendall trend analysis are summarized on **Table 3**.

Decreasing trends are noted for VC concentrations at all of the wells and probability values for the decreasing trends at all of the wells continue to improve. The probability values for a decreasing trend for VC at GT2, LC1, LC2, LC3, and LC6 remain significant (i.e. $p \le 0.1$).

The Mann-Kendall is losing relevancy for PCE and TCE due to overall low concentrations and lack of detections. In nearly 3 years of monitoring, the cleanup level for PCE has never been exceeded at GT1, GT2, GT3, LC5/LC5R or LC6 and there is no reason to expect this will change. LC2 also has over 2 years of data where PCE concentrations have not exceeded the cleanup level. At LC1 and LC3 where PCE is consistently detected and sometimes exceeds the cleanup level, increasing trends are noted. However, the average PCE concentration at LC1 is 4.5 μ g/L and at LC3, it is 4.4 μ g/L, both below the Method A cleanup level. The PCE concentration at

LC4/LC4R declined substantially between December 2007 and March 2009 and is now below the cleanup level.

Similar to PCE, in nearly 3 years of monitoring, TCE has never exceeded its cleanup level at GT1, GT2, and LC2 through LC6 and there is no reason to expect this will change. Similarly, GT3 also has over 2 years of data where TCE concentrations have not exceeded the cleanup level. While an increasing trend for TCE is indicated at LC1, the average concentration is $4.6 \mu g/L$, below the Method A cleanup level.

Section 4 Conclusions and Recommendations

VC concentrations continue to show decreasing trends. Of the nine wells on the subject property, PCE concentrations in two wells and TCE concentrations in one of the same two wells continue to fluctuate around their respective cleanup levels; however, the average PCE and TCE concentrations in these wells are below their respective Method A cleanup levels. The PCE concentration detected in LC4R was significantly lower than the PCE concentration in LC4 prior to its destruction – and is now below the Method A cleanup level. Given the low concentrations and continuing groundwater data that favor natural attenuation, PCE will continue to degrade and the VC plume will continue to collapse.

Based on these findings, CDM continues to recommend implementation of a program of regular groundwater sampling to ensure that monitored natural attenuation is a viable remedial approach for this site.

Section 5 References

CDM. 2006. Contamination Assessment, LeatherCare, Inc. 901/921 Elliott Avenue, Seattle, Washington. CDM Project No. 38057-47522. July 25.

ENTRIX, Inc. 2007. Cleanup Action Plan, Darigold Facility - VCP NW 1267, 635 Elliott Avenue West, Seattle, WA. Prepared for Elliott Holding Company, L.L.C. Seattle, WA. July 2007.

Shatt, Ryan. L.G. 2009. Personal communication via email between Ryan Shatt of ENTRIX and Pamela Morrill of CDM on May 6, 2009.

Distribution

5 Copies

Ryan Swanson & Cleveland, PLLC 1201 Third Avenue, Suite 3400 Seattle, Washington 98101-3034

Attn: Ms. Jo M. Flannery

1 Copy

Washington Department of Ecology 3190 160th Avenue SE Bellevue, Washington 98008

Attn: Mr. Dale Myers

Quality Assurance / Technical Review by:

Pamela Morrill, LHG Senior Scientist

Table 1Groundwater Elevation DataLeatherCare, Inc.

Seattle, Washington

Monitoring	Date	Time	Top of Casing Elevation ^a	Depth to Groundwater	Groundwater Elevation
Well I.D.	Measured	(hours)	(feet)	(ft below TOC)	(feet)
GT1	05/10/06	0912	12.74	1.84	10.90
	09/05/06	0955		2.46	10.28
	02/12/07	0918		1.69	11.05
	06/20/07	0857		2.13	10.61
	09/19/07	0904		2.46	10.28
	12/19/07	0940		1.20	11.54
	03/19/08	0908		1.80	10.94 10.79
	06/18/08	0825		1.95 2.22	10.52
	09/24/08	1005		1.49	11.25
	12/29/08	0758		1.45	
	02/11/09 03/25/09	0837		1.58	11.16
GT2	05/10/06	0007	12.45	1.23	11.22
612	09/05/06	1000	12.40	1.99	10.46
	02/12/07	0920		1.09	11.36
	06/20/07	0853		2.56	9.89 NU
	09/19/07	0911		1.94	10.51
	12/19/07	0936		0.67	11.78
	03/19/08	0904		1.18	11.27
	06/18/08	0822		1.35	11.10
	09/24/08	1015		1.63	10.82
	12/29/08	0802		0.84	11.61
	02/11/09			-	-
	03/25/09	0850		0.95	11.50
GT3	05/10/06	0909	13.36	2.18	11.18
	09/05/06	1004		2.91	10.45
	02/12/07	0922		1.95	11.41
	06/20/07	0851		2.49	10.87
	09/19/07	0907		2.94	10.42 11.72
	12/19/07	0918		1.64	11.72
	03/19/08	0914		2.12 2.21	11.15
	06/18/08	0820		2.54	10.82
	09/24/08	1020 0804		1.80	11.56
	12/29/08 02/11/09	0004			
	03/25/09	0820		1.87	11.49
LC1	05/10/06	0916	13.17	1.57	11.60
	09/05/06	1010	10.17	2.43	10.74
	02/12/07	0941		1.40	11.77
	06/20/07	0844		1.99	11.18
	09/19/07	0904		2.46	10.71
	12/19/07	0954		1.01	12.16
	03/19/08	0857		1.54	11.63
	06/18/08	0836		1.55	11.62
	09/24/08	1034		1.89	11.28
	12/29/08	0809		1.20	11.97
	02/11/09			-	-
	03/25/09	0811		1.28	11.89
LC2	05/10/06	0919	13.41	2.01	11.40
	09/05/06	1012		2.74	10.67
	02/12/07	0943		1.80	11.61
	06/20/07			2.35	11.06
	09/19/07	0901		2.75	10.66
	12/19/07	0948		1.23	12.18
	03/19/08	0859		1.90	11.51 11.36
	06/18/08	0832		2.05	11.30
	09/24/08	1030		2.30 1.59	11.82
	12/29/08 02/11/09	0812		1.59	

CDM

Table 1Groundwater Elevation DataLeatherCare, Inc.Seattle, Washington

Monitoring Well I.D.	Date Measured	Time (hours)	Top of Casing Elevation ^a (feet)	Depth to Groundwater (ft below TOC)	Groundwater Elevation (feet)
LC3	05/10/06	0925	14.16	2.56	11.60
	09/05/06	1014		3.41	10.75
	02/12/07			2.37	11.79
	06/20/07	0837		2.98	11.18
	09/19/07	0853		3.48	10.68
	12/19/07	0906		1.99	12.17
	03/19/08	0847		2.55	11.61
	06/18/08	0839		2.58	11.58
	09/24/08	1038		2.84	11.32
	12/29/08	0815		2.21	11.95
	02/11/09				 11.88
	03/25/09	0802	44.70	<u>2.28</u> 3.16	11.56
LC4	05/10/06	0921	14.72	3.99	10.73
	09/05/06	1026		2.93	11.79
	02/12/07	0832		3.59	11.13
	06/20/07	0832		4.09	10.63
	09/19/07	0856		2.48	12.24
	12/19/07 03/19/08 ^b			-	
	12/29/08				
	02/11/09				
	03/25/09	0957	14.96	3.03	11.93
LC4R LC5	05/10/06	0922	14.13	2.57	11.56
200	09/05/06	1030		3.46	10.67
	02/12/07			2.37	11.76
	06/20/07	0834		2.97	11.16
	09/19/07	0858		3.48	10.65
	12/19/07	0901		1.89	12.24
	03/19/08	1114		2.49	11.64
	06/18/08 ^b				
	12/29/08				
	02/11/09				-
LC5R	03/25/09	1125	14.62	2.46	12.16
LC6	05/10/06	0928	16.85	5.26	11.59
	09/05/06	1022		6.10	10.75
	02/12/07	0933		5.03	11.82
	06/20/07	0839		5.68	11.17
	09/19/07	0850		6.19	10.66
	12/19/07	0911		4.67	12.18
	03/19/08	0852		5.24	11.61
	06/18/08	0844		5.22	11.63 11.30
	09/24/08	1042		5.55	11.30
	12/29/08	0819	1	4.89	11.90
	02/11/09	-			11.92
	03/25/09	0759	45.94	4.93	7.70
LC7	02/11/09	0912	15.34		8.40
LC8	02/11/09	0910	15.50	7.10	1 0.40

Notes:

a) Top of casing elevations in feet relative to a brass monument located at the south corner of Elliot Avenue W. and W. Roy Street, marked as Elevation 19.78 feet. No verifiable City of Seattle datum could be found in the site area.

b) Well believed to have been destroyed by construction on adjacent property.

c) Needs new survey.

ft bgs - feet below ground surface.

-- not measured.

NU - Data not used; measurement believed to have been misread.

TOC - top of casing.

Groundwater Analytical Summary - LeatherCare, Greg Thompson Productions, and W. Roy Street Properties LeatherCare, Inc. Seattle, Washington

Monitoring Well I.D. b Method A Field Trip Date Cleanup LC4 /LC4R LC5 LC5R Blank Levels " GT3 LC1 LC2 LC3 LC6 LC7 LC8 LC9 Blank GT1 GT2 Sampled Analyte Field-Measured Parameters 7.23 7.03 7.10 7.05 7.43 8.95 7.18 6.95 6.99 05/06 N/A ------рH 7.19 7.26 7.07 7.05 7.07 7.19 7.13 7.03 ---------09/06 7.33 -------8.57 6.48 6.42 6.82 6.06 6.43 6.70 ------_ 6.77 6.64 ---02/07 7 7.23 7.00 6.97 6.91 6.90 06/07 7.15 7.01 6.95 8.99 ------------7.16 6.92 8.83 6.88 6,91 6.88 7,00 ------7,11 7.00 ---------09/07 7.42 7.30 6.50 7.36 7.45 6.42 6.59 7.02 ----------------7.47 12/07 7.87 8.04 8.36 8.42 8.19 03/08 7,75 7.77 7.51 -------_ -----** 8.96 6.70 6.96 7.23 6.69 8,97 -----------------06/08 ---6.55 6.62 6.72 6.58 6.66 ---------_ ---.... 8.59 _ ---09/08 6.82 6.95 -------7,06 6.75 6,79 6.98 7.54 ---------------12/08 ** ** ** ------02/09 --------7.13 6.99 6.96 6.97 7.07 6.96 6.92 7.07 ---7.26 -03/09 -72 -152 -33 -50 -82 -50 ----------------N/A -33 -27 -56 ORP (mV) 05/06 -----71 -50 -107 -78 -90 _ ------.... -119 -97 -68 -113 09/06 17 -60 -32 56 80 -30 31 -------------02/07 -33 -2 -38 -81 -162 -183 -116 -214 -111 ---_ ------------211 -171 06/07 -75 -126 -95 1 ___ -132 -83 -------_ 09/07 -96 ** -95 -71 -125 --** ** ** ** ** ** ** ** ----------12/07 -27 10 -28 -30 -59 -----107 -43 ---------_ --54 03/08 -17 -57 -49 142 ** 112 -17 -------------------08/08 ---------••• 09/08 ---------. _ ---------43 -22 40 -44 ----0.7 ------------_ -18 12/08 -52 -----------_ -------02/09 ... ----... ** ** ** ** ** ** ** ---------03/09 16.2 15.1 18.3 18.2 15.9 14.1 13.8 14.2 --------------Temperature (°C) 05/06 N/A 16.0 22.2 22.5 20.6 -----20.0 21.3 20.8 23.1 22.6 22.8 ---09/06 9.7 10.0 11.8 ---------11.4 -02/07 13.6 9.3 10.0 16.8 16.2 ----18.7 20.7 20.0 19.3 18.8 18.0 17.8 -------------20.2 06/07 17.8 20,0 ---20.4 ------19.2 22.3 21.7 22.2 20.2 -----19.3 19,4 09/07 12.3 11.4 12.6 ------------11.6 -6.8 9.3 17.3 15,5 12/07 11.9 11.3 12.4 _ --------9.5 15.9 16.3 11.8 ---10,3 03/08 13.0 -17.2 16.3 19.8 16.4 16.3 -------------17.0 ----06/08 18.1 17.6 -----17.9 17.8 22.1 21.8 19.6 --------------09/08 18.7 11.5 ------_ 6.9 14.6 15.0 9.8 ------12/08 11.2 7.6 11.0 9.7 ---13.0 ---------02/09 ----------8.7 9.0 10.5 -9.0 14.6 16.5 10.9 ---------03/09 13.0 9.0 -1,322 1,281 1,183 1,345 1,360 -----------05/06 N/A 1,243 1,283 1,264 1,190 Specific Conductivity (µS/cm) 856 856 ------------670 853 ---09/06 611 856 884 868 736 915 951 519 1,020 496 795 948 -------------971 02/07 631 842 ---808 804 ---------786 813 833 836 676 820 ---06/07 828 ------737 824 ---------808 844 879 673 622 841 09/07 ---553 543 920 ---_ -----732 706 829 1.017 181 778 12/07 915 926 928 518 902 ---114 970 -----------637 03/08 1,471 1,561 1,490 1,493 1,363 -----------1,701 ------06/08 998 1,318 963 1.269 ---1,353 _ --------1,236 798 09/08 774 ----** ** 671 ** ---** ------** 12/08 ** ---836 1,090 1,828 --------------------02/09 --------** 864 ** ** 861 824 648 825 587 03/09

CDM

Table 2 Groundwater Analytical Summary - LeatherCare, Greg Thompson Productions, and W. Roy Street Properties LeatherCare, Inc. Seattle, Washington

		Method A				1000 00 000		an a	Monitoring Well I	.D, ^b						
	Date	Cleanup							LC4 I/LC4R	LC5 /LC5R					Field	Trip
Analyte	Sampled	Levels	GT1	GT2	GT3	LC1	LC2 0.40	LC3	LC4 /LC4R 0.43		LC6	LC7	LC8	LC9	Blank	Blank
Dissolved Oxygen (mg/L)	05/08	N/A	0.70 0.15	0.34 0.17	0.70 0.14	0.24 0.20	0.40	0.42 0.23	0.43	0.33 0.09	0.39 0.09	-	-			-
	09/06 02/07		0.15	0.13 9	0.14	9	0.35 9	1.18 9	1.14 9	0.14 9	0.28 9	_	-	_	_	_
	02/07		0.19	0.22	0.24	0.34	0.91	0.35	0,47	0.39	1.13			_	-	_
	09/07		0.41	0.34	0.27	0.24	0.25	0.58	0.78	0.55	0.58	_				
	12/07	1	0.33	0.47	0.17	0.72	3.05	1.44	1.00	0.29	0.28		-		-	
	03/08		0.34	0.34	1.28	0.31	1.12	0.44		0.37	0.34		-	-	_ 1	-
	06/08		0.20	1.09	0.71	0.29	0.35	0.71	_		0.28	-	_			
	09/08		1.32	1.12	1.08	0.08	0.84	1.36	-	-	1.34					
	12/08		0,90	2.11	2,17	0.61	2.47	1,80			0.87		-	-	-	-
	02/09				-							4.74	4.73	8.05		
	03/09		0.19	0.13	0.42	0.10	0.11	0.71	0.25	0.33	0.17			-		· _
Turbidity (NTU)	05/06	N/A	1,76	0.83	0.66	5,76	82 °	1.05	1.79	2.82	2.01		-			-
	09/06		*	0.47	0.70	0.7	•	5,5	2.4	1.8	•		-	-	-	
	02/07		3.1 ^h	0,0 ^h	>999 ^h	0.0 ^h	0.0 ^h	22.4 ^h	0.0 ^h	16.3 ^h	26 ^h		-		_	
	02/07		0,7	1.1	2.2	0.9	1.9	2.6	1.8	0.2	3.8		_		_	
	09/07	N/A	0.9	0.9	1.6	•	0.5	2.3	6.5	0.14	3.8			-		-
	12/07	11/2	0.5	-	-	-	_			-	-	- 1			_	
			16.9	8.8	168 ^k	2.3	0.7	20.9	-	9.6	4.4	l		-	_	
	03/08			-	34.5/227 k	0.5	0.0 ^m	1.1			- m					
	06/08		0.7	1.8	34.5/22/	18.2 ^h	48.2 ^h	1.1 179 ^h			h	-			1 1	
	09/08		54.8	53.2 ^h	187 ^h	18.2	48.2	1/9	-	-			-	- 1	1 - 1	-
	12/08		2.90	39.8 ^k	10.29 ^k	0.0 77	0.0 ^m	- "	-	-	-	-		- 1	-	-
	02/09				-	-		-		-		7.40	5.69	7.90	-	-
	03/09		0.0	0.0	0.0	0.0	0.0	0.2	9.3	1.5	0.0	-				
Ferrous Iron (ppm)	05/06	N/A	0.1	0.2	0.2	0.5	0.3	0.3	0.2	1	0.5			1 -	-	-
	09/06	1	0,3	0.2	0.6	-	0.1	0,6	0.4	1	1	-	-	-	-	
	02/07		0.4	0.6	0.3	0.6	-	0.2	0.1	1	0.4	-	-	-	-	-
	06/07		0.3	0.4	0.2	0.5	0	0.2	0.6 0.6	0.1	0.3 0.8	_		-	-	-
	09/07		0.2	0.3	0.2	0.4 0.8	0.2 0	0.4	0.8	0.8	0.8			1 -		-
	12/07		0.1	0	0.4	0.8	0.1	0.2	0.1	0.8	0.3		-	_	1 2	_
	03/08	l.	0.3	0.8	0.4	0.4		1 1			0.4		_	_		_
	06/08	1 ·	0.2	1	-	0.0				_		_	-	-		-
	09/08		0,2	0.3	0.1	0.4	0	1			0.3		-	-	_	_
ļ — — — — — — — — — — — — — — — — — — —	12/08 02/09	ł	0.2	0.3	-	0.4			_	-		-		- 1		i
	02/09		_	0.4] _	_	-	0.2	- 1	_	- 1	- 1	-	-		
Manganese (ppm)	05/05	N/A	0	0.4	0	0	0	0	0	0	0				-	
Sulfide (ppm)	06/07	N/A	ō	ō	0	0	0	0	0	0	0	-	-	-	-	
earries (ppriv)			1			1	1						1	1		1
General Groundwater Chemistry		1											1	1		i i
Chloride (EPA Method 325.2) (mg/L)	05/06	N/A	7.4	7.9	16.5	20.5	8.8	18.1	6.8/6.7	14.0	17.5	-		1 -	-	- 1
Sulfate (EPA Method 375.2) (mg/L)	05/06	N/A	62.3	64.4	77.8	88.9	52.7	69.7	39,3/39.5	39.5	54.2	-	-	-	-	-
Chemical Oxygen Demand (EPA Method 410.4) (mg/L)	05/06	N/A	6.18	5.66	9.29	12.8	12.4	7.71	10.1/6.87	10.1	12.8	-			-	-
Alkalinity (SM 2320) (mg/L CaCO3)	05/06	N/A	336	406	358	388	309	398	233/233	372	401	-	1 -		-	-
Carbonate (SM 2320) (mg/L CaCO3)	05/06	N/A	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0/<1.0	<1.0	<1.0	-		-	-	1 -
Bicarbonate (SM 2320) (mg/L CaCO3)	05/06	N/A	336	406	358	368	309	398	233/233	372 <1.0	401 <1.0	-	-	-		
Hydroxide (SM 2320) (mg/L CaCO3)	05/06	N/A	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0/<1.0	<1.0	\$1.0	-	-	-	-	-
Dehalococcoides spp. (QCPR) •	05/06	N/A	-	+	+	+		+	-/-	+	+	-	-	-	-	-

÷

Groundwater Analytical Summary - LeatherCare, Greg Thompson Productions, and W. Roy Street Properties LeatherCare, Inc. Seattle, Washington

		Method A							Monitoring Well	l.D. ^b	의 전 문 문					
Analyte	Date Sampled	Cleanup Levels	GT1	GT2	GT3	LC1	LC2	LC3	LC4	LC5 ¹ /LC5R	LC6	LC7	LC8	LC9	Field Blank	Trip Blank
Reductive Dechlorination End Products (µg/L)		30000000000000000000000000000000000000														
Methane	05/06	N/A	96	140	100	110	590	33	98/87	220	77	-	-		-	-
	09/06	N/A	160	1,400	140/130	94	310	28	130	170	92	-		-	-	-
	02/07	N/A	150	510	51/50	45	710	96	88	140	150		-	-	-	-
	06/07	N/A	150	200	110	46	870	24	100/140	310	99	-	-	-	-	
	09/07	N/A	130	2,100	120 91	86 51	520 58	100 18	130/130 94/99	500 530	28 360		-	-	-	_]
	12/07	N/A	110 170	100 120	76/56	33	73	23	94/99	160	120	-	_	-	_	_
	03/08	N/A N/A	180	120	27	110	20	140		-	370	-	_	_		
	09/08	N/A N/A	150	260	73	150	260	120			370	-	-	_	_	
	12/08	N/A	200	110	34/33	200	40	86	_	·	450		-		-	
	02/09	N/A	200		000										_	
	03/09	N/A	150	140	34/36	240	200	86	390	330	300	-				-
Ethane	05/06	N/A	<12	<12	<12	<12	<12	<12	<12/<12	<12	<12		-	-		-
	09/06	N/A	0,49	0.34	0.05/0.045	0.24	0.22	0.04	0.11	0.21	0.097	-	- 1	-	-	_
	02/07	N/A	0.18	0.37	0.088/0.087	0.093	0.42	0.078	0.054	0.14	0.12	-	-	-	-	-
	06/07	N/A	0.24	0.30	0.054	0.034	0.32	0.033	0.10/0.11	0.21	0.086	-			-	-
	09/07	N/A	0.3	0.29	0.034	0.33	0.21	<0.025	0.052/0.052	0.22	<0.025	-		-	-	-
	12/07	N/A	0.22	0.15	0.059	0.091	<0.025	0.030	0.081/0.084	0.28	0.058			-	-	-
	03/08	N/A	0.096	0.23	0.052/0.045	0.040	0.038	0.026	-	0.16	0.065	-	-	- 1	-	-
	06/08	N/A	0.22	0.29	0.037	0.087	0.053	0.044	-		0.067	- 1	-	- 1	-	-
	09/08	N/A	0.18	0.27	0.068	0.11	0.073	0.064	-	-	0.11	-	-	-	-	-
	12/08	N/A	0.12	0.12	<0.025/0.028	0.13	<0.025	0.044	-	-	0.11	-		-	-	-
	02/09	N/A			1							1				-
	03/09	N/A	0.096	0.17	0.032/0.034	0.14	0.037	0.048	0.240	0.14	0.092				-	
Ethene	05/06	N/A	<11	<11	<11	<11	<11 0.46	<11 <0.025	<11/<11 0.05	<11 0.31	<11 <0.025	-	-	-	-	
	09/06	N/A	0.041	1.8	0.21/0.19	0.82	0.48	0.025	0.05	0.21	0.025	-	_		_	_
	02/07	N/A	0.031	1.2	0.079/0.072	0.034	0.32	0.035	0.15/0.080	0.29	0.094	_		_	-	
	06/07	N/A N/A	<0.083	1.9	0.15	0.35	0.35	0.051	0.039/0.036	0.23	<0.025	-	-	-	-	_
	12/07	N/A	<0.025	0.81	0.51	0.027	<0.025	0.22	0.029/0.034	0.18	<0.025			1 _	-	-
	03/08	N/A	<0.025	0.9	0.16/0.13	0.028	<0.025	<0.025		0.12	<0.025	-	-			
	06/08	N/A	<0.025	0.65	0.1	<0.025	0.079	<0.025	-	- 1	<0.025		- 1		- 1	_
	09/08	N/A	0.035	1.0	0.14	0.11	0.071	0.044		-	0.034		·	-	-	-
	12/08	N/A	<0.025	0.5	0.1/0.085	0.039	<0.025	<0.025	-		<0.025	2 -			-	
	02/09	N/A	1						1			1000 C			-	
	03/09	N/A	<0.025	0.51	0.066/0.070	<0.025	0.035	<0.025	0.072	0.12	<0.025	-		-	-	-
Petroleum Hydrocarbons (NWTPH-Dx) (mg/L)						1		1		1	1	-	-	-		1
Diesel	05/06	0.50	<0.25	0.32	<0.25	<0.25	<0.25	<0.25	<0.25/<0.25	0.35	0.35	-	-	- 1	— .	-
	09/08	0.50	<0.25	<0.25	<0.25/<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	- 1	-	-	- 1	-
	02/07	0.50	-	-	-	-	-	0.28	<0.25	0.42/<0.25	0.76/<0.25	-			-	-
	02/09	0.50	-	- 1		-						<0.25	<0.25	<0.25		-
Motor Oil	05/06	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50/<0.50	<0.50	<0.50	-	-			-
	09/06	0.50	<0.50	<0.50	<0.50/0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-		-	-	-
1	02/07	0.50	-		-	-	-	<0.50	<0.50	<0.50/<0.5	<0.50/<0.5		-	-	-	-
	02/09	0.50								<u> </u>	<u> </u>	<0.50	<0.50	<0.50		-

CDM

Groundwater Analytical Summary - LeatherCare, Greg Thompson Productions, and W. Roy Street Properties LeatherCare, Inc. Seattle, Washington

Monitoring Well I.D. b Method A Field Trip Date Cleanup LC4 //LC4R LC5 LC5R LC2 LC3 LC9 Levels GT1 GT2 GT3 LC1 LC8 LC7 LC8 Blank Blank Sampled Analyte Detected Volatile Organic Compounds (EPA SW8260B) (µg/L) 14/14 5 <0.2 <0.2 0.4 2.0 9.4 2.9 0.4 <0.2 ---<0.2 <0.2 05/06 ----Tetrachloroethene 9.3 8.6 <0.2/<0.2 4.4 2.8 <0.2 <0.2 ------5 <0.2 <0.2 ---09/06 <0.2 0.4/0.4 2.2 2.5 5.9 20 D 0.3 <0.2 ---------<0,2 5 <0.2 ----02/07 2.6 9.8/9.9 0.2 <0.2 06/07 5 <0.2 <0.2 <0.2 1.4 1.5 ------------5.2 7.9/7.4 <0.2 1.9 3.0 <0.2 5 <0.2 <0.2 <0.2 -------------09/07 -4.5 2.7 6.8 25/23 D 1.0 <0.2 <0.2 <0.2 <0.2 ---------5 ---12/07 <0.2 <0.2/<0.2 3.6 2.6 3.0 <0.2 <0.2 5 <0.2 ---------------03/08 ---6.2 6,8 06/08 5 <0.2 <0.2 <0.2 3.3 ----<0.2 ----------------5.8 5.1 <0.2 <0.2/<0.2 3.2 ---< 0.2 ---------09/08 5 <0.2 ----------8.2 4.2 <0.2 <0.2/<0.2 1.3 ---<0.2 ---12/08 5 <0.2 --------------<0.2 <0.2 <0.2 _ ---02/09 5 -------6.0 <0.2/<0.2 1.0 5.6 0.4 <0.2 <0.2 <0.2 03/09 5 <0.2 ••• --------2.4/2.4 0.5 <0.2 5 0.4 0.6 11 2.8 4 0.6 <0.2 ------<0.2 Trichloroethene 05/06 ---1.2/1.2 6.5 3 1.2 2.9 0.4 0.3 ------09/06 5 0.3 0.6 ---3.8 <0.2 6.3/6.9 2.8 1.4 1.0 0.2 -------------02/07 5 0.4 0.4 1.2 4.8/5.0 3.2 2.5 1.0 0.4 0.3 ... ----------06/07 5 0.2 0.5 2.8 0.6 4.8 1.7 1.8 3.2/3.1 0.4 0.2 ---_ ----09/07 5 <0.2 0.5 ---<0.2 0.5 1.4 6.1 0.5 2.2 1.8/1.8 1.2 <0.2 -------12/07 5 5 <0.2 0.6 2.6/2.6 4.6 1.3 0.8 0.8 <0.2 ----------------03/08 <0.2 0.6 1.5 4.8 4.1 1.6 ---0.3 ----------------06/08 5 -1.1/1.0 5.1 2.2 1.2 0.2 **.**... --------------09/08 5 <0.2 0.5 -------0.6/0.6 5.6 0.4 1.2 ---0,3 ------------5 <0.2 0.3 ------12/08 ---<0.2 <0.2 <0.2 ---------5 --------02/09 ---------0.8/0.9 3.9 0,7 1.0 0.7 0.4 0.2 ----<0.2 0.3 --03/09 5 <0.2 <0.2 49 D 5.9 14 2.4 7.6/7.9 3.4 2.4 -----05/06 80 4.2 16 --cis-1,2-Dichloroethene 2.6 80 3.7 24 D 13/13 15 15 4,3 10 2.5 -------------09/06 35/34 D 6.3 8.4 2.4 7.7 4.9 2.5 ---<0.2 -----02/07 80 4.9 10 ---80 22 D 16 7.6 5.0 2.4 8.6/9.0 1.6 1.8 --------06/07 3.0 -9.7 6.9 6.4 11/11 1.7 1.7 5.0 ••• --------09/07 80 2.3 18 D -12 14 9.9 1.2 8.0 7.7/7.7 4.6 1.7 -------80 ---12/07 1.8 80 19/19 6.6 2.5 2.1 3,3 1.5 ----------03/08 1.8 18 D ------7.0 2.7 1.3 ----80 11 15 4.6 _ -----------_ 06/08 2.0 ----1.0 80 2.1 8.2 20 7.9 5.2 2.9 ------_ ----------------09/08 0.8 9.2/9.8 6.2 1.2 80 6.4 1.6 --------------------------12/08 1.9 -<0.2 <0.2 <0.2 ----80 --------------02/09 ----0.5 1.2 03/09 80 1.7 8.4 6.7/6.8 3.6 1.4 1.0 2.3 -----------<0.2 <0.2 0.4/0.4 0.2 <0.2 ---<0.2 <0.2 0.9 -----160 <0.2 5 9.4 trans-1,2-Dichloroethene 05/06 <0.2 <0.2 5.4/5.4 0.4 1.3 <0.2 0.5 ------------09/06 160 <0.2 6.9 ---5.1/5.2 <0.2 0.5 <0.20 0.3 0.3 <0.2 ------<0.2 3.3 02/07 160 0.2 0.4/0.5 <0.2 <0.2 <0.2 ---160 <0.2 4.8 4.5 <0.2 0.6 -------------06/07 <0.2 5.3 2.4 <0.2 0.5 <0.2 0.3/0.4 <0.2 ------------------09/07 160 <0.2 4.2 <0.2 <0.2 <0.2 0.2/0.2 0.3 <0.2 -2.9 12/07 160 <0.2 3.3/3.1 <0.2 <0.2 <0.2 <0.2 <0.2 _ ----03/08 160 <0.2 3.1 ----------<0.2 4.6 <0.2 <0.2 <0,2 160 <0.2 3.9 06/08

ς.

CDM

Groundwater Analytical Summary - LeatherCare, Greg Thompson Productions, and W. Roy Street Properties LeatherCare, inc. Seattle, Washington

	1 - Star - St	Method A	and the second second		的现在分词				Monitoring Well	I.D, ^b				in an		
Analyte	Date Sampled	Cleanup Levels	GT1	GT2	GT3	LC1	LC2	LC3	LC4 ^I /LC4R	LC5 ¹ /LC5R	LC6	LC7	LC8	LC9	Field Blank	Trip Blank
trans-1,2-Dichloroethene	09/08	160 ^f	<0.2	2.9	5.9/5.2	0.4	0.3	<0.2	-		<0.2	-			-	-
(cont.)	12/08	160 '	<0.2	1.8	2.3/2.6	0.2	<0,2	<0.2	-	-	<0.2	-	-	-		-
(5011.)	02/09	160 ^f	_	- 1	-						-	<0.2	<0.2	<0.2		1 1
	03/09	160 '	<0.2	2.0	1.9/2.0	<0.2	<0.2	<0.2	0.2	<0.2	<0.2		-			-
1.1-Dichloroethene	05/06	0.073 ^f	<0.2	<0.2	0.3	<0.2	<0.2	<0.2	<0.2/<0.2	<0.2	<0.2	-			<0.2	<0.2
I, I-Dichiordeniene	09/06	0.073	<0.2	<0.2	<0.2/<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-		-	-
	02/07	0.073 ^f	<0,2	<0.2	<0.2/<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.20	- '	-	_	-	<0.2
	06/07	0.073 f	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2/<0.2	<0.2	<0.2	-	_		-	-
	09/07	0.073 f	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2<0.2	<0.2	<0.2		-			-
	12/07	0.073	<0.2	<0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2/<0.2	<0.2	<0.2	_	-		-	- 1
		1 1		<0.2	<0.2/<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	_			-	-
	03/08	0.073	<0.2				<0.2	<0.2		-0.2	<0.2	-	_		-	-
	06/08	0.073	<0.2	<0.2	<0.2	<0.2						_				_
	09/08	0.073	<0.2	<0.2	<0.2/<0.2	<0.2	<0.2	<0.2	-	-	<0.2				-	
	12/08	0.073	<0.2	<0.2	<0.2/<0.2	<0.2	<0.2	<0.2	-	-	<0.2	-	-		-	-
	02/09	0.073	-	-	-		-	-	-	-	-	<0.2	<0.2	<0.2	-	-
	03/09	0.073	<0.2	<0.2	<0.2/<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				<0.2	<0.2
Vinyl Chloride	05/06	0.2	<0.2	19 D	9.7	1.1	2.8	2	2.6/2.6	4.8	1.2	-		-	<0.2 	×0.2
	09/06	0.2	0.2	35 D	5.7/5.4	3.0	3.8	1.8	1.8	3.3	1.0			_	_	<0.2
	02/07	0.2 0.2	<0.2 <0.2	14	2.3	0.9	1.8	0.6	1.2/1.2	1.5	0.7	-	- 1		} _	-
	06/07	0.2	<0.2	22 D	2.1	1.4	1.4	1.0	0.8/0.8	1.3	0.3		- 1	-	-	- 1
	12/07	0.2	<0.2	13	16	1.4	<0.2	5.6	1.2/1.1	3.5	1.8	-	-	-	-	-
	03/08	0.2	<0.2	12	2.8/2.4	0.7	. 0.3	0.8	-	1.9	1.1	-	- 1	-	-	1
	06/08	0.2	<0.2	18	4.8	0.3	0.5	0.9	-	-	0.2	-	-		-	-
	09/08	0.2	<0.2	16	5.2/4.6	0.9	1.1	0.9	-	-	0.2 <0.2	-	-	_	-	_
	12/08	0.2	<0.2	11	1.7/1.8	0.6	<0.2	0.8	-			<0.2	<0.2	<0.2		-
	02/09	0.2	<0.2	9.2	1.0/1.0	0.4	0.3	0.3	1.3	1.6	<0.2	_	-		- 1	-
	03/09	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	<0.2/<0.2	<0.2	<0.2	-			<0.2	<0.2
1,1,1-Trichloroethane	05/06	0.77	0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2/<0.2	<0.2	<0.2	-	-		<0.2	<0.2
1,1,2-Trichloroethane	05/06	800 f	<0.2	<0.2	<0.2	<0.2	0.9	<0.2	0.4/0.4	<0.2	<0.2				<0.2	<0.2
1,1-Dichloroethane	05/06	5	<0.2	1.5	1.4	<0.2	0.4	<0.2	0.7/0.6	<0.2	<0.2			-	<0.2	<0.2
Benzene	05/06	1,000	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2/<0.2	<0.2	<0.2	-			0.4	<0.2
Dibromochloromethane	05/06	0.52	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2/<0.2	<0.2	<0.2	-			<0.2	<0.2
tert-Butylbenzene	05/06	N/A	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2/<0.2	<0.2	<0.2	-			<0.2	<0.2
Acetone	05/06	800	3.4 M	5.3 M	<1.0	1.5	2.3	1.3	1.5/1.7	2.1	1.7				5.2	1.5
Methylene Chloride	05/06	5	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3/<0.3	<0.3	<0.3	-		-	<0.3	0.4

CDM

۲. ۱.

Groundwater Analytical Summary - LeatherCare, Greg Thompson Productions, and W. Roy Street Properties

LeatherCare, Inc.

Seattle, Washington

Notes:

Bold and boxed values exceed Method A/B cleanup level.

- * Turbidity meter malfunctioned; judged to be <10 NTU prior to sampling based on clarity of water.
- ** Data not usable due to meter malfunction.
- a) Washington Administrative Code Chapter 173-340, Model Toxics Control Act Cleanup Regulation, promulgated August 15, 2001. Method A suggested groundwater cleanup level used when available.
- b) Second set of concentrations are from blind duplicate samples.
- c) Water in LC2 had a strong hydrogen sulfide odor and would not clear up fully; suspect turbidity is suspended organics.
- d) Silver-silver chloride reference electrode.
- e) + means dehalococcoldes detected; means dehalococcoldes not detected.
- Method B cleanup level from Washington Dept. of Ecology's Cleanup Levels and Risk Calculations (CLARC) tables.
 Dissolved oxygen meter not working correctly. Measurements, when provided, were taken on 2/20/07 and were in situ down hole measurements.
- h) Turbidity readings taken from flow-cell and high turbidity readings influenced by biofloc.
- i) Resampled and reanalyzed for TPH on February 20, 2007. The TPH analyses were run
- with a silica get cleanup to remove interference by potential naturally occurring organics. j) Value believed to be incorrect.

k) Turbidity influenced by biofloc.

- i) Destroyed by construction.
- m) "10" standard was checked and confirmed the correct instrument reading.

°C - degrees Celsius.
mV - millivolts.
NTU - Nephelometric turbidity units.
ORP - oxidation reduction potential.
N/A - not applicable.
µS/cm - micrograms per iter.
µg/L - milligrams per liter.
pg/L - milligrams per liter.
ppm - parts par million.
J - estimated value.
D - value from a diluted sample.
M - estimated anount of analyte found and confirmed by analyst but with low GC/MS spectral match.
- not analyzed or not measured.
< - analyte not detected at or greater than the listed concentration.

Table 3Mann-Kendall Statistical SummaryLeatherCare, Inc.Seattle, Washington

		GT1	GT2	GT3	LC1	LC2	LC3	LC4	LC5	LC6
		Monitoring Well								
	Count (data)	11	11	11	11	11	11	7	8	11
1,1-Dichloroethene	Count (nondetects)	11	11	10	11	11	11	7	8	11
ŧ	S Statistic	NC								
lor	Var(S)	NC								
d d	Trend		NC							
	Probability (of no real trend)	NC NC	NC							
	Count (data)		11	11	11	11	11	7	8	11
,2-Dichloroethene	Count (nondetects)	11	0	0	0	0	0	0	0	0
roet		0		-17	-15	-30	-14	-2	-8	-50
Ö	S Statistic	-36	-30 164	-17	165	164	161	43	65	164
ă	Var(S) Trend	164		Decreasing						
cis-1,2		Decreasing	Decreasing	-	-	1.18%	15.30%	43.96%	19.32%	0.01%
	Probability (of no real trend)	0.31%	1.18%	10.65%	13.79%		11	7	8	11
e e	Count (data)	11	11	11	11	11 0	0	0	4	11
l t	Count (nondetects)	11	11	9	0	1 -		-5	-6	NC
Š	S Statistic	NC	NC	NC	33	-21	19	-5	49	NC
ch	Var(S)	NC	NC	NC	165	165	163			NC
Tetrachloroethene	Trend	NC	NC	NC	Increasing	Decreasing	Increasing	Decreasing	Decreasing	NC
	Probability (of no real trend)	NC	NC	NC	0.64%	5.97%	7.93%	27.40%	23.68%	
	Count (data)	11	11	11	11	11	11	7	8	11
, and	Count (nondetects)	10	0	0	8	5	11	0	5	11
ett.	S Statistic	NC	-37	-29	NC	-34	NC	-14	NC	NC
Hor I	Var(S)	NC	163	165	NC	147	NC	41	NC	NC
trans-1,2- Dichloroethene	Trend	NC	Decreasing	Decreasing	NC	Decreasing	NC	Decreasing	NC	NC NC
	Probability (of no real trend)	NC	0.24%	1.48%	NC	0.33%	NC	2.16%	NC	
_	Count (data)	11	11	11	11	11	11	7	8	11
Trichloroethene	Count (nondetects)	7	0	0	0	0	0	0	0	3
o et	S Statistic	NC	-18	-27	13	-23	4	-5	1 -	
- P	Var(S)	NC	147	163	163	165	155	44	57	112
1 2	Trend	NC	Decreasing	Decreasing	Increasing	Decreasing	Increasing	Decreasing	None	None
	Probability (of no real trend)	NC	8.02%	2.09%	17.36%	4.34%	40.49%	27.40%	50.00%	50.00%
	Count (data)	11	11	11	11	11	11	7	8	11
ide	Count (nondetects)	10	o	0	0	2	0	0	0	2
Vinyl Chloride	S Statistic	NC	-28	-17	-26	-33	-27	-8	-10	-31
N N	Var(S)	NC	164	165	162	163	163	41	65	156
5	Trend	NC	Decreasing							
	Probability (of no real trend)	NC	1.75%	10.65%	2.48%	0.61%	2.09%	13.62%	13.28%	0.82%

.

1

Figures Figures

P:\56498\59679\Steve R.H\ Fig-1 07/09/07 09:39

riehlepj

LEATHERCARE INC. SEATTLE, WASHINGTON

Figure No. 1 VICINITY MAP

POWER POLE

LC7		C8 @	of the second seco	
	•	- i	UNIKNOWN LC9 @	
			PIPING System	VEGETATION
				he as a second
	<u>╆</u> ╫╫╫╫╫╫╫╫╢	+++++++++++	<u>╶╶╼╼</u> ╶┊ <u>┽┽┽┽╷╷╷╷╷╢╷╷╷╷╷╷╷╷╷╷</u>	
		1	2	RAILROAD TRACKS
I++++++++++++++++++++++++++++++++++++		ŀ	╷╷╷╷╷╷╷╷╷╷╷╷╷╷╻╻╻╻╞ ╪╪╪╪╪╪╪	╡╡╡ ╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪
	LOADING RACK			
++++++++++++++++++++++++++++++++++++				
		H	╵╿╿╿╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎	┢╡<u>╋</u>╞<mark>┝╶╎╎╎</mark>╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎
	┼┼┼┼╎╎╎╎╎╎			
	┼╶┟┼┼┼┼┼┼┼┼┼┼┼┼	+++++++++++++++++++++++++++++++++++++++	┆╎╎╎╎╎╷╖╖┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶ ╹╹╵╎╎╵	╵ ^{┑┲┿┲┿┲} ┥╏┝╎╎╎┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙ <u>╎</u> ╡╪╪╪╋┿╅┿╅╋╅╋╅╋┙┙┙┙┙┙┙┙┙┙┙┙┙
		,,,,,,,,,,,,,,,	╎╎╎╎╎╫╬╪╪╪╪╪╪╎╎╎╎╎╎╎╎╵╵╵	
	\sim			_{{\{\}}}}}}
	<u> </u>		·	
			OFFICE BUILDING	REFERENCE
				- SURVEY
Louis dremfus corp.				
				– ENTRIX,
				- ENTRIX
				FOODS SIT
				-HISTORIC/
				-SANBORN

LEATHERCARE INC. SEATTLE, WASHINGTON

1X17BDR

ģ

┝╉╃╊╋╬╁╋╴╃╄╅╋╋╋╄╋╋╋╋╋ ╅╡╴╪╪╪╶╎╏╞╪╪╪╪╞╞╞╞╞╞ ╶╶╶╴╴

╶┼┞╿╷╿╎╿╽╋╋╋╪╪╪╪╪╪╪╪╪ ╎┥╎╄╪╪╪╪╪╪╪╪┊╎ ┷┙╵╴╍╌╴ ┿┎╶╻╶╻╶╶ ╋┇╹╏╏┨╡╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋

OF MONITORING WELL LOCATIONS BY APEX ENGINEERING ON M ASSUMED VERTICAL DATUM AND BASIS OF BEARIN- FIELD MEAS BUILDINGS BY

NEST FARM FOODS FIELD INVESTIGATION DATA SUMMARY NURGINMENTAL DATA SUMMARY FROM PREVIOUS STUDIES AND REPORTS. WEST FARM

10 2001 FIGURE-3

AL AFRIAL PHOTOGRAPHS DATED 1936 AND 1946

MAP DATED 1950.

-POLK DIRECTORIES DATED 1938-1996

Site Plan And Monitoring Well Location Map

Figure No. 2

REFERENCES:

- Survey of monitoring well locations by APEX Engineering on May 10, 2006 Using an assumed Vertical datum and basis of bearing.
- FIELD MEASUREMENTS OF LEATHERCARE AND GREG THOMPSON PRODUCTION BUILDINGS BY CDM ON MAY 10, 2006.
- ENTRIX, WEST FARM FOODS FIELD INVESTIGATION DATA SUMMARY REPORT, MAY 10, 2001, FIGURE 2.
- ENTRIX ENVIRONMENTAL DATA SUMMARY FROM PREVIOUS STUDIES AND REPORTS, WEST FARM FOODS SITE, MAY 10, 2001. FIGURE-3.
- -HISTORICAL AERIAL PHOTOGRAPHS DATED 1936 AND 1946.
- -SANBORN MAP DATED 1950.
- -POLK DIRECTORIES DATED 1938-1996

LEATHERCARE INC. SEATTLE, WASHINGTON

CDM

LEGEND:

(11.92)

- MONITORING WELL LOCATION AND LC6 🕑 DESIGNATION WITH GROUNDWATER ELEVATION IN FEET
- MONITORING WELL DESTROYED LC5@
- -----11.2 ---- POTENTIOMETRIC CONTOURS, CONTOUR INTERVAL IS 0.1 FT.
 - DIRECTION OF GROUNDWATER FLOW
 - FENCE
- ++++++++++++++++++ RAILROAD TRACKS
 - E CATCH BASIN

INDICATES HISTORICAL FEATURES

HISTORICAL FEATURES

VERTICAL DATUM:

STAMPED ON BRASS MONUMENT NOT TIED TO CITY OF SEATTLE (NOT PUBLISHED)

BASIS OF BEARING:

BASIS OF BEARING ASSUMED DUE WEST

Figure No. 3 Potentiometric Surface Map March 25, 2009

Appendix A

Appendix A Boring Logs and Well Construction Details

5

					SO	IL CLASS	IFIC	; A	TION	LE	GEND					
	MAJO	r di	VISIONS	;			ΓΥΡΙΟ	CA	L NAI	MES		SAM	IPLE	E TYPE SYMBOLS		
	GRAVE	15	Clean grav	els with	GW	Well graded gra	Well graded gravels, gravel-sand mixtures					\square	Dist	turbed bag or jar sample		
ger ger	More than	half	little or no	o fines	GP	Poorly graded g	Poorly graded gravels, gravel-sand mixtures						Std.	. Penetration Test (2.0" OD)		
D Si large	coarse fra is larger t	han	Gravel	with	GM 🚬	Silty gravels, gra	ty gravels, gravel-sand-silt mixtures						Тур	e U Ring Sampler (3.25" OD)		
AINE alf is	No. 4 sieve	: size	over 12%	fines	GC	Clayey gravels,	gravel-	el-sand-clay mixtures					•••	ifornia Sampler (3.0" OD)		
ARSE GRAINED SC More than half is larger than No. 200 sleve	SAND	S	Clean san	ds with	sw-	Well graded sar	raded sands, gravelly sands									
than t	More than	half	little or no		SP	Poorly graded s	Poorly graded sands, gravelly sands						Und	Undisturbed Tube Sample		
COARSE GRAINED More than half is larg than No. 200 sieve	is smaller	than	Sands	with	SM	Silty sand, sand	-silt mix	ture	S			G	Gra	b Sample		
ľ	No. 4 sieve	e size	over 12%		sc //	Clayey sands, s	and-cla	y mi	xtures			1 Ц		e Run		
ທີ່	_				ML	Inorganic silts and clayey fine sand	nd very s, or cla	fine	sands, ro silts with	ock flou n slight p	r, silty or plasticity			n-standard Penetration Test h split spoon sampler)		
FINE GRAINED SOILS More than haif is smaller than No. 200 sieve	SI Liq		AND CLAY it less than t	-	CL	Inorganic clays clays, sandy clay						CON	ITAC	T BETWEEN UNITS		
If is s					OL : Organic clays and organic silty clays of low plasticity											
AIN No.2					МН	HI Inorganic silts, micaceous or diatomaceous fine sandy or						Change in geologic unit				
INE GI More than than	l SI Liqui		AND CLAY greater than		СН	Inorganic clays of high plasticity, fat clays					Soil type change within geologic unit					
FIN ⊮			9		ОН	Organic clays of	Organic clays of medium to high plasticity, organic silts					Obscure or gradational change				
	HIGHLY	ORG/		S	PT ***	Peat and other h	nighly or	y organic soils								
DE	SCRIPT	ORS	S FOR S	TRATA		CTUF	URE (ENGLISH/METRIC					MOISTURE DESCRIPTION				
	Parting:	less ((1/6 (than 1/16 in.		Pocket:	Erratic, discontir	uous	N	ear horiz	zontal:	0 to 10 deg.		iry - F	ree of moisture, dusty		
g	Seam:	1/16 to 1/2 in. (1/6 to 1 1/4 cm)				deposit of limited extent	Attitude p		ow angle	e:	10 to 45 deg.	Мо)amp but no visible ree water		
Thickr pacing	Layer:	1/2 to 12 in. (1 1/4 to 30 1/2 cm		Ctructure	Lens:	Lenticular depos			igh angle	-		w	et - V	isible free water, saturated		
General Thickness or Spacing	Stratum:	> 12 in. (30 1/2 cn		n) Is	Varved:	Alternating seam of silt and clay	10		ear Verti	<i>ica</i> . c	80 to 90 deg.		WELL			
Ge	Scattered:	< 1 p	er ft. (30 1/2	cm)	Laminated	-		1					CC	OMPLETIONS		
	Numerous:	> 1 p	er ft. (30 1/2	cm)	Interbedde	d: Alternating layer	s				Concrete Seal					
ST	RUCTUR	RE DE	SCRIPT	ION (c	ont.)							Dente		I Casing		
	ractured		-			ctured planes								ter Level ∇		
	kensided ky, Diced	В	reaks easily	y into sn	nall angula	red planes I angular lumps							Slotted Well Casing			
11	Sheared geneous				x of strengths earance throughout							Sand Backfill				
	-				· · · ·							Impermeable Backfill				
			VE DEN SE GRAIN		OR CON	ISISTENCY					E]					
	ensity		blows/ft)	Approx	. Relative			RAINE	Approx	. Undrained	PHYSICAL PROPERTY TI AL - Atterberg Limits					
Verv	Loose) to 4		sity (%) - 15	Very Soft		0 to	2		r Str. (psf) <250	FC GSD	- Fi - G	ines Content rain Size Distribution		
Loose			to 10		- 35	Soft		2 to			0 - 500	MC MD	- M	loisture Content loisture Content/Dry Density ompaction Test (Proctor)		
Mediu	m Dense) to 30		- 65	Medium Stiff		4 to		-	0 - 1000	Comp SG CBR	- S	pecific Gravity alifornia Bearing Ratio		
Dens	e Dense) to 50 ver 50		- 85 · 100	Stiff Very Stiff		8 to 5 to	- I		0 - 2000 0 - 4000	RM Perm	- R	esilient Modulus ermeability		
Very	Dense	Ŭ		00	100	Hard		over	1		>4000	TXP Cons	- C	riaxial Permeability onsolidation		
Note	<u>s:</u>					·					i	Chem Corr VS	- C	nalytical Chemical Analysis orrosion ane Shear		
1. Sa		ptions	in this repor	t are bas	sed on visua	al field and laborat	ory obs	serva	ations, w	vhich			- D	irect Shear nconfined Compression		
includ	e density/co	nsiste	ncy, moistur	e conditi	ion, grain si	ze, and plasticity e ented herein. Vis	estimate	es, a	and shou	uld not l	be		- Ti - U	riaxial Compression nconsolidated, Undrairied		
metho	ods in accor	dance	with ASTM	D 2488 v	vere used a	s an identification	guide.				data			onsolidated, Undrained onsolidated, Drained		
				-		nits with 5 to 12	Ē				Leath	erCa	e, li	nc.		
perce	nt fines.	are US	50 IU IIUICAI	e gravel	anu safiù U	inte widt o to TZ						ater Monitoring				
	OR = weight	t of roc	l.								Seattle	, Was	shing	gton		
CD	M						Project No: 56498.68247 Figure: A1					Figure: A1				

.

	Other Tests	Sample No.	Moisture Content (%)	Dry Density (pcf)	PID (ppm)	Penetration Resistance (blows / 6 in.)	Depth (feet)	Sample	uscs	Symbol	Boring Log LC-4R	Elev. (feet)	Well or Piezomete Completio
		Sa	≚ů	ద్ది	JId	ਰੂ <u>ਲ</u> ੂ ਹੁੰ	<u> </u>	Sa	SN	Sy	DESCRIPTION Air vac'd to 5 ft bgs.	Ele	
						-	2				No sample recovery.		
							⊻ - 4 -				4		
						22 19 18	- - 6 -				Slightly Silty, Gravelly SAND (SP), gray-brown, fine to coarse grained, subangular to subrounded, well graded sand, fine to medium, subangular gravel, loose, wet, no odor.		
						2 2 2	8 -		SC CL		As above, with some broken shells at 7.5 ft bgs. Sandy CLAY (SC-CL), dark gray, fine grained, poorly graded sand, low plasticity, soft, wet, no odor. Slightly Sandy CLAY (CL), dark gray, fine grained, poorly graded sand, low plasticity, soft wet, slight odor.		
.GDT 5/12/09 REV.						3 14 20					Slightly Gravelly, Silty SAND (SM), dark gray, fine to coarse grained, subangular, well graded sand, fine, subangular, poorly graded gravel, loose, wet, broken shells throughout, no odor.		
56498-68247-LOGS FEB 2009.GPJ CDM_BLLV.GDT 5/						2 3 3	12-		SM				
							14				CLAY (CL), dark gray to gray-green to black, trace organics, low plasticity, stiff, moist to wet. Boring terminated at 14 ft bgs. Groundwater encountered at 3.5 ft bgs.		
LOG OF BORING WITH WELL	Surface E		tion:	KMB			ł				Drill Rig: HSA LAR Equipment/Hammer: <u>3" Split Spoon/</u> Date Completed: <u>2-24-09</u>	I	
LOG OF BOR											LeatherCare, Inc. Groundwater Monitoring Seattle, Washington		
	CDM	1									Boring Log LC-4R Project No: 56498.68247	Fi	igure: A3 1 of 1

	Other Tests	Sample No.	Moisture Content (%)	Dry Density (pcf)	PID (ppm)	Penetration Resistance (blows / 6 in.)	Depth (feet)	Sample	uscs	Symbol	Boring Log LC-5R	Well or Piezometer Completion
56498-68247-LOGS FEB 2009.GPJ CDM_BLLV.GDT 5/12/09 REV.						8 5 8 9 7 10 12	$ \begin{array}{c} $		GW		Air vac'd to 4.5 ft bgs. No sample recovery. Slightly Silty, Sandy GRAVEL (GW), dark gray, fine to coarse grained, subrounded, well graded sand, fine to medium, subargular to rounded, well graded gravel, loose, wet, some broken shells. As above, with increasing sand. SILT (ML), green-gray to dark gray, low plasticity, soft, wet, no odor. Slightly Gravelly, Silty SAND (SM), dark gray, fine to coarse grained, subangular, well graded sand, fine, poorly graded, subangular, well graded sand, fine, poorly graded, subangular, well graded sand, fine, green-gray, fine to coarse grained, subangular, well graded sand, fine to medium, subangular, poorly graded gravel, low plasticity, very soft, wet. Slightly Sandy, Gravelly Silty CLAY (CL), green-gray, fine grained, subangular to subrounded, poorly graded sand, low plasticity, soft, wet. Silty SAND (SM), dark gray, fine to medium grained, subangular to subrounded, poorly graded sand, low plasticity, soft, wet. Silty SAND (SM), dark gray, fine to medium grained, subangular to subrounded, poorly graded sand, low plasticity, soft, wet. Silty SAND (SM), dark gray, fine to medium grained, subangular to subrounded, poorly graded sand, low plasticity, soft, wet. Silty SAND (SM), dark gray, fine to medium grained, subangular to subrounded, poorly graded sand, low plasticity, soft, wet. Silty SAND (SM), dark gray, fine to medium grained, subangular to subrounded, poorly graded sand, low plasticity, soft, wet. Silty SAND (SM), dark gray, fine to medium grained, subangular to subrounded, poorly graded sand, low plasticity, soft, wet. Silty SAND (SM), dark gray, fine to medium grained, subangular to subrounded, poorly graded sand, low plasticity, soft, wet. Silty SAND (SM), dark gray, fine to medium grained, subangular to subrounded, poorly graded sand, medium dense, wet, some shell fragments, no odor. Flowing/heaving sand at 12 ft bgs. No sample recovery.	
H WELL	Surface E		tion:_	KME	3						Drill Rig: <u>HSA LAR</u> Equipment/Hammer: <u>3" Split Spoon/</u> Date Completed: <u>2-25-09</u>	
LOG OF BOR					<u></u>						LeatherCare, Inc. Groundwater Monitoring Seattle, Washington Boring Log LC-5R	Figure: A4
L.	CDM					<u>.</u>					Project No: 56498.68247	1 of 1

Appendix B Analytical Laboratory Reports

Analytical Resources, Incorporated Analytical Chemists and Consultants Received APR 09 2009

April 3, 2009

Ms. Pam Morrill CDM 11811 NE 1st, Suite 201 Bellevue, WA 98009

RE: Project ID: Leathercare, 56498-68247 ARI Job No: OS43

Dear Pam:

Please find enclosed the original Chain-of-Custody (COC) records, sample receipt documentation, and the final results for the samples from the project referenced above. Analytical Resources Inc. (ARI) accepted ten water samples and a trip blank on March 26, 2009 under ARI job OS43. The trip blank was put on hold upon receipt, as requested on the COC. For further details regarding sample receipt, please refer to the enclosed Cooler Receipt Form.

The samples were analyzed for Volatile Organics by SW8260B, as requested on the COC.

The matrix spike duplicate percent recovery of Vinyl Chloride fell outside the advisory control limits for sample **LC3-03/09**. No corrective action is required for matrix QC.

There were no anomalies associated with the analysis of these samples.

An electronic copy of this report as well as all supporting data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro

Cheronne Oreiro Project Manager (206) 695-6214 <u>cheronneo@arilabs.com</u> www.arilabs.com

cc: eFile OS43

Enclosures

 CHAIN-OF-CUSTODY

 Date 3/26/09
 Page _____ of ____

.

0S43											Dat	te _	4	<u>3 </u>	26	·/l	29	/ 			F	'ag	je _		Ζ		_ c	of	ð	<u> </u>	
PROJECT INFORMA	TION	Lat	oora	tor	уN	um	ber:																								
Project Manager: Pan Marrill												1	ANA	LY	SIS	S R	EC	UE	ES'	Г											
Project Name: Letther cue			PETR				OB	GΔI		OM	POU	NDS		-st	S/P(CBs		98934899	8 4 E		. 6	11220200			CHI				HER		255299756
Project Number: <u>56498-6824</u>							L				-						_					2			ST		╞			┯╋	z
Site Location: Elicat Ave Wi Mercer M.	Sampled By: <u>MU</u>	TPH-HCID	TPH-G	TPU-410.1	15M	H Sp	10 H			12 G	B310 PAHs	DWS -	80 C	8080M		R150 0		gani	Ì.			1 0	; F	1,	Ī	TCLP -					NUMBER
DISPOSAL INFORM	ATION	[8		0	8015M Fuel Hydrocarbon	TPH Special Instructions	8010 Halogenated VOCs		8240 GC/MS Volati	8270 GC/MS Semivolatiles	B310 PAHs	Volatiles and	8080 OC Pest/PCBs	PCBs only	8140 OP Pesticides	B150 OC Herbicides	DW/C Horb/Doct	Organic Lead	I CL Metais (23)	TCI Motolo (22)		- Metals (Wa)	Volatiles		Pes	Metals					Π
Lab Disposal (return if not ind	icated)	- s	s	ه ام	, Hyd	Inst	enate		a s	S Se	Ū	tiles	est/P	son	stici	hini da			5	20 Met		als (tiles	Semivolatiles	Pesticides	als					유이
Disposal Method:		State:	State:	State:	rocat	ructi			nlv latile	mivo		and	CBs	Y	des 3		+ 12	[] <u>e</u>	2	ais (2	Wa)	(ZHE)	liles	ů,		1				CONTAINERS
Disposed by: Dispos		8			bon	suc	S		S	latile		Sem								<u>ن</u>	3			, ,							ANE
QC INFORMATION (ch										s		Semivolatiles			1		1														R
SW-846 CLP Screening		8										liles																			
	IME MATRIX LAB ID	<u> </u>			+				+				-				+						╇			-				$\left - \right $	
	245 Water			_	_		╉╌┼	+				_			\rightarrow	_	╇		+	_	-	+-	╀	+	+			$\left \right $		+	33
	bo Water				-		┞╌┾	+	Ĵ	4		+	+		-+		╉		+	┿		+	╋	-	+	+	$\left - \right $	$\left \right $		+	23
	15 Witer				+	+	++		-1			_	┢				+	╀	-			-	╋	+	+				+		23
6T10-03/69 376/09 1	820 Willer	-				+	╂┼	-+	Ť		+					+	-	+		-		+	╀	+	┼		+			+	3
	10 Water	+	$\left \right $			+	+	\rightarrow		4			╉	-		-+-	╉	+					+	+	-	+	+				3
	D Welle					+	╉┼┼		K								╉					+	+	+		+	-	+			8
	70 Wiler	+		+		+	+	+	V				╞		F	120	杮	۲ŀ					-	+	╎		\uparrow				3
he pe - 4 lopan	SAMPLE REC						REL	581		eu		DV.		Lpn."		e bu								DE	-				ED B	 V.	
LAB INFORMATION	Total Number of Containers:				1963-0	350.30	Strend Solar	17.2018772	Dis Alter In	Contraction of the second	1	10.00	100100							7		Time	:	202212020	natu	15 1 10 2011		21.11	. L	Tir	10000000000
Lab Address: 4611 5. 134th pl	Chain-of-Custody Seals: Y/N	I/NA				Ť	ΠĶ	M	fo	n 9	Or.		Time:		1.00		> <i>'b</i>	Vo	~	•		Date	-	Prin	ted	Name					ite:
Tokurkz WA	Intact?: Y/N/NA					['	Printe	214	<u>ĺ</u>	v /	- Ø	3	24	07	Joi	AA4	he	nl	Na.	ller	- 3	124									
Via: Uzna debivered	Received in Good Condition/C	Cold	:				Compa	勁	m				ſ	C	Comp	any: A	R.	T		`				Co	npar	ıy:					
Turn Around Time: 🔀 Standard 🗆	24 hr. 🗌 48 hr. 🗌 72 h	٦r.		1 w	/k.		REC	EI	VED) B'	<i>l</i> :		1.	F	REC	CEI	VE	DI	ЗY	•		2	2.	R	EC	EIV	'ED	B)	ľ:		3.
PRIOR AUTHORIZATION IS	REQUIRED FOR RUSH	DA	ГА	C.			Signat	ure:					Time:	5	Signat	ure:						Time	»:	Sig	natu	re:				Tir	ne:
Special Instructions: Helogen der V Matterial VING for LC3-	oc list for Leither	C21	e _^			-	Printec	i Na	me:				Date:	F	Printed	d Nar	ne:					Date	3 :	Prii	nted	Name	e:			Da	ate:
Additional villes for LC3.	03/09 for MS/	ms	\mathcal{P}			F	Сотра	any:						- (Comp	any:							+	Со	mpar	ıy:					
								NJ. 1	A/bite			+0 A	nohd		l ob	orot		, Dir						Eil					Dier	0001	

DISTRIBUTION: White, Canary to Analytical Laboratory; Pink to CDM Project Files; Gold to CDM Disposal Files forms\field\chain of custody.p65

 Date
 3/26/09
 Page
 2
 of
 2

PROJECTINFORM	ATION	L	abo	rato	ory I	Num	nber	r:																				
Project Manager: Pan Morrill		_							Barry				4N/	ALY	'SIS	S R	EQ	UE	ST			0.1						anne de la companya de la companya El companya de la comp
Project Name: Lethercare			PE	RO	LEU	IM ONG					EST	STS/PCBs METALS				1	LEACHING TESTS			OTHER		I						
Project Number: 56498 - 68 Site Location: Elliott Are WE Mercel	5247			300													<u> </u>					≤i						Z
Site Location: Elligt Ave WE Mercel	Sampled By:		TPH-G	TPH-D	H ₄	15M	ē	20 /		8	10 F	40	100 0	80M	6	50 0		gani	ř	iority	ŝ	Ϋ́Ρ						NUMBER
DISPOSAL INFORM	ATION	Ē			TPH-418.1 State:	TPH Special Instructions 8015M Fuel Hydrocarbor	8010 Halogenated VOCs	8020 Aromatic VOCs	8020M - BETX only	8270 GC/MS Semivolatiles	8310 PAHs	8040 Phenols	8080 OC Pest/PCBs	8080M PCBs only	8140 OP Pesticides	B150 OC Herbicides	Selected Metals: list	Organic Lead (Ca)	TCL Metals (23)	Priority Poll. Metals (13)	Met	MFSP - Metals (Wa)		אד פין	Metals			H H
Disposal (return if not inc	dicated)					Hvd	lenat	atic		S S			est/F	s on	estici	erbic	etals		(23)	Me	als	tals	Volatiles (ZHE)	Semivolatiles	als	·		<u>ନ</u> ୍
Disposal Method:			State:	State:	State		ed <	0 0				a Z	CBg	lγ	des	ides	: list	à		tals (Wa)	Â	atiles	3			Ĭ
Disposed by: Disposed	al Date:						OC	00	8											13)		ł	•	"			HA	CONTAINERS
QC INFORMATION (ch										Se																		ERS
J	CDM Std. Special	V. CAMPANING												ļ														
1 1 1	TIME MATRIX LAB	ID								_				<u> </u>							_			_		_		
	215, Water		_						<u> </u>	/							╞	<u> </u>					\rightarrow	_	_	_		3
	345 Wales		_	ļ'						V	_					_		-										101
Trip BIZNE 32609 -	- Water		_						Дı	sla				<u> </u>				_						_		<u> </u>		2
			_	ļ									_	ļ		_	_	-						\downarrow		_	╄╄	B
					$\left \right $									<u> </u>										\downarrow	_			
				ļ							_						_	_	_					\rightarrow		-		
											_						_									+		
·																				ł								
LAB INFORMATION	SAMPLE F	ECE	IPT				RE	ĻIN	IQL	lisi	-IEC) BY	: 1	5000 11 C 2- 0		IN	QU	ISH	IED	B	0.004/0.800	21120120-0121	0 836-76	(1900) - 1960 - 1960 (1970) - 1960 - 1960 (1970) - 1960 - 1960	r og staanser		SHED B	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Lab Name: APF	Total Number of Contain						Sight	ature:	How	7	, OK	J	505		Signat	ture:					Tir	ne:	Si	ignatı.	Ire:			Time:
Lab Address: 4611 5.134th p/ Tulloilz, WA	Chain-of-Custody Seals:	Y/N/N	IA 	ļ			PIN	eg Na	ame:		Ē				Printe	d Nan	ne:				Da	ate:	Pi	rinted	Nam	e:		Date:
TUKLOILZ WAT	Intact?: Y/N/NA						Com	Ury Inany	10	0	10	ĸz	<u>26/</u>	<i>51</i>	Comp	anv:		<u> </u>					+	ompa				
Via: 22 Via: Aclivered Received in Good Condition/C			ld:				Č			M			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	135986 1369		-				al dest		Sec. 1	11 (00)(12)	ooterilited				S. Carlor M.
Turn Around Time: Standard 24 hr. 48 hr. 72 h			0000000	A.C.2.2.6	wk.	and the second	RE	CAPPORT	and an owned	224000000	A Manual Same			280010 2003	55.03.094.Pl	CEI	VEI) E	BY:		ACC: NO	2.	02 24003	entranse	oution of the	/EC) BY:	3. Time:
PRIOR AUTHORIZATION IS REQUIRED FOR RUSH I			ATA	L			Sign	ature N	-1	1st		16	Time		Signa	iture:					11	me:	S	ignati	ure:			
Special Instructions:							Printed Name: Date: Printed Name:						D	ate:	Printed Name: Date			Date:										
							Com	pany	101	<u>n v</u>	va <u>r</u> t	* 64	иql		Comp	oany:			-					Compa	any:			
							L f	<u>th</u>	1							-												

DISTRIBUTION: White, Canary to Analytical Laboratory; Pink to CDM Project Files; Gold to CDM Disposal Files forms\field\chain of custody.p65

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Receipt Form
ARI Client:	Project Name: <u>Lea Her cove</u> Delivered by: Fed-Ex UPS Counier Hand Delivered Other: Tracking No:
Preliminary Examination Phase:	
Were intact, properly signed and dated custody seals attached to the	outside of to cooler? YES NO
Were custody papers included with the cooler?	
Were custody papers properly filled out (ink, signed, etc.) Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry	
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID#: / U/886
Cooler Accepted by:Da	ite: 3/26/09 Time: 150.5
Complete custody forms and a	ttach all shipping documents

Log-In Phase:

Was a temperature blank included in the cooler?	YES	NO
What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Baggies Foam Block Pap	er Other:	
Was sufficient ice used (if appropriate)? NA	YES	NO
Were all bottles sealed in individual plastic bags?	YES	NO
Did all bottles arrive in good condition (unbroken)?	ES	NO
Were all bottle labels complete and legible?	Ē	NO
Did the number of containers listed on COC match with the number of containers received?	(YES)	NO
Did all bottle labels and tags agree with custody papers?	TES	NO
Were all bottles used correct for the requested analyses?	(ES)	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs)) YES	NO
Were all VOC vials free of air bubbles? NA	YES	NO
Was sufficient amount of sample sent in each bottle?	ES	NO
Samples Logged by: <u>AV</u> Date: <u>3/27/09</u> Time: <u>83</u>	5	

** Notify Project Manager of discrepancies or concerns **

Sample ID on E	ottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
Additional Notes, D LC3-03/C LC4R-03	9 = 1 Pk $309 = 1S$	m Trip!	blanks=3pb	
By: AV Small Air Bubbles	Peabubbles'	LAIRGE Air Bubbles	Small → "sm"	
- 2:mm	2-4 mm	> 4 mm	Peabubbles → "pb" Large → "lg"	
l			Headspace → "hs"	

Sample ID: GT1-03/09 SAMPLE

Lab Sample ID: OS43A LIMS ID: 09-7500 Matrix: Water Data Release Authorized:

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 12:57 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/26/09 Date Received: 03/26/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75~35~4	1,1-Dichloroethene	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	1.7	
79-01-6	Trichloroethene	0.2	< 0.2	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	97.5%
Bromofluorobenzene	98.8%

Sample ID: GT2-03/09 SAMPLE

Lab Sample ID: OS43B LIMS ID: 09-7501 Matrix: Water Data Release Authorized: Reported: 04/10/09

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 13:24 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/26/09 Date Received: 03/26/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.2	9.2	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	2.0	
156-59-2	cis-1,2-Dichloroethene	0.2	8.4	
79-01-6	Trichloroethene	0.2	0.3	
127-18-4	Tetrachloroethene	0.2	< 0.2	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	100%
Bromofluorobenzene	95.3%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 1

Sample ID: GT3-03/09 SAMPLE

Lab Sample ID: OS43C LIMS ID: 09-7502 Matrix: Water Data Release Authorized: Reported: 04/10/09

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 13:52 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/26/09 Date Received: 03/26/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q .
75-01-4	Vinyl Chloride	0.2	1.0	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	1.9	
156-59-2	cis-1,2-Dichloroethene	0.2	6.7	
79-01-6	Trichloroethene	0.2	0.8	
127-18-4	Tetrachloroethene	0.2	< 0.2	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	98.5%
Bromofluorobenzene	97.1%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 1 Sample ID: GT10-03/09 SAMPLE

Lab Sample ID: OS43D LIMS ID: 09-7503 Matrix: Water Data Release Authorized:

. - °

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 14:19 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/26/09 Date Received: 03/26/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.2	1.0	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	2.0	
156-59-2	cis-1,2-Dichloroethene	0.2	6.8	
79-01-6	Trichloroethene	0.2	0.9	
127-18-4	Tetrachloroethene	0.2	< 0.2	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	99.1%
Bromofluorobenzene	96.3%

Sample ID: LC1-03/09 SAMPLE

Lab Sample ID: OS43E LIMS ID: 09-7504 Matrix: Water Data Release Authorized: Reported: 04/10/09

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 14:46 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/26/09 Date Received: 03/26/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.2	0.4	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	3.6	
79-01-6	Trichloroethene	0.2	3.9	
127-18-4	Tetrachloroethene	0.2	6.0	

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	106%
Bromofluorobenzene	96.2%

ORGANICS ANALYSIS DATA SHEET

Sample ID: LC2-03/09 SAMPLE

Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 1

Lab Sample ID: OS43F LIMS ID: 09-7505 Matrix: Water Data Release Authorized: Reported: 04/10/09

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 15:13 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/25/09 Date Received: 03/26/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.2	0.3	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	1.4	
79-01-6	Trichloroethene	0.2	0.7	
127-18-4	Tetrachloroethene	0.2	1.0	

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	101%
Bromofluorobenzene	97.1%

Sample ID: LC3-03/09 SAMPLE

Lab Sample ID: OS43G LIMS ID: 09-7506 Matrix: Water Data Release Authorized: Reported: 04/10/09

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 15:40 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/25/09 Date Received: 03/26/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.2	0.3	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	υ
156-59-2	cis-1,2-Dichloroethene	0.2	1.0	
79-01-6	Trichloroethene	0.2	1.0	
127-18-4	Tetrachloroethene	0.2	5.6	

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	101%
Bromofluorobenzene	94.1%

Sample ID: LC4R-03/09 SAMPLE

Lab Sample ID: OS43H LIMS ID: 09-7507 Matrix: Water Data Release Authorized: A Reported: 04/10/09

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 16:07 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/25/09 Date Received: 03/26/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.2	1.3	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	0.2	
156-59-2	cis-1,2-Dichloroethene	0.2	2.3	
79-01-6	Trichloroethene	0.2	0.7	
127-18-4	Tetrachloroethene	0.2	0.4	

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	102ቼ
Bromofluorobenzene	94.0%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 1 Sample ID: LC5R-03/09 SAMPLE

Lab Sample ID: OS43I LIMS ID: 09-7508 Matrix: Water Data Release Authorized: Reported: 04/10/09

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 16:34 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/25/09 Date Received: 03/26/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.2	1.6	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	1.2	
79-01-6	Trichloroethene	0.2	0.4	
127-18-4	Tetrachloroethene	0.2	< 0.2	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	99.9%
Bromofluorobenzene	97.5%

Sample ID: LC6-03/09 SAMPLE

Lab Sample ID: OS43J LIMS ID: 09-7509 Matrix: Water Data Release Authorized: Reported: 04/10/09

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 17:01 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/25/09 Date Received: 03/26/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	0.5	
79-01-6	Trichloroethene	0.2	0.2	
127-18-4	Tetrachloroethene	0.2	< 0.2	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	102%
Bromofluorobenzene	96.4%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-033009	Method Blank	10	99.1%	NA	97.7%	NA	0
LCS-033009	Lab Control	10	96.7%	NA	102%	NA	0
LCSD-033009	Lab Control Dup	10	97.0%	NA	100%	NA	0
OS43A	GT1-03/09	10	97.5%	NA	98.8%	NA	0
0543B	GT2-03/09	10	100%	NA	95.3%	NA	0
0543C	GT3-03/09	10	98.5%	NA	97.1%	NA	0
OS43D	GT10-03/09	10	99.1%	NA	96.38	NA	0
0543E	LC1-03/09	10	106%	NA	96.2%	NA	0
OS43F	LC2-03/09	10	101%	NA	97.1%	NA	0
OS43G	LC3-03/09	10	101%	NA	94.18	NA	0
OS43GMS	LC3-03/09	10	98.6%	NA	98.7%	NA	0
OS43GMSD	LC3-03/09	10	104%	NA	98.0%	NA	. 0
OS43H	LC4R-03/09	10	102%	NA	94.0%	NA	0
OS43I	LC5R-03/09	10	99.9%	NA	97.5%	NA	0
OS43J	LC6-03/09	10	102%	NA	96.4%	NA	0
		LCS	/MB LIMI	TS		QC LIMI	TS
SW8260B							
(DCE) = d4 - 1	,2-Dichloroethane		70-130			70-13	0
(TOL) = d8 - Tc			70-130			70-13	
(BFB) = Bromo	ofluorobenzene		70-130			70-13	0
•	,2-Dichlorobenzene		70-130			70-13	0

Prep Method: SW5030B Log Number Range: 09-7500 to 09-7509

Sample ID: LC3-03/09 MATRIX SPIKE

Lab Sample ID: OS43G LIMS ID: 09-7506 Matrix: Water Data Release Authorized: Reported: 04/10/09

Instrument/Analyst MS: NT5/JZ MSD: NT5/JZ Date Analyzed MS: 03/30/09 17:28 MSD: 03/30/09 17:55 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/25/09 Date Received: 03/26/09

Sample Amount MS: 10.0 mL MSD: 10.0 mL Purge Volume MS: 10.0 mL MSD: 10.0 mL

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Vinyl Chloride	0.3	12.3	10.0	120%	13.7	10.0	134%	10.8%
1,1-Dichloroethene	< 0.2 U	11.0	10.0	110%	12.3	10.0	123%	11.2%
trans-1,2-Dichloroethene	< 0.2 U	10.6	10.0	106%	11.9	10.0	119%	11.6%
cis-1,2-Dichloroethene	1.0	11.5	10.0	105%	12.9	10.0	119%	11.5%
Trichloroethene	1.0	11.2	10.0	102%	12.1	10.0	111%	7.7%
Tetrachloroethene	5.6	15.8	10.0	102%	16.9	10.0	113%	6.7%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

Sample ID: LC3-03/09 MATRIX SPIKE

Lab Sample ID: OS43G LIMS ID: 09-7506 Matrix: Water Data Release Authorized:

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 17:28 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/25/09 Date Received: 03/26/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result Q
75-01-4	Vinyl Chloride	0.2	
75-35-4	1,1-Dichloroethene	0.2	
156-60-5	trans-1,2-Dichloroethene	0.2	
156-59-2	cis-1,2-Dichloroethene	0.2	
79-01-6	Trichloroethene	0.2	
127-18-4	Tetrachloroethene	0.2	

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	98.6%
Bromofluorobenzene	98.7%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Page 1 of 1

Sample ID: LC3-03/09 MATRIX SPIKE DUP

Lab Sample ID: OS43G LIMS ID: 09-7506 Matrix: Water Data Release Authorized: Reported: 04/10/09

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 17:55 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: 03/25/09 Date Received: 03/26/09

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result Q
75-01-4	Vinyl Chloride	0.2	
75-35-4	1,1-Dichloroethene	0.2	
156-60-5	trans-1,2-Dichloroethene	0.2	
156-59-2	cis-1,2-Dichloroethene	0.2	
79-01-6	Trichloroethene	0.2	
127-18-4	Tetrachloroethene	0.2	

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	104%
Bromofluorobenzene	98.0%

Sample ID: LCS-033009 LAB CONTROL SAMPLE

Lab Sample ID: LCS-033009 LIMS ID: 09-7500 Matrix: Water Data Release Authorized: Reported: 04/10/09 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT5/JZ LCSD: NT5/JZ Date Analyzed LCS: 03/30/09 11:36 LCSD: 03/30/09 12:03 Sample Amount LCS: 10.0 mL LCSD: 10.0 mL Purge Volume LCS: 10.0 mL LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Vinyl Chloride	9.8	10.0	98.0%	10.4	10.0	104%	5.9%
1.1-Dichloroethene	9.3	10.0	93.0%	9.7	10.0	97.0%	4.2%
trans-1,2-Dichloroethene	9.3	10.0	93.0%	9.7	10.0	97.0%	4.2%
cis-1,2-Dichloroethene	9.3	10.0	93.0%	9.6	10.0	96.0%	3.2%
Trichloroethene	9.0	10.0	90.0%	9.4	10.0	94.0%	4.3%
Tetrachloroethene	9.0	10.0	90.0%	9.3	10.0	93.0%	3.3%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	96.7%	97.0%
Bromofluorobenzene	102%	100%

Sample ID: MB-033009 METHOD BLANK

Lab Sample ID: MB-033009 LIMS ID: 09-7500 Matrix: Water Data Release Authorized: Reported: 04/10/09

Instrument/Analyst: NT5/JZ Date Analyzed: 03/30/09 12:30 QC Report No: OS43-CDM, Inc. Project: LEATHER CARE 56498-68247 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result Q
75-01-4	Vinyl Chloride	0.2	< 0.2 U
75-35-4	1,1-Dichloroethene	0.2	< 0.2 U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2 U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2 U
79-01-6	Trichloroethene	0.2	< 0.2 U
127-18-4	Tetrachloroethene	0.2	< 0.2 U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	99.1%
Bromofluorobenzene	97.78

Page: Page 1 of 11 Lab Proj #: P0903363 Report Date: 04/07/09 Client Proj Name: Leathercare Client Proj #: 56498-68247

Laboratory Results

Total pages in data package:

Lab Sample # P0903363-01	Client Sample ID GT1-03/09
P0903363-02	GT2-03/09
P0903363-03	GT3-03/09
P0903363-04	GT10-03/09
P0903363-05	LC1-03/09
P0903363-06	LC2-03/09
P0903363-07	LC3-03/09
P0903363-08	LC4R-03/09
P0903363-09	LC5R-03/09
P0903363-10	LC6-03/09

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Date: Approved By: Debbie Hallo Project Manager:

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.

As a valued client we would appreciate your comments on our service. Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

220 William Pitt Way • Pittsburgh, PA 15238 • Tel 412-826-5245 • Fax 412-826-3433 website www.microseeps.com email info@microseeps.com

Page:Page 2 of 11Lab Proj #:P0903363Report Date:04/07/09Client Proj Name:LeathercareClient Proj #:56498-68247

Sample Description GT1-03/09	<u>Matrix</u> Water	Lab Sample # P0903363-01	-	Sampled Date/Time 26 Mar. 09 12:45	<u>Received</u> 30 Mar. 09 9:1	9
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	By
RiskAnalysis N Ethane N Ethene N Methane	0.096 <0.025 150.000	0.025 0.025 0.100	ug/L ug/L ug/L	AM20GAX AM20GAX AM20GAX	4/6/09 4/6/09 4/6/09	rw rw rw

Page: Page 3 of 11 Lab Proj #: P0903363 Report Date: 04/07/09 Client Proj Name: Leathercare Client Proj #: 56498-68247

Sample Description GT2-03/09	<u>Matrix</u> Water	<u>Lab Sample</u> P0903363-		Sampled Date/Time 26 Mar. 09 10:00	<u>Received</u> 30 Mar. 09 9:1	9
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	By
<u>RiskAnalysis</u> √ Ethane N Ethene √ Methane	0.170 0.510 140.000	0.025 0.025 0.100	ug/L ug/L ug/L	AM20GAX AM20GAX AM20GAX	4/6/09 4/6/09 4/6/09	rw rw rw

Page: Page 4 of 11 Lab Proj #: P0903363 Report Date: 04/07/09 Client Proj Name: Leathercare Client Proj #: 56498-68247

Sample Description GT3-03/09	<u>Matrix</u> Water	Lab Sample P0903363-(Sampled Date/Time 26 Mar. 09 11:15	<u>Received</u> 30 Mar. 09 9:1	19
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	Ву
RiskAnalysis N Ethane N Ethene N Methane	0.032 0.066 34.000	0.025 0.025 0.100	ug/L ug/L ug/L	AM20GAX AM20GAX AM20GAX	4/6/09 4/6/09 4/6/09	rw rw rw

Page: Page 6 of 11 Lab Proj #: P0903363 Report Date: 04/07/09 Client Proj Name: Leathercare Client Proj #: 56498-68247

Sample Description LC1-03/09	Water P0903363-05 Result PQL Units	Sampled Date/Time 26 Mar. 09 8:20	<u>Received</u> 30 Mar. 09 9:1	19		
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	Ву
<u>RiskAnalysis</u> N Ethane N Ethene N Methane	0.140 <0.025 240.000	0.025 0.025 0.100	ug/L ug/L ug/L	AM20GAX AM20GAX AM20GAX	4/6/09 4/6/09 4/6/09	rw rw rw

N - NELAC certified analysis

Page: Page 7 of 11 Lab Proj #: P0903363 Report Date: 04/07/09 Client Proj Name: Leathercare Client Proj #: 56498-68247

Sample Description LC2-03/09	<u>Matrix</u> Water	Lab Sample P0903363-		Sampled Date/Time 25 Mar. 09 16:10	<u>Received</u> 30 Mar. 09 9:1	9
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	By
RiskAnalysis N Ethane N Ethene N Methane	0.037 0.035 200.000	0.025 0.025 0.100	ug/L ug/L ug/L	AM20GAX AM20GAX AM20GAX	4/6/09 4/6/09 4/6/09	rw rw rw

N - NELAC certified analysis

Page: Page 8 of 11 Lab Proj #: P0903363 Report Date: 04/07/09 Client Proj Name: Leathercare Client Proj #: 56498-68247

Sample Description LC3-03/09	<u>Matrix</u> <u>Lab Sample</u> Water P0903363-			Sampled Date/Time 25 Mar. 09 15:00	<u>Received</u> 30 Mar. 09 9:1	9
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	Ву
RiskAnalysis N Ethane N Ethene N Methane	0.048 <0.025 86.000	0.025 0.025 0.100	ug/L ug/L ug/L	AM20GAX AM20GAX AM20GAX	4/6/09 4/6/09 4/6/09	rw rw rw

Page: Page 9 of 11 Lab Proj #: P0903363 Report Date: 04/07/09 Client Proj Name: Leathercare Client Proj #: 56498-68247

Sample Description LC4R-03/09	<u>Matrix</u> Water	<u>Lab Sample</u> P0903363-		Sampled Date/Time 25 Mar. 09 10:40	<u>Received</u> 30 Mar. 09 9:1	9
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	By
<mark>RiskAnalysis</mark> N Ethane N Ethene N Methane	0.240 0.072 390.000	0.025 0.025 0.100	ug/L ug/L ug/L	AM20GAX AM20GAX AM20GAX	4/6/09 4/6/09 4/6/09	rw rw rw

Page: Page 10 of 11 Lab Proj #: P0903363 Report Date: 04/07/09 Client Proj Name: Leathercare Client Proj #: 56498-68247

Sample Description LC5R-03/09	<u>Matrix</u> Water	Lab Sample P0903363-		Sampled Date/Time 25 Mar. 09 12:15	<u>Received</u> 30 Mar. 09 9:1	19
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	By
<u>RiskAnalysis</u> N Ethane N Ethene √ Methane	0.140 0.120 330.000	0.025 0.025 0.100	ug/L ug/L ug/L	AM20GAX AM20GAX AM20GAX	4/6/09 4/6/09 4/6/09	rw rw rw

Client Name: Camp Dresser and McKee	Page: Page 11 of 11
Contact: Pam Morrill	Lab Proj #: P0903363
Address: 11811 Northeast First Street	Report Date: 04/07/09
Suite 201	Client Proj Name: Leathercare
Bellevue, WA 98005	Client Proj #: 56498-68247

Sample Description LC6-03/09	<u>Matrix</u> Water	Lab Sample P0903363-		Sampled Date/Time 25 Mar. 09 13:45	<u>Received</u> 30 Mar. 09 9:1	9
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	Ву
<u>RiskAnalysis</u> N Ethane N Ethene N Methane	0.092 <0.025 300.000	0.025 0.025 0.100	ug/L ug/L ug/L	AM20GAX AM20GAX AM20GAX	4/6/09 4/6/09 4/6/09	rw rw rw

CHAIN-OF-CUSTODY

Date Page **PROJECT INFORMATION** _aboratory Number: Pan Project Manager: Morrill **ANALYSIS REQUEST** enther care Project Name: PETROLEUM LEACHING ORGANIC COMPOUNDS PESTS/PCBs METALS HYDROCARBONS OTHER TESTS Project Number: 56498 - 68247 TPH-418.1 TPH-G TPH-D TPH-HCID 8015M Fuel Hydrocarbon DWS TCLP TCLP -8010 Halogenated VOCs 8040 Phenols 8080 OC Pest/PCBs 8140 OP Pesticides DWS - Metals Priority Poll. Metals (13) TPH Special Instructions 8020M - BETX only 8240 GC/MS Volatiles 8270 GC/MS 8310 PAHs DWS - Volatiles and Semivolatiles 8080M PCBs only 8150 OC Herbicides Selected Metals: list Organic Lead (Ca) TCL Metals (23) Site Location: Ell. MAsel & Mener M Se Sampled By: ML MFSP - Metals (Wa) TCLP - Metals NUMBER 020 Aromatic VOCs Ļ т Elhine **DISPOSAL INFORMATION** Herb/Pest Volatiles (ZHE) Semivolatiles Pesticides ę Lab Disposal (return if not indicated) Semivolatiles State: State: State: State: CONTAINERS Disposal Method: there Disposed by: Disposal Date: **QC INFORMATION** (check one) 2C □ Screening CDM Std. Special □SW-846 SAMPLE ID DATE TIME MATRIX LAB ID 2 1246 ver 12 2 ster 1000 R ster V 2 ź Seler Ď 2 wite Ð wette 2 WZCI Ż witer LAB INFORMATION SAMPLE RECEIPT **RELINQUISHED BY: 1. RELINQUISHED BY: 2. RELINQUISHED BY: 3.** Time Signature: Time: Signature: Time: Lab Name: Total Number of Containers: e of 190 Chain-of-Custody Seals: Y/N/NA Lab Address: am Date: Printed Name: Date: Printed Name: Date: 109 Intact?: Y/N/NA Compg Company: Company: Received in Good Condition/Cold: Via: □ 24 hr. □ 48 hr. □ 72 hr. □ 1 wk. **RECEIVED BY:** 1. **RECEIVED BY: RECEIVED BY:** *"*3. ∑x∕Standard 2. Turn Around Time: Signature Time: Signature: Time: Signature: Time: **PRIOR AUTHORIZATION IS REQUIRED FOR RUSH DATA** 103 Å A. Ch Special Instructions: 3bap Printed Name: Printed Name: Date: Printed Name: Date: 40 Company: Company: Company: ANODEL

a de la companya de

DISTRIBUTION: White, Canary to Analytical Laboratory; Pink to CDM Project Files; Gold to CDM Disposal Files forms\field\chain ofcustody.p65

Por 3/3 Date 3/26/09

CHAIN-OF-CUSTODY

te la	947	Ņ	0	2	۲.		an an an		,	Da	te _	تر تر	3/2	26/	09	,			F	ag	e _		Ż) यथः	of_	کن	$\hat{\boldsymbol{Z}}$		
PROJECTINFORMATION	La	abo	rato	ory N	Nun	nbe	r: (,			·			. <u> </u>									٦
Project Manager: Pan Morrill			ici. Rolei								1	ANA	LY	SIS	RE	QL	JES	ST											
Project Name: 10-2thercare		PE1	RO	LEU	M		960		COM				EQT	S/PC	Be		R. 1	ETA					HING		<u></u>	<u></u>	<u></u>		100
Project Number: <u>56498 - 68247</u> Site Location: <u>Ell MAve Way Merca 9 Second</u> Sampled By: <u>1</u>		T T								T						Ś				IS		TES	,TS चा				.н	+	_
Site Location: Ell. MANEW Mercer 4 Second By: _//	<u>nu</u> H	H-G	TPH-D		N H C	10 H)20 /	220M	070	010 F		080	M080	140	S S	elect	rgan			FSP	L P	F	TCLP		Cher C				NUMBER
DISPOSAL INFORMATION	GB	TPH-G		TPH-418.1 State:	TPH Special Instructions	8010 Halogenated VOCs	8020 Aromatic VOCs	8240 GC/MS Volati 8020M - BETX only	8270 GC/MS Semivolatiles	8310 PAHs	DWS - Volatile	8080 OC Pest/PCBs	8080M PCBs only	8150 OC Herbicides 8140 OP Pesticides	DWS - Herb/Pest	ed Me	Organic Lead (Ca)	TCL Metals (23)	DWS - Metals	MFSP - Metals (Wa)	TCLP - Volatiles (ZHE)	- Sem	- Pesticides	Meta	· .				SER OF
Lab Disposal (return if not indicated)	s	st	s	St	Instr	nate	tic,∨		Ser		n lies a	st/PC	onl	sticic	Pest	tals:		(23)	Not S	als ()	tiles	ivola	icide	5	240		i I		
Disposal Method:	ate:	State:	State:	ate:	uctio	Ч М	0 Cs		nivol		and (Bs	<	les des		list	۳			Na)	(ZHE	tiles	S		Elhane				
Disposed by: Disposal Date:					Suc Suc	Š			atiles		Semi							9	2									ĺ	CONTAINERS
											volat				*									19	over			ł	2 R
SW-846 CLP Screening CDM Std. Spe						a					lles													ť.	NO.				
			\vdash							╉╌╂		-				$\left \cdot \right $			_	+	+	┝╌┥		+	$\frac{1}{\sqrt{2}}$	+	┝─┼╴	+	2
1.C5R-03/09 3/25/09 1215 Water 1.C6-03/09 3/25/09 1345 Water			$\left \right $						+	┼─┼						$\left - \right $	-				+		_	- -	∄	+	┝┼╴		<u>२</u> २
1.C6-03/09 3/25/09 1345 Water		+	┝╌┤				$\left \right $	+	+		+	╞			+					-		$\left - \right $					┢──╋╸		×
				_						┼╌┼		+			-					-		$\left - \right $		+	+		┟╌┼╸	+	_
		+	\vdash		+	-				+	+	-			+	$\left \right $			+	+	╈	$\left \right $	+	╉		+		╈	
		1							+	+	1	+			+	+		-	+		╋	\vdash		╉				+	
		+				-				╉╼┼	-				1					-	t			+	-	+	Ħ	\uparrow	
									-												\uparrow	\square		╡		+		1	
LAB INFORMATION SAMPL	E RECEI	PT				RE	LIN	QU	ISH	ED	BY:	1.	F	ELI	NQ	UIS	SHE	ED	BY:	2	F	REI	IN	QU	JISI	IED	BY	: 3	
Lab Name: MILLOSCEPS The. Total Number of Con	ntainers:	100300000								ox.		īme:	s	ignatur	e:				•	Time:	: 5	Signa	ture:	<u>2004000</u>	0.0000000	<u></u>		Time):
Lab Address: 220 Williem Att Way Chain-of-Custody Se	eals: Y/N/N/	4				Printe	ed Na	<i>фОй</i> те:	<u> </u>		<u></u>	Date:	/ P	rinted I	Name	:				Date:	: F	Printe	d Nar	me:				Date	
Pitts bench PA 15238 Intact?: Y/N/NA						11	Daj	10	U F	-vx		124	67																
Via: Feal By prior the derived in Good Con Turn Around Time: Standard 24 hr. 48 hr.	ondition/Colo	:				Uom	pany:	na	1	and the second			faze elladora	ompan		compara-	Neg Strates	04.340,255,555,557	2015/2012/	And the second second		Comp	-		<u> </u>	C. Margarastory		SUSSIT	(Class) a
Turn Around Time: Kandard 24 hr. 48 hr.	□ 72 hr.] 1 v	vk.	-	RE	CE	VE) B	Y:		1.	F	RECI	EIV	ED	B١	(:		2.			6	7	D È	BY:	\square	<u>/</u> 3	
PRIOR AUTHORIZATION IS REQUIRED FOR F					E.		ature:	n f	a	len		lime: 30	s	ignatur	e:					Time:	: 8	Signa	iture:)				/Time):
Special Instructions:						Printe	ed Na	me:				Date:		rinted I	Name	:				Date	: F	Printe	d Nar	me:	~	7(-	117	Date	ə:
						Com	pany:			<u>)Lr</u>	03	28		ompan	iy:						+	Comr	Dany:			/	14	<u>\</u>	
			-		:	M	λÀ	M	ey	20					-												100	æ	ر ۱

DISTRIBUTION: White, Canary to Analytical Laboratory; Pink to CDM Project Files; Gold to CDM Disposal Files forms\lield\chainofcustody.p65

®CDM is a registered trademark of Camp Dresser & McKee Inc.