

Chevron Environmental Management Company

Draft for Public Review Preliminary Remedial Investigation Report

Former Chevron Station 97502

640 Metcalf Street

Sedro-Woolley, Washington

FSID: 61112475

CSID: 6368

July 15, 2022

Draft for Public Review – Preliminary Remedial Investigation Report

Former Chevron Station 97502 640 Metcalf Street Sedro-Woolley, Washington FSID: 61112475

CSID: 6368

July 15, 2022

Prepared By:
Arcadis U.S., Inc.
1100 Olive Way, Suite 800
Seattle
Washington 98101

Phone: 206 325 5254 Fax: 206 325 8218

Our Ref: 30064310

Sean Parry Staff Geologist

Ada Hamilton Project Manager

Ophélie Encelle Staff Geologist Specialist

Zak Wall Geologist, PG

Pre	paı	ed	Fc	r:
-----	-----	----	----	----

Chevron Environmental Management Company

Contents

A	cronym	ns and Abbreviations	V
1	Intro	oduction	1
2	Site	Background	1
	2.1	General Site Information	1
	2.2	Site History	2
	2.3	Site Regulatory History	2
	2.4	Environmental Setting	3
3	Prev	vious Environmental Investigations	4
	3.1	Historical Soil Investigations	4
	3.2	Historical Groundwater Investigations	5
	3.3	Historical Soil Vapor Investigations	5
4	Sum	nmary of Previous Remedial Actions	6
	4.1	UST and Site Structure Removals	6
	4.2	1992 Excavations	6
	4.3	Bimonthly Vacuum Extraction	7
	4.4	2009 Surfactant Extraction	8
5	Rem	nedial Investigation Activities	8
	5.1	Data Gap Investigation Objectives	8
	5.2	Pre-field Activities	9
	5.3	Utility Locate	9
	5.4	Soil and Well Boring Drilling and Sampling	9
	5.5	Monitoring Well Installation	. 11
	5.6	Groundwater Monitoring and Sampling	11
	5.7	Soil Vapor Sampling	12
	5.8	Investigation-Derived Waste	12
6	Ana	lytical Results	13
	6.1	Quality Analyses	13
	6.2	Soil Results	. 13
	6.3	Groundwater Results	14
	6.4	Soil Vapor Results	14
7	Con	ceptual Site Model	. 15

	7.1	Source Characterization	15
	7.2	Nature and Extent of Contamination	15
	7.3	Fate and Transport	16
	7.3.1	General Fate and Transport Mechanism	16
	7.3.2	Site Fate and Transport Mechanism	16
	7.4	Exposure Pathways and Potential Receptors	17
	7.4.1	Potential Receptors	17
	7.4.2	Potential Exposure Pathways	17
	7.4	4.2.1 Potential Soil Exposure Pathways	17
	7.4	4.2.2 Potential Groundwater Exposure Pathway	18
	7.4	4.2.3 Soil Vapor Potential Pathway	18
8	Proj	posed Cleanup Standards	18
9	Con	clusions and Recommendations	19
1	0 Refe	erences	21

Tables

- Table 1 Historical Soil Analytical Results
- Table 2 Historical Groundwater Gauging Data and Select Analytical Results
- Table 3 Historical Groundwater Analytical Results cPAHs
- Table 4 Historical Groundwater Analytical Results VOCs and sVOCs
- Table 5 Historical Soil Vapor Data
- **Table 6 Well Construction Details**
- Table 7 Current Soil Analytical Results
- Table 8 Current Groundwater Gauging Data and Select Analytical Results
- Table 9 Current Groundwater Analytical Results cPAHs
- Table 10 Current Soil Vapor Data

Figures

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Q3 September 2021 Groundwater Gauging Results

Figure 4 – Q4 December 2021 Groundwater Gauging Results

Figure 5 – Current Soil MTCA Boundary

Figure 6 – Q3 2021 Groundwater MTCA Boundary

Figure 7 - Q4 2021 Groundwater MTCA Boundary

Figure 8 - Current Soil Vapor Data

Appendices

Appendix A. Property Details and Ecology Communications

Appendix B. TGI for Soil Descriptions

Appendix C. Boring Logs

Appendix D. TGI for Low-Flow Groundwater Purging and Sampling Procedures

Appendix E. Groundwater Sampling Field Forms

Appendix F. Soil Vapor Sampling Field Forms

Appendix G. Waste Manifest

Appendix H. Soil Lab Data

Appendix I. Groundwater Lab Data

Appendix J. Vapor Lab Data

Appendix K. Terrestrial Ecological Evaluation Form

Acronyms and Abbreviations

Arcadis U.S., Inc.

AO Agreed order

ASTM ASTM International

bgs below ground surface

BTEX collectively benzene, toluene, ethylbenzene, and total xylenes

CEMC Chevron Environmental Management Company

COC constituent of concern

CUL cleanup level

DRO diesel range organics

Ecology Washington Department of Ecology

EDB ethylene dibromide

EDC 1,2-dichloroethane

EIM Environmental Information Management

EMCON Sweet-Edwards/EMCON

GRO gasoline range organics

HO heavy oil range organics

IDW investigation-derived waste

MTBE methyl tertiary butyl ether

MTCA Model Toxics Control Act

PID photo ionization detector

PLP Potentially Liable Person

site Former Chevron Service Station 97502, located at 640 Metcalf Street in Sedro Woolley,

Washington

TPH total petroleum hydrocarbon

USEPA United States Environmental Protection Agency

UST underground storage tank

VOC volatile organic compound

WAC Washington Administrative Code

1 Introduction

On behalf of Chevron Environmental Management Company (CEMC), Arcadis U.S., Inc. (Arcadis) has prepared this *Draft for Public Review – Preliminary Remedial Investigation* (RI) *Report* (report) for Former Chevron Station 97502 located at 640 Metcalf Street in Sedro-Woolley, Washington (site). The "site" is defined in the Agreed Order (AO) No. DE 18034 as the property (lots 77454, 77455, and 77456) and surrounding right-of-way (ROW) areas (Ecology 2020a). Potentially Liable Persons (PLPs) for the site are CEMC and the City of Sedro-Woolley (City). The property is currently owned by the City and is occupied by Hammer Heritage Square, a public City park. A site location map is presented on Figure 1 and a site map is included as Figure 2. A parcel map and parcel data for the site are presented in Appendix A. Site regulatory identifiers include Cleanup Site Identification No. 6368 and Facility Site Identification No. 61112475.

This report documents the investigation activities conducted at the site in September and December 2021 that were performed in general accordance with the May 20, 2021 *Remedial Investigation Work Plan* (Work Plan; Arcadis 2021), which was approved via an email from the Washington Department of Ecology (Ecology) on May 24, 2021 (Appendix A). Work was also completed pursuant to AO No. 18034, effective September 14, 2020 (Ecology 2020a).

The data collected during this site investigation was uploaded in the Ecology Environmental Information Management (EIM) database under EIM identification number FSID61112475.

The objectives of the work were to address data gaps regarding the nature and extent of contaminant releases in soil, groundwater, and soil vapor associated with the historic use of the property.

2 Site Background

This section discusses general site and background information, and the environmental history at the site.

2.1 General Site Information

The site's general information is listed below:

- Site Location: 640 Metcalf Street and surrounding ROW areas
- Site County: Skagit County
- Site Parcel Number, Address, Area, Current Use:
 - Parcels P77454, P77455, P77456:
 - 640 Metcalf Street (historically shown as 124 West Ferry Street)
 - 0.21 acre
 - Currently Hammer Heritage Square Park
- Site Land Use: The property is zoned as Public, which allows parks, schools, public infrastructure and other developments intended primarily for public use (City of Sedro-Woolley 2019).
- Vicinity Land Use: Surrounding properties are zoned as Central Business District, which may be used for commercial, multi-family residential, and public uses (City of Sedro-Woolley 2019). The property is bounded

by Metcalf Street to the east, Ferry Street to the south, a pizza restaurant to the west, and a bowling alley to the north.

2.2 Site History

The property and surrounding area have been developed for commercial uses since at least the early 1900s. Historical ownership and land use of the property are described below, including historical petroleum activities and/or spills.

The earliest known development of the property occurred in 1905 with the construction of the Seidell Building. Before it burned down in 1949, the Seidell Building was used for various commercial businesses, including a bank, lawyer's office, barber shop, tailor, and stores for sporting goods, liquor, and general retail (Ecology 2020a).

The property was redeveloped as a service station around 1950, becoming the Gateway Service Station in 1953. In 1965, Standard Oil Company of California (predecessor to Chevron) acquired the Gateway Service Station property and remodeled and took over operations (Ecology 2020a).

On July 25, 1989, approximately 100 gallons of unleaded gasoline were spilled when an underground storage tank (UST) overflowed during filling. The spilled gasoline flowed south down the gutter along Metcalf Street to Ferry Street and entered a catch basin at the northwestern corner of Metcalf and Ferry Streets. The gasoline was flushed from the storm water drainage system on July 25 and 26, 1989 (Conestoga-Rovers & Associates [CRA] 2008a).

Service station operations ended in early 1992, and all USTs were removed by February 1992. An estimated eight USTs were historically present at the service station – three gasoline USTs (one 3,000-gallon supreme unleaded gasoline UST, one 6,500-gallon unleaded gasoline UST, one 8,000-gallon leaded gasoline UST), as well as one 550-gallon heating oil UST, one 550-gallon used oil UST, and one 300-gallon kerosene UST.. The service station also contained two pump islands, two hydraulic hoists, and associated underground piping (Ecology 2020a). The City purchased the lots that comprise the property in several transactions between 1997 and 2000 and constructed Hammer Heritage Square in 2005 (Ecology 2020a).

Hammer Heritage Square is primarily paved with concrete pavers and contains a gazebo, planter and landscaped areas, public restrooms, and a clock tower. The park is the location of the Sedro-Woolley Farmers Market and other community events (Ecology 2020a). Ten groundwater monitoring wells were on-site, prior to the installation of seven new wells in September 2021 (described in further detail within this report).

2.3 Site Regulatory History

Environmental activities at the site began after the 1989 release, which was documented by Skagit County Department of Emergency Management, as described above.

Based on subsurface investigations and UST removals conducted from 1991 through 1993, the City, in cooperation with CEMC, enrolled the site in Ecology's Voluntary Cleanup Program (VCP) in May 2000.

On September 6, 2000, Ecology sent a VCP Opinion letter to the City stating that additional work would be required to address environmental impacts at the site (Ecology 2020a).

Ecology sent a PLP status letter to CEMC on October 1, 2015, and a subsequent letter dated February 22, 2016 identified CEMC as a PLP at the site. An Ecology letter dated April 27, 2016 identified the City as an additional

PLP for the site. On September 14, 2020, Ecology issued AO No. DE 18034 which required the following actions and conditions:

- PLPs will complete a Draft RI Work Plan. The RI Work Plan will include all actions needed to characterize impact extent at the site in all environmental media.
- Implement the RI Work Plan and submit an RI report.
- Implement potential interim actions if needed to reduce immediate threats to human and environmental
 health, to prevent issues at the site that may become substantially worse if remedial action is delayed, or if
 needed to complete the requirements of the AO.
- Prepare a Feasibility Study (FS) report to evaluate remedial alternatives for the site.
- Following Ecology's approval of the RI/FS, the PLPs will submit a preliminary Draft Cleanup Action Plan.
- Comply with the State Environmental Policy Act and public participation processes.
- Attend key meetings listed in the AO and provide quarterly progress reports.

An AO Fact Sheet and Public Participation Plan were created by Ecology in June 2020 for public review (Ecology 2020c). Comments were accepted from June 22 to July 21, 2020. A virtual public meeting was hosted by Ecology on June 30, 2020. The presentation is available on Ecology's site information webpage, along with Ecology's response to public comments.

2.4 Environmental Setting

The site environmental setting is described below:

- **Site Elevation:** The site is generally flat, with surrounding areas sloping downhill to the south toward the Skagit River. Area elevations range from approximately 40 to 60 feet above sea level.
- Climate: Temperate climate with local annual precipitation averaging 46.5 inches. Local temperatures range from average lows in the mid-30s Fahrenheit in winter months to highs in the 70s Fahrenheit in summer months (U.S. Climate Data 2020).
- Nearest Waterbodies: The Skagit River is located 1.25 miles south of the site. Brickyard Creek is 0.5 mile northwest of the site. No other surface water is present on or within 0.5 miles of the site, and no risks to surface water have been identified. The closest drinking water wells are located approximately 0.5 mile northeast and 0.85 mile southwest and are not in hydraulic connection with the site (Ecology 2020b). Drinking water at the property is provided by Skagit County Public Utility District, sourced from Judy Reservoir, located approximately 6 miles southeast of the property, on the other side of the Skagit River.
- **Site Soils:** Geology at the site is classified as the Vashon Till, a Quaternary glacial deposit characterized by gravel, silty sand, and silty clay (CRA 2009; Skagit County Public Health Department [SCPHD] 2018).
- **Site Groundwater:** Groundwater monitoring began at the site in 1992 and continued until September 2014, when it was put on hold until 2020. Past monitoring frequency was typically quarterly; however, multiple years only had semi-annual sampling.
 - Monitoring network: Fourteen groundwater monitoring wells were originally installed at the site.
 Groundwater monitoring wells MW-1 through MW-3 were installed in 1991 and decommissioned in 1992.
 Groundwater monitoring well MW-9 was decommissioned in 2001. The remaining groundwater monitoring wells were regularly sampled until 2014.

- Observed depth to water: Depth to water at the site averages between 6 and 16 feet below ground surface (ft bgs) (CRA 2009; SCPHD 2018).
- Groundwater elevation: Groundwater elevation ranges from approximately 43 to 52 ft above mean sea level.
- Groundwater flow direction: Groundwater flow direction at the site is primarily toward the south and has varied from south-southeast to south-southwest (see rose diagram on Figure 3). A review of available historical groundwater contour maps indicated no seasonal or temporal trends observed.
- Site Sediment: No risks to sediments have been identified.

3 Previous Environmental Investigations

Investigations have been conducted at the site since 1989 and included soil, groundwater, soil vapor, and light non-aqueous phase liquid (LNAPL) assessment. Those investigations are summarized in the following sections.

3.1 Historical Soil Investigations

From 1991 to 2008, seven subsurface investigations were conducted to determine the extent of soil impacts in the vicinity of the former USTs and dispenser islands. A total of 63 soil samples were collected and submitted for laboratory analysis.

Included in the investigations were two subsurface soil investigations and two UST removal assessments, performed by Sweet-Edwards/EMCON (EMCON) from 1991 through 1993. Additional soil sampling was performed in 2002 and 2006 during the installation of groundwater monitoring wells by Cambria Environmental Technology, Inc.

Prior to the current investigation, the most recent soil investigation at the site was conducted by CRA in April 2008, with five soil borings advanced to better identify the potential source of LNAPL at the site.

The 2008 investigation included five soil borings (GB-1 through GB-5) in the vicinity of former USTs and dispenser islands. Soil borings ranged in depth from 12 to 16 ft bgs.

- TPH-GRO was the only analyte detected above MTCA Method A CULs in soil samples. The maximum concentration of TPH-GRO (110 milligrams per kilogram [mg/kg]) in the vicinity of the former USTs was detected at 5 feet bgs (boring GB-2) (CRA 2008a).
- The maximum TPH-GRO concentration detected near former dispenser islands was 380 mg/kg at 2 feet bgs (GB-4), indicating that the dispenser islands were also not the likely source of LNAPL (CRA 2008a).

Soil samples at the site have been analyzed for the following constituents: gasoline range organics (GRO), diesel range organics (DRO), heavy oil range organics (HO), benzene, toluene, ethylbenzene, and total xylenes (BTEX), lead, volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), priority pollutant metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver), carcinogenic polycyclic aromatic hydrocarbons (cPAHs), methyl tertiary-butyl ether (MTBE), ethylene dibromide (EDB), 1,2-Dichloroethane (EDC), tetrachloroethylene (PCE), and trichloroethylene (TCE).

Historically, soil concentrations of GRO, DRO, HO, and BTEX have been found in exceedance of MTCA Method A CULs between 2 and 12 ft bgs. All other constituents analyzed were either not detected or were detected at concentrations below MTCA Method A CULs. Historical soil analytical data are summarized in Table 1.

3.2 Historical Groundwater Investigations

Groundwater investigation began at the site in February 1991 with the installation of groundwater monitoring wells MW-1 through MW-5 by EMCON. A total of 14 groundwater monitoring wells (MW-1 through MW-14) were installed at the site between 1991 and 2006 with four (4) of the wells later being decommissioned. Wells MW-1, MW-2, and MW-3 were decommissioned during the 1992 UST removal events and MW-9 was decommissioned in 2001. Ten groundwater monitoring wells remain on-site and constituted the groundwater monitoring well network until 2021.

Groundwater samples were collected on a quarterly or semi-annual basis and analyzed for BTEX, GRO, DRO, HO, and lead (total and dissolved). Analysis for MTBE, EDB, di-isopropyl ether (DIPE), ethyl tertiary-butyl ether (ETBE), tertiary amyl-methyl ether (TAME), tertiary butyl alcohol (TBA), and 1,2-dichloroethene (1,2-DCE) has also been included in several sampling events.

BTEX, GRO, DRO, HO, MTBE, and lead have been detected above MTCA Method A CULs. All other constituents analyzed were non-detect or were detected at concentrations below applicable MTCA Method A CULs.

Groundwater monitoring wells were initially gauged from 1991 to 2014. LNAPL was first observed in October 1991 in MW-3 at a thickness of 1.08 feet. LNAPL historically was observed in wells MW-3, MW-7, MW-12, and MW-13. The maximum LNAPL thickness observed at the site was 1.85 feet at MW-13 in June 2007. No LNAPL has been observed at the site since 2009. A sheen was also historically observed in MW-1, MW-4, and MW-5; however, no LNAPL was measured in those wells.

In 2008, CRA conducted a subsurface investigation to identify the potential source of LNAPL. During the 2008 investigation, LNAPL was observed in groundwater monitoring wells MW-7, MW-12, and MW-13 at thicknesses ranging from 0.03 feet (MW-7) to 0.24 feet (MW-13) (CRA 2008a). As mentioned above, the investigation included five soil borings (GB-1 through GB-5) in the vicinity of former USTs and dispenser islands to depths of 12 to 16 ft bgs. Grab groundwater samples were collected from temporary wells installed in each boring. Based on the analytical results, a source area for LNAPL was not determined.

 Groundwater in one boring (GB-5) contained elevated concentrations of TPH-GRO (1,100 micrograms per liter [ug/L]) and TPH-DRO (990 ug/L). These concentrations, however, were not indicative of LNAPL (CRA 2008).

Historical groundwater gauging data and analytical results are summarized in Tables 2, 3, and 4.

3.3 Historical Soil Vapor Investigations

Three dual-nested soil vapor probes (VP-1 through VP-3 at 4.5 and 7.5 ft bgs) were installed by CRA in October 2007 to assess any potential vapor intrusion (VI) concerns downgradient from the site. The probes were installed near wells MW-10, MW-11, and MW-14 (Figure 2) and were sampled in October and December 2007. Vapor samples were analyzed for BTEX, butane, propane, and isobutane according to United States Environmental Protection Agency (USEPA) Method TO-15 and oxygen, carbon dioxide, and methane by ASTM International (ASTM) Method D-1946. Johnson & Ettinger (J&E) Vapor Intrusion modeling using the results indicated that the analytes did not pose a VI risk (CRA 2008b). However, comparing the results to current MTCA screening levels indicates that the detected concentration of benzene exceeded the MTCA Method B Sub-Slab Soil Gas Screening Level in one sample (VP-1-8) collected in October 2007. However, no MTCA Method B exceedances (including

no detections of benzene) were observed during the December 2007 re-sampling event. The soil vapor samples were not analyzed for TPH. The historical 2007 soil vapor data are shown in Table 5.

4 Summary of Previous Remedial Actions

4.1 UST and Site Structure Removals

In June and July 1991, EMCON removed two USTs (one 550-gallon used oil UST and one 300-gallon kerosene UST) located in the northwestern portion of the property.

Two additional USTs with unknown contents were discovered within a concrete vault that was part of a former building on the southwestern portion of the property. In June 1991, Northwest Enviroservices, Inc. "pumped and removed approximately 20 gallons of accumulated product, water, and saturated soil from the base of the vault" (EMCON 1993).

In February 1992, EMCON removed the remaining six USTs: one 3,000-gallon supreme unleaded gasoline UST, one 6,500-gallon unleaded gasoline UST, one 8,000-gallon leaded gasoline UST, one 550-gallon heating oil UST, one 300-gallon UST with unknown contents, and one 100-gallon UST with unknown contents. The 300- and 100-gallon USTs with unknown contents were removed from the vault area. The pump islands, hoists, underground fuel infrastructure, and former station building were also demolished or removed during this event. Concentrations of TPH and BTEX constituents were detected above MTCA Method A CULs in soil samples collected from the sidewalls and bottoms of the excavations. Soil removed was stockpiled and subsequently placed back into excavations for stabilization. Four samples were collected from stockpiles, and one sample exceeded the MTCA Method A CUL for GRO (EMCON 1993).

4.2 1992 Excavations

In June 1992, excavations were performed in the following areas of the property: the vault area, the gasoline USTs and pump island area, the used oil and kerosene USTs area, and the heating oil UST area. Groundwater monitoring wells MW-1, MW-2, and MW-3 were decommissioned as part of these excavations. The MW-1 and MW-2 well abandonment consisted of over-excavating the area to a depth of approximately 20 ft bgs. Excavation areas are shown on Figure 5.

Vault Area Excavation

The vault area was excavated to a maximum depth of 19 ft bgs, with an average depth of 10 to 12 ft bgs. Approximately 300 gallons of groundwater that seeped into the excavation area were pumped and removed as well as 50 cubic yards of soil. An additional 50 cubic yards of soil were excavated and removed from the heating oil UST area. Two soil samples (VA-SEF-12 and VA-NW-10) exceeded MTCA Method A CULs (EMCON 1993).

Used Oil and Kerosene USTs Area Excavation

The excavation surrounding the former used oil and kerosene USTs extended to a maximum depth of 19 ft bgs near well MW-3, with an average depth of 10 to 12 ft bgs. Groundwater with sheen seeped into the excavation area at 13 ft bgs, and approximately 500 gallons were pumped and removed. Approximately 350 cubic yards of soil were excavated in this area. This excavation removed prior soil sample UOF-1 collected in

May 1991 at 7.5 ft bgs that exceeded MTCA Method A CULs. Two soil samples (FUOE-WW-8 and FUOE-NWC-7) exceeded MTCA Method A CULs at the west and northwest limits of the excavation, near the footings of the west-adjoining building (EMCON 1993).

Gasoline USTs and Pump Island Area Excavation

The excavation of the former gasoline USTs and pump islands area extended to a maximum depth of 20 ft bgs near the center of the former gasoline USTs area, with an average depth of 12 to 15 ft bgs. Groundwater with a hydrocarbon sheen seeped into the excavation area at 13 ft bgs, and approximately 4,000 gallons were pumped and removed. An estimated 1,800 cubic yards of soil were excavated from this area (EMCON 1992). Three soil samples (FPIA-ESW-8, FPIA-EW-8, and FPIA-SWW-8) from the eastern and southern limits of the pump island excavation area exceeded MTCA Method A Cleanup Levels (EMCON 1993).

Heating Oil UST Excavation

The heating oil UST excavation extend to a depth of approximately 6 ft bgs, with horizontal dimensions of approximately 8 feet by 10 feet. Groundwater was not encountered in the excavation. Soil samples (HOWW-4 and HOWNE-4) were collected from the sidewalls of the heating oil UST excavation and composited in the field. A discrete soil sample (HOF-5.5) was collected from beneath the fill cap end of the heating oil UST, at approximately 5.5 ft bgs. Soil samples did not exceed MTCA Method A Cleanup Levels (EMCON 1993).

The excavated soil from the heating oil UST, vault, used oil, and kerosene UST areas (450 cubic yards) was disposed of offsite. The excavated soil from the gasoline USTs and pump areas (1,800 cubic yards) was sifted through a mechanical screening device that aerated soil to volatilize hydrocarbons. Soils excavated from the gasoline UST and pump area were stockpiled between June 17 and August 14, 1992. The stockpiled soils were screened via photoionization detector (PID) and laboratory analytical samples (analyzed for TPH and BTEX) to ensure treatment to below MTCA Method A CULs and then used as backfill (EMCON 1993).

Samples collected from excavation sidewalls and bottoms were analyzed for GRO, DRO, HO and BTEX (Figure 5). GRO, toluene, and total xylenes were detected above the MTCA Method A CULs in several of the collected confirmation samples. Specifically, GRO, HO, and/or BTEX concentrations exceeded MTCA Method A CULs in two samples collected from the northwestern/western sidewalls of the used oil UST area excavation, three samples from the eastern/southern sidewall of the pump island area excavation, and two samples collected from the limits of the vault excavation. BTEX concentrations exceeded MTCA Method A CULs in four soil samples from the pump island area and vault excavations (EMCON 1993).

Total lead analysis was conducted on soil samples from the gasoline UST excavation area and excavated soils. Total lead was either not detected or was detected below MTCA Method A CULs (EMCON 1993).

A soil sample collected from beneath the service bay floor drain (SBFD-4) was submitted for analysis of VOCs, PCBs, and priority pollutant metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver). VOCs, PCBs, and metals were not detected in soil sample SBFD-4 (EMCON 1993).

4.3 Bimonthly Vacuum Extraction

Bimonthly vacuum truck extraction events were performed on groundwater monitoring wells MW-7 and MW-13 between March 2006 and May 2007. Extractions were discontinued due to insufficient LNAPL reduction and the appearance of LNAPL in MW-13, where it was detected at 1.85 feet in June 2007 (CRA 2009).

4.4 2009 Surfactant Extraction

In September 2009, in an attempt to decrease the LNAPL observed in wells MW-7, MW-12, and MW-13, which at the time contained LNAPL thicknesses of 0.01, 0.7, and 0.01 feet, respectively, Gold Crew HAD-O81 non-ionic surfactant at 4 percent (%) concentration was injected into these wells. Approximately 85 gallons of surfactant were injected into MW-12 and MW-13 at a rate of 5.7 gallons per minute; and approximately 75 gallons were injected into MW-7 over two hours. A vacuum truck then extracted 720 gallons of groundwater from the affected groundwater monitoring wells over the next several days (CRA 2009; Ecology 2008).

Subsequent groundwater monitoring in October 2009 found that the injections and vacuum extractions were effective at removing LNAPL from wells MW-7, MW-12, and MW-13. However, no decreases in dissolved phase hydrocarbon concentrations were observed in wells MW-4, MW-8, MW-10, and MW-11. Hydrocarbon concentrations increased at well MW-14 following injections (CRA 2009). No LNAPL has been observed in the treated wells since October 2009.

5 Remedial Investigation Activities

Arcadis conducted site investigation activities on September 20 through 22 and October 7, 2021. An additional groundwater monitoring event was conducted December 2021. In September, three exploratory borings (SB-1 through SB-3) were advanced and seven additional groundwater monitoring wells (MW-15 through MW-21) were installed to further evaluate the extent of petroleum impacts in soil and groundwater at the site. The location of MW-20 was modified from the proposed location in the Work Plan based on site conditions. MW-20 was planned to be installed in the alley south of the building across West Ferry Street from the property; however, the utility locate indicated this location was not feasible due to utilities running though the alley as well as overhead lines above. As a result, the well was moved to the south end of the alley west of the building; Arcadis verified this new location with Ecology via phone on September 17, 2021. In October, existing nested soil vapor probes VP-1 and VP-2 were sampled to further evaluate soil vapor quality and potential vapor intrusion concerns (note that VP-3 could not be located and was likely decommissioned). This section discusses objectives, field activities, analytical results, and the management of investigation-derived waste (IDW) associated with the completed site investigation.

5.1 Data Gap Investigation Objectives

RI activities were completed to further delineate the extent of residual soil and groundwater impacts at the site, and to evaluate current soil vapor conditions.

The investigation consisted of the advancement of three soil borings and the installation of seven groundwater monitoring wells. Soil samples were collected from the borings to further delineate soil impacts to the north and west of former gasoline USTs, to the south of the former vault area, and to the east of the property.

Groundwater monitoring wells were installed to further delineate downgradient groundwater impacts to the south, southeast, and southwest. Groundwater monitoring wells on the northwestern and central portions of the property were previously destroyed; therefore, additional groundwater monitoring wells were warranted in those areas to further assess groundwater quality at the site.

Additional soil vapor samples were collected from the existing off-property soil vapor probes to evaluate current soil vapor quality against MTCA screening levels.

5.2 Pre-field Activities

Before mobilizing to the site, Arcadis performed the following activities:

- Updated the site-specific health and safety plan and prepared job safety analyses and traffic control plans
- Secured ROW permits from the City
- Marked the proposed boring locations and contacted the state one-call public locate service a minimum of 48 hours prior to initiating the field activities; and
- Contracted a private utility locator to additionally identify potential conflicting utilities or other underground structures in addition to potential preferential pathways.

5.3 Utility Locate

At least 48 hours prior to conducting subsurface activities, Washington811 was notified to mark known public utilities within the work areas. In addition, Geomarkout Locating Company, a private utility locating company, conducted a utility survey within 24 hours prior to the start of the investigation. The utility locate survey was conducted on August 17, 2020. The survey included the use of ground-penetrating radar, to confirm that the proposed boring locations were clear of underground utilities and other features. Survey results, along with utility site plans provided by the City, were used to map utilities.

The City Public Works Department used a sonde locator to verify and mark the exact location of a sewer pipe beneath the Site.

5.4 Soil and Well Boring Drilling and Sampling

Drilling activities were conducted by a licensed drilling subcontractor, Holt Services, Inc. of Edgewood, Washington under the supervision of Arcadis personnel. Borings were first pre-cleared by air knife, vacuum truck, and/or hand auger to a minimum depth of 5 ft bgs. After pre-clearance, boreholes were advanced using direct-push technology or hollow stem auger drilling methods to a target depth of approximately 20 ft bgs. Boring depths and sampling intervals are presented in the table below and well construction details are presented in Table 6. Groundwater was encountered in the borings at depths ranging from 6.9 (MW-15) to 10.2 ft bgs (MW-21).

Location	Boring Type	Total Depth (feet bgs)	Laboratory Analytical Sample Intervals (feet bgs)
SB-1	Soil boring	20	7.5-8.5, 15-16, and 19-20
SB-2	Soil boring	20	6-7, 10.5-11.5, 15.5-16.5, and 18-19

Location	Boring Type	Total Depth (feet bgs)	Laboratory Analytical Sample Intervals (feet bgs)
SB-3	Soil boring	20	7.5-8.5 and 18-19
MW-15	Monitoring well	20	6.5-7.5, 10-11, 14-15, and 19- 20
MW-16	Monitoring well	20	4-5, 14-15, and 19-20
MW-17	Monitoring well	20	8-9, 11.5-13, 15-16, and 19-20
MW-18	Monitoring well	20	8-9 and 19-20
MW-19	Monitoring well	20	7.5-8.5 and 18-19
MW-20	Monitoring well	20	7-8 and 15-16
MW-21	Monitoring well	20	2.5-3.5, 9-10, 11.5-12.5, 14- 15, and 19-20

During pre-clearance, soil samples were collected by hand auger at approximately 2.5 ft bgs for lithologic logging and screened for VOCs using a PID. During drilling, Arcadis conducted lithologic logging in accordance with the Arcadis TGI for Soil Description (Appendix B). Boring logs can be found in Appendix C. Field samples were placed into sealed zipper-locked bags for visual inspection and VOC screening.

One blind duplicate soil sample was collected for data quality assurance purposes. The blind duplicate soil sample was collected from MW-20 at 15-16' (sample DUP-1).

Analytical samples were collected in laboratory-provided containers and placed in a cooler with ice. Samples were submitted to Pace Analytical (an Ecology-accredited laboratory) located in Mount Juliet, Tennessee (Pace), under standard chain-of-custody protocols. Soil samples were analyzed for the following:

- GRO analyzed by Northwest Method Total Petroleum Hydrocarbons Gasoline (NWTPH-Gx)
- DRO and HO analyzed by Northwest Method Total Petroleum Hydrocarbons Gasoline (NWTPH-Dx)
- BTEX by USEPA Method 8260D
- Lead by USEPA Method 6010
- MTBE by USEPA Method 8260

In addition, had there been soil samples that exceeded the MTCA Method A CUL for DRO additional analyses would have been performed for cPAHs by USEPA Method 8270. However, DRO was not detected in soil samples at concentrations exceeding the MTCA Method A CUL; therefore, cPAH analysis was not performed.

5.5 Monitoring Well Installation

Arcadis installed a total of seven groundwater monitoring wells (MW-15 through MW-21) during the September field activities. Groundwater monitoring wells were installed in accordance with the Washington Administrative Code by a licensed Washington driller. Groundwater monitoring wells were installed to a target depth of 20 ft bgs.

Construction details for monitoring wells MW-15 through MW-21 are summarized in Table 6. Each well was installed in accordance with the Minimum Standards for Construction and Maintenance of Wells (Washington Administrative Code [WAC] 173-160; Ecology 2013). Well construction diagrams are included on the boring logs in Appendix C.

The wellheads were completed at the ground surface with a locking well cap and traffic-rated bolt-down well vault. Following the installation of monitoring wells, the well location, ground surface, and top-of-casing elevations were surveyed by a professional Washington-licensed land surveyor, OTAK, Inc. of Lake Oswego, Oregon. Monitoring wells were developed subsequent to installation in September 2021 to ensure removal of fine-grained sediments from the vicinity of the well screen.

5.6 Groundwater Monitoring and Sampling

Groundwater at the Site is currently monitored with a network of seventeen (17) monitoring wells (MW-4 through MW-8 and MW-10 through MW-21). Quarterly gauging for the new monitoring network was started in 2021 and was performed on September 28th and December 15th. Groundwater levels during 2021 were comparable to historically recorded elevations. The groundwater flow direction during the 3rd quarter September monitoring event was to the south-southwest as shown on Figure 3. The groundwater flow direction during the 4th quarter December monitoring event was to the south as shown on Figure 4.

During the 3rd quarter sampling event, groundwater samples were collected from wells MW-4 through MW-8, MW-10 through MW-18, and MW-21.

Due to access agreement issues, monitoring wells MW-19 and MW-20 were not sampled during the 3rd quarter sampling event in September 2021. Monitoring wells MW-19 and MW-20 were originally thought to be in a public ROW but were later determined to be on private property, and access was not immediately granted by the property owner. Access to monitoring wells MW-19 and MW-20 was granted by the property owner at a later date. In December 2021, all monitoring wells, including MW-19 and MW-20, were sampled.

Samples were collected using low-flow methods and in accordance with the methodology described in the Arcadis TGI for Standard Groundwater Sampling for Monitoring Wells (Appendix D). Groundwater sampling field forms are included in Appendix E. Groundwater samples were collected in pre-preserved laboratory-provided bottles and placed in a cooler with ice. Samples were submitted to Pace under standard chain-of-custody protocol for the following analysis:

- GRO by NWTPH-Gx
- DRO and HO by NWTPH-Dx
- BTEX by USEPA Method 8260
- Dissolved Lead by USEPA Method 6000 series
- MTBE by USEPA Method 8260

Based on a 2007 benzo(a) pyrene exceedance in MW-7, groundwater in MW-7 was also analyzed for cPAHs by USEPA Method 8270E

5.7 Soil Vapor Sampling

On October 7, 2021, Arcadis collected soil vapor samples from existing soil vapor probes VP-1 and VP-2. Both vapor probe locations are nested, with screened intervals at 5 and 7 ft bgs. Probe VP-3 is assumed to have been paved over and was unable to be sampled. Note that due to a field oversight (lack of enough canisters), the probe in VP-2 at 5 feet was not sampled.

Sample trains were constructed at each probe location to allow for purging and sample collection. Sampling trains were assembled using 0.25-inch Teflon tubing (or equivalent) and connected to the soil vapor probes. Prior to sampling, approximately 1,500 milliliters (mL) of stagnant air were purged from the soil vapor probe and sample train to ensure samples were representative of subsurface conditions. The volume purged from the soil vapor probe was calculated based on the construction details of the existing soil vapor probes and a standard three-volume purge.

Soil vapor samples were collected using 1-liter stainless steel passivated canisters individually cleaned and batch certified by Freidman & Bruya, Inc. (a Washington-certified laboratory). Canisters were connected to soil vapor sampling regulators set to less than 200 milliliters per minute (mL/min). Canisters were allowed to collect for up to 10 minutes or when the remaining vacuum reached 5 inches of mercury (inHg), whichever came first.

An equipment blank and a duplicate soil vapor sample were collected for data quality assurance. The blind duplicate sample (DUP-1) was collected from VP-2 at 7 ft bgs.

Soil vapor sampling field forms are included in Appendix F.

Samples were submitted to Friedman & Bruya, Inc. under standard chain-of-custody procedures for the following analyses:

- Total petroleum hydrocarbons (TPH) with carbon chain specific results: EC5-8 (aliphatics), EC9-12 (aliphatics), and EC9-10 (aromatics) by TPH Massachusetts Air Phase Hydrocarbons (APH)
- BTEX, naphthalene, and MTBE by USEPA Method TO-15
- Helium (leak check) by ASTM Method 1946.

The approximate soil vapor probe locations are shown on Figure 2.

5.8 Investigation-Derived Waste

Soil cuttings, purged groundwater, and equipment rinse water generated during investigation activities were contained in Department of Transportation-approved 55-gallon steel drums. The investigation-derived waste (IDW) was labeled and temporarily stored on-site pending disposal. Following receipt of laboratory analytical data, the soil and water IDW were transported for appropriate disposal at a certified waste disposal facility. A waste manifest is provided in Appendix G.

6 Analytical Results

6.1 Quality Analyses

The following quality assurance and quality control (QA/QC) samples were collected during the 2021 Q3 and Q4 sampling events.

- A minimum of one field duplicate sample of soil vapor, groundwater, and soil were collected and submitted as blind samples to the analytical laboratory per 10 samples.
- One matrix spike/matrix spike duplicate per 20 samples.
- One rinsate blank sample per day for decontaminated, non-dedicated sampling equipment, as needed.
- One trip blank per cooler containing samples was analyzed for BTEX and GRO.
- One equipment blank sample was collected from the vapor sampling equipment to ensure equipment cleanliness.

6.2 Soil Results

Soil encountered in each boring generally consisted of sand and silt with some clay to the explored depths. Additional information on the encountered soil is provided on the boring logs in Appendix C.

Soil analytical results for samples collected from borings SB-2, SB-3, and MW-16 through MW-21 were either below MTCA Method A CULs or the analytes were not detected.

Soil analytical results for samples collected from borings SB-1 and MW-15 exceeded MTCA Method A CULs for the following COCs and depths:

- Soil collected from SB-1 at 15-16 ft bgs exceeded the MTCA Method A CUL for benzene (0.0651 mg/kg)
- Soil collected from SB-2 at 10.5-11.5 bgs exceeded the MTCA Method A CUL for GRO (45.6 mg/kg)
- Soil collected from MW-15 at 10-11 ft bgs exceeded the MTCA Method A CUL for GRO (467 mg/kg)
- Soil collected from MW-21 at 2.5-3.5 ft bgs and 11.5-12.5 bgs exceeded MTCA Method A CUL for GRO (64.4 mg/kg and 65.8 mg/kg, respectively)

It should be noted that both the above exceedances were collected from soil below the water table (with the exception of the MW-21 sample collected from 2.5-3.5 ft bgs) and thus may not be representative of actual subsurface soil conditions. The benzene exceedance in SB-1 was at a depth of 15-16 ft bgs, and benzene was not detected above the MTCA Method A CUL in samples collected above and below this depth. Benzene has also not been detected in groundwater since 2008 in MW-12, which is located downgradient of SB-1.

The GRO exceedance in MW-15 was at a depth of 10-11 ft bgs. GRO was not detected above the MTCA Method A CUL in samples collected above and below this depth.

Current soil analytical results are presented in Table 7. A soil status map showing the historical and current footprint of soil locations exceeding MTCA Method A CULs is shown on Figure 5. The soil laboratory analytical report and chain-of-custody documentation are provided in Appendix H.

6.3 Groundwater Results

Groundwater analytical results were collected in September for Q3 and December for Q4 of 2021 in conjunction with gauging events. During September, samples were collected from MW-4 through MW-8, MW-10 through MW-18, and MW-21. During December, samples were collected from MW-4 through MW-8 and MW-10 through MW-21. As discussed in Section 5.6, groundwater samples were not collected from MW-19 and MW-20 during the September sampling event due to access agreement issues. MTCA Method A CUL exceedances are listed below:

September 2021 MTCA Method A CULs COC Exceedances

- MW-4 exceeded MTCA Method A CULs for GRO (8,850 μg/L)
- MW-7 exceeded MTCA Method A CULs for GRO (8,990 μg/L) and DRO (565 μg/L)
- MW-8 exceeded MTCA Method A CULs for GRO (3,600 μg/L)
- MW-10 exceeded MTCA Method A CULs for GRO (4,150 [4,150] μg/L) and DRO (986 [1,000] μg/L)
- MW-11 exceeded MTCA Method A CULs for GRO (4,190 µg/L) and DRO (543 µg/L)
- MW-13 exceeded MTCA Method A CULs for GRO (4,940 [4,530] μg/L) and DRO (730 [752] μg/L)
- MW-14 exceeded MTCA Method A CULs for GRO (5,110 µg/L) and DRO (556 µg/L)
- MW-17 exceeded MTCA Method A CULs for DRO (546 μg/L)

December 2021 MTCA Method A CULs COC Exceedances

- MW-8 exceeded MTCA Method A CULs for GRO (7,270 μg/L)
- MW-14 exceeded MTCA Method A CULs for GRO (7,390 J μg/L), DRO (686 μg/L), and Xylenes (1,240 μg/L).
- MW-17 exceeded MTCA Method A CULs for GRO (2,800 μg/L)

The groundwater laboratory analytical reports and chain-of-custody documentation are provided in Appendix I. Current groundwater gauging data and analytical results are presented in Tables 8 and 9. Groundwater analytical results with MTCA boundary maps from the current investigation are shown for September 2021 on Figure 6 and December 2021 on Figure 7.

6.4 Soil Vapor Results

Soil vapor samples were collected from existing off-property soil vapor probes VP-1 and VP-2 to evaluate current soil vapor quality against MTCA Method B screening levels. The analyzed constituents were not detected in soil vapor samples collected in 2021, except for C9-12 range TPH (aliphatics) which were detected at concentrations ranging from 340 to 460 ug/m³. Based on the soil vapor analytical results, there are no vapor intrusion concerns for the off property building to the south; this will be confirmed with another VI sampling event in May 2022.

Current soil vapor analytical results are presented in Table 10 and shown on Figure 8. The analytical laboratory report and chain-of-custody documentation are provided in Appendix J.

7 Conceptual Site Model

The conceptual site model uses data collected during previous investigations and remediation activities to understand constituent occurrence, movement, and potential exposures at the site.

7.1 Source Characterization

As described in Sections 3 and 4, multiple investigations and remediation activities have been conducted at the site. Known sources of petroleum contaminants are the overfill gasoline release in 1989 and former USTs and dispenser islands. No other known source has been identified onsite. A 2008 subsurface investigation was conducted to determine whether an additional source existed on site; however, no indication of an additional source was discovered. Based on the current and historical data, the soil and groundwater MTCA boundary is delineated to the north, southwest, and west.

Based on known sources of contamination and on MTCA Table 830-1. Required Testing for Petroleum Releases (WAC 173-340-900), selected soil samples collected from the used oil UST location were tested for the following constituents: GRO, DRO, HO, BTEX, EDB, EDC, MTBE, lead, cPAHs, PCBs, and VOCs.

Results of analytical testing conducted in 2021 as well as during previous environmental investigations at the site have indicated that EDB, EDC, cPAHs (except for benzo(a)pyrene at MW-7 in 2007), PCBs, DIPE, ETBE, TAME, TBA, TCE, and PCE are below MTCA Method A CULs. This data can be seen in Tables 1, 2, 3, 4, and 9.

Based on historical results, GRO, DRO, HO, BTEX, MTBE, and lead are considered constituents of concern (COCs) and have been confirmed in soil and groundwater at the site. Additionally, based on the detected concentration of benzo(a) pyrene in a groundwater sample collected from well MW-7, cPAHs are considered constituents of potential concern (COPCs) in groundwater. Accordingly, groundwater samples collected from this location were also for analyzed for cPAHs.

7.2 Nature and Extent of Contamination

Contaminated soil was removed from areas of the site during the 1991 and 1992 excavations; however, some confirmation samples from the excavations indicated that contamination may remain on site in the area of the former gasoline USTs and pump islands, near the former used oil UST, and near the former vault area. Except for one exceedance of benzene in SB-1, as discussed in section 6.2, soil samples collected off-property during the current investigation did not contain COCs above MTCA Method A CULs.

Groundwater analytical results indicate that COCs exceed MTCA Method A CULs in groundwater on the southern portion and to the south of the property, in monitoring wells located on the south side of Ferry Street. Concentrations of COCs were variable between the two 2021 groundwater monitoring events; therefore, additional groundwater data is needed to further evaluate the extent of impacted groundwater and any concentration trends.

7.3 Fate and Transport

7.3.1 General Fate and Transport Mechanism

As a generality (non-site-specific), petroleum hydrocarbons can exist in four phases in soils (unsaturated vadose zone and/or smear zone):

- Residual phase. Petroleum hydrocarbons are sorbed to soil or trapped within soil pore space.
- Dissolved or aqueous phase. Petroleum hydrocarbons are dissolved in water within soil pore space.
- Vapor phase. Petroleum hydrocarbons are volatilized into soil pore space.
- Free phase. Recoverable LNAPL.

Following a release, petroleum hydrocarbons are driven by gravity toward the water table and, depending on the quantity released, soil type, and depth to groundwater, may reach the groundwater table. As the hydrocarbons migrate toward the water table, residual LNAPL may be left behind in each of the phases (residual, dissolved, and free).

When residual-, dissolved-, or free-phase LNAPL comes into contact with groundwater, dissolution of the hydrocarbons to the groundwater can occur. If a release of petroleum hydrocarbons is large enough, LNAPL may overcome the capillary forces at the capillary fringe within smear zone soil and pool on top of the groundwater. When rainwater infiltrates subsurface soil in the area of a release, the water will flow downward through the soil and may preferentially follow high-conductivity soil lenses horizontally and pick up constituents before reaching groundwater.

7.3.2 Site Fate and Transport Mechanism

Petroleum hydrocarbons encountered at the site are described below:

- Residual phase. Previous soil investigations indicated that residual soil impacts at the site are primarily in the vicinity of former used oil and gasoline USTs and dispenser islands. Historical soil impacts were encountered at a range from 2 to 12 ft bgs. As noted above, COC exceedances in soil (at SB-1 and MW-15) were collected from below the water table and thus may not reflect actual soil conditions. The USTs and associated equipment on-site were the source of soil impacts; former station infrastructure and most soils surrounding the former tanks have been removed by excavation.
- Dissolved phase. Recent and historical sampling indicate that petroleum impacts remain in groundwater at the site. Downgradient wells MW-10, MW-11, and MW-14 have shown a stable or decreasing trend in GRO concentrations over the last decade. Additionally, COC concentrations in wells MW-4, MW-5, and MW-8, located on property, appear to fluctuate seasonally, but have exhibited an overall decreasing trend over time. Wells MW-15, MW-16, and MW-21, installed as part of this remedial investigation, indicate that dissolved phase COC concentrations in the vicinity of the former gasoline USTs and pump islands are below Method A CULs. Downgradient wells MW-19 and MW-20 demonstrate that petroleum impacts have not migrated further to the south-southwest. Based on the above information, the dissolved-phase plume appears to be stable,
- Vapor phase. GRO was detected above MTCA Method A CULs in one soil sample collected from MW-15 at a
 depth of 10 ft bgs; however, this sample was from below the water table and groundwater samples collected
 from this location have not contained COCs at concentrations above MTCA Method A CULs. Accordingly,

- based on Ecology's guidance (Ecology 2022), detected GRO concentrations in soil do not pose a risk for vapor intrusion into the west-adjoining building. Soil vapor samples collected in 2021 indicate that vapor phase COCs do not pose a risk for vapor intrusion into the building located south of the subject property.
- Free phase. LNAPL was historically observed in wells MW-3, MW-7, MW-12, and MW-13. However, following
 a surfactant-enhanced LNAPL recovery event in 2009, LNAPL has not been observed on or off-Property.
 COC concentrations in site wells also are not indicative of the presence of LNAPL at the site.

7.4 Exposure Pathways and Potential Receptors

7.4.1 Potential Receptors

The primary human receptors at the site are members of the public using the park, customers of surrounding businesses, including the businesses located south across Ferry Street, and potential future construction workers.

Current ecological receptors are limited due to the presence of primarily paved areas and landscaping at the site. Additionally, due to the location of the site and its land use designation, future native and invasive vegetation are not expected to grow at the site.

There is less than 1.5 acres of contiguous undeveloped land on or within 500 feet of any area of the site; therefore, no further terrestrial ecological evaluation (TEE) is required under WAC 173-240-749(1)(c). The TEE Form is included in Appendix K.

7.4.2 Potential Exposure Pathways

Potential exposure pathways for the site are:

- Soil. Potential exposure to soil via incidental ingestion, dermal contact, and inhalation of windblown dust and leaching to groundwater.
- Groundwater. Potential exposure to groundwater via incidental ingestion and dermal contact.
- Soil vapor. Potential exposure to soil vapor via inhalation (volatilization of petroleum impacts contained in groundwater and/or soil).

Potential exposure pathways are evaluated below.

7.4.2.1 Potential Soil Exposure Pathways

Potential soil exposure pathways for the site include:

Soil samples collected during soil investigations have indicated COC concentrations above the MTCA Method A CULs at depths of 2 to 12 ft bgs.

Exposure to soil via incidental ingestion, dermal contact, and inhalation of windblown dust. The site is primarily paved, and subsurface soil in landscaped areas is covered with landscape mulch, vegetation, and planting soil; therefore, potential exposure via incidental ingestion, dermal contact, or inhalation of windblown dust is not a complete pathway for visitors of Hammer Heritage Square. Potential exposure via incidental ingestion, dermal contact, or inhalation of windblown dust for construction workers is a complete pathway as soil concentrations above MTCA Method A CULs are observed as shallow as 2 ft bgs.

Soil leaching to groundwater. COC concentrations in groundwater have been shown to be above Method A
groundwater CULs. Therefore, the soil leaching to groundwater pathway is potentially complete.

7.4.2.2 Potential Groundwater Exposure Pathway

Groundwater analytical data from sampling events in 2013, 2014, 2020, and 2021 showed concentrations of GRO and DRO above MTCA Method A CULs. However, current human receptors (park visitors) are not exposed to groundwater and groundwater beneath the site is not used as drinking water. Drinking water in the area comes from Judy Reservoir, located above the town of Clear Lake, Washington. Due to the depth of groundwater (ranging from 8 to 12 ft bgs), no ingestion or dermal contact are likely during any future subsurface construction work. However, per WAC 173-340-720(2), groundwater in Washington State is generally classified as potable unless it can be demonstrated that groundwater is not a possible future source, to protect potential beneficial uses.

7.4.2.3 Soil Vapor Potential Pathway

Because the site is mostly paved and open-air, current human receptors (park visitors) are not likely to be exposed to vapor phase petroleum hydrocarbons. Future construction workers may be exposed to vapor phase petroleum hydrocarbons through inhalation when working at depths of 2 ft bgs or greater. The 2021 soil vapor analytical results indicate that there is no vapor intrusion risk to inhabitants of the building across West Ferry Street to the south of the property.

8 Proposed Cleanup Standards

MTCA Method A CULs are considered the CULs for the site. For this RI, soil and groundwater concentrations are compared to current MTCA Method A CULs and impacts are identified as analyte concentrations detected greater than current MTCA Method A CULs.

The preliminary COCs for the site include GRO, DRO, HO, BTEX, lead, MTBE, benzo(a)pyrene, and cPAHs.

MTCA Method A CULs for the site COCs in soil and groundwater are presented in the table below.

MTCA Method A CULs for Site COCs for Soil and Groundwater

coc	MTCA CUL Groundwater (μg/L)	MTCA CUL Soil (mg/kg)
GRO ¹	800/1,000	30/100
DRO	500	2,000
НО	500	2,000
Benzene	5	0.03
Toluene	1,000	7
Ethylbenzene	700	6

coc	MTCA CUL Groundwater (μg/L)	MTCA CUL Soil (mg/kg)
Total Xylenes	1,000	9
Lead	15 (dissolved lead)	250
MTBE	20	0.1
Benzo(a)-pyrene	0.1	
Total cPAHs	0.1	

¹For GRO, MTCA CULs depend on the presence of benzene: with benzene present (800 micrograms per liter [µg/L] and 30 milligrams per kilogram [mg/kg]) and without (1,000 µg/L and 100 mg/kg).

MTCA Method B indoor air CULs and sub-slab soil vapor screening levels for site COCs are presented below.

MTCA Method B CULS for Air

coc	MTCA Method B CUL Indoor Air ¹ (μg/m3)	MTCA Method B Screening Level Sub-Slab Soil Vapor ¹ (μg/m3)
Benzene	0.32	11
Toluene	2,300	76,000
Ethylbenzene	460	15,000
Total Xylenes	46	1,500
Naphthalene	0.073	2.5
Total Petroleum Hydrocarbons ²	46	1,500

¹ Method B cancer risk values used when provided. If cancer risk values are not provided, noncancer risk is listed.

9 Conclusions and Recommendations

This report documents RI activities conducted in 2021 which were completed to further delineate the extent of residual soil and groundwater impacts at the site, and to evaluate current off-property soil vapor conditions.

² Total petroleum hydrocarbon (TPH) concentration is the sum total of volatile organic compounds and aliphatic and aromatic hydrocarbons.

μg/m³ = micrograms per cubic meter

The investigation included the advancement of three soil borings (SB-1 through SB-3), the installation and sampling of seven additional monitoring wells (MW-15 through MW-21) in September and December 2021, and the sampling of existing off-property soil vapor probes VP-1 and VP-2. Soil samples were collected from the borings to further delineate soil impacts to the north and west of the vicinity of the former gasoline USTs, to the south of the vault area, and to the east of the property. Based on the results, COCs remain in soil at concentrations above MTCA Method A CULs to the east of the former pump islands and gasoline USTs (SB-1), and in the vicinity of the former station building (MW-15).

The additional groundwater monitoring wells were installed to further delineate groundwater impacts to the south, southeast, and southwest, and to evaluate current groundwater quality in the northern and central portions of the property. Based on the analytical results, the extent of COCs in groundwater above MTCA Method A CULs is not delineated off-property to the south and/or southeast. However, since only two events have been performed in the new wells, additional groundwater monitoring is recommended to further evaluate groundwater quality and any concentration trends.

LNAPL has not been observed in site monitoring wells since 2009 and, based on historical groundwater sampling, the dissolved-phase plume appears to be stable or receding. However, additional evaluation of groundwater impacts will be conducted after four consecutive quarters of groundwater samples are collected from the current monitoring well network.

The current soil vapor sample results yielded a similar conclusion as the 2007 data that site COCs do not pose a vapor intrusion risk to receptors (occupants of the building located across Ferry Street to the south); this will be confirmed with an additional VI sampling event in May 2022, approximately 6 months from the first event.

Based on the results of this investigation, Arcadis recommends the following actions:

- Continue quarterly groundwater gauging and sampling in 2022;
- Evaluate groundwater conditions after four groundwater monitoring events have been completed; and
- Perform one additional soil vapor sampling event in June 2022.

10 References

Arcadis 2021. Remedial Investigation Work Plan, Former Chevron Service Station No. 97502, 640 Metcalf Street, Sedro-Woolley, Washington. May 20th.

City of Sedro-Woolley. 2019. City of Sedro-Woolley Zoning Map. https://www.ci.sedro-woolley.wa.us/Departments/Planning/Maps/Zoning_Map.pdf

CRA. 2008a. Site Investigation Report. November 17.

CRA. 2008b. Soil Vapor Assessment Report. Former Chevron Service Station #9-7502, 124 Ferry Street, Sedro-Woolley, Washington. June 27.

CRA. 2009. Interim Action Report, Surfactant Injection. December 7.

CRA 2014. Second Semi-Annual 2014 Groundwater Monitoring and Sampling Report.

Ecology. 2008. RE: Update of the registration of the Underground Injection Control (UIC) Program, MW-7, 12, and 13, Former Chevron Station 9-7502, 124 Ferry St., Sedro-Wooley, WA. November 18.

Ecology. 2020a. Agreed Order No. DE 18034. September 14.

Ecology. 2020b. Well Construction and Licensing. Available online at: https://ecology.wa.gov/Water-Shorelines/Water-supply/Wells. Retrieved April 23.

Ecology. 2020c. Fact Sheet: Agreed Order, Public Participation Plan – June 2020: Chevron 97502 Site. June 15.

Ecology. 2020d. Remedial Investigation Checklist. Toxics Cleanup Program

Ecology. 2022. Guidance for Evaluating Vapor Intrusion in Washington State, Publication No. 09-09-047. March.

EMCON. 1993. Soil Remediation Report. March 31.R

SCPHD. 2018. Site Hazard Assessment. February.

U.S. Climate Data. 2020. Available online at: https://www.usclimatedata.com/climate/sedro-woolley/washington/united-states/uswa0398. Retrieved April 23.

Tables

Table 1. Historical Soil Analytical Results

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington
Analytical results are presented in milligrams per kilogram (mg/kg)

											Total			Benzo(a)-		Benzo(b)-	Benzo(k)-	Benzo(a)-	Indeno(1,2,3-cd)-	Dibenz(a,h)-				
Sample ID	Date	Depth	TPH	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE	anthracene		fluoranthene	fluoranthene	pyrene	pyrene	anthracene	Total cPAHs	EDC	TCE	PCE
MTCA M	Method A CU	LS	-	30/100	2,000	2,000	2,000	0.03	7	6	9	250	0.1	-	-		-	0.1	-	-	0.1	-	0.05	0.03
EMCON May 1991																								
	2/12/1991 2/12/1991	6		16.2 43.7	<10 <10	<10 <10	10 10	0.047 0.16	0.26 0.86	0.13 0.49	2.25 6.13													
	2/12/1991	11		43.4	<10	<10	10	0.84	1.16	0.38	3.07								-					
MW-2/S-1	2/12/1991	6		<10	<10	<10	10	<0.025	<0.025	< 0.025	0.038													
	2/12/1991	8		<10	<10	<10	10	0.052	0.064	0.071	0.30								-					
	2/12/1991 2/12/1991	11 g		<10 42	<10 <10	<10 440	10 445	0.089	0.063	0.10	0.34													
	2/12/1991	11		12	<10	<100	55										-		_					
MW-4/S-3	2/12/1991	8		<10	<10	<10	10	<0.025	<0.025	<0.025	<0.025													
	2/12/1991	11		18.5	<10	<10	10	0.11	<0.025	0.033	0.11								-					
	2/12/1991 2/12/1991	8 11		12 <10	<10 <10	<10 <10	10 10	-									-		-					
EMCON July 1991																								
UOF-1	5/9/1991	7.5						17	83	23	112													
UOW-1	5/9/1991	4			<10	1,720	1,725																	
UOW-2 KTF-1	5/9/1991	3.5 7			<10 <10	1,760	1,765												-					-
KTW-1	5/9/1991 5/9/1991	7 4.5			<10	<40 <40	25 25												-					
KTW-2	5/9/1991	4.5			<10	61	66																	
EMCON October 19	991																							
	10/7/1991	12.5		<10	<10	<40	25	<0.025	<0.025	<0.025	<0.025													
	10/7/1991	16		<10	<10	<40	25	<0.025	<0.025	<0.025	< 0.025													
	10/7/1991 10/7/1991	12.5 16		<10 12	<10 <10	<40 <40	25 25	1.05 < 0.025	0.597 <0.025	0.113 0.079	0.881 0.423													
MW-8/SS-2	10/14/1991	7.5		<10	<10	<40	25	<0.025	<0.025	< 0.025	< 0.025													
	10/14/1991 10/14/1991	12.5 7.5		<10 <10	<10 <10	<40 <40	25 25	0.298 < 0.025	0.388 <0.025	0.035 <0.025	0.256 <0.025													
	10/14/1991	10		1,860	5,080	<40	5100	<0.025	0.185	1.69	13													
EMCON April 1992																								
SBFD-4	2/7/1992	4	ND																					
SH-9 NH-8	2/7/1992 2/7/1992	9	ND ND																					
	2/12/1992	5.5		<10	164	<40	184										-							
	2/12/1992	4		<10	<10	90	95																	
	2/12/1992 2/12/1992	4 8	ND	<10 <10	<10 <10	<40 <40	25 25																	
EPIW-6	2/12/1992	6		2,900				0.384	32	27	210													
	2/12/1992 2/11/1992	9.5 7		9,400 50				7.59 <0.025	10.4 < 0.025	130 < 0.025	680 0.08													
	2/11/1992	7		240				<0.025	0.048	0.591	5.68													
	2/11/1992	7		360	-			0.189 2.63	0.117 10.01	0.812	4.66													
	2/11/1992 2/11/1992	11		3,600 600	61	<40	81	0.559	0.746	21 1.68	26 9.41						-							
CGTF-11	2/11/1992	11		<10	-			<0.025	<0.025	< 0.025	<0.025													
EGTF-10.5	2/11/1992	10.5		<10				<0.025	<0.025	<0.025	<0.025	ND					-		-					
EMCON March 1993 FGTE-NWW-10		10		ND			_	ND	ND	ND	ND													
FGTE-NEW-10	6/16/1992 6/16/1992	10		ND				ND	ND	ND	ND								-					
	6/16/1992	10		ND ND				ND ND	ND ND	ND ND	ND ND						-							
	6/16/1992 6/22/1992	10 7		ND 8				ND ND	ND ND	ND ND	ND ND								-					
FGTE-NEW-7	6/22/1992	7		ND				ND	ND	ND	ND								-					
	6/24/1992 7/3/1992	8 8		27 550				ND 0.4	ND 3.5	ND 11.9	0.2 31								-	 				
FPIA-ESW-8	7/3/1992	8		810				0.59	10.3	5.6	55													
FPIA-WWS-8 FPIA-SWC-8	7/6/1992 7/6/1992	8 8		ND ND				ND ND	ND ND	ND ND	ND ND													
FPIA-SWW-8	7/6/1992	8		16				0.25	0.9	0.2	2.3								-					
	6/1/1992	8			53 ND	ND	53												-					
	6/1/1992 6/2/1992	12 8			ND ND	ND ND													-					
FUOE-EW-8	6/2/1992	8			ND	ND													-					
	6/2/1992 6/2/1992	10 10			ND ND	ND ND				 														
FUOE-WW-8	6/4/1992	8		34	ND	1100	1100	0.09	0.2	ND	1.5													
	6/10/1992 6/10/1992	7 10		 ND	ND ND	2,130 ND	2,130	 ND	 ND	 ND	 ND						-							-
	6/3/1992	6		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND								-					
VA-NW-10	6/3/1992	10		380	ND	160	160	ND	51	3.6	12.8								-					
	6/3/1992 6/3/1992	12 12		279 ND	ND ND	ND 200	200	ND ND	42 0.5	3.2 ND	11.5 0.2													
	8/18/1992	4			ND	ND																		
Delta August 2002																								
MW-10	7/1/2002	10		<5	<10	<25	17.5	<0.0300	<0.0500	<0.0500	0.244													
MW-11	7/1/2002	10		<5	<10	<25	17.5	<0.0300	0.0836	0.05	0.273			-		-	-							
Cambria July 2006																								
B-12	5/2/2006	10		5.1	<3	<10	6.5	<0.0009	<0.0009	0.005	0.019								-					

Table 1. Historical Soil Analytical Results

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington Analytical results are presented in milligrams per kilogram (mg/kg)

											Total			Benzo(a)-		Benzo(b)-	Benzo(k)-	Benzo(a)-	Indeno(1,2,3-cd)-	Dibenz(a,h)-				
Sample ID	Date	Depth	TPH	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE	anthracene	Chrysene	fluoranthene	fluoranthene	pyrene	pyrene	anthracene	Total cPAHs	EDC	TCE	PCE
MTCA	Method A CU	JLs	-	30/100	2,000	2,000	2,000	0.03	7	6	9	250	0.1	-	-	-		0.1	· -	-	0.1	-	0.05	0.03
B-12	5/2/2006	15		<1	<3	<10	6.5	<0.0005	0.002	0.013	0.047													
B-13	5/2/2006	10		<1	<3	<10	6.5	< 0.0005	< 0.0009	< 0.0009	< 0.0009													
B-13	5/2/2006	15		18	9.5	<10	14.5	0.001	0.004	0.047	0.095													
B-14	5/2/2006	10		<1	<3	13	8	< 0.0005	< 0.0009	< 0.0009	< 0.0009													
B-14	5/2/2006	15		10	<3	<10	6.5	<0.0005	<0.0009	<0.0009	<0.0009													
RA April 2008																								
GB-1	4/1/2008	5		97.0	150.0	95.0	245.0	0.0009	< 0.001	< 0.001	< 0.001	< 0.171	< 0.0005	0.010	0.014	0.023	0.0085	0.015	0.011	0.0033	0.02081	< 0.001	< 0.001	< 0.001
GB-1	4/1/2008	8		37.0	34.0	48.0	82.0	0.003	0.002	< 0.0009	0.005	< 0.175	< 0.0005	0.0095	0.013	0.020	0.0081	0.014	0.0096	0.0028	0.01913	< 0.0009	< 0.0009	< 0.0009
GB-2	4/1/2008	5		110.0	190.0	79.0	269.0	0.003	0.004	0.001	0.008	13.6	< 0.0006	0.010	0.016	0.022	0.0084	0.014	0.0083	0.0026	0.01929	< 0.001	< 0.001	< 0.001
GB-2	4/2/2008	11.5		<1.6	<3.8	<13.0	8.4	< 0.0006	< 0.001	< 0.001	< 0.001	< 0.186	< 0.0006	< 0.00085	< 0.00043	0.0011	< 0.00085	< 0.00085	< 0.00085	< 0.00085	0.00070715	< 0.001	< 0.001	< 0.001
GB-3	4/1/2008	11		330.0	98.0	<12.0	104	< 0.033	< 0.066	< 0.066	< 0.066	31.1	< 0.033	0.0077	0.011	0.014	0.0054	0.0093	0.0049	0.0015	0.01276	< 0.066	< 0.066	< 0.066
GB-3	4/1/2008	2		340.0	430.0	87.0	517.0	0.002	0.002	< 0.001	0.001	< 0.167	< 0.0006	0.019	0.026	0.035	0.016	0.025	0.015	0.0047	0.03423	< 0.001	< 0.001	< 0.001
GB-3	4/1/2008	5		320.0	370.0	180.0	550.0	0.004	0.005	0.003	0.011	< 0.165	< 0.0005	0.027	0.037	0.047	0.021	0.034	0.019	0.0056	0.04633	< 0.001	< 0.001	< 0.001
GB-4	4/1/2008	11.5		47.0	15.0	<13.0	21.5	< 0.030	< 0.059	< 0.059	< 0.059	0.748	< 0.030	< 0.00086	< 0.00043	<0.00086	< 0.00086	< 0.00086	< 0.00086	<0.00086	0.0006473	< 0.059	< 0.059	< 0.059
GB-4	4/1/2008	2		380.0	430.0	62.0	492.0	< 0.036	< 0.071	< 0.071	< 0.071	18.3	< 0.036	0.022	0.030	0.040	0.017	0.027	0.018	0.0065	0.03765	< 0.071	< 0.071	< 0.071
GB-4	4/1/2008	5		28.0	35.0	30.0	65.0	0.002	0.002	< 0.001	0.003	12.6	< 0.0005	0.0044	0.0068	0.0088	0.0049	0.0066	0.0047	0.0013	0.009078	< 0.001	< 0.001	< 0.001
GB-5	4/2/2008	5.5		<1.7	<4.0	<13.0	8.5	< 0.0006	< 0.001	< 0.001	< 0.001	5.21	< 0.0006	< 0.00089	0.00064	0.00091	< 0.00089	< 0.00089	< 0.00089	< 0.00089	0.0006749	< 0.001	< 0.001	< 0.001
GB-5	4/2/2008	11.5		<1.6	<3.9	<13.0	8.45	< 0.0006	< 0.001	< 0.001	< 0.001	< 0.191	< 0.0006	< 0.00086	< 0.00043	<0.00086	<0.00086	<0.00086	<0.00086	< 0.00086	0.00064715	< 0.001	< 0.001	< 0.001
GB-5	4/2/2008	8		19.0	<3.9	<13.0	8.54	<0.0006	<0.001	<0.001	< 0.001	<0.191	<0.0006	<0.00086	0.00086	<0.00086	<0.00086	<0.00086	<0.00086	<0.00086	0.006493	<0.001	<0.001	<0.001

Notes:

30/100 = GRO MTCA Method A CUL with benzene present is 30 mg/kg and without benzene present is 100 mg/kg

Grey text indicates soil that has been excavated

BOLD and highlighted values are greater than their respective MTCA Method A CUL

BOLD values are non-detect below the laboratory MDL, but the MDL is greater than the MTCA Method A CUL

MW-1, MW-2, and MW-3 are over-excavated

Map of sample locations and laboratory results not available for non-detect analytes

Sample depth measured in feet below ground surface

Abbreviations:

ID = Identification

GB = Grab-groundwater sample

MW = Groundwater monitoring well

-- = Not applicable, not available, or not analyzed

ND = Not detected

MDL = Method detection limit

MTCA = Model Toxics Control Act Cleanup

CUL = Cleanup Level

USEPA = United States Environmental Protection Agency

Laboratory Qualifiers:

<n = Not detected at or above the laboratory MDL

Analytical Methods:

Samples analyzed by USEPA Method 418.1

TPH = Total Petroleum Hydrocarbons

Samples analyzed by NWTPH-Gx

GRO = Total Petroleum Hydrocarbons as Gasoline Range Organics

Samples analyzed by NWTPH-Dx

DRO = Total Petroleum Hydrocarbons as Diesel Range Organics

HO = Total Petroleum Hydrocarbons as Heavy Oil Range Organics Samples analyzed by USEPA Method 8260B

BTEX = benzene, toluene, ethylbenzene, and total xylenes
MTBE = Methyl tertiary butyl ether

EDC = 1,2-Dichloroethane TCE = Trichloroethene

PCE = Tetrachloroethene Samples analyzed by USEPA Method 6020 Lead

Samples analyzed by USEPA Method 8270C-SIM

Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene

Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

														Total		Dissolved				
Well	Date	TOC	DTP	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene		MTBE	Lead	Total Lead	EDB	Comments	
Well	Dute		ITCA Method		3112	TAN E	800/1,000	500	500	500	5	1,000	700	1,000	20	15	15	0.01	Comments	
											-	1,000		1,000				0.00		
GB-1	4/1/2008						<250	150	110	260	<4	<4	<4	<4	<4			<4		
	1/0/0000						100 [100]						0 = 1 0 = 1							
GB-2	4/2/2008						100 [130]	330	<98	379	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]		8.5			
GB-3	4/1/2008						79.0	88.0	<94.0	135	<0.5	<0.5	0.7	<0.5	<0.5					
020	., ., 2000						. 0.0	00.0	10 110	.00	10.0	10.0	· · ·	10.0	10.0					
GB-4	4/1/2008						<50.0	<81.0	<100.0	90.5	<0.5	<0.5	<0.5	<0.5	<0.5					
GB-5	4/2/2008						1100.0	990.0	<97.0	1038.5	<0.5	<0.5	<0.5	<0.5	<0.5		27.8			
MW-1 MW-1	2/12/1991 10/21/1991			 10.97			4,800 10,000	1,000	 <100	1050	386 1500	356 1100	73 200	463 1,700	 I					
MW-1	11/22/1991			10.69	 										 					
MW-1	1/29/1992						10,000	<1000	<1000	1000	1700	600	167	2,400						
MW-2	2/12/1991					1	2,800				125	128	64	238						
MW-2	10/21/1991			10.71			4,000	<100	<100	100	257	159	135	490						
MW-2	11/22/1991																			
MW-2	1/29/1992						2,000	<1000	<1000	1000	309	67	113	415						
MW-3	2/12/1991					0.05														
MW-3	10/21/1991					1.08														
MW-3	11/22/1991			10.75																
MW-4	1/29/1992						14,000	ND	ND		4,400	340	2,000	1,600						
MW-4	9/25/1992	56.37			 45.05		25,000	5,060	ND	5060	2,800	830	4,600	4,000						
MW-4	2/24/1993 5/17/1993	56.37 56.37		10.42 10.20	45.95 46.17		7,970	3,460	ND	3460 2630	352	2	418	1,360						
MW-4 MW-4	8/2/1993	56.37		10.44	45.93		9,180 	2,630 1,390	ND ND	1390	314	281 	981 	1,610 	 					
MW-4	8/24/1993	56.37				 	14,900				152	614	499	2,880	l 					
MW-4	11/3/1993	56.37		11.67	44.70		16,100	1,092	ND	1092	114	605	79	1,980						
MW-4	2/15/1994	56.37		11.54	44.83		16,300	1,070	ND	1070	203	552	210	1,810						
MW-4	5/20/1994	56.37		11.00	45.37		11,400	1,230	ND	1230	92.2	357	20	612						
MW-4	8/23/1994	56.37		11.84	44.53		12,400	830	ND	830	67.1	489	77	1,740						
MW-4	11/16/1994	56.37																		
MW-4	2/10/1995	56.37		11.23	45.14		11,000	1,700	ND	1700	95	160	310	890			ND			
MW-4	5/12/1995	56.37		10.80	45.57		12,000	1,600	ND	1600	55	34	380	890			ND			
MW-4	8/11/1995	56.37		11.40	44.97		11,000	1,000	ND	1000	27	33	340	980			ND			
MW-4 MW-4	11/2/1995 1/31/1996	56.37 56.37		11.73 9.62	44.64 46.75		12,000 6,200	1,400 900	940 ND	2340 900	24 17	24 6.4	220 250	430 410			ND			
MW-4	5/9/1996	56.37		9.88	46.49		97.7	253	ND	253	1.7	0.975	7.01	78			 			
MW-4	2/3/1997	56.37		8.83	47.54		ND	ND	ND		ND	ND	2.1	1.98						
MW-4	8/5/1997	56.37		10.10	46.27		172	ND	ND		0.876	0.635	7.36	17.3						
MW-4	2/11/1998	56.37		9.97	46.40		ND	ND	ND		1.15	0.975	0.997	2.66						
MW-4	8/27/1998	56.37																		
MW-4	3/13/2000	56.37		9.75	46.62															
MW-4	9/19/2000	56.37		10.71	45.66															
MW-4	3/20/2001	56.37		10.45	45.92															
MW-4	8/21/2001	56.37		11.08	45.29						 -0.5	 -0.5		 -0.5	 -0.5					
MW-4 MW-4	7/2/2005 9/15/2005	56.37 56.37		7.86 8.93	48.51 47.44		<48 1,200			 	<0.5 <0.5	<0.5	<0.5	<0.5 <0.5	<0.5		3.3 1.2	<0.5 		
MW-4	12/31/2005	56.37		8.93 8.64	47.44 47.73		1,200 <48			 	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.87	<0.87			
MW-4	3/11/2006	56.37		8.00	48.37		<48				<0.5	<0.5	<0.5	<0.5	<0.5	<0.87	<0.87			
MW-4	6/13/2006	56.37		7.59	48.78		<48				<0.5	<0.5	<0.5	<0.5	<0.5	<0.51	<0.51			
MW-4	8/10/2006	56.37		8.58	47.79															
MW-4	12/5/2006	56.37		8.48	47.89		<260	79 J	<260	209	<1.0	<1.0	<1.0	<3.0	<1.0	0.085 BJ	4.8 B			
MW-4	1/24/2007	56.37		7.71	48.66															
MW-4	5/8/2007	56.37		7.92	48.45		110	<130		65	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	3.5			
MW-4	6/4/2007	56.37		9.72	46.65															
MW-4	9/5/2007	56.37		8.76	47.61															
MW-4	12/19/2007	56.37		9.07	47.30															
MW-4	3/6/2008	56.37		7.78	48.59															
MW-4 MW-4	6/16/2008 9/11/2008	56.37 56.37		7.08 7.35	49.29 49.02								 							
																				
MW-4	11/20/2008	56.37		7.38	48.99															

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

														Total		Dissolved			
Well	Date	TOC	DTP	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Lead	Total Lead	EDB	Comments
Well	Date		TCA Method		GWL	NAFE	800/1,000	500	500	500	5	1,000	700	1,000	20	15	15	0.01	Comments
			TOA MELITOC	A COLS			000/1,000	300	300	300	3	1,000	700	1,000	20	13	13	0.01	
MW-4	3/4/2009	56.37		6.89	49.48														
MW-4	6/4/2009	56.37		7.21	49.16														
MW-4	9/22/2009	56.37		9.04	47.33		<50	110	<70	145									
MW-4	9/23/2009	56.37																	
MW-4	10/1/2009	56.37		9.80	46.57		2,000	520	<67	553.5									
MW-4	10/8/2009	56.37		10.11	46.26		330	570	<69	604.5									
MW-4	10/15/2009	56.37		10.18	46.19		420	1,000	<66	1033									
MW-4	10/22/2009	56.37		10.03	46.34		370	1,100	<66	1133									
MW-4	11/18/2009	56.37		9.11	47.26		1,500	860	<70	895									
MW-4	12/3/2009	56.37		8.16	48.21														
MW-4	12/16/2009	56.37					<50	53 J	<69	87.5									
MW-4	1/27/2010	56.37		8.50	47.87		58												
MW-4	2/12/2010	56.37		8.60	47.77		<50												
MW-4	3/30/2010	56.37		7.66	48.71		63												
MW-4	6/18/2010	56.37		7.80	48.57		<50												
MW-4	9/2/2010	56.37		9.33	47.04		1,600	770	<71	805.5									
MW-4	12/7/2010	56.37		9.33	47.04		440												
MW-4	3/7/2011	56.37		6.98	49.39		<50												
MW-4	6/9/2011	56.37		6.48	49.89		110												
MW-4	9/16/2011	56.37		8.10	48.27		<50												
MW-4	12/13/2011	56.37		8.65	47.72		530												
MW-4	12/19/2011	56.37		8.65	47.72														
MW-4	3/15/2012	56.37		9.75	46.62		<50												
MW-4	6/13/2012	56.37		7.00	49.37		<50												
MW-4	9/10/2012	56.37		8.40	47.97		160												
MW-4	12/10/2012	56.37		7.31	49.06		<50												
MW-4	3/11/2013	56.37		6.68	49.69		<50												
MW-4	6/12/2013	56.37		6.91	49.46		<50	<28	<66	47									
MW-4	9/18/2013	56.37		8.08	48.29		150	120	<67	153.5									
MW-4	12/11/2013	56.37		7.64	48.73		<50	<28	<66	47									
MW-4	3/12/2014	56.37		7.64	48.73														
MW-4	9/27/2014	56.37		8.11	48.26														
MW-4	8/17/2020	56.37		8.62	47.75		37.1 BJ	<66.7	<83.3	75	< 0.0941	<0.278	<0.137	<0.174			<2.95		
MW-4	9/28/2021	56.42		9.8	46.62		8,850	440	<250	565	<1.00	<1.00	<1.00	<3.00	<1.00		<6.00		
	0/20/2021	00.12		0.0	10.02		0,000	110	1200	000	V1.00	11.00	11.00	10.00	11.00		40.00		
MW-5	1/29/1992						2,000	2,000	ND	2000	345	32	213	95					
MW-5	9/25/1992	56.54					2,740	4,100	ND	4100	833	80	491	172					
MW-5	2/24/1993	56.54		9.35	47.19		509	6,620	ND	6620	254	ND	7	6					
MW-5	5/17/1993	56.54		9.21	47.33		ND	410	ND	410	15.5	ND	2	2					
MW-5	8/2/1993	56.54		9.59	46.95			ND	ND										
MW-5	8/24/1993	56.54		9.59			260			I	62	8	ND	9					
MW-5	11/3/1993	56.54	 	11.00	45.54		1,780	1,800	ND	1800	243	1	38	27					
MW-5	2/15/1994	56.54		10.76	45.78		950	1,610	ND	1610	914	165	49	148					
MW-5	5/20/1994	56.54		10.15	46.39		3,180	2,200	ND	2200	599	108	22	129					
MW-5	8/23/1994	56.54	 	10.15	45.59		3,310	2,160	ND	2160	701	140	45	207					
MW-5	11/16/1994	56.54		11.22	45.32		1,090	1,620	ND	1620	258	54	15	135					
MW-5	2/10/1995	56.54		10.36	46.18		4,200	2,000	310	2310	560	24	140	180			ND		
MW-5	5/12/1995	56.54	 	9.86	46.68		1,200	2,200	ND	2200	480	13	110	120			ND		
/IW-5	8/11/1995	56.54	 	10.68	45.86		4,400	1,700	ND	1700	400	14	140	180			ND		
/IW-5	11/2/1995	56.54		10.89	45.65		4,600	1,800	ND	1800	500	16	110	160			ND		
/IW-5	1/31/1996	56.54		8.40	48.14														
MW-5	5/9/1996	56.54		8.73	47.81	 	 	 		 	 		 				 	 	
/IW-5	2/3/1997	56.54		7.20	49.34		 			 	 		 		 		 		
MW-5	8/5/1997	56.54		9.36	47.18		 			 									
MW-5	2/11/1998	56.54	 	9.30	47.10					 									
MW-5	8/27/1998	56.54	 	10.14	46.40														
MW-5	1/19/1999	56.54 56.54		8.31	48.23								 				 		
MW-5	8/30/1999	56.54 56.54		9.58	46.23 46.96														
MW-5	3/13/2000	56.54 56.54		9.58 8.57	46.96 47.97														
				8.57			 												Well inaccessible
MW-5	9/19/2000 3/20/2001										 								Well inaccessible
MW-5																			v v cii ii iaccessibie
MW-5 MW-5	8/21/2001																		Well inaccessible

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

														Total		Dissolved			
Well	Date	TOC	DTP	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Lead	Total Lead	EDB	Comments
			ITCA Method				800/1,000	500	500	500	5	1,000	700	1,000	20	15	15	0.01	
																			<u> </u>
MW-5	3/11/2002	56.54		8.50	48.04		<50				<0.50	<0.50	<0.50	<1.5	<2.5				
MW-5	7/3/2002	56.54		8.96	47.58		<50 70				<0.50	<0.50	<0.50	<1.5	<2.5				
MW-5	9/13/2002	56.54		10.43	46.11		72 730				0.85 80	<0.50	< 0.50	<1.5	<2.5				
MW-5 MW-5	12/16/2002 3/6/2003	56.54 56.54		10.59 9.84	45.95 46.70		730 <50		 		0.54	1.6 <0.50	6.7 <0.50	<1.5 <1.5	<5.0 <2.5				
MW-5	6/4/2003	56.54		9.30	47.24	 	<50	 	 	 	5.3	<0.5	<0.5	<1.5	<2.5	 	 		
MW-5	9/11/2003	56.54		10.86	45.68		990				110	1.7	7.7	<1.5	<2.5				
MW-5	12/17/2003	56.54		8.86	47.68		<50				<0.5	<0.5	<0.5	<1.5	<2.5				
MW-5	3/17/2004	56.54		8.22	48.32		<50				<0.5	<0.5	<0.5	<1.5	<2.5				
MW-5	6/11/2004	56.54		8.42	48.12		<50				<0.5	<0.5	<0.5	<1.5	<2.5				
MW-5	9/21/2004	56.54																	Well inaccessible
MW-5	12/21/2004	56.54		6.85	49.69		<50				<0.5	<0.5	<0.5	<1.5	<2.5				
MW-5	7/2/2005	56.54		8.31	48.23		<48				<0.5	<0.5	<0.5	<0.5	<0.5		4.1	<0.5	
MW-5	9/15/2005	56.54		9.48	47.06		130				<0.5	<0.5	<0.5	<0.5	<0.5		4.7		
MW-5	12/31/2005	56.54		8.98	47.56		<48				<0.5	<0.5	<0.5	<0.5	<0.5	<0.87	2.7		
MW-5	3/11/2006	56.54		8.18	48.36		<48				<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.87	1.3		
MW-5 MW-5	6/13/2006 8/10/2006	56.54 56.54		7.89 8.90	48.65 47.64		<48 				<0.5 	<0.5 	<0.5 	<0.5	<0.5	<0.51	<0.51 		
MW-5	12/5/2006	56.54 56.54		8.90 8.82	47.64 47.72	 	100	 64 J	90	 154	<1.0	0.071 J	<1.0	 <3.0	 <1.0	0.050 BJ	 12 B		
MW-5	1/24/2007	56.54		8.13	48.41	 		04 J 	90 		<1.0 	0.0713	<1.0 	<3.0 	<1.0 	0.030 BJ	12 B		
MW-5	5/8/2007	56.54		8.19	48.35		58	<130		65	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	18		
MW-5	6/4/2007	56.54		8.59	47.95														
MW-5	9/5/2007	56.54		9.07	47.47														
MW-5	12/19/2007	56.54		9.24	47.30														
MW-5	3/6/2008	56.54		8.22	48.32														
MW-5	6/16/2008	56.54		7.04	49.50														
MW-5	9/11/2008	56.54		7.48	49.06														
MW-5	11/20/2008	56.54		7.45	49.09														
MW-5	3/4/2009	56.54		6.92	49.62														
MW-5 MW-5	6/4/2009 12/3/2009	56.54 56.54		7.30 8.38	49.24 48.16	 							 						
MW-5	3/30/2010	56.54		7.65	48.89	 	 												
MW-5	6/18/2010	56.54		8.07	48.47														
MW-5	9/2/2010	56.54		9.64	46.90														
MW-5	12/7/2010	56.54		9.56	46.98														
MW-5	3/7/2011	56.54		7.10	49.44														
MW-5	6/9/2011	56.54		6.41	50.13														
MW-5	9/16/2011	56.54		8.40	48.14														
MW-5	12/13/2011	56.54		9.00	47.54														
MW-5	12/19/2011	56.54		8.90	47.64														
MW-5	3/15/2012	56.54		8.80	47.74														
MW-5 MW-5	6/13/2012 9/10/2012	56.54 56.54		7.15 8.76	49.39 47.78		 												
MW-5	12/10/2012	56.54		7.82	48.72							 							
MW-5	3/11/2013	56.54		6.98	49.56														
MW-5	6/12/2013	56.54		7.22	49.32														
MW-5	9/18/2013	56.54		8.60	47.94														
MW-5	12/11/2013	56.54		8.10	48.44														
MW-5	3/12/2014	56.54		8.86	47.68														
MW-5	9/27/2014	56.54		8.63	47.91						-		-				-		
MW-5	8/18/2020	56.54		9.03	47.51		92.8 BJ	121 J	<83.3	162.65	<0.0941	<0.278	<0.137	<0.174			9.29		
MW-5	9/28/2021	56.53		10.25	46.28		539	305	<250	430	<1.00	<1.00	0.593 J	1.36 J	<1.00		<6.00		
MW 6	1/20/1002						ND	ND	ND		20	ာ	2	0					
MW-6 MW-6	1/29/1992 9/25/1992	 57.07			 		ND ND	ND ND	ND ND		39 5.5	3 ND	2 ND	8 ND					
MW-6	9/25/1992 2/24/1993	57.07 57.07		 9.33	 47.74		ND ND	360	ND ND	360	5.5 8.6	ND ND	ND ND	1 1					
MW-6	5/17/1993	57.07 57.07		9.03	48.04	 	ND ND	930	ND	930	19	ND	ND	1					
MW-6	8/2/1993	57.07		9.99	47.08			290	ND ND	290									
MW-6	8/24/1993	57.07					ND				5	ND	ND	ND					
MW-6	11/3/1993	57.07		10.35	46.72		ND	ND	ND		ND	ND	ND	ND					
MW-6	2/15/1994	57.07		10.14	46.93		ND	ND	ND		ND	ND	ND	ND					
MW-6	5/20/1994	57.07		9.79	47.28		ND	270	ND	270	7.7	ND	ND	ND					

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

														Total		Dissolved			
Well	Date	TOC	DTP	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Lead	Total Lead	EDB	Comments
Well	Date		TCA Method		OWL	NAIL	800/1,000	500	500	500	5	1,000	700	1,000	20	15	15	0.01	Comments
				71 0020			000/1,000	000	000	500	•	1,000	700	1,000	20		10	0.01	
MW-6	8/23/1994	57.07		10.49	46.58		ND	ND	ND		ND	ND	ND	ND					
MW-6	11/16/1994	57.07		10.47	46.60		ND	440	ND	440	ND	ND	ND	ND					
MW-6	2/10/1995	57.07		9.84	47.23		ND	240	240	480	ND	ND	ND	ND			ND		
MW-6	5/12/1995	57.07		9.64	47.43		ND	270	ND	270	ND	ND	ND	ND			ND		
MW-6	8/11/1995	57.07		10.13	46.94		ND	ND	ND		ND	ND	ND	ND			ND		
MW-6	11/2/1995	57.07		10.27	46.80		ND	390	ND	390	ND	ND	ND	ND			ND		
MW-6	1/31/1996	57.07		8.48	48.59		59	270	ND	270	ND	ND	ND	ND					
MW-6	5/9/1996	57.07		8.78	48.29		ND	494	ND	494	0.587	ND	ND	ND					
MW-6	2/3/1997	57.07		7.75	49.32		ND	280	1,100	1380	ND	ND	ND	ND					
MW-6	8/5/1997	57.07		9.00	48.07		54.6	ND	ND		ND	ND	ND	ND					
MW-6	2/11/1998	57.07		9.48	47.59		ND	269	ND	269	0.917	ND	ND	ND					
MW-6	8/27/1998	57.07		9.81	47.26		ND	ND	ND		ND	ND	ND	ND	ND		ND		
MW-6	1/19/1999	57.07		8.28	48.79		ND	287	ND	287	0.835	ND	ND	ND					
MW-6	8/30/1999	57.07		9.40	47.67		ND	ND	ND		ND	ND	ND	ND					
MW-6	3/13/2000	57.07		8.53	48.54		ND	317	ND	317	ND	ND	ND	ND					
MW-6	9/19/2000	57.07		9.52	47.55														
MW-6	3/20/2001	57.07	 	9.17	47.90														
MW-6	8/21/2001	57.07	 	9.78	47.29				 			 							
MW-6	3/11/2002	57.07		8.09	48.98														
MW-6	7/3/2002	57.07		8.36	48.71	 	 		 			 		<u>-</u>					
MW-6	9/13/2002	57.07		9.49	47.58	 			 			 		<u>-</u>					
MW-6	12/16/2002	57.07		10.02	47.05	 	 		 										
MW-6	3/6/2003	57.07 57.07		9.23	47.84	 	== ==												
MW-6	6/4/2003	57.07		8.78	48.29														
MW-6	9/11/2003	57.07		10.33	46.74														
MW-6	12/17/2003	57.07	 	8.40	48.67				 										
MW-6	3/17/2003	57.07		7.51	49.56	 	 	 	 				 		 		 	 	
MW-6	6/11/2004	57.07	 	7.59	49.48	 			 										
MW-6	9/21/2004	57.07		7.43	49.64	 	 		 		 		 	 	 	 	 		
MW-6	12/21/2004	57.07 57.07		7.22	49.85						 -0.5	 -0 F	 -0.5	 -0.5	 -0.5		 4E.C	 -0.5	
MW-6	7/2/2005	57.07 57.07		8.30	48.77		<48				<0.5	<0.5	<0.5	<0.5	<0.5		15.6	<0.5	
MW-6	9/15/2005	57.07		9.22	47.85		<48				<0.5	<0.5	<0.5	<0.5	<0.5		28.9		
MW-6	12/31/2005	57.07		8.75	48.32		<48				<0.5	<0.5	<0.5	<0.5	<0.5	<0.87	4.1		
MW-6	3/11/2006	57.07 57.07		8.22	48.85		<48				<0.5	<0.5	<0.5	<0.5	<0.5	<0.87	<0.87		
MW-6	6/13/2006	57.07 57.07		7.98	49.09		<48				<0.5	<0.5	<0.5	<0.5	<0.5	<0.51	<0.51		
MW-6	8/10/2006	57.07		8.82	48.25				440.1							 0.050.D.I			
MW-6	12/5/2006	57.07		8.53	48.54		<50	49 J	110 J	159	<1.0	<1.0	<1.0	<3.0	<1.0	0.050 BJ	45 B		
MW-6	1/24/2007	57.07		7.88	49.19														
MW-6	5/8/2007	57.07		8.04	49.03		<50	<130		65	<1.0	<1.0	<1.0	<2.0	<1.0	<2.0	18		
MW-6	6/4/2007	57.07		8.78	48.29														
MW-6	9/5/2007	57.07	12.57	9.85	47.22														
MW-6	12/19/2007	57.07		9.21	47.86														
MW-6	3/6/2008	57.07		8.34	48.73														
MW-6	6/16/2008	57.07		7.72	49.35														
MW-6	9/11/2008	57.07		7.98	49.09														
MW-6	11/20/2008	57.07		7.90	49.17														
MW-6	3/4/2009	57.07		7.68	49.39														
MW-6	6/4/2009	57.07		8.06	49.01														
MW-6	12/3/2009	57.07		8.29	48.78														
/IW-6	3/30/2010	57.07		8.26	48.81														
/W-6	6/18/2010	57.07		8.23	48.84														
IW-6	9/2/2010	57.07		9.30	47.77														
1W-6	12/7/2010	57.07		9.10	47.97														
/IW-6	3/7/2011	57.07		7.52	49.55														
/IW-6	6/9/2011	57.07		7.27	49.80														
/IW-6	9/16/2011	57.07		8.52	48.55														
/IW-6	12/13/2011	57.07		8.60	48.47														
MW-6	12/19/2011	57.07		8.52	48.55														
MW-6	3/15/2012	57.07		8.50	48.57														
		F7.07		7.40	49.67														
	6/13/2012	57.07		7.40															
MW-6 MW-6	6/13/2012 9/10/2012	57.07 57.07		8.60	48.47														

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

														Total		Dissolved				
Well	Date	TOC	DTP	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene		MTBE	Lead	Total Lead	EDB	Comments	
weii	Date		MTCA Method		GWE	NAFL	800/1,000	500	500	500	5	1,000	700	1,000	20	15	15	0.01	Comments	
		IV	IT CA MELITO	I A COLS			600/1,000	300	300	300	J	1,000	700	1,000	20	13	13	0.01		
MW-6	3/11/2013	57.07		7.07	50.00															
MW-6	6/12/2013	57.07		6.83	50.24															
MW-6	9/18/2013	57.07		8.44	48.63															
MW-6	12/11/2013	57.07		7.81	49.26															
MW-6	3/12/2014	57.07		12.06	45.01															
MW-6	9/27/2014	57.07		8.48	48.59	 	 	 				 			 	 		 		
MW-6	8/18/2020	57.07		8.78	48.29		44.7 BJ	75.6 J	<83.3	117.25	<0.0941	<0.278	<0.137	<0.174			<2.95			
MW-6	9/27/2021	57.02		10.3	46.72		<100	<200	<250	225	<1.00	<1.00	<1.00	<3.00	<1.00		<6.00			
B41A/ 7	1/20/1002						20.000	ND	ND		2.400	070	2 000	4 500						
MW-7	1/29/1992						30,000	ND	ND		3,400 863	870	2,900	4,500						
MW-7	9/25/1992	58.98					2,770	ND	ND			81	509	168						
MW-7	2/24/1993	58.98	9.84	9.99	49.11	0.15														
MW-7	5/17/1993	58.98	9.75	9.90	49.20	0.15		40.000		40000										
MW-7	8/2/1993	58.98		9.99	48.99			13,800	ND	13800		 I								
MW-7	8/24/1993	58.98					88,000				1,100	620	2,200	13,000						
MW-7	11/3/1993	58.98		11.01	47.97		100,000	59,000	ND	59000	2,500	898	6,300	6,470						
MW-7	2/15/1994	58.98		10.85	48.13		31,000	1,340	ND	1340	1,210	751	2,910	3,960						
MW-7	5/20/1994	58.98		10.34	48.64		47,000	4,950	ND	4950	1,200	700	2,000	4,200						
MW-7	8/23/1994	58.98		11.13	47.85		25,400	11,200	800	12000	1,070	844	2,200	4,130						
MW-7	11/16/1994	58.98		11.70	47.28		56,000	52,700	3,150	55850	380	917	2,500	8,100						
MW-7	2/10/1995	58.98		10.62	48.36		93,000	69,000	ND	69000	1,200	3,700	1,300	8,100			24			
MW-7	5/12/1995	58.98	10.14	10.14	48.84	Sheen	37,000	19,000	2,800	21800	1,300	2,800	1,100	6,400			8.2			
MW-7	8/11/1995	58.98	10.79	10.79	48.19	Sheen	61,000	1,600	ND	1600	440	2,000	1,300	6,100			5.8			
MW-7	11/2/1995	58.98	11.12	11.12	47.86	Sheen	94,000	57,000	ND	57000	360	1,300	1,000	5,500			5.5			
MW-7	1/31/1996	58.98		9.20	49.78		27,000	3,700	ND	3700	250	1,100	650	3,800						
MW-7	5/9/1996	58.98	9.40	9.40	49.58	Sheen	163,000	11,600	ND	11600	638	2,390	1,850	10,600						
MW-7	2/3/1997	58.98		8.85	88.76		10,600	961	ND	961	11.1	10.6	32.3	185						
MW-7	8/5/1997	58.98	9.56	9.56	49.42	Sheen														
MW-7	2/11/1998	58.98	9.52	9.52	49.46	Sheen														
MW-7	8/27/1998	58.98	10.29	10.30	48.69	0.01	62,000	2,600	ND	2600	1,600	7,440	1,340	9,210			24			
MW-7	1/19/1999	58.98		9.44	49.54		9,190	1,480	ND	1480	59.6	2,070	251	935						
MW-7	8/30/1999	58.98	10.07	10.07	48.91	Sheen	26,900	5,580	ND	5580	100	1,040	413	2,640						
MW-7	3/13/2000	58.98	9.30	9.30	49.68	Sheen	49,600	4,330	ND	4330	795	4,500	1,080	7,190						
MW-7	9/19/2000	58.98	10.14	10.28	48.81	0.14														
MW-7	3/20/2001	58.98	9.84	9.98	49.04	0.05														
MW-7	8/21/2001	58.98	10.31	10.36	48.66	0.05														
MW-7	3/11/2002	58.98		9.23	49.75															
MW-7	7/3/2002			11.68			37,000				640	2,500	550	3,700	<6.0					
MW-7	7/26/2002			10.81								-,								
MW-7	8/17/2002			10.93																
MW-7	9/13/2002		12.33	12.36		0.03														
MW-7	10/15/2002	 	12.33	11.97		0.03														
MW-7	11/8/2002			12.41																
MW-7	12/16/2002		12.75	12.77	 	0.02														
MW-7	1/11/2003		10.77	10.81	 	0.02	 	 	 		 									
MW-7			10.77				 	 			 		 				 			
	2/14/2003			12.15		0.03														
MW-7	3/6/2003		11.92	11.94		0.02														
MW-7	4/22/2003		12.01	12.04		0.03														
MW-7	5/21/2003		12.01	12.04		0.03	 06 000	-			 E90	4 100	 1 E00							
MW-7	6/4/2003			11.84			96,000				580	4,100	1,500	10,000	<20					
MW-7	7/17/2003		12.87	12.90		0.03														
MW-7	8/12/2003		12.04	12.06		0.02														
MW-7	9/11/2003		12.95	13.01		0.06														
MW-7	10/20/2003		12.78	12.82		0.04														
MW-7	12/17/2003			11.32			53,000				80	820	530	4,700	11					
MW-7	3/17/2004		10.88	10.90		0.02														
MW-7	5/22/2004			11.39				_												
MW-7	6/11/2004			10.98			1,600				<1.0	1.3	8.2	57	<2.5					
MW-7	7/22/2004		11.42	11.44		0.02														
MW-7	9/1/2004		11.02	11.04		0.02														
MW-7	9/21/2004			10.79			10,000				<5.0	28	66	500	<5.0					
MW-7	12/21/2004			10.31			25,000				<5.0	180	270	2,100	<5.0					
							.,	_						,						

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

														Total		Dissolved			
Well	Date	TOC	DTP	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene		MTBE	Lead	Total Lead	EDB	Comments
		N	ITCA Method	I A CULs			800/1,000	500	500	500	5	1,000	700	1,000	20	15	15	0.01	
M\A/ 7	7/2/2005	58.98		11.01	47.97		520				<0.5	40 E	-0 E	-0 E	-0 E		706	<0.5	
MW-7 MW-7	9/15/2005	58.98		11.01 11.84	47.97 47.14	 	7,400	 I		 	<0.5 43	<0.5 1,200	<0.5 130	<0.5 740	<0.5 <1		786 203	<0.5	
MW-7	12/31/2005	58.98	 	11.61	47.14	 	20,000			 	45	1,900	470	2,600	<3	12.8	34.8		
MW-7	3/11/2006	58.98		10.99	47.99		2,900				<0.5	10	16	140	<0.5	2.4	32.4		
MW-7	6/13/2006	58.98		10.81	48.17		160,000				8	1,100	640	4,800	<3	15.5	159		
MW-7	8/10/2006	58.98	11.77	11.80	47.20	0.03													
MW-7	12/5/2006	58.98		11.57	47.41		45,000	210,000	4,300	214300	3.1	1,300	950	7,100	<1.0	92 B	920 B		
MW-7	1/24/2007	58.98	10.50	10.62	48.46	0.12													
MW-7	5/8/2007	58.98	10.81	10.88	48.16	0.07													
MW-7	6/4/2007	58.98		11.56	47.42		9,200	2,200	<190	2295	14	360	67	520	<0.5		26.2	<0.5	
MW-7	9/5/2007	58.98	12.57	12.69	46.39	0.12													
MW-7	12/19/2007	58.98	-	12.22	46.76		15,000				<1	210	250	1,500	<1		52.5	<1	In analyzing DRO w/ silica gel, the observed sample pattern includes #2 fuel/diesel and an additional pattern that elutes earlier in the DRO range.
MW-7	3/6/2008	58.98	11.00	11.03	47.97	0.03													
MW-7	6/16/2008	58.98	10.22	10.25	48.75	0.03													
MW-7	9/11/2008	58.98	10.45	10.47	48.53	0.02													
MW-7	11/20/2008	58.98	10.46	10.47	48.52	0.01	56,000	-			<13	71	590	4,300	<13	-	-	<13	In analyzing DRO w/ silica gel, the observed sample pattern is not typical of #2 fuel/diesel, eluting in the DRO range earlier than #2 fuel.
MW-7	3/4/2009	58.98	-	9.67	49.31		2,400	-			<0.5	<0.5	4	65	<0.5	-		<0.5	In analyzing DRO w/ silica gel, the observed sample pattern includes #2 fuel/diesel and an additional pattern that elutes earlier in the DRO range.
MW-7	6/4/2009	58.98		10.04	48.94		2,800				<0.5	<0.5	0.9	18	<0.5			<0.5	
MW-7	9/22/2009	58.98		12.08	46.90	Sheen													
MW-7	9/23/2009	58.98		13.02	45.96		370,000	530,000	110,000 J	640000									
MW-7	9/24/2009	58.98		12.69	46.29		160,000	48,000	27,000 J	75000									
MW-7	10/1/2009	58.98		12.63	46.35		22,000	4,800	27,000	31800									
MW-7	10/8/2009	58.98		12.81	46.17		16,000	590	440 J	1030									
MW-7	10/15/2009	58.98		12.95	46.03		14,000	790	430	1220									
MW-7	10/22/2009	58.98		12.86	46.12		11,000	430	95 J	525									
MW-7	11/18/2009	58.98		12.12	46.86		24,000	1,400	1,600 J	3000									
MW-7	12/3/2009	58.98		11.27	47.71		37,000	-			<10	560	770	4,800	<10			<10	In analyzing DRO w/ silica gel, the observed sample pattern includes #2 fuel/diesel and an additional pattern that elutes earlier in the DRO range.
	10/16/2222	E0.00					00.000		072 -	2072									rango.
MW-7	12/16/2009	58.98					22,000	2,000	970 J	2970									

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

														Total		Dissolved			
Well	Date	TOC	DTP	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene		MTBE	Lead	Total Lead	EDB	Comments
		N	ITCA Method	A CULs			800/1,000	500	500	500	5	1,000	700	1,000	20	15	15	0.01	
MW-7	1/27/2010	58.98		11.24	47.74		33,000				-								In analyzing DRO w/ silica gel, the observed sample pattern includes #2 fuel/diesel and an additional pattern that elutes earlier in the DRO range.
MW-7	2/12/2010	58.98	-	11.30	47.68		36,000			-	-								In analyzing DRO w/ silica gel, the observed sample pattern is not typical of #2 fuel/diesel, eluting in the DRO range earlier than #2 fuel.
MW-7	3/30/2010	58.98	-	10.85	48.13	-	32,000	-		-	-	-	-		-	-	-		In analyzing DRO w/ silica gel, the observed sample pattern includes #2 fuel/diesel and an additional pattern that elutes earlier in the DRO range.
MW-7	6/18/2010	58.98		10.71	48.27		2,500				<0.5	2	2	30					In analyzing DRO w/ silica gel, the observed sample pattern includes #2 fuel/diesel and an additional pattern that elutes later in the DRO range.
MW-7	9/2/2010	58.98		12.21	46.77		22,000	3,500	370	3870	2	480	720	4,200					
MW-7	12/7/2010	58.98		12.85	46.13		30,000	460		460	<3	380	800	4,500					
MW-7	3/7/2011	58.98		9.71	49.27		<50				<0.5	<0.5	<0.5	<0.5					
MW-7	6/9/2011	58.98		9.28	49.70		<50				<0.5	<0.5	<0.5	<0.5					
MW-7	9/16/2011	58.98		10.90	48.08		<50				<0.5	<0.5	<0.5	<0.5					
MW-7	12/13/2011 12/19/2011	58.98 58.98		11.40	47.58 47.65		2,100				0.9	91	82	440					
MW-7 MW-7	3/15/2011	58.98 58.98		11.33 9.80	47.65 49.18		 <50				<0.5	 <0.5	 <0.5	 -0.5					
MW-7	6/13/2012	58.98		9.80	49.18	 	230				<0.5 <0.5	<0.5 <0.5	<0.5 0.8	<0.5 <0.5					
IVIVV-7	6/13/2012	36.96		9.00	49.36		230				<0.5	<0.5	0.6	<0.5					In analyzing HO w/ silica gel, the observed
MW-7	9/10/2012	58.98		11.20	47.78		240				<0.5	4	5	29					sample pattern includes #2 fuel/diesel, eluting in the DRO range later than #2 fuel.
MW-7	12/10/2012	58.98		10.21	48.77		<50				<0.5	<0.5	<0.5	<0.5					
MW-7	3/11/2013	58.98		9.41	49.57		<50				<0.5	<0.5	<0.5	<0.5					
MW-7	6/12/2013	58.98		9.85	49.13		<50	82	<68	116	<0.5	<0.5	<0.5	<0.5					
MW-7	9/18/2013	58.98		11.16	47.82		1,300	190	<67	223.5	0.8	150	41	210					
MW-7	12/11/2013	58.98		10.67	48.31		<50	360	190	550	<0.5	<0.5	<0.5	<0.5					
MW-7	3/12/2014	58.98		9.18	49.80		<50				<0.5	<0.5	<0.5	<0.5					
MW-7	9/27/2014	58.98		11.23	47.75		<50				<0.5	<0.5	<0.5	<0.5			-		
MW-7	8/17/2020	58.98		11.45	47.53		2,080	549	143 J	692	0.561 J	23.7	101	488			<2.95		
MW-7	9/28/2021	58.93		12.73	46.20		8,990	565	<250	690	0.124 J	14.6	359 E	1,390 E	<1.00		<6.00		
									_										
MW-8	1/29/1992						37,000	2,000	ND	2,000	4,600	320	8,900	1,600					
MW-8	9/25/1992	56.56					24,000 [25,000]	5,350	ND	5,350	6,100 [6,400]	378/376	8,000 [8,200]	1,600 [1,700]					
MW-8	2/24/1993	56.56		9.90	46.66		28,000	590	ND	590	520	200	8,300	950					
MW-8	5/17/1993	56.56		9.63	46.93		34,000	540	ND	540	2,000	180	11,000	770					
MW-8	8/2/1993	56.56		10.19	46.37			970	ND	970									
MW-8	8/24/1993	56.56					68,000				1,050	220	16,000	1,660					

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

														Total		Dissolved			
Well	Date	TOC	DTP	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Lead	Total Lead	EDB	Comments
			MTCA Method				800/1,000	500	500	500	5	1,000	700	1,000	20	15	15	0.01	
							·					·		·					
MW-8	11/3/1993	56.56		11.28	45.28		2,100	1,340	ND	1,340	18.9	ND	ND	200					
MW-8	2/15/1994	56.56		11.15	45.41		2,860	1,630	ND	1,630	942	140	377	286					
MW-8	5/20/1994	56.56		10.56	46.00		14,000	910	ND	910	740	130	3,600	410					
MW-8	8/23/1994	56.56		11.41	45.15		7,990	1,830	ND	1,830	2,060	298	1,160	1,160					
MW-8	11/16/1994	56.56		11.70	44.86		17,600	2,160	ND	2,160	1,130	207	2,700	892					
MW-8	2/10/1995	56.56		10.87	45.69		10,000	1,600	500 ND	2100	1,100	1,300	180	820			17		
MW-8	5/12/1995	56.56		10.37	46.19		19,000	870	ND	870	1,200	5,700	240	1,000			ND		
MW-8 MW-8	8/11/1995 11/2/1995	56.56 56.56		10.98 11.35	45.58 45.21		9,000 11,000	990 1,700	ND 1,100	990 2800	470 820	860 710	320 300	1,300 1,200			ND ND		
MW-8	1/31/1996	56.56	 	9.03	47.53	 	15,000	510	ND	510	370	4,600	170	710			ND 		
MW-8	5/9/1996	56.56		9.37	47.19		17,000	300	ND	300	421	6,200	198	807					
MW-8	2/3/1997	56.56		8.27	48.29		11,600	360	ND	360	258	3,750	225	910					
MW-8	8/5/1997	56.56		9.46	47.10		9,160	ND	ND		ND	1,810	167	615					
MW-8	2/11/1998	56.56		9.97	46.59		6,310	ND	ND		476	680	158	585					
MW-8	8/27/1998	56.56		10.50	46.06		2,810	ND	ND		ND	425	113	448	ND				
WW-8	1/19/1999	56.56		9.12	47.44		ND	271	ND	271	ND	249	27.4	96.1					
8-WN	8/30/1999	56.56		10.01	46.55		1,180	623	ND	623	15.8	17.8	57.9	198					
1W-8	3/13/2000	56.56		9.19	47.37		1,990	318	ND	318	11.5	168	73.4	255					
8-WN	9/19/2000	56.56		10.21	46.35		1,540	268	ND	268	ND	ND	66.3	239	ND				
8-WN	3/20/2001	56.56		10.10	46.46		ND				ND	ND	ND	117	ND				
8-WN	8/21/2001	56.56		12.31	44.25		5,230	309	<500	559	33.8	6.81	58.9	196	27.3				
8-WN	3/11/2002	56.56		9.14	47.42		1,100				6.4	41	73	250	<2.5				
/IW-8	7/3/2002	56.56		9.60	46.96		1,100				<2.0	<5.0	69	230	<2.5				
/IW-8	9/13/2002	56.56		9.99	46.57		920				<20	2.1	34	150	67				
IW-8	12/16/2002	56.56		11.00	45.56		1,300				<50	4.8	30	69	<20				Mall in a second la
IW-8	3/6/2003	56.56			 46.74						 -E0				 -E0				Well inaccessible
1W-8 1W-8	6/4/2003 9/11/2003	56.56 56.56		9.85 11.08	46.71 45.48		680 2,400	 I	 		<50 31	1.9 14	31 110	110 170	<50 <5.0				
1W-8	3/6/2003	56.56			45.46		2,400								<5.0 				Well inaccessible
IW-8	3/17/2004	56.56								<u></u>									Well inaccessible
/W-8	6/11/2004	56.56																	Well inaccessible
1W-8	9/21/2004	56.56																	Well inaccessible
1W-8	12/21/2004	56.56																	Well inaccessible
IW-8	8/10/2006	56.56		9.30	47.26		580	210	<110	265	1	<0.5	14	29	<0.5	< 0.047	8.5		
W-8	12/5/2006	56.56		9.26	47.30		850	230 J	170 J	400	0.64 J	0.49 J	24	62.9	<1.0	0.51 BJ	15 B		
IW-8	1/24/2007	56.56		8.41	48.15		690	180	<270	315	<1.0	<1.0	30	98.1	<1.0	<2.0	19		
W-8	5/8/2007	56.56		8.65	47.91		1,200	410		410	<2.0	28	37	155	<2.0	<2.0	13		
IW-8	6/4/2007	56.56		9.03	47.53														
W-8	9/5/2007	56.56		9.70	46.86														
																			In analyzing DRO w/
																			silica gel, the observed
																			sample pattern includes
8-WN	12/19/2007	56.56		9.88	46.68		570				<0.5	0.7	3	4	<0.5		8	<0.5	
																			additional pattern that
																			elutes later in the DRO
\A/ O	2/6/2009	EC		0.40	40.00		260				-O F	-O E	0	17					range.
W-8 W-8	3/6/2008 6/16/2008	56.56 56.56		8.48 7.72	48.08 48.84	 	260 190			 	<0.5 <1	<0.5 <1	8 3	17 4			 		
vv-o W-8	9/11/2008	56.56		7.72 8.10	48.46		510			 	<1 <1	<1 <1	3 16	4 25	 		 		
w-0 W-8	11/20/2008	56.56	 	8.22	48.34	 	280			 	<0.5	<0.5	3	25 6	 		 		
N-8	3/4/2009	56.56	 	7.39	49.17	 	180		 	 	<0.5 <0.5	<0.5	4	8	 				
N-8	6/4/2009	56.56		7.68	48.88		730				<3	<3	20	47					
N-8	9/22/2009	56.56		9.69	46.87		550	880	1,300	2,180									
W-8	10/1/2009	56.56		10.28	46.28		380	76 J	94 J	170									
W-8	10/8/2009	56.56		10.51	46.05		620	89 J	<69	123.5									
W-8	10/15/2009	56.56		10.65	45.91		420	340	310 J	650									
W-8	10/22/2009	56.56		10.60	45.96		480	77 J	<67	110.5									
IW-8	11/18/2009	56.56		9.71	46.85		510	140	<70	175									
1W-8	12/3/2009	56.56		8.87	47.69		580				<1	<1	7	28					
1W-8	12/16/2009	56.56					420	240	<66	273									
8-WN	1/27/2010	56.56		8.90	47.66		790												
MW-8	2/12/2010	56.56		8.98	47.58		570												

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

March Total March Marc															Total		Dissolved			
March Marc	Well	Date				GWE	NAPL													Comments
			ı	MTCA Method	d A CULs			800/1,000	500	500	500	5	1,000	700	1,000	20	15	15	0.01	
	/IW-8	3/30/3010	EC		0 15	40 11		710												
Section 1987																				
Section Sect	1W-8																			
Second S	IW-8																			
Section Sect	1W-8																			
Section 19.00 19	W-8																			
12 12 12 13 14 15 15 15 15 15 15 15	IW-8																			
1	1W-8																			
Second S	IW-8																			
Fig.	IW-8																			
Principal	W-8	3/15/2012	56.56		9.70	46.86		<50												
91/12/12/12 95.6	1W-8	6/13/2012	56.56		7.35	49.21		330												gel, the observed sample pattern includes #2 fuel/diesel, eluting in the DRO range later
11/20/2012 16.50 16.50 16.50 16.50 16.50 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50																				than #2 fuel.
11/20/2012 16.50 16.50 16.50 16.50 16.50 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50 17.74 16.50	W-8	9/10/2012	56.56		8.80	47.76		220												
2112013 86.66 - 7.24 49.12 - 910	IW-8																			
6122013 56.56 - 7.43 49.13 - 610 200 360 560	IW-8																			gel, the observed sample pattern includes #2 fuel/diesel and an additional pattern that
1211/12073 58.56	W-8	6/12/2013	56.56		7.43	49.13		610	200	360	560									range.
1211/2013 56.56 8.36 48.20 500 100 190 290	W-8	9/18/2013			8.82	47.74		380	48	96	144									
Second S	N-8	12/11/2013	56.56		8.36	48.20			100	190	290									
927/2014	N-8	3/12/2014	56.56		7.02	49.54			500	510	1010									
0180200	W-8	9/27/2014	56.56		8.86	47.70			16.000					-						
928/2021	W-8							6.210					<0.278	1.64	1.16 J					
1/28/1992	W-8																			
925/1992 57.79								,,,,,,												
925/1992 57.79	W-9	1/29/1992						ND	1,000	ND	1,000	1.0	1.0	ND	4.0					
2241993 57.79 - 10.07 47.72 - 439 2.340 ND 2.340 27 ND ND 1.0	W-9		57.79												2.0					
617/1993 67.79 9.75 48.04	W-9				10.07	47.72														
8/2/1993 57.79 10.20 47.59 1.560 ND 1.560	N-9																			
824/1993 57.79	V-9																			
11/3/1938 57.79 11.43 46.36 1.070 990 ND 990 1.9 1.0 ND 2.0	W-9							5.590		_		4.0	14	12	409					
2/16/1994 57.79 - 11.27 45.52 - 853 750 ND 750 2.1 ND ND 2.0	N-9									_										
\$7.79	N-9							•												
8/23/1994 57.79 11.69 46.10 640 1.220 ND 1.220 ND	V-9																			
11/16/1994 57.79 - 10.88 46.91 - ND 300 ND 1290 ND	N-9																			
2/10/1995 57.79 10.94 46.85 950 890 400 1290 ND ND ND 1.5 6.0 ND	W-9																			
5/12/1995 57.79 10.49 47.30 910 740 ND 740 ND ND ND ND ND 8/11/1995 57.79 11.14 46.65 1,200 1,800 ND 1800 0.63 ND ND ND 1.2 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND <t< td=""><td>W-9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td></t<>	W-9																	ND		
8/11/1995 57.79 11.14 46.65 1,200 1,800 ND 1800 0.63 ND ND 1.2 ND 11.14 46.05 ND 11.49 46.30 990 980 ND 980 ND 980 ND	W-9																			
11/2/1995 57.79 11.49 46.30 990 980 ND 980 ND 980 ND	W-9																			
1/31/1996 57.79 8.98 48.81 740 710 ND 710 2.6 ND ND ND 5/9/1996 57.79 9.31 48.48 128 477 ND 477 ND 0.74 ND ND ND ND ND 5/9/1997 57.79 7.70 50.09 190 355 ND 355 ND ND ND ND ND ND ND ND ND	W-9							•												
5/9/1996 57.79 9.31 48.48 128 477 ND 477 ND 0.74 ND ND	W-9																			
2/3/1997 57.79 7.70 50.09 190 355 ND 355 ND ND ND ND ND ND ND ND	W-9																			
8/5/1997 57.79 9.85 47.94 236 447 ND 447 ND ND ND ND ND	W-9																			
2/11/1988 57.79	W-9																			
8/27/1998 57.79 10.72 47.07	IW-9																			
1/19/1999 57.79 8.87 48.92	W-9																			
8/30/1999 57.79 10.18 47.61																				
3/13/2000 57.79 9.13 48.66	IW-9																			
9/19/2000 57.79 10.41 47.38	IW-9																			
3/20/2001 57.79 10.07 47.72	W-9																			
	IW-9																			
8/21/2001 57.79 10.79 47.00	W-9																			
	IW-9	8/21/2001	57.79		10.79	47.00														

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

V-10 12/ V-10 3/ V-10 9/: V-10 9/: V-10 9/: V-10 9/: V-10 9/: V-10 9/: V-10 12/ V-10 6/: V-10 12/ V-10 5/ V-10 5/ V-10 5/ V-10 9/: V-10 10/	2/16/2002 3/6/2003 6/4/2003 9/11/2003 2/17/2003 6/11/2004 9/21/2004 2/21/2004 2/21/2005 9/15/2005 2/31/2005 3/11/2006 6/13/2006 8/10/2006 1/24/2007 9/5/2007 6/4/2007 9/5/2007 3/6/2008 6/16/2008 6/16/2008 9/11/2008 1/20/2008 3/4/2009	TOC M' 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21	DTP TCA Method	10.41 9.74 9.28 11.18 9.15 8.95 8.90 8.61 8.98 9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50 10.45	GWE 47.23 46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 \$800/1,000 1,800 99 <50 12,000 <50/<50 <50 120 780 1,100 17,000 2,800 16,000 22,000 12,000 13,000 15,000 13,000	DRO 500	HO 500	DRO+HO 500	Senzene 5	Toluene 1,000 3.5 <0.50 <0.5 380 <0.5/1.4 <0.5 0.8 19 6 1,200 68 330 380 48 370 160 210	31 <0.50 2.4 430 <0.5/1.5 <0.5 1.2 13 10 520 92 390 700 310 350 370 340	98 <1.5 <1.500 <1.5/1.8 <1.5 <2.5 190 2,600 360 1,600 3,800 1,450 1,790 1,900 1,400	9.3 <2.5 <2.5 <10 <2.5/<2.5 <5.0 <5.0 <0.5 <1 <0.5 <1 <10 <5.0 <10 <10 <10 <10 <11 <1	<pre></pre>	Total Lead 15 1.3 <0.87 1.3 1 2.6 B <2.0 <2.0 1.2	= CO.5	Well inaccessible Well inaccessible
V-10 3/V-10 9/V-10 12/V-10 12/	3/6/2003 6/4/2003 9/11/2003 2/17/2003 8/11/2004 9/21/2004 2/21/2004 7/2/2005 9/15/2005 3/11/2006 6/13/2006 6/13/2006 6/13/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21		10.41 9.74 9.28 11.18 9.15 8.95 8.90 8.61 8.98 9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50 10.45	47.23 46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 1,800 99 <50 12,000 <50/<50 <50 120 780 1,100 17,000 2,800 16,000 22,000 12,000 13,000 15,000 13,000	 620 1,400 1,300 610	 <100 530 <260 <100	 670 1930 1430 610	<10 <1.0 2.4 71 <0.5/2.8 2.5 9.6 27 8 32 4 6 15 7.7 <10 6	3.5 <0.50 <0.5 380 <0.5/1.4 <0.5 0.8 19 6 1,200 68 330 380 48 370 160	31 <0.50 2.4 430 <0.5/1.5 <0.5 1.2 13 10 520 92 390 700 310 350 370	98 <1.5 <1.5 <1.500 <1.5/1.8 <1.5 <1.5 <25 190 2,600 360 1,600 3,800 1,450 1,790 1,900	9.3 <2.5 <2.5 <10 <2.5/<2.5 <2.5 <5.0 <5.0 <5.0 <1 <0.5 <1 <10 <5.0 <10 <10 <10 <11	<8.90 <0.51 0.4 0.57 BJ <2.0 <2.0	 1.3 <0.87 1.3 1 2.6 B <2.0 <2.0	 <0.5 	
V-10 3/V-10 9/V-10 12/V-10 12/	3/6/2003 6/4/2003 9/11/2003 2/17/2003 8/11/2004 9/21/2004 2/21/2004 7/2/2005 9/15/2005 3/11/2006 6/13/2006 6/13/2006 6/13/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21		9.74 9.28 11.18 9.15 8.95 8.90 8.61 8.98 9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50	47.23 46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 99 <50 12,000 <50/<50 <50/ 120 780 1,100 17,000 2,800 16,000 22,000 12,000 13,000 13,000	 620 1,400 1,300 610	 <100 530 <260 <100	 670 1930 1430 610	<1.0 2.4 71 <0.5/2.8 2.5 9.6 27 8 32 4 6 15 7.7 <10 6	<0.50 <0.5 380 <0.5/1.4 <0.5 0.8 19 6 1,200 68 330 380 48 370 160	<0.50 2.4 430 <0.5/1.5 <0.5 1.2 13 10 520 92 390 700 310 350 370	<1.5 <1.5 <1.500 <1.5/1.8 <1.5 <1.5 <2.5 190 2,600 360 1,600 3,800 1,450 1,790 1,900	<2.5 <2.5 <10 <2.5/<2.5 <2.5 <5.0 <5.0 <0.5 <1 <0.5 <1 <10 <5.0 <10 <5.0 <10 <5.0 <10 <10 <10 <10 <10 <1	 <0.51 0.4 0.57 BJ <2.0 <2.0	 1.3 <0.87 1.3 1 2.6 B <2.0 <2.0	 <0.5 	
-10 3/ -10 6/ -10 9/ -10 12/ -10 9/ -10 9/ -10 12/ -10 12/ -10 12/ -10 12/ -10 3/ -10 5/ -10 5/ -10 5/ -10 5/ -10 6/ -10 7/	3/6/2003 6/4/2003 9/11/2003 2/17/2003 8/11/2004 9/21/2004 2/21/2004 7/2/2005 9/15/2005 3/11/2006 6/13/2006 6/13/2006 6/13/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21		9.74 9.28 11.18 9.15 8.95 8.90 8.61 8.98 9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50	47.23 46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 99 <50 12,000 <50/<50 <50/ 120 780 1,100 17,000 2,800 16,000 22,000 12,000 13,000 13,000	 620 1,400 1,300 610	 <100 530 <260 <100	 670 1930 1430 610	<1.0 2.4 71 <0.5/2.8 2.5 9.6 27 8 32 4 6 15 7.7 <10 6	<0.50 <0.5 380 <0.5/1.4 <0.5 0.8 19 6 1,200 68 330 380 48 370 160	<0.50 2.4 430 <0.5/1.5 <0.5 1.2 13 10 520 92 390 700 310 350 370	<1.5 <1.5 <1.500 <1.5/1.8 <1.5 <1.5 <2.5 190 2,600 360 1,600 3,800 1,450 1,790 1,900	<2.5 <2.5 <10 <2.5/<2.5 <2.5 <5.0 <5.0 <0.5 <1 <0.5 <1 <10 <5.0 <10 <5.0 <10 <5.0 <10 <10 <10 <10 <10 <1	 <0.51 0.4 0.57 BJ <2.0 <2.0	 1.3 <0.87 1.3 1 2.6 B <2.0 <2.0	 <0.5 	
V-10 3/V-10 9/V-10 12/V-10 12/	3/6/2003 6/4/2003 9/11/2003 2/17/2003 8/11/2004 9/21/2004 2/21/2004 7/2/2005 9/15/2005 3/11/2006 6/13/2006 6/13/2006 6/13/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21		9.74 9.28 11.18 9.15 8.95 8.90 8.61 8.98 9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50	47.23 46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 99 <50 12,000 <50/<50 <50/ 120 780 1,100 17,000 2,800 16,000 22,000 12,000 13,000 13,000	 620 1,400 1,300 610	 <100 530 <260 <100	 670 1930 1430 610	<1.0 2.4 71 <0.5/2.8 2.5 9.6 27 8 32 4 6 15 7.7 <10 6	<0.50 <0.5 380 <0.5/1.4 <0.5 0.8 19 6 1,200 68 330 380 48 370 160	<0.50 2.4 430 <0.5/1.5 <0.5 1.2 13 10 520 92 390 700 310 350 370	<1.5 <1.5 <1.500 <1.5/1.8 <1.5 <1.5 <2.5 190 2,600 360 1,600 3,800 1,450 1,790 1,900	<2.5 <2.5 <10 <2.5/<2.5 <2.5 <5.0 <5.0 <0.5 <1 <0.5 <1 <10 <5.0 <10 <5.0 <10 <5.0 <10 <10 <10 <10 <10 <1	 <0.51 0.4 0.57 BJ <2.0 <2.0	 1.3 <0.87 1.3 1 2.6 B <2.0 <2.0	 <0.5 	
V-10 6/V-10 9/V-10 12/V-10 9/V-10 12/V-10 12/V	6/4/2003 9/11/2003 2/17/2003 6/11/2004 9/21/2004 2/21/2004 7/2/2005 9/15/2005 2/31/2006 6/13/2006 6/13/2006 6/13/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008			9.28 11.18 9.15 8.95 8.90 8.61 8.98 9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50	47.23 46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 <50 12,000 <50/<50 <50/ 120 780 1,100 17,000 2,800 16,000 22,000 12,000 13,000 15,000 13,000	 620 1,400 1,300 610		 670 1930 1430 610	2.4 71 <0.5/2.8 2.5 9.6 27 8 32 4 6 15 7.7 <10 6	<0.5 380 <0.5/1.4 <0.5 0.8 19 6 1,200 68 330 380 48 370 160	2.4 430 <0.5/1.5 <0.5 1.2 13 10 520 92 390 700 310 350 370	<1.5 1,500 <1.5/1.8 <1.5 <1.5 25 190 2,600 360 1,600 3,800 1,450 1,790 1,900	<2.5 <10 <2.5/<2.5 <2.5 <5.0 <5.0 <0.5 <1 <0.5 <1 <10 <5.0 <10	 <0.51 0.4 0.57 BJ <2.0 <2.0	 1.3 <0.87 1.3 1 2.6 B <2.0 <2.0	 <0.5 	
V-10 9/: V-10 12/ V-10 9/: V-10 9/: V-10 12/ V-10 12/ V-10 12/ V-10 3/: V-10 8/: V-10 12/ V-10 9/: V-10 10/	9/11/2003 2/17/2003 6/11/2004 9/21/2004 9/21/2004 2/21/2005 9/15/2005 9/15/2005 2/31/2006 6/13/2006 6/13/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21		11.18 9.15 8.95 8.90 8.61 8.98 9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50	47.23 46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 12,000 <50/<50 <50 120 780 1,100 17,000 2,800 16,000 22,000 12,000 13,000 15,000 13,000	 620 1,400 1,300 610		 670 1930 1430 610	71 <0.5/2.8 2.5 9.6 27 8 32 4 6 15 7.7 <10 6	380 <0.5/1.4 <0.5 0.8 19 6 1,200 68 330 380 48 370 160	430 <0.5/1.5 <0.5 1.2 13 10 520 92 390 700 310 350 370	1,500 <1.5/1.8 <1.5 <1.5 25 190 2,600 360 1,600 3,800 1,450 1,790 1,900	<10 <2.5/<2.5 <2.5 <5.0 <5.0 <0.5 <1 <0.5 <1 <10 <5.0 <10 <10 <5.0 <10 <10 <1	 <0.51 0.4 0.57 BJ <2.0 <2.0	 1.3 <0.87 -1 1.3 1 2.6 B <2.0 <2.0	 <0.5 	
V-10 12/V-10 6/·V-10 9/·V-10 12/V-10 1	2/17/2003 6/11/2004 9/21/2004 2/21/2004 2/21/2005 9/15/2005 9/15/2005 2/31/2005 3/11/2006 6/13/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21		9.15 8.95 8.90 8.61 8.98 9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50	47.23 46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 <50/<50 <50 120 780 1,100 17,000 2,800 16,000 22,000 12,000 13,000 15,000	 620 1,400 1,300 610	 <100 530 <260 <100	 670 1930 1430 610	<0.5/2.8 2.5 9.6 27 8 32 4 6 15 7.7 <10 6	<0.5/1.4 <0.5 0.8 19 6 1,200 68 330 380 48 370 160	<0.5/1.5 <0.5 1.2 13 10 520 92 390 700 310 350 370	<1.5/1.8 <1.5 <1.5 <1.5 25 190 2,600 360 1,600 3,800 1,450 1,790 1,900	<2.5/<2.5 <2.5 <5.0 <5.0 <0.5 <1 <0.5 <1 <10 <5.0 <10 <5.0 <10 <5.0 <10 <1	 <0.51 0.4 0.57 BJ <2.0 <2.0	 1.3 <0.87 1.3 1 2.6 B <2.0 <2.0	 <0.5 	
V-10 6/: V-10 9/: V-10 12/ V-10 9/: V-10 12/ V-10 3/: V-10 8/: V-10 12/ V-10 12/ V-10 12/ V-10 12/ V-10 5/: V-10 5/: V-10 9/: V-10 10/	6/11/2004 9/21/2004 2/21/2004 7/2/2005 9/15/2005 2/31/2005 3/11/2006 6/13/2006 6/13/2006 6/13/2006 6/12/5/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21		8.95 8.90 8.61 8.98 9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50	47.23 46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 <50 120 780 1,100 17,000 2,800 16,000 22,000 12,000 13,000 15,000 13,000	 620 1,400 1,300 610	 <100 530 <260 <100	 670 1930 1430 610	2.5 9.6 27 8 32 4 6 15 7.7 <10 6	<0.5 0.8 19 6 1,200 68 330 380 48 370 160	<0.5 1.2 13 10 52092 390 700 310 350 370	<1.5 <1.5 25 190 2,600 360 1,600 3,800 1,450 1,790 1,900	<2.5 <5.0 <5.0 <0.5 <1 <0.5 <1 <10 <5.0 <10 <5.0 <10 <1	 <0.51 0.4 0.57 BJ <2.0 <2.0	1.3 <0.87 1.3 1 2.6 B <2.0 <2.0	 <0.5 	
V-10 9/2 V-10 12/ V-10 9/2 V-10 12/ V-10 3/2 V-10 12/ V-10 12/ V-10 12/ V-10 12/ V-10 12/ V-10 12/ V-10 5/ V-10 6/2 V-10 9/2 V-10 11/ V-10 9/2 V-10 9/2 V-10 10/ V-10 9/2 V-10 10/	9/21/2004 2/21/2004 7/2/2005 9/15/2005 9/15/2005 3/11/2006 8/10/2006 8/10/2006 12/5/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21		8.90 8.61 8.98 9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50 10.45	47.23 46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 120 780 1,100 17,000 2,800 16,000 22,000 12,000 13,000 15,000 13,000	 620 1,400 1,300 610	 <100 530 <260 <100	 670 1930 1430 610	9.6 27 8 32 4 6 15 7.7 <10 6	0.8 19 6 1,200 68 330 380 48 370 160	1.2 13 10 520 92 390 700 310 350 370	<1.5 25 190 2,600 360 1,600 3,800 1,450 1,790 1,900	<5.0 <5.0 <0.5 <1 <0.5 <1 <10 <5.0 <10	 <0.51 0.4 0.57 BJ <2.0 <2.0	1.3 <0.87 1.3 1 2.6 B <2.0 <2.0	 <0.5 	
V-10 12/V-10 9/· V-10 9/· V-10 3/· V-10 6/· V-10 12/V-10 12/ V-10 12/V-10 5/· V-10 5/· V-10 5/· V-10 9/· V-10 10/V-10 1	2/21/2004 7/2/2005 9/15/2005 9/15/2005 2/31/2005 3/11/2006 6/13/2006 8/10/2006 12/5/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21		8.61 8.98 9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50	47.23 46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 780 1,100 17,000 2,800 16,000 22,000 12,000 13,000 15,000 13,000	 620 1,400 1,300 610	 <100 530 <260 <100	 670 1930 1430 610	27 8 32 4 6 15 7.7 <10 6	19 6 1,200 68 330 380 48 370 160	13 10 520 92 390 700 310 350 370	25 190 2,600 360 1,600 3,800 1,450 1,790	<5.0 <0.5 <1 <0.5 <1 <10 <5.0 <10	 <0.51 0.4 0.57 BJ <2.0 <2.0	1.3 <0.87 1.3 1 2.6 B <2.0 <2.0	 <0.5 	
V-10 7/V-10 9/V-10 3/V-10 12/V-10 12/V-10 12/V-10 5/V-10 9/V-10 12/V-10 9/V-10 10/V-10 10/V-	7/2/2005 9/15/2005 2/31/2005 3/11/2006 6/13/2006 8/10/2006 12/5/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21		8.98 9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50 10.45	47.23 46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 1,100 17,000 2,800 16,000 22,000 12,000 13,000 15,000	 620 1,400 1,300 610	 -100 530 <260 <100	 670 1930 1430 610	8 32 4 6 15 7.7 <10 6	6 1,200 68 330 380 48 370 160	10 520 92 390 700 310 350 370	190 2,600 360 1,600 3,800 1,450 1,790 1,900	<0.5 <1 <0.5 <1 <10 <5.0 <10 <10 <1	 <0.51 0.4 0.57 BJ <2.0 <2.0	1.3 <0.87 1.3 1 2.6 B <2.0 <2.0	<0.5 <1	
V-10 9/: V-10 3/: V-10 6/: V-10 8/: V-10 12/: V-10 12/: V-10 5/: V-10 6/: V-10 9/: V-10 10/: V	9/15/2005 2/31/2005 3/11/2006 6/13/2006 8/10/2006 12/5/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21		9.48 8.98 9.53 10.03 9.30 9.41 9.24 10.50	46.73 47.23 46.68 46.18 46.91 46.80 46.97 45.71	 17,000 2,800 16,000 22,000 12,000 13,000 15,000	 620 1,400 1,300 610	 <100 530 <260 <100	 670 1930 1430 610	32 4 6 15 7.7 <10 6	1,200 68 330 380 48 370 160	520 92 390 700 310 350 370	2,600 360 1,600 3,800 1,450 1,790 1,900	<1 <0.5 <1 <10 <5.0 <10	 <0.51 0.4 0.57 BJ <2.0 <2.0	<0.87 1.3 1 2.6 B <2.0 <2.0 1.2	 <1	
V-10 12/V-10 3/V-10 6/V-10 12/V-10 5/V-10 9/V-10 12/V-10 9/V-10 9/V-10 9/V-10 9/V-10 9/V-10 9/V-10 9/V-10 9/V-10 9/V-10 10/V-10 10/V-1	2/31/2005 3/11/2006 6/13/2006 8/10/2006 12/5/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21		8.98 9.53 10.03 9.30 9.41 9.24 10.50	47.23 46.68 46.18 46.91 46.80 46.97 45.71	 2,800 16,000 22,000 12,000 13,000 15,000	 620 1,400 1,300 610	 <100 530 <260 <100	 670 1930 1430 610	 4 6 15 7.7 <10 6	 68 330 380 48 370 160	 92 390 700 310 350 370	360 1,600 3,800 1,450 1,790	 <0.5 <1 <10 <5.0 <10	 <0.51 0.4 0.57 BJ <2.0 <2.0	 1.3 1 2.6 B <2.0 <2.0	 <1	
V-10 3/: V-10 6/: V-10 12: V-10 17: V-10 5/: V-10 5/: V-10 6/: V-10 9/: V-10 10/: V-10 10/:	3/11/2006 6/13/2006 8/10/2006 11/25/2006 11/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21	 	8.98 9.53 10.03 9.30 9.41 9.24 10.50	47.23 46.68 46.18 46.91 46.80 46.97 45.71	 2,800 16,000 22,000 12,000 13,000 15,000 13,000	 620 1,400 1,300 610	 <100 530 <260 <100	670 1930 1430 610	 4 6 15 7.7 <10 6	 68 330 380 48 370 160	92 390 700 310 350 370	360 1,600 3,800 1,450 1,790	<0.5 <1 <10 <5.0 <10	<pre> <0.51 0.4 0.57 BJ <2.0 <2.0</pre>	1.3 1 2.6 B <2.0 <2.0	 <1	
V-10 6/: V-10 8/: V-10 12: V-10 17: V-10 5/: V-10 9/: V-10 3/: V-10 9/: V-10 11/: V-10 9/: V-10 10/: V-10 10/:	6/13/2006 8/10/2006 1/25/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21	 	8.98 9.53 10.03 9.30 9.41 9.24 10.50 10.45	47.23 46.68 46.18 46.91 46.80 46.97 45.71	 2,800 16,000 22,000 12,000 13,000 15,000 13,000	 620 1,400 1,300 610	<100 530 <260 <100	670 1930 1430 610	4 6 15 7.7 <10 6	68 330 380 48 370 160	92 390 700 310 350 370	360 1,600 3,800 1,450 1,790 1,900	<0.5 <1 <10 <5.0 <10 <1	<0.51 0.4 0.57 BJ <2.0 <2.0	1.3 1 2.6 B <2.0 <2.0	 <1	Well interested by
V-10 8// V-10 12/ V-10 5// V-10 6// V-10 9// V-10 3// V-10 6// V-10 9// V-10 3// V-10 9// V-10 9// V-10 9// V-10 10/ V-10 10/ V-10 10/ V-10 10/ V-10 10/	8/10/2006 12/5/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21	 	9.53 10.03 9.30 9.41 9.24 10.50 10.45	46.68 46.18 46.91 46.80 46.97 45.71	 16,000 22,000 12,000 13,000 15,000 13,000	620 1,400 1,300 610	<100 530 <260 <100	670 1930 1430 610 50	6 15 7.7 <10 6	330 380 48 370 160	390 700 310 350 370	1,600 3,800 1,450 1,790 1,900	<1 <10 <5.0 <10 <1	0.4 0.57 BJ <2.0 <2.0	1 2.6 B <2.0 <2.0 1.2	 <1	
V-10 12 V-10 5/ V-10 6/ V-10 9/ V-10 3/ V-10 6/ V-10 9/ V-10 11/ V-10 3/ V-10 9/ V-10 9/ V-10 9/ V-10 9/ V-10 10/ V-10 10/ V-10 10/ V-10 10/	12/5/2006 1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21	 	10.03 9.30 9.41 9.24 10.50 10.45	46.18 46.91 46.80 46.97 45.71	 22,000 12,000 13,000 15,000 13,000	1,400 1,300 610	530 <260 <100	1930 1430 610 50	15 7.7 <10 6	380 48 370 160	700 310 350 370	3,800 1,450 1,790 1,900	<10 <5.0 <10 <1	0.57 BJ <2.0 <2.0 	2.6 B <2.0 <2.0 1.2	 <1	
V-10 1/2 V-10 5/ V-10 6/ V-10 9/ V-10 3/ V-10 6/ V-10 9/ V-10 3/ V-10 9/2 V-10 9/2 V-10 9/2 V-10 10/ V-10 10/ V-10 10/ V-10 10/	1/24/2007 5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21 56.21 56.21	 	9.30 9.41 9.24 10.50 10.45	46.91 46.80 46.97 45.71	 12,000 13,000 15,000 13,000	1,300 610 	<260 <100	1430 610 50	7.7 <10 6	48 370 160	310 350 370	1,450 1,790 1,900	<5.0 <10 <1	<2.0 <2.0 	<2.0 <2.0 1.2	 <1	
V-10 5/V-10 9/V-10 12/V-10 3/V-10 9/V-10 3/V-10 9/V-10 9/V-10 9/V-10 9/V-10 10/V-10 10	5/8/2007 6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21 56.21		9.41 9.24 10.50 10.45	46.80 46.97 45.71 45.76	 13,000 15,000 13,000	610 	 <100	610 50	<10 6	370 160	350 370	1,790 1,900	<10 <1	<2.0 	<2.0 1.2	 <1	
V-10 6/V-10 3/V-10 3/V-10 9/V-10 11/V-10 9/V-10 9/V-10 10/V-10	6/4/2007 9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21 56.21	-	9.24 10.50 10.45 9.08	46.97 45.71 45.76	 15,000 13,000		<100	50	6	160	370	1,900	<1		1.2	<1	
V-10 9/ V-10 12/ V-10 3/ V-10 6/ V-10 9/ V-10 11/ V-10 9/ V-10 9/ V-10 10/ V-10 10/ V-10 10/ V-10 10/ V-10 10/	9/5/2007 2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21 56.21		10.50 10.45 9.08	45.71 45.76	 13,000				-			•					
V-10 12/ V-10 3/ V-10 6/ V-10 9/: V-10 11/ V-10 3/ V-10 9/: V-10 9/: V-10 10/ V-10 10/ V-10 10/ V-10 10/ V-10 10/	2/19/2007 3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21 56.21	- - -	10.45 9.08	45.76						-10	J-0		€ 1		0.88		
V-10 3/ V-10 6/- V-10 9/- V-10 11/ V-10 3/ V-10 9/- V-10 9/- V-10 9/- V-10 10 V-10 10 V-10 10/ V-10 10/	3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21	 	9.08		 8,700							1,100	51		0.00	~ 1	
V-10 3/ V-10 6/- V-10 9/- V-10 11/ V-10 3/ V-10 9/- V-10 9/- V-10 9/- V-10 10 V-10 10 V-10 10/ V-10 10/	3/6/2008 6/16/2008 9/11/2008 1/20/2008	56.21 56.21 56.21	 	9.08		 8,700												In analyzing DRO w/
V-10 6/: V-10 9/: V-10 11/ V-10 3/ V-10 6/ V-10 9/: V-10 9/: V-10 10 V-10 10/ V-10 10/ V-10 10/	6/16/2008 9/11/2008 1/20/2008	56.21 56.21			A7 12					14	44	250	850	<0.5		1.9	<0.5	silica gel, the observed sample pattern is not
V-10 6/: V-10 9/: V-10 11/ V-10 3/ V-10 6/ V-10 9/: V-10 9/: V-10 10 V-10 10/ V-10 10/ V-10 10/	6/16/2008 9/11/2008 1/20/2008	56.21 56.21			A7 12													typical of #2 fuel/diesel.
V-10 6/: V-10 9/: V-10 11/ V-10 3/ V-10 6/ V-10 9/: V-10 9/: V-10 10 V-10 10/ V-10 10/ V-10 10/ V-10 10/	6/16/2008 9/11/2008 1/20/2008	56.21 56.21			41.10	 2,100				7	29	61	210	<0.5			<0.5	
V-10 9/· V-10 11/ V-10 3/ V-10 6/ V-10 9/: V-10 10 V-10 10 V-10 10/ V-10 10/ V-10 10/	9/11/2008 1/20/2008	56.21			47.59	 1,500				0.6	44	51	190	<0.5			<0.5	
V-10 11/V-10 3/V-10 6/V-10 9/2V-10 10/V-10 10/	1/20/2008			8.77	47.44	 7,000				2	140	170	1,000	<0.5			<0.5	
V-10 3/ V-10 6/ V-10 9/2 V-10 9/2 V-10 10 V-10 10/ V-10 10/ V-10 10/				9.01	47.20	 7,700				<3	83	190	1,300	<3			<3	
V-10 6/V-10 9/2 V-10 9/2 V-10 10 V-10 10 V-10 10 V-10 10/V-10 10/V-10 10/V-10 10/V-10	0, ., = 0 0 0	56.21		7.86	48.35	 3,600				0.9	38	95	390	<0.5			<0.5	
V-10 9/2 V-10 9/2 V-10 10 V-10 10/ V-10 10/	6/4/2009	56.21		8.10	48.11	 5,000				2	73	170	440	<0.5			<0.5	
V-10 9/2 V-10 10 V-10 10/ V-10 10/ V-10 10/	9/22/2009	56.21		10.03	46.18	 15,000	610	<81	650.5	-								
V-10 10 V-10 10 V-10 10/ V-10 10/	9/24/2009	56.21		10.04	46.17	 22,000	800	150 J	950									
V-10 10 V-10 10/ V-10 10/	10/1/2009	56.21		10.44	45.77	 14,000	460	<66	493									
V-10 10/ V-10 10/	10/8/2009	56.21		10.64	45.57	 13,000	330	<69	364.5									
V-10 10/	0/15/2009	56.21		10.80	45.41	 17,000	560	<66	593									
	0/22/2009	56.21		10.82	45.39	 12,000	420	<68	454									
• 10	1/18/2009	56.21		10.14	46.07	 11,000	36 J	<72	72									
	12/3/2009	56.21		9.28	46.93	 5,600				2	33	200	480	<0.5			<0.5	
	2/16/2009	56.21		9.20		 2,800	140	<69	174.5									
	1/27/2010	56.21	 	8.81	47.40	 2,000					 	 		 	 			
	2/12/2010	56.21	 	8.83	47.38	 1,800	 		 	 	 	 	 	 		-		
	3/30/2010	56.21		8.80	47.41	 130			 		<u>-</u>		 	<u>-</u>		-		
	6/18/2010	56.21		8.55	47.66	 120				<0.5	<0.5	4	2					
	9/2/2010	56.21	 	10.01	46.20	 3,900	380	120	500	2	7	140	260	<u>-</u>		-		
	12/7/2010	56.21		10.07	46.14	 7,600				3	70	240	700	<u>-</u>		-		
	3/7/2010	56.21		7.79	48.42	 700	 			2	3	23	22					
	6/9/2011	56.21		7.79	48.91	 3,600				3	3 40	130	370					
	9/16/2011	56.21		8.60	47.61	 5,100	 		 	1	13	190	370	<u>-</u>		-		
	2/13/2011	56.21		9.08	47.13	 560				0.6	13	190	10					
	2/19/2011	56.21		9.00	47.13	 								- -	-			
	2/19/2011 3/15/2012	56.21		9.00 7.80	48.41	 77			 	 <0.5	<0.5	 1	<0.5					
	6/13/2012	56.21		7.80 7.45	48.76	 620				<0.5 0.8	<0.5 6	38	<0.5 15					
	9/10/2012	56.21		7.45 8.75	48.76 47.46	 4,200	 			0.8 1	35	36 87	220					
						•				•								
	2/10/2012	56.21		8.12	48.09	 1,700				0.6	19	31	210					
	3/11/2013	56.21		7.54	48.67	 1,200	 50		 02 F	0.5	6	18 47	48 150					
	6/12/2013	56.21		7.55	48.66	 1,800	59	<67	92.5	0.9	13	47	150					
	9/18/2013	56.21		8.93	47.28	 4,000	200	<67	233.5	0.8	17	29	330					
	2/11/2013	56.21		8.56	47.65	 3,100	76	<69	110.5	1	10	54	140					
		56.21 56.21		12.79	43.42	 1,700				<0.5	6	28	83					
V-10 9/2 V-10 8/	3/12/2014 9/27/2014			8.97 9.45	47.24 46.76	 2,300 582	 222	 <83.3	305.3	<0.5 0.152 J	<0.5 2.41	0.7 28.5	0.6 19.1		 	 <2.95		

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

Woll	Data	TOC	DTP	DTW	GWE	NAPL	GRO	DRO	ЩО	DRO-HO-	Popular	Toluone	Ethylhoneens	Total	MTBE	Dissolved		EDB	Comments
Well	Date	TOC	ITCA Method		GWE	NAPL	800/1,000	500	HO 500	DRO+HO 500	Benzene 5	Toluene 1,000	Ethylbenzene 700	Xylenes 1,000	20	Lead 15	Total Lead 15	0.01	Comments
			II OA MCINOU	A COLS			000/1,000	300	300	300	•	1,000	700	1,000	20	10	13	0.01	
MW-10	9/29/2021	56.17		10.33	45.84		4,150 [4150]	986 [1,000]	<250 [<250]	1,111 [1,125]	0.230 J [0.230 J]	9.90 [9.78]	19.7 [19.4]	87 [85.6]	<1.00		<6.00 [<6.00]		
MW-11	12/16/2002			11.68			22,000				170	980	740	3,000	70	<8.90			
MW-11	3/6/2003			10.34			19,000				150	70	680	2,300	<50				
MW-11	6/4/2003			9.83			16,000				88	590	480	2,100	<20				
MW-11	9/11/2003			10.26			63				<0.5	<0.5	<0.5	<1.5	<2.5				
MW-11	12/17/2003			9.61			5,300/83				46/1.4	67/0.8	220/3.9	770/9.4	21/<2.5				
MW-11	6/11/2004			9.12			4,700				35	19	190	520	<2.5				
MW-11 MW-11	9/21/2004 12/21/2004			9.42 8.46			3,800 1,400				28 19	28 7.6	140 65	540 93	<10		 		
MW-11	7/2/2004	 56.32		9.32	47.00		1,100				7	3	29	110	<2.5 <1		0.98	 <1	
MW-11	9/15/2005	56.32		10.38	45.94		2,800				, 15	10	170	360	<0.5		<0.87		
MW-11	12/31/2005	56.32		10.31	46.01		8,700				29	140	310	1,000	<0.5	<0.87	<0.87		
MW-11	3/11/2006	56.32																	Well inaccessible
MW-11	6/13/2006	56.32		11.68	44.64		3,500				26	15	170	350	<0.5	<0.51	<0.51		
MW-11	8/10/2006	56.32		10.20	46.12		3,700	150	<110	210	13	11	<0.5	330	<0.5	<0.047	0.5		
MW-11	12/5/2006	56.32		10.67	45.65		6,500	730	100 J	830	36	21	270	894	<10	0.085 BJ	0.49 BJ		
MW-11	1/24/2007	56.32		9.85	46.47		4,300	320	<300	470	28	14	180	557	<5.0	<2.0	<2.0		
MW-11	5/8/2007	56.32		10.07	46.25		420	<130		65	3.1	<2.0	21	12	<2.0	<2.0	<2.0		
MW-11	6/4/2007	56.32		9.85	46.47		950	<400	<500	450	5	2	53	82	<1		1	<1	
MW-11	9/5/2007	56.32		11.13	45.19		1,000				10	5	35	41	<2		0.45	<2	
MW-11	12/19/2007	56.32		10.85	45.47		1,300				12	12	46	82	<1		0.1	<1	
MW-11	3/6/2008	56.32		9.48	46.84		270				0.8	1	20	36	<0.5			<0.5	
MW-11	6/16/2008	56.32		8.43	47.89		<50				<0.5	<0.5	0.6	<0.5	<0.5			<0.5	
MW-11	9/11/2008	56.32		8.85	47.47		94				<0.5	<0.5	4	3	<0.5			<0.5	
MW-11	11/20/2008	56.32		9.82	46.50		740				<0.5	2	40	62	<0.5			<0.5	
MW-11	3/4/2009	56.32		7.89	48.43		710				0.9	5	37	58	<0.5			<0.5	
MW-11 MW-11	6/4/2009	56.32		8.10	48.22 45.27		210 2,500	110		143	0.5 		6	8	<0.5			<0.5	
MW-11	9/22/2009 9/24/2009	56.32 56.32		11.05 11.17	45.27 45.15	 	1,900	130	<66 <66	163	 								
MW-11	10/1/2009	56.32	 	11.31	45.01		2,900	74 J	<66	107	 								
MW-11	10/8/2009	56.32		11.42	44.90		2,100	63 J	<68	97									
MW-11	10/15/2009	56.32		11.57	44.75		3,200	150	<69	184.5									
MW-11	10/22/2009	56.32		11.46	44.86		2,900	100 J	<70	135									
MW-11	11/18/2009	56.32		10.64	45.68		3,100	140	<70	175									
MW-11	12/3/2009	56.32		9.77	46.55		2,300				3	8	130	320	<0.5			< 0.5	
MW-11	12/16/2009	56.32					3,600	130	<70	165									
MW-11	1/27/2010	56.32		9.35	46.97		5,000												
MW-11	2/12/2010	56.32		9.46	46.86		3,800												
MW-11	3/30/2010	56.32		9.42	46.90		5,000												
MW-11	6/18/2010	56.32		8.72	47.60		670				2	2	16	66					
MW-11	9/2/2010	56.32		10.59	45.73		2,900	200	<69	234.5	3	8	130	330					
MW-11	12/7/2010	56.32		10.38	45.94		2,500				3	7	120	270					
MW-11	3/7/2011	56.32		7.91	48.41		1,300				0.9	3	61	65					
MW-11	6/9/2011	56.32		7.35	48.97		1,400				2	5	68	62					
MW-11	9/16/2011	56.32		8.70	47.62		850				2	3	39	22 160					
MW-11 MW-11	12/13/2011	56.32 56.32	 	9.75 9.62	46.57 46.70		1,800				3	5	97	160					
MW-11 MW-11	12/19/2011 3/15/2012	56.32 56.32		9.62 7.95	46.70 48.37		 1,500				3	3	 78	94					
MW-11	6/13/2012	56.32 56.32		7.95 7.55	48.77		2,200				7	3 7	78 160	9 4 180					
MW-11	9/10/2012	56.32		8.94	47.38	 	1,300				< 5	, <5	24	31					
MW-11	12/10/2012	56.32		8.40	47.92		1,700				6	6	63	120					
MW-11	3/11/2013	56.32		7.56	48.76		3,200				7	9	150	190					
MW-11	6/12/2013	56.32		7.68	48.64		3,600	98	<66	131	9	12	190	250					
MW-11	9/18/2013	56.32		9.53	46.79		4,000	210	<66	243	6	9	170	230					
MW-11	12/11/2013	56.32		9.04	47.28		2,700	100	<67	133.5	4	7	140	210					
MW-11	3/12/2014	56.32		12.88	43.44		5,100				7	14	260	340					
MW-11	9/27/2014	56.32		9.51	46.81		2,200				<0.5	<0.5	0.8	<0.5					
MW-11	8/17/2020	56.32		9.14	47.18		5,650	724	<83.3	765.65	3.76	<0.278	4.91	2.28 J		<2.95			
MW-11	9/29/2021	57.20		10.78	46.42		4,190	543	<250	668	3.03	1.78	67.9	4.36	<1.00		<6.00		
MW-12	8/10/2006			9.23			89,000	62,000	<21,000	72500	4	230	990	4,400	<3	4.3	164		

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

														Total		Dissolved			
Well	Date	тос	DTP	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene		MTBE	Lead	Total Lead	EDB	Comments
		M	ITCA Method	d A CULs			800/1,000	500	500	500	5	1,000	700	1,000	20	15	15	0.01	
MW-12	12/5/2006			9.04			14,000	3,700	76 J	3776	1.6	52	280	1,390	<1.0	4.2 J	20 B		
MW-12 MW-12	1/24/2007			8.24 8.59			9,500 9,400	1,600	<250	1725 1400	<5.0	34 61	89 77	1,140 540	<5.0 <2.0	11 2	65		
MW-12	5/8/2007 6/4/2007	 56.79		8.59 9.05	 47.74		9,400 12,000	1,400 330,017	 <100	330067	3.2 <3	19	120	540 560	<2.0 <3	<u></u>	14 7.9	 <3	
							•		1			19							
MW-12	9/5/2007	56.79		10.18	46.61		3,100				<0.5	1	31	55	<0.5		2.5	<0.5	
MW-12	12/19/2007	56.79		9.72	47.07		2,200	-			<0.5	0.5	24	19	<0.5		13.4	<0.5	In analyzing DRO w/ silica gel, the observed sample pattern includes #2 fuel/diesel and an additional pattern that elutes earlier in the DRO range.
																			In analyzing DRO w/ silica gel, the observed
MW-12	3/6/2008	56.79		8.56	48.23		7,100				12	250	180	1,100	<0.5			<0.5	sample pattern is not
																			typical of #2 fuel/diesel.
																			typical of #2 luci/ulcsel.
IW-12	6/16/2008	56.79	7.98	8.03	48.80	0.05													
IW-12	9/11/2008	56.79	8.12	8.17	48.66	0.05													
/IW-12	11/20/2008	56.79	8.15	8.27	48.62	0.12													
/IW-12	3/4/2009	56.79	7.52	7.56	49.26	0.04													
/W-12	6/4/2009	56.79	7.74	7.80	49.04	0.06													
IW-12	9/22/2009	56.79	9.51	10.21	47.14	0.70													
IW-12	9/23/2009	56.79		12.68	44.11		980,000	460,000	530,000	990,000									
IW-12	9/24/2009	56.79		9.81	46.98		44,000	30,000	35,000	65,000									
IW-12	10/1/2009	56.79		10.23	46.56		12,000 J	5,000	25,000	30,000									
IW-12	10/8/2009	56.79		10.47	46.32		3,700	3,800	14,000	17,800									
IW-12	10/15/2009	56.79		10.60	46.19		3,400	1,900 J	4800 J	6700									
IW-12	10/22/2009	56.79		10.45	46.34		4,900	810 J	2,800	3,610									
/IW-12	11/18/2009	56.79		9.66	47.13		3,200	1,400 J	1,800 J	3200									
/W-12	12/3/2009	56.79		8.80	47.99		5,900				<10	11	35	260	<10			<10	
/IW-12	12/16/2009	56.79					4,500	2,200	4,300	6,500									
IW-12	1/27/2010	56.79		8.93	47.86		9,900												
IW-12	2/12/2010	56.79		9.00	47.79		5,100												In analyzing DRO w/ silica gel, the observed
//VV-12	2/12/2010	30.79		9.00	47.79	-	5,100												sample pattern is not typical of #2 fuel/diesel.
IW-12	3/30/2010	56.79		8.35	48.44		4,900												
W-12	6/18/2010	56.79		8.39	48.40		6,900				<0.5	5	82	290					
W-12	9/2/2010	56.79		9.87	46.92		2,600	5,100	<350	5275	<0.5	1	29	29					
W-12	12/7/2010	56.79		9.74	47.05		5,000				<0.5	0.9	28	37					
W-12	3/7/2011	56.79		7.53	49.26		110				<0.5	<0.5	0.9	3					
W-12	6/9/2011	56.79		7.14	49.65														
W-12	9/16/2011	56.79		8.53	48.26		3,100				<0.5	0.5	15	48					
IW-12	12/13/2011	56.79		9.05	47.74		3,800				<0.5	<0.5	10	16					
W-12	12/19/2011	56.79		8.96	47.83														
W-12	3/15/2012	56.79		9.77	47.02		<50				<0.5	<0.5	<0.5	<0.5					
W-12	6/13/2012	56.79		7.40	49.39		<50				<0.5	<0.5	<0.5	<0.5					
W-12	9/10/2012	56.79		8.35	48.44		3,200				<0.5	<0.5	9	4					
W-12	12/10/2012	56.79		7.84	48.95		150				<0.5	<0.5	<0.5	<0.5					
W-12	3/11/2013	56.79		7.13	49.66		150				<0.5	<0.5	<0.5	<0.5					
W-12	6/12/2013	56.79		7.32	49.47		310	540	<67	573.5	<0.5	<0.5	<0.5	<0.5					
W-12	9/18/2013	56.79		8.68	48.11		1,500	1,500	<66	1533	<0.5	<0.5	1	0.9					
W-12	12/11/2013	56.79		8.24	48.55		97	110	<66	143	<0.5	<0.5	<0.5	<0.5					
W-12	3/12/2014	56.79		7.72	49.07		130	280	<70	315	<0.5	<0.5	<0.5	<0.5					
W-12	9/27/2014	56.79		8.70	48.09		<50	<30		15	<0.5	<0.5	<0.5	<0.5			-		
W-12	8/17/2020	56.79		9.09	47.70		175 B	144 J	<83.3	185.65	< 0.0941	0.473 J	0.440 J	0.803 J			<2.95		
IW-12	9/28/2021	56.72		10.28	46.44		143	190 J	<250	315	<1.00	<1.00	<1.00	<3.00	<1.00		<6.00		
MW-13	8/10/2006			9.83			15,000	5,300	<2,200	6400	5	47	260	1,400	<1	4.3	29.6		

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

														Total		Dissolved				
Well	Date	TOC	DTP	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Lead	Total Lead	EDB	Comments	
		N	ITCA Method	I A CULs			800/1,000	500	500	500	5	1,000	700	1,000	20	15	15	0.01		
									_											
MW-13	12/5/2006			9.68			5,000	1,700	270	1970	0.99 J	33	110	590	<1.0	1.5 BJ	17 B			
MW-13	1/24/2007			8.93			2,300	190	<260	320	1.5	21	41	242	<1.0	<2.0	22			
MW-13	5/8/2007			9.17																
MW-13	6/4/2007	56.71	11.15	13.00	45.19	1.85														
MW-13	9/5/2007	56.71	11.70	11.96	44.96	0.26														
MW-13 MW-13	12/19/2007 3/6/2008	56.71 56.71	10.51	10.83	46.14	0.32 0.32														
MW-13	6/16/2008	56.71	9.05 8.25	9.37 8.49	47.60 48.41	0.32														
MW-13	9/11/2008	56.71	8.64	8.83	48.41 48.03	0.24														
MW-13	11/20/2008	56.71	8.77	8.94	47.91	0.19														
MW-13	3/4/2009	56.71	7.68	7.73	49.02	0.05														
MW-13	6/4/2009	56.71	7.94	7.99	48.76	0.05														
MW-13	9/22/2009	56.71	9.86	9.89	46.84	0.03														
MW-13	9/23/2009	56.71		12.98	43.73		96,000	31,000	49,000 J	80000										
MW-13	9/24/2009	56.71		12.12	44.59		13,000	3,300	<1,400	4000										
MW-13	10/1/2009	56.71	12.59	12.60	44.12	0.01	9,700	8,000	500 J	8500										
MW-13	10/8/2009	56.71		12.46	44.25		8,000	760	350	1110										
MW-13	10/15/2009	56.71	12.70	12.71	44.01	0.01	8,400	930	<68	964										
MW-13	10/22/2009	56.71		12.50	44.21		6,500	760	<68	794										
MW-13	11/18/2009	56.71		10.73	45.98		8,900	1,400	370	1,770										
MW-13	12/3/2009	56.71		9.68	47.03		11,000				8	30	300	1,400	<0.5			<0.5		
MW-13	12/16/2009	56.71			<u></u>		8,700	1,400	<66	1433										
MW-13	1/27/2010	56.71		9.45	47.26		16,000			-										
MW-13	2/12/2010	56.71		9.55	47.16		11,000													
MW-13	3/30/2010	56.71		9.24	47.47		15,000							4.000						
MW-13	6/18/2010	56.71		9.00	47.71		10,000	2 200		2475	5 5	23	360	1,300						
MW-13 MW-13	9/2/2010	56.71 56.71		10.56	46.15 46.25		11,000 9,100	3,300	<350 	3475	3 2	23 20	280 200	1,100						
MW-13	12/7/2010 3/7/2011	56.71		10.46 7.68	49.03	 	4,200				<0.5	<0.5	200	1,100 9						
MW-13	6/9/2011	56.71	 	7.20	49.51	 	1,800				<0.5 <0.5	0.6	10	45						
MW-13	9/16/2011	56.71		9.05	47.66		6,400				3	7	160	590						
MW-13	12/13/2011	56.71		9.60	47.11		7,600				<3	, 11	190	810						
MW-13	12/19/2011	56.71		9.60	47.11															
MW-13	3/15/2012	56.71		9.25	47.46		<50				<0.5	<0.5	<0.5	<0.5						
MW-13	6/13/2012	56.71		7.60	49.11		<50				<0.5	<0.5	<0.5	<0.5						
MW-13	9/10/2012	56.71		9.38	47.33		6,000				<5	7	140	620						
MW-13	12/10/2012	56.71		8.28	48.43		3,000				<5	<5	55	310						
MW-13	3/11/2013	56.71		7.42	49.29		1,300				<0.5	0.8	18	91						
MW-13	6/12/2013	56.71		7.63	49.08		750	<29	<67	48	<0.5	1	23	100						
MW-13	9/18/2013	56.71		9.42	47.29		5,500	500	<67	533.5	0.6	7	170	670						
MW-13	12/11/2013	56.71		8.78	47.93		4,500	290	<67	323.5	<0.5	7	170	710						
MW-13	3/12/2014	56.71		7.14	49.57	Sheen	<50	35	<67	68.5	<0.5	<0.5	<0.5	<0.5						
MW-13	9/27/2014	56.71		9.47	47.24		<50	<29		14.5	<0.5	<0.5	<0.5	<0.5		-				
MW-13	8/17/2020	56.71		9.41	47.30		2,290 [2,450]	731 [516]				0.580 J [0.535 J]		39.4 [39.7]		-	<2.95 [<2.95]			
MW-13	9/28/2021	56.67		10.73	45.94		4,940 [4,530]	730 [752]	<250 [<250]	885 [877]	0.147 J [0.194 J]] 1.61 [1.56]	76.3 [73.4]	108 [122]	<1.00		[]			
BA147 4 4	0/40/0000																		Wall dry	
MW-14	8/10/2006			 10.14				1 500	120	1630	 21	560		3 300	 -10	0.055 R I	 0 1 D		Well dry	
MW-14 MW-14	12/5/2006 1/24/2007			10.14 9.27		 	19,000 32,000	1,500 2,300	130 J <260	1630 2430	31 29	1, 200	690	3,300 5,500	<10 <25	0.055 BJ <2.0	8.1 B 26			
MW-14	5/8/2007			9.44	 		32,000 1,700	2,300 180	<200	180	6.2	3.1	1,000 53	143	<2.0	<2.0 <2.0	13			
MW-14	6/4/2007	56.51		9.44	46.93		3,100	<79	 <98	88.5	6.2 15	7	110	290	<2.0 <0.5	<2.U 	2.8	<0.5		
MW-14	9/5/2007	56.51		10.54	45.97	 	3,000		<100	50	9	17	140	370	<0.5 <0.5	 	0.26	<0.5 <0.5		
MW-14	12/19/2007	56.51	 	10.60	45.91	 	11,000	 			7	39	240	1,000	<1	 	4.8	<1		
MW-14	3/6/2008	56.51		9.38	47.13		2,300				2	66	76	330	<0.5			<0.5		
MW-14	6/16/2008	56.51		8.78	47.73		200				2	0.6	6	14	<0.5			<0.5		
MW-14	9/11/2008	56.51		9.09	47.42		1,800				9	9	81	230	<0.5			<0.5		
MW-14	11/20/2008	56.51		9.31	47.20		3,900				12	13	120	420	<0.5			<0.5		
MW-14	3/4/2009	56.51		8.14	48.37		5,400				21	21	170	480	<1			<1		
MW-14	6/4/2009	56.51		8.39	48.12		520				3	1	10	27	<0.5			<0.5		
MW-14	9/22/2009	56.51		10.23	46.28		7,300	210	140 J	350										
MW-14	9/24/2009	56.51		10.30	46.21		9,500	560 J	<700	910										
MW-14	10/1/2009	56.51		10.68	45.83		12,000	270	<67	303.5										

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

Analytical results are presented in micrograms per liter (µg/L)

														Total		Dissolved				
Well	Date	TOC	DTP	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Lead	Total Lead	EDB	Comments	
			MTCA Method				800/1,000	500	500	500	5	1,000	700	1,000	20	15	15	0.01		
							300/1,000				•	1,000		1,000				0.01		
MW-14	10/8/2009	56.51		10.80	45.71		11,000	220	<67	253.5										
MW-14	10/15/2009	56.51		10.94	45.57		14,000	370	<66	403										
MW-14	10/22/2009	56.51		10.94	45.57		15,000	260	<66	293										
MW-14	11/18/2009	56.51		10.39	46.12		19,000	660	<130	725										
MW-14	12/3/2009	56.51		9.61	46.90		22,000				6	200	530	2,800	<0.5			<0.5		
MW-14	12/16/2009	56.51					20,000	690	<66	723										
MW-14	1/27/2010	56.51		9.24	47.27		24,000													
MW-14	2/12/2010	56.51		9.29	47.22		19,000													
MW-14	3/30/2010	56.51		9.21	47.30		14,000													
MW-14	6/18/2010	56.51		8.90	47.61		6,600				1	83	150	680						
MW-14	9/2/2010	56.51		10.33	46.18		7,400	320	<350	495	1	67	250	1,100						
MW-14	12/7/2010	56.51		10.25	46.26		8,600				1	95	320	1,600						
MW-14	3/7/2011	56.51		8.14	48.37		8,700				0.7	53	77	1,100						
MW-14	6/9/2011	56.51		7.61	48.90		5,200				0.7	31	170	690						
MW-14	9/16/2011	56.51		8.85	47.66		7,400				3	22	75	830						
MW-14	12/13/2011	56.51		9.45	47.06		8,600				<3	34	280	1,400						
MW-14	12/19/2011	56.51		9.40	47.11															
MW-14	3/15/2012	56.51		8.15	48.36		13,000				<3	110	340	2,100						
MW-14	6/13/2012	56.51		7.80	48.71		4,900				<1	19	100	470						
MW-14	9/10/2012	56.51		9.10	47.41		13,000				<5	39	390	1,600						
MW-14	12/10/2012	56.51		8.52	47.99		3,000				<5	11	60	390						
MW-14	3/11/2013	56.51		7.70	48.81		17,000				<5	100	460	2,500						
MW-14	6/12/2013	56.51		7.90	48.61		10,000	120	<66	153	0.5	56	390	1,800						
MW-14	9/18/2013	56.51		9.28	47.23		12,000	190	<67	223.5	0.6	50	460	2,300						
MW-14	12/11/2013	56.51		8.90	47.61		9,200	90	<66	123	<3	39	310	1,900						
MW-14	3/12/2014	56.51		9.02	47.49		18,000				<1	54	580	2,800						
MW-14	9/27/2014	56.51		9.22	47.29		280				<0.5	<0.5	<0.5	<0.5			-			
MW-14	8/17/2020	56.51		9.65	46.86		5,720	480	<83.3	521.65	0.245 J	4.55	143	420		-	<2.95			
MW-14	09/28/2021	56.49		10.62	45.87		5,110	556	<250	521.65	0.394 J	7.98	454 E	837 E	<1.00		<6.00			
B814/ 45	00/07/0004	FO 74		40.00	40.00		040 D	200	050	504	4.00	4.00	4.00	2.00	4.00		0.00			
MW-15	09/27/2021	56.71		10.09	46.62		219 B	396	<250	521	<1.00	<1.00	<1.00	<3.00	<1.00		<6.00			
MW-16	09/27/2021	56.62		9.75	46.87		54.7 B J	72.0 J	<250	197	-1.00	<1.00	-1.00	<3.00	-1.00		-6 OO			
IVI VV-10	09/21/2021	56.62		9.75	40.87		54.7 B J	72.0 J	<250	197	<1.00	<1.00	<1.00	<3.00	<1.00		<6.00			
MW-17	09/28/2021	56.54		10.34	46.20		<100	546	<250	671	0.124 J	125 E	152 E	616 E	<1.00		<6.00			
141 44-17	03/20/2021	JJ.J 4		10.04	70.20		\100	J- 1 0	~200	371	0.1240	120 L	102 L	0.0 L	\1.00	==	~0.00			
MW-18	09/28/2021	56.56		15.1	41.46		367	161 J	<250	286	<1.00	<1.00	<1.00	<3.00	<1.00		3.80 J			
	30/20/2021	00.00		10.1	71.70		501	1010	~200	200	\1.00	<1.00	~1.00	\0.00	<1.00		0.000			
MW-21	09/28/2021	55.95		9.18	46.77		233	244	<250	369	<1.00	<1.00	2.3	12.9	<1.00		4.16 J			
	30,20,2021	00.00		00					-200				2.0							

Notes:

Surveyed in 2021 by Otak, Inc. using NAD 83 (horizontal) and NAVD 88 (vertical).

800/1,000 = GRO MTCA Method A CUL with benzene present is $800~\mu g/L$ and without is $1,000~\mu g/L$

BOLD and highlighted values are greater than their respective MTCA Method A CUL

BOLD values are non-detect below the laboratory MDL, but the MDL is greater than the MTCA Method A CUL

If NAPL is present, GWE is corrected according to the following formula: (TOC - DTW) + (0.8 x NAPL)

Abbreviations:

GB = Grab-groundwater sample

MW = Groundwater monitoring well

TOC = Top of casing in feet above NAVD 88

DTP = Depth to product in feet below TOC

DTW = Depth to water in feet below TOC

GWE = Groundwater elevation in feet relative to NAVD 88

NAPL = Non-aqueous phase liquid thickness in feet

NAPL = Non-aqueous phase liquid thickness in fee [21.2] = Blind duplicate sample results

-- = Not applicable, not available, or not analyzed

ND = Not detected

Chevron Service Station No. 97502 640 Metcalf Street, Sedro-Woolley, Washington Analytical results are presented in micrograms per liter (µg/L)

														Total		Dissolved				
Well	Date	TOC	DTP	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Lead	Total Lead	EDB	Comments	
	MTCA Method A CULs							500	500	500	5	1,000	700	1,000	20	15	15	0.01		

MDL = Method detection limit

MTCA = Model Toxics Control Act Cleanup

CUL = Cleanup Level

NAVD 88 = North American Vertical Datum of 1988

USEPA = United States Environmental Protection Agency

Laboratory Qualifiers:

<n = Not detected at or above the laboratory MDL

J = Estimated value; result is ≥ the MDL and < the Reported Detection Limit

B = The same analyte is found in the associated blank

Analytical Methods:

Samples analyzed by NWTPH-Gx

GRO = Total Petroleum Hydrocarbons as Gasoline Range Organics,

Samples analyzed by NWTPH-Dx

DRO = Total Petroleum Hydrocarbons as Diesel Range Organics

HO = Total Petroleum Hydrocarbons as Heavy Oil Range Organics

Samples analyzed by NWTPH-Dx modified

DRO w/ Silica Gel = Total Petroleum Hydrocarbons as Diesel Range Organics with silica gel cleanup

HO w/ Silica Gel = Total Petroleum Hydrocarbons as Heavy Oil Range Organics with silica gel cleanup

Samples analyzed by USEPA Method 8260B/8260D

BTEX = benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary-butyl ether

EDB = 1,2-Dibromoethane (ethylene dibromide)

Samples analyzed by USEPA Method 6010D

Dissolved lead

Total lead

Table 3. Historical Groundwater Analytical Results - cPAHs

Well	Date	Benzo(a)- anthracene	Chrysene	Benzo(b)- fluoranthene	Benzo(k)- fluoranthene	Benzo(a)-pyrene	Indeno(1,2,3- cd)pyrene	Dibenz(a,h)- anthracene	Total cPAHS	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes
	thod A CULs	-	-	-	-	0.1	-	-	0.1				160
		0.045	0.004	0.000	0.047	0.004	0.040	0.050	0.000	E [0 004]			
GB-1	4/1/2008	0.015	0.024	0.028	0.017	0.021	0.018	<0.050	0.032	<5 [0.064]			
GB-2	4/2/2008	0.027	0.040	0.052	0.028	0.037	0.031	<0.0097	0.052	0.43			0.430
GB-3	4/1/2008	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.008	1.0			1.000
GB-4	4/1/2008	<0.0095	<0.0095	<0.0095	<0.0095	<0.0095	<0.0095	<0.0095	0.007	0.16			0.160
GB-4	4/1/2000	<0.0095	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	0.007	0.10			0.100
GB-5	4/2/2008	<0.0098	<0.0098	<0.0098	<0.0098	<0.0098	<0.0098	<0.0098	0.007	16.0			16.000
MW-4	8/17/2020	<0.0203	<0.0179	<0.0168	<0.0202	<0.0184	<0.0158	<0.0160	0.0137	<0.0917	<0.0687	<0.0674	0.1139
MW-4	9/28/2021												
MW-5	8/18/2020	<0.0203	<0.0179	<0.0168	<0.0202	<0.0184	<0.0158	<0.0160	0.0137	<0.0917	<0.0687	<0.0674	0.1139
MW-5	9/28/2021												
MW-6	8/18/2020	<0.0203	<0.0179	<0.0168	<0.0202	<0.0184	<0.0158	<0.0160	0.0137	<0.0917	<0.0687	<0.0674	0.1139
MW-6	9/27/2021												
MW-7	6/4/2007	0.22	0.26	0.24	<0.098	0.19	0.11	<0.098	0.2594				
MW-7	12/19/2007	0.25	0.34	0.24	0.11	0.19	0.14	0.047	0.3161		 	 	
MW-7	8/17/2020	<0.0203	<0.0179	<0.0168	<0.0202	<0.0184	<0.0158	<0.0160	0.0137	24.1	2.94	3.00	30.04
MW-7	9/28/2021	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	0.0378	105	16.9	19.7	00.0 .
	_				!	-					!	-	
MW-8	12/19/2007	0.010	0.011	0.018	<0.0099	0.013	<0.0099	< 0.0099	0.0174				
MW-8	8/18/2020	<0.0203	<0.0179	<0.0168	<0.0202	<0.0184	<0.0158	<0.0160	0.0137	0.105 J	0.239 J	0.261	0.605
MW-8	9/28/2021												
MW-10	6/4/2007	0.021	0.021	0.022	0.012	0.017	0.012	<0.010	0.0244				
MW-10	9/5/2007	<0.011	<0.011	<0.011	<0.012	<0.017	<0.012	<0.010	0.0083	 		 	
MW-10	12/19/2007	<0.0098	<0.0098	0.014	<0.0098	0.010	<0.0098	<0.0098	0.0134				
MW-10	8/17/2020	<0.0203	<0.0179	<0.0168	<0.0202	<0.0184	<0.0158	<0.0160	0.0137	9.85	3.89	1.40	15.14
MW-10	9/29/2021												
MW-11	6/4/2007	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.0376				
MW-11	9/5/2007	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.0076				
MW-11	12/19/2007	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.0076				
MW-11	8/17/2020	<0.0203	<0.0179	<0.0168	<0.0202	<0.0184	<0.0158	<0.0160	0.0137	55.5	22.3	22.7	100.5
MW-11	9/29/2021												
MW-12	6/4/2007	0.010	<0.0099	<0.0099	<0.0099	<0.0099	<0.0099	<0.0099	0.0708				
MW-12	9/5/2007	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.0083				
MW-12	12/19/2007	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.0076				
MW-12	8/17/2020	<0.0203	<0.0179	<0.0168	<0.0202	<0.0184	<0.0158	<0.0160	0.0137	< 0.0917	<0.0687	<0.0674	0.1139
MW-12	9/28/2021												
18 14 46	0/47/0000	0.00001.000001	0.0470 [0.0470]	0.0400 [0.0400]	0.00001.00003	0.04045.0040.0	0.0450 [0.0450]	0.04001.0.0400	0.0407/0.0407	40.0 (45.0)	40.0745.03	0.70 (44.0)	00 00 110 01
MW-13	8/17/2020	<0.0203 [<0.0203]	<0.0179 [<0.0179]	<0.0168 [<0.0168]	<0.0202 [<0.0202]	<0.0184 [<0.0184]	<0.0158 [<0.0158]	<0.0160 [<0.0160]	0.0137 [0.0137]	13.3 [15.2]	13.6 [15.8]	9.72 [11.3]	36.62 [42.3]
MW-13	9/28/2021												

Table 3. Historical Groundwater Analytical Results - cPAHs

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

Analytical results are presented in micrograms per liter (µg/L)

Well	Date	Benzo(a)- anthracene	Chrysene	Benzo(b)- fluoranthene	Benzo(k)- fluoranthene	Benzo(a)-pyrene	Indeno(1,2,3- cd)pyrene	Dibenz(a,h)- anthracene	Total cPAHS	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes
MTCA Me	hod A CULs				-	0.1			0.1	-	-	-	160
MW-14	6/4/2007	<0.010	<0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	0.0076				
MW-14	9/5/2007	<0.012	< 0.012	<0.012	< 0.012	<0.012	<0.012	<0.012	0.0091				
MW-14	12/19/2007	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.0755				
MW-14	8/17/2020	<0.0203	< 0.0179	<0.0168	<0.0202	<0.0184	<0.0158	< 0.0160	0.01374	42.2	6.24	7.30	55.74
MW-14	9/28/2021												

Notes:

BOLD and highlighted values are greater than their respective MTCA Method A CUL

Abbreviations:

cPAH = Carcinogenic Polycyclic Aromatic Hydrocarbon

GB = Grab-groundwater sample

MW = Groundwater monitoring well

[21.2] = Blind duplicate sample results

-- = Not applicable, not available, or not analyzed

ND = Not detected

MDL = Method detection limit

MTCA = Model Toxics Control Act Cleanup

CUL = Cleanup Level

USEPA = United States Environmental Protection Agency

Laboratory Qualifiers:

<n = Not detected at or above the laboratory MDL

J = Estimated value; result is \geq the MDL and < the Reported Detection Limit

Analytical Methods:

Samples analyzed by USEPA Method 8270E-SIM

Benzo(a)anthracene

Chrysene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Benzo(a)pyrene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Naphthalene

1-Methylnaphthalene

2-Methylnaphthalene

Well	Date	MBAS	DIPE	ETBE	TAME	TBA	EDC
MTCA Method	I A CULs						5
GB-1	4/1/2008		<4	<4	<4	<80	<4
GB-2	4/2/2008						<0.5
GB-3	4/1/2008						<0.5
	1/1/0000						
GB-4	4/1/2008						<0.5
GB-5	4/2/2008						<0.5
GB-5	4/2/2006						<0.5
MW-4	7/2/2005			<0.5	<0.5	<5	<0.5
MW-4	10/1/2009	<40					
MW-4	10/8/2009	<40					
MW-4	10/15/2009	68 J					
MW-4	10/22/2009	76 J					
MW-4	11/18/2009	<40					
MW-4	12/16/2009	<40					
MW-4	1/27/2010	<40					
MW-4	2/12/2010	<40					
MW-4	6/18/2010	<40					
MW-4	9/2/2010	<40					
MW-4	12/7/2010	<40					
MW-4	3/7/2011	<80					
MW-4	6/9/2011	<40					
MW-4	9/16/2011	<80					
MW-4	12/19/2011	<40					
MW-4	3/15/2012	<40					
MW-4	6/13/2012	<200					
MW-4	9/10/2012	<40					
MW-4	12/10/2012	<40					

Well	Date	MBAS	DIPE	ETBE	TAME	TBA	EDC				
MTCA Metho	d A CULs						5				
MW-5	7/2/2005			<0.5	<0.5	<5	<0.5				
MW-6	7/2/2005			<0.5	<0.5	<5	<0.5				
MW-7	7/2/2005			<0.5	<0.5	<5	<0.5				
MW-7	6/4/2007		<0.5	<0.5	<0.5	<2	<0.5				
MW-7	12/19/2007	-	<1	<1	<1	<4	<1				
MW-7	11/20/2008		<13	<13	<13	<50	<13				
MW-7	3/4/2009		<0.5	<0.5	< 0.5	<2	<0.5				
MW-7	6/4/2009		<0.5	<0.5	<0.5	<2	<0.5				
MW-7	9/23/2009	3,000 J									
MW-7	9/24/2009	330									
MW-7	10/1/2009	100 J									
MW-7	10/8/2009	42 J									
MW-7	10/15/2009	<40									
MW-7	10/22/2009	60 J									
MW-7	11/18/2009	67 J	67 J	67 J	67 J	67 J					
MW-7	12/3/2009		<10	<10	<10	<40	<10				
MW-7	12/16/2009	<40									
MW-7	1/27/2010	<40									
MW-7	2/12/2010	58									
MW-7	6/18/2010	270									
MW-7	9/2/2010	240									
MW-7	12/7/2010	230									
MW-7	3/7/2011	<200									
MW-7	6/9/2011	170									
MW-7	9/16/2011	180									
MW-7	12/19/2011	260									
MW-7	3/15/2012	180									

Well	Date	MBAS	DIPE	ETBE	TAME	TBA	EDC
MTCA Method	d A CULs						5
MW-7	6/13/2012	100					
MW-7	9/10/2012	130					
MW-7	12/10/2012	80					
MW-8	12/19/2007		<0.5	<0.5	<0.5	<2	<0.5
MW-8	10/1/2009	66 J					
MW-8	10/8/2009	<40					
MW-8	10/15/2009	<40					
MW-8	10/22/2009	<40					
MW-8	11/18/2009	<40					
MW-8	12/3/2009						
MW-8	12/16/2009	43 J					
MW-8	1/27/2010	<40					
MW-8	2/12/2010	170					
MW-8	6/18/2010	100					
MW-8	9/2/2010	55					
MW-8	12/7/2010	51					
MW-8	3/7/2011	<200					
MW-8	6/9/2011	160					
MW-8	9/16/2011	75					
MW-8	12/19/2011	270					
MW-8	3/15/2012	<80					
MW-8	6/13/2012	110					
MW-8	9/10/2012	<40					
MW-8	12/10/2012	86					
MW-10	7/2/2005			<0.5	<0.5	<5	<0.5
MW-10	6/4/2007		 <1	<0.5 <1	<0.5 <1	<5 <4	<0.5 <1
MW-10					<1 <1	<4 <4	
MW-10	9/5/2007 12/19/2007		<1 <0.5	<1 <0.5	<0.5	<4 <2	<1 <0.5
MW-10	3/6/2008		<0.5	<0.5	<0.5	<2	<0.5

MTCA Method			DIPE	ETBE	TAME	TBA	EDC
	I A CULs				-		5
MW-10	6/16/2008		<0.5	<0.5	<0.5	<2	<0.5
MW-10	9/11/2008		<0.5	<0.5	<0.5	<2	< 0.5
MW-10	11/20/2008		<3	<3	<3	<10	<3
MW-10	3/4/2009		<0.5	<0.5	<0.5	<2	<0.5
MW-10	6/4/2009		<0.5	<0.5	<0.5	<2	<0.5
MW-10	9/24/2009	38 J					
MW-10	10/1/2009	45 J					
MW-10	10/8/2009	89 J					
MW-10	10/15/2009	<40					
MW-10	10/22/2009	52 J					
MW-10	11/18/2009	170					
MW-10	12/3/2009		<0.5	<0.5	<0.5	<2	<0.5
MW-10	12/16/2009	<40					
MW-10	1/27/2010	<80					
MW-10	2/12/2010	93					
MW-10	3/30/2010						
MW-10	6/18/2010	42					
MW-10	9/2/2010	94					
MW-10	12/7/2010	81					
MW-10	3/7/2011	<200					
MW-10	6/9/2011	67					
MW-10	9/16/2011	130					
MW-10	12/13/2011						
MW-10	12/19/2011	580					
MW-10	3/15/2012	<160					
MW-10	6/13/2012	<40					
MW-10	9/10/2012	<40					
MW-10	12/10/2012	59					
MW-11	7/2/2005			<1	<1	<10	<1

Well	Date	MBAS	DIPE	ETBE	TAME	TBA	EDC
MTCA Metho	d A CULs						5
MW-11	6/4/2007		<1	<1	<1	<4	<1
MW-11	9/5/2007		<2	<2	<2	18	<2
MW-11	12/19/2007		<1	<1	<1	<4	<1
MW-11	3/6/2008		<0.5	<0.5	<0.5	<2	<0.5
MW-11	6/16/2008		<0.5	<0.5	<0.5	<2	<0.5
MW-11	9/11/2008		<0.5	<0.5	<0.5	<2	<0.5
MW-11	11/20/2008		<0.5	<0.5	<0.5	<2	<0.5
MW-11	3/4/2009		<0.5	<0.5	<0.5	<2	<0.5
MW-11	6/4/2009		<0.5	<0.5	<0.5	<2	<0.5
MW-11	9/22/2009						
MW-11	9/24/2009	46 J					
MW-11	10/1/2009	41 J					
MW-11	10/8/2009	<40					
MW-11	10/15/2009	<40					
MW-11	10/22/2009	<40					
MW-11	11/18/2009	<40					
MW-11	12/3/2009		<0.5	<0.5	<0.5	<2	<0.5
MW-11	12/16/2009	56 J					
MW-11	1/27/2010	<80					
MW-11	2/12/2010	50					
MW-11	3/30/2010						
MW-11	6/18/2010	88					
MW-11	9/2/2010	93					
MW-11	12/7/2010	54					
MW-11	3/7/2011	<200					
MW-11	6/9/2011	69					
MW-11	9/16/2011	<160					
MW-11	12/13/2011						
MW-11	12/19/2011	150					
MW-11	3/15/2012	100					

Well	Date	MBAS	DIPE	ETBE	TAME	TBA	EDC
MTCA Metho	d A CULs						5
BBM 44	0/40/0040	.40					
MW-11	6/13/2012	<40					
MW-11	9/10/2012	120			==		
MW-11	12/10/2012	66					
MW-12	6/4/2007		<3	<3	<3	<10	<3
MW-12	9/5/2007		<0.5	<0.5	<0.5	3	<0.5
MW-12	12/19/2007		<0.5	<0.5	<0.5	34	<0.5
MW-12	3/6/2008		<0.5	<0.5	<0.5	5	<0.5
MW-12	9/23/2009	<140 J					
MW-12	9/24/2009	310					
MW-12	10/1/2009	61 J					
MW-12	10/8/2009	44 J					
MW-12	10/15/2009	<40					
MW-12	10/22/2009	100 J					
MW-12	11/18/2009	<40					
MW-12	12/3/2009		<10	<10	<10	<40	<10
MW-12	12/16/2009	53					
MW-12	1/27/2010	<40					
MW-12	2/12/2010	<80					
MW-12	3/30/2010						
MW-12	6/18/2010	70					
MW-12	9/2/2010	<40					
MW-12	12/7/2010	44					
MW-12	3/7/2011	<80					
MW-12	6/9/2011						
MW-12	9/16/2011	200					
MW-12	12/13/2011						
MW-12	12/19/2011	<160					
MW-12	3/15/2012	90					
MW-12	6/13/2012	<40					

Well	Date	MBAS	DIPE	ETBE	TAME	TBA	EDC
MTCA Method	A CULs				-		5
MW-12	9/10/2012	<40					
MW-12	12/10/2012	<40					
MW-13	9/23/2009	250 J					
MW-13	9/24/2009						
MW-13	10/1/2009	100 J					
MW-13	10/8/2009	66 J					
MW-13	10/15/2009	<40					
MW-13	10/22/2009	99 J					
MW-13	11/18/2009	<140					
MW-13	12/3/2009		<0.5	<0.5	<0.5	<2	<0.5
MW-13	12/16/2009	82 J					
MW-13	1/27/2010	90					
MW-13	2/12/2010	130					
MW-13	3/30/2010						
MW-13	6/18/2010	98					
MW-13	9/2/2010	66					
MW-13	12/7/2010	120					
MW-13	3/7/2011	<80					
MW-13	6/9/2011	190					
MW-13	9/16/2011	130					
MW-13	12/13/2011						
MW-13	12/19/2011	340					
MW-13	3/15/2012	140					
MW-13	6/13/2012	40					
MW-13	9/10/2012	60					
MW-13	12/10/2012	<40					
	0///000=					_	
MW-14	6/4/2007		<0.5	<0.5	<0.5	<2	<0.5
MW-14	9/5/2007		<0.5	<0.5	<0.5	<2	<0.5

Well	Date	MBAS	DIPE	ETBE	TAME	ТВА	EDC
MTCA Method	A CULs						5
MW-14	12/19/2007		<1	<1	<1	<4	<1
MW-14	3/6/2008		<0.5	<0.5	<0.5	<2	<0.5
MW-14	6/16/2008		<0.5	<0.5	<0.5	<2	<0.5
MW-14	9/11/2008		<0.5	<0.5	<0.5	<2	<0.5
MW-14	11/20/2008		<0.5	<0.5	<0.5	<2	<0.5
MW-14	3/4/2009		<1	<1	<1	<5	<1
MW-14	6/4/2009		<0.5	<0.5	<0.5	<2	<0.5
MW-14	9/22/2009						
MW-14	9/24/2009	220 J					
MW-14	10/1/2009	64 J					
MW-14	10/8/2009	<40					
MW-14	10/15/2009	<40					
MW-14	10/22/2009	<40					
MW-14	11/18/2009	<40					
MW-14	12/3/2009		<0.5	<0.5	<0.5	<2	<0.5
MW-14	12/16/2009	80					
MW-14	1/27/2010	<40					
MW-14	2/12/2010	84					
MW-14	3/30/2010						
MW-14	6/18/2010	100					
MW-14	9/2/2010	<80					
MW-14	12/7/2010	100					
MW-14	3/7/2011	<200					
MW-14	6/9/2011	110					
MW-14	9/16/2011	300					
MW-14	12/13/2011						
MW-14	12/19/2011	540					
MW-14	3/15/2012	140					
MW-14	6/13/2012	96					
MW-14	9/10/2012	57					

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

Analytical results are presented in micrograms per liter (µg/L)

Well	Date	MBAS	DIPE	ETBE	TAME	TBA	EDC
MTCA Method	A CULs						5
D	40/40/0040	40					
MW-14	12/10/2012	48					

Notes:

BOLD values are non-detect below the laboratory MDL, but the MDL is greater than the MTCA Method A CUL

Abbreviations:

VOC = Volatile Organic Compound

sVOC = Semi-Volatile Organic Compound

GB = Grab-groundwater sample

MW = Groundwater monitoring well

-- = Not applicable, not available, or not analyzed

MDL = Method detection limit

MTCA = Model Toxics Control Act Cleanup

CUL = Cleanup Level

USEPA = United States Environmental Protection Agency

Laboratory Qualifiers:

<n = Not detected at or above the laboratory MDL

J = Estimated value; result is ≥ the MDL and < the Reported Detection Limit

Analytical Methods:

Samples analyzed by USEPA Method 5540C

M.B.A.S. = Methylene blue active substances

Samples analyzed by USEPA Method 8260B

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary-butyl ether

TAME = Tertiary amyl methyl ether

TBA = tertiary butyl alcohol

EDC = 1,2-Dichloroethane

Table 5. Historical Soil Vapor Data

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

Analytical results are presented in micrograms per liter (µg/m³)

		Average			Carbon							
Sample ID	Date	Barometric Pressure (inches)	Methane (%)	Oygen (%)	Dioxide (%)	Benzene (ug/m3)	Toluene (ug/m3)	Ethylbenzene (ug/m3)	Total Xylenes (ug/m3)	Butane (ug/m3)	Propane (ug/m3)	Isopentane (ug/m3)
MTCA Method B Sub-		, ,	(1-7)			11.00	76,000	15,000	1,500		(-9)	-
VP-1-5	40/5/0007	20.00	0.00027	0.0	-0.0F	8.2	25.0	44.0	472.0			
VP-1-5 VP-1-8	10/5/2007 10/5/2007	29.99 29.99	0.00027 0.00028	9.9 13.0	<0.05 <0.05	o.∠ 17.0	35.0 34.0	41.0 25.0	172.0 104.0			
VP-1-8 VP-2-5						-						
	10/5/2007	29.99	0.00033	11.0	<0.05	4.4	24.0	19.0	78.0			
VP-2-8	10/5/2007	29.99	0.00027	11.0	<0.05	2.0	11.0	3.0	13.5			
VP-3-5	10/5/2007	29.99	0.00043	13.0	< 0.05	5.2	35.0	9.4	41.0			
VP-3-8	10/5/2007	29.99	0.00034	13.0	< 0.05	7.5	38.0	9.1	34.6			
Resampling Event												
VP-1-5	12/6/2007	30.00	< 0.00024	11	8.9	<3.8	<5.2	<4.5	<5.2	ND	ND	ND
VP-1-8A	12/6/2007	30.00	< 0.00020	11	8.8	<3.2	<4.4	5.6	5.0	20.21 JN	ND	ND
VP-1-8A (Lab Dup)	12/6/2007	30.00	< 0.00020	11	8.8	<3.2	<4.4	5.2	5.0	ND	ND	ND
VP-1-8B	12/6/2007	30.00	< 0.00022	11	8.8	<3.4	<4.7	4.6	<4.7	ND	ND	ND
VP-2-5	12/6/2007	30.00	< 0.00021	14	6.3	<3.4	8.4	<4.0	36.8	ND	ND	ND
VP-2-8	12/6/2007	30.00	< 0.00022	13	6.6	<3.5	10	6.0	46	13.31 JN	ND	ND
VP-3-5	12/6/2007	30.00	< 0.00022	19	1.9	<3.5	<4.8	5.1	10	14.98 JN	ND	ND
VP-3-8	12/6/2007	30.00	< 0.00023	19	2.5	<3.6	7.1	9.9	31.9	17.83 JN	ND	ND
Ambient 1	12/6/2007	30.00	< 0.00023	22	0.038	<3.6	<5.0	<4.3	<5.0	ND	ND	ND
Ambient 2	12/6/2007	30.00	< 0.00021	22	0.048	<3.3	<4.5	5.9	<.5	ND	ND	ND
Ambient 2 (Lab Dup)	12/6/2007	30.00			==	<3.3	<4.5	5.5	<4.5	15.45 JN	ND	ND
Trip Blank	12/6/2007	30.00	< 0.00010	<0.010	<0.010	<1.6	<2.2	<1.9	<2.2	ND	ND	ND

Notes:

BOLD and highlighted values are greater than their respective MTCA Method B Sub-Slab Soil Gas Screening Level

Abbreviations:

-- = not applicable or not analyzed

< = analyte was not detected at indicated reporting limit

DUP = Duplicate sample

ND = Not detected

MDL = Method detection limit

MTCA = Model Toxics Control Act Cleanup

CUL = Cleanup Level

USEPA = United States Environmental Protection Agency

Average Barometric Pressures taken from Weather Underground (www.wunderground.com); averages for October 5, 2007 and December 6, 2007 in Burlington, Washington

Laboratory Qualifiers:

<n = Not detected at or above the laboratory MDL

J = Estimated value; result is ≥ the MDL and < the Reported Detection Limit

N = Identification of the analyte is based on presumptive evidence

Reference:

Ecology. 2018. Ecology Implementation Memorandum No. 18, Draft Petroleum Vapor Intrusion (VI): Updated Screening Levels, Cleanup Levels, and Sampling Considerations. August 7.

Table 6. Well Construction Details

Chevron Service Station No. 97502 640 Metcalf Street, Sedro-Woolley, Washington

Well ID	Installation Date	Decommission Date	Casing Diameter	Casing Elevation ¹	Top of Screen Depth	Bottom of Screen Depth	Total Well Depth	Min DTW	Max DTW
			inches	feet NAVD88	feet bgs	feet bgs	feet bgs	feet btoc	feet btoc
MW-1	2/6/1991	1992	4		4.5	14.5	15.0		
MW-2	2/6/1991	1992	4		4.5	19.5	20.0		
MW-3	2/7/1991	1992	4		4.0	19.0	19.5		
MW-4	2/7/1991	NA	4	56.42	4.0	19.0	19.5	6.48	11.84
MW-5	2/7/1991	NA	4	56.53	4.5	19.5	20.0	6.41	11.22
MW-6	10/7/1991	NA	2	57.02	5.0	20.0	20.0	6.83	12.06
MW-7	10/7/1991	NA	2	58.93	5.0	20.0	20.0	8.85	13.02
MW-8	10/14/1991	NA	2	56.52	7.5	17.5	17.5	6.95	12.31
MW-9	10/14/1991	2001	2		6.0	16.0	16.0	7.70	11.69
MW-10	7/1/2002	NA	2	56.17	7.0	20.0	20.0	7.35	12.88
MW-11	7/1/2002	NA	2	56.27	7.0	20.0	20.0	7.30	12.79
MW-12	5/2/2006	NA	4	56.72	5.0	20.0	20.0	7.13	12.68
MW-13	5/2/2006	NA	4	56.67	5.0	20.0	20.0	7.14	13.00
MW-14	5/2/2006	NA	4	56.49	5.0	20.0	20.0	7.16	10.94
MW-15	9/20/2021	NA	2	56.71	5.0	20.0	20.0		
MW-16	9/23/2021	NA	2	56.62	5.0	20.0	20.0		
MW-17	9/20/2021	NA	2	56.54	5.0	20.0	20.0		
MW-18	9/21/2021	NA	2	56.56	5.0	20.0	20.0		
MW-19	9/21/2021	NA	2	56.72	5.0	20.0	20.0		
MW-20	9/21/2021	NA NA	2	56.57	5.0	20.0	20.0		
MW-21	9/20/2021	NA NA	2	55.95	5.0	20.0	20.0		

Notes:

Shaded cells show decommissioned well.

bgs = below ground surface

 $\label{eq:monitoring} \mbox{MW = monitoring well; observation well used for DPE system monitoring and groundwater compliance monitoring}$

NA = not applicable

NAVD88 = North American Vertical Datum of 1988

^{1.} Surveyed in 2021 by Otak, Inc. using NAD 83 (horizontal) and NAVD 88 (vertical).

²-Sheen Observed

Table 7. Current Soil Analytical Results

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

Analytical results are presented in milligrams per kilogram (mg/kg)

											Total		
Sample ID	Date	Depth	TPH	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
MTC	A Method A CU	Ls		30/100	2,000	2,000	2,000	0.03	7	6	9	250	0.1
MW-15	09/22/2021	6.5-7.5		<4.56	<5.49	<13.7	9.595	< 0.00182	< 0.00912	< 0.00456	< 0.0119	4.80	< 0.00182
MW-15	09/21/2021	10.0-11.0		467	604	<12.9	610.45	< 0.00161	0.00379 J	< 0.00403	< 0.0105	< 0.646	< 0.00161
MW-15	09/21/2021	14.0-15.0		1.73 J	<5.27	<13.2	9.235	0.00108 J	< 0.00830	< 0.00415	0.00242 J	0.514 J	< 0.00166
MW-15	09/21/2021	19.0-20.0		2.06 J	2.23 J	7.60 J	9.83	0.0195	0.00339 J	0.0119	0.0149	4.32	< 0.00191
MW-16	09/23/2021	4.0-5.0		3.31	79.2	60.2	139.4	0.00454	0.00916	0.00839	0.0454	6.55	< 0.00120
MW-16	09/23/2021	14.0-15.0		4.51	5.94	11.0 J	16.94	< 0.00171	< 0.00854	< 0.00427	0.00430 J	0.514 J	< 0.00171
MW-16	09/23/2021	19.0-20.0		<5.00	8.68	104	112.68	0.022	< 0.0100	< 0.00500	< 0.0130	5.08	< 0.00200
MW-17	09/23/2021	8.0-9.0		<3.43	<4.70	<11.7	8.2	0.00124 J	0.00196 J	< 0.00343	0.00290 J	0.886	< 0.00137
MW-17	09/23/2021	11.5-13.0		<4.24	<5.27 J3 J6	<13.2	9.24	0.00275	0.029	0.0309	0.171	< 0.658	< 0.00170
MW-17	09/23/2021	15.0-16.0		3.45 J	1.80 J	<12.7	8.15	0.00304	0.0593	0.07	0.359	0.837	< 0.00159
MW-17	09/23/2021	19.0-20.0		9.34	3.80 J	33.4	37.2	0.0166	0.015	0.206	0.781	4.67	< 0.00202
MW-18	09/23/2021	8.0-9.0		<4.31	1.82 J	<13.3	8.47	< 0.00172	< 0.00862	< 0.00431	< 0.0112	2.25	< 0.00172
MW-18	09/23/2021	19.0-20.0		3.92 J	<5.12	<12.8	8.96	0.00514	<0.00813	0.0366	0.265	1.34	< 0.00163
MW-19	09/22/2021	7.5-8.5		<4.33	<5.28	<13.2	9.24	< 0.00173	< 0.00867	< 0.00433	< 0.0113	3.99	< 0.00173
MW-19	09/22/2021	18.0-20.0		<4.83	2.21 J	10.8 J	13.01	0.00181 J J3	<0.00965 J3	<0.00483 J3	0.00647 J J3	6.17	< 0.00193
MW-20	09/22/2021	7.0-8.0		<4.18	2.17 J	8.67 J	10.81	< 0.00167	< 0.00835	<0.00418	< 0.0109	10.7	< 0.00167
MW-20	09/22/2021	15.0-16.0		<3.92	10.5	28.1	38.6	< 0.00157	< 0.00784	< 0.00392	< 0.0102	2.85	< 0.00157
MW-20	09/22/2021	19.0-20.0		<4.42	<5.35	<13.4	9.38	<0.00177	<0.00884	< 0.00442	<0.0115	5.84	<0.00177
MW-21	09/20/2021	2.5-3.5		64.4	208	38.9	246.9	0.0254	0.0298	0.0108	0.0585	8.99	< 0.00126
MW-21	09/21/2021	9.0-10.0		18.3	119	24.5	143.5	0.0021	0.00557 J	0.00257 J	0.0226	11.5	< 0.00133
MW-21	09/21/2021	11.5-12.5		65.8	78.8	5.68 J	84.48	< 0.00135	0.00306 J	0.00349	0.0105	4.02	< 0.00135
MW-21	09/21/2021	14.0-15.0		2.19 J	<5.22	<13.0	9.11	< 0.00162	<0.00810	< 0.00405	0.00311 J	0.472 J	< 0.00162
MW-21	09/21/2021	19.0-20.0		<4.36	3.15 J	9.27 J	12.42	< 0.00174	< 0.00872	< 0.00436	0.00188 J	0.490 J	< 0.00174
SB-1	09/23/2021	7.5-8.5		<4.54	<5.47	<13.7	9.59	0.00291	0.00439 J	< 0.00454	0.00632 J	2.66	< 0.00182
SB-1	09/23/2021	15.0-16.0		2.02 J	2.21 J	45.4	47.61	0.0651	0.0183	0.119	0.345	1.92	<0.00198
SB-1	09/23/2021	19.0-20.0		<5.10	< 5.93	6.32 J	9.29	0.00447	0.00619 J	< 0.00510	0.0112 J	1.13	< 0.00204
SB-2	09/22/2021	6.0-7.0		<4.31	<5.33	<13.3	9.32	< 0.00173	< 0.00863	< 0.00431	< 0.0112	3.56	< 0.00173
SB-2	09/22/2021	10.5-11.5		45.6	3.46 J	<13.0	9.96	< 0.00165	0.00248 J	0.0136	0.00182 J	0.520 J	< 0.00165
SB-2	09/22/2021	15.5-16.5		3.94 J	<5.20 J6	<13.0	9.1	0.00185	0.00465 J	0.00433	0.0175	3.49	<0.00164
SB-2	09/22/2021	18.0-19.0		4.68 J	<5.83	<14.6	10.22	0.00502	0.00298 J	0.0238	0.0554	6.69	<0.00200
SB-3	09/23/2021	7.5-8.5		<4.58	< 5.49	<13.7	9.60	<0.00183	< 0.00915	< 0.00458	< 0.0119	4.93	< 0.00183
SB-3	09/23/2021	18.0-19.0		<4.64	2.57 J	15.4	17.97	0.021	0.00247 J	<0.00464	0.00236 J	4.61	<0.00186

Notes:

30/100 = GRO MTCA Method A CUL with benzene present is 30 mg/kg and without benzene present is 100 mg/kg

Grev text indicates soil that has been excavated

BOLD and highlighted values are greater than their respective MTCA Method A CUL

BOLD values are non-detect below the laboratory MDL, but the MDL is greater than the MTCA Method A CUL

Map of sample locations and laboratory results not available for non-detect analytes

Sample depth measured in feet below ground surface

Abbreviations:

ID = Identification

MW = Groundwater monitoring well

-- = Not applicable, not available, or not analyzed

MDL = Method detection limit

MTCA = Model Toxics Control Act Cleanup

CUL = Cleanup Level

USEPA = United States Environmental Protection Agency

Laboratory Qualifiers:

<n = Not detected at or above the laboratory MDL

J = The identification of the analyte is acceptable; the reported value is an estimate.

J3 = The associated batch QC was outside the established quality control range for precision. J6 = The sample matrix interfered with the ability to make any accurate determination; spike value is low.

Analytical Methods:

Samples analyzed by USEPA Method 418.1

TPH = Total Petroleum Hydrocarbons

Samples analyzed by NWTPH-Gx

GRO = Total Petroleum Hydrocarbons as Gasoline Range Organics

Samples analyzed by NWTPH-Dx

DRO = Total Petroleum Hydrocarbons as Diesel Range Organics

HO = Total Petroleum Hydrocarbons as Heavy Oil Range Organics

Samples analyzed by USEPA Method 8260B BTEX = benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary butyl ether EDC = 1,2-Dichloroethane

TCE = Trichloroethene

PCE = Tetrachloroethene

Samples analyzed by USEPA Method 6020

Samples analyzed by USEPA Method 8270C-SIM

Benzo(a)anthracene

Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene

Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene

Table 8. Current Groundwater Gauging Data and Select Analytical Results

Chevron Service Station No. 97502 640 Metcalf Street, Sedro-Woolley, Washington Analytical results are presented in micrograms per liter (µg/L)

													Total		
Well	Date	TOC	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Total Lead
		MTCA M	ethod A CULs			800/1,000	500	500	500	5	1,000	700	1,000	20	15
MW-4	9/28/2021	56.42	9.8 7.39	46.62		8,850	440	<250	565	<1.00	<1.00	<1.00	<3.00	<1.00	<6.00
MW-4	12/14/2021	56.42		49.03		<100	224	123 J	347	<1.00	<1.00	<1.00	0.402 J	<1.00	<6.00
MW-5	9/28/2021	56.53	10.25	46.28		539	305	<250	430	<1.00	<1.00	0.593 J	1.36 J	<1.00	<6.00
MW-5	12/16/2021	56.53	7.52	49.01		<100	74.9 J	104 J	178.9	<1.00	<1.00	<1.00	<3.00	<1.00	<6.00
MW-6	9/27/2021	57.02	10.3	46.72		<100	<200	<250	225	<1.00	<1.00	<1.00	<3.00	<1.00	<6.00
MW-6	12/14/2021	57.02	7.69	49.33		<100	71.7 J	<250	196.7	<1.00	<1.00	<1.00	0.21 J	<1.00	<6.00
MW-7	9/28/2021	58.93	12.73	46.20		8,990	565	<250	690	0.124 J	14.6	359 E	1,390 E	<1.00	<6.00
MW-7	12/15/2021	58.93	10.07	48.86		<100	95.7 J	185 J	280.7	<1.00	<1.00	<1.00	0.321 J	<1.00	<6.00
MW-8	9/28/2021	56.52	10.38	46.14		3,600	305	<250	430	<1.00	<1.00	1.11	0.574 J	<1.00	<6.00
MW-8	12/15/2021	56.52	7.83	48.69		7,270	228	119	347	<1.00	<1.00	<1.00	1.75 J	<1.00	<6.00
MW-10	9/29/2021	56.17	10.33	45.84		4,150 [4,150]	986 [1,000]		1,111 [1,125]		9.90 [9.78]	19.7 [19.4]	87 [85.6]	<1.00	<6.00 [<6.00]
MW-10	12/15/2021	56.17	8.02	48.15		362	171 J	250	296	<1.00	1.54	2.16	1.89 J	<1.00	<6.00
MW-11	9/29/2021	56.27	10.78	45.49		4,190	543	<250	668	3.03	1.78	67.9	4.36	<1.00	<6.00
MW-11	12/15/2021	56.27	8.15	48.12		457	129 J	<250	254	0.896 J	0.343 J	5.67	0.609 J	<1.00	<6.00
MW-12	9/28/2021	56.72	10.28	46.44		143	190 J	<250	315	<1.00	<1.00	<1.00	<3.00	<1.00	<6.00
MW-12	12/16/2021	56.72	7.83	48.89		<100	83.6 J	101 J	184.6	<1.00	<1.00	<1.00	<3.00	<1.00	<6.00
MW-13	9/28/2021	56.67	10.73	45.94		4,940 [4,530]	730 [752]	<250 [<250]	855 [877]	0.147 J [0.194 J]	1.61 [1.56]	76.3 [73.4]	108 [122]	<1.00	[]
MW-13	12/15/2021	56.67	7.89	48.78		<100 [<100]	76.8 J [70 J]	84.9 J [<250]	161.7 [195]	<1.00 [<1.00]	<1.00 [<1.00]	<1.00 [<1.00]		<1.00 [<1.00]	<6.00 [<6.00]
MW-14	09/28/2021	56.49	10.62	45.87		5,110	556	<250	681	0.394 J	7.98	454 E	837 E	<1.00	<6.00
MW-14	12/16/2021	56.49	8.36	48.13		7,390 J	686	114 J	800	0.413 J	9.46	337	1,240	<1.00	<6.00
MW-15	09/27/2021	56.71	10.09	46.62		219 B	396	<250	521	<1.00	<1.00	<1.00	<3.00	<1.00	<6.00
MW-15	12/14/2021	56.71	7.55	49.16		406 B	491	<250	616	<1.00	<1.00	<1.00	<3.00	<1.00	<6.00
MW-16	09/27/2021	56.62	9.75	46.87		54.7 B J	72.0 J	<250	197	<1.00	<1.00	<1.00	<3.00	<1.00	<6.00
MW-16	12/14/2021	56.62	7.38	49.24		<100	162 J	<250	287	<1.00	<1.00	<1.00	<3.00	<1.00	<6.00
MW-17	09/28/2021	56.54	10.34	46.20		<100	546	<250	671	0.124 J	125 E	152 E	616 E	<1.00	<6.00
MW-17	12/15/2021	56.54	7.99	48.55		2,800	411	<250	536	<1.00	40.9	68.9	382	<1.00	<6.00
MW-18	09/28/2021	56.56	15.1	41.46		367	161 J	<250	286	<1.00	<1.00	<1.00	<3.00	<1.00	3.80 J
MW-18	12/15/2021	56.56	8.18	48.38		427	174 J	<250	299	<1.00	<1.00	0.791 J	3.96	<1.00	<6.00
MW-19	12/15/2021	56.72	8.68	48.04		<100	<200	<250	225	<1.00	<1.00	<1.00	0.278 J	<1.00	<6.00
MW-20	12/15/2021	56.57	9.75	46.82		<100	<200	<250	225	<1.00	<1.00	<1.00	<3.00	<1.00	<6.00
MW-21	09/28/2021	55.95	9.18	46.77		233	244	<250	369	<1.00	<1.00	2.30	12.9	<1.00	4.16 J
MW-21	12/16/2021	55.95	6.72	49.23		<100	89.7 J	178 J	267.7	<1.00	<1.00	<1.00	<3.00	<1.00	<6.00

Notes

Surveyed in 2021 by Otak, Inc. using NAD 83 (horizontal) and NAVD 88 (vertical).

800/1,000 = GRO MTCA Method A CUL with benzene present is $800~\mu g/L$ and without is $1,000~\mu g/L$

BOLD and highlighted values are greater than their respective MTCA Method A CUL

Abbreviations:

DTW = Depth to water in feet below TOC

GWE = Groundwater elevation in feet relative to NAVD 88

MW = Groundwater monitoring well

TOC = Top of casing in feet above NAVD 88

NAPL = Non-aqueous phase liquid thickness in feet

[21.2] = Blind duplicate sample results

-- = Not applicable, not available, or not analyzed

MDL = Method detection limit

MTCA = Model Toxics Control Act Cleanup

CUL = Cleanup Level

NAVD 88 = North American Vertical Datum of 1988

USEPA = United States Environmental Protection Agency

Table 8. Current Groundwater Gauging Data and Select Analytical Results

Chevron Service Station No. 97502 640 Metcalf Street, Sedro-Woolley, Washington Analytical results are presented in micrograms per liter (µg/L)

													Total		
Well	Date	TOC	DTW	GWE	NAPL	GRO	DRO	НО	DRO+HO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Total Lead
		MTCA M	ethod A CULs			800/1,000	500	500	500	5	1,000	700	1,000	20	15

Laboratory Qualifiers:

<n = Not detected at or above the laboratory MDL

J = Estimated value; result is ≥ the MDL and < the Reported Detection Limit

 $\label{eq:energy} E=\mbox{The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial$ $calibration (ICAL).}$

Analytical Methods:

Samples analyzed by NWTPH-Gx

GRO = Total Petroleum Hydrocarbons as Gasoline Range Organics

Samples analyzed by NWTPH-Dx

DRO = Total Petroleum Hydrocarbons as Diesel Range Organics

HO = Total Petroleum Hydrocarbons as Heavy Oil Range Organics

Samples analyzed by USEPA Method 8260D

BTEX = benzene, toluene, ethylbenzene, and total xylenes

Samples analyzed by USEPA Method 6010D

Total lead

Table 9. Current Groundwater Analytical Results - cPAHs

Chevron Service Station No. 97502 640 Metcalf Street, Sedro-Woolley, Washington Analytical results are presented in micrograms per liter (µg/L)

		Benzo(a)-		Benzo(b)-	Benzo(k)-		Indeno(1,2,3-cd)-	Dibenz(a,h)-					
Well	Date	anthracene	Chrysene	fluoranthene	fluoranthene	Benzo(a)-pyrene	pyrene	anthracene	Total cPAHs	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes
MTCA Met	hod A CULs	-	-	-	-	0.1	-	-	0.1	-		-	160
MW-7	9/28/2021	< 0.0500	< 0.0500	<0.0500	<0.0500	< 0.0500	<0.0500	< 0.0500	<0.0378	105	16.9	19.7	141.6
MW-7	12/15/2021	<0.0500	< 0.0500	< 0.0500	<0.0500	< 0.0500	<0.0500	< 0.0500	<0.0378	< 0.25	<0.25	<0.25	0.375

Notes:

Total cPAHs and Naphthalenes are derived according to MTCA Cleanup Regulation Table 740-1 [d]

Abbreviations:

cPAH = Carcinogenic Polycyclic Aromatic Hydrocarbon

MW = Groundwater monitoring well

[21.2] = Blind duplicate sample results

-- = Not applicable, not available, or not analyzed

MDL = Method detection limit

MTCA = Model Toxics Control Act Cleanup

CUL = Cleanup Level

USEPA = United States Environmental Protection Agency

Laboratory Qualifiers:

<n = Not detected at or above the laboratory MDL</p>
J = Estimated value; result is ≥ the MDL and < the Reported Detection Limit</p>

Analytical Methods:

Samples analyzed by USEPA Method 8270E-SIM

Benzo(a)anthracene

Chrysene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Benzo(a)pyrene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Naphthalene

1-Methylnaphthalene

2-Methylnaphthalene

Table 10. Current Soil Vapor Data

Chevron Service Station No. 97502

640 Metcalf Street, Sedro-Woolley, Washington

Analytical results are presented in micrograms per liter ($\mu g/m^3$)

Sample ID MTCA Method B Si	Date ub-Slab Soil Gas	Helium (%) Screening Level	MTBE (ug/m3)	Benzene (ug/m3) 11.00	Toluene (ug/m3) 76,000	Ethylbenzene (ug/m3) 15,000	Total Xylenes (ug/m3) 1,500	Napthalene (ug/m3) 2.5	APH EC5-8 Aliphatics (ug/m3)	APH EC9-12 Aliphatics (ug/m3)	APH EC9-10 Aromatics (ug/m3)
VP-1-5	10/7/2021	<0.6	<9.6	<1.7	<100	<2.3	<6.9	<1.4	<400	460	<130
VP-1-7	10/7/2021	<0.6	<11	<1.9	<110	<2.6	<7.7	<1.5	<440	420	<150
VP-2-7	10/7/2021	<0.6	<11	<1.9	<110	<2.6	<7.7	<1.5	<440	390	<150
Lab Dup 1 (VP-2-7)	10/7/2021	<0.6	<9.9	<1.8	<100	<2.4	<7.2	<1.4	<410	340	<150

Notes:
BOLD and highlighted values are greater than their respective MTCA Method B Sub-Slab Soil Gas Screening Level

Abbreviations:

-- = not applicable or not analyzed

< = analyte was not detected at indicated reporting limit

DUP = Duplicate sample

ND = Not detected

MDL = Method detection limit

MTCA = Model Toxics Control Act Cleanup

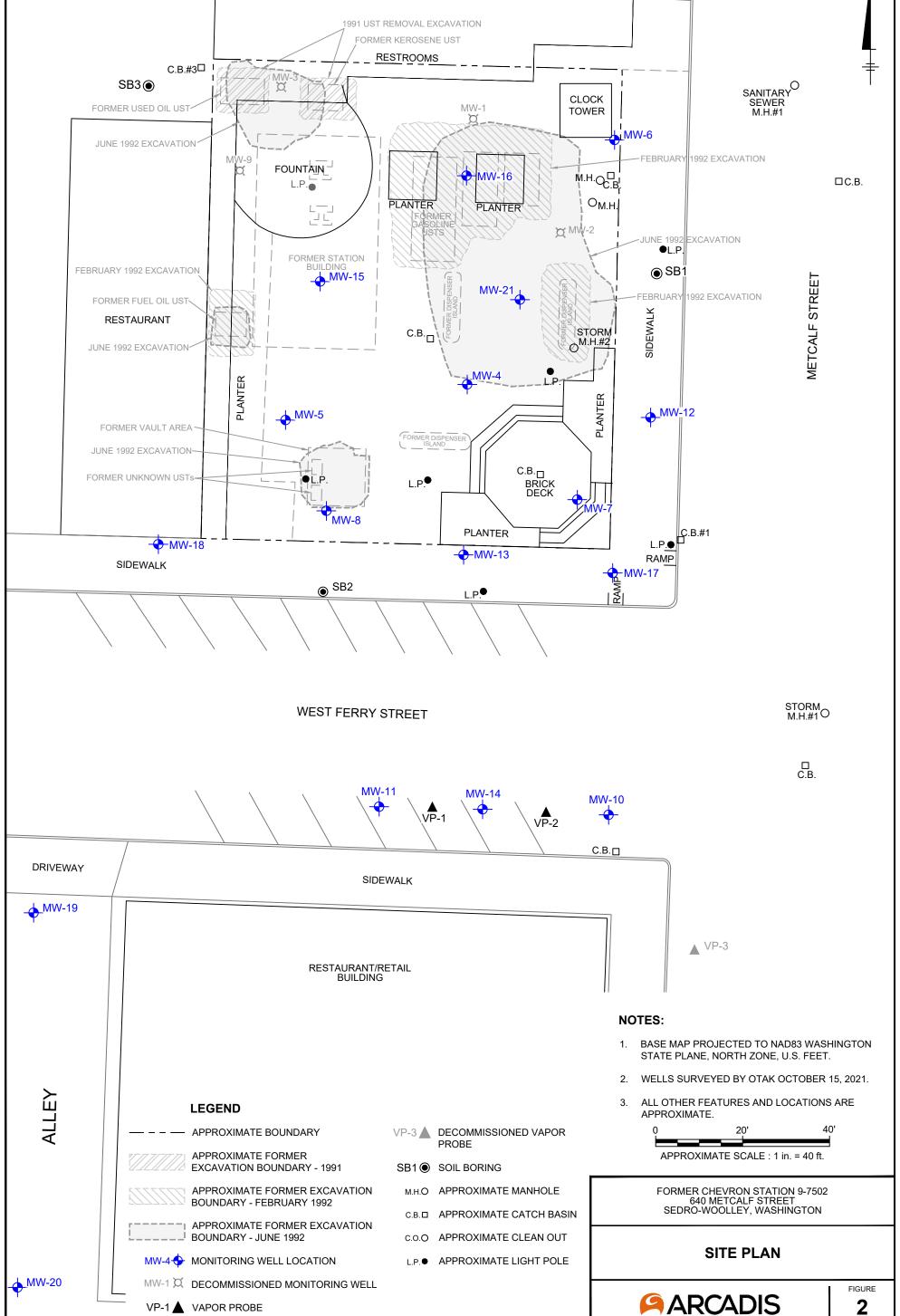
CUL = Cleanup Level

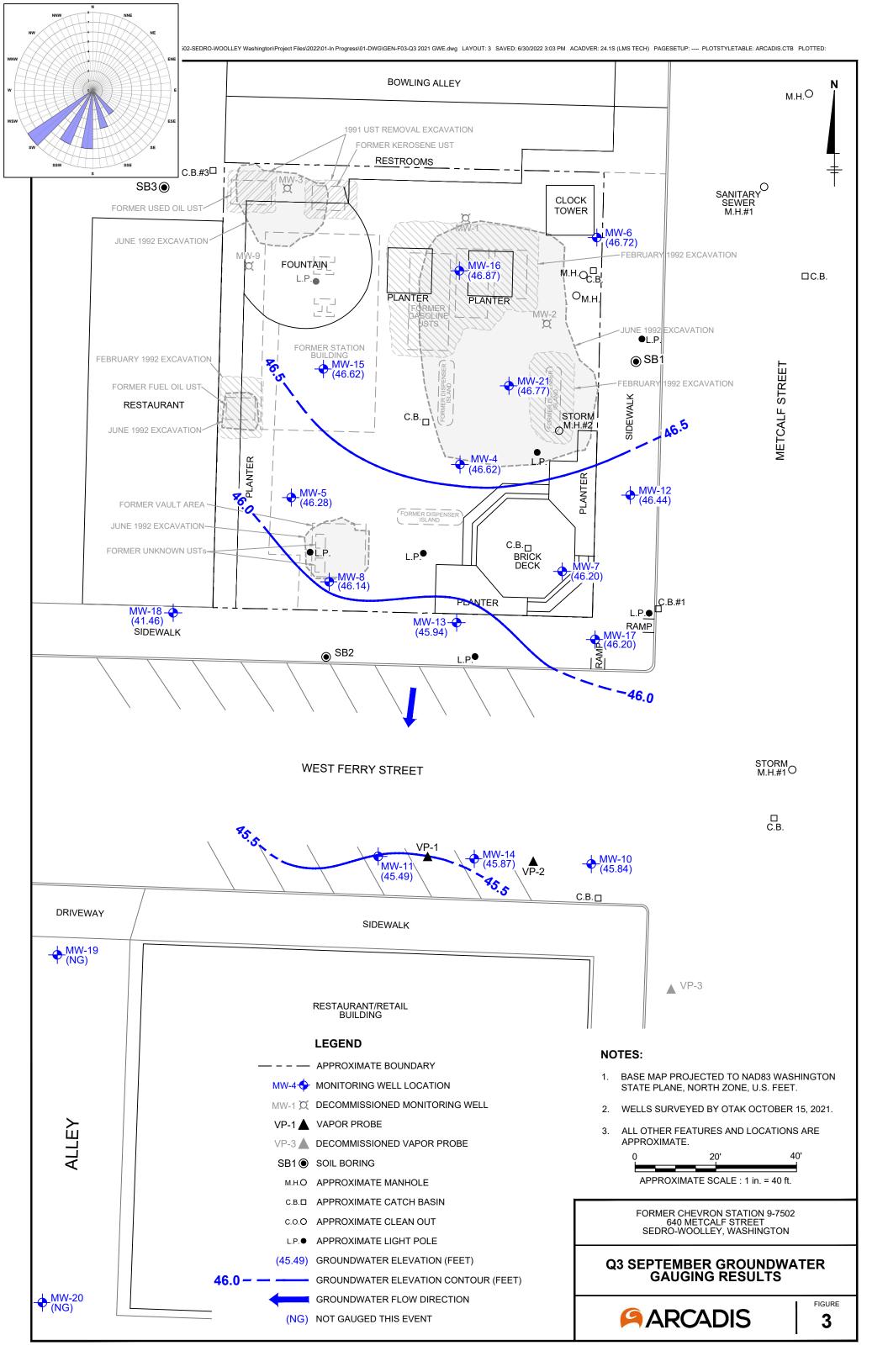
USEPA = United States Environmental Protection Agency

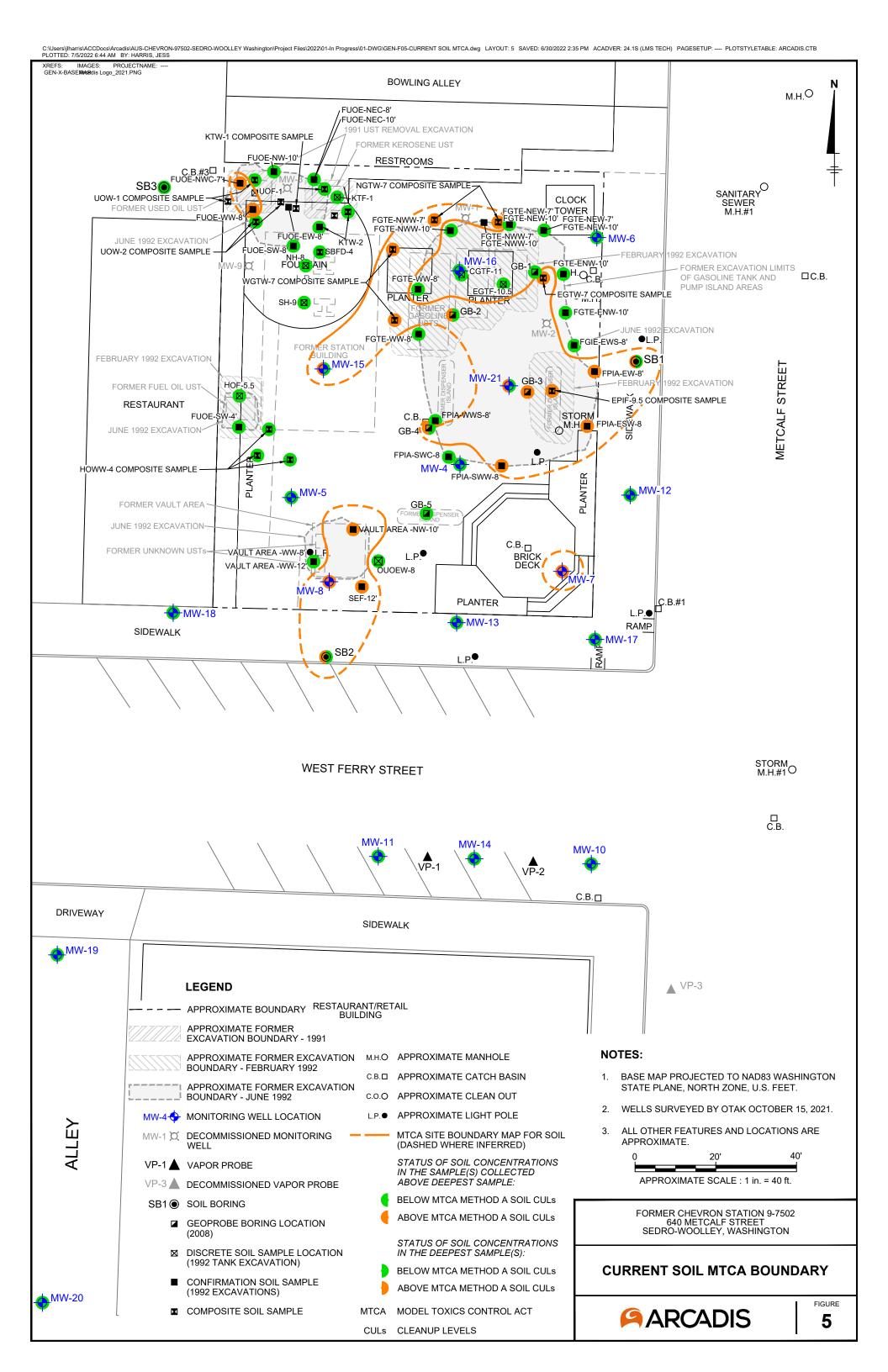
Average Barometric Pressures taken from Weather Underground (www.wunderground.com); averages for October 5, 2007 and December 6, 2007 in Burlington, Washington

Laboratory Qualifiers:

<n = Not detected at or above the laboratory MDL


J = Estimated value; result is ≥ the MDL and < the Reported Detection Limit


N = Identification of the analyte is based on presumptive evidence


Reference:

Ecology. 2018. Ecology Implementation Memorandum No. 18, Draft Petroleum Vapor Intrusion (VI): Updated Screening Levels, Cleanup Levels, and Sampling Considerations. August 7.

Figures

4 SAMPLING EVENTS

ARCADIS

6

C.B.

APPROXIMATE CATCH BASIN

C.O.O APPROXIMATE CLEAN OUT

FIGURE

7

ARCADIS

DUPLICATE RESULT

METER ($\mu g/m^3$)

SOIL VAPOR ANALYTICAL

MICROGRAMS PER CUBIC

RESULTS ARE PRESENTED IN

Dup

MW-1 DECOMMISSIONED MONITORING WELL

VP-3 ▲ DECOMMISSIONED VAPOR PROBE

VP-1 ▲ VAPOR PROBE

→MW-20

CURRENT SOIL VAPOR DATA

ARCADIS

FIGURE

8

Appendix A

Property Details and Ecology Communications

Parcel Map - 634 Metcalf Street

12/15/2020 Print Window

Details for Parcel: P77454

Jurisdiction: SEDRO-WOOLLEY

Zoning Designation: Please contact the city of SEDRO-WOOLLEY for SEDRO-WOOLLEY zoning information.

Excise Affidavits Document scans of excise affidavits

Parcel Number P77454

2020 Values for 2021 Taxes* Exemption

Building Market Value \$112,300.00

Land Market Value

Total Market Value

Assessed Value **Taxable Value**

Owner Information CITY OF SEDRO WOOLLEY 325 METCALF ST

SEDRO WOOLLEY, WA 98284

XrefID

4177-002-013-0000 Site Address(es)

640 METCALF STREET

Sedro Woolley, WA (Jurisdiction, State)

Zip Code Lookup | Site Address Information

Current Legal Description Abbreviation Definitions

N 30 FEET OF LOTS 11 TO 13, BLOCK 2, TOWN OF WOOLLEY

+\$37,100.00

\$149,400.00

\$149,400.00

2021 Property Tax Summary

2021 Taxes will be available after 2/15/2021

Sale Price \$.00

Sale Information

Deed Type

Sale Date

Use the Taxes link above for 2020 taxes

Sale requires NRL disclosure (more info)

1997-06-24

QUIT CLAIM DEED

* Effective date of value is January 1 of the assessment year (2020)

\$.00

Legal Description at time of Assessment

Quarter Section Township Range

35

04

24

Map Links

PDF DWF

Open in iMap

Assessor's Parcel Map:

Lifective date of value is darial	ary r or the assessment year (2020)		Legal Description at time of Assessment
*Assessment Use Code	(720) PUBLIC ASSEMBLY WAC 458-		WAC 458-53-030
Neighborhood	(6E1PBLDG) ALL COUNTY EXEMPT PUBLIC BUILDING		
Levy Code	0935	Fire District	
School District	SD101	Exemptions	City Owned
Utilities		Acres	0.06
	Improvement	1 Attributes Summary	
Building Style	COMMERCIAL REAL PROPERTY		
Year Built	2002	Foundation	
Above Grade Living Area	758 Square Feet	Exterior Walls	
Finished Basement		Roof Covering	
*Total Living Area	758 Square Feet	Heat/Air Conditioning	
Unfinished Basement		Fireplace	
*Total Garage Area		Bedrooms	
Bathrooms			
For additional information o	n individual segments see Improven	nents tab	

^{*} Assessment Use Code is for assessment administration purposes and has no relation to zoning or allowable land use.

Assessment data for improvements is based on exterior inspections. Please contact the Assessor's office if the information does not accurately reflect the interior characteristics.

^{*} Total living area includes above grade living area and finished basement area.

^{*} Garage square footage includes all garage areas; basement garages, attached garages, detached garages, etc.

12/15/2020 Print Window

Details for Parcel: P77455

Jurisdiction: SEDRO-WOOLLEY

Zoning Designation: Please contact the city of SEDRO-WOOLLEY for SEDRO-WOOLLEY zoning information.

Recorded Documents Documents scanned and recorded by the Auditor's office

Excise Affidavits Document scans of excise affidavits

XrefID Parcel Number Quarter Section Township Range P77455 4177-002-013-0109 24 35 04

Owner Information Site Address(es) CITY OF SEDRO WOOLLEY 640 METCALF STREET

325 METCALF ST Assessor's Parcel Map: Sedro Woolley, WA (Jurisdiction, State) PDF DWF

SEDRO WOOLLEY, WA 98284 Zip Code Lookup | Site Address Information

Current Legal Description Abbreviation Definitions TOWN OF WOOLLEY S 33FT OF N 63FT LOTS 11 TO 13 BLK 2

2020 Values for 2021 Taxes* Exemption Sale Information 2021 Property Tax Summary

Building Market Value \$ 00 Deed Type QUIT CLAIM DEED 2021 Taxes will be available after 2/15/2021

Sale Date 2000-05-31 +\$40,800.00 Land Market Value Sale Price \$29.052.00

Total Market Value \$40,800.00 Use the Taxes link above for 2020 taxes Sale requires NRL disclosure (more info)

Assessed Value \$40,800.00 **Taxable Value** \$.00

* Effective date of value is January 1 of the assessment year (2020)

Legal Description at time of Assessment

Map Links

Open in iMap

Encoure date of value to carra	ary i or the acceptanion your (2	.020)	<u>Logui Dodon phon at time of Addedoment</u>
*Assessment Use Code	(720) PUBLIC ASSEMB	(720) PUBLIC ASSEMBLY WAC 458-5	
Neighborhood	(6EL3PLND) ALL COUN	(6EL3PLND) ALL COUNTY EXEMPT PUBLIC LAND	
Levy Code	0935	Fire District	
School District	SD101	Exemptions	City Owned
Utilities	*SEW, WTR-P	Acres	0.07
	Impre	ovement 1 Attributes Summary	
Building Style	COMMERCIAL REAL PRO	OPERTY	
Year Built		Foundation	
Above Grade Living Area		Exterior Walls	
Finished Basement		Roof Covering	
*Total Living Area		Heat/Air Conditioning	
Unfinished Basement		Fireplace	
*Total Garage Area		Bedrooms	
Bathrooms			
For additional information o	n individual segments see Ir	mprovements tab	

^{*} Assessment Use Code is for assessment administration purposes and has no relation to zoning or allowable land use.

Assessment data for improvements is based on exterior inspections. Please contact the Assessor's office if the information does not accurately reflect the interior characteristics.

^{*} Total living area includes above grade living area and finished basement area.

^{*} Garage square footage includes all garage areas; basement garages, attached garages, detached garages, etc.

12/15/2020 Print Window

Details for Parcel: P77456

Jurisdiction: SEDRO-WOOLLEY

Zoning Designation: Please contact the city of SEDRO-WOOLLEY for SEDRO-WOOLLEY zoning information.

Excise Affidavits Document scans of excise affidavits

Parcel Number P77456 **Owner Information**

SEDRO WOOLLEY, WA 98284

Building Market Value

Land Market Value

Total Market Value

Assessed Value **Taxable Value**

CITY OF SEDRO WOOLLEY 325 METCALF ST

2020 Values for 2021 Taxes* Exemption

XrefID 4177-002-013-0208 Site Address(es)

640 METCALF STREET

Sedro Woolley, WA (Jurisdiction, State)

Zip Code Lookup | Site Address Information

Current Legal Description Abbreviation Definitions S 37 FEET OF LOTS 11 TO 13, BLOCK 2, TOWN OF WOOLLEY

+\$45,800.00

\$45,800.00

\$45,800.00

Sale Information

Deed Type QUIT CLAIM DEED

Sale Date 1997-06-24

Sale Price \$.00

Sale requires NRL disclosure (more info)

2021 Property Tax Summary

2021 Taxes will be available after 2/15/2021

Use the Taxes link above for 2020 taxes

\$.00 * Effective date of value is January 1 of the assessment year (2020).

\$.00

Legal Description at time of Assessment

Quarter Section Township Range

35

04

24

Map Links

PDF DWF

Open in iMap

Assessor's Parcel Map:

Effective date of value is Jaffu	iary i oi ille assessifierit ye	ai (2020)	Legal Description at time of Assessment
*Assessment Use Code	(720) PUBLIC ASSE	EMBLY	WAC 458-53-030
Neighborhood	(6E1PBLDG) ALL C	(6E1PBLDG) ALL COUNTY EXEMPT PUBLIC BUILDING	
Levy Code	0935	Fire District	
School District	SD101	Exemptions	City Owned
Utilities		Acres	0.08
		mprovement 1 Attributes Summary	
Building Style	COMMERCIAL REAL	PROPERTY	
Year Built		Foundation	
Above Grade Living Area		Exterior Walls	
Finished Basement		Roof Covering	
*Total Living Area		Heat/Air Conditioning	
Unfinished Basement		Fireplace	
*Total Garage Area		Bedrooms	
Bathrooms			
For additional information of	on individual segments s	ee Improvements tab	

^{*} Assessment Use Code is for assessment administration purposes and has no relation to zoning or allowable land use.

Assessment data for improvements is based on exterior inspections. Please contact the Assessor's office if the information does not accurately reflect the interior characteristics.

^{*} Total living area includes above grade living area and finished basement area.

^{*} Garage square footage includes all garage areas; basement garages, attached garages, detached garages, etc.

Hamilton, Ada

From: Guenther, John (ECY) <jgue461@ECY.WA.GOV>

Sent: Monday, May 24, 2021 9:15 AM

To: Hamilton, Ada

Cc: Kiernan, James; Greisler, Russell; Dotson, Christopher; Doug Merriman

Subject: RE: Chevron 97502 Sedro Woolley RIWP

Thank you Ada.

John Guenther, LHG

Cleanup Project Manager Toxics Cleanup Program Office: (360) 255-4381 Cell: (425) 324-1438

Washington State Department of Ecology

913 Squalicum Way, Unit 101 Bellingham, WA 98225

From: Hamilton, Ada <Ada.Hamilton@arcadis.com>

Sent: Friday, May 21, 2021 8:11 AM

To: Guenther, John (ECY) < jgue461@ECY.WA.GOV>

Cc: Kiernan, James < jkiernan@chevron.com>; Greisler, Russell < James.Greisler@arcadis.com>; Dotson, Christopher

<Christopher.Dotson@arcadis.com>; Doug Merriman <dmerriman@ci.sedro-woolley.wa.us>

Subject: RE: Chevron 97502 Sedro Woolley RIWP

THIS EMAIL ORIGINATED FROM OUTSIDE THE WASHINGTON STATE EMAIL SYSTEM - Take caution not to open attachments or links unless you know the sender AND were expecting the attachment or the link

Hello John,

Please find attached finalized Remedial Action Work Plan for Chevron 97502 Sedro Woolley. The hard copy is being mailed to your office as requested.

Let me know if you have any questions,

Thank you,

-Ada

Ada Hamilton

Project Manager Arcadis U.S., Inc. 1100 Olive Way, Suite 800 | Seattle, WA | 98101 | USA T ++1 206 413 6430

From: Guenther, John (ECY) < jgue461@ECY.WA.GOV>

Sent: Thursday, May 13, 2021 9:26 AM

To: Hamilton, Ada < <u>Ada. Hamilton@arcadis.com</u>>

Cc: Kiernan, James < jkiernan@chevron.com >; Greisler, Russell < James.Greisler@arcadis.com >; Dotson, Christopher

<Christopher.Dotson@arcadis.com>; Doug Merriman < dmerriman@ci.sedro-woolley.wa.us>

Subject: RE: Chevron 97502 Sedro Woolley RIWP

Ada:

Ecology has reviewed and approves all of the revised documents associated with this draft RI Work Plan.

Please finalize these documents and send me one complete hard copy (to my office address shown below) and an electronic version for filing and internal distribution.

Thanks,

John

John Guenther, LHG

Cleanup Project Manager Toxics Cleanup Program Office: (360) 255-4381 Cell: (425) 324-1438

Washington State Department of Ecology

913 Squalicum Way, Unit 101 Bellingham, WA 98225

From: Hamilton, Ada <Ada.Hamilton@arcadis.com>

Sent: Monday, May 10, 2021 5:09 PM

To: Guenther, John (ECY) < jgue461@ECY.WA.GOV>

Cc: Kiernan, James < jkiernan@chevron.com >; Greisler, Russell < James.Greisler@arcadis.com >; Dotson, Christopher

Subject: Chevron 97502 Sedro Woolley RIWP

Appendix B

TGI for Soil Descriptions

TGI - SOIL DESCRIPTION

Rev: #2

Rev Date: February 16, 2018

Rev #: 2 | Rev Date: February 16, 2018

VERSION CONTROL

Revision No	Revision Date	Page No(s)	Description	Reviewed by
0	May 20, 2008	17	Original SOP	Joe Quinnan Joel Hunt
1	September 2016	15	Updated to TGI	Nick Welty Patrick Curry
2	February 16, 2018	15	Updated descriptions, attachments and references in text	Nick Welty Patrick Curry

APPROVAL SIGNATURES

Prepared by:		June 30, 2017	
	Patrick Curry, PG	Date:	
Technical Expert Reviewed by:	Miklaus R.H. Welf	June 30, 2017	

Date:

Nicklaus Welty, PG

1

1 INTRODUCTION

This document describes general and/or specific procedures, methods, actions, steps, and considerations to be used and observed by Arcadis staff when performing work, tasks, or actions under the scope and relevancy of this document. This document may describe expectations, requirements, guidance, recommendations, and/or instructions pertinent to the service, work task, or activity it covers.

It is the responsibility of the Arcadis Certified Project Manager (CPM) to provide this document to the persons conducting services that fall under the scope and purpose of this procedure, instruction, and/or guidance. The Arcadis CPM will also ensure that the persons conducting the work falling under this document are appropriately trained and familiar with its content. The persons conducting the work under this document are required to meet the minimum competency requirements outlined herein, and inquire to the CPM regarding any questions, misunderstanding, or discrepancy related to the work under this document.

This document is not considered to be all inclusive nor does it apply to all projects. It is the CPM's responsibility to determine the proper scope and personnel required for each project. There may be project- and/or client- and/or state-specific requirements that may be more or less stringent than what is described herein. The CPM is responsible for informing Arcadis and/or Subcontractor personnel of omissions and/or deviations from this document that may be required for the project. In turn, project staff are required to inform the CPM if or when there is a deviation or omission from work performed as compared to what is described herein.

In following this document to execute the scope of work for a project, it may be necessary for staff to make professional judgment decisions to meet the project's scope of work based upon site conditions, staffing expertise, regulation-specific requirements, health and safety concerns, etc. Staff are required to consult with the CPM when or if a deviation or omission from this document is required that has not already been previously approved by the CPM. Upon approval by the CPM, the staff can perform the deviation or omission as confirmed by the CPM.

2 SCOPE AND APPLICATION

This Arcadis Technical Guidance Instruction (TGI) describes proper soil description procedures. This TGI should be followed for unconsolidated material unless there is an established client-required specific procedure or regulatory-required specific procedure. In cases where there is a required specific procedure, it should be followed and should be referenced and/or provided as an appendix to reports that include soil classifications and/or boring logs. When following a required non-Arcadis procedure, additional information required by this TGI should be included in field notes with client approval.

This TGI has been developed to emphasize field observation and documentation of details required to:

- make hydrostratigraphic interpretations guided by depositional environment/geologic settings;
- provide information needed to understand the distribution of constituents of concern; properly design
 wells, piezometers, and/or additional field investigations; and develop appropriate remedial strategies.

This TGI incorporates elements from various standard systems such as ASTM D2488-06, Unified Soil Classification System, Burmister and Wentworth. However, none of these standard systems focus specifically on contaminant hydrogeology and remedial design. Therefore, although each of these

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

TGI – Soil Description Rev #: 2 | Rev Date: February 16, 2018

systems contain valuable guidance and information related to correct descriptions, strict application of these systems can omit information critical to our clients and the projects that we perform.

This TGI does not address details of health and safety; drilling method selection; boring log preparation; sample collection; or laboratory analysis. Refer to other Arcadis procedure, guidance, and instructional documents, the project work plans including the quality assurance project plan, sampling plan, and health and safety plan (HASP), as appropriate.

3 PERSONNEL QUALIFICATIONS

Soil descriptions should only be performed by Arcadis personnel or authorized sub-contractors with a degree in geology or a geology-related discipline. Field personnel will complete training on the Arcadis soil description TGI in the office and/or in the field under the guidance of an experienced field geologist with at least 2 years of prior experience applying the Arcadis soil description method.

4 EQUIPMENT LIST

The following equipment should be taken to the field to facilitate soil descriptions:

- field book, field forms or PDA to record soil descriptions;
- field book for supplemental notes;
- this TGI for Soil Descriptions and any project-specific procedure, guidance, and/or instructional documents (if required);
- field card showing Wentworth scale;
- Munsell® soil color chart;
- tape measure divided into tenths of a foot;
- stainless steel knife or spatula;
- hand lens;
- water squirt bottle;
- jar with lid;
- personal protective equipment (PPE), as required by the HASP; and
- · digital camera

5 CAUTIONS

Drilling and drilling-related hazards including subsurface utilities are discussed in other procedure documents and site-specific HASPs and are not discussed herein.

Soil samples may contain hazardous substances that can result in exposure to persons describing soils. Routes for exposure may include dermal contact, inhalation and ingestion. Refer to the project specific HASP for guidance in these situations.

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

6 HEALTH AND SAFETY CONSIDERATIONS

Field activities associated with soil sampling and description will be performed in accordance with a site-specific HASP, a copy of which will be present on site during such activities. Know what hazardous substances may be present in the soil and understand their hazards. Always avoid the temptation to touch soils with bare hands, detect odors by placing soils close to your nose, or tasting soils.

7 PROCEDURE

- 1. Select the appropriate sampling method to obtain representative samples in accordance with the selected sub-surface exploration method, e.g. split-spoon or Shelby sample for hollow-stem drilling, acetate sleeves for direct push, bagged core for sonic drilling, etc.
- 2. Proceed with field activities in required sequence. Although completion of soil descriptions is often not the first activity after opening sampler, identification of stratigraphic changes is often necessary to select appropriate intervals for field screening and/or selection of laboratory samples.
- 3. Set up boring log field sheet.
 - Drillers in both the US and Canada generally work in feet due to equipment specifications. Use the Arcadis standard boring log form (**Attachment A**).
 - The preferred boring log includes a graphic log of the principal soil component to support quick visual evaluation of grain size. The purpose of the graphic log is to quickly assess relative soil permeability. Note, for poorly sorted soils (e.g. glacial till), the principal component may not correlate to permeability of the sample. In this case, the geologist should use best judgement to graph overall soil type consistent with relative soil permeability. For example, for a dense sand/silt/clay till, the graphic log would reflect the silt/clay, rather than sand.
 - Record depths along the left-hand side at a standard scale to aid in the use of this tool. See an
 example completed boring log (Attachment B).
- 4. Examine each soil core (this is different than examining each sample selected for laboratory analysis), and record the following for each stratum:
 - depth interval;
 - principal component with descriptors, as appropriate;
 - amount and identification of minor component(s) with descriptors as appropriate;
 - moisture;
 - consistency/density;
 - color; and
 - additional description or comments (recorded as notes).
- 5. At the end of the boring, record the amount of drilling fluid used (if applicable) and the total depth logged.

The above is described more fully below.

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

DEPTH

To measure and record the depth below ground surface (bgs) of top and bottom of each stratum, the following information should be recorded.

- 1. Measured depth to the top and bottom of sampled interval. Use starting depth of sample based upon measured tool length information and the length of sample interval.
- 2. Length of sample recovered, not including slough (material that has fallen into hole from previous interval), expressed as fraction with length of recovered sample as numerator over length of sampled interval as denominator (e.g. 14/24 for 14 inches recovered from 24-inch sampling interval that had 2 inches of slough discarded).
- 3. Thickness of each stratum measured sequentially from the top of recovery to the bottom of recovery.
- 4. Any observations of sample condition or drilling activity that would help identify whether there was loss from the top of the sampling interval, loss from the bottom of the sampling interval, or compression of the sampling interval. Examples: 14/24, gravel in nose of spoon; or 10/18 bottom 6 inches of spoon empty.

DETERMINATION OF COMPONENTS

Obtain a representative sample of soil from a single stratum. If multiple strata are present in a single sample interval, each stratum should be described separately. More specifically, if the sample is from a 2-foot long split-spoon where strata of coarse sand, fine sand and clay are present, then the resultant description should be of the three individual strata unless a combined description can clearly describe the interbedded nature of the three strata. Example: Fine Sand with interbedded lenses of Silt and Clay, ranging between 1 and 3 inches thick.

Identify principal component and express volume estimates for minor components on logs using the following standard modifiers.

Modifier	Percent of Total Sample (by volume)
and	36 - 50
some	21 - 35
little	10 - 20
trace	<10

Determination of components is based on using the Udden-Wentworth particle size classification (see below) and measurement of the average grain size diameter. Each size grade or class differs from the next larger grade or class by a constant ratio of ½. Due to visual limitations, the finer classifications of Wentworth's scale cannot be distinguished in the field and the subgroups are not included. Visual determinations in the field should be made carefully by comparing the sample to the Soil Description Field Guide (Attachment C) that shows Udden-Wentworth scale or by measuring with a ruler. Use of field sieves is encouraged to assist in estimating percentage of coarse grain sizes. Settling test or wash method (Appendix X4 of ASTM D2488) is encouraged for determining presence and estimating percentage of clay and silt. Note that "gravel" is not an Udden-Wentworth size class.

Udden-Wenworth Scale Modified Arcadis, 2008			
Size Class	Millimeters	Inches	Standard Sieve #
Boulder	256 – 4096	10.08+	
Large cobble	128 - 256	5.04 -10.08	
Small cobble	64 - 128	2.52 – 5.04	
Very large pebble	32 – 64	0.16 - 2.52	
Large pebble	16 – 32	0.63 – 1.26	
Medium pebble	8 – 16	0.31 - 0.63	
Small pebble	4 – 8	0.16 – 0.31	No. 5 +
Granule	2 – 4	0.08 - 0.16	No.5 – No.10
Very coarse sand	1 -2	0.04 - 0.08	No.10 – No.18
Coarse sand	½ - 1	0.02 - 0.04	No.18 - No.35
Medium sand	1/4 - 1/2	0.01 – 0.02	No.35 - No.60
Fine sand	1/8 -1/4	0.005 - 0.1	No.60 - No.120
Very fine sand	1/16 – 1/8	0.002 - 0.005	No. 120 – No. 230
Silt (subgroups not included)	1/256 – 1/16	0.0002 - 0.002	Not applicable (analyze by
Clay (subgroups not included	1/2048 – 1/256	.00002 – 0.0002	pipette or hydrometer)

Identify components as follows. Remove particles greater than very large pebbles (64-mm diameter) from the soil sample. Record the volume estimate of the greater than very large pebbles. Examine the sample fraction of very large pebbles and smaller particles and estimate the volume percentage of the pebbles, granules, sand, silt and clay. Use the jar method, visual method, and/or wash method (Appendix X4 of ASTM D2488) to estimate the volume percentages of each category.

Determination of actual dry weight of each Udden-Wentworth fraction requires laboratory grain-size analysis using sieve sizes corresponding to Udden-Wentworth fractions and is highly recommended to determine grain-size distributions for each hydrostratigraphic unit.

Lab or field sieve analysis is advisable to characterize the variability and facies trends within each hydrostratigraphic unit. Field sieve-analysis can be performed on selected samples to estimate dry weight fraction of each category using ASTM D2488 Standard Practice for Classification of Soils for Engineering Purposes as guidance, but replace required sieve sizes with the following Udden-Wentworth set: U.S. Standard sieve mesh sizes 6; 12; 20; 40; 70; 140; and 270 to retain pebbles; granules; very coarse sand; coarse sand; medium sand; fine sand; and very fine sand, respectively.

PRINCIPAL COMPONENT

The principal component is the size fraction or range of size fractions containing the majority of the volume. Examples: the principal component in a sample that contained 55% pebbles would be "Pebbles"; or the principal component in a sample that was 20% fine sand, 30% medium sand and 25% coarse sand would be "Sand, fine to coarse" or for a sample that was 40% silt and 45% clay the principal component would be "Clay and Silt". Shade the boxes on the graphic log (**Attachment A**) up to and including the box with the principal component. The purpose of the graphical log is to provide a relative estimate of permeability. As noted above, for poorly sorted soils such as glacial till, the principal component may not correlate to permeability of the sample. In this case, the geologist should use best judgement to graph overall soil type consistent with relative soil permeability.

Include appropriate descriptors with the principal component. These descriptors vary for different particle sizes as follows.

Angularity – Describe the angularity for very coarse sand and larger particles in accordance with the table below (ASTM D-2488-06). Figures showing examples of angularity are available in ASTM D-2488-06 and the Arcadis Soil Description Field Guide.

Description	Criteria
Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces.
Sub-angular	Particles are similar to angular description but have rounded edges.
Sub-rounded	Particles have nearly plane sides but have well-rounded corners and edges.
Rounded	Particles have smoothly curved sides and no edges.

Plasticity – Describe the plasticity for silt and clay based on observations made during the following test method (ASTM D-2488-06).

- As in the dilatancy test below, select enough material to mold into a ball about ½ inch (12 mm) in diameter. Mold the material, adding water if necessary, until it has a soft, but not sticky, consistency.
- Shape the test specimen into an elongated pat and roll by hand on a smooth surface or between the palms into a thread about 1/8 inch (3 mm) in diameter. If the sample is too wet to roll easily, it should be spread into a thin layer and allowed to lose some water by evaporation. Fold the sample threads and reroll repeatedly until the thread crumbles at a diameter of about 1/8 inch. The thread will crumble when the soil is near the plastic limit.

Description	Criteria
Non-plastic	A 1/8-inch (3 mm) thread cannot be rolled at any water content.
Low	The thread can barely be rolled, and the lump cannot be formed when drier than the plastic limit.
Medium	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.

Dilatancy – Describe the dilatancy for silt and silt-sand mixtures using the following field test method (ASTM D-2488-06).

- From the specimen select enough material to mold into a ball about ½ inch (12 mm) in diameter. Mold the material adding water if necessary, until it has a soft, but not sticky, consistency.
- Smooth the ball in the palm of one hand with a small spatula.
- Shake horizontally, striking the side of the hand vigorously with the other hand several times.
- Note the reaction of water appearing on the surface of the soil.
- Squeeze the sample by closing the hand or pinching the soil between the fingers, and not the reaction
 as none, slow, or rapid in accordance with the table below. The reaction is the speed with which water
 appears while shaking and disappears while squeezing.

Description	Criteria
None	No visible change in the specimen.
Slow	Water appears slowly on the surface of the specimen during shaking and does not disappear or disappears slowly upon squeezing.
Rapid	Water appears quickly on the surface of the specimen during shaking and disappears quickly upon squeezing.

Note that silt and silt-sand mixtures will be non-plastic and display dilatancy. Clay mixtures will have some degree of plasticity but do not typically react to dilatancy testing. Therefore, the tests outlined above can be used to differentiate between silt dominated and clay dominated soils.

MINOR COMPONENT(S)

The minor component(s) are the size fraction(s) containing less than 50% volume. Example: the identified components are estimated to be 60% medium sand to granules, 25% silt and clay; 15 % pebbles – there are two identified minor components: silt and clay; and pebbles.

Include a standard modifier to indicate percentage of minor components (see Table on Page 6) and the same descriptors that would be used for a principal component. Plasticity should be provided as a descriptor for clay and clay mixtures. Dilatancy should be provided for silt and silt mixtures. Angularity should be provided as a descriptor for pebbles and coarse sand. For the example above, the minor constituents with modifiers could be: some silt and clay, low plasticity; little medium to large pebbles, subround.

SORTING

Sorting is the opposite of grading, which is a commonly used term in the USCS or ASTM methods to describe the uniformity of the particle size distribution in a sample. Well-sorted samples are poorly graded and poorly sorted samples are well graded. Arcadis prefers the use of sorting for particle size distributions and grading to describe particle size distribution trends in the vertical profile of a sample or hydrostratigraphic unit because of the relationship between sorting and the energy of the depositional process. For soils with sand-sized or larger particles, sorting should be determined as follows:

Well sorted – the range of particle sizes is limited (e.g. the sample is comprised of predominantly one or two grain sizes).

Poorly sorted – a wide range of particle sizes are present.

You can also use sieve analysis to estimate sorting from a sedimentological perspective; sorting is the statistical equivalent of standard deviation. Smaller standard deviations correspond to higher degree of sorting (see Remediation Hydraulics, 2008).

MOISTURE

Moisture content should be described for every sample since increases or decreases in water content is critical information. Moisture should be described in accordance with the table below (percentages should not be used unless determined in the laboratory).

Description	Criteria
Dry	Absence of moisture, dry to touch, dusty.
Moist	Damp but no visible water.
Wet (Saturated)	Visible free water, soil is usually below the water table.

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

CONSISTENCY or DENSITY

This can be determined by standard penetration test (SPT) blow counts (ASTM D-1586) or field tests in accordance with the tables below. When drilling with hollow-stem augers and split-spoon sampling, the SPT blow counts and N-value is used to estimate density. The N-value is the blows per foot for the 6" to 18" interval. Example: for 24-inch spoon, recorded blows per 6-inch interval are: 4/6/9/22. Since the second interval is 6" to12", the third interval is 12" to 18", the N value is 6+9, or 15. Fifty blow counts for less than 6 inches is considered refusal. In recent years, more common drilling methods include rotary-sonic or direct push. When blow counts are not available, density is determined using a thumb test. Note however, the thumb test only applies to fine-grained soils.

	•
Description	Criteria
Very soft	N-value < 2 or easily penetrated several inches by thumb.
Soft	N-value 2-4 or easily penetrated one inch by thumb.
Medium stiff	N-value 9-15 or indented about ¼ inch by thumb with great effort.
Very stiff	N-value 16-30 or readily indented by thumb nail.
Hard	N-value > than 30 or indented by thumbnail with difficulty

Coarse-grained soil - Density

	•
Description	Criteria
Very loose	N-value 1- 4
Loose	N-value 5-10
Medium dense	N-value 11-30
Dense	N-value 31- 50
Very dense	N-value >50

COLOR

Color should be described using simple basic terminology and modifiers based on the Munsell system. Munsell alpha-numeric codes are required for all samples. If the sample contains layers or patches of varying colors this should be noted and all representative colors should be described. The colors should be described for moist samples. If the sample is dry it should be wetted prior to comparing the sample to the Munsell chart.

ADDITIONAL COMMENTS (NOTES)

Additional comments should be made where observed and should be presented as notes with reference to a specific depth interval(s) to which they apply. Some of the significant information that may be observed includes the following.

- Odor You should not make an effort to smell samples by placing near your nose since this can result
 in unnecessary exposure to hazardous materials. However, odors should be noted if they are
 detected during the normal sampling procedures. Odors should be based upon descriptors such as
 those used in NIOSH "Pocket Guide to Chemical Hazards", e.g. "pungent" or "sweet" and should not
 indicate specific chemicals such as "phenol-like" odor or "BTEX" odor.
- Structure
- Bedding planes (laminated, banded, geologic contacts).
- Presence of roots, root holes, organic material, man-made materials, minerals, etc.
- Mineralogy
- Cementation
- NAPL presence/characteristics, including sheen (based on client-specific guidance).
- Reaction with HCl typically only used for special soil conditions, such as caliche environments.
- Origin, if known (Lacustrine; Fill; etc.).

EXAMPLE DESCRIPTIONS

51.4 to 54.0' CLAY, some silt, medium to high plasticity; trace small to large pebbles, sub-round to sub-angular up to 2" diameter; moist, stiff, dark grayish brown (10 YR 4/2) NOTE: Lacustrine; laminated 0.1 to 0.2" thick, laminations brownish yellow (10 YR 4/3).

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

TGI – Soil Description Rev #: 2 | Rev Date: February 16, 2018

32.5 to 38.0' SAND, medium to very coarse, sub-round to sub-angular; little granule and pebble, trace silt; poorly sorted, wet, grayish brown (10 YR 5/2).

Unlike the first example where a density of cohesive soils could be estimated, this rotary-sonic sand and pebble sample was disturbed during drilling (due to vibrations in a loose sand and pebble matrix) so no density description could be provided. Neither sample had noticeable odor so odor comments were not included.

The standard generic description order is presented below.

- Depth
- Principal Components
 - Angularity for very coarse sand and larger particles
 - Plasticity for silt and clay
 - Dilatancy for silt and silt-sand mixtures
- Minor Components
- Sorting
- Moisture
- Consistency or Density
- Color
- Additional Comments

8 WASTE MANAGEMENT

Project-specific requirements should be identified and followed. The following procedures, or similar waste management procedures are generally required.

Water generated during cleaning procedures will be collected and contained onsite in appropriate containers for future analysis and appropriate disposal. PPE (such as gloves, disposable clothing, and other disposable equipment) resulting from personnel cleaning procedures and soil sampling/handling activities will be placed in plastic bags. These bags will be transferred into appropriately labeled 55-gallon drums or a covered roll-off box for appropriate disposal.

Soil materials will be placed in sealed 55-gallon steel drums or covered roll-off boxes and stored in a secured area. Once full, the material will be analyzed to determine the appropriate disposal method.

9 DATA RECORDING AND MANAGEMENT

Upon collection of soil samples, the soil sample should be logged on a standard boring log and/or in the field log book depending on Data Quality Objectives (DQOs) for the task/project. The preferred standard boring log is presented below and is included as **Attachment A**.

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

TGI – Soil Description Rev #: 2 | Rev Date: February 16, 2018

The general scheme for soil logging entries is presented above; however, depending on task/project DQOs, specific logging entries that are not applicable to task/project goals may be omitted at the project manager's discretion. In any case, use of a consistent logging procedure is required.

Completed logs and/or logbook will be maintained in the task/project field records file. Digital photographs of typical soil types observed at the site and any unusual features should be obtained whenever possible. All photographs should include a ruler or common object for scale. Photo location, depth and orientation must be recorded in the daily log or log book and a label showing this information in the photo is useful.

10 QUALITY ASSURANCE

Soil descriptions should be completed only by appropriately trained personnel. Descriptions should be reviewed by an experienced field geologist for content, format and consistency. Edited boring logs should be reviewed by the original author to assure that content has not changed.

11 REFERENCES

Arcadis Soil Description Field Guide, 2008.

Munsell® Color Chart – available from Forestry Suppliers, Inc.- Item 77341 "Munsell® Color Soil Color Charts.

Field Gauge Card that Shows Udden-Wentworth scale – available from Forestry Suppliers, Inc. – Item 77332 "Sand Grain Sizing Folder."

ASTM D-1586, Test Method for Penetration Test and Split-Barrel Sampling of Soils.

ASTM D-2488-00, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)

United States Bureau of Reclamation. Engineering Geology Field Manual. United States Department of Interior, Bureau of Reclamation. http://www.usbr.gov/pmts/geology/fieldmap.htm.

Petrology of Sedimentary Rocks, Robert L. Folk, 1980, p. 1-48.

NIOSH Pocket Guide to Chemical Hazards.

Remediation Hydraulics, Fred C. Payne, Joseph A. Quinnan, and Scott T. Potter, 2008, p 59-63.

Downloaded and printed copies from the Approved Procedure Library are uncontrolled documents.

ATTACHMENT A

Arcadis Standard Soil Boring Log Form

SOIL BORING LOG

Boring/W	e <u>ll</u>					F	Proj	ect															Page	∍	of
Site Location	,																	Drilling	g Starte	ed					
	pth Drilled								ŀ	lole	Dia	ame	eter		inches			Orilling Co							
	Sample or													ameter	_										
Cori	ng Device					-				(of C	orir	ng [Device					•	Sampli	ng Inte	rval			feet
Drilli	ng Method					_		D	rilliı	ng F	luic	l Us	sed												
	Drillina																	D :							
	Contractor Prepared														_			Driller							
															<u> </u>			Helper							
Core	PID		М	UD		S	SAN	D		(3R/	VE	L		entworth Dese	cription:	principal c	omponer	nts. (ar	aularity	plastic	itv. dilat	encv): mi	nor	
Recovery	Reading	Depth			fine		E	se	coarse	ular	<u>e</u>	<u>e</u>	der	Udden-We component additional of	ts, (angularity,	, plasticity	, dilatency); sorting,	, moist	ure con	ent, co	nsistend	y/density	, color,	
(feet)	(ppm)	(ft bgs)	clay	sit	very	fine	med	coar	very	gran	bebb	copp	ponle	ladditional	Johnnerits										
			-																						
			+																						
			+																						
	 		†											 											
			<u> </u>		ļ	ļ				<u> </u>															
			1																						
			╀																						
	 	 -	╁╌																						
			t																						
			t																						
			-																						
			+																						
		 -	+		·																				
			+																						
			-																						
			-																						
		-	+					H			\vdash														
			+																						
			1																						
 	 	 	†		†	† -					 		 	 											

Boring/We	ell								_		Pre	epai	ared By Page of	
Core Recovery (feet)	PID Reading (ppm)	Sample	į	UD			AND medium		very coarse	GR. elqqed			Udden-Wentworth Description: principal components, (angularity, plasticity, dilatency); minor components, (angularity, plasticity, dilatency); sorting, moisture content, consistency/density, color, accomments	ddtl.
								4						
								4						
								+		-				
			 -								-	 -		
								+						
								+						
								+						
			†								†	† -		
			ļ	ļ	ļ		, <u> </u>				<u> </u>	ļ		
								4						
								+						
							\dashv	+		+				
			†									+		
								\dagger						
								\top						
			<u> </u>								<u> </u>	<u> </u>		
							\perp	4						
								4						
								+		+				
			 		 							 -		
								+						
								1						
								4						
								4						
			-				\vdash	+		+				
			 				/					 -		
								+						
								+						
								+						
								_						
								4						
		 	 		ļ	 					 	ļ		
								+						
			\vdash				+	+		+				
			H				+	+		+				
		 	†		† -	††				+	 	†		
								_						
								I						
				1	1	1		- 1	- 1	1	1	1		

ATTACHMENT B

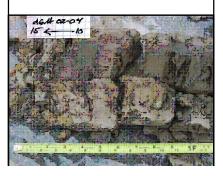
Example of Completed Arcadis Soil Boring Log

Design & Consultancy for natural and built assets	
in	
=	
1	
ARCADIS	(
N	0
7	
1	
O	

SOIL BORING LOG

ATTACHMENT C

Arcadis Soil Description Field Guide



ГП	NE-GRAINED SOILS			
Description	Criteria			
	Descriptor - Plasticity			
Nonplastic	A 1/8-inch (3mm) thread cannot be rolled at any moisture content.			
Low	Thread can barely be rolled, and lump cannot be formed when drier than plastic limit.			
Medium	Takes considerable time and rolling to reach plastic limit. Thread cannot be rolled after reaching plastic limit. Lump crumbles when drier than plastic limit.			
High	Thread is easy to roll and quickly reaches plastic limit. Thread can be rerolled several times after reaching plastic limit. Lump can be formed without crumbling when drier than plastic limit.			
	Descriptor - Dilatancy			
No Dilatancy	No visible change when shaken or squeezed.			
Slow	Water appears slowly on the surface of soil during shaking and does not disappear or disappears slowly when squeezed.			
Rapid	Water appears quickly on surface of soil during shaking and disappears quickly when squeezed.			
Mino	or Components with Descriptors			
	Moisture			
Dry	Absence of moisture, dry to touch, dusty.			
Moist	Damp but no visible water.			
Wet	Visible free water; soil is usually below the water table. (Saturated)			
	Consistency			
Very soft	N-value < 2 or easily penetrated several inches by thumb.			
Soft	N-value 2-4 or easily penetrated 1 inch by thumb.			
Medium stiff	N-value 5-8 or indented about 1/2 inch by thumb with great effort.			
Stiff	N-value 9-15 or indented about 1/4 inch by thumb with great effort.			
Very stiff	N-value 16-30 or readily indented by thumb nail.			
Hard	N-value > than 30 or indented by thumbnail with difficulty.			
Color using Munsell				
Geologic Origin (if known)				

EXAMPLE OF SOIL DESCRIPTION AND PHOTO

Other

10-15 feet CLAY, medium to high plasticity; trace silt; trace small to very large pebbles, subround to subangular up to 2" diameter; moist, stiff, dark grayish brown (10YR 4/2). NOTE: Lacustrine; laminated 0.1 to 0.2" thick, laminations brownish yellow (10YR 4/3).

DESCRIPTION ORDER

Depth Interval
Principal Components with Descriptors
Minor Components with Descriptors
Sorting

Field Moisture Condition
Density/Consistency
Color using Munsell
Geologic Origin (if known)
Other descriptions as NOTES:

- Odor
- StratigraphyStructure
- Sphericity
- Cementation
- Reaction to acid

MINOR COMPONENTS % MODIFIERS					
Modifier	Percent of Total Sample (by volume)				
and	36 - 50				
some	21 - 35				
little	10 - 20				
trace	<10				

	UDDEN-WENTWORTH SCALE						
Fraction	Sieve Size	Grain Size	Approximate Scale				
Boulder		256 - 4096 mm	Larger than volleyball				
Large Cobble		128 - 256 mm	Softball to volleyball				
Small Cobble		64 - 128 mm	Pool ball to softball				
Very Large Pebble		32 - 64 mm	Pinball to pool ball				
Large Pebble		16 - 32 mm	Dime size to pinball				
Medium Pebble		8 - 16 mm	Pencil eraser to dime size				
Small Pebble	No. 5+	4 - 8 mm	Pea size to pencil eraser				
Granule	No. 10 - 5	2 - 4 mm	Rock salt to pea size				
Very Coarse Sand	No. 18 - 10	1 - 2 mm	See field gauge card				
Coarse Sand	No. 35 -18	0.5 - 1 mm	See field gauge card				
Medium Sand	No. 60 - 35	0.25 - 0.5 mm	See field gauge card				
Fine Sand	No. 120 - 60	0.125 - 0.25 mm	See field gauge card				
Very Fine Sand	No. 230 - 120	0.0625 - 0.125 mm	See field gauge card				
Silt and Clay. See SOP for description of fines	Not Applicable	<0.0625 mm	Analyze by pipette or hydrometer				

PARTICLE PERCENT COMPOSITION ESTIMATION 1% 10% 20% 30% 40% 50% 1% 10% 20% 30% 40% 50%

GRAPH FOR DETERMINING SIZE OF PARTICLES
Very Fine Sands — Fine
Silt Medium Sands Small Pebble Coarse Sand
Granule Very Coarse Sands 0 inch 1 inch 2 inches
0 centimeter 5 centimeters

FOR CO	FOR COARSE-GRAINED SOILS						
Description	Criteria						
	Descriptor - Angularity						
Angular	Particles have sharp edges and relatively planar sides withunpolished surfaces.						
Subangular	Particles are similar to angular but have rounded edges.						
Subround	Particles have nearly planar sides but have well-roundedcorners and edges.						
Round	Particles have smoothly curved sides and no edges.						
Mino	r Components with Descriptors						
	Sorting Cu= d60/d10						
Well Sorted	Near uniform grain-size distribution Cu= 1 to 3.						
Poorly Sorted	Wide range of grain size Cu= 4 to 6.						
	Moisture						
Dry	Absence of moisture, dry to touch, dusty.						
Moist	Damp but no visible water.						
Wet	Visible free water; soil is usually below the water table. (Saturated)						
	Density						
Very loose	N-value 1 - 4						
Loose	N-value 5 - 10						
Medium Dense	N-value 11 - 30						
Dense	N-value 31 - 50						
Very dense	N-value >50						
	Color using Munsell						
	Geologic Origin (if known)						
	Other						
	Cementation						
Weak Cementation	Crumbles or breaks with handling or little finger pressure.						
Moderate Cementation	Crumbles or breaks with considerable finger pressure.						
Strong Cementation	Will not crumble with finger pressure.						
	Reaction with Dilute HCI Solution (10%)						
No Reaction	No visible reaction.						
Weak Reaction	Some reaction, with bubbles forming slowly.						
Strong Reaction	Violent reaction, with bubbles forming immediately.						

FOR COARSE-GRAINED SOILS

EXAMPLE OF SOIL DESCRIPTION AND PHOTO

10 -15 feet SAND, medium to very coarse; little granules to medium pebbles, subround to subangular; trace silt; poorly sorted, wet, grayish brown (10YR5/2).

0 mm

10 inches

ARCADIS Design & Consultancy for natural and built assets

9 inches

8 inches

VARIAT	TIONS IN SOIL STRATIGRAPHY
Term	Thickness of Configuration
Parting	0 - to 1/16-inch thickness.
Seam	1/16 - to 1/2-inch thickness.
Layer	1/2 - to 12-inch thickness.
Stratum	> 12-inch thickness.
Pocket	Small erratic deposit, usually less than 1 foot in size.
Varved Clay	Alternating seams or layers of sand, silt, and clay (laminated).
Occasional	≤ 1 foot thick.
Frequent	> 1 foot thick.

SOIL	STRUCTURE DESCRIPTIONS					
Term	Description					
Homogeneous	Same color and appearance throughout.					
Laminated	Alternating layers < 1/4 inch thick.					
Stratified	Alternating layers ≥ 1/4 inch thick.					
Lensed	Inclusions of small pockets of different materials, such as lenses of sand scattered through a mass of clay; note thickness.					
Blocky	Cohesive soil can be broken down into small angular lumps, which resist further breakdown.					
Fissured	Breaks along definite planes of fracture with little resistance to fracturing.					
Slickensided	Fracture planes appear to be polished or glossy, sometimes striated.					

7 inches

6 inches

P	NGUL	ARITY	CHAR	Т
	Angula,	\	Supported to	Pan
High Sphericity				
Low Sphericity				

5 inches

4 inches

3 inches

PARTICLE PERCENT COMPOSITION ESTIMATION											
				9							
1%	3%	7%	15%	25%	40%						
2%	6%	10%	20%	30%	50%						

2 inches

1 inch

SETTLING TABLE (SILT/CLAY)										
Diameter of Particle (mm)	<0.625	<0.031	<0.016	<0.008	<0.004	<0.002	<0.0005			
Depth of Withdrawal (cm)	10	10	10	10	5	5	3			
Time of Withdrawal	hr:min:sec									
Temperature (Celsius)										
20	00:00:29	00:01:55	00:07:40	00:30:40	00:61:19	04:05:00	37:21:00			
21	00:00:28	00:01:52	00:07:29	00:29:58	00:59:50	04:00:00				
22	00:00:27	00:01:50	00:07:18	00:29:13	00:58:22	03:54:00				
23	00:00:27	00:01:47	00:07:08	00:28:34	00:57:05	03:48:00				
24	00:00:26	00:01:45	00:06:58	00:27:52	00:55:41	03:43:00	33:56:00			
25	00:00:25	00:01:42	00:06:48	00:27:14	00:54:25	03:38:00				
26	00:00:25	00:01:40	00:06:39	00:26:38	00:53:12	03:33:00				
27	00:00:24	00:01:38	00:06:31	00:26:02	00:52:02	03:28:00				
28	00:00:24	00:01:35	00:06:22	00:25:28	00:50:52	03:24:00	31:00:00			
29	00:00:23	00:01:33	00:06:13	00:24:53	00:49:42	03:10:00				
30	00:00:23	00:01:31	00:06:06	00:24:22	00:48:42	03:05:00				

SORTING									
		A							
		AA							
Udd	en-W	/entwor	th Scale_						
Inch	mm		Be a de						
			Boulders						
			boulders						
	500		-						
10.0-	200	large	Cobbles						
	100	small	COBDIES						
	50	very coarse							
1.0-	20	coarse	A STATE A STATE OF THE STATE OF						
	E 10	medium	Gravel						
	5	fine							
	Ē	very fine							
0.1-	2	very coarse							
	[1	coarse							
	0.5	 medium	Sand						
0.01-	0.2	fine							
		very fine							
	0.05	coarse							
0.001		medium							
	0.01	- 100	Silt						
		fine							
Ŋ.	0.005	very fine							
0.0001-		coarse	Clay						
-	0.001	medium	Ciaj						
	-	fine							

10 mm 20 mm 30 mm 40 mm 50 mm 60 mm 70 mm 80 mm 90 mm 100 mm 110 mm 120 mm 130 mm 140 mm 150 mm 160 mm 170 mm 180 mm 190 mm 200 mm 210 mm 220 mm 230 mm

240 mm

250 mm

/10in

Appendix C

Boring Logs

9/	RCADIS	Design & C for natural built asset	Boring No.: MW-15						
Soi	l Boring	j Lo	g					Sheet: 1 of 1	
Client								Logger: Joe Sepiol	
1 1	ct Name: ct Number:		_	st_975		ompleted: <u>09</u> - otal Depth: 20.		Reviewer:	
Depth (feet)	Sample ID	Rec. (ft)		Graphic		Drilling Fluid and Notes	Well Installation	on Well Construction Details	
					(0-0.4 ft) NOTE: Asphalt.			2" Borehole 8" Well Box	
_ 1 _					(0.4-1 ft) PEBBLES, small to very large, angular subround; little very fine to very coarse sand, angular to round; trace silt; poorly sorted; moist; loose; 10YR 4/2 - dark grayish brown; no odor. NOTE: Road fill.			Concrete	
3 _			1.7		(1-2.5 ft) SAND, very fine to very coarse, angula to round; little granules, subangular to subround; little silt; trace small to large pebbles, subangular poorly sorted; moist; loose; 10YR 4/2 - dark grayish brown; no odor. NOTE: 1.7ppm large cobble at 2.0 ft.			2" — Bentonite — Chips (%)	
4 _ 5 _ 5 _ 6 _ 6 _ 6 _ 6 _ 6 _ 6 _ 6 _ 6			5.0		(2.5-5.9 ft) SAND, very fine to very coarse, angular to round; little granules, subangular to subround; little silt; trace small to medium pebble subangular to subround; poorly sorted; moist; loose; 10YR 3/2 - very dark grayish brown; no odor. NOTE: 5.0 ppm.	es,			
7 _ 7 _	MW-15-6.5-7.5		4.5		(5.9-9.1 ft) SAND, fine, subangular; little silt; well sorted; moist to wet; dense; 10YR 5/1 - gray; no odor. NOTE: 2.5YR 5/8 mottling . Water interfac at 6.9 ft bgs. 4.5 ppm.				
8 _ 8 _ 9 _			4.5						
_ 10 _	MW-15-10.0-		499		(9.1-13.8 ft) SAND, very fine to medium, round; little silt; well sorted; wet; medium dense; 10YR 5/1 - gray; strong odor. NOTE: 499 ppm.				
11 _ 12 _	11.0							Prepack Filter Pack	
13			51.2					2" 0.1-Slot (%) PVC pre-pack (%) Screen	
14 15	MW-15-14.0- 15.0		6.4		(13.8-17.3 ft) SILT, no plasticity, no dilatancy; litt very fine to fine sand, round; well sorted; wet; dense; 10YR 4/1 - dark gray; mild odor. NOTE: 6.4 ppm.	le			
_ 17 _									
			5.3		(17.3-19.6 ft) CLAY, high plasticity, no dilatancy; little silt; little very fine to fine sand, round; well sorted; wet; medium dense; 10YR 4/1 - dark gra mild odor. NOTE: Changed from more silt to moi fine sand. Wood encountered at 17.3 ft. 5.3 ppm	y; re			
_ 19 _	MW-15-19.0-								
20_	20.0				(19.6-20 ft) SAND, very fine to fine, round; little silt; trace clay; well sorted; wet; medium dense; 10YR 4/1 - dark gray.			Sch. 40 PVC End Cap	
21 Drillin	u Co :	Holt			20 ft. bgs End of Boring	Sampling Meth	od:Hand ^	Auger/ Split Spoon/ Sleeves	
Driller	•		el Ru	nning				-7.5 / 10.0-11.0 / 14.0-15.0 / 19.0-20.0	
4	Drilling Method: Direct-Push/ Direct First Encountered Water (ft bgs): 6.9								
Drill R	-	<u>Geopi</u>	robe/	Hollow	Stem Auger	Static Water L	evel (ft bgs)): <u>10.04</u>	
Rema	ırks:								
S S S S S S S S S S S S S S S S S S S									
SOIL BU									

A A	RCADI	S Design & C for natural built asset	onsultancy and s					Boring No.: MW-16				
	Boring							Sheet: 1 of 1				
	Name:					Started: <u>09</u>		Logger: Joe Sepiol				
	ot Name: ot Number:		_	<u>[_9750</u>	,	impleted: <u>09</u> al Depth: 20		eviewer:				
Depth	Sample ID	Rec.	PID	Graphic	Description	Drilling Fluid	Well Installation	Well Construction Details				
(feet)	Oample ID	(ft)	(ppm)	STAPTIC SOLVENS	<u>'</u>	and Notes	Notes					
_ 1 _			1.0		(0-0.4 ft) (0.4-1.5 ft) NOTE: Fill material. 1.0 ppm at 1.0 ft. Asphalt and concrete chunks within.			2" Borehole 8" Well Box				
_ 2 _			71.2		(1.5-9 ft) SAND, medium, subround; little silt; little small to medium pebbles, angular to round; poorly sorted; dry to moist; dense; 10YR 4/1 - dark gray;			Solution Contracts				
_ 3 _			101.8		moderate odor; Likely fill material. Asphalt, concrete, wood, brick fragments. NOTE: 71.2 ppm at 2 ft. 101.8 ppm at 3 ft. 217.0 ppm at 4 ft. 172.0 ppm at 5 ft. 15.6 ppm at 8 ft.	1		2" Sch. 40 — Bentonite Chips (%)				
	MW-16-4.0-5.0	0	217.0									
_ 5 _ - - _ 6 _			172.0									
_ 0 _			51.2									
_ 7 _			31.2									
 _ 8 _			15.6									
 _ 9 _												
_				K	(9-12 ft) PEBBLES, small, subangular to subround; some granules, subangular to subround; poorly sorted; wet; very loose; 10YR 4/- dark gray; no odor. NOTE: Likely fill.	1						
 _ 11 _			5.9		- dark gray, no odor. NOTE. Likely IIII.							
12								Prepack Filter				
 13					(12-18.6 ft) SAND and SILT, very fine to fine, round, no plasticity, slow dilatancy; well sorted; wet; medium stiff; 10YR 4/1 - dark gray; no odor. NOTE: 6.0 ppm at 17.5 ft. 4.3 ppm at 14 ft.			2" 0.1-Slot				
 _ 14 _			4.3									
 15	MW-16-14.0- 15.0		:									
 16												
17 			6.0									
_ 18 _												
_ 19 _					(18.6-20 ft) CLAY, high plasticity, no dilatancy; some silt; well sorted; wet; stiff; 10YR 3/1 - very							
 20	MW-16-19.0- 20.0		5.7		dark gray; no odor. NOTE: Woody material at 19.0 ft. 5.7 ppm at 19.5 ft.			Sch. 40 PVC				
					20 ft. bgs End of Boring							
21 Drillin	g Co.:	Holt				Sampling Met	:hod:Hand Au	ger/ Split Spoon				
Driller	-	Micha	el Rur					5.0 / 14.0-15.0 / 19.0-20.0				
Drilling	g Method:			-				t bgs):8				
Drill R		Hollov				Static Water Level (ft bgs): 9.72						
Rema												
and missing core near water level.						Surface Elev: NA						

North Coor: NA East Coor: NA

9	ARCADIS Design & Consultancy Or rafarral and largests									Boring No.: MW-17				
80	il Borin	a I c	\ a											
	il Boring					01 1 1 0	2 22 2224				Sheet:		of 1	_
1	nt Name: ect Name:										-			
1 1	ect Number:		_	<u>3(_373</u>		al Depth: 20		_ 110	VICWCI.					_
Depth (feet)) Sample ID	Poo	. PID	Graphic		Drilling Fluid				Wel	ll Constri	uction D	etails	
				9 6 9	(0-0.4 ft)				2" B	orehole -	T 1	¬ '	8" Well Box	_
_ 1			6.3		(0.4-3 ft) SAND, fine to medium, angular to round; little silt; little clay; little granules, subangular to subround; little medium to large pebbles, subangular to subround; well sorted; moist; medium dense; 10YR 4/2 - dark grayish brown. NOTE: 6.3 ppm. Reddish motteling.					Sch. 40 _ Casing			Concrete	
4 4 - 4 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5	- - -		3.1		(3-8.2 ft) SAND and SILT, very fine to fine, round; well sorted; moist; medium dense; 10YR 4/2 - dar grayish brown; no odor. NOTE: 3.1 ppm at 5.5 ft. 5.1 ppm at 7.5 ft.					J	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Bentonite Chips (%)	
6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -			5.1											
8 _ 8 .	-MW-17-8.0-9.	0			(8.2-8.7 ft) SAND, medium, angular; well sorted; wet; loose; 10YR 3/2 - very dark grayish brown; no	0								
9 .					odor. NOTE: Water at 8.2 ft. (8.7-10.8 ft) SILT, medium plasticity, no dilatancy;	_								
_ 10]		5.0		some very fine to fine sand, subangular; well sorted; wet; medium stiff; 2.5YR 6/1 - reddish gray; no odor. NOTE: 10YR 5/6 motteling. 5.0									
= 11 .	-		3.5		ppm at 9.5 ft. 3.5 ppm at 10.5 ft. (10.8-11.1 ft) SAND and SILT, medium, angular, little clay; poorly sorted; wet; loose; 10YR 4/2 -									
12 _ 13 _	MW-17-11.5-		59.7		dark grayish brown. (11.1-17.1 ft) SAND, fine to medium, angular to subangular; well sorted; wet; loose; 10YR 3/1 - very dark gray; strong odor. NOTE: 59.7 ppm at 12.5 ft. 3.1 ppm at 15 ft.				Pre).1-Slot e-pack [–] creen	% % % % % % % % % % % % % % % % % % %		Prepack Filter Pack (%)	r
14 _ 14	-										\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			
15 . 	MW-17-15.0-		3.1											
16 .	- 10.0		3.8											
17	-				(17.1-18.5 ft) SILT, no plasticity, slow dilatancy;	_								
- _ 18 .	_				little very fine to fine sand, round; well sorted; wet; soft; 10YR 5/1 - gray; mild odor. NOTE: Woody debris encountered from 17.3 to 17.5 ft. 3.8 ppm									
- - - 19	1				at 17.5 ft. (18.5-20 ft) SILT, high plasticity, slow dilatancy;	_								
20	MW-17-19.0- 20.0		1.4		some clay, little very fine to fine sand, round; well sorted; wet; medium stiff; 10YR 3/1 - very dark gray; no odor. NOTE: Woody debris encountered				Sch.	40 PVC	% % % % % %			
-	-		-1		at 18.8 and 19.9 ft. 1.4 ppm at 19.5 ft. 20 ft. bgs End of Boring		1		<u> </u>	и Сар	الخنتر			
21 Drilli	ng Co.:	Holt				Sampling Me	thod: Hand	d Aug	ıer/ Spli	t Spoor				_
B Drille	-		ael Ru	ınning		Sampling Din		-		-		6.0 / 1	19.0-20.0	
⊿	ng Method:			•										_
Drill	•	<u>Hollo</u>	w Stei	m Auge										_
Rem	arks:					op of Casing								
KING A						Surface Elev								_
SOIL BO						North Coor:_ East Coor:	NA NA							_
″ 							. */ \							_

ØΑ	RCADI	S Design & I for natura built asse	Consultancy Il and ts					Boring No.: MW-18
Soil	Boring	g Lo	g					Sheet: 1 of 1
Client	Name:	Chevi	on Er	nvironr	nental Management Company Date	e Started: 09	-21-2021	Logger: <u>Joe Sepiol</u>
1 1	t Name:		_	st_975		•		Reviewer:
Depth (feet)	ct Number: Sample ID	Poc		Graphic		Drilling Fluid and Notes	Well Installation	On Well Construction Details
(feet) - 1	Sample ID	(ft)	1.7 1.2 1.8 2.3 3.1 4.1 4.2	Graphic	(0-0.4 ft) Concrete. (0.4-0.8 ft) SAND, medium, angular; some small large pebbles, subangular to subround; poorly sorted; moist; medium dense; 10YR 4/1 - dark gray. (0.8-3 ft) SAND, medium, angular; well sorted; d to moist; loose; 10YR 4/3 - brown. NOTE: 1.7 ppm. (3-8.1 ft) SAND, fine, angular; little silt; well sorted; osc; 10YR 4/2 - dark grayish brown; no odor. NOTE: 1.2 ppm at 5 ft. 1.8 ppm at 6 ft. (9-9.5 ft) SILT, low plasticity, slow dilatancy; little very fine sand, round; little clay; well sorted; wet; medium dense; 10YR 5/1 - gray; no odor; (9-5-12.2 ft) SILT, medium plasticity, slow dilatancy; some very fine to fine sand, round; little clay; well sorted; wet; medium stiff; 10YR 3/1 - very dark gray; no odor. NOTE: 3.1 ppm at 11 ft. (12.2-13.9 ft) SAND, very fine to fine, subround; little silt; well sorted; wet; very loose; 10YR 4/1 - dark gray; no odor. NOTE: 4.1 ppm at 13 ft. (13.9-15 ft) SILT and SAND, very fine, round, no plasticity, no dilatancy; well sorted; wet; very loose; 10YR 4/1 - dark gray; no odor. NOTE: 4.2 ppm at 15 ft. (15-17.1 ft) SAND, fine, subangular; little silt; we sorted; wet; loose; 10YR 4/1 - dark gray; no odor. NOTE: Organic	and Notes to y d;		Well Construction Details 2" Borehole 2" Sch. 40 PVC Casing Bentonite Chips (%) Prepack Filter Pack Screen Prepack (%)
19_	MW-18-19.0-		2.4		matter (leaf mat and small sticks) at 17.9 to 18.1 ft. 2.0 ppm at 17.5 ft. (19.4-20 ft) SAND, fine to medium, subangular;			
20 21	20.0				(19.4–20 ft) SAND, fine to medium, subangular; well sorted; wet; loose; 10YR 3/1 - very dark gra no odor. NOTE: 2.4 ppm at 19.5 ft. 20 ft. bgs End of Boring	/;		Sch. 40 PVC
Drilling	g Co.:	Holt			_	Sampling Meth	hod <u>:Hand A</u>	uger
Driller: Michael Running Sampling Dimensions:8.0-9.0 / 19.0-20.0							-9.0 / 19.0-20.0	
Drilling Method: Hollow Stem First Encountered Water (ft bgs): 8.4								
Drill R	ĭ): 14.92
Rema	rks:					Top of Casing	LIEV:	
<u>.</u>	-					North Coor: East Coor:		

A	RCADIS	Design & C for natura built asset	Consultancy and s						Boring	No.:_ <u>N</u>	ЛW-19		
Soil	Boring	j Lo	g						S	Sheet:	1	of 1	
1 -					- · · · · · · · · · · · · · · · · · · ·	Started: <u>09</u> -				-			
1 1	ot Name: ot Number:		_	st_97		mpleted: <u>09-</u> ıl Depth: 20.		Reviewe	:				
Depth (feet)	Sample ID	Rec. (ft)		Graph		Drilling Fluid and Notes	Well Installation	on	Well Construction Details				
_ 1 _					(0-0.2 ft) Asphalt. (0.2-2 ft) COBBLES, small to large, round; some fine to coarse sand, angular; some silt; little large	J		2"	Borehole -			8" Well Box	
_ 2 _			1.5		pebbles, angular to subangular; poorly sorted; moist; medium dense; 10YR 4/3 - brown; no odor. NOTE: Likely fill. (2-4.5 ft) SAND and SILT, very fine to coarse,							Concrete	
3 _					angular; trace small pebbles, angular to subround; trace granules, subangular to subround; poorly sorted; dry to moist; medium dense; 10YR 4/3 - brown.							Bentonite Chips (%)	
4 _			2.4							000 000 000		(75)	
5 _ 6 _					 (4.5-7.5 ft) SILT, no plasticity, no dilatancy; some very fine to fine sand, subround; little small to medium pebbles, angular to subround; well sorted; moist; medium dense; 10YR 4/3 - brown. NOTE: 3.9 ppm at 7 ft. 								
7 _ 7 _			3.9		. 3.9 ppm at 7 it.					\$			
8 _ 8 _	MW-19-7.5-8.5				: (7.5-11 ft) SAND and SILT, fine, subangular; well sorted; wet; medium dense; 2.5YR 6/1 - reddish gray; no odor. NOTE: 10YR 4/4 staining. 3.0 ppm					0,000 0,000 0,000 0,000			
9 _ 9 _			3.0		at 9.5 ft.								
10										8888			
11 - 12					(11-13.2 ft) SAND and SILT, fine, subround; well sorted; wet; loose; 10YR 4/1 - dark gray. NOTE: 4.4 ppm at 12.5 ft.	_				°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°		Prepack Filter	
13 _			4.4					Sch	0.1-Slot n. 40 PVC [—] Screen	0000 0000 0000		Pack (%)	
14					(13.2-18.2 ft) SAND and SILT, fine, subangular; well sorted; wet; medium dense; 10YR 6/1 - gray; no odor. NOTE: 10YR 4/1 mottling. 4.0 ppm at 14.5 ft / 4.8 ppm at 17 ft.					00000			
			4.0										
16										% % % % % % % % % % % % % % % % % % %			
17 18			4.8							0000			
19 _	MW-19-18-20 (MS/MSD)				(18.2-20 ft) SAND, very fine, round; some silt; well sorted; wet; medium dense; 10YR 4/1 - dark gray; no odor. NOTE: 3.5 ppm at 19.5 ft.	-				00000			
- 20	,		3.5						n. 40 PVC				
Overoning -					20 ft. bgs End of Boring	•	•	· 	ни Сіір	<u></u>	_, v o c		
21						l: 54 (I							
Drilling Briller	•	<u>Holt</u> Micha	el Ru	nnina		ampling Meth ampling Dime		-					
_	g Method:			_									
Drill R	~				<u>jer</u> St	tatic Water Le	evel (ft bgs)): <u>NA</u>					
Rema	rks:												
KINGA													
SOIL BO						ortn Coor:i ast Coor:I							

A	RCADI	S Design for nat built a	a & Consultancy tural and ssets						Boring	No.:_ <u>N</u>	/W-20	
Soil	Boring	g Lo	og						S	Sheet:	1	of 1
	Name:								ogger: <u>Joe Se</u>	•		
1 1	t Name: t Number:		_	st_975	,	mpleted: <u>09</u> al Depth: 20		Rev	iewer:			
Depth		Po		0 1:		Drilling Fluid	Well Installati	on)A/ II	0 1	5	
(feet)	Sample ID	(ft) (ppm)	Graphic	•	and Notes	Notes			Constri	uction D	etalis
- 1 _ - 1 _ - 2 _					(0-0.25 ft) (0.25-4.5 ft) SAND, very fine to very coarse, angular; little silt; little small to large pebbles, subangular to round; trace granules, subround to round; poorly sorted; dry to moist; medium dense; 10YR 4/4 - dark yellowish brown; no odor. NOTE: 2.4 ppm. Likely fill - concrete and brick fragments.				2" Borehole —			— 8" Well Box — Concrete
3 4			2.4						2" Sch. 40 _ PVC Casing	0,000	> > > > > > > > > > > > > > > > > > >	Bentonite Chips (%)
9 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2.4		(4.5-7 ft) SILT and SAND, fine to medium, angular to subangular, no plasticity, no dilatancy; trace large pebbles, angular; trace granules, subround; well sorted; moist; loose; 10YR 5/3 - brown; no odor. NOTE: 2.4 ppm. One orange pebble in recovery. No other gravel.	7				\\ \chi \chi \chi \chi \chi \chi \chi \c	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
7 8 9 9	MW-20-7.0-8.	0	4.2		(7-8.9 ft) SAND and SILT, very fine to fine, round, low plasticity, no dilatancy; well sorted; moist to wet; medium dense; 10YR 5/1 - gray; no odor. NOTE: 5YR 4/4 staining / 4.2 ppm at 8 ft. Water a 7.5 ft.							
					(8.9-11 ft) SAND, very fine to fine, angular; well sorted; wet; loose; 10YR 4/1 - dark gray; no odor. NOTE: 4.4 ppm at 12 ft.					%	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
12 13			4.4		(11-17.3 ft) SAND, very fine to fine, round; some silt; well sorted; wet; medium dense; 10YR 5/1 - gray; no odor. NOTE: 2.4 ppm at 16 ft / 3.7 ppm at 14 ft / 4.2 ppm at 12 ft.	t			2" 0.1-Slot Pre-pack – Screen			Prepack Filter Pack (%)
			3.7									
_ 16 _ _ 17 _	MW-20-15.0- 16.0		2.4									
_ 18 _ 19			3.2	<u></u>	(17.3-19.5 ft) SILT, medium plasticity, slow dilatancy; some very fine sand, round; some clay; wet; medium stiff; 10YR 4/1 - dark gray. NOTE: 3.2 ppm at 18 ft.							
20	MW-20-19.0- 20.0		2.5		(19.5-20 ft) SAND, medium, angular; little silt; little clay; well sorted; wet; loose; 10YR 3/1 - very dark				Sch. 40 PVC End Cap			
 21					gray; no odor. NOTE: 2.5 ppm at 19.5 ft. 20 ft. bgs End of Boring							
Drillin	g Co.:	Holt				Sampling Met	hod <u>:Hand A</u>	uge	er			
Driller	:			_		Sampling Dim	ensions <u>:7.0</u>	-8.0	/ 15.0-16.0			
١	•		ow Ste					•	gs): <u>7.5</u>			
Drill R Rema	•			m Auge					Α			
SII ZEIIIA	11/0.											
OKING												
							NA					

9/	RCADIS	Design & Co for natural a built assets	nsultancy nd					Boring No.: MW-21
Soil	Boring	Log	g					Sheet: 1 of 1
_					. ,	Started: <u>09</u> - npleted: <u>09</u> -		Logger: Joe Sepiol
•	t Number: 3	-	_	_		Depth: 20.		
Depth (feet)	Sample ID	Rec. (ft)	PID (ppm)	Graphic	Description	Drilling Fluid and Notes	Well Installation Notes	Well Construction Details
			23.7		(0-0.4 ft) (0.4-1.5 ft) SAND, very fine to coarse, angular to round; some granules, angular to subangular; some large pebbles, angular to subangular; little clay, trace silt; well sorted; moist; very loose; 7.5R 5/1 - reddish gray; moderate odor. (1.5-5 ft) SAND, very fine to fine, angular to round; some small to large pebbles, angular to subangular; poorly sorted; moist; very loose;			2" Borehole 8" Well Box Concrete Bentonite
_ 3 _ _ 4 _ _ 5 _	MW-21-2.5-3.5		82.1		7.5YR 4/1 - dark gray; moderate odor. (5-7.9 ft) SAND, very fine to very coarse,			2" Sch. 40 PVC Casing Chips (%)
- 6 _ - 6 _ - 7 _ - 8 _					subangular to subround; little gránules, subangular to subround; little small to large pebbles, subangular to subround; little clay; little silt; poorly sorted; moist to wet; medium dense; 10YR 4/1 - dark gray; moderate odor. NOTE: 82.1 ppm.			
_ 0 _ _ 9 _ _ 10 _	MW-21-9.0- 10.0		14.5		(7.9-10.5 ft) SAND, very fine to very coarse, angular to round; little granules, subangular to subround; little silt; poorly sorted; moist to wet; medium dense; 10YR 4/1 - dark gray; moderate odor. NOTE: 14.5 ppm. Water at 10.2 ft.			
_ 11 12 13	MW-21-11.5- 12.5		8.1		(10.5-11 ft) PEBBLES and GRANULES, small to medium, subround to round, subround to round; little very coarse sand, angular; poorly sorted; wet; very loose; 10YR 4/3 - brown; moderate odor. NOTE: All colors represented in pebbles. (11-12.9 ft) SAND, very fine to medium, round; little granules, subround to round; little small pebbles, subround to round; well sorted; wet;			2" 0.1-Slot Sch. 40 PVC (%) Screen (%)
_ _ 14 _ _ _ 15 _ _ _ 16 _	MW-21-14.0- 15.0		6.8		medium dense; 10YR 4/1 - dark gray; no odor. NOTE: Possible gravel from layer above dropped into 12.0 to 12.5 layer. (12.9-13.8 ft) SAND, very fine to medium, round; little silt; well sorted; wet; medium dense; 10YR 4/1 - dark gray; no odor. NOTE: 8.1 ppm. (13.8-20 ft) SAND, very fine to medium, round; some silt; well sorted; wet; medium dense; 10YR 4/1 - dark gray; no odor. NOTE: 6.8 ppm.			
- _ 17 _ _ _ 18 _ _			5.2					
_ 19 	MW-21-19.0- 20.0		3.1		20 ft. bgs End of Boring			Sch. 40 PVC
21								
Drillin	g Co.: <u>I</u>	Holt					nod <u>:Dual Tub</u>	
Driller	-			_				6.5 / 9.0-10.0 / 11.5-12.5 / 14.0-15.0 / 19.0-2
								bgs): <u>10.2</u>
Drill R					Si	atic Water L	evel (ft bgs):	NA
Rema	rks:				10	pp of Casing	⊏lev:	
					<u></u>	asi GUUI.	INA	

A	RCADI	Design & for natura built asse	Consultancy Land						Boring No.:_S	SB-1		
Soil	Boring	n I r	a						Observation	4		4
	Name:			wironn	nental Management Company Date	Started: 09	20 2021	Logger:	Sheet:			
1	t Name:								Joe Sepiol			
1 1	t Number:		_	<u> </u>		al Depth: 20		TOVIOWOI.				
Depth (feet)	Sample ID	_		Graphic		Drilling Fluid and Notes	Well Installat Notes	ion	Well Constr	uction l	Details	
					(0-0.4 ft) (0.4-3.25 ft) SAND, coarse, angular to subangular;	_		2" B	orehole —			
_ 1 _					little large cobbles, angular to subround; little small to very large pebbles, angular to subangular; little							
					silt; little clay; poorly sorted; moist; medium dense; 10YR 3/2 - very dark grayish brown; no odor.							
2			1.5		NOTE: 1.5 ppm fill material -							
3					bricks/wood/non-native rock found throughout .							
				6100/2	(3.25-7.6 ft) SAND, very fine to fine, round; some	_						
4 _					silt; well sorted; moist; medium dense; 10YR 5/1 - gray; no odor. NOTE: 0.2 ppm at 5 ft. 6.3 ppm at 7							
-					ft. 20% reddish brown mottling.							
_ 5 _			0.2									
-												
_ 6 _												
7			6.3									
			0.0									
8 _	SB-1-7.5-8.5				(7.6-9.1 ft) SILT, medium plasticity, slow dilatancy; little fine sand, round; wet; stiff; 10YR 5/2 - grayish							
+ +					brown; no odor; 10 YR 3/4 mottling . NOTE: Water at 8.1 ft.							
9			6.0		(9.1-9.7 ft) SAND, very coarse, subangular; well	-						
_ 10 _			7.0		sorted; wet; very loose; 10YR 3/1 - very dark gray; no odor. NOTE: 6.0 ppm at 9.5 ft.							
			7.2		(9.7-10.5 ft) SILT, no plasticity, no dilatancy; little	_						
_ 11 _					very fine sand, round; little clay; well sorted; wet; stiff; 10YR 3/1 - very dark gray; no odor. NOTE:							
					7.2 ppm at 10 ft. (10.5-10.9 ft) SAND, very coarse, angular; some							
_ 12 _					silt; well sorted; wet; loose; 10YR 3/1 - very dark gray; no odor.							
_ 13 _					(10.9-18.6 ft) CLAY, medium plasticity, slow dilatancy; some silt; little very fine sand, round;]						
- 13 -					well sorted; wet; stiff; 10YR 3/1 - very dark gray; no odor. NOTE: Woody debris at 14.9 ft. 7.7 ft at							
14					12.5 ft. 10.3 ppm at 14.5 ft. 8.8 ppm at 16 ft. 3.1 ppm at 17.5 ft.							
			8.8		ppin at 17.5 it.							
_ 15												
!	SB-1-15.0-16.0	o										
_ 16 _												
_ 17 _												
			3.1									
_ 18 _			0.1									
					44004005000							
_ 19 _			4.1		(18.6-19.9 ft) SILT, no plasticity, rapid dilatancy; little clay; well sorted; wet; very soft; 10YR 5/1 -							
20	SB-1-19.0-20.0	0			gray; no odor. NOTE: 4.1 ppm at 19.5 ft.							
20		-	1		(19.9-20 ft) SILT, no plasticity, no dilatancy; little very fine sand, round; little clay; well sorted; wet;							
21					medium stiff; 2.5Y 4/1 - dark gray; no odor.							
Drilling	-	<u>Holt</u>				ampling Met		•				
Driller:				_)-16.0 / 19.0-2			
Drilling Drill Ri	g Method:								4			
Remar	-	Boring										
<u> </u>					<u>E</u>	ast Coor:	NA					

9 Α	RCADI	Design & C for natural built asset	Consultancy I and							Boring No.: S	B-2		
Soil	Boring	g Lo	g							Sheet:	1	of	1
	Name:		_	nvironn	nental Management Company Date	Started:	09-	20-2021	Logger:	Joe Sepiol			
	t Name:		_	st_975		-			eviewer:				
Projec	t Number:	30064	310		Tot	al Depth:			1				
Depth (feet)	Sample ID	Rec. (ft)	PID (ppm)	Graphic	Description	Drilling Flu and Note		Well Installation Notes	ו	Well Constru	ction E	etails	
					(0-0.4 ft)				2" Bo	orehole —			
_ 1 _				9 4 7	(0.4-0.8 ft) (0.8-3 ft) SAND, coarse, subangular; little small to								
					large pebbles, angular to subround; little silt; trace granules, subangular to subround; poorly sorted;								
_ 2 _			1.8		moist; loose; 10YR 2/2 - very dark brown; no odor NOTE: Likely fill. Glass and coal in gravel . 1.8								
					ppm.								
_ 3 _					(3-8.7 ft) SAND, very fine to fine, round; some silt;								
_ 4 _					well sorted; moist; loose; 10YR 5/2 - grayish brown; no odor. NOTE: 5.2 ppm.								
_													
_ 5 _			5.2										
_ 6 _													
7	SB-2-6.0-7.0												
_													
_ 8 _													
_ 9 _			2.4		(8.7-9.9 ft) SILT, medium plasticity, slow dilatancy some fine sand, round; little clay; well sorted; wet;								
_ 10 _					medium dense; 2.5YR 5/3 - reddish brown; no odor. NOTE: 2.4 ppm at 9 ft. Water at 8.4 ft.								
					(9.9-13.3 ft) SAND, very fine to fine, round; little silt; well sorted; wet; medium dense; 10YR 3/1 -								
_ 11 _	SB-2-10.5-11.	5	35.7		very dark gray; moderate odor. NOTE: 35.7 ppm at 11.0 ft.								
+													
_ 12 _													
_ 13 _													
					(13.3-15 ft) SILT, no plasticity, no dilatancy; little	-							
_ 14 _			3.0		very fine to fine sand, round; little clay; well sorted wet; medium dense; 10YR 4/1 - dark gray; mild								
					odor. NOTE: 3.0 ppm at 14 ft.								
_ 15 _					(15-16.3 ft) SAND, very fine to fine, round; little								
_ 16 _	SB-2-15.5-16.		1.1		silt; well sorted; wet; loose; 10YR 5/1 - gray; no odor. NOTE: 1.1 ppm at 16 ft.								
	36-2-13.3-10.		1.1		(16.3-19.3 ft) SAND, very fine, round; some silt;	_							
_ 17 _					little clay; well sorted; wet; medium dense; 10YR 4/1 - dark gray; no odor. NOTE: 5.4 ppm at 18 ft.								
					3,								
18			5.4										
19	SB-2-18.0-19.0												
			1.6		(19.3-20 ft) SAND, medium to coarse, angular to								
20					subangular; little silt; little clay; well sorted; wet; loose; 2.5YR 3/1 - dark reddish gray; no odor.								
<u> </u>					NOTE: 1.6 ppm at 19.5 ft. 20 ft. bgs End of Boring	_							
21 Drilling	ı Co ·	Holt				ampling M	1eth	nod <u>:Core Ba</u>	rrel				
Driller:			el Ru							-11.5 / 15.5-16	6.5 /	18.0-	19.0
	Method:			-	F	irst Encou	nte	red Water (f	t bgs): <u>8.4</u>				
Drill Ri	ig:	Geopr	robe		S	tatic Wate	r Le	evel (ft bgs):	NA				

Remarks: Soil Boring Only Top of Casing Elev: Surface Elev: NA North Coor: NA

East Coor: NA

A	RCADIS	Design & C for natural built asset	Consultancy and s					Boring No.: SB-3
Soil	Boring	, Lo	g					Sheet: 1 of 1
Client	Name:	Chevr	on Er	nvironn	nental Management Company Date	Started: 09-	-21-2021	Logger: <u>Joe Sepiol</u>
1 1	t Name: t Number:		_	st_975		mpleted: <u>09</u> - al Depth: 20.		Reviewer:
Depth (feet)	Sample ID	Rec. (ft)	PID (ppm)	Graphic		Drilling Fluid and Notes	Well Installation	Well Construction Details
					(0-0.3 ft) (0.3-0.4 ft)			2" Borehole —
_ 1 _ _ 2 _					(0.4-4.5 ft) SILT, no plasticity, slow dilatancy; little fine to very coarse sand, angular to subangular; little granules, subangular to subround; little small to medium pebbles, angular to subangular; poorly sorted; moist; soft; 10YR 2/1 - black. NOTE: 2.0 ppm.			
_ 3 _			2.0		Ph			
_ 4 _								
_ 3			4.1		(4.5-6.3 ft) SAND, very fine to fine, angular; some silt; well sorted; moist; loose; 10YR 5/1 - gray; no odor.			
_ 6 _ 					(6.3-11.3 ft) SAND, fine, round; little silt; well	_		
_ 7 _ 					sorted; wet; medium dense; 10YR 5/3 - brown; no odor. NOTE: Water at 7.5 ft / 7.5YR 4/6 mottling. 1.3 ppm at 8 ft. 3.1 ppm at 10 ft.			
_ 8 _ 	SB-3-7.5-8.5		1.3					
_ 9 _ _ 10 _			3.1					
_ 11 _								
_ 12 _			3.0		(11.3-16.5 ft) SAND, fine, round; little clay; little silt; well sorted; wet; medium dense; 10YR 4/1 - dark gray; no odor. NOTE: Pine needles found at 14.0 ft. Woody debris at 14.5 ft. 3.0 ppm at 12 ft.			
					4.1 ppm at 14.5 ft. 0.9 ppm at 16.5 ft.			
_ 14 14 15 16 17 18 19 19 20 21			4.1					
16			0.9					
_ 17 _					(16.5-19.6 ft) SILT, medium plasticity, slow dilatancy; some clay; little very fine sand, round; well sorted; wet; medium dense; 2.5YR 4/1 - dark reddish gray; no odor. NOTE: 0.9 ppm at 16.5 ft.			
18	SB-3-18.0-19.0		3.4		3.4 ppm at 18 ft. 0.8 ppm at 19.5 ft.			
_ 19 _	10.0-13.0		0.8		(10.000 (10.01))			
20		Ш	<u> </u>		(19.6-20 ft) SAND, medium, angular; little silt; well sorted; wet; loose; 10YR 3/1 - very dark gray. 20 ft. bgs End of Boring			
21 Drilling	a Co ·	Holt				ampling Meth	nod:Core Ba	arrel
Driller	-		<u>Hend</u>					8.5 / 18.0-19.0
1	g Method:					. •		ft bgs): <u>7.5</u>
Drill R				m Auge	er S			: NA
Rema	rks: <u>Soil</u>	Boring			_	op of Casing	Elev:	
					<u> </u>	asi 600f:	INA	

Appendix D

TGI for Low-Flow Groundwater Purging and Sampling Procedures

TGI - LOW-FLOW GROUNDWATER PURGING AND SAMPLING PROCEDURES FOR MONITORING WELLS

Rev: #1

Rev Date: May 8, 2020

TGI – Low-Flow Groundwater Purging and Sampling Procedures in Monitoring Wells Rev #: 1 | Rev Date: May 8, 2020

VERSION CONTROL

Revision No	Revision Date	Page No(s)	Description	Reviewed by
0	October 12, 2018	All	Updated and re-written as TGI with new branding and content	Marc Killingstad
1	May 8, 2020	Pages 5, 10-11	Added clarification/details for equipment requirements and procedure steps based on USEPA guidance	Marc Killingstad

APPROVAL SIGNATURES

Prepared by:	fun 2	10/12/2018
	Ryan McKinney	Date:
	Market State of the State of th	N 0 0000
Technical Expert Reviewed by:	, i	May 8, 2020
	Marc Killingstad (Technical Expert)	Date:

1 INTRODUCTION

This document describes general and/or specific procedures, methods, actions, steps, and considerations to be used and observed by Arcadis staff when performing work, tasks, or actions under the scope and relevancy of this document. This document may describe expectations, requirements, guidance, recommendations, and/or instructions pertinent to the service, work task, or activity it covers.

It is the responsibility of the Arcadis Certified Project Manager (CPM) to provide this document to the persons conducting services that fall under the scope and purpose of this procedure, instruction, and/or guidance. The Arcadis CPM will also ensure that the persons conducting the work falling under this document are appropriately trained and familiar with its content. The persons conducting the work under this document are required to meet the minimum competency requirements outlined herein, and inquire to the CPM regarding any questions, misunderstanding, or discrepancy related to the work under this document.

This document is not considered to be all inclusive nor does it apply to all projects. It is the CPM's responsibility to determine the proper scope and personnel required for each project. There may be project- and/or client- and/or state-specific requirements that may be more or less stringent than what is described herein. The CPM is responsible for informing Arcadis and/or Subcontractor personnel of omissions and/or deviations from this document that may be required for the project. In turn, project staff are required to inform the CPM if or when there is a deviation or omission from work performed as compared to what is described herein.

In following this document to execute the scope of work for a project, it may be necessary for staff to make professional judgment decisions to meet the project's scope of work based upon site conditions, staffing expertise, regulation-specific requirements, health and safety concerns, etc. Staff are required to consult with the CPM when or if a deviation or omission from this document is required that has not already been previously approved by the CPM. Upon approval by the CPM, the staff can perform the deviation or omission as confirmed by the CPM.

2 SCOPE AND APPLICATION

Groundwater samples are collected from monitoring wells to evaluate groundwater quality. The protocol presented in this Technical Guidance Instruction (TGI) describes the procedures to purge monitoring wells and collect groundwater samples using the low flow purging/sampling methodology. This protocol has been developed in accordance with the United States Environmental Protection Agency (USEPA) Region I Low Stress (Low Flow) Purging and Sampling Procedures for the Collection of Groundwater Samples from Monitoring Wells (EQASOP-GW4; September 19, 2017).

Both filtered and unfiltered groundwater samples may be collected using this low-flow sampling method. Filtered samples will be obtained using a 0.45-micron disposable filter. Project teams will evaluate the last time the monitoring wells were developed and determine if additional development might be necessary. Water samples will not be taken immediately following well development. Sufficient time will be allowed for the groundwater flow regime in the vicinity of the monitoring well to stabilize and to approach chemical equilibrium with the well construction materials. This lag time will depend on site conditions and methods of installation but often exceeds one week.

3 PERSONNEL QUALIFICATIONS

Arcadis field sampling personnel will have completed or are in the process of completing site-specific training as well as having current health and safety training as required by Arcadis, client, or regulations, such as 40-hour HAZWOPER training and/or OSHA HAZWOPER site supervisor training. Arcadis personnel will also have current training as identified in the site-specific Health and Safety Plan (HASP) which may include first aid, cardiopulmonary resuscitation (CPR), Blood Borne Pathogens (BBP) as needed. The HASP will also identify any access control requirements.

Prior to mobilizing to the field, the groundwater sampling team will review and be thoroughly familiar with relevant site-specific documents including but not limited to the task-specific work plan or field implementation plan (FIP)/field sampling plan, Quality Assurance Project Plan (QAPP), HASP, historical information, and other relevant site documents.

Arcadis field sampling personnel will be knowledgeable in the relevant processes, procedures, and TGIs and possess the demonstrated required skills and experience necessary to successfully complete the desired field work. Additionally, the groundwater sampling team will review and be thoroughly familiar with documentation provided by equipment manufacturers and become familiar with the operation of (i.e., hands-on experience) all equipment that will be used in the field prior to mobilization.

4 EQUIPMENT LIST

Specific to this activity, the following materials (or equivalent) will be used:

- Site-specific HASP and health and safety documents identified in the HASP
- Field Implementation Plan (FIP) that includes site map, well construction records, sampling plan (sample analyses, sample volume required, and sample holding time), and prior groundwater sampling records (if available)
- Field notebook and/or smart device (phone or tablet)
- Low-flow sampling field forms (Attachment A)
- Appropriate personal protective equipment (PPE) (e.g., latex or nitrile gloves, safety glasses, etc.)
 as specified in the HASP
- Well keys and other tools to remove manhole covers (manual torque wrench with 9/16" socket and flat head screwdriver typical)
- Photoionization detector (PID) or Flame ionization detector (FID) (as appropriate, depending on site-specific constituents of concern)
- Electronic water-level indicator (e.g., Solinist Model 101) or oil/water interface probe with 0.01foot accuracy (oil/water as appropriate, note that sampling will not be performed when sheen or light non-aqueous phase liquid [LNAPL] is present)
- Down-hole multi-parameter water-quality sonde (temperature/pH/specific conductivity/oxidation reduction [ORP]/turbidity/dissolved oxygen) meter coupled with flow-through-cell for measurements, for example:

- YSI 6-Series Multi-Parameter Instrument
- Horiba U-22 Multi-Parameter Instrument.
- o Hydrolab Series 3 or Series 4a Multiprobe and Display.

NOTE: Transparent, small volume flow-through-cells (e.g., 250 milliliters or less) are preferred as they allow for easy detection of air bubbles and sediment buildup in the cell, which can interfere with the monitoring instrument probes. A small volume cell also allows for quick turnover of water in the cell between measurements of the indicator field parameters. It is recommended to use a flow-through-cell and monitoring probes from the same manufacturer and model to avoid incompatibility between the probes and flow-through-cell.

- Plastic sheeting (e.g., Weatherall Visqueen) to protect all down-hole sampling equipment from contact with potential sources of contamination.
- Decontamination equipment
 - Non-phosphate laboratory soap (Alconox or equivalent), brushes, clean buckets or clean wash tubs—new buckets or tubs will be purchased if it cannot be determined if the present items are clean
 - Distilled or de-ionized water for equipment decontamination
- Indelible ink pen
- 150-foot measuring tape (or sufficient length for the maximum site depth requirement)
- Sampling pump, which may consist of one or more of the following:
 - o Submersible pump (e.g., Grundfos Redi-Flo 2)
 - o Peristaltic pump (e.g., ISCO Model 150)
 - Bladder pump (e.g., Marschalk System 1, QED Micropurge, Geotech)
- Appropriate controller and power source for pump:
 - Submersible and peristaltic pumps require electric power from either a generator or a deep cell battery
 - Submersible pumps such as Grundfos require a pump controller to run the pump
 - Bladder pumps require a pump controller and a gas source (e.g., air compressor or compressed N2 or CO2 gas cylinders)
- Teflon® tubing or Teflon®-lined polyethylene tubing of an appropriate size for the pump being used
 - For peristaltic pumps, dedicated Tygon® tubing (or other type as specified by the manufacturer) will be used through the pump apparatus
 - Teflon® will not be used when sampling for per- and polyfluoroalkyl substances (PFAS)
- Graduated cylinder and stop watch or other device to measure time to determine pumping rate

TGI – Low-Flow Groundwater Purging and Sampling Procedures in Monitoring Wells Rev #: 1 | Rev Date: May 8, 2020

- Appropriate water sample containers (supplied by the laboratory)
- Appropriate blanks (trip blank supplied by the laboratory)
- Sample labels and Chain-of-Custody forms (COC)
- 0.45-micron disposable filters (if field filtering is required)
- A supplemental turbidity meter (e.g., Horiba U-10, Hach 2100P, LaMotte 2020) may be required for specific projects and will be specified in the project FIP/ work plan and the kick-off notes.
 - o If used, in-line 'T' and valve allows for collection of water for turbidity measurements before the pump discharge enters the flow-through cell

NOTE: The maintenance requirements for the above equipment generally involve decontamination or periodic cleaning, battery charging, and proper storage, as specified by the manufacturer. For operational difficulties, the equipment will be serviced by a qualified technician.

5 CAUTIONS

Different USEPA regions and/or state regulatory agencies may stipulate deviations from this document. It is the responsibility of the Project Team (Project Manager and Technical Lead) to be fully aware of the requirements from the applicable regulatory framework.

Weather

- If heavy precipitation occurs, and no cover over the sampling area and monitoring well can be
 erected, sampling may be discontinued until adequate cover is provided. Rain water could
 compromise groundwater samples.
- Avoid extreme weather situations. Be aware that thermal currents and vertical mixing of cold and warm water inside the well casing could create a convection cell within the well and compromise data collection (e.g., biological mechanisms).
 - Direct sunlight and hot ambient temperatures may cause the groundwater in the tubing or flow-through-cell to heat up and de-gas. This may result in the loss of volatile organic compounds (VOCs) and dissolved gases. Shade the equipment from direct sunlight, keep the tubing as short as possible, and avoid the hottest times of the day.
 - Sampling during freezing conditions may adversely impact the data quality objectives.
 USEPA recommends low-flow sampling be conducted at air temperatures above 32°F
 (0°C) or taking special precautions to prevent groundwater from freezing in the equipment.

Cross-Contamination

 To mitigate potential cross-contamination, groundwater samples are to be collected in a predetermined order from least impacted to impacted based on previous analytical data. If no analytical data are available, collect samples in order of up-gradient, then furthest down-gradient to source area locations.

- Note that permanent markers could introduce volatile constituents into the samples; *therefore*, *indelible ink is recommended* to be used for labels on sample containers or sample coolers.
- When using a gasoline generator, this power source will be set-up at least 30 feet downwind from the well to avoid exhaust fumes to contaminate samples.

Pumps

- Preferred methods of extracting groundwater are adjustable rate, submersible pumps such as centrifugal pumps or bladder pumps constructed of stainless steel or polytetrafluoroethylene (PTFE, i.e. Teflon®). However, PTFE will not be used when sampling for per- and polyfluoroalkyl substances (PFAS). PTFE could contain PFAS.
- When using a bladder pump for collecting VOCs and dissolved gases, "best practice" is to set-up the pump to deliver sufficient water to fill a 40 mL VOC vial.
- The use of peristaltic pumps will be based on the type of data to be collected. Because the use a peristaltic pump can result in de-gassing of VOC and / or dissolved gases from groundwater, a different type of pump will be considered if these compounds are of concern.
- Manual or motor driven inertial pumping devices are not recommended because they cause greater disturbance during purging and pumping than regular pumps and are less easily controlled. This could cause a higher degree of data variability.

Tubing

- When sampling for VOCs, SVOCs, pesticides, PCBs and inorganics, use of PTFE (Teflon®) or PTFE-lined tubing is preferred. However, PTFE tubing will not be used when sampling for PFAS.
- PVC, polypropylene or polyethelene tubing may be used when sampling for metals or other inorganics.
- Tubing with inside diameters of 1/4 or 3/8 inch is recommended because this will help ensure tubing remains water filled when operating at very low pumping rates.

General Precautions

- Store and/or stage empty and full sample containers and coolers out of direct sunlight.
- It may be necessary to field filter the groundwater for some parameters (e.g., metals) during collection, depending on preservation, analytical method, and project quality objectives. The taskkick-off notes and the FIP/work plan will list the samples that require field filtering.
- Be careful not to overtighten lids with Teflon® liners or septa (e.g., 40 mL vials). Over-tightening
 can cause the glass to shatter or impair the integrity of the Teflon® seal.

6 HEALTH AND SAFETY CONSIDERATIONS

The HASP will be followed, as appropriate, to ensure the safety of field personnel.

Appropriate personal protective equipment (PPE) will be worn at all times in line with the task and the site-specific HASP.

Review all site-specific and procedural hazards as they are provided in the HASP, and review Job Safety Analysis (JSA) documents in the field each day prior to beginning work.

Access to wells may expose field personnel to hazardous materials such as contaminated groundwater or non-aqueous phase liquid (NAPL) (e.g., oil). Other potential hazards include pressurized wells, stinging insects that may inhabit well heads, other biologic hazards (e.g. ticks in long grass/weeds around well head), and potentially the use of sharp cutting tools (scissors, knife)—open well caps slowly and keep face and body away to allow to vent any built-up pressure; only use non-toxic peppermint oil spray for stinging insect nests; review client-specific health and safety requirements, which may preclude the use of fixed/folding-blade knives, and use appropriate hand protection.

Generators and cord and plug equipment will employ an overcurrent protection device such as an integrated ground fault circuit interrupter (GFCI) cord. Grundfos pump controllers will not run properly with a GFCI, so the power source will be equipped with other overcurrent protection means.

Overtightening of lids with Teflon® liners can cause the glass to shatter and create a risk for hand injuries.

7 PROCEDURE

Field personnel will set up and perform low-flow sampling in accordance with the following procedures.

- 1. Review FIP and groundwater sampling records from previous sampling events (if available) prior to mobilization to estimate the optimum pumping rate and anticipated drawdown for each well to perform sampling as efficiently as possible (i.e., reach a stabilized pumping condition).
- 2. Calibrate field instruments according to manufacturer procedures for calibration and record calibration procedure and results in field log.
- 3. All equipment will either be new or decontaminated in accordance with appropriate guidance document (*TGI Groundwater and Soil Sampling Equipment Decontamination*) prior to use.
- 4. Visually inspect the well to ensure that it is undamaged, properly labeled and secured
 - a) Damage or other conditions that may affect the integrity of the well will be recorded in the Field Activity Daily Log and brought to the attention of the designated Field Manager and/or Project Manager
 - b) Record well construction and conditions on the Low-Flow Sampling Field Form (Attachment A)
- 5. Place clean plastic sheeting on the ground near the well to keep monitoring and sampling equipment off the surface unless the equipment is elevated above the ground (e.g. on a table).
- 6. Open the well cover while standing upwind of the well. Remove the well cap and place it on the plastic sheeting. If appropriate or required for site-specific conditions, insert the photoionization detector (PID) probe approximately 4 to 6 inches into the casing or the well headspace and cover it with a gloved hand. Record the PID reading in the field log. Perform air monitoring in the breathing zone according to the HASP and/or JSA.
- 7. Measure and record the initial depth to groundwater prior to placing the pumps.

8. Prepare and install the pump in the well.

NOTE: Groundwater will be purged from the wells using an appropriate pump. If the depth to water is below the sampling range of a peristaltic pump (approximately 25 feet below ground surface), a submersible or bladder pump will be used, provided that the well is constructed with a casing diameter of at least two (2) inches (the minimum well diameter capable of accommodating such pumps). For smaller diameter wells, where the depth to water is below the sampling range of a peristaltic pump, alternative sampling methods (i.e., bailing or small diameter bladder pumps) will be used to purge and sample the groundwater. Bladder pumps are preferred over peristaltic and submersible pumps to prevent volatilization if sampling of VOCs and/or dissolved gasses is required. Purge water will be collected and containerized according to the direction of the project team.

- a) For submersible and non-dedicated bladder pumps, decontaminate the pump according to site decontamination procedures. Non-dedicated bladder pumps will require a new bladder and attachment of an air-line, sample discharge line, and safety cable prior to placement in the well. Attach the air-line tubing to the air-port on the top of the bladder pump. Attach the sample discharge tubing to the water port on the top of the bladder pump. Take care not to reverse the air and discharge tubing lines during bladder pump setup, as this could result in bladder failure or rupture. Attach and secure a safety cable to the eyebolt on the top of pump (if present, depending on pump model used). Slowly lower the pump, safety cable, tubing, and electrical lines into the well to a depth corresponding to the approximate center of the saturated screen section of the well. Avoid twisting and tangling of safety cable, tubing, and electrical lines while lowering the pump into the well; twisted and tangled lines could result in the pump becoming stuck in the well casing. Also, make sure to keep tubing and lines from touching the ground or other surfaces while introducing them into the well, as this could lead to unintended contamination.
- b) If using a bladder pump, connect the air-line to the pump controller output port. The pump controller will be connected to a supply line from an air compressor or compressed gas cylinder using an appropriate regulator and air hose. Tighten the regulator connector onto the gas cylinder (if used) to prevent leaks. Teflon® tape may be used on the threads of the cylinder to provide a tighter seal. Once the air compressor or gas cylinder is connected to the pump controller, turn on the compressor or open the valve on the cylinder to begin the gas flow. Turn on the pump controller power (if an on/off switch is present) and verify that all batteries are charged and fully functioning before starting the pump.
- c) If a peristaltic pump is being used, slowly lower the sampling tubing into the well to a depth corresponding to the approximate center of the saturated screen section of the well. The pump intake or sampling tube must be kept at least two (2) feet above the bottom of the well to prevent mobilization of any sediment present in the bottom of the well.
- d) If using an in-line 'T' and valve, install between pump discharge water line and the bottom inlet port of the flow-through cell. Attach a short piece of tubing to the outlet. This set-up will be used to collect samples for turbidity readings.

- 9. Connect the pump discharge water line to the bottom inlet port on the flow-through cell connected to the multi-parameter water-quality sonde and make sure to record equipment/instrument identification (manufacturer and model number).
- 10. Before starting the pump, ensure that the water level inside the well has stabilized (i.e., measure the water level multiple times after deploying the pump in the well).
- 11. Start pumping the well at 200 to 500 milliliters (mL) per minute (or at lower site-specific rate if specified) and adjust the pumping rate to cause little or no water level drawdown in the well (less than 0.3 feet below the initial static depth to water measurement): the water level should stabilize, however, this is not always possible.
- 12. If the well diameter is of sufficient size, measure the water level every 3 to 5 minutes (or as appropriate, lower flow rates may require longer time between readings) during pumping.
- 13. Maintain a steady flow rate to the extent practicable and do not break pump suction or cause entrainment of air in the sample.
- 14. Record pumping rate adjustments and depths to water.

If necessary, reduce pumping rates to the minimum capabilities of the pump to avoid pumping the well dry and/or to stabilize indicator parameters; if the recharge rate of the well is very low, use alternative purging techniques, which will vary based on the well construction and screen position.

For wells screened across the water table, the well may be pumped dry and sampling can commence as soon as the volume in the well has recovered sufficiently to permit collection of samples.

For wells screened entirely below the water table, the well can be pumped until a stabilized level (which may be greater than the maximum displacement goal of 0.3 feet) is maintained and monitoring for stabilization of field indicator parameters can commence; if a lower stabilization level cannot be maintained, the well may be pumped until the drawdown is at a level slightly higher than top of the well screen.

- 15. After water levels have stabilized and a sufficient volume has been purged (see note below), continue pumping and begin monitoring field indicator parameters using a multi-parameter water-quality sonde coupled with a flow-through-cell.
 - NOTE: The final purge volume must be greater than the stabilized drawdown volume plus the pump's tubing volume. If the drawdown has exceeded 0.3 feet and stabilizes, calculate the volume of water between the initial water level and the stabilized water level. Add the volume of the water which occupies the pump's tubing to this calculation. This combined volume of water needs to be purged from the well after the water level has stabilized before samples are collected.
- 16. Use the flow to measure all indicator field parameters, except for turbidity, every 3 to 5 minutes (or after each volume of the flow-through cell has been purged or other appropriate interval); turbidity samples will be collected before the flow-through-cell using the T-valve and a clean container such as a glass beaker.
- 17. Record field indicator parameters on the groundwater sampling log.

- 18. The well is considered stabilized and ready for sample collection when three consecutive readings are within the following limits:
 - Turbidity within ± 10% for values greater than 5 nephelometric turbidity units [NTUs] or if three turbidity values are less than 5 NTUs, consider the values stabilized
 - **Dissolved Oxygen (DO)** within ± 10% for values greater than 0.5 mg/L or if three DO values are less than 0.5 mg/L, consider the values stabilized
 - Specific Conductance within ± 3%
 - **Temperature** within ± 3%
 - **pH** within ± 0.1 unit
 - Oxidation/Reduction Potential (ORP) within ±10 millivolts (mV)

NOTE: Alternate stabilization goals may exist in different geographic regions, consult the site-specific FIP/work plan for stabilization criteria).

NOTE: While achieving turbidity levels less than 5 NTU and a stable drawdown of less than 0.3 feet is desirable, sample collection may still take place provided the indicator field parameter criteria in this procedure are met.

- 19. If the parameters have stabilized but turbidity remains relatively high (e.g., greater than 50 NTUs), the pump flow rate may be decreased to a minimum rate of 100 mL/min to reduce turbidity levels as low as possible. If groundwater turbidity has been minimized (i.e., consecutive readings within ± 10%) and the values for all other parameters have stabilized, the well may be sampled; however, consult specifications in the FIP/work plan and/or the project technical lead prior to sampling.
- 20. If after one (1) hour of purging indicator field parameters have not stabilized, consult specifications in the FIP/work plan and/or the project technical lead prior to sampling.

In general, three potential options are available if stabilization criteria are not met:

- a) Continue purging until stabilization is achieved.
- b) Discontinue purging, do not collect any samples, and record in field logbook/on the sampling form that stabilization could not be achieved (documentation must describe attempts to achieve stabilization).
- c) Discontinue purging, collect samples and provide full explanation of attempts to achieve stabilization. There is a risk that the analytical data obtained under these conditions, particularly metals and hydrophobic organic analytes, may reflect a sampling bias and, as a result, the data may not meet the data quality objectives of the sampling event.

NOTE: DO is extremely susceptible to various external influences (including temperature or the presence of bubbles on the DO meter); therefore, great care will be taken to minimize the agitation or other disturbance of water within the flow-through cell while collecting these measurements. If air bubbles are present on the DO probe or in the discharge tubing, remove them before taking a measurement. If DO values are not within acceptable range for the temperature of groundwater, again check for and remove air bubbles on the probe before re-measuring. The table below may be

used as a general guide for DO values under various temperatures; however, understand that the table corresponds to freshwater solubility and groundwater contaminants may affect oxygen solubility. If DO value is 0.00 or less, then the meter will be serviced and re-calibrated. If DO values are above possible results, then the meter will be serviced and re-calibrated.

NOTE: During extreme weather conditions, stabilization of field indicator parameters may be difficult to attain. Modifications to the sampling procedures to alleviate these conditions (e.g., measuring the water temperature in the well adjacent to the pump intake) will be documented in the field logbook/on the sampling form.

NOTE: If other field conditions are suspected of preventing stabilization of certain parameters, detailed observations will be documented in the field logbook/on the sampling form.

Oxygen Solubility in Fresh Water

Temperature	Dissolved Oxygen
(degrees C)	(mg/L)
0	14.6
1	14.19
2	13.81
3	13.44
4	13.09
5	12.75
6	12.43
7	12.12
8	11.83
9	11.55
10	11.27
11	11.01
12	10.76
13	10.52
14	10.29
15	10.07
16	9.85
17	9.65
18	9.45
19	9.26
20	9.07
21	8.9
22	8.72
23	8.56
24	8.4
25	8.24
26	8.09
27	7.95
28	7.81
29	7.67
30	7.54
31	7.41
32	7.28
33	7.16
34	7.05
35	6.93

Reference: Vesilind, P.A., Introduction to Environmental Engineering, PWS Publishing Company, Boston, 468 pages (1996).

- 21. Complete the sample label(s) and cover the label(s) with clear packing tape to secure the label onto the container.
- 22. After the indicator parameters have stabilized, collect groundwater samples by diverting flow out of the unfiltered discharge tubing into the appropriate labeled sample container.
 - a) If a flow-through analytical cell is being used to measure field parameters, the flow-through cell will be disconnected after stabilization of the field indicator parameters and prior to groundwater sample collection.
 - b) Under no circumstances will analytical samples be collected from the discharge of the flow-through cell.
 - c) If an in-line 'T' and valve are used, the valve needs to be removed as well.
 - d) Samples will be collected in the following order: VOCs, total organic carbon (TOC), semi-volatile organic compounds (SVOCs), metals and cyanide, and others (or other order as defined in the site-specific FIP/work plan).
 - e) When the container is full, tightly screw on the cap.
- 23. If sampling for total and filtered metals and/or polychlorinated biphenyls (PCBs), a filtered and unfiltered sample will be collected.
 - a) Install an in-line, disposable 0.45-micron particle filter on the discharge tubing after the appropriate unfiltered groundwater sample has been collected.
 - b) Continue to run the pump until an initial volume of "flush" water has been run through the filter in accordance with the manufacturer's directions (generally 100 to 300 mL).
 - c) Collect the filtered groundwater sample by diverting flow out of the filter into the appropriately labeled sample container.
 - d) When the container is full, tightly screw on the cap.
- 24. Secure with packing material and store the samples on ice in an insulated transport container provided by the laboratory and include a temperature blank in each container to be shipped.
- 25. Record on the Low-Flow Sampling Field Form (and bound field logbook) the time at which sampling procedures were completed, any pertinent observations of the sample (e.g., physical appearance and the presence or lack of odors or sheens), and the values of the stabilized field indicator parameters as measured during the final reading during purging (see **Attachment A**).
- 26. Turn off the pump and air compressor or close the gas cylinder valve if using a bladder pump setup.
- 27. Slowly remove the pump, tubing, lines, and safety cable from the well.
 - a) If using dedicated tubing, do not allow the tubing or lines to touch the ground or any other surfaces which could contaminate them.
 - b) If using dedicated tubing, it will be folded without pinching it to a length that will allow the well to be capped and also facilitate retrieval of the tubing during later sampling events.
 - c) Use a length of rope or string to tie the tubing to the well cap.

- d) Alternatively, if tubing and safety line are to be saved and reused for sampling the well at a later date, coil the tubing neatly and placed in a clean plastic bag that is clearly labeled with the well ID ensuring the bag is tightly sealed before placing it in storage.
- 28. Secure the well and properly dispose of personal protective equipment (PPE) and disposable equipment.
- 29. Complete the procedures for packaging, shipping, and handling with the associated Chain-of-Custody.
- 30. Complete decontamination for flow-through analytical cell and submersible or bladder pump, as appropriate (*TGI Groundwater and Soil Sampling Equipment Decontamination*).
- 31. At the end of each day of the sampling event, perform calibration check of field instruments and record procedure and results in field log.

8 WASTE MANAGEMENT

Materials generated during groundwater sampling activities, including disposable equipment and excess purge water, will be stored on site in appropriately labeled containers and disposed of properly. Waste will be managed in accordance with the *TGI – Investigation-Derived Waste Handling and Storage*, the procedures identified in the FIP or QAPP as well as state-, federal- or client-specific requirements. Be certain that waste containers are properly labeled and documented in the field logbook.

9 DATA RECORDING AND MANAGEMENT

Management of the original documents from the field will be completed in accordance with the sitespecific QAPP.

In general, forms (e.g., Low-Flow Sampling Field Forms), logs/notes (including daily field and calibration logs), digital records, and Chain-of-Custody records will be maintained by the field team lead.

Field logs and Chain-of-Custody records will be transmitted to the Arcadis Project Manager and/or Task Manager, as appropriate, at the end of each day unless otherwise directed. Electronic data files will be sent to the project team and uploaded to the electronic project folder daily.

Records generated as a result of this TGI will be controlled and maintained in the project record files in accordance with project requirements.

10 QUALITY ASSURANCE

Quality assurance procedures shall be conducted in accordance with the Arcadis Quality Management System or the site-specific QAPP.

Unless described otherwise in the project-specific FIP/work plan, QAPP, or Sampling and Analysis Plan, quality assurance/quality control samples will be collected as follows:

One duplicate for every 10 samples

TGI – Low-Flow Groundwater Purging and Sampling Procedures in Monitoring Wells Rev #: 1 | Rev Date: May 8, 2020

One laboratory matrix/matrix spike sample for every 20 samples

In addition to the quality control samples to be collected in accordance with this TGI, the following quality control procedures will be observed in the field:

- Collect samples from monitoring wells, in order of increasing concentration, to the extent known based on review of historical site information if available
- Equipment blanks will include the pump and tubing (if using disposable tubing) or the pump only (if using tubing dedicated to each well)
- Collect equipment blanks after wells with higher concentrations (if known) have been sampled
- Operate all monitoring instrumentation in accordance with manufacturer's instructions and calibration procedures—calibrate instruments at the beginning of each day, verify the calibration at the end of each day, and record all calibration activities in the field notebook
- Clean all groundwater sampling equipment prior to use in the first well and after each subsequent well following the procedure for equipment decontamination

11 REFERENCES

- USEPA. 1986. RCRA Groundwater Monitoring Technical Enforcement Guidance Document (September 1986).
- USEPA. 1991. *Handbook Groundwater, Volume II Methodology*, Office of Research and Development, Washington, DC. USEPN62S, /6-90/016b (July 1991).
- USEPA Region I. 2017. Low Stress (Low Flow) Purging and Sampling Procedures for the Collection of Groundwater Samples from Monitoring Wells (EQASOP-GW4; September 19, 2017).
- U.S. Geological Survey (USGS). 1977. *National Handbook of Recommended Methods for Water-Data Acquisition: USGS Office of Water Data Coordination*. Reston, Virginia.

12 ATTACHMENTS

A. Low-Flow Sampling Field Form

GROUNDWATER SAMPLING FORM

Project No.					Well ID					Date		
Project Name/I	_ocation _									Weather		
Measuring Pt. Description			Screen Setting (ft-bmp)			Casing Diameter (in.)				Well Mater	rial	_PVC _SS
Static Water Level (ft-bmp)			Total Depth (ft-bmp)			Water Column (ft)	·	Gall	ons in Well			
MP Elevation		F	Pump Intake (ft-bmp)			Purge Method:				Sample		
Pump On/Off							Centrifuga Submersib	l ole		Method		
Samr	ole Time		Volumes Purged				Other					
Pu	rge Start_		Gallons Purged				Sample ID		_	Sampled b	y	
Pι	urge End_					Replicate	e/Code No.		-			
Time	Minutes	Rate	Depth to Water	Gallons	рН	Cond. (μMhos)/(mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp.	Redox	Арре	earance
	Elapsed	(gpm)/(mL/min) 200mL/min +	(ft) -0.3	Purged	± 0.1	± 3%	(NTU) ± 10%	(mg/L) ± 10%	± 3%	(mV) ± 10mV	Color	Odor
												_
												_
		C+-	 abilization Calculat	ione (+)								+
		312	ibilization Calcula	.ioiis (±)								+
												_
	_						± 10% or					
	St	abilization Cri	iteria		± 0.1 s.u	л. ±3%	within 1 NTU ⁽¹⁾	± 10%	±3%	±10 mV		
		0% or within 1 NTL	J of a previous reading w	hen <10 N					Niconala au		Duccours	4li ea
Constituents	Sampled				Containe	er			Number		Preserva	itive
				•						-		
										-		
				•						-		
				•						-		
				•						-		
				•						-		
				•						-		
Comments												
Well Casing V	alumaa											
Gallons/Foot	1" = 0.04 1.25" = 0.06		1.5" = 0.09 2" = 0.16	2.5" = 0.20 3" = 0.37	6	3.5" = 0.50 4" = 0.65	6" = 1.47					
Well Informa	tion											
Well Loca	tion:						Well I	Locked a	t Arrival:	Yes	/	No
Condition of	f Well:						_Well Lock	ked at De	eparture:	Yes	/	No
Well Comp	letion:	Flush	Mount / St	ick Up			Kev	Number 1	To Well:			GW Samp Form

Appendix E

Groundwater Sampling Field Forms

97502, MW-4, 2021-09-28, 13:00, GW Sampling

Created	2021-09-28 19:25:41 UTC by Joe Sepiol
Updated	2021-09-28 19:55:45 UTC by Joe Sepiol
Location	48.5055270279278, -122.238966152186
Status	QC Complete
Note: Before you begin, have you synced?	

Project Details

i i ojece Detailo		
Chevron	Chevron	
Site ID	97502, Retail Outlet 97502	
Site ID	97502	
Site Location City	Sedro Woolley	
Site Location State	Washington	
Site Location	Sedro Woolley, Washington	
Project Number	30064310, Hamilton, Ada	
Project Number	30064310	
Date	2021-09-28	
Sampling Event	Quarterly	
Weather	Cloudy	
Sampler Name	Joe Sepiol	
Additional field staff?	No	

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

Well ID	MW-4
Well ID	MW-4
Turboscope Database ID	3607
Are you able to locate this well?	Yes
Work Performed at Location	GW Sampling

Well Information

Top of Screen (ft-bgs)	4.0
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	4.0
Well Casing Material	PVC
Measuring Point Description	Top of Casing
Historic Average DTW (ft-bmp)	7.0

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Interface Probe
Gauging Equipment ID	3000
Well Head PID Reading (ppm)	0

Gauging Time	12:26
Is Well Dry?	No
Is Product Present?	No
Was product removed?	No
Static Water Level (ft-bmp)	9.8
Static Water Level (Fixed)	9.8
DTW QC Check	QC Pass
Total Depth (ft-bmp)	15.6
Total Depth (Fixed)	15.6
TD QC Check	QC Pass
Water Column (ft)	5.8
Gallons in Well	3.77

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus
Water Quality Meter ID(s)	4278
Decontamination Method	2 Stage Rinse

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	13
Purge Start	12:32
Purge End (Before Sample Collection)	12:32
Purge Measurement Units	Milliliters
Total Milliliters Purged	5000
Well Volumes Purged (total)	0.35

Volumetric Details

Borehole Volume Multiplier: CD BD	. Multiplier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4"
10" 1.5 4" 12" 2.0 6" 10" 2.1 6" 12" 2.6	BD = Borehole Diameter CD = Casing Diameter
" = inches	
One Borehole Volume (gallons) 0	

Specified Volumes	1.5
Calculated Volume (gallons)	0

Enter purging and final field parameters in the Field Parameters section below.

@12:32, DTW:9.86, pH6.45, temp:16.1, cond:0.326,turb:11.6, DO:0.64, redox:77.7

C :=:== / = : : : : : : : : : : : : : : :	
Site ID, Well ID	97502, MW-4
Reading Time	12:32
Total Elapsed Minutes	0
Rate (mL/min)	150
Depth to Water (ft)	9.86
Total Volume Purged (mL)	0
рН	6.45
pH 2 decimals	6.45
Conductivity (mS/cm)	0.326
cond sig figs	0.326
Check your Units! Verify your water quality	meter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	11.6
turbidity sig figs	11.6
Dissolved Oxygen (mg/L)	0.64
DO 2 decimals	0.64
Temperature (Degrees Celcius)	16.1
temp 2 decimals	16.10
Redox (ORP mV)	77.7
Color	Clear
Notable Odors	None
parameters	@12:32, DTW:9.86, pH6.45, temp:16.1, cond:0.326,turb:11.6, DO:0.64, redox:77.7

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@12:37, DTW:9.94, pH6.46, temp:16.3, cond:0.331,turb:9.33, DO:0.17, redox:72.6

Site ID, Well ID	97502, MW-4
Reading Time	12:37
Minutes Elapsed between readings	5
Total Elapsed Minutes	5
Rate (mL/min)	150
Depth to Water (ft)	9.94
Total Volume Purged (mL)	1500
рН	6.46
pH 2 decimals	6.46
Conductivity (mS/cm)	0.331
cond sig figs	0.331
Check your Units! Verify your water quality r	meter is set to read conductivity in mS/cm (not uS/cm)

Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).

Turbidity (NTU)	9.33
turbidity sig figs	9.3
Dissolved Oxygen (mg/L)	0.17
DO 2 decimals	0.17
Temperature (Degrees Celcius)	16.3
temp 2 decimals	16.30
Redox (ORP mV)	72.6
Color	Clear
Notable Odors	None
parameters	@12:37, DTW:9.94, pH6.46, temp:16.3, cond:0.331,turb:9.33, DO:0.17, redox:72.6
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@12:42, DTW:9.99, pH6.47, temp:16.4, cond:0.332,turb:4.34, DO:0.1, redox:71.3

Site ID, Well ID	97502, MW-4
Reading Time	12:42
Minutes Elapsed between readings	5
Total Elapsed Minutes	10
Rate (mL/min)	150
Depth to Water (ft)	9.99
Total Volume Purged (mL)	2250
рН	6.47
pH 2 decimals	6.47
Conductivity (mS/cm)	0.332
cond sig figs	0.332
Check your Units! Verify your water quality me	ter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	4.34
turbidity sig figs	4.3
Dissolved Oxygen (mg/L)	0.1
DO 2 decimals	0.10
Temperature (Degrees Celcius)	16.4
temp 2 decimals	16.40
Redox (ORP mV)	71.3
Color	Clear
Notable Odors	None
parameters	@12:42, DTW:9.99, pH6.47, temp:16.4, cond:0.332,turb:4.34, DO:0.1, redox:71.3

Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 10 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 10 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@12:47, DTW:10.02, pH6.48, temp:16.6, cond:0.333,turb:4.5, DO:0.1, redox:70.6

Site ID, Well ID	97502, MW-4
Reading Time	12:47
Minutes Elapsed between readings	5
Total Elapsed Minutes	15
Rate (mL/min)	150
Depth to Water (ft)	10.02
Total Volume Purged (mL)	3000
рН	6.48
pH 2 decimals	6.48
Conductivity (mS/cm)	0.333
cond sig figs	0.333
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	4.5
turbidity sig figs	4.5
Dissolved Oxygen (mg/L)	0.1
DO 2 decimals	0.10
Temperature (Degrees Celcius)	16.6
temp 2 decimals	16.60
Redox (ORP mV)	70.6
Color	Clear
Notable Odors	None
parameters	@12:47, DTW:10.02, pH6.48, temp:16.6, cond:0.333,turb:4.5, DO:0.1, redox:70.6
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 15 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 15 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@12:52, DTW:10.15, pH6.49, temp:16.6, cond:0.334,turb:2.51, DO:0.09, redox:70.1

Site ID, Well ID	97502, MW-4
Reading Time	12:52
Minutes Elapsed between readings	5
Total Elapsed Minutes	20
Rate (mL/min)	150
Depth to Water (ft)	10.15
Total Volume Purged (mL)	3750
рН	6.49
pH 2 decimals	6.49
Conductivity (mS/cm)	0.334
cond sig figs	0.334
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	2.51
turbidity sig figs	2.5
Dissolved Oxygen (mg/L)	0.09
DO 2 decimals	0.09
Temperature (Degrees Celcius)	16.6
temp 2 decimals	16.60
Redox (ORP mV)	70.1
Color	Clear
Notable Odors	None
parameters	@12:52, DTW:10.15, pH6.49, temp:16.6, cond:0.334,turb:2.51, DO:0.09, redox:70.1
Stabilization Calculation - TGI	You may sample the well.
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 20 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling

|--|

Sample Information

Sample ID	MW-4-20210928
Sample Time	13:00
Sample Type	Grab
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	13
Color	Clear
Notable Odors	None

Analytes and Methods	See Chain-of-Custody.
----------------------	-----------------------

Well Inspection

Well inspection completed?

Close Out

General Comments None

Photos

Is this record complete?

Yes

97502, MW-5, 2021-09-28, 11:55, GW Sampling

Created	2021-09-28 18:00:45 UTC by Joe Sepiol
Updated	2021-09-28 19:56:00 UTC by Joe Sepiol
Location	48.505514455073, -122.238950813303
Status	QC Complete
Note: Before you begin, have you synced?	

Project Details

Chevron	Chevron	
Site ID	97502, Retail Outlet 97502	
Site ID	97502	
Site Location City	Sedro Woolley	
Site Location State	Washington	
Site Location	Sedro Woolley, Washington	
Project Number	30064310, Hamilton, Ada	
Project Number	30064310	
Date	2021-09-28	
Sampling Event	Quarterly	
Weather	Cloudy	
Sampler Name	Joe Sepiol	
Additional field staff?	No	

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

	· · · · · · · · · · · · · · · · · · ·
Well ID	MW-5
Well ID	MW-5
Turboscope Database ID	3608
Are you able to locate this well?	Yes
Work Performed at Location	GW Sampling

Well Information

Top of Screen (ft-bgs)	4.5
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	4.0
Well Casing Material	PVC
Measuring Point Description	Top of Casing
Historic Average DTW (ft-bmp)	8.0

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Interface Probe
Gauging Equipment ID	3000
Well Head PID Reading (ppm)	0

Gauging Time	11:02
Is Well Dry?	No
Is Product Present?	No
Was product removed?	No
Static Water Level (ft-bmp)	10.25
Static Water Level (Fixed)	10.25
DTW QC Check	QC Pass
Total Depth (ft-bmp)	17.23
Total Depth (Fixed)	17.23
TD QC Check	QC Pass
Water Column (ft)	6.98
Gallons in Well	4.54

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus
Water Quality Meter ID(s)	4278
Decontamination Method	2 Stage Rinse

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	14
Purge Start	11:15
Purge End (Before Sample Collection)	11:45
Purge Measurement Units	Milliliters
Total Milliliters Purged	6000
Well Volumes Purged (total)	0.35

Volumetric Details

Borehole Volume Multiplier:	CD BD N	Multiplier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4"
10" 1.5 4" 12" 2.0 6" 10" 2.1 6"	12" 2.6	BD = Borehole Diameter CD = Casing Diameter
" = inches		
One Borehole Volume (gallons)	0	

Specified Volumes	1.5
Calculated Volume (gallons)	0

Enter purging and final field parameters in the Field Parameters section below.

@11:15, DTW:10.35, pH6.31, temp:15.1, cond:0.256, turb:97, DO:1.45, redox:-12.1

Site ID, Well ID	97502, MW-5
Reading Time	11:15
Total Elapsed Minutes	0
Rate (mL/min)	150
Depth to Water (ft)	10.35
Total Volume Purged (mL)	0
рН	6.31
pH 2 decimals	6.31
Conductivity (mS/cm)	0.256
cond sig figs	0.256
Check your Units! Verify your water quality	meter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	97
turbidity sig figs	97.0
Dissolved Oxygen (mg/L)	1.45
DO 2 decimals	1.45
Temperature (Degrees Celcius)	15.1
temp 2 decimals	15.10
Redox (ORP mV)	-12.1
Color	Orange solids
Notable Odors	None
parameters	@11:15, DTW:10.35, pH6.31, temp:15.1, cond:0.256,turb:97, DO:1.45, redox:-12.1

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@11:20, DTW:10.45, pH6.27, temp:14.9, cond:0.256, turb:60.1, DO:0.52, redox:-22.1

Site ID, Well ID	97502, MW-5
Reading Time	11:20
Minutes Elapsed between readings	5
Total Elapsed Minutes	5
Rate (mL/min)	150
Depth to Water (ft)	10.45
Total Volume Purged (mL)	750
pH	6.27
pH 2 decimals	6.27
Conductivity (mS/cm)	0.256
cond sig figs	0.256
Check your Units! Verify your water quality r	meter is set to read conductivity in mS/cm (not uS/cm).

60.1
60.1
0.52
0.52
14.9
14.90
-22.1
Reddish Brown
None
@11:20, DTW:10.45, pH6.27, temp:14.9, cond:0.256,turb:60.1, DO:0.52, redox:-22.1
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@11:25, DTW:10.66, pH6.28, temp:14.9, cond:0.256,turb:41.9, DO:0.26, redox:-26.7

Site ID, Well ID	97502, MW-5
Reading Time	11:25
Minutes Elapsed between readings	5
Total Elapsed Minutes	10
Rate (mL/min)	150
Depth to Water (ft)	10.66
Total Volume Purged (mL)	1500
рН	6.28
pH 2 decimals	6.28
Conductivity (mS/cm)	0.256
cond sig figs	0.256
Check your Units! Verify your water quality n	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	41.9
turbidity sig figs	41.9
Dissolved Oxygen (mg/L)	0.26
DO 2 decimals	0.26
Temperature (Degrees Celcius)	14.9
temp 2 decimals	14.90
Redox (ORP mV)	-26.7
Color	Reddish Brown
Notable Odors	None
parameters	@11:25, DTW:10.66, pH6.28, temp:14.9, cond:0.256,turb:41.9, DO:0.26, redox:-26.7

Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@11:30, DTW:10.78, pH6.3, temp:15.2, cond:0.256,turb:27.5, DO:0.25, redox:-28

Site ID, Well ID	97502, MW-5
Reading Time	11:30
Minutes Elapsed between readings	5
Total Elapsed Minutes	15
Rate (mL/min)	150
Depth to Water (ft)	10.78
Total Volume Purged (mL)	2250
рН	6.3
pH 2 decimals	6.30
Conductivity (mS/cm)	0.256
cond sig figs	0.256
Check your Units! Verify your water quality m	eter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	27.5
turbidity sig figs	27.5
Dissolved Oxygen (mg/L)	0.25
DO 2 decimals	0.25
Temperature (Degrees Celcius)	15.2
temp 2 decimals	15.20
Redox (ORP mV)	-28
Color	Clear
Notable Odors	None
parameters	@11:30, DTW:10.78, pH6.3, temp:15.2, cond:0.256,turb:27.5, DO:0.25, redox:-28
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 15 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 15 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

@11:35, DTW:10.81, pH6.31, temp:15.3, cond:0.256,turb:24.1, DO:0.34, redox:-28.3

Site ID, Well ID	97502, MW-5
Reading Time	11:35
Minutes Elapsed between readings	5
Total Elapsed Minutes	20
Rate (mL/min)	150
Depth to Water (ft)	10.81
Total Volume Purged (mL)	3000
рН	6.31
pH 2 decimals	6.31
Conductivity (mS/cm)	0.256
cond sig figs	0.256
Check your Units! Verify your water quality meter i	s set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	24.1
turbidity sig figs	24.1
Dissolved Oxygen (mg/L)	0.34
DO 2 decimals	0.34
Temperature (Degrees Celcius)	15.3
temp 2 decimals	15.30
Redox (ORP mV)	-28.3
Color	Clear
Notable Odors	None
parameters	@11:35, DTW:10.81, pH6.31, temp:15.3, cond:0.256,turb:24.1, DO:0.34, redox:-28.3
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 20 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 20 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@11:40, DTW:10.85, pH6.32, temp:15.5, cond:0.256,turb:25.2, DO:0.35, redox:-28.7

Site ID, Well ID	97502, MW-5
Reading Time	11:40
Minutes Elapsed between readings	5
Total Elapsed Minutes	25
Rate (mL/min)	150
Depth to Water (ft)	10.85
Total Volume Purged (mL)	3750
рН	6.32
pH 2 decimals	6.32
Conductivity (mS/cm)	0.256

cond sig figs	0.256
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	25.2
turbidity sig figs	25.2
Dissolved Oxygen (mg/L)	0.35
DO 2 decimals	0.35
Temperature (Degrees Celcius)	15.5
temp 2 decimals	15.50
Redox (ORP mV)	-28.7
Color	Clear
Notable Odors	None
parameters	@11:40, DTW:10.85, pH6.32, temp:15.5, cond:0.256,turb:25.2, DO:0.35, redox:-28.7
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 25 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 25 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@11:45, DTW:10.89, pH6.32, temp:15.5, cond:0.256,turb:23.3, DO:0.35, redox:-28.8

Site ID, Well ID	97502, MW-5
Reading Time	11:45
Minutes Elapsed between readings	5
Total Elapsed Minutes	30
Rate (mL/min)	150
Depth to Water (ft)	10.89
Total Volume Purged (mL)	4500
рН	6.32
pH 2 decimals	6.32
Conductivity (mS/cm)	0.256
cond sig figs	0.256
Check your Units! Verify your water quality m	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	23.3
turbidity sig figs	23.3
Dissolved Oxygen (mg/L)	0.35
DO 2 decimals	0.35
Temperature (Degrees Celcius)	15.5
temp 2 decimals	15.50
Redox (ORP mV)	-28.8
Color	Clear
Notable Odors	None

parameters	@11:45, DTW:10.89, pH6.32, temp:15.5, cond:0.256,turb:23.3, DO:0.35, redox:-28.8
Stabilization Calculation - TGI	You may sample the well.
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 30 minutes
minute intervals: -Turbidity remains within 10% (or i	ollection when the following is met for three consecutive readings collected at 3 to 5 if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP alues are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020
	5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive tivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by
Sampling	
Are you able to sample this location?	Yes
Sample Information	
Sample ID	MW-5-20210928
Sample Time	11:55
Sample Type	Grab
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	14
Color	Clear
Notable Odors	None
Analytes and Methods	See Chain-of-Custody.
Well Inspection	
Well inspection completed?	Yes
Well Inspection Details	
Is well easy to locate?	Yes
Well Type	Flushmount
Is well in an area prone to flooding?	No
Are well labels present on the outside of the well?	No
Are bolts missing?	No
Are well labels present on the inside of the well?	No
Lock present?	No
Well housing pad in good shape?	Yes

None

Close Out
General Comments

Photos

Is this record complete?

Yes

97502, MW-6, 2021-09-27, 14:00, GW Sampling

Created	2021-09-27 20:06:24 UTC by Brian Pauley
Updated	2021-09-27 21:20:32 UTC by Brian Pauley
Location	48.5055475216811, -122.238629618773
Status	Ready for QC
Note: Before you begin, have you synced?	

Project Details

1 Toject Details		
Chevron	Chevron	
Site ID	97502, Retail Outlet 97502	
Site ID	97502	
Site Location City	Sedro Woolley	
Site Location State	Washington	
Site Location	Sedro Woolley, Washington	
Project Number	30064310, Hamilton, Ada	
Project Number	30064310	
Date	2021-09-27	
Sampling Event	Quarterly	
Weather	Raining	
Sampler Name	Brian Pauley	
Additional field staff?	No	

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

<u> </u>		
Well ID	MW-6	
Well ID	MW-6	
Turboscope Database ID	3609	
Are you able to locate this well?	Yes	
Work Performed at Location	GW Sampling	

Well Information

Top of Screen (ft-bgs)	5.0
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	2.0
Well Casing Material	PVC
Measuring Point Description	Top of Casing
Historic Average DTW (ft-bmp)	8.0

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Interface Probe
Gauging Time	13:06
Is Well Dry?	No

Is Product Present?	No
Was product removed?	No
Static Water Level (ft-bmp)	10.3
Static Water Level (Fixed)	10.3
DTW QC Check	QC Pass
Total Depth (ft-bmp)	19.82
Total Depth (Fixed)	19.82
TD QC Check	QC Pass
Water Column (ft)	9.52
Gallons in Well	1.55

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus
Water Quality Meter ID(s)	YSI professional

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	15
Purge Start	13:07
Purge End (Before Sample Collection)	13:59
Purge Measurement Units	Gallons
Total Gallons Purged	2.5
Well Volumes Purged (total)	1.61

Volumetric Details

Borehole Volume Multiplier:	· · · · · · · · · · · · · · · · · · ·	ier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4" BD = Borehole Diameter CD = Casing Diameter
One Borehole Volume (gallons)	0	
Specified Volumes	1.5	
Calculated Volume (gallons)	0	
Enter purging and final field parameters in	the Field Parameters section below.	

@13:07, DTW:10.05, pH5.68, temp:17, cond:176.9,turb:133, DO:0.55, redox:38.4

Site ID, Well ID	97502, MW-6
Reading Time	13:07
Rate (mL/min)	150
Depth to Water (ft)	10.05
Total Volume Purged (mL)	100
рН	5.68
pH 2 decimals	5.68
Conductivity (mS/cm)	176.9
cond sig figs	177
Check your Units! Verify your water quality	meter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	133
turbidity sig figs	133
Dissolved Oxygen (mg/L)	0.55
DO 2 decimals	0.55
Temperature (Degrees Celcius)	17
temp 2 decimals	17.00
Redox (ORP mV)	38.4
Color	Clear
Notable Odors	None
parameters	@13:07, DTW:10.05, pH5.68, temp:17, cond:176.9,turb:133, DO:0.55, redox:38.4

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@13:21, DTW:10.35, pH5.91, temp:17.4, cond:154.3,turb:117, DO:0.48, redox:10.4

Site ID, Well ID	97502, MW-6	
Reading Time	13:21	
Minutes Elapsed between readings	14	
Total Elapsed Minutes	14	
Rate (mL/min)	150	
Depth to Water (ft)	10.35	
Total Volume Purged (mL)	600	
рН	5.91	
pH 2 decimals	5.91	
Conductivity (mS/cm)	154.3	
cond sig figs	154	
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	117	
turbidity sig figs	117	
Dissolved Oxygen (mg/L)	0.48	
DO 2 decimals	0.48	

17.4	
17.40	
10.4	
Clear	
None	
@13:21, DTW:10.35, pH5.91, temp:17.4, cond:154.3,turb:117, DO:0.48, redox:10.4	
Continue purging, the parameters are not stable: pH is not stable; conductivity is no stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 14 minutes	
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 14 minutes	

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@13:24, DTW:10.35, pH5.87, temp:17.2, cond:152.4,turb:94.5, DO:0.62, redox:8.3

Site ID, Well ID	97502, MW-6
Reading Time	13:24
Minutes Elapsed between readings	3
Total Elapsed Minutes	17
Rate (mL/min)	150
Depth to Water (ft)	10.35
Total Volume Purged (mL)	1200
рН	5.87
pH 2 decimals	5.87
Conductivity (mS/cm)	152.4
cond sig figs	152
Check your Units! Verify your water quality meter is s	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	94.5
turbidity sig figs	94.5
Dissolved Oxygen (mg/L)	0.62
DO 2 decimals	0.62
Temperature (Degrees Celcius)	17.2
temp 2 decimals	17.20
Redox (ORP mV)	8.3
Color	Clear
Notable Odors	None
parameters	@13:24, DTW:10.35, pH5.87, temp:17.2, cond:152.4,turb:94.5, DO:0.62, redox:8.3
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 17 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 17 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@13:27, DTW:10.52, pH5.79	. temp:17.	. cond:150.6.turb:77.4	l. DO:0.68. redox:11.8

C 13127 / 3 1 1111 (0132) pri 1317 37 ceri	.p / con a	
Site ID, Well ID	97502, MW-6	
Reading Time	13:27	
Minutes Elapsed between readings	3	
Total Elapsed Minutes	20	
Rate (mL/min)	150	
Depth to Water (ft)	10.52	
Total Volume Purged (mL)	1800	
рН	5.79	
pH 2 decimals	5.79	
Conductivity (mS/cm)	150.6	
cond sig figs	151	
Check your Units! Verify your water quality n	neter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	77.4	
turbidity sig figs	77.4	
Dissolved Oxygen (mg/L)	0.68	
DO 2 decimals	0.68	
Temperature (Degrees Celcius)	17	
temp 2 decimals	17.00	
Redox (ORP mV)	11.8	
Color	Clear	
Notable Odors	None	
parameters	@13:27, DTW:10.52, pH5.79, temp:17, cond:150.6,turb:77.4, DO:0.68, redox:11.8	
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 20 minutes	
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 20 minutes	

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@13:33, DTW:10.52, pH5.75, temp:16.7, cond:148.9,turb:58.9, DO:0.71, redox:13

Site ID, Well ID	97502, MW-6
Reading Time	13:33
Minutes Elapsed between readings	6
Total Elapsed Minutes	26

Rate (mL/min)	150
Depth to Water (ft)	10.52
Total Volume Purged (mL)	2400
рН	5.75
pH 2 decimals	5.75
Conductivity (mS/cm)	148.9
cond sig figs	149
Check your Units! Verify your water quality meter is s	et to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	58.9
turbidity sig figs	58.9
Dissolved Oxygen (mg/L)	0.71
DO 2 decimals	0.71
Temperature (Degrees Celcius)	16.7
temp 2 decimals	16.70
Redox (ORP mV)	13
Color	Clear
Notable Odors	None
parameters	@13:33, DTW:10.52, pH5.75, temp:16.7, cond:148.9,turb:58.9, DO:0.71, redox:13
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 26 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 26 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@13:39, DTW:10.91, pH5.77, temp:16.7, cond:146.9, turb:46.2, DO:0.67, redox:10.9

Site ID, Well ID	97502, MW-6
Reading Time	13:39
Minutes Elapsed between readings	6
Total Elapsed Minutes	32
Rate (mL/min)	150
Depth to Water (ft)	10.91
Total Volume Purged (mL)	3000
pH	5.77
pH 2 decimals	5.77
Conductivity (mS/cm)	146.9
cond sig figs	147
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	46.2
turbidity sig figs	46.2
Dissolved Oxygen (mg/L)	0.67

DO 2 decimals	0.67
Temperature (Degrees Celcius)	16.7
temp 2 decimals	16.70
Redox (ORP mV)	10.9
Color	Clear
Notable Odors	None
parameters	@13:39, DTW:10.91, pH5.77, temp:16.7, cond:146.9,turb:46.2, DO:0.67, redox:10.9
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 32 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 32 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@13:44, DTW:11, pH5.78, temp:16.6, cond:145.7,turb:36.8, DO:0.64, redox:10

Site ID, Well ID	97502, MW-6
Reading Time	13:44
Minutes Elapsed between readings	5
Total Elapsed Minutes	37
Rate (mL/min)	150
Depth to Water (ft)	11
Total Volume Purged (mL)	3600
рН	5.78
pH 2 decimals	5.78
Conductivity (mS/cm)	145.7
cond sig figs	146
Check your Units! Verify your water quality n	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	36.8
turbidity sig figs	36.8
Dissolved Oxygen (mg/L)	0.64
DO 2 decimals	0.64
Temperature (Degrees Celcius)	16.6
temp 2 decimals	16.60
Redox (ORP mV)	10
Color	Clear
Notable Odors	None
parameters	@13:44, DTW:11, pH5.78, temp:16.6, cond:145.7,turb:36.8, DO:0.64, redox:10
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 37 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@13:47, DTW:11.07, pH5.79, temp:16.5, cond:145.6, turb:34, DO:0.62, redox:8.8

Site ID, Well ID	97502, MW-6
Reading Time	13:47
Minutes Elapsed between readings	3
Total Elapsed Minutes	40
Rate (mL/min)	150
Depth to Water (ft)	11.07
Total Volume Purged (mL)	4200
рН	5.79
pH 2 decimals	5.79
Conductivity (mS/cm)	145.6
cond sig figs	146
Check your Units! Verify your water quality n	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	34
turbidity sig figs	34.0
Dissolved Oxygen (mg/L)	0.62
DO 2 decimals	0.62
Temperature (Degrees Celcius)	16.5
temp 2 decimals	16.50
Redox (ORP mV)	8.8
Color	Clear
Notable Odors	None
parameters	@13:47, DTW:11.07, pH5.79, temp:16.5, cond:145.6,turb:34, DO:0.62, redox:8.8
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 40 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 40 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@13:50, DTW:11.09, pH5.79, temp:16.5, cond:145.7, turb:31.3, DO:0.59, redox:7.3

Site ID, Well ID	97502, MW-6
Reading Time	13:50

Minutes Elapsed between readings	3
Total Elapsed Minutes	43
Rate (mL/min)	150
Depth to Water (ft)	11.09
Total Volume Purged (mL)	4800
рН	5.79
pH 2 decimals	5.79
Conductivity (mS/cm)	145.7
cond sig figs	146
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	31.3
turbidity sig figs	31.3
Dissolved Oxygen (mg/L)	0.59
DO 2 decimals	0.59
Temperature (Degrees Celcius)	16.5
temp 2 decimals	16.50
Redox (ORP mV)	7.3
Color	Clear
Notable Odors	None
parameters	@13:50, DTW:11.09, pH5.79, temp:16.5, cond:145.7,turb:31.3, DO:0.59, redox:7.3
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 43 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 43 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@13:54, DTW:11.16, pH5.82, temp:16.5, cond:144.6, turb:26.7, DO:0.56, redox:4.8

Site ID, Well ID	97502, MW-6
Reading Time	13:54
Minutes Elapsed between readings	4
Total Elapsed Minutes	47
Rate (mL/min)	150
Depth to Water (ft)	11.16
Total Volume Purged (mL)	5200
рН	5.82
pH 2 decimals	5.82
Conductivity (mS/cm)	144.6
cond sig figs	145
Check your Units! Verify your water quality me	eter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	26.7

turbidity sig figs	26.7
Dissolved Oxygen (mg/L)	0.56
DO 2 decimals	0.56
Temperature (Degrees Celcius)	16.5
temp 2 decimals	16.50
Redox (ORP mV)	4.8
Color	Clear
Notable Odors	None
parameters	@13:54, DTW:11.16, pH5.82, temp:16.5, cond:144.6,turb:26.7, DO:0.56, redox:4.8
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 47 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 47 minutes

parameters	@13:57, DTW:11.24, pH5.84, temp:16.4, cond:144.2,turb:24.7, DO:0.56, redox:2.8
Notable Odors	None
Color	Clear
Redox (ORP mV)	2.8
temp 2 decimals	16.40
Temperature (Degrees Celcius)	16.4
DO 2 decimals	0.56
Dissolved Oxygen (mg/L)	0.56
turbidity sig figs	24.7
Turbidity (NTU)	24.7
Check your Units! Verify your water quality r	neter is set to read conductivity in mS/cm (not uS/cm).
cond sig figs	144
Conductivity (mS/cm)	144.2
pH 2 decimals	5.84
рН	5.84
Total Volume Purged (mL)	5800
Depth to Water (ft)	11.24
Rate (mL/min)	150
Total Elapsed Minutes	50
Minutes Elapsed between readings	3
Reading Time	13:57
Site ID, Well ID	97502, MW-6

Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 50 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 50 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling

Are you able to sample this location?

Sample Information

MW-6-20210927
14:00
Composite
Peristaltic
No
16
Clear
See Chain-of-Custody.

Well Inspection

Well inspection completed?

Close Out

General Comments	None
Is this record complete?	Yes

97502, MW-7, 2021-09-28, 14:15, GW Sampling

Created	2021-09-28 20:23:30 UTC by Joe Sepiol
Updated	2021-10-01 16:04:56 UTC by Joe Sepiol
Location	48.5054231761, -122.23877999
Status	QC Complete
Note: Before you begin, have you synced	?

Project Details

1 Toject Details		
Chevron	Chevron	
Site ID	97502, Retail Outlet 97502	
Site ID	97502	
Site Location City	Sedro Woolley	
Site Location State	Washington	
Site Location	Sedro Woolley, Washington	
Project Number	30064310, Hamilton, Ada	
Project Number	30064310	
Date	2021-09-28	
Sampling Event	Quarterly	
Weather	Cloudy	
Sampler Name	Joe Sepiol	
Additional field staff?	No	

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

	·
Well ID	MW-7
Well ID	MW-7
Turboscope Database ID	3610
Are you able to locate this well?	Yes
Work Performed at Location	GW Sampling

Well Information

Top of Screen (ft-bgs)	5.0
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	2.0
Well Casing Material	PVC
Measuring Point Description	Top of Casing
Historic Average DTW (ft-bmp)	10.0

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Interface Probe
Gauging Equipment ID	3000
Well Head PID Reading (ppm)	0.6

Gauging Time	13:24
Is Well Dry?	No
Is Product Present?	No
Was product removed?	No
Static Water Level (ft-bmp)	12.73
Static Water Level (Fixed)	12.73
DTW QC Check	QC Pass
Total Depth (ft-bmp)	21.35
Total Depth (Fixed)	21.35
TD QC Check	QC Pass
Water Column (ft)	8.62
Gallons in Well	1.4

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus
Water Quality Meter ID(s)	4278
Decontamination Method	2 Stage Rinse

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	17
Purge Start	13:30
Purge End (Before Sample Collection)	14:05
Purge Measurement Units	Milliliters
Total Milliliters Purged	6000
Well Volumes Purged (total)	1.13

Volumetric Details

Borehole Volume Multiplier: CD BD	. Multiplier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4"
10" 1.5 4" 12" 2.0 6" 10" 2.1 6" 12" 2.6	BD = Borehole Diameter CD = Casing Diameter
" = inches	
One Borehole Volume (gallons) 0	

Specified Volumes	1.5
Calculated Volume (gallons)	0

Enter purging and final field parameters in the Field Parameters section below.

@13:30, DTW:12.89, pH6.66, temp:15.2, cond:0.298,turb:15.4, DO:0.44, redox:20.4

· · · · · · · · · · · · · · · · · · ·	
Site ID, Well ID	97502, MW-7
Reading Time	13:30
Rate (mL/min)	150
Depth to Water (ft)	12.89
Total Volume Purged (mL)	0
pH	6.66
pH 2 decimals	6.66
Conductivity (mS/cm)	0.298
cond sig figs	0.298
Check your Units! Verify your water quality	y meter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	15.4
turbidity sig figs	15.4
Dissolved Oxygen (mg/L)	0.44
DO 2 decimals	0.44
Temperature (Degrees Celcius)	15.2
temp 2 decimals	15.20
Redox (ORP mV)	20.4
Color	Clear
Notable Odors	None
parameters	@13:30, DTW:12.89, pH6.66, temp:15.2, cond:0.298,turb:15.4, DO:0.44, redox:20.4

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@13:35, DTW:13, pH6.6, temp:15.3, cond:0.288,turb:3.68, DO:0.19, redox:6.5

Site ID, Well ID	97502, MW-7	
Reading Time	13:35	
Minutes Elapsed between readings	5	
Total Elapsed Minutes	5	
Rate (mL/min)	150	
Depth to Water (ft)	13	
Total Volume Purged (mL)	750	
рН	6.6	
pH 2 decimals	6.60	
Conductivity (mS/cm)	0.288	
cond sig figs	0.288	
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	3.68	

turbidity sig figs	3.7
Dissolved Oxygen (mg/L)	0.19
DO 2 decimals	0.19
Temperature (Degrees Celcius)	15.3
temp 2 decimals	15.30
Redox (ORP mV)	6.5
Color	Clear
Notable Odors	None
parameters	@13:35, DTW:13, pH6.6, temp:15.3, cond:0.288,turb:3.68, DO:0.19, redox:6.5
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes

Site ID, Well ID	97502, MW-7			
Reading Time	13:40			
Minutes Elapsed between readings	5			
Total Elapsed Minutes	10			
Rate (mL/min)	150			
Depth to Water (ft)	13.1			
Total Volume Purged (mL)	1500			
рН	6.6			
pH 2 decimals	6.60			
Conductivity (mS/cm)	0.293			
cond sig figs	0.293			
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).				
Turbidity (NTU)	1.76			
turbidity sig figs	1.8			
Dissolved Oxygen (mg/L)	0.17			
DO 2 decimals	0.17			
Temperature (Degrees Celcius)	15.4			
temp 2 decimals	15.40			
Redox (ORP mV)	1.2			
Color	Clear			
Notable Odors	None			
parameters	@13:40, DTW:13.1, pH6.6, temp:15.4, cond:0.293,turb:1.76, DO:0.17, redox:1.2			

Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes		
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes		

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@13:45, DTW:13.16, pH6.57, temp:15.5, cond:0.279,turb:2.86, DO:0.16, redox:-0.6

97502, MW-7
13:45
5
15
150
13.16
2250
6.57
6.57
0.279
0.279
set to read conductivity in mS/cm (not uS/cm).
2.86
2.9
0.16
0.16
15.5
15.50
-0.6
Clear
None
@13:45, DTW:13.16, pH6.57, temp:15.5, cond:0.279,turb:2.86, DO:0.16, redox:-0.6
Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 15 minutes
Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 15 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

@13:50, DTW:13.2, pH6.58, temp:15.5, cond:0.282,turb:2.19, DO:0.16, redox:-42

Site ID, Well ID	97502, MW-7
Reading Time	13:50
Minutes Elapsed between readings	5
Total Elapsed Minutes	20
Rate (mL/min)	150
Depth to Water (ft)	13.2
Total Volume Purged (mL)	3000
рН	6.58
pH 2 decimals	6.58
Conductivity (mS/cm)	0.282
cond sig figs	0.282
Check your Units! Verify your water quality met	ter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	2.19
turbidity sig figs	2.2
Dissolved Oxygen (mg/L)	0.16
DO 2 decimals	0.16
Temperature (Degrees Celcius)	15.5
temp 2 decimals	15.50
Redox (ORP mV)	-42
Color	Clear
Notable Odors	None
parameters	@13:50, DTW:13.2, pH6.58, temp:15.5, cond:0.282,turb:2.19, DO:0.16, redox:-42
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 20 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 20 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@13:55, DTW:13.2, pH6.59, temp:15.5, cond:0.285,turb:1.84, DO:0.14, redox:-6.9

Site ID, Well ID	97502, MW-7
Reading Time	13:55
Minutes Elapsed between readings	5
Total Elapsed Minutes	25
Rate (mL/min)	150
Depth to Water (ft)	13.2
Total Volume Purged (mL)	3750
рН	6.59
pH 2 decimals	6.59
Conductivity (mS/cm)	0.285

cond sig figs	0.285
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	1.84
turbidity sig figs	1.8
Dissolved Oxygen (mg/L)	0.14
DO 2 decimals	0.14
Temperature (Degrees Celcius)	15.5
temp 2 decimals	15.50
Redox (ORP mV)	-6.9
Color	Clear
Notable Odors	None
parameters	@13:55, DTW:13.2, pH6.59, temp:15.5, cond:0.285,turb:1.84, DO:0.14, redox:-6.9
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 25 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 25 minutes

@14:00, DTW:13.2, pH6.59,	temp:15.5.	.cond:0.283	.turb:0.82	. DO:0.14	. redox:-8.6

Site ID, Well ID	97502, MW-7
Reading Time	14:00
Minutes Elapsed between readings	5
Total Elapsed Minutes	30
Rate (mL/min)	150
Depth to Water (ft)	13.2
Total Volume Purged (mL)	4500
рН	6.59
pH 2 decimals	6.59
Conductivity (mS/cm)	0.283
cond sig figs	0.283
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.82
turbidity sig figs	0.82
Dissolved Oxygen (mg/L)	0.14
DO 2 decimals	0.14
Temperature (Degrees Celcius)	15.5
temp 2 decimals	15.50
Redox (ORP mV)	-8.6
Color	Clear
Notable Odors	None
	7.10

parameters	@14:00, DTW:13.2, pH6.59, temp:15.5, cond:0.283,turb:0.82, DO:0.14, redox:-8.6
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 30 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 30 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@14:05, DTW:13.22, pH6.59, temp:15.4, cond:0.278, turb:0.02, DO:0.13, redox:-10.1

Site ID, Well ID	97502, MW-7
Reading Time	14:05
Minutes Elapsed between readings	5
Total Elapsed Minutes	35
Rate (mL/min)	150
Depth to Water (ft)	13.22
Total Volume Purged (mL)	5250
рН	6.59
pH 2 decimals	6.59
Conductivity (mS/cm)	0.278
cond sig figs	0.278
Check your Units! Verify your water quality r	meter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.13
DO 2 decimals	0.13
Temperature (Degrees Celcius)	15.4
temp 2 decimals	15.40
Redox (ORP mV)	-10.1
Color	Clear
Notable Odors	None
parameters	@14:05, DTW:13.22, pH6.59, temp:15.4, cond:0.278,turb:0.02, DO:0.13, redox:-10.1
Stabilization Calculation - TGI	You may sample the well.
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapse is 35 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling

Are you able to sample this location?	Yes
Sample Information	
Sample ID	MW-7-20210928
Sample Time	14:15
Sample Type	Grab
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	17
Color	Clear
Notable Odors	Mild
Analytes and Methods	See Chain-of-Custody.
Well Inspection	
Well inspection completed?	No
Close Out	
General Comments	None
Is this record complete?	Yes

97502, MW-8, 2021-09-28, 16:00, GW Sampling

Created	2021-09-28 21:54:36 UTC by Joe Sepiol
Updated	2021-10-01 16:04:45 UTC by Joe Sepiol
Location	48.5054071667, -122.239005296
Status	QC Complete
Note: Before you begin, have you synced?	

Project Details

i i ojece Detailo		
Chevron	Chevron	
Site ID	97502, Retail Outlet 97502	
Site ID	97502	
Site Location City	Sedro Woolley	
Site Location State	Washington	
Site Location	Sedro Woolley, Washington	
Project Number	30064310, Hamilton, Ada	
Project Number	30064310	
Date	2021-09-28	
Sampling Event	Quarterly	
Weather	Cloudy	
Sampler Name	Joe Sepiol	
Additional field staff?	No	

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

Work Performed at Location	GW Sampling
Are you able to locate this well?	Yes
Turboscope Database ID	3611
Well ID	MW-8
Well ID	MW-8

Well Information

Top of Screen (ft-bgs)	7.5
Bottom of Screen (ft-bgs)	17.5
Casing Diameter (in)	2.0
Well Casing Material	PVC
Measuring Point Description	Top of Casing
Historic Average DTW (ft-bmp)	8.25

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Interface Probe
Gauging Equipment ID	3000
Well Head PID Reading (ppm)	66.2

Gauging Time	14:58
Is Well Dry?	No
Is Product Present?	No
Was product removed?	No
Static Water Level (ft-bmp)	10.38
Static Water Level (Fixed)	10.38
DTW QC Check	QC Pass
Total Depth (ft-bmp)	17.01
Total Depth (Fixed)	17.01
TD QC Check	QC Pass
Water Column (ft)	6.63
Gallons in Well	1.08

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus
Water Quality Meter ID(s)	4278
Decontamination Method	2 Stage Rinse

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	15
Purge Start	15:10
Purge End (Before Sample Collection)	15:50
Purge Measurement Units	Milliliters
Total Milliliters Purged	6500
Well Volumes Purged (total)	1.59

Volumetric Details

Borehole Volume Multiplier: CD BD Multiplier	2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4"
10" 1.5 4" 12" 2.0 6" 10" 2.1 6" 12" 2.6	BD = Borehole Diameter CD = Casing Diameter
" = inches	
One Borehole Volume (gallons) 0	

Specified Volumes	1.5
Calculated Volume (gallons)	0

Enter purging and final field parameters in the Field Parameters section below.

@15:10, DTW:10.58, pH6.63, temp:14.9, cond:0.393,turb:8.56, DO:0.75, redox:13.8

	<u> </u>
Site ID, Well ID	97502, MW-8
Reading Time	15:10
Rate (mL/min)	150
Depth to Water (ft)	10.58
Total Volume Purged (mL)	0
рН	6.63
pH 2 decimals	6.63
Conductivity (mS/cm)	0.393
cond sig figs	0.393
Check your Units! Verify your water quality	meter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	8.56
turbidity sig figs	8.6
Dissolved Oxygen (mg/L)	0.75
DO 2 decimals	0.75
Temperature (Degrees Celcius)	14.9
temp 2 decimals	14.90
Redox (ORP mV)	13.8
Color	Clear
Notable Odors	None
parameters	@15:10, DTW:10.58, pH6.63, temp:14.9, cond:0.393,turb:8.56, DO:0.75, redox:13.8

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@15:15, DTW:10.53, pH6.66, temp:15.1, cond:0.395,turb:0.64, DO:0.22, redox:-4.8

97502, MW-8
15:15
5
5
150
10.53
750
6.66
6.66
0.395
0.395
set to read conductivity in mS/cm (not uS/cm).
0.64

turbidity sig figs	0.64
Dissolved Oxygen (mg/L)	0.22
DO 2 decimals	0.22
Temperature (Degrees Celcius)	15.1
temp 2 decimals	15.10
Redox (ORP mV)	-4.8
Color	Clear
Notable Odors	None
parameters	@15:15, DTW:10.53, pH6.66, temp:15.1, cond:0.395,turb:0.64, DO:0.22, redox:-4.8
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@15:20, DTW:10.52, pH6.67, temp:15.1, cond:0.395,turb:0.02, DO:0.23, redox:-15.9

Site ID, Well ID	97502, MW-8		
Reading Time	15:20		
Minutes Elapsed between readings	5		
Total Elapsed Minutes	10		
Rate (mL/min)	150		
Depth to Water (ft)	10.52		
Total Volume Purged (mL)	750		
рН	6.67		
pH 2 decimals	6.67		
Conductivity (mS/cm)	0.395		
cond sig figs	0.395		
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).			
Turbidity (NTU)	0.02		
turbidity sig figs	0.02		
Dissolved Oxygen (mg/L)	0.23		
DO 2 decimals	0.23		
Temperature (Degrees Celcius)	15.1		
temp 2 decimals	15.10		
Redox (ORP mV)	-15.9		
Color	Clear		
Notable Odors	None		
parameters	@15:20, DTW:10.52, pH6.67, temp:15.1, cond:0.395,turb:0.02, DO:0.23, redox:-15.9		

Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@15:25, DTW:10.52, pH6.66, temp:15.1, cond:0.397, turb:0.02, DO:0.19, redox:-28.5

redox:-28.5
vity is stable ; le ; time elapsed
vity is stable ; stable ; time
1

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

@15:30, DTW:10.52, pH6.67, temp:15.1, cond:0.4, turb:0.02, DO:0.19, redox:-32.3

97502, MW-8	
15:30	
5	
20	
150	
10.52	
3000	
6.67	
6.67	
0.4	
0.400	
set to read conductivity in mS/cm (not uS/cm).	
0.02	
0.02	
0.19	
0.19	
15.1	
15.10	
-32.3	
Clear	
None	
@15:30, DTW:10.52, pH6.67, temp:15.1, cond:0.4,turb:0.02, DO:0.19, redox:-32.3	
Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is stable; ORP is not stable; time elapse is 20 minutes	
Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 20 minutes	

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@15:35, DTW:10.51, pH6.68, temp:14.8, cond:0.403,turb:0.2, DO:0.19, redox:-39.4

Site ID, Well ID	97502, MW-8
Reading Time	15:35
Minutes Elapsed between readings	5
Total Elapsed Minutes	25
Rate (mL/min)	150
Depth to Water (ft)	10.51
Total Volume Purged (mL)	3750
рН	6.68
pH 2 decimals	6.68
Conductivity (mS/cm)	0.403

cond sig figs	0.403
Check your Units! Verify your water quality meter is	s set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.2
turbidity sig figs	0.20
Dissolved Oxygen (mg/L)	0.19
DO 2 decimals	0.19
Temperature (Degrees Celcius)	14.8
temp 2 decimals	14.80
Redox (ORP mV)	-39.4
Color	Clear
Notable Odors	None
parameters	@15:35, DTW:10.51, pH6.68, temp:14.8, cond:0.403,turb:0.2, DO:0.19, redox:-39.4
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 25 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 25 minutes

@15:40, DTW:10.52, pH6	9. temp:15.3. cond:0.4	1.turb:0.02. DO:0.	2. redox:-42.3
------------------------	------------------------	--------------------	----------------

Site ID, Well ID	97502, MW-8
Reading Time	15:40
Minutes Elapsed between readings	5
Total Elapsed Minutes	30
Rate (mL/min)	150
Depth to Water (ft)	10.52
Total Volume Purged (mL)	4500
рН	6.69
pH 2 decimals	6.69
Conductivity (mS/cm)	0.411
cond sig figs	0.411
Check your Units! Verify your water quality r	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.2
DO 2 decimals	0.20
Temperature (Degrees Celcius)	15.3
temp 2 decimals	15.30
Redox (ORP mV)	-42.3
Color	Clear
Notable Odors	None
	Page: 7 of 10

parameters	@15:40, DTW:10.52, pH6.69, temp:15.3, cond:0.411,turb:0.02, DO:0.2, redox:-42.3
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is not stable; ORP is stable; time elapsed is 30 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is not stable; ORP is stable; time elapsed is 30 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@15:45, DTW:10.5,	pH6.69, temp:15.2	, cond:0.415,turb:0.2,	DO:0.13, redox:-44./

<u> </u>	
Site ID, Well ID	97502, MW-8
Reading Time	15:45
Minutes Elapsed between readings	5
Total Elapsed Minutes	35
Rate (mL/min)	150
Depth to Water (ft)	10.5
Total Volume Purged (mL)	4250
pH	6.69
pH 2 decimals	6.69
Conductivity (mS/cm)	0.415
cond sig figs	0.415
Check your Units! Verify your water quality me	ter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.2
turbidity sig figs	0.20
Dissolved Oxygen (mg/L)	0.13
DO 2 decimals	0.13
Temperature (Degrees Celcius)	15.2
temp 2 decimals	15.20
Redox (ORP mV)	-44.7
Color	Clear
Notable Odors	None
parameters	@15:45, DTW:10.5, pH6.69, temp:15.2, cond:0.415,turb:0.2, DO:0.13, redox:-44.7
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is not stable; ORP is stable; time elapsed is 35 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is not stable; temperature is not stable; ORP is stable; time elapsed is 35 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

@15:50, DTW:10.5, pH6.71, temp:15.3, cond:0.423,turb:0.02, DO:0.13, redox:-48.7

Site ID, Well ID	97502, MW-8
Reading Time	15:50
Minutes Elapsed between readings	5
Total Elapsed Minutes	40
Rate (mL/min)	150
Depth to Water (ft)	10.5
Total Volume Purged (mL)	5000
рН	6.71
pH 2 decimals	6.71
Conductivity (mS/cm)	0.423
cond sig figs	0.423
Check your Units! Verify your water quality m	eter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.13
DO 2 decimals	0.13
Temperature (Degrees Celcius)	15.3
temp 2 decimals	15.30
Redox (ORP mV)	-48.7
Color	Clear
Notable Odors	None
parameters	@15:50, DTW:10.5, pH6.71, temp:15.3, cond:0.423,turb:0.02, DO:0.13, redox:-48.7
Stabilization Calculation - TGI	You may sample the well.
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 40 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling

Are you able to sample this location?

Yes

Sample Information

Sample information	
Sample ID	MW-8-20210928
Sample Time	16:00
Sample Type	Grab
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	15
Color	Clear
Notable Odors	None

See Chain-of-Custody.	
No	
None	
Yes	
	No None

97502, MW-10, 2021-09-29, 10:30, GW Sampling

Created	2021-09-29 16:51:33 UTC by Joe Sepiol	
Updated	2021-10-01 16:04:31 UTC by Joe Sepiol	
Location	48.5053060391, -122.238815613	
Status	QC Complete	
Note: Before you begin, have you sync	ed?	

Project Details

i i ojece Detailo		
Chevron	Chevron	
Site ID	97502, Retail Outlet 97502	
Site ID	97502	
Site Location City	Sedro Woolley	
Site Location State	Washington	
Site Location	Sedro Woolley, Washington	
Project Number	30064310, Hamilton, Ada	
Project Number	30064310	
Date	2021-09-29	
Sampling Event	Quarterly	
Weather	Cloudy	
Sampler Name	Joe Sepiol	
Additional field staff?	No	

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

	·
Well ID	MW-10
Well ID	MW-10
Turboscope Database ID	3602
Are you able to locate this well?	Yes
Work Performed at Location	GW Sampling

Well Information

Top of Screen (ft-bgs)	7.0
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	2.0
Well Casing Material	PVC
Measuring Point Description	Top of Casing
Historic Average DTW (ft-bmp)	9.0

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Interface Probe
Gauging Equipment ID	3000
Well Head PID Reading (ppm)	0

Gauging Time	09:54
Is Well Dry?	No
Is Product Present?	No
Was product removed?	No
Static Water Level (ft-bmp)	10.33
Static Water Level (Fixed)	10.33
DTW QC Check	QC Pass
Total Depth (ft-bmp)	18.7
Total Depth (Fixed)	18.7
TD QC Check	QC Pass
Water Column (ft)	8.37
Gallons in Well	1.36

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus
Water Quality Meter ID(s)	4278
Decontamination Method	2 Stage Rinse

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	14
Purge Start	10:00
Purge End (Before Sample Collection)	10:20
Purge Measurement Units	Milliliters
Total Milliliters Purged	4500
Well Volumes Purged (total)	0.87

Volumetric Details

Borehole Volume Multiplier: CD BD	. Multiplier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4"
10" 1.5 4" 12" 2.0 6" 10" 2.1 6" 12" 2.6	BD = Borehole Diameter CD = Casing Diameter
" = inches	
One Borehole Volume (gallons) 0	

Specified Volumes	1.5
Calculated Volume (gallons)	0

Enter purging and final field parameters in the Field Parameters section below.

@10:00, DTW:10.45, pH6.33, temp:13.9, cond:0.329,turb:33.4, DO:0.43, redox:4.3

Site ID, Well ID	97502, MW-10
Reading Time	10:00
Rate (mL/min)	150
Depth to Water (ft)	10.45
Total Volume Purged (mL)	0
рН	6.33
pH 2 decimals	6.33
Conductivity (mS/cm)	0.329
cond sig figs	0.329
Check your Units! Verify your water quality	meter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	33.4
turbidity sig figs	33.4
Dissolved Oxygen (mg/L)	0.43
DO 2 decimals	0.43
Temperature (Degrees Celcius)	13.9
temp 2 decimals	13.90
Redox (ORP mV)	4.3
Color	Clear
Notable Odors	None
parameters	@10:00, DTW:10.45, pH6.33, temp:13.9, cond:0.329,turb:33.4, DO:0.43, redox:4.3

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:05, DTW:10.54, pH6.53, temp:14, cond:0.329,turb:10.8, DO:0.33, redox:-22.1

Site ID, Well ID	97502, MW-10
Reading Time	10:05
Minutes Elapsed between readings	5
Total Elapsed Minutes	5
Rate (mL/min)	150
Depth to Water (ft)	10.54
Total Volume Purged (mL)	750
рН	6.53
pH 2 decimals	6.53
Conductivity (mS/cm)	0.329
cond sig figs	0.329
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	10.8

turbidity sig figs	10.8
Dissolved Oxygen (mg/L)	0.33
DO 2 decimals	0.33
Temperature (Degrees Celcius)	14
temp 2 decimals	14.00
Redox (ORP mV)	-22.1
Color	Clear
Notable Odors	None
parameters	@10:05, DTW:10.54, pH6.53, temp:14, cond:0.329,turb:10.8, DO:0.33, redox:-22.1
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:10, DTW:10.58, pH6.63, temp:14.1, cond:0.33,turb:4.39, DO:0.26, redox:-32.1

Site ID, Well ID	97502, MW-10
Reading Time	10:10
Minutes Elapsed between readings	5
Total Elapsed Minutes	10
Rate (mL/min)	150
Depth to Water (ft)	10.58
Total Volume Purged (mL)	1500
рН	6.63
pH 2 decimals	6.63
Conductivity (mS/cm)	0.33
cond sig figs	0.330
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	4.39
turbidity sig figs	4.4
Dissolved Oxygen (mg/L)	0.26
DO 2 decimals	0.26
Temperature (Degrees Celcius)	14.1
temp 2 decimals	14.10
Redox (ORP mV)	-32.1
Color	Clear
Notable Odors	None
parameters	@10:10, DTW:10.58, pH6.63, temp:14.1, cond:0.33,turb:4.39, DO:0.26, redox:-32.1

Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:15, DTW:10.61, pH6.7, temp:14.3, cond:0.333,turb:2.94, DO:0.22, redox:-37.2

97502, MW-10
10:15
5
15
150
10.61
2250
6.7
6.70
0.333
0.333
set to read conductivity in mS/cm (not uS/cm).
2.94
2.9
0.22
0.22
14.3
14.30
-37.2
Clear
None
@10:15, DTW:10.61, pH6.7, temp:14.3, cond:0.333,turb:2.94, DO:0.22, redox:-37.2
Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 15 minutes
Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 15 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:20, DTW:10.62, pH6.73, temp:14.4, cond:0.331,turb:3.16, DO:0.2, redox:-36.5

Site ID, Well ID	97502, MW-10
Reading Time	10:20
Minutes Elapsed between readings	5
Total Elapsed Minutes	20
Rate (mL/min)	150
Depth to Water (ft)	10.62
Total Volume Purged (mL)	3000
рН	6.73
pH 2 decimals	6.73
Conductivity (mS/cm)	0.331
cond sig figs	0.331
Check your Units! Verify your water quality m	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	3.16
turbidity sig figs	3.2
Dissolved Oxygen (mg/L)	0.2
DO 2 decimals	0.20
Temperature (Degrees Celcius)	14.4
temp 2 decimals	14.40
Redox (ORP mV)	-36.5
Color	Clear
Notable Odors	None
parameters	@10:20, DTW:10.62, pH6.73, temp:14.4, cond:0.331,turb:3.16, DO:0.2, redox:-36.5
Stabilization Calculation - TGI	You may sample the well.
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 20 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling

|--|

Sample Information

Sample information	
Sample ID	MW-10-20210929
Duplicate ID	DUP-2-092921
Sample Time	10:30
Sample Type	Grab
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	14
Color	Clear

See Chain-of-Custody.
No
None
Yes

97502, MW-11, 2021-09-29, 10:42, GW Sampling

Note: Before you begin, have you synced?	
Status	Ready for QC
Location	48.5054161906683, -122.238904242812
Updated	2021-09-29 18:38:25 UTC by Michael Andrews
Created	2021-09-29 17:07:42 UTC by Michael Andrews

Project Details

- ,	
Chevron	Chevron
Site ID	97502, Retail Outlet 97502
Site ID	97502
Site Location City	Sedro Woolley
Site Location State	Washington
Site Location	Sedro Woolley, Washington
Project Number	30064310, Hamilton, Ada
Project Number	30064310
Date	2021-09-29
Sampling Event	Quarterly
Weather	Raining
Sampler Name	Michael Andrews
Additional field staff?	No

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

	·
Well ID	MW-11
Well ID	MW-11
Turboscope Database ID	3603
Are you able to locate this well?	Yes
Work Performed at Location	GW Sampling

Well Information

Top of Screen (ft-bgs)	7.0
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	2.0
Well Casing Material	PVC
Measuring Point Description	Top of Casing
Historic Average DTW (ft-bmp)	9.0

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Water Level Meter
Well Head PID Reading (ppm)	0.3
Gauging Time	10:08

Is Product Present? Was product removed? No Static Water Level (ft-bmp) 10.78 Static Water Level (Fixed) 10.78 DTW QC Check QC Pass Total Depth (ft-bmp) 18.93 Total Depth (Fixed) 18.93 TD QC Check QC Pass Water Column (ft) 8.15 Gallons in Well No No No No No No No 10.78 10.78 10.78 QC Pass	Is Well Dry?	No	
Static Water Level (ft-bmp) 10.78 Static Water Level (Fixed) 10.78 DTW QC Check QC Pass Total Depth (ft-bmp) 18.93 Total Depth (Fixed) 18.93 TD QC Check QC Pass Water Column (ft) 8.15	Is Product Present?	No	
Static Water Level (Fixed) 10.78 DTW QC Check QC Pass Total Depth (ft-bmp) 18.93 Total Depth (Fixed) 18.93 TD QC Check QC Pass Water Column (ft) 8.15	Was product removed?	No	
DTW QC Check QC Pass Total Depth (ft-bmp) 18.93 Total Depth (Fixed) 18.93 TD QC Check QC Pass Water Column (ft) 8.15	Static Water Level (ft-bmp)	10.78	
Total Depth (ft-bmp) 18.93 Total Depth (Fixed) 18.93 TD QC Check QC Pass Water Column (ft) 8.15	Static Water Level (Fixed)	10.78	
Total Depth (Fixed) 18.93 TD QC Check QC Pass Water Column (ft) 8.15	DTW QC Check	QC Pass	
TD QC Check QC Pass Water Column (ft) 8.15	Total Depth (ft-bmp)	18.93	
Water Column (ft) 8.15	Total Depth (Fixed)	18.93	
	TD QC Check	QC Pass	
Gallons in Well 1.32	Water Column (ft)	8.15	
	Gallons in Well	1.32	

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB $\,$

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	15
Purge Start	10:10
Purge End (Before Sample Collection)	10:41
Purge Measurement Units	Milliliters
Total Milliliters Purged	6000
Well Volumes Purged (total)	1.20

Volumetric Details

Borehole Volume Multiplier:	·	olier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4" BD = Borehole Diameter CD = Casing Diameter
One Borehole Volume (gallons)	0	
Specified Volumes	1.5	
Calculated Volume (gallons)	0	
Enter purging and final field parameters in	the Field Parameters section below	

@10:11, DTW:10.79, pH6.36, temp:13.2, cond:0.382,turb:0.02, DO:0.61, redox:44.8

Site ID, Well ID	97502, MW-11
Reading Time	10:11
Rate (mL/min)	200
Depth to Water (ft)	10.79
Total Volume Purged (mL)	0
рН	6.36
pH 2 decimals	6.36
Conductivity (mS/cm)	0.382
cond sig figs	0.382
Check your Units! Verify your water quality	meter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.61
DO 2 decimals	0.61
Temperature (Degrees Celcius)	13.2
temp 2 decimals	13.20
Redox (ORP mV)	44.8
Color	Clear
Notable Odors	Mild
parameters	@10:11, DTW:10.79, pH6.36, temp:13.2, cond:0.382,turb:0.02, DO:0.61, redox:44.8

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:16, DTW:11.18, pH6.34, temp:13.4, cond:0.382,turb:0.03, DO:0.27, redox:15.8

Site ID, Well ID	97502, MW-11
Reading Time	10:16
Minutes Elapsed between readings	5
Total Elapsed Minutes	5
Rate (mL/min)	200
Depth to Water (ft)	11.18
Total Volume Purged (mL)	1000
рН	6.34
pH 2 decimals	6.34
Conductivity (mS/cm)	0.382
cond sig figs	0.382
Check your Units! Verify your water quality meter	is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.03
turbidity sig figs	0.03
Dissolved Oxygen (mg/L)	0.27
DO 2 decimals	0.27

13.4
13.40
15.8
Clear
Mild
@10:16, DTW:11.18, pH6.34, temp:13.4, cond:0.382,turb:0.03, DO:0.27, redox:15.8
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:21, DTW:11.3, pH6.37, temp:13.6, cond:0.381,turb:0.02, DO:0.21, redox:0.7

Site ID, Well ID	97502, MW-11
Reading Time	10:21
Minutes Elapsed between readings	5
Total Elapsed Minutes	10
Rate (mL/min)	200
Depth to Water (ft)	11.3
Total Volume Purged (mL)	2000
рН	6.37
pH 2 decimals	6.37
Conductivity (mS/cm)	0.381
cond sig figs	0.381
Check your Units! Verify your water quality meter is s	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.21
DO 2 decimals	0.21
Temperature (Degrees Celcius)	13.6
temp 2 decimals	13.60
Redox (ORP mV)	0.7
Color	Clear
Notable Odors	Mild
parameters	@10:21, DTW:11.3, pH6.37, temp:13.6, cond:0.381,turb:0.02, DO:0.21, redox:0.7
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 10 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 10 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:26, DTW:11.27, pH6.33	temn:13.1	cond:0.379 turb:0.02	DO:0.22 redov:-9
(0.20, D1W.11.27, DD0.33)	, temb. 15.1,	COHU.U.3/9, (u) D.U.UZ	, DO.U.ZZ, TEUUX9

Site ID, Well ID	97502, MW-11
Reading Time	10:26
Minutes Elapsed between readings	5
Total Elapsed Minutes	15
Rate (mL/min)	200
Depth to Water (ft)	11.27
Total Volume Purged (mL)	3000
рН	6.33
pH 2 decimals	6.33
Conductivity (mS/cm)	0.379
cond sig figs	0.379
Check your Units! Verify your water quality m	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.22
DO 2 decimals	0.22
Temperature (Degrees Celcius)	13.1
temp 2 decimals	13.10
Redox (ORP mV)	-9
Color	Clear
Notable Odors	Mild
parameters	@10:26, DTW:11.27, pH6.33, temp:13.1, cond:0.379,turb:0.02, DO:0.22, redox:-9
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is not stable; ORP is not stable; time elapsed is 15 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 15 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:31, DTW:11.25, pH6.34, temp:13.4, cond:0.385,turb:0.02, DO:0.22, redox:-15.7

Site ID, Well ID	97502, MW-11
Reading Time	10:31
Minutes Elapsed between readings	5
Total Elapsed Minutes	20

Depth to Water (ft)	11.25
Total Volume Purged (mL)	4000
рН	6.34
pH 2 decimals	6.34
Conductivity (mS/cm)	0.385
cond sig figs	0.385
Check your Units! Verify your water quality me	eter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.22
DO 2 decimals	0.22
Temperature (Degrees Celcius)	13.4
temp 2 decimals	13.40
Redox (ORP mV)	-15.7
Color	Clear
Notable Odors	Mild
parameters	@10:31, DTW:11.25, pH6.34, temp:13.4, cond:0.385,turb:0.02, DO:0.22, redox:-15.7
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is not stable; ORP is not stable; time elapsed is 20 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is not stable; ORP is not stable; time elapsed is 20 minutes

200

Rate (mL/min)

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:36, DTW:11.25, pH6.35, temp:13.3, cond:0.386,turb:0.02, DO:0.21, redox:-20

Site ID, Well ID	97502, MW-11
Reading Time	10:36
Minutes Elapsed between readings	5
Total Elapsed Minutes	25
Rate (mL/min)	200
Depth to Water (ft)	11.25
Total Volume Purged (mL)	5000
рН	6.35
pH 2 decimals	6.35
Conductivity (mS/cm)	0.386
cond sig figs	0.386
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.21

DO 2 decimals	0.21
Temperature (Degrees Celcius)	13.3
temp 2 decimals	13.30
Redox (ORP mV)	-20
Color	Clear
Notable Odors	Mild
parameters	@10:36, DTW:11.25, pH6.35, temp:13.3, cond:0.386,turb:0.02, DO:0.21, redox:-20
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 25 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 25 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:41, DTW:11.25, pH6.33, temp:13.4, cond:0.386,turb:0.02, DO:0.2, redox:-22

Site ID, Well ID	97502, MW-11	
Reading Time	10:41	
Minutes Elapsed between readings	5	
Total Elapsed Minutes	30	
Rate (mL/min)	200	
Depth to Water (ft)	11.25	
Total Volume Purged (mL)	6000	
рН	6.33	
pH 2 decimals	6.33	
Conductivity (mS/cm)	0.386	
cond sig figs	0.386	
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	0.02	
turbidity sig figs	0.02	
Dissolved Oxygen (mg/L)	0.2	
DO 2 decimals	0.20	
Temperature (Degrees Celcius)	13.4	
temp 2 decimals	13.40	
Redox (ORP mV)	-22	
Color	Clear	
Notable Odors	Mild	
parameters	@10:41, DTW:11.25, pH6.33, temp:13.4, cond:0.386,turb:0.02, DO:0.2, redox:-22	
Stabilization Calculation - TGI	You may sample the well.	
Stabilization Calculation - site 775040	You may sample the well.	

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling	
Are you able to sample this location?	Yes
Sample Information	
Sample ID	MW-11-20210929
Sample Time	10:42
Sample Type	Grab
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	15
Color	Clear
Notable Odors	Moderate
Analytes and Methods	See Chain-of-Custody.
Well Inspection	
Well inspection completed?	No
Close Out	
General Comments	None
Is this record complete?	Yes

97502, MW-12, 2021-09-28, 14:26, GW Sampling

Created	2021-09-28 20:54:44 UTC by Michael Andrews
Updated	2021-09-28 21:48:17 UTC by Michael Andrews
Location	48.5055515030851, -122.238845117504
Status	Ready for QC
Note: Before you begin, have you synced	?

Project Details

i i ojece Detailo		
Chevron	Chevron	
Site ID	97502, Retail Outlet 97502	
Site ID	97502	
Site Location City	Sedro Woolley	
Site Location State	Washington	
Site Location	Sedro Woolley, Washington	
Project Number	30064310, Hamilton, Ada	
Project Number	30064310	
Date	2021-09-28	
Sampling Event	Quarterly	
Weather	Cloudy	
Sampler Name	Michael Andrews	
Additional field staff?	No	

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

Well ID	MW-12
Well ID	MW-12
Turboscope Database ID	3604
Are you able to locate this well?	Yes
Work Performed at Location	GW Sampling

Well Information

Top of Screen (ft-bgs)	5.0
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	4.0
Well Casing Material	PVC
Measuring Point Description	Top of Casing
Historic Average DTW (ft-bmp)	8.5

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Water Level Meter
Well Head PID Reading (ppm)	0.1
Gauging Time	13:55

Is Well Dry?	No
Is Product Present?	No
Was product removed?	No
Static Water Level (ft-bmp)	10.28
Static Water Level (Fixed)	10.28
DTW QC Check	QC Pass
Total Depth (ft-bmp)	18.75
Total Depth (Fixed)	18.75
TD QC Check	QC Pass
Water Column (ft)	8.47
Gallons in Well	5.51

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB $\,$

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	15
Purge Start	13:55
Purge End (Before Sample Collection)	14:25
Purge Measurement Units	Milliliters
Total Milliliters Purged	6000
Well Volumes Purged (total)	0.29

Volumetric Details

Borehole Volume Multiplier:	· · · · · · · · · · · · · · · · · · ·	ier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4" BD = Borehole Diameter CD = Casing Diameter
One Borehole Volume (gallons)	0	
Specified Volumes	1.5	
Calculated Volume (gallons)	0	
Enter purging and final field parameters in	the Field Parameters section below.	

@13:55, DTW:10.28, pH6.2, temp:16.3, cond:0.348,turb:37.9, DO:0.89, redox:13.3

Site ID, Well ID	97502, MW-12
Reading Time	13:55
Rate (mL/min)	200
Depth to Water (ft)	10.28
Total Volume Purged (mL)	0
рН	6.2
pH 2 decimals	6.20
Conductivity (mS/cm)	0.348
cond sig figs	0.348
Check your Units! Verify your water quality m	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	37.9
turbidity sig figs	37.9
Dissolved Oxygen (mg/L)	0.89
DO 2 decimals	0.89
Temperature (Degrees Celcius)	16.3
temp 2 decimals	16.30
Redox (ORP mV)	13.3
Color	Clear
Notable Odors	Mild
parameters	@13:55, DTW:10.28, pH6.2, temp:16.3, cond:0.348,turb:37.9, DO:0.89, redox:13.3

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@14:00, DTW:10.49, pH6.14, temp:15.9, cond:0.339,turb:31, DO:0.72, redox:11.6

Site ID, Well ID	97502, MW-12	
Reading Time	14:00	
Minutes Elapsed between readings	5	
Total Elapsed Minutes	5	
Rate (mL/min)	200	
Depth to Water (ft)	10.49	
Total Volume Purged (mL)	1000	
рН	6.14	
pH 2 decimals	6.14	
Conductivity (mS/cm)	0.339	
cond sig figs	0.339	
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	31	
turbidity sig figs	31.0	
Dissolved Oxygen (mg/L)	0.72	
DO 2 decimals	0.72	

15.9
15.90
11.6
Clear
Mild
@14:00, DTW:10.49, pH6.14, temp:15.9, cond:0.339,turb:31, DO:0.72, redox:11.6
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@14:05, DTW:10.53, pH6.15, temp:15.8, cond:0.326,turb:21.4, DO:0.32, redox:10.6

Site ID, Well ID	97502, MW-12
Reading Time	14:05
Minutes Elapsed between readings	5
Total Elapsed Minutes	10
Rate (mL/min)	200
Depth to Water (ft)	10.53
Total Volume Purged (mL)	2000
pH	6.15
pH 2 decimals	6.15
Conductivity (mS/cm)	0.326
cond sig figs	0.326
Check your Units! Verify your water quality meter is	s set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	21.4
turbidity sig figs	21.4
Dissolved Oxygen (mg/L)	0.32
DO 2 decimals	0.32
Temperature (Degrees Celcius)	15.8
temp 2 decimals	15.80
Redox (ORP mV)	10.6
Color	Clear
Notable Odors	Mild
parameters	@14:05, DTW:10.53, pH6.15, temp:15.8, cond:0.326,turb:21.4, DO:0.32, redox:10.6
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is stable; time elapsed is 10 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is stable; time elapsed is 10 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

(മ	14:10	DTW:20.53	. pH6.14	. temp:15.7	. cond:0.32	.turb:17.6	. DO:0.23	. redox:9.7

Site ID, Well ID	97502, MW-12
Reading Time	14:10
Minutes Elapsed between readings	5
Total Elapsed Minutes	15
Rate (mL/min)	200
Depth to Water (ft)	20.53
Total Volume Purged (mL)	3000
pH	6.14
pH 2 decimals	6.14
Conductivity (mS/cm)	0.32
cond sig figs	0.320
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	17.6
turbidity sig figs	17.6
Dissolved Oxygen (mg/L)	0.23
DO 2 decimals	0.23
Temperature (Degrees Celcius)	15.7
temp 2 decimals	15.70
Redox (ORP mV)	9.7
Color	Clear
Notable Odors	Mild
parameters	@14:10, DTW:20.53, pH6.14, temp:15.7, cond:0.32,turb:17.6, DO:0.23, redox:9.7
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 15 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 15 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@14:15, DTW:10.53, pH6.14, temp:15.7, cond:0.312,turb:15.4, DO:0.2, redox:9

Site ID, Well ID	97502, MW-12
Reading Time	14:15
Minutes Elapsed between readings	5
Total Elapsed Minutes	20

Rate (mL/min)	200
Depth to Water (ft)	10.53
Total Volume Purged (mL)	4000
рН	6.14
pH 2 decimals	6.14
Conductivity (mS/cm)	0.312
cond sig figs	0.312
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	15.4
turbidity sig figs	15.4
Dissolved Oxygen (mg/L)	0.2
DO 2 decimals	0.20
Temperature (Degrees Celcius)	15.7
temp 2 decimals	15.70
Redox (ORP mV)	9
Color	Clear
Notable Odors	Mild
parameters	@14:15, DTW:10.53, pH6.14, temp:15.7, cond:0.312,turb:15.4, DO:0.2, redox:9
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 20 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 20 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@14:20, DTW:10.54, pH6.17, temp:15.7, cond:0.309,turb:15.8, DO:0.2, redox:6.9

Site ID, Well ID	97502, MW-12	
Reading Time	14:20	
Minutes Elapsed between readings	5	
Total Elapsed Minutes	25	
Rate (mL/min)	200	
Depth to Water (ft)	10.54	
Total Volume Purged (mL)	5000	
рН	6.17	
pH 2 decimals	6.17	
Conductivity (mS/cm)	0.309	
cond sig figs	0.309	
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	15.8	
turbidity sig figs	15.8	
Dissolved Oxygen (mg/L)	0.2	

DO 2 decimals	0.20
Temperature (Degrees Celcius)	15.7
temp 2 decimals	15.70
Redox (ORP mV)	6.9
Color	Clear
Notable Odors	Mild
parameters	@14:20, DTW:10.54, pH6.17, temp:15.7, cond:0.309,turb:15.8, DO:0.2, redox:6.9
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 25 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 25 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@14:25, DTW:10.54, pH6.16, temp:15.7, cond:0.305,turb:14.3, DO:0.19, redox:7.3

Site ID, Well ID	97502, MW-12
Reading Time	14:25
Minutes Elapsed between readings	5
Total Elapsed Minutes	30
Rate (mL/min)	200
Depth to Water (ft)	10.54
Total Volume Purged (mL)	6000
рН	6.16
pH 2 decimals	6.16
Conductivity (mS/cm)	0.305
cond sig figs	0.305
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	14.3
turbidity sig figs	14.3
Dissolved Oxygen (mg/L)	0.19
DO 2 decimals	0.19
Temperature (Degrees Celcius)	15.7
temp 2 decimals	15.70
Redox (ORP mV)	7.3
Color	Clear
Notable Odors	Mild
parameters	@14:25, DTW:10.54, pH6.16, temp:15.7, cond:0.305,turb:14.3, DO:0.19, redox:7.3
Stabilization Calculation - TGI	You may sample the well.
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 30 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling	
Are you able to sample this location?	Yes
Sample Information	
Sample ID	MW-12-20210928
Sample Time	14:26
Sample Type	Grab
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	16
Color	Clear
Notable Odors	Mild
Analytes and Methods	See Chain-of-Custody.
Well Inspection	
Well inspection completed?	No
Close Out	
General Comments	None
Is this record complete?	Yes

97502, MW-13, 2021-09-28, 12:52, GW Sampling

Created	2021-09-28 19:22:10 UTC by Michael Andrews
Updated	2021-09-28 20:33:22 UTC by Michael Andrews
Location	48.5054407362347, -122.238924410308
Status	Ready for QC
Note: Before you begin, have you synced?	

Project Details

i i ojece Detailo		
Chevron	Chevron	
Site ID	97502, Retail Outlet 97502	
Site ID	97502	
Site Location City	Sedro Woolley	
Site Location State	Washington	
Site Location	Sedro Woolley, Washington	
Project Number	30064310, Hamilton, Ada	
Project Number	30064310	
Date	2021-09-28	
Sampling Event	Quarterly	
Weather	Cloudy	
Sampler Name	Michael Andrews	
Additional field staff?	No	

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

Work Performed at Location	GW Sampling
Are you able to locate this well?	Yes
Turboscope Database ID	3605
Well ID	MW-13
Well ID	MW-13

Well Information

Top of Screen (ft-bgs)	5.0
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	4.0
Well Casing Material	Stainless Steel
Measuring Point Description	Top of Casing
Historic Average DTW (ft-bmp)	8.0

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Water Level Meter
Well Head PID Reading (ppm)	0.6
Gauging Time	12:22

No
No
No
10.73
10.73
QC Pass
18.89
18.89
QC Pass
8.16
5.3

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	14
Purge Start	12:36
Purge End (Before Sample Collection)	12:51
Purge Measurement Units	Milliliters
Total Milliliters Purged	300
Well Volumes Purged (total)	0.01

Volumetric Details

Borehole Volume Multiplier:	·	ier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4" BD = Borehole Diameter CD = Casing Diameter
One Borehole Volume (gallons)	0	
Specified Volumes	1.5	
Calculated Volume (gallons)	0	
Enter purging and final field parameters in	the Field Parameters section below.	

@12:36, DTW:10.73, pH6.25, temp:15.5, cond:0.345,turb:30.7, DO:0.38, redox:1.5

Site ID, Well ID	97502, MW-13
Reading Time	12:36
Total Elapsed Minutes	0
Rate (mL/min)	200
Depth to Water (ft)	10.73
Total Volume Purged (mL)	0
рН	6.25
pH 2 decimals	6.25
Conductivity (mS/cm)	0.345
cond sig figs	0.345
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	30.7
turbidity sig figs	30.7
Dissolved Oxygen (mg/L)	0.38
DO 2 decimals	0.38
Temperature (Degrees Celcius)	15.5
temp 2 decimals	15.50
Redox (ORP mV)	1.5
Color	Clear
Notable Odors	Mild
parameters	@12:36, DTW:10.73, pH6.25, temp:15.5, cond:0.345,turb:30.7, DO:0.38, redox:1.5

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@12:41, DTW:11.24, pH6.13, temp:15.5, cond:0.341,turb:4.53, DO:0.34, redox:1.7

Site ID, Well ID	97502, MW-13	
Reading Time	12:41	
Minutes Elapsed between readings	5	
Total Elapsed Minutes	5	
Rate (mL/min)	200	
Depth to Water (ft)	11.24	
Total Volume Purged (mL)	1000	
pH	6.13	
pH 2 decimals	6.13	
Conductivity (mS/cm)	0.341	
cond sig figs	0.341	
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	4.53	
turbidity sig figs	4.5	
Dissolved Oxygen (mg/L)	0.34	

DO 2 decimals	0.34
Temperature (Degrees Celcius)	15.5
temp 2 decimals	15.50
Redox (ORP mV)	1.7
Color	Clear
Notable Odors	Mild
parameters	@12:41, DTW:11.24, pH6.13, temp:15.5, cond:0.341,turb:4.53, DO:0.34, redox:1.7
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@12:46, DTW:11.32, pH6.14, temp:15.5, cond:0.341,turb:3.38, DO:0.4, redox:-1.4

97502, MW-13 12:46 5 10 200 11.32 2000 6.14
5 10 200 11.32 2000 6.14
10 200 11.32 2000 6.14
200 11.32 2000 6.14
11.32 2000 6.14
2000 6.14
6.14
6.1.4
0.14
0.341
0.341
set to read conductivity in mS/cm (not uS/cm).
3.38
3.4
0.4
0.40
15.5
15.50
-1.4
Clear
Mild
@12:46, DTW:11.32, pH6.14, temp:15.5, cond:0.341,turb:3.38, DO:0.4, redox:-1.4
Continue purging, the parameters are not stable: pH is not stable; conductivity is

Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 10 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@12:51, DTW:11.34, pH6.15, temp:15.5, cond:0.34,turb:0.98, DO:0.33, redox:-4

- , , , , ,	· · · · · · · · · · · · · · · · · · ·
Site ID, Well ID	97502, MW-13
Reading Time	12:51
Minutes Elapsed between readings	5
Total Elapsed Minutes	15
Rate (mL/min)	200
Depth to Water (ft)	11.34
Total Volume Purged (mL)	3000
рН	6.15
pH 2 decimals	6.15
Conductivity (mS/cm)	0.34
cond sig figs	0.340
Check your Units! Verify your water quality meter is	s set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.98
turbidity sig figs	0.98
Dissolved Oxygen (mg/L)	0.33
DO 2 decimals	0.33
Temperature (Degrees Celcius)	15.5
temp 2 decimals	15.50
Redox (ORP mV)	-4
Color	Clear
Notable Odors	Mild
parameters	@12:51, DTW:11.34, pH6.15, temp:15.5, cond:0.34,turb:0.98, DO:0.33, redox:-4
Stabilization Calculation - TGI	You may sample the well.
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 15 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling

Are you able to sample this location?

Sample Information

Sample ID MW-13-20210928

Duplicate ID	DUP-1-092821
Sample Time	12:52
Sample Type	Grab
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	15
Color	Clear
Notable Odors	Moderate
Analytes and Methods	See Chain-of-Custody.
Well Inspection	
Well inspection completed?	Yes
Well Inspection Details	
Is well easy to locate?	Yes
Well Type	Flushmount
Is well in an area prone to flooding?	No
Are well labels present on the outside of the well?	No
Are bolts missing?	No
Are well labels present on the inside of the well?	No
Lock present?	Yes
Lock Functioning?	No
Well Locked at Arrival?	Yes
Well housing pad in good shape?	Yes
Close Out	
General Comments	None

Yes

Is this record complete?

97502, MW-14, 2021-09-28, 16:06, GW Sampling

Created	2021-09-28 22:13:44 UTC by Michael Andrews
Updated	2021-09-28 23:27:35 UTC by Michael Andrews
Location	48.505297795815, -122.238614662477
Status	Ready for QC
Note: Before you begin, have you synced?	

Project Details

i i ojece Detailo		
Chevron	Chevron	
Site ID	97502, Retail Outlet 97502	
Site ID	97502	
Site Location City	Sedro Woolley	
Site Location State	Washington	
Site Location	Sedro Woolley, Washington	
Project Number	30064310, Hamilton, Ada	
Project Number	30064310	
Date	2021-09-28	
Sampling Event	Quarterly	
Weather	Cloudy	
Sampler Name	Michael Andrews	
Additional field staff?	No	

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

Work Performed at Location	GW Sampling
Are you able to locate this well?	Yes
Turboscope Database ID	3606
Well ID	MW-14
Well ID	MW-14

Well Information

Top of Screen (ft-bgs)	5.0
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	4.0
Well Casing Material	PVC
Measuring Point Description	Top of Casing
Historic Average DTW (ft-bmp)	8.5

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Water Level Meter
Well Head PID Reading (ppm)	0.3
Gauging Time	15:15

Is Well Dry?	No
Is Product Present?	No
Was product removed?	No
Static Water Level (ft-bmp)	10.62
Static Water Level (Fixed)	10.62
DTW QC Check	QC Pass
Total Depth (ft-bmp)	12.4
Total Depth (Fixed)	12.4
TD QC Check	QC Pass
Water Column (ft)	1.78
Gallons in Well	1.16

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	11.5
Purge Start	15:35
Purge End (Before Sample Collection)	16:05
Purge Measurement Units	Milliliters
Total Milliliters Purged	6000
Well Volumes Purged (total)	1.37

Volumetric Details

Borehole Volume Multiplier:	·	ier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4" BD = Borehole Diameter CD = Casing Diameter
One Borehole Volume (gallons)	0	
Specified Volumes	1.5	
Calculated Volume (gallons)	0	
Enter purging and final field parameters in	the Field Parameters section below.	

@15:35, DTW:10.89, pH5.93, temp:15, cond:0.355,turb:203, DO:0.71, redox:26.2

Site ID, Well ID	97502, MW-14
Reading Time	15:35
Rate (mL/min)	200
Depth to Water (ft)	10.89
Total Volume Purged (mL)	0
рН	5.93
pH 2 decimals	5.93
Conductivity (mS/cm)	0.355
cond sig figs	0.355
Check your Units! Verify your water quality	meter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	203
turbidity sig figs	203
Dissolved Oxygen (mg/L)	0.71
DO 2 decimals	0.71
Temperature (Degrees Celcius)	15
temp 2 decimals	15.00
Redox (ORP mV)	26.2
Color	Clear
Notable Odors	Mild
parameters	@15:35, DTW:10.89, pH5.93, temp:15, cond:0.355,turb:203, DO:0.71, redox:26.2

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@15:40, DTW:10.89, pH5.94, temp:15, cond:0.365,turb:127, DO:0.31, redox:13

Site ID, Well ID	97502, MW-14
Reading Time	15:40
Minutes Elapsed between readings	5
Total Elapsed Minutes	5
Rate (mL/min)	200
Depth to Water (ft)	10.89
Total Volume Purged (mL)	1000
рН	5.94
pH 2 decimals	5.94
Conductivity (mS/cm)	0.365
cond sig figs	0.365
Check your Units! Verify your water quality meter	r is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	127
turbidity sig figs	127
Dissolved Oxygen (mg/L)	0.31
DO 2 decimals	0.31

15	
15.00	
13	
Clear	
Mild	
@15:40, DTW:10.89, pH5.94, temp:15, cond:0.365,turb:127, DO:0.31, redox:13	
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes	
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes	

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Site ID, Well ID	97502, MW-14	
Reading Time	15:45	
Minutes Elapsed between readings	5	
Total Elapsed Minutes	10	
Rate (mL/min)	200	
Depth to Water (ft)	10.9	
Total Volume Purged (mL)	2000	
рН	5.94	
pH 2 decimals	5.94	
Conductivity (mS/cm)	0.366	
cond sig figs	0.366	
Check your Units! Verify your water quality n	neter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	104	
turbidity sig figs	104	
Dissolved Oxygen (mg/L)	0.25	
DO 2 decimals	0.25	
Temperature (Degrees Celcius)	14.8	
temp 2 decimals	14.80	
Redox (ORP mV)	0.6	
Color	Clear	
Notable Odors	Mild	
parameters	@15:45, DTW:10.9, pH5.94, temp:14.8, cond:0.366,turb:104, DO:0.25, redox:0.6	
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes	
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes	

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@15:50, DTW:10.91,	pH5.94, temp:14.	9. cond:0.367	.turb:92.5.	DO:0.25.	redox:-4.9
E 13.30, D 1 11.10.3 1,	p: 13.3 1, terrip: 1	<i>3,</i> cona.o. <i>3 o i</i>	, ,	00.0.20,	I COOM. III

Site ID, Well ID	97502, MW-14	
Reading Time	15:50	
Minutes Elapsed between readings	5	
Total Elapsed Minutes	15	
Rate (mL/min)	200	
Depth to Water (ft)	10.91	
Total Volume Purged (mL)	3000	
рН	5.94	
pH 2 decimals	5.94	
Conductivity (mS/cm)	0.367	
cond sig figs	0.367	
Check your Units! Verify your water quality m	eter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	92.5	
turbidity sig figs	92.5	
Dissolved Oxygen (mg/L)	0.25	
DO 2 decimals	0.25	
Temperature (Degrees Celcius)	14.9	
temp 2 decimals	14.90	
Redox (ORP mV)	-4.9	
Color	Clear	
Notable Odors	Mild	
parameters	@15:50, DTW:10.91, pH5.94, temp:14.9, cond:0.367,turb:92.5, DO:0.25, redox:-4.9	
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 15 minutes	
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 15 minutes	

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@15:55, DTW:10.92, pH5.94, temp:14.9, cond:0.368,turb:38.9, DO:0.23, redox:-19.7

Site ID, Well ID	97502, MW-14
Reading Time	15:55
Minutes Elapsed between readings	5
Total Elapsed Minutes	20

` ,		
Depth to Water (ft)	10.92	
Total Volume Purged (mL)	4000	
рН	5.94	
pH 2 decimals	5.94	
Conductivity (mS/cm)	0.368	
cond sig figs	0.368	
Check your Units! Verify your water quality me	ter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	38.9	
turbidity sig figs	38.9	
Dissolved Oxygen (mg/L)	0.23	
DO 2 decimals	0.23	
Temperature (Degrees Celcius)	14.9	
temp 2 decimals	14.90	
Redox (ORP mV)	-19.7	
Color	Clear	
Notable Odors	Mild	
parameters	@15:55, DTW:10.92, pH5.94, temp:14.9, cond:0.368,turb:38.9, DO:0.23, redox:-19.7	
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable turbidity is not stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 20 minutes	
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 20 minutes	

200

Rate (mL/min)

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@16:00, DTW:10.91, pH5.99, temp:14.9, cond:0.379,turb:39.4, DO:0.2, redox:-18.5

Site ID, Well ID	97502, MW-14
Reading Time	16:00
Minutes Elapsed between readings	5
Total Elapsed Minutes	25
Rate (mL/min)	200
Depth to Water (ft)	10.91
Total Volume Purged (mL)	5000
pH	5.99
pH 2 decimals	5.99
Conductivity (mS/cm)	0.379
cond sig figs	0.379
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	39.4
turbidity sig figs	39.4
Dissolved Oxygen (mg/L)	0.2

DO 2 decimals	0.20	
Temperature (Degrees Celcius)	14.9	
temp 2 decimals	14.90	
Redox (ORP mV)	-18.5	
Color	Clear	
Notable Odors	Mild	
parameters	@16:00, DTW:10.91, pH5.99, temp:14.9, cond:0.379,turb:39.4, DO:0.2, redox:-18.5	
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 25 minutes	
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 25 minutes	

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@16:05, DTW:10.91, pH6.01, temp:14.9, cond:0.37,turb:36.7, DO:0.2, redox:-22.2

Site ID, Well ID	97502, MW-14
Reading Time	16:05
Minutes Elapsed between readings	5
Total Elapsed Minutes	30
Rate (mL/min)	200
Depth to Water (ft)	10.91
Total Volume Purged (mL)	6000
рН	6.01
pH 2 decimals	6.01
Conductivity (mS/cm)	0.37
cond sig figs	0.370
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	36.7
turbidity sig figs	36.7
Dissolved Oxygen (mg/L)	0.2
DO 2 decimals	0.20
Temperature (Degrees Celcius)	14.9
temp 2 decimals	14.90
Redox (ORP mV)	-22.2
Color	Clear
Notable Odors	Mild
parameters	@16:05, DTW:10.91, pH6.01, temp:14.9, cond:0.37,turb:36.7, DO:0.2, redox:-22.2
Stabilization Calculation - TGI	You may sample the well.
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 30 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling	
Are you able to sample this location?	Yes
Sample Information	
Sample ID	MW-14-20210928
Sample Time	16:06
Sample Type	Grab
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	11.5
Color	Clear
Notable Odors	Mild
Analytes and Methods	See Chain-of-Custody.
Well Inspection	W.
Well inspection completed?	Yes
Well Inspection Details	
Is well easy to locate?	Yes
Well Type	Flushmount
Is well in an area prone to flooding?	No
Are well labels present on the outside of the well?	No
Are bolts missing?	No
Are well labels present on the inside of the well?	No
Lock present?	No
Well housing pad in good shape?	Yes
Close Out	
General Comments	None
Is this record complete?	Yes

97502, MW-15, 2021-09-27, 16:15, GW Sampling

Created	2021-09-27 22:51:46 UTC by Brian Pauley
Updated	2021-09-27 23:34:38 UTC by Brian Pauley
Location	48.5055779898991, -122.238986352572
Status	Ready for QC
Note: Before you begin, have you synced?	

Project Details

i i ojece Detailo		
Chevron	Chevron	
Site ID	97502, Retail Outlet 97502	
Site ID	97502	
Site Location City	Sedro Woolley	
Site Location State	Washington	
Site Location	Sedro Woolley, Washington	
Project Number	30064310, Hamilton, Ada	
Project Number	30064310	
Date	2021-09-27	
Sampling Event	Quarterly	
Weather	Raining	
Sampler Name	Brian Pauley	
Additional field staff?	No	

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

Work Performed at Location	GW Sampling
Are you able to locate this well?	Yes
Turboscope Database ID	10755
Well ID	MW-15
Well ID	MW-15

Well Information

Top of Screen (ft-bgs)	5.0
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	2
Well Casing Material	PVC
Measuring Point Description	Top of Casing

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Interface Probe
Gauging Time	15:52
Is Well Dry?	No
Is Product Present?	No

Was product removed?	No
Static Water Level (ft-bmp)	10.09
Static Water Level (Fixed)	10.09
DTW QC Check	QC Pass
Total Depth (ft-bmp)	19.55
Total Depth (Fixed)	19.55
TD QC Check	QC Pass
Water Column (ft)	9.46
Gallons in Well	1.54

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus
Decontamination Method	2 Stage Rinse

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	15
Purge Start	15:52
Purge End (Before Sample Collection)	16:10
Purge Measurement Units	Gallons
Total Gallons Purged	1
Well Volumes Purged (total)	0.65

Volumetric Details

Borehole Volume Multiplier:	· · · · · · · · · · · · · · · · · · ·	ier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4" BD = Borehole Diameter CD = Casing Diameter
One Borehole Volume (gallons)	0	
Specified Volumes	1.5	
Calculated Volume (gallons)	0	
Enter purging and final field parameters in	the Field Parameters section below.	

@15:56, DTW:10.2, pH6.32, temp:16.4, cond:205.2,turb:0.02, DO:0.69, redox:9.4

Site ID, Well ID	97502, MW-15
Reading Time	15:56
Rate (mL/min)	150
Depth to Water (ft)	10.2
Total Volume Purged (mL)	100
Н	6.32
oH 2 decimals	6.32
Conductivity (mS/cm)	205.2
cond sig figs	205
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Furbidity (NTU)	0.02
curbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.69
OO 2 decimals	0.69
Temperature (Degrees Celcius)	16.4
emp 2 decimals	16.40
Redox (ORP mV)	9.4
Color	Clear
Notable Odors	None
parameters	@15:56, DTW:10.2, pH6.32, temp:16.4, cond:205.2,turb:0.02, DO:0.69, redox:9.4

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@16:00, DTW:10.11, pH6.35, temp:16.4, cond:205.2, turb:0.02, DO:0.34, redox:3.2

Site ID, Well ID	97502, MW-15
Reading Time	16:00
Minutes Elapsed between readings	4
Total Elapsed Minutes	4
Rate (mL/min)	150
Depth to Water (ft)	10.11
Total Volume Purged (mL)	600
рН	6.35
pH 2 decimals	6.35
Conductivity (mS/cm)	205.2
cond sig figs	205
Check your Units! Verify your water quality n	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.34
DO 2 decimals	0.34
Temperature (Degrees Celcius)	16.4

temp 2 decimals	16.40
Redox (ORP mV)	3.2
Color	Clear
Notable Odors	None
parameters	@16:00, DTW:10.11, pH6.35, temp:16.4, cond:205.2,turb:0.02, DO:0.34, redox:3.2
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 4 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 4 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@16:04, DTW:10.1, pH6.41, temp:16.5, cond:205.8,turb:0.02, DO:0.36, redox:-3.9

3		
3		
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
04, DTW:10.1, pH6.41, temp:16.5, cond:205.8,turb:0.02, DO:0.36, redox:-3.9		
nue purging, the parameters are not stable: pH is stable ; conductivity is stable ; dity is stable ; DO is not stable ; temperature is stable ; ORP is not stable ; time ed is 8 minutes		
nue purging, the parameters are not stable: pH is stable; conductivity is stable; dity is stable; DO is not stable; time ed is 8 minutes		
i (

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Site ID, Well ID	97502, MW-15
Reading Time	16:08
Minutes Elapsed between readings	4
Total Elapsed Minutes	12
Rate (mL/min)	150
Depth to Water (ft)	10.15
Total Volume Purged (mL)	2400
рН	6.33
pH 2 decimals	6.33
Conductivity (mS/cm)	205.2
cond sig figs	205
Check your Units! Verify your water quality me	eter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.26
DO 2 decimals	0.26
Temperature (Degrees Celcius)	16.5
temp 2 decimals	16.50
Redox (ORP mV)	-1.2
Color	Clear
Notable Odors	None
parameters	@16:08, DTW:10.15, pH6.33, temp:16.5, cond:205.2,turb:0.02, DO:0.26, redox:-1.2
Stabilization Calculation - TGI	You may sample the well.
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is not stable; temperature is stable; ORP is stable; time elapsec is 12 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling

Are you able to sample this location?

Sample Information

Sample in ormación		
Sample ID	MW-15-20210927	
Sample Time	16:15	
Sample Type	Composite	

Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	15
Color	Clear
Notable Odors	Mild
Analytes and Methods	See Chain-of-Custody.
Well Inspection	
Well inspection completed?	No
Close Out	
General Comments	None
Is this record complete?	Yes

97502, MW-16, 2021-09-27, 15:15, GW Sampling

Created	2021-09-27 21:34:52 UTC by Brian Pauley
Updated	2021-09-27 22:50:37 UTC by Brian Pauley
Location	48.5053089642922, -122.23883162736
Status	Ready for QC
Note: Before you begin, have you synced?	

Project Details

<i>3</i>	
Chevron	Chevron
Site ID	97502, Retail Outlet 97502
Site ID	97502
Site Location City	Sedro Woolley
Site Location State	Washington
Site Location	Sedro Woolley, Washington
Project Number	30064310, Hamilton, Ada
Project Number	30064310
Date	2021-09-27
Weather	Raining
Sampler Name	Brian Pauley
Additional field staff?	No

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

Work Performed at Location	GW Sampling
Are you able to locate this well?	Yes
Turboscope Database ID	10756
Well ID	MW-16
Well ID	MW-16

Well Information

Top of Screen (ft-bgs)	5.0
Bottom of Screen (ft-bgs)	10.0
Casing Diameter (in)	2.0
Measuring Point Description	Top of Casing

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Interface Probe
Well Head PID Reading (ppm)	162.8
Gauging Time	14:35
Is Well Dry?	No
Is Product Present?	No
Was product removed?	No

Static Water Level (ft-bmp)	9.75
Static Water Level (Fixed)	9.75
DTW QC Check	QC Pass
Total Depth (ft-bmp)	20
Total Depth (Fixed)	20.0
TD QC Check	QC Pass
Water Column (ft)	10.25
Gallons in Well	1.67

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus
Decontamination Method	2 Stage Rinse

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	14
Purge Start	14:36
Purge End (Before Sample Collection)	15:14
Purge Measurement Units	Gallons
Total Gallons Purged	2.5
Well Volumes Purged (total)	1.50

Volumetric Details

Borehole Volume Multiplier:		plier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4" BD = Borehole Diameter CD = Casing Diameter
One Borehole Volume (gallons)	0	
Specified Volumes	1.5	
Calculated Volume (gallons)	0	
Enter nurging and final field narameters in	the Field Parameters section below	J

Enter purging and final field parameters in the Field Parameters section below.

@14:36, DTW:9.75, pH6.01, temp:16, cond:251.8,turb:40.5, DO:0.95, redox:12.4

97502, MW-16		
14:36		
150		
9.75		
100		
6.01		
6.01		
251.8		
252		
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
40.5		
40.5		
0.95		
0.95		
16		
16.00		
12.4		
Clear		
None		
@14:36, DTW:9.75, pH6.01, temp:16, cond:251.8,turb:40.5, DO:0.95, redox:12.4		

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@14:44, DTW:9.75, pH6.05, temp:16.2, cond:252.5,turb:40.7, DO:0.35, redox:0.6

Site ID, Well ID	97502, MW-16	
Reading Time	14:44	
Minutes Elapsed between readings	8	
Total Elapsed Minutes	8	
Rate (mL/min)	150	
Depth to Water (ft)	9.75	
Total Volume Purged (mL)	600	
рН	6.05	
pH 2 decimals	6.05	
Conductivity (mS/cm)	252.5	
cond sig figs	253	
Check your Units! Verify your water quality n	eter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	40.7	
turbidity sig figs	40.7	
Dissolved Oxygen (mg/L)	0.35	
DO 2 decimals	0.35	
Temperature (Degrees Celcius)	16.2	
temp 2 decimals	16.20	
		D2 -f 10

Redox (ORP mV)	0.6
Color	Clear
Notable Odors	None
parameters	@14:44, DTW:9.75, pH6.05, temp:16.2, cond:252.5,turb:40.7, DO:0.35, redox:0.6
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 8 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 8 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Site ID, Well ID	97502, MW-16
Reading Time	14:47
Minutes Elapsed between readings	3
Total Elapsed Minutes	11
Rate (mL/min)	150
Depth to Water (ft)	9.75
Total Volume Purged (mL)	1200
рН	6.09
pH 2 decimals	6.09
Conductivity (mS/cm)	252.4
cond sig figs	252
Check your Units! Verify your water quality n	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	43.2
turbidity sig figs	43.2
Dissolved Oxygen (mg/L)	0.3
DO 2 decimals	0.30
Temperature (Degrees Celcius)	16.2
temp 2 decimals	16.20
Redox (ORP mV)	-4.3
Color	Clear
Notable Odors	None
parameters	@14:47, DTW:9.75, pH6.09, temp:16.2, cond:252.4,turb:43.2, DO:0.3, redox:-4.3
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 11 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; tim elapsed is 11 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@14:50. DTW:9.75. pH6.09.	.temp:16.3.cond:251.8	turb:41.5, DO:0.26, redox:-8.1
G 1 1.30, B 1 11.3., 3, B1 10.03	(coning. 10.5, cond.25 1.0	, cai b. 11.5, b 0.0.20, 1 caox. 0.1

Site ID, Well ID	97502, MW-16
Reading Time	14:50
Minutes Elapsed between readings	3
Total Elapsed Minutes	14
Rate (mL/min)	150
Depth to Water (ft)	9.75
Total Volume Purged (mL)	1800
рН	6.09
pH 2 decimals	6.09
Conductivity (mS/cm)	251.8
cond sig figs	252
Check your Units! Verify your water quality m	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	41.5
turbidity sig figs	41.5
Dissolved Oxygen (mg/L)	0.26
DO 2 decimals	0.26
Temperature (Degrees Celcius)	16.3
temp 2 decimals	16.30
Redox (ORP mV)	-8.1
Color	Clear
Notable Odors	None
parameters	@14:50, DTW:9.75, pH6.09, temp:16.3, cond:251.8,turb:41.5, DO:0.26, redox:-8.1
Stabilization Calculation - TGl	You may sample the well.
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 14 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@14:53, DTW:9.75, pH6.09, temp:16.4, cond:256,turb:25.5, DO:0.24, redox:-9.4

Site ID, Well ID	97502, MW-16
Reading Time	14:53
Minutes Elapsed between readings	3
Total Elapsed Minutes	17
Rate (mL/min)	150
Depth to Water (ft)	9.75

Total Volume Purged (mL)	2400
рН	6.09
pH 2 decimals	6.09
Conductivity (mS/cm)	256
cond sig figs	256
Check your Units! Verify your water quality meter is s	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	25.5
turbidity sig figs	25.5
Dissolved Oxygen (mg/L)	0.24
DO 2 decimals	0.24
Temperature (Degrees Celcius)	16.4
temp 2 decimals	16.40
Redox (ORP mV)	-9.4
Color	Clear
Notable Odors	None
parameters	@14:53, DTW:9.75, pH6.09, temp:16.4, cond:256,turb:25.5, DO:0.24, redox:-9.4
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 17 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 17 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@14:56, DTW:9.75, pH6.07, temp:16.5, cond:255.4,turb:25.5, DO:0.24, redox:-8.8

Site ID, Well ID	97502, MW-16	
Reading Time	14:56	
Minutes Elapsed between readings	3	
Total Elapsed Minutes	20	
Rate (mL/min)	150	
Depth to Water (ft)	9.75	
Total Volume Purged (mL)	3000	
рН	6.07	
pH 2 decimals	6.07	
Conductivity (mS/cm)	255.4	
cond sig figs	255	
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	25.5	
turbidity sig figs	25.5	
Dissolved Oxygen (mg/L)	0.24	
DO 2 decimals	0.24	
Temperature (Degrees Celcius)	16.5	

temp 2 decimals	16.50
Redox (ORP mV)	-8.8
Color	Clear
Notable Odors	None
parameters	@14:56, DTW:9.75, pH6.07, temp:16.5, cond:255.4,turb:25.5, DO:0.24, redox:-8.8
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 20 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 20 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@15:01, DTW:9.75, pH6.04, temp:16.4, cond:254.1, turb:6.36, DO:0.22, redox:-6.6

Site ID, Well ID	97502, MW-16
Reading Time	15:01
Minutes Elapsed between readings	5
Total Elapsed Minutes	25
Rate (mL/min)	150
Depth to Water (ft)	9.75
Total Volume Purged (mL)	3600
рН	6.04
pH 2 decimals	6.04
Conductivity (mS/cm)	254.1
cond sig figs	254
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	6.36
turbidity sig figs	6.4
Dissolved Oxygen (mg/L)	0.22
DO 2 decimals	0.22
Temperature (Degrees Celcius)	16.4
temp 2 decimals	16.40
Redox (ORP mV)	-6.6
Color	Clear
Notable Odors	None
parameters	@15:01, DTW:9.75, pH6.04, temp:16.4, cond:254.1,turb:6.36, DO:0.22, redox:-6.6
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 25 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 25 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@15:05, DTW:9.75, pH6.02, temp:16.5, cond:251.9,turb:2.6, DO:0.23, redox:-
--

Site ID, Well ID	97502, MW-16	
Reading Time	15:05	
Minutes Elapsed between readings	4	
Total Elapsed Minutes	29	
Rate (mL/min)	150	
Depth to Water (ft)	9.75	
Total Volume Purged (mL)	4200	
рН	6.02	
pH 2 decimals	6.02	
Conductivity (mS/cm)	251.9	
cond sig figs	252	
Check your Units! Verify your water quality n	neter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	2.6	
turbidity sig figs	2.6	
Dissolved Oxygen (mg/L)	0.23	
DO 2 decimals	0.23	
Temperature (Degrees Celcius)	16.5	
temp 2 decimals	16.50	
Redox (ORP mV)	-5.2	
Color	Clear	
Notable Odors	None	
parameters	@15:05, DTW:9.75, pH6.02, temp:16.5, cond:251.9,turb:2.6, DO:0.23, redox:-5.2	
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapse is 29 minutes	
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 29 minutes	

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@15:09, DTW:9.75, pH6, temp:16.4, cond:249,turb:3.72, DO:0.21, redox:-3.4

Site ID, Well ID	97502, MW-16
Reading Time	15:09
Minutes Elapsed between readings	4
Total Elapsed Minutes	33

Rate (mL/min)	150
Depth to Water (ft)	9.75
Total Volume Purged (mL)	5000
рН	6
pH 2 decimals	6.00
Conductivity (mS/cm)	249
cond sig figs	249
Check your Units! Verify your water quality me	eter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	3.72
turbidity sig figs	3.7
Dissolved Oxygen (mg/L)	0.21
DO 2 decimals	0.21
Temperature (Degrees Celcius)	16.4
temp 2 decimals	16.40
Redox (ORP mV)	-3.4
Color	Clear
Notable Odors	None
parameters	@15:09, DTW:9.75, pH6, temp:16.4, cond:249,turb:3.72, DO:0.21, redox:-3.4
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 33 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 33 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@15:12, DTW:9.75, pH6.01, temp:16.3, cond:249,turb:1.44, DO:0.2, redox:-2.4

Site ID, Well ID	97502, MW-16	
Reading Time	15:12	
Minutes Elapsed between readings	3	
Total Elapsed Minutes	36	
Rate (mL/min)	150	
Depth to Water (ft)	9.75	
Total Volume Purged (mL)	5600	
рН	6.01	
pH 2 decimals	6.01	
Conductivity (mS/cm)	249	
cond sig figs	249	
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	1.44	
turbidity sig figs	1.4	
Dissolved Oxygen (mg/L)	0.2	

DO 2 decimals	0.20	
Temperature (Degrees Celcius)	16.3	
temp 2 decimals	16.30	
Redox (ORP mV)	-2.4	
Color	Clear	
Notable Odors	None	
parameters	@15:12, DTW:9.75, pH6.01, temp:16.3, cond:249,turb:1.44, DO:0.2, redox:-2.4	
Stabilization Calculation - TGI	You may sample the well.	
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 36 minutes	

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling

on? Yes

Sample Information

Sample information	
Sample ID	MW-16
Sample Time	15:15
Sample Type	Composite
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	14
Color	Clear
Notable Odors	None
Analytes and Methods	See Chain-of-Custody.

Well Inspection

•	
Well inspection completed?	No

Close Out

General Comments	None
Is this record complete?	Yes

97502, MW-17, 2021-09-28, 11:31, GW Sampling

Created	2021-09-28 18:01:45 UTC by Michael Andrews
Updated	2021-09-28 19:22:08 UTC by Michael Andrews
Location	48.5053494573091, -122.238754425312
Status	Ready for QC
Note: Before you begin, have you synced?	

Project Details

Chevron	Chevron
Site ID	97502, Retail Outlet 97502
Site ID	97502
Site Location City	Sedro Woolley
Site Location State	Washington
Site Location	Sedro Woolley, Washington
Project Number	30064310, Hamilton, Ada
Project Number	30064310
Date	2021-09-28
Sampling Event	Quarterly
Weather	Cloudy
Sampler Name	Michael Andrews
Additional field staff?	Yes
List Additional Field Staff	Joseph spell

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

Well ID	MW-17
Well ID	MW-17
Turboscope Database ID	10757
Are you able to locate this well?	Yes
Work Performed at Location	GW Sampling

Well Information

Top of Screen (ft-bgs)	5.0
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	2
Well Casing Material	PVC
Measuring Point Description	Top of Casing

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Water Level Meter
Well Head PID Reading (ppm)	0.02
Gauging Time	11:02

Is Well Dry?	No
Is Product Present?	No
Was product removed?	No
Static Water Level (ft-bmp)	10.34
Static Water Level (Fixed)	10.34
DTW QC Check	QC Pass
Total Depth (ft-bmp)	19.64
Total Depth (Fixed)	19.64
TD QC Check	QC Pass
Water Column (ft)	9.3
Gallons in Well	1.51

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB $\,$

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	15
Purge Start	11:10
Purge End (Before Sample Collection)	11:30
Purge Measurement Units	Milliliters
Total Milliliters Purged	4000
Well Volumes Purged (total)	0.70

Volumetric Details

Borehole Volume Multiplier:	·	olier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4" BD = Borehole Diameter CD = Casing Diameter
One Borehole Volume (gallons)	0	
Specified Volumes	1.5	
Calculated Volume (gallons)	0	
Enter purging and final field parameters in	the Field Parameters section below	

@11:10, DTW:10.34, pH6.36, temp:15.9, cond:0.255,turb:4.09, DO:0.5, redox:-10.9

Site ID, Well ID	97502, MW-17
Reading Time	11:10
Rate (mL/min)	200
Depth to Water (ft)	10.34
Total Volume Purged (mL)	0
pH	6.36
pH 2 decimals	6.36
Conductivity (mS/cm)	0.255
cond sig figs	0.255
Check your Units! Verify your water quality	meter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	4.09
turbidity sig figs	4.1
Dissolved Oxygen (mg/L)	0.5
DO 2 decimals	0.50
Temperature (Degrees Celcius)	15.9
temp 2 decimals	15.90
Redox (ORP mV)	-10.9
Color	Clear
Notable Odors	Moderate
parameters	@11:10, DTW:10.34, pH6.36, temp:15.9, cond:0.255,turb:4.09, DO:0.5, redox:-10.9

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@11:15, DTW:10.55, pH6.29, temp:15.9, cond:0.254,turb:1.28, DO:0.37, redox:-19.9

Site ID, Well ID	97502, MW-17
Reading Time	11:15
Minutes Elapsed between readings	5
Total Elapsed Minutes	5
Rate (mL/min)	200
Depth to Water (ft)	10.55
Total Volume Purged (mL)	1000
рН	6.29
pH 2 decimals	6.29
Conductivity (mS/cm)	0.254
cond sig figs	0.254
Check your Units! Verify your water quality meter	is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	1.28
turbidity sig figs	1.3
Dissolved Oxygen (mg/L)	0.37
DO 2 decimals	0.37

15.9
15.90
-19.9
Clear
Moderate
@11:15, DTW:10.55, pH6.29, temp:15.9, cond:0.254,turb:1.28, DO:0.37, redox:-19.9
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@11:20, DTW:10.56, pH6.32, temp:15.5, cond:0.255,turb:1.01, DO:0.28, redox:-28.3

Site ID, Well ID	97502, MW-17
Reading Time	11:20
Minutes Elapsed between readings	5
Total Elapsed Minutes	10
Rate (mL/min)	200
Depth to Water (ft)	10.56
Total Volume Purged (mL)	2000
рН	6.32
pH 2 decimals	6.32
Conductivity (mS/cm)	0.255
cond sig figs	0.255
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	1.01
turbidity sig figs	1.0
Dissolved Oxygen (mg/L)	0.28
DO 2 decimals	0.28
Temperature (Degrees Celcius)	15.5
temp 2 decimals	15.50
Redox (ORP mV)	-28.3
Color	Clear
Notable Odors	Moderate
parameters	@11:20, DTW:10.56, pH6.32, temp:15.5, cond:0.255,turb:1.01, DO:0.28, redox:-28.3
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes
	D 4 - 6 7

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@11:25	DTW:10.56.	pH6.31	temp:15.2	cond:0.254	.turb:0.41	DO:0.28	, redox:-30.1
C	, , , , , , , , , , , , , ,	P. 10.0 1	,	,	,	, 00.0.20,	, I COOM, JOI

Site ID, Well ID	97502, MW-17	
Reading Time	11:25	
Minutes Elapsed between readings	5	
Total Elapsed Minutes	15	
Rate (mL/min)	200	
Depth to Water (ft)	10.56	
Total Volume Purged (mL)	3000	
рН	6.31	
pH 2 decimals	6.31	
Conductivity (mS/cm)	0.254	
cond sig figs	0.254	
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	0.41	
turbidity sig figs	0.41	
Dissolved Oxygen (mg/L)	0.28	
DO 2 decimals	0.28	
Temperature (Degrees Celcius)	15.2	
temp 2 decimals	15.20	
Redox (ORP mV)	-30.1	
Color	Clear	
Notable Odors	Moderate	
parameters	@11:25, DTW:10.56, pH6.31, temp:15.2, cond:0.254,turb:0.41, DO:0.28, redox:-30.1	
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is not stable; ORP is not stable; time elapsed is 15 minutes	
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 15 minutes	

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@11:30, DTW:10.57, pH6.33, temp:15.4, cond:0.257,turb:0.45, DO:0.23, redox:-35.1

Site ID, Well ID	97502, MW-17
Reading Time	11:30
Minutes Elapsed between readings	5
Total Elapsed Minutes	20

Rate (mL/min)	200
Depth to Water (ft)	10.57
Total Volume Purged (mL)	4000
рН	6.33
pH 2 decimals	6.33
Conductivity (mS/cm)	0.257
cond sig figs	0.257
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.45
turbidity sig figs	0.45
Dissolved Oxygen (mg/L)	0.23
DO 2 decimals	0.23
Temperature (Degrees Celcius)	15.4
temp 2 decimals	15.40
Redox (ORP mV)	-35.1
Color	Clear
Notable Odors	Moderate
parameters	@11:30, DTW:10.57, pH6.33, temp:15.4, cond:0.257,turb:0.45, DO:0.23, redox:-35.1
Stabilization Calculation - TGI	You may sample the well.
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 20 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling

Are you able to sample this location?	Yes		
Sample Information			

Sample ID	MW-17-20210928
Sample Time	11:31
Sample Type	Grab
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	15
Color	Clear
Notable Odors	Strong
Analytes and Methods	See Chain-of-Custody.

Well Inspection

Well Ilispection	
Well inspection completed?	No

Close Out

General Comments	None
Is this record complete?	Yes

97502, MW-18, 2021-09-28, 10:21, GW Sampling

Created	2021-09-28 16:43:45 UTC by Michael Andrews
Updated	2021-09-28 18:01:43 UTC by Michael Andrews
Location	48.5054345755358, -122.239132700602
Status	Ready for QC
Note: Before you begin, have you synced?	

Project Details

1 Toject Details		
Chevron	Chevron	
Site ID	97502, Retail Outlet 97502	
Site ID	97502	
Site Location City	Sedro Woolley	
Site Location State	Washington	
Site Location	Sedro Woolley, Washington	
Project Number	30064310, Hamilton, Ada	
Project Number	30064310	
Date	2021-09-28	
Sampling Event	Quarterly	
Weather	Cloudy	
Sampler Name	Michael Andrews	
Additional field staff?	No	

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

MW-18
MW-18
10758
Yes
GW Sampling

Well Information

Top of Screen (ft-bgs)	5.0
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	2
Well Casing Material	PVC
Measuring Point Description	Top of Casing

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Water Level Meter
Well Head PID Reading (ppm)	0.4
Gauging Time	09:46
Is Well Dry?	No

Is Product Present?	No
Was product removed?	No
Static Water Level (ft-bmp)	15.1
Static Water Level (Fixed)	15.1
DTW QC Check	QC Pass
Total Depth (ft-bmp)	19.74
Total Depth (Fixed)	19.74
TD QC Check	QC Pass
Water Column (ft)	4.64
Gallons in Well	0.75

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	18
Purge Start	09:49
Purge End (Before Sample Collection)	10:19
Purge Measurement Units	Milliliters
Total Milliliters Purged	5000
Well Volumes Purged (total)	1.76

Volumetric Details

Borehole Volume Multiplier:	CD BD Multip	ier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 4"
10" 1.5 4" 12" 2.0 6" 10" " = inches	. 2.1 6" 12" 2.6	BD = Borehole Diameter CD = Casing Diameter
One Borehole Volume (gallons)	0	
Specified Volumes	1.5	
Calculated Volume (gallons)	0	
Enter purging and final field parameters in	the Field Parameters section below.	

@09:49, DTW:15.1, pH6.03, temp:15.3, cond:0.221,turb:19.1, DO:1.61, redox:58.1

Site ID, Well ID	97502, MW-18	
Reading Time	09:49	
Total Elapsed Minutes	0	
Rate (mL/min)	200	
Depth to Water (ft)	15.1	
Total Volume Purged (mL)	0	
рН	6.03	
pH 2 decimals	6.03	
Conductivity (mS/cm)	0.221	
cond sig figs	0.221	
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	19.1	
turbidity sig figs	19.1	
Dissolved Oxygen (mg/L)	1.61	
DO 2 decimals	1.61	
Temperature (Degrees Celcius)	15.3	
temp 2 decimals	15.30	
Redox (ORP mV)	58.1	
Color	Clear	
Notable Odors	None	
parameters	@09:49, DTW:15.1, pH6.03, temp:15.3, cond:0.221,turb:19.1, DO:1.61, redox:58.1	

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@09:54, DTW:15.49, pH5.83, temp:15.2, cond:0.219,turb:3.24, DO:1.65, redox:45.1

Site ID, Well ID	97502, MW-18	
Reading Time	09:54	
Minutes Elapsed between readings	5	
Total Elapsed Minutes	5	
Rate (mL/min)	200	
Depth to Water (ft)	15.49	
Total Volume Purged (mL)	1000	
рН	5.83	
pH 2 decimals	5.83	
Conductivity (mS/cm)	0.219	
cond sig figs	0.219	
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	3.24	
turbidity sig figs	3.2	
Dissolved Oxygen (mg/L)	1.65	
DO 2 decimals	1.65	

15.2
15.20
45.1
Clear
None
@09:54, DTW:15.49, pH5.83, temp:15.2, cond:0.219,turb:3.24, DO:1.65, redox:45.1
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes
Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@09:59, DTW:15.51, pH5.85, temp:15.2, cond:0.219,turb:2.34, DO:1.65, redox:34.1

Site ID, Well ID	97502, MW-18	
Reading Time	09:59	
Minutes Elapsed between readings	5	
Total Elapsed Minutes	10	
Rate (mL/min)	200	
Depth to Water (ft)	15.51	
Total Volume Purged (mL)	2000	
рН	5.85	
pH 2 decimals	5.85	
Conductivity (mS/cm)	0.219	
cond sig figs	0.219	
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	2.34	
turbidity sig figs	2.3	
Dissolved Oxygen (mg/L)	1.65	
DO 2 decimals	1.65	
Temperature (Degrees Celcius)	15.2	
temp 2 decimals	15.20	
Redox (ORP mV)	34.1	
Color	Clear	
Notable Odors	None	
parameters	@09:59, DTW:15.51, pH5.85, temp:15.2, cond:0.219,turb:2.34, DO:1.65, redox:34.1	
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes	
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes	
	D 4 - f 0	

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:04, DTW:15.52	nH5.79. t	temp:15.2.	cond:0.219	turb:0.04	DO:1.66	redox:30.5
@ 10.0 1 , D111.13.32	, pi ioi, o, t	· · · · · · · · · · · · · · · · · · ·	COLIG.O.Z I J	, cai b.o.o-	, , , , , , , , , , , , , , , , , , , ,	I CUON.JU.J

Site ID, Well ID	97502, MW-18		
Reading Time	10:04		
Minutes Elapsed between readings	5		
Total Elapsed Minutes	15		
Rate (mL/min)	200		
Depth to Water (ft)	15.52		
Total Volume Purged (mL)	3000		
pH	5.79		
pH 2 decimals	5.79		
Conductivity (mS/cm)	0.219		
cond sig figs	0.219		
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	0.04		
turbidity sig figs	0.04		
Dissolved Oxygen (mg/L)	1.66		
DO 2 decimals	1.66		
Temperature (Degrees Celcius)	15.2		
temp 2 decimals	15.20		
Redox (ORP mV)	30.5		
Color	Clear		
Notable Odors	None		
parameters	@10:04, DTW:15.52, pH5.79, temp:15.2, cond:0.219,turb:0.04, DO:1.66, redox:30.5		
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable turbidity is stable; DO is stable; temperature is stable; ORP is not stable; time elaps is 15 minutes		
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 15 minutes		

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:09, DTW:15.51, pH5.82, temp:15.5, cond:0.22,turb:0.04, DO:1.6, redox:20.4

Site ID, Well ID	97502, MW-18
Reading Time	10:09
Minutes Elapsed between readings	5
Total Elapsed Minutes	20

` ,	
Depth to Water (ft)	15.51
Total Volume Purged (mL)	4000
рН	5.82
pH 2 decimals	5.82
Conductivity (mS/cm)	0.22
cond sig figs	0.220
Check your Units! Verify your water quality me	eter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.04
turbidity sig figs	0.04
Dissolved Oxygen (mg/L)	1.6
DO 2 decimals	1.60
Temperature (Degrees Celcius)	15.5
temp 2 decimals	15.50
Redox (ORP mV)	20.4
Color	Clear
Notable Odors	None
parameters	@10:09, DTW:15.51, pH5.82, temp:15.5, cond:0.22,turb:0.04, DO:1.6, redox:20.4
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 20 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 20 minutes

200

Rate (mL/min)

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:14, DTW:15.52, pH5.88, temp:15.2, cond:0.218,turb:0.03, DO:1.73, redox:12.2

Site ID, Well ID	97502, MW-18	
Reading Time	10:14	
Minutes Elapsed between readings	5	
Total Elapsed Minutes	25	
Rate (mL/min)	200	
Depth to Water (ft)	15.52	
Total Volume Purged (mL)	5000	
pH	5.88	
pH 2 decimals	5.88	
Conductivity (mS/cm)	0.218	
cond sig figs	0.218	
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).		
Turbidity (NTU)	0.03	
turbidity sig figs	0.03	
Dissolved Oxygen (mg/L)	1.73	

DO 2 decimals	1.73
Temperature (Degrees Celcius)	15.2
temp 2 decimals	15.20
Redox (ORP mV)	12.2
Color	Clear
Notable Odors	None
parameters	@10:14, DTW:15.52, pH5.88, temp:15.2, cond:0.218,turb:0.03, DO:1.73, redox:12.2
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable ; conductivity is stable ; turbidity is stable ; DO is stable ; temperature is stable ; ORP is not stable ; time elapsed is 25 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is stable; DO is stable; temperature is stable; ORP is not stable; time elapsed is 25 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:19, DTW:15.52, pH5.89, temp:15.1, cond:0.218,turb:0.02, DO:1.73, redox:10.4

	· · · · · · · · · · · · · · · · · · ·
Site ID, Well ID	97502, MW-18
Reading Time	10:19
Minutes Elapsed between readings	5
Total Elapsed Minutes	30
Rate (mL/min)	200
Depth to Water (ft)	15.52
Total Volume Purged (mL)	6009
pH	5.89
pH 2 decimals	5.89
Conductivity (mS/cm)	0.218
cond sig figs	0.218
Check your Units! Verify your water quality m	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	1.73
DO 2 decimals	1.73
Temperature (Degrees Celcius)	15.1
temp 2 decimals	15.10
Redox (ORP mV)	10.4
Color	Clear
Notable Odors	None
parameters	@10:19, DTW:15.52, pH5.89, temp:15.1, cond:0.218,turb:0.02, DO:1.73, redox:10.4
Stabilization Calculation - TGI	You may sample the well.
Stabilization Calculation - site 775040	You may sample the well.

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling	
Are you able to sample this location?	Yes
Sample Information	
Sample ID	MW-18-20210928
Sample Time	10:21
Sample Type	Grab
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	18
Color	Clear
Notable Odors	None
Analytes and Methods	See Chain-of-Custody.
Well Inspection Well inspection completed?	Yes
Well Inspection Details	
Is well easy to locate?	Yes
Well Type	Flushmount
Is well in an area prone to flooding?	No
Are well labels present on the outside of the well?	No
Are bolts missing?	No
Are well labels present on the inside of the well?	Yes
Lock present?	No
Well housing pad in good shape?	Yes
Close Out	
General Comments	None
Is this record complete?	Yes

97502, MW-21, 2021-09-28, 10:35, GW Sampling

Created	2021-09-28 16:32:02 UTC by Joe Sepiol
Updated	2021-10-01 15:50:20 UTC by Joe Sepiol
Location	48.5056266887565, -122.238886272649
Status	QC Complete
Note: Before you begin, have you synced?	

Project Details

i i ojece Detailo		
Chevron	Chevron	
Site ID	97502, Retail Outlet 97502	
Site ID	97502	
Site Location City	Sedro Woolley	
Site Location State	Washington	
Site Location	Sedro Woolley, Washington	
Project Number	30064310, Hamilton, Ada	
Project Number	30064310	
Date	2021-09-28	
Sampling Event	Quarterly	
Weather	Cloudy	
Sampler Name	Joe Sepiol	
Additional field staff?	No	

Well (Location) Details

IMPORTANT! You must create a SEPARATE groundwater sampling record after creating a gauging record. Do not change your gauging record into a groundwater sampling record. If you have questions, ask your TM!

Work Performed at Location	GW Sampling
Are you able to locate this well?	Yes
Turboscope Database ID	10761
Well ID	MW-21
Well ID	MW-21

Well Information

Top of Screen (ft-bgs)	5.0
Bottom of Screen (ft-bgs)	20.0
Casing Diameter (in)	2
Well Casing Material	PVC
Measuring Point Description	Top of Casing

Gauging

Are you able to gauge this well?

Gauging Details

Type of Gauging Equipment	Interface Probe
Gauging Equipment ID	3000
Well Head PID Reading (ppm)	16.9
Gauging Time	09:34

Is Well Dry?	No
Is Product Present?	No
Was product removed?	No
Static Water Level (ft-bmp)	9.18
Static Water Level (Fixed)	9.18
DTW QC Check	QC Pass
Total Depth (ft-bmp)	19.49
Total Depth (Fixed)	19.49
TD QC Check	QC Pass
Water Column (ft)	10.31
Gallons in Well	1.68

Evacuation

Method details, purge/no-purge information, and field parameters.

Evacuation Details

Method Details

Purge Method	Low-Flow
Purge Equipment	Peristaltic
Water Quality Meter Make/Model (Select One or More)	YSI Pro Plus
Water Quality Meter ID(s)	4278
Decontamination Method	2 Stage Rinse

No-Purge: PDB/Hydrasleeve

Note: Selecting "Both" assumes details regarding the same Hydrasleeve/PDB

Deployment Details

PDB Details

A modified Trip Blank must be taken at time of deployment.

A modified Equipment Blank of fill water must be taken at time of deployment.

Purge Details

Purge Depth (ft-bmp) (e.g. Pump Intake)	15
Purge Start	09:50
Purge End (Before Sample Collection)	10:40
Purge Measurement Units	Milliliters
Total Milliliters Purged	7500
Well Volumes Purged (total)	1.18

Volumetric Details

Borehole Volume Multiplier:	CD BD Multiplier 2" 8" 0.8 2" 10" 1.1 4" 8" 1.1 6" 12" 2.6 BD = Borehole Diameter CD = Casing I	
One Borehole Volume (gallons)	0	
Specified Volumes	1.5	

Enter purging and final field parameters in the Field Parameters section below.

@09:50, DTW:9.19, pH5.88, temp:16.1, cond:0.299,turb:7.85, DO:0.92, redox:38.1

	<u> </u>
Site ID, Well ID	97502, MW-21
Reading Time	09:50
Total Elapsed Minutes	0
Rate (mL/min)	150
Depth to Water (ft)	9.19
Total Volume Purged (mL)	0
рН	5.88
pH 2 decimals	5.88
Conductivity (mS/cm)	0.299
cond sig figs	0.299
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	7.85
turbidity sig figs	7.8
Dissolved Oxygen (mg/L)	0.92
DO 2 decimals	0.92
Temperature (Degrees Celcius)	16.1
temp 2 decimals	16.10
Redox (ORP mV)	38.1
Color	Clear
Notable Odors	None
parameters	@09:50, DTW:9.19, pH5.88, temp:16.1, cond:0.299,turb:7.85, DO:0.92, redox:38.1

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@09:55, DTW:9.19, pH6.18, temp:16, cond:0.299,turb:4.86, DO:0.43, redox:5

Site ID, Well ID	97502, MW-21
Reading Time	09:55
Minutes Elapsed between readings	5
Total Elapsed Minutes	5
Rate (mL/min)	150
Depth to Water (ft)	9.19
Total Volume Purged (mL)	750
рН	6.18
pH 2 decimals	6.18
Conductivity (mS/cm)	0.299
cond sig figs	0.299
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	4.86

turbidity sig figs	4.9
Dissolved Oxygen (mg/L)	0.43
DO 2 decimals	0.43
Temperature (Degrees Celcius)	16
temp 2 decimals	16.00
Redox (ORP mV)	5
Color	Clear
Notable Odors	None
parameters	@09:55, DTW:9.19, pH6.18, temp:16, cond:0.299,turb:4.86, DO:0.43, redox:5
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is not stable; time elapsed is 5 minutes

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:00, DTW:9.19, pH6.28, temp:16.3, cond:0.295,turb:12.3, DO:0.3, redox:-1.1

Site ID, Well ID	97502, MW-21
Reading Time	10:00
Minutes Elapsed between readings	5
Total Elapsed Minutes	10
Rate (mL/min)	150
Depth to Water (ft)	9.19
Total Volume Purged (mL)	1500
рН	6.28
pH 2 decimals	6.28
Conductivity (mS/cm)	0.295
cond sig figs	0.295
Check your Units! Verify your water quality meter is set to read conductivity in mS/cm (not uS/cm).	
Turbidity (NTU)	12.3
turbidity sig figs	12.3
Dissolved Oxygen (mg/L)	0.3
DO 2 decimals	0.30
Temperature (Degrees Celcius)	16.3
temp 2 decimals	16.30
Redox (ORP mV)	-1.1
Color	Clear
Notable Odors	None
parameters	@10:00, DTW:9.19, pH6.28, temp:16.3, cond:0.295,turb:12.3, DO:0.3, redox:-1.1

Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is not stable; time elapsed is 10 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:05, DTW:9.19, pH6.33, temp:16.6, cond:0.29,turb:19, DO:0.32, redox:-4.2

Site ID, Well ID	97502, MW-21
Reading Time	10:05
Minutes Elapsed between readings	5
Total Elapsed Minutes	15
Rate (mL/min)	150
Depth to Water (ft)	9.19
Total Volume Purged (mL)	2250
рН	6.33
pH 2 decimals	6.33
Conductivity (mS/cm)	0.29
cond sig figs	0.290
Check your Units! Verify your water quality meter is s	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	19
turbidity sig figs	19.0
Dissolved Oxygen (mg/L)	0.32
DO 2 decimals	0.32
Temperature (Degrees Celcius)	16.6
temp 2 decimals	16.60
Redox (ORP mV)	-4.2
Color	Clear
Notable Odors	None
parameters	@10:05, DTW:9.19, pH6.33, temp:16.6, cond:0.29,turb:19, DO:0.32, redox:-4.2
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is stable; temperature is not stable; ORP is stable; time elapsed is 15 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is not stable; conductivity is not stable; turbidity is not stable; DO is not stable; temperature is not stable; ORP is stable; time elapsed is 15 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:10, DTW:9.19, pH6.36, temp:16.7, cond:0.29,turb:15.9, DO:0.28, redox:-7

<u> </u>	· · · · · · · · · · · · · · · · · · ·
Site ID, Well ID	97502, MW-21
Reading Time	10:10
Minutes Elapsed between readings	5
Total Elapsed Minutes	20
Rate (mL/min)	150
Depth to Water (ft)	9.19
Total Volume Purged (mL)	3000
рН	6.36
pH 2 decimals	6.36
Conductivity (mS/cm)	0.29
cond sig figs	0.290
Check your Units! Verify your water quality m	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	15.9
turbidity sig figs	15.9
Dissolved Oxygen (mg/L)	0.28
DO 2 decimals	0.28
Temperature (Degrees Celcius)	16.7
temp 2 decimals	16.70
Redox (ORP mV)	-7
Color	Clear
Notable Odors	None
parameters	@10:10, DTW:9.19, pH6.36, temp:16.7, cond:0.29,turb:15.9, DO:0.28, redox:-7
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 20 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 20 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:15, DTW:9.19, pH6.36, temp:17, cond:0.293,turb:4.03, DO:0.33, redox:-3.3

Site ID, Well ID	97502, MW-21
Reading Time	10:15
Minutes Elapsed between readings	5
Total Elapsed Minutes	25
Rate (mL/min)	150
Depth to Water (ft)	9.19
Total Volume Purged (mL)	3750
рН	6.36
pH 2 decimals	6.36
Conductivity (mS/cm)	0.293

cond sig figs	0.293
Check your Units! Verify your water quality meter is	set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	4.03
turbidity sig figs	4.0
Dissolved Oxygen (mg/L)	0.33
DO 2 decimals	0.33
Temperature (Degrees Celcius)	17
temp 2 decimals	17.00
Redox (ORP mV)	-3.3
Color	Clear
Notable Odors	None
parameters	@10:15, DTW:9.19, pH6.36, temp:17, cond:0.293,turb:4.03, DO:0.33, redox:-3.3
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 25 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 25 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:20, DTW:9.19, pH6	36. temp:13	7. cond:0.294	.turb:0.02	. DO:0.28.	redox:-3.4
G 10.20, D 111.3.13, D110	JO, CCITIPTI	,	,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I CUOM. J. I

Site ID, Well ID	97502, MW-21
Reading Time	10:20
Minutes Elapsed between readings	5
Total Elapsed Minutes	30
Rate (mL/min)	150
Depth to Water (ft)	9.19
Total Volume Purged (mL)	4500
рН	6.36
pH 2 decimals	6.36
Conductivity (mS/cm)	0.294
cond sig figs	0.294
Check your Units! Verify your water quality meter	is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.28
DO 2 decimals	0.28
Temperature (Degrees Celcius)	17
temp 2 decimals	17.00
Redox (ORP mV)	-3.4
Color	Clear
Notable Odors	None

parameters	@10:20, DTW:9.19, pH6.36, temp:17, cond:0.294,turb:0.02, DO:0.28, redox:-3.4
Stabilization Calculation - TGI	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is stable; temperature is stable; ORP is stable; time elapsed is 30 minutes
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable; turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 30 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

@10:25, DTW:9.19, pH6.35, temp:17.2, cond:0.295,turb:0.02, DO:0.27, redox:-1.5

Site ID, Well ID	97502, MW-21
Reading Time	10:25
Minutes Elapsed between readings	5
Total Elapsed Minutes	35
Rate (mL/min)	150
Depth to Water (ft)	9.19
Total Volume Purged (mL)	5250
рН	6.35
pH 2 decimals	6.35
Conductivity (mS/cm)	0.295
cond sig figs	0.295
Check your Units! Verify your water quality r	neter is set to read conductivity in mS/cm (not uS/cm).
Turbidity (NTU)	0.02
turbidity sig figs	0.02
Dissolved Oxygen (mg/L)	0.27
DO 2 decimals	0.27
Temperature (Degrees Celcius)	17.2
temp 2 decimals	17.20
Redox (ORP mV)	-1.5
Color	Clear
Notable Odors	None
parameters	@10:25, DTW:9.19, pH6.35, temp:17.2, cond:0.295,turb:0.02, DO:0.27, redox:-1.5
Stabilization Calculation - TGI	You may sample the well.
Stabilization Calculation - site 775040	Continue purging, the parameters are not stable: pH is stable; conductivity is stable turbidity is not stable; DO is not stable; temperature is stable; ORP is stable; time elapsed is 35 minutes

Well is considered stabilized and ready for sample collection when the following is met for three consecutive readings collected at 3 to 5 minute intervals: -Turbidity remains within 10% (or if three values are <5 NTUs) -Specific conductance and temp remain within 3% -ORP within + or - 10 mV -DO within 10% (or if three DO values are <0.5 mg/L) -pH within 0.1 unit From TGI updated on May 8, 2020

At site 775040: Collect parameter readings every 2-5 minutes. Purge at 200 to 500 mL/min. Well is considered stable when three consecutive readings are within: 0.1 pH units 3% specific conductivity 3% temperature +/- 10 mV ORP 10% dissolved oxygen <5 NTU and does not vary by more than 1.0 NTU

Sampling

Yes

Sample Information

•	
Sample ID	MW-21-20210928
Sample Time	10:35
Sample Type	Grab
Sample Equipment	Peristaltic
Field Filtered Sample?	No
Sample Depth (ft-bmp) (e.g. pump intake)	15
Color	Clear
Notable Odors	None
Analytes and Methods	See Chain-of-Custody.

Well Inspection

Well inspection completed? Yes

Well Inspection Details

Is well easy to locate?	Yes
Well Type	Flushmount
Is well in an area prone to flooding?	No
Are well labels present on the outside of the well?	No
Are bolts missing?	No
Are well labels present on the inside of the well?	No
Lock present?	No
Well housing pad in good shape?	Yes

Photo of Secured Well

Close Out

General Comments None

Photos

Is this record complete?

Yes

Groundwater Gauging Log

Project Num	ber		30064310					
Client:					Chevi	on		
Site ID:			97502					
Site Location	າ:				Sedro Woolley,	Washington		
Measuring P	oint:				Top of C	asing		
Date(s):					12/14/2	2021		
Sampler(s):			Shad Brooks					
Gauging Equ	uipment:				Interface	Probe		
Well ID	Date	Gauging Time	Static Water Level (ft bmp)	Depth to Product (ft bmp)	Total Depth (ft bmp)	PID Reading (ppm)	LNAPL Removed (gal)	Comments
MW-4	12/14/2021	11:06	7.39	ND	15.72	0		
MW-5	12/14/2021	09:44	7.52	ND	15.95	0		
MW-6	12/14/2021	11:14	7.69	ND	19.83	0		
MW-7	12/14/2021	10:03	10.07	ND	21.43	1.2		
MW-8	12/14/2021	09:55	7.83	ND	17.09	0.4		
MW-10	12/14/2021	10:34	8.02	ND	18.75	0		Slight odor, no visible sheen
MW-11	12/14/2021	10:47	8.15	ND	19.01	0		
MW-12	12/14/2021	09:09	7.83	ND	18.60	0		
MW-13	12/14/2021	09:24	7.89	ND	19.05	0		Slight odor on probe
MW-14	12/14/2021	10:40	8.36	ND	12.44	0		
MW-15	12/14/2021	08:46	7.55	ND	19.55	18.9		Odor present on probe
MW-16	12/14/2021	08:37	7.38	ND	19.74	3.5		
MW-17	12/14/2021	09:18	7.99	ND	19.69	0		
MW-18	12/14/2021	09:31	8.18	ND	19.71	0		
MW-19	12/14/2021	10:55	8.68	ND	19.72	0		
MW-20	12/14/2021	11:00	11:00 9.75 ND 19.84 0.3					
MW-21	12/14/2021	08:57	6.72	ND	19.50	2		

ft-bmp = feet below measuring point

ND = Not Detected

PID = Photoionization Detector Reading

ppm = parts per million

-- = Not Recorded

Well Inspection Log

Client:							1					
Site ID:							97502					
Site Loca	ation:					Sec	dro Woolley, W	/ashington				
Date(s):							12/14/20	21				
Inspecto	or(s):						Shad Broo	oks				
Well ID	Date	Easy to Locate?	Area Prone to Flooding ?	Well Type	Well Housing/ Pad in Good Condition ?	Well Labels Present Outside Well?	Well Labels Present Inside Well?	Lock Present ?	Lock Functioning ?	Well Locked at Arrival?	Photos Taken?	Comments
MW-4	12/14/2021	yes	no	flushm ount	yes	no	yes	no			No	
MW-5	12/14/2021	yes	no	flushm ount	yes	no	no	no			No	
MW-6	12/14/2021	yes	no	flushm ount	yes	no	yes	no			No	
MW-7	12/14/2021	yes	no	flushm ount	yes	no	no	no			No	
MW-8	12/14/2021	yes	no	flushm ount	yes	no	no	no			No	
MW-10	12/14/2021	yes	no	flushm ount	yes	no	no	no			No	
MW-11	12/14/2021	yes	no	flushm ount	yes	no	no	no			No	
MW-12	12/14/2021	yes	no	flushm ount	yes	no	no	no			No	
MW-13	12/14/2021	yes	no	flushm ount	yes	no	no	no			No	
MW-14	12/14/2021	yes	no	flushm ount	yes	no	no	no			No	
MW-15	12/14/2021	yes	no	flushm ount	yes	no	no	no			Yes	
MW-16	12/14/2021	yes	no	flushm ount	yes	no	no	no			Yes	
MW-17		yes	no	flushm ount	yes	no	no	no			No	
MW-18	12/14/2021	yes	no	flushm ount	yes	no	no	no			No	
MW-19	12/14/2021	yes	no	flushm ount	yes	no	yes	no			No	
MW-20	12/14/2021	yes	no	flushm ount	yes	no	yes	no			No	
MW-21	12/14/2021	yes	no	flushm ount	yes	no	no	no			No	

Well Inspection Log Photographs

Well ID	Date	Photo	Description
MW-15	12/14/2021		
MW-16	12/14/2021		

Project Number	30064310	Well ID	MW-4			Date	12/14/2021
Project Name/Location	COP5_West_97502_V	VA_Sedro Woolley	Weather(°F)	41.0 degrees F	and Cloudy. The wind	d is blowing at 6	.9 mph.
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)	4	Well Casing Material	PVC
Static Water Level (ft-bmp)	7.46	Total Depth (ft-bmp)	30	Water Column (ft)	22.54	Gallons in Well	14.65
Purge Start	13:52	Pump Intake (ft-bmp)	20	Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End	14:50	Volumes Purged	0.18	Sample ID	MW-4-W-20211214	Sampled by	Joe Sepiol
Sample Time	14:40	Gallons Purged	2.64	Replicate/ Code No.	NA	Sample Type	Grab

T:	Minutes	Total	Rate	Depth	Gallons	pH	Conductivity	Turbidity	Dissolved	Temperature	Redox	Appea	rance
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	· °C	(mV)	Color	Odor
13:54	0	0	200	7.46	0.11	6.32	0.25	0	5.4	14.4	43.5		
13:59	5	5	200	7.63	0.37	6.43	0.257	0	5.79	14.5	69.1		
14:04	5	10	200	7.63	0.63	6.39	0.257	0	5.46	14.6	94.3		
14:09	5	15	200	7.82	0.90	6.37	0.257	0	5.36	14.6	86.1		
14:14	5	20	200	7.82	1.16	6.37	0.259	0	5.17	14.6	24.1		
14:19	5	25	200	7.90	1.43	6.36	0.265	0	4.92	14.6	-50.9		
14:24	5	30	200	7.91	1.69	6.38	0.272	0	4.59	14.7	-72		
14:29	5	35	200	7.91	1.96	6.37	0.278	0	4.47	14.7	-78.5		
14:34	5	40	200	7.91	2.22	6.37	0.282	0	4.34	14.7	-81.3		
14:39	5	45	200	7.91	2.48	6.37	0.283	0	4.17	14.6	-82.6	Clear	Mild

Constituent Sampled	Container	Number	Preservative
Comments:			
Well Casing Volume Conversion			
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3.5 = 0. 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 = 0.65		
Well Information			
Well Location:	Well Lo	ocked at Arrival: yes	
Condition of Well:	Well Locker	d at Departure: yes	
Well Completion: NA	Key N	umber To Well: NA	

30064310	Well ID	MW-5			Date	12/16/2021
COP5_West_97502_\	WA_Sedro Woolley	Weather(°F)				
Top of Inner Casing	MP Elevation		Casing Diameter (in)		Well Casing Material	NA
7.55	Total Depth (ft-bmp)	16.36	Water Column (ft)	8.81	Gallons in Well	
08:24	Pump Intake (ft-bmp)		Purge Method	Low-Flow	Purge Equipment	Peristaltic
	Volumes Purged		Sample ID	MW-5-W-20211216	Sampled by	Shad Brooks
09:15	Gallons Purged		Replicate/ Code No.	NA	Sample Type	Grab
	COP5_West_97502_V Top of Inner Casing 7.55 08:24	COP5_West_97502_WA_Sedro Woolley Top of Inner Casing MP Elevation 7.55 Total Depth (ft-bmp) 08:24 Pump Intake (ft-bmp) Volumes Purged	COP5_West_97502_WA_Sedro Woolley Top of Inner Casing MP Elevation 7.55 Total Depth (ft-bmp) 16.36 Pump Intake (ft-bmp) Volumes Purged	COP5_West_97502_WA_Sedro Woolley Weather(°F) Top of Inner Casing MP Elevation Casing Diameter (in) 7.55 Total Depth (ft-bmp) 16.36 Water Column (ft) Pump Intake (ft-bmp) Purge Method Volumes Purged Replicate/	COP5_West_97502_WA_Sedro Woolley Weather(°F) Top of Inner Casing MP Elevation Total Depth (ft-bmp) 16.36 Water Column (ft) 8.81 Pump Intake (ft-bmp) Volumes Purged Sample ID MW-5-W-20211216 Replicate/ NA	COP5_West_97502_WA_Sedro Woolley Weather(°F) Top of Inner Casing MP Elevation Total Depth (ft-bmp) 16.36 Water Column (ft) 8.81 Gallons in Well Pump Intake (ft-bmp) Pump Intake (ft-bmp) Volumes Purged Sample ID MW-5-W-20211216 Sample Type

T:	Minutes	Total	Rate	Depth	Gallons	pH	Conductivity	Turbidity	Dissolved	Temperature	Redox	Appea	rance
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	· °C	(mV)	Color	Odor
08:25	0	0	150	7.55		7.53	0.4	72.5	7.93	11.6	85.6		
08:30	5	5	150	7.55		6.85	0.399	23.92	7.16	12.3	119.9		
08:35	5	10	150	7.55		6.83	0.398	20.39	7.11	12.3	125.8		
08:40	5	15	150	7.55		6.82	0.399	19.82	7.09	12.5	132.2		
08:45	5	20	150	7.89		6.81	0.399	14.8	7.02	12.6	138.6		
08:50	5	25	150	7.89		6.81	0.399	15.61	7.01	12.5	143.8		
08:55	5	30	150	7.89		6.81	0.399	12.02	6.97	12.7	147.7		
09:00	5	35	150	8.06		6.81	0.4	14	6.91	12.5	151.7		
09:05	5	40	150	8.06		6.81	0.399	13.2	6.92	12.5	153.9		
09:10	5	45	150	8.06		6.8	0.4	12.25	6.77	12.3	156.1		
09:52	42	87	150	8.06	-							Clear	None

Constituent Sampled	Container	Number	Preservative
	_		_
	_		_
	_		_
Comments:			
Well Casing Volume Conversion			
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3.5 = 0.5 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 = 0.65		
Well Information			
Well Location:	Well Lo	cked at Arrival:	
Condition of Well:	Well Locked	d at Departure:	
Well Completion: NA	Key No	umber To Well: NA	

Project Number	30064310	Well ID	MW-6			Date	12/14/2021
Project Name/Location	COP5_West_97502_V	VA_Sedro Woolley	Weather(°F)	41.0 degrees F	and Cloudy. The wind	d is blowing SE	at 6.9 mph.
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)		Well Casing Material	PVC
Static Water Level (ft-bmp)	7.76	Total Depth (ft-bmp)	18.85	Water Column (ft)	11.09	Gallons in Well	
Purge Start	13:30	Pump Intake (ft-bmp)		Purge Method	I Low-Flow	Purge Equipment	Peristaltic
Purge End		Volumes Purged		Sample ID	MW-6-W-20211214	Sampled by	Shad Brooks
Sample Time	14:15	Gallons Purged		Replicate/ Code No.	NA	Sample Type	Grab

Time	Time Minutes	Total	ed Rate	Depth to Water		pH (standard	Conductivity	lurbiaity	Dissolved	Temperature	Redox	Appearance	
Time	Elapsed	Elapsed Minutes	mL/min	(ft)	Purgea	units)	(mS/cm)	(NTU)	Oxygen (mg/L)	°C	(mV)	Color	Odor
13:43	0	0	150	7.76		6.12	0.092	0	0.82	12.5	48.2		
13:55	12	12	150	8.11		6.13	0.092	0	0.94	11.3	55.3		
14:00	5	17	150	8.11		5.94	0.09	0	0.94	11.3	71.2		
14:05	5	22	150	8.11	0.87	5.88	0.09	0	0.89	11.2	76.9		
14:10	5	27	150	8.11		5.9	0.091	0	0.88	11.1	77.8	Orange	None

Constituent Sampled	Container	Number	Preservative
Comments: Large orange colored	material coming from well. Waited for the	he majority to clear before starting purge.	
Well Casing Volume Conversion			
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3.5 = 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 = 0		
Well Information			
Well Location:	Well	I Locked at Arrival:	
Condition of Well:	Well Loc	cked at Departure:	
Well Completion: NA	Ke	y Number To Well: NA	
			

Preservative

Project Number	30064310	Well ID	MW-7			Date	12/15/2021
Project Name/Location	COP5_West_97502_W	/A_Sedro Woolley	Weather(°F)	44.6 degrees F	and Mostly Clear.		
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)	2	Well Casing Material	PVC
Static Water Level (ft-bmp)	10.04	Total Depth (ft-bmp)	25	Water Column (ft)	14.96	Gallons in Well	2.43
Purge Start	14:10	Pump Intake (ft-bmp)	18	Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End		Volumes Purged	0.87	Sample ID	MW-7-W-20211215	Sampled by	Joe Sepiol
Sample Time	14:45	Gallons Purged	2.11	Replicate/ Code No.	NA	Sample Type	Grab

Time	Minutes	Total Elapsed Minutes	Rate mL/min	Depth	ter Purged	pH	Conductivity	Turbidity	Dissolved	Temperature	Redox	Appearance	
Elap	Elapsed			to Water (ft)		(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	· °C	(mV)	Color	Odor
14:12	0	0	200	10.04	0.11	7.07	0.686	12.13	8.19	12.5	-78.3		
14:17	5	5	200	10.04	0.37	7.02	0.709	4.31	7.15	13	-75.7		
14:22	5	10	200	10.05	0.63	7.03	0.712	4.23	6.99	13.1	-75.9		
14:27	5	15	200	10.05	0.90	7.04	0.718	8.6	6.94	13.1	-76.1		
14:32	5	20	200	10.05	1.16	7.04	0.717	2.85	6.95	13.1	-75.6		
14:37	5	25	200	10.05	1.43	7.04	0.716	2.53	6.96	13.1	-74.8		
14:42	5	30	200	10.05	1.69	7.04	0.717	2.39	6.93	13.1	-74.7	Clear	None

-		
Comments:		
Well Casing Volume Conversion		
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3.5 = 0.50; 6 = 1.47 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 = 0.65	
Well Information		
Well Location:	Well Locked at Arrival: yes	
Condition of Well:	Well Locked at Departure: yes	
Well Completion: NA	Key Number To Well: NA	

Constituent Sampled

Container

Number

Project Number	30064310	Well ID	MW-8			Date	12/15/2021
Project Name/Location	COP5_West_97502_W	/A_Sedro Woolley	Weather(°F)	42.8 degrees F	and Clear. The wind i	s blowing undef	ined at 0.0 mph.
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)	2	Well Casing Material	PVC
Static Water Level (ft-bmp)	7.79	Total Depth (ft-bmp)	17.07	Water Column (ft)	9.28	Gallons in Well	1.51
Purge Start		Pump Intake (ft-bmp)		Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End		Volumes Purged		Sample ID	MW-8-W-20211215	Sampled by	Shad Brooks
Sample Time	15:35	Gallons Purged		Replicate/ Code No.	NA	Sample Type	Grab

Time	Minutes	Total	Rate	Depth	Gallons	pH (etenderd	Conductivity	Turbidity	Dissolved	Temperature	Redox	Appea	arance
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	°c	(mV)	Color	Odor
14:45	0	0	150	7.90		6.59	0.448	21.87	0.84	11.2	-56.9		
14:50	5	5	150	7.90		6.59	0.443	20.11	0.76	11.2	-57.7		
14:55	5	10	150	7.90		6.61	0.436	19.24	0.66	11.4	-61		
15:00	5	15	150	7.91		6.62	0.428	15.19	0.49	12.2	-69.9		
15:05	5	20	150	7.92		6.64	0.423	13.37	0.46	12	-74.6		
15:10	5	25	150	7.92		6.64	0.421	12.14	0.44	12	-77.4		
15:15	5	30	150	7.92		6.65	0.419	10.9	0.4	11.9	-82.9		
15:20	5	35	150	7.92		6.65	0.417	9.58	0.39	11.9	-86		
15:25	5	40	150	7.92		6.67	0.413	8.57	0.38	12	-89.8		
15:30	5	45	150	7.92	1	6.68	0.413	7.85	0.38	12.1	-92.9	Black	Medium

Constituent Sampled	Container	Number	Preservative
Comments:			
Well Casing Volume Conversion			
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3.5 = 0.50; 6 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 = 0.65	= 1.47	
Well Information			
Well Location:	Well Locked	at Arrival:	
Condition of Well:	Well Locked at D	Departure:	
Well Completion: NA	Key Numbe	r To Well: NA	

Project Number	30064310	Well ID	MW-10			Date	12/15/2021
Project Name/Location	COP5_West_97502_V	VA_Sedro Woolley	Weather(°F)	39.2 degrees F	and Clear.		
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)	2	Well Casing Material	Stainless Steel
Static Water Level (ft-bmp)	7.97	Total Depth (ft-bmp)	30	Water Column (ft)	22.03	Gallons in Well	3.58
Purge Start	11:05	Pump Intake (ft-bmp)	20	Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End		Volumes Purged	0.77	Sample ID	MW-10-W20211215	Sampled by	Joe Sepiol
Sample Time	11:55	Gallons Purged	2.77	Replicate/ Code No.	NA	Sample Type	Grab

T:	Minutes	Total	Rate	Depth	Gallons	pH	Conductivity	Turbidity	Dissolved	Temperature	Redox	Appea	arance
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	· °C	(mV)	Color	Odor
11:08	0	0	200	8.04	0.16	6.67	0.457	23.9	2.07	11.4	-95.3		
11:13	5	5	200	8.03	0.42	6.59	0.47	7.32	0.73	12.3	138.8		
11:18	5	10	200	8.03	0.69	6.58	0.472	16.55	0.58	12.6	-150.8		
11:23	5	15	200	8.03	0.95	6.59	0.473	16.39	0.55	12.3	-154.3		
11:28	5	20	200	8.03	1.22	6.6	0.475	10.7	0.7	12.3	-143.1		
11:33	5	25	200	8.03	1.48	6.61	0.479	8.9	0.92	12.3	-131.9		
11:38	5	30	200	8.04	1.74	6.59	0.483	5.23	1.76	12.1	-113.8		
11:43	5	35	200	8.04	2.01	6.57	0.484	4.08	2.24	12	-112.6		
11:48	5	40	200	8.04	2.27	6.56	0.484	4.04	2.3	12.1	-113.1		
11:55	7	47	200	8.04	2.48	6.56	0.484	3.66	2.34	12.1	-113.4	Yellow	Medium

Constituent Sampled	Container	Number	Preservative
	_		<u> </u>
	_		_
	_		
Comments:			
Well Casing Volume Conversion			
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3. 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 =		
Well Information			
Well Location:	W	Vell Locked at Arrival: yes	
Condition of Well:	Well	Locked at Departure: yes	
Well Completion: NA		Key Number To Well: NA	·

30064310	Well ID	MW-11			Date	12/15/2021
COP5_West_97502_\	WA_Sedro Woolley	Weather(°F)				
Top of Inner Casing	MP Elevation		Casing Diameter (in)		Well Casing Material	NA
8.09	Total Depth (ft-bmp)	19.03	Water Column (ft)	10.94	Gallons in Well	
10:25	Pump Intake (ft-bmp)		Purge Method	Low-Flow	Purge Equipment	Peristaltic
	Volumes Purged		Sample ID	MW-11-W-20211215	Sampled by	Shad Brooks
11:30	Gallons Purged		Replicate/ Code No.	MS-1-121521	Sample Type	Grab
	COP5_West_97502_V Top of Inner Casing 8.09 10:25	COP5_West_97502_WA_Sedro Woolley Top of Inner Casing MP Elevation 8.09 Total Depth (ft-bmp) 10:25 Pump Intake (ft-bmp) Volumes Purged	COP5_West_97502_WA_Sedro Woolley Weather(°F) Top of Inner Casing MP Elevation 8.09 Total Depth (ft-bmp) 19.03 10:25 Pump Intake (ft-bmp) Volumes Purged	COP5_West_97502_WA_Sedro Woolley Weather(°F) Top of Inner Casing MP Elevation 8.09 Total Depth (ft-bmp) 19.03 Water Column (ft) Pump Intake (ft-bmp) Purge Method Volumes Purged Replicate/	COP5_West_97502_WA_Sedro Woolley Weather(°F) Top of Inner Casing MP Elevation Casing Diameter (in) 8.09 Total Depth (ft-bmp) 19.03 Water Column (ft) 10.94 10:25 Pump Intake (ft-bmp) Pump Intake (ft-bmp) Volumes Purged Replicate/ Replicate/ MS_1-121521	COP5_West_97502_WA_Sedro Woolley Weather(°F) Top of Inner Casing MP Elevation Somple ID MW-11-W-20211215 Casing Diameter (in) Well Casing Material Water Column (ft) 10.94 Gallons in Well Purge Method Low-Flow Purge Equipment Volumes Purged Replicate/ MS-1-121521 Sample Type

Time	Minutes	Total	Rate	Depth	Gallons	pH (etenderd	Conductivity	Turbidity	Dissolved	Temperature	Redox	Appea	rance
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	°C	(mV)	Color	Odor
10:35	0	0	150	8.09		6.07	0.564	33.85	1.56	10.6	90.8		
10:40	5	5	150	8.15		6.1	0.573	27.39	1.33	10	88.8		
10:45	5	10	150	8.17		6.12	0.566	26.45	1.23	10.5	80.4		
10:50	5	15	150	8.18		6.13	0.579	17.63	1.1	11	71.8		
10:55	5	20	150	8.18		6.16	0.582	13.7	1.07	11.2	52.9		
11:00	5	25	150	8.18		6.17	0.58	10.06	1.12	11.1	47.6		
11:05	5	30	150	8.18		6.18	0.578	7.42	1.09	11.1	43.7		
11:11	6	36	150	8.18		6.19	0.58	6.2	1.21	10.4	39.2		
11:15	4	40	150	8.18		6.19	0.58	5.82	1.22	10.2	39.2		
11:20	5	45	150	8.18		6.19	0.575	6.12	1.24	10.3	40.3		
11:25	5	50	150	8.18		6.19	0.573	6.46	1.33	10.5	41	Clear	None

Project Number	30064310	Well ID	MW-12			Date	12/16/2021
Project Name/Location	COP5_West_97502_V	VA_Sedro Woolley	Weather(°F)				
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)	4	Well Casing Material	PVC
Static Water Level (ft-bmp)	7.85	Total Depth (ft-bmp)	25	Water Column (ft)	17.15	Gallons in Well	11.15
Purge Start	09:42	Pump Intake (ft-bmp)	20	Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End	10:32	Volumes Purged	0.20	Sample ID	MW-12-W-20211216	Sampled by	Joe Sepiol
Sample Time	10:28	Gallons Purged	2.25	Replicate/ Code No.	NA	Sample Type	Grab

Times	Minutes	Total	Rate	Depth	Gallons	pH	Conductivity	Turbidity	Dissolved	Temperature	Redox	Appea	rance
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	· °C	(mV)	Color	Odor
09:45	0	0	200	7.92	0.16	6.81	0.468	60.29	7.51	9.6	-52		
09:50	5	5	200	7.92	0.42	6.66	0.479	31.37	6.12	10.6	-49.1		
09:55	5	10	200	8.00	0.69	6.65	0.483	25.82	6.03	10.7	-62.3		
10:00	5	15	200	8.02	0.95	6.64	0.482	27.06	6.04	11.1	-65.9		
10:05	5	20	200	8.02	1.22	6.64	0.483	29.13	6.01	11.5	-74.6		
10:10	5	25	200	8.04	1.48	6.64	0.484	22.8	5.99	10.9	-79.4		
10:15	5	30	200	8.04	1.74	6.64	0.482	22.05	5.98	10.9	-82.6		
10:20	5	35	200	8.05	2.01	6.64	0.483	20.75	6	10.8	-84.8	Clear	None

Constituent Sampled	Container	Number	Preservative
	_		_
	_		_
	_		<u> </u>
Comments:			
Well Casing Volume Conversion			
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3.5 = 0.50; 6 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 = 0.65	= 1.47	
Well Information			
Well Location:	Well Locked	at Arrival: yes	
Condition of Well:	Well Locked at D	Departure: yes	
Well Completion: NA	Key Number	er To Well: NA	

Project Number	30064310	Well ID	MW-13			Date	12/15/2021
Project Name/Location	COP5_West_97502_V	VA_Sedro Woolley	Weather(°F)	42.8 degrees F	and Clear. The wind is	s blowing undef	ined at 0.0 mph.
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)		Well Casing Material	NA
Static Water Level (ft-bmp)	7.86	Total Depth (ft-bmp)	19.01	Water Column (ft)	11.15	Gallons in Well	
Purge Start		Pump Intake (ft-bmp)		Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End		Volumes Purged		Sample ID	MW-13-W-20211215	Sampled by	Shad Brooks
Sample Time	14:00	Gallons Purged		Replicate/ Code No.	DUP-1-121521	Sample Type	Grab

Time	Minutes	Total	Rate	Depth	Gallons	pH	Conductivity	Turbidity	Dissolved	l'emperature	Redox	Appea	rance
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	· °C	(mV)	Color	Odor
13:25	0	0	150	8.05		6.77	0.546	9.75	8.97	12.2	109.8		
13:30	5	5	150	8.05		6.76	0.549	7.19	8.88	12.3	119.1		
13:35	5	10	150	8.13		6.75	0.544	5.78	8.89	12.3	127.1		
13:40	5	15	150	8.13		6.76	0.544	4.86	8.92	12.3	131.8		
13:45	5	20	150	8.13		6.76	0.544	5.02	8.88	12.4	134.7	Clear	None

Constituent Sampled	Container	Number	Preservative
Comments:			
Well Casing Volume Conversion			
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3.5 = 0.50; 6 = 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 = 0.65	1.47	
Well Information			
Well Location:	Well Locked at	Arrival:	
Condition of Well:	Well Locked at Dep	parture:	
Well Completion: NA	Key Number T	o Well: NA	

Project Number	30064310	Well ID	MW-14			Date	12/16/2021
Project Name/Location	COP5_West_97502_V	VA_Sedro Woolley	Weather(°F)	Rain. 40 F			
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)	4	Well Casing Material	PVC
Static Water Level (ft-bmp)	8.34	Total Depth (ft-bmp)	25	Water Column (ft)	16.66	Gallons in Well	10.83
Purge Start	08:23	Pump Intake (ft-bmp)	18	Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End	09:28	Volumes Purged	0.29	Sample ID	MW-14-W-20211216	Sampled by	Joe Sepiol
Sample Time	09:25	Gallons Purged	3.17	Replicate/ Code No.	NA	Sample Type	Grab

Time	Minutes	Total	Rate	Depth	Gallons	pH (etenderd	Conductivity	Turbidity	Dissolved	Temperature	Redox	Appea	rance
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	· °C	(mV)	Color	Odor
08:26	0	0	200	8.36	0.16	6.71	0.485	9.3	1.92	12.4	-144.2		
08:31	5	5	200	8.42	0.42	6.63	0.493	7.6	0.68	12.6	-175.3		
08:36	5	10	200	8.43	0.69	6.63	0.491	8.44	0.47	13	-191		
08:41	5	15	200	8.43	0.95	6.62	0.491	9.42	0.43	13	-195.8		
08:46	5	20	200	8.44	1.22	6.61	0.49	9.02	0.42	13.1	-196.4		
08:51	5	25	200	8.44	1.48	6.59	0.491	7.77	0.48	13.2	-190.4		
08:56	5	30	200	8.45	1.74	6.59	0.492	7.08	0.49	12.9	-191.4		
09:01	5	35	200	8.45	2.01	6.6	0.491	6.7	0.46	13.1	-194		
09:06	5	40	200	8.45	2.27	6.6	0.492	6.16	0.51	13.1	-190.5		
09:11	5	45	200	8.45	2.54	6.59	0.492	5.6	0.53	13.1	-185.4	Yellow	Strong

Constituent Sampled	Container	Number	Preservative
	_		
	_		
Comments:	_		
Well Casing Volume Conversion			
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3.5 = 0 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 = 0.65		
Well Information			
Well Location:	Well Lo	ocked at Arrival: yes	
Condition of Well:	Well Locke	ed at Departure: yes	
Well Completion: NA	Key N	Number To Well: NA	

Project Number	30064310	Well ID	MW-15			Date	12/14/2021
Project Name/Location	COP5_West_97502_V	VA_Sedro Woolley	Weather(°F)	41.0 degrees F	and Cloudy. The wind	is blowing SE	at 6.9 mph.
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)	2	Well Casing Material	PVC
Static Water Level (ft-bmp)	7.65	Total Depth (ft-bmp)	30	Water Column (ft)	22.35	Gallons in Well	3.63
Purge Start	12:40	Pump Intake (ft-bmp)	29	Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End	13:30	Volumes Purged	0.69	Sample ID	MW-15-W-20211214	Sampled by	Joe Sepiol
Sample Time	13:25	Gallons Purged	2.51	Replicate/ Code No.	NA	Sample Type	Grab

Time	Minutes	Total	Rate	Depth	Gallons	pH	Conductivity	Turbidity	Dissolved	Temperature	Redox	Appea	rance
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	· °C	(mV)	Color	Odor
12:44	0	0	200	7.65	0.13	6.36	0.278	0	0.59	13.4	52		
12:49	5	5	200	7.65	0.48	6.41	0.277	0	0.47	13.9	22.6		
12:54	5	10	200	7.65	0.74	7.72	0.279	0	0.43	13.9	-20.4		
12:59	5	15	200	7.74	1.00	6.41	0.276	0	0.39	14.1	-66.5		
13:04	5	20	200	7.80	1.27	6.42	0.265	0	0.37	14.3	-134		
13:09	5	25	200	7.80	1.53	6.42	0.261	0	0.34	14.3	-152.1		
13:14	5	30	200	7.81	1.80	6.41	0.257	0	0.32	14.3	-156.8		
13:19	5	35	200	7.80	2.06	6.42	0.254	0	0.32	14.3	-164.1		
13:24	5	40	200	7.80	2.32	6.43	0.253	0	0.31	14	-167.5	Clear	Mild

Constituent Sampled	Container	Number	Preservative
	_		_
	_		_
			_
Comments:			
Well Casing Volume Conversion			
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3.5 = 0.50 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 = 0.65	; 6 = 1.47	
Well Information			
Well Location:	Well Lock	ed at Arrival: no	
Condition of Well:	Well Locked a	at Departure: no	
Well Completion: NA	Key Nun	nber To Well: NA	

Chevron Groundwater Sampling Form

Project Nu	ımber	30064310	Well	ID MW-	16	Date		12/14/2	021	
Site Locat	ion	Sedro Wooll Washington	ey, Site	ID 975	02	Weather (°F)	Clear	Sample	ed by Shad B	rooks
Measuring Descriptio		Top of Casir	Scre Dept	en h Interval (ft-b	mp) 5 to 10	Casing Diameter (in.)	· 2	Well Ca Materia		
Static Water Total Depth (ft-bmp) (Water Column (ft)		Gallon: Well	s in ₀					
Water Qua Make/Mod	ality Meter lel	YSI Pro Plus	s Purg	ge Method Lov		w	Sample Met	hod	nod Grab	
Sample Ti	me	12:20		Volumes		Sample I	D MW-16-	Evacua		tic
Purge Start		11:50	Purged		Duplicate	20211214	Equipn	nent		
Purge End		12:19		ŭ		ID.				
			l ota (h:m	l Purge Time)	0:29					
						,			Appe	arance
Time	Rate (ml/min)	Depth to Water (ft)	pH (standard units)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Redox (mV)	Color	Odor
11:50	150	7.38	6.14	0.218	0.00	0.36	11.20	18.6	Clear	None
11:56	150	7.38	6.20		0.00	0.35	11.40	14.9	Clear	None
12:00	150	7.38	6.23	0.215	0.00	0.33	11.40	6.9	Clear	None
12:05	150	7.36	6.30	0.214	0.00	0.33	11.80	1	Clear	None
12:10	150	7.36	6.28	0.215	0.00	0.34	11.90	0.3	Clear	None
12:15	150	7.36	6.31	0.215	0.00	0.42	11.80	0.9	Clear	None
Comment	s:	None								

Well Casing Volume Conversion

Well diameter (in.) = $1 = 0.04 \ 1.5 = 0.09 \ 2.5 = 0.26 \ 3.5 = 0.50 \ 6 = 1.47$

gallons per foot $1.25 = 0.06 \ 2 = 0.16 \ 3 = 0.37 \ 4 = 0.65$

Sample Information

Sample ID: MW-16-20211214 Sample Time: 12:20 Sample Depth (ft-bmp): 10.5

Analytes and Methods: See Chain-of-Custody.

Project Number	30064310	Well ID	MW-17			Date	12/15/2021
Project Name/Location	COP5_West_97502_V	VA_Sedro Woolley	Weather(°F)	42.8 degrees F	and .		
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)	2	Well Casing Material	PVC
Static Water Level (ft-bmp)	7.93	Total Depth (ft-bmp)	30	Water Column (ft)	22.07	Gallons in Well	3.59
Purge Start	12:50	Pump Intake (ft-bmp)	20	Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End	13:49	Volumes Purged	0.77	Sample ID	MW-17-W-20211215	Sampled by	Joe Sepiol
Sample Time	13:45	Gallons Purged	2.77	Replicate/ Code No.	NA	Sample Type	Grab

Time	Minutes	Total	Rate	Depth	Gallons	pH (etenderd	Conductivity	Turbidity	Dissolved	Temperature	Redox	Appea	arance
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	· °C	(mV)	Color	Odor
12:54	0	0	200	8.03	0.21	6.95	0.292	11.7	2.03	12.2	-120.6		
12:59	5	5	200	8.03	0.48	6.85	0.291	9.69	1.19	11.8	-146.4		
13:04	5	10	200	8.03	0.74	6.84	0.291	9.46	1.14	11.6	-151		
13:09	5	15	200	8.03	1.00	6.83	0.29	8.3	1.09	11.8	-154.9		
13:14	5	20	200	8.04	1.27	6.83	0.29	10.08	1.06	11.8	-158.3		
13:19	5	25	200	8.04	1.53	6.82	0.29	9.5	0.93	12	-178.6		
13:24	5	30	200	8.04	1.80	6.82	0.291	7.5	0.8	12.3	-188.8		
13:29	5	35	200	8.04	2.06	6.83	0.292	7.8	0.7	12.2	-196.4		
13:34	5	40	200	8.04	2.32	6.83	0.294	6.42	0.67	12.1	-198.7		
13:39	5	45	200	8.04	2.59	6.83	0.295	4.89	0.6	12.3	-205	Clear	Strong

Constituent Sampled	Container	Number	Preservative
	_		_
	_		_
	_		
Comments:			
Well Casing Volume Conversion			
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3.5 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 =		
Well Information			
Well Location:	We	ell Locked at Arrival: no	
Condition of Well:	Well L	ocked at Departure: no	
Well Completion: NA		ey Number To Well: NA	

Project Number	30064310	Well ID	MW-18			Date	12/15/2021
Project Name/Location	COP5_West_97502_W	/A_Sedro Woolley	Weather(°F)	39.2 degrees F	and Cloudy. The wind	is blowing E at	4.7 mph.
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)		Well Casing Material	NA
Static Water Level (ft-bmp)	8.45	Total Depth (ft-bmp)	19.76	Water Column (ft)	11.31	Gallons in Well	
Purge Start	08:55	Pump Intake (ft-bmp)		Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End		Volumes Purged		Sample ID	MW-18-W-20211215	Sampled by	Shad Brooks
Sample Time	09:40	Gallons Purged		Replicate/ Code No.	NA	Sample Type	Grab

Time	Minutes	Total	Rate	Depth	Gallons	pH	Conductivity	Turbidity	Dissolved	Temperature	Redox	Appea	arance
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	· °C	(mV)	Color	Odor
09:05	0	0	150	8.45	1	6.39	0.269	48.32	0.76	13.3	-59.9	1	
09:10	5	5	150	8.48	-	6.43	0.27	25.37	0.64	12.6	-61.2		
09:15	5	10	150	8.48		6.43	0.272	14.02	0.6	12.1	-62.7		
09:20	5	15	150	8.48		6.48	0.276	13.61	0.56	12	-63.2		
09:25	5	20	150	8.38		6.49	0.276	10.35	0.55	12.1	-63.3		
09:31	6	26	150	8.39		6.5	0.278	8.49	0.51	12.2	-63.8		
09:35	4	30	150	8.39		6.49	0.277	9.1	0.52	12.2	-63.2		
09:40	5	35	150	8.39		6.49	0.278	8.6	0.52	12.3	-62.8	Clear	Medium

Constituent Sampled	Container			Number		Preservative
			_		_	
	_		_		_	
	_		_		_	
Comments:						
Well Casing Volume Conversion						
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2 1.25 = 0.06; 2 = 0.16;	2.5 = 0.26; 3.5 = 0.50; 6 = 6; 3 = 0.37; 4 = 0.65	1.47			
Well Information						
Well Location:		Well Locked at	Arrival:			
Condition of Well:		Well Locked at Dep	arture:			
Well Completion: NA		Key Number 1	o Well: N	4		<u> </u>

Project Number	30064310	Well ID	MW-19			Date	12/15/2021
Project Name/Location	COP5_West_97502_V	WA_Sedro Woolley	Weather(°F)	39.2 degrees F	and Cloudy. The wind	is blowing E at	4.7 mph.
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)	2	Well Casing Material	PVC
Static Water Level (ft-bmp)	8.73	Total Depth (ft-bmp)	30	Water Column (ft)	21.27	Gallons in Well	3.46
Purge Start	08:42	Pump Intake (ft-bmp)	20	Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End	09:16	Volumes Purged	0.42	Sample ID	MW-19-W-20211215	Sampled by	Joe Sepiol
Sample Time	09:15	Gallons Purged	1.45	Replicate/ Code No.	NA	Sample Type	Grab

l Ima I	Minutes	Total Rate		Gallons	(standard Conductivity Tur	y Turbidity Dissolved Oxygen	Temperature	Redox	Appearance				
Time	Elapsed	Minutes	mL/min	to Water (ft)	Purged	units)	(mS/cm)	(NTU)	Oxygen (mg/L)	.c	(mV)	Color	Odor
08:44	0	0	200	8.73	0.11	5.97	0.447	10.4	5.44	10.9	-13		
08:49	5	5	200	8.78	0.37	6.08	0.458	4.16	3.3	12.2	-38		
08:54	5	10	200	8.81	0.63	6.12	0.466	2.91	3.27	12.2	-43.1		
08:59	5	15	200	8.82	0.90	6.14	0.469	2.89	3.25	12	-45.2		
09:04	5	20	200	8.81	1.16	6.15	0.471	2.86	3.15	12	-48.6	Clear	None

Constituent Sampled	Container	Number	Preservative
	-		_
	-		_
Comments:			
Well Casing Volume Conversion			
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3.5 = 0.50; 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 = 0.65	6 = 1.47	
Well Information			
Well Location: Alley	Well Locked	d at Arrival: no	
Condition of Well: Good condition	Well Locked at	Departure: no	
Well Completion: Flush mount	Key Numb	per To Well: NA	

Project Number	30064310	Well ID	MW-20			Date	12/15/2021
Project Name/Location	COP5_West_97502_V	VA_Sedro Woolley	Weather(°F)				
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)	2	Well Casing Material	PVC
Static Water Level (ft-bmp)	9.73	Total Depth (ft-bmp)	30	Water Column (ft)	20.27	Gallons in Well	3.29
Purge Start	09:53	Pump Intake (ft-bmp)	20	Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End	10:40	Volumes Purged	0.68	Sample ID	MW-20-W-20211215	Sampled by	Joe Sepiol
Sample Time	10:35	Gallons Purged	2.25	Replicate/ Code No.	NA	Sample Type	Grab

T:	Minutes	Total	Rate	Depth	Gallons	pH	Conductivity	Turbidity	Dissolved	Temperature	Redox	Appea	rance
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	· °C	(mV)	Color	Odor
09:55	0	0	200	9.73	0.11	6.73	0.342	5.5	8.84	21.1	-24.2		
10:00	5	5	200	9.76	0.37	6.57	0.349	2.42	7.32	12.8	-22.2		
10:05	5	10	200	9.87	0.63	6.57	0.353	2.51	7.17	12.4	-22.2		
10:10	5	15	200	9.87	0.90	6.57	0.349	4	7.05	12.5	-23.4		
10:15	5	20	200	9.90	1.16	6.57	0.347	4.55	6.96	13.3	-23		
10:20	5	25	200	9.91	1.43	6.57	0.349	2.3	7.04	13.3	-22.8		
10:25	5	30	200	9.92	1.69	6.58	0.351	3.04	7.03	13.3	-23.5		
10:30	5	35	200	9.92	1.96	6.58	0.351	3.21	6.99	13.2	-23.7	Clear	None

Constituent Sampled			Number		Preservative	
			_		_	
			_		_	
Comments:						
Well Casing Volume Conversion						
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2 1.25 = 0.06; 2 = 0.16;	2.5 = 0.26; 3.5 = 0.50; 6 = ; 3 = 0.37; 4 = 0.65	1.47			
Well Information						
Well Location:		Well Locked at	Arrival: no	1		
Condition of Well:		Well Locked at Dep	parture: no	ı		
Well Completion: Flush mount		Key Number 1	To Well: NA	4		

Project Number	30064310	Well ID	MW-21			Date	12/16/2021
Project Name/Location	COP5_West_97502_V	VA_Sedro Woolley	Weather(°F)	40s rain			
Measuring Pt. Description	Top of Inner Casing	MP Elevation		Casing Diameter (in)		Well Casing Material	NA
Static Water Level (ft-bmp)	6.75	Total Depth (ft-bmp)	19.5	Water Column (ft)	12.75	Gallons in Well	
Purge Start		Pump Intake (ft-bmp)		Purge Method	Low-Flow	Purge Equipment	Peristaltic
Purge End		Volumes Purged		Sample ID	NA	Sampled by	Shad Brooks
Sample Time		Gallons Purged		Replicate/ Code No.	NA	Sample Type	,

Time	Total Total		Depth		pH Conduc	Conductivity	Conductivity Lurbidity	Dissolved	Temperature	Redox	Appearance		
Time	Elapsed	Elapsed Minutes	mL/min	to Water (ft)	Purged	(standard units)	(mS/cm)	(NTU)	Oxygen (mg/L)	· °C	(mV)	Color	Odor
10:00	0	0	150	6.75		6.64	0.31	4.1	1.41	8.4	71.7		
10:05	5	5	150	6.75		6.58	0.307	4.35	0.89	9	66.5		
10:10	5	10	150	6.75		6.58	0.308	3.89	0.77	9	64.4		
10:15	5	15	150	6.75		6.58	0.308	3.1	0.67	9	59.3		
10:20	5	20	150	6.75		6.58	0.306	4.23	0.62	9.2	57.9		
10:25	5	25	150	6.75		6.59	0.307	2.5	0.6	9.5	59.9		
10:30	5	30	150	6.75		6.59	0.308	3.25	0.6	9.2	58.6		
10:35	5	35	150	6.75		6.59	0.307	2.3	0.57	9.2	58.9		
10:40	5	40	150	6.75		6.59	0.306	2.9	0.56	9	59.3		

Constituent Sampled	Container	Number	Preservative	
Comments:				
Well Casing Volume Conversion				
Well diameter (inches) = gallons per foot	1 = 0.04; 1.5 = 0.09; 2.5 = 0.26; 3.5 = 0.50; 1.25 = 0.06; 2 = 0.16; 3 = 0.37; 4 = 0.65	6 = 1.47		
Well Information				
Well Location:	Well Locke	ed at Arrival:		
Condition of Well:	Well Locked at	Well Locked at Departure:		
Well Completion: NA	Key Numl	ber To Well: NA		

Appendix F

Soil Vapor Sampling Collection Logs

97502.3	30064310,	Skagit	County.	. Sedro	-Woolley.	98284	. WA	. US	. Fern	/St.	124
<i></i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	٠.٠٠٦.٠		J	,,	, , , , , , , , , , , , , , , , , , , ,	,	,	,	,	, . . .

Created	2021-10-07 20:28:39 UTC by Trevor Bryant
Updated	2021-10-07 23:12:26 UTC by Trevor Bryant
Location	48.505189614415634, -122.23884914081752
Selecting "Yes" confirms your digital signature as having read the QP and/or TGI relevant to this use case.	

General Information

Office Name	Seattle
Office Address	1100 Olive Waty, Suite 800, Seattle, WA 98101
Client	CEMC
Project Name	97502
Project Number	30064310
Site Address	124 Ferry St Sedro-Woolley, WA 98284
Field Manager	Alex Laws
Phone Number	111-111-1111
Special Instructions (specific analyte list, site specific instructions, specific contacts, etc.)	None
Email Address for Result Reporting	Ada.Hamilton@arcadis.com
Leak Test Method	Helium Tracer Test
Helium Detector Used	MGD-2002

Sampler Details

Sampler Name	Trevor Bryant
Sampler Phone Number	859-333-4115
Sampler Email Address	trevor.bryant@arcadis.com

Lab Sample Information

Sample Media Type	Summa
Sample Media Size	1 L
Lab	F&B

VP-1-7

Sample Type	Regular Sample		
Location ID	VP-1-7		
Sample ID	VP-1-7		
Sample Location Description	Western most, shorter tubing		
Is Duplicate associated with this Sample ID	No		
Create a separate child record to enter all the associa	Create a separate child record to enter all the associated information related to Duplicate Sample		
Date	2021-10-07		
Sampling Depth (feet)	7		
Sample Media ID	3257		
Flow Controller ID	101		
Sample Collection Start Time	13:49		

Starting Sampling Pressure (inches of Mercury)	-30
Ending Sampling Pressure (inches of Mercury)	-5
Sample Collection End Time	13:54
Notes	None

Photos

Leak/Tracer Test

Shut in Test	Pass			
Pre-sample Helium Purge Reading (parts per million)	0			
Shroud Helium Concentration should be at least 40%	6 (10% in CA)			
Shroud Helium Concentration (%)	60			
Helium Reading in Purged Vapor should be <10% (<5	% in CA) of shroud concentration - 4% (2% in CA) for a 40% shroud concentration.			
Helium Reading in Purged Vapor (%)	0			
Helium Test	Pass			
Purge Method	Pump			
Purge volume = 3 x pi x inner radius of tubing2 xlength of tubing (length of tubing depends on length of sample train, and depth of sample point (for SVMPS, for vapor pins, it only depends on sample train length)				
Purge Volume (milliliters)	600			
Purge Rate (mL/min)	150			
Purge Induced Vacuum	Yes			
Vacuum Observations	Good vacuum			

Purged Soil Gas Parameters (completed after sample collection)

Which parameter are going to be analyzed	CH4 LEL (%), O2, PID, CO2
CH4 LEL (%) (use carbon filter)	0
CO2 (%)	10.6
O2 (%)	8
PID (parts per million)	0

VP-2-7

Sample Collection Information

Sample Type	Regular Sample
Location ID	VP-2-7
Sample ID	VP-2-7
Sample Location Description	Eastern, shorter tubing
Is Duplicate associated with this Sample ID	Yes
Duplicate Sample ID	DUP-1
Create a separate child record to enter all the asso	ociated information related to Duplicate Sample
Date	2021-10-07
Sampling Depth (feet)	7.5
Sample Media ID	8346
Flow Controller ID	108
Sample Collection Start Time	14:31
Starting Sampling Pressure (inches of Mercury)	-30
Ending Sampling Pressure (inches of Mercury)	-5
Sample Collection End Time	14:36
Notes	None

Photos

Leak/Tracer Test

Shut in Test	Pass
Pre-sample Helium Purge Reading (parts per million)	0
Shroud Helium Concentration should be at least	40% (10% in CA)
Shroud Helium Concentration (%)	60
Helium Reading in Purged Vapor should be <10%	(<5% in CA) of shroud concentration - 4% (2% in CA) for a 40% shroud concentration.
Helium Reading in Purged Vapor (%)	0
Helium Test	Pass
Purge Method	Pump

Purge volume = 3 x pi x inner radius of tubing2 xlength of tubing (length of tubing depends on length of sample train, and depth of sample point (for SVMPS, for vapor pins, it only depends on sample train length)

Purge Volume (milliliters)	600	
Purge Rate (mL/min)	150	
Purge Induced Vacuum	Yes	
Vacuum Observations	Good vacuum	

Purged Soil Gas Parameters (completed after sample collection)

Which parameter are going to be analyzed	CH4 LEL (%), O2, PID, CO2
CH4 LEL (%) (use carbon filter)	0
CO2 (%)	8.7
O2 (%)	10.1
PID (parts per million)	0

DUP-1

Sample Type	Duplicate Sample
Sample ID	DUP-1
Sample Location Description	VP-2-7
Create a separate child record to enter all the associ	ciated information related to Duplicate Sample
Date	2021-10-07
Sampling Depth (feet)	7.5
Sample Media ID	8255
Flow Controller ID	117
Is the Start and Stop Time same as its parent sample?	No
Sample Collection Start Time	14:31
Starting Sampling Pressure (inches of Mercury)	-30
Ending Sampling Pressure (inches of Mercury)	-5
Sample Collection End Time	14:37
Notes	None

If Leak/Tracer test same as its parent sample?

Yes

Leak/Tracer Test

Shroud Helium Concentration should be at least 40% (10% in CA)

Helium Reading in Purged Vapor should be <10% (<5% in CA) of shroud concentration - 4% (2% in CA) for a 40% shroud concentration.

Purge volume = 3 x pi x inner radius of tubing2 xlength of tubing (length of tubing depends on length of sample train, and depth of sample point (for SVMPS, for vapor pins, it only depends on sample train length)

EB-1

Sample Type	Equipment Blank
Sample ID	EB-1
Sample Location Description	Parking spot
Create a separate child record to enter all the associ	ated information related to Duplicate Sample
Date	2021-10-07
Sample Media ID	7998
Flow Controller ID	106
Sample Collection Start Time	15:27
Starting Sampling Pressure (inches of Mercury)	-29
Ending Sampling Pressure (inches of Mercury)	-5
Sample Collection End Time	15:31
Notes	None

Leak/Tracer Test

Shroud Helium Concentration should be at least 40% (10% in CA)

Helium Reading in Purged Vapor should be <10% (<5% in CA) of shroud concentration - 4% (2% in CA) for a 40% shroud concentration.

Purge volume = 3 x pi x inner radius of tubing2 xlength of tubing (length of tubing depends on length of sample train, and depth of sample point (for SVMPS, for vapor pins, it only depends on sample train length)

VP-1-5

Sample Type	Regular Sample
Location ID	VP-1-5
Sample ID	VP-1-5
Sample Location Description	Western most, longer tubing
Is Duplicate associated with this Sample ID	No
Create a separate child record to enter all the associa	ated information related to Duplicate Sample
Date	2021-10-07
Sampling Depth (feet)	5
Sample Media ID	8211
Flow Controller ID	102
Sample Collection Start Time	15:46
Starting Sampling Pressure (inches of Mercury)	-30
Ending Sampling Pressure (inches of Mercury)	-5
Sample Collection End Time	15:51
Notes	None

Leak/Tracer Test

Shut in Test	Pass
Pre-sample Helium Purge Reading (parts per million)	0
Shroud Helium Concentration should be at least	40% (10% in CA)
Shroud Helium Concentration (%)	60
Helium Reading in Purged Vapor should be <10%	6 (<5% in CA) of shroud concentration - 4% (2% in CA) for a 40% shroud concentration.
Helium Reading in Purged Vapor (%)	0
Helium Test	Pass
Purge Method	Pump
Purge volume = 3 x pi x inner radius of tubing2 xl point (for SVMPS, for vapor pins, it only depends	length of tubing (length of tubing depends on length of sample train, and depth of sample on sample train length)
Purge Volume (milliliters)	600
Purge Rate (mL/min)	150
Purge Induced Vacuum	Yes
Vacuum Observations	Good vacuum

Purged Soil Gas Parameters (completed after sample collection)

Which parameter are going to be analyzed	CH4 LEL (%), CO2, O2, PID
CH4 LEL (%) (use carbon filter)	0
CO2 (%)	10.6
O2 (%)	8.1
PID (parts per million)	0

2021-10-07, 15:55

Meteorological Data Date	2021-10-07
Time	15:55
Outdoor Temperature (Degree F)	60
Relative Humidity (%)	67

Barometric Pressure (inches of Mercury)	30
Are you connected to the internet via data plan or WiFi?	Yes
Get weather data from National Weather Service Website for your current location?	N/A
·	WS. The data in weather field is auto-populated based on your selection "are connected below format . Example below.: Temp is 23.6 degree F and Weather Condition is clear. The
Weather	13 wmoUnit:degC and Partly Cloudy. The wind is blowing undefined at 0 wmoUnit:km_h-1.
General Notes or Observations	VP-3 is not present. Likely paved over. Was not sampled. VP-1 and VP-2 are both

Appendix G

Waste Manifest

Site Address:

640 Metcalf Street

Sedro-Woolley, WA 98284

SC PPW 8/1/2021

WORK ORDER NO.

TRANSPORTE		ADA2	0222250		VEHICLE ID #			
EPA ID#			9322250	TRANS.				
TRANSPORTE			causquet	VEHICL	E ID #			
EPA ID #	w	AH O	एएए एड ६३४	TRANS.	2 PHONE			
DESIGNATED Clean Har	FACILITY	Mounta	ain LLC	SHIPPER Chevron EMC - 97502				
FACILITY EPA				SHIPPER EPA ID # NONEREQUIRED				
ADDRESS E		orth of	Knolls	ADDRESS Waste Tracking Desk P.C). BOX 6004			
CITY Grantsvill	e		STATE STORE	CITY San Ramon	STATE CA	71P 4583		
CONTAINERS NO. & SIZE		нм	DESCRIPTI	ON OF MATERIALS	TOTAL	UNIT WT/VOL		
3X55	DM	,	AMON DOT REGULATED MATE	ERIAL, (PETROLEUM IMPACTED	900	P		
4X55	DM		BNON DOT REGULATED MATE (NON HAZARDOUS)	ERIAL, (PETROLEUM IMPACTED SOI	2000	P		
			C.					
			D.					
			E.					
			F.					
			G.					
			Н.					
SPECIAL HAN A.CH1963712 B HI32 HI3	CH1963/3	TRUCT	IONS EMERGENCY PHONE	#: (800) 483-3718 GENERATO	DR: Chevron EMC - 9	7502		

	6022000	212
OI PRINTA I	SIGN C	DATE
SHIPPER () Alles huts	Slows on BEARE OF Coo	2 1-21-22
PRINT	SIGN/	DATE
TRANSPORTER 1/ hands has	4	1-11-2
PRINT 0 1/	SIGN X , COM	DATE
TRANSPORTER 2 JAMAN & GRANNE	100	72.67
PRINT	SIGN	DATE
RECEIVED BY Atty Soffed	(ithe total	290-22
	7	

STRAIGHT BILL OF LADING CONTINUATION FORM

DOCUMENT #	188036
Page Z of Z	
Transporter # 3	
Company Name	Clean Harbors Environmental Services
EPA ID#	MAD039322250
Name	Phil Kerbawy
Signature	
Date 2 /1 / 2022	
Transporter #	
Company Name	
EPA ID#	
Name	
Signature	
Date/	
Transporter #	
Company Name	
EPA ID#	
Name	
Signature	
Date/	
Transporter #	
Company Name	
Signature	
Date / /	

Clean Harbors Manifest Addendum

Page:1 of 1

Ger	erator ID Number:			Sales Order Number:
NO	NEREQUIRE	D BOL188036		2106745861
6	Chevron EMC - 9756 640 Metcalf Street			
	Sedro-Woolley, WAS #: Profile No:	Profile Description:		Waste Codes:
A.	CH1963712	RETAIL - IMPACTED PI HAZ) CH Container # C000000002 C000000003 C000000004	URGE/GROUNDWATER (I	
B.	CH1963734	RETAIL - IMPACTED S CH Container # C000000005 C000000006 C000000007 C000000008	OIL (NON HAZARDOUS) <u>Customer Container #</u>	

Appendix H

Soil Lab Data

Chevron - WA

DATA REVIEW

SEDRO-WOOLLEY, WA

Volatile organic compounds, Total Petroleum Hydrocarbons, and Metal Analyses

SDG# L1408057

Analyses Performed By: Pace Analytical National Mount Juliet, TN 37122

Report # 44126R Review Level: Tier II Project: 30064310.08.82

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Groups (SDG) # L1408057 for samples collected in association with the Chevron SEDRO-WOOLLEY, WA Site. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

			Sample		1	Analysis	;
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	ТРН	MET
SB-2-10.5-11.5_210922	L1408057-01	Soil	09/22/2021		Х	Χ	X
SB-2-15.5-16.5_210922	L1408057-02	Soil	09/22/2021		Х	Х	X
SB-2-18.0-19.0_210922	L1408057-03	Soil	09/22/2021		Х	Х	Х
SB-2-6.0-7.0_210922	L1408057-04	Soil	09/22/2021		Х	Х	Х
MW-21-11.5-12.5_210921	L1408057-05	Soil	09/21/2021		Х	Х	Х
MW-21-14.0-15.0_210921	L1408057-06	Soil	09/21/2021		Х	Х	Х
MW-21-9.0-10.0_210921	L1408057-07	Soil	09/21/2021		Х	Х	Х
MW-21-2.5-3.5_210920	L1408057-08	Soil	09/20/2021		Х	Х	Х
MW-21-19.0-20.0_210921	L1408057-09	Soil	09/21/2021		Х	Х	Х
MW-20-7.0-8.0_210922	L1408057-11	Soil	09/22/2021		Х	Х	Х
MW-15-6.5-7.5_210922	L1408057-12	Soil	09/22/2021		Х	Х	Х
MW-15-14.0-15.0_210921	L1408057-13	Soil	09/21/2021		Х	Х	Х
MW-15-19.0-20.0_210921	L1408057-14	Soil	09/21/2021		Х	Х	Х
MW-15-10.0-11.0_210921	L1408057-15	Soil	09/21/2021		Х	Х	Х
DUP-1-092221_210922	L1408057-16	Soil	09/22/2021	MW-20-15.0-16.0_210922	Х	Х	Х
MW-20-15.0-16.0_210922	L1408057-17	Soil	09/22/2021		Х	Х	Х

Notes:

VOC = volatile organic compounds.

TPH = total petroleum hydrocarbons.

MET = metals.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed		Reported		mance ptable	Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		Х		Х	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8.Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

Note:

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260D, NWTPHDX, and NWTPHGX). Validation was performed following the USEPA National Functional Guidelines NFG for Organic Superfund Methods Data Review, EPA-540-R-20-005 (November 2020), with reference to the historical (USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D	Soil	14 days from collection to analysis	Cool to <6 °C.

Note:

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the sample detection limit (SDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the SDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

Sample associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample ID	Surrogate	Recovery
MW-15-10.0-11.0_210921	(s)4-Bromofluorobenzene	> UL

Notes:

UL Upper I limit

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
- OL	Detect	J
< LL but > 10%	Non-detect	UJ

Control Limit	Sample Result	Qualification
	Detect	J
< 10%	Non-detect	R
1070	Detect	J
Surrogates diluted below the calibration curve due to the high	Non-detect	UJ ¹
concentration of a target compounds	Detect	J ¹

Note:

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was performed on sample MW-20-15.0-16.0_210922. MS/MSD analysis exhibited recoveries and RPDs within the laboratory established acceptance limits.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result (mg/kg)	Duplicate Result (mg/kg)	RPD
MW-20-15.0-16.0_210922 / DUP-1-092221_210922	All Compounds	U	U	AC

Notes:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260D		Reported		ormance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMET	TRY (GC/N	/IS)			
Tier II Validation					
Holding times		X		X	
Reporting limits (units)		Х		X	
Blanks					
A. Method blanks		X		X	
B. Equipment blanks	Х				Х
C. Trip blanks	X				Х
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate (LCSD)		Х		X	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS)		Х		Х	
Matrix Spike Duplicate (MSD)		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х	Х		
Dilution Factor		Х		Х	
Moisture Content		Х		X	

Notes:

%R Percent recovery

RPD Relative percent difference

TOTAL PETROLEUM HYDROCARBONS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
GRO by Method NWTPHGX	Soil	14 days from collection to analysis	Cool to <6 °C
DRO by Method NWTPHDX	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the sample detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The analysis requires surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was performed on sample SB-2-15.5-16.5_210922 and MW-21-19.0-20.0_210921 for Gasoline Range Organics. MS/MSD analysis exhibited recoveries and RPDs within the laboratory established acceptance limits.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
SB-2-15.5-16.5_210922	Diesel Range Organics (DRO)	< LL but > 10%	< LL but > 10%%

Note:

AC = Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification		
	Non-detect	No Action		
> the upper control limit (UL)	Detect	J		
< the lower control limit (LL) but > 10%	Non-detect	UJ		
< the lower control limit (LL) but > 10%	Detect	J		
	Non-detect	R		
< 10%	Detect Non-detect Detect Detect	J		
Parent sample concentration > four times the MS/MSD spiking	Detect			
solution concentration (D).	Non-detect	No Action		

The MS/MSD analysis exhibited acceptable RPDs between the MS/MSD recoveries.

Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result (mg/kg)	Duplicate Result (mg/kg)	RPD
MW-20-15.0-16.0_210922 /	Gasoline Range Organics (GRO)	U	U	AC
DUP-1-092221_210922	Diesel Range Organics (DRO)	10.5	9.60	AC
	Residual Range Organics (RRO)	28.1	36.4	AC

Notes:

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. System Performance and Overall Assessment

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Sample ID	Compound	Original Analysis (mg/kg)	Diluted Analysis (mg/kg)	Reported Analysis
MW-15-10.0- 11.0_210921	Diesel Range Organics (DRO)		604	604D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR TPH

TPH: NWTPHGX and NWTPHDX	Rep	orted		mance otable	Not Required	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY (GC/FID)						
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks	Х				Х	
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate(LCSD) %R	Х				Х	
LCS/LCSD Precision (RPD)	Х				Х	
Matrix Spike (MS) %R		Х	Х			
Matrix Spike Duplicate (MSD) %R		Х	Х			
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (RPD)		Х		Х		
Surrogate Spike Recoveries		Х		Х		
Dilution Factor		Х		Х		

Notes:

%R - percent recovery

RPD - relative percent difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010D. Data were reviewed in accordance USEPA National Functional Guidelines NFG for Inorganic Superfund Methods Data Review, EPA-540-R-20-006 (November 2020), with reference to the historical (USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, OSWER 9240.1-05A-P, October 2004, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

Concentration (C) Qualifiers

- U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
- J The reported value was obtained from a reading less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL).

Quantitation (Q) Qualifiers

- E The reported value is estimated due to the presence of interference.
- N Spiked sample recovery is not within control limits.
- * Duplicate analysis is not within control limits.

Validation Qualifiers

- J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The analyte was not detected above the reporting limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
- UB Analyte considered non-detect at the listed value due to associated blank contamination.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010D	Soil	180 days from collection to analysis	Cool to <6 °C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the sample detection limit (SDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All analytes were not detected above the SDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

3.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

MS/MSD analysis was performed on sample MW-15-10.0-11.0_210921.MS/MSD analysis exhibited recoveries and RPDs within control limits.

3.2 Laboratory Duplicate Analysis

The laboratory duplicates relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for soil matrices.

Laboratory duplicate analysis was not performed on any of the samples from these SDG.

4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analytes	Sample Result (mg/kg)	Duplicate Result (mg/kg)	RPD
MW-20-15.0-16.0_210922 / DUP-1-092221_210922	Lead	2.85	3.89	AC

Notes:

AC - Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METAL

METALS; SW-846 6010D	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Mass Spectrometry (ICP-N	/IS)				
Tier II Validation					
Holding Times		X		X	
Reporting limits (units)		X		X	
Blanks					
A. Instrument Blanks	Х				X
B. Method Blanks		X		X	
C. Equipment/Field Blanks	Х				X
Laboratory Control Sample (LCS)		X		X	
Laboratory Control Sample Duplicate (LCSD) %R	Х				X
LCS/LCSD Precision (RPD)	Х				X
Matrix Spike (MS) %R		Х		X	
Matrix Spike Duplicate (MSD) %R		X		X	
MS/MSD Precision (RPD)		Х		X	
Lab Duplicate (RPD)	Х				Х
Field Duplicate (RPD)		Х		Х	
ICP Serial Dilution %D	Х				Х
Reporting Limit Verification		X		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Bhagyashree Fulzele

SIGNATURE: Brutzele

DATE: January 11, 2022

PEER REVIEW: Dennis Capria

DATE: January 17, 2022

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

ompany Name/Address:			Billing Info	rmation:					A	nalvsis /	Contai	ner / Pr	eservati	ve		Chain of Custody	Page of				
Arcadis - Chevron - WA 100 Olive Way Suite 800 Seattle. WA 98101		630 Plaz	ttn: Accounts Payable 80 Plaza Dr., Ste. 600 ghlands Ranch, CO 80129								L		es-WT	1000	- Pac	e Analytica					
Report to:				laws@arcadis.co	0ml		/s/			C-B		res	33	12065 Lebanon Rd Mou Submitting a sample via	this chain of custody						
				alexander.laws@arcadis.com;Ada.Hamilton@ar edro-wodlay, WA Please Circle: PT MT CT ET					H10ml		HCI .	40mlAmb-HCI-BT		PoN-di	E-HNC	constitutes acknowledg Pace Terms and Conditi https://info.pacelabs.co terms.pdf	ons found at:				
Phone: 206-325-5254	Client Pro 300643	oject # 10 07.21-Pla	in .	Lab Project # CHEVARCW	A-97502		40mlAmb/MeOH10ml/Syr	8ozClr-NoPres	/MeO	es	nlAmb	40ml/	nb HC	40mlAmb-NoPr	250mIHDPE-HNO3	C01	3				
Collected by (print): M. Andrew?	Site/Facil		DRO-	P.O.#				SGT 8	40mlAmb/MeOH10ml/Syr	r-NoPr	ozCir-Nopres 8260D 40mIAmb-HC	NOSGT	40mlA		6010 250	Acctnum: CHE					
Collected by (signature)	Sa Ne Tw	Same Day Five Day Next Day 5 Day (Rad Only)		Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only)		Quote #	Quote # Date Results Needed No.				soil BTEXM 8260D	Soil NWTPHDX NOSGT	NWTPHGX 40	soil Pb 6010 8ozClr-NoPres	BTEXM	water NWTPHDX	water NWTPHGX 40mlamb HCl	PAHS 8270ESIM	Total Pb	Prelogin: P87 PM: 110 - Brian PB: MM	1785 Ford
Sample ID	Comp/G	rab Matrix	Depth	Date	Time	Cntrs	soil B	N lios	N lios	soil PI	water	water	water	water	water	Shipped Via:	Sample # (lab				
5B-2-10.5-11.5	Grat	ss	-	9/22/21	69:65	12	X	X	X	X		Ser a		177			-01				
68-2-15.5-16.5		SS	-	9/22/21	09:09	2		1	1	1							-02				
48-2-18.0-19.0		SS		9/22/21	09:14	2											-03				
SB-2-6,0-7,0		SS	-	9/22/21	09:03	3 2											-d				
MW-14-11.5-12.5		SS		9/20/21	16:20	12											-00				
MW-14-14.0 -15.0		SS	-	09/21/2	14:25	, 2										All the state of t	-a				
MW-14-9.0-10.0		SS	-	09/21/2	1 1615	2				1							-0				
MW-14-2.5-3.5	6	SS	-	09/20/2	1 1436	2	4	V	4	A							-09				
MW-14-19.0-20.0	1	SS	1 -	09/21/2	1 1430	2	X	X	X	X		- 3					-0				
Trip Blank		-55-				12										1 Sec. 15	1-10				
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water Sar	narks:	7	er		ing# (, ,	17	33	13	pH Flow	28	_ Temp			COC Seal COC Signa Bottles Correct Sufficie	mple Receipt Ch. Present/Intact: ed/Accurate: arrive intact: bottles used: nt volume sent: If Applicabl Headspace:	NP Y				
Relinquished by : (Signature)		Date:	Time	e: Recei	ived by: (Signa	ture)		16, 26.		Trip Blan	k Recei	1 (HCL/ME TBR		Preserva RAD Scre	tion Correct/Che en <0.5 mR/hr:	Zy				
Relinquished by: (Signature)		Date:	Tim	e: Recei	ived by: (Signa	ture)		7(Fair		Temppl.	1=2.	C Bott	des Recei	ved:	If preserva	tion required by Log	in: Date/Tim				
Relinquished by : (Signature)		Date:	Tim	e: Recei	ived for lab by:	(Signat	ure)	114172		Date:	1	Tim	e:	1	Hold:		Condition				

Company Name/Address:	a A		Billing Info	rmation	:-					A	nalvsis /	Contai	ner / Pre	servativ	ve		Chain of Custody	Page 2 of 2										
L100 Olive Way Suite 800 Seattle. WA 98101 Report to: Ada Hamilton/Alex Laws		Arcadis - Chevron - WA 1100 Olive Way Suite 800 Seattle, WA 98101			630 Plaza Dr., S			Attn: Accounts Payable 630 Plaza Dr., Ste. 600 Highlands Ranch, CO 80129				, Ste. 600		Dr., Ste. 600		530 Plaza Dr., Ste. 600		/Syr					points de second		-WT			e Analytical [®]
		Email To: alexander	mail To: lexander.laws@arcadis.com;Ada.Hamilto				110ml	sa	ml/Sy			40mlAmb-HCl-BT		40mlAmb-NoPres-WT	NO3	Pace Terms and Condit	a this chain of custody gment and acceptance of the lons found at:											
roject Description: 7502			Sedio -			Please Ci	rcle: T ET	MeO	NoPri	DH10		b-HCl	lAmb	0	N-qu	РЕ-Н	https://info.pacelabs.c terms.pdf	om/hubfs/pas-standard-										
hone: 206-325-5254	300643	oject # 810 07.21-Pla	in d	100	roject # VARCWA	-97502		/qm	8ozClr-NoPres	/Med	sə.	nIAm	40m	mb He	Omlar	250mIHDPE-HNO3	SDG#	108057										
oilected by (print): M. Audvews	Site/Facil	lity ID #	DRO-	P.O.#			11	40ml4mb/MeOH10ml/Sy	NOSGT 80	40mlAmb/MeOH10ml/Syr	NoPr	8260D 40mIAmb-HCI	JOSET	10mlA		10 250	Acctnum: CHI	VARCWA										
ollected by (signature): nmediately acked on Ice N Y	Rush? (Lab MUST Be N Same Day Five Da Next Day 5 Day (i		Lab MUST Be Notified) ay Five Day by 5 Day (Rad Only) y 10 Day (Rad Only) Date R		P? (Lab MUST Be Notified) The Day Five Day At Day S Day (Rad Only) To Day (Rad Only) To Day (Rad Only)		tified) Quote #		No. of	soil BTEXM 8260D	Soil NWTPHDX NO	soil NWTPHGX 40n	soil Pb 6010 8ozClr-NoPres	r BTEXM 8260	water NWTPHDX NOSG	water NWTPHGX 40mlAmb HCI	r PAHS 8270ESIM	r Total Pb 6010	Prelogin: P87 PM: 110 - Bria PB: M Shipped Via:	1785 n Ford								
Sample ID	Comp/G	rab Matrix * Depth Date Time		Depth Date Time		Date Time		e Cntrs III OS		soil N	soil P	wate	wate		water	water	Remarks	Sample # (lab only)										
MW-20-7.0-8.0	Gra	lo SS	-	91	22/21	10:21	2	×	×	×	X						te de servicio de la compansión de la comp La compansión de la compa	-11										
MW-15-6.5-7.5	- 1	SS		91	22/21	11:50	2			1								-12										
MW-15-14.0-15.0		SS	1-	9/	21/21	12:10	2											-13										
MW-15-19.0-20.0		SS		9/	21/21	12:16	12									1		1-19										
MW-15-10.0-11.0		SS		91	21/21	12:0t	2								age 14th		20.4	1-15										
DUP-1-092221		_ ss		9/	22/21		2						1-7-					-16										
MW - 20-15.0-16.0	٧	SS	-	9/	22/21	10:29	12	*	1	4	A							-11										
		SS			- American	17.1										in an												
		SS							4							A.												
		SS													1		Zilde -											
Matrix: Rei S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater	marks:										pH Flow		Tem Othe			COC Seal COC Signe Bottles a	mple Receipt Cl Present/Intact ed/Accurate: arrive intact: bottles used:											
W - Drinking Water T - Other UPS FedEx Courier		er	Tracking #										\		VOA Zero	Sufficient volume sent:NNNNNNNNNNNNNNNNNNNNNNNN												
elinquished by : (Signature)		Date:	71 15	1200	Receive	ed by: (Signat	ture)				Trip Blar	k Recei	(HCL /M			cion Correct/Ch en <0.5 mR/hr:	ecked: _Y _N _X _N										
elinguished by : (Signature)		Date:		Time: Received by: (Signature)					Temppo 2.4_	4 Gel.	C Both	Secential Received	ived:	If preserva	tion required by Lo	gin: Date/Time												
Relinquished by : (Signature)		Date:	Tim	ė:	Receiv	ed for lab by:	(Signat	ure)	1		Date	3/2	Tim	ne: 9:4	(Hold:		Condition: NCF / OK										

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	76.9		1	09/29/2021 08:39	WG1747741

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.520	J	0.271	0.650	1	09/30/2021 02:34	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	45.6		1.40	4.13	25	09/29/2021 21:09	WG1748296
(S) a,a,a-Trifluorotoluene(FID)	83.1			77.0-120		09/29/2021 21:09	WG1748296

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000771	0.00165	1	09/26/2021 01:32	WG1746485
Toluene	0.00248	<u>J</u>	0.00215	0.00826	1	09/26/2021 01:32	WG1746485
Ethylbenzene	0.0136		0.00122	0.00413	1	09/26/2021 01:32	WG1746485
Total Xylenes	0.00182	<u>J</u>	0.00145	0.0107	1	09/26/2021 01:32	WG1746485
Methyl tert-butyl ether	U		0.000578	0.00165	1	09/26/2021 01:32	WG1746485
(S) Toluene-d8	112			75.0-131		09/26/2021 01:32	WG1746485
(S) 4-Bromofluorobenzene	98.3			67.0-138		09/26/2021 01:32	WG1746485
(S) 1,2-Dichloroethane-d4	118			70.0-130		09/26/2021 01:32	WG1746485

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	3.46	<u>J</u>	1.73	5.20	1	10/01/2021 12:35	WG1749435
Residual Range Organics (RRO)	U		4.33	13.0	1	10/01/2021 12:35	WG1749435
(S) o-Terphenyl	48.5			18.0-148		10/01/2021 12:35	WG1749435

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	76.9		1	09/29/2021 08:39	WG1747741

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	3.49		0.271	0.650	1	09/30/2021 02:37	WG1748287

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	3.94	J	1.39	4.09	25	09/30/2021 00:17	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	89.2			77.0-120		09/30/2021 00:17	WG1748298

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

ACCOUNT:

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00185		0.000764	0.00164	1	09/26/2021 01:51	WG1746485
Toluene	0.00465	J	0.00213	0.00818	1	09/26/2021 01:51	WG1746485
Ethylbenzene	0.00433		0.00121	0.00409	1	09/26/2021 01:51	WG1746485
Total Xylenes	0.0175		0.00144	0.0106	1	09/26/2021 01:51	WG1746485
Methyl tert-butyl ether	U		0.000573	0.00164	1	09/26/2021 01:51	WG1746485
(S) Toluene-d8	110			75.0-131		09/26/2021 01:51	WG1746485
(S) 4-Bromofluorobenzene	99.1			67.0-138		09/26/2021 01:51	WG1746485
(S) 1,2-Dichloroethane-d4	117			70.0-130		09/26/2021 01:51	WG1746485

Sc

PAGE:

9 of 40

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/ <u>kg</u>		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	⊎ UJ	J6	1.73	5.20	1	10/01/2021 12:47	WG1749435
Residual Range Organics (RRO)	U		4.33	13.0	1	10/01/2021 12:47	WG1749435
(S) o-Terphenvl	26.5			18.0-148		10/01/2021 12:47	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	68.6		1	09/29/2021 08:39	WG1747741

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	6.69		0.303	0.729	1	09/30/2021 02:39	WG1748287

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	4.68	J	1.70	5.00	25	09/30/2021 00:39	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	95.1			77.0-120		09/30/2021 00:39	WG1748298

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00502		0.000934	0.00200	1	09/26/2021 02:10	WG1746485
Toluene	0.00298	<u>J</u>	0.00260	0.0100	1	09/26/2021 02:10	WG1746485
Ethylbenzene	0.0238		0.00147	0.00500	1	09/26/2021 02:10	WG1746485
Total Xylenes	0.0554		0.00176	0.0130	1	09/26/2021 02:10	WG1746485
Methyl tert-butyl ether	U		0.000700	0.00200	1	09/26/2021 02:10	WG1746485
(S) Toluene-d8	109			75.0-131		09/26/2021 02:10	WG1746485
(S) 4-Bromofluorobenzene	97.2			67.0-138		09/26/2021 02:10	WG1746485
(S) 1.2-Dichloroethane-d4	114			70.0-130		09/26/2021 02:10	WG1746485

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.94	5.83	1	10/01/2021 11:00	WG1749435
Residual Range Organics (RRO)	U		4.86	14.6	1	10/01/2021 11:00	WG1749435
(S) o-Terphenyl	28.8			18.0-148		10/01/2021 11:00	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	75.0		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	3.56		0.277	0.666	1	09/30/2021 02:47	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.46	4.31	25	09/30/2021 01:15	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	91.8			77.0-120		09/30/2021 01:15	WG1748298

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000806	0.00173	1	09/26/2021 02:29	WG1746485
Toluene	U		0.00224	0.00863	1	09/26/2021 02:29	WG1746485
Ethylbenzene	U		0.00127	0.00431	1	09/26/2021 02:29	WG1746485
Total Xylenes	U		0.00152	0.0112	1	09/26/2021 02:29	WG1746485
Methyl tert-butyl ether	U		0.000604	0.00173	1	09/26/2021 02:29	WG1746485
(S) Toluene-d8	109			75.0-131		09/26/2021 02:29	WG1746485
(S) 4-Bromofluorobenzene	97.8			67.0-138		09/26/2021 02:29	WG1746485
(S) 1,2-Dichloroethane-d4	115			70.0-130		09/26/2021 02:29	WG1746485

Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.77	5.33	1	10/01/2021 11:14	WG1749435
Residual Range Organics (RRO)	U		4.44	13.3	1	10/01/2021 11:14	WG1749435
(S) o-Terphenyl	45.2			18.0-148		10/01/2021 11:14	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	85.9		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	4.02		0.242	0.582	1	09/30/2021 02:50	WG1748287

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	65.8		1.15	3.39	25	09/30/2021 01:37	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	92.4			77.0-120		09/30/2021 01:37	WG1748298

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000632	0.00135	1	09/26/2021 02:48	WG1746485
Toluene	0.00306	J	0.00176	0.00677	1	09/26/2021 02:48	WG1746485
Ethylbenzene	0.00349		0.000998	0.00339	1	09/26/2021 02:48	WG1746485
Total Xylenes	0.0105		0.00119	0.00880	1	09/26/2021 02:48	WG1746485
Methyl tert-butyl ether	U		0.000474	0.00135	1	09/26/2021 02:48	WG1746485
(S) Toluene-d8	113			75.0-131		09/26/2021 02:48	WG1746485
(S) 4-Bromofluorobenzene	127			67.0-138		09/26/2021 02:48	WG1746485
(S) 1,2-Dichloroethane-d4	114			70.0-130		09/26/2021 02:48	WG1746485

Sc

Gl

		· · · · ·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	78.8		1.55	4.66	1	10/01/2021 13:28	WG1749435
Residual Range Organics (RRO)	5.68	J	3.88	11.6	1	10/01/2021 13:28	WG1749435
(S) o-Terphenyl	59.2			18.0-148		10/01/2021 13:28	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	76.7		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.472	J	0.271	0.652	1	09/30/2021 02:52	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	2.19	J	1.37	4.05	25	09/30/2021 01:59	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	92.8			77.0-120		09/30/2021 01:59	WG1748298

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000756	0.00162	1	09/26/2021 03:07	WG1746485
oluene	U		0.00211	0.00810	1	09/26/2021 03:07	WG1746485
thylbenzene	U		0.00119	0.00405	1	09/26/2021 03:07	WG1746485
otal Xylenes	0.00311	<u>J</u>	0.00142	0.0105	1	09/26/2021 03:07	WG1746485
thyl tert-butyl ether	U		0.000567	0.00162	1	09/26/2021 03:07	WG1746485
S) Toluene-d8	111			75.0-131		09/26/2021 03:07	WG1746485
(S) 4-Bromofluorobenzene	98.1			67.0-138		09/26/2021 03:07	WG1746485
(S) 1.2-Dichloroethane-d4	116			70 0-130		09/26/2021 03:07	WG1746485

Gl

Sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.73	5.22	1	10/01/2021 11:27	WG1749435
Residual Range Organics (RRO)	U		4.34	13.0	1	10/01/2021 11:27	WG1749435
(S) o-Terphenyl	46.2			18.0-148		10/01/2021 11:27	WG1749435

Arcadis - Chevron - WA

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	87.7		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	11.5		0.237	0.570	1	09/30/2021 02:55	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	18.3		1.13	3.32	25	09/30/2021 02:21	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	95.2			77.0-120		09/30/2021 02:21	WG1748298

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00210		0.000620	0.00133	1	09/25/2021 14:29	WG1746532
Toluene	0.00557	J	0.00172	0.00663	1	09/25/2021 14:29	WG1746532
Ethylbenzene	0.00257	<u>J</u>	0.000978	0.00332	1	09/25/2021 14:29	WG1746532
Total Xylenes	0.0226		0.00117	0.00862	1	09/25/2021 14:29	WG1746532
Methyl tert-butyl ether	U		0.000464	0.00133	1	09/25/2021 14:29	WG1746532
(S) Toluene-d8	98.6			75.0-131		09/25/2021 14:29	WG1746532
(S) 4-Bromofluorobenzene	108			67.0-138		09/25/2021 14:29	WG1746532
(S) 1,2-Dichloroethane-d4	97.7			70.0-130		09/25/2021 14:29	WG1746532

sc sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	119		1.52	4.56	1	10/01/2021 14:09	WG1749435
Residual Range Organics (RRO)	24.5		3.80	11.4	1	10/01/2021 14:09	WG1749435
(S) o-Terphenyl	45.5			18.0-148		10/01/2021 14:09	WG1749435

Arcadis - Chevron - WA

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.5		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	8.99		0.232	0.559	1	09/30/2021 02:58	WG1748287

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	64.4		1.07	3.16	25	09/30/2021 02:43	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	94.9			77.0-120		09/30/2021 02:43	WG1748298

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.0254		0.000590	0.00126	1	09/25/2021 14:50	WG1746532
oluene	0.0298		0.00164	0.00632	1	09/25/2021 14:50	WG1746532
hylbenzene	0.0108		0.000931	0.00316	1	09/25/2021 14:50	WG1746532
tal Xylenes	0.0585		0.00111	0.00821	1	09/25/2021 14:50	WG1746532
thyl tert-butyl ether	U		0.000442	0.00126	1	09/25/2021 14:50	WG1746532
S) Toluene-d8	98.4			75.0-131		09/25/2021 14:50	WG1746532
(S) 4-Bromofluorobenzene	119			67.0-138		09/25/2021 14:50	WG1746532
(S) 1 2-Dichloroethane-d4	97 5			70 0-130		09/25/2021 14:50	WG1746532

Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	208		1.49	4.47	1	10/01/2021 14:22	WG1749435
Residual Range Organics (RRO)	38.9		3.72	11.2	1	10/01/2021 14:22	WG1749435
(S) o-Terphenyl	41.5			18.0-148		10/01/2021 14:22	WG1749435

Collected date/time: 09/21/21 14:30

SAMPLE RESULTS - 09

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	74.5		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	<u>Qualifier</u>	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.490	J	0.279	0.671	1	09/30/2021 03:00	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.48	4.36	25	09/30/2021 21:27	WG1748303
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		09/30/2021 21:27	WG1748303

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000814	0.00174	1	09/25/2021 15:10	WG1746532
Toluene	U		0.00227	0.00872	1	09/25/2021 15:10	WG1746532
Ethylbenzene	U		0.00128	0.00436	1	09/25/2021 15:10	WG1746532
Total Xylenes	0.00188	J	0.00153	0.0113	1	09/25/2021 15:10	WG1746532
Methyl tert-butyl ether	U		0.000610	0.00174	1	09/25/2021 15:10	WG1746532
(S) Toluene-d8	98.8			75.0-131		09/25/2021 15:10	WG1746532
(S) 4-Bromofluorobenzene	100			67.0-138		09/25/2021 15:10	WG1746532
(S) 1,2-Dichloroethane-d4	90.6			70.0-130		09/25/2021 15:10	WG1746532

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	3.15	<u>J</u>	1.78	5.37	1	10/01/2021 13:41	WG1749435
Residual Range Organics (RRO)	9.27	J	4.47	13.4	1	10/01/2021 13:41	WG1749435
(S) o-Terphenyl	41.9			18.0-148		10/01/2021 13:41	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	77.3		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	10.7		0.269	0.647	1	09/30/2021 03:03	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.42	4.18	25	09/30/2021 21:48	WG1748303
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		09/30/2021 21:48	WG1748303

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000780	0.00167	1	09/25/2021 15:30	WG1746532
oluene	U		0.00217	0.00835	1	09/25/2021 15:30	WG1746532
Ethylbenzene	U		0.00123	0.00418	1	09/25/2021 15:30	WG1746532
otal Xylenes	U		0.00147	0.0109	1	09/25/2021 15:30	WG1746532
ethyl tert-butyl ether	U		0.000585	0.00167	1	09/25/2021 15:30	WG1746532
(S) Toluene-d8	103			75.0-131		09/25/2021 15:30	WG1746532
(S) 4-Bromofluorobenzene	103			67.0-138		09/25/2021 15:30	WG1746532
(S) 1 2-Dichloroethane-d4	95 1			70 0-130		09/25/2021 15:30	WG1746532

Gl

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	2.17	<u>J</u>	1.72	5.18	1	10/01/2021 13:55	WG1749435
Residual Range Organics (RRO)	8.67	<u>J</u>	4.31	12.9	1	10/01/2021 13:55	WG1749435
(S) o-Terphenyl	38.2			18.0-148		10/01/2021 13:55	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	72.8		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	4.80		0.286	0.687	1	09/30/2021 03:05	WG1748287

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.55	4.56	25	09/30/2021 22:10	WG1748303
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		09/30/2021 22:10	WG1748303

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000852	0.00182	1	09/25/2021 15:51	WG1746532
oluene	U		0.00237	0.00912	1	09/25/2021 15:51	WG1746532
thylbenzene	U		0.00134	0.00456	1	09/25/2021 15:51	WG1746532
tal Xylenes	U		0.00161	0.0119	1	09/25/2021 15:51	WG1746532
thyl tert-butyl ether	U		0.000638	0.00182	1	09/25/2021 15:51	WG1746532
S) Toluene-d8	97.7			75.0-131		09/25/2021 15:51	WG1746532
(S) 4-Bromofluorobenzene	101			67.0-138		09/25/2021 15:51	WG1746532
S) 1 2-Dichloroethane-d4	96 1			70 0-130		09/25/2021 15:51	WG1746532

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.83	5.49	1	10/01/2021 11:41	WG1749435
Residual Range Organics (RRO)	U		4.57	13.7	1	10/01/2021 11:41	WG1749435
(S) o-Terphenyl	40.1			18.0-148		10/01/2021 11:41	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	75.9		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.514	J	0.274	0.659	1	09/30/2021 03:08	WG1748287

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	1.73	J	1.41	4.15	25	09/30/2021 22:31	WG1748303
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		09/30/2021 22:31	WG1748303

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00108	J	0.000775	0.00166	1	09/25/2021 16:11	WG1746532
oluene	U		0.00216	0.00830	1	09/25/2021 16:11	WG1746532
thylbenzene	U		0.00122	0.00415	1	09/25/2021 16:11	WG1746532
otal Xylenes	0.00242	<u>J</u>	0.00146	0.0108	1	09/25/2021 16:11	WG1746532
ethyl tert-butyl ether	U		0.000581	0.00166	1	09/25/2021 16:11	WG1746532
(S) Toluene-d8	97.6			75.0-131		09/25/2021 16:11	WG1746532
(S) 4-Bromofluorobenzene	102			67.0-138		09/25/2021 16:11	WG1746532
(S) 1.2-Dichloroethane-d4	93.4			70 0-130		09/25/2021 16:11	WG1746532

Gl

[®]Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.75	5.27	1	10/01/2021 11:54	WG1749435
Residual Range Organics (RRO)	U		4.39	13.2	1	10/01/2021 11:54	WG1749435
(S) o-Terphenyl	43.2			18.0-148		10/01/2021 11:54	WG1749435

Collected date/time: 09/21/21 12:15

SAMPLE RESULTS - 14

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	71.3		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	4.32		0.292	0.701	1	09/30/2021 03:10	WG1748287

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	2.06	J	1.62	4.77	25	09/30/2021 23:55	WG1748303
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		09/30/2021 23:55	WG1748303

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.0195		0.000891	0.00191	1	09/25/2021 16:32	WG1746532
Toluene	0.00339	J	0.00248	0.00954	1	09/25/2021 16:32	WG1746532
Ethylbenzene	0.0119		0.00141	0.00477	1	09/25/2021 16:32	WG1746532
Total Xylenes	0.0149		0.00168	0.0124	1	09/25/2021 16:32	WG1746532
Methyl tert-butyl ether	U		0.000667	0.00191	1	09/25/2021 16:32	WG1746532
(S) Toluene-d8	95.2			75.0-131		09/25/2021 16:32	WG1746532
(S) 4-Bromofluorobenzene	99.3			67.0-138		09/25/2021 16:32	WG1746532
(S) 1,2-Dichloroethane-d4	93.6			70.0-130		09/25/2021 16:32	WG1746532

Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	2.23	<u>J</u>	1.86	5.61	1	10/01/2021 12:22	WG1749435
Residual Range Organics (RRO)	7.60	<u>J</u>	4.67	14.0	1	10/01/2021 12:22	WG1749435
(S) o-Terphenyl	43.1			18.0-148		10/01/2021 12:22	WG1749435

L1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	77.3		1	09/29/2021 08:20	WG1747743

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	U		0.269	0.646	1	09/30/2021 02:22	WG1748287

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	467		13.7	40.3	250	10/02/2021 04:19	WG1750220
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		10/02/2021 04:19	WG1750220

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000752	0.00161	1	09/25/2021 16:53	WG1746532
Toluene	0.00379	J	0.00209	0.00805	1	09/25/2021 16:53	WG1746532
Ethylbenzene	U		0.00119	0.00403	1	09/25/2021 16:53	WG1746532
Total Xylenes	U		0.00142	0.0105	1	09/25/2021 16:53	WG1746532
Methyl tert-butyl ether	U		0.000564	0.00161	1	09/25/2021 16:53	WG1746532
(S) Toluene-d8	87.4			75.0-131		09/25/2021 16:53	WG1746532
(S) 4-Bromofluorobenzene	210	<u>J1</u>		67.0-138		09/25/2021 16:53	WG1746532
(S) 1,2-Dichloroethane-d4	92.7			70.0-130		09/25/2021 16:53	WG1746532

Sc

<u> </u>	l l	\ / /					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	604 D		3.44	10.3	2	10/01/2021 15:12	WG1749435
esidual Range Organics (RRO)	U		4.31	12.9	1	10/01/2021 12:08	WG1749435
(S) o-Terphenyl	78.7			18.0-148		10/01/2021 15:12	WG1749435
(S) o-Terphenyl	30.5			18.0-148		10/01/2021 12:08	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	80.1		1	09/29/2021 08:20	WG1747743

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	3.89		0.260	0.624	1	09/30/2021 03:18	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.31	3.86	25	10/02/2021 03:21	WG1750220
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/02/2021 03:21	WG1750220

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000721	0.00154	1	09/25/2021 17:13	WG1746532
Toluene	U		0.00201	0.00772	1	09/25/2021 17:13	WG1746532
Ethylbenzene	U		0.00114	0.00386	1	09/25/2021 17:13	WG1746532
Total Xylenes	U		0.00136	0.0100	1	09/25/2021 17:13	WG1746532
Methyl tert-butyl ether	U		0.000540	0.00154	1	09/25/2021 17:13	WG1746532
(S) Toluene-d8	98.4			75.0-131		09/25/2021 17:13	WG1746532
(S) 4-Bromofluorobenzene	105			67.0-138		09/25/2021 17:13	WG1746532
(S) 1.2-Dichloroethane-d4	93.9			70.0-130		09/25/2021 17:13	WG1746532

[®]Sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	9.60		1.66	4.99	1	10/01/2021 14:36	WG1749435
Residual Range Organics (RRO)	36.4		4.15	12.5	1	10/01/2021 14:36	WG1749435
(S) o-Terphenyl	45.0			18.0-148		10/01/2021 14:36	WG1749435

Arcadis - Chevron - WA

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	79.6		1	09/29/2021 08:20	WG1747743

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	2.85		0.261	0.628	1	09/30/2021 03:21	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.33	3.92	25	10/01/2021 01:49	WG1748303
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/01/2021 01:49	WG1748303

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	<u> </u>
Benzene	U		0.000732	0.00157	1	09/25/2021 17:34	WG1746532
oluene	U		0.00204	0.00784	1	09/25/2021 17:34	WG1746532
hylbenzene	U		0.00116	0.00392	1	09/25/2021 17:34	WG1746532
tal Xylenes	U		0.00138	0.0102	1	09/25/2021 17:34	WG1746532
thyl tert-butyl ether	U		0.000549	0.00157	1	09/25/2021 17:34	WG1746532
(S) Toluene-d8	98.9			75.0-131		09/25/2021 17:34	WG1746532
(S) 4-Bromofluorobenzene	102			67.0-138		09/25/2021 17:34	WG1746532
(S) 1 2-Dichloroethane-d4	96.2			70 0-130		09/25/2021 17:34	WG1746532

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	10.5		1.67	5.02	1	10/01/2021 14:50	WG1749435
Residual Range Organics (RRO)	28.1		4.18	12.6	1	10/01/2021 14:50	WG1749435
(S) o-Terphenyl	45.5			18.0-148		10/01/2021 14:50	WG1749435

Pace Analytical® ANALYTICAL REPORT

October 04, 2021

Arcadis - Chevron - WA

L1408057 Sample Delivery Group:

Samples Received: 09/23/2021

Project Number: 30064310 07.21-Plan

97502 Description:

640 METCALF ST SEDRO-WOOLLEY Site:

Report To: Ada Hamilton/Alex Laws

1100 Olive Way

Suite 800

Seattle, WA 98101

Entire Report Reviewed By:

Jordan N Zito

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
SB-2-10.5-11.5_210922 L1408057-01	8
SB-2-15.5-16.5_210922 L1408057-02	9
SB-2-18.0-19.0_210922 L1408057-03	10
SB-2-6.0-7.0_210922 L1408057-04	11
MW-21-11.5-12.5_210921 L1408057-05	12
MW-21-14.0-15.0_210921 L1408057-06	13
MW-21-9.0-10.0_210921 L1408057-07	14
MW-21-2.5-3.5_210920 L1408057-08	15
MW-21-19.0-20.0_210921 L1408057-09	16
MW-20-7.0-8.0_210922 L1408057-11	17
MW-15-6.5-7.5_210922 L1408057-12	18
MW-15-14.0-15.0_210921 L1408057-13	19
MW-15-19.0-20.0_210921 L1408057-14	20
MW-15-10.0-11.0_210921 L1408057-15	21
DUP-1-092221_210922 L1408057-16	22
MW-20-15.0-16.0_210922 L1408057-17	23
Qc: Quality Control Summary	24
Total Solids by Method 2540 G-2011	24
Metals (ICP) by Method 6010D	27
Volatile Organic Compounds (GC) by Method NWTPHGX	28
Volatile Organic Compounds (GC/MS) by Method 8260D	32
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	34
GI: Glossary of Terms	35
Al: Accreditations & Locations	36

37

PAGE:

2 of 40

Sc: Sample Chain of Custody

			Collected by	Collected date/time		
SB-2-10.5-11.5_210922 L1408057-01 Solid			M. Andrews	09/22/21 09:05	09/23/21 09:	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1747741	1	09/29/21 08:31	09/29/21 08:39	CMK	Mt. Juliet, T
letals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 02:34	CCE	Mt. Juliet, T
olatile Organic Compounds (GC) by Method NWTPHGX	WG1748296	25	09/24/21 22:51	09/29/21 21:09	MGF	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260D	WG1746485	1	09/24/21 22:51	09/26/21 01:32	JAH	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 12:35	JAS	Mt. Juliet, T
			Collected by	Collected date/time	Received da	nte/time
SB-2-15.5-16.5_210922 L1408057-02 Solid			M. Andrews	09/22/21 09:09	09/23/21 09:	:45
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1747741	1	09/29/21 08:31	09/29/21 08:39	CMK	Mt. Juliet, T
etals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 02:37	CCE	Mt. Juliet, Ti
platile Organic Compounds (GC) by Method NWTPHGX	WG1748298	25	09/24/21 22:51	09/30/21 00:17	MGF	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260D	WG1746485	1	09/24/21 22:51	09/26/21 01:51	JAH	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 12:47	JAS	Mt. Juliet, T
			Collected by	Collected date/time	Received da	nte/time
SB-2-18.0-19.0_210922 L1408057-03 Solid			M. Andrews	09/22/21 09:14	09/23/21 09:	:45
ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1747741	1	09/29/21 08:31	09/29/21 08:39	CMK	Mt. Juliet, T
etals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 02:39	CCE	Mt. Juliet, T
olatile Organic Compounds (GC) by Method NWTPHGX	WG1748298	25	09/24/21 22:51	09/30/21 00:39	MGF	Mt. Juliet, T
platile Organic Compounds (GC/MS) by Method 8260D	WG1746485	1	09/24/21 22:51	09/26/21 02:10	JAH	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 11:00	JAS	Mt. Juliet, T
			Collected by	Collected date/time	Received da	nte/time
SB-2-6.0-7.0_210922 L1408057-04 Solid			M. Andrews	09/22/21 09:03	09/23/21 09:	:45
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1747742	1	09/29/21 08:21	09/29/21 08:28	CMK	Mt. Juliet, T
etals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 02:47	CCE	Mt. Juliet, T
platile Organic Compounds (GC) by Method NWTPHGX	WG1748298	25	09/24/21 22:51	09/30/21 01:15	MGF	Mt. Juliet, T
platile Organic Compounds (GC/MS) by Method 8260D	WG1746485	1	09/24/21 22:51	09/26/21 02:29	JAH	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 11:14	JAS	Mt. Juliet, T
			Collected by	Collected date/time	Received da	ite/time
/IW-21-11.5-12.5_210921 L1408057-05 Solid			M. Andrews	09/21/21 16:20	09/23/21 09:	
ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1747742	1	09/29/21 08:21	09/29/21 08:28	CMK	Mt. Juliet, T
etals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 02:50	CCE	Mt. Juliet, T
olatile Organic Compounds (GC) by Method NWTPHGX	WG1748298	25	09/24/21 22:51	09/30/21 01:37	MGF	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260D	WG1746485	1	09/24/21 22:51	09/26/21 02:48	JAH	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 13:28	JAS	Mt. Juliet, T

MW-21-14.0-15.0_210921 L1408057-06 Solid			Collected by M. Andrews	Collected date/time 09/21/21 14:25	Received da 09/23/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1747742	1	09/29/21 08:21	09/29/21 08:28	CMK	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 02:52	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1748298	25	09/24/21 22:51	09/30/21 01:59	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1746485	1	09/24/21 22:51	09/26/21 03:07	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 11:27	JAS	Mt. Juliet, TN
MW 24 0 0 40 0 240024 144000E7 07 Calid			Collected by M. Andrews	Collected date/time 09/21/21 16:15	Received da 09/23/21 09:	
MW-21-9.0-10.0_210921 L1408057-07 Solid Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Wediou	Datcii	Dilution	date/time	date/time	Allalyst	Location
Total Solids by Method 2540 G-2011	WG1747742	1	09/29/21 08:21	09/29/21 08:28	CMK	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 02:55	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1748298	25	09/24/21 22:51	09/30/21 02:21	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1746532	1	09/24/21 22:51	09/25/21 14:29	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 14:09	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-21-2.5-3.5_210920 L1408057-08 Solid			M. Andrews	09/20/21 14:36	09/23/21 09:	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1747742	1	09/29/21 08:21	09/29/21 08:28	CMK	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 02:58	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1748298	25	09/24/21 22:51	09/30/21 02:43	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1746532	1	09/24/21 22:51	09/25/21 14:50	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 14:22	JAS	Mt. Juliet, TN
MW-21-19.0-20.0_210921 L1408057-09 Solid			Collected by M. Andrews	Collected date/time 09/21/21 14:30	Received da 09/23/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Solids by Mothad 2E/10 C 2011	WG1747742	1	date/time 09/29/21 08:21	date/time	CMK	Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Metals (ICP) by Method 6010D	WG1747742 WG1748287	1 1	09/29/21 08:21	09/29/21 08:28 09/30/21 03:00	CMK	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1748303	25	09/24/21 22:51	09/30/21 03:00	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1746532	1	09/24/21 22:51	09/25/21 15:10	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 13:41	JAS	Mt. Juliet, TN
TRIP BLANK_210922 L1408057-10 GW			Collected by M. Andrews	Collected date/time 09/22/21 00:00	Received da 09/23/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
MW-20-7.0-8.0_210922 L1408057-11 Solid			Collected by M. Andrews	Collected date/time 09/22/2110:21	Received da 09/23/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
		1	09/29/21 08:21	09/29/21 08:28	CMK	Mt. Juliet, TN
Total Solids by Method 2540 G-2011	WG1747742					· ·
•	WG1747742 WG1748287	1	09/29/21 13:45	09/30/21 03:03	CCE	Mt. Juliet, TN
Metals (ICP) by Method 6010D			09/29/21 13:45 09/24/21 22:51	09/30/21 03:03 09/30/21 21:48	CCE MGF	Mt. Juliet, TN Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Metals (ICP) by Method 6010D Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D	WG1748287	1				

¹Cp

MW-15-6.5-7.5_210922 L1408057-12 Solid			Collected by M. Andrews	Collected date/time 09/22/21 11:50	Received date 09/23/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
mediod	Baten	Bildtion	date/time	date/time	rindiyse	Location
Total Solids by Method 2540 G-2011	WG1747742	1	09/29/21 08:21	09/29/21 08:28	CMK	Mt. Juliet, Ti
Metals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 03:05	CCE	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1748303	25	09/24/21 22:51	09/30/21 22:10	MGF	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1746532	1	09/24/21 22:51	09/25/21 15:51	JHH	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 11:41	JAS	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
MW-15-14.0-15.0_210921 L1408057-13 Solid			M. Andrews	09/21/21 12:10	09/23/21 09:	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T-1-1 C-11-1- h. M-11 1 27 40 C 2044	WC47.477.40		date/time	date/time	CMI/	NAL LUCE TO
Total Solids by Method 2540 G-2011	WG1747742	1	09/29/21 08:21	09/29/21 08:28	CMK	Mt. Juliet, Th
Metals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 03:08	CCE	Mt. Juliet, Th
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1748303	25	09/24/21 22:51	09/30/21 22:31	MGF	Mt. Juliet, Tl
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1746532	1	09/24/21 22:51	09/25/21 16:11	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 11:54	JAS	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-15-19.0-20.0_210921 L1408057-14 Solid			M. Andrews	09/21/21 12:15	09/23/21 09:	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1747742	1	09/29/21 08:21	09/29/21 08:28	CMK	Mt. Juliet, T
Metals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 03:10	CCE	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1748303	25	09/24/21 22:51	09/30/21 23:55	MGF	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1746532	1	09/24/21 22:51	09/25/2116:32	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 12:22	JAS	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-15-10.0-11.0_210921 L1408057-15 Solid			M. Andrews	09/21/21 12:00	09/23/21 09:	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1747743	1	09/29/21 08:10	09/29/21 08:20	CMK	Mt. Juliet, T
Metals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 02:22	CCE	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1750220	250	09/24/21 22:51	10/02/21 04:19	DWR	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1746532	1	09/24/21 22:51	09/25/21 16:53	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 12:08	JAS	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	2	09/30/21 17:20	10/01/21 15:12	JAS	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
DUP-1-092221_210922 L1408057-16 Solid			M. Andrews	09/22/21 00:00	09/23/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis	Analyst	Location
		1	09/29/21 08:10	date/time 09/29/21 08:20	CMK	Mt. Juliet, T
Total Solids by Method 2540 G-2011	WG1747743					,
•				09/30/21 03:18	CCE	Mt. Juliet. Tl
Metals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 03:18 10/02/21 03:21	CCE DWR	
Total Solids by Method 2540 G-2011 Metals (ICP) by Method 6010D Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D				09/30/21 03:18 10/02/21 03:21 09/25/21 17:13	CCE DWR JHH	Mt. Juliet, Ti Mt. Juliet, Ti Mt. Juliet, Ti

Collected by

Collected date/time Received date/time

MW-20-15.0-16.0_210922 L1408057-17 Solid		M. Andrews	09/22/2110:25	09/23/21 09:	45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1747743	1	09/29/21 08:10	09/29/21 08:20	CMK	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1748287	1	09/29/21 13:45	09/30/21 03:21	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1748303	25	09/24/21 22:51	10/01/21 01:49	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1746532	1	09/24/21 22:51	09/25/21 17:34	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749435	1	09/30/21 17:20	10/01/21 14:50	JAS	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jordan N Zito Project Manager

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	76.9		1	09/29/2021 08:39	WG1747741

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.520	J	0.271	0.650	1	09/30/2021 02:34	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	45.6		1.40	4.13	25	09/29/2021 21:09	WG1748296
(S) a,a,a-Trifluorotoluene(FID)	83.1			77.0-120		09/29/2021 21:09	WG1748296

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000771	0.00165	1	09/26/2021 01:32	WG1746485
Toluene	0.00248	<u>J</u>	0.00215	0.00826	1	09/26/2021 01:32	WG1746485
Ethylbenzene	0.0136		0.00122	0.00413	1	09/26/2021 01:32	WG1746485
Total Xylenes	0.00182	<u>J</u>	0.00145	0.0107	1	09/26/2021 01:32	WG1746485
Methyl tert-butyl ether	U		0.000578	0.00165	1	09/26/2021 01:32	WG1746485
(S) Toluene-d8	112			75.0-131		09/26/2021 01:32	WG1746485
(S) 4-Bromofluorobenzene	98.3			67.0-138		09/26/2021 01:32	WG1746485
(S) 1,2-Dichloroethane-d4	118			70.0-130		09/26/2021 01:32	WG1746485

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	3.46	<u>J</u>	1.73	5.20	1	10/01/2021 12:35	WG1749435
Residual Range Organics (RRO)	U		4.33	13.0	1	10/01/2021 12:35	WG1749435
(S) o-Terphenyl	48.5			18.0-148		10/01/2021 12:35	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	76.9		1	09/29/2021 08:39	WG1747741

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	3.49		0.271	0.650	1	09/30/2021 02:37	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	3.94	J	1.39	4.09	25	09/30/2021 00:17	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	89.2			77.0-120		09/30/2021 00:17	WG1748298

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00185		0.000764	0.00164	1	09/26/2021 01:51	WG1746485
oluene	0.00465	<u>J</u>	0.00213	0.00818	1	09/26/2021 01:51	WG1746485
Ethylbenzene	0.00433		0.00121	0.00409	1	09/26/2021 01:51	WG1746485
otal Xylenes	0.0175		0.00144	0.0106	1	09/26/2021 01:51	WG1746485
ethyl tert-butyl ether	U		0.000573	0.00164	1	09/26/2021 01:51	WG1746485
(S) Toluene-d8	110			75.0-131		09/26/2021 01:51	WG1746485
(S) 4-Bromofluorobenzene	99.1			67.0-138		09/26/2021 01:51	WG1746485
(S) 1.2-Dichloroethane-d4	117			70 0-130		09/26/2021 01:51	WG1746485

Gl

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U	<u>J6</u>	1.73	5.20	1	10/01/2021 12:47	WG1749435
Residual Range Organics (RRO)	U		4.33	13.0	1	10/01/2021 12:47	WG1749435
(S) o-Terphenyl	26.5			18.0-148		10/01/2021 12:47	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	68.6		1	09/29/2021 08:39	WG1747741

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	6.69		0.303	0.729	1	09/30/2021 02:39	WG1748287

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	4.68	J	1.70	5.00	25	09/30/2021 00:39	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	95.1			77.0-120		09/30/2021 00:39	WG1748298

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00502		0.000934	0.00200	1	09/26/2021 02:10	WG1746485
Toluene	0.00298	<u>J</u>	0.00260	0.0100	1	09/26/2021 02:10	WG1746485
Ethylbenzene	0.0238		0.00147	0.00500	1	09/26/2021 02:10	WG1746485
Total Xylenes	0.0554		0.00176	0.0130	1	09/26/2021 02:10	WG1746485
Methyl tert-butyl ether	U		0.000700	0.00200	1	09/26/2021 02:10	WG1746485
(S) Toluene-d8	109			75.0-131		09/26/2021 02:10	WG1746485
(S) 4-Bromofluorobenzene	97.2			67.0-138		09/26/2021 02:10	WG1746485
(S) 1.2-Dichloroethane-d4	114			70.0-130		09/26/2021 02:10	WG1746485

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.94	5.83	1	10/01/2021 11:00	WG1749435
Residual Range Organics (RRO)	U		4.86	14.6	1	10/01/2021 11:00	WG1749435
(S) o-Terphenyl	28.8			18.0-148		10/01/2021 11:00	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	75.0		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	3.56		0.277	0.666	1	09/30/2021 02:47	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.46	4.31	25	09/30/2021 01:15	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	91.8			77.0-120		09/30/2021 01:15	WG1748298

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000806	0.00173	1	09/26/2021 02:29	WG1746485
Toluene	U		0.00224	0.00863	1	09/26/2021 02:29	WG1746485
Ethylbenzene	U		0.00127	0.00431	1	09/26/2021 02:29	WG1746485
Total Xylenes	U		0.00152	0.0112	1	09/26/2021 02:29	WG1746485
Methyl tert-butyl ether	U		0.000604	0.00173	1	09/26/2021 02:29	WG1746485
(S) Toluene-d8	109			75.0-131		09/26/2021 02:29	WG1746485
(S) 4-Bromofluorobenzene	97.8			67.0-138		09/26/2021 02:29	WG1746485
(S) 1,2-Dichloroethane-d4	115			70.0-130		09/26/2021 02:29	WG1746485

Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.77	5.33	1	10/01/2021 11:14	WG1749435
Residual Range Organics (RRO)	U		4.44	13.3	1	10/01/2021 11:14	WG1749435
(S) o-Terphenyl	45.2			18.0-148		10/01/2021 11:14	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	85.9		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	4.02		0.242	0.582	1	09/30/2021 02:50	WG1748287

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	65.8		1.15	3.39	25	09/30/2021 01:37	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	92.4			77.0-120		09/30/2021 01:37	WG1748298

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000632	0.00135	1	09/26/2021 02:48	WG1746485
Toluene	0.00306	J	0.00176	0.00677	1	09/26/2021 02:48	WG1746485
Ethylbenzene	0.00349		0.000998	0.00339	1	09/26/2021 02:48	WG1746485
Total Xylenes	0.0105		0.00119	0.00880	1	09/26/2021 02:48	WG1746485
Methyl tert-butyl ether	U		0.000474	0.00135	1	09/26/2021 02:48	WG1746485
(S) Toluene-d8	113			75.0-131		09/26/2021 02:48	WG1746485
(S) 4-Bromofluorobenzene	127			67.0-138		09/26/2021 02:48	WG1746485
(S) 1,2-Dichloroethane-d4	114			70.0-130		09/26/2021 02:48	WG1746485

Sc

Gl

		· · · · ·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	78.8		1.55	4.66	1	10/01/2021 13:28	WG1749435
Residual Range Organics (RRO)	5.68	J	3.88	11.6	1	10/01/2021 13:28	WG1749435
(S) o-Terphenyl	59.2			18.0-148		10/01/2021 13:28	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	76.7		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.472	J	0.271	0.652	1	09/30/2021 02:52	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	2.19	J	1.37	4.05	25	09/30/2021 01:59	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	92.8			77.0-120		09/30/2021 01:59	WG1748298

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000756	0.00162	1	09/26/2021 03:07	WG1746485
oluene	U		0.00211	0.00810	1	09/26/2021 03:07	WG1746485
thylbenzene	U		0.00119	0.00405	1	09/26/2021 03:07	WG1746485
otal Xylenes	0.00311	<u>J</u>	0.00142	0.0105	1	09/26/2021 03:07	WG1746485
thyl tert-butyl ether	U		0.000567	0.00162	1	09/26/2021 03:07	WG1746485
S) Toluene-d8	111			75.0-131		09/26/2021 03:07	WG1746485
(S) 4-Bromofluorobenzene	98.1			67.0-138		09/26/2021 03:07	WG1746485
(S) 1.2-Dichloroethane-d4	116			70 0-130		09/26/2021 03:07	WG1746485

Gl

Sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.73	5.22	1	10/01/2021 11:27	WG1749435
Residual Range Organics (RRO)	U		4.34	13.0	1	10/01/2021 11:27	WG1749435
(S) o-Terphenyl	46.2			18.0-148		10/01/2021 11:27	WG1749435

Arcadis - Chevron - WA

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	87.7		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	11.5		0.237	0.570	1	09/30/2021 02:55	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	18.3		1.13	3.32	25	09/30/2021 02:21	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	95.2			77.0-120		09/30/2021 02:21	WG1748298

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00210		0.000620	0.00133	1	09/25/2021 14:29	WG1746532
Toluene	0.00557	J	0.00172	0.00663	1	09/25/2021 14:29	WG1746532
Ethylbenzene	0.00257	<u>J</u>	0.000978	0.00332	1	09/25/2021 14:29	WG1746532
Total Xylenes	0.0226		0.00117	0.00862	1	09/25/2021 14:29	WG1746532
Methyl tert-butyl ether	U		0.000464	0.00133	1	09/25/2021 14:29	WG1746532
(S) Toluene-d8	98.6			75.0-131		09/25/2021 14:29	WG1746532
(S) 4-Bromofluorobenzene	108			67.0-138		09/25/2021 14:29	WG1746532
(S) 1,2-Dichloroethane-d4	97.7			70.0-130		09/25/2021 14:29	WG1746532

sc sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	119		1.52	4.56	1	10/01/2021 14:09	WG1749435
Residual Range Organics (RRO)	24.5		3.80	11.4	1	10/01/2021 14:09	WG1749435
(S) o-Terphenyl	45.5			18.0-148		10/01/2021 14:09	WG1749435

Arcadis - Chevron - WA

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.5		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	8.99		0.232	0.559	1	09/30/2021 02:58	WG1748287

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	64.4		1.07	3.16	25	09/30/2021 02:43	WG1748298
(S) a,a,a-Trifluorotoluene(FID)	94.9			77.0-120		09/30/2021 02:43	WG1748298

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.0254		0.000590	0.00126	1	09/25/2021 14:50	WG1746532
oluene	0.0298		0.00164	0.00632	1	09/25/2021 14:50	WG1746532
hylbenzene	0.0108		0.000931	0.00316	1	09/25/2021 14:50	WG1746532
tal Xylenes	0.0585		0.00111	0.00821	1	09/25/2021 14:50	WG1746532
thyl tert-butyl ether	U		0.000442	0.00126	1	09/25/2021 14:50	WG1746532
S) Toluene-d8	98.4			75.0-131		09/25/2021 14:50	WG1746532
(S) 4-Bromofluorobenzene	119			67.0-138		09/25/2021 14:50	WG1746532
(S) 1 2-Dichloroethane-d4	97 5			70 0-130		09/25/2021 14:50	WG1746532

Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	208		1.49	4.47	1	10/01/2021 14:22	WG1749435
Residual Range Organics (RRO)	38.9		3.72	11.2	1	10/01/2021 14:22	WG1749435
(S) o-Terphenyl	41.5			18.0-148		10/01/2021 14:22	WG1749435

Collected date/time: 09/21/21 14:30

SAMPLE RESULTS - 09

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	74.5		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	<u>Qualifier</u>	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.490	J	0.279	0.671	1	09/30/2021 03:00	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.48	4.36	25	09/30/2021 21:27	WG1748303
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		09/30/2021 21:27	WG1748303

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000814	0.00174	1	09/25/2021 15:10	WG1746532
Toluene	U		0.00227	0.00872	1	09/25/2021 15:10	WG1746532
Ethylbenzene	U		0.00128	0.00436	1	09/25/2021 15:10	WG1746532
Total Xylenes	0.00188	J	0.00153	0.0113	1	09/25/2021 15:10	WG1746532
Methyl tert-butyl ether	U		0.000610	0.00174	1	09/25/2021 15:10	WG1746532
(S) Toluene-d8	98.8			75.0-131		09/25/2021 15:10	WG1746532
(S) 4-Bromofluorobenzene	100			67.0-138		09/25/2021 15:10	WG1746532
(S) 1,2-Dichloroethane-d4	90.6			70.0-130		09/25/2021 15:10	WG1746532

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	3.15	<u>J</u>	1.78	5.37	1	10/01/2021 13:41	WG1749435
Residual Range Organics (RRO)	9.27	J	4.47	13.4	1	10/01/2021 13:41	WG1749435
(S) o-Terphenyl	41.9			18.0-148		10/01/2021 13:41	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	77.3		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	10.7		0.269	0.647	1	09/30/2021 03:03	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.42	4.18	25	09/30/2021 21:48	WG1748303
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		09/30/2021 21:48	WG1748303

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000780	0.00167	1	09/25/2021 15:30	WG1746532
oluene	U		0.00217	0.00835	1	09/25/2021 15:30	WG1746532
Ethylbenzene	U		0.00123	0.00418	1	09/25/2021 15:30	WG1746532
otal Xylenes	U		0.00147	0.0109	1	09/25/2021 15:30	WG1746532
ethyl tert-butyl ether	U		0.000585	0.00167	1	09/25/2021 15:30	WG1746532
(S) Toluene-d8	103			75.0-131		09/25/2021 15:30	WG1746532
(S) 4-Bromofluorobenzene	103			67.0-138		09/25/2021 15:30	WG1746532
(S) 1.2-Dichloroethane-d4	95 1			70 0-130		09/25/2021 15:30	WG1746532

Gl

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	2.17	<u>J</u>	1.72	5.18	1	10/01/2021 13:55	WG1749435
Residual Range Organics (RRO)	8.67	<u>J</u>	4.31	12.9	1	10/01/2021 13:55	WG1749435
(S) o-Terphenyl	38.2			18.0-148		10/01/2021 13:55	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	72.8		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	4.80		0.286	0.687	1	09/30/2021 03:05	WG1748287

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.55	4.56	25	09/30/2021 22:10	WG1748303
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		09/30/2021 22:10	WG1748303

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000852	0.00182	1	09/25/2021 15:51	WG1746532
oluene	U		0.00237	0.00912	1	09/25/2021 15:51	WG1746532
thylbenzene	U		0.00134	0.00456	1	09/25/2021 15:51	WG1746532
tal Xylenes	U		0.00161	0.0119	1	09/25/2021 15:51	WG1746532
thyl tert-butyl ether	U		0.000638	0.00182	1	09/25/2021 15:51	WG1746532
S) Toluene-d8	97.7			75.0-131		09/25/2021 15:51	WG1746532
(S) 4-Bromofluorobenzene	101			67.0-138		09/25/2021 15:51	WG1746532
(S) 1 2-Dichloroethane-d4	96 1			70 0-130		09/25/2021 15:51	WG1746532

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.83	5.49	1	10/01/2021 11:41	WG1749435
Residual Range Organics (RRO)	U		4.57	13.7	1	10/01/2021 11:41	WG1749435
(S) o-Terphenyl	40.1			18.0-148		10/01/2021 11:41	WG1749435

L1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	75.9		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.514	J	0.274	0.659	1	09/30/2021 03:08	WG1748287

Ss

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	1.73	J	1.41	4.15	25	09/30/2021 22:31	WG1748303
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		09/30/2021 22:31	WG1748303

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00108	J	0.000775	0.00166	1	09/25/2021 16:11	WG1746532
oluene	U		0.00216	0.00830	1	09/25/2021 16:11	WG1746532
thylbenzene	U		0.00122	0.00415	1	09/25/2021 16:11	WG1746532
tal Xylenes	0.00242	<u>J</u>	0.00146	0.0108	1	09/25/2021 16:11	WG1746532
hyl tert-butyl ether	U		0.000581	0.00166	1	09/25/2021 16:11	WG1746532
S) Toluene-d8	97.6			75.0-131		09/25/2021 16:11	WG1746532
(S) 4-Bromofluorobenzene	102			67.0-138		09/25/2021 16:11	WG1746532
S) 1 2-Dichloroethane-d4	93.4			70 0-130		09/25/2021 16:11	WG1746532

Gl

[®]Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.75	5.27	1	10/01/2021 11:54	WG1749435
Residual Range Organics (RRO)	U		4.39	13.2	1	10/01/2021 11:54	WG1749435
(S) o-Terphenyl	43.2			18.0-148		10/01/2021 11:54	WG1749435

Collected date/time: 09/21/21 12:15

SAMPLE RESULTS - 14

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	71.3		1	09/29/2021 08:28	WG1747742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	4.32		0.292	0.701	1	09/30/2021 03:10	WG1748287

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	2.06	J	1.62	4.77	25	09/30/2021 23:55	WG1748303
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		09/30/2021 23:55	WG1748303

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.0195		0.000891	0.00191	1	09/25/2021 16:32	WG1746532
Toluene	0.00339	J	0.00248	0.00954	1	09/25/2021 16:32	WG1746532
Ethylbenzene	0.0119		0.00141	0.00477	1	09/25/2021 16:32	WG1746532
Total Xylenes	0.0149		0.00168	0.0124	1	09/25/2021 16:32	WG1746532
Methyl tert-butyl ether	U		0.000667	0.00191	1	09/25/2021 16:32	WG1746532
(S) Toluene-d8	95.2			75.0-131		09/25/2021 16:32	WG1746532
(S) 4-Bromofluorobenzene	99.3			67.0-138		09/25/2021 16:32	WG1746532
(S) 1,2-Dichloroethane-d4	93.6			70.0-130		09/25/2021 16:32	WG1746532

Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	2.23	<u>J</u>	1.86	5.61	1	10/01/2021 12:22	WG1749435
Residual Range Organics (RRO)	7.60	<u>J</u>	4.67	14.0	1	10/01/2021 12:22	WG1749435
(S) o-Terphenyl	43.1			18.0-148		10/01/2021 12:22	WG1749435

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	77.3		1	09/29/2021 08:20	WG1747743

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	U		0.269	0.646	1	09/30/2021 02:22	WG1748287

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	467		13.7	40.3	250	10/02/2021 04:19	WG1750220
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		10/02/2021 04:19	WG1750220

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000752	0.00161	1	09/25/2021 16:53	WG1746532
Toluene	0.00379	J	0.00209	0.00805	1	09/25/2021 16:53	WG1746532
Ethylbenzene	U		0.00119	0.00403	1	09/25/2021 16:53	WG1746532
Total Xylenes	U		0.00142	0.0105	1	09/25/2021 16:53	WG1746532
Methyl tert-butyl ether	U		0.000564	0.00161	1	09/25/2021 16:53	WG1746532
(S) Toluene-d8	87.4			75.0-131		09/25/2021 16:53	WG1746532
(S) 4-Bromofluorobenzene	210	<u>J1</u>		67.0-138		09/25/2021 16:53	WG1746532
(S) 1,2-Dichloroethane-d4	92.7			70.0-130		09/25/2021 16:53	WG1746532

	•	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	604		3.44	10.3	2	10/01/2021 15:12	WG1749435
Residual Range Organics (RRO)	U		4.31	12.9	1	10/01/2021 12:08	WG1749435
(S) o-Terphenyl	78.7			18.0-148		10/01/2021 15:12	WG1749435
(S) o-Terphenyl	30.5			18.0-148		10/01/2021 12:08	WG1749435

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	80.1		1	09/29/2021 08:20	WG1747743

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	3.89		0.260	0.624	1	09/30/2021 03:18	WG1748287

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.31	3.86	25	10/02/2021 03:21	WG1750220
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/02/2021 03:21	WG1750220

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000721	0.00154	1	09/25/2021 17:13	WG1746532
Toluene	U		0.00201	0.00772	1	09/25/2021 17:13	WG1746532
Ethylbenzene	U		0.00114	0.00386	1	09/25/2021 17:13	WG1746532
Total Xylenes	U		0.00136	0.0100	1	09/25/2021 17:13	WG1746532
Methyl tert-butyl ether	U		0.000540	0.00154	1	09/25/2021 17:13	WG1746532
(S) Toluene-d8	98.4			75.0-131		09/25/2021 17:13	WG1746532
(S) 4-Bromofluorobenzene	105			67.0-138		09/25/2021 17:13	WG1746532
(S) 1.2-Dichloroethane-d4	93.9			70.0-130		09/25/2021 17:13	WG1746532

[®]Sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	9.60		1.66	4.99	1	10/01/2021 14:36	WG1749435
Residual Range Organics (RRO)	36.4		4.15	12.5	1	10/01/2021 14:36	WG1749435
(S) o-Terphenyl	45.0			18.0-148		10/01/2021 14:36	WG1749435

Arcadis - Chevron - WA

1408057

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	79.6		1	09/29/2021 08:20	WG1747743

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	2.85		0.261	0.628	1	09/30/2021 03:21	WG1748287

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.33	3.92	25	10/01/2021 01:49	WG1748303
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/01/2021 01:49	WG1748303

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	<u> </u>
Benzene	U		0.000732	0.00157	1	09/25/2021 17:34	WG1746532
oluene	U		0.00204	0.00784	1	09/25/2021 17:34	WG1746532
hylbenzene	U		0.00116	0.00392	1	09/25/2021 17:34	WG1746532
tal Xylenes	U		0.00138	0.0102	1	09/25/2021 17:34	WG1746532
thyl tert-butyl ether	U		0.000549	0.00157	1	09/25/2021 17:34	WG1746532
(S) Toluene-d8	98.9			75.0-131		09/25/2021 17:34	WG1746532
(S) 4-Bromofluorobenzene	102			67.0-138		09/25/2021 17:34	WG1746532
(S) 1 2-Dichloroethane-d4	96.2			70 0-130		09/25/2021 17:34	WG1746532

Sc

Gl

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	10.5		1.67	5.02	1	10/01/2021 14:50	WG1749435
Residual Range Organics (RRO)	28.1		4.18	12.6	1	10/01/2021 14:50	WG1749435
(S) o-Terphenyl	45.5			18.0-148		10/01/2021 14:50	WG1749435

Arcadis - Chevron - WA

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1408057-01,02,03

Method Blank (MB)

(MB) R3710318-1 0	9/29/21 08:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

3 C C

L1407981-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1407981-02 09/29/21 08:39 • (DUP) R3710318-3 09/29/21 08:39

	Original Resu	ılt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	83.5	82.0	1	1.89		10

Laboratory Control Sample (LCS)

(LCS) R3710318-2 09/29/21 08:39

(LC3) K3710310-2 09/29/2	Spike Amount		LCS Result	LCS Rec.	Rec. Limits
Analyte	%	•	%	%	%
Total Solids	50.0	.0	50.0	100	85.0-115

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1408057-04,05,06,07,08,09,11,12,13,14

Method Blank (MB)

(MB) R3710311-1 09/29/21 08:28					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.000				

3

L1408057-04 Original Sample (OS) • Duplicate (DUP)

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	75.0	75.8	1	1.07		10

Laboratory Control Sample (LCS)

(1 (CC)	R3710311-2	00/20/21	0.00
(LC2)	R3/10311-2	09/29/21	Ua:Za

(LCS) R3/10311-2 09/29/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Ameliaka	O/	o/	ecs nec.	o/	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1408057-15,16,17

Method Blank (MB)

(MB) R3710307-1 09/29/21 08:20					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.00200				

3 Ss

L1408063-04 Original Sample (OS) • Duplicate (DUP)

(OS) I 1408063-04	09/29/21 08:20 •	(DUP) R3710307-3 09/29/21 08:20
 (00) [1-00000 0-	03/23/2100.20	(DOI) (NO) 10007 0 00/20/21 00:20

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.2	94.2	1	0.0469		10

Laboratory Control Sample (LCS)

(1 (CC)	R3710307-2	00/20/21	00.20
(LC2)	R3/1030/-2	2 09/29/21	US:ZU

(LCS) R3/10307-2 09/29/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

QUALITY CONTROL SUMMARY

L1408057-01,02,03,04,05,06,07,08,09,11,12,13,14,15,16,17

Method Blank (MB)

Metals (ICP) by Method 6010D

(MB) R3710547-1 09/30/21 02:17

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Lead	U		0.208	0.500

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3710547-2 09/30/21 02:19

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Lead	100	97.0	97.0	80 0-120	

L1408057-15 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408057-15 09/30/21 02:22 • (MS) R3710547-5 09/30/21 02:29 • (MSD) R3710547-6 09/30/21 02:32

(O3) E1406037-13												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Lead	129	U	133	118	103	91.4	1	75.0-125			12.1	20

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1408057-01

Method Blank (MB)

(MB) R3710653-2 09/29/	(MB) R3710653-2 09/29/2112:03									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
Gasoline Range Organics-NWTPH	U		0.848	2.50						
(S) a,a,a-Trifluorotoluene(FID)	91.1			77.0-120						

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3710653-1 09/29/21 11:19										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Gasoline Range Organics-NWTPH	5.50	5.29	96.2	71.0-124						
(S) a,a,a-Trifluorotoluene(FID)			113	77.0-120						

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1408057-02,03,04,05,06,07,08

Method Blank (MB)

(MB) R3710777-2 09/29/	/21 23:55			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Gasoline Range Organics-NWTPH	U		0.848	2.50
(S) a,a,a-Trifluorotoluene(FID)	92.1			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3710777-1 09/29/	(LCS) R3710777-1 09/29/21 23:11												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/kg	mg/kg	%	%									
Gasoline Range Organics-NWTPH	5.50	5.55	101	71.0-124									
(S) a,a,a-Trifluorotoluene(FID)			115	77.0-120									

L1408057-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408057-02 09/30/2	1 00:17 • (MS) R3710777-3	09/30/21 09:22 • (MSD) R3710777-4	09/30/21 09:44
--------------------------	---------------------------	-----------------------------------	----------------

(OS) L1406057-02 09/30	/21 00.1/ • (IVIS)	K3/10///-3 U	9/30/2109.22	(INISD) K3/10/	///-4 09/30/2	109.44						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Gasoline Range Organics-NWTPH	203	3.94	146	155	70.2	74.3	25	10.0-149			5.65	27
(S) a,a,a-Trifluorotoluene(FID)					108	108		77.0-120				

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

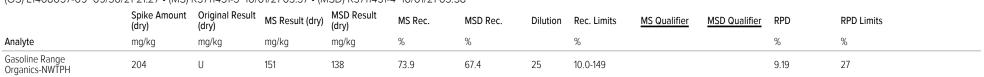
L1408057-09,11,12,13,14,17

Method Blank (MB)

(S) a,a,a-Trifluorotoluene(FID)

(MB) R3711451-2 09/30/2	21 15:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Gasoline Range Organics-NWTPH	U		0.848	2.50
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120

Laboratory Control Sample (LCS)


(LCS) R3711451-1 09/30/2	114:40				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Gasoline Range Organics-NWTPH	5.50	5.87	107	71.0-124	
(S) a,a,a-Trifluorotoluene(FID)			104	77.0-120	

(OS) L1408057-09 09/30/21 21:27 • (MS) R3711451-3 10/01/21 03:37 • (MSD) R3711451-4 10/01/21 03:58

77.0-120

104

100

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1408057-15,16

Method Blank (MB)

(MB) R3711992-2 10/02/2	21 02:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Gasoline Range Organics-NWTPH	U		0.848	2.50
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120

³Ss

Laboratory Control Sample (LCS)

(LCS) R3711992-1 10/02/2	21 02:16				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Gasoline Range Organics-NWTPH	5.50	5.50	100	71.0-124	
(S)			103	77.0-120	

WG1746485

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1408057-01,02,03,04,05,06

Method Blank (MB)

(MB) R3710043-2 09/25/2	MB) R3710043-2 09/25/21 20:46							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
Benzene	U		0.000467	0.00100				
Ethylbenzene	U		0.000737	0.00250				
Methyl tert-butyl ether	U		0.000350	0.00100				
Toluene	U		0.00130	0.00500				
Xylenes, Total	U		0.000880	0.00650				
(S) Toluene-d8	112			75.0-131				
(S) 4-Bromofluorobenzene	97.8			67.0-138				
(S) 1,2-Dichloroethane-d4	108			70.0-130				

(LCS) R3710043-1 09/25	/21 19:30					ľ
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	L
Analyte	mg/kg	mg/kg	%	%		8
Benzene	0.125	0.107	85.6	70.0-123		
Ethylbenzene	0.125	0.115	92.0	74.0-126		a
Methyl tert-butyl ether	0.125	0.125	100	66.0-132		ľ
Toluene	0.125	0.118	94.4	75.0-121		L
Xylenes, Total	0.375	0.354	94.4	72.0-127		
(S) Toluene-d8			107	75.0-131		
(S) 4-Bromofluorobenzene			101	67.0-138		
(S) 1,2-Dichloroethane-d4			122	70.0-130		

L1407464-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.124	U	0.0577	0.0695	46.5	56.0	1	10.0-149			18.6	37
Ethylbenzene	0.124	U	0.0602	0.0759	48.5	61.2	1	10.0-160			23.1	38
Methyl tert-butyl ether	0.124	U	0.0900	0.0843	72.6	68.0	1	11.0-147			6.54	35
Toluene	0.124	U	0.0668	0.0779	53.9	62.8	1	10.0-156			15.3	38
Xylenes, Total	0.372	U	0.200	0.233	53.8	62.6	1	10.0-160			15.2	38
(S) Toluene-d8					109	107		75.0-131				
(S) 4-Bromofluorobenzene					98.4	96.3		67.0-138				
(S) 1,2-Dichloroethane-d4					116	114		70.0-130				

WG1746532

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1408057-07,08,09,11,12,13,14,15,16,17

Method Blank (MB)

(MB) R3711383-3 09/25/2	1 14:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Methyl tert-butyl ether	U		0.000350	0.00100
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	101			75.0-131
(S) 4-Bromofluorobenzene	103			67.0-138
(S) 1,2-Dichloroethane-d4	90.5			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3711383-1 09/25/2	1 10:51 • (LCSD)	R3711383-2 (09/25/21 11:12								l
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	L
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	8
Benzene	0.125	0.121	0.121	96.8	96.8	70.0-123			0.000	20	
Ethylbenzene	0.125	0.110	0.108	88.0	86.4	74.0-126			1.83	20	
Methyl tert-butyl ether	0.125	0.126	0.120	101	96.0	66.0-132			4.88	20	
Toluene	0.125	0.118	0.116	94.4	92.8	75.0-121			1.71	20	L
Xylenes, Total	0.375	0.364	0.363	97.1	96.8	72.0-127			0.275	20	
(S) Toluene-d8				100	98.9	75.0-131					
(S) 4-Bromofluorobenzene				106	101	67.0-138					
(S) 1 2-Dichloroethane-d4				95.5	97.2	70 0-130					

L1408057-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408057-17 09/25/21 17:34 • (MS) R3711383-4 09/25/21 17:55 • (MSD) R3711383-5 09/25/21 18:15

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.162	U	0.0271	0.0237	16.8	14.7	1	10.0-149			13.6	37
Ethylbenzene	0.162	U	0.0267	0.0234	16.5	14.5	1	10.0-160			13.2	38
Methyl tert-butyl ether	0.162	U	0.0569	0.0574	35.2	35.5	1	11.0-147			0.823	35
Toluene	0.162	U	0.0265	0.0259	16.4	16.0	1	10.0-156			2.40	38
Xylenes, Total	0.483	U	0.0916	0.0869	19.0	18.0	1	10.0-160			5.27	38
(S) Toluene-d8					98.8	98.6		75.0-131				
(S) 4-Bromofluorobenzene					101	102		67.0-138				
(S) 1,2-Dichloroethane-d4					96.7	86.9		70.0-130				

WG1749435

QUALITY CONTROL SUMMARY

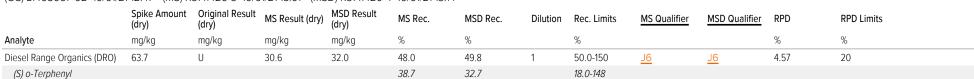
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT408057-01,02,03,04,05,06,07,08,09,11,12,13,14,15,16,17

Method Blank (MB)

(MB) R3711420-1 10/01/21 0	9:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	52.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3711420-2 10/01/21	1 09:52				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	30.5	61.0	50.0-150	
(S) o-Terphenyl			52.3	18.0-148	



L1408057-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408057-02 10/01/21 12:47 • (MS) R3711420-3 10/01/21 13:01 • (MSD) R3711420-4 10/01/21 13:14

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: 30064310 07.21-Plan L1408057 10/04/21 11:22 Arcadis - Chevron - WA 35 of 40

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

ompany Name/Address:			Billing Info	rmation:	n:		Analysis / Container /			ner / Pr	eservati	ve		Chain of Custody	Page of		
630 Pla		counts Payabl a Dr., Ste. 600 ds Ranch, CO 8	Chl		/syr					T8-		TW-sa	1000	- Pac	e Analytica		
Report to:			Email To:	.laws@arcadis.co	m:Ada Hamilt	on@ar	0ml		/s/			C-B		res	33	12065 Lebanon Rd Mou Submitting a sample via	this chain of custody
Ada Hamilton/Alex Laws Project Description: 97502		City/State		صار بها المحد		ircle:	leOH1	loPres	H10ml		-HCI	40mIAmb-HCI-BT		PoN-di	E-HNC	constitutes acknowledg Pace Terms and Conditi https://info.pacelabs.co terms.pdf	ons found at:
Phone: 206-325-5254	Client Pro 300643	oject # 10 07.21-Pla	in .	Lab Project # CHEVARCW	A-97502		//qm	8ozClr-NoPres	/MeO	es	nlAmb	40ml/	nb HC	40mlAmb-NoPr	250mIHDPE-HNO3	C01	3
Collected by (print): M. Andrew?		Email To: alexander.laws@arcadis.com;Ada.Hamilton@ar City/State Collected: Sedro Walley, WA Please Circle: Collected: Lab Project # 64310 07.21-Plan CHEVARCWA-97502 Facility ID # METCALF ST SEDRO-		P.O.#		Market Land Control of the Control o		40mlAmb/MeOH10ml/Syr	r-NoPr	8260D 40mIAmb-HC	NOSG	40mlAr		6010 250	Acctnum: CHEVARCWA		
Collected by (signature)	Sa Ne Tw	ne Day Finance Day 5 In Day 100 Day 10	re Day	Quote #	lts Needed	No.	soil BTEXM 8260D	Soil NWTPHDX NOSGT	NWTPHGX 40	soil Pb 6010 8ozClr-NoPres	BTEXM	water NWTPHDX	water NWTPHGX 40mlamb HCl	PAHS 8270ESIM	Total Pb	Prelogin: P87 PM: 110 - Brian PB: MM	1785 Ford
Sample ID	Comp/G	rab Matrix	Depth	Date	Time	Cntrs	soil B	N lios	N lios	soil PI	water	water	water	water	water	Shipped Via:	Sample # (lab
5B-2-10.5-11.5	Grat	ss	-	9/22/21	69:65	12	X	X	X	X		Ser a		177			-01
68-2-15.5-16.5		SS	-	9/22/21	09:09	2		1	1	1							-02
48-2-18.0-19.0		SS		9/22/21	09:14	2											-03
SB-2-6,0-7,0		SS	-	9/22/21	09:03	3 2											-d
MW-14-11.5-12.5		SS		9/20/21	16:20	12											-00
MW-14-14.0 -15.0		SS	-	09/21/21	14:25	, 2										All the state of t	-a
MW-14-9.0-10.0		SS	-	09/21/2	1 1615	2				1							-0
MW-14-2.5-3.5	6	SS	-	09/20/2	1 1436	2	4	V	4	A							-09
MW-14-19.0-20.0	1	SS	1 -	09/21/2	1 1430	2	X	X	X	X		- 1					-0
Trip Blank		-55-				12										1 Sec. 15	1-10
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water Sar	narks:	7	er		ing# (, ,	17	33	13	pH Flow	28	_ Temp			COC Seal COC Signa Bottles Correct Sufficie	mple Receipt Ch. Present/Intact: ed/Accurate: arrive intact: bottles used: nt volume sent: If Applicabl Headspace:	NP Y
Relinquished by : (Signature)		Date:	Time	e: Recei	ived by: (Signa	ture)		16, 26.		Trip Blan	k Recei	1 (HCL/ME TBR		Preserva RAD Scre	tion Correct/Che en <0.5 mR/hr:	Zy
Relinquished by: (Signature)		Date:	Tim	e: Recei	ived by: (Signa	ture)		7(Fair		Temppl.	1=2.	C Bott	des Recei	ved:	If preserva	tion required by Log	in: Date/Tim
Relinquished by : (Signature)		Date:	Tim	e: Recei	ived for lab by:	(Signat	ure)	114172		Date:	1	Tim	e:	1	Hold:		Condition

Company Name/Address:	a A		Billing Info	rmation	Billing Information:				Analysis / Container / Preservative					Chain of Custody Page 2 of 2							
Arcadis - Chevron - WA 100 Olive Way uite 800 eattle. WA 98101	e Way		Attn: Accounts Payable 630 Plaza Dr., Ste. 600 Highlands Ranch, CO 80129		630 Plaza Dr., Ste. 600 Highlands Ranch, CO 80129		Pres Chk	/Syr					points de second		-WT			e Analytical [®]			
eport to: Ada Hamilton/Alex Laws			Email To: alexander	alexander.laws@arcadis.com;Ada.Hamilto			110ml	sa	ml/Sy			40mlAmb-HCl-BT		40mlAmb-NoPres-WT	NO3	Pace Terms and Condit	a this chain of custody gment and acceptance of the lons found at:				
roject Description: 7502			Sedio -			Please Ci	rcle: T ET	MeOr	NoPri	DH10		b-HCl	lAmb	0	N-qu	РЕ-Н	https://info.pacelabs.c terms.pdf	om/hubfs/pas-standard-			
hone: 206-325-5254	300643	oject # 810 07.21-Pla	in d	100	roject # VARCWA	-97502		/qm	8ozClr-NoPres	/Med	sə.	nIAm	40m	mb He	Omlar	250mIHDPE-HNO3	SDG#	108057			
oilected by (print):	Audueus 640 METCALF ST B by (signature): Rush? (Lab MUS Same Day Next Day Two Day	640 METCALF ST SEDRO- Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only)		Notified) Quote # lay (Rad Only) Date Results Needed						11	40ml4mb/MeOH10ml/Sy	NOSGT 80	40mlAmb/MeOH10ml/Syr	NoPr	8260D 40mIAmb-HCI	JOSET	10mlA		10 250	Acctnum: CHI	VARCWA
ollected by (signature): nmediately acked on Ice N Y						te Results Needed No. of				soil BTEXM 8260D	Soil NWTPHDX NO	soil NWTPHGX 40n	soil Pb 6010 8ozClr-NoPres	r BTEXM 8260	water NWTPHDX NOSG	water NWTPHGX 40mlAmb HCI	r PAHS 8270ESIM	r Total Pb 6010	Prelogin: P87 PM: 110 - Bria PB: M Shipped Via:	1785 n Ford	
Sample ID	Comp/G	irab Matrix '	Depth	# # # # # # # # # # # # # # # # # # #	Date	Time	Cntrs	soil B	Soil N	soil N	soil P	wate	wate	wate	water	water	Remarks.	Sample # (lab only)			
MW-20-7.0-8.0	Gra	lo SS	-	91	22/21	10:21	2	×	×	×	X						te de servicio de la compansión de la comp La compansión de la compa	-11			
MW-15-6.5-7.5	- 1	SS		91	22/21	11:50	2	L		1								-12			
MW-15-14.0-15.0		SS	1-	9/	21/21	12:10	2											-13			
MW-15-19.0-20.0		SS		9/	21/21	12:16	12									1		1-19			
MW-15-10.0-11.0		SS		91	21/21	12:0t	2								age 14 fe		20.4	1-15			
DUP-1-092221		_ ss		9/	22/21		2						1-7-					-16			
MW - 20-15.0-16.0	٧	SS	-	9/	22/21	10:29	12	*	1	4	A							-11			
		SS			- American	17.1										in an					
		SS							4							A.					
		SS													1		Zilde -				
Matrix: Rei S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater	marks:										pH Flow		Tem Othe			COC Seal COC Signe Bottles a	mple Receipt Cl Present/Intact ed/Accurate: arrive intact: bottles used:				
	mples retu	rned via: edEx Couri	er		Trackin	ng#								\		VOA Zero	it volume sent: If Applicab Headspace:	_Y _N			
elinquished by : (Signature)		Date:	71 15	1200	Receive	ed by: (Signat	ture)				Trip Blar	k Recei	(HCL /M			cion Correct/Ch en <0.5 mR/hr:	ecked: _Y _N _X _N			
elinguished by : (Signature)		Date:	Tim	e:	Receiv	ed by: (Signat	ture)				Temppo 2.4-	4 Gel.	C Both	Secential Received	ived:	If preserva	tion required by Lo	gin: Date/Time			
Relinquished by : (Signature)		Date:	Tim	ė:	Receiv	ed for lab by:	(Signat	ure)	1		Date	3/2	Tim	ne: 9:4	(Hold:		Condition: NCF / OK			

Jordan Zito

From: Jordan Zito

Sent: Monday, September 27, 2021 7:37 AM

To: Jordan Zito

Subject: FW: Pace Analytical National Login for 30064310 07.21-Plan 97502 L1408057

----Original Message----

From: Hamilton, Ada <Ada.Hamilton@arcadis.com>

Sent: Friday, September 24, 2021 3:31 PM

To: Brian Ford Brian Brian Christopher.Pauley@arcadis.com; Andrews, Michael

<Michael.Andrews@arcadis.com>; Laws, Alex <Alexander.Laws@arcadis.com>; EnvironmentDM-India

<environmentDM-India@arcadis.com>

Subject: RE: Pace Analytical National Login for 30064310 07.21-Plan 97502 L1408057

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Brian,

Can you please change the sample ID's for the following samples:

Current Sample ID New Sample ID MW-14-11.5-12.5 MW-21-11.5-12.5 MW-14-14.0-15.0 MW-21-14.0-15.0 MW-14-9.0-10.0 MW-21-9.0-10.0 MW-14-2.5-3.5 MW-14-19.0-20.0 MW-21-19.0-20.0

Basically change MW-14 to MW-21.

Thank you,

-Ada

Ada Hamilton Project Manager Arcadis U.S., Inc.

1100 Olive Way, Suite 800 | Seattle, WA | 98101 | USA T ++1 206 413 6430 M +1 206 321 3782 www.arcadis.com

----Original Message-----

From: Brian Ford spring Sent: Friday, September 24, 2021 8:23 AM

 $To: Pauley, Brian \\ \underline{<Christopher.Pauley@arcadis.com>_;} \\ Hamilton, Ada \\ \underline{<Ada.Hamilton@arcadis.com>_;} \\ Andrews, Michael \\ \underline{<Ada.$

<a

<environmentDM-India@arcadis.com>

Subject: Pace Analytical National Login for 30064310 07.21-Plan 97502 L1408057

1

"Privileged and Confidential"

Thank you for choosing Pace National! Please find enclosed PDF files containing your laboratory login confirmation and chain of custody.

Pace National is leading the laboratory industry with our On-line Data Management tools. Please contact your Project Manager to learn how to create historical Excel tables or access data in real time using powerful and intuitive software that is only available at

 $\frac{https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.pacenational.com%2F\&data=04%7C01%7CAda.Hamilton%40arcadis.com%7Cb531283c990d411e602508d97f6f4506%7C7f90057d3ea046feb07ce0568627081b%7C0%7C0%7C0%7C637680938886322694%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzliLCJBTil6lk1haWwilCJXVCI6Mn0%3D%7C1000&sdata=rRmA6ljttA5Ff%2BKz2RMtDk4zJvhPWOsj7BXKpWydakA%3D&reserved=0.$

Visit Pace National's secure data management web site - myData - for all your reporting and data management needs at <a href="https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.pacenational.com%2Flogin&data=04%7C01%7CAda.Hamilton%40arcadis.com%7Cb531283c990d411e602508d97f6f4506%7C7f90057d3ea046feb07ce0568627081b%7C0%7C0%7C637680938886322694%7CUnknown%7CTWFpbGZsb3d8eyJWljoiMC4wLjAwMDAiLCJQljoiV2luMzliLCJBTil6lk1haWwiLCJXVCl6Mn0%3D%7C1000&sdata=Y0ytJXnbKHW08GaUmkJyx9j9qyZ2QF3rN1zpeU1MaVY%3D&reserved=0

Pace National ... "Your Lab of Choice"

Brian Ford Technical Service Representative 615-773-9772

Pace Analytical National 12065 Lebanon Rd. Mt. Juliet, TN 37122

NOTICE-- The contents of this email and any attachments may contain confidential, privileged, and/or legally protected information and are for the sole use of the addressee(s). Any review or distribution by others is strictly prohibited. If you are not the intended recipient, please contact the sender immediately and delete any copies.

P Please consider the environment before printing this email This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

Chevron - WA

DATA REVIEW

640 METCALF ST SEDRO-WOOLLEY

Volatile organic compounds, Total Petroleum Hydrocarbons, and Metals

SDG# L1408935

Analyses Performed By: Pace Analytical National Mount Juliet, TN 37122

Report # 44127R Review Level: Tier II Project: 30064310.08.82

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) # L1408935 for samples collected in association with the Chevron 640 Metcalf ST Sedro-Woolley Site. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

0.001010		Matrix	Sample	Parent	Analysis			
Sample ID	Lab ID	Matrix	Collection Date	Sample	VOC	ТРН	MET	
SB-1-19.0-20.0_210923	L1408935-01	Soil	09.23.2021		X	Х	X	
SB-1-7.5-8.5_210923	L1408935-02	Soil	09.23.2021		X	Х	X	
SB-1-15.0-16.0_210923	L1408935-03	Soil	09.23.2021		Х	Х	Х	
MW-17-11.5-13.0_210923	L1408935-04	Soil	09.23.2021		Х	Х	Х	
MW-17-19.0-20.0_210923	L1408935-05	Soil	09.23.2021		Х	Х	Х	
MW-17-15.0-16.0_210923	L1408935-06	Soil	09.23.2021		Х	Х	Х	
MW-17-8.0-9.0_210923	L1408935-07	Soil	09.23.2021		Х	Х	Х	
MW-18-19.0-20.0_210923	L1408935-08	Soil	09.23.2021		Х	Х	Х	
SB-3-18.0-19.0_210923	L1408935-10	Soil	09.23.2021		Х	Х	Х	
TRIP BLANK_210923	L1408935-11	Soil	09.23.2021		Х	Х		

Notes:

VOC = volatile organic compounds.

TPH = total petroleum hydrocarbons.

MET = metals.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted	Performance Acceptable		Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		Х		Х	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

Note:

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260D, NWTPHGX and NWTPHDX. Data were reviewed in accordance with the method specified criteria, USEPA National Functional Guidelines NFG for Organic Superfund Methods Data Review, EPA-540-R-20-005 (November 2020), with reference to the historical (USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D	Soil	14 days from collection to analysis	Cool to <6 °C.

Note:

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the sample detection limit (SDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was performed on sample MW-17-11.5-13.0_210923. MS/MSD analysis exhibited recoveries and RPDs within the laboratory established acceptance limits.

5. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

A field duplicate sample was not collected from sample locations associated with this SDG

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260D	Re	ported		ormance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/N	IS)			
Tier II Validation					
Holding times		Х		X	
Reporting limits (units)		Х		Х	
Blanks				·	
A. Method blanks		X		X	
B. Equipment blanks	Х				Х
C. Trip blanks		X		Х	
Laboratory Control Sample (LCS)		X		X	
Laboratory Control Sample Duplicate (LCSD)		X		X	
LCS/LCSD Precision (RPD)		X		X	
Matrix Spike (MS)		X		X	
Matrix Spike Duplicate (MSD)		Х		X	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)	Х				Х
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

TOTAL PETROLEUM HYDROCARBONS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method Matrix		Holding Time	Preservation	
GRO by Method NWTPHGX	Soil	14 days from collection to analysis	Cool to <6 °C	
DRO by Method NWTPHDX	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C	

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the sample detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

The compound Gasoline Range Organics-NWTPH (45.6 ug/l) was detected in the associated method blank Batch Number – WG1749141 for the method NWTPHGX. However, the Associated samples were Trip Blank. No qualification of the sample results is required. All other criteria were Met.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The analysis requires surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was performed on sample MW-17-11.5-13.0_210923 for Gasoline Range Organics-NWTPH. MS/MSD analysis exhibited recoveries and RPDs within the laboratory established acceptance limits.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
MW-17-11.5-13.0_210923	Diesel Range Organics (DRO)	AC	< LL but > 10%

Note:

AC = Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
	Non-detect	No Action
> the upper control limit (UL)	Detect	J
	Non-detect No Detect J Non-detect UJ Detect J Non-detect R Detect J Detect J	UJ
< the lower control limit (LL) but > 10%	Detect	J
	Non-detect	R
< 10%	Detect	J
Parent sample concentration > four times the MS/MSD spiking	Detect	
solution concentration (D).	Non-detect	No Action

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
MW-17-11.5-13.0_210923	Diesel Range Organics (DRO)

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
- 01	Detect	J

5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

A field duplicate sample was not collected from sample locations associated with this SDG.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR TPH

TPH: NWTPHDX and NWTPHGX	Rep	orted		mance otable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC/FID)					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks	X				Х
C. Trip Blanks		Х		Х	
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R	Х				Х
LCS/LCSD Precision (RPD)	Х				Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)	Х				Х
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	

Notes:

%R - percent recovery

RPD - relative percent difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010D. Data were reviewed in accordance with USEPA National Functional Guidelines of July 2002.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - J The reported value was obtained from a reading less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL).
- · Quantitation (Q) Qualifiers
 - E The reported value is estimated due to the presence of interference.
 - N Spiked sample recovery is not within control limits.
 - Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reporting limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010D	Soil	180 days from collection to analysis	Cool to <6 °C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the sample detection limit (SDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All analytes were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

3.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

MS/MSD analysis was performed on sample MW-17-11.5-13.0_210923. MS/MSD analysis exhibited recoveries and RPDs within control limits.

3.2 Laboratory Duplicate Analysis

The laboratory duplicates relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL for soil matrices.

Laboratory duplicate analysis was not performed on any of the samples from these SDG.

4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

A field duplicate sample was not collected from sample locations associated with this SDG.

5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METAL

METALS; SW-846 6010D	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Mass Spectrometry (ICP-M	1S)				
Tier II Validation					
Holding Times		X		Х	
Reporting limits (units)		X		X	
Blanks					
A. Instrument Blanks	X				Х
B. Method Blanks		X		X	
C. Equipment/Field Blanks	X				Х
Laboratory Control Sample (LCS)		X		X	
Laboratory Control Sample Duplicate (LCSD) %R	X				Х
LCS/LCSD Precision (RPD)	X				Х
Matrix Spike (MS) %R		X		Х	
Matrix Spike Duplicate (MSD) %R		X		Х	
MS/MSD Precision (RPD)		X		Х	
Lab Duplicate (RPD)	Х				Х
Field Duplicate (RPD)	Х				Х
ICP Serial Dilution %D	Х				Х
Reporting Limit Verification		Х		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Bhagyashree Fulzele

SIGNATURE: Brutzle

DATE: January 29, 2022

PEER REVIEW: Dennis Capria

DATE: January 31,2022

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

ionpany Name/Address:	1.0		Billing Information:					246年	Α	nalvsis /	/ Contai	iner / Pr	eservati	ve	4) - 1 to 14	Chain of Custody	Page 1 of Z								
Arcadis - Chevron - WA			630 Plaz	counts Payable a Dr., Ste. 600		Pres Chk				19.00						Pace	Analytical								
1100 Olive Way Suite 800 Seattle. WA 98101			Highland	ls Ranch, CO 80)129	ali Ali	/Syr					L		-WT											
Report to: Ada Hamilton/Alex Laws	Santa Company	191	Email To: alexander.laws@arcadis.com;Ada.Hamilton@ar				03	12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the																	
Project Description: 97502	City/State Sedro - Woolley, WA Ple Collected:			City/State Sedro - Wooli			oject Description: City/Sta 7502 Collecte		Please Ci	rcle:	IeOH1	loPres	H10m		HCI	√-dm/		p-No	E-HN	Pace Terms and Condition https://info.pacelabs.com terms.pdf	ns found at: n/hubfs/pas-standard-				
hone: 206-325-5254	Client Project 30064310	ect # LO 07.21-Plan		Lab Project # CHEVARCWA-97502			40mlAmb/MeOH10ml/Syr	NWTPHDX NOSGT 8ozClr-NoPres	40mlAmb/MeOH10ml/Syr	res	mlAmb	r 40ml/	mb HCI	ater PAHs 8270ESIM 40mlAmb-NoPres-WT	250mIHDPE-HNO3	SDG #	087								
Collected by (print): M. Andrews	Site/Facility ID # 640 METCALF ST SEDR		RO-	P.O. #			하게 하는 것이 없는 것들이 가장 하는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다.		24	\$1000000000000000000000000000000000000	SGT 8	mlAm	8ozClr-NoPres	0D 40	NOSG	40mlAmb	SIM 4	10 250	Acctnum: CHE	VARCWA					
Collected by (signature):	- A - A - C - C - C - C - C - C - C - C	ab MIJST Be		Quote#	Quote #		ote#		e#						8260D	DX XO		8ozCl) 802CI M 826	M 826	PHGX 4	8270E	Pb 6010	Template: T194612 Prelogin: P871785	
mmediately Packed on Ice NY_	Next Da Two Da Three D	10 Da	(Rad Only) ny (Rad Only)	Date Results	s Needed	No.	BTEXM 8	WTPHE	NWTPHGX	0109 0	ater BTEXM 8260D 40mlAmb-HCl	ater NWTPHDX NOSGT 40mlAmb-HCI-BT	NWTPHGX	PAHS	ater Total	PM: 110 - Brian Ford PB: MM9/8/24									
Sample ID	Comp/Grab	Matrix *	Depth	- Date	Time	Cntrs	soil B	N lios	N lios	soil Pb	water	water	water	water	water	Shipped Via:	Sample # (lab only)								
58-1-19.0-20.0	G	SS	====	9/23/21	12:31	2	X	X	X	X							-11								
5B-1-7.5-85	G	SS	-	9/23/21	12:18	2	1	1	1			-7-					ir								
58 -1-15.0-16.0	G	SS	-	9/23/21	12:27	2								工			757								
MW-17-11.5-13.0	G	SS		9/23/21	11:34	6										MS/MSD	w								
MW-17-19.0-26.0	G	SS	-	9/23/21	11:26	2									123.75 1.724.73		-5								
MW-17-15.0-16.0	and the second second	SS	-	9/23/21	11:22	2						1					24								
MW-17-8.0-9.0	G	SS	-	9/23/21	11:29	2										A ST COMMAND	07								
MW-18-19.0-20.0	and the second	SS		9/23/21	10:31	2											-08								
DUP-2-092321	6	-GHV 55	-	9/23/21		2		- 4									759								
53-3-18.0-19.0	-	-8W55		01/	0758	Z	V	V	V	V							70								
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water Sar	marks:			Trackin	ng# /	Section 1	2,17	7	305	pH Flow		_ Temp	1		COC Seal COC Signe Bottles a Correct b	mple Receipt Che Present/Intact: d/Accurate: crive intact: ottles used: t volume sent: If Applicable	NP N N N N N N N								
Relinquished by : (Signature)		Courier	Time		ed by: (Signat	ure)	///	3		rip Blan	k Recei		eg / No HCL / Me	юН	Preservat	Headspace: ion Correct/Chec n <0.5 mR/hr:	YN								
Relinquished by : (Signature)		ite!	Time		ed by: (Signat	yre)			T	emp? 6	1-2	C Bott	les Receiv	ved:	If preservat	ion required by Logir	n: Date/Time								
Relinquished by: (Signature)	Da	ite:	Time	: Receive	ed for lab by:	(Signati	ure)		0	P12	4/0	Tim	e: d:	US	Hold:		Condition: NCF / Ok								

Company Name/Address:			Billing Infor	rmation:		1			A	nalvsis /	Contai	ner / Pr	eservati	ve	100	Chain	of Custody	Page 2 of 2			
Arcadis - Chevron - WA			630 Plaza	counts Paya a Dr., Ste. 6	00	Pres Chk											Pac	e Analytical [®]			
1100 Olive Way Suite 800 Seattle. WA 98101				ls Ranch, Co	0 80129		I/Syr		1			ВТ		-wT							
Report to: Ada Hamilton/Alex Laws		alexander.laws@arcadis.com;Ada.Han		alexander.laws@arcadis.com;Ada.Hamilto						110m	es	ml/Sy	1		-HCI-		oPres	NO3	Submitt	12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at:	
Project Description: 97502					Collected: SENZO-WOCKEY,WA ET MT CT ET		MeO	NoPr	DH10		P-HC	IAmb	0	N-qu	PE-H	terms.p	pdf	om/hubfs/pas-standard-			
Phone: 206-325-5254	Client Project 30064310 (Lab Project # CHEVARCWA-97502			40mlAmb/MeOH10ml/Syr	ozClr-	b/Med	res	mlAm	T 40m	40mlAmb HCl	OmlAr	6010 250mIHDPE-HNO3			08975	
Collected by (print):	Site/Facility ID		RO-	P.O.#				SGT 8	40mlAmb/MeOH10ml/Syr	8ozClr-NoPres	r-NoP 0D 40	NOSG.	40mla	SIM 4	10 250		Table # Acctnum: CHEVARCWA				
Collected by (signature):	Same Da	ab MUST Be gy Five by 5 Day y 10 Day	Notified) Quote # Day (Rad Only) Date Results Neede			No.	M 8260D	soil NWTPHDX NOSGT 8ozClr-NoPres	NWTPHGX 40			water NWTPHDX NOSGT 40mlAmb-HCI-BT	NWTPHGX 4	water PAHs 8270ESIM 40mlAmb-NoPres-WT	Total Pb 603	Template: T194612 Prelogin: P871785 PM: 110 - Brian Ford PB: MM 9 / 7 / 2		1785 Ford			
Packed on Ice NY	Three D	ay	T	To Control	1 2	of Cntrs	BTEXM	N.N.	WN		ater B	er N	er N	er P	er To	1000000	ped Via:	1/8/4			
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time		soil	soil	soil	soil	wat	wat	water	wat	water		Remarks	Sample # (lab only)			
TRIP BLANK		SS		And the second second		4	\geq		X	2								-0			
		SS		A A SHIPPER S																	
		SS																			
		SS										7. 1					-Je - J- 1				
		SS	100					3 174								45					
	37	SS										17.1									
		SS		1.4																	
		SS			TO SERVICE A							7 3									
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	marks:			90						pH Flow		_ Temp		4	COC Seal COC Sign Bottles Correct	ed/Accura	/Intact: ate: ntact: used:	NP Y N			
OT - Other	mples returned UPS FedEx	Courier	_		acking #	4									VOA Zero	If A Headspartion Cor	Applicabl	Y N			
Relinquished by : (Signature)	///	ite:	1/23/2021 1600					7	在 传	rip Blan	k Recei	(es / No HCL / Me TBR		RAD Scre	en <0.5	mR/hr:	N			
Relinquished by : (Signature)	Da	ite:							viet.	1.5%	1=2.8	C Bott	les Receiv	ved:	If preserva	ation requir	red by Log	in: Date/Time			
Relinquished by : (Signature)	D:	ate:	Time	Re	eceived for lab b	y: (Signat	ure)		1	pate:	11	Tim	e://	10	Hold:			Condition: NCF / OK			

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	67.4		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	1.13		0.308	0.741	1	09/30/2021 18:24	WG1748285

Ss

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.73	5.10	25	10/01/2021 12:44	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		10/01/2021 12:44	WG1749280

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	<u>Qualifici</u>	mg/kg	mg/kg	Dilation	date / time	buten
Benzene	0.00447		0.000953	0.00204	1	10/01/2021 09:59	WG1749857
oluene	0.00619	<u>J</u>	0.00265	0.0102	1	10/01/2021 09:59	WG1749857
Ethylbenzene	U		0.00150	0.00510	1	10/01/2021 09:59	WG1749857
otal Xylenes	0.0112	<u>J</u>	0.00180	0.0133	1	10/01/2021 09:59	WG1749857
ethyl tert-butyl ether	U		0.000715	0.00204	1	10/01/2021 09:59	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 09:59	WG1749857
(S) 4-Bromofluorobenzene	99.9			67.0-138		10/01/2021 09:59	WG1749857
(S) 1 2-Dichloroethane-d4	125			70 0-130		10/01/2021 09:59	WG1749857

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.97	5.93	1	10/03/2021 05:38	WG1749742
Residual Range Organics (RRO)	6.32	J	4.94	14.8	1	10/03/2021 05:38	WG1749742
(S) o-Terphenvl	45.1			18.0-148		10/03/2021 05:38	WG1749742

1408935

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	73.2		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	2.66		0.284	0.683	1	09/30/2021 18:27	WG1748285

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.54	4.54	25	10/01/2021 13:05	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/01/2021 13:05	WG1749280

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00291		0.000848	0.00182	1	10/01/2021 10:18	WG1749857
Toluene	0.00439	<u>J</u>	0.00236	0.00908	1	10/01/2021 10:18	WG1749857
Ethylbenzene	U		0.00134	0.00454	1	10/01/2021 10:18	WG1749857
Total Xylenes	0.00632	<u>J</u>	0.00160	0.0118	1	10/01/2021 10:18	WG1749857
Methyl tert-butyl ether	U		0.000636	0.00182	1	10/01/2021 10:18	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 10:18	WG1749857
(S) 4-Bromofluorobenzene	98.9			67.0-138		10/01/2021 10:18	WG1749857
(S) 1 2-Dichloroethane-d4	122			70 0-130		10/01/2021 10:18	WG1749857

Gl

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.82	5.47	1	10/02/2021 22:42	WG1749742
Residual Range Organics (RRO)	U		4.55	13.7	1	10/02/2021 22:42	WG1749742
(S) o-Terphenyl	43.4			18.0-148		10/02/2021 22:42	WG1749742

1408935

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	67.5		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	1.92		0.308	0.741	1	09/30/2021 18:30	WG1748285

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	2.02	J	1.68	4.96	25.3	10/01/2021 13:27	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		10/01/2021 13:27	WG1749280

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.0651		0.000925	0.00198	1.01	10/01/2021 10:38	WG1749857
Toluene	0.0183		0.00257	0.00990	1.01	10/01/2021 10:38	WG1749857
Ethylbenzene	0.119		0.00146	0.00496	1.01	10/01/2021 10:38	WG1749857
Total Xylenes	0.345		0.00174	0.0129	1.01	10/01/2021 10:38	WG1749857
Methyl tert-butyl ether	U		0.000692	0.00198	1.01	10/01/2021 10:38	WG1749857
(S) Toluene-d8	106			75.0-131		10/01/2021 10:38	WG1749857
(S) 4-Bromofluorobenzene	100			67.0-138		10/01/2021 10:38	WG1749857
(S) 1,2-Dichloroethane-d4	125			70.0-130		10/01/2021 10:38	WG1749857

Gl

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	2.21	<u>J</u>	1.97	5.93	1	10/03/2021 05:51	WG1749742
Residual Range Organics (RRO)	45.4		4.94	14.8	1	10/03/2021 05:51	WG1749742
(S) o-Terphenyl	41.0			18.0-148		10/03/2021 05:51	WG1749742

1408935

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	75.9		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	U		0.274	0.658	1	09/30/2021 18:11	WG1748285

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.44	4.24	25	10/01/2021 13:48	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		10/01/2021 13:48	WG1749280

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00275		0.000792	0.00170	1	10/01/2021 10:57	WG1749857
Toluene	0.0290		0.00221	0.00848	1	10/01/2021 10:57	WG1749857
Ethylbenzene	0.0309		0.00125	0.00424	1	10/01/2021 10:57	WG1749857
Total Xylenes	0.171		0.00149	0.0110	1	10/01/2021 10:57	WG1749857
Methyl tert-butyl ether	U		0.000594	0.00170	1	10/01/2021 10:57	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 10:57	WG1749857
(S) 4-Bromofluorobenzene	100			67.0-138		10/01/2021 10:57	WG1749857
(S) 1,2-Dichloroethane-d4	125			70.0-130		10/01/2021 10:57	WG1749857

Gl

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U	UJ J3 J6	1.75	5.27	1	10/02/2021 22:55	WG1749742
Residual Range Organics (RRO)	U		4.38	13.2	1	10/02/2021 22:55	WG1749742
(S) o-Terphenyl	56.3			18.0-148		10/02/2021 22:55	WG1749742

Collected date/time: 09/23/21 11:26

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	68.0		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	4.67		0.306	0.736	1	09/30/2021 18:39	WG1748285

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	9.34		1.71	5.04	25	10/01/2021 14:10	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		10/01/2021 14:10	WG1749280

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.0166		0.000942	0.00202	1	10/01/2021 11:16	WG1749857
Toluene	0.0150		0.00262	0.0101	1	10/01/2021 11:16	WG1749857
Ethylbenzene	0.206		0.00149	0.00504	1	10/01/2021 11:16	WG1749857
Total Xylenes	0.781		0.00178	0.0131	1	10/01/2021 11:16	WG1749857
Methyl tert-butyl ether	U		0.000706	0.00202	1	10/01/2021 11:16	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 11:16	WG1749857
(S) 4-Bromofluorobenzene	101			67.0-138		10/01/2021 11:16	WG1749857
(S) 1,2-Dichloroethane-d4	122			70.0-130		10/01/2021 11:16	WG1749857

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	3.80	<u>J</u>	1.96	5.89	1	10/03/2021 06:04	WG1749742
Residual Range Organics (RRO)	33.4		4.90	14.7	1	10/03/2021 06:04	WG1749742
(S) o-Terphenyl	39.6			18.0-148		10/03/2021 06:04	WG1749742

Collected date/time: 09/23/21 11:22

SAMPLE RESULTS - 06

1408935

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	78.7		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.837		0.264	0.635	1	09/30/2021 18:41	WG1748285

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	3.45	J	1.35	3.98	25	10/01/2021 14:31	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		10/01/2021 14:31	WG1749280

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00304		0.000743	0.00159	1	10/01/2021 11:35	WG1749857
Toluene	0.0593		0.00207	0.00795	1	10/01/2021 11:35	WG1749857
thylbenzene	0.0700		0.00117	0.00398	1	10/01/2021 11:35	WG1749857
otal Xylenes	0.359		0.00140	0.0103	1	10/01/2021 11:35	WG1749857
ethyl tert-butyl ether	U		0.000557	0.00159	1	10/01/2021 11:35	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 11:35	WG1749857
(S) 4-Bromofluorobenzene	99.2			67.0-138		10/01/2021 11:35	WG1749857
(S) 1.2-Dichloroethane-d4	123			70 0-130		10/01/2021 11:35	WG1749857

Gl

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	1.80	<u>J</u>	1.69	5.08	1	10/03/2021 04:19	WG1749742
Residual Range Organics (RRO)	U		4.23	12.7	1	10/03/2021 04:19	WG1749742
(S) o-Terphenyl	52.8			18.0-148		10/03/2021 04:19	WG1749742

PAGE:

11 of 27

1408935

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	85.1		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

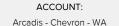
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.886		0.244	0.587	1	09/30/2021 18:44	WG1748285

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.16	3.43	25	10/01/2021 14:53	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/01/2021 14:53	WG1749280

[°]Qc

Cn


Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00124	<u>J</u>	0.000641	0.00137	1	10/01/2021 11:54	WG1749857
Toluene	0.00196	<u>J</u>	0.00178	0.00686	1	10/01/2021 11:54	WG1749857
Ethylbenzene	U		0.00101	0.00343	1	10/01/2021 11:54	WG1749857
Total Xylenes	0.00290	<u>J</u>	0.00121	0.00892	1	10/01/2021 11:54	WG1749857
Methyl tert-butyl ether	U		0.000480	0.00137	1	10/01/2021 11:54	WG1749857
(S) Toluene-d8	109			75.0-131		10/01/2021 11:54	WG1749857
(S) 4-Bromofluorobenzene	99.1			67.0-138		10/01/2021 11:54	WG1749857
(S) 1,2-Dichloroethane-d4	120			70.0-130		10/01/2021 11:54	WG1749857

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.56	4.70	1	10/03/2021 04:32	WG1749742
Residual Range Organics (RRO)	U		3.91	11.7	1	10/03/2021 04:32	WG1749742
(S) o-Terphenyl	53.7			18.0-148		10/03/2021 04:32	WG1749742

Collected date/time: 09/23/21 10:31

SAMPLE RESULTS - 08

1408935

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	78.2		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	1.34		0.266	0.639	1	09/30/2021 18:47	WG1748285

Ss

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	3.92	J	1.38	4.06	25	10/01/2021 15:14	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		10/01/2021 15:14	WG1749280

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00514		0.000759	0.00163	1	10/01/2021 12:13	WG1749857
Toluene	U		0.00211	0.00813	1	10/01/2021 12:13	WG1749857
Ethylbenzene	0.0366		0.00120	0.00406	1	10/01/2021 12:13	WG1749857
Total Xylenes	0.265		0.00143	0.0106	1	10/01/2021 12:13	WG1749857
Methyl tert-butyl ether	U		0.000569	0.00163	1	10/01/2021 12:13	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 12:13	WG1749857
(S) 4-Bromofluorobenzene	99.6			67.0-138		10/01/2021 12:13	WG1749857
(S) 1,2-Dichloroethane-d4	120			70.0-130		10/01/2021 12:13	WG1749857

Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.70	5.12	1	10/03/2021 04:45	WG1749742
Residual Range Organics (RRO)	U		4.26	12.8	1	10/03/2021 04:45	WG1749742
(S) o-Terphenvl	42.9			18.0-148		10/03/2021 04:45	WG1749742

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	72.1		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	4.61		0.289	0.694	1	09/30/2021 18:53	WG1748285

Ss

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.57	4.64	25	10/01/2021 15:57	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		10/01/2021 15:57	WG1749280

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	0.0210		0.000867	0.00186	1	10/01/2021 12:51	WG1749857	
Toluene	0.00247	<u>J</u>	0.00241	0.00928	1	10/01/2021 12:51	WG1749857	
Ethylbenzene	U		0.00137	0.00464	1	10/01/2021 12:51	WG1749857	
otal Xylenes	0.00236	<u>J</u>	0.00163	0.0121	1	10/01/2021 12:51	WG1749857	
ethyl tert-butyl ether	U		0.000650	0.00186	1	10/01/2021 12:51	WG1749857	
(S) Toluene-d8	108			75.0-131		10/01/2021 12:51	WG1749857	
(S) 4-Bromofluorobenzene	100			67.0-138		10/01/2021 12:51	WG1749857	
(S) 1.2-Dichloroethane-d4	123			70.0-130		10/01/2021 12:51	WG1749857	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	2.57	<u>J</u>	1.85	5.55	1	10/03/2021 05:11	WG1749742
Residual Range Organics (RRO)	15.4		4.62	13.9	1	10/03/2021 05:11	WG1749742
(S) o-Terphenvl	48.4			18.0-148		10/03/2021 05:11	WG1749742

TRIP BLANK_210923

Collected date/time: 09/23/21 00:00

SAMPLE RESULTS - 11

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	44.1	BJ	31.6	100	1	10/01/2021 05:33	WG1749141
(S) a,a,a-Trifluorotoluene(FID)	92.3			78.0-120		10/01/2021 05:33	<u>WG1749141</u>

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/01/2021 09:19	WG1749770
Toluene	U		0.278	1.00	1	10/01/2021 09:19	WG1749770
Ethylbenzene	U		0.137	1.00	1	10/01/2021 09:19	WG1749770
Total Xylenes	U		0.174	3.00	1	10/01/2021 09:19	WG1749770
Methyl tert-butyl ether	U		0.101	1.00	1	10/01/2021 09:19	WG1749770
(S) Toluene-d8	98.8			80.0-120		10/01/2021 09:19	WG1749770
(S) 4-Bromofluorobenzene	92.5			77.0-126		10/01/2021 09:19	WG1749770
(S) 1.2-Dichloroethane-d4	114			70.0-130		10/01/2021 09:19	WG1749770

Cn

Pace Analytical® ANALYTICAL REPORT

January 18, 2022

Revised Report

Arcadis - Chevron - WA

Sample Delivery Group: L1408935

Samples Received: 09/24/2021

Project Number: 30064310 07.21-Plan

97502 Description:

Site: 640 METCALF ST SEDRO-WOOLLEY

Report To: Ada Hamilton/Alex Laws

1100 Olive Way

Suite 800

Seattle, WA 98101

Entire Report Reviewed By:

Buar Ford

Ss

Cn

Sr

[°]Qc

Gl

Αl

Sc

PAGE:

1 of 27

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

> ACCOUNT: PROJECT: SDG: DATE/TIME: Arcadis - Chevron - WA 30064310 07.21-Plan L1408935 01/18/22 15:52

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
SB-1-19.0-20.0_210923 L1408935-01	6
SB-1-7.5-8.5_210923 L1408935-02	7
SB-1-15.0-16.0_210923 L1408935-03	8
MW-17-11.5-13.0_210923 L1408935-04	9
MW-17-19.0-20.0_210923 L1408935-05	10
MW-17-15.0-16.0_210923 L1408935-06	11
MW-17-8.0-9.0_210923 L1408935-07	12
MW-18-19.0-20.0_210923 L1408935-08	13
SB-3-18.0-19.0_210923 L1408935-10	14
TRIP BLANK_210923 L1408935-11	15
Qc: Quality Control Summary	16
Total Solids by Method 2540 G-2011	16
Metals (ICP) by Method 6010D	17
Volatile Organic Compounds (GC) by Method NWTPHGX	18
Volatile Organic Compounds (GC/MS) by Method 8260D	20
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	23
GI: Glossary of Terms	24
Al: Accreditations & Locations	25

PAGE:

2 of 27

26

Sc: Sample Chain of Custody

SAMPLE SUMMARY

		Collected by	Collected date/time	Received da	te/time
		M. Andrews	09/23/21 12:31	09/24/21 09	
Batch	Dilution	Preparation	Analysis	Analyst	Location
		date/time	date/time		
WG1748511	1	09/30/21 09:13	09/30/21 09:21	CMK	Mt. Juliet, TN
WG1748285	1	09/30/21 08:16	09/30/21 18:24	CCE	Mt. Juliet, TN
WG1749280	25	09/23/21 12:31	10/01/21 12:44	MGF	Mt. Juliet, TN
WG1749857	1	09/23/21 12:31	10/01/21 09:59	DWR	Mt. Juliet, TN
WG1749742	1	10/01/21 21:28	10/03/21 05:38	CAG	Mt. Juliet, TN
		Collected by	Collected date/time	Received da	te/time
		M. Andrews	09/23/21 12:18	09/24/21 09	:45
Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
WG1748511	1	09/30/21 09:13	09/30/21 09:21	CMK	Mt. Juliet, TN
WG1748285	1	09/30/21 08:16	09/30/21 18:27	CCE	Mt. Juliet, Ti
WG1749280	25	09/23/21 12:18	10/01/21 13:05	MGF	Mt. Juliet, Ti
WG1749857	1	09/23/21 12:18	10/01/21 10:18	DWR	Mt. Juliet, Ti
WG1749742	1	10/01/21 21:28	10/02/21 22:42	CAG	Mt. Juliet, TI
		Collected by	Collected date/time	Received da	te/time
		M. Andrews	09/23/21 12:27	09/24/21 09	:45
Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
WG1748511	1	09/30/21 09:13	09/30/21 09:21	CMK	Mt. Juliet, Th
WG1748285	1	09/30/21 08:16	09/30/21 18:30	CCE	Mt. Juliet, Ti
WG1749280	25.3	09/23/21 12:27	10/01/21 13:27	MGF	Mt. Juliet, Ti
WG1749857	1.01	09/23/21 12:27	10/01/21 10:38	DWR	Mt. Juliet, Ti
WG1749742	1	10/01/21 21:28	10/03/21 05:51	CAG	Mt. Juliet, Ti
		Collected by	Collected date/time	Received da	te/time
		M. Andrews	09/23/21 11:34	09/24/21 09	:45
Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
WG1748511	1	09/30/21 09:13	09/30/21 09:21	CMK	Mt. Juliet, TN
WG1748285	1	09/30/21 08:16	09/30/21 18:11	CCE	Mt. Juliet, Ti
WG1749280	25	09/23/21 11:34	10/01/21 13:48	MGF	Mt. Juliet, TI
WG1749857	1	09/23/21 11:34	10/01/21 10:57	DWR	Mt. Juliet, TI
WG1749742	1	10/01/21 21:28	10/02/21 22:55	CAG	Mt. Juliet, T
		Collected by	Collected date/time	Received da	te/time
		M. Andrews	09/23/21 11:26	09/24/21 09	:45
Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	_,	
		09/30/21 09:13	09/30/21 09:21		Mt. Juliet, Ti
WG1748285	1	09/30/21 08:16			Mt. Juliet, Ti
WG1749280	25	09/23/21 11:26	10/01/21 14:10	MGF	Mt. Juliet, Ti
					Mt. Juliet, TN
WG1749742	1	10/01/21 21:28	10/03/21 06:04	CAG	Mt. Juliet, TN
	Batch WG1748511 WG1749280 WG1749742 Batch WG1748511 WG1748285 WG1749280 WG1749742 Batch WG1748511 WG1748285 WG1749280 WG1749857 WG1749742 Batch Batch WG1748511 WG1748285 WG1749280 WG1749857 WG1749742 Batch	WG1748511 1 WG1749280 25 WG1749857 1 WG1749742 1 Batch Dilution WG1748511 1 WG1749280 25 WG1749857 1 WG1749742 1 Batch Dilution WG1748511 1 WG1749742 1 Batch Dilution WG1748511 1 WG1749280 25.3 WG1749280 25.3 WG1749280 1 WG1749742 1 Batch Dilution WG1748511 1 WG1749742 1 Batch Dilution WG1749742 1 Batch Dilution WG1749742 1 Batch Dilution	Batch Dilution Preparation date/time	Batch Dilution Preparation date/time date/ti	Batch Dilution Preparation Analysis Analyst date/time date/time

PAGE:

3 of 27

ACCOUNT:

SAMPLE SUMMARY

J.	AIVIFLL .		MAKI			
MW-17-15.0-16.0_210923 L1408935-06 Solid			Collected by M. Andrews	Collected date/time 09/23/2111:22	Received da 09/24/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1748511	1	09/30/21 09:13	09/30/21 09:21	CMK	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1748285	1	09/30/21 08:16	09/30/21 18:41	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1749280	25	09/23/21 11:22	10/01/21 14:31	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1749857	1	09/23/21 11:22	10/01/21 11:35	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749742	1	10/01/21 21:28	10/03/21 04:19	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-17-8.0-9.0_210923 L1408935-07 Solid			M. Andrews	09/23/21 11:29	09/24/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1748511	1	09/30/21 09:13	09/30/21 09:21	CMK	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1748285	1	09/30/21 08:16	09/30/21 18:44	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1749280	25	09/23/21 11:29	10/01/21 14:53	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1749857	1	09/23/21 11:29	10/01/21 11:54	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749742	1	10/01/21 21:28	10/03/21 04:32	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-18-19.0-20.0_210923 L1408935-08 Solid			M. Andrews	09/23/2110:31	09/24/21 09:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1748511	1	09/30/21 09:13	09/30/21 09:21	CMK	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1748285	1	09/30/21 08:16	09/30/21 18:47	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1749280	25	09/23/21 10:31	10/01/21 15:14	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1749857	1	09/23/21 10:31	10/01/21 12:13	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749742	1	10/01/21 21:28	10/03/21 04:45	CAG	Mt. Juliet, TN
CD 2.40 0.40 0.240022 1.440002E 40. Colid			Collected by M. Andrews	Collected date/time 09/23/21 07:58	Received da 09/24/21 09:	
SB-3-18.0-19.0_210923 L1408935-10 Solid Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1748511	1	09/30/21 09:13	09/30/21 09:21	CMK	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1748285	1	09/30/21 08:16	09/30/21 18:53	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1749280	25	09/23/21 07:58	10/01/21 15:57	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1749857	1	09/23/21 07:58	10/01/21 12:51	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1749742	1	10/01/21 21:28	10/03/21 05:11	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK_210923 L1408935-11 GW			M. Andrews	09/23/21 00:00	09/24/21 09:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1749141	1	10/01/21 05:33	10/01/21 05:33	BMB	Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260D

WG1749770

1

10/01/21 09:19

10/01/21 09:19

BMB

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

PAGE:

5 of 27

Brian Ford Project Manager

Report Revision History

Buar Ford

Level II Report - Version 1: 10/06/21 19:47

Project Narrative

removed DUP-2-092321

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	67.4		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	1.13		0.308	0.741	1	09/30/2021 18:24	WG1748285

Ss

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.73	5.10	25	10/01/2021 12:44	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		10/01/2021 12:44	WG1749280

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	<u>Qualifici</u>	mg/kg	mg/kg	Dilation	date / time	buten
Benzene	0.00447		0.000953	0.00204	1	10/01/2021 09:59	WG1749857
oluene	0.00619	<u>J</u>	0.00265	0.0102	1	10/01/2021 09:59	WG1749857
Ethylbenzene	U		0.00150	0.00510	1	10/01/2021 09:59	WG1749857
otal Xylenes	0.0112	<u>J</u>	0.00180	0.0133	1	10/01/2021 09:59	WG1749857
ethyl tert-butyl ether	U		0.000715	0.00204	1	10/01/2021 09:59	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 09:59	WG1749857
(S) 4-Bromofluorobenzene	99.9			67.0-138		10/01/2021 09:59	WG1749857
(S) 1 2-Dichloroethane-d4	125			70 0-130		10/01/2021 09:59	WG1749857

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.97	5.93	1	10/03/2021 05:38	WG1749742
Residual Range Organics (RRO)	6.32	J	4.94	14.8	1	10/03/2021 05:38	WG1749742
(S) o-Terphenvl	45.1			18.0-148		10/03/2021 05:38	WG1749742

1408935

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	73.2		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	2.66		0.284	0.683	1	09/30/2021 18:27	WG1748285

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.54	4.54	25	10/01/2021 13:05	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/01/2021 13:05	WG1749280

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00291		0.000848	0.00182	1	10/01/2021 10:18	WG1749857
Toluene	0.00439	<u>J</u>	0.00236	0.00908	1	10/01/2021 10:18	WG1749857
Ethylbenzene	U		0.00134	0.00454	1	10/01/2021 10:18	WG1749857
Total Xylenes	0.00632	<u>J</u>	0.00160	0.0118	1	10/01/2021 10:18	WG1749857
Methyl tert-butyl ether	U		0.000636	0.00182	1	10/01/2021 10:18	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 10:18	WG1749857
(S) 4-Bromofluorobenzene	98.9			67.0-138		10/01/2021 10:18	WG1749857
(S) 1 2-Dichloroethane-d4	122			70 0-130		10/01/2021 10:18	WG1749857

Gl

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.82	5.47	1	10/02/2021 22:42	WG1749742
Residual Range Organics (RRO)	U		4.55	13.7	1	10/02/2021 22:42	WG1749742
(S) o-Terphenyl	43.4			18.0-148		10/02/2021 22:42	WG1749742

1408935

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	67.5		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	1.92		0.308	0.741	1	09/30/2021 18:30	WG1748285

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	2.02	J	1.68	4.96	25.3	10/01/2021 13:27	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		10/01/2021 13:27	WG1749280

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.0651		0.000925	0.00198	1.01	10/01/2021 10:38	WG1749857
Toluene	0.0183		0.00257	0.00990	1.01	10/01/2021 10:38	WG1749857
Ethylbenzene	0.119		0.00146	0.00496	1.01	10/01/2021 10:38	WG1749857
Total Xylenes	0.345		0.00174	0.0129	1.01	10/01/2021 10:38	WG1749857
Methyl tert-butyl ether	U		0.000692	0.00198	1.01	10/01/2021 10:38	WG1749857
(S) Toluene-d8	106			75.0-131		10/01/2021 10:38	WG1749857
(S) 4-Bromofluorobenzene	100			67.0-138		10/01/2021 10:38	WG1749857
(S) 1,2-Dichloroethane-d4	125			70.0-130		10/01/2021 10:38	WG1749857

Gl

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	2.21	<u>J</u>	1.97	5.93	1	10/03/2021 05:51	WG1749742
Residual Range Organics (RRO)	45.4		4.94	14.8	1	10/03/2021 05:51	WG1749742
(S) o-Terphenyl	41.0			18.0-148		10/03/2021 05:51	WG1749742

1408935

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	75.9		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	U		0.274	0.658	1	09/30/2021 18:11	WG1748285

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.44	4.24	25	10/01/2021 13:48	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		10/01/2021 13:48	WG1749280

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00275		0.000792	0.00170	1	10/01/2021 10:57	WG1749857
Toluene	0.0290		0.00221	0.00848	1	10/01/2021 10:57	WG1749857
Ethylbenzene	0.0309		0.00125	0.00424	1	10/01/2021 10:57	WG1749857
Total Xylenes	0.171		0.00149	0.0110	1	10/01/2021 10:57	WG1749857
Methyl tert-butyl ether	U		0.000594	0.00170	1	10/01/2021 10:57	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 10:57	WG1749857
(S) 4-Bromofluorobenzene	100			67.0-138		10/01/2021 10:57	WG1749857
(S) 1,2-Dichloroethane-d4	125			70.0-130		10/01/2021 10:57	WG1749857

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U	J3 J6	1.75	5.27	1	10/02/2021 22:55	WG1749742
Residual Range Organics (RRO)	U		4.38	13.2	1	10/02/2021 22:55	WG1749742
(S) o-Terphenyl	56.3			18.0-148		10/02/2021 22:55	WG1749742

Collected date/time: 09/23/21 11:26

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	68.0		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	4.67		0.306	0.736	1	09/30/2021 18:39	WG1748285

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	9.34		1.71	5.04	25	10/01/2021 14:10	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		10/01/2021 14:10	WG1749280

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.0166		0.000942	0.00202	1	10/01/2021 11:16	WG1749857
Toluene	0.0150		0.00262	0.0101	1	10/01/2021 11:16	WG1749857
Ethylbenzene	0.206		0.00149	0.00504	1	10/01/2021 11:16	WG1749857
Total Xylenes	0.781		0.00178	0.0131	1	10/01/2021 11:16	WG1749857
Methyl tert-butyl ether	U		0.000706	0.00202	1	10/01/2021 11:16	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 11:16	WG1749857
(S) 4-Bromofluorobenzene	101			67.0-138		10/01/2021 11:16	WG1749857
(S) 1,2-Dichloroethane-d4	122			70.0-130		10/01/2021 11:16	WG1749857

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	3.80	<u>J</u>	1.96	5.89	1	10/03/2021 06:04	WG1749742
Residual Range Organics (RRO)	33.4		4.90	14.7	1	10/03/2021 06:04	WG1749742
(S) o-Terphenyl	39.6			18.0-148		10/03/2021 06:04	WG1749742

Collected date/time: 09/23/21 11:22

SAMPLE RESULTS - 06

1408935

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	78.7		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.837		0.264	0.635	1	09/30/2021 18:41	WG1748285

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	3.45	J	1.35	3.98	25	10/01/2021 14:31	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		10/01/2021 14:31	WG1749280

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00304		0.000743	0.00159	1	10/01/2021 11:35	WG1749857
Toluene	0.0593		0.00207	0.00795	1	10/01/2021 11:35	WG1749857
thylbenzene	0.0700		0.00117	0.00398	1	10/01/2021 11:35	WG1749857
otal Xylenes	0.359		0.00140	0.0103	1	10/01/2021 11:35	WG1749857
ethyl tert-butyl ether	U		0.000557	0.00159	1	10/01/2021 11:35	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 11:35	WG1749857
(S) 4-Bromofluorobenzene	99.2			67.0-138		10/01/2021 11:35	WG1749857
(S) 1.2-Dichloroethane-d4	123			70 0-130		10/01/2021 11:35	WG1749857

Gl

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	1.80	<u>J</u>	1.69	5.08	1	10/03/2021 04:19	WG1749742
Residual Range Organics (RRO)	U		4.23	12.7	1	10/03/2021 04:19	WG1749742
(S) o-Terphenyl	52.8			18.0-148		10/03/2021 04:19	WG1749742

PAGE:

11 of 27

1408935

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	85.1		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

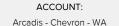
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.886		0.244	0.587	1	09/30/2021 18:44	WG1748285

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.16	3.43	25	10/01/2021 14:53	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/01/2021 14:53	WG1749280

[°]Qc

Cn


Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00124	<u>J</u>	0.000641	0.00137	1	10/01/2021 11:54	WG1749857
Toluene	0.00196	<u>J</u>	0.00178	0.00686	1	10/01/2021 11:54	WG1749857
Ethylbenzene	U		0.00101	0.00343	1	10/01/2021 11:54	WG1749857
Total Xylenes	0.00290	<u>J</u>	0.00121	0.00892	1	10/01/2021 11:54	WG1749857
Methyl tert-butyl ether	U		0.000480	0.00137	1	10/01/2021 11:54	WG1749857
(S) Toluene-d8	109			75.0-131		10/01/2021 11:54	WG1749857
(S) 4-Bromofluorobenzene	99.1			67.0-138		10/01/2021 11:54	WG1749857
(S) 1,2-Dichloroethane-d4	120			70.0-130		10/01/2021 11:54	WG1749857

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.56	4.70	1	10/03/2021 04:32	WG1749742
Residual Range Organics (RRO)	U		3.91	11.7	1	10/03/2021 04:32	WG1749742
(S) o-Terphenyl	53.7			18.0-148		10/03/2021 04:32	WG1749742

Collected date/time: 09/23/21 10:31

SAMPLE RESULTS - 08

1408935

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	78.2		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	1.34		0.266	0.639	1	09/30/2021 18:47	WG1748285

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	3.92	J	1.38	4.06	25	10/01/2021 15:14	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		10/01/2021 15:14	WG1749280

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00514		0.000759	0.00163	1	10/01/2021 12:13	WG1749857
Toluene	U		0.00211	0.00813	1	10/01/2021 12:13	WG1749857
Ethylbenzene	0.0366		0.00120	0.00406	1	10/01/2021 12:13	WG1749857
Total Xylenes	0.265		0.00143	0.0106	1	10/01/2021 12:13	WG1749857
Methyl tert-butyl ether	U		0.000569	0.00163	1	10/01/2021 12:13	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 12:13	WG1749857
(S) 4-Bromofluorobenzene	99.6			67.0-138		10/01/2021 12:13	WG1749857
(S) 1.2-Dichloroethane-d4	120			70.0-130		10/01/2021 12:13	WG1749857

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.70	5.12	1	10/03/2021 04:45	WG1749742
Residual Range Organics (RRO)	U		4.26	12.8	1	10/03/2021 04:45	WG1749742
(S) o-Terphenyl	42.9			18.0-148		10/03/2021 04:45	WG1749742

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	72.1		1	09/30/2021 09:21	WG1748511

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	4.61		0.289	0.694	1	09/30/2021 18:53	WG1748285

Ss

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.57	4.64	25	10/01/2021 15:57	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		10/01/2021 15:57	WG1749280

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.0210		0.000867	0.00186	1	10/01/2021 12:51	WG1749857
Toluene	0.00247	<u>J</u>	0.00241	0.00928	1	10/01/2021 12:51	WG1749857
Ethylbenzene	U		0.00137	0.00464	1	10/01/2021 12:51	WG1749857
otal Xylenes	0.00236	<u>J</u>	0.00163	0.0121	1	10/01/2021 12:51	WG1749857
ethyl tert-butyl ether	U		0.000650	0.00186	1	10/01/2021 12:51	WG1749857
(S) Toluene-d8	108			75.0-131		10/01/2021 12:51	WG1749857
(S) 4-Bromofluorobenzene	100			67.0-138		10/01/2021 12:51	WG1749857
(S) 1.2-Dichloroethane-d4	123			70.0-130		10/01/2021 12:51	WG1749857

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	2.57	<u>J</u>	1.85	5.55	1	10/03/2021 05:11	WG1749742
Residual Range Organics (RRO)	15.4		4.62	13.9	1	10/03/2021 05:11	WG1749742
(S) o-Terphenvl	48.4			18.0-148		10/03/2021 05:11	WG1749742

TRIP BLANK_210923

Collected date/time: 09/23/21 00:00

SAMPLE RESULTS - 11

.1408935

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	44.1	<u>B J</u>	31.6	100	1	10/01/2021 05:33	<u>WG1749141</u>
(S) a,a,a-Trifluorotoluene(FID)	92.3			78.0-120		10/01/2021 05:33	<u>WG1749141</u>

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/01/2021 09:19	WG1749770
Toluene	U		0.278	1.00	1	10/01/2021 09:19	WG1749770
Ethylbenzene	U		0.137	1.00	1	10/01/2021 09:19	WG1749770
Total Xylenes	U		0.174	3.00	1	10/01/2021 09:19	WG1749770
Methyl tert-butyl ether	U		0.101	1.00	1	10/01/2021 09:19	WG1749770
(S) Toluene-d8	98.8			80.0-120		10/01/2021 09:19	WG1749770
(S) 4-Bromofluorobenzene	92.5			77.0-126		10/01/2021 09:19	WG1749770
(S) 1,2-Dichloroethane-d4	114			70.0-130		10/01/2021 09:19	WG1749770

Cn

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1408935-01,02,03,04,05,06,07,08,10

Method Blank (MB)

(MB) R3711081-1 09/3	0/21 09:21			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

IC

L1408935-04 Original Sample (OS) • Duplicate (DUP)

-	00	11100025 01	09/30/21 09:21 •	יםו ום/	D2711001 2	00/20/21 00:21
(US.	1 L1400933-04	09/30/2109.21•	UUP) K3/11U01-3	09/30/2109.21

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	%	%		%		%
Total Solids	75.9	76.1	1	0.222		10

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3711081-2 09/30/21 09:21

(LCS) KS/11001-2 09/30/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

L1408935-01,02,03,04,05,06,07,08,10

Metals (ICP) by Method 6010D

(MB) R3711334-1 09/30/21 18:05

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Lead	U		0.208	0.500

[†]Cn

(LCS)	R3711334-2	09/30/21	18:	80

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Load	100	00.2	00.2	90 0 120	

(OS) L1408935-04 09/30/21 18:11 • (MS) R3711334-5 09/30/21 18:19 • (MSD) R3711334-6 09/30/21 18:22

(66) 21 166666 61 65/66/2	. ,	Original Result (dry)	•	,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Lead	132	U	134	134	102	101	1	75.0-125			0.107	20

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1408935-11

Method Blank (MB)

(MB) R3711746-2 10/01/21 01:42							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l		ug/l	ug/l			
Gasoline Range Organics-NWTPH	45.6	<u>J</u>	31.6	100			
(S) a,a,a-Trifluorotoluene(FID)	95.3			78.0-120			

²Tc

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3711746-1 10/01/21	I 00:34				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5500	4740	86.2	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			101	78.0-120	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1408935-01,02,03,04,05,06,07,08,10

Method Blank (MB)

(MB) R3712980-2 10/01/2	21 11:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Gasoline Range Organics-NWTPH	U		0.848	2.50
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3712980-1 10/01/2	21 11:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Gasoline Range Organics-NWTPH	5.50	4.49	81.6	71.0-124	
(S) a,a,a-Trifluorotoluene(FID)			97.8	77.0-120	

(OS) | 1408935-04 10/01/21 13:48 • (MS) P3712980-3 10/01/21 19:54 • (MSD) P3712980-4 10/01/21 20:15

(03) 11406935-04 10/01/2	, ,		,	,	-4 10/01/21 20.	.13						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Gasoline Range Organics-NWTPH	193	U	145	161	75.1	83.5	25	10.0-149			10.6	27
(S) a,a,a-Trifluorotoluene(FID)					101	105		77.0-120				

L1408938-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1408938-01 10/01/21 16:19 • (MS) P3712980-5 10/01/21 20:37 • (MSD) P3712980-6 10/01/21 20:58

(OS) L1408938-01 10/01/2	1 16:19 • (IVIS) R3	1/12980-5 10/0) 1/21 20:37 • (IVI	SD) R3/12980	-6 10/01/21 20:	58						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Gasoline Range Organics-NWTPH	232	U	184	172	79.4	74.3	25	10.0-149			6.72	27
(S) a,a,a-Trifluorotoluene(FID)					101	102		77.0-120				

01/18/22 15:52

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1408935-11

Method Blank (MB)

(MB) R3711739-2 10/01/21	05:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/I
Benzene	U		0.0941	1.00
Ethylbenzene	U		0.137	1.00
Methyl tert-butyl ether	U		0.101	1.00
Toluene	U		0.278	1.00
Xylenes, Total	U		0.174	3.00
(S) Toluene-d8	98.7			80.0-120
(S) 4-Bromofluorobenzene	92.6			77.0-126
(S) 1,2-Dichloroethane-d4	109			70.0-130

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	5.00	5.06	5.19	101	104	70.0-123			2.54	20	
Ethylbenzene	5.00	5.03	5.11	101	102	79.0-123			1.58	20	
Methyl tert-butyl ether	5.00	4.42	4.05	88.4	81.0	68.0-125			8.74	20	
Toluene	5.00	5.19	4.95	104	99.0	79.0-120			4.73	20	
Xylenes, Total	15.0	15.1	15.1	101	101	79.0-123			0.000	20	
(S) Toluene-d8				99.7	96.2	80.0-120					
(S) 4-Bromofluorobenzene				92.8	96.6	77.0-126					
(S) 1,2-Dichloroethane-d4				111	111	70.0-130					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1408935-01,02,03,04,05,06,07,08,10

Method Blank (MB)

(MB) R3711907-2 10/01/21	07:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Methyl tert-butyl ether	U		0.000350	0.00100
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	109			75.0-131
(S) 4-Bromofluorobenzene	100			67.0-138
(S) 1,2-Dichloroethane-d4	116			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3711907-1 10/01/2	21 06:11 • (LCSD) F	R3711907-3 10	/01/21 08:39								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.103	0.109	82.4	87.2	70.0-123			5.66	20	
Ethylbenzene	0.125	0.108	0.115	86.4	92.0	74.0-126			6.28	20	
Methyl tert-butyl ether	0.125	0.121	0.125	96.8	100	66.0-132			3.25	20	
Toluene	0.125	0.111	0.117	88.8	93.6	75.0-121			5.26	20	l
Xylenes, Total	0.375	0.333	0.356	88.8	94.9	72.0-127			6.68	20	
(S) Toluene-d8				107	106	75.0-131					
(S) 4-Bromofluorobenzene				102	101	67.0-138					
(S) 1,2-Dichloroethane-d4				129	130	70.0-130					

L1408935-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408935-04 10/01/21 10:57 • (MS) R3711907-4 10/01/21 16:20 • (MSD) R3711907-5 10/01/21 16:39

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.176	0.00275	0.0938	0.106	51.6	58.3	1	10.0-149			11.9	37
Ethylbenzene	0.176	0.0309	0.127	0.138	54.3	60.8	1	10.0-160			8.58	38
Methyl tert-butyl ether	0.176	U	0.154	0.151	87.1	85.7	1	11.0-147			1.67	35
Toluene	0.176	0.0290	0.124	0.137	53.9	61.1	1	10.0-156			9.62	38
Xylenes, Total	0.529	0.171	0.458	0.500	54.2	62.2	1	10.0-160			8.85	38
(S) Toluene-d8					107	107		75.0-131				
(S) 4-Bromofluorobenzene					97.9	99.7		67.0-138				
(S) 1,2-Dichloroethane-d4					122	120		70.0-130				

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1408935-01,02,03,04,05,06,07,08,10

L1408938-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408938-01 10/01/21 13:10 • (MS) R3711907-6 10/01/21 16:58 • (MSD) R3711907-7 10/01/21 17:17

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.210	0.00181	0.111	0.220	51.8	104	1	10.0-149		<u>J3</u>	66.0	37
Ethylbenzene	0.210	U	0.110	0.230	52.5	109	1	10.0-160		<u>J3</u>	70.1	38
Methyl tert-butyl ether	0.210	U	0.197	0.199	93.6	94.5	1	11.0-147			0.976	35
Toluene	0.210	U	0.123	0.243	58.5	116	1	10.0-156		<u>J3</u>	65.5	38
Xylenes, Total	0.631	0.00647	0.376	0.716	58.6	112	1	10.0-160		<u>J3</u>	62.2	38
(S) Toluene-d8					106	110		75.0-131				
(S) 4-Bromofluorobenzene					99.3	102		67.0-138				
(S) 1,2-Dichloroethane-d4					123	121		70.0-130				

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1408935-01,02,03,04,05,06,07,08,10

Method Blank (MB)

(MB) R3/11968-1 10/02/21 2	22:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	58.3			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3711968-2 10/02/2	1 22:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	33.3	66.6	50.0-150	
(S) o-Terphenyl			61.1	18.0-148	

L1408935-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408935-04 10/02/21 22:55 • (MS) R3711968-3 10/02/21 23:08 • (MSD) R3711968-4 10/02/21 23:21

(03) 21400333 04 10/02/	, ,	Original Result (dry)		. ,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Diesel Range Organics (DRO)	63.5	U	40.0	28.6	63.1	45.5	1	50.0-150		<u>J3 J6</u>	33.4	20
(S) o-Terphenyl					55.8	39.8		18.0-148				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifier	\Box	escri)	ption

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: 30064310 07.21-Plan L1408935 01/18/22 15:52 Arcadis - Chevron - WA 24 of 27

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

ionpany Name/Address:	1.0		Billing Info	rmation:	A CONTRACT OF THE PARTY OF THE			Analysis / Container / Preservative Chain of Custody						y Page 1 of Z				
Arcadis - Chevron - WA			630 Plaz	counts Payable a Dr., Ste. 600		Pres Chk				19.00						Pace	Analytical	
1100 Olive Way Suite 800 Seattle. WA 98101			Highland	ands Ranch, CO 80129			I/Syr					31		TW-				
대통령과 가게 하면 되었다. 이 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은			Email To: alexander.	To: der.laws@arcadis.com;Ada.Hamilton@ar				S	l/Syl			HCI-B		Pres	03	12065 Lebanon Rd. Mount Juliet, TN 37122 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the		
Project Description: 97502		City/State Collected:	jedro - U	Doolley, WA	Please Cir		МеОН	loPres	0H10m		HCI	4-dmb	_	p-No	E-HN	Pace Terms and Condition https://info.pacelabs.com terms.pdf	n/hubfs/pas-standard-	
hone: 206-325-5254	Client Project # 30064310 07.21-Plan		Lab Project # CHEVARCWA	-97502		40mlAmb/MeOH10ml/Syr	NWTPHDX NOSGT 8ozClr-NoPres	40mlAmb/MeOH10ml/Syr	res	ater BTEXM 8260D 40mlAmb-HCl	r 40ml/	mb HCI	OmlAm	250mIHDPE-HNO3	SDG #	087		
Collected by (print): M. Andrews	Site/Facility II		P.O.#			24	\$1000000000000000000000000000000000000	SGT 8	mlAm	8ozClr-NoPres	0D 40	NOSG	40mlAmb	SIM 4	10 250	Acctnum: CHE	VARCWA	
Collected by (signature):		ab MIJST Be		Quote#			8260D	ON XC		8ozCl	M 826	YGH.		8270E	Pb 6010	Template:T194 Prelogin: P871		
mmediately Packed on Ice NY_	Next Da Two Da Three D	10 Da	(Rad Only) y (Rad Only)	Date Results	s Needed	No.	BTEXM 8	WTPHI	NWTPHGX	0109 0	BTEXA	NWTP	ater NWTPHDX NOSGT 40mlAmb-HCI-BT ater NWTPHGX 40mlAmb HCI ater PAHs 8270ESIM 40mlAmb-NoPres-WT		ater Total	PM: 110 - Brian Ford PB: MM98124		
Sample ID	Comp/Grab	Matrix *	Depth	- Date	Time	Cntrs	soil B	N lios	N lios	soil Pb	water	water	water	water	water	Shipped Via:	Sample # (lab only)	
58-1-19.0-20.0	G	SS		9/23/21	12:31	2	X	X	X	X							-11	
5B-1-7.5-85	G	SS	-	9/23/21	12:18	2	1	1	1			-7-					ir	
58 -1-15.0-16.0	G	SS	-	9/23/21	12:27	2											757	
MW-17-11.5-13.0	G	SS		9/23/21	11:34	6										MS/MSD	w	
MW-17-19.0-26.0	G	SS	-	9/23/21	11:26	2									123.75 1.724.73		-5	
MW-17-15.0-16.0	and the second second	SS	-	9/23/21	11:22	2											24	
MW-17-8.0-9.0	G	SS	-	9/23/21	11:29	2										A ST COMMAND	07	
MW-18-19.0-20.0	and the second	SS		9/23/21	10:31	2											-08	
DUP-2-092321	6	-GHV 55	-	9/23/21		2		- 4									759	
53-3-18.0-19.0	-	-8W55		01/	0758	Z	V	V	V	V							70	
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water Sar	marks:			Trackin	ng# /	Section 1	2,17	7	305	pH Flow		_ Temp	1		COC Seal COC Signe Bottles a Correct b	mple Receipt Che Present/Intact: d/Accurate: crive intact: ottles used: t volume sent: If Applicable	NP N N	
Relinquished by : (Signature)		Courier	Time		ed by: (Signat	ure)	/11/	3		rip Blan	k Recei		eg / No HCL / Me	юН	Preservat	Headspace: ion Correct/Chec n <0.5 mR/hr:	YN	
Relinquished by : (Signature)		ite!	Time		ed by: (Signat	yre)			T	emp? 6	1-2	C Bott	les Receiv	ved:	If preservat	ion required by Logir	n: Date/Time	
Relinquished by: (Signature)	Da	ite:	Time	: Receive	ed for lab by:	(Signati	ure)		0	P12	4/0	Tim	e: d:	US	Hold:		Condition: NCF / Ok	

Company Name/Address:			Billing Infor	rmation:		1	Analysis / Container / Preservative Chain of Custody Page							Page <u>2</u> of <u>2</u>				
Arcadis - Chevron - WA			Attn: Accounts Payable 630 Plaza Dr., Ste. 600			Pres Chk											Pac	e Analytical [®]
1100 Olive Way Suite 800 Seattle. WA 98101	suite 800 Seattle. WA 98101 Seport to: Ada Hamilton/Alex Laws			Email To: alexander.laws@arcadis.com;Ada.Hamilton					1			ВТ		-wT				
Report to: Ada Hamilton/Alex Laws			alexander.					es	s/Im(1		-HCI-	-5-1-6	oPres	NO3	Submitt	tting a sample via	unt Juliet, TN 37122 this chain of custody ment and acceptance of the ons found at:
Project Description: 97502	City/State Collected: 52720-1-100					MeO	NoPr	DH10		p-HC	lAmb	0	N-qu	PE-H	terms.p	https://info.pacelabs.com/hubfs/pas-standard- terms.pdf		
Phone: 206-325-5254	HER PARKS AND ADDRESS OF THE PARKS OF THE			CHEVARC	# WA-97502		40mlAmb/MeOH10ml/Syr	ozClr-	40mlAmb/MeOH10ml/Syr	8ozClr-NoPres	water BTEXM 8260D 40mlAmb-HCl	T 40m	40mlAmb HCl	OmlAr	6010 250mIHDPE-HNO3	SDG	sDG#/1408935	
Collected by (print):	Site/Facility ID		RO-				SGT 8	VOSGT				40mla	SIM 4	10 250			VARCWA	
Collected by (signature):	Same Da	ab MUST Be ay Five by 5 Day 10 Day	Day	Quote #	esults Needed			NWTPHGX 40		TEXM 826	water NWTPHDX NOSGT 40mlAmb-HCI-BT	NWTPHGX 4	water PAHs 8270ESIM 40mlAmb-NoPres-WT	Total Pb 60	Template: T194612 Prelogin: P871785 PM: 110 - Brian Ford PB: 110 - Brian Ford		1785 Ford	
Packed on Ice NY	Three D	ay	Date Results Needed No. of JH L Date Results Needed Needed No. of JH L Date Results Needed Neede		er P	er To	Shipped Via:											
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time		soil	soil	soil	soil	wat	wat	water	wat	water		Remarks	Sample # (lab only)
TRIP BLANK		SS		And the second second		4	\geq		X	2								-0
		SS		A A SHIPPER S														
		SS																
		SS										7. 1					-Je - J- 1	
		SS	100					3 174								45		
	37	SS										7						
		SS		1.4														
		SS			To the A							7 3						
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	marks:			90						pH Flow		_ Temp		4	COC Seal COC Sign Bottles Correct	ed/Accura	/Intact: ate: ntact: used:	NP Y N
DW - Drinking Water OT - Other Samples returned via:UPSFedEx XCourier					acking #	4									VOA Zero	Efficient volume sent: If Applicable A Zero Headspace: Y_N		
Relinquished by : (Signature)	///	ite:	Time	(2)(2)	eceived by: (Sign			7	在 (年) (年) (日)	rip Blan	k Recei	(es / No HCL / Me TBR		RAD Scre	en <0.5	mR/hr:	N
Relinquished by : (Signature)	Da	ite:	Time	: Re	eceived by: (Sign	ature)			viet.	1.5%	1=2.8	C Bott	les Receiv	ved:	If preserva	ation requir	red by Log	in: Date/Time
Relinquished by : (Signature)	D:	ate:	Time	Re	eceived for lab b	y: (Signat	ure)		1	pate:	11	Tim	e://	10	Hold:			Condition: NCF / OK

Pace Analytical® ANALYTICAL REPORT

Arcadis - Chevron - WA

Sample Delivery Group:

L1408938

Samples Received:

09/24/2021

Project Number:

30064310 07.21-Plan

Description:

97502

Site:

640 METCALF ST SEDRO-WOOLLEY

Report To:

Ada Hamilton/Alex Laws

1100 Olive Way

Suite 800

Seattle, WA 98101

Entire Report Reviewed By:

Kelly Mercer

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: PROJECT: Arcadis - Chevron - WA 30064310 07.21-Plan

SDG: L1408938

DATE/TIME: 10/15/21 13:02

PAGE: 1 of 28

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-19-18.0-20.0_210922 L1408938-01	6
MW-19-7.5-8.5_210922 L1408938-02	7
SB-3-7.5-8.5_210923 L1408938-03	8
MW-20-19.0-20.0_210922 L1408938-04	9
MW-18-8.0-9.0_210923 L1408938-05	10
TRIP BLANK_210923 L1408938-06	11
MW-16-4.0-5.0_210923 L1408938-07	12
DUP-3-092321_210923 L1408938-08	13
MW-16-14.0-15.0_210923 L1408938-09	14
MW-16-19.0-20.0_210923 L1408938-10	15
Qc: Quality Control Summary	16
Total Solids by Method 2540 G-2011	16
Metals (ICP) by Method 6010D	17
Volatile Organic Compounds (GC) by Method NWTPHGX	18
Volatile Organic Compounds (GC/MS) by Method 8260D	20
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	23
GI: Glossary of Terms	26
Al: Accreditations & Locations	27

Sc: Sample Chain of Custody

28

SAMPLE SUMMARY

		Collected by M. Andrews	Collected date/time 09/22/21 13:21	Received da 09/24/21 09:	
Datch	Dilution				
DdlCII	Dilution	•	•	AlldiySt	Location
WG1748513	1			KDW	Mt. Juliet, T
					Mt. Juliet, T
					Mt. Juliet, T
					Mt. Juliet, T
WG1749727	1	10/01/21 11:54	10/02/21 02:07	JDG	Mt. Juliet, T
		Collected by	Collected date/time	Received da	te/time
		M. Andrews	09/22/21 13:16	09/24/21 09:	:45
Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
WG1748513	1	09/30/21 11:03	09/30/21 11:10	KDW	Mt. Juliet, T
WG1748417	1	09/30/21 11:18	10/01/21 03:00	CCE	Mt. Juliet, T
WG1749280	25	09/22/21 13:16	10/01/21 16:40	MGF	Mt. Juliet, T
WG1749857	1	09/22/21 13:16	10/01/21 13:29	DWR	Mt. Juliet, T
WG1749721	1	10/01/21 11:58	10/02/21 02:53	JDG	Mt. Juliet, T
		Collected by M. Andrews	Collected date/time 09/23/21 07:43	Received da 09/24/21 09:	
Batch	Dilution	Preparation	Analysis	Analyst	Location
					Mt. Juliet, T
					Mt. Juliet, T
					Mt. Juliet, T
					Mt. Juliet, T
WG1/49/21	1	10/01/21 11:58	10/02/21 03:06	JDG	Mt. Juliet, T
		Collected by	Collected date/time	Received da	te/time
		M. Andrews			4.5
		W. Allulews	09/22/21 12:15	09/24/21 09:	:45
Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Batch WG1748513	Dilution 1	Preparation	Analysis		Location
		Preparation date/time	Analysis date/time	Analyst	Location Mt. Juliet, T
WG1748513	1	Preparation date/time 09/30/21 11:03	Analysis date/time 09/30/21 11:10	Analyst KDW	Location Mt. Juliet, T Mt. Juliet, T
WG1748513 WG1748417	1 1	Preparation date/time 09/30/21 11:03 09/30/21 11:18	Analysis date/time 09/30/21 11:10 10/01/21 03:10	Analyst KDW CCE	Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T
WG1748513 WG1748417 WG1749280	1 1 25	Preparation date/time 09/30/21 11:03 09/30/21 11:18 09/22/21 12:15	Analysis date/time 09/30/21 11:10 10/01/21 03:10 10/01/21 17:23	Analyst KDW CCE MGF	Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T Mt. Juliet, T
WG1748513 WG1748417 WG1749280 WG1749857	1 1 25 1	Preparation date/time 09/30/21 11:03 09/30/21 11:18 09/22/21 12:15 09/22/21 12:15	Analysis date/time 09/30/21 11:10 10/01/21 03:10 10/01/21 17:23 10/01/21 14:07 10/01/21 23:54 Collected date/time	Analyst KDW CCE MGF DWR JDG Received da	Location Mt. Juliet, T
WG1748513 WG1748417 WG1749280 WG1749857	1 1 25 1	Preparation date/time 09/30/21 11:03 09/30/21 11:18 09/22/21 12:15 09/22/21 12:15 10/01/21 11:54	Analysis date/time 09/30/21 11:10 10/01/21 03:10 10/01/21 17:23 10/01/21 14:07 10/01/21 23:54	Analyst KDW CCE MGF DWR JDG	Location Mt. Juliet, T
WG1748513 WG1748417 WG1749280 WG1749857	1 1 25 1	Preparation date/time 09/30/21 11:03 09/30/21 11:18 09/22/21 12:15 09/22/21 12:15 10/01/21 11:54 Collected by M. Andrews	Analysis date/time 09/30/21 11:10 10/01/21 03:10 10/01/21 17:23 10/01/21 14:07 10/01/21 23:54 Collected date/time 09/23/21 10:25 Analysis	Analyst KDW CCE MGF DWR JDG Received da	Location Mt. Juliet, T
WG1748513 WG1748417 WG1749280 WG1749857 WG1749727	1 1 25 1 1	Preparation date/time 09/30/21 11:03 09/30/21 11:18 09/22/21 12:15 09/22/21 12:15 10/01/21 11:54 Collected by M. Andrews Preparation date/time	Analysis date/time 09/30/21 11:10 10/01/21 03:10 10/01/21 17:23 10/01/21 14:07 10/01/21 23:54 Collected date/time 09/23/21 10:25 Analysis date/time	Analyst KDW CCE MGF DWR JDG Received da 09/24/21 09:	Location Mt. Juliet, T ste/time :45
WG1748513 WG1748417 WG1749280 WG1749857 WG1749727 Batch	1 1 25 1 1 Dilution	Preparation date/time 09/30/21 11:03 09/30/21 11:18 09/22/21 12:15 09/22/21 12:15 10/01/21 11:54 Collected by M. Andrews Preparation date/time 09/30/21 11:03	Analysis date/time 09/30/21 11:10 10/01/21 03:10 10/01/21 17:23 10/01/21 14:07 10/01/21 23:54 Collected date/time 09/23/21 10:25 Analysis date/time 09/30/21 11:10	Analyst KDW CCE MGF DWR JDG Received da 09/24/21 09: Analyst	Location Mt. Juliet, T te/time :45 Location
WG1748513 WG1748417 WG1749280 WG1749857 WG1749727 Batch WG1748513 WG1748417	1 1 25 1 1 Dilution	Preparation date/time 09/30/21 11:03 09/30/21 11:18 09/22/21 12:15 09/22/21 12:15 10/01/21 11:54 Collected by M. Andrews Preparation date/time 09/30/21 11:03 09/30/21 11:18	Analysis date/time 09/30/21 11:10 10/01/21 03:10 10/01/21 17:23 10/01/21 14:07 10/01/21 23:54 Collected date/time 09/23/21 10:25 Analysis date/time 09/30/21 11:10 10/01/21 03:13	Analyst KDW CCE MGF DWR JDG Received da 09/24/21 09: Analyst KDW CCE	Location Mt. Juliet, T Location Mt. Juliet, T Mt. Juliet, T
WG1748513 WG1748417 WG1749280 WG1749857 WG1749727 Batch	1 1 25 1 1 Dilution	Preparation date/time 09/30/21 11:03 09/30/21 11:18 09/22/21 12:15 09/22/21 12:15 10/01/21 11:54 Collected by M. Andrews Preparation date/time 09/30/21 11:03	Analysis date/time 09/30/21 11:10 10/01/21 03:10 10/01/21 17:23 10/01/21 14:07 10/01/21 23:54 Collected date/time 09/23/21 10:25 Analysis date/time 09/30/21 11:10	Analyst KDW CCE MGF DWR JDG Received da 09/24/21 09: Analyst	Location Mt. Juliet, T te/time Ats. Location Mt. Juliet, T
	Batch WG1748513 WG1748417 WG1749280 WG1749857 WG1749721	WG1748513 1 WG1748417 1 WG1749280 25 WG1749857 1 WG1749727 1 Batch Dilution WG1748513 1 WG1748417 1 WG1749280 25 WG1749857 1 WG1749721 1 Batch Dilution WG1748513 1 WG1749721 1	Batch Dilution date/time WG1748513 1 09/30/21 11:03 WG1748417 1 09/30/21 11:18 WG1749280 25 09/22/21 13:21 WG1749857 1 09/22/21 13:21 WG1749727 1 10/01/21 11:54 Collected by M. Andrews Batch Dilution Preparation date/time WG1748513 1 09/30/21 11:03 WG1749280 25 09/22/21 13:16 WG1749857 1 09/30/21 11:58 Collected by M. Andrews Batch Dilution Preparation date/time WG1748513 1 09/30/21 11:03 WG1748513 1 09/30/21 11:03 WG1748417 1 09/30/21 11:03 WG1749280 25 09/23/21 07:43 WG1749280 25 09/23/21 07:43 WG1749857 1 09/23/21 07:43 WG1749721 1 10/01/21 11:58	Batch Dilution Preparation date/time Analysis date/time WG1748513 1 09/30/21 11:03 09/30/21 11:10 WG1748417 1 09/30/21 11:18 10/01/21 02:42 WG1749280 25 09/22/21 13:21 10/01/21 16:19 WG1749857 1 09/22/21 13:21 10/01/21 13:10 WG1749727 1 10/01/21 11:54 10/02/21 02:07 Collected by M. Andrews Collected date/time WG1749727 1 10/01/21 11:54 10/02/21 02:07 Collected by M. Andrews O9/22/21 13:16 10/02/21 03:00 WG1748513 1 09/30/21 11:18 10/01/21 03:00 WG1749721 1 10/01/21 13:16 10/01/21 13:29 WG1749721 1 10/01/21 11:58 10/02/21 02:53 Collected by M. Andrews Collected date/time WG1748513 1 09/30/21 11:03 09/30/21 11:10 WG1749813 1 09/30/21 11:03 09/30/21 11:10 WG17498417 1 09/30/21 11:03	Batch Dilution date/time Preparation date/time Analysis date/time WG1748513 1 09/30/21 11:03 09/30/21 11:10 KDW WG1748417 1 09/30/21 11:18 10/01/21 02:42 CCE WG1749280 25 09/22/21 13:21 10/01/21 16:19 MGF WG1749857 1 09/22/21 13:21 10/01/21 13:10 DWR WG1749727 1 10/01/21 11:54 10/02/21 02:07 JDG Collected by M. Andrews Collected date/time Received date/time WG1748513 1 09/30/21 11:03 09/30/21 11:10 KDW WG1748417 1 09/30/21 11:18 10/01/21 03:00 CCE WG1749280 25 09/22/21 13:16 10/01/21 16:40 MGF WG1749721 1 10/01/21 11:58 10/02/21 02:53 JDG Collected by Collected date/time Received date/time WG1748513 1 09/30/21 11:03 09/30/21 11:10 KDW WG1748513 1 09/30/21 11:03 09/30/21 11:10 </td

SAMPLE SUMMARY

5.	AMPLES	20 IVIIV	/IAR I			
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK_210923 L1408938-06 GW			M. Andrews	09/23/21 00:00	09/24/21 09:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1749141	1	10/01/21 06:08	10/01/21 06:08	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1748953	1	09/30/21 03:33	09/30/21 03:33	TJJ	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-16-4.0-5.0_210923 L1408938-07 Solid			M. Andrews	09/23/2114:55	09/24/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1748513	1	09/30/21 11:03	09/30/21 11:10	KDW	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1748417	1	09/30/21 11:18	10/01/21 03:15	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1749280	25	09/23/21 14:55	10/01/21 18:06	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1749857	1	09/23/21 14:55	10/01/21 14:45	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1751182	1	10/04/21 16:27	10/04/21 22:03	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-3-092321_210923 L1408938-08 Solid			M. Andrews	09/23/21 00:00	09/24/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1748513	1	09/30/21 11:03	09/30/21 11:10	KDW	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1748417	1	09/30/21 11:18	10/01/21 03:18	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1749280	25	09/23/21 00:00	10/01/21 18:28	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1749857	1	09/23/21 00:00	10/01/21 15:04	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1751182	1	10/04/21 16:27	10/04/21 22:17	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-16-14.0-15.0_210923 L1408938-09 Solid			M. Andrews	09/23/21 15:05	09/24/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1748513	1	09/30/21 11:03	09/30/21 11:10	KDW	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1748417	1	09/30/21 11:18	10/01/21 03:20	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1749280	25	09/23/21 15:05	10/01/21 18:49	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1749857	1	09/23/21 15:05	10/01/21 15:23	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1751182	1	10/04/21 16:27	10/04/21 21:36	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-16-19.0-20.0_210923 L1408938-10 Solid			M. Andrews	09/23/21 15:12	09/24/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1748513	1	09/30/21 11:03	09/30/21 11:10	KDW	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1748417	1	09/30/21 11:18	10/01/21 03:23	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1749280	25	09/23/21 15:12	10/01/21 19:11	MGF	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1749857	1	09/23/21 15:12	10/01/21 15:42	DWR	Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

WG1751182 1

10/04/21 16:27

TJD

Mt. Juliet, TN

10/04/21 21:50

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Kelly Mercer Project Manager Collected date/time: 09/22/21 13:21

SAMPLE RESULTS - 01

1408938

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	69.8		1	09/30/2021 11:10	WG1748513

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	6.17		0.298	0.716	1	10/01/2021 02:42	WG1748417

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.64	4.83	25	10/01/2021 16:19	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/01/2021 16:19	WG1749280

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00181	<u>J J3</u>	0.000902	0.00193	1	10/01/2021 13:10	WG1749857
Toluene	U	<u>J3</u>	0.00251	0.00965	1	10/01/2021 13:10	WG1749857
Ethylbenzene	U	<u>J3</u>	0.00142	0.00483	1	10/01/2021 13:10	WG1749857
Total Xylenes	0.00647	<u>J J3</u>	0.00170	0.0125	1	10/01/2021 13:10	WG1749857
Methyl tert-butyl ether	U		0.000676	0.00193	1	10/01/2021 13:10	WG1749857
(S) Toluene-d8	105			75.0-131		10/01/2021 13:10	WG1749857
(S) 4-Bromofluorobenzene	99.1			67.0-138		10/01/2021 13:10	WG1749857
(S) 1,2-Dichloroethane-d4	120			70.0-130		10/01/2021 13:10	WG1749857

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	2.21	<u>J</u>	1.90	5.73	1	10/02/2021 02:07	WG1749727
Residual Range Organics (RRO)	10.8	J	4.77	14.3	1	10/02/2021 02:07	WG1749727
(S) o-Terphenyl	48.4			18.0-148		10/02/2021 02:07	WG1749727

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	75.8		1	09/30/2021 11:10	WG1748513

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	3.99		0.275	0.660	1	10/01/2021 03:00	WG1748417

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.47	4.33	25	10/01/2021 16:40	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/01/2021 16:40	WG1749280

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000809	0.00173	1	10/01/2021 13:29	WG1749857
Toluene	U		0.00225	0.00867	1	10/01/2021 13:29	WG1749857
Ethylbenzene	U		0.00128	0.00433	1	10/01/2021 13:29	WG1749857
Total Xylenes	U		0.00153	0.0113	1	10/01/2021 13:29	WG1749857
Methyl tert-butyl ether	U		0.000607	0.00173	1	10/01/2021 13:29	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 13:29	WG1749857
(S) 4-Bromofluorobenzene	99.2			67.0-138		10/01/2021 13:29	WG1749857
(S) 1,2-Dichloroethane-d4	119			70.0-130		10/01/2021 13:29	WG1749857

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.76	5.28	1	10/02/2021 02:53	WG1749721
Residual Range Organics (RRO)	U		4.39	13.2	1	10/02/2021 02:53	WG1749721
(S) o-Terphenvl	61.7			18.0-148		10/02/2021 02:53	WG1749721

PAGE:

7 of 28

1408938

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	72.9		1	09/30/2021 11:10	WG1748513

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	4.93		0.285	0.686	1	10/01/2021 03:07	WG1748417

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.55	4.58	25	10/01/2021 17:02	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/01/2021 17:02	WG1749280

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000855	0.00183	1	10/01/2021 13:48	WG1749857
Toluene	U		0.00238	0.00915	1	10/01/2021 13:48	WG1749857
Ethylbenzene	U		0.00135	0.00458	1	10/01/2021 13:48	WG1749857
Total Xylenes	U		0.00161	0.0119	1	10/01/2021 13:48	WG1749857
Methyl tert-butyl ether	U		0.000641	0.00183	1	10/01/2021 13:48	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 13:48	WG1749857
(S) 4-Bromofluorobenzene	98.9			67.0-138		10/01/2021 13:48	WG1749857
(S) 1.2-Dichloroethane-d4	123			70.0-130		10/01/2021 13:48	WG1749857

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.82	5.49	1	10/02/2021 03:06	WG1749721
Residual Range Organics (RRO)	U		4.57	13.7	1	10/02/2021 03:06	WG1749721
(S) o-Terphenyl	48.6			18.0-148		10/02/2021 03:06	WG1749721

Collected date/time: 09/22/21 12:15

SAMPLE RESULTS - 04

1408938

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	74.7		1	09/30/2021 11:10	WG1748513

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	5.84		0.278	0.669	1	10/01/2021 03:10	WG1748417

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.50	4.42	25	10/01/2021 17:23	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/01/2021 17:23	WG1749280

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000825	0.00177	1	10/01/2021 14:07	WG1749857
oluene	U		0.00230	0.00884	1	10/01/2021 14:07	WG1749857
thylbenzene	U		0.00130	0.00442	1	10/01/2021 14:07	WG1749857
otal Xylenes	U		0.00156	0.0115	1	10/01/2021 14:07	WG1749857
ethyl tert-butyl ether	U		0.000619	0.00177	1	10/01/2021 14:07	WG1749857
(S) Toluene-d8	108			75.0-131		10/01/2021 14:07	WG1749857
(S) 4-Bromofluorobenzene	100			67.0-138		10/01/2021 14:07	WG1749857
(S) 1 2-Dichloroethane-d4	122			70 0-130		10/01/2021 14:07	WG1749857

Gl

Sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		1.78	5.35	1	10/01/2021 23:54	WG1749727
Residual Range Organics (RRO)	U		4.46	13.4	1	10/01/2021 23:54	WG1749727
(S) o-Terphenyl	53.7			18.0-148		10/01/2021 23:54	WG1749727

Arcadis - Chevron - WA

1408938

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	75.1		1	09/30/2021 11:10	WG1748513

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	2.25		0.277	0.666	1	10/01/2021 03:13	WG1748417

Ss

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.46	4.31	25	10/01/2021 17:45	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/01/2021 17:45	WG1749280

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000805	0.00172	1	10/01/2021 14:26	WG1749857
Toluene	U		0.00224	0.00862	1	10/01/2021 14:26	WG1749857
Ethylbenzene	U		0.00127	0.00431	1	10/01/2021 14:26	WG1749857
Total Xylenes	U		0.00152	0.0112	1	10/01/2021 14:26	WG1749857
lethyl tert-butyl ether	U		0.000603	0.00172	1	10/01/2021 14:26	WG1749857
(S) Toluene-d8	108			75.0-131		10/01/2021 14:26	WG1749857
(S) 4-Bromofluorobenzene	102			67.0-138		10/01/2021 14:26	WG1749857
(S) 1.2-Dichloroethane-d4	124			70 0-130		10/01/2021 14:26	WG1749857

Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	1.82	<u>J</u>	1.77	5.33	1	10/04/2021 21:22	WG1751182
Residual Range Organics (RRO)	U		4.44	13.3	1	10/04/2021 21:22	WG1751182
(S) o-Terphenyl	63.9			18.0-148		10/04/2021 21:22	WG1751182

TRIP BLANK_210923

Collected date/time: 09/23/21 00:00

SAMPLE RESULTS - 06

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	10/01/2021 06:08	WG1749141
(S) a,a,a-Trifluorotoluene(FID)	92.1			78.0-120		10/01/2021 06:08	WG1749141

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	09/30/2021 03:33	WG1748953
Toluene	U		0.278	1.00	1	09/30/2021 03:33	WG1748953
Ethylbenzene	U		0.137	1.00	1	09/30/2021 03:33	WG1748953
Total Xylenes	U		0.174	3.00	1	09/30/2021 03:33	WG1748953
Methyl tert-butyl ether	U		0.101	1.00	1	09/30/2021 03:33	WG1748953
(S) Toluene-d8	98.9			80.0-120		09/30/2021 03:33	WG1748953
(S) 4-Bromofluorobenzene	99.2			77.0-126		09/30/2021 03:33	WG1748953
(S) 1,2-Dichloroethane-d4	101			70.0-130		09/30/2021 03:33	WG1748953

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.3		1	09/30/2021 11:10	WG1748513

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	6.55		0.228	0.548	1	10/01/2021 03:15	WG1748417

Cn

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	33.1		1.02	2.99	25	10/01/2021 18:06	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		10/01/2021 18:06	WG1749280

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260D

ACCOUNT:

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00454		0.000559	0.00120	1	10/01/2021 14:45	WG1749857
Toluene	0.00916		0.00156	0.00599	1	10/01/2021 14:45	WG1749857
Ethylbenzene	0.00839		0.000883	0.00299	1	10/01/2021 14:45	WG1749857
Total Xylenes	0.0454		0.00105	0.00779	1	10/01/2021 14:45	WG1749857
Methyl tert-butyl ether	U		0.000419	0.00120	1	10/01/2021 14:45	WG1749857
(S) Toluene-d8	106			75.0-131		10/01/2021 14:45	WG1749857
(S) 4-Bromofluorobenzene	106			67.0-138		10/01/2021 14:45	WG1749857
(S) 1.2-Dichloroethane-d4	121			70.0-130		10/01/2021 14:45	WG1749857

Sc

PAGE:

12 of 28

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	79.2		1.46	4.38	1	10/04/2021 22:03	WG1751182
Residual Range Organics (RRO)	60.2		3.65	11.0	1	10/04/2021 22:03	WG1751182
(S) o-Terphenyl	50.3			18.0-148		10/04/2021 22:03	WG1751182

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.0		1	09/30/2021 11:10	WG1748513

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	10.9		0.231	0.556	1	10/01/2021 03:18	WG1748417

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	21.9		1.04	3.06	25	10/01/2021 18:28	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		10/01/2021 18:28	WG1749280

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

ACCOUNT:

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00294		0.000572	0.00122	1	10/01/2021 15:04	WG1749857
Toluene	0.00786		0.00159	0.00612	1	10/01/2021 15:04	WG1749857
Ethylbenzene	0.00465		0.000902	0.00306	1	10/01/2021 15:04	WG1749857
Total Xylenes	0.0260		0.00108	0.00796	1	10/01/2021 15:04	WG1749857
Methyl tert-butyl ether	U		0.000429	0.00122	1	10/01/2021 15:04	WG1749857
(S) Toluene-d8	107			75.0-131		10/01/2021 15:04	WG1749857
(S) 4-Bromofluorobenzene	107			67.0-138		10/01/2021 15:04	WG1749857
(S) 1.2-Dichloroethane-d4	119			70.0-130		10/01/2021 15:04	WG1749857

Sc

PAGE:

13 of 28

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	73.0		1.48	4.44	1	10/04/2021 22:17	WG1751182
Residual Range Organics (RRO)	68.3		3.70	11.1	1	10/04/2021 22:17	WG1751182
(S) o-Terphenvl	32.2			18.0-148		10/04/2021 22:17	WG1751182

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	75.4		1	09/30/2021 11:10	WG1748513

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	0.514	J	0.276	0.663	1	10/01/2021 03:20	WG1748417

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	4.51		1.45	4.27	25	10/01/2021 18:49	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120		10/01/2021 18:49	WG1749280

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000798	0.00171	1	10/01/2021 15:23	WG1749857
Toluene	U		0.00222	0.00854	1	10/01/2021 15:23	WG1749857
Ethylbenzene	U		0.00126	0.00427	1	10/01/2021 15:23	WG1749857
Total Xylenes	0.00430	J	0.00150	0.0111	1	10/01/2021 15:23	WG1749857
Methyl tert-butyl ether	U		0.000598	0.00171	1	10/01/2021 15:23	WG1749857
(S) Toluene-d8	105			75.0-131		10/01/2021 15:23	WG1749857
(S) 4-Bromofluorobenzene	102			67.0-138		10/01/2021 15:23	WG1749857
(S) 1,2-Dichloroethane-d4	117			70.0-130		10/01/2021 15:23	WG1749857

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	5.94		1.76	5.31	1	10/04/2021 21:36	WG1751182
Residual Range Organics (RRO)	11.0	J	4.42	13.3	1	10/04/2021 21:36	WG1751182
(S) o-Terphenyl	60.8			18.0-148		10/04/2021 21:36	WG1751182

Collected date/time: 09/23/21 15:12

SAMPLE RESULTS - 10

1408938

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	68.2		1	09/30/2021 11:10	WG1748513

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	5.08		0.305	0.733	1	10/01/2021 03:23	WG1748417

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	U		1.70	5.00	25	10/01/2021 19:11	WG1749280
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		10/01/2021 19:11	WG1749280

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.0220		0.000934	0.00200	1	10/01/2021 15:42	WG1749857
oluene	U		0.00260	0.0100	1	10/01/2021 15:42	WG1749857
thylbenzene	U		0.00147	0.00500	1	10/01/2021 15:42	WG1749857
tal Xylenes	U		0.00176	0.0130	1	10/01/2021 15:42	WG1749857
thyl tert-butyl ether	U		0.000700	0.00200	1	10/01/2021 15:42	WG1749857
(S) Toluene-d8	109			75.0-131		10/01/2021 15:42	WG1749857
(S) 4-Bromofluorobenzene	103			67.0-138		10/01/2021 15:42	WG1749857
(S) 1.2-Dichloroethane-d4	119			70 0-130		10/01/2021 15:42	WG1749857

Gl

Sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	8.68		1.95	5.87	1	10/04/2021 21:50	WG1751182
Residual Range Organics (RRO)	104		4.88	14.7	1	10/04/2021 21:50	WG1751182
(S) o-Terphenyl	47.5			18.0-148		10/04/2021 21:50	WG1751182

Arcadis - Chevron - WA

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1408938-01,02,03,04,05,07,08,09,10

Method Blank (MB)

(MB) R3711177-1 09/3				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

3

L1408938-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1408938-01 09/30/21 11:10 • (DUP) R3711177-3 09/30/21 11:10

	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	69.8	68.8	1	1.44		10	

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3711177-2 09/30/21 11:10

(Les) Normin 2 03/30/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85.0-115

QUALITY CONTROL SUMMARY

L1408938-01,02,03,04,05,07,08,09,10

Metals (ICP) by Method 6010D

Method Blank (MB)

(MB) R3711322-1 10/01/21 02:37

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Lead	U		0.208	0.500

[†]Cn

(LCS) R3711322-2 10/01/21 02:39

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Lead	100	99.4	99.4	80.0-120	

(OS) L1408938-01 10/01/21 02:42 • (MS) R3711322-5 10/01/21 02:49 • (MSD) R3711322-6 10/01/21 02:51

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Lead	143	6.17	143	143	95.6	95.5	1	75.0-125			0.129	20

PAGE:

17 of 28

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1408938-06

Method Blank (MB)

(MB) R3711746-2 10/01/21	1 01:42	·		·
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	45.6	<u>J</u>	31.6	100
(S) a,a,a-Trifluorotoluene(FID)	95.3			78.0-120

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3711746-1 10/01/21	.CS) R3711746-1 10/01/21 00:34								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	ug/l	ug/l	%	%					
Gasoline Range Organics-NWTPH	5500	4740	86.2	70.0-124					
(S) a,a,a-Trifluorotoluene(FID)			101	78.0-120					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1408938-01,02,03,04,05,07,08,09,10

Method Blank (MB)

(MB) R3712980-2 10/01/2	21 11:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Gasoline Range Organics-NWTPH	U		0.848	2.50
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3712980-1 10/01/2	21 11:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Gasoline Range Organics-NWTPH	5.50	4.49	81.6	71.0-124	
(S) a,a,a-Trifluorotoluene(FID)			97.8	77.0-120	

L1408935-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408935-04 10/01/21 13:48 • (MS) R3712980-3 10/01/21 19:54 • (MSD) R3712980-4 10/01/21 20:15
--

(OS) E1406955-04 10/01/21 15.46 • (MS) R5/12960-5 10/01/21 19.54 • (MSD) R5/12960-4 10/01/21 20.15													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	I
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Gasoline Range Organics-NWTPH	193	U	145	161	75.1	83.5	25	10.0-149			10.6	27	
(S) a,a,a-Trifluorotoluene(FID)					101	105		77.0-120					

Sc

L1408938-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408938-01 10/01/21 16:19 • (MS) R3712980-5 10/01/21 20:37 • (MSD) R3712980-6 10/01/21 20:58												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Gasoline Range Organics-NWTPH	232	U	184	172	79.4	74.3	25	10.0-149			6.72	27
(S) a,a,a-Trifluorotoluene(FID)					101	102		77.0-120				

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1408938-06

Method Blank (MB)

(MB) R3711539-2 09/30/2	1 03:11				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Benzene	U		0.0941	1.00	
Ethylbenzene	U		0.137	1.00	
Methyl tert-butyl ether	U		0.101	1.00	
Toluene	U		0.278	1.00	
Xylenes, Total	U		0.174	3.00	
(S) Toluene-d8	99.6			80.0-120	
(S) 4-Bromofluorobenzene	100			77.0-126	
(S) 1,2-Dichloroethane-d4	103			70.0-130	

(LCS) R3711539-1 09/30/2	21 02:27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	8
Benzene	5.00	4.92	98.4	70.0-123	
Ethylbenzene	5.00	4.55	91.0	79.0-123	
Methyl tert-butyl ether	5.00	5.21	104	68.0-125	
Toluene	5.00	4.64	92.8	79.0-120	
Xylenes, Total	15.0	13.6	90.7	79.0-123	
(S) Toluene-d8			97.7	80.0-120	
(S) 4-Bromofluorobenzene			101	77.0-126	
(S) 1,2-Dichloroethane-d4			105	70.0-130	

Arcadis - Chevron - WA

QUALITY CONTROL SUMMARY

LCS Qualifier

LCSD Qualifier RPD

%

5.66

6.28

3.25

5.26

6.68

Volatile Organic Compounds (GC/MS) by Method 8260D

L1408938-01,02,03,04,05,07,08,09,10

Method Blank (MB)

(MB) R3711907-2	10/01/21 07:27
	MDD

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Methyl tert-butyl ether	U		0.000350	0.00100
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	109			75.0-131
(S) 4-Bromofluorobenzene	100			67.0-138
(S) 1,2-Dichloroethane-d4	116			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3711907-1 10/01/21 06:11 • (LCSD) R3711907-3 10/01/21 08:39

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%
Benzene	0.125	0.103	0.109	82.4	87.2	70.0-123
Ethylbenzene	0.125	0.108	0.115	86.4	92.0	74.0-126
Methyl tert-butyl ether	0.125	0.121	0.125	96.8	100	66.0-132
Toluene	0.125	0.111	0.117	88.8	93.6	75.0-121
Xylenes, Total	0.375	0.333	0.356	88.8	94.9	72.0-127
(S) Toluene-d8				107	106	75.0-131
(S) 4-Bromofluorobenzene				102	101	67.0-138
(S) 1,2-Dichloroethane-d4				129	130	70.0-130

L1408935-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1408935-04 10/01/21 10:57 • (MS) R3711907-4 10/01/21 16:20 • (MSD) R3711907-5 10/01/21 16:39

	Spike Amount (dry)	Original Result (dry)		MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.176	0.00275	0.0938	0.106	51.6	58.3	1	10.0-149			11.9	37
Ethylbenzene	0.176	0.0309	0.127	0.138	54.3	60.8	1	10.0-160			8.58	38
Methyl tert-butyl ether	0.176	U	0.154	0.151	87.1	85.7	1	11.0-147			1.67	35
Toluene	0.176	0.0290	0.124	0.137	53.9	61.1	1	10.0-156			9.62	38
Xylenes, Total	0.529	0.171	0.458	0.500	54.2	62.2	1	10.0-160			8.85	38
(S) Toluene-d8					107	107		75.0-131				
(S) 4-Bromofluorobenzene					97.9	99.7		67.0-138				
(S) 1,2-Dichloroethane-d4					122	120		70.0-130				

RPD Limits

%

20 20

20

20

20

Volatile Organic Compounds (GC/MS) by Method 8260D

L1408938-01,02,03,04,05,07,08,09,10

L1408938-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408938-01 10/01/21 13:10 • (MS) R3711907-6 10/01/21 16:58 • (MSD) R3711907-7 10/01/21 17:17

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.210	0.00181	0.111	0.220	51.8	104	1	10.0-149		<u>J3</u>	66.0	37
Ethylbenzene	0.210	U	0.110	0.230	52.5	109	1	10.0-160		<u>J3</u>	70.1	38
Methyl tert-butyl ether	0.210	U	0.197	0.199	93.6	94.5	1	11.0-147			0.976	35
Toluene	0.210	U	0.123	0.243	58.5	116	1	10.0-156		<u>J3</u>	65.5	38
Xylenes, Total	0.631	0.00647	0.376	0.716	58.6	112	1	10.0-160		<u>J3</u>	62.2	38
(S) Toluene-d8					106	110		75.0-131				
(S) 4-Bromofluorobenzene					99.3	102		67.0-138				
(S) 1,2-Dichloroethane-d4					123	121		70.0-130				

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

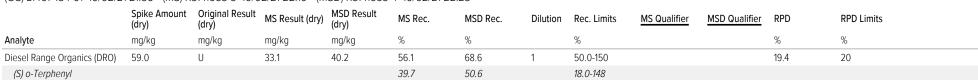
L1408938-02,03

Method Blank (MB)

(MB) R3711653-1 10/02/21 (02:26			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	61.6			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3711653-2 10/02/2	CS) R3711653-2 10/02/21 02:39									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Diesel Range Organics (DRO)	50.0	35.5	71.0	50.0-150						
(S) o-Terphenyl			61.1	18.0-148						



(OS) L1407434-01 10/02/21 21:56 • (MS) R3711653-3 10/02/21 22:10 • (MSD) R3711653-4 10/02/21 22:23

PAGE:

23 of 28

DATE/TIME:

10/15/21 13:02

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1408938-01,04

Method Blank (MB)

(MB) R3/11658-1 10/01/21 2	2:34			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	56.9			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3711658-2 10/01/2	S) R3711658-2 10/01/21 22:47								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Diesel Range Organics (DRO)	50.0	34.1	68.2	50.0-150					
(S) o-Terphenyl			74.6	18.0-148					

L1408938-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408938-01 10/02/21 02:07 • (MS) R3711658-3 10/02/21 02:20 • (MSD) R3711658-4 10/02/21 02:33

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Diesel Range Organics (DRO)	67.7	2.21	38.1	38.4	53.0	53.0	1	50.0-150			0.749	20
(S) o-Terphenyl					60.6	50.9		18.0-148				

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1408938-05,07,08,09,10

Method Blank (MB)

(MB) R3712295-1 10/04/21	B) R3712295-1 10/04/21 20:55									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
Diesel Range Organics (DRO)	U		1.33	4.00						
Residual Range Organics (RRO)	U		3.33	10.0						
(S) o-Terphenyl	51.7			18.0-148						

Laboratory Control Sample (LCS)

(LCS) R3712295-2 10/04/2	21 21:09				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	47.0	94.0	50.0-150	
(S) o-Terphenyl			62.6	18.0-148	

L1408880-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1408880-01 10/05/21 01:38 • (MS) R3712295-3 10/05/21 01:52 • (MSD) R3712295-4 10/05/21 02:06

(00) 21 100000 01 10/00/1	(110) 200 (110) 200 (110)											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Diesel Range Organics (DRO)	48.9	6.74	53.4	48.4	95.4	85.7	1	50.0-150			9.82	20
(S) o-Terphenyl					57.2	52.8		18.0-148				

PAGE:

25 of 28

DATE/TIME:

10/15/21 13:02

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

	- 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.

Qc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 14	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

ompany Name/Address:			Billing Infor	mation:					A	nalvsis /	Contai	ner / Pre	servativ	/e			Chain of Custody	Page of				
Attn: Accounts Payable 630 Plaza Dr., Ste. 600 Highlands Ranch, CO 80129		Attn: Ac 630 Plaz		٧٢										Pace	Analytical [®]							
eattle. WA 98101	er e		Email To:	Services.			- I/S		5			-BT		N-Si			12065 Lebanon Rd Mount	Juliet, TN 37122				
Report to: Ada Hamilton/Alex Laws		Ź		laws@arcadis.	com;Ada.Hami	lton@a	10m	S	s/Iu			HC		Pre	103		Submitting a sample via thi constitutes acknowledgment Pace Terms and Conditions	s chain of custody nt and acceptance of the				
roject Description: 97502		in the part pell.	edro-Wo	wiley, W.		Circle: CT_ET	МеОН	NoPre	OH10r		b-HCl	lAmb-	D	mb-Nc	PE-HI		https://info.pacelabs.com/ terms.pdf	hubfs/pas-standard-				
none: 206-325-5254	Client Project 30064310 (CHEVARCY			40mlAmb/MeOH10ml/Syr	8ozClr-NoPres	b/Me	res	mIAm	T 40m	40mIAmb HCI	40mlAi	250mIHDPE-HN03		F150					
ollected by (print): M. Andrews	Site/Facility IC		RO-	P.O.#				NOSGT 8	mlAm	8ozClr-NoPres	50D 40	NOSG		ESIM 4	6010 25		Acctnum: CHEV Template:T1946					
collected by (signature): mmediately Packed on Ice N Y	Rush? (Lab MUST Be Notified) Same DayFive DayNext Day5 Day (Rad Only)Two Day10 Day (Rad Only)		Rush? (Lab MUST Be Notif		Rush? (Lab Same Day Next Day Two Day	Rush? (Lab MUST Be Notified) Same DayFive DayNext Day5 Day (Rad Only)Two Day10 Day (Rad Only)		Quote #	sults Needed	No.	BTEXM 8260D	Soil NWTPHDX NG	NWTPHGX 40mlAmb/MeOH10ml/Syr	Pb 6010 8o2C	ater BTEXM 8260D 40mlAmb-HCl	ater NWTPHDX NOSGT 40mlAmb-H	water NWTPHGX	water PAHs 8270ESIM 40mlAmb-NoPres-WT	Total Pb		Prelogin: P871 PM: 110 - Brian F	785 ford
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntr	soil B1	N lios	soil N	soil Pt	water	water	water	water	water		Shipped Via:	Sample # (lab only)				
MW-19-18.0-20.0	G	SS		9/27/	21 13:2	21 6	×	×	X	×				Page and a sure		protein(f)	MS/MSD	-4				
MW-19-7,5-8.5	G	SS	-	9/22/-	21 13:1	6 2	11	1	1	1								us				
58-3-7.5-8.5	G	SS	-	9/23/2		3 7	-							4.7				-13				
MW-20-19.0-20.0	G	SS	-	9/22/	The second secon	- 7	-										Carlos Santa	w				
MW-18-8.0-9.0	G	SS		9/23/	ध 10:2	5 2											7.5	75				
Trip Blank		SS		9/23/	L)	4					10000			X.5.				4				
MW-16-4.0-5.0	G	SS	-	9/23/	21 14:5	5 2	2										177	7				
DUP-3-092321	G	SS	-	9/23/	21 -	2												78				
MW-16-14.0-15.0	G	SS	-	9/23/	21 15:	US 7											1	24				
MW-16-19.0-20.0	6	SS	-	9/23/		2 2		,	1	1				1				-10,				
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater	marks:	l via:		-		11-1	21	247		pH Flow		Tem			COC Si Bottle Correc	eal Preigned/A	e Receipt Checesent/Intact: Accurate: ive intact: tles used: volume sent: If Applicable	NP Y N Y N Y N N N N N N				
OT - Other	UPS AFedEx	Courier			acking # 50	111	200	567	TARGET SALES	NAME OF TAXABLE PARTY.		in rods 1	oc// No				adspace: n Correct/Chec	_Y _N				
Relinquished by Signature	ruSerrol 0	ate:	ZOZI KO	e: Re	eceived by: (Sig	nature)				Trip Bla	1-1	vatel	HCL/M TBR	еоН	RAD So	creen	<0.5 mR/hr:	N				
Reingershed by : (Signature) Date:			Time							Temp# 2.04.	7BC°	°C Bot	tles Rece		If prese	ervation	required by Logir					
Relinquished by : (Signature)	D	ate:	Tim	e: R	eceived for lab	by: (Sign	ature)	t		Date:	11/2	Tim	ne:	14	Hold:			Condition: NCF / OK				

Appendix I

Groundwater Lab Data

Chevron - WA

DATA REVIEW

SEDRO-WOOLLEY, WA

Volatile organic compounds, semi volatile organic compounds, Total Petroleum Hydrocarbons, and Metal Analyses

SDG# L1411457

Analyses Performed By: Pace Analytical National Mount Juliet, TN 37122

Report # 44128R Review Level: Tier II Project: 30064310.08.82

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) # L1411457 for samples collected in association with the Chevron SEDRO-WOOLLEY, WA Site. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

			Sample		Analysis				
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	VOC	svoc	ТРН	MET	
RS-1-092821	L1411457-01	Water	09/28/2021		Х		X	Х	
MW-17_210928	L1411457-02	Water	09/28/2021		Х		Х	Х	
MW-14_210928	L1411457-03	Water	09/28/2021		Х		Х	Х	
MW-4_210928	L1411457-04	Water	09/28/2021		Х		Х	Х	
MW-8_210928	L1411457-05	Water	09/28/2021		Х		Х	Х	
MW-18_210928	L1411457-06	Water	09/28/2021		Х		Х	Х	
MW-7_210928	L1411457-07	Water	09/28/2021		Х	Х	Х	Х	
MW-21_210928	L1411457-08	Water	09/28/2021		Х		Х	Х	
DUP-1_210928	L1411457-09	Water	09/28/2021	MW-13_210928	Х		Х	Х	
MW-13_210928	L1411457-10	Water	09/28/2021		Х		Х	Х	
MW-5_210928	L1411457-11	Water	09/28/2021		Х		Х	Х	

Notes:

VOC = volatile organic compounds.

TPH = total petroleum hydrocarbons.

MET = metals.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted		mance ptable	Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		Х		Х	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8.Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

Note:

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260D, NWTPHDX, NWTPHGX and 8270 E by SIM. Validation was performed following the USEPA National Functional Guidelines NFG for Organic Superfund Methods Data Review, EPA-540-R-20-005 (November 2020), with reference to the historical (USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D	Water	14 days from collection to analysis (preserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.

Note:

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the sample detection limit (SDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the SDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample ID	Surrogate	Recovery
MW-14_210928	4-Bromofluorobenzene	< LL but > 10%
MW-8_210928	Toluene-d8	> UL
MW-7_210928	Toluene-d8	> UL
MW-21_210928	Toluene-d8	> UL

Notes:

UL - Upper limit

LL - Lower control limit

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
> OL	Detect	J
< LL but > 10%	Non-detect	UJ
< LL Dut > 10%	Non-detect Detect	J
< 10%	Non-detect	R
1070	Non-detect Detect Non-detect Detect Non-detect Non-detect Detect Non-detect	J
Surrogates diluted below the calibration curve due to the high	Non-detect	UJ ¹
concentration of a target compounds	Detect	J ¹

Note:

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was not performed on sample within this SDG.

5. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

Sample ID/Duplicate ID	Compounds	Sample Result (ug/l)	Duplicate Result (ug/l)	RPD
	Benzene	0.147 J	0.194 J	AC
MW 42 240020 / DUD 4 240020	Toluene	1.61	1.56	AC
MW-13_210928 / DUP-1_210928	Ethylbenzene	76.3	73.4	4%
	Total Xylenes	108	122	12%

Notes:

AC - Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260D		oorted		rmance eptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/M	S)			
Tier II Validation					
Holding times		X		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks	Х				X
C. Trip blanks	Х				Х
Laboratory Control Sample (LCS)		X		Х	
Laboratory Control Sample Duplicate (LCSD)		X		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS)	Х				X
Matrix Spike Duplicate (MSD)	Х				X
MS/MSD Precision (RPD)	Х				Х
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х	Х		
Dilution Factor		Х		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270 E by SIM	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was not performed on sample within this SDG.

5. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices

A field duplicate sample was not collected from sample locations associated with this SDG.

7. Compound Identification

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis (ug/l)	Diluted Analysis (ug/l)	Reported Analysis
MW-7_210928	Naphthalene		105	105 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270 E By SIM	Reported		Performance Acceptable		Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)						
Tier II Validation						
Holding times		X		Х		
Reporting limits (units)		X		Х		
Blanks						
A. Method blanks		X		X		
B. Equipment blanks	X				X	
Laboratory Control Sample (LCS) %R		X		X		
Laboratory Control Sample Duplicate(LCSD) %R		X		X		
LCS/LCSD Precision (RPD)		X		X		
Matrix Spike (MS) %R	X				X	
Matrix Spike Duplicate(MSD) %R	X				X	
MS/MSD Precision (RPD)	X				X	
Field/Lab Duplicate (RPD)	X				X	
Surrogate Spike Recoveries		X		Х		
Dilution Factor		X		Х		
Moisture Content	X				X	

Notes:

%R Percent recovery

RPD Relative percent difference

%D Percent difference

TOTAL PETROLEUM HYDROCARBONS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
GRO by Method NWTPHGX	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of less than 2.
DRO by Method NWTPHDX	Water	14 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C; preserved to a pH of less than 2.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the sample detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample ID	Compound	Sample Result	Qualification
RS-1-092821	Gasoline Range Organics-NWTPH (MB)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL

Note:

RL = reporting limit

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The analysis requires surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was not performed on sample within this SDG.

5. Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate Analysis (LCSD)

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compounds	Sample Result (ug/l)	Duplicate Result (ug/l)	RPD
	Gasoline Range Organics (GRO)	4940	4530	9%
MW-13_210928 / DUP-1_210928	Diesel Range Organics (DRO)	730	752	AC

Notes:

AC = Acceptable.

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR TPH

TPH: NWTPHGX and NWTPHDX	Rep	orted	Perfor Accep	mance otable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC/FID)					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks	Х				Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R	Х				Х
Matrix Spike Duplicate (MSD) %R	Х				Х
MS/MSD Precision (RPD)	Х				Х
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	

Notes:

%R - percent recovery

RPD - relative percent difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010D. Data were reviewed in accordance USEPA National Functional Guidelines NFG for Inorganic Superfund Methods Data Review, EPA-540-R-20-006 (November 2020), with reference to the historical (USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, OSWER 9240.1-05A-P, October 2004, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

Concentration (C) Qualifiers

- U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
- J The reported value was obtained from a reading less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL).

Quantitation (Q) Qualifiers

- E The reported value is estimated due to the presence of interference.
- N Spiked sample recovery is not within control limits.
- Duplicate analysis is not within control limits.

Validation Qualifiers

- J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The analyte was not detected above the reporting limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
- UB Analyte considered non-detect at the listed value due to associated blank contamination.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010D	Water	180 days from collection to analysis	Preserved to a pH of less than 2.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the sample detection limit (SDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All analytes were not detected above the SDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

3.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

MS/MSD analysis was performed on sample RS-1-092821. MS/MSD analysis exhibited recoveries and RPDs within the laboratory established acceptance limits.

3.2 Laboratory Duplicate Analysis

The laboratory duplicates relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

Laboratory duplicate analysis was not performed on any of the samples from this SDG.

4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent

sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result (ug/l)	Duplicate Result (ug/l)	RPD
MW-13_210928 / DUP-1_210928	Lead, Dissolved	U	U	AC

Notes:

AC - Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METAL

METALS; SW-846 6010D	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Mass Spectrometry (ICP-M	1S)				
Tier II Validation					
Holding Times		X		X	
Reporting limits (units)		X		X	
Blanks					
A. Instrument Blanks	X				Х
B. Method Blanks		X		X	
C. Equipment/Field Blanks	X				Х
Laboratory Control Sample (LCS)		X		X	
Laboratory Control Sample Duplicate (LCSD) %R	X				Χ
LCS/LCSD Precision (RPD)	X				Х
Matrix Spike (MS) %R		Х		X	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		X	
Lab Duplicate (RPD)	Х				Х
Field Duplicate (RPD)		Х		Х	
ICP Serial Dilution %D	Х				Х
Reporting Limit Verification		Х		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Bhagyashree Fulzele

SIGNATURE: Brutzele

DATE: January 11,2022

PEER REVIEW: Dennis Capria

DATE: January 17,2022

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Company Name/Address:			Billing Info	rmation:		T			A	Analysis	Containe	r / Preservati	ve		Chain of Custo	dy Page Z of 3
Arcadis - Chevron - Wa	A		630 Plaz	counts Payabl		Pres Chk									_ Fa) ce Analytical [®]
Suite 800 Seattle. WA 98101			Highland	ds Ranch, CO 8	30129											
Report to: Ada Hamilton/Alex Laws			Email To: alexander	.laws@arcadis.co	m;Ada.Hamilt	ton@ar			BT		_				Mount Juliet, TN 37122 via this chain of custody edgment and acceptance of the	
Project Description: 97502		City/State	Plea			Please Circle:		S	-HCI-		es-W				Pace Terms and Con https://info.pacelab terms.pdf	ditions found at: s.com/hubfs/pas-standard-
Phone: 206-325-5254	Client Project 30064310	t # 07.21-Plan		Lab Project # CHEVARCW	180		-HCI	E-NoPres	mIAmb	_	Amb-NoPres-WT				SDG#	1225
Collected by (print): 3. PAULEY LSEPIUL/M. ANDREWS	Site/Facility I		RO-	P.O. #			40mlAmb-HCl	50mlHDP	SGT 40	mb HCI	40mlAm				Acctnum: Ch	IEVARCWA
Collected by (signature): J. Sepical M. ANDREWS B. PAULEY Immediately Packed on Ice N YX		ay 10 Da		Quote # Date Resul	ts Needed	No.	8260D	60102	NWTPHDX LVINOSGT 40mlAmb-HCl-BT	HGX 40mlAmb	8270ESIM 4				Prelogin: P8 PM: 110 - Bri	71798
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEXM	Diss Pb	WTP	NWTPHGX	PAHs 8				Shipped Via:	Sample # (lab only)
RS-1-092821	G	GW	-	09/28/21	145	9	×	X	×	X			T.ve-			-61
MW-17-20210928	G	GW	-	09/28/21	1131	9	X	\boxtimes	X	X			1			02
MW-14-20210928	6	GW	_	09/28/21	1606	9	X	\boxtimes	X	\boxtimes						03
MW-4-20210928	6	GW	_	09 28 21	1300	9	\times	\boxtimes	X	\geq		22	10 · · · · · ·	100 mg		04
MW-8-20210928	G	GW		09/28/21	1600	9	X	\boxtimes	X	\boxtimes		7.2	r 26			09
MW-18-20210928	G	GW		09/20/21	1021	9	X	X	X	\boxtimes						ob
MW-7-20210928	G	GW		09/28/21	HI5	III.	X	\boxtimes	X	\boxtimes	X					07
MW-21-20210928	G	GW	_	09/28/21	1035	9	X	\boxtimes	X	\boxtimes						08
DUP-1-092821	6	GW		व्यायश्चीया		9	X	\times	X	\boxtimes						09
MW-13-20216928	Remarks:	GW		129/28/21	1252	9	\times	\boxtimes	X	X				Sa	ample Receipt (Checklist
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater										pH Flow		Temp		COC Seal COC Signa Bottles Correct	Present/Intac ed/Accurate: arrive intact: bottles used:	t: _NP _Y _N _Y _N _Y _N _Y _N
DW - Drinking Water OT - Other	Samples returned UPS			Track	ing# 5	21	7	3	3/3	6	680	7		VOA Zero	If Applica Headspace:	ble _Y _N
Relinquished by: (Signature)	D	ate:	Time	00	ved by: (Signa	# 1 # 3				Trip Blar	k Receive	d: (Yes// No H 101/M		RAD Scre	tion Correct/C en <0.5 mR/hr:	Y N
Remodished by : (Signature)	D	ate.	Time		ved by: (Signa					16mp:	2.1°C	Bottles Recei	ved:	If preserva	tion required by L	ogin: Date/Time
Relinquished by : (Signature)	D	ate:	Time	Recei	ved for lab by	: (Signat	yfe) (Date:	1/21	Time:	00	Hold:		Condition: NCF / OK

- 4

ompany Name/Address:			Billing Info	rmation:					A	nalvsis /	Contain	ner / Preservativ	9		Chain of Custod	Page 3 of 3
Arcadis - Chevron - WA				counts Pay a Dr., Ste.		Pres									1	ce Analytical [®]
1100 Olive Way Suite 800 Seattle. WA 98101				Is Ranch, (1	
Report to:		1. 清土人	Email To: alexander.laws@arcadis.com;Ada.Hamilton@a			,		3T		-					ount Juliet, TN 37122 ia this chain of custody igment and acceptance of the	
Ada Hamilton/Alex Laws Project Description:		City/State		Chatanahaa	n	Circle:	-		1-0		3-5				Pace Terms and Condi https://info.pacelabs.	
97502			EDRO-Wa	DLEY, W	. 0	CT ET		res	1-q		Pre				terms.pdf	67
hone: 206-325-5254	30064310	t# 07.21-Plan		CHEVAR	t# CWA-97502		P-HCI	E-NoP	40mIAmb-HCI-BT	5	40mlAmb-NoPres-WT				SDG #	1411457
Collected by (print): B. PAULEY	Site/Facility I	D# ALF ST SED	RO-	P.O.#			40mlAmb-HCl	MIHDP		mb Hc	OmlAr				Acctnum: CH	
Collected by (signature):	Same I	(Lab MUST Be Day Five Day 5 Day	Day	Quote #	Results Needed		8260D 40	Diss Pb 6010 250mlHDPE-NoPres	NWTPHDX LVINOSGT	NWTPHGX 40mlAmb HCI	8270ESIM 4				Prelogin: P87	1798
Immediately X		ay 10 D		,	icsuits recues	No.	182	09 0	HDX	HGX	3270				PB: NS	9/9/21
Packed on Ice N Y X	Comp/Grab	T	Depth	Date	Time	Cote	BTEXM	Diss Pk	NWTP	NWTP	PAHs 8				Shipped Via:	Sample # (lab only)
MW-5-20210928	G	GW	-	09/28/	1 1155		×	X	X	X				-6-		-11
MW-5-20210928 TRIP BLANK	# ,	GW	-		-	. 4				4			4 4	27.11		12
		GW														4
		GW		- 1									4.6			
		GW		ri-areands											8 (2 days of 12	
24.42		GW		r retain				-								
														Z		
														20.01		
										40.0			2.0			
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:								T	pH Flow		Temp	COC	Seal Property Signed, tles are	le Receipt C resent/Intact 'Accurate: rive intact: ttles used:	: _NP _Y _N _N _N _N
DW Drinking Water	Samples returneUPSFedE			_	Tracking #	21	7	33	13	6	68	0	Suf	ficient Zero He	volume sent: If Applicate adspace:	oleN
Relinquished by: (Signature)	1	pate:	/ Time	100	Received by: (Si	gnature)				Trip Blar	nk Recei	ived: Yes/No HOL/Me TBR	RAL		on Correct/Ch <0.5 mR/hr:	necked: Y N
Relinquished by : (Signay 19)	PI				Received by: (Si	gnature)				Temp:	07.	C Bottles Receiv	ed: If p	reservatio	n required by Lo	gin: Date/Time
Relinquished by : (Signature)		Date:	Tim	e:	Received for tab	by: (Sig:	afure)	11		Date:/	0/2	Time: 090	C Hol	d:		Condition: NCF / OK

SAMPLE RESULTS - 01

Collected date/time: 09/28/21 16:45

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead,Dissolved	U		2.99	6.00	1	10/08/2021 02:27	WG1753399

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	72.6	B J	31.6	100 UB	1	10/07/2021 06:25	WG1752149
(S) a,a,a-Trifluorotoluene(FID)	95.9			78.0-120		10/07/2021 06:25	WG1752149

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/07/2021 07:10	WG1752724
Toluene	U		0.278	1.00	1	10/07/2021 07:10	WG1752724
Ethylbenzene	U		0.137	1.00	1	10/07/2021 07:10	WG1752724
Total Xylenes	U		0.174	3.00	1	10/07/2021 07:10	WG1752724
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 07:10	WG1752724
(S) Toluene-d8	120			80.0-120		10/07/2021 07:10	WG1752724
(S) 4-Bromofluorobenzene	89.3			77.0-126		10/07/2021 07:10	WG1752724
(S) 1,2-Dichloroethane-d4	90.2			70.0-130		10/07/2021 07:10	WG1752724

Gl

Αl

Sc

<u> </u>	'	· ·	/ /				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	10/11/2021 20:40	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 20:40	WG1754008
(S) o-Terphenyl	111			52.0-156		10/11/2021 20:40	WG1754008

MW-17_210928 Collected date/time: 09/28/21 11:31

SAMPLE RESULTS - 02

L1411457

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/08/2021 03:00	WG1753399

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	10/07/2021 06:46	<u>WG1752149</u>
(S) a,a,a-Trifluorotoluene(FID)	95.4			78.0-120		10/07/2021 06:46	<u>WG1752149</u>

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.124	<u>J</u>	0.0941	1.00	1	10/07/2021 07:30	WG1752724
Toluene	125	<u> </u>	0.278	1.00	1	10/07/2021 07:30	WG1752724
Ethylbenzene	152		0.137	1.00	1	10/07/2021 07:30	WG1752724
Total Xylenes	616		0.174	3.00	1	10/07/2021 07:30	WG1752724
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 07:30	WG1752724
(S) Toluene-d8	114			80.0-120		10/07/2021 07:30	WG1752724
(S) 4-Bromofluorobenzene	93.6			77.0-126		10/07/2021 07:30	WG1752724
(S) 1,2-Dichloroethane-d4	91.8			70.0-130		10/07/2021 07:30	WG1752724

Gl

⁸Al

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	546		66.7	200	1	10/11/2021 21:06	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 21:06	WG1754008
(S) o-Terphenyl	106			52.0-156		10/11/2021 21:06	WG1754008

MW-14_210928

SAMPLE RESULTS - 03

L1411457

Collected date/time: 09/28/21 16:06 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	10/08/2021 03:03	WG1753399	

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

Analyte ug/l ug/l ug/l date / time Gasoline Range Organics-NWTPH 5110 31.6 100 1 10/07/2021 07:08 WG1752149 (S) 78.0-120 10/07/2021 07:08 WG1752149		Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Organics-NWTPH 5110 51.6 100 1 10/07/2021 07.08 WG1752149 (S) 00.1 78.0.120 10/07/2021 07.08 WC1752140	Analyte	ug/l		ug/l	ug/l		date / time	
(S) 99.1 78.0-120 10/07/2021 07:08 WG1752149		5110		31.6	100	1	10/07/2021 07:08	WG1752149
u,u,u-miliuorototulerre(rib)	(S) a,a,a-Trifluorotoluene(FID)	99.1			78.0-120		10/07/2021 07:08	<u>WG1752149</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.394	<u>J</u>	0.0941	1.00	1	10/07/2021 07:48	WG1752724
Toluene	7.98	J	0.278	1.00	1	10/07/2021 07:48	WG1752724
Ethylbenzene	454	ე	0.137	1.00	1	10/07/2021 07:48	WG1752724
Total Xylenes	837	j ≣	0.174	3.00	1	10/07/2021 07:48	WG1752724
Methyl tert-butyl ether	U	ŬJ	0.101	1.00	1	10/07/2021 07:48	WG1752724
(S) Toluene-d8	113			80.0-120		10/07/2021 07:48	WG1752724
(S) 4-Bromofluorobenzene	74.6	<u>J2</u>		77.0-126		10/07/2021 07:48	WG1752724
(S) 1,2-Dichloroethane-d4	96.6			70.0-130		10/07/2021 07:48	WG1752724

⁸Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	556		66.7	200	1	10/11/2021 21:32	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 21:32	WG1754008
(S) o-Terphenyl	103			52.0-156		10/11/2021 21:32	WG1754008

MW-4_210928

SAMPLE RESULTS - 04

.1411457

Collected date/time: 09/28/21 13:00 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead.Dissolved	U		2.99	6.00	1	10/08/2021 03:06	WG1753399

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	8850		31.6	100	1	10/07/2021 07:30	WG1752149
(S) a,a,a-Trifluorotoluene(FID)	94.8			78.0-120		10/07/2021 07:30	WG1752149

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/07/2021 11:36	WG1752727
Toluene	U		0.278	1.00	1	10/07/2021 11:36	WG1752727
Ethylbenzene	U		0.137	1.00	1	10/07/2021 11:36	WG1752727
Total Xylenes	U		0.174	3.00	1	10/07/2021 11:36	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 11:36	WG1752727
(S) Toluene-d8	119			80.0-120		10/07/2021 11:36	WG1752727
(S) 4-Bromofluorobenzene	89.1			77.0-126		10/07/2021 11:36	WG1752727
(S) 1,2-Dichloroethane-d4	91.1			70.0-130		10/07/2021 11:36	WG1752727

Gl

⁸Al

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	440		66.7	200	1	10/11/2021 21:58	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 21:58	WG1754008
(S) o-Terphenyl	114			52.0-156		10/11/2021 21:58	WG1754008

MW-8_210928

SAMPLE RESULTS - 05

L1411457

Collected date/time: 09/28/21 16:00 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead.Dissolved	U		2.99	6.00	1	10/08/2021 03:09	WG1753399	

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	3600		31.6	100	1	10/07/2021 08:44	<u>WG1752149</u>
(S) a,a,a-Trifluorotoluene(FID)	80.8			78.0-120		10/07/2021 08:44	<u>WG1752149</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result		Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l			ug/l	ug/l		date / time	
Benzene	U			0.0941	1.00	1	10/07/2021 11:55	WG1752727
Toluene	U			0.278	1.00	1	10/07/2021 11:55	WG1752727
Ethylbenzene	1.11	J		0.137	1.00	1	10/07/2021 11:55	WG1752727
Total Xylenes	0.574		<u>J</u>	0.174	3.00	1	10/07/2021 11:55	WG1752727
Methyl tert-butyl ether	U			0.101	1.00	1	10/07/2021 11:55	WG1752727
(S) Toluene-d8	126		<u>J1</u>		80.0-120		10/07/2021 11:55	WG1752727
(S) 4-Bromofluorobenzene	96.1				77.0-126		10/07/2021 11:55	WG1752727
(S) 1,2-Dichloroethane-d4	90.1				70.0-130		10/07/2021 11:55	WG1752727

8 Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	305		66.7	200	1	10/11/2021 22:24	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 22:24	WG1754008
(S) o-Terphenyl	107			52.0-156		10/11/2021 22:24	WG1754008

MW-18_210928

SAMPLE RESULTS - 06

L141145

Collected date/time: 09/28/21 10:21 Metals (ICP) by Method 6010D

Cp

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	367		31.6	100	1	10/06/2021 20:48	WG1752816
(S) a,a,a-Trifluorotoluene(FID)	91.1			78.0-120		10/06/2021 20:48	WG1752816

Ss

⁵Sr

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/07/2021 12:14	WG1752727
Toluene	U		0.278	1.00	1	10/07/2021 12:14	WG1752727
Ethylbenzene	U		0.137	1.00	1	10/07/2021 12:14	WG1752727
Total Xylenes	U		0.174	3.00	1	10/07/2021 12:14	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 12:14	WG1752727
(S) Toluene-d8	120			80.0-120		10/07/2021 12:14	WG1752727
(S) 4-Bromofluorobenzene	81.3			77.0-126		10/07/2021 12:14	WG1752727
(S) 1,2-Dichloroethane-d4	91.4			70.0-130		10/07/2021 12:14	WG1752727

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	161	<u>J</u>	66.7	200	1	10/11/2021 22:50	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 22:50	WG1754008
(S) o-Terphenyl	108			52.0-156		10/11/2021 22:50	WG1754008

MW-7_210928

SAMPLE RESULTS - 07

L1411457

Metals (ICP) by Method 6010D

Collected date/time: 09/28/21 14:15

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/08/2021 03:14	WG1753399

²--

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	8990		31.6	100	1	10/06/2021 21:16	WG1752816
(S) a,a,a-Trifluorotoluene(FID)	99.2			78.0-120		10/06/2021 21:16	WG1752816

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result		Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l			ug/l	ug/l		date / time	
Benzene	0.124		<u>J</u>	0.0941	1.00	1	10/07/2021 12:34	WG1752727
Toluene	14.6	J		0.278	1.00	1	10/07/2021 12:34	WG1752727
Ethylbenzene	359	J	트	0.137	1.00	1	10/07/2021 12:34	WG1752727
Total Xylenes	1390	J	E	0.174	3.00	1	10/07/2021 12:34	WG1752727
Methyl tert-butyl ether	U			0.101	1.00	1	10/07/2021 12:34	WG1752727
(S) Toluene-d8	122		<u>J1</u>		80.0-120		10/07/2021 12:34	WG1752727
(S) 4-Bromofluorobenzene	102				77.0-126		10/07/2021 12:34	WG1752727
(S) 1,2-Dichloroethane-d4	93.8				70.0-130		10/07/2021 12:34	WG1752727

Gl

ΆΙ

Sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	•	•					
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	565		66.7	200	1	10/11/2021 23:15	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 23:15	WG1754008
(S) o-Terphenyl	113			52.0-156		10/11/2021 23:15	WG1754008

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.0203	0.0500	1	10/05/2021 11:49	WG1750686
Benzo(a)pyrene	U		0.0184	0.0500	1	10/05/2021 11:49	WG1750686
Benzo(b)fluoranthene	U		0.0168	0.0500	1	10/05/2021 11:49	WG1750686
Benzo(k)fluoranthene	U		0.0202	0.0500	1	10/05/2021 11:49	WG1750686
Chrysene	U		0.0179	0.0500	1	10/05/2021 11:49	WG1750686
Dibenz(a,h)anthracene	U		0.0160	0.0500	1	10/05/2021 11:49	WG1750686
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	1	10/05/2021 11:49	WG1750686
Naphthalene	105 D		1.83	5.00	20	10/06/2021 00:32	WG1750686
1-Methylnaphthalene	16.9		0.0687	0.250	1	10/05/2021 11:49	WG1750686
2-Methylnaphthalene	19.7		0.0674	0.250	1	10/05/2021 11:49	WG1750686
(S) Nitrobenzene-d5	97.0			31.0-160		10/05/2021 11:49	WG1750686
(S) Nitrobenzene-d5	90.0	<u>J7</u>		31.0-160		10/06/2021 00:32	WG1750686
(S) 2-Fluorobiphenyl	107			48.0-148		10/05/2021 11:49	WG1750686
(S) 2-Fluorobiphenyl	105	<u>J7</u>		48.0-148		10/06/2021 00:32	WG1750686
(S) p-Terphenyl-d14	134			37.0-146		10/05/2021 11:49	WG1750686
(S) p-Terphenyl-d14	116	<u>J7</u>		37.0-146		10/06/2021 00:32	<u>WG1750686</u>

MW-21_210928

SAMPLE RESULTS - 08

Collected date/time: 09/28/21 10:35 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	4.16	J	2.99	6.00	1	10/08/2021 03:17	WG1753399	

Volatile Organic Compounds (GC) by Method NWTPHGX

Result <u>Qualifier</u> MDL RDL Dilution Analysis	<u>Batch</u>
Analyte ug/l ug/l ug/l date / time	
Gasoline Range Organics-NWTPH 233 31.6 100 1 10/06/2021 21:44	WG1752816
(S) a,a,a-Trifluorotoluene(FID) 94.9 78.0-120 10/06/2021 21:44	<u>WG1752816</u>

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/07/2021 12:53	WG1752727
Toluene	U		0.278	1.00	1	10/07/2021 12:53	WG1752727
Ethylbenzene	2.30	J	0.137	1.00	1	10/07/2021 12:53	WG1752727
Total Xylenes	12.9	J	0.174	3.00	1	10/07/2021 12:53	WG1752727
Methyl tert-butyl ether	U	· ·	0.101	1.00	1	10/07/2021 12:53	WG1752727
(S) Toluene-d8	121	<u>J1</u>		80.0-120		10/07/2021 12:53	WG1752727
(S) 4-Bromofluorobenzene	79.7			77.0-126		10/07/2021 12:53	WG1752727
(S) 1,2-Dichloroethane-d4	87.9			70.0-130		10/07/2021 12:53	WG1752727

GI

Sc

Sample Narrative:

L1411457-08 WG1752727: Ethylbenzene and Xylenes possibly biased high due to instrument carryover.

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	244		66.7	200	1	10/11/2021 23:41	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 23:41	WG1754008
(S) o-Terphenyl	113			52.0-156		10/11/2021 23:41	WG1754008

DUP-1_210928

SAMPLE RESULTS - 09

.1411457

Collected date/time: 09/28/21 00:00 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	10/08/2021 03:20	WG1753399	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	4530		31.6	100	1	10/06/2021 22:13	WG1752816
(S) a,a,a-Trifluorotoluene(FID)	87.6			78.0-120		10/06/2021 22:13	WG1752816

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.194	<u>J</u>	0.0941	1.00	1	10/07/2021 13:12	WG1752727
Toluene	1.56		0.278	1.00	1	10/07/2021 13:12	WG1752727
Ethylbenzene	73.4		0.137	1.00	1	10/07/2021 13:12	WG1752727
Total Xylenes	122		0.174	3.00	1	10/07/2021 13:12	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 13:12	WG1752727
(S) Toluene-d8	116			80.0-120		10/07/2021 13:12	WG1752727
(S) 4-Bromofluorobenzene	91.6			77.0-126		10/07/2021 13:12	WG1752727
(S) 1,2-Dichloroethane-d4	86.1			70.0-130		10/07/2021 13:12	WG1752727

Gl

Αl

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	752		66.7	200	1	10/12/2021 00:07	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 00:07	WG1754008
(S) o-Terphenyl	107			52.0-156		10/12/2021 00:07	WG1754008

SAMPLE RESULTS - 10

L1411457

Metals (ICP) by Method 6010D

Collected date/time: 09/28/21 12:52

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/08/2021 03:28	WG1753399

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	4940		31.6	100	1	10/06/2021 22:41	WG1752816
(S) a,a,a-Trifluorotoluene(FID)	86.9			78.0-120		10/06/2021 22:41	<u>WG1752816</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.147	<u>J</u>	0.0941	1.00	1	10/07/2021 13:31	WG1752727
Toluene	1.61		0.278	1.00	1	10/07/2021 13:31	WG1752727
Ethylbenzene	76.3		0.137	1.00	1	10/07/2021 13:31	WG1752727
Total Xylenes	108		0.174	3.00	1	10/07/2021 13:31	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 13:31	WG1752727
(S) Toluene-d8	119			80.0-120		10/07/2021 13:31	WG1752727
(S) 4-Bromofluorobenzene	81.0			77.0-126		10/07/2021 13:31	WG1752727
(S) 1,2-Dichloroethane-d4	86.6			70.0-130		10/07/2021 13:31	WG1752727

°Al

Gl

⁹Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	730		66.7	200	1	10/12/2021 00:33	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 00:33	WG1754008
(S) o-Terphenyl	105			52.0-156		10/12/2021 00:33	WG1754008

SAMPLE RESULTS - 11

L1411457

Metals (ICP) by Method 6010D

Collected date/time: 09/28/21 11:55

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead,Dissolved	U		2.99	6.00	1	10/08/2021 03:31	WG1753399	

Cp

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	539		31.6	100	1	10/06/2021 23:09	WG1752816
(S) a,a,a-Trifluorotoluene(FID)	94.8			78.0-120		10/06/2021 23:09	<u>WG1752816</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/07/2021 13:50	WG1752727
Toluene	U		0.278	1.00	1	10/07/2021 13:50	WG1752727
Ethylbenzene	0.593	<u>J</u>	0.137	1.00	1	10/07/2021 13:50	WG1752727
Total Xylenes	1.36	<u>J</u>	0.174	3.00	1	10/07/2021 13:50	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 13:50	WG1752727
(S) Toluene-d8	117			80.0-120		10/07/2021 13:50	WG1752727
(S) 4-Bromofluorobenzene	94.4			77.0-126		10/07/2021 13:50	WG1752727
(S) 1,2-Dichloroethane-d4	90.1			70.0-130		10/07/2021 13:50	WG1752727

⁸Al

Gl

⁹Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	305		66.7	200	1	10/12/2021 00:59	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 00:59	WG1754008
(S) o-Terphenyl	108			52.0-156		10/12/2021 00:59	WG1754008

Pace Analytical® ANALYTICAL REPORT

Arcadis - Chevron - WA

L1411457 Sample Delivery Group:

Samples Received: 09/30/2021

Project Number: 30064310 07.21-Plan

97502 Description:

640 METCALF ST SEDRO-WOOLLEY Site:

Report To: Ada Hamilton/Alex Laws

1100 Olive Way

Suite 800

Seattle, WA 98101

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: PROJECT: Arcadis - Chevron - WA 30064310 07.21-Plan

SDG: L1411457

DATE/TIME: 10/19/21 17:49

PAGE: 1 of 28

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
RS-1-092821 L1411457-01	6
MW-17_210928 L1411457-02	7
MW-14_210928 L1411457-03	8
MW-4_210928 L1411457-04	9
MW-8_210928 L1411457-05	10
MW-18_210928 L1411457-06	11
MW-7_210928 L1411457-07	12
MW-21_210928 L1411457-08	13
DUP-1_210928 L1411457-09	14
MW-13_210928 L1411457-10	15
MW-5_210928 L1411457-11	16
Qc: Quality Control Summary	17
Metals (ICP) by Method 6010D	17
Volatile Organic Compounds (GC) by Method NWTPHGX	18
Volatile Organic Compounds (GC/MS) by Method 8260D	20
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	22
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	23
GI: Glossary of Terms	25
Al: Accreditations & Locations	26

Sc: Sample Chain of Custody

DATE/TIME:

10/19/21 17:49

27

SAMPLE SUMMARY

RS-1-092821 L1411457-01 GW			Collected by BP/JS/MA	Collected date/time 09/28/2116:45	Received da 09/30/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753399	1	10/07/21 17:54	10/08/21 02:27	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1752149	1	10/07/21 06:25	10/07/21 06:25	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1752724	1	10/07/21 07:10	10/07/21 07:10	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754008	1	10/11/21 04:08	10/11/21 20:40	DMG	Mt. Juliet, TN
MW-17_210928 L1411457-02 GW			Collected by BP/JS/MA	Collected date/time 09/28/2111:31	Received da 09/30/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753399	1	10/07/21 17:54	10/08/21 03:00	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1752149	1	10/07/21 06:46	10/07/21 06:46	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1752724	1	10/07/21 07:30	10/07/21 07:30	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754008	1	10/11/21 04:08	10/11/21 21:06	DMG	Mt. Juliet, TN
			Collected by BP/JS/MA	Collected date/time 09/28/2116:06	Received da 09/30/21 09:	
MW-14_210928 L1411457-03 GW			DF/J3/IVIA	09/28/21 10:00	09/30/21 09.	.00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753399	1	10/07/21 17:54	10/08/21 03:03	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1752149	1	10/07/21 07:08	10/07/21 07:08	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1752724	1	10/07/21 07:48	10/07/21 07:48	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754008	1	10/11/21 04:08	10/11/21 21:32	DMG	Mt. Juliet, TN
MW-4_210928 L1411457-04 GW			Collected by BP/JS/MA	Collected date/time 09/28/2113:00	Received da 09/30/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753399	1	10/07/21 17:54	10/08/21 03:06	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1752149	1	10/07/21 07:30	10/07/21 07:30	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1752727	1	10/07/21 11:36	10/07/21 11:36	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754008	1	10/11/21 04:08	10/11/21 21:58	DMG	Mt. Juliet, TN
MW-8_210928 L1411457-05 GW			Collected by BP/JS/MA	Collected date/time 09/28/2116:00	Received da 09/30/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Matals (ICD) by Mathad 6010D	WG1753399	1	date/time 10/07/21 17:54	date/time	CCE	Mt Iuliot TNI
Metals (ICP) by Method 6010D Volatile Organic Compounds (GC) by Method NWTPHGX	WG1753399 WG1752149	1 1	10/07/21 17:54	10/08/21 03:09 10/07/21 08:44	CCE BMB	Mt. Juliet, TN Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1752149 WG1752727	1	10/07/21 08.44	10/07/21 11:55	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1752727 WG1754008	1	10/07/21 11:55	10/11/21 22:24	DMG	Mt. Juliet, TN
MW-18_210928 L1411457-06 GW			Collected by BP/JS/MA	Collected date/time 09/28/2110:21	Received da 09/30/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG1753399	1	10/07/21 17:54	10/08/21 03:12	CCE	Mt. Juliet, TN
metals (ici) by metalog oblob			40/00/04 00 40	10/06/21 20:40	DMD	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1752816	1	10/06/21 20:48	10/06/21 20:48	BMB	Mit. Juliet, TN
	WG1752816 WG1752727	1	10/06/21 20:48 10/07/21 12:14	10/06/21 20:48	BMB	Mt. Juliet, TN

SAMPLE SUMMARY

MW-7_210928 L1411457-07 GW			Collected by BP/JS/MA	Collected date/time 09/28/2114:15	Received da 09/30/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753399	1	10/07/21 17:54	10/08/21 03:14	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1752816	1	10/06/21 21:16	10/06/21 21:16	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1752727	1	10/07/21 12:34	10/07/21 12:34	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754008	1	10/11/21 04:08	10/11/21 23:15	DMG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1750686	1	10/04/21 18:34	10/05/21 11:49	LEA	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1750686	20	10/04/21 18:34	10/06/21 00:32	AAT	Mt. Juliet, TN
MW-21_210928 L1411457-08 GW			Collected by BP/JS/MA	Collected date/time 09/28/2110:35	Received da 09/30/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753399	1	10/07/21 17:54	10/08/21 03:17	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1752816	1	10/06/21 21:44	10/06/21 21:44	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1752727	1	10/07/21 12:53	10/07/21 12:53	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754008	1	10/11/21 04:08	10/11/21 23:41	DMG	Mt. Juliet, TN
DUP-1_210928 L1411457-09 GW			Collected by BP/JS/MA	Collected date/time 09/28/21 00:00	Received da 09/30/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
ALL LIVERY AND LOCATED	W04750000		date/time	date/time	205	
Metals (ICP) by Method 6010D	WG1753399	1	10/07/21 17:54	10/08/21 03:20	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1752816	1	10/06/21 22:13	10/06/21 22:13	BMB BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1752727 WG1754008	1	10/07/21 13:12 10/11/21 04:08	10/07/21 13:12 10/12/21 00:07	DMG	Mt. Juliet, TN Mt. Juliet, TN
MW-13_210928 L1411457-10 GW			Collected by BP/JS/MA	Collected date/time 09/28/2112:52	Received da 09/30/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753399	1	10/07/21 17:54	10/08/21 03:28	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1752816	1	10/06/21 22:41	10/06/21 22:41	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1752727	1	10/07/21 13:31	10/07/21 13:31	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754008	1	10/11/21 04:08	10/12/21 00:33	DMG	Mt. Juliet, TN
MW-5_210928 L1411457-11 GW			Collected by BP/JS/MA	Collected date/time 09/28/2111:55	Received da 09/30/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753399	1	10/07/21 17:54	10/08/21 03:31	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1752816	1	10/06/21 23:09	10/06/21 23:09	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1752727	1	10/07/21 13:50	10/07/21 13:50	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754008	1	10/11/21 04:08	10/12/21 00:59	DMG	Mt. Juliet, TN
TRIP BLANK_210928 L1411457-12 GW			Collected by BP/JS/MA	Collected date/time 09/28/21 00:00	Received da 09/30/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Project Manager

Buar Ford

SAMPLE RESULTS - 01

Collected date/time: 09/28/21 16:45

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/08/2021 02:27	WG1753399

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	72.6	<u>B J</u>	31.6	100	1	10/07/2021 06:25	WG1752149
(S) a,a,a-Trifluorotoluene(FID)	95.9			78.0-120		10/07/2021 06:25	WG1752149

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/07/2021 07:10	WG1752724
Toluene	U		0.278	1.00	1	10/07/2021 07:10	WG1752724
Ethylbenzene	U		0.137	1.00	1	10/07/2021 07:10	WG1752724
Total Xylenes	U		0.174	3.00	1	10/07/2021 07:10	WG1752724
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 07:10	WG1752724
(S) Toluene-d8	120			80.0-120		10/07/2021 07:10	WG1752724
(S) 4-Bromofluorobenzene	89.3			77.0-126		10/07/2021 07:10	WG1752724
(S) 1,2-Dichloroethane-d4	90.2			70.0-130		10/07/2021 07:10	WG1752724

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>				
Analyte	ug/l		ug/l	ug/l		date / time					
Diesel Range Organics (DRO)	U		66.7	200	1	10/11/2021 20:40	WG1754008				
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 20:40	WG1754008				
(S) o-Terphenyl	111			52.0-156		10/11/2021 20:40	WG1754008				

Gl

MW-17_210928

SAMPLE RESULTS - 02

Collected date/time: 09/28/21 11:31

L1411457

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Lead,Dissolved	U		2.99	6.00	1	10/08/2021 03:00	WG1753399

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	10/07/2021 06:46	<u>WG1752149</u>
(S) a,a,a-Trifluorotoluene(FID)	95.4			78.0-120		10/07/2021 06:46	<u>WG1752149</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.124	<u>J</u>	0.0941	1.00	1	10/07/2021 07:30	WG1752724
Toluene	125	<u>E</u>	0.278	1.00	1	10/07/2021 07:30	WG1752724
Ethylbenzene	152	<u>E</u>	0.137	1.00	1	10/07/2021 07:30	WG1752724
Total Xylenes	616	<u>E</u>	0.174	3.00	1	10/07/2021 07:30	WG1752724
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 07:30	WG1752724
(S) Toluene-d8	114			80.0-120		10/07/2021 07:30	WG1752724
(S) 4-Bromofluorobenzene	93.6			77.0-126		10/07/2021 07:30	WG1752724
(S) 1,2-Dichloroethane-d4	91.8			70.0-130		10/07/2021 07:30	WG1752724

⁸Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	546		66.7	200	1	10/11/2021 21:06	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 21:06	WG1754008
(S) o-Terphenyl	106			52.0-156		10/11/2021 21:06	WG1754008

MW-14_210928

SAMPLE RESULTS - 03

.1411457

Metals (ICP) by Method 6010D

Collected date/time: 09/28/21 16:06

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/08/2021 03:03	WG1753399

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	5110		31.6	100	1	10/07/2021 07:08	WG1752149
(S) a,a,a-Trifluorotoluene(FID)	99.1			78.0-120		10/07/2021 07:08	WG1752149

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.394	<u>J</u>	0.0941	1.00	1	10/07/2021 07:48	WG1752724
Toluene	7.98		0.278	1.00	1	10/07/2021 07:48	WG1752724
Ethylbenzene	454	<u>E</u>	0.137	1.00	1	10/07/2021 07:48	WG1752724
Total Xylenes	837	<u>E</u>	0.174	3.00	1	10/07/2021 07:48	WG1752724
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 07:48	WG1752724
(S) Toluene-d8	113			80.0-120		10/07/2021 07:48	WG1752724
(S) 4-Bromofluorobenzene	74.6	<u>J2</u>		77.0-126		10/07/2021 07:48	WG1752724
(S) 1,2-Dichloroethane-d4	96.6			70.0-130		10/07/2021 07:48	WG1752724

Gl

⁸**A**l

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	556		66.7	200	1	10/11/2021 21:32	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 21:32	WG1754008
(S) o-Terphenyl	103			52.0-156		10/11/2021 21:32	WG1754008

MW-4_210928

SAMPLE RESULTS - 04

.1411457

Collected date/time: 09/28/21 13:00 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead.Dissolved	U		2.99	6.00	1	10/08/2021 03:06	WG1753399

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	8850		31.6	100	1	10/07/2021 07:30	WG1752149
(S) a,a,a-Trifluorotoluene(FID)	94.8			78.0-120		10/07/2021 07:30	WG1752149

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/07/2021 11:36	WG1752727
Toluene	U		0.278	1.00	1	10/07/2021 11:36	WG1752727
Ethylbenzene	U		0.137	1.00	1	10/07/2021 11:36	WG1752727
Total Xylenes	U		0.174	3.00	1	10/07/2021 11:36	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 11:36	WG1752727
(S) Toluene-d8	119			80.0-120		10/07/2021 11:36	WG1752727
(S) 4-Bromofluorobenzene	89.1			77.0-126		10/07/2021 11:36	WG1752727
(S) 1,2-Dichloroethane-d4	91.1			70.0-130		10/07/2021 11:36	WG1752727

Gl

⁸Al

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	440		66.7	200	1	10/11/2021 21:58	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 21:58	WG1754008
(S) o-Terphenyl	114			52.0-156		10/11/2021 21:58	WG1754008

MW-8_210928

SAMPLE RESULTS - 05

L1411457

Collected date/time: 09/28/21 16:00 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	10/08/2021 03:09	WG1753399	

²TC

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	3600		31.6	100	1	10/07/2021 08:44	<u>WG1752149</u>
(S) a,a,a-Trifluorotoluene(FID)	80.8			78.0-120		10/07/2021 08:44	<u>WG1752149</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/07/2021 11:55	WG1752727
Toluene	U		0.278	1.00	1	10/07/2021 11:55	WG1752727
Ethylbenzene	1.11		0.137	1.00	1	10/07/2021 11:55	WG1752727
Total Xylenes	0.574	<u>J</u>	0.174	3.00	1	10/07/2021 11:55	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 11:55	WG1752727
(S) Toluene-d8	126	<u>J1</u>		80.0-120		10/07/2021 11:55	WG1752727
(S) 4-Bromofluorobenzene	96.1			77.0-126		10/07/2021 11:55	WG1752727
(S) 1,2-Dichloroethane-d4	90.1			70.0-130		10/07/2021 11:55	WG1752727

8 Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	305		66.7	200	1	10/11/2021 22:24	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 22:24	WG1754008
(S) o-Terphenyl	107			52.0-156		10/11/2021 22:24	WG1754008

MW-18_210928

SAMPLE RESULTS - 06

L141145

Collected date/time: 09/28/21 10:21 Metals (ICP) by Method 6010D

Cp

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	367		31.6	100	1	10/06/2021 20:48	WG1752816
(S) a,a,a-Trifluorotoluene(FID)	91.1			78.0-120		10/06/2021 20:48	WG1752816

Ss

⁵Sr

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/07/2021 12:14	WG1752727
Toluene	U		0.278	1.00	1	10/07/2021 12:14	WG1752727
Ethylbenzene	U		0.137	1.00	1	10/07/2021 12:14	WG1752727
Total Xylenes	U		0.174	3.00	1	10/07/2021 12:14	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 12:14	WG1752727
(S) Toluene-d8	120			80.0-120		10/07/2021 12:14	WG1752727
(S) 4-Bromofluorobenzene	81.3			77.0-126		10/07/2021 12:14	WG1752727
(S) 1,2-Dichloroethane-d4	91.4			70.0-130		10/07/2021 12:14	WG1752727

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	161	<u>J</u>	66.7	200	1	10/11/2021 22:50	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 22:50	WG1754008
(S) o-Terphenyl	108			52.0-156		10/11/2021 22:50	WG1754008

MW-7_210928

SAMPLE RESULTS - 07

1411457

Metals (ICP) by Method 6010D

Collected date/time: 09/28/21 14:15

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/08/2021 03:14	WG1753399

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	8990		31.6	100	1	10/06/2021 21:16	WG1752816
(S) a,a,a-Trifluorotoluene(FID)	99.2			78.0-120		10/06/2021 21:16	<u>WG1752816</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.124	<u>J</u>	0.0941	1.00	1	10/07/2021 12:34	WG1752727
Toluene	14.6		0.278	1.00	1	10/07/2021 12:34	WG1752727
Ethylbenzene	359	<u>E</u>	0.137	1.00	1	10/07/2021 12:34	WG1752727
Total Xylenes	1390	<u>E</u>	0.174	3.00	1	10/07/2021 12:34	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 12:34	WG1752727
(S) Toluene-d8	122	<u>J1</u>		80.0-120		10/07/2021 12:34	WG1752727
(S) 4-Bromofluorobenzene	102			77.0-126		10/07/2021 12:34	WG1752727
(S) 1,2-Dichloroethane-d4	93.8			70.0-130		10/07/2021 12:34	WG1752727

Gl

Αl

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	<u>'</u>	`	, ,				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	565		66.7	200	1	10/11/2021 23:15	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 23:15	WG1754008
(S) o-Terphenyl	113			52.0-156		10/11/2021 23:15	WG1754008

⁹Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.0203	0.0500	1	10/05/2021 11:49	WG1750686
Benzo(a)pyrene	U		0.0184	0.0500	1	10/05/2021 11:49	WG1750686
Benzo(b)fluoranthene	U		0.0168	0.0500	1	10/05/2021 11:49	WG1750686
Benzo(k)fluoranthene	U		0.0202	0.0500	1	10/05/2021 11:49	WG1750686
Chrysene	U		0.0179	0.0500	1	10/05/2021 11:49	WG1750686
Dibenz(a,h)anthracene	U		0.0160	0.0500	1	10/05/2021 11:49	WG1750686
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	1	10/05/2021 11:49	WG1750686
Naphthalene	105		1.83	5.00	20	10/06/2021 00:32	WG1750686
1-Methylnaphthalene	16.9		0.0687	0.250	1	10/05/2021 11:49	WG1750686
2-Methylnaphthalene	19.7		0.0674	0.250	1	10/05/2021 11:49	WG1750686
(S) Nitrobenzene-d5	97.0			31.0-160		10/05/2021 11:49	WG1750686
(S) Nitrobenzene-d5	90.0	<u>J7</u>		31.0-160		10/06/2021 00:32	WG1750686
(S) 2-Fluorobiphenyl	107			48.0-148		10/05/2021 11:49	WG1750686
(S) 2-Fluorobiphenyl	105	<u>J7</u>		48.0-148		10/06/2021 00:32	WG1750686
(S) p-Terphenyl-d14	134			37.0-146		10/05/2021 11:49	WG1750686
(S) p-Terphenyl-d14	116	<u>J7</u>		37.0-146		10/06/2021 00:32	WG1750686

MW-21_210928

SAMPLE RESULTS - 08

L1411457

Collected date/time: 09/28/21 10:35 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	4.16	J	2.99	6.00	1	10/08/2021 03:17	WG1753399

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	233		31.6	100	1	10/06/2021 21:44	WG1752816
(S) a,a,a-Trifluorotoluene(FID)	94.9			78.0-120		10/06/2021 21:44	<u>WG1752816</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/07/2021 12:53	WG1752727
Toluene	U		0.278	1.00	1	10/07/2021 12:53	WG1752727
Ethylbenzene	2.30		0.137	1.00	1	10/07/2021 12:53	WG1752727
Total Xylenes	12.9		0.174	3.00	1	10/07/2021 12:53	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 12:53	WG1752727
(S) Toluene-d8	121	<u>J1</u>		80.0-120		10/07/2021 12:53	WG1752727
(S) 4-Bromofluorobenzene	79.7			77.0-126		10/07/2021 12:53	WG1752727
(S) 1,2-Dichloroethane-d4	87.9			70.0-130		10/07/2021 12:53	WG1752727

Gl

Sc

Sample Narrative:

L1411457-08 WG1752727: Ethylbenzene and Xylenes possibly biased high due to instrument carryover.

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	244		66.7	200	1	10/11/2021 23:41	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/11/2021 23:41	WG1754008
(S) o-Terphenyl	113			52.0-156		10/11/2021 23:41	WG1754008

DUP-1_210928

SAMPLE RESULTS - 09

.1411457

Collected date/time: 09/28/21 00:00 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	10/08/2021 03:20	WG1753399	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	4530		31.6	100	1	10/06/2021 22:13	WG1752816
(S) a,a,a-Trifluorotoluene(FID)	87.6			78.0-120		10/06/2021 22:13	WG1752816

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.194	<u>J</u>	0.0941	1.00	1	10/07/2021 13:12	WG1752727
Toluene	1.56		0.278	1.00	1	10/07/2021 13:12	WG1752727
Ethylbenzene	73.4		0.137	1.00	1	10/07/2021 13:12	WG1752727
Total Xylenes	122		0.174	3.00	1	10/07/2021 13:12	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 13:12	WG1752727
(S) Toluene-d8	116			80.0-120		10/07/2021 13:12	WG1752727
(S) 4-Bromofluorobenzene	91.6			77.0-126		10/07/2021 13:12	WG1752727
(S) 1,2-Dichloroethane-d4	86.1			70.0-130		10/07/2021 13:12	WG1752727

Gl

Αl

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	752		66.7	200	1	10/12/2021 00:07	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 00:07	WG1754008
(S) o-Terphenyl	107			52.0-156		10/12/2021 00:07	WG1754008

SAMPLE RESULTS - 10

L1411457

Metals (ICP) by Method 6010D

Collected date/time: 09/28/21 12:52

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/08/2021 03:28	WG1753399

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	4940		31.6	100	1	10/06/2021 22:41	WG1752816
(S) a,a,a-Trifluorotoluene(FID)	86.9			78.0-120		10/06/2021 22:41	<u>WG1752816</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.147	<u>J</u>	0.0941	1.00	1	10/07/2021 13:31	WG1752727
Toluene	1.61		0.278	1.00	1	10/07/2021 13:31	WG1752727
Ethylbenzene	76.3		0.137	1.00	1	10/07/2021 13:31	WG1752727
Total Xylenes	108		0.174	3.00	1	10/07/2021 13:31	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 13:31	WG1752727
(S) Toluene-d8	119			80.0-120		10/07/2021 13:31	WG1752727
(S) 4-Bromofluorobenzene	81.0			77.0-126		10/07/2021 13:31	WG1752727
(S) 1,2-Dichloroethane-d4	86.6			70.0-130		10/07/2021 13:31	WG1752727

°Al

Gl

⁹Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	730		66.7	200	1	10/12/2021 00:33	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 00:33	WG1754008
(S) o-Terphenyl	105			52.0-156		10/12/2021 00:33	WG1754008

SAMPLE RESULTS - 11

L1411457

Metals (ICP) by Method 6010D

Collected date/time: 09/28/21 11:55

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead,Dissolved	U		2.99	6.00	1	10/08/2021 03:31	WG1753399	

Cp

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	539		31.6	100	1	10/06/2021 23:09	WG1752816
(S) a,a,a-Trifluorotoluene(FID)	94.8			78.0-120		10/06/2021 23:09	<u>WG1752816</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/07/2021 13:50	WG1752727
Toluene	U		0.278	1.00	1	10/07/2021 13:50	WG1752727
Ethylbenzene	0.593	<u>J</u>	0.137	1.00	1	10/07/2021 13:50	WG1752727
Total Xylenes	1.36	<u>J</u>	0.174	3.00	1	10/07/2021 13:50	WG1752727
Methyl tert-butyl ether	U		0.101	1.00	1	10/07/2021 13:50	WG1752727
(S) Toluene-d8	117			80.0-120		10/07/2021 13:50	WG1752727
(S) 4-Bromofluorobenzene	94.4			77.0-126		10/07/2021 13:50	WG1752727
(S) 1,2-Dichloroethane-d4	90.1			70.0-130		10/07/2021 13:50	WG1752727

⁸Al

Gl

⁹Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	305		66.7	200	1	10/12/2021 00:59	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 00:59	WG1754008
(S) o-Terphenyl	108			52.0-156		10/12/2021 00:59	WG1754008

QUALITY CONTROL SUMMARY

L1411457-01,02,03,04,05,06,07,08,09,10,11

Metals (ICP) by Method 6010D

Method Blank (MB)

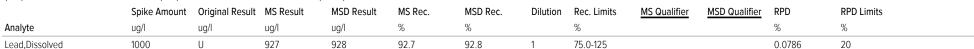
(MB) R3713928-1 10/0	(MB) R3713928-1 10/08/21 02:21									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Lead, Dissolved	U		2.99	6.00						

²Tc

3 Ss

Laboratory Control Sample (LCS)

(LCS) R3713928-2 10/08/2	1 02:24				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Lead, Dissolved	1000	933	93.3	80.0-120	



Cn

(OS) L1411457-01 10/08/21 02:27 • (MS) R3713928-4 10/08/21 02:32 • (MSD) R3713928-5 10/08/21 02:35

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1411457-01,02,03,04,05

Method Blank (MB)

(MB) R3715023-2 10/07/2	21 02:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	40.5	<u>J</u>	31.6	100
(S) a,a,a-Trifluorotoluene(FID)	95.2			78.0-120

²Tc

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3715023-1 10/07/2	(LCS) R3715023-1 10/07/21 01:18												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	ug/l	ug/l	%	%									
Gasoline Range Organics-NWTPH	5500	4960	90.2	70.0-124									
(S) a,a,a-Trifluorotoluene(FID)			103	78.0-120									

Arcadis - Chevron - WA

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1411457-06,07,08,09,10,11

Method Blank (MB)

(MB) R3717577-2 10/06/2	MB) R3717577-2 10/06/21 19:52										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	ug/l		ug/l	ug/l							
Gasoline Range Organics-NWTPH	U		31.6	100							
(S) a,a,a-Trifluorotoluene(FID)	95.8			78.0-120							

³Ss

Laboratory Control Sample (LCS)

(LCS) R3717577-1 10/06/2	21 18:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5500	6390	116	70.0-124	
(S) a.a.a-Trifluorotoluene(FID)			99.9	78.0-120	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1411457-01,02,03

Method Blank (MB)

(MB) R3715554-3 10/07/2	MB) R3715554-3 10/07/21 01:27									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Benzene	U		0.0941	1.00						
Ethylbenzene	U		0.137	1.00						
Methyl tert-butyl ether	U		0.101	1.00						
Toluene	U		0.278	1.00						
Xylenes, Total	U		0.174	3.00						
(S) Toluene-d8	117			80.0-120						
(S) 4-Bromofluorobenzene	88.8			77.0-126						
(S) 1,2-Dichloroethane-d4	93.9			70.0-130						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	5.00	5.20	5.09	104	102	70.0-123			2.14	20	
Ethylbenzene	5.00	5.62	5.92	112	118	79.0-123			5.20	20	
Methyl tert-butyl ether	5.00	4.49	4.37	89.8	87.4	68.0-125			2.71	20	
Toluene	5.00	5.73	5.66	115	113	79.0-120			1.23	20	
Xylenes, Total	15.0	15.9	15.9	106	106	79.0-123			0.000	20	
(S) Toluene-d8				117	117	80.0-120					
(S) 4-Bromofluorobenzene				91.3	92.0	77.0-126					
(S) 1,2-Dichloroethane-d4				92.7	92.8	70.0-130					

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1411457-04,05,06,07,08,09,10,11

Method Blank (MB)

(MB) R3715555-2 10/07/21	10:31			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Benzene	U		0.0941	1.00
Ethylbenzene	U		0.137	1.00
Methyl tert-butyl ether	U		0.101	1.00
Toluene	U		0.278	1.00
Xylenes, Total	U		0.174	3.00
(S) Toluene-d8	111			80.0-120
(S) 4-Bromofluorobenzene	96.6			77.0-126
(S) 1,2-Dichloroethane-d4	95.9			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3715555-1 10/07	7/21 08:46				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Benzene	5.00	5.12	102	70.0-123	
Ethylbenzene	5.00	5.94	119	79.0-123	
Methyl tert-butyl ether	5.00	4.62	92.4	68.0-125	
Toluene	5.00	5.71	114	79.0-120	
Xylenes, Total	15.0	16.8	112	79.0-123	
(S) Toluene-d8			118	80.0-120	
(S) 4-Bromofluorobenzen	9		90.7	77.0-126	
(S) 1,2-Dichloroethane-d4			93.8	70.0-130	

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT <u>L1411457-01,02,03,04,05,06,07,08,09,10,11</u>

Method Blank (MB)

(MB) R3714878-1 10/11/21 0	9:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	81.0			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3714878-2 10/11/21 09:56 • (LCSD) R3714878-3 10/11/21 10:22											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Diesel Range Organics (DRO)	1500	1370	1260	91.3	84.0	50.0-150			8.37	20	
(S) o-Terphenyl				103	98.0	52.0-156					

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1411457-07

Method Blank (MB)

(MB) R3712733-3 10/05/				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Benzo(a)anthracene	U		0.0203	0.0500
Benzo(a)pyrene	U		0.0184	0.0500
Benzo(b)fluoranthene	U		0.0168	0.0500
Benzo(k)fluoranthene	U		0.0202	0.0500
Chrysene	U		0.0179	0.0500
Dibenz(a,h)anthracene	U		0.0160	0.0500
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500
Naphthalene	U		0.0917	0.250
1-Methylnaphthalene	U		0.0687	0.250
2-Methylnaphthalene	U		0.0674	0.250
(S) Nitrobenzene-d5	92.0			31.0-160
(S) 2-Fluorobiphenyl	108			48.0-148
(S) p-Terphenyl-d14	138			37.0-146

Method Blank (MB)

(MB) R3717954-1 10/15/2	21 20:33					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Benzo(a)anthracene	U		0.0203	0.0500		
Benzo(a)pyrene	U		0.0184	0.0500		
Benzo(b)fluoranthene	U		0.0168	0.0500		
Benzo(k)fluoranthene	U		0.0202	0.0500		
Chrysene	U		0.0179	0.0500		
Dibenz(a,h)anthracene	U		0.0160	0.0500		
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500		
Naphthalene	U		0.0917	0.250		
1-Methylnaphthalene	U		0.0687	0.250		
2-Methylnaphthalene	U		0.0674	0.250		
(S) Nitrobenzene-d5	86.5			31.0-160		
(S) 2-Fluorobiphenyl	109			48.0-148		
(S) p-Terphenyl-d14	133			37.0-146		

Sc

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

11411457-07

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3712733-1 10/05/21 07:48 • (LCSD) R3712733-2 10/05/21 08:08

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Benzo(a)anthracene	2.00	1.84	1.81	92.0	90.5	61.0-140			1.64	20
Benzo(a)pyrene	2.00	1.83	1.78	91.5	89.0	60.0-143			2.77	20
Benzo(b)fluoranthene	2.00	1.86	1.81	93.0	90.5	58.0-141			2.72	20
Benzo(k)fluoranthene	2.00	1.74	1.68	87.0	84.0	58.0-148			3.51	20
Chrysene	2.00	1.96	1.91	98.0	95.5	64.0-144			2.58	20
Dibenz(a,h)anthracene	2.00	1.53	1.43	76.5	71.5	52.0-155			6.76	20
Indeno(1,2,3-cd)pyrene	2.00	1.65	1.56	82.5	78.0	54.0-153			5.61	20
Naphthalene	2.00	1.93	1.91	96.5	95.5	61.0-137			1.04	20
1-Methylnaphthalene	2.00	2.00	1.97	100	98.5	66.0-142			1.51	20
2-Methylnaphthalene	2.00	1.91	1.88	95.5	94.0	62.0-136			1.58	20
(S) Nitrobenzene-d5				94.0	90.5	31.0-160				
(S) 2-Fluorobiphenyl				106	106	48.0-148				
(S) p-Terphenyl-d14				126	121	37.0-146				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	a Demillions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Arcadis - Chevron - WA
 30064310 07.21-Plan
 L1411457
 10/19/21 17:49
 25 of 28

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Information:						A	Analysis / Container / Preservative					Chain of Custody Page Z of	
Arcadis - Chevron - W				counts Payabl		Pres Chk									_ Fa) ce Analytical [®]
Suite 800 Seattle, WA 98101			Highland	Highlands Ranch, CO 80129												
Report to: Ada Hamilton/Alex Laws				Email To: alexander.laws@arcadis.com;Ada.Hamilton@ar					-BT		T.				Submitting a sample	Mount Juliet, TN 37122 via this chain of custody edgment and acceptance of the
Project Description: City/State			Please Circ					S	-HCI-		es-W				Pace Terms and Con https://info.pacelab terms.pdf	ditions found at: s.com/hubfs/pas-standard-
Phone: 206-325-5254 Client Project # 30064310 07.21-Plan			Lab Project #				-HCI	E-NoPres	mIAmb	_	Amb-NoPres-WT				SDG#	1411467
Collected by (print): 3. PAULEY LSEPIUL/M. ANDREWS	Site/Facility I		P.O.#				40mlAmb-HCl	50mlHDP	SGT 40	mb HCI	40mlAm				Acctnum: Ch	IEVARCWA
Collected by (signature): Sepical M. ANDREWS B. PAULEY Next Day Next Day		Day Five ay 5 Day ay 10 Day		Quote # Date Resul	ts Needed	No.	8260D	Pb 6010 250	NWTPHDX LVINOSGT 40miAmb-HCl-BT	HGX 40mlAmb	8270ESIM 4			Template: T194616 Prelogin: P87179 8 PM: 110 - Brian Ford PB: 以 5		71798 an Ford
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEXM	Diss Pk	WTP	NWTPHGX	PAHs 8				Shipped Via:	Sample # (lab only)
RS-1-092821	G	GW	-	09/28/21	145	9	×	X	×	X			T.ve-			-61
MW-17-20210928	G	GW	-	09/28/21	1131	9	X	\boxtimes	X	X			1			02
MW-14-20210928	6	GW	_	09/28/21	1606	9	X	\boxtimes	X	\boxtimes						03
MW-4-20210928	6	GW	_	09 28 21	1300	9	\times	\boxtimes	X	\geq		22	10 · · · · · ·	100 mg		04
MW-8-20210928	G	GW		09/28/21	1600	9	X	\boxtimes	X	\boxtimes		7.2	r 26			09
MW-18-20210928	G	GW		09/20/21	1021	9	X	X	X	\boxtimes						ob
MW-7-20210928	G	GW		09/28/21	HI5	III.	X	\boxtimes	X	\boxtimes	X					07
MW-21-20210928	G	GW	_	09/28/21	1035	9	X	\boxtimes	X	\boxtimes						08
DUP-1-092821	6	GW		व्यायश्चीया		9	X	\times	X	\boxtimes						09
MW-13-20216928	Remarks:	GW		129/28/21	1252	9	\times	\boxtimes	X	X				Sa	ample Receipt (Checklist
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater										pH Flow		Other Bot		COC Seal COC Signa Bottles Correct	Sample Receipt Checklist CC Seal Present/Intact: _NP Y OC Signed/Accurate: Ottles arrive intact: _Y orrect bottles used:	
DW - Drinking Water OT - Other	Samples returned UPS			Tracking # 521			7	3	3/3	3 668		7		VOA Zero	If Applica Headspace:	ble _Y _N
Relinquished by: (Signature)	D	ate:	Time	00	ved by: (Signa	# 1 # 3				Trip Blar	k Receive	d: (Yes// No H 101/M		RAD Scre	tion Correct/C en <0.5 mR/hr:	Y N
Reinfolished by : (Signature) Date:			Time		ved by: (Signa					16mp:	2.1°C	Bottles Recei	ved:	If preserva	tion required by L	ogin: Date/Time
Relinquished by : (Signature)	D	ate:	Time	Recei	ved for lab by	: (Signat	yfe) (Date:	1/21	Time:	00	Hold:		Condition: NCF / OK

- 4

ompany Name/Address:			Billing Info	rmation:					A	nalvsis /	Contain	ner / Preservativ	9		Chain of Custod	Page 3 of 3
Arcadis - Chevron - WA			Attn: Accounts Payable 630 Plaza Dr., Ste. 600 Highlands Ranch, CO 80129		Pres									1	ce Analytical [®]	
1100 Olive Way Suite 800 Seattle. WA 98101	e 800															
Report to:		1. 清土人	Email To:	laws@arcad	is.com;Ada.Han	nilton@a	,		3T		-					ount Juliet, TN 37122 ia this chain of custody igment and acceptance of the
Ada Hamilton/Alex Laws Project Description:		City/State		Chatanahaa	n	Circle:	-		1-0		3-5				Pace Terms and Condi https://info.pacelabs.	
97502			EDRO-Wa	DLEY, W	. 0	CT ET		res	1-q		Pre				terms.pdf	67
hone: 206-325-5254	30064310	t# 07.21-Plan		CHEVAR	t# CWA-97502		P-HCI	E-NoP	40mIAmb-HCI-BT	5	40mlAmb-NoPres-WT				SDG #	1411457
Collected by (print): B. PAULEY	Site/Facility I	D# ALF ST SED	RO-	P.O. #			40mlAmb-HCl	MIHDP		mb Hc	OmlAr				Acctnum: CH	
Collected by (signature):	Same I	(Lab MUST Be Day Five Day 5 Day	Day	Quote #	Results Needed		8260D 40	Diss Pb 6010 250mlHDPE-NoPres	NWTPHDX LVINOSGT	NWTPHGX 40mlAmb HCI	8270ESIM 4				Prelogin: P87	1798
Immediately X		ay 10 D		,	icsuits recues	No.	182	09 0	HDX	HGX	3270				PB: NS	9/9/21
Packed on Ice N Y X	Comp/Grab	T	Depth	Date	Time	Cote	BTEXM	Diss Pk	NWTP	NWTP	PAHs 8				Shipped Via:	Sample # (lab only)
MW-5-20210928	G	GW	-	09/28/	1 1155		×	X	X	X				-6-		-11
MW-5-20210928 TRIP BLANK	# ,	GW	-		-	. 4				4			4 4	27.11		12
		GW														4
		GW		- 1									4.6			
		GW		ri-areands											8 (2 days - 12	
24.42		GW		r retain				-								
														Z		
														20.01		
										40.0			2.0			
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:								T	pH Flow		Temp	COC	Seal Property Signed, tles are	le Receipt C resent/Intact 'Accurate: rive intact: ttles used:	: _NP _Y _N _N _N _N
DW Drinking Water	Samples returneUPSFedE			_	Tracking #	21	7	33	13	6	68	0	Suf	ficient Zero He	volume sent: If Applicate adspace:	oleN
Relinquished by: (Signature)	1	pate:	/ Time	100	Received by: (Si	gnature)				Trip Blar	nk Recei	ived: Yes/No HOL/Me TBR	RAL		on Correct/Ch <0.5 mR/hr:	necked: Y N
Relinquished by : (Signay 19)		Date:	Time		Received by: (Si	gnature)				Temp:	07.	C Bottles Receiv	ed: If p	reservatio	n required by Lo	gin: Date/Time
Relinquished by : (Signature)		Date:	Tim	e:	Received for tab	by: (Sig:	afure)	11		Date:/	0/2	Time: 090	C Hol	d:		Condition: NCF / OK

Chevron - WA

DATA REVIEW

SEDRO-WOOLLEY, WA

Volatile organic compounds, Total Petroleum Hydrocarbons, and Metal Analyses

SDG# L1412143

Analyses Performed By: Pace Analytical National Mount Juliet, TN 37122

Report #44129R Review Level: Tier II Project: 30064310.08.82

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) # L1412143 for samples collected in association with the Chevron SEDRO-WOOLLEY, WA Site. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

Commiss ID	Labin	B. B. and and and	Sample	Dawe of Committee	Analysis			
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	TPH	MET	
MW-10-20210929	L1412143-01	Water	09/29/2021		Х	Х	Х	
MW-6-20210927	L1412143-02	Water	09/27/2021		Х	Х	Х	
DUP-2-092921	L1412143-03	Water	09/29/2021	MW-11-20210929	Х	Х	Х	
MW-15-20210927	L1412143-04	Water	09/27/2021		Х	Х	Х	
MW-16-20210927	L1412143-05	Water	09/27/2021		Х	Х	Х	
MW-11-20210929	L1412143-06	Water	09/29/2021		Х	Х	Х	
RS-1-092721	L1412143-07	Water	09/27/2021		Х	Х	Х	
RS-1-092921	L1412143-08	Water	09/29/2021		Х	Х	Х	
MW-12-20210928	L1412143-09	Water	09/28/2021		Х	Х	Х	

Notes:

VOC = volatile organic compounds.

TPH = total petroleum hydrocarbons.

MET = metals.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed		orted	Performance Acceptable		Not
	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		Х		Х	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8.Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

Note:

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260D, NWTPHDX and NWTPHGX. Validation was performed following the USEPA National Functional Guidelines NFG for Organic Superfund Methods Data Review, EPA-540-R-20-005 (November 2020), with reference to the historical (USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D	Water	14 days from collection to analysis (preserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.

Note:

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the sample detection limit (SDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the SDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within the control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was not performed on sample within this SDG.

5. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compounds	Sample Result ug/l	Duplicate Result ug/l	RPD
	Benzene	3.03	0.230 J	AC
MW/ 11 20210020 / DUD 2 002021	Toluene	1.78	9.78	NC
MW-11-20210929 / DUP-2-092921	Ethylbenzene	67.9	19.4	111%
	Total Xylenes	4.36	85.6	NC

Notes:

NC Not compliant

The compounds toluene, ethylbenzene, and total xylenes associated with sample IDs MW-11-20210929 / DUP-2-092921 exhibited a field duplicate RPDs and results greater than the control limit. The associated sample results from sample IDs for the listed compound were qualified as estimated.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260D		oorted	Performance Acceptable		Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/M	S)			
Tier II Validation					
Holding times		X		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks	Х				X
C. Trip blanks	Х				X
Laboratory Control Sample (LCS)		X		X	
Laboratory Control Sample Duplicate (LCSD)		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS)	Х				X
Matrix Spike Duplicate (MSD)	Х				X
MS/MSD Precision (RPD)	Х				Х
Field/Lab Duplicate (RPD)		Х	Х		
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

TOTAL PETROLEUM HYDROCARBONS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
GRO by Method NWTPHGX	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of less than 2.
DRO by Method NWTPHDX	Water	14 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C; preserved to a pH of less than 2.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the sample detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample ID	Compound	Sample Result	Qualification
MW-16-20210927	Gasoline Range Organics-NWTPH (MB)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL

Note:

RL = reporting limit

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The analysis requires surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was not performed on sample within this SDG.

Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate Analysis (LCSD)

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compounds	Sample Result ug/l	Duplicate Result ug/l	RPD
MW-11-20210929 / DUP-2-092921	Gasoline Range Organics (GRO)	4190	4150	1%
WW-11-202103237 BOI -2-032321	Diesel Range Organics (DRO)	543	1000	AC

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR TPH

TPH: NWTPHGX and NWTPHDX		Reported		mance otable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC/FID)					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks	X				Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R	Х				Х
Matrix Spike Duplicate (MSD) %R	Х				Х
MS/MSD Precision (RPD)	Х				Х
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	

Notes:

%R - percent recovery

RPD - relative percent difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010D. Data were reviewed in accordance USEPA National Functional Guidelines NFG for Inorganic Superfund Methods Data Review, EPA-540-R-20-006 (November 2020), with reference to the historical (USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, OSWER 9240.1-05A-P, October 2004, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

Concentration (C) Qualifiers

- U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
- J The reported value was obtained from a reading less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL).

Quantitation (Q) Qualifiers

- E The reported value is estimated due to the presence of interference.
- N Spiked sample recovery is not within control limits.
- Duplicate analysis is not within control limits.

Validation Qualifiers

- J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The analyte was not detected above the reporting limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
- UB Analyte considered non-detect at the listed value due to associated blank contamination.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010D	Water	180 days from collection to analysis	Preserved to a pH of less than 2.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the sample detection limit (SDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All analytes were not detected above the SDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

3.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

MS/MSD analysis was not performed on sample within this SDG.

3.2 Laboratory Duplicate Analysis

The laboratory duplicates relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

Laboratory duplicate analysis was not performed on any of the samples from this SDG.

4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result (ug/l)	Duplicate Result (ug/l)	RPD
MW-11-20210929 / DUP-2-092921	Lead, Dissolved	U	U	AC

Notes:

AC - Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METAL

METALS; SW-846 6010D	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Mass Spectrometry (ICP-M	1S)				
Tier II Validation					
Holding Times		X		Х	
Reporting limits (units)		X		X	
Blanks					
A. Instrument Blanks	X				Х
B. Method Blanks		X		X	
C. Equipment/Field Blanks	X				Х
Laboratory Control Sample (LCS)		X		X	
Laboratory Control Sample Duplicate (LCSD) %R	X				Х
LCS/LCSD Precision (RPD)	X				Χ
Matrix Spike (MS) %R	X				Χ
Matrix Spike Duplicate (MSD) %R	X				Х
MS/MSD Precision (RPD)	Х				Х
Lab Duplicate (RPD)	Х				Х
Field Duplicate (RPD)		Х		Х	
ICP Serial Dilution %D	Х				Х
Reporting Limit Verification		Х		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Bhagyashree Fulzele

SIGNATURE: Brutzele

DATE: January 12,2022

PEER REVIEW: Dennis Capria

DATE: January 17,2022

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

			Billing Information:				Analysis / Container / Preservative						Cha	Chain of Custody Page 1 of 3				
ompany Name/Address: Arcadis - Chevron - W.A L100 Olive Way Suite 800	Α		Attn: Acc 630 Plaza Highland	counts a Dr., S	te. 600		Pres Chk										Pace	Analytica
Seattle. WA 98101		And the second				1 A Land												
Report to:			Email To:	: er.laws@arcadis.com;Ada.Hamilton@ar					18		۲				Subn	5 Lebanon Rd Moun nitting a sample via ti titutes acknowledgm		
Ada Hamilton/Alex Laws Project Description:		City/State								-		S-WT				Pace	Terms and Condition	
97502	Collected: 5020 - Woo			HEY,	wA	PT MT	CT ET		res	1-di		oPres				term	14	1214
Phone: 206-325-5254	Client Project # 30064310 07.21-Plan			CHEV	10 PE-18 -150 C	۸-97502		P-HCI	250mIHDPE-NoPres	40mlAmb-HCl-BT	- -	N-9				SD	E0	50
Collected by (print): ANDREWS	Site/Facility 640 METO	lity ID # P.0						40mlAmb-HC	mIHDP		mb H	40mlAm					tnum: CHE	
Collected by (signature): Imprediately Packed on Ice N Y X	Rush? Same Next I Two D Three	Day 5 Da Day 10 D		Quote		ts Needed	No.	8260D	6010	NWTPHDX LVINOSGT	NWTPHGX 40mlAmb HCI	8270ESIM				Pre PM PB		798
Sample ID	Comp/Grab		Depth		Date	Time	Cntrs	BTEXM	Diss Pb	WWTP	NWTP	PAHS				Shi	pped Via:	Sample # (lab
MW-10-202/0929	G	GW		04/2	9/21	1030	9	X	Ż	X	Ż		les, va sendo primo de					-01
MW-6-20216927	·G	GW	1	09	27/21	1400	9	X	\times	X	\times		1743			nz A		rez
DUP-2-092921	G	GW	_	coals	9/21	-	9	X	\times	\times	\times							·us
MW-15-20210927	G	GW		an	27/21	1615	9	X	\times	\times	\times						14	u
MW-16-20210927	G	GW		soalz	7/21	1515	9	X	\boxtimes	\times	\boxtimes							40
MW-11-20210929	G	GW		eal	29/21	1042	9	X	\sim	\times	X							-11
RS-1-092921	G	GW	-	1	9/21	1700	9	X	\triangleright	\supset	\times							-67
RS-1-692921	G	GW			29/21	1100	9	X	\times	X	\times							-28
MW-12-20210928	G	GW		7800	28/21	0478	9	X	X	X	X							-69
TRIP BLANK	14	GW	1				4											-10
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:										pH Flow	i i	_ Temp _ _ Other _		COC Signature Bottle	al Presengued/Access arrive to bottles	intact:	
OT - Other	Samples returnedUPS X Fed!	ed via: Ex Courie	Courier												VOA Ze	If ro Heads	ume sent: Applicabl pace: orrect/Che	A
Relinquished by (Signature)		Date: 109 29 2	1 14	00		ved by: (Sign					h	nk Recei	TBF	/ MeoH	RAD Sc	reen <0.	5 mR/hr:	X
Reliaquished by : (Signature)		vale.		AL STATE	The contract of	1	7				Temp:	10-	2.1 2	11				
Relinquished by : (Signature)		Date:	Time	e:	Recei	ved for lab b	y: (Signa	ture)			Date: 1	-21	Time	00	Hold:			Condition

SAMPLE RESULTS - 01

Metals (ICP) by Method 6010D

Collected date/time: 09/29/21 10:30

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:37	WG1753604

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	4150		31.6	100	1	10/09/2021 07:29	<u>WG1753838</u>
(S) a,a,a-Trifluorotoluene(FID)	97.1			78.0-120		10/09/2021 07:29	<u>WG1753838</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.230	<u>J</u>	0.0941	1.00	1	10/09/2021 20:55	WG1754155
Toluene	9.90		0.278	1.00	1	10/09/2021 20:55	WG1754155
Ethylbenzene	19.7		0.137	1.00	1	10/09/2021 20:55	WG1754155
Total Xylenes	87.0		0.174	3.00	1	10/09/2021 20:55	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 20:55	WG1754155
(S) Toluene-d8	106			80.0-120		10/09/2021 20:55	WG1754155
(S) 4-Bromofluorobenzene	108			77.0-126		10/09/2021 20:55	WG1754155
(S) 1,2-Dichloroethane-d4	120			70.0-130		10/09/2021 20:55	WG1754155

Gl

Αl

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	986		66.7	200	1	10/12/2021 04:13	WG1754625
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 04:13	WG1754625
(S) o-Terphenyl	113			52.0-156		10/12/2021 04:13	WG1754625

MW-6-20210927

SAMPLE RESULTS - 02

L1412143

Collected date/time: 09/27/21 14:00 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:40	WG1753604

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	10/08/2021 00:08	WG1753156
(S) a,a,a-Trifluorotoluene(FID)	95.5			78.0-120		10/08/2021 00:08	WG1753156

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/09/2021 21:17	WG1754155
Toluene	U		0.278	1.00	1	10/09/2021 21:17	WG1754155
Ethylbenzene	U		0.137	1.00	1	10/09/2021 21:17	WG1754155
Total Xylenes	U		0.174	3.00	1	10/09/2021 21:17	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 21:17	WG1754155
(S) Toluene-d8	107			80.0-120		10/09/2021 21:17	WG1754155
(S) 4-Bromofluorobenzene	97.6			77.0-126		10/09/2021 21:17	WG1754155
(S) 1,2-Dichloroethane-d4	114			70.0-130		10/09/2021 21:17	WG1754155

⁸Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	10/12/2021 01:25	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 01:25	WG1754008
(S) o-Terphenyl	101			52.0-156		10/12/2021 01:25	WG1754008

SAMPLE RESULTS - 03

L1412143

Metals (ICP) by Method 6010D

Collected date/time: 09/29/21 00:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:43	WG1753604

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	4150		31.6	100	1	10/09/2021 07:52	WG1753838
(S) a,a,a-Trifluorotoluene(FID)	96.7			78.0-120		10/09/2021 07:52	WG1753838

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.230	<u>J</u>	0.0941	1.00	1	10/09/2021 21:39	WG1754155
Toluene	9.78	1	0.278	1.00	1	10/09/2021 21:39	WG1754155
Ethylbenzene	19.4	J	0.137	1.00	1	10/09/2021 21:39	WG1754155
Total Xylenes	85.6	\downarrow	0.174	3.00	1	10/09/2021 21:39	WG1754155
Methyl tert-butyl ether	U	•	0.101	1.00	1	10/09/2021 21:39	WG1754155
(S) Toluene-d8	108			80.0-120		10/09/2021 21:39	WG1754155
(S) 4-Bromofluorobenzene	110			77.0-126		10/09/2021 21:39	WG1754155
(S) 1,2-Dichloroethane-d4	116			70.0-130		10/09/2021 21:39	WG1754155

GI GI

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	1000		66.7	200	1	10/12/2021 04:40	WG1754625
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 04:40	WG1754625
(S) o-Terphenyl	114			52.0-156		10/12/2021 04:40	WG1754625

MW-15-20210927

SAMPLE RESULTS - 04

1412143

Metals (ICP) by Method 6010D

Collected date/time: 09/27/21 16:15

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:46	WG1753604	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	219	<u>B</u>	31.6	100	1	10/08/2021 00:30	<u>WG1753156</u>
(S) a,a,a-Trifluorotoluene(FID)	95.4			78.0-120		10/08/2021 00:30	WG1753156

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/09/2021 22:00	WG1754155
Toluene	U		0.278	1.00	1	10/09/2021 22:00	WG1754155
Ethylbenzene	U		0.137	1.00	1	10/09/2021 22:00	WG1754155
Total Xylenes	U		0.174	3.00	1	10/09/2021 22:00	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 22:00	WG1754155
(S) Toluene-d8	110			80.0-120		10/09/2021 22:00	WG1754155
(S) 4-Bromofluorobenzene	105			77.0-126		10/09/2021 22:00	WG1754155
(S) 1,2-Dichloroethane-d4	114			70.0-130		10/09/2021 22:00	WG1754155

⁸Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	396		66.7	200	1	10/12/2021 04:27	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 04:27	WG1754008
(S) o-Terphenyl	106			52.0-156		10/12/2021 04:27	WG1754008

MW-16-20210927

SAMPLE RESULTS - 05

Metals (ICP) by Method 6010D

Collected date/time: 09/27/21 15:15

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:49	WG1753604	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	54.7	B J	31.6	100 UB	1	10/08/2021 00:52	WG1753156
(S) a,a,a-Trifluorotoluene(FID)	96.1			78.0-120		10/08/2021 00:52	WG1753156

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/09/2021 22:22	WG1754155
Toluene	U		0.278	1.00	1	10/09/2021 22:22	WG1754155
Ethylbenzene	U		0.137	1.00	1	10/09/2021 22:22	WG1754155
Total Xylenes	U		0.174	3.00	1	10/09/2021 22:22	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 22:22	WG1754155
(S) Toluene-d8	108			80.0-120		10/09/2021 22:22	WG1754155
(S) 4-Bromofluorobenzene	97.6			77.0-126		10/09/2021 22:22	WG1754155
(S) 1,2-Dichloroethane-d4	115			70.0-130		10/09/2021 22:22	WG1754155

Gl

Αl Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	72.0	<u>J</u>	66.7	200	1	10/12/2021 04:53	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 04:53	WG1754008
(S) o-Terphenyl	105			52.0-156		10/12/2021 04:53	WG1754008

MW-11-20210929

SAMPLE RESULTS - 06

.1412143

Metals (ICP) by Method 6010D

Collected date/time: 09/29/21 10:42

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:52	WG1753604

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	4190		31.6	100	1	10/09/2021 08:15	<u>WG1753838</u>
(S) a,a,a-Trifluorotoluene(FID)	86.2			78.0-120		10/09/2021 08:15	<u>WG1753838</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	3.03		0.0941	1.00	1	10/09/2021 22:44	WG1754155
Toluene	1.78	1 .	0.278	1.00	1	10/09/2021 22:44	WG1754155
Ethylbenzene	67.9	J	0.137	1.00	1	10/09/2021 22:44	WG1754155
Total Xylenes	4.36	\downarrow	0.174	3.00	1	10/09/2021 22:44	WG1754155
Methyl tert-butyl ether	U	•	0.101	1.00	1	10/09/2021 22:44	WG1754155
(S) Toluene-d8	111			80.0-120		10/09/2021 22:44	WG1754155
(S) 4-Bromofluorobenzene	101			77.0-126		10/09/2021 22:44	WG1754155
(S) 1,2-Dichloroethane-d4	110			70.0-130		10/09/2021 22:44	WG1754155

⁸ Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	543		66.7	200	1	10/12/2021 05:05	WG1754625
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 05:05	WG1754625
(S) o-Terphenyl	111			52.0-156		10/12/2021 05:05	WG1754625

SAMPLE RESULTS - 07

Collected date/time: 09/27/21 17:00

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead,Dissolved	4.17	J	2.99	6.00	1	10/11/2021 16:55	WG1753604

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	10/08/2021 01:14	WG1753156
(S) a,a,a-Trifluorotoluene(FID)	95.8			78.0-120		10/08/2021 01:14	<u>WG1753156</u>

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/09/2021 23:06	WG1754155
Toluene	U		0.278	1.00	1	10/09/2021 23:06	WG1754155
Ethylbenzene	U		0.137	1.00	1	10/09/2021 23:06	WG1754155
Total Xylenes	U		0.174	3.00	1	10/09/2021 23:06	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 23:06	WG1754155
(S) Toluene-d8	107			80.0-120		10/09/2021 23:06	WG1754155
(S) 4-Bromofluorobenzene	96.6			77.0-126		10/09/2021 23:06	WG1754155
(S) 1,2-Dichloroethane-d4	115			70.0-130		10/09/2021 23:06	WG1754155

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/09/2021 23:06	WG1754155
Toluene	U		0.278	1.00	1	10/09/2021 23:06	WG1754155
Ethylbenzene	U		0.137	1.00	1	10/09/2021 23:06	WG1754155
Total Xylenes	U		0.174	3.00	1	10/09/2021 23:06	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 23:06	WG1754155
(S) Toluene-d8	107			80.0-120		10/09/2021 23:06	WG1754155
(S) 4-Bromofluorobenzene	96.6			77.0-126		10/09/2021 23:06	WG1754155
(S) 1,2-Dichloroethane-d4	115			70.0-130		10/09/2021 23:06	WG1754155

'Sc

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	282		66.7	200	1	10/12/2021 05:19	WG1754008
Residual Range Organics (RRO)	196	<u>J</u>	83.3	250	1	10/12/2021 05:19	WG1754008
(S) o-Terphenyl	111			52.0-156		10/12/2021 05:19	WG1754008

SAMPLE RESULTS - 08

L1412143

Metals (ICP) by Method 6010D

Collected date/time: 09/29/21 11:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:57	WG1753604	

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	37.3	<u>J</u>	31.6	100	1	10/09/2021 08:38	WG1753838
(S) a,a,a-Trifluorotoluene(FID)	102			78.0-120		10/09/2021 08:38	<u>WG1753838</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/09/2021 23:28	WG1754155
Toluene	U		0.278	1.00	1	10/09/2021 23:28	WG1754155
Ethylbenzene	U		0.137	1.00	1	10/09/2021 23:28	WG1754155
Total Xylenes	U		0.174	3.00	1	10/09/2021 23:28	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 23:28	WG1754155
(S) Toluene-d8	108			80.0-120		10/09/2021 23:28	WG1754155
(S) 4-Bromofluorobenzene	96.9			77.0-126		10/09/2021 23:28	WG1754155
(S) 1,2-Dichloroethane-d4	116			70.0-130		10/09/2021 23:28	WG1754155

[°]Qc

. GI

		<u> </u>					
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	10/12/2021 05:32	WG1754625
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 05:32	WG1754625
(S) o-Terphenyl	108			52.0-156		10/12/2021 05:32	WG1754625

MW-12-20210928

SAMPLE RESULTS - 09

.1412143

Metals (ICP) by Method 6010D

Collected date/time: 09/28/21 14:16

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 17:00	WG1753604	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	143		31.6	100	1	10/09/2021 09:02	WG1753838
(S) a,a,a-Trifluorotoluene(FID)	105			78.0-120		10/09/2021 09:02	<u>WG1753838</u>

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/10/2021 07:27	WG1754154
Toluene	U		0.278	1.00	1	10/10/2021 07:27	WG1754154
Ethylbenzene	U		0.137	1.00	1	10/10/2021 07:27	WG1754154
Total Xylenes	U		0.174	3.00	1	10/10/2021 07:27	WG1754154
Methyl tert-butyl ether	U		0.101	1.00	1	10/10/2021 07:27	WG1754154
(S) Toluene-d8	102			80.0-120		10/10/2021 07:27	WG1754154
(S) 4-Bromofluorobenzene	88.7			77.0-126		10/10/2021 07:27	WG1754154
(S) 1,2-Dichloroethane-d4	109			70.0-130		10/10/2021 07:27	WG1754154

GI

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	190	<u>J</u>	66.7	200	1	10/09/2021 12:14	WG1753592
Residual Range Organics (RRO)	U		83.3	250	1	10/09/2021 12:14	WG1753592
(S) o-Terphenyl	107			52.0-156		10/09/2021 12:14	WG1753592

Arcadis - Chevron - WA

Pace Analytical® ANALYTICAL REPORT

October 14, 2021

Arcadis - Chevron - WA

Sample Delivery Group: L1412143

Samples Received: 10/01/2021

Project Number: 30064310 07.21-Plan

97502 Description:

640 METCALF ST SEDRO-WOOLLEY Site:

Report To: Ada Hamilton/Alex Laws

1100 Olive Way

Suite 800

Seattle, WA 98101

Entire Report Reviewed By:

Buar Ford

Ss

Cn

Sr

[°]Qc

Gl

Αl

Sc

PAGE:

1 of 25

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

> ACCOUNT: PROJECT: SDG: DATE/TIME:

> > 30064310 07.21-Plan

L1412143

10/14/21 09:12

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-10-20210929 L1412143-01	6
MW-6-20210927 L1412143-02	7
DUP-2-092921 L1412143-03	8
MW-15-20210927 L1412143-04	9
MW-16-20210927 L1412143-05	10
MW-11-20210929 L1412143-06	11
RS-1-092721 L1412143-07	12
RS-1-092921 L1412143-08	13
MW-12-20210928 L1412143-09	14
Qc: Quality Control Summary	15
Metals (ICP) by Method 6010D	15
Volatile Organic Compounds (GC) by Method NWTPHGX	16
Volatile Organic Compounds (GC/MS) by Method 8260D	18
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	20
GI: Glossary of Terms	23
Al: Accreditations & Locations	24

Sc: Sample Chain of Custody

25

SAMPLE SUMMARY

MW-10-20210929 L1412143-01 GW			Collected by JS/MA/BP	Collected date/time 09/29/2110:30	Received da 10/01/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753604	1	10/08/21 10:27	10/11/21 16:37	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1753838	1	10/09/21 07:29	10/09/21 07:29	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1754155	1	10/09/21 20:55	10/09/21 20:55	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754625	1	10/11/21 07:47	10/12/21 04:13	DMG	Mt. Juliet, TN
MW-6-20210927 L1412143-02 GW			Collected by JS/MA/BP	Collected date/time 09/27/21 14:00	Received da 10/01/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753604	1	10/08/21 10:27	10/11/21 16:40	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1753156	1	10/08/21 00:08	10/08/21 00:08	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1754155	1	10/09/21 21:17	10/09/21 21:17	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754008	1	10/11/21 04:08	10/12/21 01:25	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-2-092921 L1412143-03 GW			JS/MA/BP	09/29/21 00:00	10/01/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753604	1	10/08/21 10:27	10/11/21 16:43	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1753838	1	10/09/21 07:52	10/09/21 07:52	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1754155	1	10/09/21 21:39	10/09/21 21:39	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754625	1	10/11/21 07:47	10/12/21 04:40	DMG	Mt. Juliet, TN
MW-15-20210927 L1412143-04 GW			Collected by JS/MA/BP	Collected date/time 09/27/21 16:15	Received da 10/01/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753604	1	10/08/21 10:27	10/11/21 16:46	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1753004 WG1753156	1	10/08/21 10.27	10/08/21 00:30	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1753156 WG1754155	1	10/09/21 22:00	10/09/21 22:00	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754008	1	10/11/21 04:08	10/12/21 04:27	DMG	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
MW-16-20210927 L1412143-05 GW			JS/MA/BP	09/27/21 15:15	10/01/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1753604	1	10/08/21 10:27	10/11/21 16:49	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1753156	1	10/08/21 00:52	10/08/21 00:52	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1754155	1	10/09/21 22:22	10/09/21 22:22	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754008	1	10/11/21 04:08	10/12/21 04:53	DMG	Mt. Juliet, Ti
MW-11-20210929 L1412143-06 GW			Collected by JS/MA/BP	Collected date/time 09/29/2110:42	Received da 10/01/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG1753604	1	10/08/21 10:27	10/11/21 16:52	CCE	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1753838	1	10/09/21 08:15	10/09/21 08:15	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1754155	1	10/09/21 22:44	10/09/21 22:44	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754625	1	10/11/21 07:47	10/12/21 05:05	DMG	Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
RS-1-092721 L1412143-07 GW			JS/MA/BP	09/27/21 17:00	10/01/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG1753604	1	10/08/21 10:27	10/11/21 16:55	CCE	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1753156	1	10/08/21 01:14	10/08/21 01:14	ACG	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1754155	1	10/09/21 23:06	10/09/21 23:06	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754008	1	10/11/21 04:08	10/12/21 05:19	DMG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
RS-1-092921 L1412143-08 GW			JS/MA/BP	09/29/21 11:00	10/01/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG1753604	1	10/08/21 10:27	10/11/21 16:57	CCE	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1753838	1	10/09/21 08:38	10/09/21 08:38	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1754155	1	10/09/21 23:28	10/09/21 23:28	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1754625	1	10/11/21 07:47	10/12/21 05:32	DMG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-12-20210928 L1412143-09 GW			JS/MA/BP	09/28/21 14:16	10/01/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG1753604	1	10/08/21 10:27	10/11/21 17:00	CCE	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1753838	1	10/09/21 09:02	10/09/21 09:02	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1754154	1	10/10/21 07:27	10/10/21 07:27	JCP	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1753592	1	10/08/21 20:00	10/09/21 12:14	DMG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK-092921 L1412143-10 GW			JS/MA/BP	09/29/21 00:00	10/01/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

date/time

date/time

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

PAGE:

5 of 25

Brian Ford Project Manager

Buar Ford

SAMPLE RESULTS - 01

Metals (ICP) by Method 6010D

Collected date/time: 09/29/21 10:30

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:37	WG1753604

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	4150		31.6	100	1	10/09/2021 07:29	<u>WG1753838</u>
(S) a,a,a-Trifluorotoluene(FID)	97.1			78.0-120		10/09/2021 07:29	<u>WG1753838</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.230	<u>J</u>	0.0941	1.00	1	10/09/2021 20:55	WG1754155
Toluene	9.90		0.278	1.00	1	10/09/2021 20:55	WG1754155
Ethylbenzene	19.7		0.137	1.00	1	10/09/2021 20:55	WG1754155
Total Xylenes	87.0		0.174	3.00	1	10/09/2021 20:55	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 20:55	WG1754155
(S) Toluene-d8	106			80.0-120		10/09/2021 20:55	WG1754155
(S) 4-Bromofluorobenzene	108			77.0-126		10/09/2021 20:55	WG1754155
(S) 1,2-Dichloroethane-d4	120			70.0-130		10/09/2021 20:55	WG1754155

Gl

Αl

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	986		66.7	200	1	10/12/2021 04:13	WG1754625
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 04:13	WG1754625
(S) o-Terphenyl	113			52.0-156		10/12/2021 04:13	WG1754625

MW-6-20210927

SAMPLE RESULTS - 02

L1412143

Metals (ICP) by Method 6010D

Collected date/time: 09/27/21 14:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:40	WG1753604

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	10/08/2021 00:08	WG1753156
(S) a,a,a-Trifluorotoluene(FID)	95.5			78.0-120		10/08/2021 00:08	WG1753156

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
nalyte	ug/l		ug/l	ug/l		date / time	
enzene	U		0.0941	1.00	1	10/09/2021 21:17	WG1754155
luene	U		0.278	1.00	1	10/09/2021 21:17	WG1754155
hylbenzene	U		0.137	1.00	1	10/09/2021 21:17	WG1754155
ital Xylenes	U		0.174	3.00	1	10/09/2021 21:17	WG1754155
thyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 21:17	WG1754155
S) Toluene-d8	107			80.0-120		10/09/2021 21:17	WG1754155
(S) 4-Bromofluorobenzene	97.6			77.0-126		10/09/2021 21:17	WG1754155
(S) 1,2-Dichloroethane-d4	114			70.0-130		10/09/2021 21:17	WG1754155

⁸Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	10/12/2021 01:25	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 01:25	WG1754008
(S) o-Terphenyl	101			52.0-156		10/12/2021 01:25	WG1754008

DUP-2-092921

SAMPLE RESULTS - 03

Collected date/time: 09/29/21 00:00 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	_
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:43	WG1753604	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	4150		31.6	100	1	10/09/2021 07:52	WG1753838
(S) a,a,a-Trifluorotoluene(FID)	96.7			78.0-120		10/09/2021 07:52	<u>WG1753838</u>

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.230	<u>J</u>	0.0941	1.00	1	10/09/2021 21:39	WG1754155
Toluene	9.78		0.278	1.00	1	10/09/2021 21:39	WG1754155
Ethylbenzene	19.4		0.137	1.00	1	10/09/2021 21:39	WG1754155
Total Xylenes	85.6		0.174	3.00	1	10/09/2021 21:39	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 21:39	WG1754155
(S) Toluene-d8	108			80.0-120		10/09/2021 21:39	WG1754155
(S) 4-Bromofluorobenzene	110			77.0-126		10/09/2021 21:39	WG1754155
(S) 1,2-Dichloroethane-d4	116			70.0-130		10/09/2021 21:39	WG1754155

GI

Αl

Sc

		`	, ,				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	1000		66.7	200	1	10/12/2021 04:40	WG1754625
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 04:40	WG1754625
(S) o-Terphenyl	114			52.0-156		10/12/2021 04:40	WG1754625

MW-15-20210927

SAMPLE RESULTS - 04

Metals (ICP) by Method 6010D

Collected date/time: 09/27/21 16:15

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:46	WG1753604

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	219	В	31.6	100	1	10/08/2021 00:30	WG1753156
(S) a,a,a-Trifluorotoluene(FID)	95.4			78.0-120		10/08/2021 00:30	WG1753156

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/09/2021 22:00	WG1754155
Toluene	U		0.278	1.00	1	10/09/2021 22:00	WG1754155
Ethylbenzene	U		0.137	1.00	1	10/09/2021 22:00	WG1754155
Total Xylenes	U		0.174	3.00	1	10/09/2021 22:00	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 22:00	WG1754155
(S) Toluene-d8	110			80.0-120		10/09/2021 22:00	WG1754155
(S) 4-Bromofluorobenzene	105			77.0-126		10/09/2021 22:00	WG1754155
(S) 1,2-Dichloroethane-d4	114			70.0-130		10/09/2021 22:00	WG1754155

Gl

ΆΙ

Sc

Cerm Volatile Organ	110 001111	ourius (o	C/ C/ 11	1011104 1111111	1071110	, , , , , , , , , , , , , , , , , , , ,	
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	396		66.7	200	1	10/12/2021 04:27	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 04:27	WG1754008
(S) o-Terphenyl	106			52.0-156		10/12/2021 04:27	WG1754008

MW-16-20210927

SAMPLE RESULTS - 05

Metals (ICP) by Method 6010D

Collected date/time: 09/27/21 15:15

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:49	WG1753604

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	54.7	<u>B J</u>	31.6	100	1	10/08/2021 00:52	WG1753156
(S) a,a,a-Trifluorotoluene(FID)	96.1			78.0-120		10/08/2021 00:52	<u>WG1753156</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/09/2021 22:22	WG1754155
Toluene	U		0.278	1.00	1	10/09/2021 22:22	WG1754155
Ethylbenzene	U		0.137	1.00	1	10/09/2021 22:22	WG1754155
Total Xylenes	U		0.174	3.00	1	10/09/2021 22:22	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 22:22	WG1754155
(S) Toluene-d8	108			80.0-120		10/09/2021 22:22	WG1754155
(S) 4-Bromofluorobenzene	97.6			77.0-126		10/09/2021 22:22	WG1754155
(S) 1,2-Dichloroethane-d4	115			70.0-130		10/09/2021 22:22	WG1754155

Gl

Αl ³Sc

		<u> </u>					
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	72.0	<u>J</u>	66.7	200	1	10/12/2021 04:53	WG1754008
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 04:53	WG1754008
(S) o-Terphenyl	105			52.0-156		10/12/2021 04:53	WG1754008

MW-11-20210929

SAMPLE RESULTS - 06

.1412143

Metals (ICP) by Method 6010D

Collected date/time: 09/29/21 10:42

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:52	WG1753604	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	4190		31.6	100	1	10/09/2021 08:15	WG1753838
(S) a,a,a-Trifluorotoluene(FID)	86.2			78.0-120		10/09/2021 08:15	WG1753838

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	3.03		0.0941	1.00	1	10/09/2021 22:44	WG1754155
Toluene	1.78		0.278	1.00	1	10/09/2021 22:44	WG1754155
Ethylbenzene	67.9		0.137	1.00	1	10/09/2021 22:44	WG1754155
Total Xylenes	4.36		0.174	3.00	1	10/09/2021 22:44	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 22:44	WG1754155
(S) Toluene-d8	111			80.0-120		10/09/2021 22:44	WG1754155
(S) 4-Bromofluorobenzene	101			77.0-126		10/09/2021 22:44	WG1754155
(S) 1,2-Dichloroethane-d4	110			70.0-130		10/09/2021 22:44	WG1754155

8 Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	543		66.7	200	1	10/12/2021 05:05	WG1754625
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 05:05	WG1754625
(S) o-Terphenyl	111			52.0-156		10/12/2021 05:05	WG1754625

SAMPLE RESULTS - 07

Collected date/time: 09/27/21 17:00

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead,Dissolved	4.17	J	2.99	6.00	1	10/11/2021 16:55	WG1753604

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	10/08/2021 01:14	WG1753156
(S) a,a,a-Trifluorotoluene(FID)	95.8			78.0-120		10/08/2021 01:14	<u>WG1753156</u>

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/09/2021 23:06	WG1754155
Toluene	U		0.278	1.00	1	10/09/2021 23:06	WG1754155
Ethylbenzene	U		0.137	1.00	1	10/09/2021 23:06	WG1754155
Total Xylenes	U		0.174	3.00	1	10/09/2021 23:06	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 23:06	WG1754155
(S) Toluene-d8	107			80.0-120		10/09/2021 23:06	WG1754155
(S) 4-Bromofluorobenzene	96.6			77.0-126		10/09/2021 23:06	WG1754155
(S) 1,2-Dichloroethane-d4	115			70.0-130		10/09/2021 23:06	WG1754155

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/09/2021 23:06	WG1754155
Toluene	U		0.278	1.00	1	10/09/2021 23:06	WG1754155
Ethylbenzene	U		0.137	1.00	1	10/09/2021 23:06	WG1754155
Total Xylenes	U		0.174	3.00	1	10/09/2021 23:06	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 23:06	WG1754155
(S) Toluene-d8	107			80.0-120		10/09/2021 23:06	WG1754155
(S) 4-Bromofluorobenzene	96.6			77.0-126		10/09/2021 23:06	WG1754155
(S) 1,2-Dichloroethane-d4	115			70.0-130		10/09/2021 23:06	WG1754155

'Sc

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	282		66.7	200	1	10/12/2021 05:19	WG1754008
Residual Range Organics (RRO)	196	<u>J</u>	83.3	250	1	10/12/2021 05:19	WG1754008
(S) o-Terphenyl	111			52.0-156		10/12/2021 05:19	WG1754008

SAMPLE RESULTS - 08

L1412143

Metals (ICP) by Method 6010D

Collected date/time: 09/29/21 11:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 16:57	WG1753604	

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	37.3	<u>J</u>	31.6	100	1	10/09/2021 08:38	WG1753838
(S) a,a,a-Trifluorotoluene(FID)	102			78.0-120		10/09/2021 08:38	<u>WG1753838</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/09/2021 23:28	WG1754155
Toluene	U		0.278	1.00	1	10/09/2021 23:28	WG1754155
Ethylbenzene	U		0.137	1.00	1	10/09/2021 23:28	WG1754155
Total Xylenes	U		0.174	3.00	1	10/09/2021 23:28	WG1754155
Methyl tert-butyl ether	U		0.101	1.00	1	10/09/2021 23:28	WG1754155
(S) Toluene-d8	108			80.0-120		10/09/2021 23:28	WG1754155
(S) 4-Bromofluorobenzene	96.9			77.0-126		10/09/2021 23:28	WG1754155
(S) 1,2-Dichloroethane-d4	116			70.0-130		10/09/2021 23:28	WG1754155

[°]Qc

. GI

		<u> </u>					
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	10/12/2021 05:32	WG1754625
Residual Range Organics (RRO)	U		83.3	250	1	10/12/2021 05:32	WG1754625
(S) o-Terphenyl	108			52.0-156		10/12/2021 05:32	WG1754625

MW-12-20210928

SAMPLE RESULTS - 09

.1412143

Metals (ICP) by Method 6010D

Collected date/time: 09/28/21 14:16

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	10/11/2021 17:00	WG1753604	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	143		31.6	100	1	10/09/2021 09:02	<u>WG1753838</u>
(S) a,a,a-Trifluorotoluene(FID)	105			78.0-120		10/09/2021 09:02	<u>WG1753838</u>

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	10/10/2021 07:27	WG1754154
Toluene	U		0.278	1.00	1	10/10/2021 07:27	WG1754154
Ethylbenzene	U		0.137	1.00	1	10/10/2021 07:27	WG1754154
Total Xylenes	U		0.174	3.00	1	10/10/2021 07:27	WG1754154
Methyl tert-butyl ether	U		0.101	1.00	1	10/10/2021 07:27	WG1754154
(S) Toluene-d8	102			80.0-120		10/10/2021 07:27	WG1754154
(S) 4-Bromofluorobenzene	88.7			77.0-126		10/10/2021 07:27	WG1754154
(S) 1,2-Dichloroethane-d4	109			70.0-130		10/10/2021 07:27	WG1754154

GI

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	190	<u>J</u>	66.7	200	1	10/09/2021 12:14	WG1753592
Residual Range Organics (RRO)	U		83.3	250	1	10/09/2021 12:14	WG1753592
(S) o-Terphenyl	107			52.0-156		10/09/2021 12:14	WG1753592

QUALITY CONTROL SUMMARY

L1412143-01,02,03,04,05,06,07,08,09

Mothed Dienic (MD)

(MB) R3715046-1 10/11/21 16:00

Metals (ICP) by Method 6010D

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Lead, Dissolved	U		2.99	6.00

[†]Cn

(LCS) R3715046-2	10/11/21 16:03
------------------	----------------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Lead, Dissolved	1000	948	94.8	80.0-120	

(OS) L1412098-01 10/11/21 16:06 • (MS) R3715046-4 10/11/21 16:12 • (MSD) R3715046-5 10/11/21 16:14

(00) =	,		,	,			5		110.0				
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Lead, Dissolved	1000	U	977	973	97.7	97.3	1	75.0-125			0.360	20	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1412143-02,04,05,07

Method Blank (MB)

(MB) R3714816-2 10/07/2	1 22:19	·		
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	38.1	<u>J</u>	31.6	100
(S) a,a,a-Trifluorotoluene(FID)	95.4			78.0-120

Laboratory Control Sample (LCS)

(LCS) R3714816-1 10/07/2	1 21:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5500	4820	87.6	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			103	78.0-120	

L1412185-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1412185-10 10/08/21	03:04 • (MS) R3	3714816-3 10/0	18/21 05:58 • (N	MSD) R3714816-	-4 10/08/21 06	:20						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Gasoline Range Organics-NWTPH	5500	36.9	727	737	12.5	12.7	1	10.0-155			1.37	21
(S) a,a,a-Trifluorotoluene(FID)					97.0	97.1		78.0-120				

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1412143-01,03,06,08,09

Method Blank (MB)

(MB) R3715003-2 10/09/	21 01:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	U		31.6	100
(S) a,a,a-Trifluorotoluene(FID)	104			78.0-120

Laboratory Control Sample (LCS)

(LCS) R3715003-1 10/09/2	21 00:37				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5500	4800	87.3	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			98.8	78.0-120	

L1412156-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1412156-04 10/09/2	21 10:11 • (MS) R3	715003-3 10/0	9/21 10:57 • (I	MSD) R3715003	-4 10/09/211	1:21							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Gasoline Range Organics-NWTPH	5500	82.4	2790	4120	49.2	73.4	1	10.0-155		<u>J3</u>	38.5	21	
(S)					97.9	96.1		78.0-120					

Volatile Organic Compounds (GC/MS) by Method 8260D

L1412143-09

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3715014-3 10/10/21	02:38				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Benzene	U		0.0941	.00	
Ethylbenzene	U		0.137	.00	
Methyl tert-butyl ether	U		0.101	.00	
Toluene	U		0.278	.00	
Xylenes, Total	U		0.174	3.00	
(S) Toluene-d8	103			30.0-120	
(S) 4-Bromofluorobenzene	87.6			77.0-126	
(S) 1,2-Dichloroethane-d4	111			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

111

108

(LCS) R3715014-1 10/10/21	,										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	5.00	4.79	4.68	95.8	93.6	70.0-123			2.32	20	
Ethylbenzene	5.00	5.27	5.03	105	101	79.0-123			4.66	20	
Methyl tert-butyl ether	5.00	4.53	4.55	90.6	91.0	68.0-125			0.441	20	
Toluene	5.00	4.63	4.41	92.6	88.2	79.0-120			4.87	20	
Xylenes, Total	15.0	14.5	14.0	96.7	93.3	79.0-123			3.51	20	
(S) Toluene-d8				101	99.2	80.0-120					
(S) 4-Bromofluorobenzene				91.4	89.9	77.0-126					

70.0-130

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1412143-01,02,03,04,05,06,07,08

Method Blank (MB)

MB Result MB Qualifier MB MDL ug/l ug/l ug/l	MB RDL
	ug/l
Benzene U 0.0941	1.00
Ethylbenzene U 0.137	1.00
Methyl tert-butyl ether U 0.101	1.00
Toluene U 0.278	1.00
Xylenes, Total U 0.174	3.00
(S) Toluene-d8 108	80.0-120
(S) 4-Bromofluorobenzene 96.8	77.0-126
(S) 1,2-Dichloroethane-d4 119	70.0-130

(LCS) R3715033-1 10/09/2	21 17:38				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Benzene	5.00	5.01	100	70.0-123	
Ethylbenzene	5.00	4.49	89.8	79.0-123	
Methyl tert-butyl ether	5.00	5.38	108	68.0-125	
Toluene	5.00	4.91	98.2	79.0-120	
Xylenes, Total	15.0	13.9	92.7	79.0-123	
(S) Toluene-d8			105	80.0-120	
(S) 4-Bromofluorobenzene			99.3	77.0-126	
(S) 1.2-Dichloroethane-d4			116	70.0-130	

PAGE:

19 of 25

DATE/TIME:

10/14/21 09:12

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1412143-09

Method Blank (MB)

(MB) R3714719-1 10/09/21 0	08:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	100			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3714719-2 10/09/2	108:30 • (LCSD) R3714719-3	10/09/21 08:58	3						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	1500	1460	1460	97.3	97.3	50.0-150			0.000	20
(S) o-Ternhenyl				126	126	52 0-156				

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1412143-02,04,05,07

Method Blank (MB)

(MB) R3714878-1 10/11/21 0	9:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	81.0			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3714878-2 10/11/21 09:56 • (LCSD) R3714878-3 10/11/21 10:22												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Diesel Range Organics (DRO)	1500	1370	1260	91.3	84.0	50.0-150			8.37	20		
(S) o-Terphenyl				103	98.0	52.0-156						

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1412143-01,03,06,08

Method Blank (MB)

(MB) R3715045-1 10/11/21 16	5:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	109			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3/15045-2 10/11/21	16:31 • (LCSD) I	3/15045-3 10	0/11/21 16:5/							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	1500	1780	1820	119	121	50.0-150			2.22	20
(S) o-Terphenyl				113	114	52.0-156				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	
MDL	Method Detection Limit.
RDL Rec.	Reported Detection Limit.
RPD	Recovery. Relative Percent Difference.
SDG	
SDG	Sample Delivery Group. Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and
(S)	Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifier)es	crit	oti	0	n
Qual	mei	L	1621		J	u	UΟ

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation:	e fermion of			······································		Ar	alvsis /	Contair	er / Preser	vative		Cha	in of Custody	Page of ,
Arcadis - Chevron - WA 1100 Olive Way Suite 800		Attn: Acc	Attn: Accounts Payable 630 Plaza Dr., Ste. 600 Highlands Ranch, CO 80129													Pace	Analytica	
Seattle. WA 98101		And the second				1 A Land												
Report to:			Email To: alexander.laws@arcadis.com;Ada.Hamilton@a							18		۲				Subn	5 Lebanon Rd Moun nitting a sample via ti titutes acknowledgm	
Ada Hamilton/Alex Laws Project Description:		City/State								-		S-WT				Pace	Terms and Condition	
97502		Collected:	ED20 - Was	HEY,	wA	PT MT	CT ET		res	1-di		oPres				term	14	1214
Phone: 206-325-5254	30064310	t# 07.21-Plan	1	CHEV	10 PE-18 -150 C	۸-97502		P-HCI	250mIHDPE-NoPres	40mlAmb-HCl-BT	- -	N-9					E050	
Collected by (print): ANDREWS	Site/Facility 640 METO	ID# CALF ST SED	ORO-	P.O. #				40mlAmb-HC	mIHDP		mb H	40mlAm					tnum: CHE	
Collected by (signature): Imprediately Packed on Ice N Y X	Rush? Same Next I Two D Three	Day 5 Da Day 10 D		Quote		ts Needed	No.	8260D	6010	NWTPHDX LVINOSGT	NWTPHGX 40mlAmb HCI	8270ESIM				Pre PM PB		798
Sample ID	Comp/Grab		Depth		Date	Time	Cntrs	BTEXM	Diss Pb	WWTP	NWTP	PAHS				Shi	pped Via:	Sample # (lab
MW-10-202/0929	G	GW		04/2	9/21	1030	9	X	Ż	X	Ż		les, va sendo primo de					-01
MW-6-20216927	·G	GW	1	09	27/21	1400	9	X	\times	X	\times		174			nz A		rez
DUP-2-092921	G	GW	_	coals	9/21	-	9	X	\times	\times	\times							·us
MW-15-20210927	G	GW		an	27/21	1615	9	X	\times	\times	\times						14	u
MW-16-20210927	G	GW		soalz	7/21	1515	9	X	\boxtimes	\times	\boxtimes							40
MW-11-20210929	G	GW		eal	29/21	1042	9	X	\sim	\times	X							-11
RS-1-092921	G	GW	-	1	9/21	1700	9	X	\triangleright	\supset	\times							-67
RS-1-692921	G	GW			29/21	1100	9	X	\times	X	\times							-28
MW-12-20210928	G	GW		7800	28/21	0478	9	X	X	X	X							-69
TRIP BLANK	14	GW	1				4											-10
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:										pH Flow	i i	_ Temp _ _ Other _		COC Signature Bottle	al Presengued/Access arrive to bottles	intact:	
OT - Other	Samples returnedUPS X Fed!	ed via: Ex Courie	r		Track	ing#									VOA Ze	If ro Heads	ume sent: Applicabl pace: orrect/Che	A
Relinquished by (Signature)		Date: 109 29 2 Date:	1 14	00		ved by: (Sign					h	nk Recei	TBF	/ MeoH	RAD Sc	reen <0.	5 mR/hr:	X
Reliaquished by : (Signature)		vale.		AL STATE	The contract of	1	7				Temp:	10-	2.1 2	11				
Relinquished by : (Signature)		Date:	Time	e:	Recei	ved for lab b	y: (Signa	ture)			Date: 1	-21	Time	00	Hold:			Condition

Chevron - WA

DATA REVIEW

SEDRO-WOOLLEY, WA

Volatile organic compounds, semi volatile organic compounds, Total Petroleum Hydrocarbons, and Metal Analyses

SDG# L1443594

Analyses Performed By: Pace Analytical National Mount Juliet, TN 37122

Report # 44193R Review Level: Tier II Project: 30064310.08.82

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Groups (SDG) # L1443594 for samples collected in association with the Chevron SEDRO-WOOLLEY, WA Site. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

			Sample		Analysis						
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	ТРН	MET			
MW-4-W-20211214	L1443594-01	Water	12/14/2021		Х		Х	Х			
MW-5-W-20211216	L1443594-02	Water	12/16/2021		Х		Χ	Х			
MW-6-W-20211214	L1443594-03	Water	12/14/2021		Х		Х	Х			
MW-7-W-20211215	L1443594-04	Water	12/15/2021		Х	Х	Х	Х			
MW-8-W-20211215	L1443594-05	Water	12/15/2021		Х		Х	Х			
MW-10-W-20211215	L1443594-06	Water	12/15/2021		Х		Х	Х			
MW-11-W-20211215	L1443594-07	Water	12/15/2021		Х		Х	Х			
MW-12-W-20211216	L1443594-08	Water	12/16/2021		Х		Х	Х			
MW-13-W-20211215	L1443594-09	Water	12/15/2021		Х		Х	Х			
MW-14-W-20211216	L1443594-10	Water	12/16/2021		Х		Х	Х			
MW-15-W-20211214	L1443594-11	Water	12/14/2021		Х		Х	Х			
MW-16-W-20211214	L1443594-12	Water	12/14/2021		Х		Х	Х			
MW-17-W-20211215	L1443594-13	Water	12/15/2021		Х		Х	Х			
MW-18-W-20211215	L1443594-14	Water	12/15/2021		Х		Х	Х			
MW-19-W-20211215	L1443594-15	Water	12/15/2021		Х		Х	Х			
MW-20-W-20211215	L1443594-16	Water	12/15/2021		Х		Х	Х			
MW-21-W-20211216	L1443594-17	Water	12/16/2021		Х		Х	Х			
DUP-1-121521	L1443594-18	Water	12/15/2021	MW-13-W-20211215	Х		Х	Х			
RS-1-121421	L1443594-19	Water	12/14/2021		Х		Х	Х			

Notes:

VOC = volatile organic compounds.

SVOC = Semi Volatile Organic Compounds

TPH = total petroleum hydrocarbons.

MET = metals.

DATA REVIEW REPORT

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted		mance ptable	Not
	No	Yes	No	Yes	Required
Sample receipt condition		X		X	
Requested analyses and sample results		Х		Х	
Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

Note:

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260D, NWTPHDX, NWTPHGX and 8270 E by SIM. Data were reviewed in accordance with the method specified criteria, USEPA National Functional Guidelines NFG for Organic Superfund Methods Data Review, EPA-540-R-20-005 (November 2020), with reference to the historical (USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

DATA REVIEW REPORT

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260D	Water	14 days from collection to analysis (preserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.

Note:

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the sample detection limit (SDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the SDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample ID	Surrogate	Recovery	
MW-8-W-20211215	(S) Toluene-d8	> UL	

Notes:

UL - Upper limit

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action

DATA REVIEW REPORT

Control Limit	Sample Result	Qualification	
	Detect	J	
< LL but > 10%	Non-detect	UJ	
CLE but > 1076	Detect	J	
< 10%	Non-detect	R	
10%	Detect	J	
Surrogates diluted below the calibration curve due to the high	Non-detect	UJ ¹	
concentration of a target compounds	Detect	J ¹	

Note:

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was performed on sample MW-11-W-20211215. MS/MSD analysis exhibited recoveries and RPDs within the laboratory established acceptance limits.

5. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compounds	Sample Result (ug/l)	Duplicate Result (ug/l)	RPD
MW-13-W-20211215 / DUP-1-121521	All Target Compounds	U	U	AC

Notes:

AC - Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

7. System Performance and Overall Assessment

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis (ug/l)	Diluted Analysis (ug/l)	Reported Analysis
NW 44 W 00044040	Ethylbenzene		337	337 D
MW-14-W-20211216	Total Xylenes		1240	1240 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260D		Reported		ormance eptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/M	S)			
Tier II Validation					
Holding times		Х		X	
Reporting limits (units)		Х		X	
Blanks					
A. Method blanks		Х		X	
B. Equipment blanks	Х				Х
C. Trip blanks	Х				X
Laboratory Control Sample (LCS)		Х		X	
Laboratory Control Sample Duplicate (LCSD)		Х		X	
LCS/LCSD Precision (RPD)		Х		X	
Matrix Spike (MS)		Х		X	
Matrix Spike Duplicate (MSD)		Х		X	
MS/MSD Precision (RPD)		Х		X	
Field/Lab Duplicate (RPD)		Х		X	
Surrogate Spike Recoveries		Х	Х		
Dilution Factor		Х		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270 E by SIM	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was not performed on sample within this SDG.

5. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices

A field duplicate sample was not collected from sample locations associated with this SDG.

7. Compound Identification

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270 E By SIM	Rep	orted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROI	METRY (GC	:/MS)			
Tier II Validation					
Holding times		Х		X	
Reporting limits (units)		X		X	
Blanks					
A. Method blanks		X		X	
B. Equipment blanks	X				X
Laboratory Control Sample (LCS) %R		X		X	
Laboratory Control Sample Duplicate(LCSD) %R		X		X	
LCS/LCSD Precision (RPD)		X		X	
Matrix Spike (MS) %R	X				X
Matrix Spike Duplicate(MSD) %R	X				X
MS/MSD Precision (RPD)	X				X
Field/Lab Duplicate (RPD)	X				Х
Surrogate Spike Recoveries		X		X	
Dilution Factor		X		X	
Moisture Content	X				X

Notes:

%R Percent recovery

RPD Relative percent difference

%D Percent difference

TOTAL PETROLEUM HYDROCARBONS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
GRO by Method NWTPHGX	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of less than 2.
DRO by Method NWTPHDX	Water	14 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C; preserved to a pH of less than 2.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the sample detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds Gasoline Range Organics (89.1 ug/l and 61.5 ug/l) were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. Therefore, sample results greater than the BAL resulted in the removal of the laboratory qualifier (B). No other qualification of the sample results was required

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The analysis requires surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample ID	Surrogate	Recovery
MW-14-W-20211216	a,a,a-Trifluorotoluene (FID)	< LL but > 10%

Notes:

LL - Lower limit

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
> 0L	Detect	J
< LL but > 10%	Non-detect	UJ
CLE but > 10%	Non-detect No Action Detect J Non-detect UJ Detect J Non-detect R Detect J	J
< 10%	Non-detect	R
10%	Detect	J
Surrogates diluted below the calibration curve due to the high	Non-detect	UJ ¹
concentration of a target compounds	Detect	J ¹

Note:

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

MS/MSD analysis was performed on sample MW-11-W-20211215. MS/MSD analysis exhibited recoveries and RPDs within the laboratory established acceptance limits.

5. Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate Analysis (LCSD)

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

Sample ID/Duplicate ID	Compounds	Sample Result (ug/l)	Duplicate Result (ug/l)	RPD
	Gasoline Range Organics (GRO)	U	U	AC
MW-13-W-20211215 / DUP- 1-121521	Diesel Range Organics (DRO)	76.8 J	70.0 J	AC
	Residual Range Organics (RRO)	84.9 J	U	AC

Notes:

AC = Acceptable.

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR TPH

TPH: NWTPHGX and NWTPHDX		Reported		mance otable	Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY (GC/FID)						
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Method blanks		Х	Х			
B. Equipment blanks	Х				Х	
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate(LCSD) %R		Х		Х		
LCS/LCSD Precision (RPD)		Х		Х		
Matrix Spike (MS) %R		Х		Х		
Matrix Spike Duplicate (MSD) %R		Х		Х		
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (RPD)		Х		Х		
Surrogate Spike Recoveries		Х	Х			
Dilution Factor		Х		Х		

Notes:

%R - percent recovery

RPD - relative percent difference

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010D. Data were reviewed in accordance with the USEPA National Functional Guidelines NFG for Inorganic Superfund Methods Data Review, EPA-540-R-20-006 (November 2020), with reference to the historical (USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, OSWER 9240.1-05A-P, October 2004, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

Concentration (C) Qualifiers

- U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
- J The reported value was obtained from a reading less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL).

Quantitation (Q) Qualifiers

- E The reported value is estimated due to the presence of interference.
- N Spiked sample recovery is not within control limits.
- Duplicate analysis is not within control limits.

Validation Qualifiers

- J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The analyte was not detected above the reporting limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
- UB Analyte considered non-detect at the listed value due to associated blank contamination.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010D	Water	180 days from collection to analysis	Preserved to a pH of less than 2.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the sample detection limit (SDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All analytes were not detected above the SDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

3.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

MS/MSD analysis was performed on sample MW-11-W-20211215. MS/MSD analysis exhibited recoveries and RPDs within the laboratory established acceptance limits.

3.2 Laboratory Duplicate Analysis

The laboratory duplicates relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

Laboratory duplicate analysis was not performed on any of the samples from this SDG.

4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent

sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result (ug/l)	Duplicate Result (ug/l)	RPD
MW-13-W-20211215 / DUP-1-121521	Lead, Dissolved	U	U	AC

Notes:

AC - Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METAL

METALS; SW-846 6010D	Rep	orted		rmance ptable	Not
	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Mass Spectrometry (ICP-M	1S)				
Tier II Validation					
Holding Times		X		X	
Reporting limits (units)		X		X	
Blanks					
A. Instrument Blanks	X				Х
B. Method Blanks		X		X	
C. Equipment/Field Blanks	X				Х
Laboratory Control Sample (LCS)		X		X	
Laboratory Control Sample Duplicate (LCSD) %R	X				Χ
LCS/LCSD Precision (RPD)	X				Χ
Matrix Spike (MS) %R		Х		X	
Matrix Spike Duplicate (MSD) %R		Х		X	
MS/MSD Precision (RPD)		Х		X	
Lab Duplicate (RPD)	Х				Х
Field Duplicate (RPD)		Х		Х	
ICP Serial Dilution %D	Х				Х
Reporting Limit Verification		Х		Х	

Notes:

%R Percent recovery

RPD Relative percent difference

%D Percent difference

VALIDATION PERFORMED BY: Bhagyashree Fulzele

SIGNATURE: Brutzele

DATE: January 20,2022

PEER REVIEW: Dennis Capria

DATE: January 24,2022

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

Company Name/Address:			Billing Info	rmation:	2.		T			A	nalvsis	/ Contair	ner / Pre	servati	ve		Chain of Cust	tody Page of 3
Arcadis - Chevron - WA			Attn: Acc 630 Plaza	a Dr., S	te. 600		Pres Chk							0	Pizes		- P	? ace Analytical °
Suite 800														K	ď	45.34		
Seattle. WA 98101 Report to: ADA HAMILTO Amanda Bowring	ON/ ALEX LAW)<				LAWS com;environm	entDM	Ş	-BT				-	118m1	2		Submitting a sam constitutes ackno	d Mount Juliet, TN 37122 ple via this chain of custody wiedgment and acceptance of the
roject Description:		City/State Collected: 5	EDRO-W			Please Ci		JAmp-HC	ID-HCI		03	HCI	40ml HC	9	Ž	-		onditions found at: abs.com/hubfs/pas-standard-
hone: 206-325-5254	Client Project 30063848 30064	ئلد		CHEV	ojéct # ARCW/	A- 93124-	97150	40r	OmlAm	D	PE-HN	HOM! HC!	10°	8260		5	SDG #)181
ollected by (print):). SEPIOL /S. BROOKS	Site/Facility II	#640 h	HETCALF ST	P.O.#				8260D	SGT 4	mb Hi	OMIMO		OZO	E 37	200			CHEVARCWA
ollected by (signature) nmediately acked on Ice N Y X	Rush? (I	y 5 Day y 10 Day		Quote		ts Needed	No.	BTEXM/EDB/EDC	NWTPHDX LVINOSGT 40mlAmb-HCI-BT	NWTPHGX 40mlAmb HCl	Total Pb 6010 250mlHDPE-HNO3	NWTPH-GX	, 1	EX + MTBE	-	Hs 827	Prelogin: PPM: 110 - BPB: 110	866288 rian Ford 8-17-21
Sample ID	Comp/Grab	Matrix *	Depth	0	ate	Time	Cntrs	BTEX	TWN	TWN	Total	3	NUTPH	BTEX	Diss	CPA	Shipped Via Remarks	
MW-4-W-20211214	6	GW	12	12/1	1/21	1440	9					X	\geq	X	X			-01
MW-5-W-20211216	G	GW	-	12/1	621	10915	9					X	\times	X	X		200	, 05
MW-6-W-2021/214	G	GW	-	12/14	121	1415	9					X	\times	\times	\geq			.0
MW-7-W-20211215	G	GW		12/1	5/21	1455	11					X	\times	\times	\geq	X		2 QU
MW-8-W-20211215	G	GW		12/1	5 21	1535	9					\times	\boxtimes	X	\times			19:
MW-10-W-20211215	G	GW	_	12/19	5/21	1155	9					X	\geq	\times	\times			· de
MW-11-W-20211215	G	GW		12/1	5/21	1130	9					X	\times	\times	\geq			رم
MW-12-W-20211216	G	GW		12/1	621	1028	9				- 24	X	\times	X	\times			-08
MW-13-W-20211215	G	GW		12/1	5/21	1400	19		6			X	\geq	\times	\geq			18
MW-14-W-20211216	G	GW	A SECTION AND ADDRESS OF THE PERSON AND ADDR	12/1	6 21	0925	9				7	X	\geq	\times	\times		A CONTRACTOR	110
S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater	emarks:	Maria Maria	100 1	er er		42.70 - 345 - 45 45.					pH		_ Temp	1000		COC Seal COC Signs Bottles a Correct 1	mple Receipt Present/Inta ed/Accurate: arrive intact bottles used: nt volume sen	ct: _NP _Y _N : _Y _N : _Y _N t: _Y _N
T - Other	_UPS X FedEx				Track	ing#											If Applic	YN
delinquished by (signature)	45	ate: /16/21	Time 140	00		ved by: (Signal	1			1		Received A	C	ES)/ No HCL) Me TBR		RAD Scree	tion Correct/ en <0.5 mR/hr	: ZY _N
relinquished by: (Signature)		ate:	Time	zi	Recei	ved by: (Signa	ture)			1	Temp.	tion,	C Bott	les Recei	ved:	If preserva	tion required by	Login: Date/Time
Relinquished by : (Signature)	Da	ate:	Time	:	Recei	ved for lab by:	(Signat	ure)		1	Date:	+121	Tim	e: Gn	0	Hold:		Condition: NCF / OK

Company Name/Address:		- 1	Billing Info	rmation:	1.		F			A	nalvsis /	Contai	ner / Pre	servativ	/e	14	CI	nain of Custody	Page 2 of 3
Arcadis - Chevron - WA 1100 Olive Way Suite 800 Seattle, WA 98101			Attn: Ac 630 Plaz Highland	a Dr., Si	e. 600		Pres Chk							5	o-PRES		_	Pace	e Analytical
Report to:			Email To:	laws@ar	radis con	n;Ada.Hamilt	on@ar							HC	2		Su	065 Lebanon Rd Mou bmitting a sample via	this chain of custody
Ada Hamilton/Alex Laws Project Description:		City/State		.laws@ar			1.1.				-BT			Hom	JW(Pa	ce Terms and Condition	ment and acceptance of th ons found at: om/hubfs/pas-standard-
97502		Collected:	SEDIZO-W	COLLEY	, WA	P) MT C			res		H		HO	7/1	750m		te	rms.pdf	
Phone: 206-325-5254	Client Project 30064310	t#		Lab Pro	ject#	N-97502		다 다	250mIHDPE-NoPres	HG	lAmb-	75	10.4 FC	~	0000		-	DG# able#	444359
Collected by (print): J. SEPIOL / S. BROOKS	Site/Facility I		PRO-	P.O. #	i i			40mIAmb-HCI	nIHDP	IAmb-	.a 40m	mb HCl	HOWI	BY 8	By (.0		A	cctnum: CHE	
Collected by (signature): Immediately Packed on ice N Y X		ny 10 D		Quote		s Needed	No.	8260D 40ml	Pb 6010 250r	MTBE 8260D 40mlAmb-HC	NWTPHDX no silica 40mlAmb-HCI-BT	HGX 40mlAmb	ă	ITBE			Pi Pi P	relogin: P89 2 M: 110 - Brian B: NS	2344
Sample ID	Comp/Grab	Matrix *	Depth	D	ate	Time	Cntrs	BTEX	Diss P	MTBE	NWTP	NWTPHGX	NWTR	STEX	D155.		Sh	Remarks	Sample # (lab only)
MW-15-W-20211214	G	GW		12 1	4/21	1325	9					X	X	X	X	al al			-11
MW-16-W-20211214	G	GW	-	12/14	1	1220	9					X	\times	X	\times				-12
MW-17-W-20211215	G	GW		12 15	21	1345	9					X	\times	\times	\bowtie		12		113
MW-18-W-20217215	G	GW		12/15	121	0940	9					X	\times	\times	\bowtie				114
MW-19-W-20211215	G	GW	1	12/15	21	0915	9		ye.			X	\boxtimes	\times	\times		60		1
MW-20-W-20211215	G	GW		12/15	121	1045	9					X	\bowtie	\geq	\bowtie				-16
MW-21-W-20211216	G	GW	-	12/1	621	1045	9					\times	\boxtimes	\times	\geq				1(
DUP-1-121521	G	GW		12 15	21	4	9					X	\geq	\times	\bowtie		. 14	, , , , , , , , , , , , , , , , , , , 	1
MS-1-121521	G	GW	-	12/19	5/21	1130	9					X	\boxtimes	\times	\boxtimes			and the second second	_9
MSD-1-121521	6	GW	_	12/1	5/21	1130	19				- 65	X	\boxtimes	X	\times				-07
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	marks: 1W-20 -	W-20	211215	→ Tiv	ne 10	35		and of	Sem.	1.45 1.46	pH Flow		_ `Temp		I	COC Seal COC Sign Cottles Correct	Prese ed/Acc arrive bottle	e intact:	_NP Y _N Y _N _Y _N
OT - Other	mples returned UPS KedEx				Tracki	ng#									,	OA Zero	Heads		Y_N
Relinquished by : (Signature)		ate: 2 /16/2	Time	100	Receiv	red by: (Signat	ture)		14 min		Trip Blan	7	(NO CL) Me	оН	AD Scre	en <0	Correct/Che .5 mR/hr:	_Y _N
Relinquished by (Signature)	Da	ate:	Time	:	Receiv	ed by: (Signat	ture)				Temp:	•	C Bottl	es Receiv	ved:	f preserva	ation re	quired by Log	in: Date/Time
Relinquished by : (Signature)	Da	ate:	Time	R .	Receiv	red for lab by:	(Signat	ure)			Date:	112	Time	900	25/14/14/22	lold:			Condition:

company Name/Address:			Billing Infor	rmation:		1.5			V (2)	A	nalvsis /	Contair	ner / Pre	servativ	e			Chain of Custo	dy Page	3 of 3
Arcadis - Chevron - WA			630 Plaza	counts Par a Dr., Ste. Is Ranch, (600	,	Pres Chk									pres		Pa	7 ace Analy	⁄tical [°]
seattle. WA 98101											14 - 1				Q.	3		1		* K
leport to: Ada Hamilton/Alex Laws	j.			laws@arcad		a.Hamil	ton@ar			-		5			IL HOD	Jun	25.	12065 Lebanon Rd Submitting a sample constitutes acknowl Pace Terms and Con	le via this chain of cu	ustody
roject Description:	11	City/State Collected:	J-1		ل ا	Please C			sa	HCI-B		res-V	#Q	на	7W-07	256	- 4	https://info.pacelab terms.pdf	bs.com/hubfs/pas-st	tandard-
hone: 206-325-5254	Client Project 30064310	#		Lab Projec	t # CWA-97	502		HCI	Pb 6010 250mlHDPE-NoPres	40mIAmb-HCI-BT	5	PAHs 8270ESIM 40mlAmb-NoPres-W	40m	Ju 0/1	8260	000	N	SDG #	14435	94
ollected by (print): J.SEPIOL / S. BROOKS	Site/Facility II		RO-	P.O. #				40mlAmb-HCl	nIHDF	:a 40n	mb HCl	OmlA		DRO	by 8	600	K	Acctnum: Ch		/A
collected by (signature):	Rush? (I	ab MUST Be		Quote#) 250r	io silica	40mlAmb	SIM 4	Gx	Dx.	MTBE	n'g	20	Template: T1 Prelogin: P8	888553	
mmediately acked on Ice N Y X	Next Da Two Da Three D	y 10 Da	(Rad Only) y (Rad Only)	Date	Results Nee	eded	No.	8260D	b 6010	NWTPHDX no	NWTPHGX 4	8270E	- Hd-	- Hd	+	Load	_'\	PM: 110 - Bri	11/10	112
Sample ID	Comp/Grab	Matrix *	Depth	Date		Time	Cntrs	BTEX	Diss P	NWT	NWT	PAHS	NWTPH	AVW TPH	RIEX	P.SS.	CPA	Shipped Via: Remarks		# (lab only)
MW- TRIP BLAN	k	GW-		1			9						X	X	X	(58)	**			
RS-1-121421		GW		12/14/	21 15	-05-	9		1 1989				\times	X	\times	X	运费			-19
		GW															# # E			
		GW				- 3			4											
		GW															2 194			
					-				A.		f.							7 4		
	4				i ik	4.5					2.0		A							
							Jr #											and the second		
And the contract of the second of					a ti				10 W. F. T.										4	
									. s. 50		N.E.									
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater	marks:	132			0.000						pH Flow		Temp Other	. I - A	1.1	Bottles	gned/A s arri	e Receipt esent/Intac Accurate: ive intact: tles used:		Y N X N
	mples returned UPS FedEx				Tracking #											VOA Zer	ro Hea	volume sent If Applica adspace:	able _	Y N
Relinquished by (signature)		z/16/2	Time	00	Received by	y: (Signa	ature)				Trip Blan	k Recei		s / No GC / Med TBR	оН			Correct/C	hecked: _	Ā N
Relinguished by: (Signature)		ate:	Time	The state of the s	Received by	y: (Signa	ature)			7	Temp:	•	C Bottl		ed:	If preser	vation	required by L	_ogin: Date/	Time
Relinquished by : (Signature)	D	ate:	Time	:	Received fo	or lab by	r: (Signat	ure)			Date:	นก	Time	980		Hold:				dition:

MW-4-W-20211214

SAMPLE RESULTS - 01

1443594

Metals (ICP) by Method 6010D

Collected date/time: 12/14/21 14:40

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 10:55	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 14:32	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	106			78.0-120		12/19/2021 14:32	<u>WG1791627</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 03:14	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 03:14	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 03:14	WG1792004
Total Xylenes	0.402	<u>J</u>	0.174	3.00	1	12/20/2021 03:14	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 03:14	WG1792004
(S) Toluene-d8	114			80.0-120		12/20/2021 03:14	WG1792004
(S) 4-Bromofluorobenzene	105			77.0-126		12/20/2021 03:14	WG1792004
(S) 1,2-Dichloroethane-d4	112			70.0-130		12/20/2021 03:14	WG1792004

⁸Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	224		66.7	200	1	12/27/2021 12:01	WG1794299
Residual Range Organics (RRO)	123	<u>J</u>	83.3	250	1	12/27/2021 12:01	WG1794299
(S) o-Terphenyl	100			52.0-156		12/27/2021 12:01	WG1794299

MW-5-W-20211216

Collected date/time: 12/16/21 09:15

SAMPLE RESULTS - 02

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 11:03	WG1793893	

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 14:55	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	106			78.0-120		12/19/2021 14:55	<u>WG1791627</u>

Ss

⁵Sr

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 03:36	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 03:36	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 03:36	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 03:36	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 03:36	WG1792004
(S) Toluene-d8	116			80.0-120		12/20/2021 03:36	WG1792004
(S) 4-Bromofluorobenzene	104			77.0-126		12/20/2021 03:36	WG1792004
(S) 1,2-Dichloroethane-d4	116			70.0-130		12/20/2021 03:36	WG1792004

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	74.9	<u>J</u>	66.7	200	1	12/29/2021 11:52	WG1795076
Residual Range Organics (RRO)	104	<u>J</u>	83.3	250	1	12/29/2021 11:52	WG1795076
(S) o-Terphenyl	102			52.0-156		12/29/2021 11:52	WG1795076

MW-6-W-20211214 Collected date/time: 12/14/21 14:15

SAMPLE RESULTS - 03

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 11:05	WG1793893	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 15:18	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	107			78.0-120		12/19/2021 15:18	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 03:57	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 03:57	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 03:57	WG1792004
Total Xylenes	0.210	<u>J</u>	0.174	3.00	1	12/20/2021 03:57	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 03:57	WG1792004
(S) Toluene-d8	116			80.0-120		12/20/2021 03:57	WG1792004
(S) 4-Bromofluorobenzene	106			77.0-126		12/20/2021 03:57	WG1792004
(S) 1,2-Dichloroethane-d4	114			70.0-130		12/20/2021 03:57	WG1792004

Gl

°AI

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	71.7	<u>J</u>	66.7	200	1	12/27/2021 12:27	WG1794299
Residual Range Organics (RRO)	U		83.3	250	1	12/27/2021 12:27	WG1794299
(S) o-Terphenyl	90.5			52.0-156		12/27/2021 12:27	WG1794299

MW-7-W-20211215

SAMPLE RESULTS - 04

1443594

Metals (ICP) by Method 6010D

Collected date/time: 12/15/21 14:55

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 11:08	WG1793893	

2_

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 15:41	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	107			78.0-120		12/19/2021 15:41	<u>WG1791627</u>

Ss

⁵Sr

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 04:18	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 04:18	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 04:18	WG1792004
Total Xylenes	0.321	<u>J</u>	0.174	3.00	1	12/20/2021 04:18	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 04:18	WG1792004
(S) Toluene-d8	117			80.0-120		12/20/2021 04:18	WG1792004
(S) 4-Bromofluorobenzene	105			77.0-126		12/20/2021 04:18	WG1792004
(S) 1,2-Dichloroethane-d4	115			70.0-130		12/20/2021 04:18	WG1792004

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	<u> </u>	•					
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	95.7	<u>J</u>	66.7	200	1	12/27/2021 21:39	WG1794783
Residual Range Organics (RRO)	185	<u>J</u>	83.3	250	1	12/27/2021 21:39	WG1794783
(S) o-Terphenyl	96.8			52.0-156		12/27/2021 21:39	WG1794783

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.0203	0.0500	1	12/21/2021 16:22	WG1791424
Benzo(a)pyrene	U		0.0184	0.0500	1	12/21/2021 16:22	WG1791424
Benzo(b)fluoranthene	U		0.0168	0.0500	1	12/21/2021 16:22	WG1791424
Benzo(k)fluoranthene	U		0.0202	0.0500	1	12/21/2021 16:22	WG1791424
Chrysene	U		0.0179	0.0500	1	12/21/2021 16:22	WG1791424
Dibenz(a,h)anthracene	U		0.0160	0.0500	1	12/21/2021 16:22	WG1791424
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	1	12/21/2021 16:22	WG1791424
Naphthalene	U		0.0917	0.250	1	12/21/2021 16:22	WG1791424
1-Methylnaphthalene	U		0.0687	0.250	1	12/21/2021 16:22	WG1791424
2-Methylnaphthalene	U		0.0674	0.250	1	12/21/2021 16:22	WG1791424
(S) Nitrobenzene-d5	104			31.0-160		12/21/2021 16:22	WG1791424
(S) 2-Fluorobiphenyl	101			48.0-148		12/21/2021 16:22	WG1791424
(S) p-Terphenyl-d14	102			37.0-146		12/21/2021 16:22	WG1791424

MW-8-W-20211215

Collected date/time: 12/15/21 15:35

SAMPLE RESULTS - 05

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead.Dissolved	U		2.99	6.00	1	12/27/2021 11:11	WG1793893	

2_T -

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	7270		31.6	100	1	12/19/2021 16:04	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	85.4			78.0-120		12/19/2021 16:04	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 04:39	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 04:39	WG1792004
Ethylbenzene	2.13	J	0.137	1.00	1	12/20/2021 04:39	WG1792004
Total Xylenes	1.75	<u>J</u>	0.174	3.00	1	12/20/2021 04:39	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 04:39	WG1792004
(S) Toluene-d8	122	<u>J1</u>		80.0-120		12/20/2021 04:39	WG1792004
(S) 4-Bromofluorobenzene	103			77.0-126		12/20/2021 04:39	WG1792004
(S) 1,2-Dichloroethane-d4	110			70.0-130		12/20/2021 04:39	WG1792004

8 Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	228		66.7	200	1	12/27/2021 22:05	WG1794783
Residual Range Organics (RRO)	119	<u>J</u>	83.3	250	1	12/27/2021 22:05	WG1794783
(S) o-Terphenyl	81.1			52.0-156		12/27/2021 22:05	WG1794783

MW-10-W-20211215

Collected date/time: 12/15/21 11:55

SAMPLE RESULTS - 06

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 11:14	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	362		31.6	100	1	12/19/2021 16:28	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	94.7			78.0-120		12/19/2021 16:28	<u>WG1791627</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 05:00	WG1792004
Toluene	1.54		0.278	1.00	1	12/20/2021 05:00	WG1792004
Ethylbenzene	2.16		0.137	1.00	1	12/20/2021 05:00	WG1792004
Total Xylenes	1.89	<u>J</u>	0.174	3.00	1	12/20/2021 05:00	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 05:00	WG1792004
(S) Toluene-d8	117			80.0-120		12/20/2021 05:00	WG1792004
(S) 4-Bromofluorobenzene	108			77.0-126		12/20/2021 05:00	WG1792004
(S) 1,2-Dichloroethane-d4	116			70.0-130		12/20/2021 05:00	WG1792004

⁸Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	171	<u>J</u>	66.7	200	1	12/27/2021 22:30	WG1794783
Residual Range Organics (RRO)	U		83.3	250	1	12/27/2021 22:30	WG1794783
(S) o-Terphenyl	100			52.0-156		12/27/2021 22:30	WG1794783

MW-11-W-20211215

Collected date/time: 12/15/21 11:30

SAMPLE RESULTS - 07

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 10:36	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	457		31.6	100	1	12/19/2021 16:51	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	94.8			78.0-120		12/19/2021 16:51	<u>WG1791627</u>

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.896	<u>J</u>	0.0941	1.00	1	12/20/2021 05:21	WG1792004
Toluene	0.343	<u>J</u>	0.278	1.00	1	12/20/2021 05:21	WG1792004
Ethylbenzene	5.67		0.137	1.00	1	12/20/2021 05:21	WG1792004
Total Xylenes	0.609	<u>J</u>	0.174	3.00	1	12/20/2021 05:21	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 05:21	WG1792004
(S) Toluene-d8	115			80.0-120		12/20/2021 05:21	WG1792004
(S) 4-Bromofluorobenzene	103			77.0-126		12/20/2021 05:21	WG1792004
(S) 1,2-Dichloroethane-d4	112			70.0-130		12/20/2021 05:21	WG1792004

Gl

Αl

Sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>			
Analyte	ug/l		ug/l	ug/l		date / time				
Diesel Range Organics (DRO)	129	<u>J</u>	66.7	200	1	12/27/2021 22:55	WG1794783			
Residual Range Organics (RRO)	U		83.3	250	1	12/27/2021 22:55	WG1794783			
(S) o-Terphenyl	100			52.0-156		12/27/2021 22:55	WG1794783			

MW-12-W-20211216

Collected date/time: 12/16/21 10:28

SAMPLE RESULTS - 08

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead,Dissolved	U		2.99	6.00	1	12/27/2021 11:16	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 17:14	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	105			78.0-120		12/19/2021 17:14	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 05:42	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 05:42	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 05:42	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 05:42	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 05:42	WG1792004
(S) Toluene-d8	112			80.0-120		12/20/2021 05:42	WG1792004
(S) 4-Bromofluorobenzene	105			77.0-126		12/20/2021 05:42	WG1792004
(S) 1,2-Dichloroethane-d4	115			70.0-130		12/20/2021 05:42	WG1792004

Gl

Al 9

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	83.6	<u>J</u>	66.7	200	1	12/29/2021 11:25	WG1795076
Residual Range Organics (RRO)	101	<u>J</u>	83.3	250	1	12/29/2021 11:25	WG1795076
(S) o-Terphenyl	102			52.0-156		12/29/2021 11:25	WG1795076

MW-13-W-20211215

Collected date/time: 12/15/21 14:00

SAMPLE RESULTS - 09

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 11:19	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 17:37	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	106			78.0-120		12/19/2021 17:37	WG1791627

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 06:03	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 06:03	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 06:03	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 06:03	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 06:03	WG1792004
(S) Toluene-d8	118			80.0-120		12/20/2021 06:03	WG1792004
(S) 4-Bromofluorobenzene	109			77.0-126		12/20/2021 06:03	WG1792004
(S) 1,2-Dichloroethane-d4	118			70.0-130		12/20/2021 06:03	WG1792004

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 06:03	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 06:03	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 06:03	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 06:03	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 06:03	WG1792004
(S) Toluene-d8	118			80.0-120		12/20/2021 06:03	WG1792004
(S) 4-Bromofluorobenzene	109			77.0-126		12/20/2021 06:03	WG1792004
(S) 1,2-Dichloroethane-d4	118			70.0-130		12/20/2021 06:03	WG1792004

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	76.8	<u>J</u>	66.7	200	1	12/28/2021 00:09	WG1794783
Residual Range Organics (RRO)	84.9	<u>J</u>	83.3	250	1	12/28/2021 00:09	WG1794783
(S) o-Terphenyl	88.4			52.0-156		12/28/2021 00:09	WG1794783

MW-14-W-20211216

SAMPLE RESULTS - 10

1443594

Metals (ICP) by Method 6010D

Collected date/time: 12/16/21 09:25

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Lead,Dissolved	U		2.99	6.00	1	12/27/2021 11:22	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	7390	J	31.6	100	1	12/19/2021 18:00	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	69.9	<u>J2</u>		78.0-120		12/19/2021 18:00	<u>WG1791627</u>

Ss

Sample Narrative:

L1443594-10 WG1791627: Surrogate failure due to matrix interference.

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	Qualifier	ug/l	ug/l	Dilation	date / time	<u>Baten</u>
Benzene	0.413	<u>J</u>	0.0941	1.00	1	12/20/2021 06:25	WG1792004
Toluene	9.46		0.278	1.00	1	12/20/2021 06:25	WG1792004
Ethylbenzene	337 D		1.37	10.0	10	12/23/2021 18:28	WG1794378
Total Xylenes	1240 D		1.74	30.0	10	12/23/2021 18:28	WG1794378
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 06:25	WG1792004
(S) Toluene-d8	115			80.0-120		12/20/2021 06:25	WG1792004
(S) Toluene-d8	99.1			80.0-120		12/23/2021 18:28	WG1794378
(S) 4-Bromofluorobenzene	112			77.0-126		12/20/2021 06:25	WG1792004
(S) 4-Bromofluorobenzene	106			77.0-126		12/23/2021 18:28	WG1794378
(S) 1,2-Dichloroethane-d4	114			70.0-130		12/20/2021 06:25	WG1792004
(S) 1,2-Dichloroethane-d4	104			70.0-130		12/23/2021 18:28	WG1794378

Gl

[®]Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	686		66.7	200	1	12/28/2021 22:03	WG1795076
Residual Range Organics (RRO)	114	<u>J</u>	83.3	250	1	12/28/2021 22:03	WG1795076
(S) o-Terphenyl	82.6			52.0-156		12/28/2021 22:03	WG1795076

MW-15-W-20211214

Collected date/time: 12/14/21 13:25

SAMPLE RESULTS - 11

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 02:36	WG1796943

²To

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	406	<u>B</u>	31.6	100	1	12/21/2021 21:00	<u>WG1792757</u>
(S) a,a,a-Trifluorotoluene(FID)	91.5			78.0-120		12/21/2021 21:00	<u>WG1792757</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 06:46	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 06:46	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/23/2021 17:48	WG1794378
Total Xylenes	U		0.174	3.00	1	12/23/2021 17:48	WG1794378
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 06:46	WG1792004
(S) Toluene-d8	116			80.0-120		12/20/2021 06:46	WG1792004
(S) Toluene-d8	97.9			80.0-120		12/23/2021 17:48	WG1794378
(S) 4-Bromofluorobenzene	113			77.0-126		12/20/2021 06:46	WG1792004
(S) 4-Bromofluorobenzene	107			77.0-126		12/23/2021 17:48	WG1794378
(S) 1,2-Dichloroethane-d4	113			70.0-130		12/20/2021 06:46	WG1792004
(S) 1,2-Dichloroethane-d4	108			70.0-130		12/23/2021 17:48	WG1794378

⁶Qc

⁸Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	491		66.7	200	1	12/27/2021 12:53	WG1794299
Residual Range Organics (RRO)	U		83.3	250	1	12/27/2021 12:53	WG1794299
(S) o-Terphenyl	104			52.0-156		12/27/2021 12:53	WG1794299

MW-16-W-20211214 Collected date/time: 12/14/21 12:20

SAMPLE RESULTS - 12

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 02:39	WG1796943

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 18:47	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	106			78.0-120		12/19/2021 18:47	<u>WG1791627</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 07:07	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 07:07	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/23/2021 18:08	WG1794378
Total Xylenes	U		0.174	3.00	1	12/23/2021 18:08	WG1794378
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 07:07	WG1792004
(S) Toluene-d8	119			80.0-120		12/20/2021 07:07	WG1792004
(S) Toluene-d8	104			80.0-120		12/23/2021 18:08	WG1794378
(S) 4-Bromofluorobenzene	107			77.0-126		12/20/2021 07:07	WG1792004
(S) 4-Bromofluorobenzene	107			77.0-126		12/23/2021 18:08	WG1794378
(S) 1,2-Dichloroethane-d4	116			70.0-130		12/20/2021 07:07	WG1792004
(S) 1,2-Dichloroethane-d4	107			70.0-130		12/23/2021 18:08	WG1794378

Gl

⁹Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	162	<u>J</u>	66.7	200	1	12/27/2021 13:19	WG1794299
Residual Range Organics (RRO)	U		83.3	250	1	12/27/2021 13:19	WG1794299
(S) o-Terphenyl	112			52.0-156		12/27/2021 13:19	WG1794299

MW-17-W-20211215

Collected date/time: 12/15/21 13:45

SAMPLE RESULTS - 13

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 02:42	WG1796943	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	2800		31.6	100	1	12/19/2021 19:10	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	95.1			78.0-120		12/19/2021 19:10	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 07:28	WG1792004
Toluene	40.9		0.278	1.00	1	12/20/2021 07:28	WG1792004
Ethylbenzene	68.9		0.137	1.00	1	12/20/2021 07:28	WG1792004
Total Xylenes	382		0.174	3.00	1	12/20/2021 07:28	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 07:28	WG1792004
(S) Toluene-d8	116			80.0-120		12/20/2021 07:28	WG1792004
(S) 4-Bromofluorobenzene	110			77.0-126		12/20/2021 07:28	WG1792004
(S) 1,2-Dichloroethane-d4	113			70.0-130		12/20/2021 07:28	WG1792004

Gl

ΆΙ

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	411		66.7	200	1	12/28/2021 00:35	WG1794783
Residual Range Organics (RRO)	U		83.3	250	1	12/28/2021 00:35	WG1794783
(S) o-Terphenyl	111			52.0-156		12/28/2021 00:35	WG1794783

MW-18-W-20211215

Collected date/time: 12/15/21 09:40

SAMPLE RESULTS - 14

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 02:44	WG1796943

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	427		31.6	100	1	12/19/2021 19:33	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	95.0			78.0-120		12/19/2021 19:33	<u>WG1791627</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 07:49	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 07:49	WG1792004
Ethylbenzene	0.791	<u>J</u>	0.137	1.00	1	12/20/2021 07:49	WG1792004
Total Xylenes	3.96		0.174	3.00	1	12/20/2021 07:49	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 07:49	WG1792004
(S) Toluene-d8	119			80.0-120		12/20/2021 07:49	WG1792004
(S) 4-Bromofluorobenzene	106			77.0-126		12/20/2021 07:49	WG1792004
(S) 1,2-Dichloroethane-d4	115			70.0-130		12/20/2021 07:49	WG1792004

⁸ Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	174	<u>J</u>	66.7	200	1	12/28/2021 01:00	WG1794783
Residual Range Organics (RRO)	U		83.3	250	1	12/28/2021 01:00	WG1794783
(S) o-Terphenyl	107			52.0-156		12/28/2021 01:00	WG1794783

MW-19-W-20211215

Collected date/time: 12/15/21 09:15

SAMPLE RESULTS - 15

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead,Dissolved	U		2.99	6.00	1	01/06/2022 02:53	WG1796943

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 19:56	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	105			78.0-120		12/19/2021 19:56	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 08:10	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 08:10	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 08:10	WG1792004
Total Xylenes	0.278	J	0.174	3.00	1	12/20/2021 08:10	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 08:10	WG1792004
(S) Toluene-d8	118			80.0-120		12/20/2021 08:10	WG1792004
(S) 4-Bromofluorobenzene	106			77.0-126		12/20/2021 08:10	WG1792004
(S) 1,2-Dichloroethane-d4	112			70.0-130		12/20/2021 08:10	WG1792004

8 Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	12/28/2021 01:25	WG1794783
Residual Range Organics (RRO)	U		83.3	250	1	12/28/2021 01:25	<u>WG1794783</u>
(S) o-Terphenyl	101			52.0-156		12/28/2021 01:25	WG1794783

MW-20-W-20211215

Collected date/time: 12/15/21 10:35

SAMPLE RESULTS - 16

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 02:56	WG1796943

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 20:19	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	107			78.0-120		12/19/2021 20:19	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 08:31	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 08:31	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 08:31	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 08:31	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 08:31	WG1792004
(S) Toluene-d8	119			80.0-120		12/20/2021 08:31	WG1792004
(S) 4-Bromofluorobenzene	104			77.0-126		12/20/2021 08:31	WG1792004
(S) 1,2-Dichloroethane-d4	115			70.0-130		12/20/2021 08:31	WG1792004

Gl

°AI

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	12/28/2021 01:49	WG1794783
Residual Range Organics (RRO)	U		83.3	250	1	12/28/2021 01:49	WG1794783
(S) o-Terphenyl	80.5			52.0-156		12/28/2021 01:49	WG1794783

MW-21-W-20211216

Collected date/time: 12/16/21 10:45

SAMPLE RESULTS - 17

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 02:58	WG1796943

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 20:43	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	107			78.0-120		12/19/2021 20:43	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 08:52	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 08:52	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 08:52	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 08:52	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 08:52	WG1792004
(S) Toluene-d8	117			80.0-120		12/20/2021 08:52	WG1792004
(S) 4-Bromofluorobenzene	104			77.0-126		12/20/2021 08:52	WG1792004
(S) 1,2-Dichloroethane-d4	115			70.0-130		12/20/2021 08:52	WG1792004

Gl

ΆΙ

'Sc

	<u>'</u>	` `	, ,				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	89.7	J	66.7	200	1	12/28/2021 22:30	WG1795076
Residual Range Organics (RRO)	178	<u>J</u>	83.3	250	1	12/28/2021 22:30	WG1795076
(S) o-Terphenyl	73.2			52.0-156		12/28/2021 22:30	WG1795076

DUP-1-121521

SAMPLE RESULTS - 18

Collected date/time: 12/15/21 00:00 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 03:01	WG1796943	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 21:06	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	107			78.0-120		12/19/2021 21:06	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 09:13	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 09:13	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 09:13	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 09:13	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 09:13	WG1792004
(S) Toluene-d8	118			80.0-120		12/20/2021 09:13	WG1792004
(S) 4-Bromofluorobenzene	101			77.0-126		12/20/2021 09:13	WG1792004
(S) 1,2-Dichloroethane-d4	118			70.0-130		12/20/2021 09:13	WG1792004

Gl

Αl

'Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	70.0	<u>J</u>	66.7	200	1	12/28/2021 02:13	WG1794783
Residual Range Organics (RRO)	U		83.3	250	1	12/28/2021 02:13	WG1794783
(S) o-Terphenyl	85.3			52.0-156		12/28/2021 02:13	WG1794783

SAMPLE RESULTS - 19

Metals (ICP) by Method 6010D

Collected date/time: 12/14/21 15:05

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 03:04	WG1796943

Re	lesult	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte ug	g/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	J		31.6	100	1	12/20/2021 20:27	WG1792128
(S) a,a,a-Trifluorotoluene(FID)	3.9			78.0-120		12/20/2021 20:27	WG1792128

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 09:42	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 09:42	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 09:42	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 09:42	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 09:42	WG1792004
(S) Toluene-d8	119			80.0-120		12/20/2021 09:42	WG1792004
(S) 4-Bromofluorobenzene	106			77.0-126		12/20/2021 09:42	WG1792004
(S) 1,2-Dichloroethane-d4	121			70.0-130		12/20/2021 09:42	WG1792004

GI

Αl

Sc

	'	`	, ,				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	12/27/2021 13:45	WG1794299
Residual Range Organics (RRO)	U		83.3	250	1	12/27/2021 13:45	WG1794299
(S) o-Terphenyl	94.7			52.0-156		12/27/2021 13:45	WG1794299

Pace Analytical® ANALYTICAL REPORT

January 06, 2022

Arcadis - Chevron - WA

Sample Delivery Group: L1443594 Samples Received: 12/17/2021

Project Number: 30064310 07.21-PLAN

97502 Description:

640 METCALF ST SEDRO-WOOLLEY Site:

Report To: Ada Hamilton/Alex Laws

1100 Olive Way

Suite 800

Seattle, WA 98101

Entire Report Reviewed By:

Buar Ford

Ss

Cn

Sr

[°]Qc

Gl

Αl

Sc

PAGE:

1 of 44

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

> ACCOUNT: PROJECT: SDG: DATE/TIME:

> > L1443594

01/06/22 14:51

30064310 07.21-PLAN Arcadis - Chevron - WA

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
MW-4-W-20211214 L1443594-01	8
MW-5-W-20211216 L1443594-02	9
MW-6-W-20211214 L1443594-03	10
MW-7-W-20211215 L1443594-04	11
MW-8-W-20211215 L1443594-05	12
MW-10-W-20211215 L1443594-06	13
MW-11-W-20211215 L1443594-07	14
MW-12-W-20211216 L1443594-08	15
MW-13-W-20211215 L1443594-09	16
MW-14-W-20211216 L1443594-10	17
MW-15-W-20211214 L1443594-11	18
MW-16-W-20211214 L1443594-12	19
MW-17-W-20211215 L1443594-13	20
MW-18-W-20211215 L1443594-14	21
MW-19-W-20211215 L1443594-15	22
MW-20-W-20211215 L1443594-16	23
MW-21-W-20211216 L1443594-17	24
DUP-1-121521 L1443594-18	25
RS-1-121421 L1443594-19	26
Qc: Quality Control Summary	27
Metals (ICP) by Method 6010D	27
Volatile Organic Compounds (GC) by Method NWTPHGX	29
Volatile Organic Compounds (GC/MS) by Method 8260D	32
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	34
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	37
GI: Glossary of Terms	39
Al: Accreditations & Locations	40

41

PAGE:

2 of 44

Sc: Sample Chain of Custody

			Collected by	Collected date/time	Received da	to/timo
MW-4-W-20211214 L1443594-01 GW			JS/SB	12/14/21 14:40	12/17/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1793893	1	12/26/21 19:41	12/27/21 10:55	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 14:32	12/19/21 14:32	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 03:14	12/20/21 03:14	JCP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1794299	1	12/24/21 05:46	12/27/21 12:01	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-5-W-20211216 L1443594-02 GW			JS/SB	12/16/21 09:15	12/17/21 09:0	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1793893	1	12/26/21 19:41	12/27/21 11:03	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 14:55	12/19/21 14:55	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 03:36	12/20/21 03:36	JCP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1795076	1	12/28/21 07:48	12/29/21 11:52	WCR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-6-W-20211214 L1443594-03 GW			JS/SB	12/14/21 14:15	12/17/21 09:0	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG1793893	1	12/26/21 19:41	12/27/21 11:05	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 15:18	12/19/21 15:18	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 03:57	12/20/21 03:57	JCP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1794299	1	12/24/21 05:46	12/27/21 12:27	DMG	Mt. Juliet, TN
MW-7-W-20211215 L1443594-04 GW			Collected by JS/SB	Collected date/time 12/15/21 14:55	Received da: 12/17/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Buten	Bildtion	date/time	date/time	rilalyse	Ededion
Metals (ICP) by Method 6010D	WG1793893	1	12/26/21 19:41	12/27/21 11:08	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 15:41	12/19/21 15:41	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 04:18	12/20/21 04:18	JCP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1794783	1	12/27/21 03:09	12/27/21 21:39	DMG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1791424	1	12/21/21 03:44	12/21/21 16:22	LEA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-8-W-20211215 L1443594-05 GW			JS/SB	12/15/21 15:35	12/17/21 09:0	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1793893	1	12/26/21 19:41	12/27/21 11:11	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 16:04	12/19/21 16:04	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 04:39	12/20/21 04:39	JCP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1794783	1	12/27/21 03:09	12/27/21 22:05	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-10-W-20211215 L1443594-06 GW			JS/SB	12/15/21 11:55	12/17/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1793893	1	12/26/21 19:41	12/27/21 11:14	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/20/21 19.41	12/19/21 16:28	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/19/21 10:28	12/20/21 05:00	JCP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1794783	1	12/27/21 03:09	12/27/21 22:30	DMG	Mt. Juliet, TN
25 25 Signing compounds (cop of method first the too sol		•	.2,2,721 03.03		51110	Junet, IN

¹Cp

		J () (V) ()	//////			
MW-11-W-20211215 L1443594-07 GW			Collected by JS/SB	Collected date/time 12/15/21 11:30	Received da 12/17/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1793893	1	12/26/21 19:41	12/27/21 10:36	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 16:51	12/19/21 16:51	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 05:21	12/20/21 05:21	JCP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1794783	1	12/27/21 03:09	12/27/21 22:55	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-12-W-20211216 L1443594-08 GW			JS/SB	12/16/21 10:28	12/17/21 09:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1793893	1	12/26/21 19:41	12/27/21 11:16	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 17:14	12/19/21 17:14	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 05:42	12/20/21 05:42	JCP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1795076	1	12/28/21 07:48	12/29/21 11:25	WCR	Mt. Juliet, TN
MW-13-W-20211215 L1443594-09 GW			Collected by JS/SB	Collected date/time 12/15/21 14:00	Received da 12/17/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis	Analyst	Location
Motols (ICD) by Mothed CO10D	WG1793893	1	12/26/21 19:41	date/time 12/27/21 11:19	CCE	M+ Juliot TN
Metals (ICP) by Method 6010D Volatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/26/21 19.41	12/19/21 17:37	DWR	Mt. Juliet, TN
		1	12/19/21 17.37	12/20/21 06:03	JCP	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1792004 WG1794783	1	12/27/21 08:03	12/28/21 00:09	DMG	Mt. Juliet, TN Mt. Juliet, TN
NUMBER OF THE OFFICE OF			Collected by JS/SB	Collected date/time 12/16/21 09:25	Received da 12/17/21 09:0	
MW-14-W-20211216 L1443594-10 GW	D	D.1				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1793893	1	12/26/21 19:41	12/27/21 11:22	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 18:00	12/19/21 18:00	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 06:25	12/20/21 06:25	JCP	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1794378	10	12/23/21 18:28	12/23/21 18:28	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1795076	1	12/28/21 07:48	12/28/21 22:03	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-15-W-20211214 L1443594-11 GW			JS/SB	12/14/21 13:25	12/17/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1796943	1	01/05/22 13:15	01/06/22 02:36	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1792757	1	12/21/21 21:00	12/21/21 21:00	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 06:46	12/20/21 06:46	JCP	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1794378	1	12/23/21 17:48	12/23/21 17:48	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1794299	1	12/24/21 05:46	12/27/21 12:53	DMG	Mt. Juliet, TN
MW-16-W-20211214 L1443594-12 GW			Collected by JS/SB	Collected date/time 12/14/21 12:20	Received da 12/17/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG1796943	1	01/05/22 13:15	01/06/22 02:39	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 18:47	12/19/21 18:47	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 07:07	12/20/21 07:07	JCP	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1794378	1	12/23/21 18:08	12/23/21 18:08	JAH	Mt. Juliet, TN
ACCOUNT:	PROJECT:		SDG:	DAT	E/TIME:	

Ср

MW-16-W-20211214 L1443594-12 GW			Collected by JS/SB	Collected date/time 12/14/21 12:20	Received da 12/17/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1794299	1	12/24/21 05:46	12/27/21 13:19	DMG	Mt. Juliet, TN
MW-17-W-20211215 L1443594-13 GW			Collected by JS/SB	Collected date/time 12/15/21 13:45	Received da 12/17/21 09:0	
M ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1796943	1	01/05/22 13:15	01/06/22 02:42	CCE	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 19:10	12/19/21 19:10	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 07:28	12/20/21 07:28	JCP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1794783	1	12/27/21 03:09	12/28/21 00:35	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-18-W-20211215 L1443594-14 GW			JS/SB	12/15/21 09:40	12/17/21 09:0	10
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1796943	1	01/05/22 13:15	01/06/22 02:44	CCE	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 19:33	12/19/21 19:33	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 07:49	12/20/21 07:49	JCP	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1794783	1	12/27/21 03:09	12/28/21 01:00	DMG	Mt. Juliet, TN
MW-19-W-20211215 L1443594-15 GW			Collected by JS/SB	Collected date/time 12/15/21 09:15	Received da 12/17/21 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
vicinoù	Dateii	Dilution	date/time	date/time	Allalyst	Location
Metals (ICP) by Method 6010D	WG1796943	1	01/05/22 13:15	01/06/22 02:53	CCE	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 19:56	12/19/21 19:56	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 08:10	12/20/21 08:10	JCP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1794783	1	12/27/21 03:09	12/28/21 01:25	DMG	Mt. Juliet, TN
MW-20-W-20211215 L1443594-16 GW			Collected by JS/SB	Collected date/time 12/15/21 10:35	Received da 12/17/21 09:0	
M ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Metals (ICP) by Method 6010D	WG1796943	1	01/05/22 13:15	01/06/22 02:56	CCE	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 20:19	12/19/21 20:19	DWR	Mt. Juliet, TN
The state of the s						
	WG1792004	1	12/20/21 08:31	12/20/21 08:31	JCP	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260D		1 1	12/20/21 08:31 12/27/21 03:09	12/20/21 08:31 12/28/21 01:49	JCP DMG	Mt. Juliet, TN Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1792004					Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT WW-21-W-20211216 L1443594-17 GW	WG1792004		12/27/21 03:09 Collected by JS/SB Preparation	12/28/21 01:49 Collected date/time 12/16/21 10:45 Analysis	DMG Received da	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT WW-21-W-20211216 L1443594-17 GW Method	WG1792004 WG1794783 Batch	1 Dilution	12/27/21 03:09 Collected by JS/SB Preparation date/time	12/28/21 01:49 Collected date/time 12/16/21 10:45 Analysis date/time	DMG Received da 12/17/21 09:0 Analyst	Mt. Juliet, TN te/time 00 Location
Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT WW-21-W-20211216 L1443594-17 GW Method Metals (ICP) by Method 6010D	WG1792004 WG1794783 Batch WG1796943	Dilution	12/27/21 03:09 Collected by JS/SB Preparation date/time 01/05/22 13:15	12/28/21 01:49 Collected date/time 12/16/21 10:45 Analysis date/time 01/06/22 02:58	DMG Received da 12/17/21 09:0 Analyst CCE	Mt. Juliet, TN te/time 00 Location Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT MW-21-W-20211216 L1443594-17 GW Method Metals (ICP) by Method 6010D Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004 WG1794783 Batch	1 Dilution	12/27/21 03:09 Collected by JS/SB Preparation date/time	12/28/21 01:49 Collected date/time 12/16/21 10:45 Analysis date/time	DMG Received da 12/17/21 09:0 Analyst	Mt. Juliet, TN te/time

			Collected by	Collected date/time	e Received da	te/time
DUP-1-121521 L1443594-18 GW			JS/SB	12/15/21 00:00	12/17/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG1796943	1	01/05/22 13:15	01/06/22 03:01	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1791627	1	12/19/21 21:06	12/19/21 21:06	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 09:13	12/20/21 09:13	JCP	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1794783	1	12/27/21 03:09	12/28/21 02:13	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	e Received da	te/time
RS-1-121421 L1443594-19 GW			JS/SB	12/14/21 15:05	12/17/21 09:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Metals (ICP) by Method 6010D	WG1796943	1	01/05/22 13:15	01/06/22 03:04	CCE	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1792128	1	12/20/21 20:27	12/20/21 20:27	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1792004	1	12/20/21 09:42	12/20/21 09:42	JCP	Mt. Juliet, TN

WG1794299

1

12/24/21 05:46

12/27/21 13:45

DMG

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

DATE/TIME:

01/06/22 14:51

PAGE:

7 of 44

Brian Ford Project Manager

Buar Ford

MW-4-W-20211214

SAMPLE RESULTS - 01

1443594

Metals (ICP) by Method 6010D

Collected date/time: 12/14/21 14:40

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 10:55	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 14:32	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	106			78.0-120		12/19/2021 14:32	<u>WG1791627</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 03:14	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 03:14	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 03:14	WG1792004
Total Xylenes	0.402	<u>J</u>	0.174	3.00	1	12/20/2021 03:14	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 03:14	WG1792004
(S) Toluene-d8	114			80.0-120		12/20/2021 03:14	WG1792004
(S) 4-Bromofluorobenzene	105			77.0-126		12/20/2021 03:14	WG1792004
(S) 1,2-Dichloroethane-d4	112			70.0-130		12/20/2021 03:14	WG1792004

⁸Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	224		66.7	200	1	12/27/2021 12:01	WG1794299
Residual Range Organics (RRO)	123	<u>J</u>	83.3	250	1	12/27/2021 12:01	WG1794299
(S) o-Terphenyl	100			52.0-156		12/27/2021 12:01	WG1794299

MW-5-W-20211216

Collected date/time: 12/16/21 09:15

SAMPLE RESULTS - 02

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 11:03	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 14:55	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	106			78.0-120		12/19/2021 14:55	WG1791627

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 03:36	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 03:36	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 03:36	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 03:36	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 03:36	WG1792004
(S) Toluene-d8	116			80.0-120		12/20/2021 03:36	WG1792004
(S) 4-Bromofluorobenzene	104			77.0-126		12/20/2021 03:36	WG1792004
(S) 1,2-Dichloroethane-d4	116			70.0-130		12/20/2021 03:36	WG1792004

Gl

ΆΙ

Sc

Cerm Volatile Organ	110 001111	0	C/ C/ 11		107(110	, , , , , , , , , , , , , , , , , , , ,	
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	74.9	<u>J</u>	66.7	200	1	12/29/2021 11:52	WG1795076
Residual Range Organics (RRO)	104	<u>J</u>	83.3	250	1	12/29/2021 11:52	WG1795076
(S) o-Terphenyl	102			52.0-156		12/29/2021 11:52	WG1795076

MW-6-W-20211214 Collected date/time: 12/14/21 14:15

SAMPLE RESULTS - 03

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 11:05	WG1793893	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 15:18	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	107			78.0-120		12/19/2021 15:18	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 03:57	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 03:57	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 03:57	WG1792004
Total Xylenes	0.210	<u>J</u>	0.174	3.00	1	12/20/2021 03:57	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 03:57	WG1792004
(S) Toluene-d8	116			80.0-120		12/20/2021 03:57	WG1792004
(S) 4-Bromofluorobenzene	106			77.0-126		12/20/2021 03:57	WG1792004
(S) 1,2-Dichloroethane-d4	114			70.0-130		12/20/2021 03:57	WG1792004

Gl

°AI

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	71.7	<u>J</u>	66.7	200	1	12/27/2021 12:27	WG1794299
Residual Range Organics (RRO)	U		83.3	250	1	12/27/2021 12:27	WG1794299
(S) o-Terphenyl	90.5			52.0-156		12/27/2021 12:27	WG1794299

MW-7-W-20211215

SAMPLE RESULTS - 04

1443594

Metals (ICP) by Method 6010D

Collected date/time: 12/15/21 14:55

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 11:08	WG1793893	

2_

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 15:41	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	107			78.0-120		12/19/2021 15:41	<u>WG1791627</u>

Ss

⁵Sr

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 04:18	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 04:18	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 04:18	WG1792004
Total Xylenes	0.321	<u>J</u>	0.174	3.00	1	12/20/2021 04:18	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 04:18	WG1792004
(S) Toluene-d8	117			80.0-120		12/20/2021 04:18	WG1792004
(S) 4-Bromofluorobenzene	105			77.0-126		12/20/2021 04:18	WG1792004
(S) 1,2-Dichloroethane-d4	115			70.0-130		12/20/2021 04:18	WG1792004

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	<u> </u>	•					
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	95.7	<u>J</u>	66.7	200	1	12/27/2021 21:39	WG1794783
Residual Range Organics (RRO)	185	<u>J</u>	83.3	250	1	12/27/2021 21:39	WG1794783
(S) o-Terphenyl	96.8			52.0-156		12/27/2021 21:39	WG1794783

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.0203	0.0500	1	12/21/2021 16:22	WG1791424
Benzo(a)pyrene	U		0.0184	0.0500	1	12/21/2021 16:22	WG1791424
Benzo(b)fluoranthene	U		0.0168	0.0500	1	12/21/2021 16:22	WG1791424
Benzo(k)fluoranthene	U		0.0202	0.0500	1	12/21/2021 16:22	WG1791424
Chrysene	U		0.0179	0.0500	1	12/21/2021 16:22	WG1791424
Dibenz(a,h)anthracene	U		0.0160	0.0500	1	12/21/2021 16:22	WG1791424
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	1	12/21/2021 16:22	WG1791424
Naphthalene	U		0.0917	0.250	1	12/21/2021 16:22	WG1791424
1-Methylnaphthalene	U		0.0687	0.250	1	12/21/2021 16:22	WG1791424
2-Methylnaphthalene	U		0.0674	0.250	1	12/21/2021 16:22	WG1791424
(S) Nitrobenzene-d5	104			31.0-160		12/21/2021 16:22	WG1791424
(S) 2-Fluorobiphenyl	101			48.0-148		12/21/2021 16:22	WG1791424
(S) p-Terphenyl-d14	102			37.0-146		12/21/2021 16:22	WG1791424

MW-8-W-20211215

Collected date/time: 12/15/21 15:35

SAMPLE RESULTS - 05

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 11:11	WG1793893	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	7270		31.6	100	1	12/19/2021 16:04	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	85.4			78.0-120		12/19/2021 16:04	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 04:39	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 04:39	WG1792004
Ethylbenzene	2.13		0.137	1.00	1	12/20/2021 04:39	WG1792004
Total Xylenes	1.75	<u>J</u>	0.174	3.00	1	12/20/2021 04:39	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 04:39	WG1792004
(S) Toluene-d8	122	<u>J1</u>		80.0-120		12/20/2021 04:39	WG1792004
(S) 4-Bromofluorobenzene	103			77.0-126		12/20/2021 04:39	WG1792004
(S) 1,2-Dichloroethane-d4	110			70.0-130		12/20/2021 04:39	WG1792004

8 Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	228		66.7	200	1	12/27/2021 22:05	WG1794783
Residual Range Organics (RRO)	119	<u>J</u>	83.3	250	1	12/27/2021 22:05	WG1794783
(S) o-Terphenyl	81.1			52.0-156		12/27/2021 22:05	WG1794783

MW-10-W-20211215

Collected date/time: 12/15/21 11:55

SAMPLE RESULTS - 06

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 11:14	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	362		31.6	100	1	12/19/2021 16:28	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	94.7			78.0-120		12/19/2021 16:28	<u>WG1791627</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 05:00	WG1792004
Toluene	1.54		0.278	1.00	1	12/20/2021 05:00	WG1792004
Ethylbenzene	2.16		0.137	1.00	1	12/20/2021 05:00	WG1792004
Total Xylenes	1.89	<u>J</u>	0.174	3.00	1	12/20/2021 05:00	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 05:00	WG1792004
(S) Toluene-d8	117			80.0-120		12/20/2021 05:00	WG1792004
(S) 4-Bromofluorobenzene	108			77.0-126		12/20/2021 05:00	WG1792004
(S) 1,2-Dichloroethane-d4	116			70.0-130		12/20/2021 05:00	WG1792004

⁸Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	171	<u>J</u>	66.7	200	1	12/27/2021 22:30	WG1794783
Residual Range Organics (RRO)	U		83.3	250	1	12/27/2021 22:30	WG1794783
(S) o-Terphenyl	100			52.0-156		12/27/2021 22:30	WG1794783

MW-11-W-20211215

Collected date/time: 12/15/21 11:30

SAMPLE RESULTS - 07

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 10:36	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	457		31.6	100	1	12/19/2021 16:51	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	94.8			78.0-120		12/19/2021 16:51	<u>WG1791627</u>

Cn

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.896	<u>J</u>	0.0941	1.00	1	12/20/2021 05:21	WG1792004
Toluene	0.343	<u>J</u>	0.278	1.00	1	12/20/2021 05:21	WG1792004
Ethylbenzene	5.67		0.137	1.00	1	12/20/2021 05:21	WG1792004
Total Xylenes	0.609	<u>J</u>	0.174	3.00	1	12/20/2021 05:21	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 05:21	WG1792004
(S) Toluene-d8	115			80.0-120		12/20/2021 05:21	WG1792004
(S) 4-Bromofluorobenzene	103			77.0-126		12/20/2021 05:21	WG1792004
(S) 1,2-Dichloroethane-d4	112			70.0-130		12/20/2021 05:21	WG1792004

Gl

Αl

Sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>				
Analyte	ug/l		ug/l	ug/l		date / time					
Diesel Range Organics (DRO)	129	<u>J</u>	66.7	200	1	12/27/2021 22:55	WG1794783				
Residual Range Organics (RRO)	U		83.3	250	1	12/27/2021 22:55	WG1794783				
(S) o-Terphenyl	100			52.0-156		12/27/2021 22:55	WG1794783				

MW-12-W-20211216

Collected date/time: 12/16/21 10:28

SAMPLE RESULTS - 08

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead,Dissolved	U		2.99	6.00	1	12/27/2021 11:16	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 17:14	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	105			78.0-120		12/19/2021 17:14	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 05:42	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 05:42	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 05:42	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 05:42	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 05:42	WG1792004
(S) Toluene-d8	112			80.0-120		12/20/2021 05:42	WG1792004
(S) 4-Bromofluorobenzene	105			77.0-126		12/20/2021 05:42	WG1792004
(S) 1,2-Dichloroethane-d4	115			70.0-130		12/20/2021 05:42	WG1792004

Gl

9 9

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	83.6	<u>J</u>	66.7	200	1	12/29/2021 11:25	WG1795076
Residual Range Organics (RRO)	101	<u>J</u>	83.3	250	1	12/29/2021 11:25	WG1795076
(S) o-Terphenyl	102			52.0-156		12/29/2021 11:25	WG1795076

MW-13-W-20211215

Collected date/time: 12/15/21 14:00

SAMPLE RESULTS - 09

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	12/27/2021 11:19	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 17:37	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	106			78.0-120		12/19/2021 17:37	WG1791627

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 06:03	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 06:03	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 06:03	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 06:03	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 06:03	WG1792004
(S) Toluene-d8	118			80.0-120		12/20/2021 06:03	WG1792004
(S) 4-Bromofluorobenzene	109			77.0-126		12/20/2021 06:03	WG1792004
(S) 1,2-Dichloroethane-d4	118			70.0-130		12/20/2021 06:03	WG1792004

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 06:03	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 06:03	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 06:03	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 06:03	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 06:03	WG1792004
(S) Toluene-d8	118			80.0-120		12/20/2021 06:03	WG1792004
(S) 4-Bromofluorobenzene	109			77.0-126		12/20/2021 06:03	WG1792004
(S) 1,2-Dichloroethane-d4	118			70.0-130		12/20/2021 06:03	WG1792004

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	76.8	<u>J</u>	66.7	200	1	12/28/2021 00:09	WG1794783
Residual Range Organics (RRO)	84.9	<u>J</u>	83.3	250	1	12/28/2021 00:09	WG1794783
(S) o-Terphenyl	88.4			52.0-156		12/28/2021 00:09	WG1794783

MW-14-W-20211216

SAMPLE RESULTS - 10

1443594

Metals (ICP) by Method 6010D

Collected date/time: 12/16/21 09:25

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Lead,Dissolved	U		2.99	6.00	1	12/27/2021 11:22	WG1793893

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	7390		31.6	100	1	12/19/2021 18:00	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	69.9	<u>J2</u>		78.0-120		12/19/2021 18:00	<u>WG1791627</u>

Sample Narrative:

L1443594-10 WG1791627: Surrogate failure due to matrix interference.

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	0.413	<u>J</u>	0.0941	1.00	1	12/20/2021 06:25	WG1792004
Toluene	9.46		0.278	1.00	1	12/20/2021 06:25	WG1792004
Ethylbenzene	337		1.37	10.0	10	12/23/2021 18:28	WG1794378
Total Xylenes	1240		1.74	30.0	10	12/23/2021 18:28	WG1794378
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 06:25	WG1792004
(S) Toluene-d8	115			80.0-120		12/20/2021 06:25	WG1792004
(S) Toluene-d8	99.1			80.0-120		12/23/2021 18:28	WG1794378
(S) 4-Bromofluorobenzene	112			77.0-126		12/20/2021 06:25	WG1792004
(S) 4-Bromofluorobenzene	106			77.0-126		12/23/2021 18:28	WG1794378
(S) 1,2-Dichloroethane-d4	114			70.0-130		12/20/2021 06:25	WG1792004
(S) 1,2-Dichloroethane-d4	104			70.0-130		12/23/2021 18:28	WG1794378

Gl

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	686		66.7	200	1	12/28/2021 22:03	WG1795076
Residual Range Organics (RRO)	114	<u>J</u>	83.3	250	1	12/28/2021 22:03	WG1795076
(S) o-Terphenyl	82.6			52.0-156		12/28/2021 22:03	WG1795076

MW-15-W-20211214

Collected date/time: 12/14/21 13:25

SAMPLE RESULTS - 11

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 02:36	WG1796943

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	406	<u>B</u>	31.6	100	1	12/21/2021 21:00	WG1792757
(S) a,a,a-Trifluorotoluene(FID)	91.5			78.0-120		12/21/2021 21:00	<u>WG1792757</u>

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 06:46	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 06:46	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/23/2021 17:48	WG1794378
Total Xylenes	U		0.174	3.00	1	12/23/2021 17:48	WG1794378
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 06:46	WG1792004
(S) Toluene-d8	116			80.0-120		12/20/2021 06:46	WG1792004
(S) Toluene-d8	97.9			80.0-120		12/23/2021 17:48	WG1794378
(S) 4-Bromofluorobenzene	113			77.0-126		12/20/2021 06:46	WG1792004
(S) 4-Bromofluorobenzene	107			77.0-126		12/23/2021 17:48	WG1794378
(S) 1,2-Dichloroethane-d4	113			70.0-130		12/20/2021 06:46	WG1792004
(S) 1.2-Dichloroethane-d4	108			70.0-130		12/23/2021 17:48	WG1794378

Gl

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	491		66.7	200	1	12/27/2021 12:53	WG1794299
Residual Range Organics (RRO)	U		83.3	250	1	12/27/2021 12:53	WG1794299
(S) o-Terphenyl	104			52.0-156		12/27/2021 12:53	WG1794299

MW-16-W-20211214 Collected date/time: 12/14/21 12:20

SAMPLE RESULTS - 12

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 02:39	WG1796943

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 18:47	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	106			78.0-120		12/19/2021 18:47	<u>WG1791627</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 07:07	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 07:07	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/23/2021 18:08	WG1794378
Total Xylenes	U		0.174	3.00	1	12/23/2021 18:08	WG1794378
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 07:07	WG1792004
(S) Toluene-d8	119			80.0-120		12/20/2021 07:07	WG1792004
(S) Toluene-d8	104			80.0-120		12/23/2021 18:08	WG1794378
(S) 4-Bromofluorobenzene	107			77.0-126		12/20/2021 07:07	WG1792004
(S) 4-Bromofluorobenzene	107			77.0-126		12/23/2021 18:08	WG1794378
(S) 1,2-Dichloroethane-d4	116			70.0-130		12/20/2021 07:07	WG1792004
(S) 1,2-Dichloroethane-d4	107			70.0-130		12/23/2021 18:08	WG1794378

Gl

⁹Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	162	<u>J</u>	66.7	200	1	12/27/2021 13:19	WG1794299
Residual Range Organics (RRO)	U		83.3	250	1	12/27/2021 13:19	WG1794299
(S) o-Terphenyl	112			52.0-156		12/27/2021 13:19	WG1794299

MW-17-W-20211215

Collected date/time: 12/15/21 13:45

SAMPLE RESULTS - 13

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 02:42	WG1796943	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	2800		31.6	100	1	12/19/2021 19:10	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	95.1			78.0-120		12/19/2021 19:10	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 07:28	WG1792004
Toluene	40.9		0.278	1.00	1	12/20/2021 07:28	WG1792004
Ethylbenzene	68.9		0.137	1.00	1	12/20/2021 07:28	WG1792004
Total Xylenes	382		0.174	3.00	1	12/20/2021 07:28	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 07:28	WG1792004
(S) Toluene-d8	116			80.0-120		12/20/2021 07:28	WG1792004
(S) 4-Bromofluorobenzene	110			77.0-126		12/20/2021 07:28	WG1792004
(S) 1,2-Dichloroethane-d4	113			70.0-130		12/20/2021 07:28	WG1792004

Gl

ΆΙ

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	411		66.7	200	1	12/28/2021 00:35	WG1794783
Residual Range Organics (RRO)	U		83.3	250	1	12/28/2021 00:35	WG1794783
(S) o-Terphenyl	111			52.0-156		12/28/2021 00:35	WG1794783

MW-18-W-20211215

Collected date/time: 12/15/21 09:40

SAMPLE RESULTS - 14

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 02:44	WG1796943

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	427		31.6	100	1	12/19/2021 19:33	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	95.0			78.0-120		12/19/2021 19:33	<u>WG1791627</u>

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 07:49	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 07:49	WG1792004
Ethylbenzene	0.791	<u>J</u>	0.137	1.00	1	12/20/2021 07:49	WG1792004
Total Xylenes	3.96		0.174	3.00	1	12/20/2021 07:49	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 07:49	WG1792004
(S) Toluene-d8	119			80.0-120		12/20/2021 07:49	WG1792004
(S) 4-Bromofluorobenzene	106			77.0-126		12/20/2021 07:49	WG1792004
(S) 1,2-Dichloroethane-d4	115			70.0-130		12/20/2021 07:49	WG1792004

⁸ Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	174	<u>J</u>	66.7	200	1	12/28/2021 01:00	WG1794783
Residual Range Organics (RRO)	U		83.3	250	1	12/28/2021 01:00	WG1794783
(S) o-Terphenyl	107			52.0-156		12/28/2021 01:00	WG1794783

MW-19-W-20211215

Collected date/time: 12/15/21 09:15

SAMPLE RESULTS - 15

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead,Dissolved	U		2.99	6.00	1	01/06/2022 02:53	WG1796943

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 19:56	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	105			78.0-120		12/19/2021 19:56	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 08:10	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 08:10	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 08:10	WG1792004
Total Xylenes	0.278	J	0.174	3.00	1	12/20/2021 08:10	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 08:10	WG1792004
(S) Toluene-d8	118			80.0-120		12/20/2021 08:10	WG1792004
(S) 4-Bromofluorobenzene	106			77.0-126		12/20/2021 08:10	WG1792004
(S) 1,2-Dichloroethane-d4	112			70.0-130		12/20/2021 08:10	WG1792004

8 Al

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	12/28/2021 01:25	WG1794783
Residual Range Organics (RRO)	U		83.3	250	1	12/28/2021 01:25	<u>WG1794783</u>
(S) o-Terphenyl	101			52.0-156		12/28/2021 01:25	WG1794783

MW-20-W-20211215

Collected date/time: 12/15/21 10:35

SAMPLE RESULTS - 16

1443594

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 02:56	WG1796943

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 20:19	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	107			78.0-120		12/19/2021 20:19	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 08:31	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 08:31	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 08:31	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 08:31	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 08:31	WG1792004
(S) Toluene-d8	119			80.0-120		12/20/2021 08:31	WG1792004
(S) 4-Bromofluorobenzene	104			77.0-126		12/20/2021 08:31	WG1792004
(S) 1,2-Dichloroethane-d4	115			70.0-130		12/20/2021 08:31	WG1792004

Gl

°AI

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	12/28/2021 01:49	WG1794783
Residual Range Organics (RRO)	U		83.3	250	1	12/28/2021 01:49	WG1794783
(S) o-Terphenyl	80.5			52.0-156		12/28/2021 01:49	WG1794783

MW-21-W-20211216

Collected date/time: 12/16/21 10:45

SAMPLE RESULTS - 17

Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 02:58	WG1796943

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 20:43	WG1791627
(S) a,a,a-Trifluorotoluene(FID)	107			78.0-120		12/19/2021 20:43	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 08:52	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 08:52	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 08:52	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 08:52	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 08:52	WG1792004
(S) Toluene-d8	117			80.0-120		12/20/2021 08:52	WG1792004
(S) 4-Bromofluorobenzene	104			77.0-126		12/20/2021 08:52	WG1792004
(S) 1,2-Dichloroethane-d4	115			70.0-130		12/20/2021 08:52	WG1792004

Gl

ΆΙ

'Sc

		` `	7 - 7				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	89.7	<u>J</u>	66.7	200	1	12/28/2021 22:30	WG1795076
Residual Range Organics (RRO)	178	<u>J</u>	83.3	250	1	12/28/2021 22:30	WG1795076
(S) o-Terphenyl	73.2			52.0-156		12/28/2021 22:30	WG1795076

DUP-1-121521

SAMPLE RESULTS - 18

Collected date/time: 12/15/21 00:00 Metals (ICP) by Method 6010D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 03:01	WG1796943	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	12/19/2021 21:06	<u>WG1791627</u>
(S) a,a,a-Trifluorotoluene(FID)	107			78.0-120		12/19/2021 21:06	WG1791627

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 09:13	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 09:13	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 09:13	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 09:13	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 09:13	WG1792004
(S) Toluene-d8	118			80.0-120		12/20/2021 09:13	WG1792004
(S) 4-Bromofluorobenzene	101			77.0-126		12/20/2021 09:13	WG1792004
(S) 1,2-Dichloroethane-d4	118			70.0-130		12/20/2021 09:13	WG1792004

Gl

Αl

'Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	70.0	<u>J</u>	66.7	200	1	12/28/2021 02:13	WG1794783
Residual Range Organics (RRO)	U		83.3	250	1	12/28/2021 02:13	WG1794783
(S) o-Terphenyl	85.3			52.0-156		12/28/2021 02:13	WG1794783

SAMPLE RESULTS - 19

Metals (ICP) by Method 6010D

Collected date/time: 12/14/21 15:05

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead, Dissolved	U		2.99	6.00	1	01/06/2022 03:04	WG1796943

Re	lesult	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte ug	g/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	J		31.6	100	1	12/20/2021 20:27	WG1792128
(S) a,a,a-Trifluorotoluene(FID)	3.9			78.0-120		12/20/2021 20:27	WG1792128

Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.0941	1.00	1	12/20/2021 09:42	WG1792004
Toluene	U		0.278	1.00	1	12/20/2021 09:42	WG1792004
Ethylbenzene	U		0.137	1.00	1	12/20/2021 09:42	WG1792004
Total Xylenes	U		0.174	3.00	1	12/20/2021 09:42	WG1792004
Methyl tert-butyl ether	U		0.101	1.00	1	12/20/2021 09:42	WG1792004
(S) Toluene-d8	119			80.0-120		12/20/2021 09:42	WG1792004
(S) 4-Bromofluorobenzene	106			77.0-126		12/20/2021 09:42	WG1792004
(S) 1,2-Dichloroethane-d4	121			70.0-130		12/20/2021 09:42	WG1792004

GI

Αl

Sc

	'	`	, ,				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.7	200	1	12/27/2021 13:45	WG1794299
Residual Range Organics (RRO)	U		83.3	250	1	12/27/2021 13:45	WG1794299
(S) o-Terphenyl	94.7			52.0-156		12/27/2021 13:45	WG1794299

QUALITY CONTROL SUMMARY

L1443594-01,02,03,04,05,06,07,08,09,10

Metals (ICP) by Method 6010D Method Blank (MB)

(MB) R3745124-1 12/27/21 10:31

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Lead, Dissolved	U		2.99	6.00

(LCS)	R3745124-5	12/27/21	16:10

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Lead, Dissolved	1000	1020	102	80.0-120	

[†]Cn

(OS) L1443594-07 12/27/21 10:36 • (MS) R3745124-3 12/27/21 10:41 • (MSD) R3745124-4 12/27/21 10:44

(00, 2.1	` ,	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilutio	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Lead, Dissolved	1000	U	993	993	99.3	99.3	1	75.0-125			0.0334	20

QUALITY CONTROL SUMMARY

L1443594-11,12,13,14,15,16,17,18,19

Metals (ICP) by Method 6010D

Method Blank (MB)

(MB) R3747913-1 01/06/22 02:19

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Lead, Dissolved	U		2.99	6.00

Laboratory Control Sample (LCS)

(LCS) R3747913-2 01/06/22 02:22

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Lead Dissolved	1000	992	99.2	80 0-120	

[†]Cn

(OS) L1444256-07 01/06/22 02:25 • (MS) R3747913-4 01/06/22 02:30 • (MSD) R3747913-5 01/06/22 02:33

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Lead Dissolved	1000	Ш	1050	1050	105	105	1	75 0-125			0.312	20	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1443594-01,02,03,04,05,06,07,08,09,10,12,13,14,15,16,17,18

Method Blank (MB)

(MB) R3743045-2 12/19/2	(MB) R3743045-2 12/19/21 12:42						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l		ug/l	ug/l			
Gasoline Range Organics-NWTPH	U		31.6	100			
(S) a,a,a-Trifluorotoluene(FID)	107			78.0-120			

Laboratory Control Sample (LCS)

(LCS) R3743045-1 12/19/2	21 11:56				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5500	5800	105	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			94.8	78.0-120	

GI

L1443594-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1443594-07 12/19/21 16:51 • (MS) R3743045-3 12/19/21 21:29 • (MSD) R3743045-4 12/19/21 21:52 MSD Qualifier Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. RPD **RPD Limits** Dilution Rec. Limits MS Qualifier % % % Analyte ug/l ug/l ug/l % % Gasoline Range Organics-NWTPH 5500 457 4020 4090 64.8 66.1 10.0-155 1.73 21 (S) a,a,a-Trifluorotoluene(FID) 92.0 91.0 78.0-120

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1443594-19

Method Blank (MB)

(MB) R3744565-2 12/20	/21 17:30	·		·
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	89.1	<u>J</u>	31.6	100
(S) a,a,a-Trifluorotoluene(FID)	92.1			78.0-120

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3744565-1 12/20/	/21 16:03				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5500	5640	103	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			100	78.0-120	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1443594-11

Method Blank (MB)

(MB) R3743512-3 12/21/2	21 16:18			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Gasoline Range Organics-NWTPH	61.5	<u>J</u>	31.6	100
(S) a,a,a-Trifluorotoluene(FID)	92.4			78.0-120

³Ss

Cn

Laboratory Control Sample (LCS)

(LCS) R3743512-2 12/21/2	21 15:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Gasoline Range Organics-NWTPH	5500	5520	100	70.0-124	
(S)			101	78.0-120	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1443594-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Method Blank (MB)

1 02:53			
MB Result	MB Qualifier	MB MDL	MB RDL
ug/l		ug/l	ug/l
U		0.0941	1.00
U		0.137	1.00
U		0.101	1.00
U		0.278	1.00
U		0.174	3.00
113			80.0-120
107			77.0-126
115			70.0-130
	WB Result ug/I U U U U U U 113 107	MB Result ug/l U U U U U U U 113 107	MB Result ug/l MB Qualifier ug/l MB MDL ug/l U 0.0941 0.137 U 0.101 0.278 U 0.174 113 107 113 107

Laboratory Control Sample (LCS)

(LCS) R3744467-1 12/20/	/21 02:11				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Benzene	5.00	5.68	114	70.0-123	
Ethylbenzene	5.00	5.52	110	79.0-123	
Methyl tert-butyl ether	5.00	5.51	110	68.0-125	
Toluene	5.00	5.32	106	79.0-120	
Xylenes, Total	15.0	16.4	109	79.0-123	
(S) Toluene-d8			114	80.0-120	
(S) 4-Bromofluorobenzene			107	77.0-126	
(S) 1,2-Dichloroethane-d4			110	70.0-130	

L1443594-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(03) [1443594-07	12/20/21 05:21 • (MS)			MSD Result	MS Rec.	MSD
	Spike Amount	Original Resul	t MS Result	MSD Result	M2 Kec.	M2D

,	Cailes Amount	Original Docult	MC Docult	MSD Result	MS Rec.	MSD Rec.	Dilution	Dog Limito	MC Qualifier	MSD Qualifier	RPD	RPD Limits
	Spike Amount	Original Result	M2 Kesuit	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	KPD	RPD LIIIIIIS
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Benzene	5.00	0.896	6.16	6.40	105	110	1	17.0-158			3.82	27
Ethylbenzene	5.00	5.67	11.0	11.7	107	121	1	30.0-155			6.17	27
Methyl tert-butyl ether	5.00	U	5.21	5.38	104	108	1	28.0-150			3.21	29
Toluene	5.00	0.343	5.12	5.70	95.5	107	1	26.0-154			10.7	28
Xylenes, Total	15.0	0.609	14.7	16.3	93.9	105	1	29.0-154			10.3	28
(S) Toluene-d8					114	116		80.0-120				
(S) 4-Bromofluorobenzene					106	108		77.0-126				
(S) 1,2-Dichloroethane-d4					117	111		70.0-130				

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1443594-10,11,12

Method Blank (MB)

(MB) R3745077-3 12/23/2	21 09:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Ethylbenzene	U		0.137	1.00
Xylenes, Total	U		0.174	3.00
(S) Toluene-d8	105			80.0-120
(S) 4-Bromofluorobenzene	106			77.0-126
(S) 1,2-Dichloroethane-d4	102			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3745077-1 12/23/2	21 08:33 • (LCSE) R3745077-2	2 12/23/21 08:5	4							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Ethylbenzene	5.00	5.37	5.25	107	105	79.0-123			2.26	20	
Xylenes, Total	15.0	15.9	15.7	106	105	79.0-123			1.27	20	
(S) Toluene-d8				102	101	80.0-120					
(S) 4-Bromofluorobenzene				102	102	77.0-126					
(S) 1,2-Dichloroethane-d4				102	102	70.0-130					

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1443594-01,03,11,12,19

Method Blank (MB)

(MB) R3745450-1 12/27/21	09:51			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)) U		83.3	250
(S) o-Terphenyl	93.0			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3745450-2 12/27/21 10:16	(LCSD) R3745450-3 12/27/21 10:42
---------------------------------	----------------------------------

(LCS) RS/45450-2 12/2/12	21 10.16 • (LCSL) K3/4545U-3	12/2//21 10.42	<u> </u>						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	1500	1520	1530	101	102	50.0-150			0.656	20
(S) o-Terphenyl				116	118	52.0-156				

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1443594-04,05,06,07,09,13,14,15,16,18

Method Blank (MB)

(MB) R3745451-1 12/27/21 2	20:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	100			52.0-156

Laboratory Control Sample (LCS)

(LCS) R3745451-2 12/27/2	LCS) R3745451-2 12/27/21 21:14								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	ug/l	ug/l	%	%					
Diesel Range Organics (DRO)	1500	1510	101	50.0-150					
(S) o-Terphenyl			116	52.0-156					

L1443594-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) | 1443594-07 | 12/27/21 | 22:55 • (MS) R3745451-3 | 12/27/21 | 23:19 • (MSD) R3745451-4 | 12/27/21 | 23:44

(100) 211 1000 101 12/21/21 22:00 (110) 101 101 101 101 101 101 101 101 101												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Diesel Range Organics (DRO)	1430	129	1620	1630	104	105	1	50.0-150			0.615	20
(S) o-Terphenvl					118	123		52.0-156				

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1443594-02,08,10,17

Method Blank (MB)

(MB) R3745609-1 12/28/21	12:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	71.0			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LC3) R3/43009-2 12/20/	21 13.13 • (LC3L) K3/43009-3	12/20/21 13.41							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	1500	1560	1610	104	107	50.0-150			3.15	20
(S) n-Ternhenyl				85 O	75 O	52 0-156				

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1443594-04

Method Blank (MB)

(MB) R3743483-3 12/21/	21 10:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Benzo(a)anthracene	U		0.0203	0.0500	
Benzo(a)pyrene	U		0.0184	0.0500	
Benzo(b)fluoranthene	U		0.0168	0.0500	
Benzo(k)fluoranthene	U		0.0202	0.0500	
Chrysene	U		0.0179	0.0500	
Dibenz(a,h)anthracene	U		0.0160	0.0500	
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	
Naphthalene	U		0.0917	0.250	
1-Methylnaphthalene	U		0.0687	0.250	
2-Methylnaphthalene	U		0.0674	0.250	
(S) Nitrobenzene-d5	106			31.0-160	
(S) 2-Fluorobiphenyl	100			48.0-148	
(S) p-Terphenyl-d14	99.0			37.0-146	

Method Blank (MB)

(MB) R3743812-1 12/21/2	21 21:42				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Benzo(a)anthracene	U		0.0203	0.0500	
Benzo(a)pyrene	U		0.0184	0.0500	
Benzo(b)fluoranthene	U		0.0168	0.0500	
Benzo(k)fluoranthene	U		0.0202	0.0500	
Chrysene	U		0.0179	0.0500	
Dibenz(a,h)anthracene	U		0.0160	0.0500	
Indeno(1,2,3-cd)pyrene	U		0.0158	0.0500	
Naphthalene	U		0.0917	0.250	
1-Methylnaphthalene	U		0.0687	0.250	
2-Methylnaphthalene	U		0.0674	0.250	
(S) Nitrobenzene-d5	110			31.0-160	
(S) 2-Fluorobiphenyl	103			48.0-148	
(S) p-Terphenyl-d14	110			37.0-146	

Sc

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

11443594-04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3743483-1 12/21/21 09:26 • (LCSD) R3743483-2 12/21/21 09:43

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Benzo(a)anthracene	2.00	1.88	1.88	94.0	94.0	61.0-140			0.000	20
Benzo(a)pyrene	2.00	2.05	2.08	103	104	60.0-143			1.45	20
Benzo(b)fluoranthene	2.00	1.88	1.92	94.0	96.0	58.0-141			2.11	20
Benzo(k)fluoranthene	2.00	1.93	1.95	96.5	97.5	58.0-148			1.03	20
Chrysene	2.00	2.00	2.02	100	101	64.0-144			0.995	20
Dibenz(a,h)anthracene	2.00	1.58	1.64	79.0	82.0	52.0-155			3.73	20
Indeno(1,2,3-cd)pyrene	2.00	1.77	1.84	88.5	92.0	54.0-153			3.88	20
Naphthalene	2.00	2.01	2.05	100	103	61.0-137			1.97	20
1-Methylnaphthalene	2.00	1.99	2.03	99.5	102	66.0-142			1.99	20
2-Methylnaphthalene	2.00	2.06	2.10	103	105	62.0-136			1.92	20
(S) Nitrobenzene-d5				105	106	31.0-160				
(S) 2-Fluorobiphenyl				99.5	103	48.0-148				
(S) p-Terphenyl-d14				96.5	99.0	37.0-146				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

1451	Maria Davida da da
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifier)es	crit	oti	0	n
Qual	mei	L	1621		J	u	UΟ

	·
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Info	rmation:	2.		T			A	nalvsis	/ Contair	ner / Pre	servati	ve		Chain of Cust	tody Page of 3
Arcadis - Chevron - WA			Attn: Accounts Payable 630 Plaza Dr., Ste. 600 Highlands Ranch, CO 80129				Pres Chk							0	Pizes		- P	? ace Analytical °
Suite 800														K	ď	45.34		
Seattle. WA 98101 Report to: ADA HAMILTO Amanda Bowring	ON/ ALEX LAW)<	Email To: ALEXANDER . LAWS omanda-bowring@arcadis.com;environme					Ş	-BT				-	118m1	2		Submitting a sam constitutes ackno	d Mount Juliet, TN 37122 ple via this chain of custody wiedgment and acceptance of the
roject Description:		City/State Collected: 5	SEDRO-WOLLEY, WA Please C					JAmp-HC	ID-HCI		03	HCI	40ml HC	9	Ž	-		onditions found at: abs.com/hubfs/pas-standard-
hone: 206-325-5254	Client Project # 30063848 4 30064310			Lab Project # CHEVARCWA 93124 - 9				40r	OmlAm		PE-HN	HOM! HC!	10°	40ml		S	SDG #)181
ollected by (print):). SEPIOL /S. BROOKS	Site/Facility ID # 640 METCALF P. 1050 HARRISON AVE, ST			P.O.#				8260D	SGT 4	mb Hi	OMIMO		OZO	E 37	200			CHEVARCWA
ollected by (signature) nmediately acked on Ice N Y X	Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only) Three Day			Quote		e Results Needed		BTEXM/EDB/EDC	NWTPHDX LVINOSGT 40mlAmb-HCI-BT	NWTPHGX 40mlAmb HCl	Total Pb 6010 250mlHDPE-HNO3	NWTPH-GX	, 1	EX + MTBE	4 7	Hs 827	Prelogin: PPM: 110 - BPB: 110	866288 rian Ford 8-17-21
Sample ID	Comp/Grab	Matrix *	Depth	0	ate	Time	Cntrs	BTEX	TWN	TWN	Total	3	NUTPH	BTEX	Diss	CPA	Shipped Via Remarks	
MW-4-W-20211214	6	GW	12	12/1	1/21	1440	9					X	\geq	X	X			-01
MW-5-W-20211216	G	GW	-	12/1	621	10915	9					X	\times	X	X		200	, 05
MW-6-W-2021/214	G	GW	-	12/14	121	1415	9					X	\times	\times	\geq			.0
MW-7-W-20211215	G	GW		12/1	5/21	1455	111					X	\times	\times	\geq	X		2 QU
MW-8-W-20211215	G	GW		12/1	5 21	1535	9					\times	\boxtimes	X	\times			19:
MW-10-W-20211215	G	GW	_	12/19	5/21	1155	9					X	\geq	\times	\times			· de
MW-11-W-20211215	G	GW		12/1	5/21	1130	9					X	\times	\times	\geq			رم
MW-12-W-20211216	G	GW		12/1	621	1028	9				- 24	X	\times	X	\times			-08
MW-13-W-20211215	G	GW		12/1	5/21	1400	19		6			X	\geq	\times	\geq			18
MW-14-W-20211216	G	GW	A SECTION AND ADDRESS OF THE PERSON AND ADDR	12/1	6 21	0925	9				7. 17	X	\geq	\times	\times		A CONTRACTOR	110
S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater	emarks:	Maria Maria	100 1	er er		42.70 - 345 - 45 45.					pH		_ Temp	1000		COC Seal COC Signs Bottles a Correct 1	mple Receipt Present/Inta ed/Accurate: arrive intact bottles used: nt volume sen	ct: _NP _Y _N : _Y _N : _Y _N t: _Y _N
T - Other	_UPS X FedEx				Track	ing#											If Applic	YN
delinquished by (signature)	45	ate: /16/21	Time 140	00		ved by: (Signal	1			1		Received A	C	ES)/ No HCL) Me TBR		RAD Scree	tion Correct/ en <0.5 mR/hr	: ZY _N
relinquished by: (Signature)		ate:	Time	zi	Recei	ved by: (Signa	ture)			1	Temp.	tion,	C Bott	les Recei	ved:	If preserva	tion required by	Login: Date/Time
Relinquished by : (Signature)	Da	ate:	Time	:	Recei	ved for lab by:	(Signat	ure)		1	Date:	+121	Tim	e: Gn	0	Hold:		Condition: NCF / OK

Company Name/Address:		- 1	Billing Info	rmation:	1.		F			A	nalvsis /	Contai	ner / Pre	servativ	/e	14	CI	nain of Custody	Page 2 of 3
Arcadis - Chevron - WA 1100 Olive Way Suite 800 Seattle, WA 98101			Attn: Ac 630 Plaz Highland	a Dr., Si	e. 600		Pres Chk						, I	5	o-PRES		_	Pace	e Analytical
Report to:	port to: la Hamilton/Alex Laws			laws@ar	radis con	n∙Ada Hamilt	on@ar							HC	2		Su	065 Lebanon Rd Mou bmitting a sample via	this chain of custody
Project Description:		City/State		alexander.laws@arcadis.com							-BT			Hom	JW(Pa	ce Terms and Condition	ment and acceptance of th ons found at: om/hubfs/pas-standard-
97502		Collected:	SEDIZO-W	COLLEY	, WA	P) MT C			res		H		НО	37	750m		te	rms.pdf	
Phone: 206-325-5254		ent Project # 064310 07.21-Plan		Lab Pro	ject#	N-97502		다 다	E-NoP	HG	lAmb-	75	10.4 FC	~	0000		-	DG# able#	444359
Collected by (print):	Site/Facility I		LF ST SEDRO-		i i			40mIAmb-HCI	250mIHDPE-NoPres	lAmb-	.a 40m	mb HCl	HOWI	BY 8	By (.0		A	cctnum: CHE	
Collected by (signature): Immediately Packed on ice N Y X		ny 10 D		Quote		s Needed	No.	8260D 40ml	Pb 6010 250r	MTBE 8260D 40mlAmb-HC	NWTPHDX no silica 40mlAmb-HCI-BT	HGX 40mlAmb	ă	ITBE			Pi Pi	relogin: P89 2 M: 110 - Brian B: NS	2344
Sample ID	Comp/Grab	Matrix *	Depth	D	ate	Time	Cntrs	BTEX	Diss P	MTBE	NWTP	NWTPHGX	NWTR	STEX	D155.		Sh	Remarks	Sample # (lab only)
MW-15-W-20211214	G	GW		12 1	4/21	1325	9					X	X	X	X	al al			-11
MW-16-W-20211214	G	GW	-	12/14	1	1220	9					X	\times	X	\times				-12
MW-17-W-20211215	G	GW		12 15	21	1345	9					X	\times	\times	\bowtie		12		113
MW-18-W-20217215	G	GW		12/15	121	0940	9					X	\times	\times	\bowtie				114
MW-19-W-20211215	G	GW	1	12/15	21	0915	9		ye.			X	\boxtimes	\times	\times		60		1
MW-20-W-20211215	G	GW		12/15	121	1045	9					X	\bowtie	\geq	\bowtie				-16
MW-21-W-20211216	G	GW	-	12/1	621	1045	9					\times	\boxtimes	\times	\geq				1(
DUP-1-121521	G	GW		12 15	21	4	9					X	\geq	\times	\bowtie		. 14	, , , , , , , , , , , , , , , , , , , 	1
MS-1-121521	G	GW	-	12/19	5/21	1130	9					X	\boxtimes	\times	\boxtimes			and the second second	_9
MSD-1-121521	6	GW	_	12/1	5/21	1130	19				- 65	X	\boxtimes	X	\times				-07
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	marks: 1W-20 -	W-20	211215	→ Tiv	ne 10	35		and of	35epa 3	1.45 1.46	pH Flow		_ `Temp		I	COC Seal COC Sign Cottles Correct	Prese ed/Acc arrive bottle	e intact:	_NP Y _N Y _N _Y _N
OT - Other	mples returned UPS KedEx				Tracki	ng#									,	OA Zero	Heads		Y_N
Relinquished by : (Signature)		ate: 2 /16/2	Time	100	Receiv	red by: (Signat	ture)		14 min		Trip Blan	7	(NO CL) Me	оН	AD Scre	en <0	Correct/Che .5 mR/hr:	_Y _N
Relinquished by (Signature)	Da	ate:	Time	:	Receiv	ed by: (Signat	ture)				Temp:	•	C Bottl	es Receiv	ved:	f preserva	ation re	quired by Log	in: Date/Time
Relinquished by : (Signature)	Da	ate:	Time	R .	Receiv	red for lab by:	(Signat	ure)			Date:	112	Time	900	25/14/14/22	lold:			Condition:

company Name/Address:			Billing Infor	rmation:		1.5			V (2)	А	nalvsis /	Contair	ner / Pre	servativ	e			Chain of Custo	dy Page	3 of 3
Arcadis - Chevron - WA			630 Plaza	counts Par a Dr., Ste. Is Ranch, (600	,	Pres Chk									pres		Pa	7 ace Analy	⁄tical [°]
seattle. WA 98101											14 - 1				Q.	3		1		* K
leport to: Ada Hamilton/Alex Laws	j.			laws@arcad		a.Hamil	ton@ar			-		5			IL HOD	Jun	25.	12065 Lebanon Rd Submitting a sample constitutes acknowl Pace Terms and Con	le via this chain of cu	ustody
roject Description:	11	City/State Collected:	J-1		ل ا	Please C			sa	HCI-B		res-V	#Q	на	7W-07	256	- 4	https://info.pacelab terms.pdf	bs.com/hubfs/pas-st	tandard-
hone: 206-325-5254	Client Project 30064310	#		Lab Projec	t # CWA-97	502		HCI	Pb 6010 250mlHDPE-NoPres	40mIAmb-HCI-BT	5	PAHs 8270ESIM 40mlAmb-NoPres-W	40m	Ju 0/	8260	000	N	SDG #	14435	94
ollected by (print): J.SEPIOL / S. BROOKS	Site/Facility II		RO-	P.O. #				40mlAmb-HCl	nIHDF	:a 40n	mb HCl	OmlA		DRO	by 8	600	K	Acctnum: Ch		/A
collected by (signature):	Rush? (I	ab MUST Be		Quote#) 250r	io silica	40mlAmb	SIM 4	Gx	Dx.	MTBE	ha	20	Template: T1 Prelogin: P8	888553	
mmediately acked on Ice N Y X	Next Da Two Da Three D	y 10 Da	(Rad Only) y (Rad Only)	Date	Results Nee	eded	No.	8260D	b 6010	NWTPHDX no	NWTPHGX 4	8270E	- Hd-	- Hd	+	Load	~'5	PM: 110 - Bri	11/10	112
Sample ID	Comp/Grab	Matrix *	Depth	Date		Time	Cntrs	втех	Diss P	NWT	NWT	PAHS	NWTPH	AVW TPH	RIEX	P.SS.	CPA	Shipped Via: Remarks		# (lab only)
MW- TRIP BLAN	k	GW-		1			9						X	X	X	(58)	**			
RS-1-121421		GW		12/14/	21 15	-05-	9		1 1989				\times	X	X	X	运费			-19
		GW															# # E			
		GW				- 3			4											
		GW															2 494			
					-				A.		f f							7 4		
	4				i ik	4.5					2.0		A							
							Jr #											and the second		
And the contract of the contract of					a ti				10 W. F. S.										4	
									. s. 50		N.E.									
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater	marks:	132			0.000						pH Flow		Temp Other	. I - A	1.1	Bottles	gned/A s arri	e Receipt esent/Intac Accurate: ive intact: tles used:		Y N X N
	mples returned UPS FedEx				Tracking #											VOA Zer	ro Hea	volume sent If Applica adspace:	able _	Y N
Relinquished by (signature)		z/16/2	Time	00	Received by	y: (Signa	ature)				Trip Blan	k Recei		s / No GC / Med TBR	оН			Correct/C	hecked: _	Ā N
Relinguished by: (Signature)		ate:	Time	The state of the s	Received by	y: (Signa	ature)			7	Temp:	•	C Bottl		ed:	If preser	vation	required by L	_ogin: Date/	Time
Relinquished by : (Signature)	D	ate:	Time	: 141	Received fo	or lab by	r: (Signat	ure)			Date:	นก	Time	980		Hold:				dition:

Tracking	
Numbers	Temperature
5300 4299 8279	1.110=1.7
5217 3307 5240	2.810=2.8
5433 83841378	1.1=0+1.1
-	

Appendix J

Vapor Lab Data

Chevron - WA

DATA REVIEW

124 Ferry St Sedro Woolley

Volatile Organic Compounds (VOC) TO-15, Air Phase Hydrocarbon (APH) and Fixed Gases Analyses

SDG # 110163

Analyses Performed By: Friedman & Bruya, Inc.

Report# 44415R Review Level: Tier II Project: 30064310.08.82

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 110163 for samples collected in association with the Chevron 124 Ferry St Sedro Woolley site. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

				Sample	_ ,		Analysis	
SDG	Sample I. D	Lab ID	Matrix	Collection Date	Parent Sample	TO-15 (Full Scan)	Fixed Gases	АРН
	VP-1-5	110163 -01	Air	10/07/2021		X	X	Х
	VP-1-7	110163 -02	Air	10/07/2021		X	X	X
110163	VP-2-7	110163 -03	Air	10/07/2021		X	X	X
	Dup-1	110163 -04	Air	10/07/2021	VP-2-7	X	X	X
	EB-1	110163 -05	Air	10/07/2021		X	X	X

Note:

Fixed Gases- Includes Helium Analysis

APH - Air phase hydrocarbon

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

Items Reviewed	Rep	orted	Performance Acceptable		Not Required	
	No	Yes	No	Yes	Required	
Sample receipt condition		X		X		
2. Requested analyses and sample results		Х		X		
Master tracking list		Х		Х		
4. Methods of analysis		Х		Х		
5. Reporting limits		Х		Х		
6. Sample collection date		Х		Х		
7. Laboratory sample received date		Х		Х		
8. Sample preservation verification (as applicable)		Х		Х		
Sample preparation/extraction/analysis dates		Х		Х		
10. Fully executed Chain-of-Custody (COC) form		Х		Х		
11. Narrative summary of QA or sample problems provided		Х		Х		
12. Data Package Completeness and Compliance		Х		Х		

Note:

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Methods TO-15 and ASTM D-1946 and MA-APH. Data were reviewed in accordance with Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15; SOP No. HW-31, Revision 6.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound is considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	Return Canister Pressure
USEPA TO-15	Air	30 days from collection to analysis (Canister)	Ambient Temperature	< -1" Hg

All samples were analyzed within the specified holding time and canister return pressure / vacuum criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the RL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The TO-15 analysis requires that all surrogates associated with the analysis exhibit a percent recovery within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Laboratory Control Sample Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery and RPD within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for air matrix is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for air matrix.

Results for duplicate samples are summarized in the following table.

Sample ID / Duplicate ID	Compounds	Sample Result (ug/m3)	Duplicate Result (ug/m3)	RPD
VP-2-7 / Dup-1	All Target Compounds	U	U	AC

Note:

AC = Acceptable

The results between the parent sample and field duplicate were acceptable.

6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: USEPA TO-15	Rep	orted		rmance ptable	Not		
	No	Yes	No	Yes	Required		
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)							
Tier II Validation							
Holding times		Х		Х			
Reporting limits (units)		X		Х			
Blanks	·						
A. Method blanks		X		Х			
B. Equipment blanks		Х		Х			
C. Trip blanks	X				X		
Laboratory Control Sample (LCS) %R		Х		Х			
Laboratory Control Sample Duplicate (LCSD)	X				X		
LCS/LCSD Precision (RPD)	X				Х		
Matrix Spike (MS) %R	X				Х		
Matrix Spike Duplicate (MSD)	X				Х		
MS/MSD Precision (RPD)					X		
Field/Lab Duplicate (RPD)		Х		Х			
Surrogate Spike Recoveries		Х		Х			
Dilution Factor		Х		Х			
	<u> </u>						

Notes:

%R Percent recovery

RPD Relative percent difference

AIR-PHASE PETROLEUM HYDROCARBONS (APH) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	Return Canister Pressure
USEPA TO-15	Air	30 days from collection to analysis (Canister)	Ambient Temperature	< -1" Hg

All samples were analyzed within the specified holding time and canister return pressure / vacuum criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results less than the BAL associated with the following sample ID were qualified as listed in the following table.

Sample ID	Compound	Sample Result	Qualification
VP-1-5 VP-1-7 VP-2-7 Dup-1	APH EC9-12 aliphatic (EB)	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration
Note:			
RL Reporting lim	nit		

3. Surrogates/System Monitoring Compounds

Equipment Blank

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The TO-15 analysis requires that all surrogates associated with the analysis exhibit a percent recovery within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Laboratory Control Sample Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery and RPD within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

EΒ

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for air matrix is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for air matrix.

Results for duplicate samples are summarized in the following table.

Sample ID / Duplicate ID	Compound	Sample Result (ug/m3)	Duplicate Result (ug/m3)	RPD
VP-2-7 / Dup-1	APH EC9-12 aliphatic	390	340	14%

The calculated RPDs between the parent sample and field duplicate were acceptable.

6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR APH

APH By Method MA-APH	Rep	orted		rmance ptable	Not Required		
	No	Yes	No	Yes	Kequirea		
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)							
Tier II Validation							
Holding times		Х		Х			
Reporting limits (units)		Х		Х			
Blanks	<u>'</u>						
A. Method blanks		Х		Х			
B. Equipment blanks		Х	Х				
C. Trip blanks	Х				Х		
Laboratory Control Sample (LCS) %R		Х		Х			
Laboratory Control Sample Duplicate (LCSD)	Х				Х		
LCS/LCSD Precision (RPD)	Х				Х		
Matrix Spike (MS) %R	X				Х		
Matrix Spike Duplicate (MSD)	X				Х		
MS/MSD Precision (RPD)					Х		
Field/Lab Duplicate (RPD)		Х		Х			
Surrogate Spike Recoveries		Х		Х			
Dilution Factor		Х		Х			
				1			

Notes:

%R Percent recovery

RPD Relative percent difference

FIXED GASES ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation	Return Canister Pressure
ASTM D-1946	Air	30 days from collection to analysis (Canister)	Ambient Temperature	< -1" Hg

All samples were analyzed within the specified holding time and canister return pressure / vacuum criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the RL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

Laboratory Control Sample / Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the accuracy and precision of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

4. Laboratory Duplicate Sample Analysis

The laboratory duplicate sample relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to five times the reporting limit (RL). A control limit of 20% is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the RL, a control limit of one times the RL is applied.

The laboratory duplicate sample analysis was performed on a sample VP-1-5 exhibited RPD within the control limit.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for air matrix is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for air matrix.

Results for duplicate samples are summarized in the following table.

Sample ID / Duplicate ID	Compound	Sample Result (%)	Duplicate Result (%)	RPD
VP-2-7 / Dup-1	Helium	U	U	AC

Note:

AC = Acceptable

The Results between the parent sample and field duplicate were acceptable.

6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR FIXED GASES

ASTM D-1946	Rep	oorted	Performance Acceptable		Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/FLAME IONIZATION D	ETECTO	R (GC/FID))		
Tier II Validation					
Holding times		X		X	
Reporting limits (units)		X		Х	
Blanks					
A. Method blanks		X		X	
B. Equipment blanks		Х		X	
C. Trip blanks	X				X
Laboratory Control Sample (LCS) %R		X		X	
Laboratory Control Sample Duplicate (LCSD)	X				X
LCS/LCSD Precision (RPD)	X				X
Matrix Spike (MS) %R	X				X
Matrix Spike Duplicate (MSD)	X				X
MS/MSD Precision (RPD)	X				X
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries	Х				Х
Dilution Factor		X		X	

Notes:

%R Percent recovery

RPD Relative percent difference

VALIDATION PERFORMED BY: Vinayak Hegde

SIGNATURE:

DATE: February 15, 2022

PEER REVIEW: Dennis Capria

DATE: February 24, 2022

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS

110163s	AMPLE CHAIN OF CUSTODY	ME 10/8/21	*
Report To Ada Hanilton	SAMPLERS (signature) 2 RA		Page # of TURNAROUND TIME
Company Accadis	PROJECT NAME & ADDRESS	PO# 30 0 645\0	Ø Standard □ RUSH
Address 1100 Olive Way, Ste 200	124 Ferry St, Seiro WoolleyM		Rush charges authorized by:
City, State, ZIP Scottle, UA, 98101	NOTES:	INVOICE TO	SAMPLE DISPOSAL Ø Default: Clean after 3 days
Phone Email Ada - Hamilto - PArcon!	\$,com		□ Archive (Fee may apply)

SAMPLE INFORMATION							:				AN	LYS	SISA	EQU	JES'	TED	
Sample Name	Lab ID	Canister ID	Flow Cont. ID	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	ľ	Pate mpled	Initial Vac. ("Hg)	Initial	Final Vac. ("Hg)	Final -	TO16 Full Scan	TO15 BTEXM	Merit System	APH	Helium *	MTBE TONG	1
VP-1-5	01	3211	102	ia /(SG)	101	7/21	-30	1546	- 5	1551		X	Х	Х	X	×	· BTEX, MYBE,
VP-1-7	02	3257	101	ia /(sg)			-30	1344	-5	1354	-1/1 /	(Ì			1	+ Naphales
NP-2-7	03	8346	108	ia /so			-36	1431	~5	1436							
DUP-1	04	3558	רון	ia /SG			-30		-5								attelium by
EB-1	05	7998	106	IA / SG		ſ	-29	1527	~5	1531		1	V	J			17 57MD-1946
				IA / SG												· · · · ·	* Helim, COZ, OZ, CHY by ASTAD-1
:				IA / SG													CHI DO ASTADA
				IA / SG													

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Trevor Bryant	Arcabis	10/8/3	10:43
Become	Michael Erolik	FIBIL	10/8/21	1043
Relinquished by:	* * *			
Received by:	:	Samples received	1a: 19 °C	

FORMS\COC\COCTO-15.DOC

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: VP-1-5 Client: Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 10/07/21 110163-01 1/5.3 Date Analyzed: 10/13/21 Data File: 101225.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

4-Bromofluorobenzene 86 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <400 APH EC9-12 aliphatics 460 UB APH EC9-10 aromatics <130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: VP-1-7 Client: Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: 110163-02 1/5.9 Date Collected: 10/07/21 Date Analyzed: 10/13/21 Data File: 101226.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 88 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <440 APH EC9-12 aliphatics 420 UB

APH EC9-10 aromatics <150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: VP-2-7 Client: Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 10/07/21 110163-03 1/5.9 Date Analyzed: 10/13/21 Data File: 101227.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

4-Bromofluorobenzene 85 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <440 APH EC9-12 aliphatics 390 UB

APH EC9-10 aromatics <150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Dup-1 Client: Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 10/07/21 110163-04 1/5.5 Date Analyzed: 10/13/21 Data File: 101228.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

4-Bromofluorobenzene 88 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <410 APH EC9-12 aliphatics 340 UB APH EC9-10 aromatics <140

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: EB-1 Client: Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 10/07/21 110163-05 1/5.8 Date Analyzed: 10/13/21 Data File: 101229.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 87 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <430 APH EC9-12 aliphatics 240 APH EC9-10 aromatics <140

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 110163-01 1/5.3 10/07/21 Date Analyzed: Data File: 101225.D10/13/21 GCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	87	70	130

	Concentration			
Compounds:	ug/m3	ppbv		
Methyl t-butyl ether (MTBE)	<9.6	<2.6		
Benzene	< 1.7	< 0.53		
Toluene	<100	<26		
Ethylbenzene	< 2.3	< 0.53		
m,p-Xylene	<4.6	<1.1		
o-Xylene	< 2.3	< 0.53		
Naphthalene	<1.4	< 0.26		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	VD 1 7	Client	Arandia
Client Sample ID:	VP-1-7	Client:	Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 10/07/21 110163-02 1/5.9 Date Analyzed: Data File: 101226.D10/13/21 GCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	89	70	130

	Concentration			
Compounds:	ug/m3	ppbv		
Methyl t-butyl ether (MTBE)	<11	< 2.9		
Benzene	<1.9	< 0.59		
Toluene	<110	<29		
Ethylbenzene	< 2.6	< 0.59		
m,p-Xylene	< 5.1	<1.2		
o-Xylene	< 2.6	< 0.59		
Naphthalene	<1.5	< 0.29		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	VP-2-7	Client:	Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 110163-03 1/5.9 10/07/21 Date Analyzed: Data File: 101227.D10/13/21 GCMS7 Matrix: Instrument: Air Units: ug/m3Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	86	70	130

Compounds:	Concenug/m3	tration ppbv
Methyl t-butyl ether (MTBE)	<11	< 2.9
Benzene	<1.9	< 0.59
Toluene	<110	<29
Ethylbenzene	< 2.6	< 0.59
m,p-Xylene	< 5.1	<1.2
o-Xylene	< 2.6	< 0.59
Naphthalene	<1.5	< 0.29

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Dup-1	Client:	Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

10/07/21 Lab ID: Date Collected: 110163-04 1/5.5 Date Analyzed: Data File: 101228.D10/13/21 GCMS7 Matrix: Instrument: Air Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	89	70	130

Compounds:	Concen ug/m3	tration ppbv
Methyl t-butyl ether (MTBE)	<9.9	< 2.7
Benzene	<1.8	< 0.55
Toluene	<100	<27
Ethylbenzene	< 2.4	< 0.55
m,p-Xylene	<4.8	<1.1
o-Xylene	< 2.4	< 0.55
Naphthalene	<1.4	< 0.28

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	EB-1	Client:	Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 10/07/21 110163-05 1/5.8 Date Analyzed: Data File: 101229.D10/13/21 Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	89	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Methyl t-butyl ether (MTBE)	<10	< 2.9
Benzene	<1.9	< 0.58
Toluene	<110	<29
Ethylbenzene	< 2.5	< 0.58
m,p-Xylene	<5	<1.2
o-Xylene	< 2.5	< 0.58
Naphthalene	<1.5	< 0.29

ENVIRONMENTAL CHEMISTS

Date of Report: 10/27/21 Date Received: 10/08/21

Project: 97502 124 Ferry St Sedro Woolley 30064310, F&BI 110163

Date Extracted: 10/22/21 Date Analyzed: 10/22/21

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

Sample ID Laboratory ID	<u>Helium</u>
VP-1-5 110163-01	<0.6
VP-1-7 110163-02	<0.6
VP-2-7 110163-03	<0.6
Dup-1 110163-04	<0.6
EB-1 110163-05	<0.6
Method Blank	<0.6

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 27, 2021

Ada Hamilton, Project Manager Arcadis 1100 Olive Way, Suite 800 Seattle, WA 98101

Dear Ms Hamilton:

Included are the results from the testing of material submitted on October 8, 2021 from the 97502 124 Ferry St Sedro Woolley 30064310, F&BI 110163 project. There are 18 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Ada.Hamilton@Arcadis.com

ACD1027R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 8, 2021 by Friedman & Bruya, Inc. from the Arcadis 97502 124 Ferry St Sedro Woolley 30064310, F&BI 110163 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Arcadis</u>
110163 -01	VP-1-5
110163 -02	VP-1-7
110163 -03	VP-2-7
110163 -04	Dup-1
110163 -05	EB-1

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: VP-1-5 Client: Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 10/07/21 110163-01 1/5.3 Date Analyzed: 10/13/21 Data File: 101225.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 86 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <400 APH EC9-12 aliphatics 460 APH EC9-10 aromatics <130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: VP-1-7 Client: Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: 110163-02 1/5.9 Date Collected: 10/07/21 Date Analyzed: 10/13/21 Data File: 101226.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

4-Bromofluorobenzene 88 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <440 APH EC9-12 aliphatics 420 APH EC9-10 aromatics <150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: VP-2-7 Client: Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 10/07/21 110163-03 1/5.9 Date Analyzed: 10/13/21 Data File: 101227.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 85 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <440 APH EC9-12 aliphatics 390 APH EC9-10 aromatics <150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Dup-1 Client: Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 10/07/21 110163-04 1/5.5 Date Analyzed: 10/13/21 Data File: 101228.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

4-Bromofluorobenzene 88 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <410 APH EC9-12 aliphatics 340 APH EC9-10 aromatics <140

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: EB-1 Client: Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 10/07/21 110163-05 1/5.8 Date Analyzed: 10/13/21 Data File: 101229.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 87 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <430 APH EC9-12 aliphatics 240 APH EC9-10 aromatics <140

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: Arcadis

Date Received: Not Applicable Project: 30064310, F&BI 110163

Not Applicable Lab ID: Date Collected: $01\text{-}2236~\mathrm{MB}$ Date Analyzed: 10/12/21 Data File: 101211.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 89 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <75 APH EC9-12 aliphatics <25 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 110163-01 1/5.3 10/07/21 Date Analyzed: Data File: 101225.D10/13/21 GCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	87	70	130

	Concentration		
Compounds:	ug/m3	ppbv	
Methyl t-butyl ether (MTBE)	<9.6	<2.6	
Benzene	< 1.7	< 0.53	
Toluene	<100	<26	
Ethylbenzene	< 2.3	< 0.53	
m,p-Xylene	<4.6	<1.1	
o-Xylene	< 2.3	< 0.53	
Naphthalene	<1.4	< 0.26	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	VD 1 7	Client	Arandia
Client Sample ID:	VP-1-7	Client:	Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 10/07/21 110163-02 1/5.9 Date Analyzed: Data File: 101226.D10/13/21 GCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	89	70	130

	Concentration	
Compounds:	ug/m3	ppbv
Methyl t-butyl ether (MTBE)	<11	< 2.9
Benzene	<1.9	< 0.59
Toluene	<110	<29
Ethylbenzene	< 2.6	< 0.59
m,p-Xylene	< 5.1	<1.2
o-Xylene	< 2.6	< 0.59
Naphthalene	<1.5	< 0.29

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	VP-2-7	Client:	Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 110163-03 1/5.9 10/07/21 Date Analyzed: Data File: 101227.D10/13/21 GCMS7 Matrix: Instrument: Air Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	86	70	130

Compounds:	Concenug/m3	tration ppbv
Methyl t-butyl ether (MTBE)	<11	< 2.9
Benzene	<1.9	< 0.59
Toluene	<110	<29
Ethylbenzene	< 2.6	< 0.59
m,p-Xylene	< 5.1	<1.2
o-Xylene	< 2.6	< 0.59
Naphthalene	<1.5	< 0.29

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Dup-1	Client:	Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

10/07/21 Lab ID: Date Collected: 110163-04 1/5.5 Date Analyzed: Data File: 101228.D10/13/21 GCMS7 Matrix: Instrument: Air Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	89	70	130

Compounds:	Concen ug/m3	tration ppbv
Methyl t-butyl ether (MTBE)	<9.9	< 2.7
Benzene	<1.8	< 0.55
Toluene	<100	<27
Ethylbenzene	< 2.4	< 0.55
m,p-Xylene	<4.8	<1.1
o-Xylene	< 2.4	< 0.55
Naphthalene	<1.4	< 0.28

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	EB-1	Client:	Arcadis

Date Received: 10/08/21 Project: 30064310, F&BI 110163

Lab ID: Date Collected: 10/07/21 110163-05 1/5.8 Date Analyzed: Data File: 101229.D10/13/21 Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	89	70	130

	Concentration		
Compounds:	ug/m3	ppbv	
Methyl t-butyl ether (MTBE)	<10	< 2.9	
Benzene	<1.9	< 0.58	
Toluene	<110	<29	
Ethylbenzene	< 2.5	< 0.58	
m,p-Xylene	<5	<1.2	
o-Xylene	< 2.5	< 0.58	
Naphthalene	<1.5	< 0.29	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Mothod Blank	Client:	Arcadis
Chem Sample ID:	method blank	Chent:	Arcauis

Date Received: Project: 30064310, F&BI 110163

Not Applicable Not Applicable 10/12/21 Date Collected: Lab ID: $01\text{-}2236\,\mathrm{MB}$ Date Analyzed: Data File: 101211.DMatrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	90	70	130

	Concentration		
Compounds:	ug/m3	ppbv	
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	
Benzene	< 0.32	< 0.1	
Toluene	<19	<5	
Ethylbenzene	< 0.43	< 0.1	
m,p-Xylene	< 0.87	< 0.2	
o-Xylene	< 0.43	< 0.1	
Naphthalene	< 0.26	< 0.05	

ENVIRONMENTAL CHEMISTS

Date of Report: 10/27/21 Date Received: 10/08/21

Project: 97502 124 Ferry St Sedro Woolley 30064310, F&BI 110163

Date Extracted: 10/22/21 Date Analyzed: 10/22/21

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

Sample ID Laboratory ID	<u>Helium</u>
VP-1-5 110163-01	<0.6
VP-1-7 110163-02	<0.6
VP-2-7 110163-03	<0.6
Dup-1 110163-04	<0.6
EB-1 110163-05	<0.6
Method Blank	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 10/27/21 Date Received: 10/08/21

Project: 97502 124 Ferry St Sedro Woolley 30064310, F&BI 110163

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 110157-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	580	550	5
APH EC9-12 aliphatics	ug/m3	300	320	6
APH EC9-10 aromatics	ug/m3	<140	<140	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	86	70-130
APH EC9-12 aliphatics	ug/m3	67	112	70-130
APH EC9-10 aromatics	ug/m3	67	105	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/27/21 Date Received: 10/08/21

Project: 97502 124 Ferry St Sedro Woolley 30064310, F&BI 110163

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 110157-01 1/5.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl t-butyl ether (MTBE)	ug/m3	<10	<10	nm
Benzene	ug/m3	3.7	3.6	3
Toluene	ug/m3	<110	<110	nm
Ethylbenzene	ug/m3	< 2.5	< 2.5	nm
m,p-Xylene	ug/m3	<5	<5	nm
o-Xylene	ug/m3	< 2.5	< 2.5	nm
Naphthalene	ug/m3	<1.5	<1.5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl t-butyl ether (MTBE)	ug/m3	49	94	70-130
Benzene	ug/m3	43	99	70-130
Toluene	ug/m3	51	107	70-130
Ethylbenzene	ug/m3	59	99	70-130
m,p-Xylene	ug/m3	120	107	70-130
o-Xylene	ug/m3	59	111	70-130
Naphthalene	ug/m3	71	108	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/27/21 Date Received: 10/08/21

Project: 97502 124 Ferry St Sedro Woolley 30064310, F&BI 110163

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 110163-01 (Duplicate)

	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	< 0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

110163

Report To Ada HAN11401

Company Accadis

Address 1100 Olve Way g

City, State, ZIP Scottle, UA, 98101

Email Ada - Horisto - @Aroniscor

SAMPLE CHAIN OF CUSTODY

SAMPLERS (signature) NOTES: 2050 B PROJECT NAME & ADDRESS 30**0**64510 INVOICE TO PO#

> □ RUSH___ Page # TURNAROUND TIME

🗷 Default: Clean after 3 days Rush charges authorized by: SAMPLE DISPOSAL

□ Archive (Fee may apply)

SAMPLE INFORMATION			-							ANALYSIS-REQUESTED	SAT	23	RQI	LSH	ŒD	
				Reporting Level:						Full Scan	BTEXM	-07 20010	APH	elium Ұ	TO-15	
		•	Flow	IA=Indoor Air		Initial	Field	Final	Field	15])15	610	A	He	3E	
	Lab	Canister	Cont.	SG=Soil Gas	Date	Vac.	Initial		Final	<u>(O</u>	ţc	16			10	
Sample Name	Œ	Œ	₽	(Circle One)	₽.	("Hg)	Time ("Hg)		Time	7		ļ			W.	Notes
VP-1-5	0	1.28	102	IA /(SG)	10/7/21 -30 1546	-30	S46	5	1551		\succeq	×	×	\times	X	X. BIEX, M. CBE
VP-1-7	02	3257 101	101	1A /(SG)		-30 1549	154	-5	HSEİ			`				+ Napthales
NP-2-7	03	8346	201	IA /(SO)		-36 1431	l	Ś	1436							
DWP-1	2	5528	Ī	1A /(SG)		36	ì	-5	(*Helium by
EB-1	R	7948	106	IA / SG		-29 1827	1527	-5	1531		_	<u></u>	←		٤	3hal-Gwisti
Authorities and the state of th				IA / SG												* heim, co, o,
				IA / SG												Su ha han
			****	IA / SG	**************			······································								

Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc.

Ph. (206) 285-8282

FORMS\COC\COCTO-15.DOC Fax (206) 283-5044

Relinquished by: Received by: Relinquished by: SIGNATURE Tremo Michiel PRINT NAME F (BIC ACCONIS Samples received at 19 oc COMPANY 10/8/21 SH:018/01/13 DATE Sho1 HMIL

Appendix K

Terrestrial Ecological Evaluation Form

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

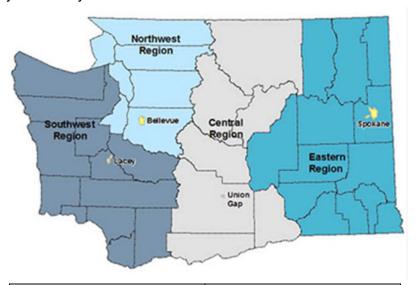
If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation.

Step 1: IDENTIFY HAZARDOUS WASTE	SITE
Please identify below the hazardous waste site	e for which you are documenting an evaluation.
Facility/Site Name: Chevron Site 97502	
Facility/Site Address: 640 Metcalf Street, Sedr	o Woolley, Washington
Facility/Site No: 6112475	VCP Project No.:

Step 2: IDENTIFY EVAL	.UATOR				
Please identify below the p	erson who conducted	the	evaluation and	their contact information.	
Name: Ada Hamilton				Title: Project Manager	
Organization: Arcadis					
Mailing address: 1100 Oliv	Mailing address: 1100 Olive Way, Suite 800				
City: Seattle		Sta	te: WA	Zip code: 98101	
Phone: 206-325-8218	Fax:		E-mail: ada.hamilton@arcadis.com		

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS A. Exclusion from further evaluation. 1. Does the Site qualify for an exclusion from further evaluation? ⊠ Yes If you answered "YES," then answer Question 2. ☐ No or If you answered "NO" or "UNKNOWN," then skip to Step 3B of this form. Unknown **2.** What is the basis for the exclusion? Check all that apply. Then skip to **Step 4** of this form. Point of Compliance: WAC 173-340-7491(1)(a) All soil contamination is, or will be,* at least 15 feet below the surface. All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination. Barriers to Exposure: WAC 173-340-7491(1)(b) All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination. Undeveloped Land: WAC 173-340-7491(1)(c) There is less than 0.25 acres of contiguous# undeveloped* land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene. For sites not containing any of the chemicals mentioned above, there is less than 1.5 \boxtimes acres of contiguous# undeveloped± land on or within 500 feet of any area of the Site. Background Concentrations: WAC 173-340-7491(1)(d) Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709. * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. [±] "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would

prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil.


^{# &}quot;Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife.

В.	Simplified e	valuation.
1.	Does the Sit	e qualify for a simplified evaluation?
	☐ Yes	If you answered "YES," then answer Question 2 below.
	☐ No Unknov	IT VALLANGWARAA "NIJ" AT "LINKNIJVVN " TAAN GKIN TA STAN SI " AT TAIG TARM
2.	Did you con	duct a simplified evaluation?
	☐ Yes	If you answered "YES," then answer Question 3 below.
	☐ No	If you answered "NO," then skip to Step 3C of this form.
3.	Was further	evaluation necessary?
	☐ Yes	If you answered "YES," then answer Question 4 below.
	☐ No	If you answered "NO," then answer Question 5 below.
4.	If further eva	aluation was necessary, what did you do?
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.
5.	If no further to Step 4 of t	evaluation was necessary, what was the reason? Check all that apply. Then skip this form.
	Exposure An	nalysis: WAC 173-340-7492(2)(a)
		Area of soil contamination at the Site is not more than 350 square feet.
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.
	Pathway Ana	alysis: WAC 173-340-7492(2)(b)
		No potential exposure pathways from soil contamination to ecological receptors.
	Contaminant	: Analysis: WAC 173-340-7492(2)(c)
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.

C.	the problem, an	valuation. A site-specific evaluation process consists of two parts: (1) formulating d (2) selecting the methods for addressing the identified problem. Both steps tion with and approval by Ecology. See WAC 173-340-7493(1)(c).			
1.	Was there a pr	oblem? See WAC 173-340-7493(2).			
	☐ Yes	If you answered "YES," then answer Question 2 below.			
	☐ No	If you answered "NO," then identify the reason here and then skip to Question 5 below:			
		No issues were identified during the problem formulation step.			
		While issues were identified, those issues were addressed by the cleanup actions for protecting human health.			
2.	What did you d	o to resolve the problem? See WAC 173-340-7493(3).			
		ed the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to estion 5 below.			
		ed one or more of the methods listed in WAC 173-340-7493(3) to evaluate and liress the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>			
3.		ed further site-specific evaluations, what methods did you use? oply. See WAC 173-340-7493(3).			
	Lite	rature surveys.			
	Soi	bioassays.			
	☐ Wil	dlife exposure model.			
	Bio	markers.			
	Site	e-specific field studies.			
	☐ We	ight of evidence.			
	Oth	er methods approved by Ecology. If so, please specify:			
4.	4. What was the result of those evaluations?				
	☐ Co	firmed there was no problem.			
	Со	nfirmed there was a problem and established site-specific cleanup levels.			
5.	Have you alrea problem resolu	dy obtained Ecology's approval of both your problem formulation and tion steps?			
	☐ Yes	If so, please identify the Ecology staff who approved those steps:			
	☐ No				

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region: Attn: VCP Coordinator 3190 160th Ave. SE Bellevue, WA 98008-5452

Southwest Region: Attn: VCP Coordinator P.O. Box 47775 Olympia, WA 98504-7775 Central Region:
Attn: VCP Coordinator

1250 West Alder St.
Union Gap, WA 98903-0009

Eastern Region: Attn: VCP Coordinator N. 4601 Monroe Spokane WA 99205-1295 Arcadis U.S., Inc. 1100 Olive Way, Suite 800 Seattle Washington 98101 Phone: 206 325 5254

Fax: 206 325 8218 www.arcadis.com