

TRANSMITTAL

Project No.: 160328

May 18, 2022

Attn:	Mr. Dale Myers Washington State D 3190 160th Avenue Bellevue, Washingto		Re:	SKS Shell Station Site LMI – West Seattle Holdings, LLC PPCD No. 13-2-27556-2 Facility ID #39196282 Cleanup ID #6015				
We are	sending the following	ı via:						
🛛 Reg	ular Mail & Email	□ Express Mail	□ Hand Deliver					
□ Ove	rnight Delivery	□ Courier		Client Pickup				
Qty	Description							
1	Groundwater Monito	ring Report, First Quar	ter 202	2				
Remarl	Washington Sta	te Department of Ecolo	gy by .	t are being submitted to the Aspect Consulting, LLC, on behalf of to PPCD No. 13-2-27556-2.				

cc: Elton Lee & Timothy Kinsella, GID	Sent by:	Ali Cochrane, LG
William Joyce, JZP		Senior Geologist, Aspect Consulting, LLC
		acochrane@aspectconsulting.com

V:\160328 GID - The Whittaker Environmental Review\Deliverables\2021 Q1 GW Report\FINAL\E-transmittal_2021 Q1 GW Monitoring Report.docx

May 17, 2022

Elton Lee LMI – West Seattle Holdings, LLC 125 High Street High Street Tower, 24th Floor Boston, Massachusetts 02110

Re: Groundwater Monitoring Report, SKS Shell Station Site, First Quarter 2022 LMI – West Seattle Holdings, LLC, PPCD No. 13-2-27556-2 Facility ID #39196282, Cleanup ID #6015 Project No. 160328

Dear Mr. Lee:

Aspect Consulting, LLC (Aspect) prepared this report to detail field activities and summarize the results of compliance groundwater monitoring occurring in the First Quarter 2022 for the SKS Shell Station Site (Site; Figure 1) located at 3901 Southwest Alaska Street in Seattle, Washington. Post-cleanup groundwater compliance sampling and reporting has been occurring since cleanup and redevelopment of the Site was completed in 2015, in accordance with Prospective Purchaser Consent Decree (PPCD) No. 13-2-27556-2 and Washington Administrative Code (WAC) Chapter 173-340. This report includes a brief background of the project, a description of the scope of work for compliance well replacements and monitoring events, and a summary of the results in comparison to results from prior compliance monitoring events. The location of the Site is shown on Figure 1.

Background

Use of the Site property as an auto repair facility and subsequently as multiple generations of gasoline refueling and service stations, from 1934 until 2013, resulted in soil and groundwater contamination with gasoline-, diesel-, and heavy oil-range total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, and total xylenes (BTEX) at concentrations above Model Toxics Control Act (MTCA) Method A cleanup levels. The areas in which these contaminants have been found exceeding MTCA cleanup levels constitute the Site. The Site consists of portions of the property located at 3901 Southwest Alaska Street, as well as the Southwest Alaska Street and Fauntleroy Way Southwest rights-of-way (ROW) adjoining on the north and west, respectively (Figure 2).

Cleanup action activities included remedial excavation that was completed in 2015 concurrently with redevelopment and construction of the existing Whittaker building.¹ Excavation beyond the former SKS property boundary was not feasible, and localized areas of petroleum-contaminated soil remains beneath adjoining ROWs. Refer to the Cleanup Action Report for more detail on the

¹ The new building (known as The Whittaker) was completed in 2016 and extends across the northeast three quarters of the city block that fronts Fauntleroy Way Southwest, south of the Southwest Alaska Street intersection. The Whittaker apartment building complex includes both the former SKS Shell Station and Kennedy-Huling Brothers Sites.

location and depth of residual soil contamination.² Redevelopment was conducted in coordination with cleanup activities and redevelopment at the neighboring Kennedy-Huling Brothers Site (Voluntary Cleanup Program ID #NW2716, which received a property-specific No Further Action (NFA) determination from the Washington State Department of Ecology (Ecology) in March 2019. For more detail on the former SKS property history, extent of contamination, and remedial actions completed at the SKS Shell Station Site, refer to the Cleanup Action Plan³ (CAP) and Cleanup Action Report² (CAR).

In January 2021 a pilot study for *in situ* chemical oxidation (ISCO) injections was implemented to assess whether ISCO injections would reasonably address the remedial objectives for the Site in accordance with the Ecology-approved work plan.⁴ As part of the ISCO pilot study, tracer dyes were introduced to three existing former dewatering wells in the Fauntleroy Way SW ROW (RW03 to RW05; Figure 2) to evaluate the potential for short circuiting to the Whittaker building underslab drainage system. Results from the pilot study indicated that the well system is not suitable for injections, as short circuiting to the drainage system occurred during pilot injections and tracer dye was detected in the parking garage drainage collection sump. Detailed results from the pilot study are included in the report "Groundwater Treatment Injection Pilot Study Results and Updated Monitored Natural Attenuation Analysis," dated May 3, 2021.

Based on the results of the 2021 pilot study and subsequent groundwater compliance monitoring event in First Quarter 2021, data suggested that the dewatering wells, RW01 to RW05, may be creating a condition of continued low-level contamination in groundwater due to the construction and historical use of these wells as dewatering and petroleum extraction wells during the remedial excavation and construction. Aspect recommended that the dewatering wells be decommissioned and replaced with an appropriate groundwater monitoring. This recommendation was approved by Ecology during a meeting on June 2, 2021. This work occurred in First Quarter 2022 in accordance with the "Site Closure Work Plan," dated July 29, 2021, and approved by Ecology via email on July 30, 2021, and is summarized in the following section.

Monitoring Well Installation and Decommissioning

In January 2022 the five remaining dewatering wells (RW01 through RW05) were decommissioned, and a new standard compliance groundwater monitoring well (MW115) was installed in the Fauntleroy Way ROW, in accordance with the Site Closure Work Plan. Location of the newly installed groundwater monitoring well is shown on Figure 2.

Former dewatering wells RW01 to RW05 were decommissioned by Cascade Drilling of Woodinville, Washington on January 12, 2022, in accordance with Revised Code of Washington (RCW) Chapter 18.104. Decommissioned wells were backfilled with hydrated NSF/ANSI 60

² SoundEarth Strategies, Inc. (SoundEarth), 2016, Cleanup Action Report, SKS Shell Property, 3901 Southwest Alaska Street, Seattle, Washington, October 20, 2016.

³ SoundEarth Strategies, Inc. (SoundEarth), 2016, Cleanup Action Plan, SKS Shell Property, 3901 Southwest Alaska Street, Seattle, Washington, June 16, 2014.

⁴ Aspect Consulting, LLC (Aspect), 2020, Preliminary Monitored Natural Attenuation Analysis and Groundwater Treatment Injections Pilot Study Work Plan, LMI – West Seattle Holdings, LLC, PPCD No. 13-2-27556-2, October 27, 2020.

bentonite chips to 2 feet below ground surface (bgs), the monument and top two feet of well casing were removed by concrete coring and the former wells were capped with concrete. RW01 contained a blockage at approximately 25 feet bgs that is presumed to be a dewatering pump that was not removed at the completion of construction. The obstruction was not able to be removed manually or with a mechanical hoist on Cascade's Hollow Stem Auger (HSA) drill rig. The obstruction was advanced to the bottom of the well at roughly 35 feet bgs using the HSA drill rig's percussion hammer until no further downward progress was observed. RW01 was backfilled with bentonite chips and capped with concrete consistent with other well decommissioning. Field documentation of decommissioning activities are included in Appendix C.

The new groundwater monitoring well (MW115) was installed in the Fauntleroy Way ROW in the general vicinity of former dewatering wells RW03 and RW04. Installation was conducted by Cascade Drilling on January 13 and 14, 2022 using a track mounted HSA drill rig, following Ecology's specifications for compliance groundwater monitoring. Aspect field staff oversaw drilling and logged soil samples per the Unified Soil Classification System (USCS), field screening consisted of visual and olfactory observations, as well as PID and sheen testing. The geology observed during drilling was sand and gravel backfill from zero to five feet bgs, and layers of glacial till consisting of sand and silt with some gravel between five feet bgs and the bottom of the boring at 41.5 feet bgs, or 218.5 feet NAVD88⁵. Groundwater was observed during drilling at 30.5 feet bgs, or 229.5 feet NAVD88. MW115 was constructed with a 2 inch Schedule 40 PVC casing and a 10 foot screen set between 229.29 and 239.29 feet NAVD88, a similar screened interval to the former dewatering wells. The top of casing (TOC) was measured at 269.29 feet NAVD88 in a survey using a laser level and comparison to previously surveyed Site features. Well development of MW115 was conducted by Aspect field staff on January 14, and March 9, 2022, two rounds of development were deemed necessary to achieve low turbidity and representative groundwater quality for the new monitoring well during its first post-installation monitoring event. The new well was incorporated into the compliance monitoring program for this quarterly groundwater monitoring event, and will continue to be sampled during subsequent groundwater monitoring events. Boring log, well construction information, and development forms for the new well are included in Appendix C.

Compliance Groundwater Monitoring

Post-cleanup compliance monitoring of groundwater began in March 2016. The original compliance well network consisted of 15 wells (RW02 to RW05, MW101 to MW105, and MW108 to MW113) located in the Southwest Alaska Street ROW and sidewalk, the Fauntleroy Way Southwest ROW and sidewalk, and within a portion of the parking garage of the Whittaker building (Figure 2).

As of First Quarter 2021, Ecology has approved⁶ discontinued sampling and decommissioning of six (RW02, RW03, RW04, RW05, MW102, and MW103) of the original 15 compliance wells; and

⁶ This footnote summarizes the approvals received by Ecology for changes to the compliance monitoring well network: RW02, MW101, and MW102 changes were approved by Dale Myers of Ecology via email to SoundEarth, January 6, 2020; MW112 and MW113 changes were approved by Dale Myers of Ecology via email on August 26, 2020; MW109, MW110, and MW111 changes were approved by Dale Myers of Ecology via email

⁵All elevations are based on North American Vertical Datum 1988.

approved installation and quarterly sampling of an additional standard compliance monitoring well (MW115) in the vicinity of RW03 and RW04. Per agreement with Ecology, wells MW101, MW104, MW105, MW108, MW109, MW110, MW111, MW112, MW113, and MW115 continue to be accessed each quarter for groundwater sampling and water level measurements.

The existing compliance well network for the Site now consists of 10 wells for analytical sampling and water level monitoring. The First Quarter 2022 groundwater monitoring event is the first event since the First Quarter 2021 event and installation of new well MW115. The following sections describe the field and analysis methods and the analytical results. Table 1 presents a summary of the status and well construction details of the original compliance groundwater monitoring wells for the Site.

Field and Analysis Methods

On March 24, 2022, groundwater levels were measured in 10 wells. Each water level measurement was recorded to the hundredth of a foot, relative to the top of the north side of the well casing. Groundwater elevations were calculated using the surveyed top of well casings. Depth to water measurements and water level elevations from the site-wide groundwater monitoring event are shown in Table 1 and on Figure 2.

Sampling was completed at ten compliance groundwater monitoring wells (MW101, MW104, MW105, MW108, MW109, MW110, MW111, MW112, MW113, and MW115) located on the Site and in the surrounding ROWs. All ten wells were sampled using standard low-flow methodology.⁷ Field parameters were collected during groundwater sampling—including depth to water, flow rate, temperature, specific conductivity, dissolved oxygen, pH, oxidation reduction potential, and turbidity—and sampling occurred once all parameters had stabilized.⁸ None of the well screens were fully submerged during sampling and the groundwater sample tubing intake was placed at the midpoint of the water column (consistent with past quarterly monitoring events).

Groundwater samples were collected in laboratory supplied bottle-ware, transported under standard chain of custody procedures, and submitted to Friedman and Bruya, Inc., of Seattle, Washington, for laboratory chemical analysis of the following:

- Gasoline-, diesel- and oil-range TPH using Northwest Methods NWTPH-Gx and NWTPH-Dx.
- BTEX using U.S. Environmental Protection Agency (EPA) Method 8021B.

on January 27, 2021; and MW102 and MW103 changes were approved by Dale Myers of Ecology via email on January 11, 2021.

⁷United States Environmental Protection Agency (EPA), 1996, Low Flow (Minimal Drawdown) Ground-Water Sampling Procedures, April 1996.

⁸ Stabilization consists of the following over no less than 9 minutes: less than 10 percent change in dissolved oxygen and turbidity; less than 3 percent change in specific conductance; less than 10-millivolt change in oxidation-reduction potential; and less than 0.1 change in pH.

Wells MW104 and MW108 were purged dry before field parameters had stabilized. These two wells were purged and allowed to recharge a minimum of three times before sampling was completed. A field duplicate for all analytes was collected at MW105.

Groundwater Monitoring Results

Groundwater Elevations and Flow Direction

First Quarter 2022 groundwater elevations ranged from a low of 240.06 feet NAVD88 (MW110) to a high of 241.99 feet (MW101; Table 1 and Figure 2). Groundwater elevations from the groundwater monitoring event were contoured to show generalized groundwater flow direction at the Site. As shown on Figure 2, groundwater flow across the Site area is generally toward the south and west with localized variability.

Analytical Results

Table A below presents a summary of the chemical analytical results for the First Quarter 2022 monitoring event.

Sample Location	Benzene	Gasoline- Range TPH	Diesel-Range TPH	Heavy Oil- Range TPH
MW101	< 1 U	< 100 U	120 X	< 250 U
MW104	< 1 U	< 100 U	58 X	< 250 U
MW105	< 1 U	< 100 U	< 50 U	< 250 U
MW108	< 1 U	< 100 U	77 X	< 250 U
MW109	< 1 U	< 100 U	< 50 U	< 250 U
MW110	< 1 U	< 100 U	< 50 U	< 250 U
MW111	< 1 U	< 100 U	< 50 U	< 250 U
MW112	< 1 U	< 100 U	< 50 U	< 250 U
MW113	< 1 U	< 100 U	55 X	< 250 U
MW115	< 1 U	< 100 U	780 X ²	< 250 U
MTCA Method A Cleanup Level	5	1000/800 ¹	500	500

 Table A. Summary of Q1 2022 Groundwater Analytical Results

Notes:

All concentrations are listed in ug/L (micrograms per liter)

Bold indicates a detected concentration; shading indicates a concentration that exceeds the MTCA Cleanup Level.

¹Gasoline-range TPH is measured against a lower cleanup level when benzene is present.

²The result was additionally analyzed for diesel-range TPH using silica gel cleanup, with the same detected concentration of 780 ug/L

U – the analyte indicated was not detected above the laboratory reporting limit.

X – chromatographic pattern did not match the standard used for quantification.

Of the wells that are not completed in areas where potential contaminated soil still remains, no contaminants of concern were detected at concentrations exceeding the MTCA Method A cleanup

level (Figure 3). Complete compliance groundwater monitoring data for the wells sampled during this event are shown in Table 2, and chemical analytical results are summarized on Figure 3. Laboratory reports are included in Appendix A.

Findings

Groundwater Elevations and Flow Direction

First Quarter 2022 groundwater elevations ranged from 240.06 feet to 241.99 feet, with the lowest elevation measured at MW110 located on the east edge of the Whittaker building garage. The groundwater flow directions are variable, are generally to the south and to the west with components of flow to the southwest during the First Quarter 2022 event. This local variability in groundwater flow direction is attributed to dewatering effects of the footing drains and stormwater sump below the northeast corner of the Whittaker building (Figure 2).

The inferred groundwater flow direction at the Site for the First Quarter 2022 event and the measured seasonal variation in groundwater elevations are generally consistent with those recorded during previous sampling events occurring since construction of the Whittaker building in 2015 and 2016.

Groundwater flow direction at the Site prior to construction (in 2015) was generally to the northeast, consistent with topography of the neighborhood, based on groundwater elevations measured during four preconstruction monitoring events. Following construction of the Whittaker building and its footing drains and stormwater sump, generalized groundwater flow direction has reversed, and has been observed flowing generally to the south-southwest-southeast (radiating toward a subgrade sump that exists in the northeast corner of the Whittaker parking garage). Average seasonal Site-wide groundwater elevations also dropped relative to preconstruction levels since compliance groundwater monitoring began.

Groundwater Analytical Results

All monitoring wells, with the exception of MW115, have remained below MTCA Method A cleanup levels since Second Quarter 2018 including during this most recent sampling event. In MW115, the concentration of diesel-range TPH exceeds the MTCA Method A cleanup level, and is similar to the concentrations that were observed in dewatering wells RW03 and RW04 in First Quarter 2021 (the last event in which these wells were sampled prior to their decommissioning in January 2022). Wells RW03 and RW04 have consistently shown exceedances of diesel-range TPH since Second Quarter 2018.

Diesel-range TPH was detected in MW115 at 780 ug/L. Because all diesel-range TPH concentrations at the Site, including at MW115, have been flagged by the laboratory as having a chromatographic pattern not resembling the fuel standard used for quantitation, additional analysis was performed to assess the potential for contribution of non-polar organics to the MW115 result from naturally occurring sources. The sample was passed through a silica gel column prior to retesting for diesel range TPH. The resultant concentration of 780 μ g/L matched the result of the presilica gel cleanup analysis, indicating that there is a negligible contribution from non-polar organics to the diesel-range TPH concentrations at MW115, and the MW115 result is likely reflective of the historical gasoline and diesel fuel release(s) to groundwater in this area of the Site.

Data Validation

Aspect completed a Stage 2A data validation on the data reported from Friedman and Bruya, Inc., in accordance with EPA guidance⁹ and Ecology's guidance. A data validation report is attached as Appendix B.

Although determined to be acceptable for use, the following should be noted when reviewing the remaining diesel-range TPH detections from the First Quarter 2022 sampling:

• The laboratory flagged all diesel-range TPH detections with an "X" to indicate that the sample chromatographic patterns did not resemble the fuel standard used for quantitation.

Validated data were submitted to Ecology's Environmental Information Management System (EIM) prior to the submittal of this report.

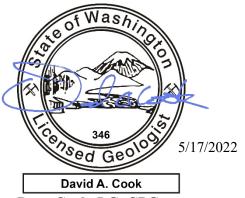
Recommendations

Contaminants of concern were detected at concentrations above the applicable MTCA Method A cleanup levels in groundwater at one of the ten wells monitored at the Site, continued groundwater monitoring is recommended. Impacts are localized to an area below the Fauntleroy Way ROW, just west of the former refueling station USTs that were removed as part of the cleanup action, and the detected concentration of 780 ug/L only moderately exceeds the cleanup level of 500 ug/L. We recommend conducting the monitoring on a biannual basis, with water levels measured at all wells during each event, and chemical testing at well MW115 only. At the time when contaminants of concern at MW115 are detected below cleanup levels, Aspect recommends increasing sampling frequency to quarterly to pursue four consecutive quarters of compliance groundwater sampling for Site closure. Third Quarter 2022 groundwater monitoring is scheduled to occur in September 2022.

Limitations

Work for this project was performed for the LMI – West Seattle Holdings, LLC (Client), and this letter was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This letter does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.


Please refer to Appendix D titled "Report Limitations and Guidelines for Use" for additional information governing the use of this report.

⁹ United States Environmental Protection Agency, 2009, Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use, March 5, 2009.

Project No. 160328

Sincerely,

Aspect consulting, LLC

Dave Cook, LG, CPG Principal Geologist dcook@aspectconsulting.com

Ali Cochrane, LG Senior Geologist acochrane@aspectconsulting.com

Attachments:	Table 1 – Compliance Groundwater Monitoring Well Network
	Table 2 – Summary of Compliance Groundwater Monitoring Results
	Figure 1 – Site Location
	Figure 2 – Compliance Well Network and Groundwater Elevation Contours
	Figure 3 – Groundwater Analytical Results
	Appendix A – Laboratory Analytical Reports
	Appendix B – Data Validation Report
	Appendix C – Field Forms
	Appendix D – Report Limitations and Guidelines for Use

V:\160328 GID – The Whittaker Environmental Review\Deliverables\2022 Q1 GW Report\Draft\2022 Q1 GW Monitoring Report_Final.docx

TABLES

Table 1. Compliance Groundwater Monitoring Well Network

Project 160328, SKS Shell Station Site, Seattle, Washington

							Scree	ned Interva						arter 2022 Levels ²
Well Name ¹	Top of Casing Elevation (ft. NAVD88)	Well Diameter (in.)	Screen Length (ft.)	Total Depth (ft. bgs)	Top Depth (ft. bgs)		Bottom Depth (ft. bgs)	Top Elevation (ft. NAVD88)		Bottom Elevation (ft. NAVD88)	Status	Last Accessed	Depth to Water (ft. BTOC)	Elevation (ft. NAVD88)
MW101	269.54	2	10	30	20	to	30	249.54	to	239.54	Existing	Mar-22	27.55	241.99
MW104	269.37	2	10	36.5	20	to	30	249.37	to	239.37	Existing	Mar-22	28.81	240.56
MW105	269.30	2	10	36.5	22	to	32	247.30	to	237.30	Existing	Mar-22	28.36	240.94
MW108	247.83	0.75	10	12.5	2.5	to	12.5	245.33	to	235.33	Existing	Mar-22	7.5	240.33
MW109	247.92	0.75	10	13	3	to	13	244.92	to	234.92	Existing	Mar-22	7.72	240.20
MW110	248.21	1	10	12	2	to	12	246.21	to	236.21	Existing	Mar-22	8.15	240.06
MW111	270.62	2	15	35	20	to	35	250.62	to	235.62	Existing	Mar-22	29.98	240.64
MW112	269.32	2	10	36	26	to	36	243.32	to	233.32	Existing	Mar-22	28.69	240.63
MW113	248.06	1	15	20	5	to	20	243.06	to	228.06	Existing	Mar-22	7.9	240.16
MW115	269.29	2	10	40	30	to	40	239.29	to	229.29	Existing	Mar-22	28.7	240.59

Notes

¹This table is not an all-inclusive list of all monitoring wells located historically on the Site. Only wells that have been used in post-construction compliance groundwater monitoring are shown. For full list of historical Site groundwater monitoring wells, see the Cleanup Action Report (SES, 2016).

²Synoptic water levels were measured on March 24, 2022.

BTOC = below Top of Casing (North)

ft = feet

NAVD88 = North American Vertical Datum 1988

in = inches

bgs = below ground surface

-- = not measured

					В	TEX		Total Petr	oleum Hydrocarb	ons (TPH)	TPH with	Silica Gel
			Analytes	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline-Range Organics	Diesel-Range Organics	Motor Oil-Range Organics	Diesel-Range Organics	Motor Oil-Range Organics
			Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		MTCA Method A		5	1000	700	1000	1000 / 800	500	500	500	500
Sample		Depth to Water	Groundwater Elevation									
Location ¹	Sample Date	(ft. BTOC)	(ft. NAVD88)									
MW101	3/25/2022	27.55	241.99	<1U	< 1 U	< 1 U	< 1 U	< 100 U	120 X	< 250 U		
	03/17/2016	26.41	242.94	1.2	1.8	2.2	5.7	480	120 X	< 300 U		
	06/24/2016	25.16	242.94	2.5	2	3	9.5	940	3200	< 300 U		
	09/28/2016	25.55	243.80	7.2	∠ <1U	3.7	7.4	940	4000 X	340 X		
	12/23/2016	27.28	242.07	2.1	2.1	17	27	2000	16000	340 X	180	< 250 U
	03/17/2017	27.55	241.80	<10	<1U	8.5	10	1400	7900	< 400 U	290 X	< 400 U
	06/15/2017	27.92	241.80	<10	<10	4	3.1	700	3000	< 300 U	370	< 250 U
	9/14/2017	28.21	241.16	<10	<10	1.3	< 3 U	460	2200	< 300 U	230 X	< 250 U
	12/12/2017	28.86	240.51	<10	1.1	1.3	< 3 U	340	780 X	< 350 U		
	3/22/2018	28.88	240.49	<10	<1U	< 1 U	< 3 U	220	590 X	< 250 U		
	06/21/2018	28.96	240.41	<10	<10	<10	< 3 U	130	720	< 350 U		
	09/17/2018	29.27	240.10	<10	<10	<10	< 3 U	< 100 U	480	< 350 U		
MW104	12/18/2018	29.02	240.35	<10	<10	<10	< 3 U	< 100 U	390	< 250 U		
	03/14/2019	29.25	240.12	<10	<10	<10	< 3 U	170	690 X	< 300 U		
	06/06/2019	29.32	240.05	<10	<10	<10	< 3 U	210	750 X	290		
	09/12/19	Dry						Insufficient water for				
	12/19/2019	29.01	240.36	<10	<1U	< 1 U	< 3 U	< 100 U	310 X	300 X		
	04/22/2020	28.78	240.59	<10	<10	<10	< 3 U	< 100 U	200 X	< 250 U		
	06/30/2020	29.50	239.87	<10	<10	<10	< 3 U	< 100 U	210 X	< 250 U		
	9/22/2020	29.14	240.23	<1U	<10	<1U	< 3 U	< 100 U	380 X	< 300 U		
	12/15/2020	29.16	240.21	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	140 X	< 320 U		
	3/8/2021	29.35	240.02	<1U	< 1 U	<1U	< 3 U	< 100 U	89 X	< 250 U		
	3/25/2022	28.81	240.56	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	58 X	< 250 U		
	06/13/2017	27.36	241.94	<10	<10	<10	< 3 U	< 100 U	< 50 U	< 250 U		
	9/13/2017	27.96	241.34	< 1 U	<10	< 1 U	< 3 U	< 100 U	< 60 U	< 300 U		
	12/12/2017	28.41	240.89	<10	<10	<10	< 3 U	< 100 U	< 50 U	< 250 U		
	3/22/2018	28.45	240.85	<10	< 1 U	<10	< 3 U	< 100 U	< 65 U	< 320 U		
	06/21/2018	28.56	240.74	< 1 U	<10	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	09/17/2018	28.96	240.34	<1U	<1U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	12/18/2018	28.9	240.40	< 1 U	<10	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	03/14/2019	28.66	240.64	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
MW105	06/06/2019	29.06	240.24	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	96 X	< 250 U		
	09/12/2019	29.37	239.93	<1U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	12/18/2019	28.97	240.33	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	04/21/2020	28.25	241.05	<1U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	06/29/2020	28.36	240.94	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	9/21/2020	28.77	240.53	< 1 U	<1U	<1U	< 3 U	< 100 U	< 50 U	< 250 U		
	12/14/2020	28.82	240.48	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 65 U	< 320 U		
	3/8/2021	29.10	240.20	< 1 U	<1U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	3/25/2022	28.36	240.94	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		

					В	TEX		Total Petr	roleum Hydrocarb	ons (TPH)	TPH with	n Silica Gel
			Analytes	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline-Range Organics	Diesel-Range Organics	Motor Oil-Range Organics	Diesel-Range Organics	Motor Oil-Range Organics
			Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		MTCA Method A		5	1000	700	1000	1000 / 800	500	500	500	500
Sample		Depth to Water	Groundwater									
Location ¹	Sample Date	(ft. BTOC)	Elevation									
Location	03/17/2016	5.52	(ft. NAVD88)	<1U	<1U	<1U	< 3 U	< 100 U	93 X	< 300 U		
	06/24/2016	3.33		<10	<10	<10	< 3 U	< 100 U	< 50 U	< 300 U		
	09/28/2016	3.85		<10	<10	<10	< 3 U	< 100 U	< 60 U	< 300 U		
	12/23/2016	6.56		<10	<10	<10	< 3 U	< 100 U	94 X	< 350 U	< 70 U	< 350 U
	03/03/2017	6.64		<10	<10	<10	< 3 U	< 100 U	< 80 U	< 400 U	< 80 U	< 400 U
	06/14/2017	7.06	240.77	<10	<10	<10	< 3 U	< 100 U	140 X	< 250 U		
	9/14/2017	6.69	241.14	<10	<10	<10	< 3 U	< 100 U	160 X	< 250 U		
	12/12/2017	7.7	240.13	<10	<10	<10	< 3 U	< 100 U	< 50 U	< 250 U		
	03/23/2018	7.44	240.39	<10	<10	<10	< 3 U	< 100 U	71 X	< 250 U		
	06/21/2018	7.75	240.08	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	150 X	< 450 U		
NNA/4 0.0	09/17/2018	7.83	240.00	< 1 U	<1U	<1U	< 3 U	< 100 U	110	< 480 U		
MW108	12/18/2018	7.98	239.85	<1U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	03/14/2019	7.78	240.05	<1U	< 1 U	<1U	< 3 U	< 100 U	680 X	< 350 U		
	06/06/2019	7.87	239.96	<1U	< 1 U	<1U	< 3 U	< 100 U	590 X	< 250 U		
	09/12/2019	8.28	239.55	<1U	< 1 U	< 1 U	< 3 U	100	1200 X	< 320 U		
	12/18/2019	7.88	239.95	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	280	< 250 U		
	04/22/2020	7.58	240.25	<1U	< 1 U	< 1 U	< 3 U	< 100 U	160 X	< 250 U		
	06/30/2020	11.00	236.83	<1U	<1U	<1U	< 3 U	< 100 U	120 X	< 250 U		
	9/22/2020	8.06	239.77	<1U	<1U	<1U	< 3 U	< 100 U	280 X	< 300 U		
	12/15/2020	8.13	239.70	< 1 U	< 1 U	<1U	< 3 U	< 100 U	350 X	< 250 U		
	3/8/2021	8.04	239.79	< 1 U	<1U	<1U	< 3 U	< 100 U	200 X	< 250 U		
	3/25/2022	7.50	240.33	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	77 X	< 250 U		
	03/17/2016	5.42		< 1 U	<10	< 1 U	< 3 U	< 100 U	97 X	< 250 U		
	06/24/2016	3.35		< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	160 X	< 250 U		
	09/28/2016	3.96		<10	< 1 U	< 1 U	< 3 U	< 100 U	260 X	< 250 U		
	12/23/2016	6.59		<10	< 1 U	< 1 U	< 3 U	250	430 X	< 250 U	< 50 U	< 250 U
	03/03/2017 06/14/2017	6.7 6.87		<1U <1U	< 1 U < 1 U	1.2 < 1 U	< 3 U < 3 U	370 220	490 X 330	< 250 U < 250 U	55 X	< 250 U
	09/14/2017	6.87	241.05 241.08	<10	<10 <10	<10	< 3 U < 3 U	< 100 U	330 140 X	< 250 U < 250 U		
	12/12/2017	7.69	241.08	<1U <1U	1.1	<10	< 3 U	150	< 50 U	< 250 U		
	03/23/2018	7.09	240.23	<10	<1U	1.3	< 3 U	190	110 X	< 250 U		
	06/21/2018	7.87	240.17	<10	1.2	<1U	< 3 U	190	200	< 250 U		
MW109	09/17/2018	8.05	239.87	<10	<10	1.8	< 3 U	150	110 X	< 250 U		
	12/18/2018	7.61	240.31	<10	<10	<10	< 3 U	< 100 U	61 X	< 250 U		
	03/14/2019	7.94	239.98	<10	<10	<10	< 3 U	140	< 60 U	< 300 U		
	06/06/2019	8.1	239.82	<10	<10	<10	< 3 U	< 100 U	140 X	< 250 U		
	09/12/2019	8.39	239.53	<10	<10	<10	< 3 U	110	110 X	< 250 U		
	12/18/2019	7.67	240.25	<10	<10	<10	< 3 U	< 100 U	< 50 U	< 250 U		
	04/22/2020	7.84	240.08	<10	<10	<10	< 3 U	< 100 U	100 X	< 250 U		
	06/30/2020	7.38	240.54	<10	< 1 U	<10	< 3 U	< 100 U	< 50 U	< 250 U		
	9/22/2020	7.89	240.03	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	70 X	< 250 U		
	12/15/2020	8.03	239.89	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	69 X	< 260 U		
	3/25/2022	7.72	240.2	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		

					E	TEX	_	Total Petr	oleum Hydrocarb	ons (TPH)	TPH with	n Silica Gel
			Analytes	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline-Range Organics	Diesel-Range Organics	Motor Oil-Range Organics	Diesel-Range Organics	Motor Oil-Range Organics
			Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		MTCA Method A		5	1000	700	1000	1000 / 800	500	500	500	500
Sample		Depth to Water	Groundwater Elevation									
Location ¹	Sample Date	(ft. BTOC)	(ft. NAVD88)									
	03/17/2016	5.7	(IL. NAVD00) 	<1U	<1U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	06/24/2016	3.56		<10	<1U	<10	< 3 U	< 100 U	100 X	< 250 U		
	09/28/2016	4.19		<10	<1U	<1U	< 3 U	< 100 U	590 X	440		
	12/23/2016	6.96		2.3	<10	9.7	18	500	1200	< 300 U	68 X	< 300 U
	03/03/2017	7.57		2.1	<10	9.3	4.7	570	1000 X	< 250 U	110 X	< 250 U
	06/14/2017	7.78	240.43	<10	<10	2	< 3 U	260	520	< 250 U		
	9/14/2017	7.44	240.77	<10	<10	<1U	< 3 U	< 100 U	150 X	< 250 U		
	12/12/2017	8.02	240.19	<10	<10	<10	< 3 U	< 100 U	99 X	< 250 U		
	03/23/2018	8.05	240.16						73 X	< 250 U		
	06/21/2018	8.15	240.06	<1U	< 1 U	< 1 U	< 3 U	< 100 U	96 X	< 250 U		
MW110	09/17/2018	8.4	239.81	< 1 U	< 1 U	<1U	< 3 U	< 100 U	< 50 U	< 250 U	-	
	12/18/2018	7.98	240.23	< 1 U	< 1 U	<1U	< 3 U	< 100 U	< 50 U	< 250 U		
	03/14/2019	8.2	240.01	<1U	< 1 U	< 1 U	< 3 U	< 100 U	74 X	< 300 U		
	06/06/2019	8.3	239.91	<1U	< 1 U	< 1 U	< 3 U	< 100 U	91 X	< 250 U		
	09/12/2019	9.03	239.18	<1U	< 1 U	< 1 U	< 3 U	< 100 U	73 X	< 180 U		
	12/18/2019	7.68	240.53	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	04/22/2020	8.15	240.06	<1U	< 1 U	<1U	< 3 U	< 100 U	250 X	< 250 U		
	06/30/2020	7.52	240.69	<1U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	9/22/2020	8.26	239.95	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	12/15/2020	8.35	239.86	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	51 X	< 250 U		
	3/25/2022	8.15	240.06	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	10/09/2018	30.51	240.11	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	55 X	< 250 U		
	12/18/2018	29.9	240.72	<1U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	03/14/2019	30.15	240.47	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	83 X	< 250 U		
	06/06/2019	30.5	240.12	< 1 U	< 1 U	<10	< 3 U	< 100 U	84 X	< 250 U		
	09/13/2019	30.72	239.9	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
MW111	12/18/2019	30.26	240.36	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	94 X	< 280 U		
	04/22/2020	30.11	240.51	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	06/30/2020	30.09	240.53	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	9/22/2020	30.32	240.3	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	54 X	< 250 U		
	12/15/2020	30.37	240.25	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	3/25/2022	29.98	240.64	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	03/14/2019	28.88	240.44	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	58 X	< 250 U		
	06/06/2019	29.15	240.17 239.88	< 1 U	< 1 U	< 1 U	< 3 U < 3 U	< 100 U	59 X	< 250 U		
	09/12/2019	29.44		<10	< 1 U	< 1 U		< 100 U	< 50 U	< 250 U		
MW112	12/18/2019	28.65 28.78	240.67	<1U <1U	< 1 U < 1 U	< 1 U < 1 U	< 3 U	< 100 U	58 X < 50 U	< 250 U		
	04/21/2020 06/29/2020	28.78	240.54 240.69	<10 <10	<10 <10	<10 <10	< 3 U < 3 U	< 100 U < 100 U	< 50 U < 50 U	< 250 U < 250 U		
						-						
	3/25/2022	28.69	240.81	< 1 U	< 1 U	<1U	< 3 U	< 100 U	< 50 U	< 250 U		

					B	BTEX		Total Pet	oleum Hydrocarb	ons (TPH)	TPH with	n Silica Gel
			Analytes	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline-Range Organics	Diesel-Range Organics	Motor Oil-Range Organics	Diesel-Range Organics	Motor Oil-Range Organics
			Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		MTCA Method A	Cleanup Level	5	1000	700	1000	1000 / 800	500	500	500	500
Sample Location ¹	Sample Date	Depth to Water (ft. BTOC)	Groundwater Elevation (ft. NAVD88)									
	03/23/2018	7.68	240.38						93 X	< 250 U		
	06/21/2018	7.81	240.25	<1U	< 1 U	<1U	< 3 U	< 100 U	71 X	< 250 U		
	09/17/2018	8.05	240.01	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	< 50 U	< 250 U		
	12/18/2018	7.58	240.48	< 1 U	< 1 U	<1U	< 3 U	< 100 U	100 X	< 250 U		
	03/14/2019	7.98	240.08	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	79 X	< 250 U		
MW113	06/06/2019	8.13	239.93	< 1 U	< 1 U	<1U	< 3 U	< 100 U	89 X	< 250 U		
	09/12/2019	8.31	239.75	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	87 X	< 250 U		
	12/18/2019	8.04	240.02	<1U	< 1 U	<1U	< 3 U	< 100 U	80 X	< 250 U		
	04/21/2020	7.94	240.12	<1U	< 1 U	<1U	< 3 U	< 100 U	< 50 U	< 250 U		
	06/30/2020	7.86	240.2	<1U	< 1 U	<1U	< 3 U	< 100 U	58 X	< 250 U		
	3/25/2022	7.90	240.16	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	55 X	< 250 U		
MW115	3/25/2022	28.70	240.6	< 1 U	< 1 U	<1U	< 3 U	< 100 U	780 X	< 250 U	780	< 250 U
	03/17/2016	26.23		41	6.9	51	260	2300	1400 X	< 250 U		
	06/24/2016	25.4		27	4.4	27	59	1600	3600	< 250 U		
	09/28/2016	25.71		6.7	< 1 U	20	45	1100	2400 X	< 300 U		
	12/23/2016	26.77		470	16	380	750	9000	11000	< 300 U	720 X	< 300 U
	03/02/2017	27.22		150	< 10 U	220	190	4900	11000 X	< 250 U	880 X	< 250 U
	06/14/2017	27.91	241.59	7	< 1 U	32	11	1300	1500	< 250 U	320 X	< 250 U
	09/14/2017	28.3	241.2	2.8	1.3	15	4.5	560	690 X	< 300 U	140 X	< 300 U
	12/12/2017	28.82	240.68	8.8	17	39	170	2500	1000 X	< 300 U		
	03/23/2018	28.85	240.65	3	5.2	29	140	2100	760 X	< 250 U		
	06/22/2018	28.94	240.56	< 1 U	2.3	31	34	730	740 X	< 250 U		
RW03	09/17/2018	29.28	240.22	< 1 U	< 1 U	11	15	370	430	< 250 U		
	12/18/2018	29.05	240.45	6.5	5	75	250	2800	1600	< 250 U		
	03/15/2019	29.05	240.45	1.9	1.7	46	140	1700	730 X	< 250 U		
	06/07/2019	29.35	240.15	< 1 U	< 1 U	14	4.3	410	680 X	< 250 U		
	09/13/2019	29.81	239.69	< 1 U	< 1 U	1.4	3	270	360 X	< 250 U		
	12/19/2019	29.13	240.37	2.4	< 1 U	36	100	2200	1400 X	< 250 U		
	04/22/2020	28.58	240.92	< 1 U	< 1 U	77	78	1400	700 X	< 250 U		
	06/29/2020	28.46	241.04	1.7	1.3	75	41	930	1200 X	< 250 U		
	9/21/2020	29.13	240.37	<1U	1.2	30	4.3	800	780 X	< 250 U		
	12/14/2020	29.25	240.25	< 1 U	1.5	36	11	680	560 X	< 250 U		
	3/8/2021 ²	28.48	241.02									

Table 2. Summary of Compliance Groundwater Monitoring Results

Project No. 160328, SKS Shell Station Site, Seattle, Washington

					E	TEX		Total Petr	oleum Hydrocarb	ons (TPH)	TPH with	n Silica Gel
			Analytes	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline-Range Organics	Diesel-Range Organics	Motor Oil-Range Organics	Diesel-Range Organics	Motor Oil-Range Organics
			Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		MTCA Method A	Cleanup Level	5	1000	700	1000	1000 / 800	500	500	500	500
Sample Location ¹	Sample Date	Depth to Water (ft. BTOC)	Groundwater Elevation (ft. NAVD88)									
	06/14/2017	27.62	241.6	2.5	< 1 U	16	< 3 U	790	400	< 250 U		
	09/14/2017	27.93	241.29	6.4	< 1 U	26	21	400	330 X	< 250 U		
	12/12/2017	28.55	240.67	3	1.1	12	5.2	360	200 X	< 300 U		
	03/22/2018	28.57	240.65	1.5	< 1 U	14	< 3 U	450	500 X	< 250 U		
	06/21/2018	28.6	240.62	< 1 U	2.6	4.8	4.5	360	400 X	< 250 U		
	09/17/2018	29.08	240.14	< 1 U	< 1 U	1.5	< 3 U	130	120	< 250 U		
	12/18/2018	28.74	240.48	< 1 U	< 1 U	1.1	< 3 U	160	510	< 250 U		
RW04	03/15/2019	28.76	240.46	< 1 U	< 1 U	1.9	< 3 U	300	310 X	< 250 U		
RW04	06/07/2019	29.05	240.17	< 1 U	< 1 U	<1U	< 3 U	240	470 X	< 250 U		
	09/13/2019	29.44	239.78	< 1 U	< 1 U	<1U	< 3 U	180	290 X	< 250 U		
	12/18/2019	28.86	240.36	< 1 U	<1U	<1U	< 3 U	160	250 X	< 250 U		
	04/22/2020	28.34	240.88	2.9	1.2	83	36	1400	700 X	< 250 U		
	06/29/2020	28.3	240.92	1.5	< 1 U	34	< 3 U	900	730 X	< 250 U		
	9/21/2020	28.85	240.37	< 1 U	< 1 U	4.9	< 3 U	420	340 X	< 250 U		
	12/14/2020	28.96	240.26	< 1 U	1.7	3.2	< 3 U	420	750 X	< 250 U		
	3/8/2021 ²	28.21	241.01									
	06/14/2017	27.64	241.45	<1U	<1U	4.4	< 3 U	400	470	< 250 U		
	09/14/2017	27.91	241.18	<1U	1.2	1.5	< 3 U	280	300 X	< 300 U		
	12/12/2017	28.54	240.55	< 1 U	1.3	1.5	< 3 U	230	170 X	< 300 U		
	03/22/2018	28.56	240.53	<1U	<1U	1.4	< 3 U	180	140 X	< 260 U		
	06/21/2018	28.63	240.46	<10	1.4	1.4	< 3 U	140	180 X	< 250 U		
	09/17/2018	28.96	240.13	< 1 U	< 1 U	2.1	< 3 U	140	140	< 250 U		
	12/18/2018	28.75	240.34	<10	< 1 U	1.4	< 3 U	110	160 X	< 250 U		
DIMOS	03/14/2019	28.74	240.35	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	120 X	< 250 U		
RW05	06/06/2019	29.00	240.09	<10	<10	<10	< 3 U	< 100 U	99 X	< 250 U		
	09/12/2019	29.33	239.76	<10	<10	<10	< 3 U	< 100 U	190 X	< 250 U		
	12/19/2019	28.75	240.34	< 1 U	< 1 U	< 1 U	< 3 U	< 100 U	130 X	< 250 U		
	04/21/2020	28.43	240.66	<10	<10	<10	< 3 U	140	420 X	< 250 U		
	06/30/2020	28.48	240.61	<10	<10	1.5	< 3 U	160	230 X	< 250 U		
	9/21/2020	28.80	240.29	<10	<10	<10	< 3 U	100	150 X	< 250 U		
	12/14/2020	28.90	240.19	< 1 U	<10	1.3	< 3 U	130	190 X	< 250 U		
	3/8/2021 ²	28.31	240.78									

Notes

Bold = indicates concentrations of the analyte detected above the reporting limits.

Purple shaded = indicates concentration of the analyte detected above the Model Toxics Control Act (MTCA) Method A Cleanup Level

¹This table is not an all-inclusive list of all monitoring wells located at the Site historically. Only compliance monitoring wells that are currently being accessed for quarterly compliance groundwater sampling are included in this table. Further, Table 2 only presents data from the post-cleanup compliance monitoring events for each well shown. Refer to the Cleanup Action Report (SES, 2016) and the Fourth Quarter 2019 Compliance Groundwater Monitoring Report (SES, 2019) for a full list of all historical site wells and groundwater analytical data from samples collected prior to the start of compliance monitoring.

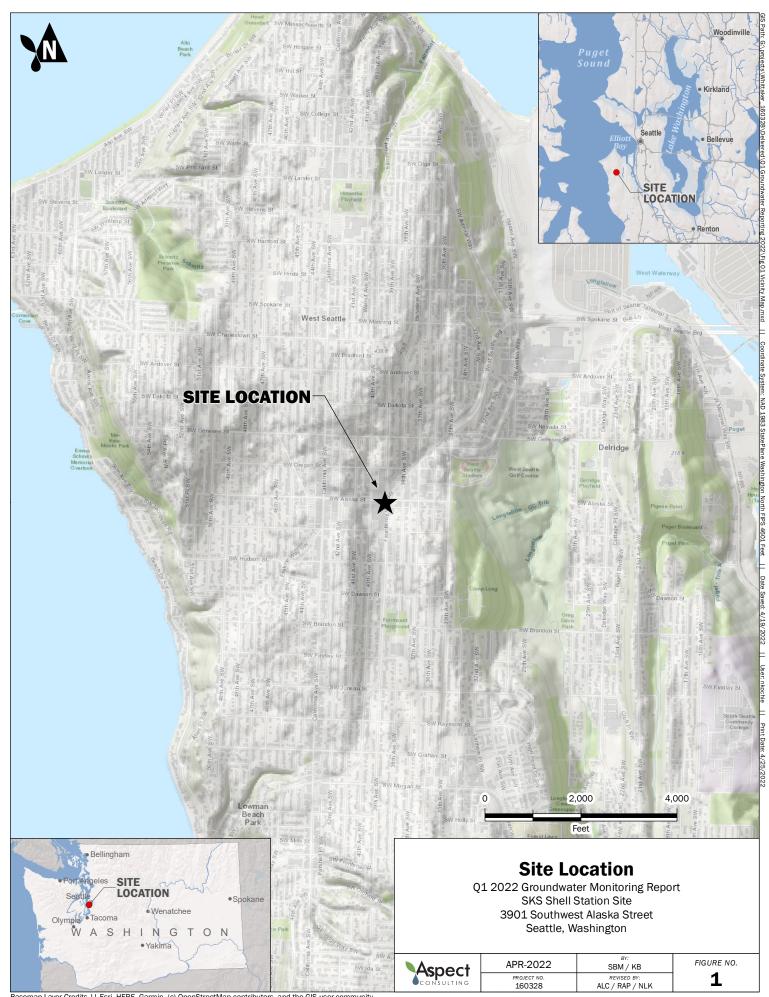
² Samples showed residual impacts from January 2021 injections pilot study and were not sampled. Wells were decommissioned in January 2021.

U = indicates analyte not detected at or above reporting limit shown.

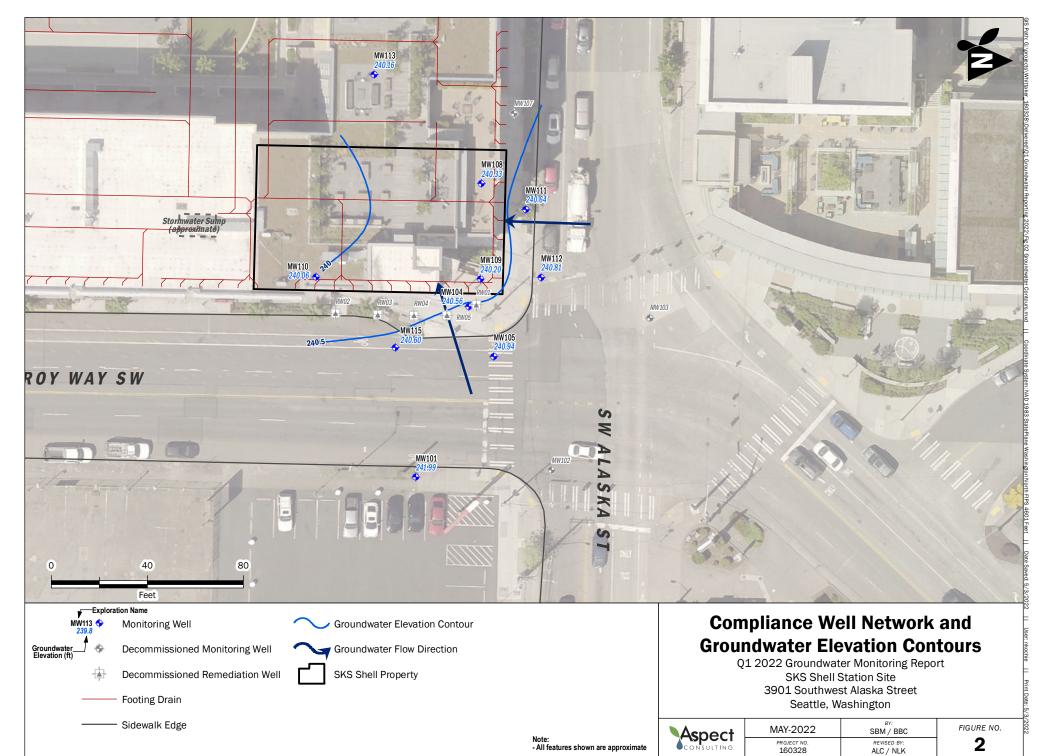
J = indicates that the reported or calculated concentration is an estimate.

X = chromatographic pattern does not match fuel standard used for quantitation.

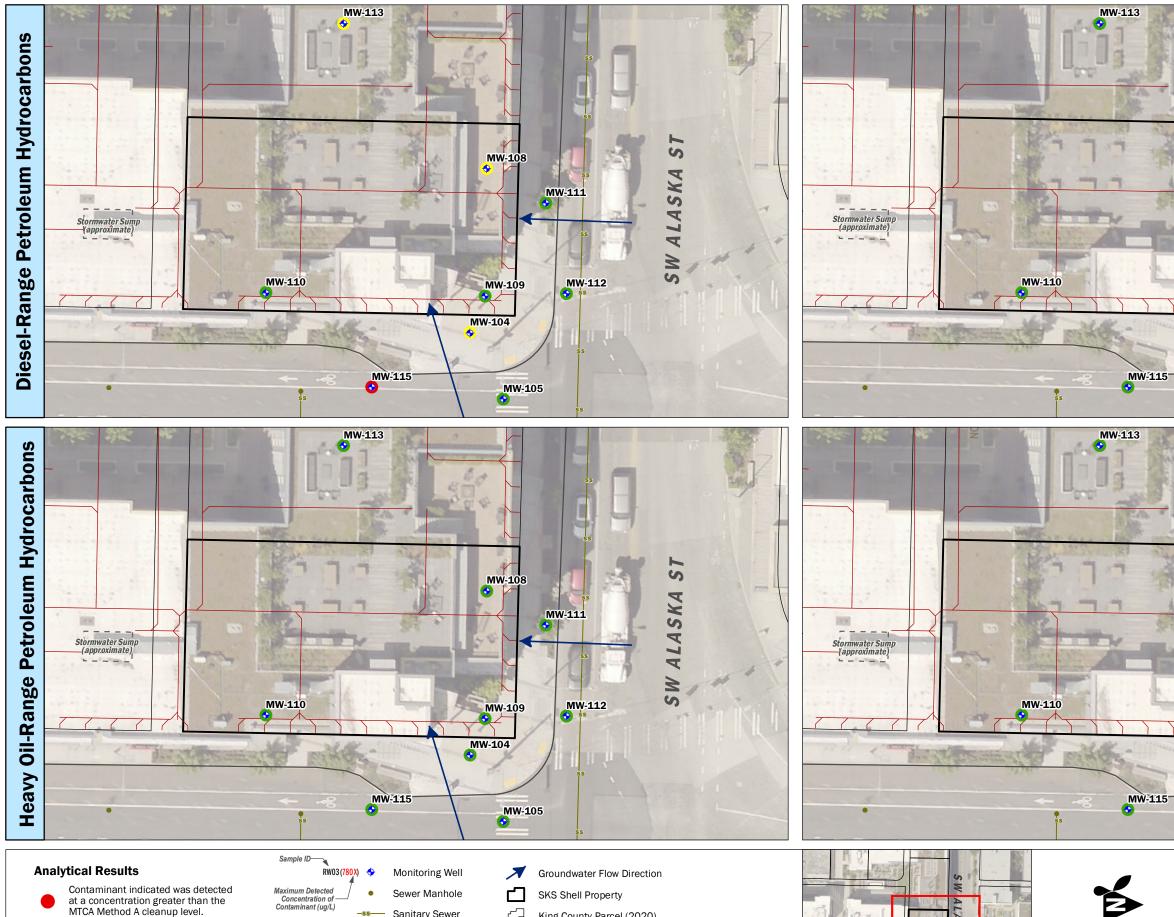
E = result exceeded calibration range. Result usable for qualitative analysis of analyte presence, but numeric value should not be included in quantitate analysis.

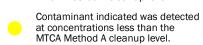

ft = feet

BTOC = below top of casing (north) NAVD88 = North American Vertical Datum 1988


NAVD66 = North American Vertical Datum

ug/L = micrograms per liter


FIGURES



Basemap Layer Credits || Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

Basemap Layer Credits || EagleView Technologies, Inc.

- Contaminant indicated was not detected.
- Sanitary Sewer Footing Drain ------ Sidewalk Edge
- 4 King County Parcel (2020)

Gasoline-Range Petroleum Hydrocarbons ST MW-108 SW ALASKA MW-111 ٢ MW-112 MW-109 <u>_</u>_ MW-104 MW-105 • ST MW-108 SW ALASKA Benzene MW-111 ٠ MW-112 MW-109 <u>_</u> MW-104 MW-105 •

Groundwater Analytical Results

Q1 2022 Groundwater Monitoring Report SKS Shell Station Site 3901 Southwest Alaska Street Seattle, Washington

	APR-2022	BY: SBM / KB	FIGURE NO.
CONSULTING	PROJECT NO. 160328	REVISED BY: ALC / RAP / NLK	3

APPENDIX A

Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 27, 2022

Ali Cochrane, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Cochrane:

Included are the additional results from the testing of material submitted on March 25, 2022 from the Whittaker 160328, F&BI 203466 project. There are 4 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

ale

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP0427R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 25, 2022 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Whittaker 160328, F&BI 203466 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
203466 -01	MW-101-032422
203466 -02	MW-104-032422
203466 -03	MW-105-032422
203466 -04	MW-108-032422
203466 -05	MW-109-032422
203466 -06	MW-110-032422
203466 -07	MW-111-032422
203466 -08	MW-112-032422
203466 -09	MW-113-032422
203466 -10	MW-115-032422
203466 -11	MW-100-032422

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/27/22 Date Received: 03/25/22 Project: Whittaker 160328, F&BI 203466 Date Extracted: 04/25/22 Date Analyzed: 04/25/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL **USING METHOD NWTPH-Dx** Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-115-032422 203466-10	780	<250	119
Method Blank 02-749 MB	<50	<250	126

ENVIRONMENTAL CHEMISTS

Date of Report: 04/27/22 Date Received: 03/25/22 Project: Whittaker 160328, F&BI 203466

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel							
			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Diesel Extended	ug/L (ppb)	2,500	132	136	63-142	3	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

MW-115-032422 Phone 206 - 838-659 Rimail a with rave Daspect was Horoiect specific RLs? -City, State, ZIP Southe, WA 98104 Address 203466 Ph. (206) 285-8282 Friedman & Bruya, Inc. MV-113-032422 MW-111-032422 MW-110-032422 MW-109-032422 MW-108-032422 Company___ MU-112-032422 MV-105-032422 MW-104-032422 MW-101-032422 veport To Sample ID 710 2nd Ave Saile 550 Aspect Consulting och rane **Relinquished by:** Received by: Relinquished by: Received by: 0 00 3 PQ PO 3 50 ŝ 20 94 0 Lab A-0 H-D A-K A-D A-K A ↓ \leq Z E Tac SIGNATURE P. C.C. 3/24/22 3/24/22 Sampled 200 Date \ll MMU SAMPLE CHAIN OF CUSTODY 1505 5.501 1255 32 15 1455 (610 'Time Sampled 1527 5441 1235 SAMPLERS (signature) PROJECT NAME REMARKS whittake \geq Sample Туре N MAN and 1 Jars -5 # of 5 Ľ Much in ; 1 2 ~ 2 -----Yes PRINT NAME × X \succ NWTPH-Dx × \succ × X × \succ \succ No. X \succ × × × NWTPH-Gx × \sim \succ γ. 7 × × > × × BTEX EPA 80216 \mathbf{x} × \mathbf{x} × Aspeid X 60328 NWTPH-HCID INVOICE TO × NALYSES VOCs EPA 8260 5, PO # n Z 2 PAHs EPA 8270 \geq PCBs EPA 8082 TO DI * REQUESTED 03/25/22 ASPEC Samples received Total Alkohnity 5m 2320A Nitrate/Nitrae 300:0 COMPANY × ×, X \succ × Standard turnaround Rush charges authorized by: D RUSH ${}^{\times}$ O Archive samples Default: Dispose after 30 days [] Other Sulfice/sulface 300.0 + Sm 4500. \mathbf{x} Page # TURNAROUND TIME ኢ \times SAMPLE DISPOSAL Mothone RSK-17 \sim × X ATU/FUN Rotal and dissolved and Manginesc 60 р с† \succ 3/25 3/25/22 X X þ DATE F Pixelvis mores Notes ġ, Field Filed labe 3 Q-0× P. 34 Ideal methy Frale Filty of think por A4 Field filtered 22 165 فكم ø 1230 TIME POH 3 Đ. 0

Ph. (206) 285-8282 Friedman & Bruya, Inc. Company Aspect Consulting Address NO 2nd Avec City, State, ZIP Seattle, WA glioy MW-100-032422 Phone 206-3365394 Email acchrane @ aspect coyes the Protect specific RLs? . Yes / No Bapore To Mi Lock MAR 203466 Sample ID AM Relinquished by: Relinquished by: Received by: Received by: I A D Sank 550 Lab ID . 5 SIGNATURE 3/24/22 Date Sampled Rich MMM 1200 SAMPLE CHAIN OF CUSTODY Time Sampled REMARKS SAMPLERS (signature) PROJECT NAME Whittsher Sample Man ha Туре Dowid Mackey # of Jars PRINT NAME Philip × Josef Josef NWTPH-Dx × NWTPH-Gx × BTEX EPA 8021 Aspact 160328 NWTPH-HCID INVOICE TO ME 03/25/22 INALYSES REQUESTED VOCs EPA 8260 PO# PAHs EPA 8270 AS pect FL81 Samples received at PCBs EPA 8082 COMPANY SAMPLE DISPOSAL Archive samples ⊠ Standard turnaround □ RUSH Rush charges authorized by: Default: Dispose after 30 days 🗆 Other VWS/ALE/EOY Page# 2 of 2 TURNAROUND TIME 3/25/22 2/25/22 DATE Do M Notes 1220 20 TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 5, 2022

Ali Cochrane, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Cochrane:

Included are the results from the testing of material submitted on March 25, 2022 from the Whittaker 160328, F&BI 203466 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Calu

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP0405R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 25, 2022 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Whittaker 160328, F&BI 203466 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
MW-101-032422
MW-104-032422
MW-105-032422
MW-108-032422
MW-109-032422
MW-110-032422
MW-111-032422
MW-112-032422
MW-113-032422
MW-115-032422
MW-100-032422

Samples MW-105-032422, MW-112-032422, and MW-115-032422 were sent to Fremont Analytical for alkalinity, nitrate and nitrite, sulfate, sulfide, and dissolved methane analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/22 Date Received: 03/25/22 Project: Whittaker 160328, F&BI 203466 Date Extracted: 03/30/22 Date Analyzed: 03/30/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-101-032422 203466-01	<1	<1	<1	<3	<100	87
MW-104-032422 203466-02	<1	<1	<1	<3	<100	85
MW-105-032422 ²⁰³⁴⁶⁶⁻⁰³	<1	<1	<1	<3	<100	89
MW-108-032422 ²⁰³⁴⁶⁶⁻⁰⁴	<1	<1	<1	<3	<100	87
$\underset{\scriptscriptstyle{203466-05}}{\text{MW-109-032422}}$	<1	<1	<1	<3	<100	89
$\underset{\scriptscriptstyle{203466-06}}{\text{MW-110-032422}}$	<1	<1	<1	<3	<100	88
MW-111-032422 203466-07	<1	<1	<1	<3	<100	88
MW-112-032422 203466-08	<1	<1	<1	<3	<100	87
$\underset{\scriptscriptstyle{203466-09}}{\text{MW-113-032422}}$	<1	<1	<1	<3	<100	97
$\underset{\scriptscriptstyle{203466-10}}{\text{MW-115-032422}}$	<1	<1	<1	<3	<100	92

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/22 Date Received: 03/25/22 Project: Whittaker 160328, F&BI 203466 Date Extracted: 03/30/22 Date Analyzed: 03/30/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-100-032422 203466-11	<1	<1	<1	<3	<100	94
Method Blank 02-625 MB	<1	<1	<1	<3	<100	85

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/22 Date Received: 03/25/22 Project: Whittaker 160328, F&BI 203466 Date Extracted: 03/29/22 Date Analyzed: 03/29/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-101-032422 203466-01	120 x	<250	144
MW-104-032422 203466-02	58 x	<250	136
MW-105-032422 203466-03	<50	<250	132
MW-108-032422 203466-04	77 x	<250	132
MW-109-032422 203466-05	<50	<250	141
MW-110-032422 203466-06	<50	<250	141
MW-111-032422 203466-07	<50	<250	135
MW-112-032422 203466-08	<50	<250	143
MW-113-032422 203466-09	55 x	<250	ip
MW-115-032422 203466-10	780 x	<250	143
MW-100-032422 203466-11	66 x	<280	145
Method Blank 02-749 MB	<50	<250	135

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	MW-105-032422	Client:	Aspect Consulting, LLC
Date Received:	03/25/22	Project:	Whittaker 160328, F&BI 203466
Date Extracted:	03/30/22	Lab ID:	203466-03
Date Analyzed:	03/30/22	Data File:	203466-03.077
Matrix:	Water	Instrument:	ICPMS2
Units: Analyte: Iron	ug/L (ppb) Concentration ug/L (ppb) 111	Operator:	SP

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-105-032422 03/25/22 03/30/22 03/30/22 Water	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Whittaker 160328, F&BI 203466 203466-03 x10 203466-03 x10.101 ICPMS2
		-	
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Manganese	1,800		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted:	MW-112-032422 03/25/22 03/30/22	Client: Project: Lab ID:	Aspect Consulting, LLC Whittaker 160328, F&BI 203466 203466-08
Date Analyzed:	03/30/22	Data File:	203466 - 08.078
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Iron Manganese	$\begin{array}{c} 212 \\ 5.07 \end{array}$		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	MW-115-032422	Client:	Aspect Consulting, LLC
Date Received:	03/25/22	Project:	Whittaker 160328, F&BI 203466
Date Extracted:	03/30/22	Lab ID:	203466-10
Date Analyzed:	03/30/22	Data File:	203466-10.079
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		

Iron

128

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-115-032422 03/25/22 03/30/22 03/30/22 Water	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Whittaker 160328, F&BI 203466 203466-10 x10 203466-10 x10.102 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Manganese	720		

9

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank NA 03/30/22 03/30/22 Water	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Whittaker 160328, F&BI 203466 I2-255 mb I2-255 mb.067 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Iron Manganese	<50 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-105-032422 03/25/22 03/29/22 03/29/22 Water	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Whittaker 160328, F&BI 203466 203466-03 203466-03.147 ICPMS2
Units:	ug/L (ppb) Concentration	Operator:	SP
Analyte:	ug/L (ppb)		
Iron	182		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-105-032422 03/25/22 03/29/22 03/30/22 Water	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Whittaker 160328, F&BI 203466 203466-03 x10 203466-03 x10.056 ICPMS2
Units: Analyte:	ug/L (ppb) Concentration ug/L (ppb)	Operator:	SP
Manganese	1,740		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed:	MW-112-032422 03/25/22 03/29/22 03/29/22	Client: Project: Lab ID: Data File:	Aspect Consulting, LLC Whittaker 160328, F&BI 203466 203466-08 203466-08.148
Date Analyzed:			
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Iron	215		
Manganese	15.7		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted:	MW-115-032422 03/25/22 03/29/22	Client: Project: Lab ID:	Aspect Consulting, LLC Whittaker 160328, F&BI 203466 203466-10
Date Analyzed:	03/29/22	Data File:	203466-10.149
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Iron	187		
Manganese	786		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank NA 03/29/22 03/29/22 Woton	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Whittaker 160328, F&BI 203466 I2-249 mb I2-249 mb.113 ICPMS2
Units:	Water ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)	operator.	
Iron Manganese	<50 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/22 Date Received: 03/25/22 Project: Whittaker 160328, F&BI 203466

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 203466-01 (Duplicate)

·	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

	Percent				
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Benzene	ug/L (ppb)	50	95	65-118	
Toluene	ug/L (ppb)	50	95	72 - 122	
Ethylbenzene	ug/L (ppb)	50	104	73-126	
Xylenes	ug/L (ppb)	150	102	74-118	
Gasoline	ug/L (ppb)	1,000	92	69-134	

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/22 Date Received: 03/25/22 Project: Whittaker 160328, F&BI 203466

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	119	112	63-142	8

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/22 Date Received: 03/25/22 Project: Whittaker 160328, F&BI 203466

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory Code	e: 203473-01	(Matrix Sp	oike)				
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	\mathbf{MS}	MSD	Criteria	(Limit 20)
Iron	ug/L (ppb)	100	3,810	157 b	196 b	75 - 125	22 b
Manganese	ug/L (ppb)	20	3,870	189 b	$405 \mathrm{b}$	75 - 125	73 b

Laboratory Code: 203473-01 (Matrix Spike)

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	86	80-120
Manganese	ug/L (ppb)	20	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/05/22 Date Received: 03/25/22 Project: Whittaker 160328, F&BI 203466

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Cod	le: 203493-01 ((Matrix Sp	oike)				
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Iron Manganese	ug/L (ppb) ug/L (ppb)	$\begin{array}{c} 100\\ 20 \end{array}$	<50 9.18	98 96	$\begin{array}{c} 104 \\ 102 \end{array}$	75-125 75-125	6 6

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Iron	ug/L (ppb)	100	100	80-120
Manganese	ug/L (ppb)	20	100	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

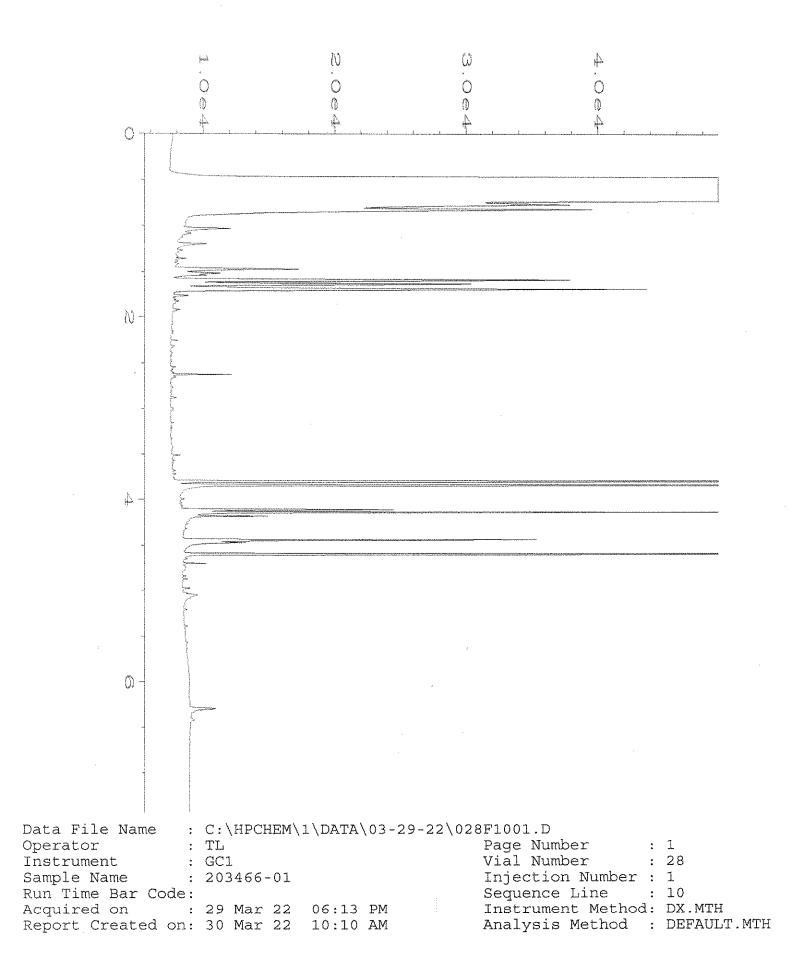
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

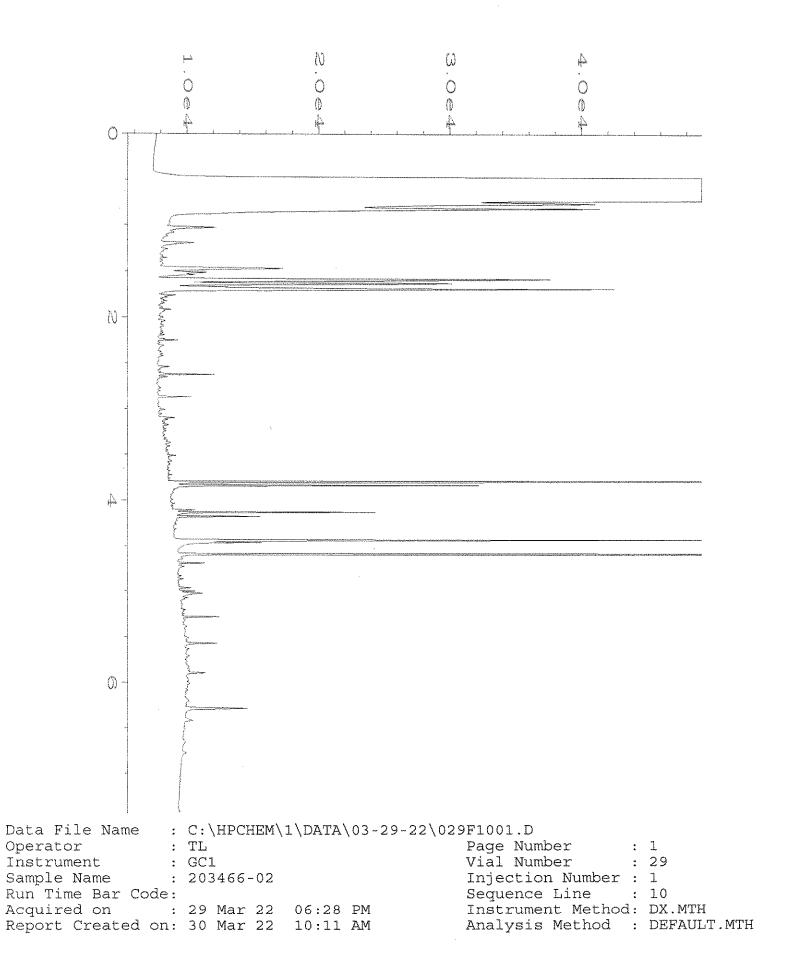
lc - The presence of the analyte is likely due to laboratory contamination.

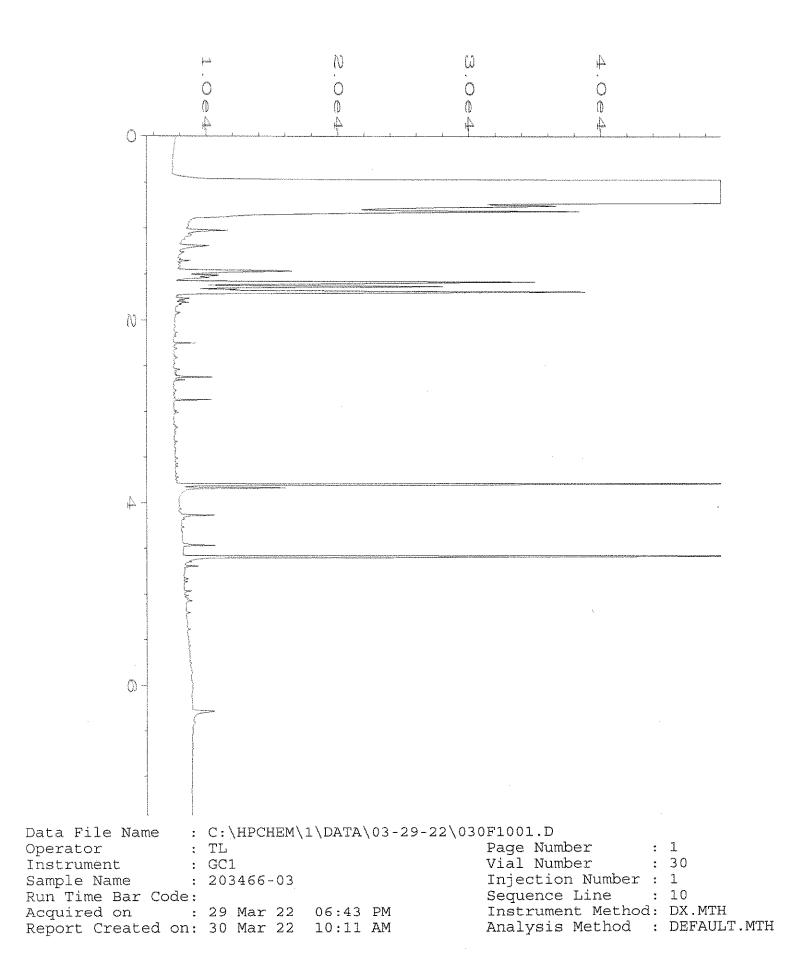
L - The reported concentration was generated from a library search.

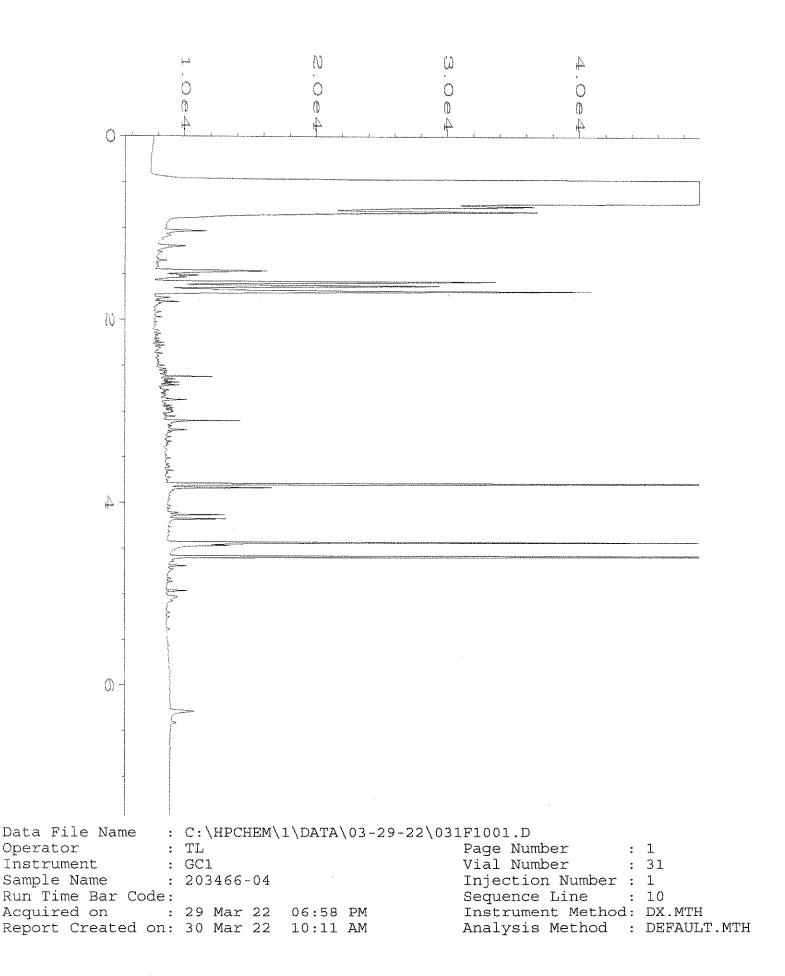
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

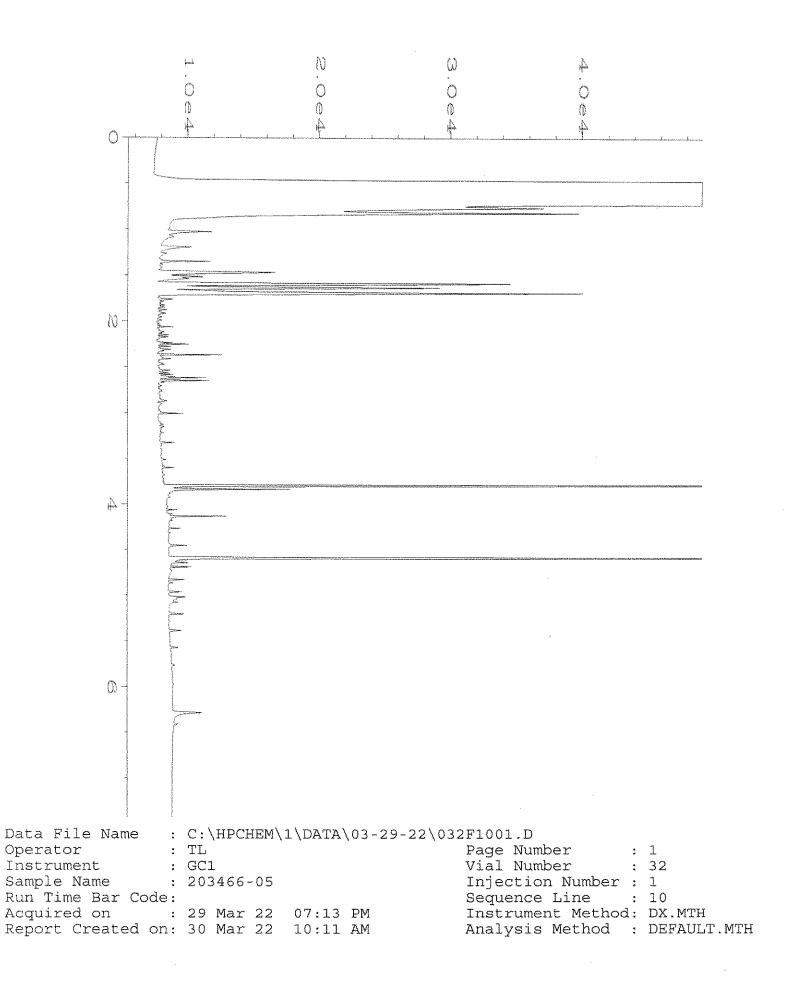
pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

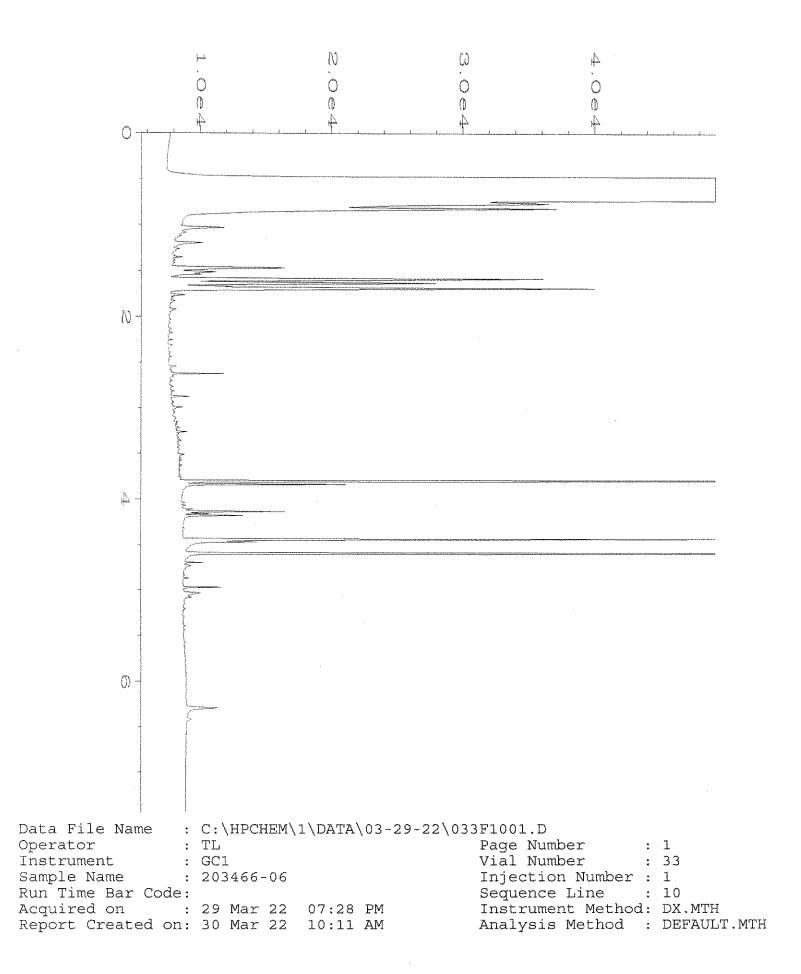

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

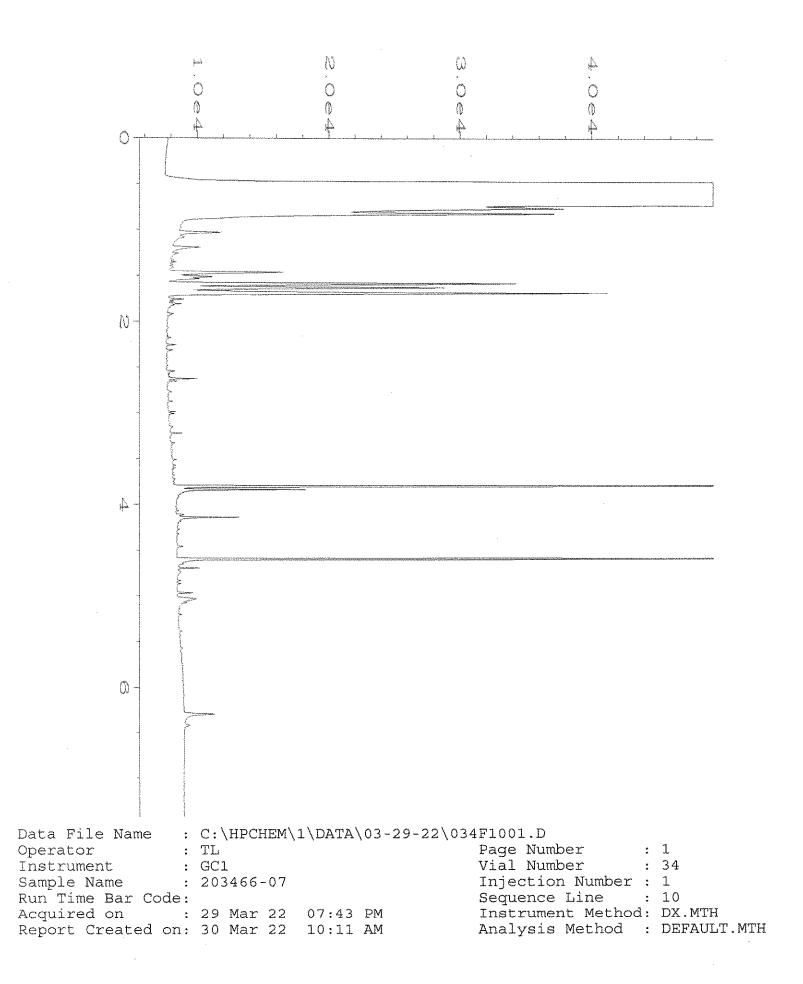

vo - The value reported fell outside the control limits established for this analyte.

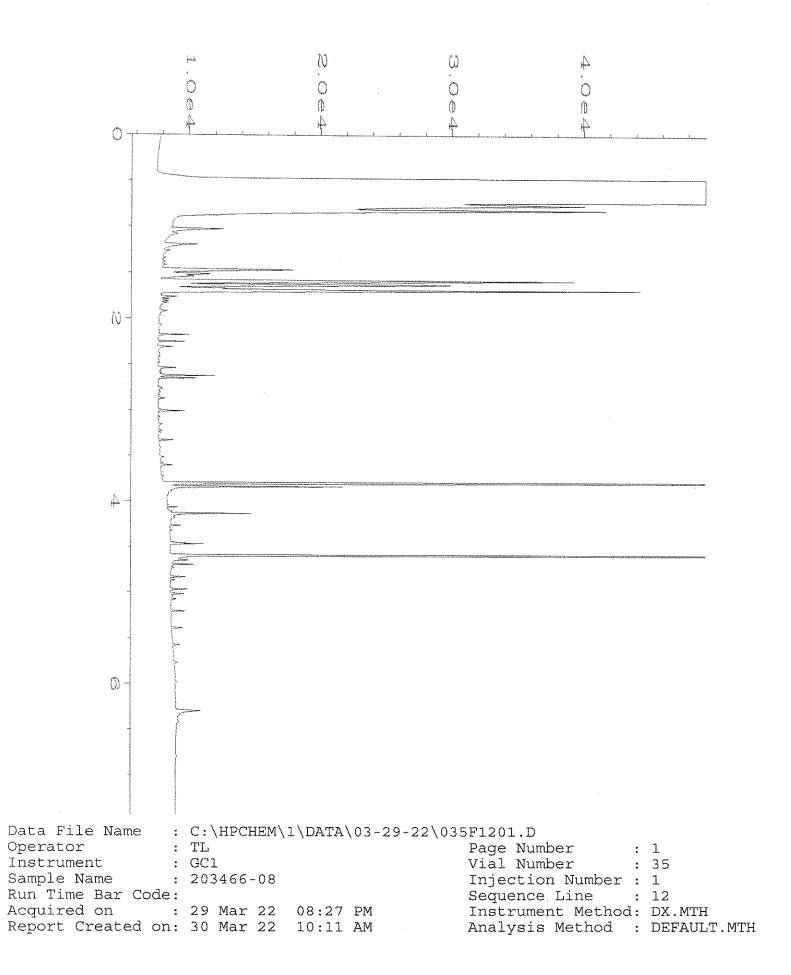

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

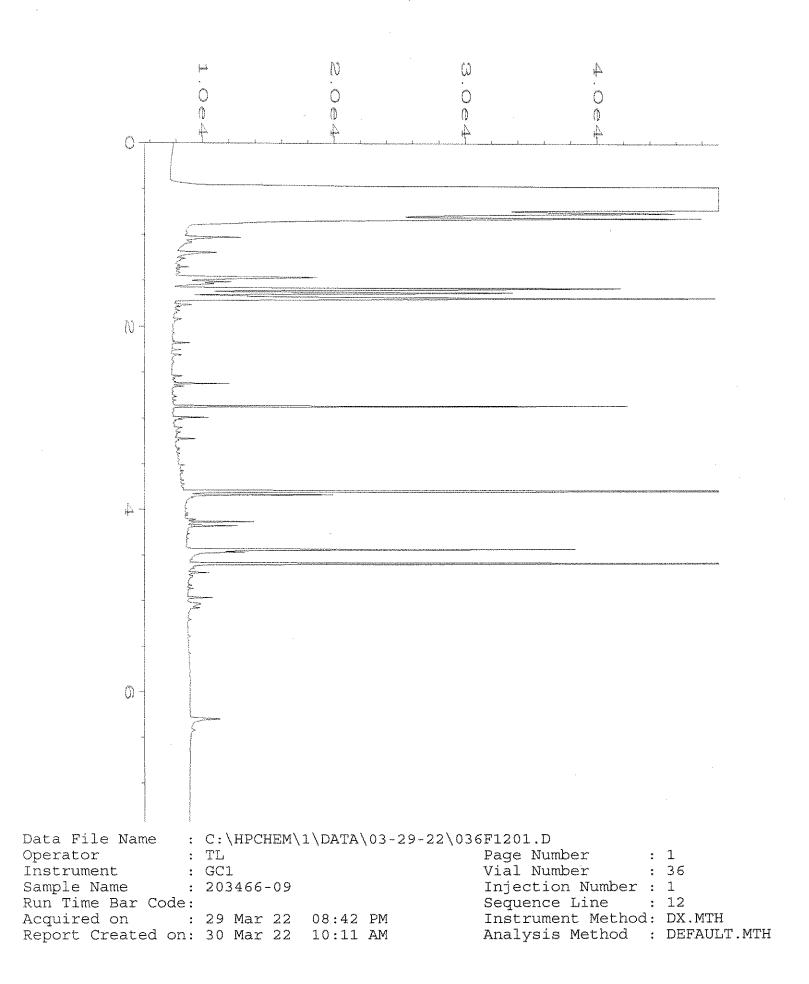

Phone 206-838-159/Email a loth rane Daspections Werders specific RLs? - Yes / No City, State, ZIP Southe, Address 710 2nd the Saile 550 Company Aspect Consulting 203466 MW-108-032422 Friedman & Bruya, Inc. MV-115-032422 MW-111-032422 MW-110-032422 MW-109-032422 MV-105-032422 MW-104-032422 Ph. (206) 285-8282 MV-113-032422 MV-112-032422 MW-101-032422 ceport To Sample ID AL: Coll ranc Relinquished by: Received by: Relinquished by: Received by: W14 98104 202 09 00 3 Por 3 6 8 40 0 Lab ID A-D A-K A-0 A-) A-K \leq ネイ SIGNATURE 3/24/22 3/24/22 Sampled Date Č MMN SAMPLE CHAIN OF CUSTODY 1505 1555 1055 in G 1455 1610 1527 1235 1442 Sampled SAMPLERS (signature) Time REMARKS PROJECT NAME Whi Haka A Sample Type Vaud Ć Muc 2 Jars # of -1 -2 ~ 2 . بینین PRINT NAME 1 × \times \succ × \times NWTPH-Dx \succ \times \succ × X Unitas X × × × NWTPH-Gx \varkappa \mathbf{x} \succ Χ >Υ, × × × × BTEX EPA 80216 $\mathbf{\tilde{x}}$ \succ X \sim \times Aspect X 160328 NWTPH-HCID × INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 ЧC PO # 5. PAHs EPA 8270 *tr BJ ✻ PCBs EPA 8082 03/25/22 VW5/A26/ AS PEC Samples received at Total Alkolinity 5m 23200 Nitrate/Nitrik 300.0 COMPANY ᆪ × X \geq × × ¥ Standard turnaround □ RUSH_____ Rush charges authorized by: Archive samples Default: Dispose after 30 days Other. Sulfick/sulfate 8 300.0 + SM 4500-52-F > Page#... ۶ TURNAROUND TIME × SAMPLE DISPOSAL Methone RSK-17 \sim X \sim Total and dissolved and Manginese 60 × 3/451 365/22 X × DATE |<u>_</u> Piccolvid natus Field Filter Notes ိုင္ဆ Prize ideal meths labe t me 11 ĉ 1230 TIME 2 FOY E. 0

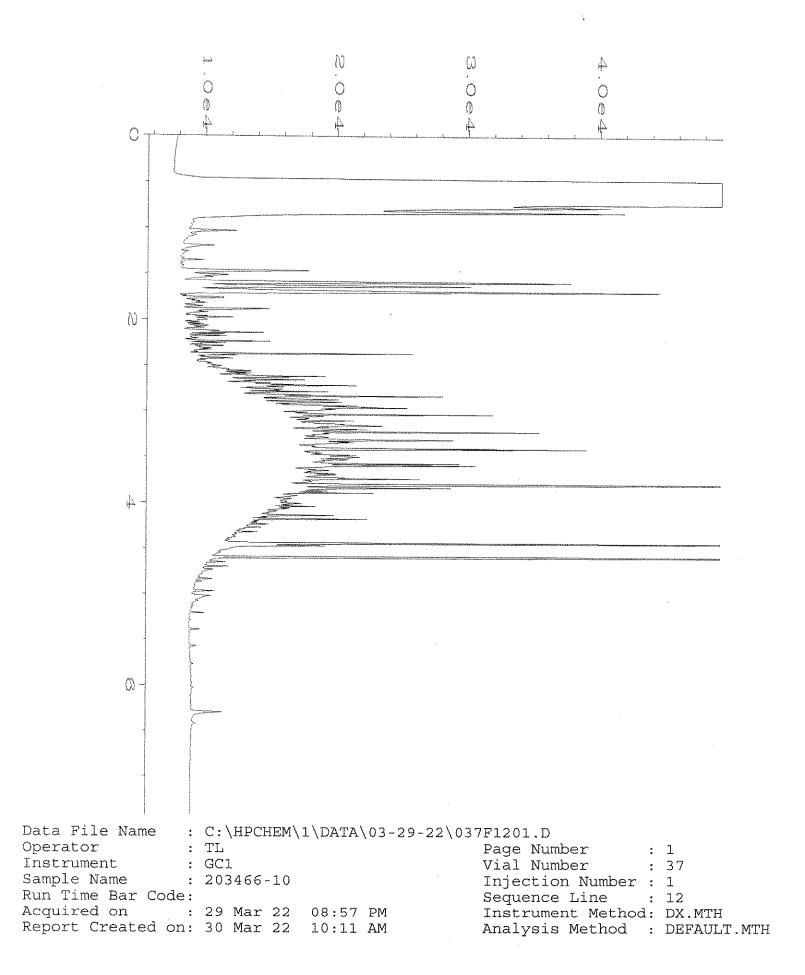

			hd Li	5					:			X	T		קין	C	A	a	1 77 1
		1	Ph. (206) 285-8282									MW-100-032422	Sample ID		Phone 206-9386594 Email wiechrand aspect could Project specific RLs? -	City, State, ZIP Seattic, WA 98104	Address Tio 2nd Auc	ompany Aspect Consu	Report To Mi Loch rane
Received by:	Relinquished by:	Received by:	Kennquishea by:	DIS								11 4 0	Lab ID		ail <i>wischmine</i>	- WA 9810	Sec.	they Inc	
		mm	1 Kal	SIGNATURE								3/24/22	Date Sampled		Quipection	~	6		
												1200	Time Sampled	-	alth Project :	- REMARKS	Whittake	PROJE	SAMPL
	-	Mahn	Dovid Mackey									And	Sample Type		specific RL	KS	taker	PROJECT NAME	SAMPLERS (signature)
		Mhhn	Mack	PRII								1	# of Jars		Υ. ² 8				uture)
		5	Ŕ	PRINT N			İ .					×	NWTPH-Dx		Yes /				B
				AME								×	NWTPH-Gx	1	No				21/0
ĺ								ļ	ļ			×	BTEX EPA 8021				2		14
								 					NWTPH-HCID	Ŀ	Aspec	Ц	160328		
										 			VOCs EPA 8260	INAI	1º	INVOICE TO	NS	q	ſ
	ļ	<u>, (</u>	×		 	 		ļ					PAHs EPA 8270	YSE.		ICE	`	PO#	
San	1	22	peci			 		· · ·					PCBs EPA 8082	IS RI		TO			
aldt		-1	+	COMPANY		 							·	ANALYSES REQUESTED					
s re				AN										TST					
Samples received									ĺ					15	□ Other Default	🗆 Arc	ush		
. 1									[ver ilt:]	SAN	char	ndar	Page#
et u °C		3/25/22	3/25/22	DATE									Z		□ Other Default: Dispose after 30 days	SAMPLE DISPOSAL Archive samples	Rush charges authorized by:	X Standard turnaround	AROUNI
		し (よ	1230	TIME		-							Notes		er 30 days	JASI	zed by:	Id	of 2

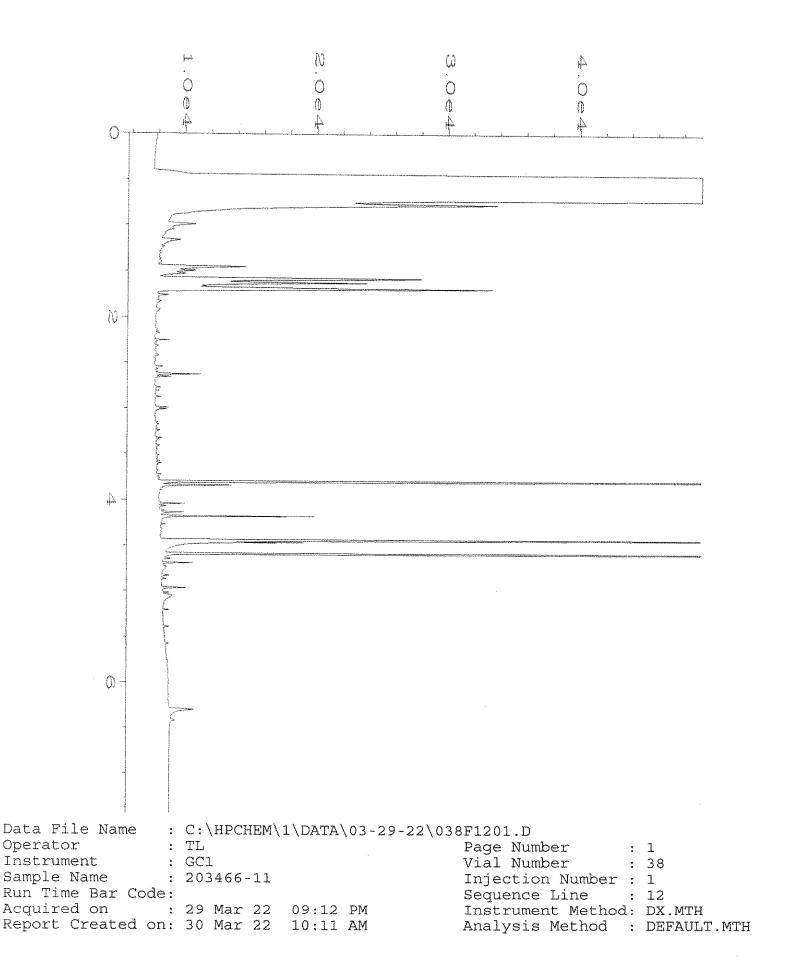


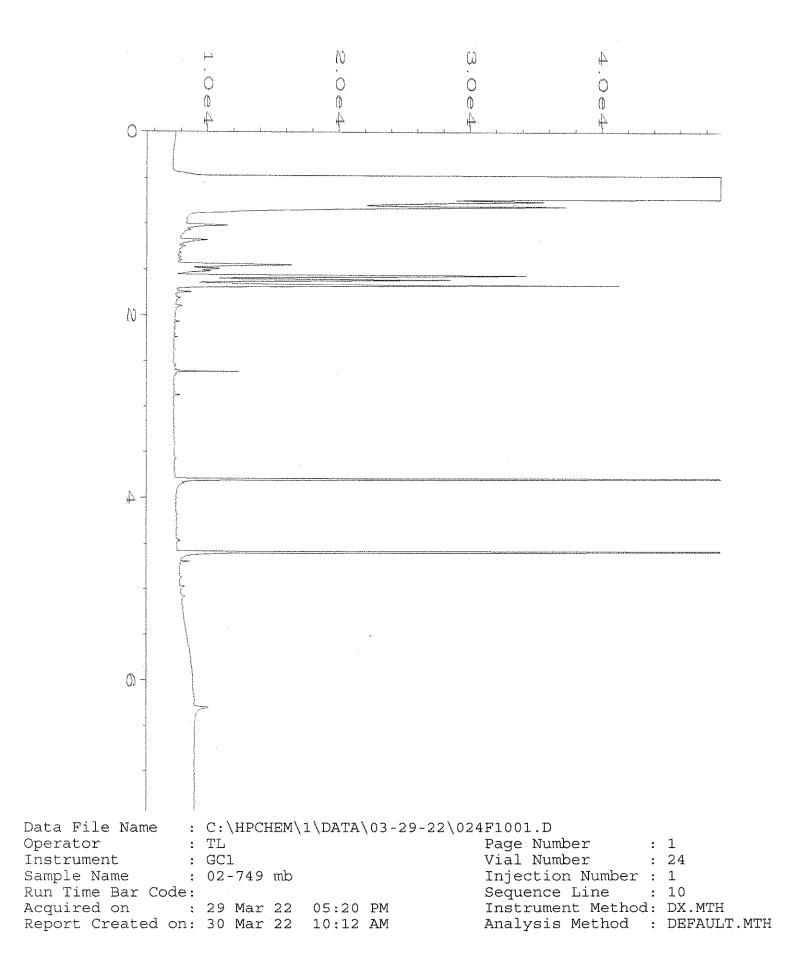


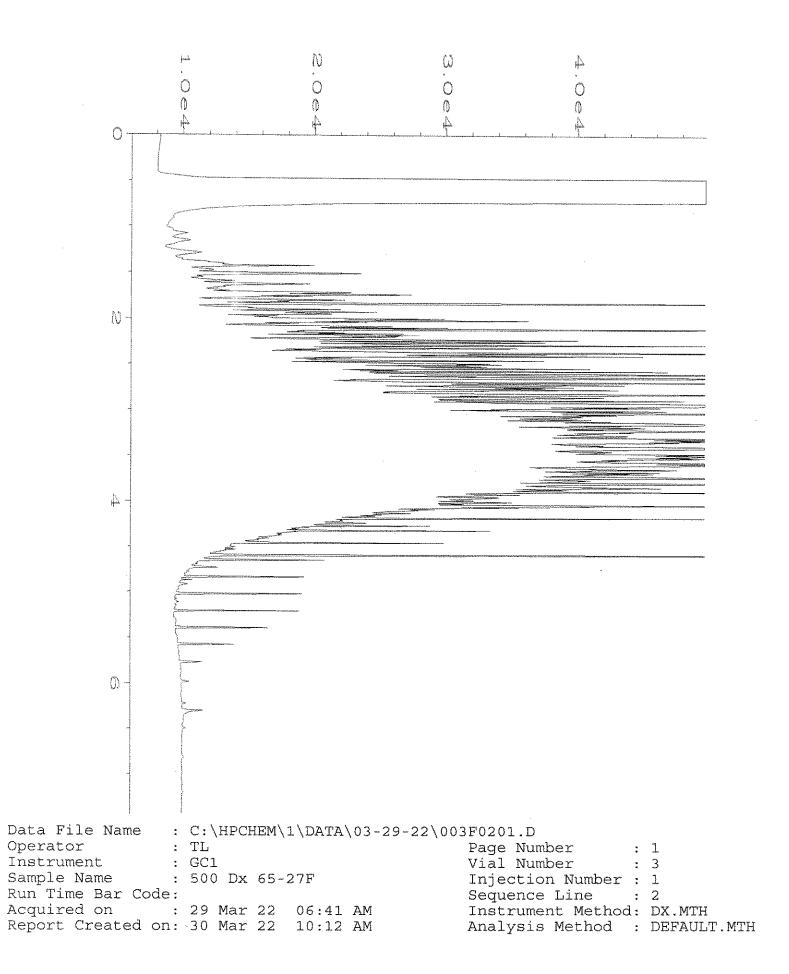












3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 203466 Work Order Number: 2203630

April 04, 2022

Attention Michael Erdahl:

Fremont Analytical, Inc. received 3 sample(s) on 3/25/2022 for the analyses presented in the following report.

Dissolved Gases by RSK-175 Ion Chromatography by EPA Method 300.0 Sulfide by SM 4500-S2-F Total Alkalinity by SM 2320B

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Friedman & Bruya 203466 2203630	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2203630-001	MW-105-032422	03/24/2022 10:55 AM	03/25/2022 2:50 PM
2203630-002	MW-112-032422	03/24/2022 11:15 AM	03/25/2022 2:50 PM
2203630-003	MW-115-032422	03/24/2022 1:20 PM	03/25/2022 2:50 PM

Case Narrative

WO#: **2203630** Date: **4/4/2022**

CLIENT:Friedman & BruyaProject:203466

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 2203630 Date Reported: 4/4/2022

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

- CCB Continued Calibration Blank
- CCV Continued Calibration Verification
- DF Dilution Factor
- DUP Sample Duplicate

HEM - Hexane Extractable Material

- ICV Initial Calibration Verification
- LCS/LCSD Laboratory Control Sample / Laboratory Control Sample Duplicate
- MCL Maximum Contaminant Level

MB or MBLANK - Method Blank

- MDL Method Detection Limit
- MS/MSD Matrix Spike / Matrix Spike Duplicate
- PDS Post Digestion Spike
- Ref Val Reference Value
- REP Sample Replicate
- RL Reporting Limit
- RPD Relative Percent Difference
- SD Serial Dilution
- SGT Silica Gel Treatment
- SPK Spike
- Surr Surrogate

Analytical Report

 Work Order:
 2203630

 Date Reported:
 4/4/2022

Client: Friedman & Bruya			(Collection	Date:	8/24/2022 10:55:00 AM
Project: 203466 Lab ID: 2203630-001 Client Sample ID: MW-105-032422			I	Matrix: W	ater	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Batch	ID: R7	4518 Analyst: MS
Methane	ND	0.00675		mg/L	1	4/4/2022 12:06:00 PM
Ion Chromatography by EPA Metho	<u>od 300.0</u>			Batch	n ID: 358	389 Analyst: SLL
Nitrate (as N)+Nitrite (as N) Sulfate	5.08 31.1	1.10 6.00	D D	mg/L mg/L	10 10	3/25/2022 11:21:00 PM 3/25/2022 11:21:00 PM
Total Alkalinity by SM 2320B				Batch	n ID: R7	4475 Analyst: CH
Alkalinity, Total (As CaCO3)	136	2.50		mg/L	1	4/1/2022 9:07:23 AM
Sulfide by SM 4500-S2-F				Batch	ID: R7	4326 Analyst: SS
Sulfide	ND	0.500		mg/L	1	3/25/2022 2:03:01 PM

Analytical Report

 Work Order:
 2203630

 Date Reported:
 4/4/2022

Client: Friedman & Bruya			(Collection	Date: 3	8/24/2022 11:15:00 AM
Project: 203466 Lab ID: 2203630-002 Client Sample ID: MW-112-032422			I	Matrix: W	ater	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Batch	n ID: R7	4518 Analyst: MS
Methane	ND	0.00675		mg/L	1	4/4/2022 12:18:00 PM
Ion Chromatography by EPA Metho	od 300.0			Batch	n ID: 35	389 Analyst: SLL
Nitrate (as N)+Nitrite (as N) Sulfate	4.14 35.3	1.10 6.00	D D	mg/L mg/L	10 10	3/25/2022 11:44:00 PM 3/25/2022 11:44:00 PM
Total Alkalinity by SM 2320B				Batch	n ID: R7	4475 Analyst: CH
Alkalinity, Total (As CaCO3)	123	2.50		mg/L	1	4/1/2022 9:07:23 AM
Sulfide by SM 4500-S2-F				Batch	n ID: R7	4326 Analyst: SS
Sulfide	ND	0.500		mg/L	1	3/25/2022 2:03:01 PM

Analytical Report

 Work Order:
 2203630

 Date Reported:
 4/4/2022

Client: Friedman & Bruya Project: 203466				Collection	Dat	e: 3/24/2022 1:20:00 PM
Lab ID: 2203630-003 Client Sample ID: MW-115-032422				Matrix: W	ater	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Dissolved Gases by RSK-175				Batch	n ID:	R74518 Analyst: MS
Methane	0.0212	0.00675		mg/L	1	4/4/2022 12:20:00 PM
Ion Chromatography by EPA Metho	<u>od 300.0</u>			Batch	n ID:	35889 Analyst: SLL
Nitrate (as N)+Nitrite (as N)	ND	0.110		mg/L	1	3/29/2022 11:13:00 PM
Sulfate	11.0	0.600		mg/L	1	3/29/2022 11:13:00 PM
Total Alkalinity by SM 2320B				Batch	n ID:	R74475 Analyst: CH
Alkalinity, Total (As CaCO3)	280	2.50		mg/L	1	4/1/2022 9:07:23 AM
Sulfide by SM 4500-S2-F				Batch	n ID:	R74326 Analyst: SS
Sulfide	ND	0.500		mg/L	1	3/25/2022 2:03:01 PM

Work Order:	2203630								QC S	SUMMAI	RY REF	PORT
CLIENT: Project:	Friedman & 203466	Bruya							-	al Alkalini		
Sample ID: MB-R74 Client ID: MBLKV		SampType: MBLK Batch ID: R74475			Units: mg/L		Prep Date Analysis Date			RunNo: 744 SeqNo: 152	-	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alkalinity, Total (As	CaCO3)	ND	2.50									
Sample ID: LCS-R7	74475	SampType: LCS			Units: mg/L		Prep Date	: 4/1/202	2	RunNo: 744	175	
Client ID: LCSW		Batch ID: R74475					Analysis Date	: 4/1/202	2	SeqNo: 152	27541	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alkalinity, Total (As	CaCO3)	93.1	2.50	100.0	0	93.1	84	121				
Sample ID: 220363	0-001BDUP	SampType: DUP			Units: mg/L		Prep Date	: 4/1/202	2	RunNo: 744	175	
Client ID: MW-10	5-032422	Batch ID: R74475					Analysis Date	: 4/1/202	2	SeqNo: 152	27543	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alkalinity, Total (As	CaCO3)	140	2.50						136.4	2.90	20	

CLIENT: Frie	03630 edman & Bruya 3466							lon Ch	QC S romatogra	SUMMA bhy by EP		
Sample ID: MB-35889	SampTy	/pe: MBLK			Units: mg/L		Prep Dat	te: 3/25/20)22	RunNo: 744	407	
Client ID: MBLKW	Batch I	D: 35889					Analysis Dat	te: 3/25/20)22	SeqNo: 152	26120	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)+Nitrite (as Sulfate	N)	ND ND	0.110 0.600									
Sample ID: LCS-35889	SampTy	/pe: LCS			Units: mg/L		Prep Dat	te: 3/25/20)22	RunNo: 744	107	
Client ID: LCSW	Batch II	D: 35889					Analysis Dat	te: 3/25/20)22	SeqNo: 152	26121	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)+Nitrite (as	N)	1.45	0.110	1.500	0	96.7	90	110				
Sulfate		3.58	0.600	3.750	0	95.6	90	110				
Sample ID: 2203580-00	1BDUP SampTy	/pe: DUP			Units: mg/L		Prep Dat	te: 3/25/20)22	RunNo: 74 4	407	
Client ID: BATCH	Batch I	D: 35889					Analysis Dat	te: 3/25/20)22	SeqNo: 152	26123	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)+Nitrite (as	N)	ND	0.110						0		20	
Sulfate		9.73	0.600						9.813	0.891	20	
Sample ID: 2203580-00	1BMS SampTy	/pe: MS			Units: mg/L		Prep Dat	te: 3/25/20)22	RunNo: 74 4	107	
Client ID: BATCH	Batch I	D: 35889					Analysis Dat	te: 3/25/20)22	SeqNo: 152	26124	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)+Nitrite (as	N)	1.46	0.110	1.500	0.07400	92.1	80	120				
Sulfate		13.5	0.600	3.750	9.813	98.7	80	120				

Work Order: CLIENT: Project:	2203630 Friedman & 203466	Bruya						lon Ch	QC S romatograp	SUMMA bhy by EP		
Sample ID: 22035	80-001BMSD	SampType: MSD			Units: mg/L		Prep Da	te: 3/25/20)22	RunNo: 744	107	
Client ID: BATC	н	Batch ID: 35889					Analysis Da	ite: 3/25/20)22	SeqNo: 152	26125	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate (as N)+Nitr	ite (as N)	1.48	0.110	1.500	0.07400	93.6	80	120	1.456	1.50	20	
Sulfate		13.6	0.600	3.750	9.813	99.8	80	120	13.52	0.303	20	

Work Order:	2203630								OC :	SUMMA		POR
CLIENT:	Friedman &	Bruya							~~			
Project:	203466									Sulfide b	y 51VI 450	0-52
Sample ID: MB-R74	4326	SampType: MBLK			Units: mg/L		Prep Dat	e: 3/25/20 2	22	RunNo: 74:	326	
Client ID: MBLKV	v	Batch ID: R74326					Analysis Dat	e: 3/25/20 2	22	SeqNo: 152	24509	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide		ND	0.500									
Sample ID: LCS-R7	74326	SampType: LCS			Units: mg/L		Prep Dat	e: 3/25/20 2	22	RunNo: 743	326	
Client ID: LCSW		Batch ID: R74326					Analysis Dat	e: 3/25/20 2	22	SeqNo: 152	24510	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide		1.40	0.500	2.000	0	70.0	55.8	124				
Sample ID: 220353	5-001BDUP	SampType: DUP			Units: mg/L		Prep Dat	e: 3/25/20 2	22	RunNo: 74:	326	
Client ID: BATCH		Batch ID: R74326					Analysis Dat	e: 3/25/20 2	22	SeqNo: 152	24624	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide		ND	0.500						0		30	
Sample ID: 220353	5-001BMS	SampType: MS			Units: mg/L		Prep Dat	e: 3/25/20 2	22	RunNo: 743	326	
Client ID: BATCH		Batch ID: R74326					Analysis Dat	e: 3/25/20 2	22	SeqNo: 152	24625	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide		1.20	0.500	2.000	0	60.0	21.5	190				
Sample ID: 220353	5-001BMSD	SampType: MSD			Units: mg/L		Prep Dat	e: 3/25/20 2	22	RunNo: 743	326	
Client ID: BATCH		Batch ID: R74326					Analysis Dat	e: 3/25/20 2	22	SeqNo: 152	24626	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfide NOTES:		2.80	0.500	2.000	0	140	21.5	190	1.200	80.0	30	R

R - High RPD observed, spike recovery is within range.

Work Order:	2203630					2.00	UMMARY REPORT
CLIENT:	Friedman & I	Bruya					
Project:	203466					Diss	olved Gases by RSK-175
Sample ID: MB-R	74518	SampType: MBLK			Units: mg/L	Prep Date: 4/4/2022	RunNo: 74518
Client ID: MBLK	w	Batch ID: R74518				Analysis Date: 4/4/2022	SeqNo: 1528521
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Methane		ND	0.00675				
Sample ID: 22036	30-001AREP	SampType: REP			Units: mg/L	Prep Date: 4/4/2022	RunNo: 74518
Client ID: MW-1	05-032422	Batch ID: R74518				Analysis Date: 4/4/2022	SeqNo: 1528516
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Methane		ND	0.00675			0	30

Sample Log-In Check List

Client Name: FB		Work Order Numb	ber: 2203630)	
Logged by: Clare Griggs		Date Received:	3/25/202	22 2:50:00 PM	
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🖌	No 🗌	Not Present	
2. How was the sample delivered?		<u>Client</u>			
<u>Log In</u>					
 Coolers are present? 		Yes 🖌	No 🗌		
4. Shipping container/cooler in good condition	n?	Yes 🗹	No 🗌		
 Custody Seals present on shipping contai (Refer to comments for Custody Seals no 		Yes 🗌	No 🗌	Not Present 🗹	
6. Was an attempt made to cool the samples	\$?	Yes 🖌	No 🗌	NA 🗌	
7. Were all items received at a temperature	of >2°C to 6°C *	Yes 🖌	No 🗌		
8. Sample(s) in proper container(s)?		Yes 🖌	No 🗌		
9. Sufficient sample volume for indicated tes	t(s)?	Yes 🖌	No 🗌		
10. Are samples properly preserved?		Yes 🖌	No 🗌		
11. Was preservative added to bottles?		Yes 🖌	No 🗌	NA 🗌	
				NaOH to C fractions	
12. Is there headspace in the VOA vials?		Yes	No 🗌	NA 🗹	
13. Did all samples containers arrive in good of 14. Does paperwork match bottle labels?	condition(unbroken)?	Yes ✔ Yes ✔	No 🗌 No 🗌		
14. Does paperwork match bottle labels?					
15. Are matrices correctly identified on Chain	of Custody?	Yes 🖌	No 🗌		
16. Is it clear what analyses were requested?		Yes 🗹	No		
17. Were all holding times able to be met?		Yes 🖌	No 🗌		
Special Handling (if applicable)					
18. Was client notified of all discrepancies wit	h this order?	Yes	No 🗌	NA 🗹	
Person Notified:	Date:				
By Whom:	Via:	🗌 eMail 🗌 Ph	one 🗌 Fax	In Person	
Regarding:					
Client Instructions:					
19. Additional remarks:					Ĩ
-					

Item Information

Item #	Temp ⁰C
Sample	1.2

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

 Ph. (206) 285-8282 Relinquished by: Justine Poque FAF	Relinquished by: UM WMA Ann Webber-Bruya Friedman & Bruya	Friedman & Bruya, Inc. SIGNATURE PRINT NAME COMPANY	ANALYSES REQUEST	Sample ID Lab ID Sampled Sampled Sampled Sampled Sampled Sample Type # of Containers TOC Nitrate/Nfmit Sulfate Sulfat	ANALYSES REQUESTED	C-108	Dentroporte in included and in the second and a second an
5	edman & B	COMPA	UESTED	Ferrous Iron	QUESTED	80	5
	ruya	NY	_			Rush cha	TU
3/24/22	3/25/22	DATE			SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	Rush charges authorized by	TURNAROUND TIME
14:50	1300	TIME				Page 14	D TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 28, 2022

Ali Cochrane, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Cochrane:

Included are the results from the testing of material submitted on January 14, 2022 from the Whittaker Falls 160328, F&BI 201195 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP0128R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 14, 2022 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Whittaker Falls 160328, F&BI 201195 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
201195 -01	MW115-10-011422
201195 -02	MW115-20-011422
201195 -03	MW115-30-011422
201195 -04	MW115-40-011422
201195 -05	MW115-Comp

Samples MW115-10-011422, MW115-20-011422, MW115-30-011422, and MW115-40-011422 were composited into a single sample, MW115-Comp.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/22 Date Received: 01/14/22 Project: Whittaker Falls 160328, F&BI 201195 Date Extracted: 01/25/22 Date Analyzed: 01/26/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW115-Comp 201195-01,,04	<5	76
Method Blank 02-156 MB2	<5	79

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/22 Date Received: 01/14/22 Project: Whittaker Falls 160328, F&BI 201195 Date Extracted: 01/21/22 Date Analyzed: 01/21/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
MW115-Comp 201195-01,,04	<50	<250	90
Method Blank 02-229 MB	<50	<250	104

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW115-Comp 01/14/22 01/24/22 01/24/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Whittaker Falls 160328, F&BI 201195 201195-01,,04 201195-01,,04.051 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	1.93		
Barium	44.0		
Cadmium	<1		
Chromium	21.7		
Lead	1.98		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 01/24/22 01/24/22 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Whittaker Falls 160328, F&BI 201195 I2-51 mb I2-51 mb.035 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		
Silver	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW115-Co 01/14/22 01/24/22 01/24/22 Soil mg/kg (ppr	omp n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Whittaker Falls 1603 201195-01,,04 012408.D GCMS4 RF	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 97 97 100	Lower Limit: 90 89 84	Upper Limit: 109 112 115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane Chloroform 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropen Carbon tetrachlori Benzene Trichloroethene 1,2-Dichloropethane 4-Methyl-2-pentan	hane er (MTBE) ethene ene ene e (EDC) une de de	$< 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\$	Tetrach Dibromo 1,2-Dibr Chlorob Ethylber 1,1,1,2-T m,p-Xylen o-Xylend Styrene Isopropy Bromofo n-Propy Bromobo 1,3,5-Tr 1,1,2,2-T 1,2,3-Tr 2-Chloro 4-Chloro tert-But 1,2,4-Tr sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dich	nzene Fetrachloroethane ene e Vlbenzene orm lbenzene enzene imethylbenzene Fetrachloroethane ichloropropane otoluene	< 0.05 < 0.025 < 0.05 < 0
cis-1,3-Dichloropro Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	propene	< 0.05 < 0.05 < 0.05 < 0.05 < 0.5	Hexachl Naphtha	ichlorobenzene orobutadiene alene ichlorobenzene	<0.25 <0.25 <0.05 <0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

$\begin{tabular}{ c c c c } Lower & Upper \\ Limit: Limit: Limit: \\ 1,2-Dichloroethane-d4 & 97 & 90 & 109 \\ Toluene-d8 & 99 & 89 & 112 \\ 4-Bromofluorobenzene & 101 & 84 & 115 \\ \hline & Concentration \\ \hline & Concentration \\ \hline & Compounds: & mg/kg (ppm) & Compounds: \\ \hline & Dichlorodifluoromethane & <0.5 & 1,3-Dichloropropane \\ Chloromethane & <0.5 & Tetrachloropropane \\ Chloromethane & <0.5 & Tetrachloropromethane \\ & Source & S & 1,2-Dibromoethane \\ \hline & Chloroethane & <0.5 & Chlorobenzene \\ \hline & Trichlorofluoromethane & <0.5 & Styrene \\ \hline & Acetone & <5 & 1,1,1,2-Tetrachloroethane \\ \hline & Hexane & <0.25 & o-Xylene \\ \hline & Methyl t- butyl ether (MTBE) & <0.05 & Isopropylbenzene \\ \hline & trans-1,2-Dichloroethene & <0.05 & Bromoform \\ 1,1-Dichloroethane & <0.05 & Bromoform \\ 1,1-Dichloroethane & <0.05 & 1,3,5-Trimethylbenzene \\ \hline & Chlorofm & <0.05 & 1,3,3-Trimethylbenzene \\ \hline & Chlorofm & <0.05 & 1,1,2,2-Tetrachloroethane \\ \hline & 2Butanone (MEK) & <1 & 1,2,3-Tricthoroptane \\ \hline & 2Butanone (MEK) & <1 & 1,2,3-Tricthoroptane \\ \hline & 1,1-Trichloroptane & <0.05 & 4-Chlorotoluene \\ \hline & 1,1,1-Trichloroptane & <0.05 & tert-Butylbenzene \\ \hline & Chloroform & <0.05 & tert-Butylbenzene \\ \hline & Carbon tetrachloride & <0.05 & 1,2,4-Trimethylbenzene \\ \hline & Carbon tetrachloride & <0.05 & propoyltouene \\ \hline & 1,1-Dichloroptane & <0.05 & tert-Butylbenzene \\ \hline & Carbon tetrachloride & <0.05 & 1,2,4-Trimethylbenzene \\ \hline & Chlorotoluene & \\ \hline & 1,1,1-Trichloroptane & <0.05 & tert-Butylbenzene \\ \hline & Carbon tetrachloride & <0.05 & propoyltouene \\ \hline & 1,1,0richloroptane & <0.05 & propoyltouene \\ \hline & 1,1,0richloroptane & <0.05 & tert-Butylbenzene \\ \hline & Chlorototuene & \\ \hline & 1,1,0richloroptane & <0.05 & tert-Butylbenzene \\ \hline & Carbon tetrachloride & <0.05 & propoyltouene \\ \hline & 1,1,0richloroptane & <0.05 & propoyltouene \\ \hline & 1,1,0richloroptane & <0.05 & pr$	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	lting, LLC lls 160328, F&BI 2011	.95
Compounds:mg/kg (ppm)Compounds:Dichlorodifluoromethane<0.5	1,2-Dichloroethane Toluene-d8	mit: 109 112	
Chloromethane<0.5TetrachlorotheneVinyl chloride<0.05	Compounds:	Concentratio mg/kg (ppm	
1,2-Dichloropropane<0.051,3-DichlorobenzeneBromodichloromethane<0.05	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl eth trans-1,2-Dichloro 1,1-Dichloroethane 2,2-Dichloropropar cis-1,2-Dichloroethane 1,1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Dichloropropar Carbon tetrachlori Benzene Trichloroethene 1,2-Dichloropropar Bromodichloromet Dibromomethane 4-Methyl-2-pentan cis-1,3-Dichloropro	$\begin{array}{llllllllllllllllllllllllllllllllllll$	

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/22 Date Received: 01/14/22 Project: Whittaker Falls 160328, F&BI 201195

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 201314-01 (Duplicate)							
		Samp	le Du	plicate			
	Reporting	Resu	lt R	esult	RPD		
Analyte	Units	(Wet V	Vt) (W	et Wt)	(Limit 20)		
Gasoline	mg/kg (ppm)	<5		<5	nm		
Laboratory Code: La	boratory Contro	l Sample	Percent				
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Gasoline	mg/kg (ppm)	20	115	61 - 153	_		

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/22 Date Received: 01/14/22 Project: Whittaker Falls 160328, F&BI 201195

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 2	201269-01 (Matri	x Spike)					
Analyte	Reporting Units	Spike Level	Sample Result (Wet Wt)	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	108	112	63-146	4
	0 0 41 /	,					
Laboratory Code: 1		,	le Percent	t			
Laboratory Code: 1		,			tance		
Laboratory Code: 1 Analyte	Laboratory Contr	col Samp	Percent				

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/22 Date Received: 01/14/22 Project: Whittaker Falls 160328, F&BI 201195

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 201290-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	88	93	75 - 125	6
Barium	mg/kg (ppm)	50	101	92	108	75 - 125	16
Cadmium	mg/kg (ppm)	10	<5	91	99	75 - 125	8
Chromium	mg/kg (ppm)	50	11.1	88	92	75 - 125	4
Lead	mg/kg (ppm)	50	19.1	87	92	75 - 125	6
Mercury	mg/kg (ppm	5	<5	90	94	75 - 125	4
Selenium	mg/kg (ppm)	5	<5	82	90	75 - 125	9
Silver	mg/kg (ppm)	10	<5	90	98	75 - 125	9

Laboratory Code: Laboratory Control Sample

Laboratory co.	de. Laboratory com	lioi sumpie	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	85	80-120
Barium	mg/kg (ppm)	50	93	80-120
Cadmium	mg/kg (ppm)	10	94	80-120
Chromium	mg/kg (ppm)	50	97	80-120
Lead	mg/kg (ppm)	50	96	80-120
Mercury	mg/kg (ppm)	5	94	80-120
Selenium	mg/kg (ppm)	5	88	80-120
Silver	mg/kg (ppm)	10	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/22 Date Received: 01/14/22 Project: Whittaker Falls 160328, F&BI 201195

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 201309-01 (Matrix Spike)

Laboratory Code: 201309-01	(Matrix Spike)						
	Reporting Units	Spike Level	Sample Result (Wet wt)	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD
Analyte Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	20	21	10-142	(Limit 20) 5
Chloromethane	mg/kg (ppm) mg/kg (ppm)	1	<0.5 <0.5	20 56	51	10-142	9 9
Vinyl chloride	mg/kg (ppm)	1	<0.05	53	52	10-120	2
Bromomethane	mg/kg (ppm)	1	<0.5	79	75	10-163	5
Chloroethane	mg/kg (ppm)	1	<0.5	74	70	10-176	6
Trichlorofluoromethane	mg/kg (ppm)	1	<0.5	66	65	10-176	2
Acetone	mg/kg (ppm)	5	<5	90	84	10-163	7
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	90	85	10-160	6
Hexane	mg/kg (ppm)	1	< 0.25	65	63	10-137	3
Methylene chloride	mg/kg (ppm)	1	< 0.5	72	68	10-156	6
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	90	85	21 - 145	6
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	92	88	14-137	4
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	94	88	19-140	7
2,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	110	109	10-158	1
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	99	95	25 - 135	4
Chloroform	mg/kg (ppm)	1	< 0.05	97	92	21 - 145	5
2-Butanone (MEK)	mg/kg (ppm)	5	<1	92	86	19-147	7
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	98	92	12-160	6
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	93	89	10-156	4
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	93	89	17-140	4
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	82	79	9-164	4
Benzene	mg/kg (ppm)	1	< 0.03	97	93	29-129	4
Trichloroethene	mg/kg (ppm)	1	< 0.02	95	89	21-139	7
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	93	89	30-135	4
Bromodichloromethane	mg/kg (ppm)	1	< 0.05	85	81	23-155	5
Dibromomethane	mg/kg (ppm)	1 5	< 0.05	101 102	96 94	23-145 24-155	5 8
4-Methyl-2-pentanone	mg/kg (ppm)	5 1	<1 <0.05	102 95	94 90	24-155 28-144	8 5
cis-1,3-Dichloropropene Toluene	mg/kg (ppm)	1	<0.05 <0.05	95 110	90 100	28-144 35-130	5 10
trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	1	<0.05 <0.05	104	100 92	35-130 26-149	10 12
1,1,2-Trichloroethane	mg/kg (ppm)	1	<0.05	104	94	10-205	12
2-Hexanone	mg/kg (ppm)	5	<0.5	106	94 94	15-166	12
1.3-Dichloropropane	mg/kg (ppm)	1	< 0.05	111	99	31-137	11
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	118	106	20-133	11
Dibromochloromethane	mg/kg (ppm)	1	<0.05	93	80	28-150	15
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	114	101	28-142	12
Chlorobenzene	mg/kg (ppm)	1	< 0.05	114	102	32-129	11
Ethylbenzene	mg/kg (ppm)	1	< 0.05	114	103	32-137	10
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	100	89	31-143	12
m,p-Xylene	mg/kg (ppm)	2	< 0.1	119	107	34-136	11
o-Xylene	mg/kg (ppm)	1	< 0.05	113	102	33-134	10
Styrene	mg/kg (ppm)	1	< 0.05	113	101	$35 \cdot 137$	11
Isopropylbenzene	mg/kg (ppm)	1	< 0.05	117	106	31-142	10
Bromoform	mg/kg (ppm)	1	< 0.05	88	80	21-156	10
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	119	110	23-146	8
Bromobenzene	mg/kg (ppm)	1	< 0.05	116	107	34-130	8
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	<0.05	115	106	18-149	8
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm)	1 1	<0.05 <0.05	120 110	109 103	28-140 25-144	10 7
2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	110	103	20-144 31-134	7
4-Chlorotoluene	mg/kg (ppm)	1	<0.05	112	104	31-134	9
tert-Butylbenzene	mg/kg (ppm)	1	<0.05	110	112	30-137	6
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	116	107	10-182	8
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	121	112	23-145	8
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	123	112	21-149	8
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	119	109	30-131	9
1,4-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	118	107	29-129	10
1,2-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	112	104	31-132	7
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	< 0.5	91	83	11-161	9
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	116	105	22-142	10
Hexachlorobutadiene	mg/kg (ppm)	1	< 0.25	132	120	10-142	10
Naphthalene	mg/kg (ppm)	1	< 0.05	108	98	14-157	10
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	111	105	20-144	6

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/22 Date Received: 01/14/22 Project: Whittaker Falls 160328, F&BI 201195

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Con	ntrol Sample			
	_		Percent Recovery	
	Reporting Units	Spike Level	LCS	Acceptance
Analyte				Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1.0	45	10-150
Chloromethane Vinyl chloride	mg/kg (ppm)	1.0 1.0	68 68	21-140 35-135
Bromomethane	mg/kg (ppm) mg/kg (ppm)	1.0	68 80	30-130 20-151
Chloroethane	mg/kg (ppm)	1.0	78	21-147
Trichlorofluoromethane	mg/kg (ppm)	1.0	75	47-143
Acetone	mg/kg (ppm)	5.0	73	13-169
1,1-Dichloroethene	mg/kg (ppm)	1.0	78	49-138
Hexane	mg/kg (ppm)	1.0	78	61-141
Methylene chloride	mg/kg (ppm)	1.0	120	25-146
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1.0	77	65-129
trans-1,2-Dichloroethene	mg/kg (ppm)	1.0	76	62-126
1,1-Dichloroethane	mg/kg (ppm)	1.0	78	64-131
2,2-Dichloropropane	mg/kg (ppm)	1.0	83	76-150
cis-1,2-Dichloroethene	mg/kg (ppm)	1.0	79	62-127
Chloroform 2-Butanone (MEK)	mg/kg (ppm)	1.0 5.0	77 86	67-129 19-171
1.2-Dichloroethane (EDC)	mg/kg (ppm) mg/kg (ppm)	1.0	88	73-123
1,1.1-Trichloroethane	mg/kg (ppm)	1.0	88 79	66-125
1,1-Dichloropropene	mg/kg (ppm)	1.0	78	70-131
Carbon tetrachloride	mg/kg (ppm)	1.0	78	53-135
Benzene	mg/kg (ppm)	1.0	76	70-130
Trichloroethene	mg/kg (ppm)	1.0	84	62-116
1,2-Dichloropropane	mg/kg (ppm)	1.0	79	70-130
Bromodichloromethane	mg/kg (ppm)	1.0	76	70-130
Dibromomethane	mg/kg (ppm)	1.0	79	70-130
4-Methyl-2-pentanone	mg/kg (ppm)	5.0	82	64-137
cis-1,3-Dichloropropene	mg/kg (ppm)	1.0	76	68-137
Toluene	mg/kg (ppm)	1.0	86 80	70-130
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	80 81	70-130 70-130
2-Hexanone	mg/kg (ppm)	5.0	83	55-145
1,3-Dichloropropane	mg/kg (ppm)	1.0	78	70-130
Tetrachloroethene	mg/kg (ppm)	1.0	85	69-131
Dibromochloromethane	mg/kg (ppm)	1.0	81	61-137
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1.0	80	70-130
Chlorobenzene	mg/kg (ppm)	1.0	80	70-130
Ethylbenzene	mg/kg (ppm)	1.0	81	70-130
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1.0	80	56 - 134
m,p-Xylene	mg/kg (ppm)	2.0	82	70-130
o-Xylene	mg/kg (ppm)	1.0	81	70-130
Styrene	mg/kg (ppm)	1.0	88	70-130
Isopropylbenzene	mg/kg (ppm)	1.0	84	67-131
Bromoform	mg/kg (ppm)	1.0	81 79	70-130
n-Propylbenzene Bromobenzene	mg/kg (ppm)	1.0 1.0	79 73	70-130 70-130
1,3,5-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	1.0	82	70-130
1,1.2,2-Tetrachloroethane	mg/kg (ppm)	1.0	75	70-130
1,2,3-Trichloropropane	mg/kg (ppm)	1.0	78	70-130
2-Chlorotoluene	mg/kg (ppm)	1.0	80	70-130
4-Chlorotoluene	mg/kg (ppm)	1.0	87	70-130
tert-Butylbenzene	mg/kg (ppm)	1.0	78	70-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1.0	85	70-130
sec-Butylbenzene	mg/kg (ppm)	1.0	82	68-131
p-Isopropyltoluene	mg/kg (ppm)	1.0	84	70-130
1,3-Dichlorobenzene	mg/kg (ppm)	1.0	78	70-130
1,4-Dichlorobenzene	mg/kg (ppm)	1.0	76	70-130
1,2-Dichlorobenzene	mg/kg (ppm)	1.0	76	70-130
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1.0	78 77	70-130
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	1.0 1.0	81	66-140 67-141
Naphthalene	mg/kg (ppm)	1.0	75	69-119
1,2,3-Trichlorobenzene	mg/kg (ppm)	1.0	75 81	66-138
-,-,		1.0	01	00 100

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

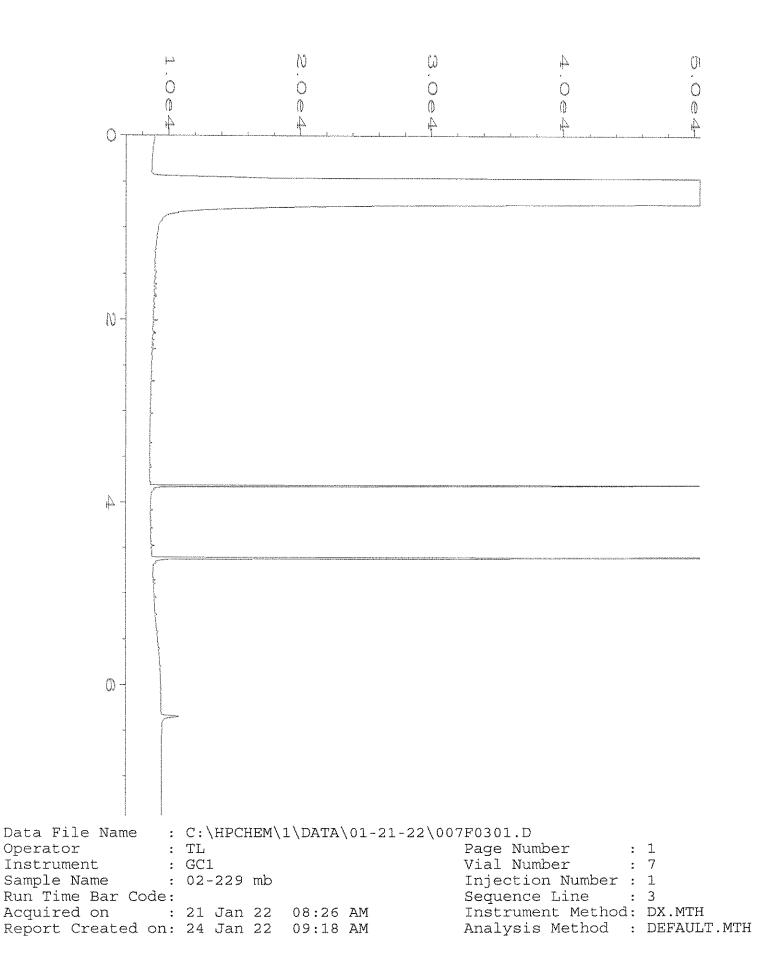
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

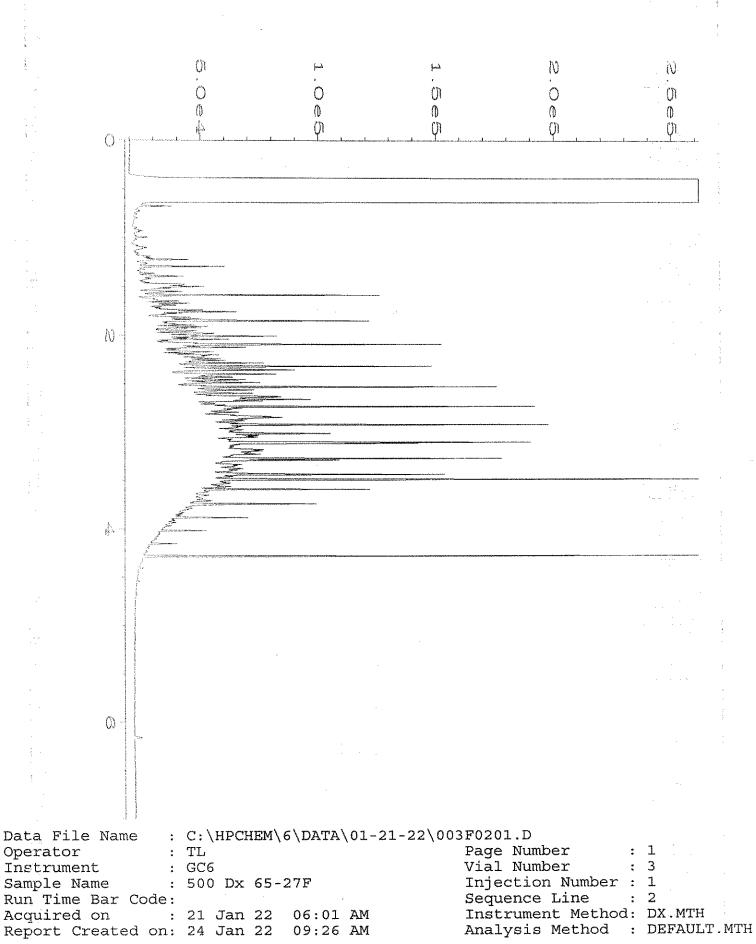
lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	Seattle, WA 98119-2029 Reli	,	 ני						mwus-comp	MW115-40-811522	MW115- 20-011422	MM115-20-011322	MW15-10-01322	Sample ID		Phone 200.949.7478 Email	City, State, ZIP_SCATHLY WA 98104 Alc 1/20/22	Company ASPECT CON Address: 710 2121 AVC	
Received by:	Relinquished by:	ived by:	Relinquished by MMULLI QUET	SIGN						14 10.	E	072	OIA-EHAZ	Lab ID		la contrato	WA (Aspect Considetine And Ave Slidite	
		hor .	March	SIGNATURE						4			147	Date Sampled		tender O	78104	nsiutting Suitte 550	
			WAR						ş.,	020	0101	0955	24400	Time Sampled		unswitin	ALC V2	PROJECT NAME Whitkak	SAMPLE CHAIN OF CUSTODY
		121	Monique Rute							¢			8011	Sample Type		g. Con Sectific RLs	8 8 8 8 8	White Kur Fails	SAMPLERS (signature)
		Chei	WR	PRINT NAME						4			\mathcal{O}	# of Jars		? - Ye			OF
		7	2	TNA				<u> </u>	*	<u> </u>				NWTPH-Dx	ŀ	Yes / No			CUS
		Horan	F	ME					*					NWTPH-Gx		No			NTO
		Ş					· ·	<u> </u>		<u> </u>				BTEX EPA 8021				- 92	DY
									*			***.		NWTPH-HCID	A		Ħ	6 R	
								1	<u></u>			÷.	¥.	VOCs EPA 8260	IAL		INVOICE TO	UL 10328) 0
Sau			A		<u> </u>				-		<u> .</u>			PAHs EPA 8270	SES		CE1	\$2 ##	01-14-22
aple		Tt.	Associt	8					*	<u> </u>				PCBs EPA 8082	REO		õ	R	2,
Samples received at $\frac{40}{100}$ C			Ĩ	COMPANY				<u> </u>	7		 			TOTAL METALS	ANALYSES REQUESTED				な
eive				YNY	*										STEI	D 🗆]
1 21							·#			ļ					Ŭ	□ Other Default	Arch	RUS RUS	r.
臣	- 					<u> </u>	*	· · ·				-					ive s	URN dard H harg	Page #
G		1/14/22	1117122	DATE			e 1/20	SAMOUSS	COMPOSITE	4			5-DEF	Notes		□ Other Default: Dispose after 30 days	SAMPLE DISPOSAL	TURNAROUND TIME Standard turnaround RUSH	ADI/USBI
	-	5	1515	TIME			δ		โก่			- - -		tes		r 30 da	SAL	id by:	E B
	<u> </u>	9	01	F				2											

÷.,

APPENDIX B

Data Validation Report

DATA VALIDATION REPORT

Whittaker Groundwater Sampling March 2022 Sample Delivery Group 203466

Prepared by:

Aspect Consulting, LLC 710 Second Ave, Suite 550 Seattle, WA 98104

Project No. 160328-B-08 • April 2022

S:\Aspect\InfoServices\Database\EQuIS\Data Projects\Whittaker\2022-03 GW\DV Report_Whittaker_202203_WG.docx

Contents

1	Introduct	tion1
2	Data Vali	idation Findings for SDG 2034661
	2.1 Sam	ple Receipt and Preservation2
		X and Gasoline (SW 8021B and NWTPH-Gx)2
	2.2.1	Holding Times2
	2.2.2	Method Blanks2
	2.2.3	Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)2
	2.2.4	Laboratory Duplicates (LD)2
	2.2.5	Field Duplicates (FD)2
	2.2.6	Overall Assessment2
	2.3 Diese	el and Motor Oil (NWTPH-Dx)3
	2.3.1	Holding Times3
	2.3.2	Method Blanks
	2.3.3	Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)
	2.3.4	Surrogates3
	2.3.5	Field Duplicates (FD)
	2.3.6	Case Narrative/Laboratory Qualification
	2.3.7	Overall Assessment
		als (SW 6020B)
	2.4.1	Holding Times
	2.4.2	Method Blanks
	2.4.3	Laboratory Control Samples/Laboratory Control Sample Duplicates
	2.4.4	(LCS/LCSD)4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)4
	2.4.4	Overall Assessment
	-	
3	Data Vali	idation Findings for SDG 203466 -22036304
		ple Receipt and Preservation4
	3.2 Alka	linity (SM2320B)4
	3.2.1	Holding Times4
	3.2.2	Method Blanks5
	3.2.3	Laboratory Control Samples/Laboratory Control Sample Duplicates
		(LCS/LCSD)5
	3.2.4	Laboratory Duplicates (LD)
	3.2.5	Overall Assessment
		nane (RSK-175)5
	3.3.1	Holding Times
	3.3.2	Method Blanks
	3.3.3	Laboratory Duplicates (LD)5

3.3.4	Overall Assessment	5
3.4 Nitr	rate + Nitrite and Sulfate (EPA 300.0)	5
3.4.1	Holding Times	5
3.4.2	Method Blanks	5
3.4.3	Laboratory Control Samples/Laboratory Control Sample Dup	olicates
	(LCS/LCSD)	6
3.4.4	Matrix Spike and Matrix Spike Duplicates (MS/MSD)	6
3.4.5	Laboratory Duplicates (LD)	6
3.4.6	Overall Assessment	6
3.5 Sul	fide (SM4500-S2-F)	6
3.5.1	Holding Times	6
3.5.2	Method Blanks	
3.5.3	Laboratory Control Samples/Laboratory Control Sample Dup	olicates
	(LCS/LCSD)	6
3.5.4	Matrix Spike and Matrix Spike Duplicates (MS/MSD)	6
3.5.5	Laboratory Duplicates (LD)	6
3.5.6	Overall Assessment	6
Qualifie	d Data Summary	7

4

1 Introduction

This report summarizes the findings of the United States Environmental Protection Agency (USEPA) Stage 2A data validation performed on analytical data for groundwater samples collected in March 2022 for the Whittaker Environmental Review Quarterly Groundwater Monitoring. This data quality review is divided into sections by sample delivery group. A complete list of samples and analyses for each SDG is provided in the Sample Index at the beginning of each section.

Samples were sent to Friedman & Bruya in Seattle, Washington for analysis of various parameters. Several parameters were analyzed by subcontracted laboratory, Fremont Analytical. The analytical methods are summarized in Table 1 below:

SDG	Analysis	Method	Lab	Validation Level
203466	Diesel and Motor Oil Range Organics	NWTPH-DX	Friedman & Bruya	2A
203466	Gasoline Range Organics	NWTPH-GX	Friedman & Bruya	2A
203466	Metals (iron, manganese)	SW6020B	Friedman & Bruya	2A
203466	BTEX	SW8021B	Friedman & Bruya	2A
203466 - 2203630	Methane	RSK-175	Fremont Analytical	2A
203466 - 2203630	Nitrate-Nitrite, Sulfate	EPA 300.0	Fremont Analytical	2A
203466 - 2203630	Sulfide	SM 4500-S2-F	Fremont Analytical	2A
203466 - 2203630	Total Alkalinity	SM 2320B	Fremont Analytical	2A

Table 1. Analytical Methods

Data assigned a J/UJ qualifier (estimated) may be used for site evaluation purposes but the reasons for qualification should be considered when interpreting sample concentrations. Values without qualification meet all data measurement quality objectives and are suitable for use.

Data qualifier definitions and a summary table of the qualified data are included in the Qualified Data Summary at the end of this report. Data qualifiers have been incorporated into the project chemistry database to reflect the validation in this report.

2 Data Validation Findings for SDG 203466

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Name	Sample Date	NWTPH-DX	NWTPH-GX	SW6020B	SW8021B
MW-100-032422	3/24/2022	Х	X		Х
MW-101-032422	3/24/2022	X	Х		Х
MW-104-032422	3/24/2022	X	Х		Х
MW-105-032422	3/24/2022	Х	Х	Х	Х
MW-108-032422	3/24/2022	X	Х		Х
MW-109-032422	3/24/2022	Х	Х		Х
MW-110-032422	3/24/2022	Х	Х		Х
MW-111-032422	3/24/2022	Х	Х		Х
MW-112-032422	3/24/2022	Х	Х	Х	Х
MW-113-032422	3/24/2022	Х	Х		Х
MW-115-032422	3/24/2022	Х	Х	Х	Х

Table 2. Sample Index

2.1 Sample Receipt and Preservation

Sample receipt and preservation (2-6 degrees C) were acceptable.

2.2 BTEX and Gasoline (SW 8021B and NWTPH-Gx)

2.2.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.2.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS %R were within the laboratory specified control limits. No LCSD sample results available. No qualification or action was needed.

2.2.4 Laboratory Duplicates (LD)

All LD RPD were within the laboratory specified control limits. No qualification or action was needed.

2.2.5 Field Duplicates (FD)

Sample MW-100-032422 was a field duplicate of MW-105-032422. All FD RPD were within the 25% control limit. No qualification or action was needed.

2.2.6 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD %R. Precision was acceptable based on the LCS/LCSD and LD RPD values. The data are of known quality and are acceptable for use as qualified.

2.3 Diesel and Motor Oil (NWTPH-Dx)

2.3.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.3.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS and LCSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

2.3.4 Surrogates

All surrogate %R were within the laboratory specified control limits, with the following exception(s):

MW-113-032422 – Surrogate %R fell outside of laboratory control limits. The laboratory report did not provide the %R for this sample but noted that %R fell outside laboratory control limits due to sample matrix effects. Associated detections are qualified as estimated (J). Non-detections do not require qualification.

2.3.5 Field Duplicates (FD)

Sample MW-100-032422 was a field duplicate of MW-105-032422. All FD RPD were within the 25% control limit or, when parent and duplicate results were less than five times the reporting limit, the difference was less than the reporting limit. No qualifications or action was needed.

2.3.6 Case Narrative/Laboratory Qualification

The laboratory noted that several samples had a chromatographic pattern that did not resemble the fuel standard used for quantitation. Associated detections are qualified (X). Non-detections do not require qualification.

2.3.7 Overall Assessment

Accuracy was acceptable based on the LCS/LCSD and surrogate %R. Precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

2.4 Metals (SW 6020B)

2.4.1 Holding Times

Samples were analyzed within the requisite holding time limit.

2.4.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

2.4.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS %R were within the laboratory specified control limits. No qualification or action was needed.

2.4.4 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits, with the following exception(s):

Dissolved Iron – MS and MSD %R above upper control limit and MSD RPD exceeded the control limit. Associated detections are qualified as estimated (J). Non-detections do not require qualification.

Dissolved Manganese – MS and MSD %R above upper control limit and MSD RPD exceeded the control limit. Associated detections are qualified as estimated (J). Non-detections do not require qualification.

2.4.5 Overall Assessment

Accuracy was acceptable based on the LCS and MS/MSD %R. Precision was acceptable based on the MS/MSD RPD values. The data are of known quality and are acceptable for use as qualified.

3 Data Validation Findings for SDG 203466-2203630

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Name	Sample Date	EPA300.0	RSK-175	SM2320B	SM4500S2F
MW-105-032422	3/24/2022	Х	Х	Х	Х
MW-112-032422	3/24/2022	Х	Х	Х	Х
MW-115-032422	3/24/2022	Х	Х	Х	Х

Table 3. Sample Index

3.1 Sample Receipt and Preservation

Sample receipt and preservation (2-6 degrees C) were determined to be acceptable by the laboratory, although it was noted that sample temperature upon arrival was 1.2°C. This is unlikely to have affected the sample results. No qualification or further action was necessary.

3.2 Alkalinity (SM2320B)

3.2.1 Holding Times

Samples were analyzed within the requisite holding time limit.

3.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

3.2.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS %R were within the laboratory specified control limits. No LCSD sample results available. No qualification or action was needed.

3.2.4 Laboratory Duplicates (LD)

All LD RPD were within the laboratory specified control limits. No qualification or action was needed.

3.2.5 Overall Assessment

Accuracy was acceptable based on the LCS %R. Precision was acceptable based on the LD RPD values. The data are of known quality and are acceptable for use as qualified.

3.3 Methane (RSK-175)

3.3.1 Holding Times

Samples were analyzed within the requisite holding time limit.

3.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

3.3.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS %R were within the laboratory specified control limits. No qualification or action was needed.

Laboratory Duplicates (LD)

All LD RPD were within the laboratory specified control limits. No qualification or action was needed.

3.3.4 Overall Assessment

Accuracy was acceptable based on the LCS %R. Precision was acceptable based on the LD RPD values. The data are of known quality and are acceptable for use as qualified.

3.4 Nitrate + Nitrite and Sulfate (EPA 300.0)

3.4.1 Holding Times

Samples were analyzed within the requisite holding time limit.

3.4.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

3.4.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS %R were within the laboratory specified control limits. No LCSD sample results available. No qualification or action was needed.

3.4.4 Matrix Spike and Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R and RPD were within the laboratory specified control limits. No qualification or action was needed.

3.4.5 Laboratory Duplicates (LD)

All LD RPD were within the laboratory specified control limits. No qualification or action was needed.

3.4.6 Overall Assessment

Accuracy was acceptable based on the LCS and MS/MSD %R. Precision was acceptable based on the MS/MSD and LD RPD values. The data are of known quality and are acceptable for use as qualified.

3.5 Sulfide (SM4500-S2-F)

3.5.1 Holding Times

Samples were analyzed within the requisite holding time limit.

3.5.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blank. No qualification or action was needed.

3.5.3 Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD)

All LCS %R were within the laboratory specified control limits. No LCSD sample results available. No qualification or action was needed.

3.5.4 Matrix Spike and Matrix Spike Duplicates (MS/MSD)

All MS and MSD %R were within the laboratory specified control limits. The MS/MSD RPD exceeded laboratory specified control limits. Associated detections are qualified as estimated (J). Non-detections do not require qualification.

3.5.5 Laboratory Duplicates (LD)

All LD RPD were within the laboratory specified control limits. No qualification or action was needed.

3.5.6 Overall Assessment

Accuracy was acceptable based on the LCS %R. Precision was acceptable based on the LD RPD values. The data are of known quality and are acceptable for use as qualified.

4 Qualified Data Summary

Qualified sample results are listed below. Results just flagged non-detect (U) by lab with no further qualification necessary are not listed.

Sample	Method	Analyte	Reason					
MW-101-032422	NWTPH-DX	Diesel Range Organics	x	Chromatographic pattern does not match fuel standard used for quantitation				
MW-104-032422	NWTPH-DX	Diesel Range Organics	x	Chromatographic pattern does not match fuel standard used for quantitation				
MW-105-032422	SW6020B	Iron	J	MS/MSD %R High and RPD Out				
MW-105-032422	SW6020B	Manganese	J	MS/MSD %R High and RPD Out				
MW-108-032422	NWTPH-DX	Diesel Range Organics	x	Chromatographic pattern does no match fuel standard used for quantitation				
MW-112-032422	SW6020B	Iron	J	MS/MSD %R High and RPD Out				
MW-112-032422	SW6020B	Manganese	J	MS/MSD %R High and RPD Out				
MW-113-032422	NWTPH-DX	Diesel Range Organics	XJ	Surrogate Out, Chromatographic pattern does not match fuel standard used for quantitation				
MW-113-032422	NWTPH-DX	Motor Oil Range Organics U		Surrogate Out				
MW-115-032422	NWTPH-DX	Diesel Range Organics	x	Chromatographic pattern does not match fuel standard used for quantitation				
MW-115-032422	SW6020B	Iron	J	MS/MSD %R High and RPD Out				
MW-115-032422	SW6020B	Manganese	J	MS/MSD %R High and RPD Out				

Table 4. Qualified Data Summary

Data Qualifier	Definition
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for but was considered not detected at the reporting limit or reported value.
UJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.
XJ	Result does not match the chromatographic pattern for a known petroleum product standard. The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
E	Result exceeded analytical range. A dilution was not possible. Analyte is definitely present, but numeric value is not suitable for quantitative analysis.
х	Result does not match the chromatographic pattern for a known petroleum product standard.
С	Result may be influenced by unconfirmed contamination as part of the analytical process.

Table 5. Data Qualifier Definitions

5 Acronyms and Definitions

%D – Percent Difference EPA – Environmental Protection Agency

FB – Field Blank

FD - Field Duplicate

LCS - Laboratory Control Sample

LCSD – Laboratory Control Sample Duplicate

LD - Laboratory Duplicate

MB – Method Blank

MDL – Method Detection Limit

MS – Matrix Spike

MSD – Matrix Spike Duplicate

QC - Quality Control

RL – Reporting Limit

SDG – Sample Delivery Group

SM - Standard Methods

TPH – Total Petroleum Hydrocarbon

APPENDIX C

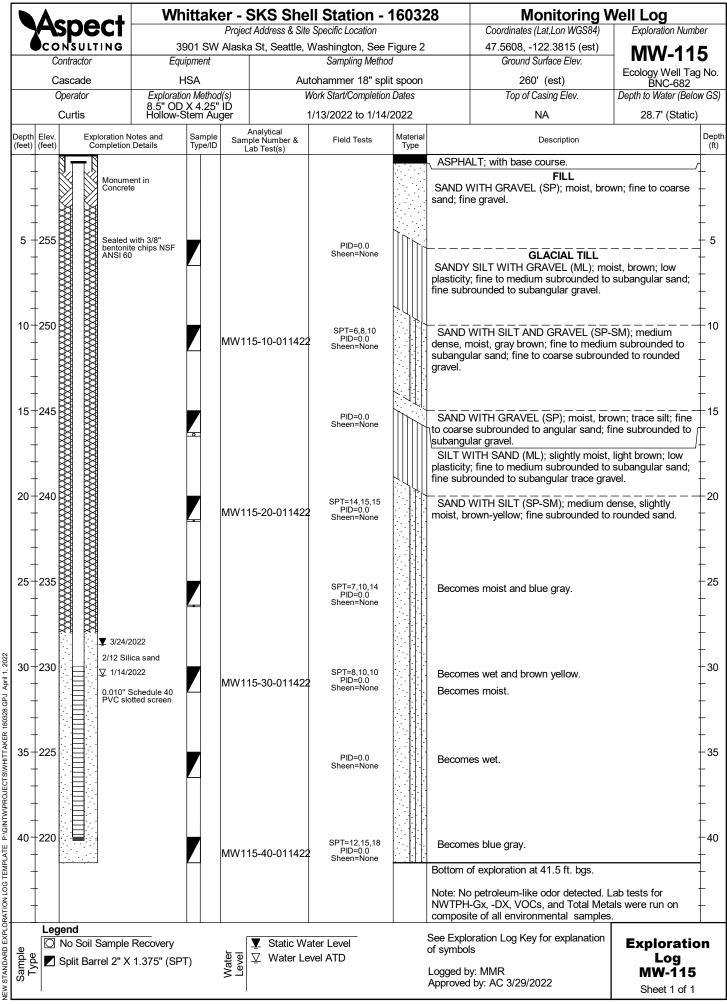
Field Forms

Field Staff: 04))

DAILY REPORT

Equipment used: Date://12/2022 Project Name: 47h2 Project Number: 10328 Weather: 500 F, Internation Arrival on site: Departure from site: Calibration: Par mi 172 (DP) Street Estilal Term V) decomasson. he D 0915-A22gag 5920 MANY 1) atom RWD 0930 n 0 M 3 2 17 3×Je ne POXIM 10 AU Ø to m ner Bass Well W-DY 0 -02 11 PW MAR mari 94) AZ 39 i/| w/ Convere. tall 5 III TH

C:\Users\dunruh\Documents\Projects\Field_Forms\Field Note Template.docx
Page ____of____


Field Staff: Du

DAILY REPORT Equipment used: Date://12/22 Project Name: whitehave Project Number: 160328 Weather: 50°F, Wordy Arrival on site: 0845 Departure from site: Calibration: 1000 -1400 1045 (511 RP ann lies RW-04 Su 1300 remared monomen (\mathbf{n}) 'n Vemue т 4ec Por nur 1235-Kim 55-11 12/14 1345 he besons remaining TCo ome C:\Users\dunruh\Documents\Projects\Field_Forms\Field Note Template.docx Page <u>2</u>of

NELL DE	VELOPMENT	RECORD			WELL NUMB	ER:	MW-	-115	
Project Nam	ne:	whittake	1 Fall	S	Project Numb		1100	32.8	
Date: 1/13/22 - 1/14/22 Developed by: MMP / Cascule				Starting Water Level (ft TOC): 28,47+ 28,17					
Developed by: Measuring Point of Well:			Iasta	de	Casing Sticku	0.3			
			concert		Total Depth (f	t TOC):		39.74	
_	iterval (ft. BGS):	28-4	-1.51		Casing Diame	ter (inches):	211	
	nterval (ft. BGS):	30-4	50'				3)		
	me: 1.27 mes: 2" = 0.16 g	ft Water x		gpf = 6" =	1.47 gpf	18			
DEVELO	PMENT MEAS	UREMEN	rs						
Elapsed Time (min)	Cumul. Vol. (gallons)	Purge Rate (gpm)	Temp. (C or F)	рН	Specific Conductance (µmhos/cm)		Imhoff Cone (ml/L)	Comments	
247	-					over		begin developin	hes
150	5	1.(5)				over		orginereopti	
1253	1429	1.07	3			over			
	11							12CTA A DUAD	
1250	U	0.07				over		lestart pump	
1258								dry	
1302	11	Conservation of the second				over		start again	
1305	13	0.67				over		dry	
1310	17	-				over		STATT	
	MARK 110	1				over		dry	
133	19110								
1310	14					over		start	
1318	18	0.67				over		dry	
1321	18					over		start	
1323	20	-				over		dry	
	20								
	arge (gallons): er Level (ft TOC): S	a Cil	4 <u>///</u> ///	>20	Total Casing V Ending Total I			ns): ~10 40,21'	
Cleaning Ec			di (OA)X Di	water				
-	nt Equipment:	-	NIS/ AG	10 OUT	NO WILL	V/IMAN 1	initel t	urbainerer (whi	P
	Discharged Wate	r: -	Willing		TE MALL	angel	win 10 34 11	manual (MII	ic)
-	s/Comments:	-	cinnt)						

ii.

	EVELOPMEN	RECORD			WELL NUMBE	ER:		
Project Nar	me:	Whittaker 3/9/2022			Project Numbe	ər:		160328
Date:					Starting Water	Level (ft T	OC):	28.62
Developed by: DJM Measuring Point of Well: NTOC					Casing Stickup	(ft BGS):		-0.451
					Total Depth (ft	TOC):		2" 39,47'
	nterval (ft. BGS):	30'-	40' 41.5'		Casing Diamet	ter (inches):	2"
Casing Vol Casing volu	Interval (ft. BGS) ume: 10, 55 umes: 2" = 0.16 PMENT MEAS Cumul, Vol.	ft Water x gpf 4"	0-16 = 0.65 gpf	gpf = 6" =	1,74 = 1.47 gpf	Turbidity	Imhoff Cone	Comments
Time (min)	(gallons)	Rate (gpm)	(C or F)	pri	Conductance (µmhos/cm)	(NTU)	(ml/L)	
9:30	Ð	0.25					OR	No color Nos
9:40	25	0.25					OR	1
950	2.5	0.25					OR	
1000	7.5	0.25					ORI	
1010	10	0.25					OR	
1020	15	0.5				diana .	314	
1030	12.5	0.25					60.4	J
				*	¥.			
	arge (gallons): er Level (ft TOC)	17.5			Total Casing V Ending Total D			ns): 10 39.7
ETHOD			1	()			,	
isposal of I	uipment: ht Equipment: Discharged Wate s/Comments:	er:	Alconox 3 stryc Dram Well	Solut 120 breacht reithroge	and men sa	istilal u oump, onsite merate	When por	Noing U-25 gpm U-5 gpm

P:\GINTW\PROJECTS\WHITTAKER JEW STANDARD EXPLORATION LOG TEMPLATE

APPENDIX D

Report Limitations and Guidelines for Use

REPORT LIMITATIONS AND USE GUIDELINES

Reliance Conditions for Third Parties

This report was prepared for the exclusive use of the Client. No other party may rely on this report or the product of our services without the express written consent of Aspect Consulting, LLC (Aspect). This limitation is to provide our firm with reasonable protection against liability claims by third parties with whom there would otherwise be no contractual conditions or limitations and guidelines governing their use of the report. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and recognized standards of professionals in the same locality and involving similar conditions.

Services for Specific Purposes, Persons and Projects

Aspect has performed the services in general accordance with the scope and limitations of our Agreement. This report has been prepared for the exclusive use of the Client and their authorized third parties, approved in writing by Aspect. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

This report is not, and should not, be construed as a warranty or guarantee regarding the presence or absence of hazardous substances or petroleum products that may affect the subject property. The report is not intended to make any representation concerning title or ownership to the subject property. If real property records were reviewed, they were reviewed for the sole purpose of determining the subject property's historical uses. All findings, conclusions, and recommendations stated in this report are based on the data and information provided to Aspect, current use of the subject property, and observations and conditions that existed on the date and time of the report.

Aspect structures its services to meet the specific needs of our clients. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and subject property. This report should not be applied for any purpose or project except the purpose described in the Agreement.

This Report Is Project-Specific

Aspect considered a number of unique, project-specific factors when establishing the Scope of Work for this project and report. You should not rely on this report if it was:

- Not prepared for you
- Not prepared for the specific purpose identified in the Agreement
- Not prepared for the specific real property assessed
- Completed before important changes occurred concerning the subject property, project or governmental regulatory actions

If changes are made to the project or subject property after the date of this report, Aspect should be retained to assess the impact of the changes with respect to the conclusions contained in the report.

Geoscience Interpretations

The geoscience practices (geotechnical engineering, geology, and environmental science) require interpretation of spatial information that can make them less exact than other engineering and natural science disciplines. It is important to recognize this limitation in evaluating the content of the report. If you are unclear how these "Report Limitations and Use Guidelines" apply to your project or site, you should contact Aspect.

Discipline-Specific Reports Are Not Interchangeable

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually address any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding the subject property.

Environmental Regulations Are Not Static

Some hazardous substances or petroleum products may be present near the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or petroleum products or do not otherwise present potential liability. Changes may occur in the standards for appropriate inquiry or regulatory definitions of hazardous substance and petroleum products; therefore, this report has a limited useful life.

Property Conditions Change Over Time

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time (for example, Phase I ESA reports are applicable for 180 days), by events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, slope failure or groundwater fluctuations. If more than six months have passed since issuance of our report, or if any of the described events may have occurred following the issuance of the report, you should contact Aspect so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

Phase I ESAs – Uncertainty Remains After Completion

Aspect has performed the services in general accordance with the scope and limitations of our Agreement and the current version of the "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process", ASTM E1527, and U.S. Environmental Protection Agency (EPA)'s Federal Standard 40 CFR Part 312 "Innocent Landowners, Standards for Conducting All Appropriate Inquiries".

No ESA can wholly eliminate uncertainty regarding the potential for recognized environmental conditions in connection with subject property. Performance of an ESA study is intended to reduce, but not eliminate, uncertainty regarding the potential for environmental conditions affecting the subject property. There is always a potential that areas with contamination that were not identified during this ESA exist at the subject property or in the study area. Further evaluation of such potential would require additional research, subsurface exploration, sampling and/or testing.

Historical Information Provided by Others

Aspect has relied upon information provided by others in our description of historical conditions and in our review of regulatory databases and files. The available data does not provide definitive information with regard to all past uses, operations or incidents affecting the subject property or adjacent properties. Aspect makes no warranties or guarantees regarding the accuracy or completeness of information provided or compiled by others.

Exclusion of Mold, Fungus, Radon, Lead, and HBM

Aspect's services do not include the investigation, detection, prevention or assessment of the presence of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detection, assessment, prevention or abatement of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Aspect's services also do not include the investigation or assessment of hazardous building materials (HBM) such as asbestos, polychlorinated biphenyls (PCBs) in light ballasts, lead based paint, asbestos-containing building materials, urea-formaldehyde insulation in on-site structures or debris or any other HBMs. Aspect's services do not include an evaluation of radon or lead in drinking water, unless specifically requested.