

Integral Consulting Inc. 719 2nd Avenue Suite 1450 Seattle, WA 98104

telephone: 206.230.9600 facsimile: 206.230.9601 www.integral-corp.com

MEMORANDUM

То:	Allison Crowley, Seattle City Light
From:	Shannon Ashurst, Integral Consulting Inc.
Date:	June 16, 2023
Subject:	Georgetown Flume Off-Leash Area and Trail Supplemental Design Memorandum
Project No.:	CF1408-0106

Integral Consulting Inc. (Integral) is assisting Seattle City Light (SCL) in preparing an Interim Action Work Plan (IAWP) for a proposed off-leash area and trail intended for the southern portion of the former Georgetown Steam Plant (GTSP) flume (Proposed Park Site) (Figure 1). The Proposed Park Site is part of the North Boeing Field/Georgetown Steam Plant (NBF/GTSP) site that is subject to an ongoing remedial investigation and feasibility study (RI/FS) under Agreed Order No. DE 5685 (Ecology 2008) between the Washington State Department of Ecology (Ecology), The Boeing Company (Boeing), the City of Seattle (City), and King County.

The excavation extent for the Proposed Park Site presented in the public review draft IAWP¹ was developed based on samples collected from the Proposed Park Site in September 2021 and March 2022 that were analyzed for site chemicals of concern (COCs)—polychlorinated biphenyls (PCBs) and carcinogenic polycyclic aromatic hydrocarbons (cPAH) (Integral 2021, 2022a). Soil analytical results were screened against interim action screening levels (IASLs) that were developed from Model Toxics Control Act (MTCA) Method B cleanup levels.

At the time of the IAWP public review period, Ecology requested additional chemical analyses be conducted to refine the excavation depth within the Proposed Park Site. Ecology requested:

• Inclusion of arsenic in the evaluation because it is a COC for the NBF/GTSP site Area of Concern (AOC) 10, which includes the Proposed Park Site

¹ The public review draft IAWP was dated September 30, 2022. Ecology presented it for public review and comment on November 7, 2022, with comments due December 21, 2022.

Georgetown Flume Off-Leash Area and Trail Supplemental Design Memorandum June 16, 2023 Page 2 of 8

• Further consideration of four historical sample locations² with subsurface soil cPAH or PCB MTCA Method B or arsenic natural background exceedances and uncertain excavation status (Herrera 2007, 2010; Dube 2022) in the sampling design.

These changes necessitated the collection of additional soil confirmation samples and analysis of select archived samples (within sample hold times) to verify (or alternatively modify) the depth of excavation proposed in the IAWP. Ecology approved the City's proposed additional sampling plan (Integral 2022b) on December 5, 2022. This technical memorandum presents a summary of the additional sampling and soil analytical results and evaluates the impact on the existing excavation plan in the draft IAWP.

FIELD INVESTIGATION

This section provides a summary of the December 2022 field event, investigation-derived waste (IDW) handling, and field sampling deviations.

Field Event Summary

Additional soil sampling was conducted on December 14 and 15, 2022. Samples were collected in accordance with the sampling and analysis plan (SAP; Integral 2021), the SAP addendum (Integral 2022a), and the additional sampling plan (Integral 2022b). Borings were completed at 12 locations. A field duplicate sample was collected at location GTF_S25 (no further than 6 in. from the parent boring), for a total of 13 boring locations. Each boring location was sampled using a direct push drill rig by a driller licensed in the State of Washington. Samples were collected from starting depths specified in the additional sampling plan, up to 4.5 ft below ground surface (bgs). Target boring recovery was 75 percent (i.e., 1.5 ft of recovery on a 2.0-ft drive); this requirement was satisfied for all boring locations. Soil samples were delivered under chain-of-custody protocols to Analytical Resources, LLC, a Washington State-accredited laboratory, for analysis. Actual sample locations are shown in Figure 2.

Table 1 summarizes the samples submitted for chemical analysis. Samples collected in half-foot intervals deeper than the initially submitted samples (up to 4.5 ft bgs) were archived frozen.

Equipment rinse blank samples for a sampling spoon, sampling bowl, and drill head were collected during both field events as described in the SAP and SAP addendum.

 $^{^{\}rm 2}$ Locations MS02SS, W2T18, W2, and W1.

Georgetown Flume Off-Leash Area and Trail Supplemental Design Memorandum June 16, 2023 Page 3 of 8

Attachment 1 includes the field notes, boring logs, and chains of custody for the field event.

Investigation-Derived Waste

Solid and liquid IDW was collected into waste drums (segregated by medium) that were stored at the nearby, secure GTSP property pending disposal. This IDW has since been disposed of in accordance with all applicable regulations and guidelines.

Field Event Deviations

Target sample locations were adjusted from the proposed coordinates at 5 of the 13 locations during the field event. No locations were moved more than 8 ft. Due to utility locate markings near proposed sampling location GTF_S13_B, the actual sampling location was stepped out 2.8 ft to avoid any utility lines and/or pipes. Ecology blocks located on the north end of the site required stepping out 4.1 to 4.9 ft for the drilling rig to safely acquire a boring sample at GTF_S25 (and the corresponding field duplicate) and GTF_S26. Location GTF_S27 required four attempts to acquire a usable sample. The first two attempts met refusal at 2 ft. The material-type of the obstruction at 2 ft is unknown. The third attempt (stepped out 6 in.) hit wood with petroleum-like odor at 2 ft. The fourth attempt was sampled 7.3 ft from proposed location.

SAMPLE ANALYSIS AND VALIDATION

Laboratory analysis for new and archived samples was performed by Analytical Resources, LLC. Samples were analyzed according to the methods specified in the SAP and additional sampling plan. Laboratory reports are available upon request. Unused archived samples will be stored for 6 months for potential future analysis if deemed necessary.

Integral validated all laboratory data. The data underwent Stage 2b validation as described in the U.S. Environmental Protection Agency's (EPA's) *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (USEPA 2009).

The data were validated using procedures described in the following EPA guidance documents for data validation:

- *Guidance on Environmental Data Verification and Data Validation* (USEPA 2002)
- National Functional Guidelines for Organic Superfund Methods Data Review (USEPA 2020a)

Georgetown Flume Off-Leash Area and Trail Supplemental Design Memorandum June 16, 2023 Page 4 of 8

• National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA 2020b).

The accuracy and completeness of the database were verified at the laboratory when the electronic data deliverables were prepared and again as part of data validation. In addition to verification of field and laboratory data and information, final validation data qualifier entries into the database were verified. Any discrepancies were resolved before the final database was released for use. The validation report is provided in Attachment 2.

A total of 524 results were reported. A total of 154 results (29 percent) at 11 locations were qualified as estimated or not detected. A total of 51 results were rejected as do-not-report because a more appropriate result was available. These rejected results were not used in the completeness calculations.

The data meet the criteria set forth in the method and referenced quality assurance documents, with the exceptions noted in the data validation report. All other results are acceptable for their intended use, as qualified. Completeness was 100 percent.

RESULTS

The results of the original and supplemental soil samples are provided in Table 2 and discussed below.

PCBs and cPAHs

Proposed Park Site COCs (PCBs and cPAHs) were analyzed in samples from new locations GTF_S25, GTF_S26, and GTF_S27. PCBs were analyzed at revisited location GTF_S2 (identified as GTF_S2_B). All results were below the respective IASLs except for PCBs at location GTF_S25 from 1.5–2.0 ft bgs and cPAHs at locations GTF_S25 and GTF_S27 from 1.5–2.0 ft bgs. Both locations are in the northwest corner of the Proposed Park Site (Figure 2). As a result, archived samples for both GTF_S25 and GTF_S27 were analyzed in deeper intervals, as needed, for the analytes that exceeded IASLs in the 1.5–2.0 ft interval. GTF_S25 PCB and cPAH concentrations were below IASLs at 3.0–3.5 ft bgs. GTF_S27 PCB concentrations were below IASLs at 2.5–3.0 ft bgs.

Arsenic

Arsenic was analyzed in samples collected at the 12 supplemental sampling locations, as well as in frozen archived samples at locations GFT_S22, GTF_S23, and GTF_S24. Four

Georgetown Flume Off-Leash Area and Trail Supplemental Design Memorandum June 16, 2023 Page 5 of 8

locations (GTF_S25, GTF_S26, GTF_S3_B, and GTF_S11_B) had arsenic concentrations just above the IASL in the sample intervals originally submitted for analysis (Table 2). The remaining arsenic soil results were below the IASL. Arsenic was further analyzed in deeper archived samples at location GTF_S25.³ Arsenic concentrations at GTF_S25 were below the IASL at 2.5–3.0 ft and 3.0–3.5 ft bgs.

DISCUSSION AND RECOMMENDATION

This section summarizes the proposed modifications to the excavation depths based on the results of the additional PCB, cPAH, and arsenic analyses.

PCBs and cPAHs

As shown in Figure 3-2 of the IAWP, locations GTF_S25 and GTF_S27 are located in an area originally slated for a 1.5-ft excavation depth. However, given the IASL exceedances in the supplemental samples at these locations (Table 2), the proposed excavation depth in the northwest corner of the site is now adjusted as follows (Figure 3):

- Soil at locations GTF_S2 (and revisited location GTF_S2_B) and GTF_S5 met COC IASLs in the 1.5–2.0 ft interval, so the existing 1.5-ft excavation depth in these areas is appropriate and unchanged. Because location GTF_S27 had IASL exceedances deeper than 2.0 ft bgs, the midpoint between locations GTF_S27 and GTF_S2/GTF_S2_B was used to demarcate the northwest corner excavation area from the 1.5-ft depth excavation area to the south.
- Location GTF_S25 had COC IASL exceedances to a depth of 3.0 ft bgs, whereas location GTF_S27 had cPAH IASL exceedances at 4.5 ft bgs. Location GTF_S1, which is situated between GTF_S25 and GTF_S27, met COC IASLs at 1.5 ft bgs. Consequently, the northwest corner was further split into two areas, divided at the midpoint between locations GTF_S1 and GTF_S27, with proposed excavation depths as follows: 3.0 ft for the northern portion of the northwest corner, and 4.5 ft for the southern portion of the northwest corner.

Location GTF_S27 was situated proximal to an historical sample (W2S18) that also had subsurface cPAH in soil, for which the removal status of the associated soil was unclear. As noted in "Field Event Deviations," the drillers encountered a subsurface obstruction at GTF_S27 (approximately 2 ft bgs) that included wood with a petroleum-like odor. While Herrera (2010) indicated complete removal of the former wood flume, it is suspected based

³ For completeness, arsenic was also analyzed in the deeper archive samples analyzed at location GTF_S27. All arsenic results at this location were below the IASL.

Georgetown Flume Off-Leash Area and Trail Supplemental Design Memorandum June 16, 2023 Page 6 of 8

on available information that some residual wood flume material may have been missed, and that the soil cPAH concentrations in this area are locally elevated as a result. When the construction crew is on site excavating the GTF_S27 area as part of the interim action, care will be taken to identify and remove any contaminated subsurface debris (e.g., treated wood) in addition to the soil to a depth of 4.5 ft bgs. The intent is to remove all contaminated debris and soil encountered in the GTF_S27 area; however, if it is determined in the field that excavation activities could undermine the storm drain installed to replace the flume, the City will consult with Ecology prior to completing the work. A soil confirmation sample will be collected at the final GTF_S27 area will not occur until receipt of the soil sample analytical results that confirm cPAH concentrations do not exceed the IASLs at the final excavation depth.

Arsenic

There are no known historical uses of arsenic on the Proposed Park Site; arsenic is a naturally occurring inorganic soil chemical. MTCA requires statistical evaluation of compliance samples where direct comparison is not eligible (i.e., an unknown source). Under MTCA, there are three parts to demonstrating compliance through a statistical evaluation.

- The 95 percent upper confidence limit (UCL) on the mean concentration at the site must be less than the soil cleanup level.
- Fewer than 10 percent of the samples can exceed the soil cleanup level.
- No single sample can be greater than 2 times the soil cleanup level.

The statistical analysis was completed on the available Proposed Park Site arsenic data. Sample results for soil that is recommended for excavation, as discussed in the PCBs and cPAHs section above, were removed from the arsenic background evaluation because these data no longer represent soil to be left onsite.

No post-excavation soil will have arsenic concentrations that exceed 2 times the IASL. Three of 14 soil samples (i.e., 21 percent) exceed the arsenic IASL; however, evaluation of false positive probabilities for exceeding the IASL indicates 0.044 probability of 4 or more results exceeding, which is close to the targeted 0.05 level. Therefore, three results exceeding the IASL is acceptable based on the *Statistical Guidance for Ecology Site Managers* (Technical Attachment 1 to Figure 12, Ecology 1992).

Georgetown Flume Off-Leash Area and Trail Supplemental Design Memorandum June 16, 2023 Page 7 of 8

The remaining criterion for the statistical evaluation compares the UCL with the IASL. EPA's ProUCL,⁴ software version 5.2, was used to evaluate the distribution of arsenic concentrations and to recommend a representative UCL based on the results as shown in Table 3 and Attachment 3. The 14 results pass as lognormally distributed based on both goodness-of-fit tests reported by ProUCL. The recommended UCL⁵ concentration is 6.3 mg/kg, which does not exceed the 7.3 mg/kg IASL.

Based on these findings, the soil that remains onsite after the interim action will be in compliance with MTCA using the statistical evaluation methodology. Integral recommends no further adjustment to the vertical excavation boundary, shown on Figure 3, based on arsenic soil concentrations.

NEXT STEPS

With Ecology concurrence, the proposed excavation depths in the draft IAWP will be replaced with those indicated in Figure 3 and project plans and specifications will be updated accordingly.

REFERENCES

Dube, T. 2022. Personal communication (email to S. Ashurst, Integral Consulting Inc., Seattle, WA, dated August 28, 2022, regarding a re-evaluation of flume corridor samples and changes to soil removal status designations). Leidos, Bothell, Washington.

Ecology. 1992. Statistical Guidance for Ecology Site Managers. Washington State Department of Ecology. August.

Ecology. 2008. Agreed Order No. DE5688; In the matter of remedial action by The Boeing Company, King County, and the City of Seattle; North Boeing Field/Georgetown Steam Plant. Washington State Department of Ecology. August 14.

Herrera. 2007. Site characterization and alternatives evaluation report—Georgetown flume. Prepared for City of Seattle and Seattle City Light, Seattle, Washington. Herrera Environmental Consultants. April 27.

⁴ Information about this software and free download is available at: https://www.epa.gov/land-research/proucl-software

⁵ Kaplan-Meier Land's H-statistic UCL for lognormal data.

Georgetown Flume Off-Leash Area and Trail Supplemental Design Memorandum June 16, 2023 Page 8 of 8

Herrera. 2010. Removal action completion report: Georgetown flume removal and demolition. Prepared for City of Seattle and Seattle City Light, Seattle, Washington. Herrera Environmental Consultants. February 17.

Integral. 2021. Former Georgetown steam plant flume property transfer sampling and analysis plan. Integral Consulting Inc., Seattle, WA. September 23.

Integral. 2022a. Addendum to former Georgetown steam plant flume property transfer sampling and analysis plan. Integral Consulting Inc., Seattle, WA. March 8.

Integral. 2022b. Proposed additional analyses to provide confirmation soil results for the Georgetown flume off-leash area and trail. Integral Consulting Inc., Seattle, WA. December 5.

USEPA. 2002. Guidance on environmental data verification and data validation. EPA QA/G-8. EPA/240/R-02/004. U.S. Environmental Protection Agency, Office of Environmental Information, Washington, DC. November.

USEPA. 2009. Guidance for labeling externally validated laboratory analytical data for Superfund use. OSWER No. 9200.1-85. EPA 540-R-08-005. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC.

USEPA. 2020a. National functional guidelines for organic Superfund methods data review. OLEM 9240.0-51. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, Washington, DC. November.

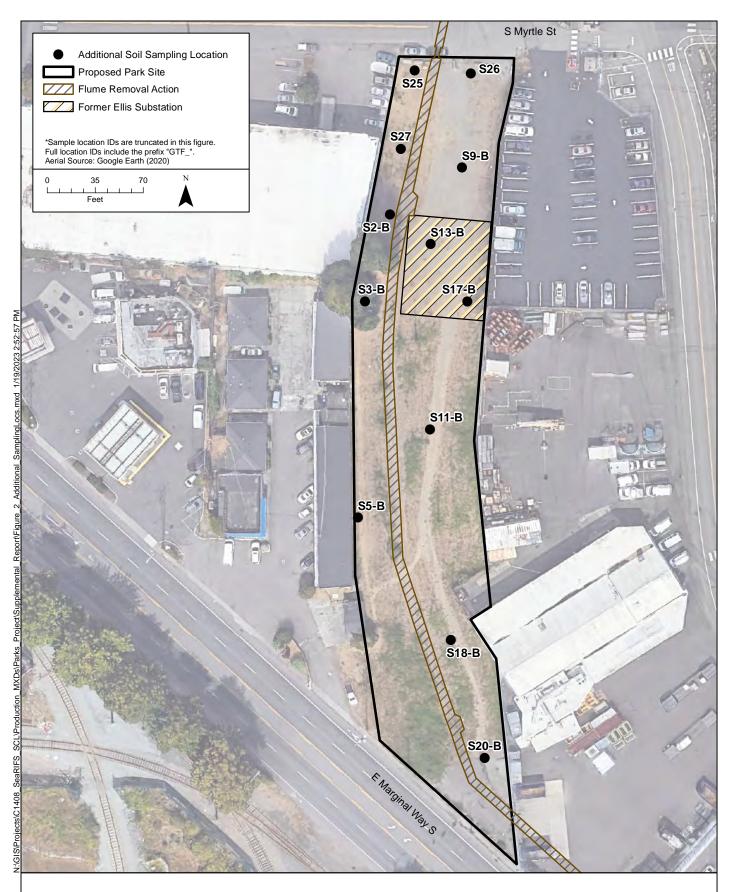
USEPA. 2020b. National functional guidelines for inorganic Superfund methods data review. OLEM 9240.1-66. EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, Washington, DC. November.

Figures

43

Vicinity

ort/Figure


MXDs\Parks_Proj

SeaRIFS

C1408

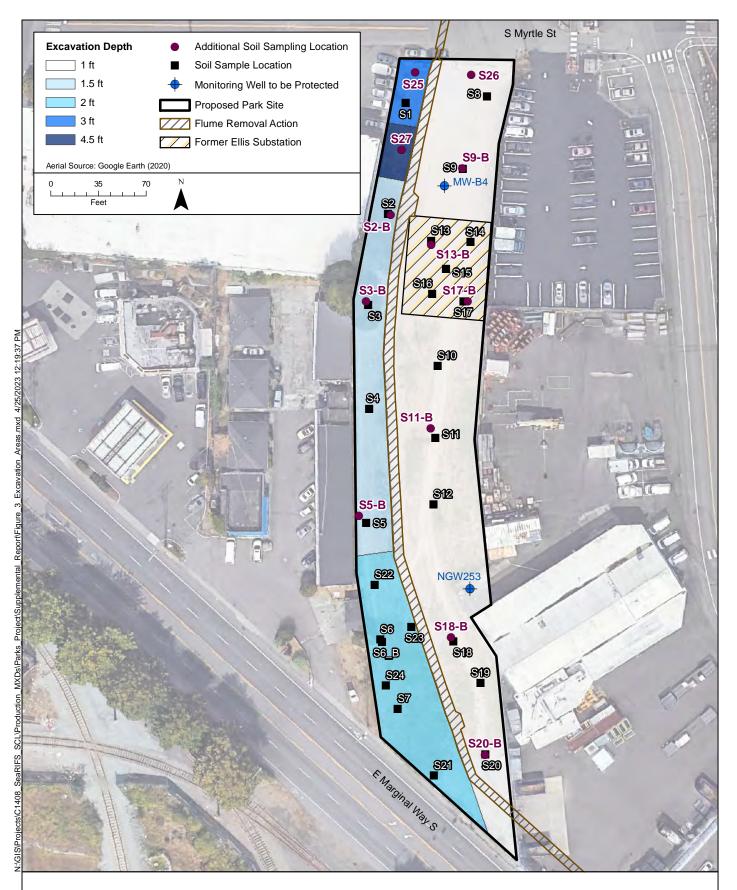

N:\GIS\Proj

Figure 1. Proposed Park Site Vicinity Map

integral consulting inc.

Figure 2. Additional Sampling Locations

integral consulting inc.

Figure 3. Revised Excavation Areas

Tables

Proposed		Depth Interva	I (ft bgs) of Confirm	nation Sample,
xcavation Depth Sample			by Analyte	
(ft) ^a	Location ^b	cPAH	PCBs	Arsenic
	GTF_S8	_	—	_
	GTF_S9_B	—	_	1.0–1.5
	GTF_S10	—	_	—
	GTF_S11_B	_	_	1.0–1.5
	GTF_S12	—	_	—
	GTF_S13_B	_	_	1.0–1.5
1.0	GTF_S14	_	_	_
1.0	GTF_S15	_	_	_
	GTF_S16	_	_	_
	GTF_S17_B	_	_	1.0–1.5
	GTF_S18_B	_	_	1.0–1.5
	GTF_S19	_	_	_
	GTF_S20_B	_	_	1.0–1.5
	GTF_S26 * ^c	1.0–1.5	1.0–1.5	1.0–1.5
	GTF_S1		_	_
	GTF_S2_B ^d	—	1.5–2.0	1.5–2.0
	GTF_S3_B	—	—	1.5–2.0
1.5	GTF_S4	_	_	_
	GTF_S5_B	—	—	1.5–2.0
	GTF_S25 * ^c	1.5–2.0	1.5–2.0	1.5–2.0
	GTF_S27 * ^e	1.5–2.0	—	1.5–2.0
	GTF_S6	—	—	—
	GTF_S6_B	—	—	—
	GTF_S7	—	—	—
2.0	GTF_S21		—	—
2.0	GTF_S22	—	—	2.0–2.5 ^h
	GTF_S23 ^{f,g}			2.0–2.5 ^h
	GIF_523 ~	—		2.5–3.0 ^h
	GTF_S24	_	_	2.0–2.5 ^h

Table 1	Proposed Park	Site Additional	Confirmation S	Soil Sampling	and Analysis
10010 1.	i iopood i un	One / wantional	oon maaon o		

Notes:

* = New sample location	IASL = interim action screening level
= no sample or analysis	MTCA = Model Toxics Control Act
bgs = below ground surface	PCB = polychlorinated biphenyl
cPAH = carcinogenic polycyclic aromatic hydrocarbon	

^a Public Review Draft Georgetown Flume Off-Leash Area and Trail Interim Action Work Plan (September 30, 2022).

^b Suffix "_B" added to signify reoccupied locations; the new borings were collected no more than 8 ft from the original location.

^c Sampled for all three chemicals of concern based on historical sample W2T18.

^d PCB confirmation sample needed with change to MTCA Method B as the IASL.

^e Location situated near historical sample location W2, at which sample W2S18 was collected.

^f Location situated near historical sample location W1, at which sample W1S18 was collected.

^g 2.5–3.0 ft interval added based on historical sample W1S18.

^h Sample was analyzed from March 2022 archive sample.

		Revised Proposed	Excavation Depth:						1 ft bgs			T		
			Location ID	GTF_S26	GTF_S8	GTF	=_S9	GTF_S10	GTF_	_S11	GTF_S12		GTF_S13	
			Sample ID	GTF_S26_1-1.5ft	GTF_S8_1-1.5ft	GTF_S9_1-1.5ft	GTF_S9_B_1-1.5ft	GTF_S10_1-1.5ft	GTF_S11_1-1.5ft	GTF_S11_B_1-1.5ft	t GTF_S12_1-1.5ft	GTF_S13_1-1.5ft	GTF_S13_1- 1.5ft_DUP	GTF_S
			Sample Number	GTF-SL156	GTF-SL019	GTF-SL021	GTF-SL108	GTF-SL023	GTF-SL025	GTF-SL115	GTF-SL027	GTF-SL029	GTF-SL047	GT
			Sample Date	12/14/22	09/29/21	09/29/21	12/14/22	09/29/21	09/29/21	12/14/22	09/29/21	09/29/21	09/29/21	1:
			Sample Type	N	N	N	N	N	N	N	N	N	FD	
	-	IAS MTCA Method B	SLs											
		Cancer	Natural											
Analyte	Units	(Eq. 740-2)	Background	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	
Polychlorinated Bipheny		(Lq. 740-2)	Dackyrounu	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	
Aroclor 1016	mg/kg			0.020 U	0.020 U	0.020 U	NA	0.020 U	0.020 U	NA	0.020 U	0.020 U	0.020 U	
Aroclor 1221	mg/kg			0.020 U	0.020 U	0.020 U	NA	0.020 U	0.020 U	NA	0.020 U	0.020 U	0.020 U	
Aroclor 1232	mg/kg			0.020 U	0.020 U	0.020 U	NA	0.020 U	0.020 U	NA	0.020 U	0.020 U	0.020 U	
Aroclor 1242	mg/kg			0.020 U	0.020 U	0.020 U	NA	0.020 U	0.020 U	NA	0.020 U	0.020 U	0.020 U	
Aroclor 1248	mg/kg			0.020 U	0.020 U	0.020 U	NA	0.020 U	0.020 U	NA	0.020 U	0.020 U	0.020 U	
Aroclor 1254	mg/kg			0.020 U	0.020 U	0.012 J	NA	0.020 U	0.020 U	NA	0.020 U	0.020 U	0.020 U	
Aroclor 1260	mg/kg			0.10	0.083	0.026	NA	0.020 U	0.020 U	NA	0.020 U	0.020 U	0.020 U	
Aroclor 1262	mg/kg			0.020 U	0.020 U	0.020 U	NA	0.020 U	0.020 U	NA	0.020 U	0.020 U	0.020 U	
Aroclor 1268	mg/kg			0.020 U	0.020 U	0.020 U	NA	0.020 U	0.020 U	NA	0.020 U	0.020 <i>U</i>	0.020 U	
Total PCB Aroclors	mg/kg	0.5		0.10	0.083	0.038 J	NA	0.020 U	0.020 U	NA	0.020 U	0.020 <i>U</i>	0.020 <i>U</i>	
Polycyclic Aromatic Hydr														
1-Methylnaphthalene	mg/kg			0.0022 J	0.0018 <i>UJ</i>	0.0050 U	NA	0.00098 UJ	0.0050 U	NA	0.0050 U	0.00076 UJ	0.0050 U	
2-Methylnaphthalene	mg/kg			0.015 <i>U</i>	0.0031 <i>UJ</i>	0.0050 U	NA	0.0011 <i>UJ</i>	0.0050 U	NA	0.0050 U	0.0050 U	0.0050 U	
Acenaphthene	mg/kg			0.015 <i>U</i>	0.0019 <i>UJ</i>	0.0050 U	NA	0.0050 U	0.0050 U	NA	0.0050 U	0.00074 <i>UJ</i>	0.0050 U	
Acenaphthylene	mg/kg			0.0052 J	0.0043 J	0.0050 U	NA	0.0050 U	0.0050 U	NA	0.0050 U	0.0050 U	0.0050 U	
Anthracene	mg/kg			0.0050 J	0.0028 J	0.0050 U	NA	0.0050 U	0.0025 J	NA	0.0050 U	0.0050 U	0.0050 U	
Benzo(a)anthracene	mg/kg			0.021	0.012	0.0045 J	NA	0.0029 J	0.0050 U	NA	0.0012 J	0.0050 U	0.0015 J	
Benzo(a)pyrene	mg/kg			0.034 0.030	0.021 0.027	0.0069 0.0098	NA NA	0.0048 J 0.0056	0.0050 <i>U</i> 0.0050 <i>U</i>	NA NA	0.0021 <i>J</i> 0.0024 <i>J</i>	0.0050 <i>U</i> 0.0050 <i>U</i>	0.0014 J 0.0050 U	
Benzo(b)fluoranthene Benzo(g,h,i)perylene	mg/kg mg/kg			0.030	0.027	0.0098	NA	0.0056	0.0050 U	NA	0.0024 J 0.0046 J	0.0050 U 0.0050 U	0.0050 <i>U</i> 0.0017 <i>J</i>	
Benzo(j)fluoranthene	mg/kg			0.042	0.024	0.0092 0.0033 J	NA	0.0012 0.0021 J	0.0050 U	NA	0.00046 J	0.0050 U	0.0017 J 0.0050 U	
Benzo(k)fluoranthene	mg/kg			0.016	0.0084	0.0033 J 0.0047 J	NA	0.0021 J 0.0026 J	0.0050 U	NA	0.00098 J 0.0014 J	0.0050 U	0.0050 U	
Benzofluoranthenes	mg/kg			0.064	0.041	0.016	NA	0.0020 J	0.0000 U 0.010 U	NA	0.0044 J	0.0100 U	0.0100 U	
Chrysene	mg/kg			0.031	0.025	0.0080	NA	0.0052	0.0050 U	NA	0.0026 J	0.0050 U	0.0016 J	
Dibenzo(a,h)anthracene	mg/kg			0.0091 J	0.0053	0.0024 J	NA	0.0012 J	0.0050 U	NA	0.0050 U	0.0050 U	0.0050 U	
Dibenzofuran	mg/kg			0.015 U	0.0015 J	0.0050 U	NA	0.0050 U	0.0050 U	NA	0.0050 U	0.0050 U	0.0050 U	
Fluoranthene	mg/kg			0.035	0.020	0.0072	NA	0.0048 J	0.00063 J	NA	0.0021 J	0.00062 UJ	0.0026 J	
Fluorene	mg/kg			0.015 U	0.00092 UJ	0.0050 U	NA	0.0050 U	0.0050 U	NA	0.0050 U	0.0050 U	0.0050 U	
Indeno(1,2,3-cd)pyrene	mg/kg			0.033	0.018	0.0065	NA	0.0065	0.0050 U	NA	0.0027 J	0.0050 U	0.0011 J	
Naphthalene	mg/kg			0.015 U	0.0039 UJ	0.0050 U	NA	0.0015 UJ	0.0050 U	NA	0.0050 U	0.0050 U	0.0050 U	
Phenanthrene	mg/kg			0.013 J	0.013	0.0032 UJ	NA	0.0039 UJ	0.0025 UJ	NA	0.0019 UJ	0.00097 J	0.0025 J	
Pyrene	mg/kg			0.037	0.027	0.0087	NA	0.0069	0.00075 J	NA	0.0028 J	0.00067 J	0.0025 J	
cPAH TEQ	mg/kg	0.19		0.045 J	0.028	0.0097 J	NA	0.0067 J	0.0050 U	NA	0.0032 J	0.0050 U	0.0024 J	
Metals														
Arsenic	mg/kg		7.3	8.5	NA	NA	2.6	NA	NA	13	NA	NA	NA	

GTF_S13_B_1-1.5ft
GTF-SL122
12/14/22
Ν
Result
NA
NA
NA
NA NA
NA
NA
NA NA
NA
2.2

June 2023

(2021-2022)												
		Revised Proposed	d Excavation Depth:					1 ft bgs				
			Location ID	GTF_S16	GTF	_S17	GTF	_S18	GTF_		GTF	_S20
			Sample ID	GTF_S16_1-1.5ft	GTF_S17_1-1.5ft	GTF_S17_B_1-1.5	t GTF_S18_1-1.5ft	GTF_S18_B_1-1.5f	t GTF_S19_1-1.5ft	GTF_S19_1- 1.5ft_DUP	GTF_S20_1-1.5ft	GTF_S20_B_1-1.5
			Sample Number Sample Date	GTF-SL035 09/29/21	GTF-SL037 09/29/21	GTF-SL129 12/14/22	GTF-SL039 09/29/21	GTF-SL136 12/14/22	GTF-SL041 09/29/21	GTF-SL049 09/29/21	GTF-SL043 09/29/21	GTF-SL143 12/14/22
			Sample Type	N	N	N	N	N	N	FD	N	N
		IA	SLs							. 2		
	-	MTCA Method B										
		Cancer	Natural									
Analyte	Units	(Eq. 740-2)	Background	Result	Result	Result						
Polychlorinated Bipheny	ls											
Aroclor 1016	mg/kg			0.020 U	0.020 U	NA	0.020 U	NA	0.020 U	0.020 U	0.099 U	NA
Aroclor 1221	mg/kg			0.020 U	0.020 <i>U</i>	NA	0.020 U	NA	0.020 U	0.020 <i>U</i>	0.099 <i>U</i>	NA
Aroclor 1232	mg/kg			0.020 U	0.020 <i>U</i>	NA	0.020 U	NA	0.020 U	0.020 <i>U</i>	0.099 <i>U</i>	NA
Aroclor 1242	mg/kg			0.020 U	0.020 <i>U</i>	NA	0.020 U	NA	0.020 U	0.020 <i>U</i>	0.099 U	NA
Aroclor 1248	mg/kg			0.020 U	0.020 U	NA	0.020 <i>U</i>	NA	0.020 U	0.020 U	0.099 U	NA
Aroclor 1254	mg/kg			0.020 U	0.020 U	NA	0.020 U	NA	0.021	0.020 <i>U</i>	0.099 U	NA
Aroclor 1260	mg/kg			0.020 U	0.034	NA	0.018 <i>J</i>	NA	0.044	0.020 U	0.11	NA
Aroclor 1262	mg/kg			0.020 U	0.020 U	NA	0.020 U	NA	0.020 U	0.020 <i>U</i>	0.099 U	NA
Aroclor 1268	mg/kg			0.020 U	0.020 U	NA	0.020 U	NA	0.020 U	0.020 U	0.099 U	NA
Total PCB Aroclors	mg/kg	0.5		0.020 U	0.034	NA	0.018 <i>J</i>	NA	0.064	0.020 U	0.11	NA
Polycyclic Aromatic Hyd												
1-Methylnaphthalene	mg/kg			0.00084 UJ	0.0011 <i>UJ</i>	NA	0.00081 <i>UJ</i>	NA	0.0013 UJ	0.0012 <i>UJ</i>	0.0015 <i>UJ</i>	NA
2-Methylnaphthalene	mg/kg			0.0012 <i>UJ</i>	0.0015 <i>UJ</i>	NA	0.0050 U	NA	0.0024 UJ	0.0018 <i>UJ</i>	0.0029 UJ	NA
Acenaphthene	mg/kg			0.0050 U	0.00098 UJ	NA	0.0050 U	NA	0.0050 U	0.00086 UJ	0.00096 UJ	NA
Acenaphthylene	mg/kg			0.0050 U	0.0050 U	NA	0.0050 U	NA	0.0050 U	0.0050 <i>U</i>	0.0050 U	NA
Anthracene	mg/kg			0.0050 U	0.0011 <i>J</i>	NA	0.0050 U	NA	0.0014 <i>J</i>	0.00088 J	0.0016 <i>J</i>	NA
Benzo(a)anthracene	mg/kg			0.0012 <i>J</i>	0.0049 J	NA	0.0041 <i>J</i>	NA	0.0082	0.0051	0.015	NA
Benzo(a)pyrene	mg/kg			0.0022 J	0.0059	NA	0.0064	NA	0.011 <i>J</i>	0.0066 J	0.019	NA
Benzo(b)fluoranthene	mg/kg			0.0024 J	0.0078	NA	0.0078	NA	0.017 J	0.0075 J	0.028	NA
Benzo(g,h,i)perylene	mg/kg			0.0030 J	0.0080 J	NA	0.0099 J	NA	0.021 <i>J</i>	0.013 J	0.026 J	NA
Benzo(j)fluoranthene	mg/kg			0.00098 J	0.0027 J	NA	0.0034 J	NA	0.0059	0.0026 J	0.0068	NA
Benzo(k)fluoranthene	mg/kg			0.0016 J	0.0039 J	NA	0.0045 J	NA	0.0073	0.0035 J	0.0080	NA
Benzofluoranthenes	mg/kg			0.0048 J	0.014	NA	0.016	NA	0.030 J	0.013 J	0.050	NA
Chrysene	mg/kg			0.0020 J	0.0071	NA	0.0063	NA	0.015 J	0.0073 J	0.057	NA
Dibenzo(a,h)anthracene	mg/kg			0.0050 U	0.0018 J	NA	0.0019 J	NA	0.0031 J	0.0016 J	0.0041 <i>J</i>	NA
Dibenzofuran	mg/kg			0.0050 U	0.0050 U	NA	0.0050 U	NA	0.0050 U	0.0050 U	0.0015 J	NA
Fluoranthene	mg/kg			0.0023 UJ	0.0088	NA	0.0074	NA	0.017	0.010	0.021	NA
Fluorene	mg/kg			0.0050 U	0.0050 U	NA	0.0050 U	NA	0.00073 J	0.0050 U	0.00080 J	NA
Indeno(1,2,3-cd)pyrene	mg/kg			0.0021 J	0.0059	NA	0.0061	NA	0.013 J	0.0076 J	0.0093	NA
Naphthalene	mg/kg			0.0050 U	0.0014 <i>UJ</i>	NA	0.0050 U	NA	0.0021 UJ	0.0050 U	0.0023 UJ	NA
Phenanthrene	mg/kg			0.0016 J	0.0046 J	NA	0.0036 J	NA	0.0087	0.0066	0.011	NA
Pyrene	mg/kg			0.0024 J	0.0082 J	NA	0.0073 J	NA	0.016 J	0.0098 J	0.019 J	NA
cPAH TEQ	mg/kg	0.19		0.0032 J	0.0084 J	NA	0.0089 J	NA	0.016 J	0.0092 J	0.026 J	NA
Metals			7.0	NIA	N1.0	0.7	NIA	0.4	NIA	NIA	NIA	0.7
Arsenic	mg/kg		7.3	NA	NA	3.7	NA	3.1	NA	NA	NA	2.7

June 2023

(2021-2022)														
		Revised Proposed							1.5 ft bgs					
			Location ID		GTF_S2			GTF_S3		GTF	=_S4		GTF_S5	
			Sample ID	GTF_S2_1-1.5ft	GTF_S2_1.5-2ft	GTF_S2_B_1.5-2ft	GTF_S3_1-1.5ft	GTF_S3_1.5-2ft	GTF_S3_B_1.5-2ft	GTF_S4_1-1.5ft	GTF_S4_1.5-2ft	GTF_S5_1-1.5ft	GTF_S5_1.5-2ft	GTF_S5_
		IAS	Sample Number Sample Date Sample Type	GTF-SL007 09/29/21 N	GTF-SL008 09/29/21 N	GTF-SL090 12/14/22 N	GTF-SL009 09/29/21 N	GTF-SL010 09/29/21 N	GTF-SL096 12/14/22 N	GTF-SL011 09/29/21 N	GTF-SL012 09/29/21 N	GTF-SL013 09/29/21 N	GTF-SL014 09/29/21 N	GTF-S 12/1 N
	-	MTCA Method B Cancer	Natural											
Analyte	Units	(Eq. 740-2)	Background	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Polychlorinated Biphenyls	s													
Aroclor 1016	mg/kg			0.10 <i>U</i>	NA	0.020 U	0.020 U	NA	NA	0.020 U	NA	0.020 U	NA	1
Aroclor 1221	mg/kg			0.10 <i>U</i>	NA	0.020 U	0.020 U	NA	NA	0.020 <i>U</i>	NA	0.020 U	NA	1
Aroclor 1232	mg/kg			0.10 <i>U</i>	NA	0.020 U	0.020 U	NA	NA	0.020 <i>U</i>	NA	0.020 U	NA	I
Aroclor 1242	mg/kg			0.10 <i>U</i>	NA	0.020 U	0.020 <i>U</i>	NA	NA	0.020 <i>U</i>	NA	0.020 <i>U</i>	NA	1
Aroclor 1248	mg/kg			0.10 <i>U</i>	NA	0.020 U	0.020 <i>U</i>	NA	NA	0.020 U	NA	0.020 <i>U</i>	NA	
Aroclor 1254	mg/kg			0.14 <i>J</i>	NA	0.020 <i>U</i>	0.041	NA	NA	0.020 U	NA	0.020 U	NA	
Aroclor 1260	mg/kg			0.89	NA	0.28	0.093	NA	NA	0.020 U	NA	0.020 U	NA	1
Aroclor 1262	mg/kg			0.10 <i>U</i>	NA	0.020 U	0.020 <i>U</i>	NA	NA	0.020 U	NA	0.020 U	NA	
Aroclor 1268	mg/kg	0 F		0.10 U	NA	0.020 U	0.020 U	NA	NA	0.020 U	NA	0.020 U	NA	
Total PCB Aroclors	mg/kg	0.5		1.0 J	NA *	0.28	0.13	NA	NA	0.020 U	NA	0.020 U	NA	
Polycyclic Aromatic Hydro				0.0048 UJ	0.0020 UJ	NA	0.0015 UJ	0.00044.111	NA	0.0045 UJ	0.0037 UJ	0.0050 U	0.0050 U	
1-Methylnaphthalene	mg/kg							0.00044 UJ						
2-Methylnaphthalene Acenaphthene	mg/kg			0.0064 0.012	0.0020 J 0.0050 U	NA NA	0.0027 <i>UJ</i> 0.0011 <i>UJ</i>	0.0050 <i>U</i> 0.0050 <i>U</i>	NA NA	0.0055 0.0012 <i>UJ</i>	0.0042 J 0.0050 U	0.0050 U 0.0050 U	0.0050 <i>U</i> 0.0050 <i>U</i>	1
Acenaphthylene	mg/kg mg/kg			0.012	0.0050 U	NA	0.0011 <i>UJ</i>	0.0050 U	NA	0.0012 <i>UJ</i> 0.0022 <i>J</i>	0.0050 U	0.0050 U	0.0050 U	
Anthracene	mg/kg			0.014	0.0050 <i>U</i> 0.0014 <i>J</i>	NA	0.0023 J 0.0041 J	0.0050 U	NA	0.0022 5	0.0050 U	0.0050 U	0.0050 U	1
Benzo(a)anthracene	mg/kg			0.38	0.0014 J 0.0044 J	NA	0.036	0.0030 <i>U</i> 0.0020 <i>J</i>	NA	0.0051	0.0050 U	0.0050 U	0.0050 U	
Benzo(a)pyrene	mg/kg			0.38	0.0052	NA	0.056	0.0020 J	NA	0.39	0.00081 J	0.0014 J	0.0050 U	1
Benzo(b)fluoranthene	mg/kg			0.39	0.0052	NA	0.091	0.0036 J	NA	0.39	0.0050 U	0.0021 J	0.0050 U	
Benzo(g,h,i)perylene	mg/kg			0.31	0.0032 0.0044 J	NA	0.080	0.0049 J	NA	0.33	0.0050 U	0.0021 J	0.0050 U	
Benzo(j)fluoranthene	mg/kg			0.17	0.0024 J	NA	0.032	0.0049 J	NA	0.33	0.0050 U	0.00081 J	0.0050 U	
Benzo(k)fluoranthene	mg/kg			0.21	0.0024 J 0.0030 J	NA	0.032	0.0022 J	NA	0.19	0.0050 U	0.00084 J	0.0050 U	' '
Benzofluoranthenes	mg/kg			0.73	0.011	NA	0.15	0.0070 J	NA	0.65	0.0100 U	0.0033 J	0.010 U	
Chrysene	mg/kg			0.44	0.0054	NA	0.074	0.0028 J	NA	0.05	0.0050 U	0.0011 J	0.0050 U	' I
Dibenzo(a.h)anthracene	mg/kg			0.086	0.0010 J	NA	0.017	0.00099 J	NA	0.067	0.0050 U	0.0050 U	0.0050 U	I
Dibenzofuran	mg/kg			0.0061	0.0050 U	NA	0.0018 J	0.0050 U	NA	0.0016 J	0.0016 J	0.0050 U	0.0050 U	
Fluoranthene	mg/kg			0.60	0.0080	NA	0.050	0.0030 J	NA	0.034	0.00085 UJ	0.0013 J	0.0050 U	1
Fluorene	mg/kg			0.011	0.0050 U	NA	0.00069 UJ	0.00099 UJ	NA	0.0050 U	0.0050 U	0.0050 U	0.0050 U	
Indeno(1,2,3-cd)pyrene	mg/kg			0.26	0.0035 J	NA	0.055	0.0028 J	NA	0.24	0.0050 U	0.0019 J	0.0050 U	1
Naphthalene	mg/kg			0.010	0.0016 UJ	NA	0.0039 UJ	0.0050 U	NA	0.0047 UJ	0.0029 UJ	0.0050 U	0.0050 U	
Phenanthrene	mg/kg			0.22	0.0063	NA	0.020	0.0020 J	NA	0.0077	0.0026 J	0.0019 UJ	0.0012 J	
Pyrene	mg/kg			0.59	0.0085	NA	0.068	0.0031 J	NA	0.081	0.0010 J	0.0010 00 0.0011 J	0.0050 U	i
cPAH TEQ	mg/kg	0.19		0.53	0.0070 J	NA	0.081	0.0042 J	NA	0.50	0.0021 J	0.0024 J	0.0050 U	1
Metals	<u>9</u> 9	0.10		0.00	0.000.00		0.001	0.000.20			0.002.0	0.002.0	0.00000	
Arsenic	mg/kg		7.3	NA	NA	6.9	NA	NA	8.1	NA	NA	NA	NA	3
						0.0								

June 2023

GTF_S5_B_1.5-2ft
GTF-SL102
12/14/22
N
Result
Result
NA
NA NA
NA
NA
NA
NA
NA NA
NA
NA NA
NA
NA NA
NA
NA
NA
3.9

(2021-2022)																	
		Revised Proposed I	Excavation Depth:							2 ft bg							
			Location ID	GTF	_S22			F_S23			GTF	S6		GT	=_S7	GTF	_S21
			Sample ID	GTF_S22_1.5-2ft	GTF_S22_2-2.5ft	GTF_S23_1.5-2ft	GTF_S23_1.5- 2ft_DUP	GTF_S23_2-2.5ft	GTF_S23_2.5-3ft	GTF_S6_1-1.5ft	GTF_S6_1.5-2ft	GTF_S6_B_2-2.5ft	GTF_S6_B_2- 2.5ft_DUP	GTF_S7_1-1.5ft	GTF_S7_1.5-2ft	GTF_S21_1-1.5ft	GTF_S21_1.5-2ft
			Sample Number Sample Date	GTF-SL061 03/09/22	GTF-SL062 03/09/22	GTF-SL067 03/09/22	GTF-SL083 03/09/22	GTF-SL068 03/09/22	GTF-SL069 03/09/22	GTF-SL015 09/29/21	GTF-SL016 09/29/21	GTF-SL056 03/09/22	GTF-SL084 03/09/22	GTF-SL017 09/29/21	GTF-SL018 09/29/21	GTF-SL045 09/29/21	GTF-SL046 09/29/21
		IASI	Sample Type	Ν	N	N	FD	Ν	Ν	N	Ν	N	FD	Ν	N	Ν	Ν
	-	MTCA Method B	-														
Analyte	Units	Cancer (Eq. 740-2)	Natural Background	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Polychlorinated Biphenyls	s																
Aroclor 1016	mg/kg			NA	NA	NA	NA	NA	NA	0.020 U	NA	NA	NA	0.020 <i>U</i>	NA	0.10 <i>U</i>	NA
Aroclor 1221	mg/kg			NA	NA	NA	NA	NA	NA	0.020 U	NA	NA	NA	0.020 <i>U</i>	NA	0.10 <i>U</i>	NA
Aroclor 1232	mg/kg			NA	NA	NA	NA	NA	NA	0.020 U	NA	NA	NA	0.020 <i>U</i>	NA	0.10 <i>U</i>	NA
Aroclor 1242	mg/kg			NA	NA	NA	NA	NA	NA	0.020 U	NA	NA	NA	0.020 U	NA	0.10 <i>U</i>	NA
Aroclor 1248	mg/kg			NA	NA	NA	NA	NA	NA	0.020 U	NA	NA	NA	0.020 U	NA	0.10 <i>U</i>	NA
Aroclor 1254	mg/kg			NA	NA	NA	NA	NA	NA	0.048	NA	NA	NA	0.020 <i>U</i>	NA	0.10 <i>U</i>	NA
Aroclor 1260	mg/kg			NA	NA	NA	NA	NA	NA	0.082	NA	NA	NA	0.018 J	NA	0.10 <i>U</i>	NA
Aroclor 1262	mg/kg			NA	NA	NA	NA	NA	NA	0.020 U	NA	NA	NA	0.020 <i>U</i>	NA	0.10 <i>U</i>	NA
Aroclor 1268	mg/kg			NA	NA	NA	NA	NA	NA	0.020 <i>U</i>	NA	NA	NA	0.020 <i>U</i>	NA	0.10 <i>U</i>	NA
Total PCB Aroclors	mg/kg	0.5		NA	NA	NA	NA	NA	NA	0.13	NA	NA	NA	0.018 <i>J</i>	NA	0.10 <i>U</i>	NA
Polycyclic Aromatic Hydro						0.0050.//											0.0007.111
1-Methylnaphthalene	mg/kg			0.0019 <i>UJ</i>	0.0015 UJ	0.0050 U	0.0050 U	0.00046 UJ	NA	0.0099	0.0035 <i>UJ</i>	0.00095 UJ	0.0010 <i>UJ</i>	0.028	0.0031 <i>UJ</i>	0.13	0.0027 UJ
2-Methylnaphthalene	mg/kg			0.0025 J	0.0015 J	0.0050 U	0.0050 U	0.0050 U	NA	0.011	0.0055	0.0050 U	0.0050 U	0.029	0.0033 J	0.092	0.0035 J
Acenaphthene	mg/kg			0.0047 UJ	0.0012 UJ	0.0050 U 0.0050 U	0.0050 <i>U</i> 0.0050 <i>U</i>	0.0050 <i>U</i> 0.0050 <i>U</i>	NA NA	0.048 0.0061	0.0068 0.0036 J	0.00059 UJ 0.0050 U	0.0050 U	0.16 0.0032 J	0.0021 <i>UJ</i> 0.0015 <i>J</i>	0.59	0.0016 UJ
Acenaphthylene	mg/kg			0.0021 J	0.0013 J								0.0050 U			0.040	0.0050 U
Anthracene	mg/kg			0.012 0.066	0.0015 <i>J</i> 0.0065	0.0050 <i>U</i> 0.0050 <i>U</i>	0.0050 <i>U</i> 0.0050 <i>U</i>	0.0050 <i>U</i> 0.0015 <i>J</i>	NA NA	0.080 0.44	0.021 0.13	0.0050 <i>U</i> 0.0022 <i>J</i>	0.0050 <i>U</i> 0.0026 <i>J</i>	0.29 0.75	0.0021 <i>J</i> 0.0057	0.99 3.9	0.0010 J 0.0026 J
Benzo(a)anthracene	mg/kg								NA	0.44							
Benzo(a)pyrene Benzo(b)fluoranthene	mg/kg			0.077 0.069	0.029 0.026	0.00072 J 0.0050 U	0.0008 J 0.0050 U	0.0015 <i>J</i> 0.0020 <i>J</i>	NA	0.44	0.17 0.15	0.0043 J 0.0045 J	0.0056 0.0051	0.63 0.67	0.0069 0.0075	3.7 2.8	0.0027 J 0.0028 J
Benzo(g,h,i)perylene	mg/kg mg/kg			0.070	0.028	0.0050 U	0.0030 <i>U</i> 0.0012 <i>J</i>	0.0020 J 0.0024 J	NA	0.43	0.15	0.0043 J 0.0048 J	0.0063	0.45	0.0075	2.0 2.1 J	0.0028 J 0.0028 J
Benzo(j)fluoranthene	mg/kg			0.029	0.029	0.0050 U	0.0012 J 0.0050 U	0.0024 J 0.00079 J	NA	0.43	0.072	0.0048 J 0.0017 J	0.0083 0.0023 J	0.45	0.0078 0.0029 J	2.1 5	0.0028 J 0.0014 J
Benzo(k)fluoranthene	mg/kg			0.029	0.0087	0.0050 U	0.0050 U	0.00079 J 0.00084 J	NA	0.23	0.072	0.0017 J	0.0023 J 0.0028 J	0.35	0.0029 J 0.0035 J	1.1	0.0014 J 0.0016 J
Benzofluoranthenes	mg/kg			0.035	0.044	0.0030 U	0.0100 U	0.0036 J	NA	0.95	0.092	0.0083 J	0.0028 J	1.1	0.0035 5	5.6	0.0010 J
Chrysene	mg/kg			0.076	0.0091	0.0014 J	0.0015 J	0.0026 J	NA	0.50	0.16	0.0033 J	0.0036 J	0.85	0.0081	3.7	0.0033 J
Dibenzo(a,h)anthracene	mg/kg			0.070	0.0053	0.0050 U	0.0050 U	0.0020 J	NA	0.00	0.036	0.0011 J	0.0012 J	0.20	0.0014 J	0.66	0.0033 J 0.0012 J
Dibenzofuran	mg/kg			0.0026 J	0.0050 U	0.0050 U	0.0050 U	0.0050 U	NA	0.021	0.0050	0.0050 U	0.0050 U	0.11	0.0022 J	0.18	0.0012 J
Fluoranthene	mg/kg			0.12	0.0047 J	0.00099 J	0.0000 U	0.0035 J	NA	0.87	0.21	0.0022 J	0.0023 J	2.0	0.013	6.5	0.0043 UJ
Fluorene	mg/kg			0.0040 J	0.00079 J	0.0050 U	0.0007 J	0.0050 U	NA	0.039	0.0062	0.0050 U	0.0050 U	0.19	0.0013 J	0.46	0.00087 J
Indeno(1.2.3-cd)pyrene	mg/kg			0.052	0.020	0.0050 U	0.0050 U	0.0015 J	NA	0.39	0.14	0.0027 J	0.0040 J	0.45	0.0054	2.0	0.0024 J
Naphthalene	mg/kg			0.0039 J	0.0017 J	0.0050 U	0.0050 U	0.0050 U	NA	0.013	0.0087	0.0050 U	0.0013 J	0.042	0.0032 UJ	0.11	0.0032 UJ
Phenanthrene	mg/kg			0.071	0.0029 J	0.00087 J	0.0013 J	0.0027 J	NA	0.58	0.11	0.0024 J	0.0028 J	1.9	0.014	5.3	0.0047 J
Pyrene	mg/kg			0.13	0.0059	0.00099 J	0.0012 J	0.0033 J	NA	0.90	0.27	0.0024 J	0.0027 J	1.5	0.011	6.1 J	0.0042 J
cPAH TEQ	mg/kg	0.19		0.10	0.036	0.0020 J	0.0021 J	0.0024 J	NA	0.61	0.23	0.0055 J	0.0072 J	0.89	0.0093 J	4.8	0.0038 J
Metals	5 3						· · · ·	· · · ·					· · · · ·				
Arsenic	mg/kg		7.3	NA	5.4 U	NA	NA	5.4 U	2.4	NA	NA	NA	NA	NA	NA	NA	NA

(2021-2022)																
		Revised Proposed	Excavation Depth:				3 ft bgs							ít bgs		
			Location ID			GTF_S25			GTF	=_S1			GTF	_S27		
			Sample ID	GTF_S25_1.5-2ft	GTF_S25_1.5-2ft	GTF_S25_2-2.5ft	GTF_S25_2.5-3ft	GTF_S25_3-3.5ft	GTF_S1_1-1.5ft	GTF_S1_1.5-2ft	GTF_S27_1.5-2ft	GTF_S27_2-2.5ft	GTF_S27_2.5-3ft	GTF_S27_3-3.5ft	GTF_S27_3.5-4ft	GTF_S27_4-4.5ft
		IAS	Sample Number Sample Date Sample Type	GTF-SL150 12/14/22 N	GTF-SL169 12/14/22 FD	GTF-SL151 12/14/22 N	GTF-SL152 12/14/22 N	GTF_SL153 12/14/22 N	GTF-SL005 09/29/21 N	GTF-SL006 09/29/21 N	GTF-SL163 12/14/22 N	GTF-SL164 12/14/22 N	GTF-SL165 12/14/22 N	GTF-SL166 12/14/22 N	GTF-SL167 12/14/22 N	GTF-SL168 12/14/22 N
		MTCA Method B Cancer	Natural			5				5				5		
Analyte	Units	(Eq. 740-2)	Background	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Polychlorinated Bipheny				0.40.11	0 10 11	0.00.11	0.020.11	0.000 //	0.020.11	NIA	NIA	NIA	0.020.11	0.000.11	0.020.11	0.020 U
Aroclor 1016 Aroclor 1221	mg/kg mg/kg			0.10 <i>U</i> 0.10 <i>U</i>	0.10 <i>U</i> 0.10 <i>U</i>	0.20 <i>U</i> 0.20 <i>U</i>	0.020 <i>U</i> 0.020 <i>U</i>	0.020 <i>U</i> 0.020 <i>U</i>	0.020 <i>U</i> 0.020 <i>U</i>	NA NA	NA NA	NA NA	0.020 <i>U</i> 0.020 <i>U</i>	0.020 <i>U</i> 0.020 <i>U</i>	0.020 <i>U</i> 0.020 <i>U</i>	0.020 U 0.020 U
Aroclor 1232	mg/kg			0.10 <i>U</i>	0.10 U	0.20 U	0.020 U	0.020 U	0.020 U	NA	NA	NA	0.020 U	0.020 U 0.020 U	0.020 U	0.020 U
Aroclor 1232 Aroclor 1242	mg/kg			0.10 U	0.10 U	0.20 U	0.020 U	0.020 U	0.020 U	NA	NA	NA	0.020 U	0.020 U	0.020 U	0.020 U
Aroclor 1242	mg/kg			0.10 U	0.10 U	0.20 U	0.020 U	0.020 U	0.020 U	NA	NA	NA	0.020 U	0.020 U	0.020 U	0.020 U
Aroclor 1254	mg/kg			0.10 U	0.10 U	0.47 J	0.020 U	0.020 U	0.020 U	NA	NA	NA	0.020 U	0.020 U	0.020 U	0.020 U
Aroclor 1260	mg/kg			2.2 J	1.3 J	2.7	0.69 J	0.11 J	0.020 U	NA	NA	NA	0.042 J	0.037 J	0.020 U	0.020 UJ
Aroclor 1262	mg/kg			0.10 U	0.10 U	0.20 <i>U</i>	0.020 U	0.020 U	0.020 U	NA	NA	NA	0.020 U	0.020 U	0.020 U	0.020 U
Aroclor 1268	mg/kg			0.10 <i>U</i>	0.10 <i>U</i>	0.20 <i>U</i>	0.020 U	0.020 U	0.020 U	NA	NA	NA	0.020 U	0.020 U	0.020 U	0.020 U
Total PCB Aroclors	mg/kg	0.5		2.2 J	1.3 J	3.2 J	0.69 J	0.11 <i>J</i>	0.020 <i>U</i>	NA	NA	NA	0.042 J	0.037 J	0.020 <i>U</i>	0.020 <i>U</i>
Polycyclic Aromatic Hyd	rocarbons															
1-Methylnaphthalene	mg/kg			0.0069 J	0.0059 J	0.027 J	0.0059 UJ	0.0015 <i>UJ</i>	0.0016 <i>UJ</i>	0.0018 <i>UJ</i>	0.0016 <i>J</i>	0.0067	0.0023 UJ	0.0055 UJ	0.0053 J	0.021
2-Methylnaphthalene	mg/kg			0.0090 J	0.010 J	0.059 J	0.011 <i>UJ</i>	0.0016 J	0.0019 <i>UJ</i>	0.0019 J	0.015 <i>U</i>	0.0054	0.0040 UJ	0.015 <i>U</i>	0.0065 J	0.051
Acenaphthene	mg/kg			0.027 J	0.0042 J	0.015 J	0.0048 <i>UJ</i>	0.0015 <i>UJ</i>	0.0011 <i>UJ</i>	0.0013 <i>UJ</i>	0.015 <i>U</i>	0.0018 J	0.015 <i>U</i>	0.0086 <i>UJ</i>	0.0026 J	0.031
Acenaphthylene	mg/kg			0.0049 J	0.011 J	0.039 J	0.013 <i>UJ</i>	0.0014 J	0.0050 U	0.0012 J	0.0049 J	0.0032 J	0.0038 UJ	0.0095 J	0.0061 J	0.039
Anthracene	mg/kg			0.053 J	0.016 J	0.045 J	0.020 J	0.0016 J	0.0050 U	0.0050 U	0.013 J	0.0072	0.014 J	0.024 J	0.024	0.21
Benzo(a)anthracene	mg/kg			0.17 J	0.061 J	0.21 J	0.15 J	0.0037 J	0.0050 U	0.0050 U	0.27	0.060	0.069 J	0.34 J	0.12	0.51
Benzo(a)pyrene	mg/kg			0.16 J	0.11 J	0.35 J	0.42 J	0.021 J	0.00071 J	0.0050 U	0.70	0.26	0.52 J	1.5 J	0.72 0.66	3.2
Benzo(b)fluoranthene	mg/kg			0.15 <i>J</i> 0.17 <i>J</i>	0.12 <i>J</i> 0.16	0.44 <i>J</i> 0.57 <i>J</i>	0.41 <i>J</i> 0.49 <i>J</i>	0.027 J 0.028 J	0.0014 <i>J</i> 0.0012 <i>J</i>	0.0050 <i>U</i> 0.0050 <i>U</i>	0.63 0.65	0.28 0.30	0.50 J 0.49 J	1.4 <i>J</i> 1.3 <i>J</i>	0.66 0.76 J	2.3 4.8
Benzo(g,h,i)perylene Benzo(j)fluoranthene	mg/kg mg/kg			0.087 J	0.058	0.37 J 0.20 J	0.49 J 0.18 J	0.028 J 0.012 J	0.0012 J 0.0050 U	0.0050 U	0.85	0.30	0.49 J 0.22 J	0.73 J	0.29	0.94
Benzo(k)fluoranthene	mg/kg			0.087 J	0.055	0.20 J 0.18 J	0.18 J	0.012 J 0.011 J	0.0050 U	0.0050 U	0.32	0.12	0.22 J 0.21 J	0.73 J	0.29	0.94
Benzofluoranthenes	mg/kg			0.32 J	0.23 J	0.10 J	0.76 J	0.053 J	0.0100 U	0.000 U 0.010 U	1.3	0.53	0.94 J	3.0 J	1.2	4.2
Chrysene	mg/kg			0.20 J	0.10 J	0.39 J	0.21 J	0.0073 J	0.0010 U	0.0050 U	0.30	0.078	0.13 J	0.42 J	0.22	1.3
Dibenzo(a,h)anthracene	mg/kg			0.035 J	0.026	0.087 J	0.075 J	0.0044 J	0.0050 U	0.0050 U	0.12	0.049	0.080 J	0.23 J	0.13	0.57
Dibenzofuran	mg/kg			0.010 J	0.0047 J	0.036 J	0.0074 J	0.0050 U	0.0050 U	0.0050 U	0.015 U	0.0028 J	0.015 U	0.015 U	0.0043 J	0.034 J
Fluoranthene	mg/kg			0.37 J	0.099 J	0.32 J	0.13 J	0.0044 J	0.0013 J	0.00088 J	0.091	0.030	0.031 J	0.097 J	0.069	0.27
Fluorene	mg/kg			0.023 J	0.0036 J	0.013 <i>J</i>	0.0048 UJ	0.0010 J	0.00090 UJ	0.0011 <i>UJ</i>	0.015 <i>U</i>	0.00093 J	0.0027 UJ	0.015 <i>U</i>	0.015 <i>U</i>	0.026
Indeno(1,2,3-cd)pyrene	mg/kg			0.13 <i>J</i>	0.11 <i>J</i>	0.38 <i>J</i>	0.30 J	0.016 J	0.0012 <i>J</i>	0.0050 U	0.46	0.18	0.32 J	1.0 <i>J</i>	0.50 J	2.9
Naphthalene	mg/kg			0.014 J	0.018	0.14 <i>J</i>	0.023 J	0.0019 J	0.0019 <i>UJ</i>	0.0017 J	0.015 <i>U</i>	0.0030 J	0.013 J	0.015 <i>U</i>	0.0076 J	0.13
Phenanthrene	mg/kg			0.27 J	0.049 J	0.24 <i>J</i>	0.066 J	0.0024 J	0.0018 <i>UJ</i>	0.0018 J	0.0089 J	0.018	0.018 <i>J</i>	0.013 <i>J</i>	0.034	0.17
Pyrene	mg/kg			0.28 J	0.10 <i>J</i>	0.57 J	0.23 J	0.0068 J	0.0013 <i>J</i>	0.00092 J	0.19	0.048	0.068 J	0.27 J	0.12	0.36
<u>cPAH TEQ</u>	mg/kg	0.19		0.21	0.15	0.48 J	0.53 J	0.027 J	0.0017 J	0.0050 U	0.88	0.33	0.64 J	1.9 J	0.89 J	3.9
Metals			7.0	44	44	10.4	E 44	0.50	NIA	NIA	1.0	NIA	0.44	0.75	0.40	0.75
Arsenic	mg/kg		7.3	11	14	19.4	5.41	2.52	NA	NA	4.2	NA	2.44	2.75	2.43	2.75

Notes: <u>cPAH TEQs</u> were calculated in accordance with Washington Department of Ecology Implementation Memorandum #10 (April 20, 2015).

bold = detected exceedance of IASL * Original comparison made to MTCA Method A. Additional soil sampling will be undertaken to address data gaps.

bgs = below ground surface cPAH = carcinogenic PAH FD = field duplicate IASL = interim action screening level MTCA = Model Toxics Control Act N = normal sample NA = not analyzed / not applicable PAH = polycyclic aromatic hydrocarbon PCB = polychlorinated biphenyl TEQ = toxicity equivalence

Qualifiers:

J = The reported value was an estimate. U = The analyte was not detected. The associated numerical value is the reporting limit.

June	2023
------	------

Sample	Depth		Arsenic					
Location	(ft bgs)	Sample Date	(mg/kg)					
S2_B	1.5–2.0	12/14/22	6.9					
S3_B	1.5–2.0	12/14/22	8.1					
S5_B	1.5–2.0	12/14/22	3.9					
S9_B	1.0–1.5	12/14/22	2.6					
S11_B	1.0–1.5	12/14/22	13					
S13_B	1.0–1.5	12/14/22	2.2					
S17_B	1.0–1.5	12/14/22	3.7					
S18_B	1.0–1.5	12/14/22	3.1					
S20_B	1.0–1.5	12/14/22	2.7					
S22	2.0–2.5	03/09/22	5.4 U					
S23	2.0-2.5 *	03/09/22	5.4 U					
S24	2.0-2.5	03/09/22	5.4 U					
S25	3.0–3.5	12/14/22	2.5					
S26	1.0–1.5	12/14/22	8.5					
	IASL for the Proposed Park Site 7.3							
	95% upper confidence limit on the mean ^a 6.3							

Table 3. Arsenic Concentrations in Proposed Postexcavation Remaining
Soil at the Proposed Park Site

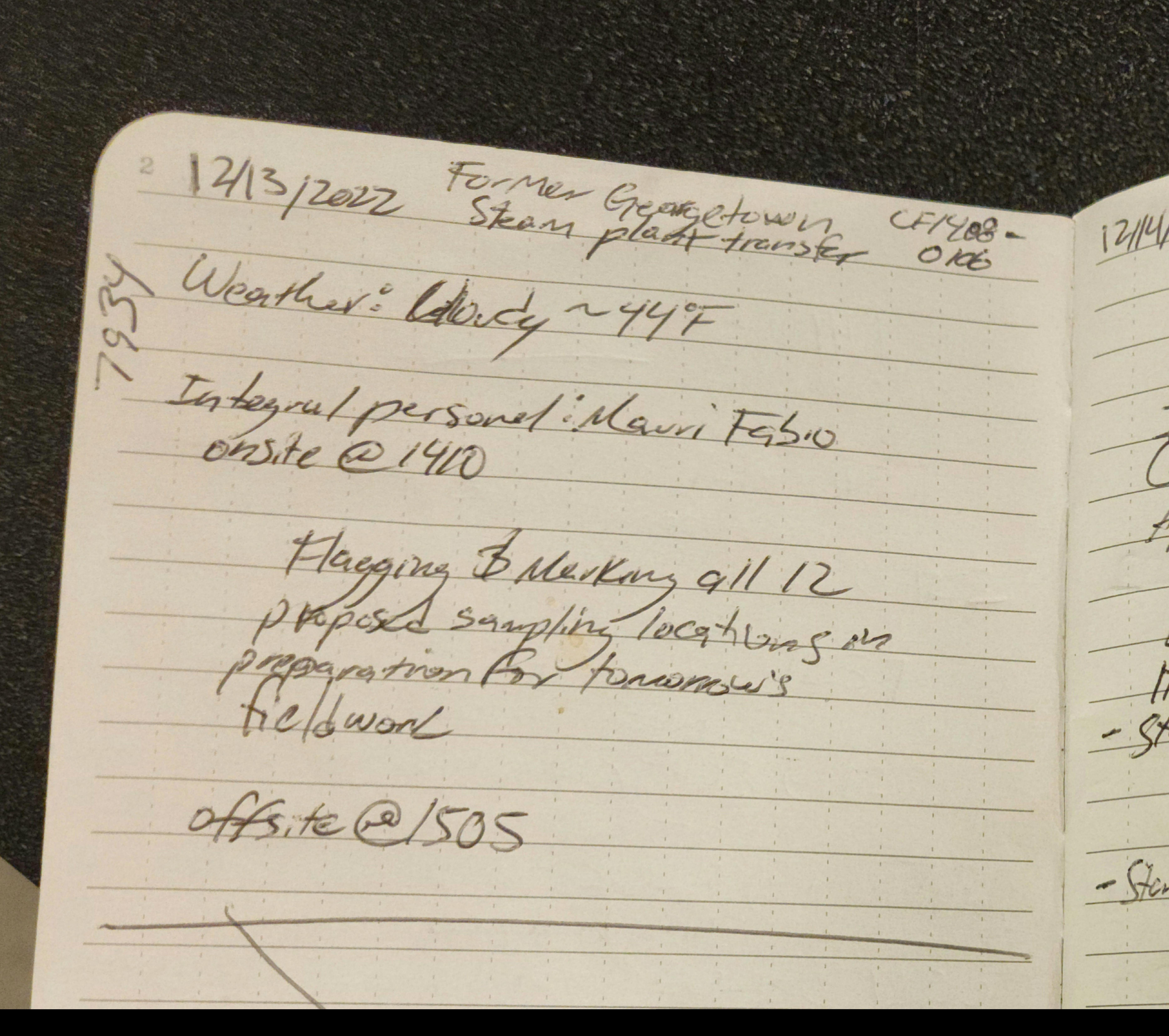
Notes:

Concentrations shown are rounded to two significant figures.

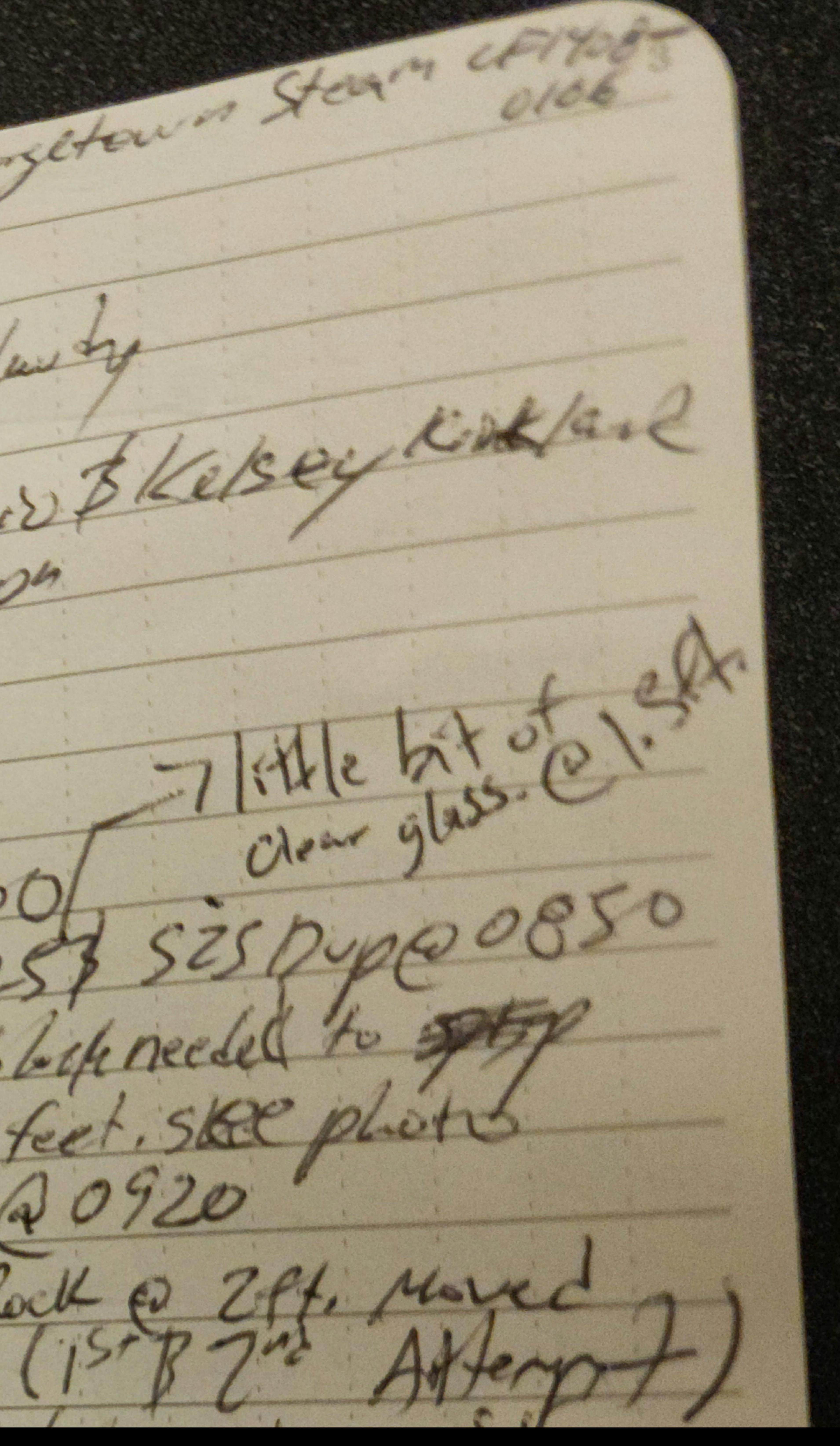
* Concentration for 2.5–3.0 ft bgs is 2.4 mg/kg.

^a Kaplan-Meier Land's H-statistic UCL for lognormal data recommended based on EPA ProUCL software version 5.2.

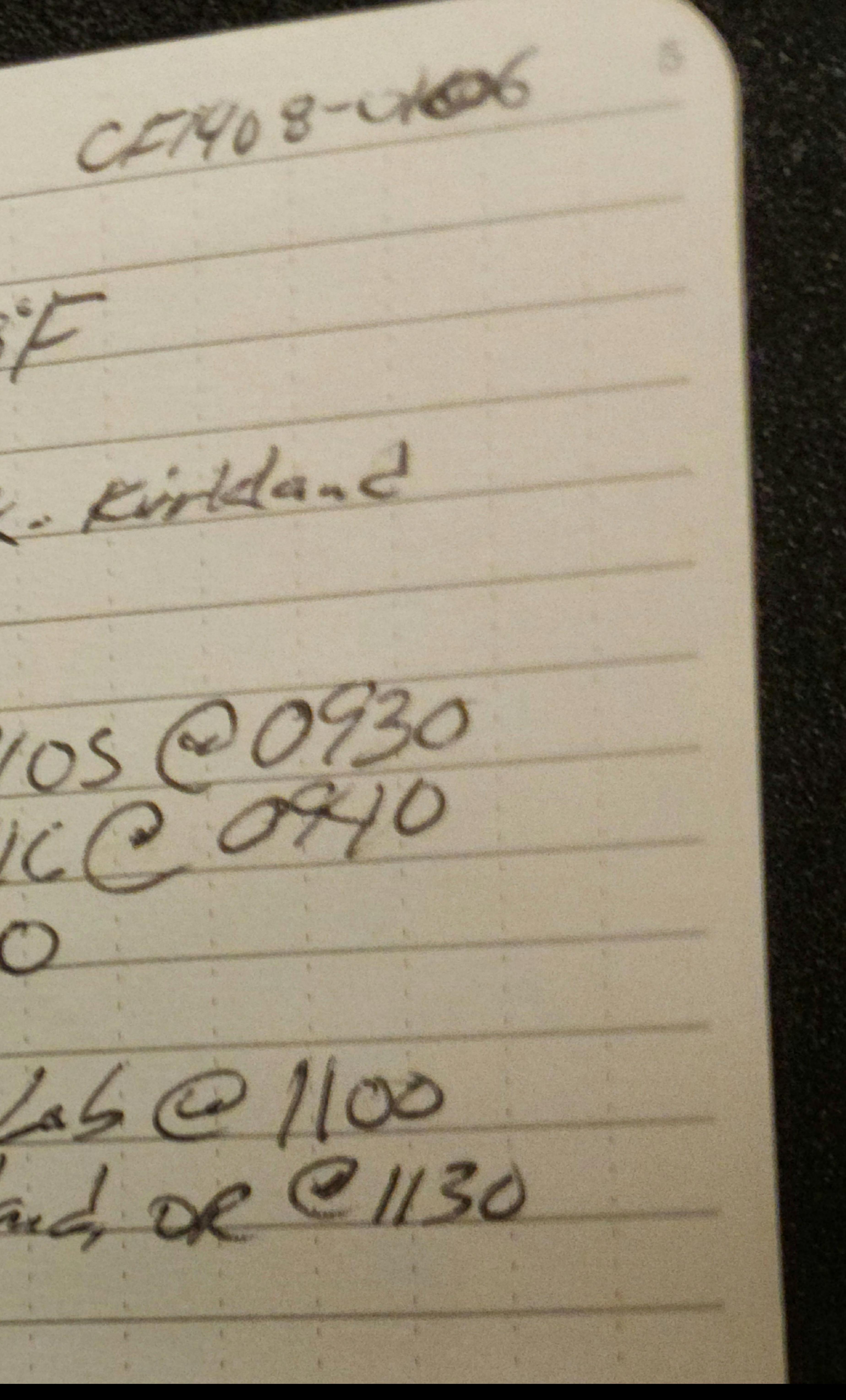
bgs = below ground surface


IASL = interim action screening level

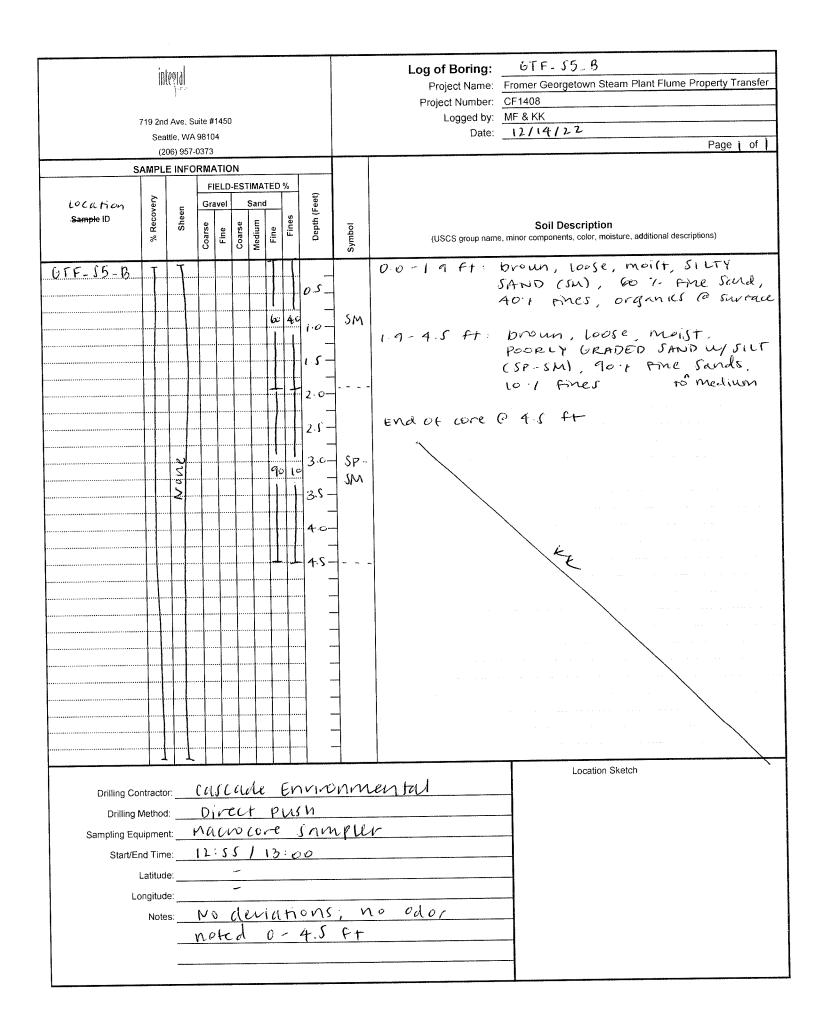
UCL = upper confidence limit

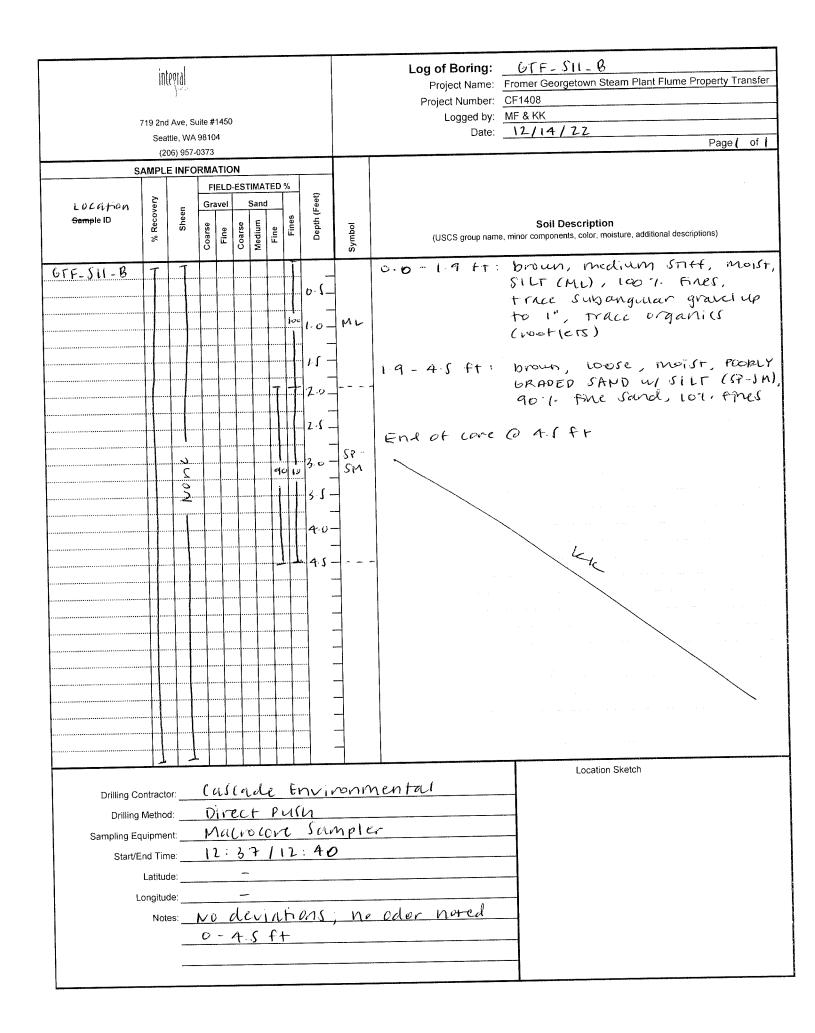

U = The analyte was not detected. The associated numerical value is the reporting limit.

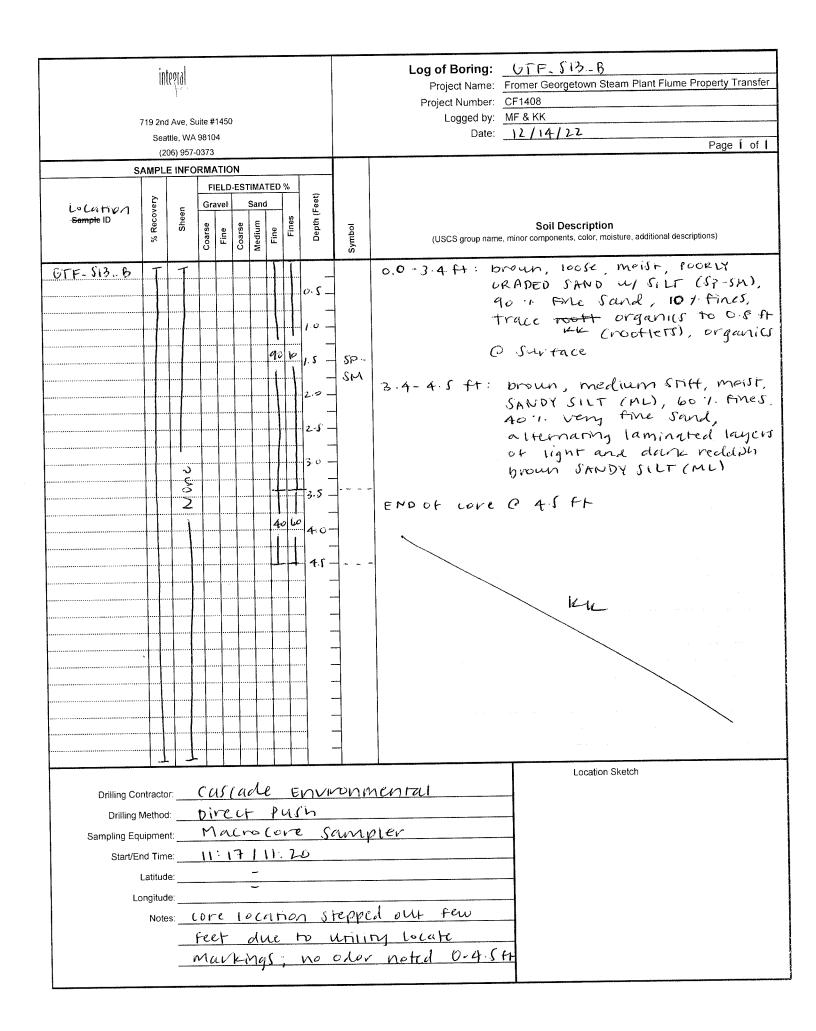
Attachment 1

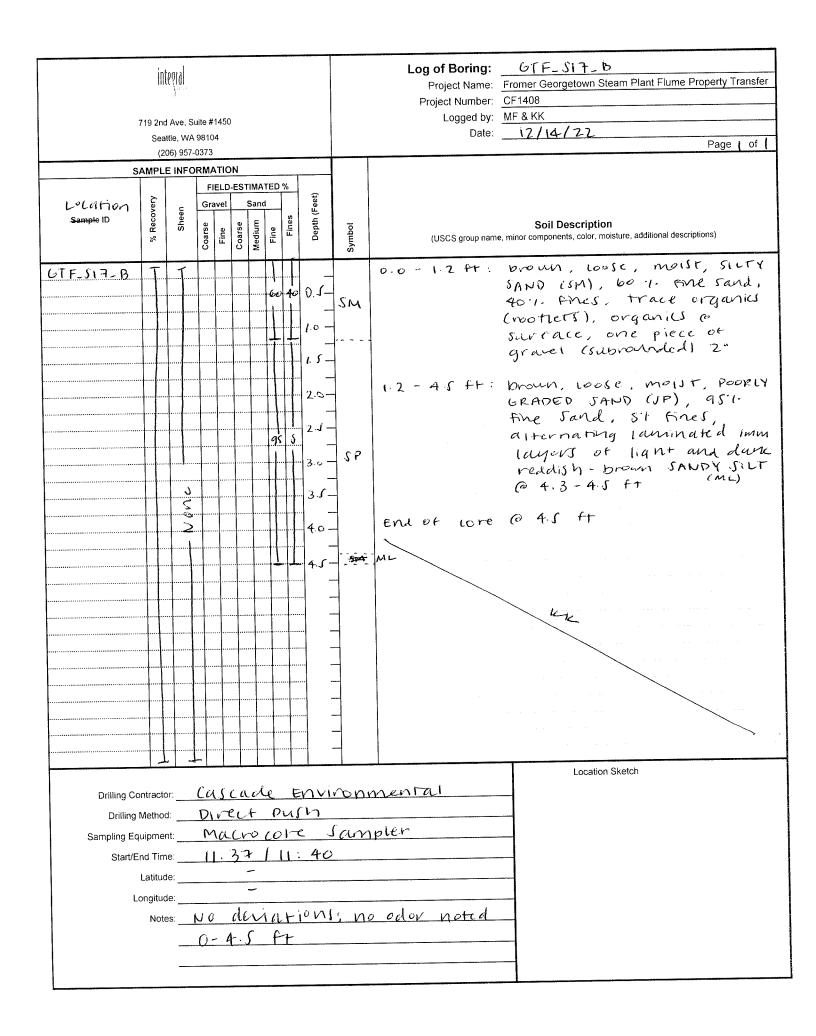

Field Notes, Boring Logs, Chain-of-Custody for Field Event

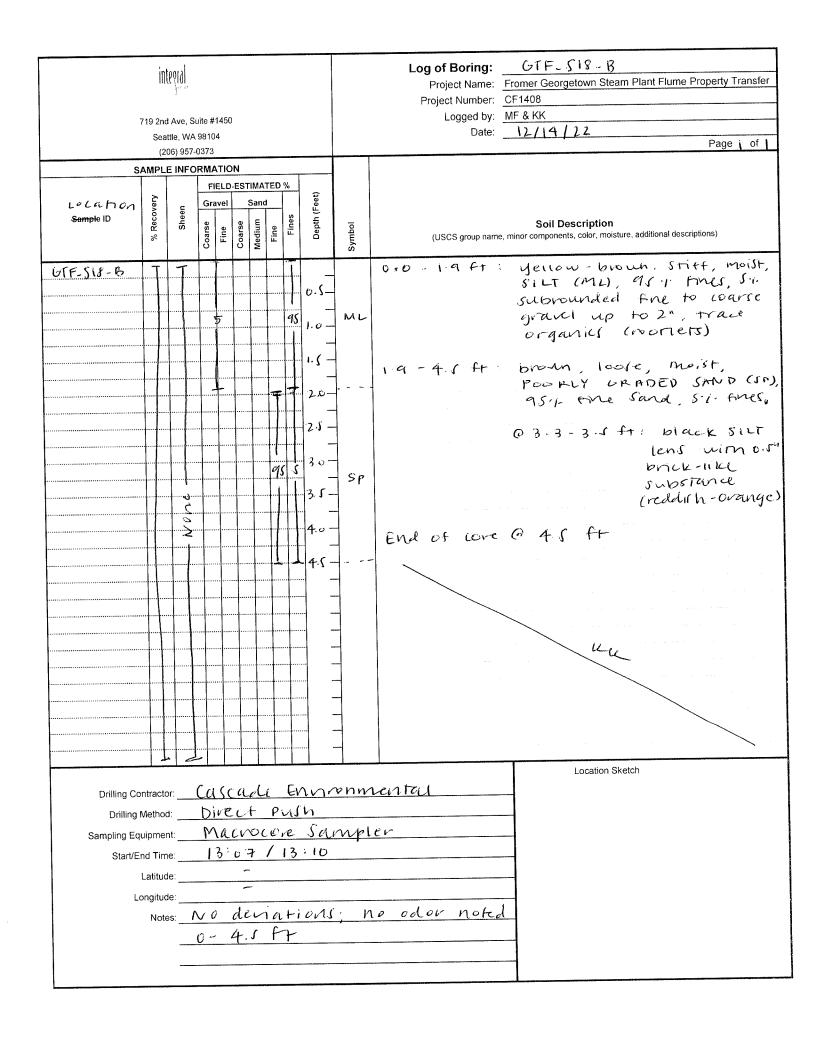
ag ___ 12/14/2000 1 dead Lor Integral & Maintaber Bleesey Kink and Contraction of the local division of the loc Cascade Ting Unton Aps lacert 011 ansite OU Maeting@08301 43 <u>COS</u> - Starting to dallat St 11 Pro m - / / frage

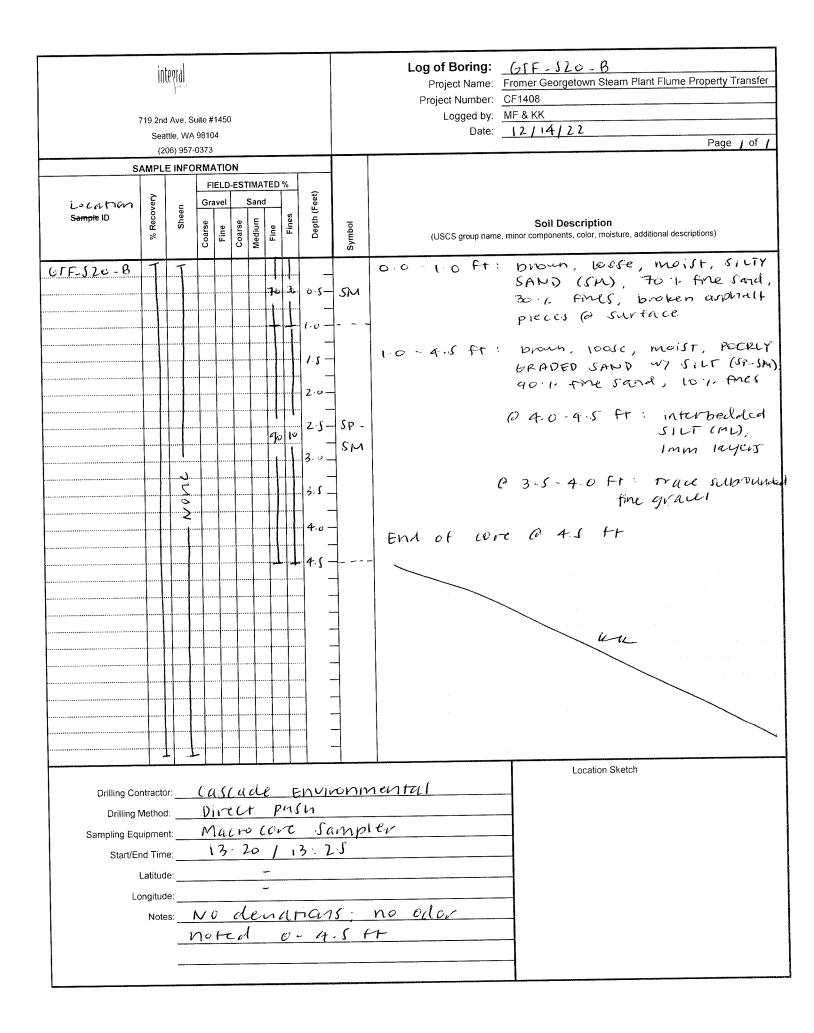

2161 E1408-0106 Many -worther some the L No. of Concession, Name Section . A find 10000 may introj K. Kindanc stepped allef ver cieto Aps minking Teer Un tegad the Ang no duil oll-Bauzz. No deviences Certimety 135 - Startitury GIFF-SLEB-9105 CO150 GIFF-SLEB-911C OP10 GITF-SLEB-911C OP10 QAS Supply C 1010 Ctrill' 2 no deritions Starting to dallat SII-BE1237 The derinition tarking to drill at \$5.3 @ 1255 Deliver samples to Lab @ 1100 Drive back to Portland, DR @ 1130 -strong to drill at SI8-B@1307 Aug


GTF_S27, 12/14/22 - wood encountered during 3rd attempt


	719 2nd Ave, 5 Seattle, W/ (206) 957	A 98104 -0373					Log of Boring: Project Name: Project Number: Logged by: Date: Date: (ケート・ディー・B Fromer Georgetown Steam Plant Flume Property Tran CF1408 MF & KK レフノ14 1 2 2 Page 1			
Location Bample ID	Recovery %				5 0.5 - i. 0	SP-SM	Soil Description (USCS group name, minor components, color, mosture, additional descriptions) DOD - (10 ft: brown, Soft gradet to medium STHF. moist, SILT (MU), 95%. Frines, 5% fine To medium Sand, few organics (leaves C SARFACE, noothers Throughou) 1.0 - 2.0 ft: brown, medium STiff, moisr. SILT W/SAND (MU), 75%. Frines, 15% fine sand, 10% Subrounded fine to coarse gracel up to 1" 2.0 - 4.5 ft: brown, lease, moist, Pookly CRADED JAND W/SILT (SPSM) 90% fine Scind, 10% fines, Trace organics (mothers) C 3.3 ft: 1 mm layer or yeilow - brown clay End of core C 4.5 ft Location Sketch			
La	ipment: d Time: atitude: ngitude: Notes:	<u>Mac</u> 10 : 4	10 (40 	/ 10	<u>Ser</u> >:4	5	er o odor nored			


719 2nd Ave, Suite #1450 Seattle, WA 98104											Log of Boring: Project Name: Project Number: Logged by: Date: Date: Date: Diff - 53 - 6 Fromer Georgetown Steam Plant Flume Property Transfer CF1408 MF & KK 12/14/77 Page / of)
	(206) 957-0373									╈	
S	SAMPLE INFORMATION									-	
			FIELD-ESTIMATED %								
Location	DVer	Le Le	Gravel Sand						(Fee		
luc nition Sample ID	Sheen	Coarse	Fine	Coarse	Medium	Fine	Fines	Depth (Feet)	Symbol	Soil Description (USCS group name, minor components, color, moisture, additional descriptions)	
6TF.53.B	T	Τ		I				j	_	_	0.0 - 1.9 Ft: brown, soft grades to medium
]		0.5-	-	STIFF, MOIST, SILT W/ GRAVEL
]		_	4	(ML), 80%. fines, 20%
				20				80	1.0-	ML	Subangular to rounded fine
								L.	ļ _		to coarse gravel up to 2", few organics (large upoly
									1.5 -	1	few organics (large woody
			I						ļ _	1	debits up to 2"), organics
			I	+				+	2.0		(° surface (leaves)
		11	I	Ι							
			Ι	Ι					125-		19-4.5 FT: brown, LODSE, MOIST, POOKLY GRADED SAND (SP), 951-FINE
		11	Ι								GRADED SAND (SP), 95-1-Fine
		TT	1]					3.0-		sand, SI. Fines, trace organiss
		2		Ţ			95	5	<u></u>	57	(vootiets).
		0	Ţ	I				1			
		z							, · · · -	1	@ 4.0-4.5 ft: large chunks of woody debns up to 3.5" in length
									A. ~-	_	wodig debns up
		T	Ţ						4·0-		to 3.5" in length
		Tt							1		
	1	T t		T					45		C 3.4 - 3.9 Fr. piece of noody
								ļ		_	depris
										_	
								<u> </u>	- -	4	End of core @ A.S.F.t
										-	
										4	
										4	Kr
			·							-	
			·					. .		4	
		ļļ	·					. 		_	
										4	
	1					<u> </u>					Location Sketch
			f e	60	(2)	10	ı:	5	in A	Mina -	entel
Drilling Cor										+ FFM	
Drilling N	Drilling Method: Direct PMIN										
Sampling Equ	Sampling Equipment: MALNOLOVE Sam									pier	,
Start/End Time: 12 . 22 / 12 : 25											
Latitude:											
La	ongitud										
	Note	s:($\lor \emptyset$	0	ler	11	泊日	101	15;	No	odor noted
					.5						
			~			£					
,											




	ļ	ntegral						••••••			Log of Boring: <u>6TF_S9_B</u> Project Name: Fromer Georgetown Steam Plant Flume Property Transfer
		1									Project Number: CF1408
	719 2n	d Ave, S	uite #	¥1450)						Logged by: MF & KK
		attle, WA									Date: <u>12/14/22</u> Page of
	(206) 957-0373									<u> </u>	Page of
S	SAMPLE INFORMATION								T	-	
	>			IELD	1) % 	- E		
Location	oven	eu					Sand o		(Fee		
Sampte ID	L ^o (Ation Sample ID 2 %	Sheen	Coarse	Fine	Coarse	Medium	Fine	Fines	Depth (Feet)	Symbol	Soil Description (USCS group name, minor components, color, moisture, additional descriptions)
61F-59-B	T	T						50	· _	GM	0.0-0.5 ft; brown, loose, moist, sivery
								1	0.5-		GRAVEL (GM), SO 1. Subvounded
				ļ	ļ	ļ	ļ	ļĮ.	- 1	-	to subangular fine to coase
				.	_				1.0 -	-	gravel up to 1.5", trace organics (noothets) son thes
	. 				. 				. –	-	organtics choopiens 500 thes
			-	.			. .		- 2.1	-	O.S. A.S. Ft : brown, LOOSE, MOIST, SILTY
		. 		-						-	SAND (SM), 801- fine sand,
								0.0	2.0-	-	20 1. Fres.
		. .					- <u> 8)</u> 1	020 1		-	
			 		+					- SM	@ 4.0-4.5 Pt: Mace organics (nearly debris)
				-						1	(nearly debris)
		5	1	1	1]		Ť]	
		Ž	1	1							End of core CASFF
		1								_	
									4.0 -	4	
				ļ						4	
								-	- 4.5 -		+
									-	-	KE
										-	
										-	
										-1	
										-	
			····					1			
			t	T							
			1							_	
										4	
	<u> </u>	11									Location Sketch
			~		ŗ .	, 1	6	r	10 -	110-	
Drilling Col	ntracto	or:		45		<u>11</u>	<u>×</u> _	<u>t</u>	<u>. NN</u>	r U FI P	nental
Drilling N	Vethod	d:		710	$\overline{\mathcal{C}}$	<u>ct</u>		<u> 11</u>	<u>41</u>		
Sampling Equ	uipmer	nt:		M	ac	no	> (,Or	c J	amp	214
Start/Er	1d Tim	ie:		0:	30	<u>`</u> _/	1	<u>c</u> !	35		
Start/End Time: <u>10:3</u> :> / 10:3 S Latitude:											
									<u></u>		
Lc	ongitud	<u>م</u>	1		1			<u> </u>	<u> </u>	۰. ۱۸	odor noted
	Note								<u>v 15</u>	<u> </u>	
			<u>v -</u>	4	- 7	٢	T				

integr	8		Log of Boring: $GFF-SZS$	
III(KAL		Project Name: Fromer Georgetown Steam Plant Flume Property Transfer		
			Project Number: CF1408	
719 2nd Av	ve, Suite #1450		Logged by: MF & KK	
Seattle,	, WA 98104		Date: 12/14/22 Page / of /	
	957-0373	1	Faye 01	
SAMPLE IN				
	FIELD-ESTIMATED %			
Locatron s Sample ID	Cheen arse arse arse arse arse arse arse arse			
	Shee Coarse Fine Coarse Fine Fines Depth (I	þq	Soil Description	
8		Symbol	(USCS group name, minor components, color, moisture, additional descriptions)	
C+F (2)			0.0 - 1.0 Ft: brown, soft grades to	
GTF-S25 T-	5 45 0.5		medium stiff, moist, silt	
	5 95 0.5		(ML) 95 1. Fres, Si	
	┉┧┉┈┝┅┥┉┥┉┥┥╸┥	ML	subrounded to rounded the	
		1	gravel, trace organics	
	20 900	1	(mothers), organics @	
		+	surface.	
			5	
	80 20 2 0	12.4	1.0-1.5 St. brown, medium Srift, moist,	
		MU	SILT W/ FAND SILTY SAND	
		1	80.1. Fine (20 Y. De. (SM) trace	
			SUBNULLEd to rounded	
	3.0-	1	Fine gravel, trace organis,	
	3	1	(rootlets)	
	2 -	1		
		1	1.5 - 2.8 ft : brown, moist, SILTY SAND	
			loofe	
		1	(SM), 50%. Fine sand, 20%	
		1	Fines trace organics	
		-	(rootlets, woody debins)	
		1		
		-	End of core (0 2 8 ft	
		1		
]		
		1		
		1		
			uu	
	4		Location Sketch	
Drilling Contractor:	cascade Envi.	NNIN	rental	
	Direct Pulh			
Somoling Equipment	Macio con S	an	pler	
Sampling Equipment:	ORIGO LORIO	<u> </u>		
Start/End Time:	08:50 /09:0	J		
Latitude: _				
Longitude:				
Notes:	Field Diplica From Ecology photo); no o	H;	stepped out	
	BODA FIDLAN	Ri	Wri Ger	
-	110101 1101049	1.	noted A-2 PG	
-	prioto); no o	Nor	rula V.V.	

inter			Log of Boring: $GT F = S 2.5$ Project Name:Fromer Georgetown Steam Plant Flume Property TransfeProject Number:CF1408Logged by:MF & KK		
	Ave, Suite #1450 le, WA 98104		Date: 12/14/22		
	6) 957-0373		Page of		
	INFORMATION FIELD-ESTIMATED %	1			
Location					
LoLei Hon Sample ID %	Clarse Saud Fine Coarse Coarse Redium Efine Depth (Feet)	Symbol	Soil Description (USCS group name, minor components, color, moisture, additional descriptions)		
6TF-525	T 200 T 70 - T 0.5- ice - 1.0-	ML	0.0-0.5 Ft, brown. soft, moist, GRAVELY SILT (ML), 70% Fines, 30% subnounded Fine to course gravel,		
		- SM	trace organics (nootiets)		
		ML	0.5-1.1 Ft: brown, medium stift, moist, sill (ML), 1007. Finer, trace Fine sand, trace organics		
	2 2 2 2 3 3 3 5 - 2 2 - 2 - 2 - - - - - - - - - - - -	- 301	1.1-1.4 ft: brown, worst, moist, silty SAND (SM), BUT- fine sand, 20-1 Fines, trace organics (rooters)		
		_	@ 1.5 ft piece of glass (see photo)		
			1.4 - 2.3 Ft: brown, medium Stiff, moist, SILT (ML), 90%. FMes, 10%. Fine sand, trace organics (rootlefs)		
			2.3-4.5 ft: brown, loose, moist poorLY GRADED SANDW SILT (SP-SM), q0'F Fre sand, 10'1- Fre, trace organics (rooticis) End of corr @ 4.5ft		
	<u> </u>		Location Sketch		
	<u>Cascade Envi</u>	wnm	intel		
	pirect Push	(dage)			
	08:50/09:0				
		<u> </u>			
Longitude:	\				
Notes:	MS/MSD; Step	ped	Euch From		
	Ecology bLOLKS	s (s	ice photo);		
	ho odon note	d c	0-4.5.Ft		

719 2nd Ave, Suite #1450 Seattle, WA 98104 (206) 957-0373 SAMPLE INFORMATION		Log of Boring: $UTF - S2U$ Project Name: Fromer Georgetown Steam Plant Flume Property Transfer Project Number: CF1408 Logged by: MF & KK Date: $12/14/22$ Page (of)
Lolution Sample ID Sample	Deptit (Leet)	Soil Description (USCS group name, minor components, color, molistre, additional descriptions) O.O 1.1 Ft : gray - brown, loose, molist SILTY GRAVEL (GM), 85:+ SULD any Juliar to ethypular free to coarse gravel/aggragate up to 2°, 15:+ Frees, arganics @ Surface 1.1 - 1.5 Ft : brown, loose, moist, SILTY SAND (SM), 80:1, Free send, 20:1. Frees I.S- 4.5 Ft : brown, co-de, moist, poorey BRADED SAND (SP), 95:1, Free SPL of core @ 4.5 Ft Ka
plocks (s	insh t Samp 10:22 out fr	pler nom Ecology

719 2n Sea	d Ave, S attle, WA	98104								Log of Boring: GTF - S27 Project Name: Fromer Georgetown Steam Plant Flume Property Transfer Project Number: CF1408 Logged by: MF & KK Date: 12/14/22
SAMPL										
		FIE	LD	EST	IMA'	TED	%			
LOLUTTON D	ua	Grav	vel		Sand			Feet		
Lo Lairran Sample ID	Sheen	Coarse	Fine	Coarse	Medium	Fine	Fines	Depth (Feet)	Symbol	Soil Description (USCS group name, minor components, color, moisture, additional descriptions)
UTF-527 T	Ī	ļ					ĺ		-	0.0-1.5 ft: brown, soft , moist, SILT MU),
	ļ					1	ļ .	0.5-	4	90% Free, LOY, Apre Sand,
	<u> </u>					10	90	4 –	ML	trace organics (mottets). organice convence
							 -	1.0-	1	Cr glutting
	1						1		- 	1.5-4.5 ft brown, word, moist,
	}					IT				POORLY GRADED SAND 4/ SILF
						ļ.		2.0-	4	(Sp. SM), all 1. Fine Sand, 101.
			••••••			₩.		. –	-	fines
					ļ		1	25-	-	@ 1.5-2.1 Ft: Trace organics
	·					90 	1		Se-	(mothers)
						Ħ	11	- 3.9 -		
	Ž								SM	End of core @ 45 FF
	2								_	
								4.0-	-	
				ļ	.		- -		-	
							1	4.5 -		
	·						+		-	Ku
				1	1	1	1			
					1	1				
					ļ				_	
									_	
					-				_	
						-		-		
	t t			-		1	1		-	
Å		-								
Drilling Contracto	r: (aj	1	ac	U	_	EI	<u>nn</u>	onn	Location Sketch
Drilling Method										
Sampling Equipmen									npl	Ër
Start/End Time								: 4		
Latitud		<u> </u>			/	-				
Longitud						~				
-		2 ju	7	al	1 (2	21	FT F	vr	First 2 attempts;
Note										id over b" and
										n-ince odor
										empt a for
L										waren

		3-3617		-corp.com)	Archive		A	VALYSES	REQUEST					integr
Address	Analytical Resources, Inc. 4611 S 134th PI #100 Tukwila, WA 9818					purcent Solids (SM 25406)	ANSENIC (EPA 6020B)	PAHS (EPA 8270ESIM)	PCBS (EPA SUSIA)	RLBJ- KK		Extra Container) cor
	Sue Dun (206) 69				Freen	ree	ANS	E PA	PA	74		с С	Archive	
Sample No.	Tag #	Date	Time	Matrix	L.	1000	/ E)				Ext	Arc	Comments
6FF-52-B-1-5-2Ft		12/14/22	11.15	SL		X	×	1	X					
GFF- 12-1-2-5F			11:20	1	X	() () () () () () () () () ()			1.1.1.1				1	
677.52-3-21 -3FF	1		11:25	A	X					1				1
67-F-52-13-3-5FI		1. Sec. 1. Sec. 1	11 30		X	1		11. 12.1		1				
GTF-52-0-3-5-4H			11:35		X					1				· · · · · · · · · · · · · · · · · · ·
61F-52-5-4-41	-		11:40		X									
STF-SLOQU			12:55			×	x	· · · · · ·	-	S		II		
6TF-51097			13:00		X	14.27	1	11						
6TF-52098			13:05	1000	X							-		FL
6TF-51099			13:10		X		-					1		
GIE LIDIGO			13:15		X		1		()	4 1 m m				1
GTF-JLIOI	-		13.20		X							1 mar. 1		
GTF-SLIDZ		1	14:00			X	X					10.00		
OFF-SUOS			14:05		X.							1 - 2		· · · · · · · · · · · · · · · · · · ·
GTF-SLI04		1.1	14:10		X						-			
GTF-SLIDS			14:15	2	X									
STF-JLIOL			14:20		X			1						
GTF.SLID7		1.1	14:25		X		1			1		1.00		
GTF-SLIDS		1 ·	10:40	1		x	X							
UTF-SLIDE		4	10:45	*	X	A			-	· · · · · · · · · · · · · · · · · · ·			-	
Analysis Turn Time: (Normal		Rush		Rush Re	esults Nee	ded By:]		Matrix C		SW - S	Groundwater Furface water
Shipped by:			Tracking	NO.					1		SD -Sedi	ment	Other:	
Condition of Samples	Upon Re	eceipt:	_			Seal Inta	ct?							
Relinquished by: Relinquished by:	(signature)			Date/Time: Date/Time:			Receive Receive		ush	erthiz,	(signature) (signature)			Date/Time: Date/Time:_!?/iS

Page _ of _ S

Integral Contact: Gene Esler (gesler@integral-corp.com) ANALYSES REQUESTED Three (G03) 943-3817 Ship to: Lab Name Analytical Resources, Inc. Address 46115 1341h PI #100 Tukwila, WA 9818 Contract Sue Dumihoo Prove (G05) 665-6207 Sample No. Time Matrix Context Sue Dumihoo Prove (C05) 65-6207 Context Sue Dumihoo Prove (C05) 65-6207 Context Sue Dumihoo Context Sue Dumihoo <th>Phone (50 hip to: Lab Name And Address 461 Tul Contact Suc</th> <th>3) 943-36 alytical Re 1 S 134th</th> <th>17</th> <th></th> <th></th> <th>24</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th>	Phone (50 hip to: Lab Name And Address 461 Tul Contact Suc	3) 943-36 alytical Re 1 S 134th	17			24	1						-		
Simple No. Lab Name Analytical resources, Inc. Address 4611 S134h FI #100 Tukwila, WA 9818 Control Sue Duminoo Phone [200] 695-6207 Sample No. Tag # Date Time Matrix Control Sue Duminoo Phone [200] 695-6207 Sample No. Tag # Date Time Matrix Control Sue Duminoo Phone [200] 695-6207 Sample No. Tag # Date Matrix Control Sue Duminoo	Address 461 Tul Contact Suc	1 S 134th	source						(H						mill (10
Interview State	Tul Contact Suc			es, Inc.		ź l	Ú	-0	5	\sim			1.1.1		consultin
Intendent version The second se	Contact Su		1 PI #1	00		3	50	13	L L	A I					1
$\nabla TF - S \cup I/C$ $I/I II II II II II II II II II $		wila, WA	9818				5 5	1 7	ř.	3			i i		
$\nabla TF - S \cup I/C$ $I/I II II II II II II II II II $						5	2 2	E.Z	5 20	2 8					
$\nabla TF - S \cup I/C$ $I/I II II II II II II II II II $	Phone (20				-	Ľ,	120	AC PA	H H V	7 K			ပီ	ke	
	Thome Tro	6) 695-62	07		_	2	2 33		a II	ω	in a state in the		ta	- <u>'</u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ample No. Ta	g# D	ate	Time	Matrix	1.1	20	1	\rightarrow				L X	Ar	Comments
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			14/22	10:50	JL	X				V				1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GTF-JLIII			10:55	1	X									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GTF-JL112			11:60		X									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	UTF- 56113					X		1 C							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						X							1 1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-				X	X					1	_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						14								-	
GTF-SL119 15:45 x x x GTF-SL120 13:59 x x x x GTF-SL120 13:59 x x x x GTF-SL121 13:59 x x x x GTF-SL122 11:45 x x x x GTF-SL123 11:59 x x x x GTF-SL124 11:59 x x x x GTF-SL123 11:59 x x x x GTF-SL124 11:55 x x x x GTF-SL124 11:55 x x x x GTF-SL124 11:55 X x x x GTF-SL124 12:00 X x x x GTF-SL129 12:15 X x x x GTF-SL129 12:120 x x x x Matrix Code: Shipping Tracking No. x x x x Shipped by:									_				-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					_				_						
$GT \mp SL(2L)$ $I_2 SS$ XX $GTF - SL(22)$ $I_1 AS$ XX $GTF - SL(22)$ $I_1 AS$ XX $GTF - SL(24)$ $I_1 SS$ XI $GTF - SL(24)$ $I_2 CO$ XI $GTF - SL(24)$ $I_2 CO$ XI $GTF - SL(27)$ $V_2 CO$ XI $GTF - SL(27)$ $V_2 CO$ XI $GTF - SL(27)$ $I_2 CO$ XI $GTF - SL(27)$ $V_2 C$		-							_						
$(z = -S \cup 122)$ $(1, 4S)$ X x x $b = T - S \cup 123$ $(1, 50)$ X x $b = T - S \cup 124$ $(1, S)$ X x $b = T - S \cup 124$ $(1, S)$ X x $b = T - S \cup 124$ $(1, S)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ X x $b = T - S \cup 124$ $(1, co)$ $(1, co)$ $S \cup 124$ $b = S - S \cup 124$ $(1, co)$ $(1, co)$ $(1, co)$ $b = T - S \cup 124$ $(1, co)$ $(1, co)$ $(1, co)$ $b = T - S \cup 124$ $(1, co)$ $(1, co)$ $(1, co)$ $b = T - S \cup 124$ $(1, co)$ $(1, co)$ $(1, co)$ $b = T - S \cup 124$ $(1, co)$ $(1, co)$ $(1, co)$ $b = T - S \cup 124$ <t< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>- 1</td><td></td></t<>					_			-						- 1	
6TF-5L123 11:50 X 1 1 1 6TF-5L124 11:50 X 1 1 1 1 6TF-5L124 12:00 X 1 1 1 1 6TF-5L124 12:15 X 1 1 1 1 6TF-5L129 12:15 X X 1 1 1 6TF-5L129 12:20 X X 1 1 1 Analysis Turn Time: Normal Rush Rush Results Needed By: 1 1 1 1 Shipped by: Shipping Tracking No. Custody Seal Intact? 1 1 1 1 Condition of Samples Upon Receipt: Custody Seal Intact? 1 1 1 1 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>X</td> <td>1 1</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>					-	X	1 1		-					-	
GTF.SL124 H.SS X GTF.SL12J H2:00 X GTF.SL12J H2:00 X GTF.SL12J H2:05 X GTF.SL12F H2:05 X GTF.SL12F H2:15 X GTF.SL129 Y 12:20 X Matrix Code: GW - Groundwater Shipped by: Shipping Tracking No. Condition of Samples Upon Receipt: Custody Seal Intact?					-	V	X	X					1		
GTF-SU12J 12:00 X Image: Condition of Samples Upon Receipt: Custody Seal Intact? Image: Condition of Samples Upon Receipt: Custody Seal Intact? Image: Condition of Samples Upon Receipt: Custody Seal Intact? Image: Condition of Samples Upon Receipt: Custody Seal Intact? Image: Condition of Samples Upon Receipt: Custody Seal Intact? Image: Condition of Samples Upon Receipt: Custody Seal Intact? Image: Condition of Samples Upon Receipt: Custody Seal Intact?		_	-												
UTF-SU126 12:05 X Image: Constraint of the second se	675 (11) i		-		-							-	+ +	-	
Light - Sulg 7 12:10 X bTF_SL12F 12:15 X bTF_SL12F 12:15 X bTF_SL12F 12:20 X Analysis Turn Time: Normal Rush Rush Results Needed By: Shipped by: Shipping Tracking No. Condition of Samples Upon Receipt: Custody Seal Intact?								1					1	-	
DTF_SL128 12:15 X Analysis X Analysis X															
Matrix Code: GW - Groundwater Shipped by: Shipping Tracking No. Condition of Samples Upon Receipt: Custody Seal Intact?														-	
Analysis Turn Time: Normal Rush Rush Results Needed By: Shipped by: Shipping Tracking No. Condition of Samples Upon Receipt: Custody Seal Intact?			V		d.		×	×		1					
Shipped by: Shipping Tracking No. School of Samples Upon Receipt: Custody Seal Intact?	nalvsis Turn Time: No	rmal		Rush		Rush Re	sults Nee	ded By:		1		Matrix (Code: (GW - G	roundwater
Shipped by: Shipping Tracking No. Condition of Samples Upon Receipt: Custody Seal Intact?								acc aj.		1					
Condition of Samples Upon Receipt: Custody Seal Intact?	hipped by:	Shi	pping	Tracking	No.					1					
	andition of Complex Un	//	· · · · · ·			Custada	Cool Into	-+2	-	-					
Relinquished by: Date/Time: 12/15/22/100 Received by: Date/Time:		/	ot:				4			1					
	(sig	nature)							30	10050	alto	(signature))		ml.l.
Relinquished by: Date/Time: 12/15(22/100) Received by: Date/Time: Date/Time:	elinquished by:	natural			Date/Time:		2	Received	1 by: 🚞	-	E.	(signature	1		Date/Time?//5/23/1
(signature) Date/Time: Received by:	pecial Instructions: Earlipment bi Saimp U.S.		_	_								-Induarane	/		

Project: CF1408	Fromer G	Georgetow	n Steam Pla	ant Flume P	roperty T	ransfer						_			
Samplers: Mauri Fa	bio & Kels	ey Kirklan	d						_	_					internal [
Integral Contact:			r@integral-o	corp.com)			A	NALYSES I	REQUESTE	D					integral consulting inc.
Phone	(503) 943	3-3617			ų	~		Jim)	10000						
		Resource			<u> </u>	1111	Q.	Ji4) Consulting incr
Address		34th PI #1	00		13	CE	10	Ē	(A)				Ter l		1
	Tukwila,	WA 9818	_		AV	74	23	UH-H-H-A-C	5 20				tai.		
Contag	t Sue Dun	nihoo			2	25	35.4	Att 82	PLBS . 5082				5	0	
	(206) 69				Ċ.C.	- 6	Arsenic	AA	PLBS EPA SOS2				D D	. <u>ě</u>	
Sample No.	Tag #	Date	Time	Matrix	Frazich Arichta	PURENT SUNUS (SH 2540 C)	-	PAHJ (Era 827DE	Ē				Extra Container	Archive	Comments
UTF-JU130	Tag #	12/14/12	12:25	SL	X	-						1		4	Comments
GTF. 12131	-	19/19/12	12:30	1	X		-	-			-	-			1
GTF-SLIB2	1		12:33		X						2	12			
OTF-56133	· · · · · · · · · · · · · · · · · · ·		12:40		Х	1		1						1	
OTF-SLIB4		i dina bi	12: 45		X										
OTF-JUI3J			12:50		Х										
BIF-SLI36			14:30			X	X					P		_	
61F-52137	1		14.35		X			-		1	4	L	1000		
GTF-SLI38			14:40		X	1.1		1	1.1						
GFF-SL134	1		14:45		X	-	1								
GTF-SLIAD		-	14:50		X						-	-		_	
UTF-SUL41			14:55		X	-	-							-	
GTF-SLIAZ	-		15:00		х	1.0	N.								
OTF-SLI43			15:05			X	X	1						-	
GTF - 51144			15:10	-	X		-			-					
67 F - 5 L145 GTF - 5 L 146	-	1	15:15		X	-	(-		-	
ØTF-JL147	-	-	15:25		×	-						1			
GTF-SLI48		1	15:30		X	1		-	· · · · · · · · · · · · · · · · · · ·			1			
61F - 51 149	1.199.00	4	15:35	4	X		0.200	1		12			1	1.00	
Analysis Turn Time:	Normal		Rush		Rush Re	esults Nee	eded By:		1			Matrix C			Groundwater
Shipped by:	~	Shipping	Tracking	No.				_	1			SL - Soil SD -Sedi		SW - S Other:	urface water
Condition of Samples					Custody	/ Seal Inta	ct?		1						
Relinquished by: Relinquished by:	(signature)	~		Date/Time: <u>í</u> Date/Time: ₋	2/13/22	/100	Receive Receive	d by: Ja d by:	ubhe	1.te	4	(signature)			Date/Time: {-⊃7/≲/⊃∋ Date/Time:_ <u>//⊄@</u>
Special Instructions: Earmpment Samples	Юлания Эл	e bott No të	tes c mperc	deriver 9 ture	-cd blan	w/o	prese	d by	146	Lab	te a	aded	Upe,	~ r	aceipt of

Page 3_{1} of 5_{2}

ntegral Contact:	Glenn Es	sler (gesle	er@integra	al-corp.com)		A	A	ALYSES	REQUESTED				integra
Phone	(503) 943	3-3617			1	ir I	((M)S					ince you
	Analytica					PERCENT SOLIDY (SM 25406)	6						
Address	4611 S 1					201	uit 226	0	47		l al		1
	l ukwila,	WA 9818	3		22-	54	é é	11	19 2		lair		
Contac	Sue Dun	nihoo			FILLEN	172	24	A F	PLBI (EPA FJF2A)		L O		
	(206) 69				2 2	77	4 day	PA PA	4			Ž	
ample No.	Tag #		Time	Matrix	EA	18	Argenic (EPA 60206)	E E	(E	de la c	Extra Container	Archive	Comments
GTF-SLISO	Tag #	Date	08: 50	SL	-	X	X	V	X		ш	4	Comments
UTF. SLISO MS		14/17/14	08:55				X	X	X				
GTF-JUSP MJD			09:00				X	X	X				
GTF-SLISI			09:05		X	XXXXX M						- 1	N
GTF-SLISZ			09:10		X	1							
GTF-SLIJ3			09:15	0.000	X	-			4				
GTF-JUIS4	1	4	10:05		X	1000				and the second sec		1	
GTF-SLIJS	(u	+0.75	09:25	X	1	1 St. 1	· · · · · · ·					1
ETF-SLIV6			10:05			X	X	X	X				
OTF-SILS7	-		10:10		1							_	
UTF SLISS		-	10:15		X	-	-					-	
GTE-SLISG GTE-SLISG	110		10:20		X							-	
DIF-SLIVI			10:30		X							-	
GTF-SLIDZ			10:35		X		1						
678-51-163			09:35			X	X	X					
GTE-SLIDA	1		19:40		X		1						
GTF-SLIGS			09:45	-	X	1.000			C			1	
ETF-SLIGE			09:50		×			1					
UTF-SLIG7		*	09:55	4	Y			-					1
Analysis Turn Time:	Normal		Rush		Rush Re	esults Nee	eded By:	5.1		Matrix C			Groundwater
Shipped by:		Shipping	g Tracking	No.	-				7	SL - Soil SD -Sed		ther:	urface water
Condition of Samples	~ ~	1			Custod	/ Seal Inta	ct2		-				
Relinquished by:	(signature)	V		Date/Time Date/Time	12115/2	7 100	Pagaiya	d by: d by:	achal	(signature)			Date/Time: iව/ <u>15</u> /33 Date/Time: <u>//@g</u>

+

Integral Contact: Phone	Glenn E (503) 94	sler (gesle 3-3617	r@integral	-corp.com)		2	AN		REQUESTED	TT			integr
Ship to: Lab Name Address Contact	e Analytical Resources, Inc. s 4611 S 134th PI #100 Tukwila, WA 9818 t Sue Dunnihoo e (206) 695-6207					PENCENT Schids (SM 25406)	A RICUTIC EPA (00206)	PAHY (EVA SLTDEJM)	FLBJ EPA SOSLA)		Extra Container	Archive	
Sample No.	Tag #	Date	Time	Matrix	FUZEN	4 5	1	5			L X	Arc	Comments
UTF-SLIBP		12/14/22	10:00	SL	X			(Contraction (Contraction)				
GTF-SLIDA		V	09:20	↓ ↓		X	X	X	X				Field Duplic
WFF-SLEB-	1	12/15/22	09:30	SLEB			X	X	X				Equip. BILLM
OTF-SLI7-1		4	09:35	SLEB			<u>X</u>	X	X.				Equip. Bran
	1												
Analysis Turn Time:	Normal	1	Rush	_	Rush Re	sults Nee	eded By:		6	Matrix C SL - Soil			Groundwater urface water
Shipped by:		Shipping	Tracking	No.					ľ -	SD -Sed		Other:	unaue walei
Condition of Samples	Upon Re	eceipt:			Custody	Seal Inta	ct?		I.				
Relinquished by: Relinquished by:	(signature)			Date/Time: Date/Time:			Received Received	3	ncostral	(signature) (signature)			Date/Time: >1/5/5 Date/Time: <u> /6/6</u>
Special Instructions:	7 4 4 4		1/240-0	s did	not	hav	e 1012	revvi	in c	ab msm	tron		

Attachment 2

Data Validation Report

DATA VALIDATION REPORT

Former Georgetown Steam Plant Flume Property Transfer December 2022 Sampling

Prepared for Seattle City Light

Prepared by

integral consulting inc.

319 SW Washington Street Suite 1150 Portland, OR 97204

May 8, 2023

CONTENTS

LIS	ST OF	TABLESiii
AC	CRON	YMS AND ABBREVIATIONSiii
1	INTR	ODUCTION1-1
2	FIND	INGS2-1
	2.1	SAMPLE RECEIPT AND HOLDING TIMES2-1
	2.2	BLANKS
	2.3	SURROGATE RECOVERY
	2.4	LABORATORY CONTROL SAMPLES
	2.5	MATRIX SPIKES AND MATRIX SPIKE DUPLICATES2-3
	2.6	REPLICATES
	2.7	METHOD REPORTING LIMITS AND METHODOLOGY2-5
	2.8	INSTRUMENT PERFORMANCE2-6
	2.9	INITIAL CALIBRATION
	2.10	CONTINUING CALIBRATION
	2.11	INTERNAL STANDARDS2-7
3	OVE	ALL ASSESSMENT
	3.1	DATA QUALIFICATION
	3.2	DATA USABILITY
4	REFE	RENCES

LIST OF TABLES

Table 1-1.	SDGs Reviewed, Number of Samples, and Validation Level
Table 1-2.	Analytical Parameters and Methods
Table 1-3.	Definition of Data Qualifiers
Table 1-4.	Definition of Data Validation Reason Codes
Table 2-1.	QA/QC Parameters Reviewed
Table 3-1.	Summary of Qualified Data Points by Reason
Table 3-2.	Summary of Qualified Data

ACRONYMS AND ABBREVIATIONS

CCV	continuing calibration verification
EPA	U.S. Environmental Protection Agency
GC/MS	gas chromatograph/mass spectrometer
ICV	initial calibration verification
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
MRL	method reporting limit
MS/MSD	matrix spike and matrix spike duplicate
РАН	polycyclic aromatic hydrocarbon
РСВ	polychlorinated biphenyl
QA/QC	quality assurance and quality control
RPD	relative percent difference
SDG	sample delivery group

1 INTRODUCTION

This report presents the findings of the data validation of soil samples and associated quality control samples analyzed for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals, and total solids. The sample delivery groups (SDGs) reviewed are summarized in Table 1-1, and the laboratory, parameters, and analytical methods are listed in Table 1-2.

The samples received a Stage 2B validation, which included a review of all laboratory summary forms of quality control and instrument performance data. The data validation was based upon criteria described in the U.S. Environmental Protection Agency (EPA) National Functional Guidelines for Organic Superfund Methods Data Review (USEPA 2020a), National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA 2020b), and the referenced analytical methods.

The quality assurance and quality control (QA/QC) parameters reviewed are discussed in Section 2. The electronic data deliverables were compared to the hard copy data packages, and 10 percent of the results were verified. Qualifiers resulting from the validation process were entered into the project database. A reason code indicating the reason for qualification was also entered into the database. The definitions of the data qualifiers used are provided in Table 1-3, and descriptions of the reason codes used are provided in Table 1-4. For example, if a data point was estimated due to a surrogate issue, the qualifier "J" and the reason code "SSR" were entered into the database, indicated as J-SSR in the discussion of findings in Section 2.

2 FINDINGS

The data validation findings are provided in this section. Details of the QA/QC parameters reviewed are discussed below and listed in Table 2-1.

2.1 SAMPLE RECEIPT AND HOLDING TIMES

Samples were received with complete chain-of-custody forms and in good condition, with the following exceptions.

- For one sample, the laboratory noted an identification discrepancy between the bottle (GTF_SII136) and the chain-of-custody forms (GTF_SL136) submitted with SDG 22L0416. The laboratory logged in this sample according to chain-of-custody forms.
- The bottles provided by the laboratory for Samples GTF-SL170 and GTF-SL171 submitted with SDG 22L0416 were not preserved for arsenic analysis. The laboratory preserved the bottles upon receipt.

Samples	SDG
GTF_SL151 GTF_SL164	23A0556
GTF_SL152 GTF_SL165	23B0314
GTF-SL153 GTF-SL166	23C0177
GTF_SL167 GTF_SL168	23D0027

The following archived samples were requested for PAH, PCB, and arsenic:

2.2 BLANKS

All results from the laboratory method blanks and equipment blanks were reported as less than the laboratory method detection limits with the following exceptions:

• 1-Methylnaphthalene, indeno[1,2,3-*cd*] pyrene, dibenz[*a*,*h*]anthracene, and benzo[*ghi*]perylene were detected at concentrations less than the reporting limit in the

method blank submitted with SDG 23A0556. The results for these analytes in the associated samples were greater than the reporting limit, and no qualifiers were assigned.

- 2-Methylnaphthalene, 1-methylnaphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, and fluoranthene were detected at concentrations less than the reporting limit in the method blank submitted with SDG 23B0314.
 - The detected 2-methylnaphthalene, 1-methylnaphthalene, acenaphthylene, acenaphthene results in Samples GTF_SL152 and GTF_SL165 were qualified as not detected (U-LB).
 - The phenanthrene and fluoranthene concentrations in the associated samples were greater than the reporting limits, and no qualifiers were assigned.
- 1-Methylnaphthalene and acenaphthene were detected at concentrations less than the reporting limit in the method blank submitted with SDG 23C0177. The results for these analytes in Samples GTF-SL153 and GTF-SL166 were qualified as not detected (U-LB).

2.3 SURROGATE RECOVERY

Surrogates were added to all samples for analysis of PAHs and PCBs. All surrogate percent recoveries were within the laboratory control limits with the following exceptions:

- The percent recovery value for the PAH surrogate fluoranthene-d10 was less than the laboratory control limits for Sample GTF-SL150 submitted with SDG 22L0416. The PAH results for this sample were qualified as estimated (J-SSR).
- The percent recovery value for the PCB surrogate tetrachloro-*m*-xylene was less than the laboratory control limits for Sample GTF-SL170 submitted with SDG 22L0416. The PCB results for this sample were qualified as estimated (UJ-SSR).
- The percent recovery values for the PAH surrogate dibenzo[*a*,*h*]anthracene-d14 were greater than the laboratory control limits for Samples GTF_SL151, BLA0738-BLK1, BLA0738-BS1, and BLA0738-MSD1 submitted with SDG 23A0556.
 - The detected PAH results in Sample GTF_SL151 were qualified as estimated (J-SSR).
 - No qualifiers were assigned to the quality control samples on the basis of the surrogate recoveries.
- The percent recovery values for the several PAH surrogates were greater than the laboratory control limits in the laboratory control sample and laboratory control sample duplicate (LCS/LCSD) and the matrix spike and matrix spike duplicate (MS/MSD) submitted with SDG 23B0314. No qualifiers were assigned based on the surrogate recoveries in these quality control samples.

- The percent recovery values for the PAH surrogate dibenzo[*a*,*h*]anthracene-d14 were greater than the laboratory control limits for Samples GTF_SL152 and GTF_SL165 submitted with SDG 23B0314. The detected PAH analytes in these samples were qualified as estimated (J-SSR).
- The percent recovery values for the PAH surrogates dibenzo[*a*,*h*]anthracene-d14 and fluoranthene-d10 were greater than the laboratory control limits for the LCS, MS, MSD, and Samples GTF-SL153 and GTF-SL166 submitted with SDG 23C0177.
 - The detected PCB results for Samples GTF-SL153 and GTF-SL166 were qualified as estimated (J-SSR).
 - No qualifiers were assigned to the quality control samples.
- The percent recovery values for the PAH surrogate dibenzo[*a*,*h*]anthracene-d14 were greater than the laboratory control limits in Samples BLD0060-BS1 and BLD0060-BSD1 submitted with SDG 23D0027. No qualifiers were assigned to the quality control samples on the basis of the surrogate recoveries.

2.4 LABORATORY CONTROL SAMPLES

The percent recoveries and relative percent difference (RPD) values of all laboratory control samples were within the laboratory control limits with the following exceptions:

- The percent recovery values for phenanthrene and pyrene for the LCS submitted with SDG 22L0416 were less than the laboratory control limits. The nondetected results for these analytes in associated Samples GTF-SL170 and GTF-SL171 were qualified as estimated (UJ-LCS).
- The percent recovery value for Aroclor 1260 in the LCSD submitted with SDG 23B0314 was greater than the laboratory control limits. Because the LCS percent recovery value was within the control limits and the LCSD percent recovery value was within 10 percentage points of the control limits, no qualifiers were assigned.

2.5 MATRIX SPIKES AND MATRIX SPIKE DUPLICATES

The percent recoveries and RPDs of all MS/MSDs were within the laboratory control limits, with the following exceptions.

• The percent recovery values for nine PAHs were less than the laboratory control limits in the MS/MSD submitted with SDG 22L0416. The results for the following analytes for Sample GTF-SL150 were qualified as estimated (J-MS): phenanthrene, fluoranthene, pyrene, benz[*a*]anthracene, chrysene, benzo[*b*]fluoranthene, total benzofluoranthenes, benzo[*a*]pyrene, and indeno[1,2,3-*cd*]pyrene.

- The percent recovery values for Aroclor 1260 were greater than the laboratory control limits in the MS/MSD submitted with SDG 23A0556. Because the Aroclor 1260 concentration in the unspiked sample was greater than 4 times the concentration of the spike added, no qualifiers were assigned.
- The percent recovery values for 10 PAHs were greater than the laboratory control limits in the MS/MSD submitted with SDG 23B0314. The results for the following analytes for Sample GTF_SL152 were qualified as estimated (J-MS): pyrene, benzo[*ghi*]perylene, indeno[1,2,3-*cd*]pyrene, benzo[*j*]fluoranthene, benzo[*b*]fluoranthene, benzo[*k*]fluoranthene, chrysene, benzo[*a*]pyrene, dibenz[*a*,*h*]anthracene, benzo[*a*]anthracene, and total benzofluoranthenes.
- The percent recovery values for Aroclor 1260 were less than the laboratory control limits in the MS/MSD submitted with SDG 23D0027. The Aroclor 1260 results in associated Sample GTF_SL168 were qualified as estimated (UJ-MS).
- The percent recovery values for benzo[*ghi*]perylene, indeno[1,2,3-*cd*]pyrene, benzo[*b*]fluoranthene, and benzo[*a*]pyrene than were less the laboratory control limits in the matrix spike submitted with SDG 23D0027.
 - The benzo[*ghi*]perylene and indeno[1,2,3-*cd*]pyrene results for Sample GTF_SL167 were qualified as estimated (UJ-MS).
 - Because the MSD percent recovery values for benzo[*b*]fluoranthene and benzo[*a*]pyrene were within the laboratory control limits and the matrix spike recovery values were within 10 percentage points of the limits, no qualifiers were assigned.

2.6 REPLICATES

One set of field replicates was submitted: Samples GTF-SL150 and GTF-SL169. EPA has not established control limits for field replicates. For this project, the target control limit for field replicates is an RPD less than 50 percent (for soils) for values greater than 5 times the method reporting limit (MRL). For values less than 5 times the MRL, the absolute difference should be less than 2 times the MRL for soils. The following results for the field duplicate pair were qualified as estimated (J-REP) because the precision control limits were not met.

Analyte	RPD
PAHs	
Anthracene	110
Pyrene	92.2
Fluoranthene	115
Chrysene	65.7
Benz[a]anthracene	95.8

Analyte	RPD
Acenaphthene	147
Phenanthrene	138
Fluorene	145
PCBs	
Aroclor 1260	52.6

The RPD values for all laboratory duplicate analyses were within laboratory control limits.

The RPD value between the dual-column Aroclor 1254 results for Sample GTF_SL151 submitted with SDG 23A00556 was greater than 40 percent, and this result was qualified as estimated (J-REP).

2.7 METHOD REPORTING LIMITS AND METHODOLOGY

The reporting limits specified in the SAP (Integral 2021) were met for all analyses except for the samples analyzed at dilutions. A reporting limit for arsenic is not specified in the sampling and analysis plan (Integral 2021).

All soil samples submitted for arsenic analysis were analyzed at 20- or 100-fold dilutions.

All soil samples submitted with SDGs 22L0416 and 23B0314 for PAH analysis were analyzed at 3-fold dilutions because of sample extract color.

Samples GTF-SL150 and GTF-SL169 submitted with SDG 22L0416 for PCB analysis were analyzed at 5-fold dilutions because of high target analyte concentrations.

Sample GTF_SL151 submitted with SDG 23A0556 was analyzed for PAH analysis at a 3-fold dilution and PCB analysis at a 10-fold dilution because of high target analyte concentrations.

In the electronic data deliverable submitted with 23A0556, the laboratory reported the PCB results from both analytical columns for Sample GTF-SL151. The results that matched the laboratory report were deemed reportable and the other results were qualified as do-not-report (R-DNR).

Sample GTF-SL166 submitted with SDG 23C0177 was analyzed at 3- and 15-fold dilutions for PAH analysis because of high concentrations of target compounds. The laboratory reported the PAH results from both dilutions for this sample. The highest concentration least qualified result was considered reportable, and the other results were qualified as do-not-report (R-DNR).

Sample GTF-SL168 submitted with SDG 23D0027 was analyzed at 3- and 15-fold dilutions for PAH analysis because of high concentrations of target compounds. The laboratory reported the PAH results from both dilutions for this sample. The highest concentration least qualified result was considered reportable, and the other results were qualified as do-not-report (R-DNR).

2.8 INSTRUMENT PERFORMANCE

The gas chromatograph/mass spectrometer (GC/MS) instrument performance checks ("tune") were analyzed before each initial calibration, and the method-specified acceptance criteria were met.

2.9 INITIAL CALIBRATION

Initial calibrations were analyzed on all instruments and met the acceptance criteria stated in the associated methods, with the following exceptions:

- The percent difference value for the PAH surrogate dibenzo[*a*,*h*]anthracene-d14 was greater than the acceptance limits in SKL0321-ICV1 submitted with SDG 22L0416. Because the surrogate recovery values were within limits in all associate samples, no qualifiers assigned.
- The percent difference values for the PCB surrogate decachlorobiphenyl were greater than the acceptance limits in ICV SLB0342-SCV6 submitted with SDGs 23A0566, 23B0314, 23C0177, and 23D0027. Samples GTF_SL151, GTF_SL152, GTF_SL165, GTF-SL153, GTF-SL166, GTF_SL167, and GTF_SL168 were associated with this initial calibration verification (ICV) sample. Because the decachlorobiphenyl recovery values were within the laboratory control limits in the samples, no qualifiers were assigned on the basis of the ICV percent differences.
- The percent difference values for Aroclor 1260 were greater than the acceptance limits in one ICV submitted with SDG 23B30314. The detected Aroclor 1260 results in Samples GTF_SL152 and GTF_SL165 were qualified as estimated (J-Ci).
- The percent difference values for the PCB surrogate decachlorobiphenyl and Aroclor 1260 were less than the acceptance limits on the primary column for SLC0316-ICV1 and SLC0316-ICV2 submitted with SDG 23C0177. Because the percent differences were within acceptance limits on the secondary column, no qualifiers were assigned.
- The percent difference values for the PCB surrogate tetrachloro-*meta*-xylene were greater than the acceptance limits on the secondary column for SLD0213-ICV1 and SLD0213-CCV3 submitted with SDG 23D0027. Because the percent differences were within acceptance limits on the primary column, no qualifiers were assigned.

• Percent difference values for Aroclor 1260 were greater than the acceptance limits on the primary column in SLD0213-ICV2 and SLD0213-CCV2 submitted with SDG 23D0027. Because the percent differences were within acceptance limits on the secondary column, no qualifiers were assigned.

2.10 CONTINUING CALIBRATION

Continuing calibrations were analyzed on all instruments and met the acceptance criteria stated in the associated methods, with the following exceptions:

- The percent difference value for PAH surrogate dibenzo[*a*,*h*]anthracene-d14 was greater than the acceptance limits in SLA0005-CCV1 submitted with SDG 22L0416. Because the surrogate recovery values were within limits in all associated samples, no qualifiers assigned.
- The percent difference value for Aroclor 1260 was greater than the acceptance limits in SLB0386-CCV6 submitted with SDG 23A0556. Because this continuing calibration verification (CCV) sample was only associated with quality control samples, no qualifiers were assigned.
- The percent difference values for Aroclor 1260 were greater than the acceptance limits in two CCVs submitted with SDG 23A0556. Because the CCV percent differences met the acceptance limits on the secondary column, no qualifiers were assigned.
- Percent difference values for Aroclor 1260 were greater than the acceptance limits in four CCVs submitted with SDG 23B30314. The detected Aroclor 1260 results in Samples and GTF_SL152 and GTF_SL165 were qualified as estimated (J-Cc).
- Percent difference values for PCB surrogate decachlorobiphenyl were less than the acceptance limits on the primary column for SLC0316-CCV1 and SLC0316-CCV2 submitted with SDG 23C0177. Because the percent differences were within acceptance limits on the secondary column, no qualifiers were assigned.

2.11 INTERNAL STANDARDS

Internal standards were added to all samples for PAH and PCB analysis, and the areas and retention times of all internal standards were within the method-specified control limits with the following exceptions.

• The recovery values for PCB internal standard hexabromobiphenyl were less than the method-specified control limits in the MS/MSD submitted with SDG 23A0556. No qualifiers were assigned on the basis of the internal standard recoveries in the quality control samples.

- The recovery values for PCB internal standards 1-bromo-2-nitrobenzene and hexabromobiphenyl were less than the method-specified control limits in the method blanks, LCS, and MS/MSD submitted with SDG 23C0177. No qualifiers were assigned on the basis of the internal standard recoveries in the quality control samples.
- The recovery values for PCB internal standards 1-bromo-2-nitrobenzene and hexabromobiphenyl were less than the method-specified control limits on the primary column for samples GTF-SL153 and GTF-SL166 submitted with SDG 23C0177.
 - The detected Aroclor 1260 results for these samples were reported from the primary column, and the results were qualified as estimated (J-IS).
 - Because the internal standard recovery values were within the method-specified limits on the secondary column, no qualifiers were assigned to the nondetected results on the basis of professional judgment.
- The recovery values for PCB internal standard hexabromobiphenyl were greater than the method-specified control limits in the LCS and LCSD submitted with SDG 23D0027. No qualifiers were assigned on the basis of the internal standard recoveries in the quality control samples.

2.12 INTERFERENCE CHECK

The interference check sample was analyzed at the beginning of each analytical sequence and met the acceptance criteria stated in EPA's functional guidelines for inorganic data review (USEPA 2020b) with the one exception. Arsenic was detected at a concentration greater than the MDL in two interference check samples A submitted with SDG 22L0416. Raw data were not reviewed as part of Stage 2B data validation; therefore, potential interferent analytes were not evaluated.

3 OVERALL ASSESSMENT

An overall assessment of the data is provided below.

3.1 DATA QUALIFICATION

A total of 524 results were reported. A total of 154 results (29 percent) were qualified as estimated or not detected; the number of results qualified is summarized by reason in Table 3-1. Some results were qualified for multiple reasons, so the total number of data points qualified is less than the sum of the number estimated and qualified not detected. A total of 51 results were rejected as do-not-report because a more appropriate result was available. These rejected results were not used in the completeness calculations and completeness was 100 percent. A summary of all qualified results is presented in Table 3-2.

3.2 DATA USABILITY

The data meet the criteria set forth in the method and referenced quality assurance documents, with the exceptions noted above. All results, except rejected results, are acceptable for their intended use, as qualified.

4 **REFERENCES**

APHA. 1997. Standard methods for the examination of water and wastewater, Method 2540G, Total, fixed, and volatile solids in solid and semisolid samples. 23rd edition, July. Standard Methods Committee of the American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC.

Integral. 2021. Former Georgetown Steam Plant property transfer sampling and analysis plan. September. Integral Consulting Inc., Seattle, WA.

USEPA. 2007. SW-846: Test methods for evaluating solid wastes physical/chemical methods, Method 8082A, Polychlorinated biphenyls (PCBs) by gas chromatography. Revision 1, February. U.S. Environmental Protection Agency, Washington, DC.

USEPA. 2014. SW-846: Test methods for evaluating solid wastes physical/chemical methods, Method 6020B, Inductively coupled plasma-mass spectrometry. Revision 2, July. U.S. Environmental Protection Agency, Washington, DC.

USEPA. 2018. SW-846: Test methods for evaluating solid wastes physical/chemical methods, Method 8270E, Semivolatile organic compounds by gas chromatography/mass spectrometry. Revision 6, June. U.S. Environmental Protection Agency, Washington, DC.

USEPA. 2020a. National functional guidelines for organic Superfund methods data review. OLEM 9240.0-51. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, Washington, DC. November.

USEPA. 2020b. National functional guidelines for inorganic Superfund methods data review. OLEM 9240.1-66. EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, Washington, DC. November.

Tables

Table 1-1. SDGs Reviewed, Number of Samples, and Validation Level										
SDG Number of Samples Validation										
22L0416	13 soils, 2 equipment blanks	Stage 2B								
23A0556	2 soils	Stage 2B								
23B0314	2 soils	Stage 2B								
23C0177	2 soils	Stage 2B								
23D0027	2 soils	Stage 2B								

Notes:

SDG = sample delivery group

Laboratory	Analytical Parameter	Analytical Method	Reference
ARI	PAHs	EPA 8270E SIM	USEPA (2018)
	PCBs	EPA 8082A	USEPA (2007)
	Metals	EPA 6020B	USEPA (2014)
	Total Solids	SM 2540 G-97	APHA (1997)

Table 1-2. Analytical Parameters and Methods

Notes:

APHA = American Public Health Association

ARI = Analytical Resources, LLC

EPA = U.S. Environmental Protection Agency

PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyl

SIM = selective ion monitoring

Data Qualifier	Definition
J	The result is an estimated quantity.
R	Rejected. The data are unusable.
U	The material was analyzed for, but was not detected.
UJ	Estimated and not detected. The analyte is considered not detected at the reported value, and the associated numerical value is an estimated value.

Table 1-3. Definition of Data Qualifiers

Reason Code	Definition
Сс	Calibration (continuing)
Ci	Initial calibration verification
DNR	Do-not-report
IS	Internal standard
LB	Laboratory blank contamination
LCS	Laboratory control sample outliers
MS	Matrix spike outlier
REP	Imprecision
SSR	Surrogate outlier

Table 1-4. Definition of Data Validation Reason Codes

Table 2-1. QA/QC Parameters Reviewed

		Ar	nalysis	
QA/QC Parameter	PAHs	PCBs	Metals	Total Solids
Sample Receipt and Holding Times	D	D	D	D
Blanks	Q	+	+	+
Surrogate Recovery	Q	Q	NA	NA
LCS	Q	D	+	NA
MS/MSD	Q	Q	+	NA
Replicates	Q	Q	+	+
Method Reporting Limits and Methodology	Q	Q	D	+
Instrument Performance	+	NA	NA	NA
ICAL	D	Q	+	NA
CCAL	D	Q	+	NA
Internal Standard	+	Q	NA	NA
Interference Check Standard	NA	NA	D	NA

Notes:

+ = All QA/QC criteria met

D = Data are discussed in the report. QA/QC criteria were not met; however no data were qualified.

Q = Data were qualified and are discussed in the report.

CCAL = continuing calibration

ICAL = initial calibration

LCS = laboratory control sample

MS/MSD = matrix spike and matrix spike duplicate

NA = not applicable

PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyl

QA/QC = quality assurance and quality control

Data Qualification Reason	Number of Data Points Estimated	Number of Data Points Qualified Not Detected	Number of Data Points Rejected
Calibration (continuing)	2		
Initial calibration verification	2		
Do-not-report			51
Internal standard	2		
Laboratory blank contamination		13	
Laboratory control sample outliers	4		
Matrix spike outlier	32		
Imprecision	19		
Surrogate outlier	124		

Table 3-1. Summary of Qualified Data Points by Reason

Notes:

-- = none

				Method	Lab	DV	DV Qualifier	
SDG	Sample	Analyte	Result	Reporting Limit	Qualifier	Qualifier	Reason	Units
22L0416	GTF-SL170	Aroclor 1016	0.1	0.1	U	UJ	SSR	µg/L
22L0416	GTF-SL170	Aroclor 1221	0.1	0.1	U	UJ	SSR	µg/L
22L0416	GTF-SL170	Aroclor 1232	0.1	0.1	U	UJ	SSR	µg/L
22L0416	GTF-SL170	Aroclor 1242	0.1	0.1	U	UJ	SSR	µg/L
22L0416	GTF-SL170	Aroclor 1248	0.1	0.1	U	UJ	SSR	µg/L
22L0416	GTF-SL170	Aroclor 1254	0.1	0.1	U	UJ	SSR	µg/L
22L0416	GTF-SL170	Aroclor 1260	0.1	0.1	U	UJ	SSR	µg/L
22L0416	GTF-SL170	Aroclor 1262	0.1	0.1	U	UJ	SSR	µg/L
22L0416	GTF-SL170	Aroclor 1268	0.1	0.1	U	UJ	SSR	µg/L
22L0416	GTF-SL170	Pyrene	0.1	0.1	U	UJ	LCS	µg/L
22L0416	GTF-SL170	Phenanthrene	0.1	0.1	U	UJ	LCS	µg/L
22L0416	GTF-SL171	Pyrene	0.1	0.1	U	UJ	LCS	µg/L
22L0416	GTF-SL171	Phenanthrene	0.1	0.1	U	UJ	LCS	µg/L
23A0556	GTF_SL151	Dibenzofuran	36.4	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	Aroclor 1016	199	199	DU	R	DNR	µg/kg
23A0556	GTF_SL151	Aroclor 1221	199	199	DU	R	DNR	µg/kg
23A0556	GTF_SL151	Aroclor 1232	199	199	DU	R	DNR	µg/kg
23A0556	GTF_SL151	Aroclor 1242	199	199	DU	R	DNR	µg/kg
23A0556	GTF_SL151	Aroclor 1248	199	199	DU	R	DNR	µg/kg
23A0556	GTF_SL151	Aroclor 1254	122	199	DJ	R	DNR	µg/kg
23A0556	GTF_SL151	Aroclor 1254	470	199	D	J	REP	µg/kg
23A0556	GTF_SL151	Aroclor 1260	3050	199	D	R	DNR	µg/kg
23A0556	GTF_SL151	Aroclor 1262	199	199	DU	R	DNR	µg/kg
23A0556	GTF_SL151	Aroclor 1268	199	199	DU	R	DNR	µg/kg
23A0556	GTF_SL151	Benzo[a]anthracene	214	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	Benzo[a]pyrene	347	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	Benzo[b]fluoranthene	443	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	Benzo[ghi]perylene	570	15	ВD	J	SSR	µg/kg
23A0556	GTF_SL151	Benzo[j]fluoranthene	201	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	Benzo[k]fluoranthene	180	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	Benzofluoranthenes	837	29.9	D	J	SSR	µg/kg
23A0556	GTF_SL151	Chrysene	385	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	Dibenzo[a,h]anthracene	87.3	15	ВD	J	SSR	µg/kg

				Method	Lab	DV	DV Qualifier	
SDG	Sample	Analyte	Result	Reporting Limit	Qualifier	Qualifier	Reason	Units
23A0556	GTF_SL151	Fluoranthene	321	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	Indeno[1,2,3-cd]pyrene	379	15	ВD	J	SSR	µg/kg
23A0556	GTF_SL151	Pyrene	573	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	Acenaphthene	14.6	15	DJ	J	SSR	µg/kg
23A0556	GTF_SL151	Acenaphthylene	39	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	Anthracene	45.3	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	Fluorene	13.1	15	DJ	J	SSR	µg/kg
23A0556	GTF_SL151	Naphthalene	142	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	Phenanthrene	237	15	D	J	SSR	µg/kg
23A0556	GTF_SL151	1-Methylnaphthalene	26.9	15	ВD	J	SSR	µg/kg
23A0556	GTF_SL151	2-Methylnaphthalene	58.9	15	D	J	SSR	µg/kg
23B0314	GTF_SL152	Dibenzofuran	7.4	15	DJ	J	SSR	µg/kg
23B0314	GTF_SL152	Aroclor 1260	687	19.9		J	Ci,Cc	µg/kg
23B0314	GTF_SL152	Benzo[a]anthracene	145	15	D	J	SSR,MS	µg/kg
23B0314	GTF_SL152	Benzo[a]pyrene	419	15	D	J	SSR,MS	µg/kg
23B0314	GTF_SL152	Benzo[b]fluoranthene	406	15	D	J	SSR,MS	µg/kg
23B0314	GTF_SL152	Benzo[ghi]perylene	487	15	D	J	SSR,MS	µg/kg
23B0314	GTF_SL152	Benzo[j]fluoranthene	184	15	D	J	SSR,MS	µg/kg
23B0314	GTF_SL152	Benzo[k]fluoranthene	171	15	D	J	SSR,MS	µg/kg
23B0314	GTF_SL152	Benzofluoranthenes	760	30	D	J	SSR,MS	µg/kg
23B0314	GTF_SL152	Chrysene	207	15	D	J	SSR,MS	µg/kg
23B0314	GTF_SL152	Dibenzo[a,h]anthracene	74.6	15	D	J	SSR,MS	µg/kg
23B0314	GTF_SL152	Fluoranthene	126	15	ВD	J	SSR	µg/kg
23B0314	GTF_SL152	Indeno[1,2,3-cd]pyrene	301	15	D	J	SSR,MS	µg/kg
23B0314	GTF_SL152	Pyrene	227	15	D	J	SSR,MS	µg/kg
23B0314	GTF_SL152	Acenaphthene	4.76	4.76	ВDЈ	UJ	LB,SSR	µg/kg
23B0314	GTF_SL152	Acenaphthylene	13	13	ВDЈ	UJ	LB,SSR	µg/kg
23B0314	GTF_SL152	Anthracene	20.2	15	D	J	SSR	µg/kg
23B0314	GTF_SL152	Fluorene	4.75	4.75	ВDЈ	UJ	LB,SSR	µg/kg
23B0314	GTF_SL152	Naphthalene	22.6	15	ΒD	J	SSR	µg/kg
23B0314	GTF_SL152	Phenanthrene	65.8	15	ΒD	J	SSR	µg/kg
23B0314	GTF_SL152	1-Methylnaphthalene	5.92	5.92	ВDЈ	UJ	LB,SSR	µg/kg
23B0314	GTF_SL152	2-Methylnaphthalene	10.5	10.5	ВDЈ	UJ	LB,SSR	µg/kg

				Method	Lab	DV	DV Qualifier	
SDG	Sample	Analyte	Result	Reporting Limit	Qualifier	Qualifier	Reason	Units
22L0416	GTF-SL150	Dibenzofuran	10.3	14.9	DJ	J	SSR	µg/kg
22L0416	GTF-SL150	Aroclor 1260	2210	99.7	D	J	REP	µg/kg
22L0416	GTF-SL150	Benzo[a]anthracene	172	14.9	D	J	SSR,MS,REP	µg/kg
22L0416	GTF-SL150	Benzo[a]pyrene	155	14.9	D	J	SSR,MS	µg/kg
22L0416	GTF-SL150	Benzo[b]fluoranthene	153	14.9	D	J	SSR,MS	µg/kg
22L0416	GTF-SL150	Benzo[ghi]perylene	171	14.9	D	J	SSR	µg/kg
22L0416	GTF-SL150	Benzo[j]fluoranthene	87.1	14.9	D	J	SSR	µg/kg
22L0416	GTF-SL150	Benzo[k]fluoranthene	83.9	14.9	D	J	SSR	µg/kg
22L0416	GTF-SL150	Benzofluoranthenes	324	29.9	D	J	SSR,MS	µg/kg
22L0416	GTF-SL150	Chrysene	197	14.9	D	J	SSR,MS,REP	µg/kg
22L0416	GTF-SL150	Dibenzo[a,h]anthracene	34.8	14.9	D	J	SSR	µg/kg
22L0416	GTF-SL150	Fluoranthene	366	14.9	ВD	J	SSR,MS,REP	µg/kg
22L0416	GTF-SL150	Indeno[1,2,3-cd]pyrene	131	14.9	D	J	SSR,MS	µg/kg
22L0416	GTF-SL150	Pyrene	282	14.9	ВD	J	SSR,MS,REP	µg/kg
22L0416	GTF-SL150	Acenaphthene	27.3	14.9	ВD	J	SSR,REP	µg/kg
22L0416	GTF-SL150	Acenaphthylene	4.92	14.9	DJ	J	SSR	µg/kg
22L0416	GTF-SL150	Anthracene	53.3	14.9	D	J	SSR,REP	µg/kg
22L0416	GTF-SL150	Fluorene	23	14.9	ВD	J	SSR,REP	µg/kg
22L0416	GTF-SL150	Naphthalene	14	14.9	ВDЈ	J	SSR	µg/kg
22L0416	GTF-SL150	Phenanthrene	269	14.9	ВD	J	SSR,MS,REP	µg/kg
22L0416	GTF-SL150	1-Methylnaphthalene	6.85	14.9	ВDЈ	J	SSR	µg/kg
22L0416	GTF-SL150	2-Methylnaphthalene	8.96	14.9	ВDЈ	J	SSR	µg/kg
23C0177	GTF-SL153	Aroclor 1260	107	20		J	IS	µg/kg
23C0177	GTF-SL153	Benzo[a]anthracene	3.73	5	J	J	SSR	µg/kg
23C0177	GTF-SL153	Benzo[a]pyrene	20.6	5		J	SSR	µg/kg
23C0177	GTF-SL153	Benzo[b]fluoranthene	27.3	5		J	SSR	µg/kg
23C0177	GTF-SL153	Benzo[ghi]perylene	27.7	5		J	SSR	µg/kg
23C0177	GTF-SL153	Benzo[j]fluoranthene	12.1	5		J	SSR	µg/kg
23C0177	GTF-SL153	Benzo[k]fluoranthene	11.2	5		J	SSR	µg/kg
23C0177	GTF-SL153	Benzofluoranthenes	52.8	10		J	SSR	µg/kg
23C0177	GTF-SL153	Chrysene	7.26	5		J	SSR	µg/kg
23C0177	GTF-SL153	Dibenzo[a,h]anthracene	4.42	5	J	J	SSR	µg/kg
23C0177	GTF-SL153	Fluoranthene	4.35	5	J	J	SSR	µg/kg

				Method	Lab	DV	DV Qualifier	
SDG	Sample	Analyte	Result	Reporting Limit	Qualifier	Qualifier	Reason	Units
23C0177	GTF-SL153	Indeno[1,2,3-cd]pyrene	16.2	5		J	SSR	µg/kg
23C0177	GTF-SL153	Pyrene	6.8	5		J	SSR	µg/kg
23C0177	GTF-SL153	Acenaphthene	1.46	1.46	ВJ	U	LB	µg/kg
23C0177	GTF-SL153	Acenaphthylene	1.4	5	J	J	SSR	µg/kg
23C0177	GTF-SL153	Anthracene	1.59	5	J	J	SSR	µg/kg
23C0177	GTF-SL153	Fluorene	1.03	5	J	J	SSR	µg/kg
23C0177	GTF-SL153	Naphthalene	1.88	5	J	J	SSR	µg/kg
23C0177	GTF-SL153	Phenanthrene	2.36	5	J	J	SSR	µg/kg
23C0177	GTF-SL153	1-Methylnaphthalene	1.49	1.49	ВJ	U	LB	µg/kg
23C0177	GTF-SL153	2-Methylnaphthalene	1.61	5	J	J	SSR	µg/kg
22L0416	GTF-SL169	Aroclor 1260	1290	99.2	D	J	REP	µg/kg
22L0416	GTF-SL169	Benzo[a]anthracene	60.6	16.4	D	J	MS,REP	µg/kg
22L0416	GTF-SL169	Benzo[a]pyrene	112	16.4	D	J	MS	µg/kg
22L0416	GTF-SL169	Benzo[b]fluoranthene	116	16.4	D	J	MS	µg/kg
22L0416	GTF-SL169	Benzofluoranthenes	231	32.9	D	J	MS	µg/kg
22L0416	GTF-SL169	Chrysene	99.6	16.4	D	J	MS,REP	µg/kg
22L0416	GTF-SL169	Fluoranthene	98.8	16.4	ВD	J	MS,REP	µg/kg
22L0416	GTF-SL169	Indeno[1,2,3-cd]pyrene	112	16.4	D	J	MS	µg/kg
22L0416	GTF-SL169	Pyrene	104	16.4	ВD	J	MS,REP	µg/kg
22L0416	GTF-SL169	Acenaphthene	4.18	16.4	BDJ	J	REP	µg/kg
22L0416	GTF-SL169	Anthracene	15.5	16.4	DJ	J	REP	µg/kg
22L0416	GTF-SL169	Fluorene	3.64	16.4	ВDЈ	J	REP	µg/kg
22L0416	GTF-SL169	Phenanthrene	48.9	16.4	ВD	J	MS,REP	µg/kg
23B0314	GTF_SL165	Aroclor 1260	42	19.9		J	Ci,Cc	µg/kg
23B0314	GTF_SL165	Benzo[a]anthracene	69.3	15	D	J	SSR	µg/kg
23B0314	GTF_SL165	Benzo[a]pyrene	518	15	D	J	SSR	µg/kg
23B0314	GTF_SL165	Benzo[b]fluoranthene	503	15	D	J	SSR	µg/kg
23B0314	GTF_SL165	Benzo[ghi]perylene	486	15	D	J	SSR	µg/kg
23B0314	GTF_SL165	Benzo[j]fluoranthene	215	15	D	J	SSR	µg/kg
23B0314	GTF_SL165	Benzo[k]fluoranthene	213	15	D	J	SSR	µg/kg
23B0314	GTF_SL165	Benzofluoranthenes	940	30	D	J	SSR	µg/kg
23B0314	GTF_SL165	Chrysene	125	15	D	J	SSR	µg/kg
23B0314	GTF_SL165	Dibenzo[a,h]anthracene	80.2	15	D	J	SSR	µg/kg

				Method	Lab	DV	DV Qualifier	
SDG	Sample	Analyte	Result	Reporting Limit	Qualifier	Qualifier	Reason	Units
23B0314	GTF_SL165	Fluoranthene	30.9	15	ВD	J	SSR	µg/kg
23B0314	GTF_SL165	Indeno[1,2,3-cd]pyrene	317	15	D	J	SSR	µg/kg
23B0314	GTF_SL165	Pyrene	68.4	15	D	J	SSR	µg/kg
23B0314	GTF_SL165	Acenaphthylene	3.8	3.8	BDJ	UJ	LB,SSR	µg/kg
23B0314	GTF_SL165	Anthracene	13.6	15	DJ	J	SSR	µg/kg
23B0314	GTF_SL165	Fluorene	2.65	2.65	ВDЈ	UJ	LB,SSR	µg/kg
23B0314	GTF_SL165	Naphthalene	13.2	15	ВDЈ	J	SSR	µg/kg
23B0314	GTF_SL165	Phenanthrene	17.5	15	ВD	J	SSR	µg/kg
23B0314	GTF_SL165	1-Methylnaphthalene	2.34	2.34	ВDЈ	UJ	LB,SSR	µg/kg
23B0314	GTF_SL165	2-Methylnaphthalene	3.99	3.99	ВDЈ	UJ	LB,SSR	µg/kg
23D0027	GTF_SL167	Benzo[ghi]perylene	762	14.9	D	J	MS	µg/kg
23D0027	GTF_SL167	Indeno[1,2,3-cd]pyrene	503	14.9	D	J	MS	µg/kg
23D0027	GTF_SL168	Dibenzofuran	32.8	15	D	R	DNR	µg/kg
23D0027	GTF_SL168	Aroclor 1260	19.9	19.9	U	UJ	MS	µg/kg
23D0027	GTF_SL168	Benzo[a]anthracene	501	74.9	D	R	DNR	µg/kg
23D0027	GTF_SL168	Benzo[a]pyrene	2920	15	ΕD	R	DNR	µg/kg
23D0027	GTF_SL168	Benzo[b]fluoranthene	2200	15	ΕD	R	DNR	µg/kg
23D0027	GTF_SL168	Benzo[ghi]perylene	4750	15	ΕD	R	DNR	µg/kg
23D0027	GTF_SL168	Benzo[j]fluoranthene	845	15	D	R	DNR	µg/kg
23D0027	GTF_SL168	Benzo[k]fluoranthene	838	15	D	R	DNR	µg/kg
23D0027	GTF_SL168	Benzofluoranthenes	3900	29.9	D	R	DNR	µg/kg
23D0027	GTF_SL168	Chrysene	1270	74.9	D	R	DNR	µg/kg
23D0027	GTF_SL168	Dibenzo[a,h]anthracene	557	74.9	D	R	DNR	µg/kg
23D0027	GTF_SL168	Fluoranthene	250	15	D	R	DNR	µg/kg
23D0027	GTF_SL168	Indeno[1,2,3-cd]pyrene	2770	15	ΕD	R	DNR	µg/kg
23D0027	GTF_SL168	Pyrene	350	74.9	D	R	DNR	µg/kg
23D0027	GTF_SL168	Acenaphthene	26.7	74.9	DJ	R	DNR	µg/kg
23D0027	GTF_SL168	Acenaphthylene	34.2	74.9	DJ	R	DNR	µg/kg
23D0027	GTF_SL168	Anthracene	207	74.9	D	R	DNR	µg/kg
23D0027	GTF_SL168	Fluorene	24.5	74.9	DJ	R	DNR	µg/kg
23D0027	GTF_SL168	Naphthalene	132	15	D	R	DNR	µg/kg
23D0027	GTF_SL168	Phenanthrene	168	15	D	R	DNR	µg/kg
23D0027	GTF_SL168	1-Methylnaphthalene	20.2	74.9	DJ	R	DNR	µg/kg

				Method	Lab	DV	DV Qualifier	
SDG	Sample	Analyte	Result	Reporting Limit	Qualifier	Qualifier	Reason	Units
23D0027	GTF_SL168	2-Methylnaphthalene	47.5	74.9	DJ	R	DNR	µg/kg
23C0177	GTF-SL166	Dibenzofuran	74.9	74.9	DU	R	DNR	µg/kg
23C0177	GTF-SL166	Aroclor 1260	37.3	19.7		J	IS	µg/kg
23C0177	GTF-SL166	Benzo[a]anthracene	341	74.9	D	J	SSR	µg/kg
23C0177	GTF-SL166	Benzo[a]anthracene	332	15	D	R	DNR	µg/kg
23C0177	GTF-SL166	Benzo[a]pyrene	1580	15	ΕD	R	DNR	µg/kg
23C0177	GTF-SL166	Benzo[a]pyrene	1510	74.9	D	J	SSR	µg/kg
23C0177	GTF-SL166	Benzo[b]fluoranthene	1620	15	ΕD	R	DNR	µg/kg
23C0177	GTF-SL166	Benzo[b]fluoranthene	1380	74.9	D	J	SSR	µg/kg
23C0177	GTF-SL166	Benzo[ghi]perylene	1330	74.9	D	J	SSR	µg/kg
23C0177	GTF-SL166	Benzo[ghi]perylene	1620	15	ΕD	R	DNR	µg/kg
23C0177	GTF-SL166	Benzo[j]fluoranthene	626	74.9	D	R	DNR	µg/kg
23C0177	GTF-SL166	Benzo[j]fluoranthene	727	15	D	J	SSR	µg/kg
23C0177	GTF-SL166	Benzo[k]fluoranthene	668	15	D	J	SSR	µg/kg
23C0177	GTF-SL166	Benzo[k]fluoranthene	586	74.9	D	R	DNR	µg/kg
23C0177	GTF-SL166	Benzofluoranthenes	3040	29.9	D	J	SSR	µg/kg
23C0177	GTF-SL166	Benzofluoranthenes	2630	150	D	R	DNR	µg/kg
23C0177	GTF-SL166	Chrysene	420	74.9	D	J	SSR	µg/kg
23C0177	GTF-SL166	Chrysene	382	15	D	R	DNR	µg/kg
23C0177	GTF-SL166	Dibenzo[a,h]anthracene	234	15	D	J	SSR	µg/kg
23C0177	GTF-SL166	Dibenzo[a,h]anthracene	213	74.9	D	R	DNR	µg/kg
23C0177	GTF-SL166	Fluoranthene	87.8	15	D	R	DNR	µg/kg
23C0177	GTF-SL166	Fluoranthene	96.7	74.9	D	J	SSR	µg/kg
23C0177	GTF-SL166	Indeno[1,2,3-cd]pyrene	886	74.9	D	R	DNR	µg/kg
23C0177	GTF-SL166	Indeno[1,2,3-cd]pyrene	1000	15	D	J	SSR	µg/kg
23C0177	GTF-SL166	Pyrene	273	15	D	J	SSR	µg/kg
23C0177	GTF-SL166	Pyrene	271	74.9	D	R	DNR	µg/kg
23C0177	GTF-SL166	Acenaphthene	8.61	8.61	BDJ	U	LB	µg/kg
23C0177	GTF-SL166	Acenaphthene	74.9	74.9	DU	R	DNR	µg/kg
23C0177	GTF-SL166	Acenaphthylene	9.5	15	DJ	J	SSR	µg/kg
23C0177	GTF-SL166	Acenaphthylene	74.9	74.9	DU	R	DNR	µg/kg
23C0177	GTF-SL166	Anthracene	23.7	15	D	J	SSR	µg/kg
23C0177	GTF-SL166	Anthracene	24.6	74.9	DJ	R	DNR	µg/kg

				Method	Lab	DV	DV Qualifier	
SDG	Sample	Analyte	Result	Reporting Limit	Qualifier	Qualifier	Reason	Units
23C0177	GTF-SL166	Fluorene	74.9	74.9	DU	R	DNR	µg/kg
23C0177	GTF-SL166	Naphthalene	74.9	74.9	DU	R	DNR	µg/kg
23C0177	GTF-SL166	Phenanthrene	11.6	15	DJ	R	DNR	µg/kg
23C0177	GTF-SL166	Phenanthrene	13.4	74.9	DJ	J	SSR	µg/kg
23C0177	GTF-SL166	1-Methylnaphthalene	6.48	74.9	ВDЈ	R	DNR	µg/kg
23C0177	GTF-SL166	1-Methylnaphthalene	5.45	5.45	ВDЈ	U	LB	µg/kg
23C0177	GTF-SL166	2-Methylnaphthalene	74.9	74.9	DU	R	DNR	µg/kg

Notes:

Cc = continuing calibration outlier

Ci = initial calibration verification outlier

DNR = do-not-report

DV = data validation

IS = internal standard outlier

LB = laboratory blank outlier

LCS = laboratory control sample outlier

MS = matrix spike outlier

REP = imprecision

SSR = surrogate outlier

Qualifiers:

J = The associated numerical value is an estimated quantity.

R = Rejected, the data are unusable

U = The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

UJ = Estimated and not detected. The analyte is considered not detected at the reported value, and the associated numerical value is an estimated value.

Attachment 3

ProUCL Output

Arsenic

General Statistics			
Total Number of Observations	14	Number of Distinct Observations	12
Number of Detects	11	Number of Non-Detects	3
Number of Distinct Detects	11	Number of Distinct Non-Detects	1
Minimum Detect	2.2	Minimum Non-Detect	5.4
Maximum Detect	13	Maximum Non-Detect	5.4
Variance Detects	12.07	Percent Non-Detects	21.43%
Mean Detects	5.2	SD Detects	3.474
Median Detects	3.7	CV Detects	0.668
Skewness Detects	1.298	Kurtosis Detects	1.052
Mean of Logged Detects	1.471	SD of Logged Detects	0.605
Normal GOF Test on Detects Only			

Shapiro Wilk Test Statistic	0.818	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value	0.792	Detected Data appear Normal at 1% Significance Level
Lilliefors Test Statistic	0.282	Lilliefors GOF Test
1% Lilliefors Critical Value	0.291	Detected Data appear Normal at 1% Significance Level
Detected Data appear Normal at 1% Significance Level		

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	4.719	KM Standard Error of Mean	0.871
90KM SD	3.089	95% KM (BCA) UCL	6.232
95% KM (t) UCL	6.261	95% KM (Percentile Bootstrap) UCL	6.177
95% KM (z) UCL	6.152	95% KM Bootstrap t UCL	7.126
90% KM Chebyshev UCL	7.331	95% KM Chebyshev UCL	8.515
97.5% KM Chebyshev UCL	10.16	99% KM Chebyshev UCL	13.38

Anderson-Darling GOF Test

Kolmogorov-Smirnov GOF

Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.674			
5% A-D Critical Value	0.734			
K-S Test Statistic	0.245			
5% K-S Critical Value	0.257			
Detected data appear Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

k hat (MLE)	2.973	k star (bias corrected MLE)	2.223
Theta hat (MLE)	1.749	Theta star (bias corrected MLE)	2.339
nu hat (MLE)	65.4	nu star (bias corrected)	48.9
Mean (detects)	5.2		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	1.676	Mean	4.746
Maximum	13	Median	3.4
SD	3.225	CV	0.68
k hat (MLE)	2.981	k star (bias corrected MLE)	2.39
Theta hat (MLE)	1.592	Theta star (bias corrected MLE)	1.986
nu hat (MLE)	83.47	nu star (bias corrected)	66.92
Adjusted Level of Significance (β)	0.0312		
Approximate Chi Square Value (66.92, α)	49.09	Adjusted Chi Square Value (66.92, β)	47.07
95% Gamma Approximate UCL	6.469	95% Gamma Adjusted UCL	6.747

Arsenic (Cont.)

Estimates of Gamma Parameters using KM Estimates			
Mean (KM)	4.719	SD (KM)	3.089
Variance (KM)	9.542	SE of Mean (KM)	0.871
k hat (KM)	2.334	k star (KM)	1.882
nu hat (KM)	65.36	nu star (KM)	52.69
theta hat (KM)	2.022	theta star (KM)	2.508
80% gamma percentile (KM)	7.116	90% gamma percentile (KM)	9.312
95% gamma percentile (KM)	11.41	99% gamma percentile (KM)	16.09
			10.05
Gamma Kaplan-Meier (KM) Statistics			
Approximate Chi Square Value (52.69, α)	37.01	Adjusted Chi Square Value (52.69, β)	35.28
95% KM Approximate Gamma UCL	6.718	95% KM Adjusted Gamma UCL	7.049
Lognormal GOF Test on Detected Observations Only			
Shapiro Wilk Test Statistic	0.892	Shapiro Wilk GOF Test	
10% Shapiro Wilk Critical Value	0.876	Detected Data appear Lognormal at 10% Significance Level	
Lilliefors Test Statistic	0.209	Lilliefors GOF Test	
10% Lilliefors Critical Value	0.209	Detected Data appear Lognormal at 10% Significance Level	
Detected Data appear Lognormal at 10% Significance Level	0.251	beteeted bata appear toghormar at 10% significance tever	
Lognormal ROS Statistics Using Imputed Non-Detects			
Mean in Original Scale	4.773	Mean in Log Scale	1.398
SD in Original Scale	3.187	SD in Log Scale	0.564
95% t UCL (assumes normality of ROS data)	6.281	95% Percentile Bootstrap UCL	6.218
95% BCA Bootstrap UCL	6.519	95% Bootstrap t UCL	7.205
95% H-UCL (Log ROS)	6.611		
Statistics using KM estimates on Logged Data and Assumir	ig Lognorm	al Distribution	
KM Mean (logged)	1.384	KM Geo Mean	3.991
KM SD (logged)	0.546	95% Critical H Value (KM-Log)	2.077
KM Standard Error of Mean (logged)	0.156	95% H-UCL (KM -Log)	6.342
KM SD (logged)	0.546	95% Critical H Value (KM-Log)	2.077
KM Standard Error of Mean (logged)	0.156		
DL/2 Statistics			
DL/2 Normal	4.664	DL/2 Log-Transformed	1 200
Mean in Original Scale	4.664	Mean in Log Scale	1.369
SD in Original Scale	3.227	SD in Log Scale	0.569
95% t UCL (Assumes normality)	6.192	95% H-Stat UCL	6.458
DL/2 is not a recommended method, provided for comparis	ons and his	LUTICAL TEASONS	
Nonparametric Distribution Free UCL Statistics			
Detected Data appear Normal Distributed at 1% Significance	e Level		
Suggested LICI to Lico			
Suggested UCL to Use			

95% KM (t) UCL

6.261

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.