

August 30, 2023

Vance Atkins
Washington State Department of Ecology
Toxics Cleanup Program, Northwest Regional Office
15700 Dayton Avenue North
Shoreline, Washington 98133

RE: ENVIRONMENTAL CONDITIONS SUMMARY

TOC FACILITY NO. 01-176

24205 AND 24225 56TH AVENUE WEST MOUNTLAKE TERRACE, WASHINGTON

FARALLON PN: 2584-001

Dear Vance Atkins:

Farallon Consulting, L.L.C. (Farallon) has prepared this letter on behalf of Steve Cho to summarize the current extent of contamination attributable to releases of petroleum hydrocarbons at or from the former Time Oil gasoline service station located at 24205 56th Avenue West in Mountlake Terrace, Washington (Source Property) with the objective of negotiating a prospective purchaser consent decree (PPCD) with the Washington State Department of Ecology (Ecology). The extent of the contamination attributable to the former Time Oil gasoline service station constitutes a "site" under the Model Toxics Control Act, Chapter 70A.305 of the Revised Code of Washington, and the associated Cleanup Regulations, Chapter 173-340 of the Washington Administrative Code (collectively, MTCA). The site is known as TOC Facility No O1 176 (Site).

BACKGROUND

Mr. Cho is under contract to purchase the Source Property (Snohomish County Parcel No. 00489300003501) and the adjoining property to the south at 24225 56th Avenue West (Snohomish County Parcel No. 00489300003400) (Adjoining Property) (Figure 2). The Source Property and Adjoining Property total 1.16 acres of land and are collectively referred to as the "Property." The Source Property contains a fenced remediation system compound surrounded by paved parking and unpaved vegetated areas. The Adjoining Property is developed with a vacant one-story commercial building and contains a fenced remediation system compound. The Source Property and the Adjoining Property have been vacant since 2008 and 2014, respectively.

Mr. Cho intends to redevelop the Property for a mix of residential and commercial uses, which presents an opportunity to implement a remedy for the Site in coordination with the redevelopment. However, acquisition and redevelopment of the Property cannot move forward unless Mr. Cho enters a PPCD with Ecology. The PPCD would obligate Mr. Cho to perform certain remedial actions at the Site, which would be conducted prior to and during redevelopment. Therefore, it is imperative that Mr. Cho reach consensus with Ecology on those remedial actions quickly and efficiently. The Site is currently subject to Agreed Order No. DE 8661 between Ecology and TOC Holdings Co. (TOC). The Agreed Order requires TOC to complete a remedial investigation and feasibility study for the Site. In 2017, TOC filed for bankruptcy. Prior to bankruptcy, TOC was finalizing the Remedial Investigation Report, conducting an interim action that included operation of three multiphase extraction systems and enhanced fluid recovery events, and conducting quarterly groundwater monitoring to evaluate the effectiveness of the interim action. In March 2017, Ecology issued an advisory letter¹ authorizing TOC to decrease the number of monitoring wells subject to quarterly monitoring from 106 to 38. Ecology also advised TOC to continue conducting enhanced fluid recovery efforts and operating the three multiphase extraction systems. Following bankruptcy, TOC ceased work at the Site, and interim action activities and groundwater monitoring were discontinued.

According to the Agreed Order, Time Oil operated a retail gasoline service station on the Source Property from 1968 to 1990. The service station included three underground storage tanks (USTs), six fuel dispensers, and associated product lines. In 1991, the USTs, fuel dispensers, and associated product lines were decommissioned by removal during closure of the service station. Total petroleum hydrocarbons and benzene were detected at concentrations exceeding MTCA Method A cleanup levels in soil samples collected during the decommissioning activities. Between 1992 and 2015, multiple subsurface investigations were conducted to characterize the nature and extent of the contamination at the Site.

COMPLETED REMEDIAL ACTIONS

Multiple interim actions have been conducted over the past three decades to address contamination at the Site. In 1996, a dual-phase extraction system was installed at the Source Property to remediate soil and groundwater impacted by petroleum hydrocarbons, and to remove light nonaqueous-phase liquid (LNAPL). The dual-phase extraction system

¹ Ecology. 2017. Letter regarding comments on documents. From Sunny Becker. To Mark A. Chandler of TOC Holdings Co. March 28.

operated at the Source Property until it was shut down in 2005; the system was decommissioned and removed in 2011 because performance monitoring demonstrated that groundwater in the Shallow Water-Bearing Zone had been successfully remediated. In 2012, three multiphase extraction systems were installed at the Site to remediate petroleum-contaminated groundwater, soil vapor, and LNAPL in the Intermediate Water-Bearing Zone. The multiphase extraction systems operated until 2017 and remain on the Property. The locations of the multiphase extraction systems are shown on Figure 2. In addition to operation of the dual-phase extraction and multiphase extraction systems, multiple LNAPL recovery events were conducted at the Site from 2005 to 2013. During the events, LNAPL was removed from monitoring wells using various methods that included recovery socks, passive skimmers, and bailers.

Groundwater monitoring was conducted at the Site between 1992 and 2016 to characterize the extent of the groundwater contamination, and to evaluate the effectiveness of the interim actions. The monitoring well network for the Site included 106 wells. Annual groundwater monitoring events conducted during the first quarter of each year included collection of groundwater samples from each well in the monitoring well network. Quarterly groundwater monitoring conducted during the second, third, and fourth quarters of each year included collection of groundwater samples from a subset of the monitoring well network. In March 2017, Ecology issued an advisory letter authorizing TOC to decrease the number of monitoring wells subject to quarterly monitoring from 106 to 38. Ecology also advised TOC to continue conducting enhanced fluid recovery efforts and operating the three multiphase extraction systems.

After TOC filed for bankruptcy in 2017, the multiphase extraction systems were shut down at the Site, and groundwater monitoring was stopped.

Additional information about the Site is provided in the Ecology online database.²

2023 GROUNDWATER MONITORING

In March 2023, Farallon performed a groundwater monitoring event to evaluate current groundwater conditions at the Site. The groundwater monitoring event included measuring depth-to-groundwater and collecting groundwater samples at 20 monitoring wells installed in the Shallow-Intermediate Water-Bearing Zone or the Intermediate Water-Bearing Zone

² Ecology. No Date. Toxics Cleanup Program – Cleanup Site Search Database Search for TOC Facility No. 01-176. https://apps.ecology.wa.gov/gsp/CleanupSiteDocuments.aspx?csid=6885.

(MW09 through MW11, MW20, MW22, MW24, MW28, MW29, MW31, MW32, MW48, MW57, MW63, MW69, MW70, MW84 through MW86, MW89, and MW98). These monitoring wells were selected based on previous analytical results from the monitoring well network and proximity to the multiphase extraction systems. Monitoring well construction details for these wells are summarized in Table 1.

During the groundwater monitoring event, monitoring wells were opened and allowed to equilibrate to atmospheric pressure for at least 45 minutes. The depth-to-groundwater in each monitoring well was then measured to the nearest 0.01 of a foot using a water-level meter. Groundwater elevations are summarized in Table 2, and a groundwater contour map is included as Figure 3.

Groundwater samples were collected in accordance with U.S. Environmental Protection Agency (EPA) (1996) procedures.³ Purging and sampling of each monitoring well was performed using a peristaltic pump and dedicated polyethylene tubing at flow rates ranging from approximately 100 to 300 milliliters per minute. During purging, water quality indicator parameters were monitored using a multi-parameter water quality system equipped with a flow-through cell. Water quality parameters were monitored and recorded at 3-minute intervals during purging and included temperature, pH, specific conductance, dissolved oxygen, oxidation reduction potential, and turbidity. Following purging, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into laboratory-prepared sample containers.

Samples were placed on ice in a cooler and submitted to Friedman & Bruya, Inc., of Seattle, Washington, under standard chain-of-custody protocols for analysis of one or more of the following constituents of concern (COCs) for the Site: total petroleum hydrocarbons as gasoline-range organics (GRO) by Northwest Method NWTPH-Gx; total petroleum hydrocarbons as diesel- and oil-range organics (DRO and ORO, respectively) by Northwest Method NWTPH-Dx; benzene, toluene, ethylbenzene, and xylenes by EPA Method 8021B; 1,2-dichloroethane and methyl tertiary-butyl ether by EPA Method 8260D; 1,2-dibromoethane by EPA Method 8011; total and dissolved lead by EPA Method 200.8; and semivolatile organic compounds, including carcinogenic polycyclic aromatic hydrocarbons, by EPA Method 8270E.

³ EPA. 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, EPA Groundwater Issue/540/S-95/504. April.

RESULTS

A summary of the groundwater analytical results is provided below. Groundwater analytical results are summarized in Tables 3 through 7 and shown on Figure 4. Charts 1 through 16 depict the concentrations of GRO and benzene over time. Laboratory analytical reports are included as Attachment A.

GRO and/or benzene were detected at concentrations exceeding the MTCA Method A cleanup levels in groundwater samples collected from seven of the 20 monitoring wells (Table 3; Figure 4). Every exceedance was from a well that had previously contained GRO and/or benzene at concentrations exceeding MTCA cleanup levels. In some instances, these concentrations increased from when they were last sampled in 2016, when the multiphase extraction systems were operating. This indicates that concentrations of GRO and/or benzene have rebounded in select monitoring wells following shut-down of the multiphase extraction systems in 2017. In monitoring wells where rebounding occurred, the GRO and benzene concentrations were significantly less than the concentrations when the multiphase extraction systems were first started in 2012 (Table 3; Charts 1 through 16). In 2016, performance monitoring of the multiphase extraction systems indicated that the mass removal rates were approaching asymptotic conditions. Typically, when this happens, adjustments (e.g., changes to air flow rates to alter subsurface airflow) are made to the multiphase extraction system to increase the mass removal effectiveness. However, due to the shut-down of the multiphase extraction systems, adjustments were not made.

Concentrations of GRO and benzene were less than the MTCA cleanup levels in the groundwater samples collected from monitoring wells MW84, MW85, MW86, and MW89, which are the down-gradient-most wells associated with the Site (Table 3; Figure 4). These data indicate that the down-gradient edge of the dissolved-phase petroleum plume is stable and petroleum-contaminated groundwater is not migrating onto and commingling with known releases of petroleum hydrocarbons at the down-gradient Herman Property and Shin/Choi Property (see Unrelated Sources of Contamination Near the Site below).

ORO, toluene, ethylbenzene, xylenes, 1,2-dibromoethane, 1,2-dichloroethane, methyl tertiary-butyl ether, carcinogenic polycyclic aromatic hydrocarbons, and lead were either reported non-detect at the laboratory practical quantitation limits or less than the applicable MTCA cleanup levels in the groundwater samples. Bis(2-ethylhexyl)phthalate was detected in a single groundwater sample collected from monitoring well MW31 at a concentration exceeding the MTCA cleanup level. Bis(2-ethylhexyl)phthalate is a common field and laboratory contaminant and is therefore not considered to be representative of groundwater

conditions. DRO was detected in a single groundwater sample collected from monitoring well MW69 at a concentration exceeding the MTCA Method A cleanup level. However, the laboratory flagged the result, and it was likely caused by overlap from the GRO detection in the same monitoring well.

UPDATED CONCEPTUAL SITE MODEL

The Draft Remedial Investigation Report⁴ identifies the USTs and/or fuel dispensers used by the former Time Oil gasoline service station as the source of the contamination at the Site, and it presents a conceptual site model that was developed before completion of the interim actions at the Site. The interim actions included operation of two dual-phase extraction systems, operation of three multiphase extraction systems, and LNAPL removal events. Between 2012 and 2016, the multiphase extraction systems removed approximately 4,698 pounds of vapor-phase hydrocarbons and 4,846,204 gallons of petroleum-contaminated groundwater. Based on groundwater monitoring results, the interim actions have significantly reduced the extent of contamination at the Site.

This section presents an updated conceptual site model based on the most recent groundwater monitoring events conducted in 2023, following the interim actions. A discussion of hydrogeology beneath the Site, unrelated sources of contamination near the Site, and the current extent of contamination at the Site is provided below.

HYDROGEOLOGY

According to the Draft Remedial Investigation Report and 2016 Annual Event Groundwater Monitoring Report,⁵ three interconnected water-bearing zones are present at the Site:

- Shallow Water-Bearing Zone: A seasonally discontinuous perched groundwater zone, encountered in fill material or the upper portion of glacial outwash and till at depths of approximately 5 to 20 feet below ground surface (bgs). Historical groundwater elevation measurements indicate that groundwater flow in the Shallow Water-Bearing Zone is predominantly toward the south to southeast.
- Intermediate Water-Bearing Zone: An unconfined groundwater zone encountered in glacial outwash and till at depths of 20 to 40 feet bgs, and discontinuous sand

⁴ SoundEarth Strategies, Inc. 2013. Draft Remedial Investigation Report, Under Agreed Order No. DE 8661, TOC Holdings Co. Facility No. 01-176, 24205 56th Avenue West, Mountlake Terrace, Washington 98043. November 27.

⁵ Stantec Consulting Services Inc. 2016. Groundwater Monitoring Report, 2016 Annual Event, TOC Holdings Co., Facility No. 01-176, 24205 56th Avenue West, Mountlake Terrace, WA 98043. June 30.

- and/or gravel lenses within glacial till at depths of 40 to 60 feet bgs. Historical groundwater elevation measurements indicate that groundwater flow in the Intermediate Water-Bearing Zone is predominantly toward the south to southeast.
- Deep Water-Bearing Zone: A semi-confined water-bearing zone encountered at depths greater than 60 feet bgs, consisting of glacial sand and gravel. Historical groundwater elevation measurements indicate that groundwater flow in the Deep Water-Bearing Zone is toward the south to southeast.

The screen intervals for monitoring wells installed at the Site have intersected multiple water-bearing zones (either Shallow-Intermediate or Intermediate-Deep Water-Bearing Zones). Groundwater samples collected from wells screened between intersecting zones may not be representative of individual hydrogeological conditions of either zone. Monitoring well construction details for select wells are summarized in Table 1. Figure 2 shows the locations of the monitoring wells and the water-bearing zone in which each well is constructed.

During Farallon's March 2023 groundwater monitoring event, the top of the Shallow-Intermediate Water-Bearing Zone was encountered at a depth of approximately 13 to 27 feet bgs, and the top of the Intermediate Water-Bearing Zone was encountered at a depth of approximately 21 to 41 feet bgs (Table 2). Based on groundwater elevations calculated using synoptic measurements during the March 2023 groundwater monitoring event, the Intermediate Water-Bearing Zone flows toward the south (Figure 3), which is consistent with previous groundwater monitoring events conducted at the Site.

UNRELATED SOURCES OF CONTAMINATION NEAR THE SITE

Environmental investigations in the vicinity of the Site have identified other sources of contamination that are separate and distinct from the contamination attributable to the former Time Oil gasoline service station. The other sources of contamination include gasoline service stations that operated on properties south of the Property known as the Herman Property (24311 56th Avenue West) and Shin/Choi Property (24325 56th Avenue West) (Figure 2). Each property is discussed below.

Herman Property: The Herman Property is located about 120 feet south of the
Property (Figure 2). A retail gasoline service station operated on the Herman Property
between 1953 and 2001. The service station was equipped with up to seven USTs
ranging from 3,000- to 12,000-gallon capacity. The USTs reportedly stored gasoline,
diesel fuel, waste oil, stove oil, and heating oil. In 2001, two of the USTs were

removed from the Herman Property. A release of petroleum hydrocarbons to the subsurface was confirmed during removal of the USTs. Environmental investigations have been conducted at the Herman Property between 2018 and 2020, including the collection of soil and groundwater samples from multiple borings and at least 15 monitoring wells, but the results of those investigations have not been made publicly available.

• Shin/Choi Property: The Shin/Choi Property is located south-adjacent to the Herman Property (Figure 2). Retail gasoline service stations operated on the Shin/Choi Property from as early as 1955 to 1996. In 1996, two 10,000-gallon USTs, one 12,000-gallon UST, and associated infrastructure were removed from the Shin/Choi Property. A release of petroleum hydrocarbons to the subsurface was confirmed during removal of the USTs. It is unknown whether the lateral and vertical extent of the release has been characterized.

The contamination attributable to the former gasoline service stations on the Herman Property and the Shin/Choi Property does not commingle with the contamination attributable to the former gasoline service station on the Source Property (Figure 4). Additional information regarding the current nature and extent of contamination at the Site is provided below.

NATURE AND EXTENT OF CONTAMINATION AT THE SITE

The investigations and interim actions completed over the past 30 years have characterized the lateral and vertical extent of the soil and groundwater contamination at the Site. The contamination encompasses a portion of the Source Property, a portion of the Adjoining Property, a portion of another affected property at 24309 56th Avenue West known as the Drake Property, and a portion of the 56th Avenue right-of-way (Figure 2). A summary of the current nature and extent of contamination in soil and groundwater is presented below.

Soil

According to the historical analytical results presented in the Draft Remedial Investigation Report, soil with concentrations of total petroleum hydrocarbons exceeded the MTCA Method A cleanup levels in two general areas: 1) beneath the western and southwestern portions of the Source Property in the vicinity of the UST excavation area; and 2) beneath the western portion of the Adjoining Property, the northern portion of the Drake Property, and the eastern portion of the 56th Avenue West right-of-way. The lateral extent of contaminated soil was bounded by multiple borings that demonstrate contamination did not extend north

beyond the Source Property, south beyond the Drake Property, west beyond the 56th Avenue right-of-way, or east beyond the eastern boundaries of the Source Property, the Adjoining Property, or the Drake Property. The areas of contaminated soil generally coincided with the dissolved-phase petroleum-contaminated groundwater plume. A figure from the Draft Remedial Investigation Report depicting the historical MTCA exceedances in soil is included as Attachment B.

Based on historical analytical results, the vertical extent of contaminated soil is generally bounded at a depth of 25 feet bgs within the vicinity of the former USTs on the Source Property. As petroleum contamination migrates to the south and southeast beyond the Source Property, it migrates downward to depths corresponding with the Intermediate Water-Bearing Zone between approximately 22 and 50 feet bgs. The maximum vertical extent of petroleum-contaminated soil to the south of the Source Property is anticipated to be bounded at depths between 30 and 52.5 feet bgs, based on existing data. Cross sections from the Draft Remedial Investigation Report depicting the historical MTCA exceedances in soil are included as Attachment B.

Groundwater

Groundwater analytical results indicate that the Intermediate Water-Bearing Zone is the only water-bearing zone with COCs (GRO and benzene) remaining at concentrations exceeding MTCA Method A cleanup levels. Figure 4 depicts the analytical results from the 2023 groundwater monitoring event and identifies the monitoring wells in which GRO or benzene was detected at concentrations exceeding MTCA cleanup levels.

A summary of groundwater conditions in each of the water-bearing zones present at the Site is provided below:

- Shallow Water-Bearing Zone: The dual-phase extraction system operated at the Source Property until 2005. The system was decommissioned and removed in 2011 after performance monitoring demonstrated that groundwater in the Shallow Water-Bearing Zone had been successfully remediated. Based on groundwater analytical results, COCs are no longer present at concentrations exceeding MTCA Method A cleanup levels in the Shallow Water-Bearing Zone (Figure 4).
- Intermediate Water-Bearing Zone: Based on groundwater analytical results, COCs remain present at concentrations exceeding MTCA Method A cleanup levels in three locations in the Intermediate Water-Bearing Zone: 1) down-gradient of the former USTs on the Source Property; 2) on the southwestern portion of the Adjoining

Property; and 3) on the western portion of the Drake Property (Figure 4). Each area of groundwater contamination is bounded in up-, cross-, and down-gradient positions. Specifically, multiple monitoring wells have been installed in the 56th Avenue West and 242nd Street Southwest rights-of-way, on the eastern portion of the Site, and along the southern portion of the Site on the boundary between the Herman Property and the Drake Property. COCs in groundwater samples collected from many of these monitoring wells have never been detected at concentrations exceeding MTCA cleanup levels, including the wells on the southern portion of the Site.

• Deep Water-Bearing Zone: COCs have not been detected at concentrations exceeding MTCA cleanup levels in groundwater samples collected from the Deep Water-Bearing Zone, except for DRO, benzene, and lead concentrations in two groundwater samples collected in 2005 and 2006 prior to proper development of the monitoring wells (MW30 and MW40). Subsequent groundwater samples collected from monitoring wells MW30 and MW40 did not contain concentrations of COCs exceeding MTCA cleanup levels. Therefore, the historical exceedances are attributable to improper sampling techniques and are not representative of groundwater conditions. Based on these data, COCs are not present at concentrations exceeding MTCA Method A cleanup levels in the Deep Water-Bearing Zone.

CONCLUSIONS

The interim actions completed at the Site over the past three decades have been effective in reducing the concentrations of petroleum hydrocarbons in soil and groundwater across the Site. The remaining soil and groundwater contamination at the Site is confined in the Intermediate Water-Bearing Zone in three discrete areas (Figure 4):

- Down-gradient of the former USTs on the Source Property proximate to monitoring wells MW09, MW10, MW20, and MW32;
- Beneath the southwestern portion of the Adjoining Property proximate to monitoring well MW57; and
- Beneath the western portion of the Drake Property proximate to monitoring wells MW69 and MW98.

The groundwater contamination is bounded in the down-gradient portion of the Site, as demonstrated by the analytical results from monitoring wells MW84, MW85, MW86, and MW89, confirming that groundwater contamination is not migrating beyond the Drake Property and therefore not commingling with contamination from unrelated sources on the Herman Property or Shin/Choi Property. Furthermore, the groundwater plumes are generally stable and/or shrinking, which indicates that the multiphase extraction systems have remediated a significant mass of contamination in soil and groundwater and promoted natural attenuation.

CLOSING

The data collected over the past 30 years adequately characterizes the lateral and vertical extent of contamination at the Site and is sufficient to complete a remedial investigation report, prepare a feasibility study, and select a cleanup action for the Site.

The selected cleanup action would likely include operation of the existing multiphase extraction systems and compliance groundwater monitoring. Data would be evaluated to assess potential adjustments that could be made to the multiphase extraction systems to increase the mass removal effectiveness. If necessary, the multiphase extraction systems could be expanded to facilitate additional remediation of residual contamination in soil and groundwater. Compliance groundwater monitoring would also be conducted to evaluate the rate of natural attenuation. Depending on the redevelopment plans for the Property, the selected cleanup action might also include excavation and/or installation of vapor barriers for future buildings.

Mr. Cho requests Ecology's approval to prepare and submit to Ecology a Remedial Investigation Report, Feasibility Study, and draft Cleanup Action Plan for the Site together with a formal request to commence negotiation of a PPCD. The PPCD would obligate Mr. Cho to implement the cleanup action described in the draft Cleanup Action Plan.

Please contact Pete Kingston at (425) 295-0800 if you have questions or need additional information.

Sincerely,

Farallon Consulting, L.L.C.

22008400 consed Geologis

Sarah E. Snyder

Sarah Snyder, L.G. Senior Geologist Cycle of Washington

Peter J. Kingston

Pete Kingston, L.G. Principal Geologist

Attachments

Figure 1, Site Vicinity Map

Figure 2, Site Map

Figure 3, Groundwater Contour Map - Intermediate Zone - March 23, 2023

Figure 4, Approximate Extent of GRO and Benzene in Groundwater (March 2023 and Historical)

Table 1, Monitoring Well Construction Details

Table 2, Summary of Groundwater Elevation Data

Table 3, Groundwater Analytical Results for TPH and BTEX

Table 4, Groundwater Analytical Results for Volatile Organic Compounds

Table 5, Groundwater Analytical Results for Semivolatile Organic Compounds

Table 6, Groundwater Analytical Results for PAHs

Table 7, Groundwater Analytical Results for Total and Dissolved Lead

Chart 1, Monitoring Well MW09 GRO and Benzene Concentrations Over Time

Chart 2, Monitoring Well MW10 GRO and Benzene Concentrations Over Time

Chart 3, Monitoring Well MW11 GRO and Benzene Concentrations Over Time

Chart 4, Monitoring Well MW20 GRO and Benzene Concentrations Over Time

Chart 5, Monitoring Well MW24 GRO and Benzene Concentrations Over Time

Chart 6, Monitoring Well MW28 GRO and Benzene Concentrations Over Time

Chart 7, Monitoring Well MW29 GRO and Benzene Concentrations Over Time Chart 8, Monitoring Well MW31 GRO and Benzene Concentrations Over Time

Chart 9, Monitoring Well MW32 GRO and Benzene Concentrations Over Time

Chart 9, Worldong Well WW32 GNO and Derizerie Concentrations Over Time

Chart 10, Monitoring Well MW48 GRO and Benzene Concentrations Over Time Chart 11, Monitoring Well MW57 GRO and Benzene Concentrations Over Time

Chart 12, Monitoring Well MW69 GRO and Benzene Concentrations Over Time

order 12, Mornitoring World MW020 and Borizone Concording to the

Chart 13, Monitoring Well MW70 GRO and Benzene Concentrations Over Time Chart 14, Monitoring Well MW84 GRO and Benzene Concentrations Over Time

Chart 15, Monitoring Well MW86 GRO and Benzene Concentrations Over Time

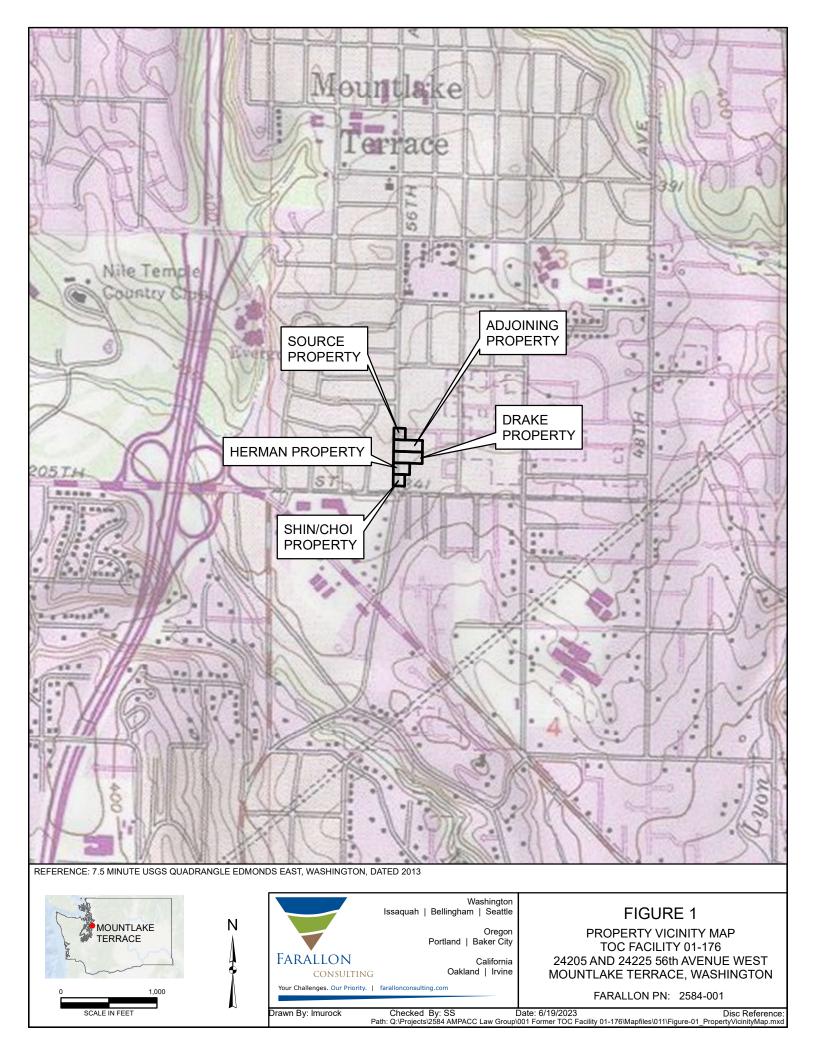
onart 13, Workstring Well MW00 and Benzene Gondentrations over Time

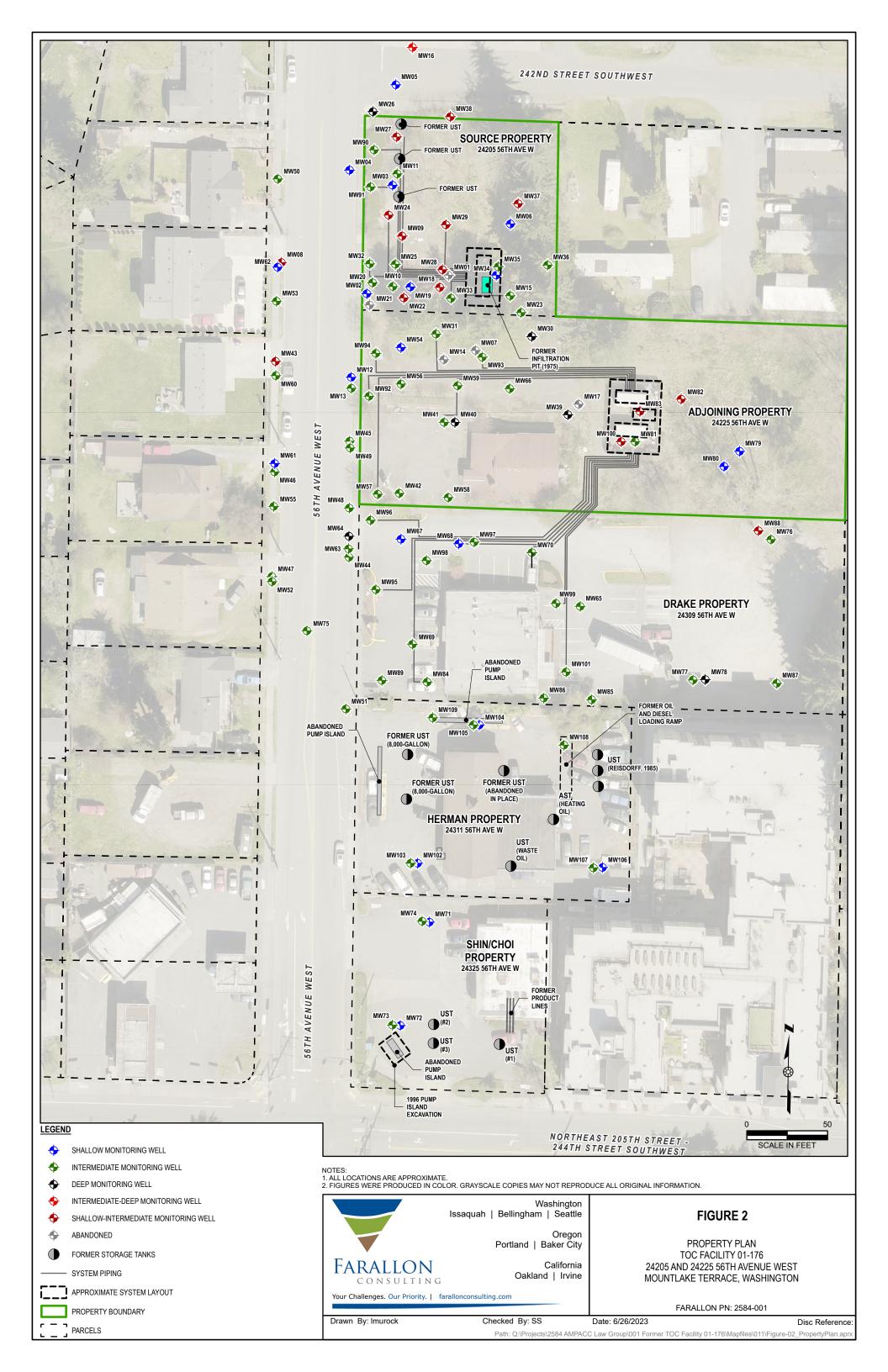
Chart 16, Monitoring Well MW98 GRO and Benzene Concentrations Over Time Attachment A, 2023 Groundwater Monitoring Laboratory Analytical Reports

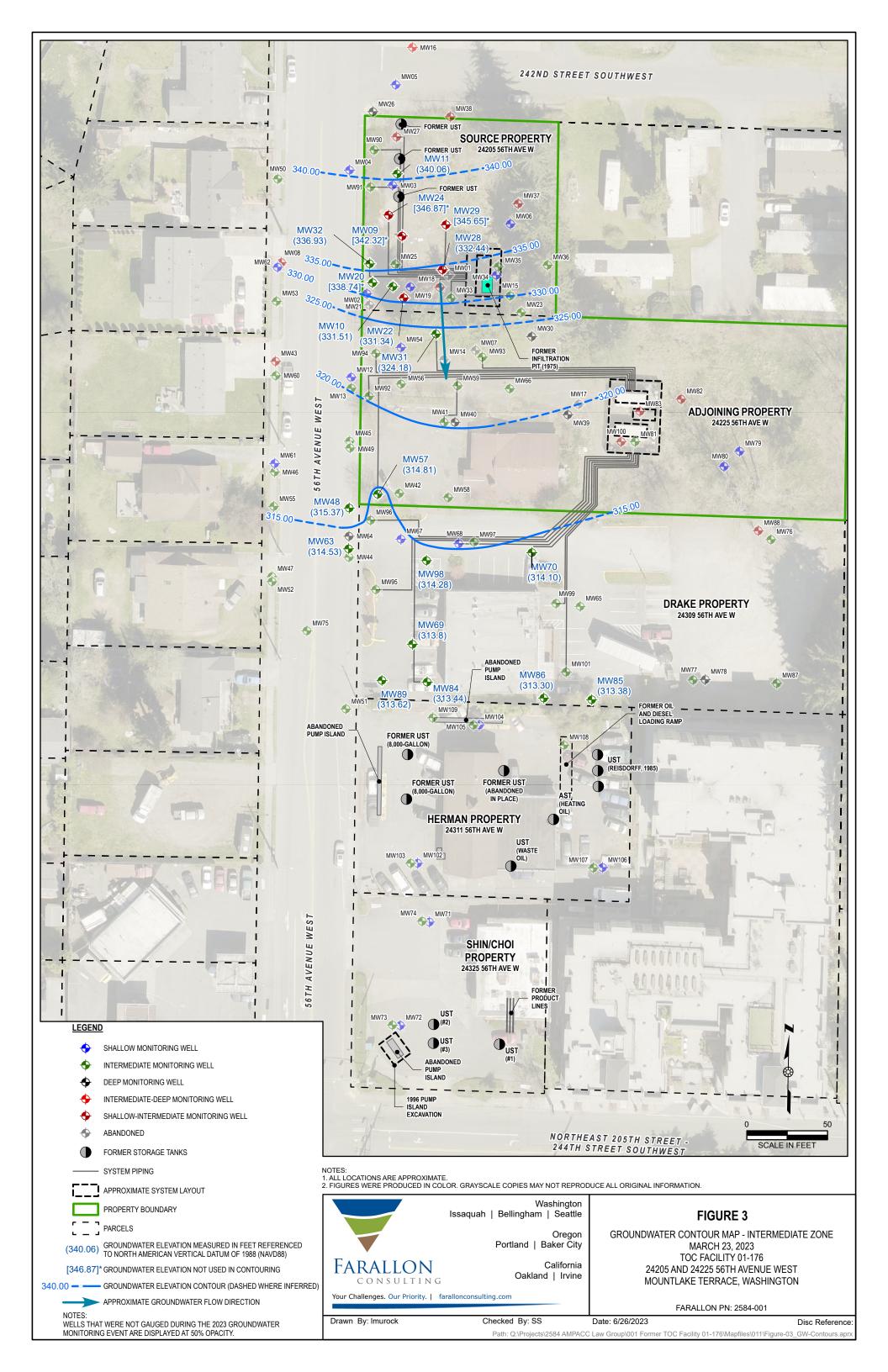
Attachment B, Select Figures from the Draft Remedial Investigation Report

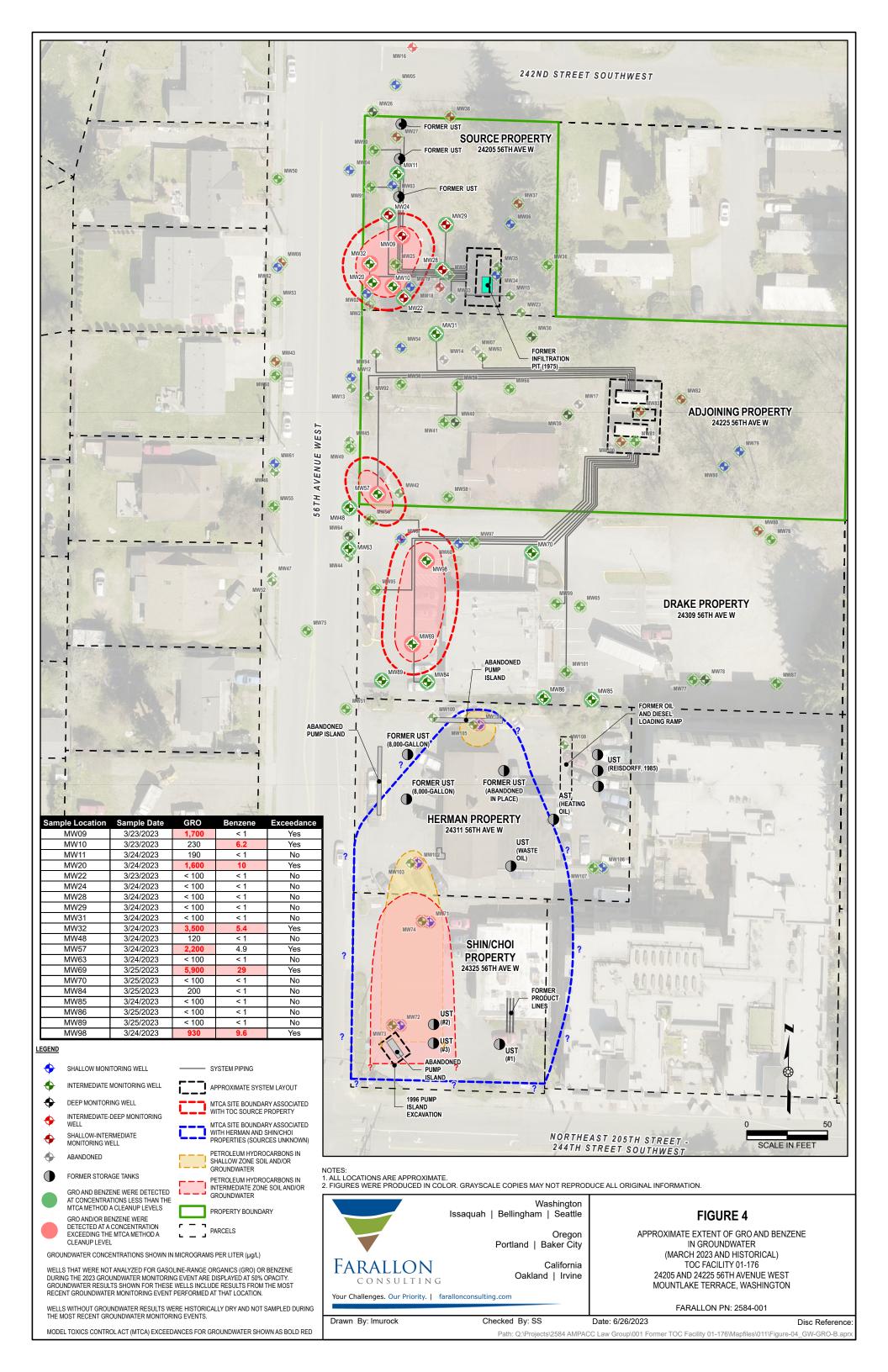
cc: Steve Cho

Howard Jensen, Veris Law Group, PLLC Kevin Jackson, Veris Law Group, PLLC Frank Winslow, Ecology


Kim Wooten, Ecology


SS/PK:sw


FIGURES


ENVIRONMENTAL CONDITIONS SUMMARY TOC Facility No. 01-176 24205 and 24225 56th Avenue West Mountlake Terrace, Washington

Farallon PN: 2584-001

TABLES

ENVIRONMENTAL CONDITIONS SUMMARY TOC Facility No. 01-176 24205 and 24225 56th Avenue West Mountlake Terrace, Washington

Farallon PN: 2584-001

Table 1 Monitoring Well Construction Details Former TOC Mountlake Terrace, Washington

Farallon PN: 2584-001

Well ID	Water-Bearing Zone	Well Type	Ground Surface Elevation (feet NAVD88)	Top of Casing Elevation (feet NAVD88)	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	Screened Length (feet)	Screen Top Elevation (feet NAVD88)	Screen Bottom Elevation (feet NAVD88)
				TOC Proper	ty				
MW09	Shallow-Intermediate	4" monitoring	361.68	360.32	4.0	39.0	35.0	356.3	321.3
MW10	Intermediate	4" monitoring	359.44	357.97	18.0	38.0	30.0	340.0	320.0
MW11	Intermediate	4" remediation	363.29	362.40	19.5	39.5	30.0	342.9	322.9
MW18	Shallow-Intermediate	4" remediation	358.65	357.97	24.0	39.0	15.0	334.0	319.0
MW20	Intermediate	4" monitoring	363.33	359.98	26.6	41.6	15.0	333.4	318.4
MW22	Shallow-Intermediate	4" monitoring	360.08	358.56	14.9	39.9	15.0	343.7	318.7
MW24	Shallow-Intermediate	4" remediation	362.95	362.00	14.6	39.6	15.0	347.4	322.4
MW25	Intermediate	4" monitoring	360.21	359.01	14.7	39.7	15.0	344.3	319.3
MW28	Shallow-Intermediate	2" monitoring	358.96	358.42	10.0	30.0	20.0	348.4	328.4
MW29	Shallow-Intermediate	2" remediation	359.85	359.02	9.0	29.0	20.0	350.0	330.0
MW31	Intermediate	2" remediation	358.07	357.25	28.5	38.5	10.0	328.8	318.8
MW32	Intermediate	4" remediation	360.79	359.98	14.0	34.0	20.0	346.0	326.0
				TOC/Farmasonis F	Property				
MW45	Intermediate	2" monitoring	357.58	357.06	29.6	39.6	10.0	327.5	317.5
MW48	Intermediate	2" monitoring	356.00	355.45	36.5	46.5	10.0	319.0	309.0
MW57	Intermediate	4" remediation	357.25	356.43	39.0	49.0	10.0	317.4	307.4
				Drake Prope	rty				
MW63	Intermediate	4" monitoring	355.47	355.14	42.0	52.0	10.0	313.1	303.1
MW69	Intermediate	2" remediation	354.66	353.78	38.5	48.5	10.0	315.3	305.3
MW70	Intermediate	2" remediation	355.03	354.19	38.2	48.2	10.0	316.0	306.0
MW84	Intermediate	4" monitoring	354.82	353.78	39.5	49.5	10.0	314.3	304.3
MW85	Intermediate	2" monitoring	351.84	351.34	38.0	48.0	10.0	313.3	303.3
MW86	Intermediate	2" monitoring	353.35	352.78	35.0	45.0	10.0	317.8	307.8
MW89	Intermediate	2" monitoring	354.32	353.89	39.5	49.5	10.0	314.4	304.4
MW98	Intermediate	4" remediation	355.53	354.75	38.0	48.0	10.0	316.8	306.8

NOTES:

bgs = below ground surface

NAVD88 = North American Vertical Datum of 1988

NM = not measured

Table 2 Summary of Groundwater Elevation Data Former TOC Mountlake Terrace, Washington

Farallon PN: 2584-001

Well ID	Water-Bearing Zone	Date Measured	Well Head Elevation (feet) ¹	Depth to Water (feet) ²	Groundwater Elevation (feet) ¹
		TOC Prop	perty		
MW09	Shallow-Intermediate	3/23/2023	360.32	18.00	342.32
MW10	Intermediate	3/23/2023	357.97	26.46	331.51
MW11	Intermediate	3/23/2023	362.40	22.34	340.06
MW18	Shallow-Intermediate	3/23/2023	357.97	dry	
MW20	Intermediate	3/23/2023	359.98	21.24	338.74
MW22	Shallow-Intermediate	3/23/2023	358.56	27.22	331.34
MW24	Shallow-Intermediate	3/23/2023	362.00	15.13	346.87
MW25	Intermediate	3/23/2023	359.01	mud ³	
MW28	Shallow-Intermediate	3/23/2023	358.42	25.98	332.44
MW29	Shallow-Intermediate	3/23/2023	359.02	13.37	345.65
MW31	Intermediate	3/23/2023	357.25	33.07	324.18
MW32	Intermediate	3/23/2023	359.98	23.05	336.93
	•	TOC/Farmasoni	is Property		
MW45	Intermediate	3/23/2023	357.06	37.95	319.11
MW48	Intermediate	3/23/2023	355.45	40.08	315.37
MW57	Intermediate	3/23/2023	356.43	41.62	314.81
		Drake Pro			
MW63	Intermediate	3/23/2023	355.14	40.61	314.53
MW69	Intermediate	3/23/2023	353.78	39.98	313.80
MW70	Intermediate	3/23/2023	354.19	40.09	314.10
MW84	Intermediate	3/23/2023	353.78	40.34	313.44
MW85	Intermediate	3/23/2023	351.34	37.96	313.38
MW86	Intermediate	3/23/2023	352.78	39.48	313.30
MW89	Intermediate	3/23/2023	353.89	40.27	313.62
MW98	Intermediate	3/23/2023	354.75	40.47	314.28

NOTES:

⁻⁻⁻ denotes not available

¹ Elevations reported in North American Vertical Datum of 1988.

² In feet below top of well casing.

³Monitoring well MW-25 has a broken lid and has been filled with soil.

				raralion PN		Analytical	Results (micro	ograms per l	iter)	
Sample	Sampled		Sample	1	1					3
Location	Ву	Sample Date	Identification	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
	SES	3/7/2012	MW09-20120307-PE			11,000	30	76	350	2,400
	SES	6/6/2012	MW09-20120606-PE			6,400	6.4	22	180	1,000
	SES	9/11/2012	MW09-20120911-PE			3,300	21	21	130	750
	SES	12/5/2012	MW09-20121205-PE			3,100	16	11	18	390
	SES	2/20/2013	MW09-20130220-PE			460	< 1	< 1	7	74
	Stantec	6/25/2013	MW09-20130625-PE			< 100	< 1	< 1	< 1	< 3
	Stantec	9/5/2013	MW09-20130905-BA			300	1.9	1.8	1.7	19
MW09	Stantec	3/25/2014	MW09(Peri)			2,600	< 1	3.8	< 1	540
1010000	Stantec	6/13/2014	MW09			< 100	< 1	< 1	< 1	< 3
	Stantec	12/13/2014	MW09-SUB			210	< 1	< 1	< 1	< 3
	Stantec	3/18/2015	MW09			120	< 1	< 1	2.5	15
	Stantec	6/16/2015	MW09			< 100	< 1	< 1	< 1	< 3
	Stantec	12/10/2015	MW09			< 100	< 1	< 1	< 1	< 3
	Stantec	2/9/2016	MW09			730	< 0.35	< 1	1.9	81
	Stantec	12/8/2016	MW09			< 100	< 0.35	< 1	1	3.5
	Farallon	3/23/2023	MW09-032323			1,700	< 1	2.1	39	100
	SES	3/7/2012	MW10-20120307-PE			1,400	62	7.3	27	89
	SES	6/6/2012	MW10-20120606-PE			830	11	5.1	28	84
	SES	9/11/2012	MW10-20120911-PE			1,500	38	< 10	110	86
	SES	12/5/2012	MW10-20121205-BA			4,900	4.6	< 1	19	63
	SES	2/21/2013	MW10-20130221-PE			620	5.5	14	8.7	110
	Stantec	6/25/2013	MW10-20130625-PE			410	4.5	3.1	12	80
MW10	Stantec	3/22/2014	MW10			< 100	< 1	< 1	< 1	< 3
IVIVV IU	Stantec	4/22/2014				<100	< 1	< 1	< 1	< 3
	Stantec	6/16/2014	MW10			< 100	< 1	< 1	< 1	< 3
	Stantec	12/11/2014	MW10			< 100	< 1	< 1	< 1	< 3
	Stantec	3/19/2015	MW10			< 100	< 1	< 1	< 1	< 3
	Stantec	6/10/2015	MW10			< 100	< 1	< 1	< 1	< 3
	Stantec	2/9/2016	MW10			< 100	< 0.35	< 1	< 1	< 3
	Farallon	3/23/2023	MW10-032323			230	6.2	< 1	< 1	< 3
	SES	2/28/2013	MW11-20130228-PN			7,800	14	85	92	4,200
	Stantec	3/30/2014	MW11			1,900	< 1	7.2	10	73
N 4\ A / 4 / 4	Stantec	3/11/2015	MW11			190	< 1	< 1	3.8	3.1
MW11	Stantec	2/2/2016	MW11			< 100	< 0.35	< 1	< 1	< 3
	Stantec	11/29/2016	MW11			< 100	< 0.35	< 1	< 1	< 3
	Farallon	3/24/2023	MW11-032423			190	< 1	< 1	6.3	22
MTCA Metho	d A Cleanup	Level for Groun	ndwater ⁴	500	500	800/1,000 ⁵	5	1,000	700	1,000

						Analytical	Results (micro	ograms per li	iter)	
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
	SES	3/9/2012	MW20-20120309-PE			5,800	200	57	310	460
	SES	6/6/2012	MW20-20120606-PE			7,800	220	250	300	910
	SES	9/11/2012	MW20-20120911-PE			5,000	100	21	210	450
	SES	12/5/2012	MW20-20121205-BA			840	< 1	2.5	5.9	14
	SES	2/20/2013	MW20-20130220-PE			17,000	140	750	620	3,400
	Stantec	6/26/2013	MW20-20130626-BL			8,600	25	98	200	1,200
N 4\\ A / O O	Stantec	9/5/2013	MW20-20130905-BA			150	< 1	< 1	< 1	< 3
MW20	Stantec	3/22/2014	MW20			< 100	< 1	< 1	< 1	< 3
	Stantec	6/13/2014	MW20	170 J	< 250	110	12 J	5.8 J	1.8	5.8
	Stantec	9/22/2014	MW20			< 100	< 1	< 1	< 1	< 3
	Stantec	3/14/2015	MW20	140 J	< 500	< 100	< 1	< 1	< 1	< 3
	Stantec	6/11/2015	MW20	100	< 500	< 100	< 1	< 1	< 1	4.5
	Stantec	2/5/2016	MW20	< 60	< 300	< 100	< 0.35	< 1	< 1	< 3
	Farallon	3/24/2023	MW20-032423	300 X	< 250	1,600	10	7.4	55	140
	SES	6/6/2012	MW22-20120606-PE			< 100	< 1	< 1	< 1	< 3
	SES	9/11/2012	MW22-20120911-PE			< 100	< 1	< 1	< 1	< 3
	SES	12/4/2012	MW22-20121204-PE			< 100	< 1	< 1	< 1	< 3
	SES	2/21/2013	MW22-20130221-PE			< 100	< 1	< 1	< 1	< 3
NAVA/00	Stantec	6/25/2013	MW22-20130625-PE			< 100	< 1	< 1	< 1	< 3
MW22	Stantec	3/21/2014	MW22			< 100	< 1	< 1	< 1	< 3
	Stantec	3/14/2015	MW22			< 100	< 1	< 1	< 1	< 3
	Stantec	2/10/2016	MW22			< 100	< 0.35	< 1	< 1	< 3
	Stantec	12/8/2016	MW22			< 100	< 0.35	< 1	< 1	< 3
	Farallon	3/23/2023	MW22-032323			< 100	< 1	< 1	< 1	< 3
	SES	3/9/2012	MW24-20120309-PE			4,400	7.3	39	39	770
	SES	2/28/2013	MW24-20130228-PN			1,000	< 1	1.7	< 1	40
	Stantec	3/30/2014	MW24			11,000	< 1	57	< 1	2,200
MW24	Stantec	3/11/2015	MW24			< 100	< 1	< 1	< 1	< 3
	Stantec	2/3/2016	MW24			< 100	< 0.35	< 1	< 1	< 3
	Stantec	11/29/2016	MW24			< 100	< 0.35	< 1	< 1	< 3
	Farallon	3/24/2023	MW24-032423			< 100	< 1	< 1	< 1	< 3
	SES	2/20/2013	MW28-20130220-PE			3,600	< 1	1.8	86	420
	Stantec	3/22/2014	MW28			< 100	< 1	< 1	< 1	< 3
MW28	Stantec	3/20/2015	MW28			< 100	< 1	< 1	< 1	< 3
	Stantec	2/5/2016	MW28			1,300	< 0.35	< 1	< 1	75
	Farallon	3/24/2023	MW28-032423			< 100	< 1	< 1	< 1	< 3
ITCA Metho	od A Cleanun	Level for Groun		500	500	800/1,000 ⁵	5	1,000	700	1,000

						Analytical	Results (micr	ograms per l	iter)	
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
	SES	3/9/2012	MW29-20120309-PE			6,700	1.5	2.7	220	840
	SES	2/28/2013	MW29-20130228-PN			8,500	< 1	50	< 1	1,400
	Stantec	3/30/2014	MW29			3,500	< 1	< 1	< 1	140
MANAGO	Stantec	3/11/2015	MW29			790	< 1	1	< 1	29
MW29	Stantec	2/3/2016	MW29			1,900	< 0.35	< 1	14	88
	Stantec	11/29/2016	MW29			< 100	< 0.35	< 1	< 1	< 3
	Farallon	3/24/2023	MW29-032423			< 100	< 1	< 1	< 1	< 3
	Farallon	3/26/2023	MW29-032623							
	SES	3/7/2012	MW31-20120307-BA			2,800	7.2	5.2	23	400
	SES	6/5/2012	MW31-20120605-BA			8,200	19	7.7	17	880
	SES	2/28/2013	MW31-20130228-PN			2,000	4.6	< 1	19	45
MW31	Stantec	6/26/2013	MW31-20130626-PN			150	< 1	< 1	< 1	< 3
	Stantec	3/26/2014	MW31			< 100	< 1	< 1	< 1	< 3
	Stantec	6/11/2014	MW31			< 100	< 1	< 1	< 1	< 3
	Farallon	3/24/2023	MW31-032423	< 50	< 250	< 100	< 1	< 1	< 1	< 3
	SES	3/9/2012	MW32-20120309-PE			120	3.1	11	1.1	16
	SES	6/6/2012	MW32-20120606-PE			4,300	14	160	87	650
	SES	9/11/2012	MW32-20120911-PN			14,000	130	260	410	2,800
	SES	12/5/2012	MW32-20121205-PN			33,000	30	800	930	6,700
	SES	2/28/2013	MW32-20130228-PN			28,000	23	210	1,000	7,000
	Stantec	6/26/2013	MW32-20130626-PN			8,000	11	93	280	1,900
	Stantec	9/4/2013	MW32-20130904-PN			2,000	< 5	5.3	26	150
	Stantec	3/30/2014	MW32			4,800	5.3	57	57	410
MW32	Stantec	6/10/2014	MW32			2,100	2.6	30	32	180
IVIVV 32	Stantec	9/18/2014	MW32			450	2.9	4.7	15	26
	Stantec	12/11/2014	MW32			< 100	< 1	< 1	< 1	< 3
	Stantec	3/11/2015	MW32			680	1.7	7.8	16	62
	Stantec	6/9/2015	MW32			410	2.6	3.5	11	28
	Stantec	9/22/2015	MW32			140	< 1	< 1	< 1	4.4
	Stantec	2/2/2016	MW32			1,200	1.1	21	21	163
	Stantec	11/29/2016	MW32			< 100	< 0.35	< 1	< 1	< 3
	Farallon	3/24/2023	MW32-032423			3,500	5.4	6.4	88	44
	Farallon	3/28/2023	MW-32-032823							
ITCA Metho	od A Cleanup	Level for Groun	ndwater ⁴	500	500	800/1,000 ⁵	5	1,000	700	1,000

						Analytical	Results (micro	ograms per li	ter)	
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
	SES	3/8/2012	MW48-20120308-BA			37,000	220	140	770	5,400 J
	SES	6/5/2012	MW48-20120605-BA			14,000	< 5	13	210	1,900
	SES	9/11/2012	MW48-20120911-BA			24,000	300	130	550	4,300
	SES	12/4/2012	MW48-20121204-BA			21,000	62	< 40	390	3,000
	SES	2/20/2013	MW48-20130220-BA			19,000	170	100	620	4,500
	Stantec	6/26/2013	MW48-20130626-BA			11,000	< 5	12	130	810
	Stantec	9/5/2013	MW48-20130905-BA			18,000	60	55	140	1,100
	Stantec	12/3/2013	MW48-20131203-BA			19,000	160	76	< 5	3,300
	Stantec	3/23/2014	MW48			33,000	82	99	680	4,700
MW48	Stantec	6/12/2014	MW48			10,000	< 1	11	37	610
1010046	Stantec	9/18/2014	MW48			8,500	< 5	12	< 5	100
	Stantec	12/11/2014	MW48			7,700	67	21	< 20	440
	Stantec	3/20/2015	MW48			12,000	120	52	< 40	1,900
	Stantec	6/11/2015	MW48			2,200	< 1	4.5	< 1	110
	Stantec	9/23/2015	MW48			5,400	5.9	14	20	83
	Stantec	12/11/2015	MW48			11,000	32	30	61	480
	Stantec	2/8/2016	MW48			1,800	< 0.35	< 1	< 1	8.5
	Stantec	12/7/2016	MW48			10,000	39	18	170	967
	Farallon	3/24/2023	MW48-032423			120	< 1	< 1	< 1	< 3
	Farallon	3/26/2023	MW48-032623							
	SES	3/7/2012	MW57-20120307-BA			2,100	9.7	2.3	87	160
	SES	2/28/2013	MW57-20130228-PN			3,100	25	10	< 1	710
	Stantec	3/26/2014	MW57			3,600	< 1	9.1	51	410
MW57	Stantec	12/11/2014	MW57			4,700	2.2	2.8	62	416
IVIVVƏ7	Stantec	3/11/2015	MW57			110	< 1	< 1	2	11
	Stantec	6/9/2015	MW57			280	< 1	< 1	6.4	60
	Stantec	11/30/2016	MW57			4,600	3.4	2.7	18	284
	Farallon	3/24/2023	MW57-032423			2,200	4.9	2.7	58	210
MTCA Metho	CA Method A Cleanup Level for Groundwater ⁴				500	800/1,000 ⁵	5	1,000	700	1,000

						Analytical	Results (micro	ograms per li	ter)	
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
	SES	3/8/2012	MW63-20120308-BL			< 100	< 1	< 1	< 1	< 3
	SES	6/6/2012	MW63-20120605-BL			< 100	< 1	< 1	< 1	< 3
	SES	9/11/2012	MW63-20120911-BL			100	< 1	< 1	< 1	< 3
	SES	12/4/2012	MW63-20121204-BL			< 100	< 1	< 1	< 1	< 3
	SES	2/19/2013	MW63-20130219-BL			< 100	< 1	< 1	< 1	< 3
	Stantec	6/25/2013	MW63-20130625-BL			< 100	< 1	< 1	< 1	< 3
	Stantec	9/5/2013	MW63-20130905-BL			< 100	< 1	< 1	< 1	< 3
	Stantec	12/4/2013	MW63-20131204-BL			< 100	< 1	< 1	< 1	< 3
	Stantec	4/1/2014	MW63			< 100	< 1	< 1	< 1	< 3
MW63	Stantec	6/19/2014	MW63			< 100	< 1	< 1	< 1	< 3
	Stantec	9/23/2014	MW63			< 100	< 1	< 1	< 1	< 3
	Stantec	12/17/2014	MW63			< 100	< 1	< 1	< 1	< 3
	Stantec	3/20/2015	MW63			< 100	< 1	< 1	< 1	< 3
	Stantec	6/12/2015	MW63			< 100	2.9	1.2	< 1	3.5
	Stantec	9/25/2015	MW63			< 100	< 1	< 1	< 1	< 3
	Stantec	12/11/2015	MW63			< 100	< 1	< 1	< 1	< 3
	Stantec	2/16/2016	MW63			< 100	< 0.35	< 1	< 1	< 3
	Stantec	12/7/2016	MW63			< 100	< 0.35	< 1	< 1	< 3
	Farallon	3/24/2023	MW63-032423			< 100	< 1	< 1	< 1	< 3
	SES	3/6/2012	MW69-20120306-BA			5,400	1.5	< 1	100	440
	SES	6/5/2012	MW69-20120605-BA			9,700	2.6	15	220	900
	SES	9/12/2012	MW69-20120912-PN			7,900	7.2	13	170	750
	SES	12/4/2012	MW69-20121204-PN			200	1.5	< 1	< 1	2.8
	SES	2/28/2013	MW69-20130228-PN			7,600	1.5	1.8	160	973
MW69	Stantec	3/20/2015	MW69			2,700	< 1	1.9	32	140
IVIVVOS	Stantec	6/10/2015	MW69	290	< 500	3,100	< 1	1.4	12	200
	Stantec	9/22/2015	MW69	510	< 250	4,100	< 1	1.3	< 1	230
	Stantec	12/10/2015	MW69	530	< 250	2,700	< 1	1.4	< 1	120
	Stantec	2/4/2016	MW69	1,600 J	< 250	3,700	0.48	< 1	22	163.1
	Stantec	12/8/2016	MW69	1,400 J	< 250	8,500	0.49	< 1	31	172.8
	Farallon	3/25/2023	MW69-032523	1,300 X	< 250	5,900	29	5.5	7.7	10
MTCA Metho	od A Cleanup	Level for Groun	ndwater ⁴	500	500	800/1,000 ⁵	5	1,000	700	1,000

				Analytical Results (micrograms per liter)							
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³	
	SES	3/6/2012	MW70-20120306-BA			280	7.6	< 1	< 1	4.1	
	SES	6/5/2012	MW70-20120605-BA			< 100	2.3	< 1	< 1	< 3	
	SES	9/12/2012	MW70-20120912-PN			< 100	2.1	< 1	< 1	< 3	
	SES	12/4/2012	MW70-20121204-PN			< 100	1.5	< 1	< 1	< 3	
	SES	2/28/2013	MW70-20130228-PN			< 100	< 0.35	< 1	< 1	< 3	
	Stantec	9/4/2013	MW70-20130904-PN			< 100	< 1	< 1	< 1	< 3	
	Stantec	3/30/2014	MW70			< 100	< 1	< 1	< 1	< 3	
MW70	Stantec	6/20/2014	MW70	85 J	< 300	< 100	< 1	< 1	< 1	< 3	
IVIVV / U	Stantec	9/19/2014	MW70	110	< 250	< 100	< 1	< 1	< 1	< 3	
	Stantec	3/11/2015	MW70			< 100	< 1	< 1	< 1	< 3	
	Stantec	6/10/2015	MW70	< 100	< 500	< 100	< 1	< 1	< 1	< 3	
	Stantec	9/23/2015	MW70	< 50	< 250	< 100	< 1	< 1	< 1	< 3	
	Stantec	12/10/2015	MW70	250	< 300	< 100	< 1	< 1	< 1	< 3	
	Stantec	2/4/2016	MW70	< 50	< 250	590 J	< 0.35	< 1	< 1	< 3	
	Stantec	11/30/2016	MW70	60 J	< 290	< 100	< 1	< 1	< 1	< 3	
	Farallon	3/25/2023	MW70-032523	< 50	< 250	< 100	< 1	< 1	< 1	< 3	
	SES	3/7/2012	MW84-20120307-BL			680	< 1	1.6	5	14	
	SES	6/5/2012	MW84-20120605-BL			990	< 1	2.5	11	28	
	SES	9/11/2012	MW84-20120912-PN			1,200	2	2.9	8.5	28	
	SES	12/5/2012	MW84-20121205-PN			1,000	0.45	< 1	17	41.3	
	SES	2/28/2013	MW84-20130228-PN			4,700	1.9	2	160 J	551	
	Stantec	7/12/2013	MW84-20130712-BL			240	< 0.35	< 1	1.1	3.9	
	Stantec	9/17/2013	MW84-20130917-BL			130	< 1	< 1	1.1	< 3	
	Stantec	12/3/2013	MW84-20131203-BL			1,400	< 0.35	< 1	7.3	31.2	
	Stantec	3/30/2014	MW84			600	< 1	1.3	5.5	14	
MW84	Stantec	6/20/2014	MW84			960	< 1	< 1	5.9	17	
	Stantec	9/23/2014	MW84			780	< 1	< 1	4.9	15	
	Stantec	12/17/2014	MW84			620	< 0.35	< 1	2.3	8.7	
	Stantec	3/16/2015	MW84			630	< 1	< 1	4.8	12	
	Stantec	6/15/2015	MW84			< 100	< 1	< 1	< 1	< 3	
	Stantec	9/24/2015	MW84			< 100	< 1	< 1	< 1	< 3	
	Stantec	12/10/2015	MW84	< 70	< 350	< 100	< 1	< 1	< 1	< 3	
	Stantec	2/17/2016	MW84	79	< 300	300	< 0.35	< 1	1.4	4.9	
	Stantec	12/7/2016	MW84	94 J	< 250	240	< 0.35	< 1	< 1	< 3	
	Farallon	3/25/2023	MW84-032523	62 X	< 250	200	< 1	< 1	< 1	< 3	
/ITCA Metho	d A Cleanun	Level for Groun	ndwater ⁴	500	500	800/1,000 ⁵	5	1,000	700	1,000	

						Analytical	Results (micro	ograms per li	ter)	
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
	SES	3/6/2012	MW85-20120306-BL			< 100	3.1	< 1	< 1	< 3
	SES	6/5/2012	MW85-20120605-BL			< 100	1.8	< 1	< 1	< 3
	SES	9/11/2012	MW85-20120911-BL			< 100	1.4	< 1	< 1	< 3
	SES	12/4/2012	MW85-20121204-BL			< 100	< 0.35	< 1	< 1	< 3
	SES	2/19/2013	MW85-20130219-BL			< 100	0.46	< 1	< 1	< 3
	Stantec	6/25/2013	MW85-20130625-BL			< 100	< 1	< 1	< 1	< 3
	Stantec	9/4/2013	MW85-20130904-BL			< 100	< 1	< 1	< 1	< 3
	Stantec	12/3/2013	MW85-20131203-BL			< 100	< 0.35	< 1	< 1	< 3
	Stantec	4/1/2014	MW85			< 100	< 1	< 1	< 1	< 3
MW85	Stantec	6/20/2014	MW85			< 100	< 1	< 1	< 1	< 3
	Stantec	9/24/2014	MW85			< 100	< 1	< 1	< 1	< 3
	Stantec	12/15/2014	MW85			< 100	< 0.35	< 1	< 1	< 2
	Stantec	3/18/2015	MW85			< 100	< 1	< 1	< 1	< 3
	Stantec	6/11/2015	MW85			< 100	< 1	< 1	< 1	< 3
	Stantec	9/24/2015	MW85			< 100	< 1	< 1	< 1	< 3
	Stantec	12/11/2015	MW85	< 100	< 500	< 100	< 1	< 1	< 1	< 3
	Stantec	2/17/2016	MW85	65	< 300	< 100	< 0.35	< 1	< 1	< 3
	Stantec	12/6/2016	MW85	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
	Farallon	3/24/2023	MW85-032523	< 60	< 300	< 100	< 1	< 1	< 1	< 3
	SES	3/6/2012	MW86-20120306-BL			130	3.7	< 1	< 1	< 3
	SES	6/5/2012	MW86-20120605-BL			130	1.1	< 1	< 1	< 3
	SES	9/11/2012	MW86-20120911-BL			1,600	2.6	5.8	2.9	3.4
	SES	12/4/2012	MW86-20121204-BL			860	0.77	< 1	1.7	4.6
NAVA / O.C.	SES	2/19/2013	MW86-20130219-BL			< 100	1.1	< 1	< 1	< 3
MW86	Stantec	6/25/2013	MW86-20130625-BL			< 100	< 1	< 1	< 1	< 3
	Stantec	9/4/2013	MW86-20130904-BL			1,100	1.9	3.7	1.7	3.6
	Stantec	12/3/2013	MW86-20131203-BL			790	0.71	< 1	< 1	< 3
	Stantec	4/1/2014	MW86			< 100	< 1	< 1	< 1	< 3
	Stantec	6/20/2014	MW86	< 50	< 250	< 100	< 1	< 1	< 1	< 3
MTCA Metho	CA Method A Cleanup Level for Groundwater ⁴				500	800/1,000 ⁵	5	1,000	700	1,000

						Analytical	Results (micro	ograms per li	ter)	
Sample	Sampled		Sample	1	1	2	_ 3	_ 3	3	3
Location	Ву	Sample Date	Identification	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
	Stantec	9/24/2014	MW86	180 J	< 250	1,000	1.8	1.9	1.2	< 3
	Stantec	12/15/2014	MW86	< 50	< 250	< 100	< 0.35	< 1	< 1	< 2
	Stantec	3/18/2015	MW86	< 100	< 500	< 100	< 1	< 1	< 1	< 3
MW86	Stantec	6/12/2015	MW86	< 100	< 500	< 100	1.1	< 1	< 1	< 3
(continued)	Stantec	9/25/2015	MW86	< 60	< 300	< 100	< 1	< 1	< 1	< 3
(continued)	Stantec	12/11/2015	MW86	< 65	< 330	< 100	< 1	< 1	< 1	< 3
	Stantec	2/17/2016	MW86	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
	Stantec	12/6/2016	MW86	77 J	< 250	< 100	< 0.35	< 1	< 1	< 3
	Farallon	3/25/2023	MW86-032523	< 75	< 380	< 100	< 1	< 1	< 1	< 3
	SES	3/6/2012	MW89-20120306-BL			< 100	< 1	< 1	< 1	< 3
	SES	6/5/2012	MW89-20120605-BL			< 100	< 1	< 1	< 1	< 3
	SES	9/11/2012	MW89-20120911-BL			< 100	< 1	< 1	< 1	< 3
	SES	12/4/2012	MW89-20121204-BL			< 100	< 0.35	< 1	< 1	< 3
	SES	2/19/2013	MW89-20130219-BL			< 100	< 0.35	< 1	< 1	< 3
	Stantec	6/25/2013	MW89-20130626-B			< 100	< 1	< 1	< 1	< 3
	Stantec	9/4/2013	MW89-20130904-BL			< 100	< 1	< 1	< 1	< 3
	Stantec	12/3/2013	MW89-20131203-BL			< 100	< 0.35	< 1	< 1	1
	Stantec	4/1/2014	MW89			< 100	< 1	< 1	< 1	< 3
MW89	Stantec	6/20/2014	MW89			< 100	< 1	< 1	< 1	< 3
	Stantec	9/23/2014	MW89			< 100	< 1	< 1	< 1	< 3
	Stantec	12/17/2014	MW89			< 100	< 0.35	< 1	< 1	< 2
	Stantec	3/18/2015	MW89			< 100	< 1	< 1	< 1	< 3
	Stantec	6/15/2015	MW89			< 100	< 1	< 1	< 1	< 3
	Stantec	9/24/2015	MW89			< 100	< 1	< 1	< 1	< 3
	Stantec	12/10/2015	MW89	< 60	< 300	< 100	< 1	< 1	< 1	< 3
	Stantec	2/17/2016	MW89	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
	Stantec	12/7/2016	MW89	< 50	< 250	< 100	< 0.35	< 1	< 1	< 3
	Farallon	3/25/2023	MW89-032523	< 75	< 380	< 100	< 1	< 1	< 1	< 3
MTCA Metho	d A Cleanup	Level for Grour	ndwater ⁴	500	500	800/1,000 ⁵	5	1,000	700	1,000

Table 3

Groundwater Analytical Results for TPH and BTEX

Former TOC

Mountlake Terrace, Washington

Farallon PN: 2584-001

					1	Analytical	Results (micro	ograms per li	iter)	
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
	SES	3/8/2012	MW98-20120308-BA			3,800	13	4.6	56	130
	SES	2/28/2013	MW98-20130228-PN			770	7.6	1.5	13	44.5
	Stantec	3/30/2014	MW98			< 100	2.1	< 1	< 1	< 3
	Stantec	3/11/2015	MW98			600	4.5	2.3	11	43
MW98	Stantec	6/9/2015	MW98			380	< 1	< 1	3.1	17
10100 90	Stantec	9/22/2015	MW98			< 100	< 1	< 1	< 1	< 3
	Stantec	12/10/2015	MW98			110	< 1	< 1	1.1	4.4
	Stantec	2/4/2016	MW98			290	0.71	< 1	2.6	8.6
	Stantec	11/30/2016	MW98			150	2.5	< 1	< 1	< 3
	Farallon	3/24/2023	MW98-032423			930	9.6	1.8	< 1	3.7
MTCA Metho	CA Method A Cleanup Level for Groundwater ⁴				500	800/1,000 ⁵	5	1,000	700	1,000

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

Farallon = Farallon Consulting, L.L.C.

GRO = TPH as gasoline-range organics

J = result is an estimate

ORO = TPH as oil-range organics

R = data rejected

SES = SoundEarth Strategies, Inc.

Stantec = Stantec Consulting Services, Inc.

X = the sample chromatographic pattern does not resemble the fuel standard used for quantitation

⁻⁻⁻ denotes sample not analyzed.

¹Analyzed by Northwest Method NWTPH-Dx.

²Analyzed by Northwest Method NWTPH-Gx.

³Analyzed by U.S. Environmental Protection Agency (EPA) Method 8021B or 8260C.

⁴Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013.

⁵Cleanup level is 800 micrograms per liter if benzene is detected and 1,000 micrograms per liter if benzene is not detected.

Table 4 Groundwater Analytical Results for Volatile Organic Compounds Former TOC

Mountlake Terrace, Washington Farallon PN: 2584-001

			Analytic	cal Results (micrograms	per liter)
Sample Location	Sample Date	Sample Identification	1,2-Dibromoethane ¹	1,2-Dichloroethane ²	Methyl Tertiary-Butyl Ether (MTBE) ²
MW20	3/24/2023	MW20-032423			< 1
MW31	3/24/2023	MW31-032423	< 0.01	< 0.2	< 1
MW57	3/24/2023	MW57-032423			< 1
MW69	3/25/2023	MW69-032523	< 0.01	< 0.2	< 1
MW70	3/25/2023	MW70-032523	< 0.01	0.84	< 1
MW84	3/25/2023	MW84-032523	< 0.01	< 0.2	< 1
MW85	3/24/2023	MW85-032523			< 1
MW86	3/25/2023	MW86-032523	< 0.01	< 0.2	< 1
MW89	3/25/2023	MW89-032523			< 1
MW98	3/24/2023	MW98-032423			< 1
MTCA Cleanup Levels	for Groundwater ³		0.01	5.0	20

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

⁻⁻⁻ denotes sample not analyzed.

¹Analyzed by U.S. Environmental Protection Agency (EPA) Method 8011 Modified.

²Analyzed by EPA Method 8260D Dual Acquisition.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

Table 5 Groundwater Analytical Results for Semivolatile Organic Compounds Former TOC

Mountlake Terrace, Washington Farallon PN: 2584-001

			Anal	ytical Resu	ılts (microç	grams per	liter) ¹
Sample Location	Sample Date	Sample Identification	2,4-Dimethylphenol	Bis(2-Ethylhexyl) Phthalate	Carbazole	Di-n-Butylphthalate	n-Nitrosodiphenylamine
MW20	3/24/2023	MW20-032423	3.4	< 3.2	< 0.02	< 2	< 0.2
MW31	3/24/2023	MW31-032423	< 2	16 C	< 0.02	7.2	0.20
MW69	3/25/2023	MW69-032523	< 2	< 3.2	0.038	< 2	< 0.2
MW70	3/25/2023	MW70-032523	< 2	< 3.2	< 0.02	< 2	< 0.2
MW84	3/25/2023	MW84-032523	< 2	< 3.2	< 0.02	< 2	< 0.2
MW85	3/24/2023	MW85-032523	< 6	< 9.6	< 0.06	< 6	< 0.6
MW86	3/25/2023	MW86-032523	< 4	< 6.4	< 0.04	< 4	< 0.4
MW89	3/25/2023	MW89-032523	< 6	< 9.6	< 0.06	< 6	< 0.6
MTCA Cleanup Le	vels for Groundwa	iter ²	320	6.3	NE	1,600	18

NOTES:

Results in \boldsymbol{bold} denote concentrations exceeding applicable cleanup levels.

C = analyte is a common field and laboratory contaminant

NE = not established

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8270E. Only detected analytes shown in table. See laboratory report for full list of analytes.

²Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State MTCA, Standard Method B Formula Values for Groundwater from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC>.

Table 6 Groundwater Analytical Results for PAHs Former TOC

Mountlake Terrace, Washington

Farallon PN: 2584-001

											Analytical	Results (n	nicrogram	s per liter)	1							
							No	on-Carcine	ogenic PAI	Hs								Carcinoge	enic PAHs			
Sample Location	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methyinaphthalene	Total Naphthalenes ²	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
MW20	3/24/2023	MW20-032423	9.7	1.7	2.5	13.9	< 0.02	< 0.02	< 0.02	< 0.04	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.015
MW31	3/24/2023	MW31-032423	< 0.2	< 0.2	< 0.2	< 0.6	< 0.02	< 0.02	< 0.02	< 0.04	0.095	< 0.02	0.091	0.33	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.015
MW69	3/25/2023	MW69-032523	6.9	19	35	60.9	0.11	< 0.02	< 0.02	< 0.04	< 0.02	0.077	0.064	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.015
MW70	3/25/2023	MW70-032523	< 0.2	< 0.2	< 0.2	< 0.6	< 0.02	< 0.02	< 0.02	< 0.04	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.015
MW84	3/25/2023	MW84-032523	< 0.2	0.22	< 0.2	0.22	< 0.02	< 0.02	< 0.02	< 0.04	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.015
MW85	3/24/2023	MW85-032523	< 0.6	< 0.6	< 0.6	< 1.8	< 0.06	< 0.06	< 0.06	< 0.12	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.045
MW86	3/25/2023	MW86-032523	< 0.4	< 0.4	< 0.4	< 1.2	< 0.04	< 0.04	< 0.04	< 0.08	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.030
MW89	3/25/2023	MW89-032523	< 0.6	< 0.6	< 0.6	< 1.8	< 0.06	< 0.06	< 0.06	< 0.12	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.045
MTCA Method A C	leanup Level for G	Froundwater ⁵			·	160	480 ⁶	NE	2,400 ⁶	NE	640 ⁶	320 ⁶	NE	240 ⁶		•	•		•			0.1

NOTES:

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

NE = not established

PAHs = polycyclic aromatic hydrocarbons

TEC = toxic equivalent concentration

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8270E.

²Sum of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene.

³Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁴For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁵Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁶Washington State Model Toxics Control Act Cleanup Regulation Cleanup Levels and Risk Calculations, Standard Method B Values for Groundwater, updated May 2019, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC.

Table 7 Groundwater Analytical Results for Total and Dissolved Lead Former TOC

				•	Analytical Results (micrograms per liter) ¹			
Sample Location	Sampled By	Sample Date	Sample Identification	Total Lead	Dissolved Lead			
	SES	2/28/2013	MW29-20130228-PN	8.79	3.19			
	Stantec	3/30/2014	MW29	30	1.26			
MW29	Stantec	3/11/2015	MW29	119	2.91			
1010029	Stantec	2/3/2016	MW29	37.3	< 1			
	Farallon	3/24/2023	MW29-032423	< 1				
	Farallon	3/26/2023	MW29-032623		< 1			
	SES	3/7/2012	MW31-20120307-BA	26.5	24.6			
	SES	2/28/2013	MW31-20130228-PN	16.1	9.28			
MW31	Stantec	6/26/2013	MW31-20130626-PN	19.9	3.09			
	Stantec	6/11/2014	MW31	11.4	9.67			
	Farallon	3/24/2023	MW31-032423	< 1	< 1			
	SES	2/28/2013	MW32-20130228-PN	9.37	3.94			
	Stantec	3/30/2014	MW32	45.2	6.11			
	Stantec	6/10/2014	MW32	4.03	2.97			
	Stantec	9/18/2014	MW32	62.2	50.8			
	Stantec	12/11/2014	MW32	14.9				
MW32	Stantec	3/11/2015	MW32	28	1.04			
1010032	Stantec	6/9/2015	MW32	32.8	1.18			
	Stantec	9/22/2015	MW32	120	< 1			
	Stantec	2/2/2016	MW32	6.01	1.26			
	Stantec	11/29/2016	MW32	5.47	< 1			
	Farallon	3/24/2023	MW32-032423	< 1				
	Farallon	3/28/2023	MW-32-032823		1.35			
MTCA Metho	od A Cleanup	Level for Grour	ndwater ²		15			

Table 7 Groundwater Analytical Results for Total and Dissolved Lead Former TOC

				Analytical Results (micrograms per liter) ¹			
Sample Location	Sampled By	Sample Date	Sample Identification	Total Lead	Dissolved Lead		
	SES	2/20/2013	MW48-20130220-BA	5.58	4.07		
	Stantec	3/23/2014	MW48	52.6	48		
	Stantec	6/12/2014	MW48	3.91	2.46		
	Stantec	9/18/2014	MW48	10.2	3.13		
	Stantec	12/11/2014	MW48	10.5	8.14		
	Stantec	3/20/2015	MW48	14.6	12.8		
MW48	Stantec	6/11/2015	MW48	7.06	1.2		
	Stantec	9/23/2015	MW48	16.8	4.85		
	Stantec	12/11/2015	MW48	25.6	13.4		
	Stantec	2/8/2016	MW48	13.7	5.89		
	Stantec	12/7/2016	MW48	5.48	4.52		
	Farallon	3/24/2023	MW48-032423	3.35			
	Farallon	3/26/2023	MW48-032623		< 1		
MW69	Farallon	3/25/2023	MW69-032523	1.34	1.44		
	Stantec	6/20/2014	MW70	2.48	< 1		
	Stantec	9/19/2014	MW70	< 1	< 1		
	Stantec	6/10/2015	MW70	< 1	< 1		
MW70	Stantec	9/23/2015	MW70	< 1	< 1		
IVIVV7U	Stantec	12/10/2015	MW70	< 1	< 1		
	Stantec	2/4/2016	MW70	< 1	< 1		
	Stantec	11/30/2016	MW70	< 1	< 1		
	Farallon	3/25/2023	MW70-032523	< 1	< 1		
NA\A/O 4	Stantec	12/7/2016	MW84	< 1	< 1		
MW84	Farallon	3/25/2023	MW84-032523	< 1	< 1		
CA Metho	od A Cleanup	Level for Groun	dwater ²		15		

Table 7 Groundwater Analytical Results for Total and Dissolved Lead Former TOC

Mountlake Terrace, Washington Farallon PN: 2584-001

				Analytical Results (micrograms per liter) ¹			
Sample Location	Sampled By	Sample Date	Sample Identification	Total Lead	Dissolved Lead		
N // \ / O E	SES	3/6/2012	MW85-20120306-BL	< 1	< 1		
MW85	Stantec	12/6/2016	MW85	< 1	< 1		
	Stantec	6/20/2014	MW86	< 1	< 1		
	Stantec	9/24/2014	MW86	< 1	< 1		
	Stantec	12/15/2014	MW86	< 1	< 1		
	Stantec	3/18/2015	MW86	R	< 1		
N/N/06	Stantec	6/12/2015	MW86	< 1	< 1		
MW86	Stantec	9/25/2015	MW86	< 1	< 1		
	Stantec	12/11/2015	MW86	< 1	< 1		
	Stantec	2/17/2016	MW86	< 1	< 1		
	Stantec	12/6/2016	MW86	3.82	< 1		
	Farallon	3/25/2023	MW86-032523	< 1	< 1		
MW98	SES	3/8/2012	MW98-20120308-BA	1.87	< 1		
CA Metho	d A Cleanup	Level for Groun	dwater ²		15		

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

SES

SES = SoundEarth Strategies, Inc.

R = data rejected

Farallon = Farallon Consulting, L.L.C.

< denotes analyte not detected at or exceeding the reporting limit listed.

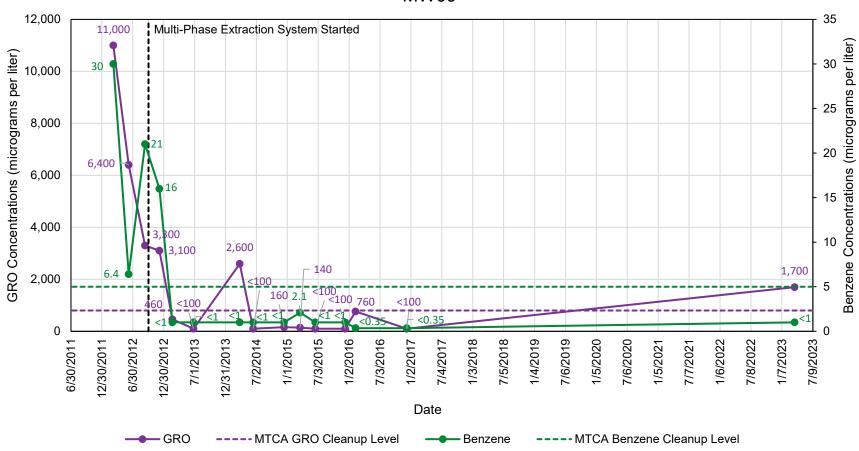
⁻⁻⁻ denotes sample not analyzed.

¹Analyzed by U.S. Environmental Protection Agency Method 200.8.

Stantec = Stantec Consulting Services, Inc.

²Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013.

CHARTS

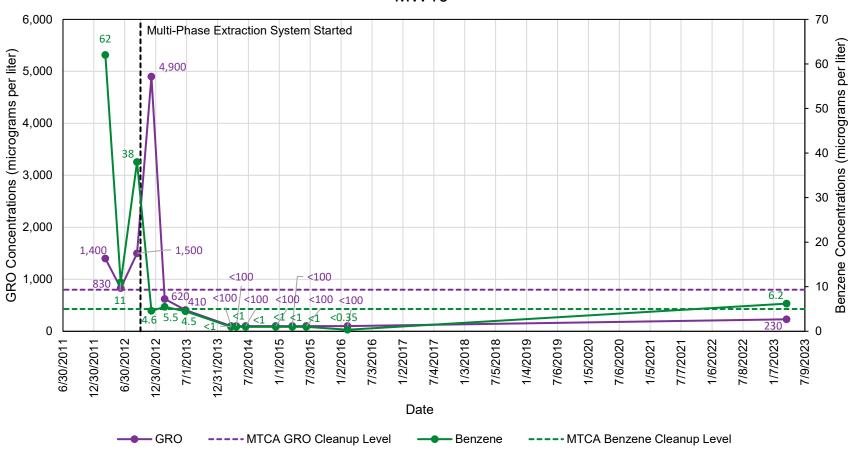

ENVIRONMENTAL CONDITIONS SUMMARY TOC Facility No. 01-176 24205 and 24225 56th Avenue West Mountlake Terrace, Washington

Farallon PN: 2584-001

Chart 1 Monitoring Well MW09 GRO and Benzene Concentrations Over Time TOC Facility 01-176 Mountlake Terrace, Washington

Farallon PN: 2584-001

MW09

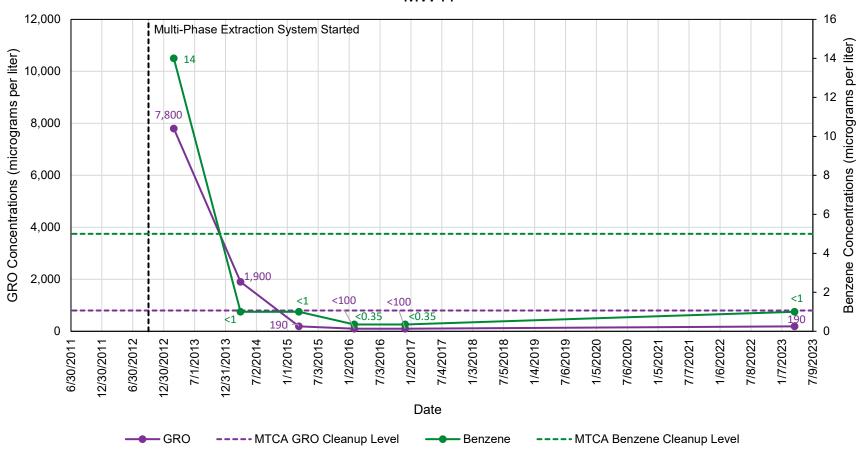


Notes:

Chart 2 Monitoring Well MW10 GRO and Benzene Concentrations Over Time TOC Facility 01-176 Mountlake Terrace, Washington

Farallon PN: 2584-001

MW10

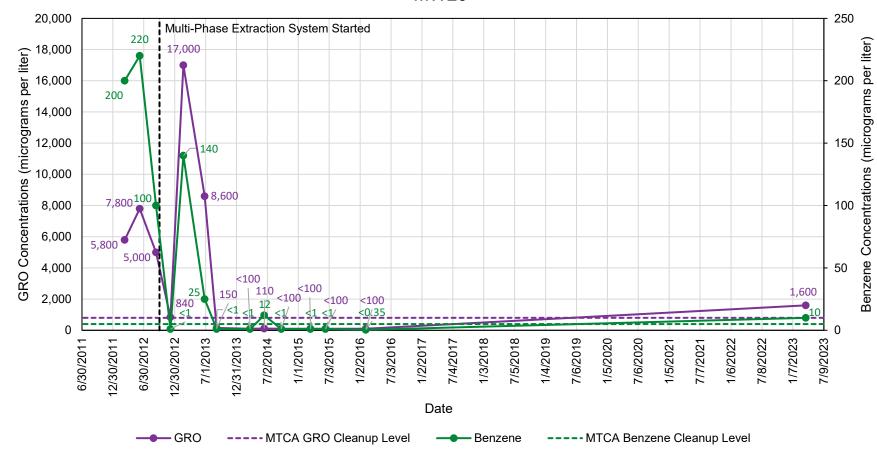


Notes:

Chart 3 Monitoring Well MW11 GRO and Benzene Concentrations Over Time TOC Facility 01-176 Mountlake Terrace, Washington

Farallon PN: 2584-001

MW11

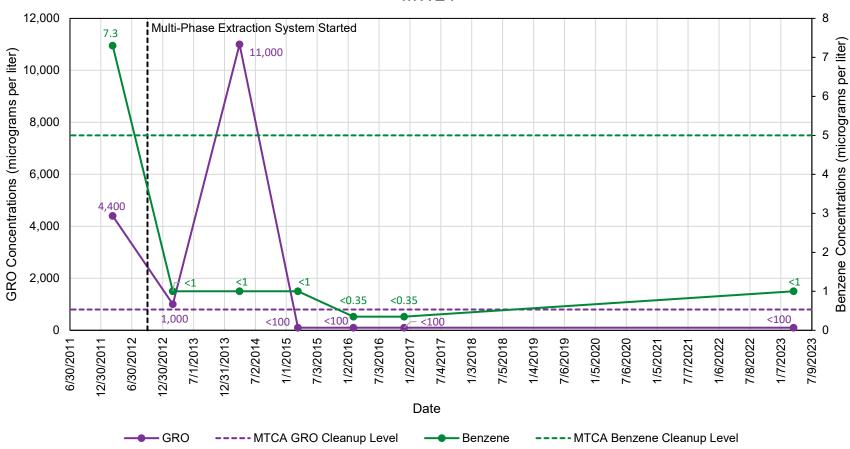


Notes:

Chart 4 Monitoring Well MW20 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW20

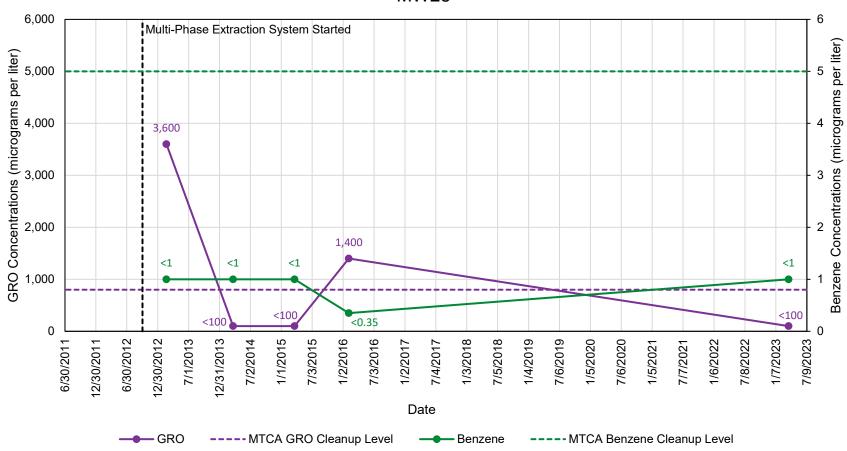


Notes:

Chart 5 Monitoring Well MW24 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW24

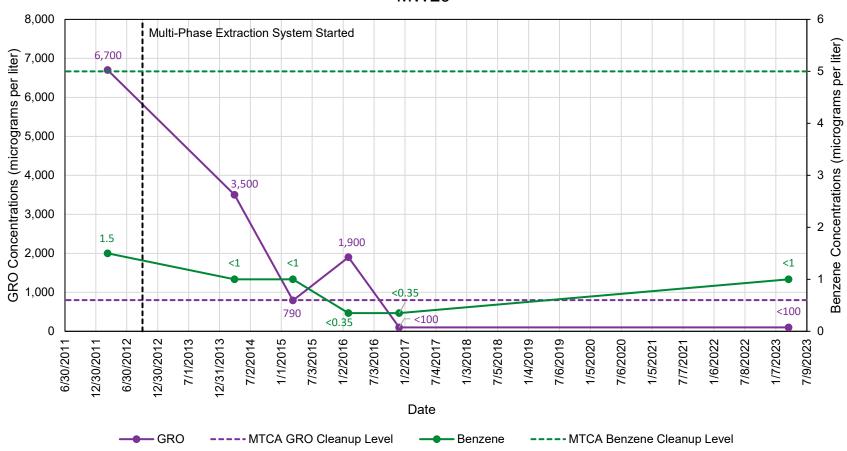


Notes:

Chart 6 Monitoring Well MW28 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW28

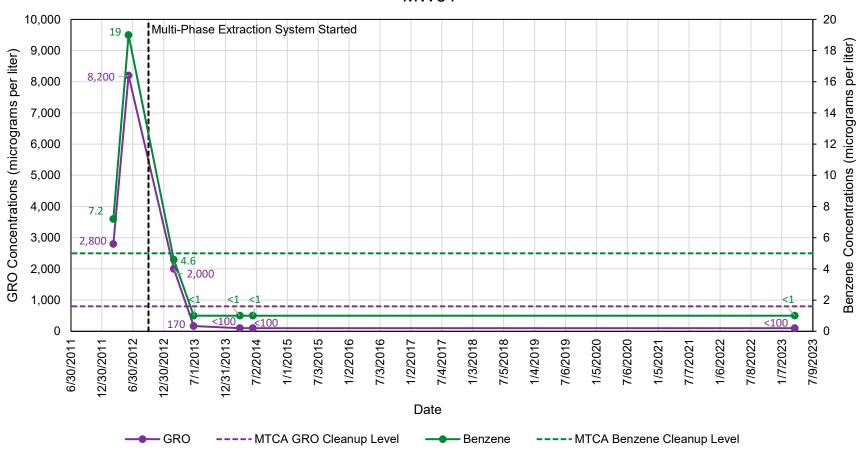


Notes:

Chart 7 Monitoring Well MW29 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW29

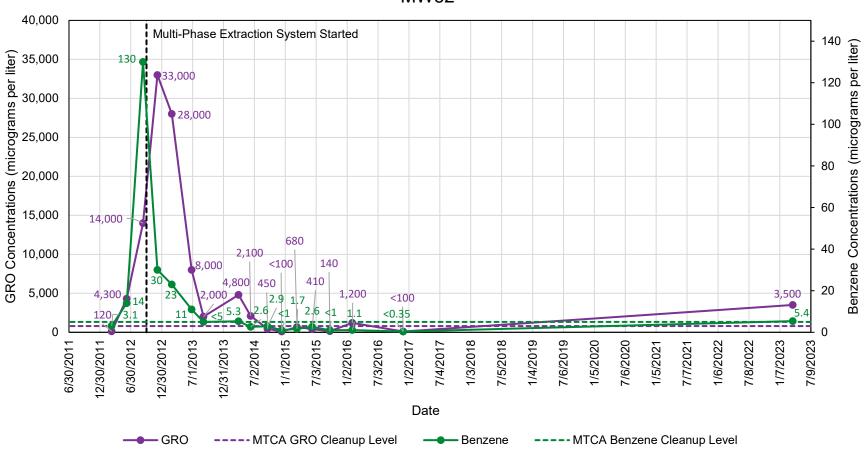


Notes:

Chart 8 Monitoring Well MW31 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW31

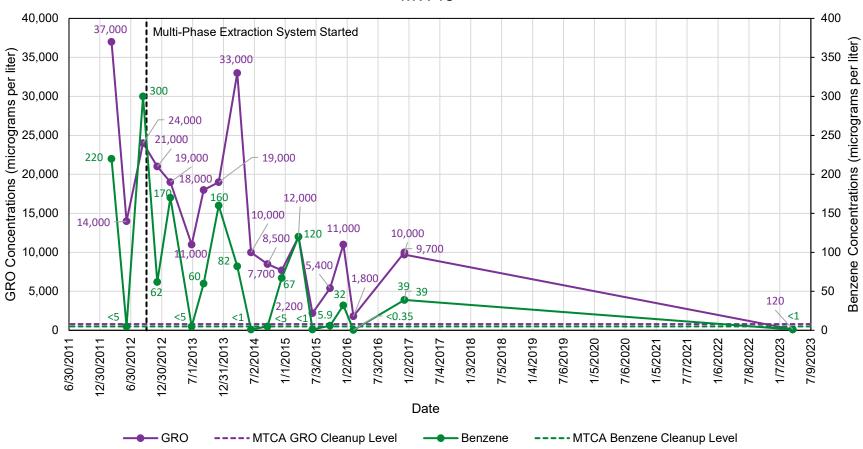


Notes:

Chart 9 Monitoring Well MW32 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW32

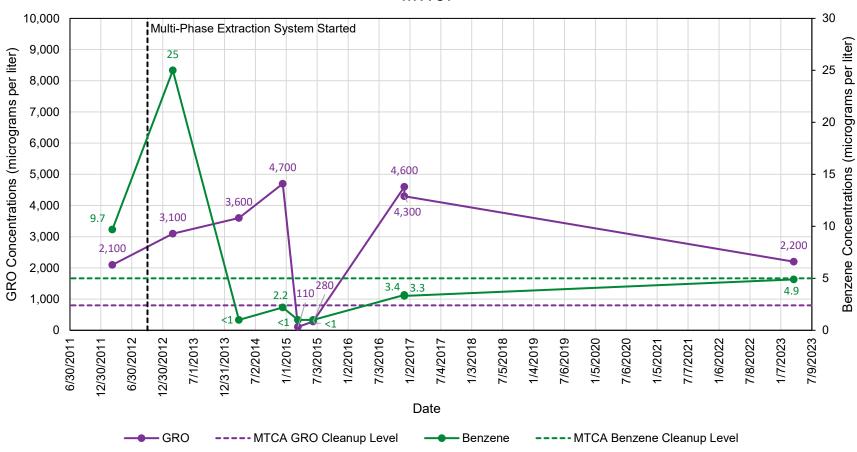


Notes:

Chart 10 Monitoring Well MW48 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW48

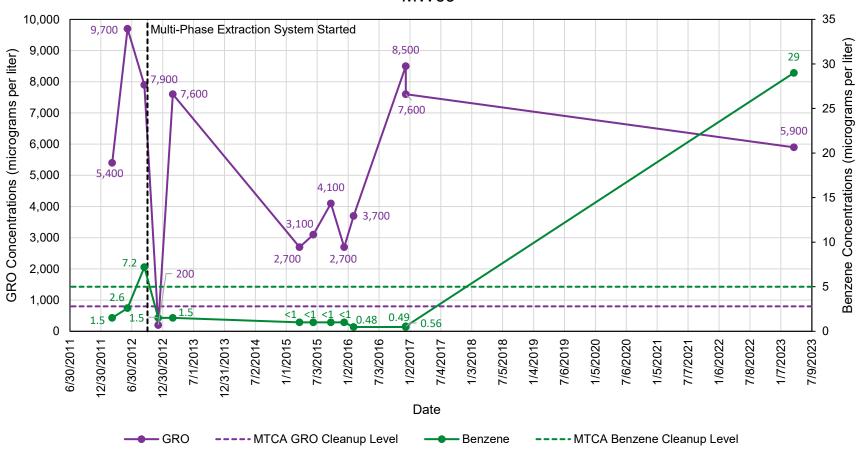


Notes:

Chart 11 Monitoring Well MW57 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW57

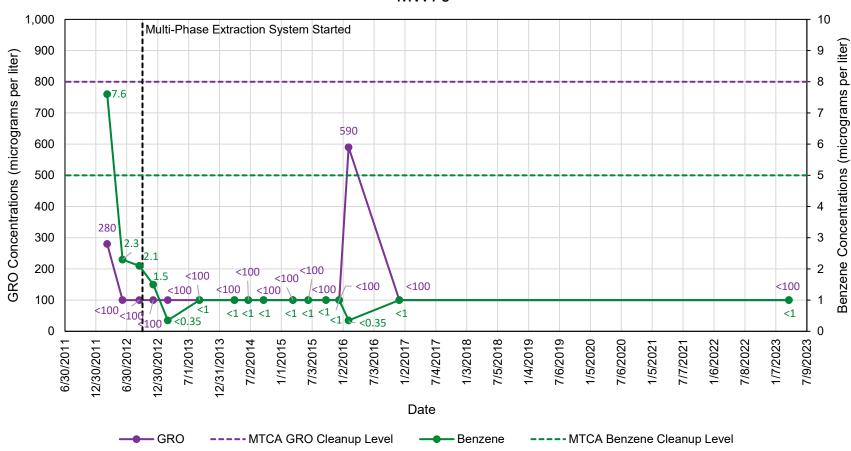


Notes:

Chart 12 Monitoring Well MW69 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW69

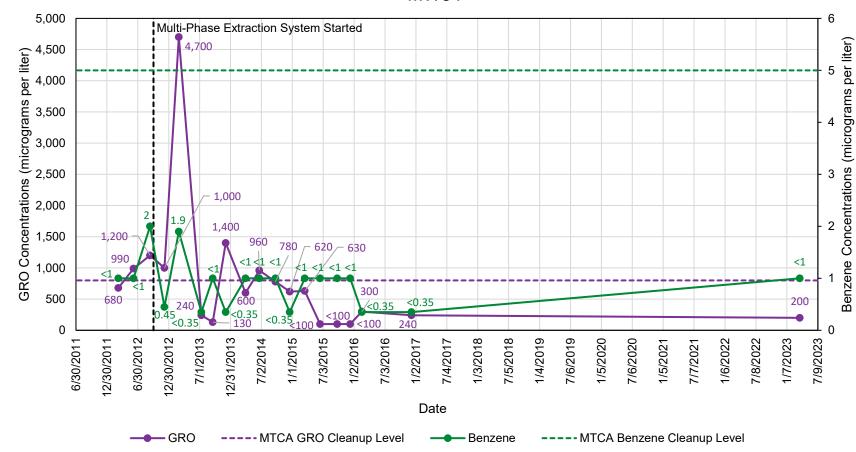


Notes:

Chart 13 Monitoring Well MW70 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW70

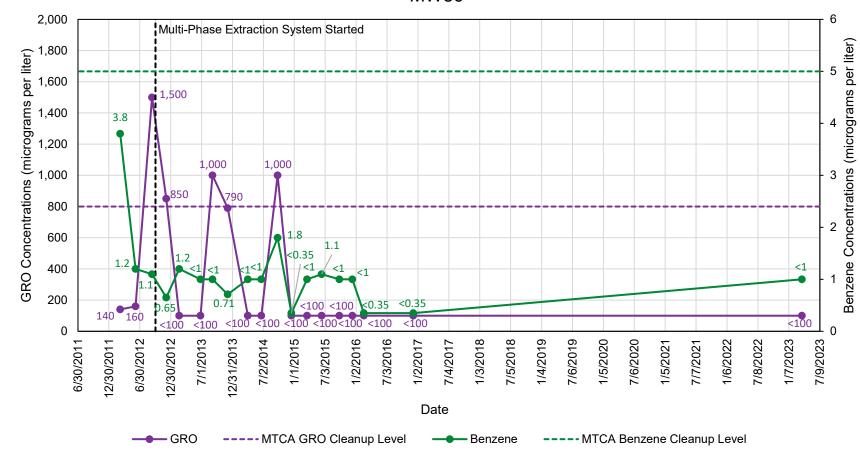


Notes:

Chart 14 Monitoring Well MW84 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW84

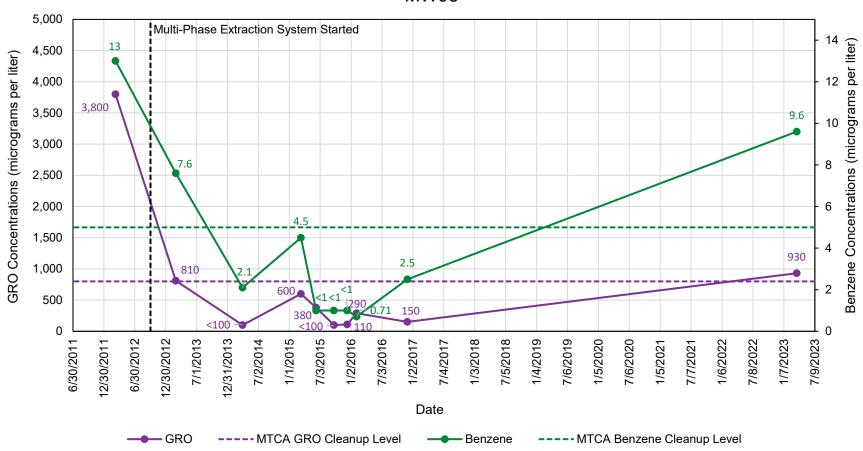


Notes:

Chart 15 Monitoring Well MW86 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW86



Notes:

Chart 16 Monitoring Well MW98 GRO and Benzene Concentrations Over Time TOC Facility 01-176

Mountlake Terrace, Washington Farallon PN: 2584-001

MW98

Notes:

ATTACHMENT A 2023 GROUNDWATER MONITORING LABORATORY ANALYTICAL REPORTS

ENVIRONMENTAL CONDITIONS SUMMARY TOC Facility No. 01-176 24205 and 24225 56th Avenue West Mountlake Terrace, Washington

Farallon PN: 2584-001

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 31, 2023

Stuart Brown, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Brown:

Included are the results from the testing of material submitted on March 27, 2023 from the Former TOC Facility 2584-001, F&BI 303426 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0331R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 27, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC Former TOC Facility 2584-001, F&BI 303426 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID Faranon Consuming, LLC	Laboratory ID	Farallon	Consulting,	LLC
--------------------------------------	---------------	----------	-------------	-----

303426 -01 MW48-032623 303426 -02 MW29-032623

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW48-032623 Client: Farallon Consulting, LLC
Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/27/23 Lab ID: Date Extracted: 303426-01 Date Analyzed: 03/27/23 Data File: 303426-01.109 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW29-032623 Client: Farallon Consulting, LLC
Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/27/23 Lab ID: Date Extracted: 303426-02 Date Analyzed: 03/27/23 Data File: 303426-02.112 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Farallon Consulting, LLC
Date Received: Not Applicable Project: Former TOC Facility 2584-001

03/27/23 Lab ID: Date Extracted: I3-233 mb Date Analyzed: 03/27/23 Data File: I3-233 mb.089 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303426

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 303426-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	90	90	70-130	0

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	97	85-115

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	_
•	.,9
느	↷

305720	SAMI LE CHAIN OF COSTO	$M \in 03-2$	7-23
Report To STuar T Brown	SAMPLERS (signature) mess-	Hory Nulsan	Page # of TURNAROUND TIME
Company Furallon Address 975 5th Ave Nw	PROJECT NAME Folmer TOC Fucility	PO# 2584-00i	☐ Standard turnaround ☐ RUSH Rush charges authorized by:
City, State, ZIP Issuguan WA 98027 Phone 4252950300 Email Sbrown	REMARKS Project specific RLs? - Yes / No	INVOICE TO	SAMPLE DISPOSAL Archive samples Other_ Default: Dispose after 30 days

								A	NAI	LYSE	S RI	EQUE	ESTE	D		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	 NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	dissolute lead				Notes
MW48-032623 MW29-032623	01	3/26/23	1110	water	1							X				Field Filterez
mw29-032623	62	3/26/23	1200	1	l.			-,				X				Field Filthied
									-							
					-					$ \downarrow $				14		
															/	
								\$	am	ples	rec	eive	d at	4	_ 0(
	_						\neg									

Friedman & Bruya, Inc. Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: Max Henry Nelson	Mux-Henry Nolson	Funllan	3/27/23	0800
Received by	Michael Edahl	FrBm	3/27/23	0800
Relinquished by:			1	
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 4, 2023

Stuart Brown, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Brown:

Included are the results from the testing of material submitted on March 27, 2023 from the Former TOC Facility 2584-001, F&BI 303427 project. There are 51 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0404R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 27, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC Former TOC Facility 2584-001, F&BI 303427 project. Samples were logged in under the laboratory ID's listed below.

303427 -01 MW9-032323 303427 -02 MW10-032323 303427 -03 MW22-032323 303427 -04 MW28-032423 303427 -05 MW24-032423 303427 -06 MW29-032423 303427 -08 MW32-032423 303427 -09 MW20-032423 303427 -11 MW57-032423 303427 -12 MW45-032423 303427 -13 MW48-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -18 MW69-032523 303427 -20 MW70-032523 303427 -21 MW86-032523 303427 -22 Trip blank	<u>Laboratory ID</u>	Farallon Consulting, LLC
303427 -03 MW22-032323 303427 -04 MW28-032423 303427 -05 MW24-032423 303427 -06 MW29-032423 303427 -07 MW11-032423 303427 -08 MW32-032423 303427 -10 MW31-032423 303427 -11 MW57-032423 303427 -12 MW45-032423 303427 -13 MW98-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -01	MW9-032323
303427 -04 MW28-032423 303427 -05 MW24-032423 303427 -06 MW29-032423 303427 -07 MW11-032423 303427 -08 MW32-032423 303427 -10 MW31-032423 303427 -11 MW57-032423 303427 -12 MW45-032423 303427 -13 MW48-032423 303427 -14 MW98-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -18 MW69-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -02	MW10-032323
303427 -05 MW24-032423 303427 -06 MW29-032423 303427 -07 MW11-032423 303427 -08 MW32-032423 303427 -10 MW31-032423 303427 -11 MW57-032423 303427 -12 MW45-032423 303427 -13 MW48-032423 303427 -14 MW98-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -03	MW22-032323
303427 -06 MW29-032423 303427 -07 MW11-032423 303427 -08 MW32-032423 303427 -09 MW20-032423 303427 -11 MW57-032423 303427 -12 MW45-032423 303427 -13 MW48-032423 303427 -14 MW98-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -04	MW28-032423
303427 -07 MW11-032423 303427 -08 MW32-032423 303427 -09 MW20-032423 303427 -10 MW31-032423 303427 -11 MW57-032423 303427 -12 MW45-032423 303427 -13 MW48-032423 303427 -14 MW98-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -05	MW24-032423
303427 -08 MW32-032423 303427 -09 MW20-032423 303427 -10 MW31-032423 303427 -11 MW57-032423 303427 -12 MW45-032423 303427 -13 MW48-032423 303427 -14 MW98-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -18 MW69-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -06	MW29-032423
303427 -09 MW20-032423 303427 -10 MW31-032423 303427 -11 MW57-032423 303427 -12 MW45-032423 303427 -13 MW48-032423 303427 -14 MW98-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -18 MW69-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -07	MW11-032423
303427 -10 MW31-032423 303427 -11 MW57-032423 303427 -12 MW45-032423 303427 -13 MW48-032423 303427 -14 MW98-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -18 MW69-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -08	MW32-032423
303427 -11 MW57-032423 303427 -12 MW45-032423 303427 -13 MW48-032423 303427 -14 MW98-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -18 MW69-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -09	MW20-032423
303427 -12 MW45-032423 303427 -13 MW48-032423 303427 -14 MW98-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -18 MW69-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -10	MW31-032423
303427 -13 MW48-032423 303427 -14 MW98-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -18 MW69-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -11	MW57-032423
303427 -14 MW98-032423 303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -18 MW69-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -12	MW45-032423
303427 -15 MW63-032423 303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -18 MW69-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -13	MW48-032423
303427 -16 MW85-032423 303427 -17 MW84-032523 303427 -18 MW69-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -14	MW98-032423
303427 -17 MW84-032523 303427 -18 MW69-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -15	MW63-032423
303427 -18 MW69-032523 303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -16	MW85-032423
303427 -19 MW89-032523 303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -17	MW84-032523
303427 -20 MW70-032523 303427 -21 MW86-032523	303427 -18	MW69-032523
303427 -21 MW86-032523	303427 -19	MW89-032523
	303427 -20	MW70-032523
	303427 -21	MW86-032523

The dissolved metals were filtered at Friedman and Bruya. The data were flagged accordingly.

Benzoic acid in the 8270E laboratory control sample duplicate exceeded the acceptance criteria. The compound was not detected, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

Date Extracted: 03/29/23 Date Analyzed: 03/29/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
MW9-032323 303427-01	<1	2.1	39	100	1,700	124
MW10-032323 303427-02	6.2	<1	<1	<3	230	111
MW22-032323 303427-03	<1	<1	<1	<3	<100	118
MW28-032423 303427-04	<1	<1	<1	<3	<100	104
MW24-032423 303427-05	<1	<1	<1	<3	<100	107
MW29-032423 303427-06	<1	<1	<1	<3	<100	123
MW11-032423 303427-07	<1	<1	6.3	22	190	115
MW32-032423 303427-08 1/5	5.4	6.4	88	44	3,500	111
MW20-032423 303427-09	10	7.4	55	140	1,600	120
MW31-032423 303427-10	<1	<1	<1	<3	<100	115
MW57-032423 303427-11	4.9	2.7	58	210	2,200	125

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

Date Extracted: 03/29/23 Date Analyzed: 03/29/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
MW48-032423 303427-13	<1	<1	<1	<3	120	108
MW98-032423 303427-14	9.6	1.8	<1	3.7	930	128
MW63-032423 303427-15	<1	<1	<1	<3	<100	110
MW85-032423 303427-16	<1	<1	<1	<3	<100	118
MW84-032523 303427-17	<1	<1	<1	<3	200	114
MW69-032523 303427-18	29	5.5	7.7	10	5,900	149
MW89-032523 303427-19	<1	<1	<1	<3	<100	110
MW70-032523 303427-20	<1	<1	<1	<3	<100	114

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

Date Extracted: 03/29/23 Date Analyzed: 03/29/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
MW86-032523 303427-21	<1	<1	<1	<3	<100	108
Method Blank 03-662 MB	<1	<1	<1	<3	<100	103
Method Blank	<1	<1	<1	<3	<100	77

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

Date Extracted: 03/28/23 Date Analyzed: 03/28/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36})}$	Surrogate (% Recovery) (Limit 50-150)
MW20-032423 303427-09	300 x	<250	111
MW31-032423 303427-10	<50	<250	124
MW85-032423 303427-16	<60	<300	105
MW84-032523 303427-17	62 x	<250	106
MW69-032523 303427-18	1,300 x	<250	82
MW89-032523 303427-19	<75	<380	108
MW70-032523 303427-20	<50	<250	107
MW86-032523 303427-21	<75	<380	109
Method Blank 03-810 MB	<50	<250	134

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW31-032423 f Client: Farallon Consulting, LLC Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/28/23 Lab ID: Date Extracted: 303427-10 Date Analyzed: 03/28/23 Data File: 303427-10.165 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW84-032523 f Client: Farallon Consulting, LLC Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/28/23 Lab ID: Date Extracted: 303427-17 Date Analyzed: 03/28/23 Data File: 303427-17.179 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW69-032523 f Client: Farallon Consulting, LLC Date Received: 03/27/23 Project: Former TOC Facility 2584-001

Lab ID: Date Extracted: 03/28/23 303427-18 Date Analyzed: 03/28/23 Data File: 303427-18.184 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Lead 1.44

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW70-032523 f Client: Farallon Consulting, LLC Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/28/23 Lab ID: Date Extracted: 303427-20 Date Analyzed: 03/28/23 Data File: 303427-20.185 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW86-032523 f Client: Farallon Consulting, LLC Date Received: 03/27/23 Project: Former TOC Facility 2584-001

Lab ID: Date Extracted: 03/28/23 303427-21Date Analyzed: 03/28/23 Data File: 303427-21.186 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank f Client: Farallon Consulting, LLC
Date Received: NA Project: Former TOC Facility 2584-001

 Date Extracted:
 03/28/23
 Lab ID:
 I3-232 mb2

 Date Analyzed:
 03/28/23
 Data File:
 I3-232 mb2.121

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW29-032423 Client: Farallon Consulting, LLC
Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/28/23 Lab ID: 303427-06 Date Extracted: Date Analyzed: 03/28/23 Data File: 303427-06.187 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW32-032423 Client: Farallon Consulting, LLC
Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/28/23 Lab ID: 303427-08 Date Extracted: Date Analyzed: 03/28/23 Data File: 303427-08.190 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW31-032423 Client: Farallon Consulting, LLC
Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/28/23 Lab ID: Date Extracted: 303427-10 Date Analyzed: 03/28/23 Data File: 303427-10.191 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW48-032423 Client: Farallon Consulting, LLC
Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/28/23 Lab ID: Date Extracted: 303427-13 Date Analyzed: 03/29/23 Data File: 303427-13.195 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Lead 3.35

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW84-032523 Client: Farallon Consulting, LLC Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/28/23 Lab ID: Date Extracted: 303427-17 Date Analyzed: 03/29/23 Data File: 303427-17.196 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW69-032523 Client: Farallon Consulting, LLC
Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/28/23 Lab ID: Date Extracted: 303427-18 Date Analyzed: 03/29/23 Data File: 303427-18.197 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Lead 1.34

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW70-032523 Client: Farallon Consulting, LLC
Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/28/23 Lab ID: Date Extracted: 303427-20 Date Analyzed: 03/29/23 Data File: 303427-20.198 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW86-032523 Client: Farallon Consulting, LLC
Date Received: 03/27/23 Project: Former TOC Facility 2584-001

03/28/23 Lab ID: Date Extracted: 303427-21Date Analyzed: 03/29/23 Data File: 303427-21.199 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Farallon Consulting, LLC
Date Received: NA Project: Former TOC Facility 2584-001

03/28/23 Lab ID: Date Extracted: I3-238 mb Date Analyzed: 03/28/23 Data File: I3-238 mb.122 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	MW20-032423	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-09
Date Analyzed:	03/29/23	Data File:	032913.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	71	132
Toluene-d8	106	68	139
4-Bromofluorobenzene	101	62	136

Concentration

Compounds: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: MW31-032423 Client: Farallon Consulting, LLC Date Received: 03/27/23 Project: Former TOC Facility 2584-001 03/29/23 Lab ID: Date Extracted: 303427-10 Date Analyzed: 03/29/23 Data File: 032914.DMatrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	71	132
Toluene-d8	104	68	139
4-Bromofluorobenzene	100	62	136

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <0.2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Farallon Consulting, LLC Client Sample ID: MW57-032423 Client: Date Received: 03/27/23 Project: Former TOC Facility 2584-001 Lab ID: Date Extracted: 03/29/23 303427 - 11Date Analyzed: 03/29/23 Data File: 032915.DMatrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: MD

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 108 71 132 Toluene-d8 109 68 139 4-Bromofluorobenzene 99 62 136

Concentration

Compounds: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: MW98-032423 Client: Farallon Consulting, LLC Date Received: 03/27/23 Project: Former TOC Facility 2584-001 03/29/23 Lab ID: Date Extracted: 303427 - 14Date Analyzed: 03/29/23 Data File: 032916.DMatrix: Water Instrument: GCMS13 ug/L (ppb) Units: Operator: MD

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	71	132
Toluene-d8	106	68	139
4-Bromofluorobenzene	99	62	136

Concentration

Compounds: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	MW85-032423	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-16
Date Analyzed:	03/29/23	Data File:	032917.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	MD

		Lower	$\cup \mathrm{pper}$
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	71	132
Toluene-d8	92	68	139
4-Bromofluorobenzene	101	62	136

Concentration

Compounds: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	MW84-032523	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-17
Date Analyzed:	03/29/23	Data File:	032918.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	109	71	132
Toluene-d8	105	68	139
4-Bromofluorobenzene	104	62	136

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <0.2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	MW69-032523	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-18
Date Analyzed:	03/29/23	Data File:	032922.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	110	71	132
Toluene-d8	117	68	139
4-Bromofluorobenzene	109	62	136

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <0.2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	MW89-032523	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-19
Date Analyzed:	03/29/23	Data File:	032919.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	71	132
Toluene-d8	102	68	139
4-Bromofluorobenzene	100	62	136

Concentration

Compounds: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	MW70-032523	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-20
Date Analyzed:	03/29/23	Data File:	032920.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	71	132
Toluene-d8	99	68	139
4-Bromofluorobenzene	103	62	136

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) 0.84

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	MW86-032523	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-21
Date Analyzed:	03/29/23	Data File:	032921.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	71	132
Toluene-d8	95	68	139
4-Bromofluorobenzene	100	62	136

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <0.2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Method Blank Client: Farallon Consulting, LLC Date Received: Not Applicable Project: Former TOC Facility 2584-001 Date Extracted: 03/29/23 Lab ID: 03-0686 mb Date Analyzed: 03/29/23 Data File: 032907.DMatrix: Water Instrument: GCMS13

Units: ug/L (ppb) Operator: MD

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 71 132 Toluene-d8 103 68 139 136 4-Bromofluorobenzene 102 62

Concentration Compounds: ug/L (ppb)

Mothyl t hytyl othor (MTRF)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <0.2

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Date Received: Date Extracted:	03/27/23 03/29/23	Client: Project: Lab ID:	Farallon Consulting, LLC Former TOC Facility 2584-001 303427-09
Date Analyzed:	03/30/23	Data File:	032934.D
Matrix:	Water	Instrument:	GCMS9

Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	42	10	60
Phenol-d6	29	10	49
Nitrobenzene-d5	86	15	144
2-Fluorobiphenyl	95	25	128
2,4,6-Tribromophenol	92	10	142
Terphenyl-d14	112	41	138

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	<2	2,6-Dinitrotoluene	<1
Bis(2-chloroethyl) ether	< 0.2	3-Nitroaniline	<20
2-Chlorophenol	<2	Acenaphthene	< 0.02
1,3-Dichlorobenzene	< 0.2	2,4-Dinitrophenol	<6
1,4-Dichlorobenzene	< 0.2	Dibenzofuran	< 0.02
1,2-Dichlorobenzene	< 0.2	2,4-Dinitrotoluene	<1
Benzyl alcohol	<2	4-Nitrophenol	<6
2,2'-Oxybis(1-chloropropane)	< 0.2	Diethyl phthalate	<2
2-Methylphenol	<2	Fluorene	< 0.02
Hexachloroethane	< 0.2	4-Chlorophenyl phenyl ether	< 0.2
N-Nitroso-di-n-propylamine	< 0.2	N-Nitrosodiphenylamine	< 0.2
3-Methylphenol + 4-Methylphen		4-Nitroaniline	<20
Nitrobenzene	< 0.2	4,6-Dinitro-2-methylphenol	<6
Isophorone	< 0.2	4-Bromophenyl phenyl ether	< 0.2
2-Nitrophenol	<2	Hexachlorobenzene	< 0.2
2,4-Dimethylphenol	3.4	Pentachlorophenol	<1
Benzoic acid	<10	Phenanthrene	< 0.02
Bis(2-chloroethoxy)methane	< 0.2	Anthracene	< 0.02
2,4-Dichlorophenol	<2	Carbazole	< 0.02
1,2,4-Trichlorobenzene	< 0.2	Di-n-butyl phthalate	<2
Naphthalene	9.7	Fluoranthene	< 0.02
Hexachlorobutadiene	< 0.2	Pyrene	< 0.02
4-Chloroaniline	<20	Benzyl butyl phthalate	<2
4-Chloro-3-methylphenol	<2	Benz(a)anthracene	< 0.02
2-Methylnaphthalene	2.5	Chrysene	< 0.02
1-Methylnaphthalene	1.7	Bis(2-ethylhexyl) phthalate	< 3.2
Hexachlorocyclopentadiene	< 0.6	Di-n-octyl phthalate	<2
2,4,6-Trichlorophenol	<2	Benzo(a)pyrene	< 0.02
2,4,5-Trichlorophenol	<2	Benzo(b)fluoranthene	< 0.02
2-Chloronaphthalene	< 0.2	Benzo(k)fluoranthene	< 0.02
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	< 0.02
Dimethyl phthalate	<2	Dibenz(a,h)anthracene	< 0.02
Acenaphthylene	< 0.02	Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	MW31-032423	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-10
Data Analyzad:	03/30/93	Data File	032035 D

Date Analyzed: 03/30/23 Data File: 032935.D

Matrix: Water Instrument: GCMS9

Units: ug/L (ppb) Operator: VM

er
it:
)
)
4
8
2
8
1

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	<2	2,6-Dinitrotoluene	<1
Bis(2-chloroethyl) ether	< 0.2	3-Nitroaniline	<20
2-Chlorophenol	<2	Acenaphthene	< 0.02
1,3-Dichlorobenzene	< 0.2	2,4-Dinitrophenol	<6
1,4-Dichlorobenzene	< 0.2	Dibenzofuran	< 0.02
1,2-Dichlorobenzene	< 0.2	2,4-Dinitrotoluene	<1
Benzyl alcohol	<2	4-Nitrophenol	<6
2,2'-Oxybis(1-chloropropane)	< 0.2	Diethyl phthalate	<2
2-Methylphenol	<2	Fluorene	< 0.02
Hexachloroethane	< 0.2	4-Chlorophenyl phenyl ether	< 0.2
N-Nitroso-di-n-propylamine	< 0.2	N-Nitrosodiphenylamine	0.20
3-Methylphenol + 4-Methylpher	nol <4	4-Nitroaniline	<20
Nitrobenzene	< 0.2	4,6-Dinitro-2-methylphenol	<6
Isophorone	< 0.2	4-Bromophenyl phenyl ether	< 0.2
2-Nitrophenol	<2	Hexachlorobenzene	< 0.2
2,4-Dimethylphenol	<2	Pentachlorophenol	<1
Benzoic acid	<10	Phenanthrene	0.091
Bis(2-chloroethoxy)methane	< 0.2	Anthracene	< 0.02
2,4-Dichlorophenol	<2	Carbazole	< 0.02
1,2,4-Trichlorobenzene	< 0.2	Di-n-butyl phthalate	7.2
Naphthalene	< 0.2	Fluoranthene	0.095
Hexachlorobutadiene	< 0.2	Pyrene	0.33
4-Chloroaniline	<20	Benzyl butyl phthalate	<2
4-Chloro-3-methylphenol	<2	Benz(a)anthracene	< 0.02
2-Methylnaphthalene	< 0.2	Chrysene	< 0.02
1-Methylnaphthalene	< 0.2	Bis(2-ethylhexyl) phthalate	16 fc
Hexachlorocyclopentadiene	< 0.6	Di-n-octyl phthalate	<2
2,4,6-Trichlorophenol	<2	Benzo(a)pyrene	< 0.02
2,4,5-Trichlorophenol	<2	Benzo(b)fluoranthene	< 0.02
2-Chloronaphthalene	< 0.2	Benzo(k)fluoranthene	< 0.02
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	< 0.02
Dimethyl phthalate	<2	Dibenz(a,h)anthracene	< 0.02
Acenaphthylene	< 0.02	Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	MW85-032423	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-16 1/3

 Date Extracted:
 03/29/23
 Lab ID:
 303427-16 I/

 Date Analyzed:
 03/30/23
 Data File:
 032936.D

 Matrix:
 Water
 Instrument:
 GCMS9

 Units:
 ug/L (ppb)
 Operator:
 VM

Surrogates: 2-Fluorophenol	% Recovery: 57	Lower Limit: 10	Upper Limit: 60
Phenol-d6	51 vo	10	49
Nitrobenzene-d5	89	15	144
2-Fluorobiphenyl	83	25	128
2,4,6-Tribromophenol	77	10	142
Terphenyl-d14	113	41	138

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Phenol	<6	2,6-Dinitrotoluene	<3
Bis(2-chloroethyl) ether	< 0.6	3-Nitroaniline	<60
2-Chlorophenol	<6	Acenaphthene	< 0.06
1,3-Dichlorobenzene	< 0.6	2,4-Dinitrophenol	<18
1,4-Dichlorobenzene	< 0.6	Dibenzofuran	< 0.06
1,2-Dichlorobenzene	< 0.6	2,4-Dinitrotoluene	<3
Benzyl alcohol	<6	4-Nitrophenol	<18
2,2'-Oxybis(1-chloropropane)	< 0.6	Diethyl phthalate	<6
2-Methylphenol	<6	Fluorene	< 0.06
Hexachloroethane	< 0.6	4-Chlorophenyl phenyl ether	< 0.6
N-Nitroso-di-n-propylamine	< 0.6	N-Nitrosodiphenylamine	< 0.6
3-Methylphenol + 4-Methylphe	nol <12	4-Nitroaniline	<60
Nitrobenzene	< 0.6	4,6-Dinitro-2-methylphenol	<18
Isophorone	< 0.6	4-Bromophenyl phenyl ether	< 0.6
2-Nitrophenol	<6	Hexachlorobenzene	< 0.6
2,4-Dimethylphenol	<6	Pentachlorophenol	<3
Benzoic acid	<30	Phenanthrene	< 0.06
Bis(2-chloroethoxy)methane	< 0.6	Anthracene	< 0.06
2,4-Dichlorophenol	<6	Carbazole	< 0.06
1,2,4-Trichlorobenzene	< 0.6	Di-n-butyl phthalate	<6
Naphthalene	< 0.6	Fluoranthene	< 0.06
Hexachlorobutadiene	< 0.6	Pyrene	< 0.06
4-Chloroaniline	<60	Benzyl butyl phthalate	<6
4-Chloro-3-methylphenol	<6	Benz(a)anthracene	< 0.06
2-Methylnaphthalene	< 0.6	Chrysene	< 0.06
1-Methylnaphthalene	< 0.6	Bis(2-ethylhexyl) phthalate	<9.6
Hexachlorocyclopentadiene	<1.8	Di-n-octyl phthalate	<6
2,4,6-Trichlorophenol	<6	Benzo(a)pyrene	< 0.06
2,4,5-Trichlorophenol	<6	Benzo(b)fluoranthene	< 0.06
2-Chloronaphthalene	< 0.6	Benzo(k)fluoranthene	< 0.06
2-Nitroaniline	<3	Indeno(1,2,3-cd)pyrene	< 0.06
Dimethyl phthalate	<6	Dibenz(a,h)anthracene	< 0.06
Acenaphthylene	< 0.06	Benzo(g,h,i)perylene	< 0.12

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	MW84-032523	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-17
Date Analyzed:	03/30/23	Data File:	032937.D
3.5	TT7 .	T	C CI FCO

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	43	10	60
Phenol-d6	30	10	49
Nitrobenzene-d5	82	15	144
2-Fluorobiphenyl	88	25	128
2,4,6-Tribromophenol	85	10	142
Terphenyl-d14	114	41	138

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Phenol	<2	2,6-Dinitrotoluene	<1
Bis(2-chloroethyl) ether	<0.2	3-Nitroaniline	<20
2-Chlorophenol	<2	Acenaphthene	< 0.02
1,3-Dichlorobenzene	< 0.2	2,4-Dinitrophenol	<6
1,4-Dichlorobenzene	< 0.2	Dibenzofuran	< 0.02
1,2-Dichlorobenzene	< 0.2	2,4-Dinitrotoluene	<1
Benzyl alcohol	<2	4-Nitrophenol	<6
2,2'-Oxybis(1-chloropropane)	< 0.2	Diethyl phthalate	<2
2-Methylphenol	<2	Fluorene	< 0.02
Hexachloroethane	< 0.2	4-Chlorophenyl phenyl ether	<0.2
N-Nitroso-di-n-propylamine	< 0.2	N-Nitrosodiphenylamine	< 0.2
3-Methylphenol + 4-Methylphen		4-Nitroaniline	<20
Nitrobenzene	< 0.2	4,6-Dinitro-2-methylphenol	<6
Isophorone	< 0.2	4-Bromophenyl phenyl ether	< 0.2
2-Nitrophenol	<2	Hexachlorobenzene	< 0.2
2,4-Dimethylphenol	<2	Pentachlorophenol	<1
Benzoic acid	<10	Phenanthrene	< 0.02
Bis(2-chloroethoxy)methane	< 0.2	Anthracene	< 0.02
2,4-Dichlorophenol	<2	Carbazole	< 0.02
1,2,4-Trichlorobenzene	< 0.2	Di-n-butyl phthalate	<2
Naphthalene	< 0.2	Fluoranthene	< 0.02
Hexachlorobutadiene	< 0.2	Pyrene	< 0.02
4-Chloroaniline	<20	Benzyl butyl phthalate	<2
4-Chloro-3-methylphenol	<2	Benz(a)anthracene	< 0.02
2-Methylnaphthalene	< 0.2	Chrysene	< 0.02
1-Methylnaphthalene	0.22	Bis(2-ethylhexyl) phthalate	< 3.2
Hexachlorocyclopentadiene	< 0.6	Di-n-octyl phthalate	<2
2,4,6-Trichlorophenol	<2	Benzo(a)pyrene	< 0.02
2,4,5-Trichlorophenol	<2	Benzo(b)fluoranthene	< 0.02
2-Chloronaphthalene	< 0.2	Benzo(k)fluoranthene	< 0.02
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	< 0.02
Dimethyl phthalate	<2	Dibenz(a,h)anthracene	< 0.02
Acenaphthylene	< 0.02	Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	MW69-032523	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-18
Date Analyzed:	03/30/23	Data File:	032938.D

Date Analyzed: 03/30/23 Data File: 032938.I Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: VM

	Lower	Upper
% Recovery:	Limit:	Limit:
40	10	60
31	10	49
88	15	144
97	25	128
95	10	142
114	41	138
	40 31 88 97 95	% Recovery: Limit: 40 10 31 10 88 15 97 25 95 10

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Phenol	<2	2,6-Dinitrotoluene	<1
Bis(2-chloroethyl) ether	< 0.2	3-Nitroaniline	<20
2-Chlorophenol	<2	Acenaphthene	0.11
1,3-Dichlorobenzene	< 0.2	2,4-Dinitrophenol	<6
1,4-Dichlorobenzene	< 0.2	Dibenzofuran	< 0.02
1,2-Dichlorobenzene	< 0.2	2,4-Dinitrotoluene	<1
Benzyl alcohol	<2	4-Nitrophenol	<6
2,2'-Oxybis(1-chloropropane)	< 0.2	Diethyl phthalate	<2
2-Methylphenol	<2	Fluorene	0.077
Hexachloroethane	< 0.2	4-Chlorophenyl phenyl ether	< 0.2
N-Nitroso-di-n-propylamine	< 0.2	N-Nitrosodiphenylamine	< 0.2
3-Methylphenol + 4-Methylphenol	nol <4	4-Nitroaniline	<20
Nitrobenzene	< 0.2	4,6-Dinitro-2-methylphenol	<6
Isophorone	< 0.2	4-Bromophenyl phenyl ether	< 0.2
2-Nitrophenol	<2	Hexachlorobenzene	< 0.2
2,4-Dimethylphenol	<2	Pentachlorophenol	<1
Benzoic acid	<10	Phenanthrene	0.064
Bis(2-chloroethoxy)methane	< 0.2	Anthracene	< 0.02
2,4-Dichlorophenol	<2	Carbazole	0.038
1,2,4-Trichlorobenzene	< 0.2	Di-n-butyl phthalate	<2
Naphthalene	6.9	Fluoranthene	< 0.02
Hexachlorobutadiene	< 0.2	Pyrene	< 0.02
4-Chloroaniline	<20	Benzyl butyl phthalate	<2
4-Chloro-3-methylphenol	<2	Benz(a)anthracene	< 0.02
2-Methylnaphthalene	35	Chrysene	< 0.02
1-Methylnaphthalene	19	Bis(2-ethylhexyl) phthalate	<3.2
Hexachlorocyclopentadiene	< 0.6	Di-n-octyl phthalate	<2
2,4,6-Trichlorophenol	<2	Benzo(a)pyrene	< 0.02
2,4,5-Trichlorophenol	<2	Benzo(b)fluoranthene	< 0.02
2-Chloronaphthalene	< 0.2	Benzo(k)fluoranthene	< 0.02
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	< 0.02
Dimethyl phthalate	<2	Dibenz(a,h)anthracene	< 0.02
Acenaphthylene	< 0.02	Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	MW89-032523	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-19 1/3

Date Extracted: 03/29/23 Lab ID: 303427-19 1
Date Analyzed: 03/30/23 Data File: 032939.D
Matrix: Water Instrument: GCMS9
Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	51	10	60
Phenol-d6	46	10	49
Nitrobenzene-d5	86	15	144
2-Fluorobiphenyl	84	25	128
2,4,6-Tribromophenol	66	10	142
Terphenyl-d14	108	41	138
2-Fluorobiphenyl 2,4,6-Tribromophenol	84 66	$\overline{25}$	$\frac{128}{142}$

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	<6	2,6-Dinitrotoluene	<3
Bis(2-chloroethyl) ether	< 0.6	3-Nitroaniline	<60
2-Chlorophenol	<6	Acenaphthene	< 0.06
1,3-Dichlorobenzene	< 0.6	2,4-Dinitrophenol	<18
1,4-Dichlorobenzene	< 0.6	Dibenzofuran	< 0.06
1,2-Dichlorobenzene	< 0.6	2,4-Dinitrotoluene	<3
Benzyl alcohol	<6	4-Nitrophenol	<18
2,2'-Oxybis(1-chloropropane)	< 0.6	Diethyl phthalate	<6
2-Methylphenol	<6	Fluorene	< 0.06
Hexachloroethane	< 0.6	4-Chlorophenyl phenyl ether	< 0.6
N-Nitroso-di-n-propylamine	< 0.6	N-Nitrosodiphenylamine	< 0.6
3-Methylphenol + 4-Methylphe	nol <12	4-Nitroaniline	<60
Nitrobenzene	< 0.6	4,6-Dinitro-2-methylphenol	<18
Isophorone	< 0.6	4-Bromophenyl phenyl ether	< 0.6
2-Nitrophenol	<6	Hexachlorobenzene	< 0.6
2,4-Dimethylphenol	<6	Pentachlorophenol	<3
Benzoic acid	<30	Phenanthrene	< 0.06
Bis(2-chloroethoxy)methane	< 0.6	Anthracene	< 0.06
2,4-Dichlorophenol	<6	Carbazole	< 0.06
1,2,4-Trichlorobenzene	< 0.6	Di-n-butyl phthalate	<6
Naphthalene	< 0.6	Fluoranthene	< 0.06
Hexachlorobutadiene	< 0.6	Pyrene	< 0.06
4-Chloroaniline	<60	Benzyl butyl phthalate	<6
4-Chloro-3-methylphenol	<6	Benz(a)anthracene	< 0.06
2-Methylnaphthalene	< 0.6	Chrysene	< 0.06
1-Methylnaphthalene	< 0.6	Bis(2-ethylhexyl) phthalate	<9.6
Hexachlorocyclopentadiene	<1.8	Di-n-octyl phthalate	<6
2,4,6-Trichlorophenol	<6	Benzo(a)pyrene	< 0.06
2,4,5-Trichlorophenol	<6	Benzo(b)fluoranthene	< 0.06
2-Chloronaphthalene	< 0.6	Benzo(k)fluoranthene	< 0.06
2-Nitroaniline	<3	Indeno(1,2,3-cd)pyrene	< 0.06
Dimethyl phthalate	<6	Dibenz(a,h)anthracene	< 0.06
Acenaphthylene	< 0.06	Benzo(g,h,i)perylene	< 0.12

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	MW70-032523	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-20

Date Analyzed: 03/30/23 Data File: 032940.D

Matrix: Water Instrument: GCMS9
Units: ug/L (ppb) Operator: VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
2-Fluorophenol	22	10	60
Phenol-d6	14	10	49
Nitrobenzene-d5	77	15	144
2-Fluorobiphenyl	82	25	128
2,4,6-Tribromophenol	65	10	142
Terphenyl-d14	108	41	138

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Phenol	<2	2,6-Dinitrotoluene	<1
Bis(2-chloroethyl) ether	<0.2	3-Nitroaniline	<20
2-Chlorophenol	<2	Acenaphthene	< 0.02
1,3-Dichlorobenzene	< 0.2	2,4-Dinitrophenol	<6
1,4-Dichlorobenzene	< 0.2	Dibenzofuran	< 0.02
1,2-Dichlorobenzene	< 0.2	2,4-Dinitrotoluene	<1
Benzyl alcohol	<2	4-Nitrophenol	<6
2,2'-Oxybis(1-chloropropane)	< 0.2	Diethyl phthalate	<2
2-Methylphenol	<2	Fluorene	< 0.02
Hexachloroethane	< 0.2	4-Chlorophenyl phenyl ether	< 0.2
N-Nitroso-di-n-propylamine	< 0.2	N-Nitrosodiphenylamine	< 0.2
3-Methylphenol + 4-Methylphen	nol <4	4-Nitroaniline	<20
Nitrobenzene	< 0.2	4,6-Dinitro-2-methylphenol	<6
Isophorone	< 0.2	4-Bromophenyl phenyl ether	< 0.2
2-Nitrophenol	<2	Hexachlorobenzene	< 0.2
2,4-Dimethylphenol	<2	Pentachlorophenol	<1
Benzoic acid	<10	Phenanthrene	< 0.02
Bis(2-chloroethoxy)methane	< 0.2	Anthracene	< 0.02
2,4-Dichlorophenol	<2	Carbazole	< 0.02
1,2,4-Trichlorobenzene	< 0.2	Di-n-butyl phthalate	<2
Naphthalene	< 0.2	Fluoranthene	< 0.02
Hexachlorobutadiene	< 0.2	Pyrene	< 0.02
4-Chloroaniline	<20	Benzyl butyl phthalate	<2
4-Chloro-3-methylphenol	<2	Benz(a)anthracene	< 0.02
2-Methylnaphthalene	< 0.2	Chrysene	< 0.02
1-Methylnaphthalene	< 0.2	Bis(2-ethylhexyl) phthalate	<3.2
Hexachlorocyclopentadiene	< 0.6	Di-n-octyl phthalate	<2
2,4,6-Trichlorophenol	<2	Benzo(a)pyrene	< 0.02
2,4,5-Trichlorophenol	<2	Benzo(b)fluoranthene	< 0.02
2-Chloronaphthalene	< 0.2	Benzo(k)fluoranthene	< 0.02
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	< 0.02
Dimethyl phthalate	<2	Dibenz(a,h)anthracene	< 0.02
Acenaphthylene	< 0.02	Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	MW86-032523	Client:	Farallon Consulting, LLC
Date Received:	03/27/23	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	303427-21 1/2
Date Analyzed:	03/30/23	Data File:	032941.D

Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	9 ip	10	60
Phenol-d6	$1\overline{9}$	10	49
Nitrobenzene-d5	90	15	144
2-Fluorobiphenyl	95	25	128
2,4,6-Tribromophenol	18	10	142
Terphenyl-d14	114	41	138
Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol	90 95 18	-	$144 \\ 128 \\ 142$

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	<4	2,6-Dinitrotoluene	<2
Bis(2-chloroethyl) ether	< 0.4	3-Nitroaniline	<40
2-Chlorophenol	<4	Acenaphthene	< 0.04
1,3-Dichlorobenzene	< 0.4	2,4-Dinitrophenol	<12
1,4-Dichlorobenzene	< 0.4	Dibenzofuran	< 0.04
1,2-Dichlorobenzene	< 0.4	2,4-Dinitrotoluene	<2
Benzyl alcohol	<4	4-Nitrophenol	<12
2,2'-Oxybis(1-chloropropane)	< 0.4	Diethyl phthalate	<4
2-Methylphenol	<4	Fluorene	< 0.04
Hexachloroethane	< 0.4	4-Chlorophenyl phenyl ether	< 0.4
N-Nitroso-di-n-propylamine	< 0.4	N-Nitrosodiphenylamine	< 0.4
3-Methylphenol + 4-Methylphen	nol <8	4-Nitroaniline	<40
Nitrobenzene	< 0.4	4,6-Dinitro-2-methylphenol	<12
Isophorone	< 0.4	4-Bromophenyl phenyl ether	< 0.4
2-Nitrophenol	<4	Hexachlorobenzene	< 0.4
2,4-Dimethylphenol	<4	Pentachlorophenol	<2
Benzoic acid	<20	Phenanthrene	< 0.04
Bis(2-chloroethoxy)methane	< 0.4	Anthracene	< 0.04
2,4-Dichlorophenol	<4	Carbazole	< 0.04
1,2,4-Trichlorobenzene	< 0.4	Di-n-butyl phthalate	<4
Naphthalene	< 0.4	Fluoranthene	< 0.04
Hexachlorobutadiene	< 0.4	Pyrene	< 0.04
4-Chloroaniline	<40	Benzyl butyl phthalate	<4
4-Chloro-3-methylphenol	<4	Benz(a)anthracene	< 0.04
2-Methylnaphthalene	< 0.4	Chrysene	< 0.04
1-Methylnaphthalene	< 0.4	Bis(2-ethylhexyl) phthalate	< 6.4
Hexachlorocyclopentadiene	<1.2	Di-n-octyl phthalate	<4
2,4,6-Trichlorophenol	<4	Benzo(a)pyrene	< 0.04
2,4,5-Trichlorophenol	<4	Benzo(b)fluoranthene	< 0.04
2-Chloronaphthalene	< 0.4	Benzo(k)fluoranthene	< 0.04
2-Nitroaniline	<2	Indeno(1,2,3-cd)pyrene	< 0.04
Dimethyl phthalate	<4	Dibenz(a,h)anthracene	< 0.04
Acenaphthylene	< 0.04	Benzo(g,h,i)perylene	< 0.08

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Farallon Consulting, LLC
Date Received:	Not Applicable	Project:	Former TOC Facility 2584-001
Date Extracted:	03/29/23	Lab ID:	03-820 mb

Date Extracted: 03/29/23 Lab ID: 03-820 mc
Date Analyzed: 03/30/23 Data File: 032933.D

Matrix: Water Instrument: GCMS9
Units: ug/L (ppb) Operator: VM

	Lower	Upper
% Recovery:	Limit:	Limit:
38	10	60
26	10	49
79	15	144
82	25	128
77	10	142
110	41	138
	38 26 79 82 77	% Recovery: Limit: 38 10 26 10 79 15 82 25 77 10

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	<2	2,6-Dinitrotoluene	<1
Bis(2-chloroethyl) ether	< 0.2	3-Nitroaniline	<20
2-Chlorophenol	<2	Acenaphthene	< 0.02
1,3-Dichlorobenzene	< 0.2	2,4-Dinitrophenol	<6
1,4-Dichlorobenzene	< 0.2	Dibenzofuran	< 0.02
1,2-Dichlorobenzene	< 0.2	2,4-Dinitrotoluene	<1
Benzyl alcohol	<2	4-Nitrophenol	<6
2,2'-Oxybis(1-chloropropane)	< 0.2	Diethyl phthalate	<2
2-Methylphenol	<2	Fluorene	< 0.02
Hexachloroethane	< 0.2	4-Chlorophenyl phenyl ether	< 0.2
N-Nitroso-di-n-propylamine	< 0.2	N-Nitrosodiphenylamine	< 0.2
3-Methylphenol + 4-Methylpher		4-Nitroaniline	<20
Nitrobenzene	< 0.2	4,6-Dinitro-2-methylphenol	<6
Isophorone	< 0.2	4-Bromophenyl phenyl ether	< 0.2
2-Nitrophenol	<2	Hexachlorobenzene	< 0.2
2,4-Dimethylphenol	<2	Pentachlorophenol	<1
Benzoic acid	<10	Phenanthrene	< 0.02
Bis(2-chloroethoxy)methane	< 0.2	Anthracene	< 0.02
2,4-Dichlorophenol	<2	Carbazole	< 0.02
1,2,4-Trichlorobenzene	< 0.2	Di-n-butyl phthalate	<2
Naphthalene	< 0.2	Fluoranthene	< 0.02
Hexachlorobutadiene	< 0.2	Pyrene	< 0.02
4-Chloroaniline	<20	Benzyl butyl phthalate	<2
4-Chloro-3-methylphenol	<2	Benz(a)anthracene	< 0.02
2-Methylnaphthalene	< 0.2	Chrysene	< 0.02
1-Methylnaphthalene	< 0.2	Bis(2-ethylhexyl) phthalate	<3.2
Hexachlorocyclopentadiene	< 0.6	Di-n-octyl phthalate	<2
2,4,6-Trichlorophenol	<2	Benzo(a)pyrene	< 0.02
2,4,5-Trichlorophenol	<2	Benzo(b)fluoranthene	< 0.02
2-Chloronaphthalene	< 0.2	Benzo(k)fluoranthene	< 0.02
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	< 0.02
Dimethyl phthalate	<2	Dibenz(a,h)anthracene	< 0.02
Acenaphthylene	< 0.02	Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

Date Extracted: 03/31/23 Date Analyzed: 03/31/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE (EDB) BY EPA METHOD 8011 MODIFIED

Results Reported as µg/L (ppb)

Sample ID Laboratory ID	<u>EDB</u>
MW31-032423 303427-10	<0.01
MW84-032523 303427-17	<0.01
MW69-032523 303427-18	<0.01
MW70-032523 303427-20	<0.01
MW86-032523 303427-21	<0.01
Method Blank	<0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 303427-02 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	6.2	6.2	0
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	230	240	4

		Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Benzene	ug/L (ppb)	50	90	70-130	
Toluene	ug/L (ppb)	50	90	70-130	
Ethylbenzene	ug/L (ppb)	50	82	70-130	
Xylenes	ug/L (ppb)	150	93	70-130	
Gasoline	ug/L (ppb)	1,000	100	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 303437-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

	Percent			
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	102	65-118
Toluene	ug/L (ppb)	50	110	72 - 122
Ethylbenzene	ug/L (ppb)	50	102	73-126
Xylenes	ug/L (ppb)	150	107	74 - 118
Gasoline	ug/L (ppb)	1,000	97	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	116	116	70-130	0

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 303419-16 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	98	97	70-130	1

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Lead	ug/L (ppb)	10	99	85-115		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 303427-06 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	85	85	70-130	0

			$\operatorname{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	100	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 303427-09 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	108	50-150
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	0.71	103	50 - 150

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	110	111	70-130	1
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	104	104	70-130	0

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Panel		1		Percent	Percent		
Pierod Ug/L (ppb) 5 27 25 10-30 4		Reporting	Spike				
Bist2-th/lorosthyl) ether	Analyte		Level	LCS	LCSD	Criteria	(Limit 20)
Schlorophened Upf. (ppb) 5 72 70 21.97 3 1.4.1behlorobenzene Upf. (ppb) 5 70 68 30.102 3 1.4.1behlorobenzene Upf. (ppb) 5 70 68 30.102 3 1.4.1behlorobenzene Upf. (ppb) 5 72 60 41.103 4 4 41.103 4 4 41.103 4 4 41.103 4 4 4 4 4 4 4 4 4							4
1.3.1be/larceburaneae							
1.4. Dichlorobenzene							
1.2. bichlorobenzene ugl. (ppb) 5 74 71 1.45-105 4 Pensys alcohol ugl. (ppb) 25 65 65 1.4-82 1.2. 2-4-Oysbud chloropropano) ugl. (ppb) 5 73 77 0.51-117 1.5 Okadarjaphand ugl. (ppb) 5 73 79 0.51-117 5 Okadarjaphand ugl. (ppb) 5 73 89 86 80 114 3 N. Nitrose-din propylamine ugl. (ppb) 5 80 86 80 114 3 N. Nitrose-din propylamine ugl. (ppb) 5 80 80 74 53-114 8 Nitrobenzene ugl. (ppb) 5 80 74 53-114 8 Enghorone ugl. (ppb) 5 88 82 66-111 7 Enghorone ugl. (ppb) 5 88 82 66-111 7 Enghorone ugl. (ppb) 5 88 82 86 8 Enghorone ugl. (ppb) 6 8 88 82 86 8 Enghorone ugl. (ppb) 6 8 88 82 86 8 Enghorone ugl. (ppb) 6 8 88 82 86 8 Enghorone ugl. (ppb) 6 8 88 82 86 8 Enghorone ugl. (ppb) 6 8 88 82 86 8		ug/L (ppb)					
22.4 Oxybiacl-chloroproane ugl. (ppb) 5				74	71		
2 Methylphenol wgL (ppb) 5 5 90 19-77 5	Benzyl alcohol					14-82	
Florenthrope ugl. (ppb) 5 73 89 39.104 6 N. Nitroso din-spropriamine ugl. (ppb) 5 89 86 00.114 3 3 3. Methylphenel + Methylphenel ugl. (ppb) 5 80 57 14.63 5 5 5 5 5 5 5 5 5							
Notificial Section Notific							
Same							
Nitrobenzene ug/L (ppb) 5 90 85 62-113 6 6 18-pohrome ug/L (ppb) 5 90 85 62-113 6 6 18-pohrome ug/L (ppb) 5 90 85 62-113 6 6 18-pohrome ug/L (ppb) 5 91 84 41-117 8 9 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19			5				
Section Sect							
2.4 Dimethylphenol	Isophorone					62-113	
Service acid ugfL (ppb)							
Bing 2-shelroethoxy) methane ug/L (ppb) 5 88 82 56-111 7 7 1,2.4-Tirchlorophenol ug/L (ppb) 5 88 7 7 7 7 7 1,2.4-Tirchlorophenol ug/L (ppb) 5 76 72 48-104 5 7 7 7 7 7 7 7 50-104 7 7 7 7 7 7 7 7 7							
24. Dichiloroschools							
1.2.4 Trichlorobenzene ugL (ppb) 5 76 72 48-104 5							
Naphthalene		ug/L (ppb)	5				
Variable							
Commitment Com							
WeltyInaphthalene							
Methylnaphthalene							
Mexachlorocyclopentadiene							
2.4.6.Trichlorophenol ug/L (ppb) 5 102 95 28.125 7 2.4.5.Trichlorophenol ug/L (ppb) 5 95 90 39.120 5 2.Chloronaphthalene ug/L (ppb) 5 84 80 57.130 5 2.Chloronaphthalene ug/L (ppb) 5 96 93 51.146 3 Dimethyl phthalate ug/L (ppb) 5 100 95 64.118 5 Acenaphthylore ug/L (ppb) 5 108 108 66-121 0 2.6.Dinitrotoluene ug/L (ppb) 5 108 108 66-121 0 3.Nitronalline ug/L (ppb) 5 88 85 57.110 3 2.4.Dinitrotoluene ug/L (ppb) 5 88 85 57.110 3 2.4.Dinitrotoluene ug/L (ppb) 5 89 87 52-116 2 2.4.Dinitrotoluene ug/L (ppb) 5 89 87 52-116 2							
2.4.5-Trichlorophenol ug/L (ppb) 5 95 90 39.120 5 2.Chloronaphthalene ug/L (ppb) 5 84 80 57.130 5 2.Nitroanlline ug/L (ppb) 5 100 95 64.118 5 Dimethyl phthalte ug/L (ppb) 5 91 87 60.114 4 2.6-Dimitrotoluene ug/L (ppb) 5 91 87 60.114 4 2.6-Dimitrotoluene ug/L (ppb) 5 89 87 42.134 2 Acenaphthene ug/L (ppb) 10 96 102 10-171 6 Acenaphthene ug/L (ppb) 5 88 85 77-110 3 Acenaphthene ug/L (ppb) 5 88 85 75-110 3 Acenaphthene ug/L (ppb) 5 88 85 75-110 3 4.4-Dintrobene ug/L (ppb) 5 89 87 52-116 2 4.4-Dintrobene							
2-Nitronline				95	90		
Dimethyl phthalate							
Acenaphthylene ug/L (ppb) 5 91 87 60-114 4 2,6-Dinitrotoluene ug/L (ppb) 5 108 108 66-121 0 3Nitroanline ug/L (ppb) 5 88 87 42-134 2 Acenaphthene ug/L (ppb) 10 96 102 10-171 6 Dibenzofuran ug/L (ppb) 5 88 87 52-116 2 2,4-Dinitrotoluene ug/L (ppb) 5 88 87 52-116 2 2,4-Dinitrotoluene ug/L (ppb) 5 88 87 52-116 2 2,4-Dinitrotoluene ug/L (ppb) 5 88 100 55-127 2 4-Nitrophenol ug/L (ppb) 5 98 100 55-127 2 4-Nitrophenol ug/L (ppb) 5 98 100 55-127 2 4-Nitrophenol ug/L (ppb) 5 96 96 63-118 0 Dietyl phthalate ug/L (ppb) 5 95 93 61-115 2 4-Chlorophenyl phenyl ether ug/L (ppb) 5 95 93 61-115 2 4-Chlorophenyl phenyl ether ug/L (ppb) 5 92 90 63-116 2 4-Nitroanline ug/L (ppb) 5 92 90 63-116 2 4-Nitroanline ug/L (ppb) 5 103 109 13-152 6 4-Bromophenyl phenyl ether ug/L (ppb) 5 103 109 13-152 6 4-Bromophenyl phenyl ether ug/L (ppb) 5 98 101 14-137 3 4-Bromophenyl phenyl ether ug/L (ppb) 5 98 101 14-137 3 4-Romophenol ug/L (ppb) 5 98 101 14-137 3 4-Romophenol ug/L (ppb) 5 98 101 14-137 3 4-Romophenol ug/L (ppb) 5 99 90 65-117 2 4-Romophenol ug/L (ppb) 5 99 90 66-1117 2 4-Romophenol ug/L (ppb) 5 99 90 66-1117 2 4-Romophenol ug/L (ppb) 5 99 90 66-117 2 4-Romophenol ug/L (ppb) 5 99 90 67-125 2 4-Romophenol ug/L (ppb) 5 99 90 97 70-130 2 4-Romophenol ug/L (ppb) 5 99 90 97 70-130 2 4-Romophenol ug/L (ppb) 5 99 90 97 70-130 2 4-Romophenol ug/L (ppb) 5 99 90 97 70-130 2 4-Romophenol ug/L (ppb) 5 99 90 97 70-130 2 4-Romophenol ug/L (ppb) 5 99 90 97 70-130 2 4-Romophenol ug/L (ppb) 5 99 90 97 70-130 2 4-Romophenol ug/L (ppb) 5 99 90 97 70-130 2 4-Romophen							
Q.F.							
3-Nitroaniline ug/L (ppb) 25 89 87 42.134 2 Acenaphthene ug/L (ppb) 5 88 85 57.110 3 Acenaphthene ug/L (ppb) 10 96 102 10.171 6 Dibenzofuran ug/L (ppb) 5 89 87 52.116 2 2.4-Dinitrophenol ug/L (ppb) 5 89 87 52.116 2 2.4-Dinitrotoluene ug/L (ppb) 5 98 100 55.127 2 4-Nitrophenol ug/L (ppb) 10 33 37 10.46 11 Diebtyl phthalate ug/L (ppb) 5 96 66 63.118 0 Fluorene ug/L (ppb) 5 96 96 66 31.18 0 Fluorene ug/L (ppb) 5 95 93 61.115 2 4-Chlorophenyl phenyl ether ug/L (ppb) 5 94 90 61.112 4 4-Chlorophenyl phenyl ether ug/L (ppb) 5 94 90 63.116 2 4-Nitroaniline ug/L (ppb) 5 95 85 85 85 42.150 0 4-Bintro2-methylphenol ug/L (ppb) 5 95 85 85 85 42.150 0 4-Bomophenyl phenyl ether ug/L (ppb) 5 95 87 62.115 9 Hexachlorobenzene ug/L (ppb) 5 98 101 14.137 3 Penanthrene ug/L (ppb) 5 98 101 14.137 3 Phenathrene ug/L (ppb) 5 98 101 14.137 3 Phenathrene ug/L (ppb) 5 99 88 63.113 2 Pentachlorophenol ug/L (ppb) 5 99 99 65.117 2 Carbazole ug/L (ppb) 5 99 99 66.121 1 Pyrene ug/L (ppb) 5 99 99 77 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 77 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 77 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 77 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 77 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 77 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 77 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 77 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 97 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 97 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 97 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 97 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 97 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 97 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 97 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 97 70.130 2 Enzyl butyl phthalate ug/L (ppb) 5 99 99 97 70.130 2 Enzo(a)pyrene ug/L (ppb) 5 99 99 99 67.125 2 Enzo(a)pyrene ug/L (ppb) 5 99 99 67.		ug/L (ppb)					
Acenaphthene							
Dibenzofuran ug/L (ppb) 5 89 87 52-116 2							
2,4-Dinitrotoluene							
4-Nitrophenol ug/L (ppb) 10 33 37 10-46 11 Diethyl phthalate ug/L (ppb) 5 96 96 63-118 0 Fluorene ug/L (ppb) 5 95 93 61-115 2 4-Chlorophenyl phenyl ether ug/L (ppb) 5 94 90 61-112 4 N-Nitrosodiphenylamine ug/L (ppb) 5 92 90 63-116 2 4-Chlorophenyl phenyl ether ug/L (ppb) 5 92 90 63-116 2 4-Nitrosodiphenylamine ug/L (ppb) 5 85 85 85 42-150 0 4-Ginitro-2-methylphenol ug/L (ppb) 5 103 109 13-152 6 4-Bromophenyl phenyl ether ug/L (ppb) 5 88 88 60-113 0 4-Bromophenyl phenyl ether ug/L (ppb) 5 88 88 60-113 0 Pentachlorophenol ug/L (ppb) 5 98 101 14-137 3 Phenathrene ug/L (ppb) 5 98 101 14-137 3 Phenathrene ug/L (ppb) 5 98 101 14-137 3 Phenathrene ug/L (ppb) 5 99 88 63-113 2 Carbazole ug/L (ppb) 5 93 93 67-131 0 Di-n-butyl phthalate ug/L (ppb) 5 101 100 37-135 1 Fluoranthene ug/L (ppb) 5 99 100 68-121 1 Fluoranthene ug/L (ppb) 5 99 97 70-130 2 Penta(a)anthracene ug/L (ppb) 5 105 103 56-128 2 Benz(a)anthracene ug/L (ppb) 5 104 102 67-119 2 Benz(b)thyl phthalate ug/L (ppb) 5 104 102 67-119 2 Benz(a)anthracene ug/L (ppb) 5 104 102 67-119 2 Benz(a)prene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 104 102 67-119 2 Benz(a)prene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 104 102 67-119 2 Benz(b)thoranthene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 104 102 67-119 2 Benz(a)prene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 99 97 99 97 70-130 2 Chrysene							
Diethyl phthalate							
Fluorene ug/L (ppb) 5 95 93 61-115 2							
4-Chlorophenyl phenyl ether			5				2
N-introsonline ug/L (ppb) 25 85 85 42-150 0 4. Nitroaniline ug/L (ppb) 5 103 109 13-152 6 4. Bromophenyl phenyl ether ug/L (ppb) 5 95 87 62-115 9 Hexachlorobenzene ug/L (ppb) 5 98 88 88 60-113 0 Pentachlorophenol ug/L (ppb) 5 98 101 14-137 3 Phenanthrene ug/L (ppb) 5 90 88 63-113 2 Anthracene ug/L (ppb) 5 92 90 65-117 2 Carbazole ug/L (ppb) 5 93 93 67-131 0 Di-n-butyl phthalate ug/L (ppb) 5 101 100 37-135 1 Fluoranthene ug/L (ppb) 5 99 100 68-121 1 Pyrene ug/L (ppb) 5 96 94 66-125 2 Benzyl butyl phthalate ug/L (ppb) 5 99 97 70-130 2 Benz(a)anthracene ug/L (ppb) 5 104 102 67-119 2 Bis(2-ethylhexyl) phthalate ug/L (ppb) 5 92 98 43-132 6 Benzo(a)pyrene ug/L (ppb) 5 99 98 43-132 6 Benzo(b)fluoranthene ug/L (ppb) 5 99 99 67-125 2 Benzo(b)fluoranthene ug/L (ppb) 5 99 97 99 67-125 2 Benzo(b)fluoranthene ug/L (ppb) 5 99 97 99 67-125 2 Benzo(b)fluoranthene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,h)anthracene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,h)anthracene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,h)anthracene ug/L (ppb) 5 101 105 63-131 14							
4.6-Dinitro-2-methylphenol ug/L (ppb) 5 103 109 13-152 6 4.Bromophenyl phenyl ether ug/L (ppb) 5 95 87 62-115 9 Hexachlorobenzene ug/L (ppb) 5 88 88 60-113 0 Pentachlorophenol ug/L (ppb) 5 98 101 14-137 3 Phenanthrene ug/L (ppb) 5 90 88 63-113 2 Anthracene ug/L (ppb) 5 92 90 65-117 2 Carbazole ug/L (ppb) 5 93 93 67-131 0 Di-n-butyl phthalate ug/L (ppb) 5 99 100 68-121 1 Fluoranthene ug/L (ppb) 5 99 100 68-121 1 Pyrene ug/L (ppb) 5 96 94 66-125 2 Benzyl butyl phthalate ug/L (ppb) 5 99 97 70-130 2 Chrysene ug/L (ppb) 5 99 97 70-130 2 Chrysene ug/L (ppb) 5 104 102 67-119 2 Bis(2-ethylhexyl) phthalate ug/L (ppb) 5 93 93 93 68-126 0 Benzo(a)pyrene ug/L (ppb) 5 93 93 93 68-126 0 Benzo(b)fluoranthene ug/L (ppb) 5 99 99 67-125 2 Benzo(b)fluoranthene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,b)anthracene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,b)anthracene ug/L (ppb) 5 101 105 63-131 1	N-Nitrosodiphenylamine					63-116	
4-Bromophenyl phenyl ether ug/L (ppb) 5 95 87 62-115 9 Hexachlorobenzene ug/L (ppb) 5 88 88 88 60-113 0 Pentachlorophenol ug/L (ppb) 5 98 101 14-137 3 Phenanthrene ug/L (ppb) 5 99 88 63-113 2 Anthracene ug/L (ppb) 5 92 90 65-117 2 Carbazole ug/L (ppb) 5 93 93 67-131 0 Di-n-butyl phthalate ug/L (ppb) 5 99 100 68-121 1 Pyrene ug/L (ppb) 5 99 100 68-121 1 Pyrene ug/L (ppb) 5 96 94 66-125 2 Benzyl butyl phthalate ug/L (ppb) 5 105 103 56-128 2 Benzyl butyl phthalate ug/L (ppb) 5 105 103 56-128 2 Chrysene ug/L (ppb) 5 104 102 67-119 2 Chrysene ug/L (ppb) 5 104 102 67-119 2 Bis(2-ethylhexyl) phthalate ug/L (ppb) 5 99 98 43-132 6 Benzo(a)pyrene ug/L (ppb) 5 99 98 43-132 6 Benzo(b)fluoranthene ug/L (ppb) 5 99 99 67 29 88 43-132 6 Benzo(b)fluoranthene ug/L (ppb) 5 99 97 99 67-125 2 Benzo(b)fluoranthene ug/L (ppb) 5 99 97 99 67-125 2 Benzo(b)fluoranthene ug/L (ppb) 5 97 99 67-125 2 Benzo(b)fluoranthene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,h)anthracene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,h)anthracene ug/L (ppb) 5 101 105 63-131 1							
Hexachlorobenzene ug/L (ppb) 5 88 88 60-113 0 Pentachlorophenol ug/L (ppb) 5 98 101 14-137 3 Phenanthrene ug/L (ppb) 5 90 88 63-113 2 Anthracene ug/L (ppb) 5 92 90 65-117 2 Carbazole ug/L (ppb) 5 93 93 67-131 0 Di-n-butyl phthalate ug/L (ppb) 5 101 100 37-135 1 Pyrene ug/L (ppb) 5 99 100 68-121 1 Pyrene ug/L (ppb) 5 96 94 66-125 2 Benzyl butyl phthalate ug/L (ppb) 5 105 103 56-128 2 Benzyl butyl phthalate ug/L (ppb) 5 99 97 70-130 2 Chrysene ug/L (ppb) 5 104 102 67-119 2 Bis(2-ethylhexyl) phthalate ug/L (ppb) 5 92 98 43-132 6 Benzo(a)pyrene ug/L (ppb) 5 93 93 93 68-126 0 Benzo(b)fluoranthene ug/L (ppb) 5 97 99 67-125 2 Benzo(b)fluoranthene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,h)anthracene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,h)anthracene ug/L (ppb) 5 95 96 62-133 1 Dibenz(a,h)anthracene ug/L (ppb) 5 95 96 62-133 1 Dibenz(a,h)anthracene ug/L (ppb) 5 95 96 62-133 1							
Pentachlorophenol ug/L (ppb) 5 98 101 14-137 3 Phenanthrene ug/L (ppb) 5 90 88 63-113 2 Anthracene ug/L (ppb) 5 92 90 65-117 2 Carbazole ug/L (ppb) 5 93 93 67-131 0 Di-n-butyl phthalate ug/L (ppb) 5 99 100 68-121 1 Fluoranthene ug/L (ppb) 5 99 100 68-121 1 Fluoranthene ug/L (ppb) 5 96 94 66-125 2 Benzyl butyl phthalate ug/L (ppb) 5 96 99 97 70-130 2 Benza(a)anthracene ug/L (ppb) 5 99 97 70-130 2 Bis(2-ethylhexyl) phthalate ug/L (ppb) 5 99 98 43-132 6 Benzo(a)pyrene ug/L (ppb) 5 92 98 43-132 6 Benzo(b)fluoranthene ug/L (ppb) 5 92 98 43-132 6 Benzo(b)fluoranthene ug/L (ppb) 5 93 93 68-126 0 Benzo(b)fluoranthene ug/L (ppb) 5 97 99 67-125 2 Benzo(b)fluoranthene ug/L (ppb) 5 97 99 67-125 2 Benzo(x)anthracene ug/L (ppb) 5 101 105 63-131 4 Dibenz(x)anthracene ug/L (ppb) 5 95 96 62-133 1							
Phenanthrene			5				
Carbazole ug/L (ppb) 5 93 93 67-131 0 Di-n-butyl phthalate ug/L (ppb) 5 101 100 37-135 1 Fluoranthene ug/L (ppb) 5 99 100 68-121 1 Fluoranthene ug/L (ppb) 5 99 100 68-121 1 Fluoranthene ug/L (ppb) 5 96 94 66-125 2 Benzyl butyl phthalate ug/L (ppb) 5 96 94 66-125 2 Benzyl butyl phthalate ug/L (ppb) 5 99 97 70-130 2 Benza(a)anthracene ug/L (ppb) 5 99 97 70-130 2 Chrysene ug/L (ppb) 5 104 102 67-119 2 Bis(2-ethylhexyl) phthalate ug/L (ppb) 5 104 102 57-124 2 Di-n-octyl phthalate ug/L (ppb) 5 92 98 43-132 6 Benzo(a)pyrene ug/L (ppb) 5 93 93 68-126 0 Benzo(b)fluoranthene ug/L (ppb) 5 93 93 68-126 0 Benzo(b)fluoranthene ug/L (ppb) 5 97 99 67-125 2 Benzo(k)fluoranthene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,h)anthracene ug/L (ppb) 5 95 96 62-133 1				90	88		
Din-butyl phthalate ug/L (ppb) 5 101 100 37-135 1 Fluoranthene ug/L (ppb) 5 99 100 68-121 1 Pyrene ug/L (ppb) 5 96 94 66-125 2 Benzyl butyl phthalate ug/L (ppb) 5 105 103 56-128 2 Benz(a)anthracene ug/L (ppb) 5 99 97 70-130 2 Chrysene ug/L (ppb) 5 104 102 67-119 2 Bis(2-ethylhexyl) phthalate ug/L (ppb) 5 104 102 57-124 2 Di-n-octyl phthalate ug/L (ppb) 5 92 98 43-132 6 Benzo(a)pyrene ug/L (ppb) 5 93 93 68-126 0 Benzo(b)fluoranthene ug/L (ppb) 5 97 99 67-125 2 Benzo(b)fluoranthene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,b)anthracene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,b)anthracene ug/L (ppb) 5 96 62-133 1							
Fluoranthene ug/L (ppb) 5 99 100 68-121 1 Pyrene ug/L (ppb) 5 96 94 66-125 2 Benzyl butyl phthalate ug/L (ppb) 5 105 103 56-128 2 Benz(a)anthracene ug/L (ppb) 5 105 103 56-128 2 Chrysene ug/L (ppb) 5 104 102 67-119 2 Bis(2-ethylhexyl) phthalate ug/L (ppb) 5 104 102 57-124 2 Bis(2-ethylhexyl) phthalate ug/L (ppb) 5 104 102 57-124 2 Di-n-octyl phthalate ug/L (ppb) 5 92 98 43-132 6 Benzo(a)pyrene ug/L (ppb) 5 93 93 68-126 0 Benzo(b)fluoranthene ug/L (ppb) 5 97 99 67-125 2 Benzo(b)fluoranthene ug/L (ppb) 5 97 99 67-125 2 Benzo(c)fluoranthene ug/L (ppb) 5 97 99 67-125 2 Bis(2-ethylhexyl) phthalate ug/L (ppb) 5 97 99 67-125 2 Benzo(c)fluoranthene ug/L (ppb) 5 97 99 67-125 2 Benzo(c)fluoranthene ug/L (ppb) 5 97 99 67-125 1 Dibenz(a,h)anthracene ug/L (ppb) 5 96 62-133 1							
Pyrene							
Benzyl butyl phthalate							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5				
Second Color Seco							
Display Disp	Chrysene			104	102	67-119	
Senzo(a)pyrene ug/L (ppb) 5 93 93 68-126 0							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
Indeno(1,2,3-cd)pyrene ug/L (ppb) 5 101 105 63-131 4 Dibenz(a,h)anthracene ug/L (ppb) 5 95 96 62-133 1							
Dibenz(a,h)anthracene ug/L (ppb) 5 95 96 62-133 1		ug/L (ppb)	5				
Benzo(g,h,i)perylene ug/L (ppb) 5 97 96 57-133 1				95	96	62-133	
	Benzo(g,h,i)perylene	ug/L (ppb)	5	97	96	57-133	1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/27/23

Project: Former TOC Facility 2584-001, F&BI 303427

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR 1,2-DIBROMOETHANE (EDB) BY EPA METHOD 8011 MODIFIED

			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 10)	
1,2-Dibromoethane	ug/L (ppb)	0.10	104	106	70-130	2	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

303427
Report To 5Thart Brown
Company Furillan
Address 475 5th Ave No

City, State, ZIP Issugach wA 48027

Phone 4752450800 Email Stomme Faculton consulting Com

AMPLE CHAIN OF CUSTO	DY 03/27/2	3 I4/ VW5/24
SAMPLERS (signature) Meyo	Hey Nebrac	Page # of TURNAROUND TIME
PROJECT NAME	PO#	
Former TOC FACILITY	2584-001	Rush charges authorized by:
REMARKS	INVOICE TO	SAMPLE DISPOSAL
	Å P	☐ Archive samples ☐ Other
Project specific RLs? - Yes / No	•	Default: Dispose after 30 days

									ANALYSES REQUESTED								
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	.PH.	BTEX EPA 8021 NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	MISG by \$260	1,2 dichlosethune Sw8260C	Libramethyme	SUBELIPAHIS BETOD SIM	land total unes sour	Notes
mw9 - 032323	OL AC	3/23/23	1604	huter	3		$\langle \rangle$										
MW10 - 032323	02		1642		3												
MWZZ - 032323	03	↓	1721		3												
mwz8 - 032423	04	3/24/23	737		3												
MWZ4 - 032423	05	Ì	845		3												
m w 29 - 03 2423	06 A-D		855		4											X	No Dissolved me 3/24/23
MWII - 032423	67 A-C		950		3												
mu32 - 03 2423	08 A E		1045		4											I/ Y	No Dissible MG 8/27/23
mwzo - 03 2423	07 A.H		1/10		8	X						X			X		NN
mw3i - 03 2423	10 A-J	V	12/8	V	9	X	1	/				X	X	X	X	X	

Friedman & Bruya, Inc. Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: May Hay Aux	Mux-Harry Nilson	Furullon	3/21/23	0800
Received by Dina	Michael Erdell	Film	3/27/25	0800
Relinquished by:		Samplear		5 ~
Received by:		Samples 1	desived at	<u>≯°C</u>

303427	SAMPLE CHAIN OF CUSTO	DDY 03/27	1/23 IY [VW3/ 2 LY
Report To	SAMPLERS (signature)	Harry More	Page #of TURNAROUND TIME
CompanyAddress	PROJECT NAME FORMER TOC FUCIETY	PO# 2584-001	Standard turnaround RUSH Rush charges authorized by:
City, State, ZIP	REMARKS	INVOICE TO A P	SAMPLE DISPOSAL Archive samples Other
PhoneEmail	Project specific RLs? - Yes / No		Default: Dispose after 30 days

						ANALYSES REQUESTED												
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	MT &E LY SUB CO	1,2 & CHYACHAUX 5 U8260 C	dibsomethune	SVAC/PAHS 8270 D SIM	Bralanc dissours Leaz EPA 200.8	Notes
mws7-032423	1) A-F	3/24/23	1400	wilter	6		X	X					X					1-1/2801
x mw45-032423	12 AE		1402		3.5	X	+									_	#1	HOLD FOR PM
MW48-032423	13 A-D		1510		Ц					ĺ							X	No Discibed MG 3/27/25
mw98-032423	(4) A.F		1645		6								8	_				per se 3/roles
mw63-032423	15 A.U		1700		3													PY-
MW85-032423	16 A-H	V	1848		7	X							X			X		
MW84-032523	17AT	3/25/23	0836		9	X						Ì	X	X	X	X	X	
mw(q - 032523	18 A-J		0936		9	X						Ī	X	X	X	X	X	
mw89 - 032523	19 AH		1/32		7	X							X		,	X	Ì	
mw70 - 03 2523	26 A-J	4	1246	V	9	X	V	V					X	X	X	X	X	

Friedman & Bruya, Inc. Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: May - Hary Adam	Max-Henry Nelson	Furullan	3/27/23	0860
Received by A	Michael Erdell	Fibn	3/27/25	ww
Relinquished by:				
Received by:		Samples r	eceived at _	<u>₹_•</u> C

303427	,	S	SAMPLE SAMPLE					07	3/27/2	There are 7th	I4/1 Page #	145/ L4 2 of 3		
Report To				ERS (signa	- Huy	Mole	u] [7	'URNARO	UND TIME		
Company	PROJEC	CT NAME				PO#								
Address	Form	25	84-0	10 i	Rush charges authorized by:									
City, State, ZIP	City, State, ZIP				REMARKS				ТО	SAMPLE DISPOSAL Archive samples Other				
PhoneEmail			Project s	specific RLs	s? - Ye	s / No		<i>₽</i>		1		e after 30 days		
				· · · · · · · · · · · · · · · · · · ·			A	NALYSE	ES REQUE	ŞTED	2			
G - L ID	r .l. ID	Date	Time	Sample	# of	H-Dx	PA 8021 I-HCID	PA 8260 PA 8270	PA 8082 8260	1970rtua 160C thane	5 LM 5 LM n 2 2 Xxal	Mataa		

									A	NAL	YSE	S RE	EQUI	ĒŞTE	D		20		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	MAGE 6, 8260	1,2 2:1000thm	BOIL	STON STM	total and 2.5% of	Notes	65
mw86-032523	21A-J	3/25/23	1355	hater	9	×	乂	×				:	\times	×	X	×	X	1-6	Vol
Tripblank	22 A.B				ス												adde	d	lab
			A	200													(MP) 3	27/23	
														:					
							/	/	$\overline{}$										
																/			
																			,

Friedman & Bruya, Inc. Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by: Mas Hear Mobile	Max Harry Nelson	Furullan	3/27/23	0800
Received by:	Michel Eralahl	Film	3/17/15	0500
Relinquished by:			, , , , , , ,	
Received by:		Samples receive	ed at	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 31, 2023

Stuart Brown, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Brown:

Included are the results from the testing of material submitted on March 29, 2023 from the Former TOC Facility 2584-001, F&BI 303462 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data FLN0331R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 29, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC Former TOC Facility 2584-001, F&BI 303462 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Farallon Consulting, LLC</u>

303462 -01 MW-32-032823

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW-32-032823 Client: Farallon Consulting, LLC
Date Received: 03/29/23 Project: Former TOC Facility 2584-001

03/29/23 Lab ID: Date Extracted: 303462-01 Date Analyzed: 03/29/23 Data File: 303462-01.098 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Lead 1.35

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Farallon Consulting, LLC
Date Received: Not Applicable Project: Former TOC Facility 2584-001

 Date Extracted:
 03/29/23
 Lab ID:
 I3-238 mb2

 Date Analyzed:
 03/29/23
 Data File:
 I3-238 mb2.090

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/23 Date Received: 03/29/23

Project: Former TOC Facility 2584-001, F&BI 303462

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 303427-06 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	85	85	70-130	0

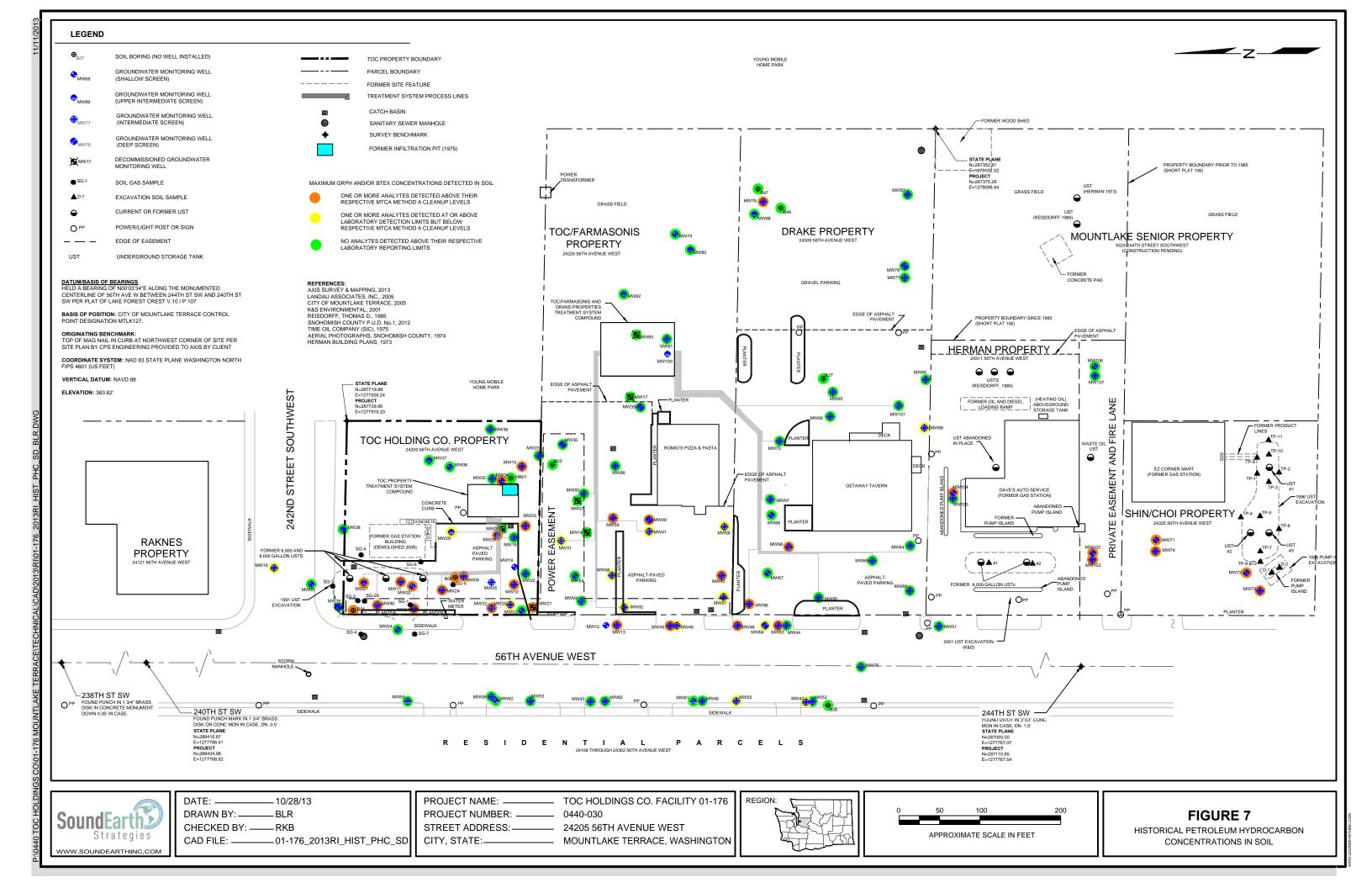
	Percent									
	Reporting	Reporting Spike Recovery Accep								
Analyte	Units	Level	LCS	Criteria						
Lead	ug/L (ppb)	10	100	85-115						

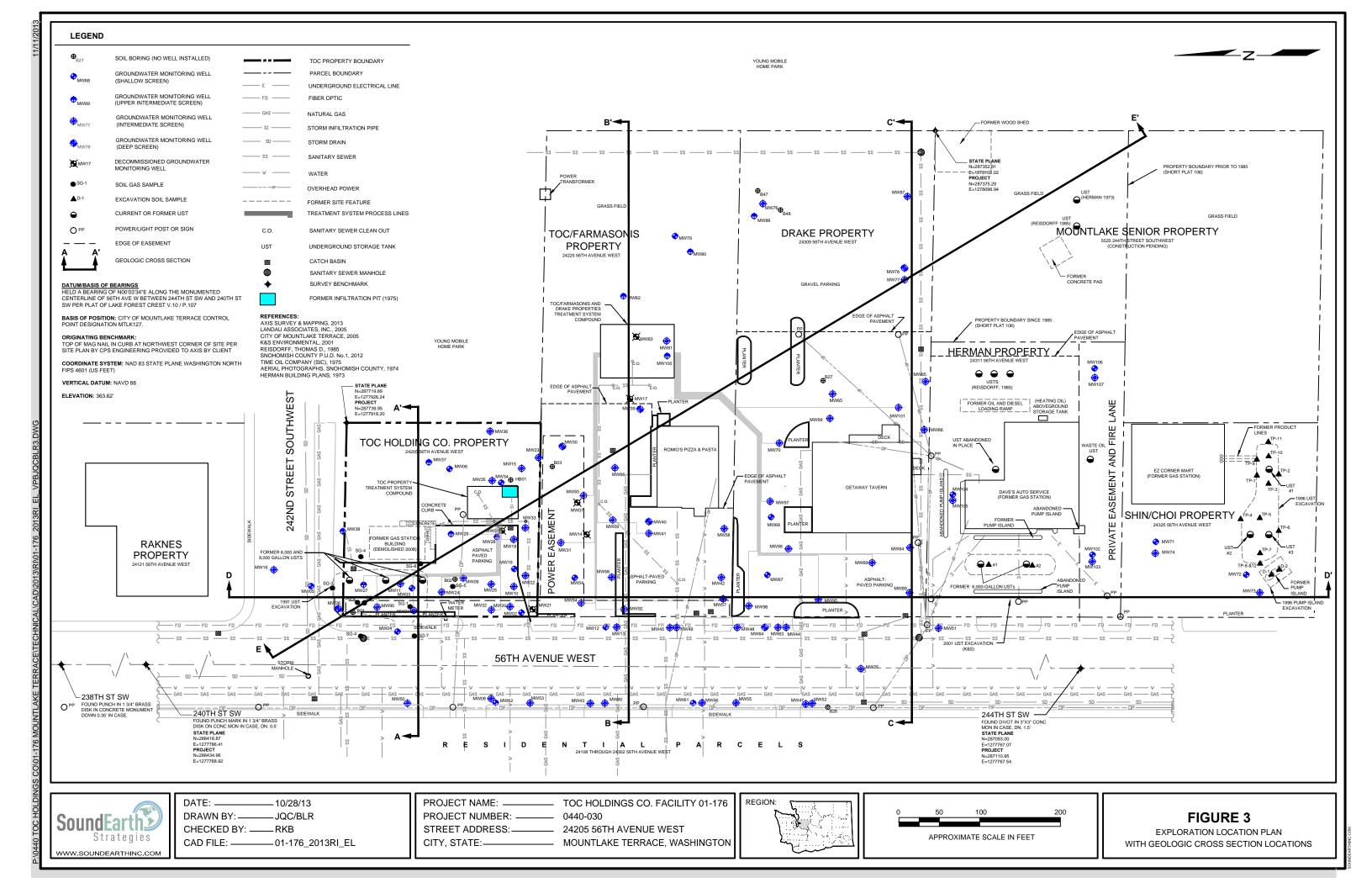
ENVIRONMENTAL CHEMISTS

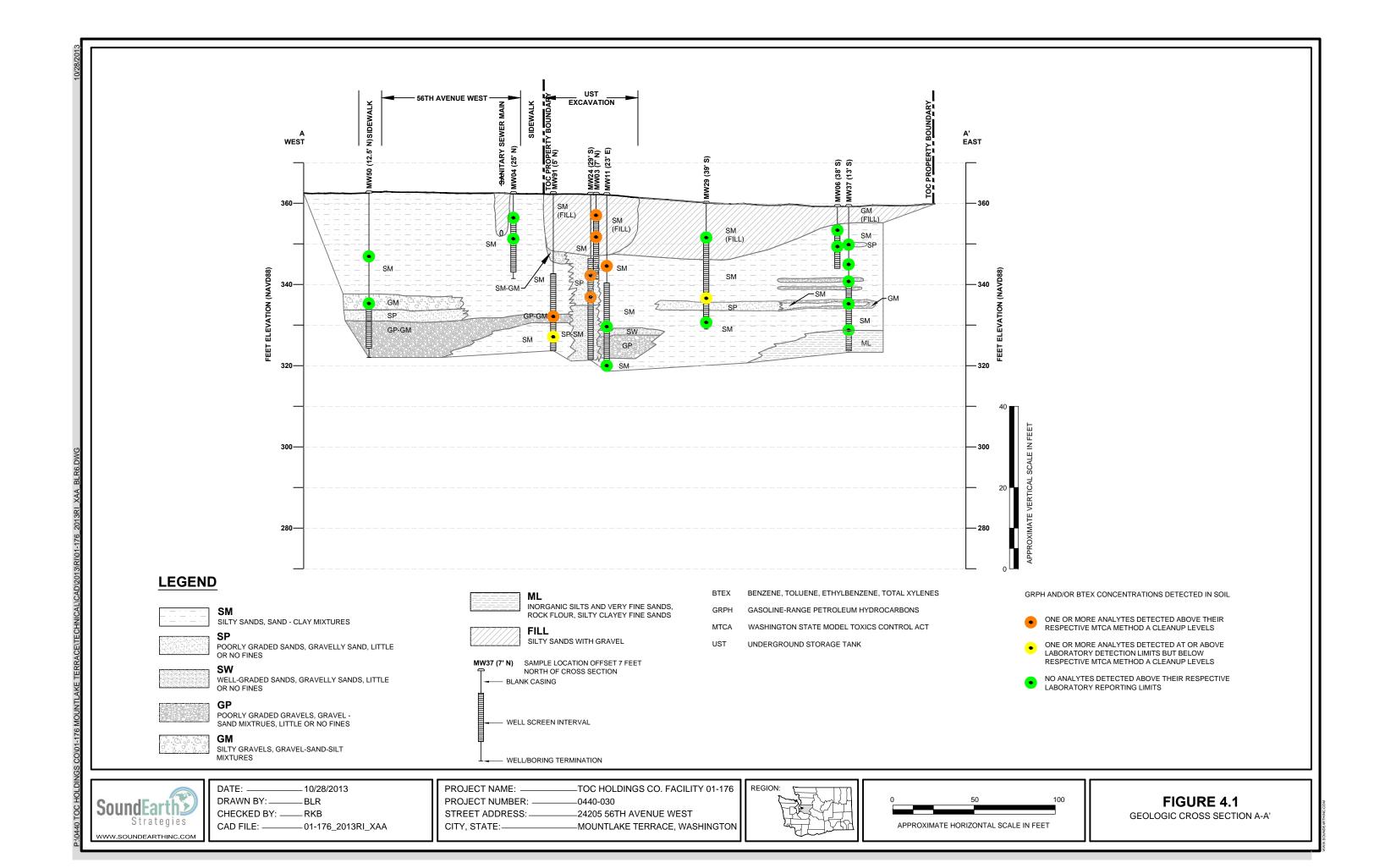
Data Qualifiers & Definitions

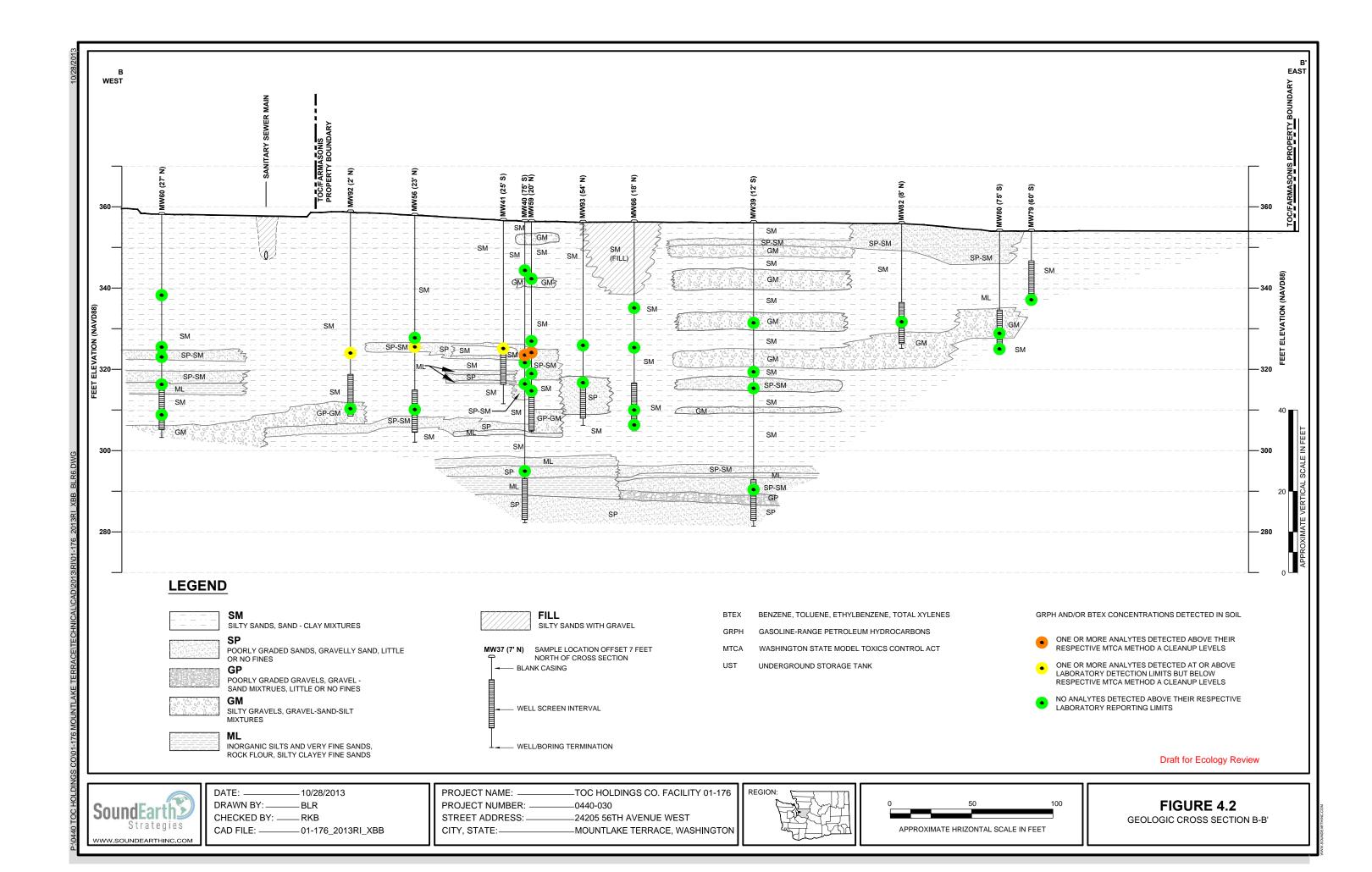
- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

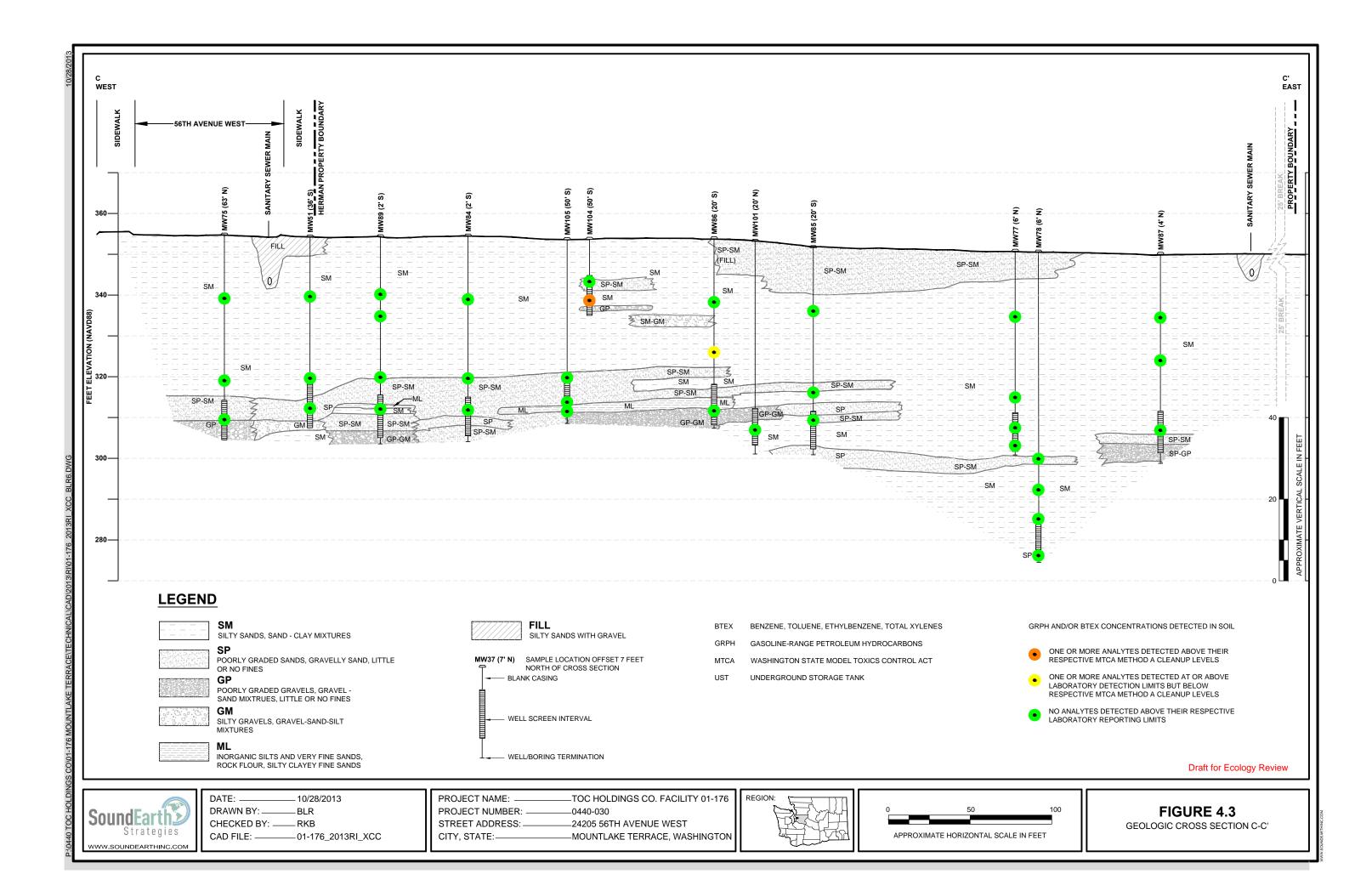
303462			SAMPLE	CHAIN	OF (CUS	STO	DY	<i>(</i>	03	120	<u> </u>	23	1	Ld		1	1	
Report To Stuart Brown	۵ A		SAMPL	ERS (signa	iture)	B	1.	٧	1//	1			-	7 -				of / ND TIME	
Company Farallon			PROJEC	ERS (signo	1	JU.			un	P	O #	-,			Star	ndard	turnar		
Address 975 5th Ave /				r TOL				2584-001					Rush charges authorized by:						
City, State, ZIP Issayuh		8027	REMAR	KS				INVOICE TO					- -	SAMPLE DISPOSAL					
PhoneEmail_	Brown a	faallon wo sultin	Project s	specific RL	s? - Ye	es /	No		A	P					Oth	e r		after 30 c	days
									P	NAI	LYS	ES R	EQU1	ESTE	D				
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	α.	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	Arsoved head					Notes	
MW-32-032823	01	3/26/23	1510	water	1					·			X				field	filtere	d
·																			
								é	nm;	100	rene	ากสี	2t] (_°c	٠,				

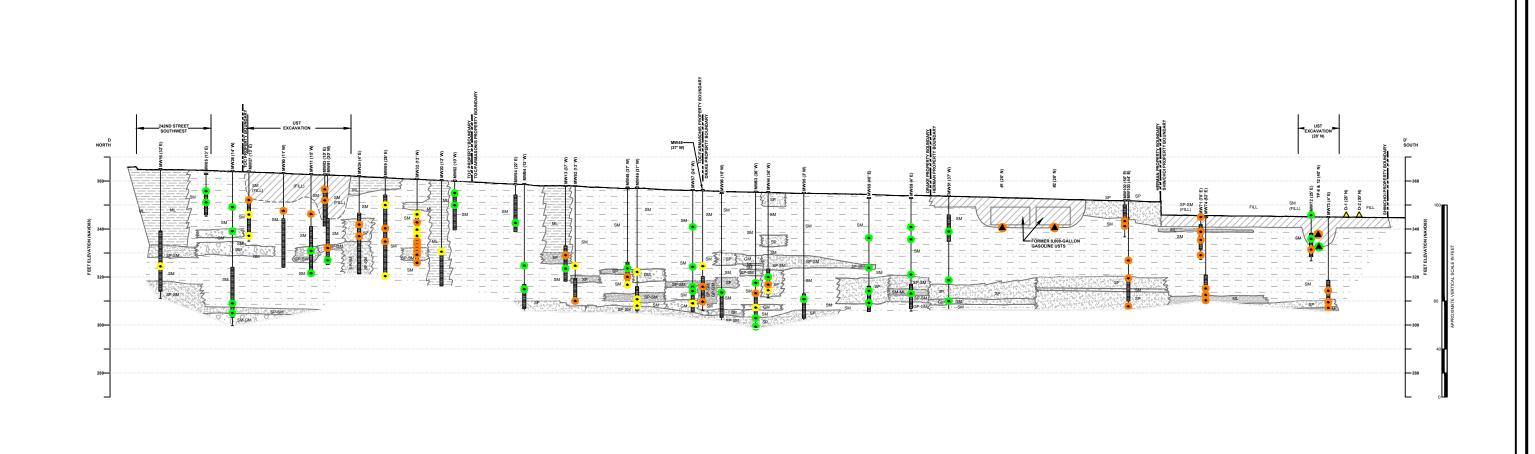

Friedman & Bruya, Inc Ph. (20**6)** 285-8282


	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
ic.	Relinquished by: Thunk Lill	Baller Lythai	Faallon	3/29/23	1020
	Received by:	ANHPHAN	F8A	03/29/23	10:20
	Relinquished by:				
	Received by:				


ATTACHMENT B SELECT FIGURES FROM THE DRAFT REMEDIAL INVESTIGATION REPORT


ENVIRONMENTAL CONDITIONS SUMMARY TOC Facility No. 01-176 24205 and 24225 56th Avenue West Mountlake Terrace, Washington


Farallon PN: 2584-001



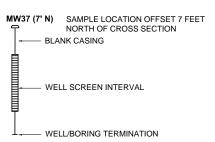
MTCA

LEGEND

SILTY SANDS, SAND - CLAY MIXTURES

POORLY GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES

WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES


POORLY GRADED GRAVELS, GRAVEL -SAND MIXTRUES, LITTLE OR NO FINES SILTY GRAVELS, GRAVEL-SAND-SILT

MIXTURES

INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY CLAYEY FINE SANDS

FILL SILTY SANDS WITH GRAVEL

BENZENE, TOLUENE, ETHYLBENZENE, TOTAL XYLENES

WASHINGTON STATE MODEL TOXICS CONTROL ACT

GASOLINE-RANGE PETROLEUM HYDROCARBONS

UNDERGROUND STORAGE TANK

GRPH AND/OR BTEX CONCENTRATIONS DETECTED IN SOIL

ONE OR MORE ANALYTES DETECTED ABOVE THEIR RESPECTIVE MTCA METHOD A CLEANUP LEVEL

ONE OR MORE ANALYTES DETECTED AT OR ABOVE LABORATORY DETECTION LIMITS BUT BELOW RESPECTIVE MTCA METHOD A CLEANUP LEVEL

NO ANALYTES DETECTED ABOVE THE LABORATORY REPORTING LIMITS

Draft for Ecology Review

DATE: -10/28/2013 DRAWN BY: __ _BLR CHECKED BY: ——RKB CAD FILE: ____ ___01-176_2013RI_XDD


PROJECT NAME: -PROJECT NUMBER: _0440-030 STREET ADDRESS: -24205 56TH AVENUE WEST CITY, STATE: __ -MOUNTLAKE TERRACE, WASHINGTON

FIGURE 4.4

GEOLOGIC CROSS SECTION D-D'

LEGEND

SILTY SANDS, SAND - CLAY MIXTURES

POORLY GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES

WELL-GRADED SANDS, GRAVELLY

SANDS, LITTLE OR NO FINES POORLY GRADED GRAVELS, GRAVEL -

SAND MIXTRUES, LITTLE OR NO FINES

GM SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES

FILL

SILTY SANDS WITH GRAVEL

INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY CLAYEY FINE SANDS

SAMPLE LOCATION OFFSET 7 FEET NORTH OF CROSS SECTION BLANK CASING WELL SCREEN INTERVAL - WELL/BORING TERMINATION

BENZENE, TOLUENE, ETHYLBENZENE, TOTAL XYLENES BTEX

GASOLINE-RANGE PETROLEUM HYDROCARBONS

MTCA WASHINGTON STATE MODEL TOXICS CONTROL ACT

UNDERGROUND STORAGE TANK

UST

GRPH AND/OR BTEX CONCENTRATIONS DETECTED IN SOIL

ONE OR MORE ANALYTES DETECTED ABOVE THEIR RESPECTIVE MTCA METHOD A CLEANUP LEVELS

ONE OR MORE ANALYTES DETECTED AT OR ABOVE LABORATORY DETECTION LIMITS BUT BELOW RESPECTIVE MTCA METHOD A CLEANUP LEVELS

NO ANALYTES DETECTED ABOVE THEIR RESPECTIVE LABORATORY REPORTING LIMITS

Draft for Ecology Review

DATE: _ _10/28/2013 DRAWN BY: -_BLR CHECKED BY: ____RKB CAD FILE: ---

PROJECT NAME: -_TOC HOLDINGS CO. FACILITY 10-176 _0440-030 PROJECT NUMBER: -STREET ADDRESS:-_24205 56TH AVENUE WEST -MOUNTLAKE TERRACE, WASHINGTON CITY, STATE: -

FIGURE 4.5 GEOLOGIC CROSS SECTION E-E'