

FIRST AND SECOND QUARTER 2023 GROUNDWATER MONITORING AND TREATMENT SYSTEM OPERATION AND MAINTENANCE REPORT

CHS AUBURN SITE AUBURN, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 301-004

For: CHS Inc. 763 Willoughby Lane Stevensville, Montana 59870

September 11, 2023

Prepared by:

Janukan

Javan Ruark, L.G. Associate Geologist

Reviewed by:

Jeff Kaspar, L.G., L.H.G. Principal Geologist

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	1-1
2.0	TREAT 2.1	TMENT SYSTEM OPERATION, MAINTENANCE, AND OPTIMIZATION AS/SVE SYSTEM OPERATION, MAINTENANCE, AND OPTIMIZATIO	
3.0	GROU	INDWATER MONITORING METHODS	3-1
	3.1	SAMPLING PROTOCOLS	3-1
	3.2	SELECTED MONITORING WELLS AND ANALYSES	3-2
4.0	GROU	INDWATER MONITORING RESULTS	4-1
	4.1	GROUNDWATER ELEVATIONS	
	4.2	SITE-WIDE MONITORING ANALYTICAL RESULTS	
		4.2.1 Diesel-Range Organics	
		4.2.2 Oil-Range Organics	
		4.2.3 Gasoline-Range Organics and Benzene, Toluene,	······ -
		Ethylbenzene, and Xylenes	4-2
		4.2.4 Groundwater Geochemical Parameters and Data	
	4.3	DATA VALIDATION	
5.0	ווספום	JSSION	5-1
5.0	01000		
6.0	ONGO	DING AND PLANNED ACTIVITIES	6-1
7.0	DEEEC	RENCES	71
1.0			·························

FIGURES

Figure 1	Site Vicinity Map

- Figure 2 Site Plan
- Figure 3 Site Plan Showing Detail of the Central Area of the Site
- Figure 4 Groundwater Elevation Contour Map, May 2023
- Figure 5 May 2023 Groundwater Geochemical Parameters and Data
- May 2023 Groundwater Analytical Results for DRO, ORO, GRO, and BTEX Figure 6

i

Figure 7 May 2023 Groundwater Analytical Results for DRO and ORO With and Without Silica Gel Cleanup Procedure

TABLES

- Table 1Soil Vapor Extraction System and Well Data
- Table 2Air Sparge System and Well Data
- Table 3 Air Analytical Data
- Table 4Summary of Groundwater Elevation Data January 2018 through May 2023
- Table 5Summary of Groundwater Water Quality Data January 2018 through May2023
- Table 6Summary of Laboratory Analytical Results for TPH and BTEX in Groundwater –
January 2018 through May 2023
- Table 7Summary of Laboratory Analytical Results for DRO and ORO in Groundwater –
November 2021 through May 2023
- Table 8Summary of Groundwater Geochemical Data January 2018 through May2023

CHARTS

- Chart 1 DRO and ORO Concentration Data Trends for Monitoring Well CMW-2
- Chart 2 DRO and ORO Concentration Data Trends for Monitoring Well CMW-10
- Chart 3 DRO, ORO, and GRO Concentration Data Trends for Monitoring Well CMW-12
- Chart 4 DRO Concentration Data Trend for Monitoring Well CMW-13
- Chart 5 DRO, ORO, and GRO Concentration Data Trends for Monitoring Well CMW-27
- Chart 6 DRO and ORO Concentration Data Trends for Monitoring Well CMW-28
- Chart 7 DRO Concentration Data Trend for Monitoring Well HMW-10
- Chart 8 DRO, ORO, and GRO Concentration Data Trends for Monitoring Well HMW-11
- Chart 9 Cumulative Pounds of Benzene and GRO Removed

APPENDIX

ii

Appendix A Laboratory Analytical Reports

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this report on behalf of CHS Inc. (CHS) to document air sparge (AS) and soil vapor extraction (SVE) system routine operation and maintenance (O&M) and optimization activities for the period from December 17, 2022 through July 12, 2023 (herein referred to as the reporting period) for the central portion of the CHS Auburn site in Auburn, Washington (herein referred to as the Site), and groundwater monitoring activities conducted on May 30 and 31, 2023 at the Site. For the purpose of this report, the groundwater monitoring and sampling activities conducted on May 30 and 31, 2023 are referred to herein as the May 2023 monitoring event. A Site vicinity map is provided on Figure 1, and a Site plan is provided on Figure 2. The Site is listed in the Washington State Department of Ecology (Ecology) Confirmed and Suspected Contaminated Sites List database as Cenex Valley Supply Coop and has been assigned Site Identification No. 2487.

A Remedial Investigation/Feasibility Study for the Site was conducted in accordance with the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), as established in Chapter 173-340 of the Washington Administrative Code, and pursuant to the requirements of Agreed Order No. 4033 entered into between CHS and Ecology on June 12, 2007. The Remedial Investigation Report was submitted to Ecology on July 20, 2011 (Farallon 2011). A Feasibility Study for the Site was submitted to Ecology on August 6, 2014 (Farallon 2014). A working draft of the Draft Cleanup Action Plan was submitted for Ecology review on May 28, 2015 (Farallon 2015). The public review and comment period for the Draft Cleanup Action Plan and for Draft Consent Decree No. 18-2-15430-8 issued by Ecology was completed on May 7, 2018. The *Final Cleanup Action Plan, CHS Auburn Site, 238 8th Street Southeast and Contiguous Areas, Auburn, Washington, Agreed Order No.* 4033, Facility Site No. 2487 dated May 8, 2018 (Ecology 2018) (Final Cleanup Action Plan) was included as Exhibit B of Consent Decree No. 18-2-15430-8 between Ecology and CHS, with an effective date of June 20, 2018.

The scope of work for the May 2023 monitoring event and the AS/SVE system 0&M and optimization activities was conducted in accordance with the *Performance Monitoring Plan, CHS Auburn Site, Auburn, Washington, Facility Site No. 2487, Consent Decree No. 18-2-15430-8* dated February 15, 2019 (Farallon 2019) (Performance Monitoring Plan) that was approved by Ecology in January 2019.

This report is organized into the following sections:

Section 2, Treatment System Operation, Maintenance, and Optimization, provides details on the operation, maintenance, and optimization of the AS/SVE system.

Section 3, **Groundwater Monitoring Methods**, describes the sampling protocols and the selected monitoring wells and analyses for the May 2023 monitoring event.

Section 4, **Groundwater Monitoring Results**, presents groundwater elevations and Site-wide analytical results from the May 2023 monitoring event, and the data validation conducted.

Section 5, **Discussion**, presents a summary of contaminant distribution in groundwater at the Site prior to and after start-up of the reconfigured AS/SVE system in June 2019. Also included is a discussion on the assessment for natural attenuation at the Site.

Section 6, **Ongoing and Planned Activities**, discusses planned activities for the second semiannual 2023 groundwater monitoring event scheduled for November 2023 at the Site.

1-2

Section 7, References, provides a list of the documents cited in this report.

2.0 TREATMENT SYSTEM OPERATION, MAINTENANCE, AND OPTIMIZATION

This section provides details regarding the O&M and optimization of the AS/SVE system in the central area of the Site during the reporting period (Figure 3). A summary of AS/SVE system operational parameters from July 9, 2022 through December 16, 2022 was included in the Third and Fourth Quarter 2022 Groundwater Monitoring, and Treatment System Operation and Maintenance Report (Farallon 2023).

As detailed in the Final Cleanup Action Plan, the purpose of the AS/SVE system is to reduce concentrations of total petroleum hydrocarbons as diesel-range organics (DRO), as oil-range organics (ORO), and as gasoline-range organics (GRO); and benzene, toluene, ethylbenzene, and xylenes (BTEX) (collectively referred to herein as the constituents of concern [COCs]) in groundwater that is down-gradient and beyond the area of influence of the AS wells in the central area of the Site to less than MTCA Method A cleanup levels within a reasonable restoration time frame.

2.1 AS/SVE SYSTEM OPERATION, MAINTENANCE, AND OPTIMIZATION

Routine O&M of the AS/SVE system was conducted bimonthly or in response to AS/SVE system shut-downs to optimize system performance. O&M parameters typically consisted of the following:

- AS compressor motor frequency, amperage, and total run time;
- SVE blower motor frequency, amperage, and total run time;
- SVE system total vacuum and flow rate;
- SVE system exhaust temperature;
- SVE well air flow, vacuum, and vapor volatile organic compound concentration measured by a photoionization detector;
- AS system pressure and temperature from the pre- and post-cooling piping array; and
- AS well airflow and pressure.

A summary of AS/SVE system operational parameters is provided in Tables 1 and 2. Based on the flow rates from or to individual AS and SVE wells and the pressure to individual AS wells, AS/SVE system operational settings were adjusted periodically to optimize flow and

www.farallonconsulting.com

pressure to treat COCs in the subsurface more efficiently. The current operating AS wells include CAS-1, CAS-2, and CAS-14 through CAS-20. AS/SVE system operational parameters for the reporting period are summarized as follows:

- Operating time (run time) totaled approximately 2,694 hours for the AS compressor and 3,516 for the SVE blower (December 17, 2022 to July 12, 2023);
- Total vacuum for the SVE system ranged from 13.9 to 32.5 inches of water;
- The total flow rate for the SVE system ranged from 57.5 to 99 standard cubic feet per minute;
- Total AS system pressure ranged from 15.5 to 20 pounds per square inch; and
- The total AS system flow rate ranged from 27.2 to 33.8 standard cubic feet per minute.

During the reporting period, the following repairs and maintenance were conducted to optimize operation of the AS/SVE system:

- January 6, 2023 A Site visit was conducted to evaluate the AS/SVE system following notifications of blower and compressor drive fault alarm conditions on January 3, 2023. The SVE blower and AS compressor were not able to be restarted following the Site visit.
- January 26, 2023 A Site visit was conducted to evaluate SVE blower and AS compressor control panel components. The electrical components of the AS/SVE system were inspected by an electrician from ChemE Solutions Process Engineering of Lake Stevens, Washington. It was determined that the AS compressor variable frequency drive (VFD) had failed and would need to be replaced. The SVE component of the AS/SVE system was turned on and continued operation; however, the AS component of the AS/SVE system remained shut off until repairs could be made to the AS compressor VFD.
- March 10, 2023 AS well head repairs for AS well AS-2 were completed by Rivers Edge Environmental Services, Inc of Covington, Washington.
- March 17, 2023 The AS compressor VFD was replaced and the AS component of the AS/SVE system was turned on.

- April 10, 2023 A Site visit was conducted to evaluate the AS/SVE system. Intermittent high-temperature alarm notifications were received from March 10 through April 9, 2023. Based on the troubleshooting of the cooling system inside the treatment building, the exhaust fans and control panel temperature switch were not functioning properly and required replacement.
- April 11, 2023 Exhaust fan replacement was completed by Glacier Environmental Services, Inc. of Lynnwood, Washington. Following replacement of the exhaust fans, the AS/SVE system was restarted and the temperature threshold for the exhaust fans to initiate operation was tested to ensure proper operation of the AS/SVE system under typical temperatures.

Automatic shut-down of the AS/SVE system occurred periodically during the reporting period, which was attributed to power outages and high-temperature alarms inside the treatment building. Each time the AS/SVE system shut down, Farallon personnel were alerted via the telemetry system, and if the AS/SVE system could not be restarted remotely, trained personnel mobilized to the Site in a reasonable time frame to inspect the system, diagnose the alarm condition, and restart the system, when appropriate.

SVE system effluent air samples were collected during the March 10, May 11, and July 12, 2023 O&M Site visits. The air samples were collected from the SVE system exhaust stack for each event using a 1-liter Summa canister and were delivered under standard chain-of-custody protocols to Friedman and Bruya, Inc. of Seattle, Washington for analysis of COCs by U.S. Environmental Protection Agency (EPA) Method TO-15. Analytical results from the SVE system effluent air sampling are provided in Table 3. The laboratory analytical reports are provided in Appendix A. SVE system effluent air sampling data and the amount of benzene removed by the SVE system during the reporting period are summarized as follows:

- GRO was detected at concentrations ranging from 0.65 to 9.5 nanoliters per microliter in the effluent air samples collected on March 10, May 11, and July 12, 2023.
- Benzene was detected at a concentration of 0.0017 nanoliters per microliter in the effluent air sample collected on March 10, 2023. Benzene was not detected at concentrations exceeding laboratory reporting limits in the remaining effluent air samples.

- Total xylenes were detected at concentrations of 0.0015 and 0.0077 nanoliters per microliter in the effluent air samples collected on May 11 and July 12, 2023, respectively. Total xylenes were not detected at concentrations exceeding laboratory reporting limits in the remaining effluent air sample.
- Ethylbenzene was detected at a concentration of 0.0012 nanoliters per microliter in the effluent air sample collected on July 12, 2023. Ethylbenzene was not detected at concentrations exceeding laboratory reporting limits in the remaining effluent air samples.
- Toluene was not detected at a concentration exceeding laboratory reporting limit.
- The calculated amount of benzene removed during this period is estimated at 0.004 pound for an estimated total benzene removal of 2.84 pounds since starting up the AS/SVE system on May 29, 2019 (Table 1).
- The calculated amount of GRO removed during this period is estimated at 0.004 pound for an estimated total GRO removal of 12.07 pounds since starting up the AS/SVE system on May 29, 2019 (Table 1).

2-4

3.0 GROUNDWATER MONITORING METHODS

This section summarizes the sampling protocols and the selected monitoring wells and analyses for the May 2023 monitoring event conducted at the Site.

3.1 SAMPLING PROTOCOLS

Groundwater samples were collected on May 30 and 31, 2023 using low-flow sampling methods as described in the Performance Monitoring Plan. Before sampling was initiated, groundwater elevations and dissolved-oxygen content in groundwater were measured at select well locations on May 30 and 31, 2023. The groundwater elevation at each monitoring well was also measured during sampling. The depth to groundwater in each monitoring well was measured to the nearest 0.01 foot using an electronic water-level measuring device from the surveyed location on the top of the well casing. Measurements of dissolved-oxygen levels in groundwater were obtained using an InsiteIG Model 3100 dissolved-oxygen analyzer and optical fluorescence down-hole probe. Depth-to-groundwater measurements and the water-level elevations obtained prior to sampling for the groundwater monitoring events conducted from January 2018 through May 2023 are presented in Table 4 and the May 2023 elevations are shown on Figure 4.

Before the monitoring wells were purged, the intake of the dedicated polyethylene tubing was placed in the approximate middle of the saturated portion of the well screen. Before sampling was initiated, groundwater was purged from each monitoring well at flow rates ranging from 120 to 200 milliliters per minute. Field measurements for pH, temperature, specific conductivity, dissolved oxygen, and oxidation-reduction potential (ORP) were recorded during purging using a YSI Model ProDSS water-quality analyzer equipped with a flow-through cell. Water-quality parameter geochemical measurements are summarized in Table 5. Groundwater samples were collected after the pH, temperature, and specific conductivity measurements stabilized. Stabilization was determined for pH as a change of +/-0.1 pH unit between readings for three consecutive measurements, and for temperature and specific conductivity as a relative percent difference of less than 3 percent between readings for three consecutive measurements.

Following stabilization of the water-quality parameters, samples were collected by pumping groundwater directly from each monitoring well through dedicated polyethylene tubing into

www.farallonconsulting.com

laboratory-prepared containers, with care taken to minimize turbulence. Care was taken to not handle the container seal or lid when the samples were placed into the containers. The containers were filled to eliminate headspace, and the seal and the lid were secured. The samples were placed on ice in a cooler under standard chain-of-custody protocols, and delivered to OnSite Environmental Inc. of Redmond, Washington (OnSite) for laboratory analysis. Wastewater generated during purging of the monitoring wells is temporarily stored in a labeled 55-gallon drum in a secure area of the Site.

3.2 SELECTED MONITORING WELLS AND ANALYSES

Groundwater samples were collected from monitoring wells CMW-2, CMW-8, CMW-10, CMW-12, CMW-13, CMW-25 through CMW-31, HMW-9 through HMW-11, and HMW-13, and were analyzed for the following:

- DRO and ORO by Northwest Method NWTPH-Dx with and without silica gel cleanup procedure. Sulfuric acid was not used as part of the silica gel cleanup procedure.
- GRO by Northwest Method NWTPH-Gx.
- BTEX constituents by EPA Method 8021B.

On October 20, 2021, Ecology stated that DRO and ORO groundwater samples collected during future monitoring events could be analyzed both with and without using the silica gel cleanup procedure in accordance with recent Ecology (2021) guidance. Details of the Ecology request were provided in the email regarding CHS Quarterly Progress Report 7/1 through 9/30/2021 dated October 20, 2021 from Jerome Cruz of Ecology to Javan Ruark of Farallon (Ecology 2021). The purpose of the silica gel cleanup procedure is to evaluate whether polar metabolites resulting from biodegradation of the dissolved DRO plume are present and contributing to the DRO values in the analysis conducted without the silica gel cleanup procedure. Groundwater samples collected for DRO and ORO during the May 2023 monitoring event were analyzed both with and without using the silica gel cleanup procedure. The silica gel cleanup procedure did not include use of sulfuric acid in the preparation method.

As outlined in the email regarding natural attenuation evaluation dated October 20, 2021, from Vance Atkins of Ecology to Javan Ruark of Farallon (Ecology 2023), groundwater samples

3-2

collected from monitoring wells CMW-26, CMW-27, CMW-31, HMW-10, and HMW-11 were analyzed for the following additional analytes:

- Sulfate by American Society for Testing Materials Method D516-11;
- Nitrate by EPA Method 353.2;
- Ferrous iron by SM3500-Fe B;
- Dissolved manganese by Standards Method (SM) 3500-Fe B;
- Dissolved methane Risk Based Standards Method 175; and
- Total alkalinity by SM 2320B.

Field duplicate groundwater samples were collected from monitoring wells CMW-12 and CMW-27 for quality assurance/quality control (QA/QC) purposes.

4.0 GROUNDWATER MONITORING RESULTS

This section presents groundwater elevations, geochemical parameters and data, and analytical results from the May 2023 monitoring event, and the data validation conducted.

4.1 GROUNDWATER ELEVATIONS

Groundwater elevations measured in the Site monitoring wells on May 30 and 31, 2023, ranged from 66.89 feet above mean sea level in monitoring well CMW-8 to 68.27 feet above mean sea level in monitoring well CMW-30 (Figure 4; Table 4). The groundwater flow direction was northeast, with an average horizontal hydraulic gradient of 0.002 foot per foot, which is consistent with the historical groundwater flow direction. Groundwater elevations measured on May 30 and 31, 2023 were approximately 2.00 foot lower on average than those measured during the previous monitoring event, conducted on November 29 and 30, 2022 (Table 4).

4.2 SITE-WIDE MONITORING ANALYTICAL RESULTS

The analytical results from the May 2023 monitoring event are discussed in the following sections. Comparison of analytical results for DRO, ORO, GRO, and BTEX constituents to MTCA Method A groundwater cleanup levels is shown in Table 6. Comparison of analytical results for DRO and ORO with and without the silica gel cleanup procedure to MTCA Method A groundwater cleanup levels is shown in Table 7. Groundwater geochemical data as part of the natural attenuation evaluation is shown in Table 8 and presented on Figure 5. Analytical results for DRO, ORO, ORO, GRO, and BTEX constituents for the May 2023 monitoring event are presented on Figure 6. Analytical results for DRO and ORO with and without the silica gel cleanup procedure for the May 2023 monitoring event are presented on Figure 7. The laboratory analytical reports are provided in Appendix A.

4.2.1 Diesel-Range Organics

For the samples analyzed without the silica gel cleanup procedure, DRO was detected at concentrations exceeding the MTCA Method A cleanup level of 0.5 milligrams per liter (mg/l) in groundwater samples collected from nine of the 16 monitoring wells sampled (Tables 6 and 7) and in the QA/QC samples collected from monitoring well CMW-12 and CMW-27. Concentrations of DRO exceeding the MTCA Method A cleanup level ranged from 0.64 mg/l

in the groundwater sample collected from monitoring well CMW-8 to 3.5 mg/l in the groundwater sample collected from monitoring well HMW-11.

For the samples analyzed using the silica gel cleanup procedure, DRO was not detected at a concentration exceeding the MTCA Method A cleanup level of 0.5 mg/l during the May 2023 monitoring event (Table 7).

4.2.2 Oil-Range Organics

For the samples analyzed without the silica gel cleanup procedure, ORO was detected at concentrations exceeding the MTCA Method A cleanup level of 0.5 mg/l in groundwater samples collected from 10 of the 16 monitoring wells sampled (Tables 6 and 7) and in the QA/QC samples collected from monitoring well CMW-12 and CMW-27. Concentrations of ORO exceeding the MTCA Method A cleanup level ranged from 0.64 mg/l in the groundwater sample collected from monitoring well CMW-2 to 4.5 mg/l in the groundwater sample collected from monitoring well CMW-10.

For the samples analyzed using the silica gel cleanup procedure, ORO was not detected at a concentration exceeding the MTCA Method A cleanup level of 0.5 mg/l during the May 2023 monitoring event (Table 7).

4.2.3 Gasoline-Range Organics and Benzene, Toluene, Ethylbenzene, and Xylenes

GRO and BTEX constituents were not detected at concentrations exceeding the MTCA Method A cleanup level (Table 6).

4.2.4 Groundwater Geochemical Parameters and Data

An assessment of the potential for natural attenuation to reduce the concentrations of residual petroleum hydrocarbon constituents in groundwater via biodegradation processes was conducted during the May 2023 monitoring event. The assessment included laboratory analyses and measurement of field parameters that provide data to assess if and by what processes biodegradation is occurring. The laboratory analyses and field measurements for the assessment included the following:

• Primary electron receptors that are potential energy sources for native bacteria capable of biodegradation of petroleum compounds, and indicators of groundwater geochemistry:

- Dissolved oxygen;
- o Nitrate; and
- o Sulfate.
- Metabolic by-products of biodegradation and indicators of groundwater geochemistry:
 - Total alkalinity (carbon dioxide generation);
 - Ferrous iron;
 - Dissolved manganese; and
 - Dissolved Methane.
- Geochemical indicators of whether the subsurface environment is amenable to biodegradation of petroleum compounds:
 - o ORP;
 - Temperature; and
 - o **pH.**

The results for these geochemical parameters and data are presented in Tables 5 and 8 and summarized in the following sections.

4.2.4.1 pH

The pH measurements for groundwater samples ranged from 5.78 pH units at monitoring well CMW-27 to 6.45 pH units at monitoring well CMW-8 (Table 5). These pH values are within the range 6 and 9 pH unit (National Center for Biotechnology Information 2023), which is amenable to the bacteria capable of petroleum hydrocarbon biodegradation. pH measurements from monitoring wells located inside the petroleum hydrocarbon-contaminated groundwater plume (CMW-27, HMW-10, and HMW-11) were consistent with pH measurements from monitoring wells located outside the petroleum hydrocarbon-contaminated groundwater plume (CMW-26 and CMW-31).

4-3

4.2.4.2 Temperature

Groundwater temperature measurements ranged from 13.9 to 16 degrees Celsius. Biodegradation processes occur at these temperatures but typically are accelerated at temperatures approaching 20 degrees Celsius or higher. Groundwater measurements from monitoring wells located inside the petroleum hydrocarbon-contaminated groundwater plume (CMW-27, HMW-10, and HMW-11) were consistent with groundwater temperature measurements from monitoring wells located outside the petroleum hydrocarbon-contaminated groundwater plume (CMW-26 and CMW-31).

4.2.4.3 Oxidation-Reduction Potential

ORP readings in groundwater ranged from -53.8 millivolts at monitoring well HMW-9 to 305.0 millivolts at monitoring well CMW-25, which indicates an overall aerobic environment (Table 5). These results correlate well with the other natural attenuation parameters, which indicate that aerobic processes are predominant at the Site. ORP readings from monitoring wells located inside the petroleum hydrocarbon-contaminated groundwater plume (CMW-27, HMW-10, and HMW-11) were lower than ORP readings from monitoring wells located outside the petroleum hydrocarbon-contaminated groundwater plume (CMW-26 and CMW-31).

4.2.4.4 Dissolved Oxygen

Measurements of less than 1 mg/l of available oxygen within a petroleum hydrocarbon plume indicate that groundwater is trending toward more anaerobic conditions. Dissolved oxygen readings ranged from 1.07 mg/l at monitoring well CMW-27 to 6.04 mg/l at monitoring well CMW-28 (Table 8). Sufficient oxygen is present for use as an electron receptor to promote aerobic biodegradation processes. Dissolved oxygen readings from monitoring wells located inside the petroleum hydrocarbon-contaminated groundwater plume (CMW-27, HMW-10, and HMW-11) were lower than ORP readings from monitoring wells located outside the petroleum hydrocarbon-contaminated groundwater plume (CMW-26 and CMW-31).

4.2.4.5 Nitrate

The anaerobic respiratory process reduces nitrate during biodegradation of petroleum hydrocarbon constituents. Nitrate concentrations ranged from 0.46 mg/l at monitoring

well CMW-31 to 2.9 mg/l at monitoring well CMW-26 (Table 8). The consistent presence of nitrate indicates that this electron receptor is available to support biodegradation processes. Concentrations of nitrate from monitoring wells located inside the petroleum hydrocarbon-contaminated groundwater plume (CMW-27, HMW-10, and HMW-11) were consistent with concentrations of nitrate from monitoring wells located outside the petroleum hydrocarbon-contaminated groundwater plume (CMW-26 and CMW-31).

4.2.4.6 Sulfate

Concentrations of sulfate greater than 1 mg/l indicate a favorable environment for sulfate-reducing conditions. Sulfate concentrations ranged from 9.6 mg/l at monitoring well CMW-31 to 12 mg/l at monitoring wells CMW-26 and CMW-27 (Table 8). The presence of dissolved oxygen and nitrate indicates that use of sulfate as an electron receptor is unlikely since the subsurface is primarily aerobic. Concentrations of sulfate from monitoring wells located inside the petroleum hydrocarbon-contaminated groundwater plume (CMW-27, HMW-10, and HMW-11) were consistent with concentrations of sulfate from monitoring wells located outside the petroleum hydrocarbon-contaminated groundwater plume (CMW-26 and CMW-31).

4.2.4.7 Ferrous Iron

Ferrous iron is formed by anaerobic microbial ferric iron reduction during the biodegradation of petroleum hydrocarbon constituents. Ferrous iron concentrations ranged from 1.42 mg/l at monitoring well CMW-27 to 8 mg/l at monitoring well HMW-11 (Table 8). Concentrations of ferrous iron from monitoring wells located inside the petroleum hydrocarbon-contaminated groundwater plume (CMW-27, HMW-10, and HMW-11) were higher than those monitoring wells located outside the plume area (CMW-26 and CMW-31) indicating that ferric iron is being used as an electron receptor for biodegradation.

4.2.4.8 Dissolved Manganese

Manganese II is formed by anaerobic microbial reduction of manganese IV during the biodegradation of petroleum hydrocarbon constituents. Manganese II concentrations ranged from 0.29 mg/I at monitoring well CMW-27 to 0.55 mg/I at monitoring wells

HMW-10 and HMW-11 (Table 8). Concentrations of manganese II from monitoring wells located inside the petroleum hydrocarbon-contaminated groundwater plume (CMW-27, HMW-10, and HMW-11) were higher than concentrations outside the plume area (CMW-26 and CMW-31) indicating that manganese IV is being used as an electron receptor for biodegradation.

4.2.4.9 Dissolved Methane

Methane is a metabolic by-product of biodegradation of petroleum hydrocarbon constituents but can also be a naturally occurring gas associated with degradation of organic materials in the soil matrix. Dissolved methane concentrations ranged from 230 micrograms per liter (μ g/I) at monitoring well HMW-10 to 460 μ g/I at monitoring well HMW-11 (Table 8). Concentrations of dissolved methane from monitoring wells located inside the petroleum hydrocarbon-contaminated groundwater plume (CMW-27, HMW-10, and HMW-11) were significantly higher than concentrations of dissolved methane from monitoring wells located outside the petroleum hydrocarbon-contaminated groundwater plume (CMW-27, HMW-10, and HMW-11) were significantly higher than concentrations of dissolved methane from monitoring wells located outside the petroleum hydrocarbon-contaminated groundwater plume (CMW-26 and CMW-31).

4.2.4.10 Total Alkalinity

Total alkalinity provides an estimate of carbon dioxide generated by biodegradation processes. Total alkalinity concentrations ranged from 52 mg/l at monitoring well CMW-27 to 84 mg/l at monitoring well CMW-31 (Table 8). Concentrations of total alkalinity from monitoring wells located inside the petroleum hydrocarbon-contaminated groundwater plume (CMW-27, HMW-10, and HMW-11) were consistent with concentrations of total alkalinity from monitoring wells located outside the petroleum hydrocarbon-contaminated groundwater plume (CMW-27, HMW-10, and HMW-11) were consistent with concentrations of total alkalinity from monitoring wells located outside the petroleum hydrocarbon-contaminated groundwater plume (CMW-26 and CMW-31).

4.3 DATA VALIDATION

Farallon reviewed the analytical data package provided by OnSite for sample delivery 2305-321 and 2306-001. The groundwater samples from this group were analyzed for DRO, ORO, GRO, BTEX constituents, nitrate, sulfate, ferrous iron, dissolved manganese, dissolved methane, and total alkalinity by the methods cited in Section 3.2, Selected Monitoring Wells and Analyses, within the prescribed method holding times. The QA/QC testing performed by OnSite included evaluation of surrogate recoveries and matrix spike/matrix spike duplicates.

Results from the QA/QC testing were within established laboratory control limits. Based on Farallon's review of the QA/QC data generated during the May 2023 monitoring event, the groundwater analytical results are acceptable for use in characterizing groundwater quality at the Site relative to the groundwater quality cleanup levels used for comparative purposes in this report. The laboratory analytical reports for the samples analyzed by OnSite are provided in Appendix A.

5.0 DISCUSSION

This section provides a summary of the distribution of DRO, ORO, GRO, and BTEX constituents detected in groundwater at the Site during the May 2023 monitoring event relative to the monitoring event in November 2022 and the pre-AS/SVE system start-up monitoring event conducted in January 2019. Trends in COC concentrations relative to groundwater elevation changes since 2018 also are discussed where trends appear evident. Data trends of select COC concentrations in groundwater for key monitoring wells are shown on Charts 1 through 8. Note that the DRO and ORO results provided in the discussion and used to construct the charts are for samples analyzed without the silica gel cleanup procedure.

Also included in this section is the assessment of the potential for natural attenuation to reduce the concentrations of residual petroleum hydrocarbon constituents in groundwater via biodegradation processes.

In summary, GRO and BTEX constituents were not detected at concentrations exceeding MTCA Method A cleanup levels in any of the monitoring wells sampled during the May 2023 monitoring event. The expanded area of influence of the reconfigured AS/SVE system appears to continue to mobilize some dissolved-phase DRO and ORO from the smear zone soil as shown by increases in several monitoring wells, most notably CMW-10, CMW-13, CMW-27, CMW-28, and HMW-11. Following start-up of the reconfigured AS/SVE system in June 2019, concentrations of DRO and ORO have fluctuated through May 2023 at the monitoring wells sampled at the Site (Charts 1 through 8). Elevated concentrations of DRO and ORO in monitoring wells CMW-12 and CMW-13 generally have correlated with seasonally higher groundwater elevations since reconfigured system start-up (Charts 3 and 4). Except for intermittent shut-downs, the current configuration of the AS/SVE system has operated continuously from start-up in June 2019 through July 12, 2023 and has removed a total of 2.84 pounds of benzene and 143.23 pounds of GRO from the vadose zone at the Site. The removal rate of benzene has decreased to asymptotic levels since June 2019 and demonstrates that the AS/SVE system no longer is removing significant benzene mass from the vadose zone at the Site (Table 1; Chart 9). However, mass removal of GRO has shown increased removal rates from March 2021 to July 2023 (Chart 9).

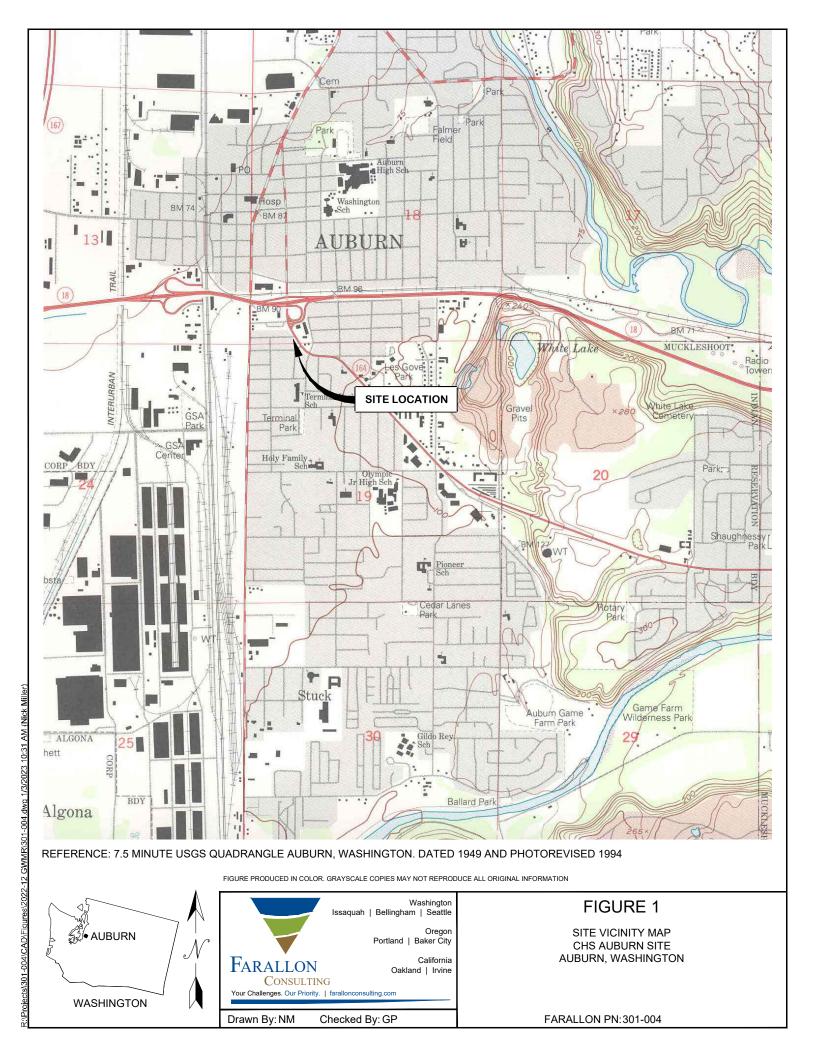
5-1

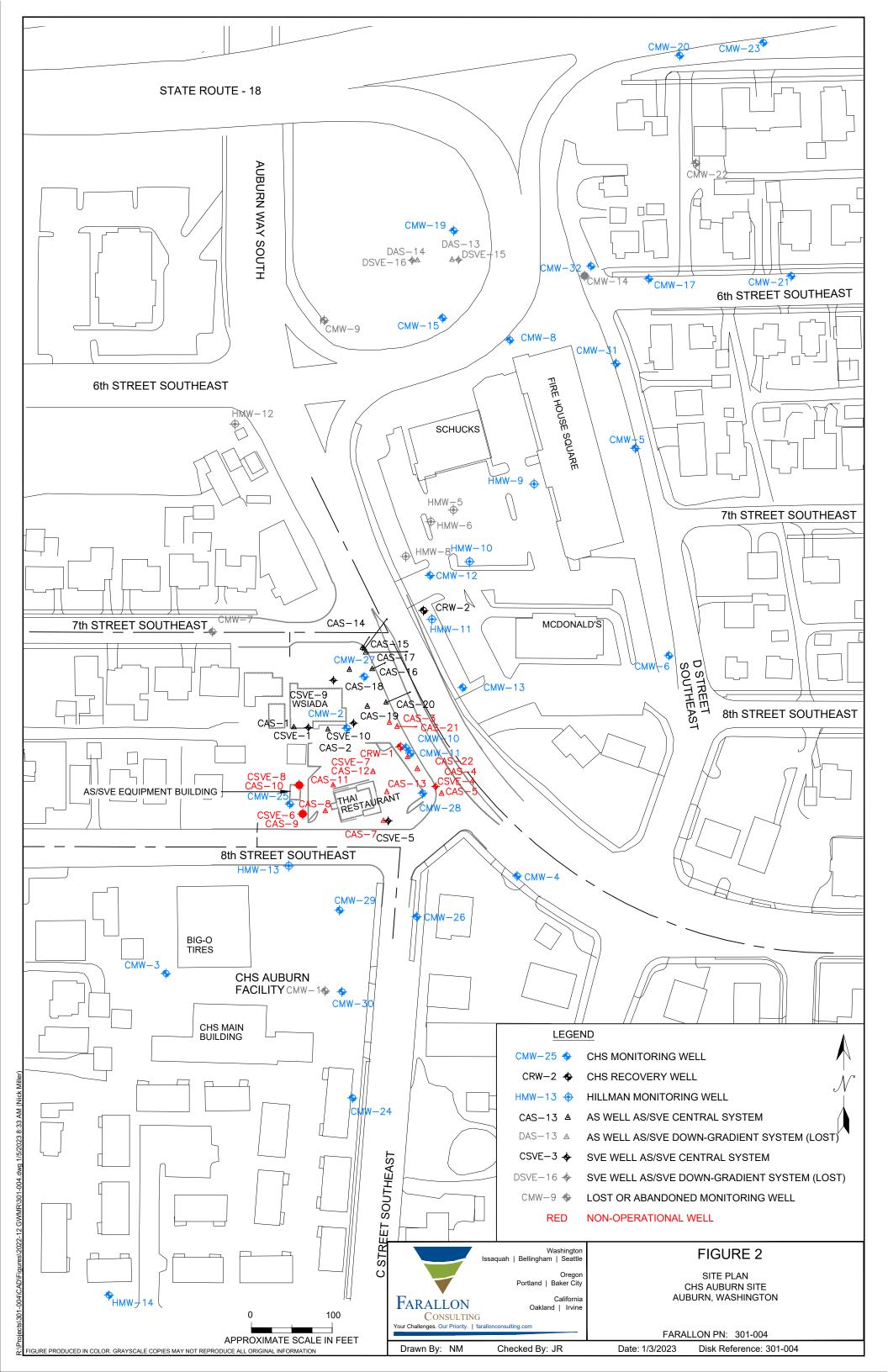
An assessment was conducted of the potential for natural attenuation of petroleum hydrocarbons at the Site. The results indicate that groundwater conditions are generally aerobic and that sufficient electron receptors (dissolved oxygen, nitrate, ferric iron, and manganese II) are present to support natural attenuation processes in groundwater. Natural attenuation via aerobic processes appears to be a technically feasible alternative for remediation of residual petroleum contamination in groundwater.

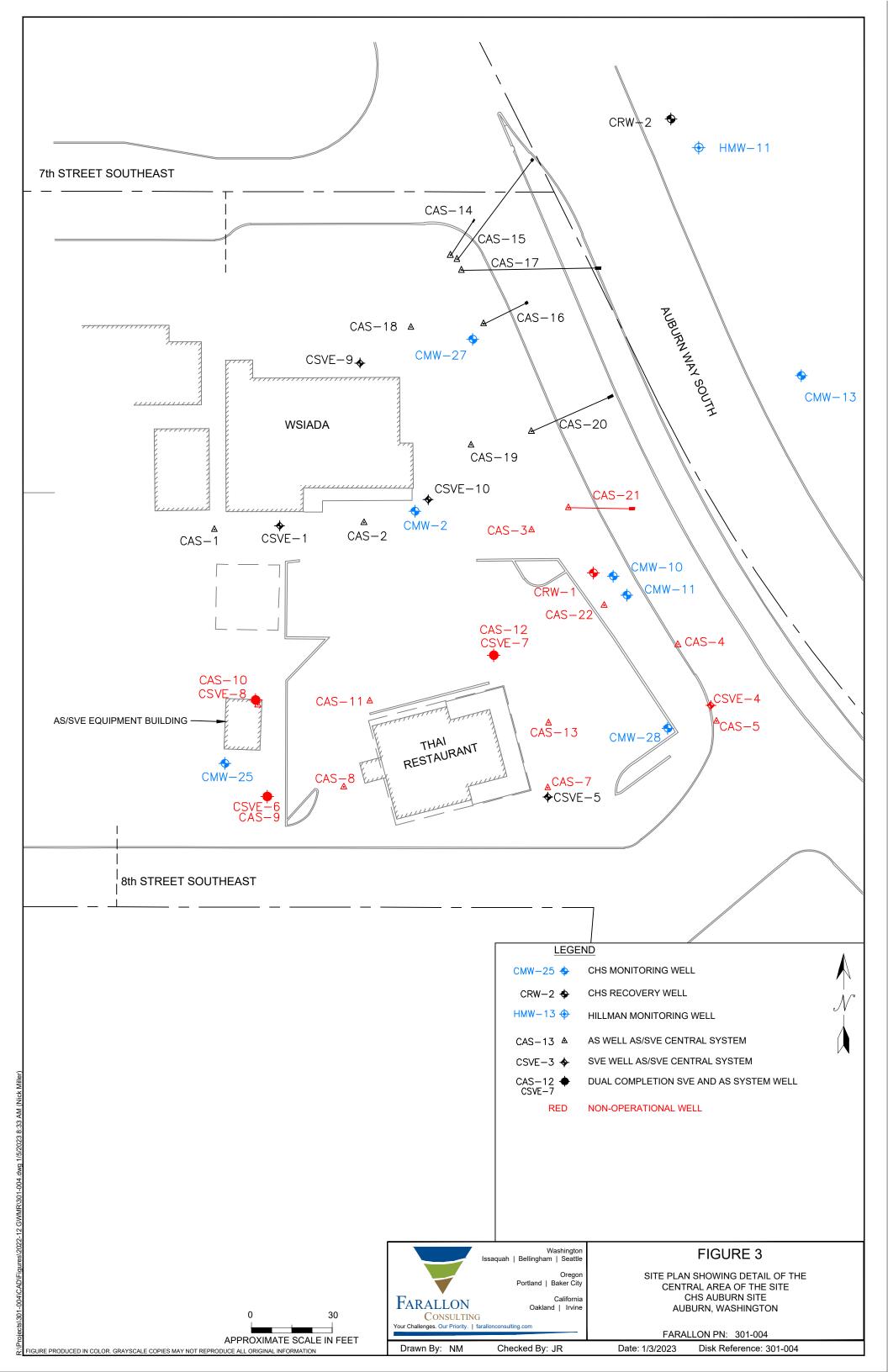
The DRO and ORO analytical results from the May 2023 monitoring event suggest dissolvedphased DRO and ORO is highly weathered. DRO and/or ORO were detected at concentrations slightly exceeding the laboratory reporting limits but less than the MTCA Method A cleanup levels in the groundwater samples analyzed from monitoring wells CMW-10, CMW-27, HMW-9 and/or HMW-11 using the silica gel cleanup procedure. DRO and ORO were not detected at concentrations exceeding the laboratory reporting limits in any of the remaining groundwater samples analyzed using the silica gel cleanup procedure.

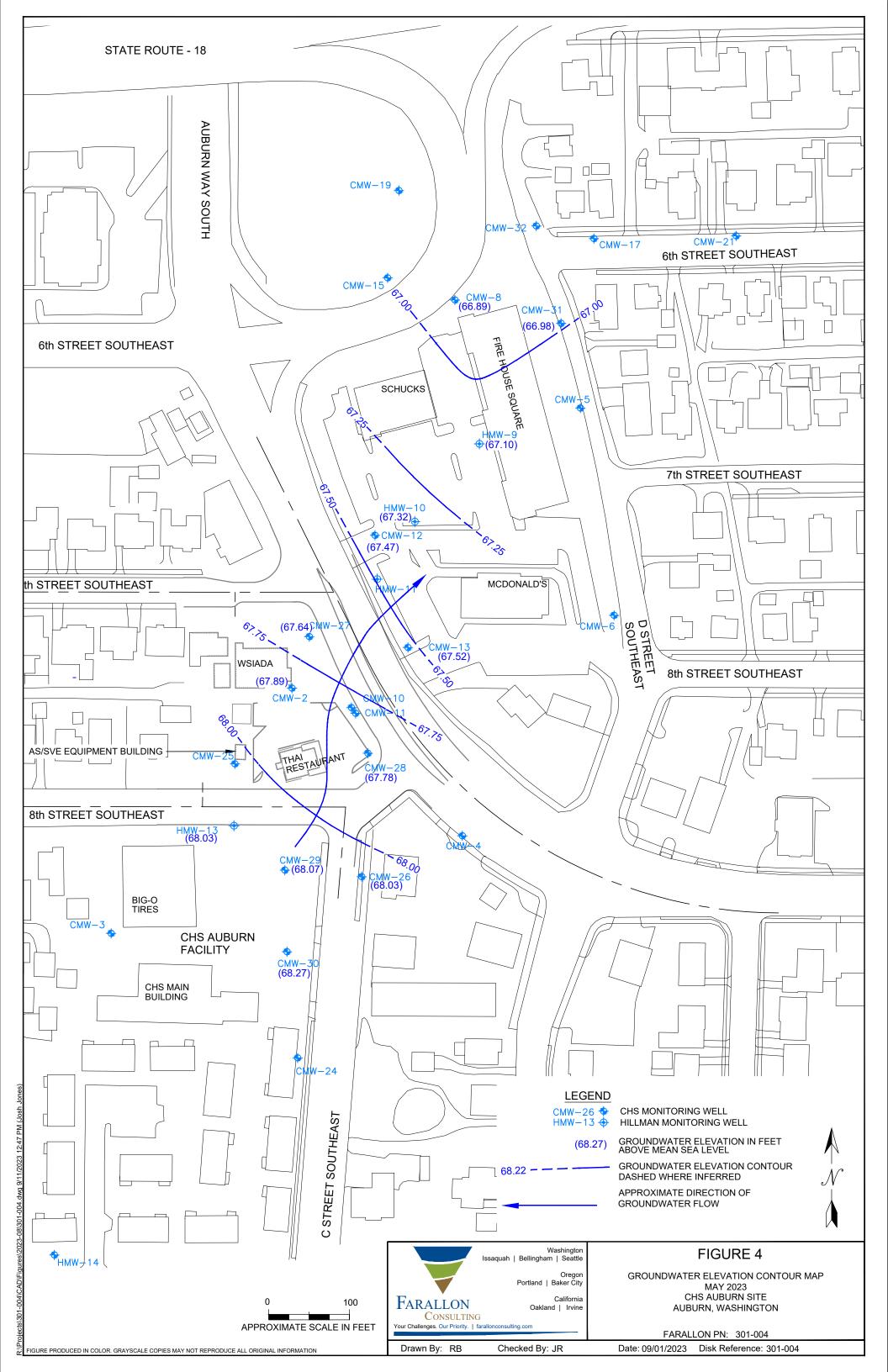
6.0 ONGOING AND PLANNED ACTIVITIES

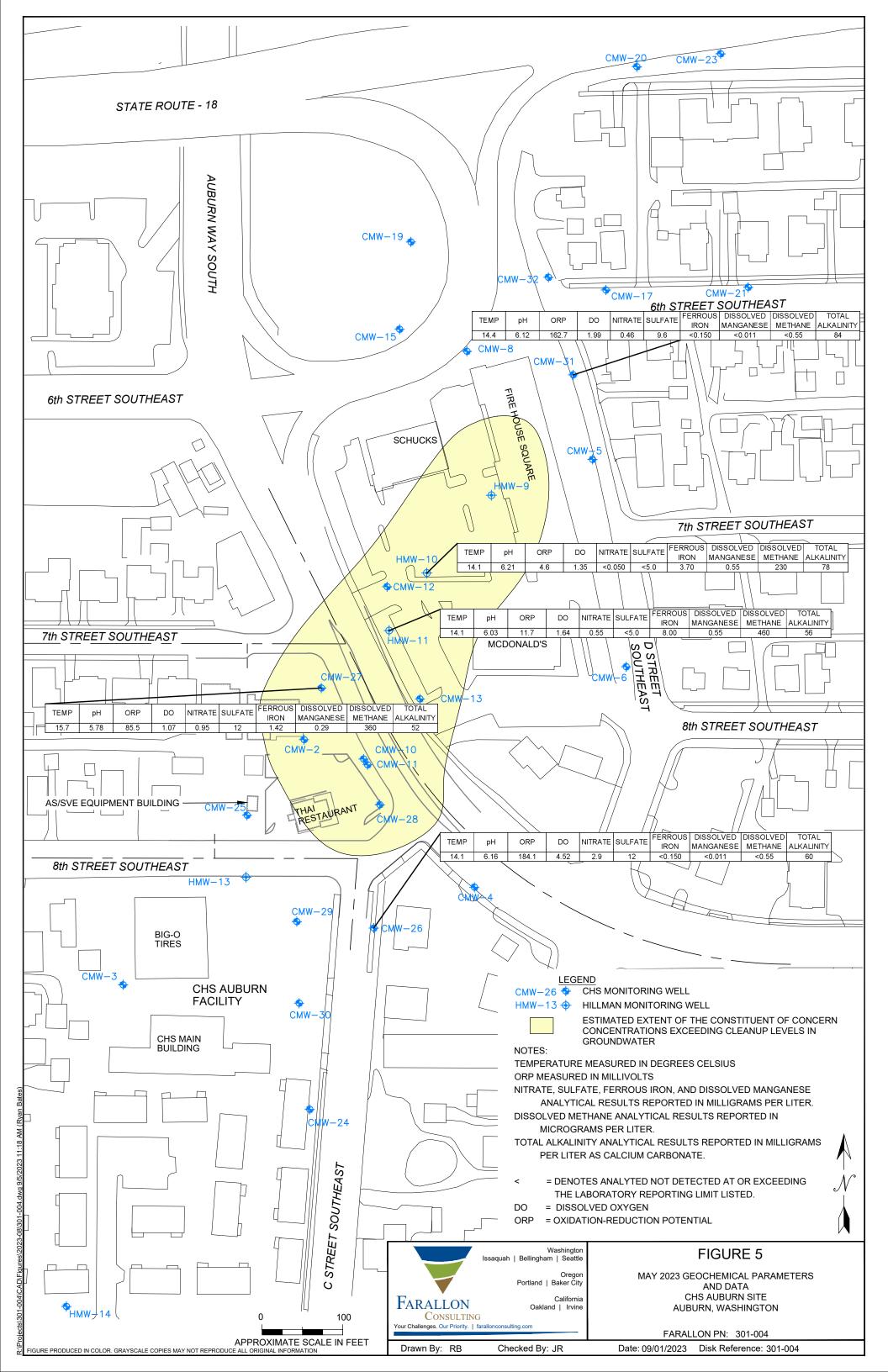
As detailed in Table 3 in the Final Cleanup Action Plan, quarterly performance groundwater monitoring and routine O&M of the AS/SVE system were conducted for the first four quarters following start-up of the AS/SVE system and were to be conducted semiannually thereafter. The May 2023 monitoring event was the sixth semiannual groundwater monitoring event; the seventh is scheduled for November 2023. Following the November 2023 semiannual groundwater monitoring event, Ecology will be contacted to discuss a path forward.

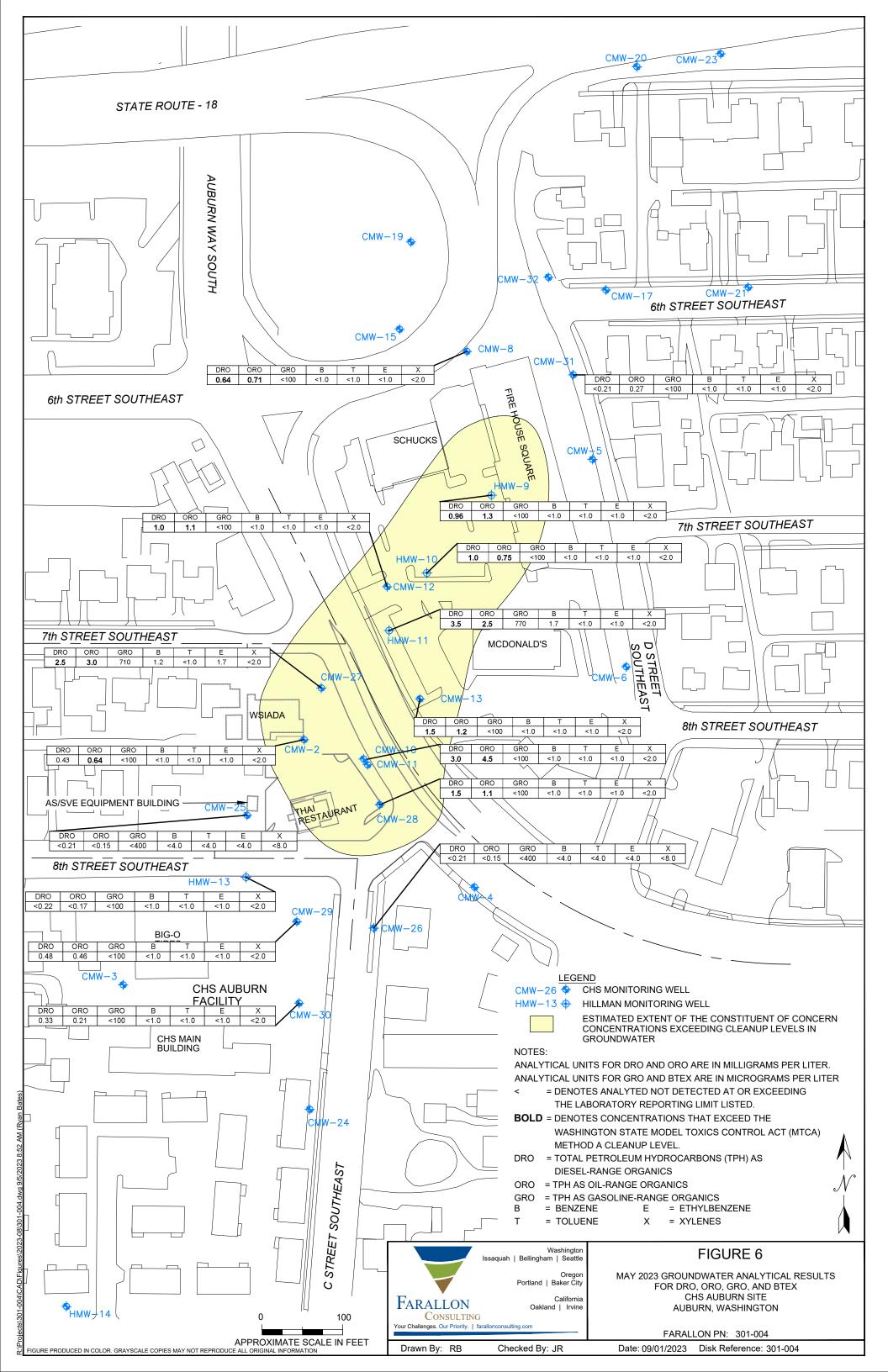

7.0 REFERENCES

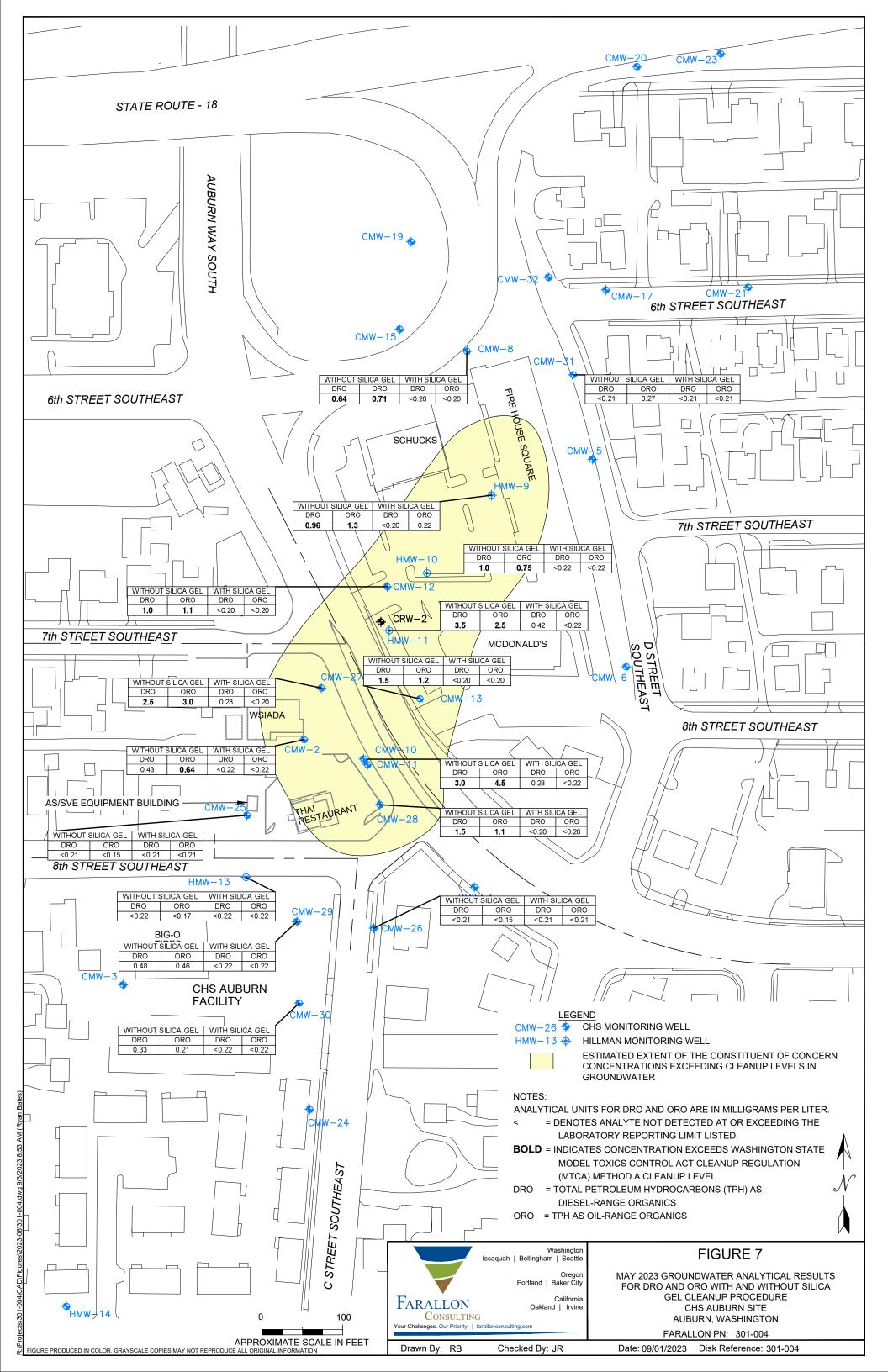

- Farallon Consulting, L.L.C. (Farallon). 2011. *Remedial Investigation Report, CHS Auburn Site, Auburn, Washington*. Prepared for CHS Inc. July 20.
- -----. 2014. Feasibility Study, CHS Auburn Site, Auburn, Washington. Prepared for CHS Inc. August 6.
- -----. 2015. Draft Cleanup Action Plan, CHS Auburn Site, Auburn Washington (Working Draft Version). Prepared for CHS Inc. May 28.
- 2019. Performance Monitoring Plan, CHS Auburn Site, Auburn, Washington, Facility Site
 No. 2487, Consent Decree No. 18-2-15430-8. Prepared for CHS Inc. February 15.
- ——. 2032. Third and Fourth Quarter 2022 Groundwater Monitoring and Treatment System Operation and Maintenance Report, CHS Auburn Site, Auburn, Washington. Prepared for CHS Inc. February 8.
- National Center for Biotechnology Information. 2010. Microbial Degradation of PetroleumHydrocarbonContaminants:AnOverview.<https://www.ncbi.nlm.nih.gov/pmc/articles/>. (August 29, 2023.)
- Washington State Department of Ecology (Ecology). 2018. Final Cleanup Action Plan, CHS Auburn Site, 238 8th Street Southeast and Contiguous Areas, Auburn, Washington, Agreed Order No. 4033, Facility Site No. 2487. May 8.
- ——. 2019. Email Regarding CHS Auburn Performance Monitoring Plan. From Jerome Cruz. To Javan Ruark, Farallon Consulting, L.L.C. January 18.
- ——. 2021. Email Regarding CHS Quarterly Progress Report 7/1 through 9/30/2021. From Jerome B. Cruz. To Javan Ruark, Farallon Consulting, L.L.C. October 20.
- ——. 2023. Email Regarding MNA analytical, CHS Auburn Site. From Vance Atkins. To Javan Ruark, Farallon Consulting, L.L.C. May 25.


FIGURES


FIRST AND SECOND QUARTER 2023 GROUNDWATER MONITORING AND TREATMENT SYSTEM OPERATION AND MAINTENANCE REPORT CHS Auburn Site Auburn, Washington


Farallon PN: 301-004





TABLES

FIRST AND SECOND QUARTER 2023 GROUNDWATER MONITORING AND TREATMENT SYSTEM OPERATION AND MAINTENANCE REPORT CHS Auburn Site Auburn, Washington

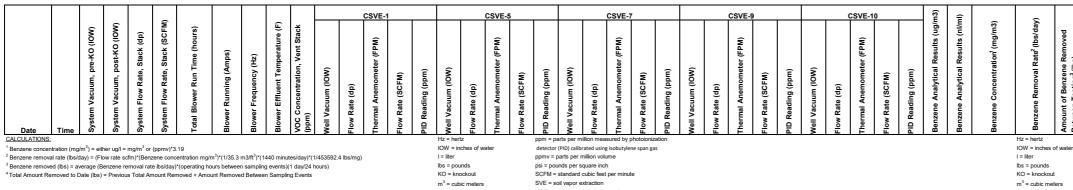

Farallon PN: 301-004

Table 1 SVE System and Well Data Cenex Auburn Site Auburn, Washington Farallon PN: 301-004

										CS	SVE-1				CSVE	-5				CSVE-7	,			C	SVE-9				CSVE-1	0					T	90		<u> </u>			eu	
ŝ	(MC	-	(SCFM)	(s)			ature (F)	ž								Ť								Ĩ						ΪΙ		Results (ug/mb) Decute (nl/ml)	(m3)	(Ibs/day)	Ţ	Nome	m3)	Ę			etwe	ved to
pre-KO (IOW)	post-KO (IOW)	ck (dp)	¥ 4	(hours)	~		ature	nt Sta			(FPM)				(FPM)					Я Д					(FPM)				(FPM)			Results	m j	² (lbs	of Benzene Removed	ne Re	/6n)	(Im/In)	Concentration ¹ (mg/m3)	s/day	noved B	emo
5-e-	ost-k	Sta	Stack	Time	sduv	Ŧ	mper	۲, Vel			ē			_	ter (F					ter (F					Ter (F				ter (F					Rate ²	e Rei	enzei	sults	Results	Ű,	³² (Ibs	Remov	GRO Re
ι μα έ	É	Rate,		Run	d) gn	Bucy	nt Te	ratio	(NOI)	_	eme	(SCFM)	(mqq)	δ.	eme	ξ	(mqq)	NOI)	-	ome	Ê	(mqq)	Ň		EM I		(mqq)		ome	(SCFM)	(mqq)	Analytical	Sentr	loval	nzen	of B	al Re	al Re	ratio	Rate ²		of G
Vacuu	Vacut	Flow	No 1	Ver	iuu	requi	Efflue	cent	m l	(dp)	Anemome	SC SC) Bui) uni (dp)	Anem	(sc	l) Gling (I	E E	(dp) e	Anem	Rate (SCF	ding (I		(dp)	Anem) mn	10	Anem	(SC	l) Bui			Ren	of Be	ount lbs)	Analytical	Analytical	Icent	nova	of GRO (lbs)) ount
em <	em <	me			ver R	ver Fre	er E	Col	Well Vacu		hermal	Rate	Reading (Vacui Rate	mal	Rate	Read	Vacu	Rate	mal	Rate		Vacu	Rate	mal Anemome		Vell Vacuum	Rate	mal	Rate	Read	Benzene	ene	Benzene	Amount	Total Amount (to Date ⁴ (lbs)	Ana) Ana		Ren	Amount o Testing ³ (I Am
Date Time ගි	Syst	Syst	Syste	Tota	Blov	Blo	Blov	nqq)	Well	Flow	Ther	Flow	8	Vell Flow	Ther	Flow	G	Mell	Flow	Ther	Flow	G	Well	Flow	Therr			FIOV	Ther	Flow			Ben	Ber	Amc	Tota to D	GRO	GRO	GRO	GRO	Amc Test	Total Date ⁴
1210 6.0								130		0.157				6.0 0.35	-	35.28	50		0.015					0.204	26.	_		6 0.31		33.23		· ·	-	-	-	-	-	-	-	-	-	-
5/29/2019 1240 6.0			133 ·		-	-		32		0.21				5.6 0.33	-	34.02			0.023					0.210	27.	_	24 6.		-	34.53		· ·	-	-	-	-	-	-	-	-	-	-
1400 5.8 1500 5.9		0.306	130 · 133 ·		-			18.5 23		0.21				5.9 0.41 5.5 0.37	-	37.92 36.02			0.032		10.6 8.37			0.190 0.200	25. 26.	_	9.5 5.1 95 6.0	-	-	33.50 34.02		- <0	- 31 0.49	- 0.006	-	-	-	- <21	-	- 0.000	-	-
6/13/2019 1415	0.1			 B7	2.7	50		14		0.21				5.0 0.32	-	33.5			0.020					0.200	26.			0 0.330	-	33.50	1.4				-	-			-	-	-	-
6/24/2019				51																						_						- 0.	2 2.30	0.269	2.0	2.01	-			-	-	-
7/16/2019			4	40																						-		·					-	-	-	-	-	-	-	-	-	-
7/18/2019 1540 3.8				98	2.7	50	95	44		0.10			_	3.2 0.38	_	36.5		3.3						0.110	19.	_	_	4 0.160	-	23.69		578 ·	0.0006		0.82	_	32800	-	32.8		2.361	2.361
8/23/2019 1130 4.4	-	0.32		43	2.8	50	95	21		0.16			_	3.8 0.53	-	42.3			0.020			_		0.143	_		_	0 0.239	-	28.35		372 ·	0.0004	0.0000	0.00	0 2.8297	2650	-	2.65	0.0306	1.259	3.620
9/18/2019 945 4.2 9/23/2019 930 4.8		0.25		69 87	2.7 2.7	50 50	 90	3.7 71.9		0.16	_	_		3.6 0.44 4.1 0.58	_	39.11 45.02	0.9 2.8		0.025					0.145 0.166	22.	_		8 0.246 5 0.165		29.23 23.92	0.0 33.9 <0	- · 286 ·	- 0.0001	- 0.0000	0.00	- 0 2.8298	- 151000	-	- 151	- 1.5901	- 7.838	- 11.458
10/22/2019 1120 13.1				585	2.9	50		23.8		0.10		_		1.9 1.48	-	71.03		12.3				_	12.5			_	_	.1 0.004	-	3.68		.86 ·	0.0014	_	0.00	_	110000	-	110		40.715	52.172
11/27/2019 1045 17.4		0.18	97 22	237	3.0	50	80	1.3	14.5	0.25	29	9.13 2	2.7 1	4.3 2.17	·	85.59	0.4	14.2	0.123		20.40	1.1	17.3 (0.004	3.6	66 (0.8 16	.7 0.022	2	8.60	0.4		-	-	-	-	-	-	-	-	-	-
12/18/2019 1010 10.2	-	0.17	95 22		2.3	40		0.6		0.03	_	_		9.8 1.5		71.65		10.4						0.003	3.2	_		.2 0.005		4.13		286 ·	0.0001	_	0.00	_	837	-	0.84		17.628	69.800
2/4/2020 1000 16.8		0.12		432	2.4	40			16.2	0.41	37	7.15	- 1	5.7 0.7		47.53		17.2	0.003		3.17		16.4 (0.000	0.0	_	17.	.1 0.003	3	3.17	<0	286 ·	0.0001	0.0000	0.00	0 2.8303	105	-	0.11	0.0008	0.189	69.990
2/21/2020 1200 2/26/2020 930 28.8		0.06		842 842	2.7 2.7	40 40	 80	0.1	 24.8	0.27	20	 9.84 (0.0 2	7.3 0.02	1	 8.29	0.0	 27.5			 15.14		 27.2 (_	0.3 27	.4 0.010		 5.72	0.2	· ·	-	-	-	-	-	-	-	-	-	-
4/1/2020 910 11.9		0.14		680	2.3	40	75	0.1		2.46	_			0.4 0.61	_	45.73	0.0		0.070			_	_	0.832	53.		_	.7 0.08	-	16.61		286	0.0001	_	0.00	_	43.6	-	0.04	0.0003	0.029	70.019
5/7/2020 820 7.8		0.19	101 54	450	2.2		80.5	0.0	7.2	0.26	_		0.3	7.1 1.03	-	59.57		7.0				0.3		0.007	4.9		_	4 0.000	-			286 ·	0.0001	_	_	_	29.5	-	-	0.0003	0.010	70.028
6/2/2020 852 5.9		0.20	102 60	D11	2.2	40		0.0	5.6	0.22	27	7.52 0	0.0	5.2 0.75	;	50.89	0.0	6.5	0.013			0.0	5.8 (0.113	19.	.76 (0.2 6.	0 0.00	3	3.22	0.0 <0	286 ·	0.0001	0.0000	0.00	0 2.8304	234	-	0.23	0.0022	0.028	70.056
7/31/2020 1200 5.0				175	2.2	40		0.0		0.19		_	_	4.3 0.70	-	49.32	0.0						4.7 (_	_	8 0.000	-		0.0	. .	-	-	-	-	-	-	-	-	-	-
8/5/2020 1100 4.8 10/2/2020 1245 5.1			103 71		2.2	40				0.19		5.31 5.46 8	_	4.1 0.70 4.5 0.75	_	48.61		4.7 5.0	0.000		5.01			0.19	25. 24.			7 0.000 0 0.000		4.78		· ·	-	-	-	-	-	-	-	-	-	-
10/2/2020 1245 5.1 11/6/2020 900 11.7		0.21		293 129	2.2 2.3	40 40	85 78	1.9 0.9		0.19	_		_	4.5 0.75 9.7 1.44	-	51.10 69.87		5.0 10.9						0.17	24. 9.7	_		.9 0.000		6.06 13.34	0.1		- 0.0001	- 0.0000	0.00	- 0 2.8306	- 1580	-	- 1.58	- 0.0134	- 1.010	- 71.066
12/9/2020 1309 13.5		0.15		775	2.4			0.7		0.06		4.38 0		2.3 1.66	-	76.28		12.8					13.8		15.	_		.9 0.000		14.19			-	-	-	-	-	-	-	-	-	-
1/7/2021 1049 14.9		0.185	99 10	314	2.4	40		0.1	13.8	0.14	21	1.78 1	1.1 1	3.2 1.66	;	75.05	0.0	14.4	0.000			0.0	14.2	0.0	-	- (0.0 14	.6 0.000)		0.0		-	-	-	-	-	-	-	-	-	-
3/2/2021 1400 18.9		0.077		602	2.5	40		0.0		0.22				7.0 0.61	_	45.31		18.3						0.000		_		.2 0.000	_	18.78		319 ·	0.0002	0.0000	0.00	0 2.8307	<164	-	0.0820	0.0005	0.714	71.780
4/7/2021 930 10.1		0.112		460	2.3		63.4	0.0		0.20			_	9.1 1.22	-	64.56		10.0						0.0	6.		_	.2 0.000	_	5.92			-	-	-	-	-	-	-	-	-	-
5/17/2021 930 8.1 6/15/2021 1100 7.9		0.115	78 13 77 13	393	2.2 2.2	40 40	69 75.1	0.0		0.32	_		0.0	7.1 1.02 7.0 1.02	-	59.28 59.14		7.8 7.7						0.0	4.8	_	0.0 8.0	0 0.000	-	4.68 4.91		2.6 ·	0.0013	_	0.00	_	58000 85000	-	58.0 85.0	0.4083	15.255 9.157	87.034 96.192
8/25/2021 1240 7.9		0.133		237	2.2	40		1.3		0.33	_	_		6.9 1.02	_	60.85			0.000					0.0		_	0.0 7.	_	-		0.0		0.0010	_	_	_	3600	-	3.6	-	5.177	101.368
10/13/2021 1205 11.4		0.135	85 15	268	2.3	40	80.9	2.0	10.9	0.12	20	0.07 3	3.9 1	0.1 1.41		69.46	0.0	11.1	0.000		17.00	0.0	11.2	0.0	21.	.09 (0.0 11	.2 0.000)	35.2	0.0		-	-	-	-	1 -	-	-	-	-	-
1/3/2022 1330 16.5		0.119	79 16	682	2.4	40	77.1	0.0	16.2	0.05	12	2.71 0	0.2 1	4.7 1.55	;	72.45	0.2	15.5	0.000		16.22	0.2	15.9	0.0	15.	.96 (0.2 16	.0 0.00	D	17.52	0.1		-	-	-	-	-	-	-	-	-	-
2/23/2022 1135 12.6	-	0.157		904	2.3	40	72	0.0		0.25				1.7 0.89	-	55.18		12.9				_		0.0	6.0	_	_	.8 0.000	-	6.76		I.9 ·	0.0010	-	_	_	6900	-	6.9	_	6.692	108.060
5/12/2022 915 9.2 5/26/2022 1404 8.2		0.167			2.2 2.3		81.5 83	0.1		0.29				3.2 1.03 7.7 1.07	-	59.34 60.67		8.9 8.5			10.88			0.0	11.	_		0 0.000	_	11.42 1.35		1.5 ·	0.0008	0.0000	0.00	1 2.8340	<1500	-	0.8	0.0064	2.551	110.611
8/10/2022 1020 8	- 1			485	2.3			0.0		0.29				7.2 0.99	_	57.39		0.5 7.9						0.0		_		0.000	_	11.21		3.5	0.0018	-	0.00		3800	-	3.8	-	- 1.399	- 112.010
10/10/2022 1420 8.1				868	2.2	40	94	0.5		0.30				7.2 1.00	_	58.54								0.0		_	_	0 0.000	-			2.8	0.0014		_		34000	-	-	0.2543	8.251	120.261
12/16/2022 1200 15.5		0.126	88 24	186	2.4	40	77	16.3	15.3	0.00	17	7.83 0	0.0 1	3.6 2.18	5	85.96	9.5	15.3	0.000		18.11	0.0	15.5	0.0	18.	.02 0	0.0 15	.5 0.000	þ	18.48	0.0 <	5.1 ·	0.0026	0.0000	0.00	2 2.8367	18000	-	18.0	0.1427	10.899	131.161
12/29/2023 11:30				421	2.4	40	-					_	_					-										-				- -						-				
1/6/2023 1320				553			 67.9						- 1									-						.7 0.00					-									
1/26/2023 1153 16.8 2/27/2023 1200		0.165		553 946	2.5 2.4	40 40	01.9		16.5			8.36	- 1	4.8 2.23		91.43		16.6	0.004		18.32	-	16.7	0.0			16	. 0.000	′	18.29			-									
3/10/2023 903 15.6		0.136		207	2.4		70	0.0	15.3	0.00	18	8.19 0	0.0 1	3.7 1.99	,	82.18	0.0	15.4	0.000		21.24	0.0	15.5	0.0			0.0 15	.5 0.000	5		0.0 5	.4 .	0.0054	_	0.00	_	2700	-	2.7	-	3.481	134.641
3/17/2023 1345 13.9	-	0.136			2.4	40									-	-													-								<u> </u>	-				
4/10/2023 1439			25	i891		-							-													-		·														
5/11/2023 1315 14.7	-	0.119	80 26		2.3	40		0.0	14.4	0.00	619 14	-	-	2.9 2.16	;	85.6	0.0	14.4	0.00	627		0.0	14.6	0.00	652 15.	.19 (-	.6 0.00	625	14.56		2.5 -	0.0013	-	0.00	-	12000	-	12	-	3.1688	137.810
5/22/2023 1200 7/12/2023 1150 32.5		0.064		670 702	 2.7	 40	 96.8		 31.7		 544 12			 5.2 0.84	 5 2974		0.0	 31.8		 683	 15.92		 31.9		 688 16.	-	 0.0 31.	_	 676			 2.6 -	0.0013	0.0000	0.00	 03 2.8399	 30305			 5 0.1567	 5.4161	 143.226
NOTES:		II		102	2.1	40	<i>3</i> U.0	0.0	31.7	0.0	J44 12	2.00 0			1	54.08			0.0	000	10.92	0.0	51.9	0.00	10.		0.0 31.	., 0.00	5/6	15.75	0.0		0.0013			-	30305			0.1007	J.4101	143.220
¹ flow rate not measured, assumed val denotes not collected	lue for pe	formance ca	culation.											 differential degrees Fal 			mg = mil ml - millil																	dp = differe F = degrees				mg = mi ml - milli	illigrams liliter			
													ft ³	= cubic feet			nl = nond	oliter			1 -													ft ³ = cubic fe	et			nl = non	noliter			

F = degrees Fahrenheit ft³ = cubic feet

Table 1 SVE System and Well Data **Cenex Auburn Site** Auburn, Washington Farallon PN: 301-004

VOC = volatile organic compound

m³ = cubic meters μg = microgram

lbs = pounds KO = knockout

m³ = cubic meters µg = microgram

Amount of Benzene Removed Between Testing ³ (Ibs) Total Amount of Benzene Removed to Date ⁴ (Ibs) GRO Analytical Results (ug/m3) GRO Analytical Results (n/m1) GRO Analytical Results (n/m1) GRO Concentration ¹ (mg/m3) GRO Removal Rate ² (Ibs/day) Amount of GRO Removed Between Testing ³ (Ibs) Date ⁴ (Ibs)

ppm = parts per million measured by photoionization

detector (PID) calibrated using isobutylene span gas ppmv = parts per million volume psi = pounds per square inch SCFM = standard cubic feet per minute

SVE = soil vapor extraction VOC = volatile organic compound

Table 2 AS System and Well Data Cenex Auburn Site Auburn, Washington Farallon PN: 301-004

						(i		CA	S-1	СА	S-2	СА	S-3	СА	S-4	CA	S-5	CA	S-7	CAS	S-12	CAS	S-14	CAS	S-15	CAS	6-16	CAS	S-17	СА	S-18	СА	S-19	CAS	S-20	CAS-2	1	CAS-2	22	
		Run Time	Amps	(Hz)	Ire (F)	ure (F)																																		Σ
Date	Time	Compressor Total Run (hrs)	Compressor Running A	Compressor Frequency	Pre-Cooling Temperature	Post-Cooling Temperature	System Pressure (psi)	Well Pressure (psi)	Flow Rate (SCFM)	Well Pressure (psi) Elow Bate (SCEM)	FIOW Kate (SCFM)	Well Pressure (psi)	Flow Rate (SCFM)	TOTAL Flow Rate (SCFM)																										
5/29/2019	1415				152	105	9.2	0.0	2.8	9.9	0.8	8.3	0.9	9.8	0.0	8.9	0.0	3.0	3.1	10.3	0.0	9.1	6.2	8.2	2.9	8.9	3.2	9.9	0.0	9.0	3.7	6.7	3.2	5.9	2.9	6.8 3	3.1	8.1 3	3.0	35.8
5/25/2013	1600							8.9	0.6	9.1	0.8	7.7	2.8	9.3	0.7	8.0	3.1	3.0	3.0	10.2	0.6	6.0	3	7.0	2.9	7.7	3.3	9.1	0.8	6.2	3.1	5.5	3.2	4.0	3.1	5.5 3	3.0	7.0 3	3.4	37.4
6/13/2019	1415	70.0	8.3	60			9.0	9.2	0.0	9.2	0.0	5.3	3.3	9	3	7.5	3	9.5	1.7	0.0	0.0	5.2	2.9	6.8	2.5	7.1	2.9	9.2	1.2	5.9	3.2	5	3	4.3	2.9	5.3 2	2.4	6.9 3	3.0	35.0
7/18/2019	1540	496.0	8.3	60	160	120	10.0	8.9	0.0	9.0	0.0	7.1	3.1	9.0	3.3	7.5	2.9	9.1	2.3	0.0	0.0	5.0	2.5	6.8	2.7	7.0	2.9	9.7	1.7	5.0	2.9	4.5	3.0	4.2	3.0	5.0 2	2.4	7.0 2	2.5	35.2
7/19/2019	1230	517.8	8.3	60	155	110	10.9	9.8	0.0	9.0	0.0	8.0	3.1	9.0	3.7	8.0	2.9	10.9	2.8	0.0	0.0	5.5	2.6	7.0	2.7	7.2	3.0	9.7	1.7	5.9	3.0	5.0	3.0	5.0	3.1	5.4 2	2.4	7.0 2	2.5	36.5
8/23/2019	1130	641.0	8.5	60	155	114	10.2	9.6	0.0	9.0	0.0	7.8	2.9	9.0	2.3	7.9	3.0	10.1	3.4	10.0	0.0	5.1	2.5	7.0	2.8	7.1	2.9	9.1	1.7	5.7	3.0	4.9	3.0	5.0	3.1	5.2 2	2.4	7.0 2	2.7	35.7
9/18/2019	1005	766.8	8.3	60	145	105	11.2	10.0	0.0	9.0	0.0	8.1	3.4	9.0	2.6	8.3	3.5	10.1	3.7	10.0	0.0	5.7	2.6	7.1	2.9	7.5	3.1	9.6	2.2	6.1	3.1	5.2	3.1	5.3	2.9	5.8 2	2.2	7.8 0	0.0	35.3
9/23/2019	1030	885.1	8.3	60	147	104	11.4	10.0	0.0	9.0	0.0	8.4	3.5	9.1	3.0	8.6	2.9	10.1	3.2	10.0	0.0	5.9	2.7	7.2	2.8	7.7	3.2	9.9	2.3	6.0	3.1	5.2	3.1	5.5	2.9	5.9 2	2.3	7.4 0	0.0	35.0
10/22/2019	1205	1583	8.3	60	147	105	12.2	10.5	0.0	9.1	0.0	9.1	3.5	9.8	3.2	9.0	3.4	10.2	3.2	10.0	0.0	6.2	2.6	8.0	2.9	8.2	3.1	10.1	2.4	7.0	3.0	6.0	3.1	6.2	2.8	6.0 2	2.2	8.0 2	2.6	38.0
	1355							Clo	sed	9.1	2.9	9.0	2.9	9.7	2.8	9.0	3.4	10.2	2.4	10.2	1.6	6.2	2.5	8.0	2.9	8.1	3.0	10.0	2.4	7.0	3.0	6.0	3.0	6.1	2.8	6.0 2	2.2	8.0 2	2.6	40.4
11/27/2019	1045	2235	8.6	60	95	55	14.7	Clo	sed	10.8	3.3	11.0	3.2	11.0	2.7	11.1	3.1	10.8	1.9	10.6	1.9	8.0	2.6	9.7	2.7	9.8	3.0	11.2	1.6	9.0	3.0	8.0	2.8	8.9	2.8	7.5 1	.9	9.9 2	2.7	39.2
12/18/2019	1010	2278	8.3	60	135	92	12.0	Clo	sed	9.9	3.5	10.0	3.5	10.5	2.8	10.1	3.1	11.0	1.2	10.6	1.9	7.1	2.7	9.0	2.8	9.0	3.2	11.0	1.9	8.0	3.1	7.0	2.8	7.1	2.8	6.9 1	.9	8.9 2	2.7	39.9
2/4/2020	1030	3430	8.5	60	150	98	14.0	Clo	sed	12.4	3.5	12.2	2.9	13.0	2.6	12.3	3.0	13.1	1.2	13.0	1.9	9.4	2.5	11.0	2.6	11.2	3.0	13.0	2.0	9.9	2.9	9.0	2.6	9.2	2.7	9.1 1	.8	11.0 2	2.7	37.9
2/21/2020	1200	3840	8.6	60	160	110		-	-																															
2/26/2020	930	3840	8.8	60	150	100	15.0	Clo	sed	14.5	3.5	14.6	3.2	14.5	2.6	15.0	3.5	13.5	2.4	13.5	1.7	11.0	1.5	13.0	2.1	13.0	3.0	15.0	1.6	12.5	2.7	11.5	2.6	12.2	2.8	10.5 1	.7	13.3 2	2.6	37.5
4/1/2020	910	4679	8.5	60	150	106	14.0	Clo	sed	12.2	3.3	12.0	3.2	12.6	2.5	12.0	3.5	12.9	2.3	12.9	1.7	9.0	1.7	10.9	2.2	11.0	3.0	12.9	1.7	9.5	2.9	8.8	2.6	9.0	2.8	8.9 1	.7	10.9 2	2.6	37.7
5/7/2020	910	5448	8.4	60	150	111	13.6	Clo	sed	11.9	3.5	11.3	3.2	12.1	2.5	11.3	3.5	12.3	2.3	12.2	1.7	8.3	1.1	10.1	2.1	10.4	3.0	12.1	1.9	8.8	2.7	8.0	2.6	8.1	2.9	8.1 1	.7	10.1 2	2.6	37.3
6/2/2020	852	6009	8.4	60	155	110	13.2	Clo	sed	11.5	3.4	11.1	3.1	11.9	2.5	11.1	3.5	12.0	2.3	11.9	1.9	7.9	1.2	9.7	2.2	10.0	3.0	12.0	2.0	8.4	2.7	7.8	2.5	8.0	2.8	7.8 1	.7	9.9 2	2.6	37.4
7/31/2020	1200	7173	8.4	60	155	113	13.2	Clo	sed	10.2	4.6	10.2	3.3	10.9	2.6	10.4	3.5	11.3	1.9	11.1	1.8	6.8	1.2	8.3	2.2	9.1	2.9	11.9	2.0	7.0	2.7	6.2	2.5	7.1	2.8	7.0 1	.7	9.0 2	2.0	37.7
8/5/2020	1100	7177	8.6	60	148	110	13.8	Clo	sed	7.3	3.0	11.1	2.9	11.3	2.5	11.4	2.8	11.2	2.6	11.0	2.2	7.2	1.0	9.1	2.2	10.0	2.9	11.5	2.5	8.9	2.7	7.6	2.5	8.8	2.7	7.7 1	.7	9.8 2	2.0	36.2
10/2/2020		8291	8.3	60	155	110	12.2	Clo		4.9	2.9	10.2		10.8		10.0	3.2	10.8	3.2	10.5		6.2	1.2	8.7	2.2	9.2	2.9	11.1	2.6	7.9		6.8		7.8	2.9				1.9	38.0
11/6/2020	900	9128	8.3	60	145	95	12.5	Clo	sed																							-	-	-		7.2 1				
12/9/2020	1309	9768	8.4	60	150	100	13.5	Clo	sed																						_	_	_	_		7.9 1				
1/7/2021	1049	10307	8.6	60	135	81	14.1		sed																											9.5 1				
2/1/2021	1400				160	105	15.1																													9.6 1				37.5
3/2/2021		11595		60	160	107	15.1																													9.6 1				37.5
4/7/2021		12454		60	155	100																											-			8.9 1				35.5
5/17/2021		13386		60	159	110																														9.0 1		9.9 1		36.4
6/15/2021	1100	13827	8.4	60	165	120		+ +						11.9	2.2	11.2	3.1	12.9	2.4	12.1	2.7															7.8 1	.9	9.6 1	1.7	36.1
8/17/2021		14181		60	183	115		15.8						Clo	sed	Clo	sed	Clo	sed	Clo	sed				4.0							_	_				d	Close	d	35.5
8/25/2021	1240	14230	8.8	60	190	130	17.8	14.2				Clo	sed				3.8							-	-					Close	d	35.3								
10/13/2021	+ +	15261		60	132	96	18.0	<u> </u>	sed			Clo	sed				4.0							-					d	Close	d	34.9								
1/3/2022		16676		60	175	105		15.6					sed	Clo	sed	Clo	sed	Clo	sed	Clo	sed				3.7							_	-					Close		34.2
2/23/2022	1135	17897	9.1	60	170	110	20.0	18.0	1.9	13.9	1.2	Clo	sed	10.9	3.1	12.9	3.9	13.5	5.3	14.9	3.6	13.5	7.3	11.1	4.6	11.3	4.2	Closed	d	Close	d	35.1								

Table 2 AS System and Well Data Cenex Auburn Site Auburn, Washington Farallon PN: 301-004

		Time	Amps	(Hz)	e (F)	re (F)		CA	S-1	CAS	S-2	CAS-3	CAS-4	CAS-5	CAS-7	CAS-12	CA	S-14	CAS	6-15	CAS	-16	CAS	-17	CAS	6-18	CAS	6-19	CAS	S-20	CAS-21	CAS-22	
Date	Time	Compressor Total Run T (hrs)	Compressor Running An	Compressor Frequency (Pre-Cooling Temperature (F)	Post-Cooling Temperature	System Pressure (psi)	Well Pressure (psi)	Flow Rate (SCFM)	Well Pressure (psi)	Flow Rate (SCFM)	Well Pressure (psi) Flow Rate (SCFM)	Well Pressure (psi)	Flow Rate (SCFM)	Well Pressure (psi) Flow Rate (SCFM)	Press	AL FIG																
5/12/2022	915	19740	9.0	60	185	110	20.0	17.5	2.1	13.0	1.3	Closed	Closed	Closed	Closed	Closed	9.5	2.7	11.5	3.9	12.5	5.5	14.0	3.5	12.8	7.2	10.0	4.7	10.6	4.2	Closed	Closed	35.1
5/26/2022	1404	19936	9.1	60	145	86	19.5	16.8	1.0	12.1	2.0	Closed	Closed	Closed	Closed	Closed	10.0	3.4	12.1	3.8	12.8	5.1	14.1	3.2	13.9	6.4	10.2	4.4	10.1	3.9	Closed	Closed	33.2
8/10/2022	1020	21479	8.8	60	185	124	17.9	15.0	1.0	0.0	3.4	Closed	Closed	Closed	Closed	Closed	7.9	3.5	10.0	4.0	10.8	5.3	12.1	3.2	10.2	7.2	8.0	4.5	8.3	4.1	Closed	Closed	36.2
8/10/2022	1200	21491	8.8	60	185	124		15.9	1.5	Clos	sed	Closed	Closed	Closed	Closed	Closed	7.9	3.7	10.0	4.3	11.0	5.7	12.0	3.5	10.1	7.6	8.0	4.8	8.4	4.3	Closed	Closed	35.4
10/10/2022	1420	22861	8.7	60	195	124	18.1	15.3	1.0	Clos	sed	Closed	Closed	Closed	Closed	Closed	7.9	3.9	9.8	4.3	10.8	5.9	12.0	3.8	10.5	7.7	7.9	4.8	7.9	4.3	Closed	Closed	35.7
12/16/2022	1200	24179	8.9	60	195	106	19.5	16.9	2.5	Clos	sed	Closed	Closed	Closed	Closed	Closed	9.5	4.0	11.9	4.3	12.1	5.9	13.6	3.8	12.1	7.7	10.1	4.9	8.9	4.3	Closed	Closed	37.4
12/29/2023	1130	24415	9.2	60	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3/10/2023	903	24546	0.0	0	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3/17/2023	1345	24547	8.9	60	180	116	20.0	17.2	0.1	12.8	1.0	Closed	Closed	Closed	Closed	Closed	10.3	3.7	12.9	4.1	13.0	5.7	14.7	3.5	13.1	7.5	11.0	4.6	9.9	3.6	Closed	Closed	33.8
4/10/2023	1439	25061	-	-	-	-	-	-	-	-	-	Closed	Closed	Closed	Closed	Closed	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Closed	Closed	-
5/11/2023	1315	25801	8.6	50.0	176	112	16.5	13.8	0.5	11.5	0.5	Closed	Closed	Closed	Closed	Closed	9.0	3.1	11.1	3.3	11.2	4.3	13.0	2.4	10.9	6.3	9.1	3.8	7.9	3.0	Closed	Closed	27.2
5/22/2023	1200	25840	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/12/2023	1150	26873	8.4	50.0	170.0	120.0	15.5	12.5	0.5	10.2	0.5	Closed	Closed	Closed	Closed	Closed	8.0	3.2	10.0	3.4	10.5	4.5	12.0	2.6	9.5	6.3	8.0	3.9	6.1	3.1	Closed	Closed	28.0

-- denotes not collected

AS = air sparge

hrs = hours

Hz - hertz

F = degrees Fahrenheit

IOW = inches of water

dp = differential pressure

psi = pounds per square inch

SCFM = standard cubic feet per minute

Table 3Air Analytical DataCenex Auburn SiteAuburn, WashingtonFarallon PN: 301-004

				Analytical Results (nanoliter per microliter [ppmv])				v])
Sample Location	Sample Identification	Sample Methodology	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	GRO
		EPA 2021B	5/29/2019	< 0.31	< 0.26	< 0.23	< 0.46	< 21
		EPA 2021B	6/24/2019	0.72	< 0.26	<0.23	< 0.46	< 21
		EPA TO-15	7/18/2019	0.000181	0.000623	0.00171	0.0031	8.030 ^{E*}
		EPA TO-15	8/23/2019	0.000116	0.000610	0.00287	0.0126	0.647
		EPA TO-15	9/23/2019	< 0.0000895	< 0.0004	0.00294	0.0075	36.9 ^E
		EPA TO-15	10/22/2019	< 0.000895	< 0.0040	< 0.0040	< 0.016	27.0 ^E
		EPA TO-15	12/18/2019	< 0.0000895	< 0.00040	< 0.00040	< 0.0016	0.205
		EPA TO-15	2/4/2020	< 0.0000895	< 0.00040	< 0.00040	< 0.0016	0.026
		EPA TO-15	4/1/2020	< 0.0000895	< 0.00040	< 0.00040	< 0.0016	0.011
		EPA TO-15	5/7/2020	< 0.0000895	< 0.00040	< 0.00040	< 0.0016	0.007
		EPA TO-15	6/2/2020	< 0.0000895	< 0.00040	< 0.00040	< 0.0016	0.057
CV/E System	Effluent	EPA TO-15	11/6/2020	< 0.0000895	< 0.00040	< 0.00040	< 0.0016	0.385
SVE System	Enluent	EPA TO-15	3/2/2021	< 0.000100	< 0.00100	< 0.00400	< 0.0060	< 0.040
		EPA TO-15	5/17/2021	< 0.0008	< 0.04	< 0.0008	0.00323	14
		EPA TO-15	6/15/2021	<0.0018	<0.09	<0.0018	<0.0054	21
		EPA TO-15	8/25/2021	<0.00061	<0.03	<0.00061	<0.00181	0.87
		EPA TO-15	2/23/2022	<0.0006	<0.03	<0.0006	0.00210	1.70
		EPA TO-15	5/12/2022	<0.00046	<0.023	<0.00046	<0.00138	<0.370
		EPA TO-15	8/10/2022	<0.0011	<0.055	<0.0011	<0.0033	3.80
		EPA TO-15	10/10/2022	<0.00087	<0.043	0.0012	0.0093	8.30
		EPA TO-15	12/16/2022	<0.0016	<0.080	<0.0016	<0.0048	4.40
		EPA TO-15	3/10/2023	0.0017	<0.039	<0.00078	<0.00238	0.65
		EPA TO-15	5/11/2023	<0.00078	<0.039	<0.00078	0.00450	2.80
		EPA TO-15	7/12/2023	<0.00082	<0.016	0.0012	0.00770	9.50

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

EPA = U.S. Environmental Protection Agency

GRO = total petroleum hydrocarbons as gasoline-range organics

E denotes estimated analytical value, result exceeds the linear working range of the laboratory equipment

* denotes result not within established laboratory control limits

ppmv = parts per million volume SVE = soil vapor extraction

1 of 1

Well	Well Casing	Measurement	Depth to Water	Elevation
Identification	(feet) ¹	Date	(feet) ²	(feet) ¹
		1/17/2018	18.52	70.38
		7/31/2018	23.24	65.66
		1/22/2019	20.92	67.98
		8/21/2019	24.51	64.39
		11/25/2019	23.92	64.98
		2/25/2020	16.80	72.10
CMW-2	88.9	5/27/2020	20.77	68.13
		11/11/2020	23.52	65.38
		5/24/2021	21.05	67.85
		11/29/2021	20.07	68.83
		5/26/2022	19.17	69.73
		11/30/2022	23.31	65.59
		5/30/2023	21.01	67.89
01414	00.00	1/17/2018	20.08	70.60
CMW-4	90.68	7/31/2018	25.60	65.08
01444	00.00	1/17/2018	20.94	69.72
CMW-6	90.66	7/31/2018	dry	dry
	89.94	1/17/2018	20.55	69.39
		7/31/2018	25.31	64.63
		1/22/2019	22.95	66.99
		8/21/2019	26.52	63.42
		11/25/2019	25.90	64.04
		2/24/2020	18.88	71.06
CMW-8		5/27/2020	22.86	67.08
		11/11/2020	25.45	64.49
		5/24/2021	23.12	66.82
		11/29/2021	22.23	67.71
		5/25/2022	21.25	68.69
		11/29/2022	25.55	64.39
		5/30/2023	23.05	66.89
		1/17/2018	18.80	NS
		7/31/2018	23.71	NS
		1/22/2019	21.32	NS
		8/21/2019	24.96	NS
		11/25/2019	24.40	NS
		2/25/2020	17.20	NS
CMW-10	NS	5/27/2020	21.23	NS
		11/11/2020	24.00	NS
		5/24/2021	21.48	NS
		11/29/2021	20.61	NS
		5/25/2022	19.57	NS
		11/29/2022	24.00	NS
		5/30/2023	21.45	NS

Well	Well Casing	Measurement	Depth to Water	Elevation
Identification	(feet) ¹	Date	(feet) ²	(feet) ¹
	× /	1/17/2018	20.12	69.90
		7/31/2018	25.84	64.18
		1/22/2019	22.45	67.57
		8/21/2019	26.07	63.95
		11/25/2019	25.47	64.55
		2/25/2020	18.43	71.59
CMW-12	90.02	5/27/2020	22.35	67.67
		11/11/2020	25.04	64.98
		5/24/2021	22.60	67.42
		11/29/2021	21.77	68.25
		5/25/2022	20.68	69.34
		11/29/2022	25.08	64.94
		5/30/2023	22.55	67.47
		1/17/2018	19.63	70.04
		7/31/2018	22.48 ³	67.19 ³
		1/22/2019	22.03	67.64
		8/21/2019	25.71	63.96
		11/25/2019	25.06	64.61
		2/25/2020	17.89	71.78
CMW-13	89.67	5/27/2020	21.91	67.76
		11/11/2020	24.65	65.02
		5/24/2021	22.16	67.51
		11/29/2021	21.32	68.35
		5/25/2022	20.33	69.34
		11/29/2022	24.68	64.99
		5/30/2023	22.15	67.52
CMW-15	87.22	1/17/2018	17.78	69.44
CIVIV-15	01.22	7/31/2018	22.53	64.69
		1/17/2018	18.96	NS
		7/31/2018	23.64	NS
		1/22/2019	21.35	NS
		8/21/2019	24.91	NS
		11/25/2019	24.40	NS
		2/24/2020	17.25	NS
CMW-25	NS	5/27/2020	21.16	NS
		11/11/2020	23.98	NS
		5/24/2021	21.44	NS
		11/29/2021	20.63	NS
		5/25/2022	19.57	NS
		11/29/2022	23.96	NS
		5/30/2023	21.45	NS

Well	Well Casing	Measurement	Depth to Water	Elevation
Identification	(feet) ¹	Date	(feet) ²	(feet) ¹
	× /	1/17/2018	17.31	70.49
		7/31/2018	21.97	65.83
		1/22/2019	19.64	68.16
		8/21/2019	23.24	64.56
		11/25/2019	22.67	65.13
		2/25/2020	15.56	72.24
CMW-26	87.80	5/27/2020	19.50	68.30
		11/11/2020	22.30	65.50
		5/24/2021	19.74	68.06
		11/29/2021	18.93	68.87
		5/25/2022	17.90	69.90
		11/29/2022	22.30	65.50
		5/30/2023	19.77	68.03
		1/17/2018	18.79	70.31
		7/31/2018	23.70	65.40
	89.10	1/22/2019	21.35	67.75
		8/21/2019	24.96	64.14
		11/25/2019	24.37	64.73
		2/25/2020	17.17	71.93
CMW-27		5/27/2020	21.22	67.88
		11/11/2020	23.97	65.13
		5/24/2021	21.47	67.63
		11/29/2021	20.68	68.42
		5/25/2022	19.56	69.54
		11/29/2022	24.03	65.07
		5/30/2023	21.46	67.64
		1/17/2018	19.13	70.35
		7/31/2018	23.89	65.59
		1/22/2019	21.55	67.93
		8/21/2019	25.14	64.34
		11/25/2019	24.56	64.92
		2/24/2020	17.39	72.09
CMW-28	89.48	5/27/2020	21.39	68.09
		11/11/2020	24.15	65.33
		5/24/2021	21.64	67.84
		11/29/2021	20.80	68.68
		5/25/2022	19.77	69.71
		11/29/2022	24.16	65.32
		5/30/2023	21.70	67.78

Well	Well Casing	Measurement	Depth to Water	Elevation
Identification	(feet) ¹	Date	(feet) ²	(feet) ¹
		1/17/2018	17.48	70.55
		7/31/2018	22.19	65.84
		1/22/2019	19.85	68.18
		8/21/2019	23.47	64.56
		11/25/2019	22.91	65.12
		2/24/2020	15.76	72.27
CMW-29	88.03	5/27/2020	19.66	68.37
		11/11/2020	22.51	65.52
		5/24/2021	19.93	68.10
		11/29/2021	19.13	68.90
		5/25/2022	18.10	69.93
		11/29/2022	22.52	65.51
		5/30/2023	19.96	68.07
		1/17/2018	16.82	70.76
		7/31/2018	21.52	66.06
	87.58	1/22/2019	19.19	68.39
		8/21/2019	22.84	64.74
		11/25/2019	22.28	65.30
		2/25/2020	15.16	72.42
CMW-30		5/27/2020	19.02	68.56
		11/11/2020	21.88	65.70
		5/24/2021	19.28	68.30
		11/29/2021	18.53	69.05
		5/25/2022	17.45	70.13
		11/29/2022	21.81	65.77
		5/30/2023	19.31	68.27
		1/17/2018	19.49	69.53
		7/31/2018	24.32	64.70
		1/22/2019	21.90	67.12
		8/21/2019	25.54	63.48
		11/25/2019	24.91	64.11
		2/24/2020	17.80	71.22
CMW-31	89.02	5/27/2020	21.81	67.21
		11/11/2020	24.43	64.59
		5/24/2021	22.06	66.96
		11/29/2021	21.18	67.84
		5/25/2022	20.22	68.80
		11/29/2022	24.56	64.46
		5/30/2023	22.04	66.98

Well	Well Casing	Measurement	Depth to Water	Elevation
Identification	(feet) ¹	Date	(feet) ²	(feet) ¹
		1/17/2018	19.47	69.60
		7/31/2018	24.25	64.82
		1/22/2019	21.85	67.22
		8/21/2019	25.45	63.62
		11/25/2019	24.84	64.23
		2/25/2020	17.84	71.23
HMW-9	89.07	5/27/2020	21.76	67.31
		11/11/2020	24.40	64.67
		5/24/2021	22.00	67.07
		11/29/2021	21.18	67.89
		5/25/2022	20.18	68.89
		11/29/2022	24.50	64.57
		5/30/2023	21.97	67.10
		1/17/2018	19.40	69.78
		7/31/2018	24.13	65.05
		1/22/2019	21.77	67.41
	89.18	8/21/2019	23.35	65.83
		11/25/2019	24.78	64.40
		2/24/2020	17.70	71.48
HMW-10		5/27/2020	21.66	67.52
		11/11/2020	24.34	64.84
		5/24/2021	21.91	67.27
		11/29/2021	21.08	68.10
		5/25/2022	20.04	69.14
		11/29/2022	24.39	64.79
		5/30/2023	21.86	67.32
		1/17/2018	17.51	NS
		7/31/2018	22.27	NS
		1/22/2019	19.89	NS
		8/21/2019	23.30	NS
		11/25/2019	22.87	NS
		2/25/2020	15.82	NS
HMW-11	NS	5/27/2020	19.76	NS
		11/11/2020	22.46	NS
		5/24/2021	20.03	NS
		11/29/2021	19.25	NS
		5/25/2022	18.21	NS
		11/29/2022	22.52	NS
		5/30/2023	20.02	NS

Well	Well Casing	Measurement	Depth to Water	Elevation
Identification	(feet) ¹	Date	(feet) ²	(feet) ¹
		1/17/2018	17.82	70.50
		7/31/2018	22.51	65.81
		1/22/2019	20.21	68.11
		8/21/2019	23.80	64.52
		11/25/2019	23.24	65.08
		2/24/2020	16.13	72.19
HMW-13	88.32	5/27/2020	20.02	68.30
		11/11/2020	22.85	65.47
		5/24/2021	16.00	72.32
		11/29/2021	19.50	68.82
		5/25/2022	16.32	72.00
		11/29/2022	16.20	72.12
		5/30/2023	20.29	68.03

NOTES:

¹Elevation in feet above mean sea level.

²Depth to water in feet below the top of the well casing.

³Depth to water measurement appears to be erroneous;

depth to water measured during sampling on July 31, 2018 was 24.45 feet below the top of the well casing.

NS = well not surveyed; groundwater elevation could be determined

Sample Location	Date ¹	Temperature ² (°Celsius)	рН²	ORP ² (millivolts)	Dissolved Oxygen ¹ (milligrams per liter)
	1/18/2018	13.5	6.03	252.3	1.15
-	7/31/2018	15.5	6.14	164.0	0.47
	1/22/2019	12.9	5.99	214.1	1.20
	8/22/2019	14.7	6.16	175.1	2.09
	11/26/2019	13.8	6.20	44.5	3.29
	2/25/2020	12.2	6.60	143.6	6.76
CMW-2	5/28/2020	14.8	7.32	201.4	8.58
	11/12/2020	13.4	6.23	17.5	0.95
	5/25/2021	13.7	6.49	354.9	7.03
	11/30/2021	14.6	6.48	238.3	4.52
	5/26/2022	14.9	6.12	505.8	3.76
	11/30/2022	12.5	6.72	292.7	2.00
	5/31/2023	14.5	6.23	210.6	3.96
CMW-4	1/17/2018	—	—	—	4.52
CMW-6	1/17/2018	—	—	—	4.09
	1/18/2018	12.0	6.66	-14.3	0.29
	8/1/2018	14.5	6.33	-32.3	0.52
	1/22/2019	12.2	6.29	8.8	0.64
	8/21/2019	13.9	6.21	8.4	1.71
	11/25/2019	12.6	6.37	21.8	1.05
	2/25/2020	12.5	6.27	-1.3	0.99
CMW-8	5/28/2020	13.3	6.52	-9.9	0.60
	11/11/2020	12.3	6.31	-31.9	6.67
	5/24/2021	13.3	6.08	41.2	0.75
	11/30/2021	12.9	6.51	-12.5	1.17
	5/25/2022	15.7	6.09	328.8	0.93
	11/30/2022	11.5	6.47	127.3	0.76
	5/31/2023	15.1	6.45	15.8	1.48
	1/18/2018	13.4	6.12	194.4	0.70
	8/1/2018	14.9	6.12	-40.1	0.26
	1/23/2019	13.0	5.76	176.7	0.75
	8/22/2019	14.3	6.00	-37.4	0.76
	11/25/2019	14.6	4.87	87.3	1.18
	2/25/2020	13.3	6.08	158	5.58
CMW-10	5/28/2020	15.2	6.52	120.8	2.27
-	11/12/2020	13.1	5.75	36.6	1.20
	5/25/2021	14.1	6.13	319.2	1.36
	11/30/2021	15.1	6.25	174.8	1.56
	5/26/2022	15.1	6.12	463.7	1.58
	11/30/2022	12.9	6.55	42.5	0.95
	5/31/2023	15.7	5.84	163.2	1.51

1 of 5

Sample Location	Date ¹	Temperature ² (°Celsius)	рН ²	ORP ² (millivolts)	Dissolved Oxygen ¹ (milligrams per liter)
	1/18/2018	12.8	6.46	-47.0	0.18
	8/1/2018	15.8	6.19	-22.5	0.41
	1/23/2019	12.5	6.36	-25.7	0.60
	8/22/2019	15.1	6.25	-61.5	1.71
	11/26/2019	12.4	6.36	-6.5	0.97
	2/25/2020	12.8	6.12	-13.9	1.01
CMW-12	5/28/2020	18.3	6.50	-35.5	0.59
	11/12/2020	13.6	6.29	-93.6	0.73
	5/25/2021	14.6	6.13	86.8	0.86
	11/30/2021	13.9	6.38	93.4	2.17
	5/26/2022	15.8	6.21	-121.8	0.84
	11/30/2022	12.6	6.14	189.4	0.73
	5/31/2023	15.7	6.27	14.3	1.63
	1/18/2018	13.1	6.30	107.2	1.25
	7/31/2018	15.9	6.18	-40.3	0.26
	1/23/2019	12.5	5.91	78.6	1.28
	8/22/2019	14.5	6.34	-31.7	1.85
	11/26/2019	13.1	6.41	-0.9	1.51
	2/25/2020	12.8	6.13	155.9	1.54
CMW-13	5/28/2020	16.5	6.17	77.5	0.71
	11/12/2020	13.3	6.44	-80.0	2.30
	5/24/2021	14.5	5.79	116.3	1.15
	11/30/2021	14.3	6.27	60.3	4.52
	5/25/2022	16.4	6.08	526.1	0.66
	11/30/2022	11.8	6.67	31.9	1.27
	5/31/2023	13.9	6.21	48.5	1.46
CMW-15	1/17/2018	—	_	—	0.37
	1/18/2018	12.7	6.14	269.4	4.68
	7/31/2018	16.3	6.03	88.5	0.75
	1/22/2019	12.4	6.03	315.1	4.59
	8/21/2019	15.6	6.03	117.8	1.03
	11/25/2019	12.8	6.13	63.5	1.74
	2/24/2020	12.1	6.00	114.2	8.05
CMW-25	5/27/2020	15.1	6.18	251.5	4.24
	11/12/2020	12.5	5.97	12.4	1.32
	5/24/2021	13.2	5.77	345.6	4.00
	11/29/2021	15.0	6.19	279.6	6.85
	5/25/2022	14.9	6.02	519.7	6.48
	11/30/2022	12.3	6.10	224.8	1.12
	5/30/2023	16.0	6.11	305.0	5.21

Sample Location	Date ¹	Temperature ² ([°] Celsius)	рН ²	ORP ² (millivolts)	Dissolved Oxygen ¹ (milligrams per liter)
	1/18/2018	10.7	6.44	233.6	4.04
	8/1/2018	16.0	6.22	160.6	4.32
	1/22/2019	11.9	6.07	98.6	4.08
	8/21/2019	16.0	6.05	206.1	4.18
	11/26/2019	11.6	6.27	218.2	2.98
	2/25/2020	11.4	6.33	155.2	4.61
CMW-26	5/27/2020	16.4	6.35	266.0	4.21
	11/11/2020	12.5	6.05	49.6	0.77
	5/25/2021	13.0	6.05	338.3	4.53
	11/29/2021	14.0	6.36	273.5	4.61
	5/25/2022	16.2	6.24	503.0	4.40
	11/30/2022	11.3	7.99	228.0	4.55
	5/30/2023	14.1	6.16	184.1	4.52
	1/18/2018	14.0	6.12	155.5	0.44
	8/1/2018	16.0	6.05	-26.7	0.21
	1/23/2019	12.7	6.27	-106.1	0.73
	8/22/2019	16.7	6.45	-53.7	0.69
	11/26/2019	14.6	6.29	-156.8	0.47
	2/25/2020	13.9	6.14	276.2	1.95
CMW-27	5/28/2020	16.1	6.49	-31.0	0.76
-	11/12/2020	14.5	6.28	-73.2	0.90
	5/25/2021	14.5	6.11	29.2	0.63
	11/30/2021	15.2	6.18	50.9	0.99
	5/26/2022	14.7	6.37	87.2	0.77
	11/30/2022	11.2	6.66	16.7	0.91
	5/31/2023	15.7	5.78	85.5	1.07
	1/18/2018	9.3	6.17	204.4	2.04
	8/1/2018	15.2	5.98	44.9	0.52
	1/23/2019	12.0	5.56	184.9	1.87
	8/21/2019	15.2	5.65	161.3	1.55
	11/26/2019	14.8	5.66	245.0	1.93
	2/24/2020	11.1	5.54	146.7	7.51
CMW-28	5/27/2020	15.5	6.03	292.3	7.44
5 =0	11/12/2020	14.2	5.90	52.1	3.91
	5/25/2021	13.6	5.63	296.5	3.08
	11/30/2021	14.1	6.04	286.6	1.15
	5/25/2022	15.8	5.86	520.4	3.54
	11/29/2022	12.3	6.10	201.9	6.26
	5/30/2023	15.4	5.93	242.0	6.04

Sample		Temperature ²	2	ORP ²	Dissolved Oxygen ¹
Location	Date ¹	(°Celsius)	рН²	(millivolts)	(milligrams per liter)
	1/17/2018	11.9	6.15	109.6	0.55
	7/31/2018	16.7	6.07	43.2	0.41
	1/22/2019	13.1	5.90	180.3	1.28
	8/22/2019	14.1	5.59	103.4	0.87
	11/25/2019	13.6	5.94	112.3	0.85
	2/24/2020	13.1	6.03	90.0	1.49
CMW-29	5/27/2020	17.4	6.05	243.7	1.66
	11/11/2020	13.1	5.72	24.2	5.06
	5/24/2021	14.0	5.60	267.0	7.19
	11/29/2021	15.3	5.96	294.7	1.53
	5/25/2022	15.2	5.98	492.8	0.88
	11/30/2022	11.9	6.17	281.8	2.07
	5/30/2023	14.5	5.87	158.8	2.37
	1/17/2018	—		_	1.11
	1/22/2019	13.4	6.19	179.1	0.91
	8/21/2019	15.1	5.90	163.9	0.90
	11/25/2019	14.5	6.09	124.4	0.56
	2/25/2020	12.0	6.20	148.2	2.26
	5/27/2020	15.6	6.29	193.3	0.71
CMW-30	11/11/2020	14.3	6.03	15.0	0.89
	5/24/2021	13.9	5.80	241.9	0.40
	11/29/2021	15.1	6.24	210.2	0.93
	5/25/2022	13.9	6.08	505.5	1.08
	11/29/2022	12.2	6.16	202.6	0.89
	5/30/2023	14.3	5.96	114.8	1.42
	1/18/2018	14.3	6.34	153.3	2.90
	7/31/2018	14.6	6.03	97.6	0.71
	1/22/2019	14.0	5.95	161.2	3.34
	8/22/2019	13.5	6.11	143.8	2.07
	11/25/2019	12.3	6.20	143.8	
					1.60
	2/24/2020	12.5	5.88	277.9	3.91
CMW-31	5/28/2020	13.9	6.21	163.2	1.17
	11/11/2020	12.6	6.08	53.4	1.11
	5/24/2021	13.7	6.15	270.8	1.09
	11/29/2021	14.1	6.15	297.5	1.28
	5/25/2022	15.5	6.13	321.7	1.87
	11/29/2022	11.6	6.42	200.6	1.13
	5/31/2023	14.4	6.12	162.7	1.99
	1/18/2018	12.6	6.51	-13.0	0.51
	8/1/2018	14.8	6.23	-20.0	0.25
	1/22/2019	13.3	6.16	28.8	0.59
	8/21/2019	16.7	6.23	-5.1	1.89
	11/25/2019	14.0	6.25	25.3	0.33
	2/25/2020	13.0	6.18	35.7	2.84
HMW-9	5/28/2020	14.0	6.38	-18.7	0.88
	11/11/2020	13.9	6.23	-67.3	3.82
	5/25/2021	14.9	5.99	36.6	2.66
	11/30/2021	14.1	6.44	13	1.1
	5/26/2022	14.6	6.00	-202.6	0.62
	11/30/2022	9.2	5.35	217.5	4.76
	5/31/2023	14.4	6.34	-53.8	1.38

4 of 5

Sample Location	Date ¹	Temperature ² (°Celsius)	рН ²	ORP ² (millivolts)	Dissolved Oxygen ¹ (milligrams per liter)
	1/17/2018	12.3	6.49	-38.1	0.47
	7/31/2018	14.8	6.22	-43.1	0.26
	1/22/2019	13.0	6.14	30.5	0.53
	8/21/2019	14.6	6.25	-26.0	2.02
	11/25/2019	13.3	6.18	27.3	2.76
	2/24/2020	13.5	6.07	7.8	7.1
HMW-10	5/28/2020	14.1	6.43	-9.0	0.59
	11/12/2020	13.1	6.26	-57.4	2.70
	5/24/2021	14.6	5.85	26.7	0.80
	11/30/2021	13.5	6.48	-7.8	0.85
	5/26/2022	15.0	6.32	-162.1	0.64
	11/30/2022	11.5	7.96	184.0	0.89
	5/31/2023	14.1	6.21	4.6	1.35
	1/18/2018	13.7	6.07	176.6	0.46
	8/1/2018	15.3	6.20	-27.6	0.29
	1/23/2019	12.9	6.30	-30.4	0.96
	8/22/2019	14.6	6.20	-40.1	1.70
	11/26/2019	13.3	6.35	-3.9	0.78
	2/25/2020	14.1	6.00	188.7	0.63
HMW-11	5/28/2020	16.2	6.38	-16.6	0.70
	11/12/2020	13.8	6.37	-108.8	0.67
	5/25/2021	14.6	6.22	1.6	1.10
	11/30/2021	15.3	6.23	255.3	4.12
	5/26/2022	15.3	6.07	-62.7	0.98
	11/30/2022	6.7	6.57	54.1	1.60
	5/31/2023	14.1	6.03	11.7	1.64
	1/18/2018	12.2	6.18	233.4	0.55
	8/1/2018	14.7	5.95	157.5	0.85
	1/23/2019	12.5	5.64	196.8	1.23
	8/21/2019	15.9	5.97	211.9	2.72
	11/26/2019	12.1	6.06	235.3	1.51
	2/24/2020	12.1	5.89	140.1	2.92
	5/27/2020			233.0	
HMW-13		16.8	6.16		1.10
	11/11/2020	12.6	5.77	59.2	2.70
	5/25/2021	14.7	5.96	250.9	1.93
	11/30/2021	13.6	6.19	281.1	1.86
	5/26/2022	16.1	6.10	-36.1	1.89
	11/30/2022	12.5	6.05	233.7	3.22
NOTES:	5/30/2023	14.8	5.96	208.1	3.01

NOTES:

-- = not measured
 ¹Date shown represents date of groundwater sample collection. Dissolved-oxygen measurements typically were collected 1 to 2 days prior using a

dissolved-oxygen analyzer with a down-hole probe.

²Temperature, pH, and ORP were measured using a YSI or Horiba multiparameter water-quality analyzer.

³Not measured due to malfunctioning pH meter.

⁴pH readings did not stabilize.

ORP = oxidation-reduction potential

Well	Sample Identification	Sample Date		al Results ns per liter)	Analytical Results (micrograms per liter)					
Well Identification CMW-2			DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes	
	CMW-2-011818	1/18/2018	0.93	<0.62 ⁴	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-2-073118	7/31/2018	0.63	< 0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-2-012219	1/22/2019	2.2	1.1 ⁵	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-2-082219	8/22/2019	1.0	0.69 ⁵	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-2-112619	11/26/2019	5.2	3.3 ⁵	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-2-022520	2/25/2020	0.63	1.0	<100	<1.0	<1.0	<1.0	<2.0	
CMW-2	CMW-2-052820	5/28/2020	0.76	0.94	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-2-111220	11/12/2020	1.9	1.1 ⁵	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-2-052521	5/25/2021	0.34	0.63	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-2-113021	11/30/2021	1.4	1.2	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-2-052622	5/26/2022	0.20	0.25	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-2-113022	11/30/2022	0.57	0.59	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-2-053123	5/31/2023	0.43	0.64	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-8-011818	1/18/2018	0.38	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-8-080118	8/1/2018	0.31	<0.42	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-8-012219	1/22/2019	0.50	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-8-082119	8/21/2019	0.51	<0.40	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-8-112519	11/25/2019	0.53	0.36	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-8-022420	2/24/2020	0.60	0.25	<100	<1.0	<1.0	<1.0	<2.0	
CMW-8	CMW-8-052820	5/28/2020	0.97	0.56	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-8-111120	11/11/2020	0.47	0.22 ⁵	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-8-052421	5/24/2021	0.53	0.26	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-8-113021	11/30/2021	0.58	0.35	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-8-052522	5/25/2022	0.79	0.60	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-8-113022	11/30/2022	0.28	0.29	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-8-053123	5/31/2023	0.64	0.71	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-10-011818	1/18/2018	1.4	<0.89 ⁴	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-10-080118	8/1/2018	1.5	0.67 ⁵	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-10-012319	1/23/2019	2.1	1.4 ⁵	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-10-082219	8/22/2019	2.9	0.80 ⁵	<400	<4.0	<4.0	<4.0	<8.0	
	CMW-10-112519	11/25/2019	0.73	0.37	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-10-022520	2/25/2020	2.3	1.4	<100	<1.0	<1.0	<1.0	<2.0	
CMW-10	CMW-10-052820	5/28/2020	3.4	2.9	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-10-111220	11/12/2020	1.6	0.70 ⁵	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-10-052521	5/25/2021	2.1	3.1	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-10-113021	11/30/2021	2.8	2.9	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-10-052622	5/26/2022	0.62	0.51	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-10-113022	11/30/2022	1.8	0.77	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-10-053123	5/31/2023	3.0	4.5	<100	<1.0	<1.0	<1.0	<2.0	
ITCA Method A	Cleanup Levels for Grou		0.5	0.5	800	5	1,000	700	1,000	

Well	Comple Identification	Comula Data	-	al Results ns per liter)		Analytical Results (micrograms per liter)					
Well Identification	Sample Identification	Sample Date	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes		
	CMW-12-011818	1/18/2018	2.1 ¹¹	<0.55 ⁴	1,300	3.0	<1.0	<1.0	<2.0		
	QA/QC-1-011818 ⁹	1/18/2018	2.2 ¹¹	<0.70 ⁴	1,200	2.6	<1.0	<1.0	<2.0		
	CMW-12-080118	8/1/2018	1.5 ¹¹	0.77 ⁵	1,500	1.2	<1.0	<1.0	1.6		
	QA/QC-1-080118 ⁹	8/1/2018	1.4 ¹¹	0.56 ⁵	1,500	1.1	<1.0	<1.0	1.9		
	CMW-12-012319	1/23/2019	1.6 ¹¹	0.43 ⁵	1,500 ⁸	1.7	<1.0	<1.0	<2.0		
	QA/QC-1-012319 ⁹	1/23/2019	1.6 ¹¹	<0.42	1,500 ⁸	1.6	<1.0	<1.0	<2.0		
	CMW-12-082219	8/22/2019	2.5 ¹¹	0.51 ⁵	920	<4.0	<4.0	<4.0	<8.0		
	QA/QC-1-082219 ⁹	8/22/2019	2.1 ¹¹	<0.41	950	<4.0	<4.0	<4.0	<8.0		
	CMW-12-112619	11/26/2019	2.3 ¹¹	0.51 ⁵	620 ⁸	<1.0	<1.0	<1.0	<2.0		
	QA/QC-1-112619 ⁹	11/26/2019	2.3 ¹¹	0.46 ⁵	620 ⁸	<1.0	<1.0	<1.0	<2.0		
	CMW-12-022520	2/25/2020	4.2	1.4	1,000	2.0	1.8	<1.0	<2.0		
	QAQC-1-022520 ⁹	2/25/2020	4.2	1.5	950	2.0	1.8	<1.0	<2.0		
CM\\/_12	CMW-12-052820	5/28/2020	2.4 ¹¹	1.1	510 ⁸	<1.0	<1.0	<1.0	<2.0		
010100-12	QA/QC-2-052820 ⁹	5/28/2020	2.3 ¹¹	1.1	490 ⁸	<1.0	<1.0	<1.0	<2.0		
	CMW-12-111220	11/12/2020	0.85 ¹¹	0.34 ⁵	200 ⁸	<1.0	<1.0	<1.0	<2.0		
	QA/QC-1-111220 ⁹	11/12/2020	0.90 ¹¹	0.37 ⁵	200 ⁸	<1.0	<1.0	<1.0	<2.0		
	CMW-12-052521	5/25/2021	1.1	0.95	<130 ⁴	<1.0	<1.0	<1.0	<2.0		
	QA/QC-1-052521 ⁹	5/25/2021	1.0	0.98	<120 ⁴	<1.0	<1.0	<1.0	<2.0		
	CMW-12-113021	11/30/2021	0.64	0.33	<100	<1.0	<1.0	<1.0	<2.0		
	QA/QC-1-113021 ⁹	11/30/2021	0.65	0.32	<100	<1.0	<1.0	<1.0	<2.0		
	CMW-12-052622	5/26/2022	0.80	0.44	<100	<1.0	<1.0	<1.0	<2.0		
	QA/QC-2-052622 ⁹	5/26/2022	0.84	0.49	<100	<1.0	<1.0	<1.0	<2.0		
	CMW-12-113022	11/30/2022	0.43	0.26	<100	<1.0	<1.0	<1.0	<2.0		
	QA/QC-1-113022 ⁹	11/30/2022	0.39	0.30	<100	<1.0	<1.0	<1.0	<2.0		
	CMW-12-053123	5/31/2023	1.0	1.1	<100	<1.0	<1.0	<1.0	<2.0		
	QA/QC-1-053123 ⁹	5/31/2023	0.88	0.89	<100	<1.0	<1.0	<1.0	<2.0		
	CMW-13-011818	1/18/2018	0.29	<0.41	<100	<1.0	<1.0	<1.0	<2.0		
	CMW-13-073118	7/31/2018	0.62 ¹¹	<0.41	240	1.1	<1.0	<1.0	<2.0		
	CMW-13-012319	1/23/2019	0.57	<0.41	<100	<1.0	<1.0	<1.0	<2.0		
	CMW-13-082219	8/22/2019	0.38	<0.41	<400	<4.0	<4.0	<4.0	<8.0		
	CMW-13-112619	11/26/2019	0.70	0.35 ⁵	<100	<1.0	<1.0	<1.0	<2.0		
	CMW-13-022520	2/25/2020	3.3	2.0	<100	<1.0	<1.0	<1.0	<2.0		
CMW-13	CMW-13-052820	5/28/2020	1.7	1.1	<100	<1.0	<1.0	<1.0	<2.0		
	CMW-13-111220	11/12/2020	0.48	0.25 ⁵	<100	<1.0	<1.0	<1.0	<2.0		
	CMW-13-052421	5/24/2021	1.4	0.72	<100	<1.0	<1.0	<1.0	<2.0		
	CMW-13-113021	11/30/2021	0.57	0.34	<100	<1.0	<1.0	<1.0	<2.0		
	CMW-13-052522	5/25/2022	1.4	0.67	<100	<1.0	<1.0	<1.0	<2.0		
	CMW-13-113022	11/30/2022	0.44 ¹¹	0.22	150	1.5	<1.0	<1.0	<2.0		
	CMW-13-053123	5/31/2023	1.5	1.2	<100	<1.0	<1.0	<1.0	<2.0		
ITCA Method A	Cleanup Levels for Grou	ndwater°	0.5	0.5	800	5	1,000	700	1,000		

Well	Sample Identification	Sample Date	-	l Results s per liter)	Analytical Results (micrograms per liter)					
Identification	eumpie luonimoutien		DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³	
	CMW-25-011818	1/18/2018	<0.26	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-073118	7/31/2018	<0.26	<0.42	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-012219	1/22/2019	<0.26	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-082119	8/21/2019	<0.25	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-112519	11/25/2019	0.14	0.22	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-022420	2/24/2020	<0.21	<0.21	<100	<1.0	<1.0	<1.0	<2.0	
CMW-25	CMW-25-052720	5/27/2020	<0.21	<0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-111220	11/12/2020	<0.21	<0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-052421	5/24/2021	<0.20	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-112921	11/29/2021	<0.20	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-052522	5/25/2022	<0.11	<0.22	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-113022	11/30/2022	<0.13	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-25-053023	5/30/2023	<0.21	<0.15	<400	<4.0	<4.0	<4.0	<8.0	
	CMW-26-011818	1/18/2018	<0.26	<0.42	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-080118	8/1/2018	<0.26	<0.42	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-012219	1/22/2019	<0.26	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-082119	8/21/2019	<0.25	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-112619	11/26/2019	<0.21	<0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-022520	2/25/2020	<0.21	<0.21	<100	<1.0	<1.0	<1.0	<2.0	
CMW-26	CMW-26-052720	5/27/2020	<0.21	<0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-111120	11/11/2020	<0.21	<0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-052521	5/25/2021	<0.20	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-112921	11/29/2021	<0.20	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-052522	5/25/2022	<0.11	<0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-113022	11/30/2022	<0.13	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-26-053023	5/30/2023	<0.21	<0.15	<400	<4.0	<4.0	<4.0	<8.0	
MTCA Method A	Cleanup Levels for Grou	ndwater®	0.5	0.5	800	5	1,000	700	1,000	

Well	Sample Identification	Sample Date		al Results ns per liter)		Analytical R	esults (microg	rams per liter)	
Identification		Campio Dato .	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
	CMW-27-011818	1/18/2018	1.7	<1.0 ⁴	<100	<1.0	<1.0	<1.0	<2.0
	QA/QC-2-011818 [°]	1/18/2018	1.6	<0.96 ⁴	<100	<1.0	<1.0	<1.0	<2.0
	CMW-27-080118	8/1/2018	2.7 ¹¹	1.0 ⁵	1,000	<1.0	1.3	5.9	7.4
	QA/QC-2-080118 ⁹	8/1/2018	2.6 ¹¹	0.89 ⁵	1,100	<1.0	1.3	5.8	7.8
	CMW-27-012319	1/23/2019	6.9 ¹¹	1.6 ⁵	900 ⁸	1.5	3.4	19	17
	QA/QC-2-012319 ⁹	1/23/2019	6.9 ¹¹	1.5 ⁵	940 ⁸	1.3	3.3	20	17
	CMW-27-082219	8/22/2019	2.7 ¹¹	0.56 ⁵	1,500	1.2	<1.0	5.2	7.9
	QA/QC-2-082219 ⁹	8/22/2019	3.4 ¹¹	0.82 ⁵	1,300	<4.0	<4.0	4.9	5.9
	CMW-27-112619	11/26/2019	3.3 ¹¹	0.94 ⁵	860 ⁸	<1.0	1.2	<1.0	2.0
	QA/QC-2-112619 ⁹	11/26/2019	3.9 ¹¹	1.1 ⁵	940 ⁸	<1.0	1.6	1.3	2.5
	CMW-27-022520	2/25/2020	1.2	1.2	<100	<1.0	<1.0	<1.0	<2.0
	QAQC-2-022520 ⁹	2/25/2020	1.0	1.1	<100	<1.0	<1.0	<1.0	<2.0
CMW-27	CMW-27-052820	5/28/2020	3.5 ¹¹	2.0	1,300 ⁸	<1.0	3.4	16	4.1
010107-21	QA/QC-1-052820 ⁹	5/28/2020	4.5 ¹¹	2.4	1,000 ⁸	<1.0	2.6	13	3.6
	CMW-27-111220	11/12/2020	2.1 ¹¹	0.70 ⁵	1,700 ⁸	<1.0	<1.0	1.8	3.9
	QA/QC-2-111220 ⁹	11/12/2020	2.4 ¹¹	0.76 ⁵	1,800 ⁸	<1.0	<1.0	1.8	4.0
	CMW-27-052521	5/25/2021	3.1 ¹¹	1.4	1,100 ⁸	<1.0	<1.0	15	3.5
	QA/QC-2-052521 ⁹	5/25/2021	3.1 ¹¹	2.3	1,200 ⁸	3.9	<1.0	15	3.4
	CMW-27-113021	11/30/2021	8.9 ¹¹	4.8	770	<1.0	<1.0	5.0	1.7
	QA/QC-2-113021 ⁹	11/30/2021	6.7 ¹¹	2.8	960	1.2	<1.0	6.5	2.1
	CMW-27-052622	5/26/2022	1.6	1.0	<100	<1.0	<1.0	<1.0	<2.0
	QA/QC-1-052622 ⁹	5/26/2022	1.6	1.1	<100	<1.0	<1.0	<1.0	<2.0
	CMW-27-113022	11/30/2022	2.1 ¹¹	0.61	1,300	3.8	<1.0	3.2	1.5
	QA/QC-2-113022 ⁹	11/30/2022	1.7 ¹¹	0.61	1,300	4.0	<1.0	3.3	1.5
	CMW-27-053123	5/31/2023	2.5	3.0	710	1.2	<1.0	1.7	<2.0
	QA/QC-2-053123 ⁹	5/31/2023	2.9	4.2	680	1.5	<1.0	2.0	1.1
	CMW-28-011818	1/18/2018	<0.26	< 0.42	<100	<1.0	<1.0	<1.0	<2.0
	CMW-28-080118	8/1/2018	0.81	0.52 ⁵	<100	<1.0	<1.0	<1.0	<2.0
	CMW-28-012319	1/23/2019	<0.26	<0.41	<100	<1.0	<1.0	<1.0	<2.0
	CMW-28-082119	8/21/2019	0.63	<0.44	<100	<1.0	<1.0	<1.0	<2.0
	CMW-28-112619	11/26/2019	2.8	1.9 ⁵	<100	<1.0	<1.0	<1.0	<2.0
	CMW-28-022420	2/24/2020	0.45	0.32	<100	<1.0	<1.0	<1.0	<2.0
CMW-28	CMW-28-052720	5/27/2020	<0.21	0.23	<100	<1.0	<1.0	<1.0	<2.0
	CMW-28-111220	11/12/2020	0.70	0.42 ⁵	<100	<1.0	<1.0	<1.0	<2.0
	CMW-28-052521	5/25/2021	0.49	0.43	<100	<1.0	<1.0	<1.0	<2.0
	CMW-28-113021	11/30/2021	<0.20	<0.20	<100	<1.0	<1.0	<1.0	<2.0
	CMW-28-052522	5/25/2022	1.1	0.68	<100	<1.0	<1.0	<1.0	<2.0
	CMW-28-112922	11/29/2022	0.24	0.31	<100	<1.0	<1.0	<1.0	<2.0
	CMW-28-053023	5/30/2023	1.5	1.1	<100	<1.0	<1.0	<1.0	<2.0
ITCA Method A	Cleanup Levels for Grou	ndwater ⁶	0.5	0.5	800	5	1,000	700	1,000

Well	Sample Identification	Sample Date		al Results Is per liter)	Analytical Results (micrograms per liter)					
Identification	Sample Identification	Sample Date	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes	
	CMW-29-011718	1/17/2018	0.70	<0.54 ⁴	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-29-073118	7/31/2018	0.33	< 0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-29-012219	1/22/2019	1.0	0.50 ⁵	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-29-082219	8/22/2019	<0.25	< 0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-29-112519	11/25/2019	0.55	0.38	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-29-022420	2/24/2020	0.67	0.28	<100	<1.0	<1.0	<1.0	<2.0	
CMW-29	CMW-29-052720	5/27/2020	0.97	0.71	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-29-111120	11/11/2020	0.25	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-29-052421	5/24/2021	0.71	0.43	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-29-112921	11/29/2021	0.74	0.87	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-29-052522	5/25/2022	0.74	0.56	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-29-113022	11/30/2022	0.17	0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-29-053023	5/30/2023	0.48	0.46	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-30-012219	1/22/2019	0.26	<0.42	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-30-082119	8/21/2019	<0.25	<0.40	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-30-112519	11/25/2019	0.19	0.22	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-30-022520	2/25/2020	<0.20	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-30-052720	5/27/2020	0.36	0.30	<100	<1.0	<1.0	<1.0	<2.0	
CMW-30	CMW-30-111120	11/11/2020	0.22	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-30-052421	5/24/2021	0.29	<0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-30-112921	11/29/2021	0.23	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-30-052522	5/25/2022	0.40	0.29	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-30-112922	11/29/2022	0.47	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-30-053023	5/30/2023	0.33	0.21	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-31-011818	1/18/2018	<0.26	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-31-073118	7/31/2018	<0.26	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-31-012219	1/22/2019	<0.26	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-31-082219	8/22/2019	0.34	<0.45	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-31-112519	11/25/2019	0.22	0.27	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-31-022420	2/24/2020	<0.21	<0.21	<100	<1.0	<1.0	<1.0	<2.0	
CMW-31	CMW-31-052820	5/28/2020	<0.21	0.32	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-31-111120	11/11/2020	0.29	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-31-052421	5/24/2021	<0.20	0.27	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-31-112921	11/29/2021	<0.20	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-31-052522	5/25/2022	<0.10	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-31-112922	11/29/2022	0.25	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	CMW-31-053123	5/31/2023	<0.21	0.27	<100	<1.0	<1.0	<1.0	<2.0	
TCA Method A	Cleanup Levels for Grou		0.5	0.5	800	5	1,000	700	1,000	

Well	Sample Identification	Sample Date		al Results ns per liter)	Analytical Results (micrograms per liter)					
Well Identification HMW-9 HMW-10	Sample Identification	Sample Date	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes	
	HMW-9-011818	1/18/2018	0.35	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-9-080118	8/1/2018	0.46	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-9-012219	1/22/2019	0.26	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-9-082119	8/21/2019	0.34	<0.44	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-9-112519	11/25/2019	0.40	0.42	<100	<1.0	<1.0		<2.0	
	HMW-9-022520	2/25/2020	0.39	1.2	<100	<1.0	<1.0	<1.0	<2.0	
HMW-9	HMW-9-052820	5/28/2020	0.98	2.1	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-9-111120	11/11/2020	0.47	0.69	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-9-052521	5/25/2021	0.55	1.2	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-9-113021	11/30/2021	0.30	0.32	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-9-052622	5/26/2022	0.77	0.65	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-9-113022	11/30/2022	0.18	0.45	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-09-053123	5/31/2023	0.96	1.3	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-10-011718	1/17/2018	0.72	<0.41	<100	<1.0	<1.0		<2.0	
	HMW-10-073118	7/31/2018	0.60 ¹¹	< 0.40	<100	<1.0	<1.0		<2.0	
	HMW-10-012219	1/22/2019	0.38	<0.41	<100	<1.0	<1.0		<2.0	
	HMW-10-082119	8/21/2019	0.51	<0.41	<400	<4.0	<4.0	Ethylbenzene ³ <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<8.0	
	HMW-10-112519	11/25/2019	5.0	1.7 ⁵	<100	<1.0	<1.0		<2.0	
	HMW-10-022420	2/24/2020	0.71	0.34	<100	<1.0	<1.0		<2.0	
HMW-10	HMW-10-052820	5/28/2020	1.2	0.77	<100	<1.0	<1.0		<2.0	
	HMW-10-111220	11/12/2020	0.50	<0.21	<100	<1.0	<1.0		<2.0	
	HMW-10-052421	5/24/2021	0.95	0.51	<100	<1.0	<1.0		<2.0	
	HMW-10-113021	11/30/2021	0.50	0.23	<100	<1.0	<1.0		<2.0	
	HMW-10-052622	5/26/2022	1.5	0.75	<100	<1.0	<1.0		<2.0	
	HMW-10-113022	11/30/2022	0.52	0.28	<100	<1.0	<1.0		<2.0	
	HMW-10-053123	5/31/2023	1.0	0.75	<100	<1.0	<1.0		<2.0	
	HMW-11-011818	1/18/2018	2.5	<1.3 ⁴	<100	<1.0	<1.0		<2.0	
	HMW-11-080118	8/1/2018	1.6 ¹¹	0.48 ⁵	1,600	1.0	<1.0		<2.0	
	HMW-11-012319	1/23/2019	1.9 ¹¹	<0.41	1,900 ⁸	1.4	<1.0		<2.0	
	HMW-11-082219	8/22/2019	3.3 ¹¹	0.49 ⁵	1,400	<4.0	<4.0		<8.0	
	HMW-11-112619	11/26/2019	3.2 ¹¹	0.63 ⁵	1,200 ⁸	1.0	1.0		<2.0	
	HMW-11-022520	2/25/2020	4.9	2.1	<100	<1.0	<1.0		<2.0	
HMW-11	HMW-11-052820	5/28/2020	4.1 ¹¹	2.1	920 ⁸	<1.0	1.5		<2.0	
	HMW-11-111220	11/12/2020	1.4 ¹¹	0.51 ⁵	410 ⁸	<1.0	<1.0		<2.0	
	HMW-11-052521	5/25/2021	3.5 ¹¹	1.1	730 ⁸	<1.0	<1.0		<2.0	
	HMW-11-113021	11/30/2021	0.36	0.38	<100	<1.0	<1.0		<2.0	
	HMW-11-052622	5/26/2022	2.5	1.4	<100	<1.0	<1.0		<2.0	
	HMW-11-113022	11/30/2022	1.3 ¹¹	0.51	480	2.1	<1.0		<2.0	
	HMW-11-053123	5/31/2023	3.5	2.5	770	1.7	<1.0		<2.0	
TCA Method A	Cleanup Levels for Grou		0.5	0.5	800	5	1,000		1,000	

Well	Sample Identification	Sample Date	Analytical Results (milligrams per liter)		Analytical Results (micrograms per liter)					
Identification			DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³	
	HMW-13-011818	1/18/2018	<0.26	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-080118	8/1/2018	<0.26	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-012319	1/23/2019	<0.26	<0.41	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-082119	8/21/2019	<0.30	<0.48	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-112619	11/26/2019	0.27	<0.21	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-022420	2/24/2020	<0.21	0.22	<100	<1.0	<1.0	<1.0	<2.0	
HMW-13	HMW-13-052720	5/27/2020	<0.21	0.24	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-111120	11/11/2020	<0.20	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-052521	5/25/2021	<0.20	0.24	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-113021	11/30/2021	<0.20	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-052622	5/26/2022	<0.11	<0.22	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-113022	11/30/2022	<0.13	<0.20	<100	<1.0	<1.0	<1.0	<2.0	
	HMW-13-053023	5/30/2023	<0.22	<0.17	<100	<1.0	<1.0	<1.0	<2.0	
MTCA Method A	Cleanup Levels for Grou	ndwater ⁶	0.5	0.5	800	5	1,000	700	1,000	

NOTES:

<denotes analyte not detected at or exceeding the laboratory reporting limit listed.</p>

Results in **bold** denote sample result or reporting limit exceeds applicable MTCA Method A cleanup levels for groundwater.

¹Analyzed by Northwest Method NWTPH-Dx. Samples analyzed by OnSite Environmental Inc. between June 2008

and November 2016 were analyzed using acid silica gel cleanup procedure.

²Analyzed by Northwest Method NWTPH-Gx.

³Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁴The practical quantitation limit is elevated due to interferences in the sample.

⁵Hydrocarbons in the diesel range are impacting the oil-range result.

⁶MTCA Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁷Sample collected using a disposable bailer.

⁸Hydrocarbons indicative of heavier fuels present in the sample are impacting the gasoline result.

⁹Quality assurance/quality control field duplicate sample.

¹⁰Duplicate sample analyzed at TestAmerica Laboratories Inc.

¹¹Hydrocarbons in the gasoline-range are impacting the diesel-range result.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = TPH as diesel-range organics

GRO = TPH as gasoline-range organics

MTCA = Washington State Model Toxics Control Act Cleanup Regulation

ORO = TPH as oil-range organics

TPH = total petroleum hydrocarbons

			ļ 4	Analytical Results (mil	ligrams per liter)		
			NWTPH-Dx without Su	Ifuric Acid Silica Gel	NWTPH-Dx with Su	ulfuric Acid Silica	
Well			or Silica	a Gel ¹	Gel or Silica Gel		
Identification	Sample Identification	Sample Date	DRO	ORO	DRO	ORO	
Identification	CMW-2-113021	11/30/2021	1.4	1.2		<0.20 ²	
	CMW-2-052622	5/26/2022	0.20	0.25	<0.20 ² <0.24 ³		
CMW-2						< 0.24 ³	
	CMW-2-113022	11/30/2022	0.57	0.59	< 0.12 ³	< 0.20 ³	
	CMW-2-053123	5/31/2023	0.43	0.64	< 0.22 ³	< 0.22 ³	
	CMW-8-113021	11/30/2021	0.58	0.35	< 0.20 ²	< 0.20 ²	
CMW-8	CMW-8-052522	5/25/2022	0.79	0.60	< 0.20 ³	< 0.20 ³	
	CMW-8-113022	11/30/2022	0.28	0.29	<0.11 ³	< 0.20 ³	
	CMW-8-053123	5/31/2023	0.64	0.71	< 0.20 ³	< 0.20 ³	
	CMW-10-113021	11/30/2021	2.8	2.9	< 0.20 ²	< 0.20 ²	
CMW-10	CMW-10-052622	5/26/2022	0.62	0.51	< 0.23 ³	< 0.23 ³	
	CMW-10-113022	11/30/2022	1.8	0.77	< 0.12 ³	< 0.20 ³	
	CMW-10-053123	5/31/2023	3.0	4.5	0.28 ³	< 0.22 ³	
	CMW-12-113021	11/30/2021	0.64	0.33	< 0.20 ²	< 0.20 ²	
	QA/QC-1-113021 ⁴	11/30/2021	0.65	0.32	< 0.21 ²	< 0.21 ²	
	CMW-12-052622	5/26/2022	0.80	0.44	< 0.22 ³	< 0.22 ³	
CMW-12	QA/QC-2-052622 ⁴	5/26/2022	0.84	0.49	< 0.20 ³	< 0.20 ³	
CIVIVV-12	CMW-12-113022	11/30/2022	0.43	0.26	< 0.12 ³	< 0.20 ³	
	QA/QC-1-113022 ⁴	11/30/2022	0.39	0.30	< 0.12 ³	< 0.20 ³	
	CMW-12-053123	5/31/2023	1.0	1.1	< 0.20 ³	< 0.20 ³	
	QA/QC-1-053123 ⁴	5/31/2023	0.88	0.89	< 0.21 ³	< 0.21 ³	
	CMW-13-113021	11/30/2021	0.57	0.34	< 0.21 ²	< 0.21 ²	
01011 40	CMW-13-052522	5/25/2022	1.4	0.67	< 0.22 ³	< 0.22 ³	
CMW-13	CMW-13-113022	11/30/2022	0.44 ⁵	0.22	< 0.16 ³	< 0.20 ³	
	CMW-13-053123	5/31/2023	1.5	1.2	< 0.20 ³	< 0.20 ³	
	CMW-25-112921	11/29/2021	<0.20	<0.20	< 0.20 ²	< 0.20 ²	
	CMW-25-052522	5/25/2022	<0.11	<0.22	<0.20 ³	< 0.22 ³	
CMW-25	CMW-25-113022	11/30/2022	<0.13	<0.20	<0.12 ³	<0.20 ³	
	CMW-25-053023	5/30/2023	<0.21	<0.15	<0.12 <0.21 ³	<0.20 ⁴	
	CMW-26-112921	11/29/2021	<0.20	<0.20	<0.21 <0.20 ²	<0.20 ²	
	CMW-26-052522	5/25/2022	<0.11	<0.20	<0.20 <0.21 ³	<0.20 <0.21 ³	
CMW-26	CMW-26-032322 CMW-26-113022	11/30/2022	<0.13	<0.20	<0.21 <0.12 ³	<0.21 <0.20 ³	
	CMW-26-053023	5/30/2023	<0.13	<0.20	<0.12 <0.21 ³	<0.20 <0.21 ³	
	Cleanup Levels for Grou		0.21	0.15	<0.21 0.5	<u><0.21</u> 0.5	

			Analytical Results (milligrams per liter) NWTPH-Dx without Sulfuric Acid Silica Gel NWTPH-Dx with Sulfuric Acid Sili								
			NWTPH-Dx without Su	Ifuric Acid Silica Gel	NWTPH-Dx with Su	Ilfuric Acid Silica					
Well			or Silica	a Gel ¹	Gel or Sil	ica Gel					
Identification	Sample Identification	Sample Date	DRO	ORO	DRO	ORO					
	CMW-27-113021	11/30/2021	8.9 ⁵	4.8	0.88 ^{5,2}	< 0.21 ²					
	QA/QC-2-113021 ⁴	11/30/2021	6.7 ⁵	2.8	0.93 ^{5,2}	<0.21 ²					
	CMW-27-052622	5/26/2022	1.6	1.0	0.28 ³	<0.22 ³					
01/01/07	QA/QC-1-052622 ⁴	5/26/2022	1.6	1.1	0.32 ³	<0.23 ³					
CMW-27	CMW-27-113022	11/30/2022	2.1 ⁵	0.61	0.75 ^{3,5}	<0.20 ³					
	QA/QC-2-113022 ⁴	11/30/2022	1.7 ⁵	0.61	0.64 ^{3,5}	< 0.20 ³					
	CMW-27-053123	5/31/2023	2.5	3.0	0.23 ³	< 0.20 ³					
	QA/QC-2-053123 ⁴	5/31/2023	2.9	4.2	0.24 ³	< 0.21 ³					
	CMW-28-113021	11/30/2021	<0.20	<0.20	< 0.20 ²	< 0.20 ²					
01/11/ 00	CMW-28-052522	5/25/2022	1.1	0.68	< 0.23 ³	< 0.23 ³					
CMW-28	CMW-28-112922	11/29/2022	0.24	0.31	< 0.12 ³	< 0.20 ³					
	CMW-28-053023	5/30/2023	1.5	1.1	< 0.20 ³	< 0.20 ³					
	CMW-29-112921	11/29/2021	0.74	0.87	< 0.20 ²	< 0.20 ²					
	CMW-29-052522	5/25/2022	0.74	0.56	< 0.23 ³	< 0.23 ³					
CMW-29	CMW-29-113022	11/30/2022	0.17	0.20	< 0.12 ³	< 0.20 ³					
	CMW-29-053023	5/30/2023	0.48	0.46	< 0.22 ³	< 0.22 ³					
	CMW-30-112921	11/29/2021	0.23	<0.20	< 0.20 ²	< 0.20 ²					
	CMW-30-052522	5/25/2022	0.40	0.29	< 0.21 ³	< 0.21 ³					
CMW-30	CMW-30-112922	11/29/2022	0.47	<0.20	< 0.12 ³	< 0.20 ³					
	CMW-30-053023	5/30/2023	0.33	0.21	< 0.22 ³	< 0.22 ³					
	CMW-31-112921	11/29/2021	<0.20	<0.20	< 0.20 ²	< 0.20 ²					
CMW-31	CMW-31-052522	5/25/2022	<0.10	<0.20	< 0.20 ³	< 0.20 ³					
CIVIVV-31	CMW-31-112922	11/29/2022	0.25	<0.20	< 0.12 ³	< 0.20 ³					
	CMW-31-053123	5/31/2023	<0.21	0.27	< 0.21 ³	< 0.21 ³					
	HMW-9-113021	11/30/2021	0.30	0.32	< 0.21 ²	< 0.21 ²					
	HMW-9-052622	5/26/2022	0.77	0.65	< 0.21 ³	< 0.21 ³					
HMW-9	HMW-9-113022	11/30/2022	0.18	0.45	< 0.12 ³	0.35 ³					
	HMW-09-053123	5/31/2023	0.96	1.3	< 0.20 ³	0.22 ³					
	HMW-10-113021	11/30/2021	0.50	0.23	< 0.20 ²	< 0.20 ²					
HMW-10	HMW-10-052622	5/26/2022	1.5	0.75	< 0.20 ³	< 0.20 ³					
	HMW-10-113022	11/30/2022	0.52	0.28	< 0.12 ³	< 0.20 ³					
	HMW-10-053123	5/31/2023	1.0	0.75	< 0.22 ³	< 0.22 ³					
TCA Method A	Cleanup Levels for Grou	ndwater ⁶	0.5	0.5	0.5	0.5					

			Analytical Results (milligrams per liter)								
Well			NWTPH-Dx without Su or Silica	ılfuric Acid Silica lica Gel							
Identification	Sample Identification	Sample Date	DRO	ORO	DRO	ORO					
	HMW-11-113021	11/30/2021	0.36	0.38	< 0.20 ²	< 0.20 ²					
HMW-11	HMW-11-052622	5/26/2022	2.5	1.4	< 0.20 ³	< 0.20 ³					
	HMW-11-113022	11/30/2022	1.3 ⁵	0.51	0.36 ^{3,5}	< 0.20 ³					
	HMW-11-053123	5/31/2023	3.5	2.5	0.42 ³	< 0.22 ³					
	HMW-13-113021	11/30/2021	<0.20	<0.20	< 0.20 ²	< 0.20 ²					
HMW-13	HMW-13-052622	5/26/2022	<0.11	<0.22	< 0.22 ³	< 0.22 ³					
1111110-13	HMW-13-113022	11/30/2022	<0.13	<0.20	< 0.12 ³	< 0.20 ³					
	HMW-13-053023	5/30/2023	<0.22	<0.17	< 0.22 ³	< 0.22 ³					
MTCA Method A	Cleanup Levels for Grou	ndwater ⁶	0.5	0.5	0.5	0.5					

NOTES:

<denotes analyte not detected at or exceeding the laboratory reporting limit listed.

Results in **bold** denote sample result or reporting limit exceeds applicable MTCA Method A cleanup levels for groundwater.

¹Analyzed by Northwest Method NWTPH-Dx without a sulfuric acid/silica gel or silica gel cleanup procedure.

²Analyzed by Northwest Method NWTPH-Dx with a sulfuric acid/silica gel cleanup procedure.

³Analyzed by Northwest Method NWTPH-Dx with a silica gel cleanup procedure.

⁴Quality assurance/quality control field duplicate sample.

⁵Hydrocarbons in the gasoline-range are impacting the diesel-range result.

⁶MTCA Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the

Washington Administrative Code, as revised 2013.

DRO = TPH as diesel-range organics MTCA = Washington State Model Toxics Control Act Cleanup Regulation ORO = TPH as oil-range organics TPH = total petroleum hydrocarbons

Table 8Groundwater Geochemical Data January 2018 through May 2023CHS Auburn SiteAuburn, WashingtonFarallon PN: 301-004

Well Identification	Sample Identification	Sample Date	Nitrate ¹ (mg/l)	Sulfate ² (mg/l)	Ferrous Iron ³ (mg/l)	Dissolved Manganese ⁴ (mg/l)	Methane⁵ (µg/l)	Alkalinity ⁶ (mg/l CaCO₃)
CMW-26	CMW-26-053023	5/30/2023	2.9	12	<0.150	<0.011	<0.55	60
CMW-27	CMW-27-053123	5/31/2023	0.95	12	1.42	0.29	360	52
CIVIVV-27	QA/QC-2-053123	5/31/2023	0.86	11	0.803	0.25	420	52
CMW-31	CMW-31-053123	5/31/2023	0.46	9.6	<0.150	<0.011	<0.55	84
HMW-10	HMW-10-053123	5/31/2023	<0.050	<5.0	3.70	0.55	230	78
HMW-11	HMW-11-053123	5/31/2023	0.55	<5.0	8.00	0.55	460	56

NOTES:

< denotes analyte not detected at or above the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency (EPA) Method 353.2.

²Analyzed by ASTM Method D516-11.

³Analyzed by Standard Method 3500Fe-B.

⁴Analyzed by EPA Method 6010D.

⁵Analyzed by Method RSK-175.

⁶Analyzed by Standard Method 2320B.

μg/l = micrograms per liter mg/l = milligrams per liter

mg/l CaCO³ = milligrams per liter as calcium carbonate

CHARTS

FIRST AND SECOND QUARTER 2023 GROUNDWATER MONITORING AND TREATMENT SYSTEM OPERATION AND MAINTENANCE REPORT CHS Auburn Site Auburn, Washington

Farallon PN: 301-004

Chart 1 DRO and ORO Concentration Data Trends for Monitoring Well CMW-2 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

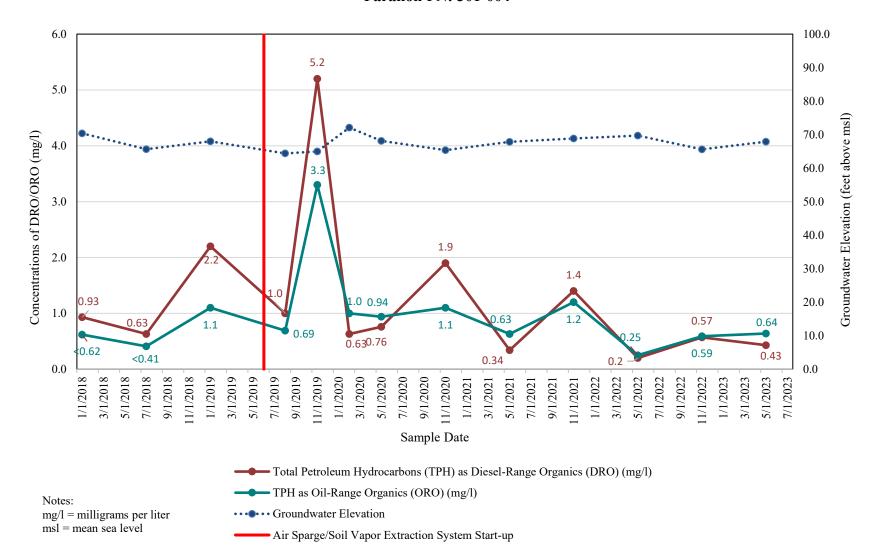


Chart 2 DRO and ORO Concentration Data Trends for Monitoring Well CMW-10 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

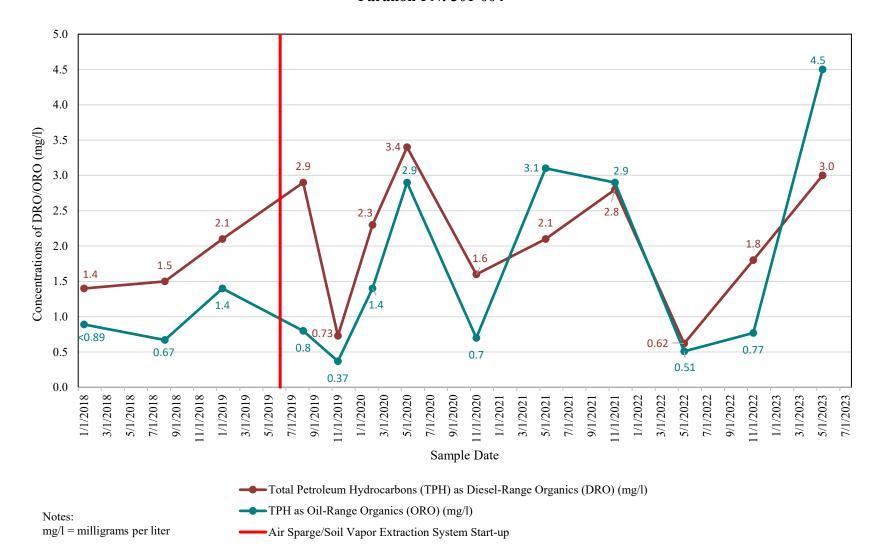


Chart 3 DRO, ORO, and GRO Concentration Data Trends for Monitoring Well CMW-12 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

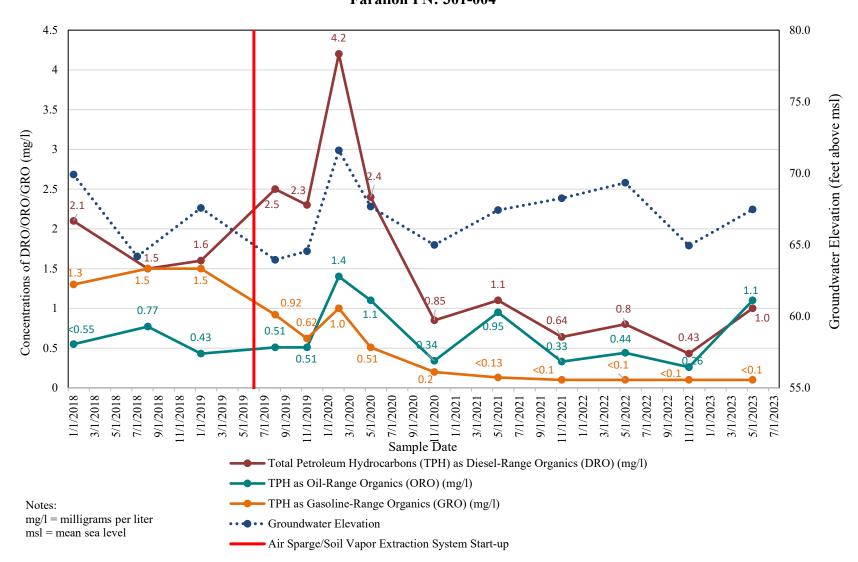
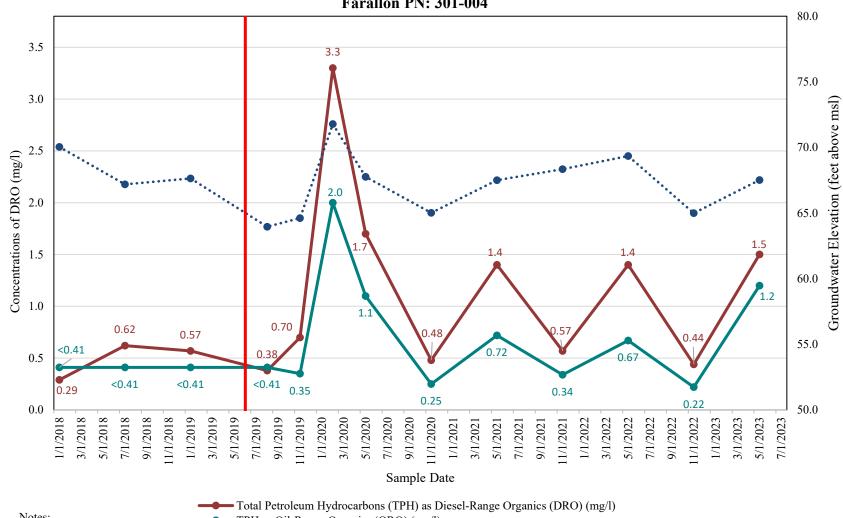



Chart 4 DRO Concentration Data Trend for Monitoring Well CMW-13 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

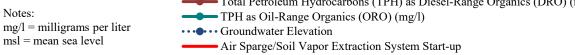


Chart 5 DRO, ORO, and GRO Concentration Data Trends for Monitoring Well CMW-27 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

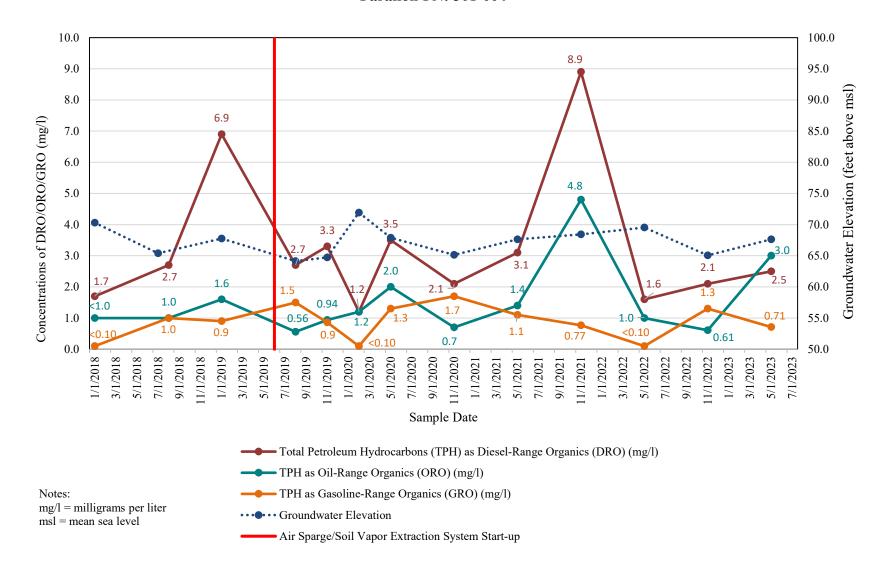


Chart 6 DRO and ORO Concentration Data Trends for Monitoring Well CMW-28 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

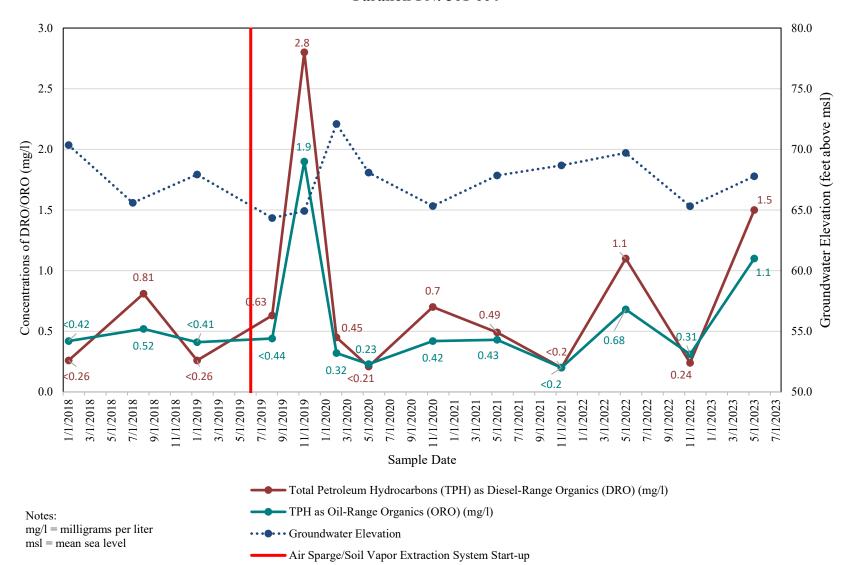


Chart 7 DRO Concentration Data Trend for Monitoring Well HMW-10 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

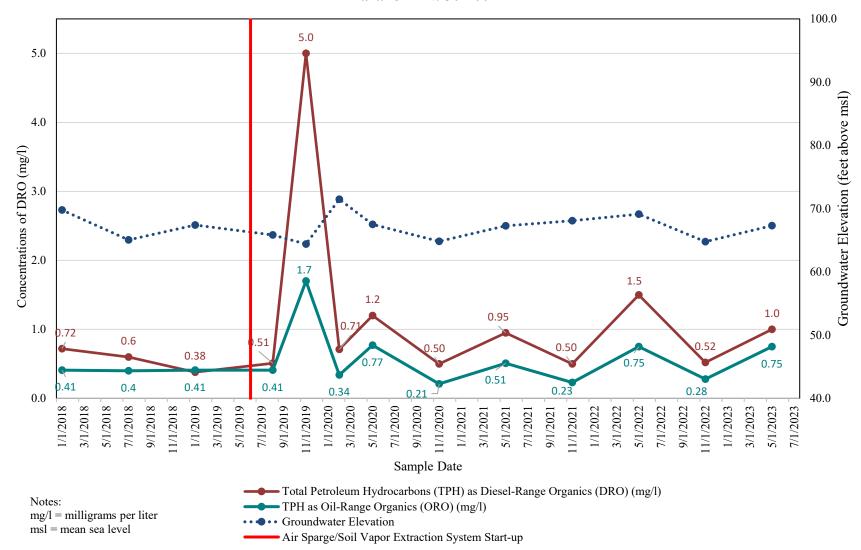
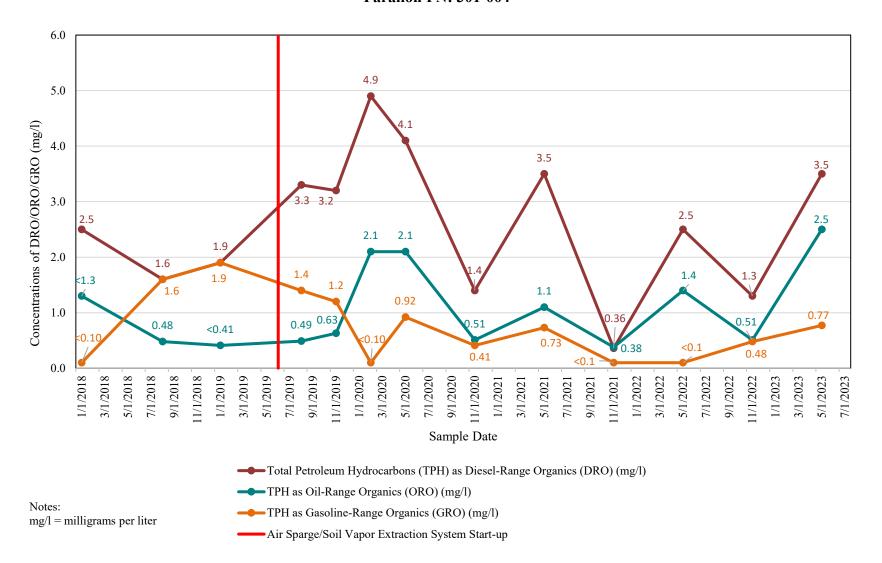
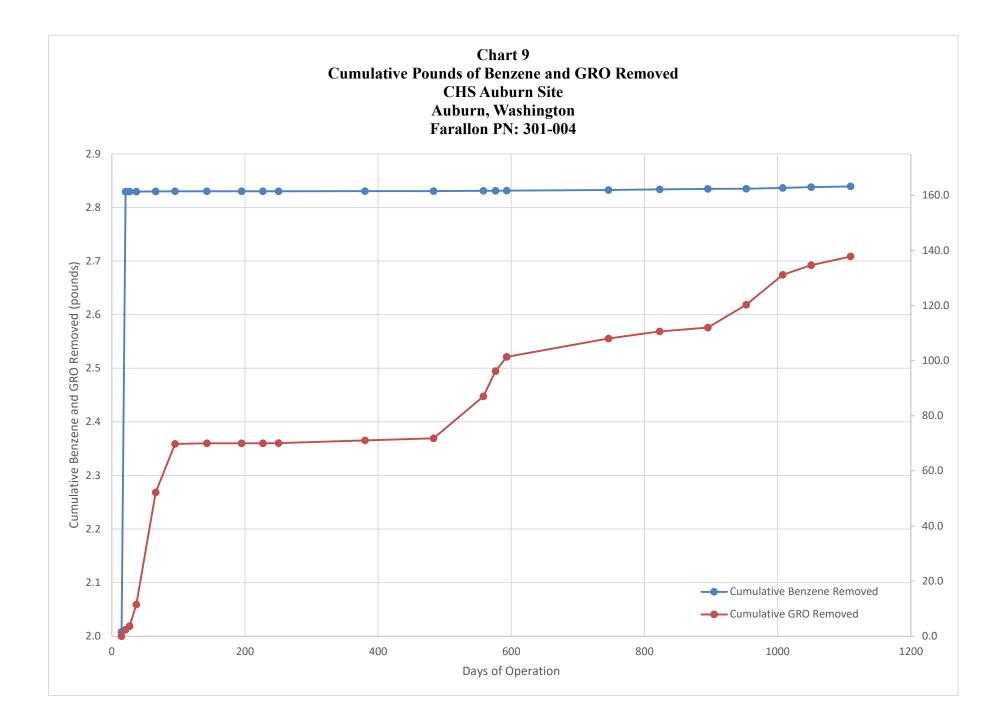




Chart 8 DRO, ORO, and GRO Concentration Data Trends for Monitoring Well HMW-11 CHS Auburn Site Auburn, Washington Farallon PN: 301-004

APPENDIX A LABORATORY ANALYTICAL REPORTS

FIRST AND SECOND QUARTER 2023 GROUNDWATER MONITORING AND TREATMENT SYSTEM OPERATION AND MAINTENANCE REPORT CHS Auburn Site Auburn, Washington

Farallon PN: 301-004

June 8, 2023

Javan Ruark Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 301-004 Laboratory Reference No. 2305-321

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on May 31, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 8, 2023 Samples Submitted: May 31, 2023 Laboratory Reference: 2305-321 Project: 301-004

Case Narrative

Samples were collected on May 30, 2023 and received by the laboratory on May 31, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Matrix: Water Units: ug/L (ppb)

	D	201		Date	Date	-
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-26-053023					
Laboratory ID:	05-321-01					
Benzene	ND	4.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	4.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	4.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	4.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	4.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	400	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	65-122				
Client ID:	CMW-25-053023					
Laboratory ID:	05-321-02					
Benzene	ND	4.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	4.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	4.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	4.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	4.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	400	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	65-122				
Client ID:	CMW-28-053023					
Laboratory ID:	05-321-03					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	65-122				

Matrix: Water Units: ug/L (ppb)

	Descrit	DOI		Date	Date	-
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-29-053023					
Laboratory ID:	05-321-04					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	65-122				
Client ID:	CMW-30-053023					
Laboratory ID:	05-321-05					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	65-122				
Client ID:	HMW-13-053023					
Laboratory ID:	05-321-06					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	65-122				

4

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

omio: ug/2 (ppo)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0605W1					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	65-122				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-32	21-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Ethylbenzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						107	101	65-122			
SPIKE BLANKS											
Laboratory ID:	SB06	02W1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	48.2	50.2	50.0	50.0		96	100	81-118	4	12	

Benzene	48.2	50.2	50.0	50.0	96	100	81-118	4	12	
Toluene	49.8	51.8	50.0	50.0	100	104	82-119	4	12	
Ethylbenzene	50.6	52.5	50.0	50.0	101	105	81-118	4	12	
m,p-Xylene	50.6	52.6	50.0	50.0	101	105	82-118	4	12	
o-Xylene	51.2	53.0	50.0	50.0	102	106	81-119	3	11	
Surrogate:										
Fluorobenzene					97	104	65-122			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CMW-26-053023			•	-	
Laboratory ID:	05-321-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-5-23	6-5-23	
Lube Oil Range Organics	ND	0.15	NWTPH-Dx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	CMW-26-053023					
Laboratory ID:	05-321-01					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-5-23	6-5-23	X2
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-5-23	6-5-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				
Client ID:	CMW-25-053023					
Laboratory ID:	05-321-02					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-5-23	6-5-23	
Lube Oil Range Organics	ND	0.15	NWTPH-Dx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	CMW-25-053023					
Laboratory ID:	05-321-02					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-5-23	6-5-23	X2
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-5-23	6-5-23	X2
Surrogate:	Percent Recovery	Control Limits	NWH HEDX	0-0-20	0-0-20	X
o-Terphenyl	101	50-150				
	01111/ 00 050000					
Client ID:	CMW-28-053023					
Laboratory ID:	05-321-03	0.00		0 5 00	0 5 00	
Diesel Range Organics	1.5	0.20	NWTPH-Dx	6-5-23	6-5-23	
Lube Oil Range Organics	<u>1.1</u>	0.15	NWTPH-Dx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
Client ID:	CMW-28-053023					
Laboratory ID:	05-321-03					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-5-23	6-5-23	X2
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-5-23	6-5-23	X2
Surrogate:	Percent Recovery	Control Limits				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

6

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CMW-29-053023			-	-	
Laboratory ID:	05-321-04					
Diesel Range Organics	0.48	0.22	NWTPH-Dx	6-5-23	6-5-23	
_ube Oil Range Organics	0.46	0.17	NWTPH-Dx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	CMW-29-053023					
Laboratory ID:	05-321-04					
Diesel Range Organics	ND	0.22	NWTPH-Dx	6-5-23	6-5-23	X2
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	6-5-23	6-5-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	CMW-30-053023					
Laboratory ID:	05-321-05					
Diesel Range Organics	0.33	0.22	NWTPH-Dx	6-5-23	6-5-23	
Lube Oil Range Organics	0.33	0.22	NWTPH-Dx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits		0-0-20	0-0-20	
o-Terphenyl	114	50-150				
Client ID:	CMW-30-053023					
Laboratory ID:	05-321-05					
Diesel Range Organics	ND	0.22	NWTPH-Dx	6-5-23	6-5-23	X2
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	6-5-23	6-5-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	116	50-150				
Client ID:	HMW-13-053023					
Laboratory ID:	05-321-06					
Diesel Range Organics	ND	0.22	NWTPH-Dx	6-5-23	6-5-23	
Lube Oil Range Organics	ND	0.17	NWTPH-Dx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
Client ID:	HMW-13-053023					
Laboratory ID:	05-321-06					
Diesel Range Organics	ND	0.22	NWTPH-Dx	6-5-23	6-5-23	X2
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	6-5-23	6-5-23	X2
Surrogate:	Percent Recovery	Control Limits		0.0-20	0.0-20	//L
o-Terphenyl	113	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte		Result		PQL	Me	ethod	Date Prepared	Date Analyz		Flags
METHOD BLANK										· J ·
Laboratory ID:		MB0605W1								
Diesel Range Organics		ND		0.16	NW	ГРН-Dx	6-5-23	6-5-2	3	
Lube Oil Range Organio	cs	ND		0.12	NW	FPH-Dx	6-5-23	6-5-2	3	
Surrogate:	Per	cent Recovery	Col	ntrol Limit	s					
o-Terphenyl		114		50-150						
Laboratory ID:		MB0605W1								
Diesel Range Organics		ND		0.16	NW	ГРН-Dx	6-5-23	6-5-2	3	X2
Lube Oil Range Organio		ND		0.16	NW	FPH-Dx	6-5-23	6-5-2	3	X2
Surrogate:	Per	cent Recovery	Col	ntrol Limit	S					
o-Terphenyl		116		50-150						
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Recovery	,	RPD	Limit	Flags
DUPLICATE			•							
Laboratory ID:	05-32	21-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	40	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	40	
Surrogate:										
o-Terphenyl						106 101	50-150			
Laboratory ID:	05-32	21-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	40	X2
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	40	X2
Surrogate:										

o-Terphenyl

108 100 50-150

SULFATE ASTM D516-11

Matrix:	Water
Units:	mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-26-053023					
Laboratory ID:	05-321-01					
Sulfate	12	5.0	ASTM D516-11	6-2-23	6-2-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SULFATE ASTM D516-11 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0602W1					
Sulfate	ND	5.0	ASTM D516-11	6-2-23	6-2-23	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-02	21-01							
	ORIG	DUP							
Sulfate	9.26	9.02	NA	NA	NA	NA	3	10	
MATRIX SPIKE									
Laboratory ID:	06-02	21-01							
	Μ	IS	MS		MS				
Sulfate	18	3.1	10.0	9.26	88	73-127	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	02W1							
	S	В	SB		SB				
Sulfate	8.	62	10.0	NA	86	85-114	NA	NA	

NITRATE (as Nitrogen) EPA 353.2

Matrix: Water Units: mg/L-N

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PCS-1					
Laboratory ID:	05-231-01					
Nitrate	2.9	0.10	EPA 353.2	5-31-23	5-31-23	

NITRATE (as Nitrogen) EPA 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L-N

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0531W1					
Nitrate	ND	0.050	EPA 353.2	5-31-23	5-31-23	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	05-23	31-01							
	ORIG	DUP							
Nitrate	2.93	3.00	NA	NA	NA	NA	2	19	
MATRIX SPIKE									
Laboratory ID:	05-23	31-01							
	М	S	MS		MS				
Nitrate	7.′	10	4.00	2.93	104	85-121	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB053	31W1							
	S	В	SB		SB				
Nitrate	1.8	33	2.00	NA	92	87-118	NA	NA	

DISSOLVED MANGANESE EPA 6010D

Matrix: Units:	Water ug/L (ppb)				Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Client ID):	CMW-26-053023					
Laborato	ry ID:	05-321-01					
Mangane	ese	ND	11	EPA 6010D	5-31-23	6-2-23	

DISSOLVED MANGANESE EPA 6010D QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Dat	е	
Analyte		Result	P	QL	М	ethod	Prepared	Analy	zed	Flags
METHOD BLANK										
Laboratory ID:		MB0531F1								
Manganese		ND	1	11	EPA	A 6010D	5-31-23	6-2-2	23	
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Le	vel	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-32	21-01								
	ORIG	DUP								
Manganese	ND	ND	NA I	٨N		NA	NA	NA	20	

MATRIX SPIKES

Laboratory ID:	05-32										
	MS	MSD	MS	MSD		MS	MSD				
Manganese	544	535	556	556	ND	98	96	75-125	2	20	

DISSOLVED GASES RSK 175

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-26-053023					
Laboratory ID:	05-321-01					
Methane	ND	0.55	RSK 175	6-7-23	6-7-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	71	50-150				

DISSOLVED GASES RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Dat	e	
Analyte		Result		PQL	Method		Prepared	Analy	zed	Flags
METHOD BLANK										
Laboratory ID:		MB0607W1								
Methane		ND		0.55	RSK 175	5	6-7-23	6-7-2	23	
Surrogate:	Pe	rcent Recove	ery C	Control Limits						
1-Butene		83		50-150						
					Per	rcent	Recovery		RPD	
Analyte	Re	sult	Spil	ke Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANK										
Laboratory ID:	SB06	07W1								
	SB	SBD	SB	SBD	SB	SBD				
Methane	42.4	38.0	44.2	2 44.2	96	86	75-125	11	25	
Surrogate:										

16

TOTAL ALKALINITY SM 2320B

Matrix: Water Units: mg CaCO3/L

Analyte	Result	PQL	Method	Date Prepared	Date Analvzed	Flage
Client ID:	CMW-26-053023	FQL	Method	Flepaleu	Anaryzeu	Flags
Laboratory ID:	05-321-01					
Total Alkalinity	60	2.0	SM 2320B	6-5-23	6-5-23	

TOTAL ALKALINITY SM 2320B QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

Analuta		Decult	DOI	Ма	thed	Date	Date		Flore
Analyte		Result	PQL	INIE	thod	Prepared	Analyz	ea	Flags
METHOD BLANK									
Laboratory ID:		MB0605W1							
Total Alkalinity		ND	2.0	SM	2320B		6-5-23	3	
				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flage
DUPLICATE									
Laboratory ID:	05-32	21-01							
	ORIG	DUP							
Total Alkalinity	60.0	60.0	NA	NA	NA	NA	0	10	
SPIKE BLANK									
Laboratory ID:	SB06	05W1							
	S	В	SB		SB				
Total Alkalinity	94	.0	100	NA	94	82-112	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

OnSite Environmental Inc David Baumeister 14648 NE 95th Street Redmond, WA 98052

RE: 05-321 Work Order Number: 2305554

June 05, 2023

Attention David Baumeister:

Fremont Analytical, Inc. received 1 sample(s) on 5/31/2023 for the analyses presented in the following report.

Ferrous Iron by SM3500-Fe B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	OnSite Environmental Inc 05-321 2305554	Work Order S	Sample Summary
Lab Sample ID 2305554-001	Client Sample ID CMW-26-053023	Date/Time Collected 05/30/2023 2:40 PM	Date/Time Received 05/31/2023 11:18 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2305554** Date: **6/5/2023**

CLIENT:OnSite Environmental IncProject:05-321

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

 WO#:
 2305554

 Date Reported:
 6/5/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD - Relative Percent Difference SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike

Surr - Surrogate

Analytical Report

 Work Order:
 2305554

 Date Reported:
 6/5/2023

Client: OnSite Environmental Inc				Collection	Date:	5/30/2023 2:40:00 PM
Project: 05-321 Lab ID: 2305554-001				Matrix: W	ater	
Client Sample ID: CMW-26-053023 Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
<u>Ferrous Iron by SM3500-Fe B</u>				Batch	n ID: R8	34360 Analyst: SLL
Ferrous Iron	ND	0.150		mg/L	1	5/31/2023 12:00:00 PM

CLIENT:	2305554 OnSite Envi 05-321	ronmental l	Inc								SUMMAR ous Iron b		
Sample ID: MB-R84	360	SampType	e: MBLK			Units: mg/L		Prep Dat	e: 5/31/20	23	RunNo: 843	360	
Client ID: MBLKW	1	Batch ID:	R84360					Analysis Dat	e: 5/31/20	23	SeqNo: 176	60377	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			ND	0.150									
Sample ID: LCS-R84	4360	SampType	e: LCS			Units: mg/L		Prep Dat	e: 5/31/20	23	RunNo: 843	360	
Client ID: LCSW		Batch ID:	R84360					Analysis Dat	e: 5/31/20	23	SeqNo: 176	60378	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			0.425	0.150	0.4000	0	106	85	115				
Sample ID: 2305554	-001ADUP	SampType	e: DUP			Units: mg/L		Prep Dat	e: 5/31/20	23	RunNo: 843	360	
Client ID: CMW-26	6-053023	Batch ID:	R84360					Analysis Dat	e: 5/31/20	23	SeqNo: 176	60380	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			ND	0.150						0		20	
Sample ID: 2305554	-001AMS	SampType	e: MS			Units: mg/L		Prep Dat	e: 5/31/20	23	RunNo: 843	360	
Client ID: CMW-26	6-053023	Batch ID:	R84360					Analysis Dat	e: 5/31/20	23	SeqNo: 176	60381	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			0.539	0.150	0.4000	0.1121	107	70	130				
Sample ID: 2305554	-001AMSD	SampType	e: MSD			Units: mg/L		Prep Dat	e: 5/31/20	23	RunNo: 843	360	
Client ID: CMW-26	6-053023	Batch ID:	R84360					Analysis Dat	e: 5/31/20	23	SeqNo: 176	60382	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			0.531	0.150	0.4000	0.1121	105	70	130	0.5390	1.52	30	

Sample Log-In Check List

Client Name: 0	ONSITE	Work Order Numbe	r: 2305554	
Logged by: (Clare Griggs	Date Received:	5/31/2023 1	11:18:00 AM
Chain of Custo	dy			
1. Is Chain of Cus	stody complete?	Yes 🖌	No 🗌	Not Present
2. How was the sa	ample delivered?	<u>Client</u>		
<u>Log In</u>				
	present on shipping container/cooler? ents for Custody Seals not intact)	Yes 🗌	No 🗌	Not Present 🗹
4. Was an attempt	t made to cool the samples?	Yes 🗹	No 🗌	
5. Were all items r	received at a temperature of >2°C to 6°C *	Yes 🗹	No 🗌	
6. Sample(s) in pro	oper container(s)?	Yes 🖌	No 🗌	
7. Sufficient samp	le volume for indicated test(s)?	Yes 🖌	No 🗌	
8. Are samples pro	operly preserved?	Yes 🖌	No 🗌	
9. Was preservativ	ve added to bottles?	Yes	No 🗹	NA 🗌
10. Is there headsp	ace in the VOA vials?	Yes	No 🗌	NA 🖌
11. Did all samples	containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
12. Does paperwork	k match bottle labels?	Yes 🖌	No 🗌	
13. Are matrices co	prrectly identified on Chain of Custody?	Yes 🖌	No 🗌	
14. Is it clear what a	analyses were requested?	Yes 🖌	No 🗌	
15. Were all holding	g times able to be met?	Yes 🖌	No 🗌	
<u>Special Handlir</u>	ng (if applicable)			
16. Was client not	ified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Person N By Whon Regardin	n: Via:		ne 🗌 Fax 🛛	In Person
Client Ins	structions:			
17. Additional rem	harks:			

Item Information

Item #	Temp ⁰C
Sample	5.8

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Environmental	OnSite
Inc	

Phone Number: (206) 352-3790	3600 Fremont Avenue N, Seattle, WA 98103	Attention: Chelsea Ward	Laboratory: Fremont Analytical	Inc.
Other:	Standard	1 Day 2 Day 3 Day	Turnaround Request	
Project Name:	Project Number: 301-004	email:	Project Manager:	Laboratory Reference #: 05-321
	301-004	dbaumeister@onsite-env.com	Project Manager: David Baumeister	05-321 Page 1 of 1 Page 8 of 8

Lab ID Sample Identification	Date Sample	Date Time Sampled Sampled	Matrix	# of Cont	Requested Analyses
CMW-26-053023	5/30/23	3 14:40	Water	1	Ferrous Iron
Relinquished by:	A the	ter Im		31/23	1640
Received by: K # 17	See dy A	hor-		5/12/2	10. 42
Relinquished by: #15 5	Courty 1	Aplan		5/sub3	11:12
Received by: Merific	HTK	-		8/5/123	8/// 8
Relinquished by:					
Received by:					

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received C #17	Relinquished	Signature,			6 HMW-13-053023	5 (MM-20-053023	4 CMW-29-053023	3 CMW-28-053023	2 LMW-25-053023	1 CMW-26-053023	Lab ID Sample Identification	J. KIM, M. YSAGUIARE	Project Manager: J. RUARK	CENEX AUBURN	Project Number: 30) -004	Company: FARALLON	Analytical Laboratory Testing Services 14648 NE 55th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.	
Reviewed/Date		(Jac	Jon Juni	Chief Ally	Strench Wh	FARALLON ,	Company	 100	Main	4 1618 1 5	5 1208	7 7051	1640 5	1540 1 5	5-20-23 1440 W /6	Date Time Sampled Sampled Matrix	(other)	Containe	Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)	Chain of Custody	-
		1 11 22 100	231125 102S		1 5- 13 22 eq : M	3261 82-05-5	Date Time			E					X	NWTF NWTF NWTF Volati Halog	PH-Gx PH-Dx (les 826 enated	Acist / S Volatile:			10 14	Laboratory Number:	Custody	
Chromatograms with final report 🔲 Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV		NIL CONCISC NORTH NIL	The second secon	-	X HOLD FOR PM, SWILESS HOLD TIME	Comments/Special Instructions									(with PAHs PCBs Orgar Orgar Chlor Total Total Total HEM	inated / MTCA I Metals	Acid Her Acid Her Metals grease)	licides 8 Pesticide bicides	8151		05-321	Page 1 of 1	

June 23, 2023

Javan Ruark Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 301-004 Laboratory Reference No. 2306-001

Dear Javan:

Enclosed are the analytical results and associated quality control data for samples submitted on June 1, 2023.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 23, 2023 Samples Submitted: June 1, 2023 Laboratory Reference: 2306-001 Project: 301-004

Case Narrative

Samples were collected on May 31, 2023 and received by the laboratory on June 1, 2023. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L (ppb)

,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-2-053123					
Laboratory ID:	06-001-01					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	65-122				
Client ID:	CMW-10-053123					
Laboratory ID:	06-001-02					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	65-122				
Client ID:	CMW-27-053123					
Laboratory ID:	06-001-03					
Benzene	1.2	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	1.7	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	710	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	65-122				

3

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	QA/QC-2-053123					
Laboratory ID:	06-001-04					
Benzene	1.5	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	2.0	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	1.1	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	680	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	65-122				
Client ID:	HMW-11-053123					
Laboratory ID:	06-001-05					
Benzene	1.7	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	770	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	65-122				
Client ID:	HMW-10-053123					
Laboratory ID:	06-001-06					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	65-122				

4

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-8-053123					
Laboratory ID:	06-001-07					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	65-122				
Client ID:	CMW-31-053123					
Laboratory ID:	06-001-08					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	65-122				
Client ID:	CMW-13-053123					
Laboratory ID:	06-001-09					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	65-122				

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-12-053123					
Laboratory ID:	06-001-10					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	65-122				
Client ID:	QA/QC-1-053123					
Laboratory ID:	06-001-11					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	65-122				
Client ID:	HMW-09-053123					
Laboratory ID:	06-001-12					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	65-122				

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0605W1					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	65-122				
Laboratory ID:	MB0605W2					
Benzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Toluene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Ethylbenzene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
m,p-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
o-Xylene	ND	1.0	EPA 8021B	6-5-23	6-5-23	
Gasoline	ND	100	NWTPH-Gx	6-5-23	6-5-23	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	65-122				

7

GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-32	21-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Ethylbenzene	ND	ND	NA	NA		N	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						107	101	65-122			
Laboratory ID:	05-32	21-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		NA		NA	NA	30	
Toluene	ND	ND	NA	NA		NA		NA	NA	30	
Ethylbenzene	ND	ND	NA	NA		NA		NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						99	103	65-122			
SPIKE BLANKS											
Laboratory ID:	SB06										
	SB	SBD	SB	SBD		SB	SBD				
Benzene	48.2	50.2	50.0	50.0		96	100	81-118	4	12	
Toluene	49.8	51.8	50.0	50.0		100	104	82-119	4	12	
Ethylbenzene	50.6	52.5	50.0	50.0		101	105	81-118	4	12	
m,p-Xylene	50.6	52.6	50.0	50.0		101	105	82-118	4	12	
o-Xylene	51.2	53.0	50.0	50.0		102	106	81-119	3	11	
Surrogate:											
Fluorobenzene						97	104	65-122			

DIESEL AND HEAVY OIL RANGE ORGANICS **NWTPH-Dx**

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CMW-2-053123				_	
Laboratory ID:	06-001-01					
Diesel Range Organics	0.43	0.22	NWTPH-Dx	6-5-23	6-6-23	
Lube Oil Range Organics	0.64	0.22	NWTPH-Dx	6-5-23	6-6-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	CMW-2-053123					
Laboratory ID:	06-001-01					
Diesel Range Organics	ND	0.22	NWTPH-Dx	6-5-23	6-6-23	X2
_ube Oil Range Organics	ND	0.22	NWTPH-Dx	6-5-23	6-6-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	CMW-10-053123					
Laboratory ID:	06-001-02					
Diesel Range Organics	3.0	0.22	NWTPH-Dx	6-5-23	6-6-23	
Lube Oil Range Organics	4.5	0.22	NWTPH-Dx	6-5-23	6-6-23	
Surrogate:	Percent Recovery	Control Limits		0 0 20	0 0 20	
o-Terphenyl	117	50-150				
Client ID:	CMW-10-053123					
Laboratory ID:	06-001-02					
Diesel Range Organics	0.28	0.22	NWTPH-Dx	6-5-23	6-6-23	X2
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	6-5-23	6-6-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				
Client ID:	CMW-27-053123					
_aboratory ID:	06-001-03					
Diesel Range Organics	2.5	0.20	NWTPH-Dx	6-5-23	6-6-23	
_ube Oil Range Organics	3.0	0.20	NWTPH-Dx	6-5-23	6-6-23	
Surrogate:	Percent Recovery					
o-Terphenyl	99	50-150				
Client ID:	CMW-27-053123					
_aboratory ID:	06-001-03					
	0.23	0.20	NWTPH-Dx	6-5-23	6-6-23	X2
Diesel Range Organics	0.23					
u	ND	0.20	NWTPH-Dx	6-5-23	6-6-23	X2
Diesel Range Organics Lube Oil Range Organics Surrogate:			NWTPH-Dx	6-5-23	6-6-23	X2

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	QA/QC-2-053123			-	-	
Laboratory ID:	06-001-04					
Diesel Range Organics	2.9	0.21	NWTPH-Dx	6-5-23	6-6-23	
Lube Oil Range Organics	4.2	0.21	NWTPH-Dx	6-5-23	6-6-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				
Client ID:	QA/QC-2-053123					
Laboratory ID:	06-001-04					
Diesel Range Organics	0.24	0.21	NWTPH-Dx	6-5-23	6-6-23	X2
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-5-23	6-6-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	HMW-11-053123					
Laboratory ID:	06-001-05					
Diesel Range Organics	3.5	0.22	NWTPH-Dx	6-5-23	6-6-23	
Lube Oil Range Organics	2.5	0.22	NWTPH-Dx	6-5-23	6-6-23	
Surrogate:	Percent Recovery	Control Limits		0-0-20	0-0-20	
o-Terphenyl	101	50-150				
Client ID:	HMW-11-053123					
Laboratory ID:	06-001-05					
Diesel Range Organics	0.42	0.22	NWTPH-Dx	6-5-23	6-6-23	X2
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	6-5-23	6-6-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
Client ID:	HMW-10-053123					
Laboratory ID:	06-001-06					
Diesel Range Organics	1.0	0.22	NWTPH-Dx	6-5-23	6-6-23	
_ube Oil Range Organics	0.75	0.22	NWTPH-Dx	6-5-23	6-6-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				
	HMW-10-053123					
Laboratory ID:	06-001-06	0.00		0.5.00		
Laboratory ID: Diesel Range Organics	06-001-06 ND	0.22	NWTPH-Dx	6-5-23	6-6-23	X2
Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics	06-001-06 ND ND	0.22	NWTPH-Dx NWTPH-Dx	6-5-23 6-5-23	6-6-23 6-6-23	X2 X2
Laboratory ID: Diesel Range Organics	06-001-06 ND					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CMW-8-053123				-	•
Laboratory ID:	06-001-07					
Diesel Range Organics	0.64	0.20	NWTPH-Dx	6-5-23	6-6-23	
Lube Oil Range Organics	0.71	0.20	NWTPH-Dx	6-5-23	6-6-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				
Client ID:	CMW-8-053123					
Laboratory ID:	06-001-07					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-5-23	6-6-23	X2
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-5-23	6-6-23	X2
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	121	50-150				
Client ID:	CMW-31-053123					
Laboratory ID:	06-001-08					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-5-23	6-7-23	
Lube Oil Range Organics	0.27	0.21	NWTPH-Dx	6-5-23	6-7-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				
Client ID:	CMW-31-053123					
Laboratory ID:	06-001-08					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-5-23	6-7-23	X2
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-5-23	6-7-23	X2 X2
Surrogate:	Percent Recovery	Control Limits	NWIT II-DA	0-0-20	0-1-20	72
o-Terphenyl	112	50-150				
o reipiteliyi	112	00 100				
Client ID:	CMW-13-053123					
Laboratory ID:	06-001-09					
Diesel Range Organics	1.5	0.20	NWTPH-Dx	6-5-23	6-7-23	
Lube Oil Range Organics	1.2	0.20	NWTPH-Dx	6-5-23	6-7-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				
Client ID:	CMW-13-053123					
	CMW-13-053123 06-001-09					
Laboratory ID: Diesel Range Organics		0.20	NWTPH-Dx	6-5-23	6-7-23	X2
Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics	06-001-09	0.20 0.20	NWTPH-Dx NWTPH-Dx	6-5-23 6-5-23	6-7-23 6-7-23	X2 X2
Laboratory ID: Diesel Range Organics	06-001-09 ND					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CMW-12-053123			-		
Laboratory ID:	06-001-10					
Diesel Range Organics	1.0	0.20	NWTPH-Dx	6-5-23	6-6-23	
Lube Oil Range Organics	1.1	0.20	NWTPH-Dx	6-5-23	6-6-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	121	50-150				
Client ID:	CMW-12-053123					
Laboratory ID:	06-001-10					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-5-23	6-6-23	X2
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	6-5-23	6-6-23	X2 X2
Surrogate:	Percent Recovery	Control Limits	NWITTEDX	0-0-20	0-0-20	72
o-Terphenyl	124	50-150				
o-reiphenyi	124	50-750				
Client ID:	QA/QC-1-053123					
Laboratory ID:	06-001-11					
Diesel Range Organics	0.88	0.21	NWTPH-Dx	6-5-23	6-7-23	
Lube Oil Range Organics	0.89	0.21	NWTPH-Dx	6-5-23	6-7-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	QA/QC-1-053123					
Laboratory ID:	06-001-11					
Diesel Range Organics	ND	0.21	NWTPH-Dx	6-5-23	6-7-23	X2
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	6-5-23	6-7-23	X2 X2
Surrogate:	Percent Recovery	Control Limits		0-0-20	0-1-20	72
	111	50-150				
o-Terphenyl	111	50-750				
Client ID:	HMW-09-053123					
Laboratory ID:	06-001-12					
Diesel Range Organics	0.96	0.20	NWTPH-Dx	6-5-23	6-7-23	
ube Oil Range Organics	1.3	0.20	NWTPH-Dx	6-5-23	6-7-23	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	119	50-150				
Client ID:	HMW-09-053123					
Laboratory ID:	06-001-12					
Diesel Range Organics	ND	0.20	NWTPH-Dx	6-5-23	6-7-23	X2
Lube Oil	0.22	0.20	NWTPH-Dx NWTPH-Dx	6-5-23 6-5-23	6-7-23	X2 X2
				0-0-20	0-1-23	72
Surrogate: o-Terphenyl	Percent Recovery 122	Control Limits 50-150				
n-iernnenvi	1.7.7					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

12

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte		Result		PQL	Me	ethod		Date Prepared	Date Analyz		Flags
METHOD BLANK		Rooun			inc			ropurou	Analyz	04	riago
Laboratory ID:		MB0605W1									
Diesel Range Organ		ND		0.16	NWT	PH-D>	(6-5-23	6-5-23	3	
Lube Oil Range Orga		ND		0.16		PH-D>		6-5-23	6-5-23		
Surrogate:		rcent Recove	ery Con	trol Limi	ts						
o-Terphenyl		114	5	50-150							
Laboratory ID:		MB0605W1									
Diesel Range Organ		ND		0.16		PH-D>		6-5-23	6-5-23		X2
Lube Oil Range Orga		ND		0.16		[PH-D>	(6-5-23	6-5-23	3	X2
Surrogate:	Pe	rcent Recove	•	trol Limit	ts						
o-Terphenyl		116	5	50-150							
					Source	Perc	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-32	21-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N	A	NA	NA	40	
Lube Oil Range	ND	ND	NA	NA		Ν	A	NA	NA	40	
Surrogate:											
o-Terphenyl						106	101	50-150			
Laboratory ID:	SB06	05W1									
	ORIG	DUP									
Diesel Fuel #2	0.521	0.472	NA	NA		Ν	A	NA	10	40	
Surrogate:											
o-Terphenyl						111	104	50-150			
Laboratory ID:	05-32	21-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		Ν	A	NA	NA	40	X2
Lube Oil Range	ND	ND	NA	NA		N	A	NA	NA	40	X2
Surrogate: o-Terphenyl						108	100	50-150			
Laboratory ID:	SROG	05W1									
Laboratory ID.	ORIG	DUP									
Diesel Fuel #2	0.486	0.424	NA	NA		N	A	NA	14	40	X2
Surrogate:											
T 1 1						4.40	100	50 (50			

o-Terphenyl

M.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

112 106

50-150

SULFATE ASTM D516-11

Matrix:	Water
Units:	mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-27-053123					
Laboratory ID:	06-001-03					
Sulfate	12	5.0	ASTM D516-11	6-2-23	6-2-23	
Client ID:	QA/QC-2-053123					
Laboratory ID:	06-001-04					
Sulfate	11	5.0	ASTM D516-11	6-2-23	6-2-23	
Client ID:	HMW-11-053123					
Laboratory ID:	06-001-05					
Sulfate	ND	5.0	ASTM D516-11	6-2-23	6-2-23	
Client ID:	HMW-10-053123					
Laboratory ID:	06-001-06					
Sulfate	ND	5.0	ASTM D516-11	6-2-23	6-2-23	
Client ID:	CMW-31-053123					
Laboratory ID:	06-001-08					
Sulfate	9.6	5.0	ASTM D516-11	6-2-23	6-2-23	

14

SULFATE ASTM D516-11 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0602W1					
Sulfate	ND	5.0	ASTM D516-11	6-2-23	6-2-23	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-02	21-01							
	ORIG	DUP							
Sulfate	9.26	9.02	NA	NA	NA	NA	3	10	
MATRIX SPIKE									
Laboratory ID:	06-02	21-01							
	Μ	IS	MS		MS				
Sulfate	18	3.1	10.0	9.26	88	73-127	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	02W1							
	S	В	SB		SB				
Sulfate	8.	62	10.0	NA	86	85-114	NA	NA	

NITRATE (as Nitrogen) EPA 353.2

Matrix: Water Units: mg/L-N		
Analyte	Result	PQL
Client ID:	CMW-27-053123	
Laboratory ID:	06-001-03	
Nitrate	0.95	0.050
Client ID:	QA/QC-2-053123	
Laboratory ID:	06-001-04	
NI:tu a ta	0.00	0.050

Euporatory ID.	00 001 01					
Nitrate	0.86	0.050	EPA 353.2	6-1-23	6-1-23	
Client ID:	HMW-11-053123					
Laboratory ID:	06-001-05					
Nitrate	0.55	0.050	EPA 353.2	6-1-23	6-1-23	
Client ID:	HMW-10-053123					
Laboratory ID:	06-001-06					
Nitrate	ND	0.050	EPA 353.2	6-1-23	6-1-23	
Client ID:	CMW-31-053123					
Laboratory ID:	06-001-08					

0.050

0.46

Nitrate

Date

Analyzed

6-1-23

6-1-23

Flags

Date

Prepared

6-1-23

6-1-23

Method

EPA 353.2

EPA 353.2

NITRATE (as Nitrogen) EPA 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L-N

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0601W1					
ND	0.050	EPA 353.2	6-1-23	6-1-23	
	MB0601W1	MB0601W1	MB0601W1	Result PQL Method Prepared MB0601W1 MB0601W1 <td>Result PQL Method Prepared Analyzed MB0601W1 MB0601W1</td>	Result PQL Method Prepared Analyzed MB0601W1 MB0601W1

				Source	Percent	Recovery		RPD	
Analyte	e Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-001-0)3							
	ORIG D	DUP							
Nitrate	0.945 0.	.938	NA	NA	NA	NA	1	19	
MATRIX SPIKE									
Laboratory ID:	06-001-0)3							
	MS		MS		MS				
Nitrate	3.07		2.00	0.945	106	85-121	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB0601V	V1							
	SB		SB		SB				
Nitrate	2.00		2.00	NA	100	87-118	NA	NA	

DISSOLVED MANGANESE EPA 6010D

Matrix: Water						
Units: ug/L (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-27-053123					
Laboratory ID:	06-001-03					
Manganese	290	11	EPA 6010D	6-1-23	6-2-23	
Client ID:	QA/QC-2-053123					
Laboratory ID:	06-001-04					
Manganese	250	11	EPA 6010D	6-1-23	6-2-23	
Client ID:	HMW-11-053123					
Laboratory ID:	06-001-05					
Manganese	550	11	EPA 6010D	6-1-23	6-2-23	
Client ID:	HMW-10-053123					
Laboratory ID:	06-001-06					
Manganese	550	11	EPA 6010D	6-1-23	6-2-23	
Client ID:	CMW-31-053123					
Laboratory ID:	06-001-08					
Manganese	ND	11	EPA 6010D	6-1-23	6-2-23	

DISSOLVED MANGANESE EPA 6010D QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Dat	е	
Analyte	lyte Result PQL Method		ethod	Prepared	Analy	zed	Flags			
METHOD BLANK										
Laboratory ID:		MB0601F1								
Manganese		ND		11	EPA	A 6010D	6-1-23	6-2-2	23	
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-32	21-01								
	ORIG	DUP								
Manganese	ND	ND	NA	NA		NA	NA	NA	20	

MATRIX SPIKES

Laboratory ID:	05-32	21-01									
	MS	MSD	MS	MSD		MS	MSD				
Manganese	544	535	556	556	ND	98	96	75-125	2	20	

DISSOLVED METHANE RSK 175

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-27-053123					
Laboratory ID:	06-001-03					
Methane	360	2.8	RSK 175	6-7-23	6-7-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	87	50-150				
Client ID:	QA/QC-2-053123					
Laboratory ID:	06-001-04					
Methane	420	3.3	RSK 175	6-7-23	6-7-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	84	50-150				
Client ID:	HMW-11-053123					
Laboratory ID:	06-001-05					
Methane	460	3.3	RSK 175	6-7-23	6-7-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	89	50-150				
Client ID:	HMW-10-053123					
Laboratory ID:	06-001-06					
Methane	230	3.3	RSK 175	6-7-23	6-7-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	86	50-150				
Client ID:	CMW-31-053123					
Laboratory ID:	06-001-08					
Methane	ND	0.55	RSK 175	6-7-23	6-7-23	
Surrogate:	Percent Recovery	Control Limits				
1-Butene	91	50-150				
-	-					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

20

DISSOLVED METHANE RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Dat	e	
Analyte		Result		PQL	Method	I I	Prepared	Analy	zed	Flags
METHOD BLANK										
Laboratory ID:		MB0607W1								
Methane		ND		0.55	RSK 175	5	6-7-23	6-7-2	23	
Surrogate:	Pe	ercent Recov	rery C	Control Limits						
1-Butene		83		50-150						
					Per	rcent	Recovery		RPD	
Analyte	Re	sult	Spil	ke Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANK										
Laboratory ID:	SB06	607W1								
	SB	SBD	SB	SBD	SB	SBD				
Methane	42.4	38.0	44.2	2 44.2	96	86	75-125	11	25	
Surrogate:										

TOTAL ALKALINITY SM 2320B

Matrix:	Water
Units:	mg CaCO3/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CMW-27-053123					
Laboratory ID:	06-001-03					
Total Alkalinity	52	2.0	SM 2320B	6-5-23	6-5-23	
Client ID:	QA/QC-2-053123					
Laboratory ID:	06-001-04					
Total Alkalinity	52	2.0	SM 2320B	6-5-23	6-5-23	
Client ID:	HMW-11-053123					
Laboratory ID:	06-001-05					
Total Alkalinity	56	2.0	SM 2320B	6-5-23	6-5-23	
Client ID:	HMW-10-053123					
Laboratory ID:	06-001-06					
Total Alkalinity	78	2.0	SM 2320B	6-5-23	6-5-23	
Client ID:	CMW-31-053123					
Laboratory ID:	06-001-08					
Total Alkalinity	84	2.0	SM 2320B	6-5-23	6-5-23	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL ALKALINITY SM 2320B QUALITY CONTROL

Matrix: Water Units: mg CaCO3/L

Analyte	Result PQL Method		ethod	Date Prepared	Date Analyzed		Flags		
METHOD BLANK									
Laboratory ID:		MB0605W1							
Total Alkalinity		ND	2.0	SM	2320B		6-5-2	3	
Analyte	Ro	sult	Spike Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE		Suit		Result	Recovery	Linits		Liiiit	Tidgo
Laboratory ID:	05-32	21-01							
	ORIG	DUP							
Total Alkalinity	60.0	60.0	NA	NA	NA	NA	0	10	
SPIKE BLANK									
Laboratory ID:	SB06	05W1							
	S	В	SB		SB				
Total Alkalinity	94	1.0	100	NA	94	82-112	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

OnSite Environmental Inc David Baumeister 14648 NE 95th Street Redmond, WA 98052

RE: 06-001 Work Order Number: 2306005

June 06, 2023

Attention David Baumeister:

Fremont Analytical, Inc. received 5 sample(s) on 6/1/2023 for the analyses presented in the following report.

Ferrous Iron by SM3500-Fe B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	OnSite Environmental Inc 06-001 2306005	Work Order Sample Summary						
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received					
2306005-001	CMW-27-053123	05/31/2023 11:50 AM	06/01/2023 9:22 AM					
2306005-002	QA/QC-2-053123	05/31/2023 12:28 PM	06/01/2023 9:22 AM					
2306005-003	HMW-11-053123	05/31/2023 10:40 AM	06/01/2023 9:22 AM					
2306005-004	HMW-10-053123	05/31/2023 9:45 AM	06/01/2023 9:22 AM					
2306005-005	CMW-31-053123	05/31/2023 12:20 PM	06/01/2023 9:22 AM					

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2306005** Date: **6/6/2023**

CLIENT:OnSite Environmental IncProject:06-001

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

 WO#:
 2306005

 Date Reported:
 6/6/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike

Surr - Surrogate

Client: OnSite Environmental Inc				Collection	Date:	5/31/2023 11:50:00 AM
Project: 06-001 Lab ID: 2306005-001				Matrix: W	ater	
Client Sample ID: CMW-27-053123 Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Ferrous Iron by SM3500-Fe B				Batch	n ID: R8	34373 Analyst: SLL
Ferrous Iron	1.42	0.150		mg/L	1	6/1/2023 9:40:00 AM

Client: OnSite Environmental Inc				Collection	Date:	5/31/2023 12:28:00 PM
Project: 06-001 Lab ID: 2306005-002				Matrix: W	ater	
Client Sample ID: QA/QC-2-05312	3					
Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Ferrous Iron by SM3500-Fe B				Batch	n ID: R	84373 Analyst: SLL
Ferrous Iron	0.803	0.150		mg/L	1	6/1/2023 9:40:00 AM

Client: OnSite Environmental Inc				Collection	Date: 5	5/31/2023 10:40:00 AM
Project: 06-001 Lab ID: 2306005-003				Matrix: W	ater	
Client Sample ID: HMW-11-053123 Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Ferrous Iron by SM3500-Fe B				Batch	n ID: R8	4373 Analyst: SLL
Ferrous Iron	8.00	1.50	D	mg/L	10	6/1/2023 9:40:00 AM

Client: OnSite Environmental Inc				Collection	Date: 5	5/31/2023 9:45:00 AM
Project: 06-001 Lab ID: 2306005-004				Matrix: W	ater	
Client Sample ID: HMW-10-05312						
Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Ferrous Iron by SM3500-Fe B				Batch	n ID: R8	4373 Analyst: SLL
Ferrous Iron	3.70	1.50	D	mg/L	10	6/1/2023 9:40:00 AM

Client: OnSite Environmental Inc				Collection	Date:	5/31/2023 12:20:00 PM
Project: 06-001 Lab ID: 2306005-005				Matrix: W	ater	
Client Sample ID: CMW-31-053123 Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
Ferrous Iron by SM3500-Fe B				Batch	n ID: R8	34373 Analyst: SLL
Ferrous Iron	ND	0.150		mg/L	1	6/1/2023 9:40:00 AM

CLIENT: O	306005 InSite Environme 6-001	ntal I	nc								SUMMAR ous Iron b		
Sample ID: MB-R8437	73 Sam	рТуре	: MBLK			Units: mg/L		Prep Da	te: 6/1/202	23	RunNo: 843	373	
Client ID: MBLKW	Bate	h ID:	R84373					Analysis Da	te: 6/1/202	23	SeqNo: 176	60611	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			ND	0.150									
Sample ID: LCS-R843	373 Sam	рТуре	: LCS			Units: mg/L		Prep Da	te: 6/1/202	23	RunNo: 843	373	
Client ID: LCSW	Bate	h ID:	R84373					Analysis Da	te: 6/1/202	23	SeqNo: 176	60612	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			0.403	0.150	0.4000	0	101	85	115				
Sample ID: 2306005-0	003ADUP Sam	рТуре	: DUP			Units: mg/L		Prep Da	te: 6/1/202	23	RunNo: 843	373	
Client ID: HMW-11-0	053123 Bate	h ID:	R84373					Analysis Da	te: 6/1/202	23	SeqNo: 176	60615	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			8.19	1.50						8.000	2.35	20	D
Sample ID: 2306005-0	003AMS Sam	рТуре	: MS			Units: mg/L		Prep Da	te: 6/1/202	23	RunNo: 843	373	
Client ID: HMW-11-0	053123 Bate	h ID:	R84373					Analysis Da	te: 6/1/202	23	SeqNo: 176	60616	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			12.0	1.50	4.000	8.000	99.9	70	130				D
Sample ID: 2306005-0	003AMSD Sam	рТуре	: MSD			Units: mg/L		Prep Da	te: 6/1/202	23	RunNo: 843	373	
Client ID: HMW-11-0	053123 Bate	h ID:	R84373					Analysis Da	te: 6/1/202	23	SeqNo: 176	60617	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ferrous Iron			12.6	1.50	4.000	8.000	116	70	130	12.00	5.30	30	D

Sample Log-In Check List

Client Name: ONSITE	Work Order Numb	per: 2306005	
Logged by: Morgan Wilson	Date Received:	6/1/2023 9	9:22:00 AM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🖌	No	Not Present
2. How was the sample delivered?	<u>Client</u>		
<u>Log In</u>			
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No 🗌	Not Present
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	
5. Were all items received at a temperature of >2°C to 6°C *	Yes 🗹	No 🗌	
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗌	
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌	
8. Are samples properly preserved?	Yes 🗹	No 🗌	
9. Was preservative added to bottles?	Yes	No 🗹	NA 🗌
10. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🔽
11. Did all samples containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
12. Does paperwork match bottle labels?	Yes 🖌	No 🗌	
13. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
14. Is it clear what analyses were requested?	Yes 🖌	No 🗌	
15. Were all holding times able to be met?	Yes 🗹	No 🗌	
<u>Special Handling (if applicable)</u>			
16. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🔽
Person Notified: Date:			
By Whom: Via:	eMail Pr	none 🗌 Fax	In Person
Regarding:			
Client Instructions:			
17. Additional remarks:			

Item Information

Item #	Temp ⁰C
Sample	1.8

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.		Requested Analyses
	CMW-27-053123	5/31/23	11:50	×	-	Ferrour Iron	r Iron
	QA/QC-2-053123	5/31/23	12:28	۶		Ferrour Iron	r Iron
	HMW-11-053123	5/31/23	10:40	W	-	Ferrour Iron	r Iron
	HMW-10-053123	5/31/23	9:45	×		Ferrour Iron	r Iron
	CMW-31-053123	5/31/23	12:20	¥	<u>_</u>	Ferrour Iron	r Iron
	Signature	Com	Company	11 C	Date	Time	Comments/Special Instructions
Relinqui	Relinquished by:	FLN			A CV153	-	
Received by:	d by:	FAI	.6.5		56/173	9:22	
Relinqui	Relinquished by:						
Received by:	d by:						
Relinqui	Relinquished by:						
Received by:	d by:						

230 6000 Page 12 of 12

Laboratory Reference #: 06-001

Project Manager: David Baumeister

email: dbaumeister@onsite-env.com

Turnaround Request

1 Day 2 Day 3 Day

Standard

Other:

Phone Number: (206) 352-3790

3600 Fremont Avenue N, Seattle, WA 98103

Attention: Chelsea Ward

Laboratory: Fremont Analytical

14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881

Project Number: 301-004 Project Name:

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	10 CMW-12-053123	9 CMW -13-053123	8 CMW-31-053123	7 CMW-8-053123	6 HMW -10-053123	5 HMW-11-053123	4 aa/ac-2-053123	3 CMW -27 - 05 31 23	2 CMW-10-053123	CMW-2-053123	Lab ID Sample Identification	sampled by: J, KIM / M. Ysayuirre	J, RUARK	CEWEX AUSURN	Froject Number: 301-004	FARALLON	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	OnSite
Re					0	-	Company	F	-		1	0	1		1	1	5-21-23 1	Date Sampled S	[A Standard (7 Days)	2 Days	Same Day	(in w	Turnar	
Reviewed/Date					386	FARALLON	pany	1560	1120	120	1410	0945	040	1228	1150	1450	5551	Time Sampled	(other)		d (7 Days)			(In working days) (Check One)	Turnaround Request	Cha
						No		4								-	E	Matrix				3 Days	1 Day		st	Chain of Custody
					1			J	S	11	U	10	10	10	10	S	5	1	PH-HCI	Contain	ers					C
				6	2K	15.	Date	X	×	×	\times	\times	×	\times	\times	\times	\times		PH-Gx/	BTEX	802	21			I aboratory N	Ist
				1/23	1	5-31-23		~	$\mathbf{\mathbf{x}}$	×	×	\mathbf{x}		×	X			NWTF	PH-Gx PH-Dx (X Acid	/ SG CI	ean-up)			aton	ody
				0	T	A A	_							/-					les 826	0D			hoi		N	
				35.8	5	00															s 8260D ers Only				umber-	
Chi	Data		<u> </u>	P	<u> </u>		Co	,										Semi	/olatiles	s 8270E el PAHs	/SIM				•	0
Chromatograms	ta Pacl				2	H	Comments/Special Instructions											PAHs	8270E	/SIM (lo	w-level)					0
grams	Package:				No Acid	HoLD	s/Spec	i											8082A		icides 8	081B		0	þ	0
with final report	Standard				Cic	FOR	tal Inst														Pesticide		E/SIM	Ċ	5	04
nal rep	ard 🗆				2 0		ruction											Chlor	inated	Acid He	rbicides	8151A			F	
ort 🗌	Level				2	PM	SI												RCRAI							
Electr					4					-									MTCA	Metals						Page
onic Da	Level				F) 1664A					34
ata Deli					6					×		×	X	×	×			Su	4	ate	, 1	J:t	va	Fe		fof
Electronic Data Deliverables					Dan					×		X	×	X	×			Fe	rv-	000	SIL					N
es (EDDs)					x					×		×	X	X	×			PI	5,	Ma	nga	inp	40			I
(s)					U				-	X		×	×	14	X			М • % Мо	isture	and	<u>,</u> K	4(k	ch	non	t	

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature				/	/	12 HMW-09-053123	11 QA/QC-1-053123	Lab ID Sample Identification	Sampled by:	Project Manager:	Project Name:	Project Number: SEE PGA, 1	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	OnSite Environmental Inc.
Reviewed/Date					350	FARALLON	Company		1/1/1				5 t 5060 T	5/31/23 1000 Water 5		(other)	ontaine	X Standard (7 Days)	Same Day 1 Day	(Check One)	Turnaround Request	Chain of Custody
				-	6/1/230830	5-31-23 1000	Date Time						X	×	NWTP NWTP NWTP Volatil Halogu		Acid Acid D	8260D	ean-up) thout		Laboratory Number:	ustody
Chromatograms with final report Electronic Data Deliverables (EDDs)	Data Package: Standard Level III Level IV		1	1		HND FOOD	Comments/Special Instructions								(with I PAHs PCBs Organ Organ Chlori Total f Total f Total f	nated A RCRA M MTCA M Metals (oil and s	I PAHs) SIM (lov e Pesti horus F cid Her etals letals	v-level) cides 8 Pesticides bicides	081B es 8270E/SIN 8151A		05-346 MP	06-001 Page 2 of 2

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 20, 2023

Javan Ruark, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Ruark:

Included are the results from the testing of material submitted on March 10, 2023 from the CHS Auburn 301-004, F&BI 303180 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data, Braeden Lukkari FLN0320R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 10, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC CHS Auburn 301-004, F&BI 303180 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
303180 -01	OVERALL-031023

The TO-15 gasoline range concentrations were quantified using a single point calibration at 80 ppbv.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	OVERALI 03/10/23 03/10/23 03/16/23 Air ug/m3	L-031023	Instr	ect:	Farallon Consulting, LLC CHS Auburn 301-004 303180-01 1/7.8 031526.D GCMS7 bat
		%	Lower	Upper	
Surrogates:	Re	ecovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	91	70	130	
		Concer	ntration		
Compounds:		ug/m3	ppbv		
Benzene		5.4	1.7		
Toluene		<150	<39		
Ethylbenzene		<3.4	< 0.78		
m,p-Xylene		< 6.8	<1.6		
o-Xylene		<3.4	< 0.78		
Gasoline Range Org	ganics	2,700	650		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 03/15/23 Air ug/m3	Clien Proje Lab I Data Instr Oper	et: D: File: ument:	Farallon Consulting, LLC CHS Auburn 301-004 03-0548 MB 031512.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 85	70	130	
	Conce	ntration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
	<0.32	<0.1 <5		
Toluene	-•			
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Gasoline Range Or	ganics <330	<80		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/23 Date Received: 03/10/23 Project: CHS Auburn 301-004, F&BI 303180

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 303174-01 1/5.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.8	<1.8	nm
Toluene	ug/m3	<110	<110	nm
Ethylbenzene	ug/m3	<2.4	<2.4	nm
m,p-Xylene	ug/m3	<4.9	<4.9	nm
o-Xylene	ug/m3	<2.4	<2.4	nm

Laboratory Code: Laboratory Control Sample

control bampic			
		Percent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
ug/m3	43	86	70-130
ug/m3	51	92	70-130
ug/m3	59	82	70-130
ug/m3	120	93	70-130
ug/m3	59	94	70-130
	Reporting Units ug/m3 ug/m3 ug/m3 ug/m3	Reporting UnitsSpike Levelug/m343ug/m351ug/m359ug/m3120	Reporting UnitsSpike LevelPercent Recovery LCSug/m34386ug/m35192ug/m35982ug/m312093

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

												FORMS\COC\COCTO-15.DOC	'n
										ed by:	Received by:	Fax (206) 283-5044	
		, L								Relinquished by:	Relinqu	Ph. (206) 285-8282	
14:59	03/10/23	18 4	<u> </u>	2		ANHDHA	≯		And	ed by:	Keceived by:	Seattle, WA 98108	
23 JHS9	<i>st/o</i> /2	Fundlion	f		Linktori	en L	Bradion	Trables	min (Kelinquished by:	Kelinqu	5500 4th Avenue South	
$\left \right $	VY DATE	COMPANY		E	PRINT NAME	PRIN		E	SIGNATURE	DIS		Friedman & Bruya, Inc.	E
								IA / SG					_
								. ·					
								IA / SG					
•	ed at <u>au</u> _℃	es received	Samples					IA / SG		-			
								IA / SG					T
								IA / SG					
								IA / SG	-				
								IA / SG					
			\$C9]		1016	38.0	3/10/23	IA / &Q	béc	1853	01	OVERALL-031023	
Notes	APH Helium	TO15 Full 5 TO15 BTE TO15 cVO	Field Final Time	Final Vac. ("Hg)	Field Initial Time	Initial Vac. ("Hg)	Date Sampled	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Flow Cont. ID	Canister ID	Lab ID	Sample Name	
		XN Cs											
	DITESTED	ANALYSIS REQUESTED	A									SAMPLE INFORMATION	_
following livery apply):	Default:Clean following final report delivery Hold (Fee may apply):		AIP			IF X	*6RO +BIEX		portheser	Jenuk, Blukkai. mail & folgeben insulting. in m	JEwk Email a	E	
SAMPLE DISPOSAL	SAMPLE]	INVOICE TO	INVC		-			NOTES:				City State 71P	
thorized by:	RUSHRush charges authorized by:	+ + +	301-004		DIEDOD	s & AD	(HS And MAND & ADDINESS					Company thrillion Address	
TURNAROUND TIME	TURNARO	ð ŧ		Tali	Bul	idiure).	DECTIVIANE & ADDRESS				K Cin	Report To Briden Luk Fin	(
		123	05/10/23	TODY	CUST	N OF	E CHAI	SAMPLE CHAIN OF CUS			,x	303180 Javan Runk	2

Ø

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 23, 2023

Javan Ruark, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Ruark:

Included are the results from the testing of material submitted on May 11, 2023 from the CHS Auburn 301-004, F&BI 305206 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data, Braeden Lukkari FLN0523R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 11, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC CHS Auburn 301-004, F&BI 305206 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
305206 -01	OVERALL-051123

The TO-15 gasoline range concentrations were quantified using a single point calibration at 80 ppbv.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	OVERALL-051123 05/11/23 05/11/23 05/17/23 Air ug/m3	Proje Lab Data Instr	ect:	Farallon Consulting, LLC CHS Auburn 301-004 305206-01 1/7.8 051718.D GCMS8 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 104	70	130	
	Conce	ntration		
Compounds:	ug/m3	ppbv		
Benzene	<2.5	< 0.78		
Toluene	<150	<39		
Ethylbenzene	<3.4	< 0.78		
m,p-Xylene	13	3.0		
o-Xylene	6.7	1.5		
Gasoline Range Or	ganics 12,000	2,800		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 05/17/23 Air ug/m3	Clien Proje Lab I Data Instr Oper	ect: D: File: ument:	Farallon Consulting, LLC CHS Auburn 301-004 03-1091 mb 051711.D GCMS8 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 95	70	130	
	Conce	ntration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<19	<5		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Gasoline Range Or	ganics <330	<80		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/23 Date Received: 05/11/23 Project: CHS Auburn 301-004, F&BI 305206

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 305136-01 1/4.6 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.5	<1.5	nm
Toluene	ug/m3	<35	<35	nm
Ethylbenzene	ug/m3	<2	<2	nm
m,p-Xylene	ug/m3	<4	<4	nm
o-Xylene	ug/m3	<2	<2	nm

Laboratory Code: Laboratory Control Sample

haboratory code. haboratory (some of sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	111	70-130
Toluene	ug/m3	51	104	70-130
Ethylbenzene	ug/m3	59	100	70-130
m,p-Xylene	ug/m3	120	91	70-130
o-Xylene	ug/m3	59	98	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	Seattle, WA 98108 Received by: Ph. (206) 285-8282 Relinquished by:	buth	Friedman & Bruya, Inc. SI								ONERAL-051123 01 8098	Lab Canister Sample Name ID ID	SAMPLE INFORMATION	City, State, ZIP	Address	Company Farallin	305206 Javan Rult Balevan hurtzi
(hp. W.h	but the till	SIGNATURE	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	IA / SG	DE IN SEE	Reporting Level: Flow IA=Indoor Air Cont. SG=Soil Gas ID (Circle One)		I I		PR	SA
	Liz webber -B	Brieden Lutran	PRINT NAME		ري 	ς ₂		Ω		ς <u>,</u>	5/11/23 30+ 1358 4.5	InitialFieldFinalDateVac.InitialVac.Sampled("Hg)Time("Hg)		NOTES: * GRO + BJEX	CHS Autorn	PROJECT NAME & ADDRESS	SAMPLERS (signature) Park W
	Fib	favallon	COMPANY		Samples						iyas X	TO15 Full Sca TO15 Full Sca TO15 BTEXT TO15 cVOCa APH	ALYSI	INVOICE TO AP	<u> </u>	PO#	MW1 05-11-23
	5/11/23 1504	4051 56/11/5	DATE TIME		les received at 23 °C							Helium Zotes	ESTED	SAMPLE DISPOSAL Default:Clean following final report delivery Hold (Fee may apply):	Rush charges authorized by:	Standard RUSH	Page # / of / TURNAROUND TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 25, 2023

Javan Ruark, Project Manager Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, WA 98027

Dear Mr Ruark:

Included are the results from the testing of material submitted on July 12, 2023 from the CHS Auburn 301-004, F&BI 307110 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Farallon Data, Braeden Lukkari FLN0725R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 12, 2023 by Friedman & Bruya, Inc. from the Farallon Consulting, LLC CHS Auburn 301-004, F&BI 307110 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Farallon Consulting, LLC
307110 -01	Overall-071223

The TO-15 gasoline range concentrations were quantified using a single point calibration at 80 ppbv.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Overall-071223 07/12/23 07/12/23 07/18/23 Air ug/m3	Instr	ect:	Farallon Consulting, LLC CHS Auburn 301-004 307110-01 1/8.2 071823.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 98	70	130	
	Conce	ntration		
Compounds:	ug/m3	ppbv		
Benzene	<2.6	< 0.82		
Toluene	<62	<16		
Ethylbenzene	5.1	1.2		
m,p-Xylene	25	5.7		
o-Xylene	8.5	2.0		
Gasoline Range Or	ganics 39,000	9,500		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable Not Applicable 07/18/23 Air ug/m3	Clien Proje Lab I Data Instr Opera	ct: D: File: ument:	Farallon Consulting, LLC CHS Auburn 301-004 03-1704 MB 071814.D GCMS7 bat
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	ene 96	70	130	
	Conce	ntration		
Compounds:	ug/m3	ppbv		
Benzene	< 0.32	< 0.1		
Toluene	<7.5	<2		
Ethylbenzene	< 0.43	< 0.1		
m,p-Xylene	< 0.87	< 0.2		
o-Xylene	< 0.43	< 0.1		
Gasoline Range Or	ganics <330	<80		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/25/23 Date Received: 07/12/23 Project: CHS Auburn 301-004, F&BI 307110

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 307070-03 1/6.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	2.5	2.4	4
Toluene	ug/m3	<48	<48	nm
Ethylbenzene	ug/m3	<2.8	<2.8	nm
m,p-Xylene	ug/m3	<5.6	<5.6	nm
o-Xylene	ug/m3	<2.8	<2.8	nm

Laboratory Code: Laboratory Control Sample

Laboratory coue. Laboratory	control sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	100	70-130
Toluene	ug/m3	51	107	70-130
Ethylbenzene	ug/m3	59	101	70-130
m,p-Xylene	ug/m3	120	98	70-130
o-Xylene	ug/m3	59	101	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedman & Bruya, Inc. SIGNATURE 5500 4 th Avenue South Relinquished by: Seattle, WA 98108 Received by: Ph. (206) 285-8282 Relinquished by: Fax (206) 283-5044 Received by: FORMS\COC\COCTO-15.DOC Received by:	SAMPL SAMPL Report To $Batten Lu/k/v SAMPL Company fartlen PROJE PROJE Address City, State, ZIP fartlen PROJE Phone Email Gaallen/Soluting, Email C/t' SAMPLE INFORMATION I.ab Canister Flow Iselentics Sulphing, Email Sample Name I.ab Canister Cont. SG=Soil Gas ID ID ID ICricle One) IA / SG Shull-07/73 0/ 367/ 27/ IA / SG IA IA IA IA / SG IA / SG IA IA IA / SG IA / SG IA / SG $
PRINT NAME Bratdon Luttan ANH PHAN	SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) Multical Summary Summar
COMPANY Fud/10n E85	TO15 Full Scan ANALYSIS Main Main
DATE TIME 7/12/23 1406 07/12/23 14:06	Page #